
C
o
p
y
r
i
g
h
t
 
 
2
0
2
0
.
 
D
e
 
G
r
u
y
t
e
r
.
 
A
l
l
 
r
i
g
h
t
s
 
r
e
s
e
r
v
e
d
.
 
M
a
y
 
n
o
t
 
b
e
 
r
e
p
r
o
d
u
c
e
d
 
i
n
 
a
n
y
 
f
o
r
m
 
w
i
t
h
o
u
t
 
p
e
r
m
i
s
s
i
o
n
 
f
r
o
m
 
t
h
e
 
p
u
b
l
i
s
h
e
r
,
 

e
x
c
e
p
t
 
f
a
i
r
 
u
s
e
s
 
p
e
r
m
i
t
t
e
d
 
u
n
d
e
r
 
U
.
S
.
 
o
r
 
a
p
p
l
i
c
a
b
l
e
 
c
o
p
y
r
i
g
h
t
 
l
a
w
.
 

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/13/2023 2:39 AM via 
AN: 2435803 ; Brindaban C. Ranu, Bubun Banerjee.; Organoselenium Chemistry
Account: ns335141



Organoselenium Chemistry

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



Also of interest

Selenium and Tellurium Reagents.
In Chemistry and Materials Science
Risto Laitinen, Raija Oilunkaniemi (Eds.), 
ISBN ----, e-ISBN ----

Grignard Reagents and Transition Metal Catalysts.
Formation of C-C Bonds by Cross-Coupling
Cossy (Ed.), 
ISBN ----, e-ISBN ----

Bioorganometallic Chemistry
Weigand, Apfel (Eds.), 
ISBN ----, e-ISBN ----

Bioinorganic Chemistry
Rabinovich, 
ISBN ----, e-ISBN ----

Organophosphorus Chemistry.
Novel Developments
Keglevich (Ed.), 
ISBN ----, e-ISBN ----

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



Organoselenium
Chemistry

Edited by
Brindaban C. Ranu, Bubun Banerjee

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



Editors
Prof. Brindaban C. Ranu
School of Chemical Sciences
Indian Association for the
Cultivation of Science
Kolkata 700032
India
bcranu@gmail.com

Dr. Bubun Banerjee
Department of Chemistry
Indus International University
Himachal Pradesh 174301
India
banerjeebubun@gmail.com

ISBN 978-3-11-062224-9
e-ISBN (PDF) 978-3-11-062511-0
e-ISBN (EPUB) 978-3-11-062229-4

Library of Congress Control Number: 2019955783

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2020 Walter de Gruyter GmbH, Berlin/Boston
Cover image: theasis/iStock/Getty Images Plus
Typesetting: Integra Software Services Pvt. Ltd.
Printing and binding: CPI books GmbH, Leck

www.degruyter.com

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://dnb.dnb.de
http://www.degruyter.com


Contents

List of Contributors VII

Brindaban C. Ranu, Tubai Ghosh, Subir Panja and Swapnadeep Jalal
1 Synthesis of Organoselenides by Coupling Reaction

and C–H Activation – Recent Advances 1

Amol D. Sonawane and Mamoru Koketsu
2 Synthesis of Organoselenium Scaffolds through Selenium Radical

Formation 29

Amol D. Sonawane and Mamoru Koketsu
3 Role of Isoselenocyanates for the Synthesis of Selenium-Containing

Heterocycles 55

Masayuki Ninomiya and Mamoru Koketsu
4 Selenoureas and Their Applications 87

Baitan Chakraborty, Aniruddha Das and Umasish Jana
5 Selenium Compounds as Reagents, Catalysts, and Ligands 117

Eder J. Lenardão, Laura Abenante, Angelita M. Barcellos, Gelson Perin,
Diego Alves, Marcio S. Silva, Daniela Hartwig and Raquel G. Jacob
6 Synthesis of organoselenium compounds using nonconventional

reaction media 193

Guilherme M. Martins and Samuel R. Mendes
7 Synthesis and Biological Activity of Five- and Six-Membered

Se-Containing Heterocycles 277

Pablo A. Nogara, Cláudia S. Oliveira and João Batista T. Rocha
8 Chemistry and pharmacology of synthetic organoselenium

compounds 305

Bubun Banerjee and Brindaban Chandra Ranu
9 Selenoamides, selenazadienes, and selenocarbonyls in organic

synthesis 347

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



Kishorkumar M. Reddy and Govindasamy Mugesh
10 Understanding the Chemistry of Selenoenzymes by Synthetic

Organoselenium Compounds 381

Index 423

VI Contents

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



List of Contributors

Laura Abenante
Laboratório de Síntese Orgânica
Limpa – LASOL – CCQFA, Universidade
Federal de Pelotas
RS 96160-000
Brazil

Diego Alves
Laboratório de Síntese Orgânica
Limpa – LASOL – CCQFA, Universidade
Federal de Pelotas
RS 96160-000
Brazil

Bubun Banerjee
Department of Chemistry
Indus International University
V.P.O. Bathu
Distt. Una
Himachal Pradesh 174301
India

Angelita M. Barcellos
Laboratório de Síntese Orgânica
Limpa – LASOL – CCQFA, Universidade
Federal de Pelotas
RS 96160-000
Brazil

Baitan Chakraborty
Department of Chemistry
Jadavpur University
Kolkata 700032
India

Aniruddha Das
Department of Chemistry
Jadavpur University
Kolkata 700032
India

Tubai Ghosh
School of Chemical Sciences
Indian Association for the Cultivation of science
Jadavpur
Kolkata 700032
India

Daniela Hartwig
Laboratório de Síntese Orgânica
Limpa – LASOL – CCQFA, Universidade
Federal de Pelotas
RS 96160-000
Brazil

Raquel G. Jacob
Laboratório de Síntese Orgânica
Limpa – LASOL – CCQFA, Universidade
Federal de Pelotas
RS 96160-000
Brazil

Swapnadeep Jalal
School of Chemical Sciences
Indian Association for the Cultivation of science
Jadavpur
Kolkata 700032
India

Umasish Jana
Department of Chemistry
Jadavpur University
Kolkata 700032
India

Mamoru Koketsu
Department of Chemistry and Biomolecular
Science
Faculty of Engineering
Gifu University
1-1 Yanagido
Gifu 501-1193
Japan

Eder J. Lenardão
Laboratório de Síntese Orgânica
Limpa – LASOL – CCQFA, Universidade
Federal de Pelotas
RS 96160-000
Brazil

https://doi.org/10.1515/9783110625110-203

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110625110-203


Guilherme M. Martins
Departamento de Química
Universidade Federal de Santa Maria
97105–900, Santa Maria
RS
Brazil

Samuel R. Mendes
Laboratório de Síntese e Catálise – SINCA –
Departamento de Química
Universidade do Estado de Santa Catarina
89219-719 Joinville
SC
Brazil

Govindasamy Mugesh
Department of Inorganic and Physical
Chemistry
Indian Institute of Science
Bangalore 560012
India

Masayuki Ninomiya
Department of Chemistry and Biomolecular
Science
Faculty of Engineering
Gifu University
1-1 Yanagido
Gifu 501-1193
Japan

Pablo A. Nogara
Departamento de Bioquímica e Biologia
Molecular
Centro de Ciências Naturais e Exastas
Universidade Federal de Santa Maria
Santa Maria
RS
Brazil

Cláudia S. Oliveira
Instituto de Pesquisa Pelé Pequeno Príncipe
Curitiba
PR
Brazil

and
Faculdades Pequeno Príncipe
Curitiba
PR
Brazil

Subir Panja
School of Chemical Sciences
Indian Association for the Cultivation of science
Jadavpur
Kolkata 700032
India

Gelson Perin
Laboratório de Síntese Orgânica
Limpa – LASOL – CCQFA, Universidade
Federal de Pelotas
RS 96160-000
Brazil

Brindaban C. Ranu
School of Chemical Sciences
Indian Association for the Cultivation of Science
Jadavpur
Kolkata 700032
India

Kishorkumar M. Reddy
Department of Inorganic and Physical Chemistry
Indian Institute of Science
Bangalore 560012
India

João Batista T. Rocha
Departamento de Bioquímica e Biologia
Molecular
Centro de Ciências Naturais e Exastas
Universidade Federal de Santa Maria
Santa Maria
RS
Brazil

VIII List of Contributors

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



Marcio S. Silva
Laboratório de Síntese Orgânica
Limpa – LASOL – CCQFA, Universidade
Federal de Pelotas
RS 96160-000
Brazil

Amol D. Sonawane
Department of Chemistry and Biomolecular
Science
Faculty of Engineering
Gifu University
1-1 Yanagido
Gifu 501-1193
Japan

List of Contributors IX

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



Brindaban C. Ranu, Tubai Ghosh, Subir Panja and
Swapnadeep Jalal

1 Synthesis of Organoselenides by Coupling
Reaction and C–H Activation – Recent
Advances

1.1 Introduction

The area dealing with the synthesis of organoselenides has experienced a tremendous
growth in last two decades. A number of methods have been reported. This chapter
highlights the recent reports on various methods for the synthesis of selenides by
cross-coupling and C–H activation. The metal-catalyzed as well as metal-free proce-
dures have been discussed. Besides Pd, the catalysis by other metals such as Cu, Ni,
Ru and Ca have also been addressed. Under nonmetallic catalysis I2, (TBAI) and hypo-
phosphorus acid (H3PO2) have been discussed.

Among the several organochalcogenides, organoselenium compounds are of
considerable interest as selenides are found useful in the areas of agrochemicals,
insecticides, and drugs (Figure 1.1) [1–6]. Apart from biological applications, they
are also used as useful intermediates and catalysts in several organic transforma-
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Figure 1.1: Examples of biologically active organoselenides.

Brindaban C. Ranu, Tubai Ghosh, Subir Panja and Swapnadeep Jalal, School of Chemical
Sciences, Indian Association for the Cultivation of Science, Kolkata, India

https://doi.org/10.1515/9783110625110-001

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110625110-001


tions [7–9]. They also show wide variety of applications as functional materials [10].
A large number of methods have been developed for the construction of C–Se bond
both under metal free as well as in the presence of transition metal.

This chapter covers the synthesis of organoselenium compounds through C–H
activation and cross-coupling reactions.

1.2 Reactions involving C–H activation

In recent years, transition metal-catalyzed/mediated C–H bond functionlization be-
came an important tool for the synthesis of organic molecules [11–15]. The use of
C–H bonds toward transformable functional group is advantageous because C–H
bonds are the most abundant moieties in organic molecules. Thus, one-step conver-
sion of these C–H bonds to the desired functionality minimizes the synthetic path-
ways, saves reagents and reduces waste of solvents and time.

In this context, Nishihara and coworkers reported the synthesis of benzoisose-
lenazolone and its derivatives by nickel-catalyzed dehydrogenative direct selena-
tion of C(sp2)–H bonds with elemental selenium powder under aerobic condition
(Scheme 1.1) [16]. After optimization it was observed that a combination of 10 mol %
of Ni(OAc)2·4H2O, 20 mol % of PPh3, 2 equiv. of Na2CO3 and 3 equiv. of n-Bu4NCl
along with 2 equiv. of selenium powder in DMF at 120 °C under air provided the best
results among others. A range of functional groups including both electron-donating
and electron-withdrawing substituents were compatible under the optimized oxida-
tive conditions and the corresponding benzoisoselenazolone derivatives were formed
in good-to-excellent yields. Apart from benzamides, acrylamides were also found to
be suitable for the desired transformations. The newly formed benzoisoselenazolone
derivatives were readily converted into a variety of useful organoselenium com-
pounds. Based on the control experiments, the author proposed a mechanistic cycle
that the reaction proceeds by the formation of nickelacycle(II) and single-electron
oxidation of the stable nickelacycle(II) species under aerobic condition.

Synthesis of unsymmetrical ferrocene aryl chalcogenides by C–H activation of fer-
rocene amide using 8-aminoquinoline as a directing group has been developed by
Sattar et al (Scheme 1.2) [17]. The reaction occurs in the presence of copper(II) salt as
the active catalyst, silver acetate as an oxidant at 80 °C in DMSO. A range of diaryl
diselenides containing electron-deficient and electron-withdrawing substituents un-
derwent successful coupling with ferroceneamide under the optimized reaction condi-
tions and the bis-arylselenylated ferrocenes were obtained. Although the reactions
successfully produced the desired arylselenylated ferrocene using diaryl diselenides,
dialkyl diselenides failed to initiate the reaction. The reaction went smoothly with
other diaryl dichalcogenides too.
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 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



C-4 Selenylated isoquinolin1(2H)-one was synthesized using a new and facile
AgSbF6-mediated procedure through a radical pathway (Scheme 1.3) [18]. The reaction
occurs in the presence of equimolar amount of isoquinolin-1(2H)-ones and diaryl dise-
lenide using AgSbF6 as an oxidant in dichloroethane under reflux for 8 h. Among sev-
eral other commonly used oxidizing agents, AgSbF6 was found to be the most effective
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O
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O
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Scheme 1.1: Nickel-catalyzed dehydrogenative direct selenation of C(sp2)–H bonds.
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Scheme 1.2: Copper-catalyzed 8-aminoquinoline-assisted aryl selenylation of ferrocene amide.
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one. The reaction shows excellent regioselectivity and broad substrate scope. The cor-
responding C-4 selenylated derivatives were obtained in excellent yield. Apart from
isoquinoline moiety, the reaction occurs without any difficulty when pyridin-2(1H)-one
was used.

As recently reported by Ranu and his coworkers, when 2-naphthol and its deriva-
tives were allowed to react with styrenyl selenocyanate/diaryl diselenide in the pres-
ence of a base at room temperature, selenylation occurs selectively at the 1-position
of 2-naphthol unit (Scheme 1.4) [19]. The reaction occurs in the presence of Cs2CO3

as a base in DMSO solvent at room temperature in the absence of any transition
metal or oxidants. Both electron-donating and electron-withdrawing styrenyl seleno-
cyanate reacted with 2-naphthol and its derivatives at room temperature and the corre-
sponding 1-styrenyl-selenylated naphthol derivatives were obtained in good yields
(Scheme 1.4a). The electronically diverse diaryl diselenides also provided the desired 1-
arylated derivatives without any difficulty (Scheme 1.4b). The reactions are relatively
fast (2−4 h) and high yielding. The reaction is also feasible in gram scale. More impor-
tantly, the unaffected hydroxyl group (–OH) can be further functionalized. Initially,
the base Cs2CO3 reacts with 2-naphthol to form naphtholate anion intermediate (A)
(Scheme 1.4c), which reacts with styrenyl selenocyanate/diryl diselenide at the 1-
position to form the species (B). The intermediate (B) then undergoes aromatization
via proton elimination to form the desired 2-selenylated product.

Braga and his group developed a microwave (MW)-assisted C(Sp2-H) bond func-
tionalization protocol to allow access to several selenide bicyclic arenes. In this meth-
odology I2/DMSO was used as the catalyst [20]. The use of MW irradiation for C–Se
bond formation produces a higher yield in shorter reaction time than conventional
heating in the presence of I2 (20 mol %) and 2 equivalent of DMSO. The reaction was
screened for different levels of irradiation power and it was observed that 100 W was
the ideal for this transformation. Different oxidizing agents, such as H2O2 and TBHP,
were tested in place of DMSO but the result was not good as in DMSO. 2-Naphthol

NH

O

H

R1
+ Ar Se

Se
Ar NH

O

Se

R1
AgSbF6(1.0 equiv.)

DCE, 110 oC, 8 h

Ar

NH

O

Se
Ph

NH

O

Se
Ph

NH

O

Se
Ph

NH

O

SeArCl
Br

90% 92% 86% 88%

Scheme 1.3: AgSbF6-mediated C-4 selenylation of isoquinolin-1(2H)-ones.
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and naphthalene-2-amines containing different functional groups afforded good-to-
excellent yield (Scheme 1.5) in MW heating. 3-Hydroxyquinoline derivatives required
longer times when compared to that needed by the 2-napthol. Electron-donating and
-withdrawing group are compatible in the reaction condition. In the presence of a
radical inhibitor 2, 2, 6, 6-tetra-methylpiperidine-1-oxyl (TEMPO), no remarkable
change was observed. This result implies that the reaction does not proceed through
radical intermediate.

Alkynyl alkyl selenides are of particular importance, due to their applications in or-
ganic synthesis, presence as drug candidate and agrochemicals as well as being
used in material science. Very recently, the preparation of alkynyl selenides from
the reaction of alkynylseleno imidazolium salts with Grignard reagents has been re-
ported. However, the limitations of the use of prepared selenating reagents and the
expensive catalytic system, poor functional group tolerance, and harsh reaction con-
ditions are not suitable for the late-stage functionalization of complex molecules. In
this context, Ge and his coworkers developed an efficient method for the synthesis
of alkynyl alkyl selenides via three-component coupling of terminal alkynes, Se, and
epoxides [21]. Subsequently, a wide range of epoxides were examined under metal-
free selenation in water medium. It was observed that the reaction of a mixture of
alkynes (0.3 mmol), Se (0.6 mmol), cyclohex-ene oxide (0.9 mmol), tetrabutylammo-
nium iodide (TBAI, 0.3 mmol), and KOH (0.6 mmol) in H2O (2 mL) at 45 °C for 12 h

I2(20 mol%),
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MW (100 W)/80 oC,oil bath
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Se

OH
Se

OH
Se
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MW, 10 min, 94%
1 h, 96%
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R1Y 2
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Scheme 1.5: Chalcogenation of bicyclic arenes using I2/DMSO as nonmetallic catalytic system.
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under inert atmosphere provided the best yield. Functional groups including halo-
gen, methoxyl, trifluoromethyl, and nitro group tolerate the reaction conditions
(Scheme 1.6). This reaction is also applicable for bulk scale synthesis. To identify the
role of elemental Se in this transformation and to gain more insight into the reaction
mechanism, some control experiments were performed. Based on the experimental
results and previous literature reports, a plausible reaction mechanism for double
C–Se bond formation was proposed, as shown in Scheme 1.7. Initially, elemental se-
lenium undergoes disproportionation [22] to generate a selenide anion under basic
conditions, which reacts with an epoxide to form the ring-opened alkyl selenide
anion species. The oxidative homo-coupling afforded the corresponding diselenide
intermediate [23], and finally, the terminal alkyne underwent alkylselenation [24] in
the presence of a base to provide the products.

Lewis acid mediated ring-opening reactions of epoxides with the selenolate anions
for the synthesis of selenides are of considerable interest. Liu and coworkers devel-
oped a convenient silver-catalyzed one-pot three-component selective synthesis of
β-hydroxy selenides using organoboronic acids, selenium powder, and epoxide
through regioselective and stereoselective ring opening of epoxides [25]. In general,
aryl boronic acids containing both electron-rich and electron-deficient substituent

R1 Se
O

R3

R2

TBAI (1.0 equiv.)
KOH (2.0 equiv.), H2O

N2, 45 oC,12 h

Se R2
OH

R3

R1

Se Se

S
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71% 70% 55%
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O

47% 94%

++
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Scheme 1.6: Metal-free synthesis of alkynyl alkyl selenides.
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Scheme 1.7: Mechanism for double C–Se bond formation.
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were smoothly converted into the respective trans-β-hydroxy selenides in moderate-
to-good yields (Scheme 1.8). Remarkably, ortho-functionalized substrates did not in-
terfere with the reaction and yielded the corresponding products in good yield. A
wide range of oxiranes were examined in silver-catalyzed double C–Se bond-
forming reaction. Overall, both linear and branched aliphatic epoxides perform
well, giving the desired product with excellent regioselectivities. Remarkably, func-
tionalized styrene oxides were also acceptable under the reaction conditions. These
compounds are usually challenging substrates in the SN2 ring-opening reaction be-
cause of their propensity to yield inseparable regioisomers. The reaction was found
to have a good tolerance for a variety of functional groups in oxiranes, including
alkyl, alkoxy, alkenyl, and halogens. Application of the reaction was further dem-
onstrated in the late-stage selenation of several bioactive compounds, such as vita-
min E, sesamol, and thymol derivatives. Preliminary mechanistic studies suggest
that the reaction proceeds through the silver-catalyzed radical selenation of the aryl
boronic acids to generate aryl diselenide, and subsequent selenium-mediated selec-
tive ring-opening and arylselenation of epoxides.

Another site-selective copper-catalyzed three-component coupling reaction of elec-
tron-deficient heterocycles with Se powder and aryl iodides was reported by Hu
et al. [26]. The established protocol provides an efficient and practical pathway to
access 2-arylselenated heterocycles via copper-catalyzed double C–Se bond forma-
tion (Scheme 1.9). The aforementioned reaction is highly regioselective. A variety of
arylselenated 2-Ar-1,3,4-oxadiazole compounds were generated by this protocol.
Generally, aryl iodides bearing electron-donating groups like methyl, methoxy, and
trifluoromethoxy resulted in higher yields than those with electron-withdrawing

o

Scheme 1.8: Silver-catalyzed one-pot three-component synthesis of β-hydroxy selenides.
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groups like trifluoromethyl, ester, and nitro. Remarkably, hindered substrates
showed higher reactivity and gave the desired products in shorter reaction times.
Halogen-containing substrates were well tolerated, and these reactive groups pro-
vide an opportunity for the further functionalization. Furthermore, heterocyclic
substrates such as pyrazole, thiophene, carbazole, and quinoline were accommo-
dated under the current reaction conditions, further highlighting the generality of
this coupling process. This transformation involves the use of elemental Se as the
selenating reagent, a cost-effective catalytic system, and the late-stage selenation of
bioactive compounds and natural products.

An ortho-selective ammonium chloride-catalyzed selenylation of phenols was devel-
oped by Yeung and coworkers (Scheme 1.10) [27]. The advantages of the protocol are
low catalyst loading and the reaction under mild conditions. The reaction shows very
high regioselectivity.

Malemides are found as important structural motifs in natural products and drug
molecules [28]. This scaffold also acts as a linker in protein, peptide, polymer, and so
on [29], and as useful intermediate for the synthesis of heterocyclic frameworks such
as pyrrolidines, succinimides, γ-lactams, lactims, and so on [30]. Baidya and cow-
orkers demonstrated an unprecedented Ru(II)-catalyzed formation of C–Se bond in
maleimides via weak coordinating carboxylate-assisted C–H functionalization keeping
intact the olefin moiety (Scheme 1.11) [31]. For the first time they have reported Ru-
catalyzed direct C–H selenation of alkene via an umpolung method. The selenylation

Scheme 1.9: Copper-catalyzed arylation of Se with aryl iodides and heterocycles.

1 Synthesis of Organoselenides by Coupling Reaction 9

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



product was obtained following the optimized reaction conditions using diaryl disele-
nide (1.2 equiv.), catalyst [Ru(p-cymene)Cl2]2 (5 mol %), K2CO3 (10 mol %), and an
acid additive 3,5-Me2C6H3CO2H (10 mol %) in dichloroethane at 80 °C for 24 h. They
explored the scope of the reaction. N-Substituted allyl and alkyl malemides provide
the corresponding products with excellent yields. The electron-donating and elec-
tron-deficient functional group containing aromatic ring attached with N-atom under-
went reaction efficiently to give the respective product exclusively. The halogen
groups can be further functionalized. Various aryl and heteroaryl diselenides were
also investigated. It was observed that the reaction did not go through a radical path-
way and proceeded through the involvement of a direct C–H functionalization.

OH
H

R2 R2

OH
SePh

N
H H

Cl

NPSP, 3Ao Ms,
toluene, 0 oC

(10 mo%)

OH
SePh

SePh
OH

Et2N

SePh
OH

SePh
OH

91% 71% 88% 52%

SePh
OH

93%

NPSP = N-(phenylseleno)
              phthalimide

Scheme 1.10: Ammonium salt-catalyzed ortho-selenation of phenols.
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Scheme 1.11: Ru-catalyzed C–H selenylation of maleimides.
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Baidya’s group also reported the ruthenium(II)-catalyzed chalcogenation of aryl and
heteroaryl acids via direct ortho C–H activation (Scheme 1.12) [32]. Without any metal-
lic oxidant the reaction proceeds via weak O-coordination, avoiding the installation of
an external directing group. The selenylation product, selenoxanthones, is important
for biological activity [33]. In the general procedure, aromatic carboxylic acid was al-
lowed to react with diaryl diselenide (2.0 equiv.) in the presence of catalyst [Ru(p-
cymene)Cl2]2 (4 mol %), PCy3 (8 mol %), NaHCO3 (1 equiv.) in dimethylformamide at
100 °C for 48 h under aerobic condition. Benzoic acid containing electron-donating as
well as electron-withdrawing groups at para-position smoothly reacted to give the dis-
elenylated products in good yields. The meta-substituted benzoic acid gives monosele-
nylated product via preferential less hindered side due to the steric constraints. Only
monoselenyted product was obtained when sterically hindered ortho-substituted ben-
zoic acid and bicyclic 1- or 2-naphthoic acid were reacted. Heteroaryl carboxylic acid
also provided excellent yields by this method. Various functionalized diaryl disele-
nides produced the corresponding products by this procedure.

Aryl alkynoates are useful coupling partners in radical cascade atom transfer reac-
tion. Based on the radical acceptor property of the activated alkyne functional group,
synthesis of several molecular skeletons has been designed [34–36]. Recently Baidya
et al. developed a route for the synthesis of substituted α,β-unsaturated acids con-
taining chalcogen functionality at room temperature via a radical-based cascade re-
action (Scheme 1.13) [37]. The oxidative difunctionalization of aryl alkynoate under
metal-free condition produced the unsymmetrically tetrasubstituted acyclic olefin
with CO2 exclusion. In the presence of oxidant TBHP (2.0 equiv.), aryl alkynoates re-
acted with diaryl diselenides (2.0 equiv.) in acetonitrile at room temperature under
argon atmosphere to give the corresponding product. A wide range of substituted
aryl alkynoates were subjected to the reaction with diaryl diselenides by this proce-
dure to produce the corresponding tetrasubstituted alkenes. O-Aryl ring of aryl alky-
noate containing electron-releasing groups and electron-withdrawing substituents

ArSe SeAr
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R
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Scheme 1.12: Ru-catalyzed ortho C–H selenylation of aromatic carboxylic acid.
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provided the corresponding products in high yields. The para-substituted alkyne aryl
ring also gives the tetrasubstituted α,β-unsaturaterd acids in excellent yields. A gram-
scale reaction was performed using this method. According to the results of the con-
trol experiments, a radical mechanism was proposed. The selenium radical induced
cascade rearrangement with 1,4-aryl migration from oxygen center to carbon center.
Through decarboxylative radical coupling, these products serve as building blocks to
the synthesis of vinyl selenides, vinyl halides, geminal diselenoethers, 3,3- diaryl in-
danones. The carboxylic group can be further functionalized. A plausible reaction
pathway is given below (Scheme 1.14). In the presence of TBHP, an aryl selenide radi-
cal is generated that reacts with the olefenic bond of aryl alkynoate to give the vinyl
radical. This intermediate produces a cyclized product through an intramolecular
pathway, which on aryl migration gives carboxyl radical. Finally, the carboxyl radical
provided the product accepting hydrogen radical from TBHP.
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ArSeSeAr
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TBHP (2.0 equiv.)
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COOH
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Scheme 1.13: Radical cascade selenylation of aryl alkynoates.
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Scheme 1.14: Plausible reaction mechanism.
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Very recently Cu-catalyzed four-component cross-coupling reaction of aryl iodides,
Se powder, maleimides, and secondary amines was developed by Wu and coworkers
to provide amino-arylselenated maleimides (Scheme 1.15) [38]. Vinyl selenides are use-
ful synthetic intermediates for drug molecules and other biologically active compounds
[1]. In this one-pot reaction, the best yield was obtained when maleimide was reacted
with aryl iodide (3 equiv.), Se powder (Se8) (3 equiv.), and an secondary amine (1.5
equiv.) in the presence of Cu(OAc)2 (10 mol%), Na2CO3 (4.0 equiv.) in DMF at 120 °C
under O2 atmosphere for 18 h. Only secondary amine is effective where as primary
alkyl amine, aniline, electron-deficient amide failed to initiate the reaction. Both cyclic
and acyclic amines react. In case of substituted aryl iodide, electron-donating substit-
uent provides better yields than electron-withdrawing one. Halogen-containing aryl
iodides are well accepted and the halogen moieties can be further functionalized.
Heteroaryl iodide also participates as a coupling partner in this method. A mechanis-
tic pathway was proposed in Scheme 1.16.

1.3 Reactions involving cross-coupling

Aromatic amines are used as precursor for the construction of C–Se bond on reaction
with selenium sources. Easily available and cheap aromatic amines react with tert-
butyl nitrite in neutral medium and subsequent reaction with diaryl/diheteroaryl/dia-
lkyl diselenides under visible light irradiation at an ambient temperature, leading to
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Scheme 1.15: Cu-catalyzed aminoarylselenation.
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selenylation of the corresponding amine (Scheme 1.17a) as reported by Ranu and his
coworkers [39]. Among various photosensitizers, less expensive eosin Y is found to
be the best choice. A variety of aryl/heteroary amines-bearing electron-donating and
electron-withdrawing substituents reacted efficiently with diaryl/diheteroaryl/dialkyl
diselenides to provide the corresponding unsymmetrical diaryl/diheteroaryl/dialkyl
selenides in excellent yields. These organoselenides are of much interest in pharma-
ceutical industries. This reaction of C–Se bond formation was also applied for the
synthesis of unsymmetrical bis-selenides and selenosulfides. The aryl amine under-
goes in situ diazotization in the presence of tert-butyl nitrite and the corresponding
diazonium ion formed immediately undergoes reduction by photo-activated eosin
Y. The resulting aryl radical (A) interacts with diaryl diselenide to produce an inter-
mediate (B), which is stabilized by aryl and selenium moiety (Scheme 1.17b). The rad-
ical (B) then leads to the formation of intermediate (C) via one-electron oxidation by
eosin Y radical cation, which undergoes cleavage to provide the desired product. The
involvement of radical pathway was confirmed by radical quenching experiment
using TEMPO (radical quencher).

Alves and his coworkers reported a simple and catalyst-free method for the syn-
thesis of diaryl selenides by the reaction of aryl selenols and diazonium fluorobo-
rates (Scheme 1.18) [40]. Aryl selenols were generated in situ by the reaction of
diaryl diselenides with hypophosphorous acid (H3PO2) at room temperature. The re-
action successfully produces a large array of unsymmetrical diaryl selenides by the
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Scheme 1.16: Proposed mechanism.
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reaction of arenediazonium tetrafluoroborates and diryl diselenides in the presence
of hypophosphorous acid (H3PO2) at room temperature in THF. The reaction occurs
via two steps. Initially diaryl diselenide reacts with hypophosphorous acid (H3PO2)
at room temperature in THF to provide the corresponding aryl selenol moiety.
Then, arenediazonium tetrafluoroborates were added to the reaction mixture at
room temperature under inert atmosphere to produce the product. This reaction
provides a new route for the preparation of diaryl selenides containing electron-
withdrawing and electron-donating groups in moderate-to-good yields.

MW-assisted general, efficient, and green procedure for the synthesis of unsym-
metrical diaryl selenides by the reaction of aryl diazonium fluoroborate and diaryl
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+ SeSeArAr
tBuONO (1.1 equiv)
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Scheme 1.17a: Visible light-photocatalyzed conversion of aryl-/heteroarylamines to selenides at
room temperature.
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Scheme 1.17b: Possible reaction pathway.
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diselenides in dimethyl carbonate was developed by Ranu and his coworkers
(Scheme 1.19) [41]. Zinc metal has been used as a reducing agent and the reaction is
completed within a short time.

The reaction of arene diazonium tetrafluoroborates and diaryl diselenides on the sur-
face of alumina under ball-milling without any external solvent or metal to produce
unsymmetrical diaryl selenides was reported by Ranu et al. (Scheme 1.20) [42].
Usually, diaryl diselenides are more stable and are easily prepared and preferred
over less stable and more toxic selenols as selenating agents [2]. Among several
grinding auxiliaries such as neutral alumina, basic alumina, or silica, neutral alumina
was the preferred choice. A mixture of diazonium tetrafluoroborate (1 mmol), diaryl
diselenide (0.5 mmol), and KOH (0.75 mmol) on neutral alumina (3 g) was ball-milled
at 600 rpm using six balls for 15−20 min. In conventional heating at 80 °C, the
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R
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Scheme 1.18: Synthesis of diaryl selenides by the reaction of aryselenols and arenediazonium salts.
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Scheme 1.19: Microwave-assisted reaction of aryl diazoniumfluoroborate and diaryl diselenides.
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Scheme 1.20: Solvent-, ligand-, and metal-free synthesis of unsymmetrical diaryl selenides.
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reaction required 8−10 h. Extraction of crude product by elution with ethanol or ethyl
acetate followed by short column chromatography provided the desired product in a
pure form. A range of electron-donating and electron-withdrawing diazonium salts
underwent successful coupling with diphenyl diselenide under this condition to pro-
duce the products in moderate-to-good yields. This was the first report of synthesis
using diaryl diselenides under ball milling in the absence of any metal or solvent.

In addition to the metal-free C–Se cross-coupling procedures, transition metal-
catalyzed C–Se bond formations are well explored. Palladium-catalyzed addition re-
actions of diaryl diselenides to terminal alkynes proceed smoothly in room tempera-
ture ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])
as reported by Cai and coworkers (Scheme 1.21) [43]. Both aliphatic and aromatic
terminal alkynes underwent successful coupling with diaryl diselenides and the
corresponding (Z)-1,2-bis(arylthio)-1-alkenes or (Z)-1,2-bis(arylseleno)-1-alkenes
were obtained in good-to-excellent yields. The ionic liquid, [bmim][PF6], provides
the advantages of rate acceleration, increase of yield, and a lower reaction temper-
ature. For example, the addition reaction of Ph2Se2 to 1-hexyne in [bmim][PF6] at
60 °C gave (Z)-1,2-bis(phenylseleno)-1-hexene in 96% yield after 2 h of reaction,
but the same reaction when performed in benzene at 80 °C gave the desired prod-
uct in 81% yield after 12 h.

The same group further developed palladium-catalyzed cross-coupling reaction of phe-
nyl tributylstannyl selenide with aryl/alkyl halides at room temperature in ionic liquid,
1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), for the synthesis of
diorganyl selenides (Scheme 1.22) [44]. The coupling reaction was performed in [bmim]
[PF6] ionic liquid. Among several other palladium catalysts, Pd(PPh3)4 was proved to
be the most effcient one. Best results were observed when the reaction was performed
with 5 mol% of Pd(PPh3)4 in [bmim][PF6] at 80 °C for 1 h.

Besides palladium catalyst, other metals such as nickel, copper, and calcium
were also employed for the C–Se bond formation via cross-coupling reactions. For ex-
ample, synthesis of selenium-containing diaryl retinoids has been reported by Millois
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Scheme 1.21: Palladium-catalyzed addition of diaryl disulfides and diselenides to terminal alkynes
in ionic liquids at room temperature.
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et al. (Scheme 1.23) [45] using nickel(II)-catalysts for the coupling of diaryl diselenide
and an iodoarene in the presence of polymer-supported borohydride. Retinoids are
synthetic [46] and natural analogues of all trans- or 9-cis-retinoic acid, which shows
profound effects on cell differentiation and proliferation [47]. These biological proper-
ties are indicative of high potential for the treatment of hyperproliferative disorders
such as psoriasis or cancer. Many of their biological effects are mediated by activa-
tion of nuclear receptors. A range of diaryl/aryl-heteroayl selenides were synthesized
by this procedure using (bpy)2NiBr2 in a mixture of ethanol and THF (4:1) to improve
the solubility at 65 °C for a period of 16 h.

The 1,3,4-oxadiazole moiety is a ubiquitous heterocycle, found in pharmaceuticals [47].
1,3,4-Oxadiazole skeleton shows wide biological activity including, anti-inflammatory,
analgesic, anticancer, anti-HIV, immune-stimulatory, anticonvulsant, and angiogene-
sis inhibition. An efficient copper-catalyzed three-component selenation of oxadiazoles
with elemental selenium and aryl iodide for the synthesis of seleno-oxadiazoles was
reported by Braga and his coworkers (Scheme 1.24) [48]. The reaction was performed
under open atmosphere in the presence of cheap and easily available copper salt with
minimum catalyst loading, which makes this one-pot C(sp2)–H bond chalcogenation
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Scheme 1.22: Palladium-catalyzed cross-coupling of PhSeSnBu3 with aryl and alkyl iodides in
ionic liquid.
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Scheme 1.23: Solution-phase synthesis of diaryl selenides using polymer-supported Ni catalyst.
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approach more attractive and practical. The reaction was effective for several iodo are-
nes containing both electron-donating and electron-withdrawing substituents. In gen-
eral, the reaction tolerated the electronic effect (EDG, EWG) of the substituents at the
para- and meta-positions, leading to the respective products in good-to-moderate
yields. However, there was a negative influence on the yield of the ortho-substituted
iodo arene due to steric hindrance. Substituted 1,3,4-oxadiazole (both aromatic and ali-
phatic substituents) were also investigated and the respective seleno-oxadiazoles were
formed in good yields.

Along with the transition metals, group 2 alkaline earth metals, such as calcium,
strontium, and barium, have also been employed for several important organic trans-
formations. These metals show excellent Lewis acid property because of their large
radii and electropositive character. In addition, their low toxicity and cost effciency
have also made them more attractive to be used as catalysts for reaction. Ranu and
his group has reported a calcium(II) chloride mediated C–F bond cleavage of electron
deficient fluoroarenes followed by selenation in the absence of any additive, ligand,
or organometallic reagents (Scheme 1.25) [49]. The reactions were performed in the
presence of a mixture of fluoroarene (1.0 mmol), diaryl diselenide (0.6 mmol), calcium
chloride (3.0 mmol), and Zn dust (1.1 mmol) in DMSO (3 mL) under an argon atmo-
sphere at 110 °C for 12 h. After evaporation of DMSO, the crude product was extracted
with ethyl acetate, which was then subjected to column chromatography over silica
gel for pure product isolation. A wide range of diversely substituted diphenyl sele-
nides have been employed in this procedure and the corresponding products were
formed in good yields. The fluoroarenes containing electron-withdrawing substituents
underwent successful coupling with diary diselenide, but unsubstituted and electron-
donating group substituted fluoroarenes were not effective for this transformation.
The role of calcium salt in the cleavage of the C–F bond, the probable mechanism as
depicted in Scheme 1.26, has been suggested using DFT analysis.
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Scheme 1.24: Copper-catalyzed three-component reaction of oxadiazoles, elemental Se/S, and aryl
iodides.
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One-pot metal-free pathway for the synthesis of organoselenides and selenoglyco-
sides involves alkylation, arylation, or alkynylation of selenium anions as developed
by Townsend et al. [50]. The procedure is unique and it represents an umpolung ap-
proach to the synthesis of aryl-selenides through two-step strategy. The first step in-
volves the arylation of potassium selenocyanate (KSeCN) with an iodonium reagent
in the absence of a metal catalyst to produce an arylselenocyanate. In general, it was
found that the yield of the reaction depends on the composition of iodonium salt
(0.1 mmol-0.20 mmol) and KSeCN (0.11−0.40 mmol) in EtOAc (1–2 mL) at 80 °C for
24 h. In the second step, treatment with sodium borohydride unmasks a second sele-
nium nucleophile that interacts with an aliphatic electrophile, iodonium reagent, or
glycosyl halide. The ortho-, para-, meta-substituted electron-donating groups like –
Me, –OMe as well as electron-withdrawing groups –NO2, CO2Et on aryl part led the
reaction without any difficulty. The epoxide, ester, alkyne moieties also remained un-
affected under the reaction conditions (Scheme 1.27).

A convenient protocol for the synthesis of styrenyl selenocyanates from readily
available styrenyl bromides by the reaction with potassium selenocyanate in the
presence of iodine under specified conditions has been developed by Ranu and his
coworkers [51]. This method is of much significance as synthesis of styrenyl seleno-
cyanates is reported for the first time. In addition, this strategy constitutes a one-pot
reaction using commercially available chemicals. It was reported that a mixture of
(E)-1-(2-bromovinyl)-4-methylbenzene (1.0 mmol), KSeCN (1.2 mmol), and catalyst
(20 mol %) in dry DMSO (2.5 mL) at 90–100 °C under argon provided the best result
(Scheme 1.28). This reaction is chemoselective. The iodo- and bromo-substituents
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+
Se

R1 R2

CaCl2(3.0 equiv.)

Zn dust (1.1 equiv.), Ar
12 h, 110 oC

Scheme 1.25: Calcium-mediated C–F bond substitution in fluoroarenes and C–Se bond formation.
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Scheme 1.26: Possible reaction pathway.
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attached to the aromatic ring are compatible with the reaction conditions. Styrenyl
bromides containing electron-rich groups or electron-poor groups undergo smooth
reaction. This reaction is also applicable to naphthalene derivatives and ortho-
substituted styrenyl bromides.

To find out whether the reaction proceeds via radical/ionic pathway, a represen-
tative reaction with 4-methyl styrenyl bromide and KSeCN was performed using
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Scheme 1.27: Synthesis of unsymmetrical organoselenides and selenoglycosides.
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Scheme 1.28: Transition-metal-free iodine catalyzed selenocayanation of styrenyl bromides.
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TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) as a radical quencher. It was revealed
that TEMPO does not have any effect on the reaction. This indicates that selenocya-
nate formation is likely to go through an ionic process rather than radical pathway. A
possible reaction pathway has been outlined in Scheme 1.29.

A simple and convenient approach for the synthesis of unsymmetrical diaryl sele-
nides has been reported by Kumar and his group using copper-catalyzed cross-
coupling reaction of boronic acid with diaryl diselenides in ethanol using NaBH4 [52].
It was found that the reaction of boronic acid and diaryl diselenide in the presence of
CuSO4.5H2O along with 1,10-phenanthroline, NaBH4 in EtOH provides the best yield.
The methodology is very efficient for the synthesis of unsymmetrical diaryl selenides
bearing various functionalities such as –CF3, –NO2, –F, –Br and the respective prod-
ucts were obtained in good-to-excellent yields (Scheme 1.30). Moreover, the symmet-
rical diaryl selenides have also been obtained from aryl boronic acids using selenium
powder under optimized reaction conditions. The use of NaBH4 is vital for the reac-
tion, which enabled the formation of unsymmetrical diaryl selenides from boronic
acids in ethanol at room temperature.

SeCN Br

Br

NCSe

Br

I

I

I2

I

SeCN

KI
Nucleophilic addition

E2

cyclo iodinum intermediate

Scheme 1.29: Plausible reaction mechanism.
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Aryl bromides are used for the synthesis of diaryl selenides through the conversion to
the corresponding aryl lithium or magnesium and subsequent reaction with diaryl dis-
elenides [53]. However, this synthetic approach has several limitations, such as the
availability and stability of the corresponding organometallic compounds, longer reac-
tion time, lower yields, and so on. A new route to prepare unsymmetrical diaryl sele-
nides has been reported by Beletskaya et al. [54]. It was found that Cu catalyst was
better than Ni catalyst for the transformation. It was also observed that the reaction
of aryl bromides and iodides with Bu3SnSeAr catalyzed by Cu(I) complexes like
CuI·phen and (Ph3P)CuI·phen in DMF under inert atmosphere produced the best
yield. The di- and trisubstituted tributyltin aryl selenide and various aryl and hetero-
aryl bromides containing both electron-withdrawing and electron-donating substitu-
ents (Scheme 1.31) were employed in this protocol for C–Se bond formation. The
yields of unsymmetrical diaryl selenides were high in all the cases. However, the ar-
ylselenylation of aryl bromides with electron-donating substituents required a longer
reaction time.

1.4 Conclusions

In this chapter we have highlighted the various methods for the synthesis of orga-
noselenides reported during the recent period. The selenides are of much impor-
tance because of their useful applications as therapeutic agents, agrochemicals,
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Scheme 1.31: Copper(I)-catalyzed arylselenylation of aryl bromides and iodides.
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materials, catalysts, and intermediates in organic synthesis. Thus, interest in the
synthesis of these compounds is growing constantly. This chapter will cater the
need of practicing chemists working in this field in academia as well as in industry.

Acknowledgment: Indian National Science Academy, New Delhi, is gratefully ac-
knowledged for the support to one of us, B C Ranu.
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Amol D. Sonawane and Mamoru Koketsu

2 Synthesis of Organoselenium Scaffolds
through Selenium Radical Formation

2.1 Introduction

Selenium chemistry has proved to be a powerful tool for the synthesis of organic
molecules over several decades. The radical species are known as one of the most
important reactive species in organic synthesis. The selenium-containing mole-
cules are used in a variety of synthetic radical reactions such as radical precur-
sors, for the insertion of selenium into target product, and also as other important
applications such as radical trapping. The main focus in the radical chemistry has
been on reactions of carbon radicals, because carbon radicals readily react with
various radical acceptors. Most of the heterocyclic compound syntheses were
achieved by intramolecular radical formation. There are several radical formations
like O-centered or N-centered radicals, and all of them have different stability and
also have different reactivity. Many complex natural products were synthesized
by reactions of C-centered radicals. The bond formation also occurs by radical
coupling reactions between heteroatom-centered radicals and other radicals. In
addition, many heteroatom-centered radicals are capable for directly abstracting
hydrogen atoms from sp3-carbons to form C-centered radicals.

The chapter is divided into several sections; we basically focused on the synthe-
sis of organoselenium scaffolds through selenium radical formation. In the litera-
ture, selenium-containing heterocycles and the selenium radical chemistry have
been well reviewed [1–5].

2.2 Synthesis of selenide ether by decarboxylation

The decarboxylation reaction makes practical and effective use of cheap and stable
carboxylic acids as starting materials. It becomes an attractive methodology to form
carbon–carbon as well as carbon–heteroatom bonds in modern organic synthesis.
Generally, the decarboxylative coupling reactions required transition metal cata-
lysts [6, 7]. Phenyl acetic acids can be used as starting materials in the construction
of new bonds not only through decarboxylation but also by sp3 C-H functionaliza-
tion [8]. The development of new decarboxylation methods under metal-free condi-
tions is also important. Herein, the method for the formation of C–Se bond through
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base-promoted decarboxylative coupling reaction was carried out by using disele-
nide and carboxylic acid derivative as staring materials [9].

The synthesis of selenide ether 3 by decarboxylation with mechanistic pathway is
shown in Figure 2.1 [9]. Initially, phenyl acetic acid was converted to anion intermedi-
ate species 4 via a decarboxylation reaction in the presence of Cs2CO3. Further the spe-
cies 4 reacted with diphenyl diselenide to afford the product 5 with by-product PhSeH.
The intermediate 5 was converted to the secondary radical 6 when reacted with Fe(III)
in oxygen atmosphere [8]; finally by a radical process, the secondary radical 6 reacted
with diselenide to obtain selenide ether 3 in moderate-to-good yields.

The mechanistic study involves the effect of electron donating as well as electron-
withdrawing substituents on phenyl acetic acids, and the substituents on the aro-
matic diselenides. The reactions of aromatic diselenides with phenyl acetic acids
bearing both strong electron-donating groups such as malonic acid and electron-
withdrawing groups on the aryl ring afforded the good yields. Unfortunately, cyano-
acetic acid and acetoacetic acid substrates failed to afford the desired products.
Aliphatic carboxylic acids including acetic acid, propionic acid, hydrocinnamic acid
and 1, 2-diphenyldiselane also did not react under these reaction conditions. It is ob-
served that aromatic diselenides with strong electron-withdrawing groups on the
phenyl ring provided the products in higher yields than those bearing electron-
donating groups. Similarly, the halogen (F, Cl, and Br)-substituted phenylacetic acids
reacted readily to afford the desired products in good yields. Finally, it concludes

OH

O

R (Ar–Se)2, O2

FeCl3, Cs2CO3
100ºC, DMF, 6 h

Se
Ar

Se
Ar

R

Cs2CO3

H

–CO2

(ArSe)2

PhSeH

Se
Ar

O2

Fe(III)
Se

Ar

(ArSe)2
Se

Ar

Se
Ar

1

2 3

5

2

3

OH

O O

O

R

4

6

Figure 2.1: Plausible mechanism for the synthesis of selenide ether 3 by decarboxylation.
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that the substituent on aromatic phenylacetic acids does not affect the product
yield 3; on the contrary, the substituents on aromatic selenides affect the product
yields 3 [9].

2.3 Imidoyl selenide

The C=C centered radicals having α-N-atom are called imidoyl radicals. The syn-
thetic use of imidoyl radicals is known for the formation of nitrogen heterocycles.
Imidoyl selenides are known to act as precursors for imidoyl radicals, and these
precursors are suitable for developing synthetic protocols [10–13]. They have been
efficiently used in cyclizations, annulations, and cascade reactions, leading to the
construction of various nitrogen-containing heterocyclic compounds [14]. They
have also been used as key intermediates in the synthesis of carbonyl compounds,
amides, and nitriles and as precursors of alkyl radicals in Fe-free reactions [15]. In
addition, the imidoyl selenides would require reductive radical procedures, which
were potentially more efficient for preventing termination reactions [16]. Radical re-
agents such as tributyltin hydride are well known for the abstraction of the phenyl-
selenide group in SN2 reactions and these precursors would yield the required
imidoyl radicals.

The synthesis of imidoyl selenide precursors 8 by imidoyl chloride 7 is shown in
Figure 2.2 [15]. Generally PhSe− anion is prepared in methanol in the presence of so-
dium borohydride, but the imidoyl chloride 7 readily reacts with methanol. Therefore,
phenyl selenide anion was prepared in nonreactive solvent like THF in the presence of
K-selectride (solution of 1.0 M potassium tri-sec-butylborohydride in THF).

2.3.1 Synthesis of carbapenem framework

Diphenyl diselenide is an encouraging candidate for heteroatom compounds for se-
lective three-component coupling reaction with an electron-poor alkyne and an
electron-rich alkene [17, 18]. Diphenyl diselenide showed highly selective sequential
addition to ethyl propiolate 9 and isocyanides 10, providing the corresponding
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DCM, -HCl R Cl
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(Ph-Se)2 1
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Figure 2.2: Synthesis of imidoyl selenide precursors 8.
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three-component coupling products bearing both vinyl and imidoyl selenide func-
tional group 15 (Figure 2.3) [19].

A possible mechanistic pathway involves irradiation with near-UV light. The di-
phenyl diselenide undergoes homolytic dissociation to generate PhSe., which se-
lectively adds to ethyl propiolate 9, forming β-seleno-substituted vinylic radical 11.
The vinylic radical 11 reacts with isocyanides 10 to produce imidoyl radical inter-
mediate 12, which is trapped with (PhSe)2 yielding the three-component coupling
product 13 with regeneration of PhSe. Further, synthesized imidoyl selenide 13 was
treated with α-methoxyacetyl chloride 14 in the presence of triethylamine, success-
fully providing the corresponding β-lactam 15. Further, the reaction of the β-lactam
15 with trifluoroacetic acid successfully removed the vinylic selenium group from
15, giving the corresponding aldehyde 16 as a precursor for the construction of car-
bapenem framework [19].

2.3.2 Double chalcogenation of isocyanide

A selective method for introducing the seleno group into a variety of isocyanide is
shown in Figure 2.4 [20]. Selectivity of the final product 20 is based on the relative
reactivities of organic dichalcogenides and chalcogen-centered free radicals. When
the reactions of aromatic isocyanide (Ar-NC) 17 with organic disulfides (R′S-SR′) 18
and diselenides (R″Se-SeR″) 1 are conducted upon irradiation with a tungsten lamp
through Pyrex (hv > 300 nm), simultaneous introduction of both thio- and seleno-
groups into the isocyanides takes place to provide the corresponding thioselenation
products (R′S-C(=NAr)-SeR″) 20 by thio-imidoyl radical intermediate 19 in good
yields with excellent selectivity.
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Figure 2.3: Plausible mechanism for construction of carbapenem 16.
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When the [2 + 2] cyclization reaction was attempted with 20 by using excess
amount (10 equiv.) of methoxyacetyl chloride 21, the desired β-lactum 22 was ob-
tained in 81% yield (Figure 2.5) [20].

2.4 Selenourea and carbamimidoselenoate

The indole skeletons are known as important building blocks in organic synthe-
sis and are prevalent in a series of natural products and pharmaceuticals [21–23].
The reactions catalyzed by 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) give
O2 as the green oxidant and this protocol provides a practical route for the syn-
thesis of 3-selenylindole derivatives 34. An electron spin-resonance (ESR) study
indicates that the formation of selenoates involves nitrogen-centered radicals
and selenium radicals, leading to in situ oxidation of selenoates. The selenium
functionalization of indole was carried out by using selenium powder as sele-
nium source (Figure 2.6) [24].

Initially, the reaction of isocyanide 23 with elemental selenium 24 generates iso-
selenocyanate 25 under the basic conditions. Next, 25 reacts with an amine to pro-
duce selenoate 26, resulting in equilibrium between selenium anion intermediate 26
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Figure 2.4: Possible pathways for thioselenation of isocyanide 17.
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and nitrogen anion intermediate 27. Subsequently, the oxidation of intermediate 27
by TEMPO in oxygen atmosphere generates nitrogen-centered radical 28, which reso-
nates to the more active selenium intermediate 29. Meanwhile, deprotonation of in-
dole 30 in the presence of Cs2CO3 gives nitrogen anion intermediate 31 and carbon
anion intermediate 32. Next, the cross-coupling of radical 29 with 32 affords nitrogen
radical cation 33. Finally, the single electron transfer of intermediate 33 furnishes the
desired product 34 (Figure 2.7) [24].

The reactions of aryl isocyanides 35 having electron-withdrawing groups proceeded
smoothly to afford the desired products 36 in moderate-to-good yields. Substrates
bearing strong electron-withdrawing groups, such as nitro, cyano, and amido, gave
better results, affording the corresponding products in 67−82% yields. The copper
catalysis also accommodated electron-withdrawing acetyl, ester, and bromo sub-
stituents, which showed slightly lower efficiency of the transformations. The use of
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chloro substituent produced the product in 71% yield. However, aryl isocyanides
bearing electron-donating groups, such as 4-methoxybenzene, 2,6-dimethyl ben-
zene 35, failed to lead the desired products 36 (Figure 2.8) [25].

2.5 Synthesis of unsymmetrical diaryl selenide

The synthesis of unsymmetrical diaryl chalcogenide, acyl chalcogenide [26], and
oxyacyl chalcogenide [27] by selenium radical pathways is highly important in or-
ganic synthesis [28–34]. Photoinduced synthesis of unsymmetrical diaryl selenide
38 from triarylbismuthine 37 and diaryl diselenide 1 is depicted in Figure 2.9 [35].
The arylation reactions proceed with triarylbismuthines upon photoirradiation in
the absence of transition-metal catalysts. A variety of unsymmetrical diaryl sele-
nides can be conveniently prepared by using this arylation method [35].
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2.5.1 Unsymmetrical diaryl selenide from arylhydrazine

The synthesis of unsymmetrical diaryl selenides from aryl hydrazine and stoichio-
metric amounts of diaryl diselenides under mild reaction conditions overcomes the
disadvantage of the HAS (the use of excess amounts of radical accepters) reaction
for practical synthesis [36, 37]. A method for the atom-economical synthesis of un-
symmetrical diaryl selenides from aryl hydrazine hydrochlorides and stoichiometric
amounts of diselenides was successfully developed by using air as the oxidant. This
process avoids the use of transition meal and makes the procedure more practical
to access unsymmetrical selenides (Figure 2.10) [38].

In the mechanism, hydrazine 39 was first treated with LiOH·H2O to prepare the free
base 40, which is then oxidized by air to form corresponding diazene 41. Further,
air oxidation of diazene 41 resulted into 4-methoxyphenyl radical 43. Another route
to form 4-methoxyphenyl radical 43 was through diazoselenide 42. Further, the
radical intermediate 43 was trapped by diphenyl diselenide 1 to afford desired prod-
uct 44 in good yield [35, 39].
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2.5.2 Aryl di-selenation of ferroceneamide

The synthesis of unsymmetrical ferrocene aryl chalcogenide 46 by C–H activation of
ferrocene amide 8-aminoquinoline 45 as a directing group is shown in Figure 2.11 [40].
The reaction was carried out in the presence of silver acetate oxidant, aryl dichalcoge-
nides, and copper (II) catalyst at 80°C in DMSO.

In the mechanistic consideration, the Cu (II) species is important for the catalytic
cycle. Cu(OAc)2 would undergo substitution reaction with ferrocene carboxamide 45 to
provide copper-ferroceneamidate I (Figure 2.12) [40]. Intramolecular interaction of cop-
per with the C–H bond would activate it, followed by proton abstraction by the AcO−

ligand enable cyclometalated intermediate II. Ligand substitution by PhSe–SePh fol-
lowed by homolytic cleavage of PhSe–SePh bond would form copper–chalcogenolate
III and PhSe•, which subsequently dimerizes to PhSe–SePh. Alternatively, the interme-
diate III could be generated by the disproportionation of II into Cu (III) and Cu (I) spe-
cies. Oxidation of Cu (I) by PhSe–SePh led to III and PhSe+. The substitution in Cu (III)
by PhSe− would furnish intermediate III. The reductive elimination in copper (III) led
to the desired C–SeR bond and release of Cu (I), which upon oxidation by AgOAc
would regenerate to active Cu (II) species. Consequently, monochalcogenated product
IV would furnish dichalcogenated product 46.

2.6 Preparation of benzoselenophene

Benzothiophene and its derivatives represent a highly important and valuable class
of heterocyclic compounds widely present in many medicinally relevant molecules
[41]. A variety of synthetic methods for the preparation of substituted benzothio-
phene and benzoselenophene have been developed [42]. The preparation of benzo-
thiophenes by radical cascade reactions has attracted considerable attention since
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Figure 2.11: Directed ferrocene C–H bond functionalization.
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it offers a simple and efficient approach to construct the benzothiophene ring
[43, 44]. The synthesis of benzoselenophenes was successfully achieved by
readily prepared O-methylselanyl-arylamines and alkynes under metal free con-
ditions (Figure 2.13). Reactions with O-methylselanyl-arylamines carrying electron-
donating and electron-withdrawing substituents proceed well, and the corresponding
products 54 were obtained in good yields. Moreover, a variety of alkynes-bearing dif-
ferent substituents were tested. The electron-donating (methyl, methoxy) and also
electron-withdrawing substituents (halides) were well tolerated, affording the corre-
sponding products 54 in good yields. With heteroaryl, alkyl, and TMS substituents on
the alkynes, moderate yields were obtained [45].

A plausible mechanism is proposed in Figure 2.13 [43, 46, 47]. First, arylamine
47 was treated with t-BuONO to the corresponding nitrosamine 48, which under-
goes self-condensation to generate diazo anhydride 49. N–O homolysis of 49 pro-
vides aryl radical 50 along with azoxy radical 51 and nitrogen. The addition of 51
to alkyne 52 leads to the vinyl radical 53, which reacts by intramolecular homo-
lytic substitution at the sulfur atom or selenium atom to form the final product 54
along with R radical [48]. The R radical can further react by H-abstraction from
the solvent. Notably, these transformations occur efficiently without the help of
any transition metal or additive. The applications of the method are demonstrated
by the synthesis of the key intermediates of the drug raloxifene and AT1 receptor
antagonist [45].
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2.7 Selenylation of imidazo[1,2-a]pyridine

The development of convenient and novel approaches for imidazo [1,2-a]pyridine syn-
thesis and functionalization has received much attention in organic chemistry [49].
The controllable radical chemistry to construct diverse organic molecules has been of
growing interest [50, 51].

The copper-catalyzed convenient and efficient approach for the construction of
nitrogen heterocycle-fused imidazo[1,2-a]pyridine and benzo[b]selenophenes has
been developed by direct selenation of readily available 2-(2-bromophenyl)imidazo
[1,2-a]pyridines by regioselective cleavage of C(sp2)-Br and C(sp2)-H bonds using read-
ily available selenium powder as the selenating reagents under ligand- and base-free
conditions in air (Figure 2.14) [52]. To study this selenation process, a series of mecha-
nistic studies by ESR spectra were performed [51]. The plausible mechanism, showed
in Figure 2.14 [52], indicates that the Cu (I) is oxidized to Cu (II) by oxygen in air. The
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single electron transfer takes place between 55 and Cu (II) that generates radical cat-
ion 56. Further, the intermediate 56 loses a proton leading to vinyl radical intermedi-
ate 57, which reacts with elemental Se-power to give a selenium-free radical 58.
Subsequently, the radical 58 undergoes an intramolecular cyclization to generate
radical intermediate 59. Finally, Cu (I)-mediated bromine abstraction of radical inter-
mediate 59 takes place, releasing the product 60 with Br−, and Cu (II).

2.8 Selenosulfonation

2.8.1 Synthesis of (E)-β-selenovinyl sulfone

Selenide group transfer from sulfonyl selenide is useful due to the weak S–Se bond
and is widely used for organic synthesis [53–55]. A copper-catalyzed high regio- and
stereo-specific selenosulfonation of alkynes with arylsulfonohydrazides 61 and di-
phenyl diselenide are shown in Figure 2.15 [56]. The three-component reaction pro-
ceeded under mild reaction conditions, providing a wide range of (E)-β-selenovinyl
sulfones 64 in good-to-excellent yields.

To study the reaction mechanism, some control experiments were carried out [56].
This result showed that the selenosulfonation might not involve a selenosulfonate in-
termediate. The results suggested that the transformation might proceed via a
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radical pathway. Initially, the sulfonyl radical 62 was generated in the presence of
copper salt and K2S2O8 by single electron transfer and deprotonation process, along
with the release of N2 [57, 58]. Furthermore, the sulfonyl radical 62 was added to
alkynes, forming a relatively stable β-sulfonyl vinyl radical 63. Subsequently, the
phenyl selenol group transferred from diphenyl diselenide to 63 affords thermody-
namically stable (E)-β-selenovinyl sulfone 64. Alternatively, the phenyl selenol
group transfer might be much more rapid than the inversion of 63, thus resulting in
a single isomer 64 (Figure 2.15) [56, 59].

The four component selenosulfonation of alkyne is shown in Figure 2.16 [60]. Various
aryl diazonium tetrafluoroborates with different functional groups were used includ-
ing electron-donating (OMe), electron-neutral (H), and electron-withdrawing (F and
Cl) delivering the corresponding products in high yield.

The radical mechanism for this multicomponent reaction is proposed in
Figure 2.16 [60]. The combination of a aryldiazonium cation with DABSO (1,4-
diazabicyclo[2.2.2]octane bis-sulfur dioxide adduct) [61, 62] generates the complex
A, which provides sulfur dioxide, nitrogen, an aryl radical, and tertiary amine rad-
ical cation B. Then, the addition of the aryl radical to sulfur dioxide produces ar-
ylsulfonyl radical C, which subsequently, regiospecifically adds to alkyne 1 to
form a relatively stable β-sulfonyl vinyl radical D. Finally, with the help of K2S2O8,
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a phenyl selenol radical is generated and couples with radical C to afford the
thermodynamically stable (E)-β-selenovinyl sulfone 67.

2.8.2 Selenosulfonation of 1,7-enyne

The three-component selenosulfonation of 1,7-enynes 68 with sulfinic acids 69 and
diphenyl diselenides for the formation of multifunctional 3,4-dihydroquinolin-2
(1H)-ones 70 was developed in a batch flow process. The reaction carried out at the
room temperature provides a highly efficient diversified selenosulfones in moder-
ate-to-excellent yields with a broad scope of substrates (Figure 2.17) [63]. The reac-
tion proceeds via radical-induced 6-exo-dig cyclization.

The mechanism involved the formation of sulfonyl radical 71 through oxidation of
the arylsulfinic acid in the presence of TBHP via a single electron transfer process.
Similar to this procedure, diphenyl diselenide generates a phenylselenyl radical
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[64–66]. Subsequently, the sulfonyl radical 71 attacks the terminal olefin of 1,7-enyne
68 to give radical 72, followed by a 6-exo-dig cyclization to form vinyl radical interme-
diate 73. In the presence of phenylselenyl radicals, intermediate 73 is transformed to
the final 3,4-dihydroquinolin-2(1H)-ones 72 by radical coupling (Figure 2.18) [63].

2.8.3 Synthesis of selenocarbamate

The synthesis of secondary selenocarbamate 75 through metal-free multicomponent
reactions of isocyanide 17, selenosulfonate 74, and water is shown in Figure 2.19 [67].

The homolysis of selenosulfonate 74a will occur in the mixture to deliver benzene-
sulfonyl radical A and selenium radical B. Next, A reacts with isocyanide 1a to give
the intermediate D, which can be trapped by TEMPO. Subsequently, D reacts with
2a to give intermediate E and regenerates A (major path). Alternatively, the disele-
nide C reacts with D to produce E and regenerate B (minor path). Finally the hydro-
lysis of intermediate E provided product 75 Figure 2.20 [67].
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2.8.4 Synthesis of seleno-sulfonated 1-indenone

The TBHP-catalyzed direct selenosulfonylation of β-alkynyl propenone 76 by com-
bining sulfinic acid 69 and diphenyl diselenide 1 is shown in Figure 2.21 [68]. The
protocol features a broad substrate scope, high functional group tolerance, and
mild reaction conditions.

The radical addition of aryl sulfonyl radical 71 into β-alkynyl propenone 76 gives
intermediate 78, followed by 5-exo-dig cyclization to vinyl radicals 79, which are
trapped by diphenyl diselenide radical to afford the product 77 (Figure 2.22) [69].
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2.8.5 Radical cyclization of 1,6-diene

The polystyrene-supported selenosulfone 81 was prepared from 1% cross-linked poly-
styrene resin 80 and further applied to free radical cyclization reactions of 1,6-diene
82, followed by the subsequent “traceless” resin release by oxidation–elimination re-
action, which gives a convenient method for the synthesis of methylenecyclopentane
83 (Figure 2.23) [70].

The alcohol product can be formed in the polymer-supported oxidation–elimina-
tion reaction, which was not observed in solution phase synthesis under the same
conditions. By applying a different oxidation–elimination procedure, methylenecyclo-
pentanes can be formed as the only products, while cyclopentanyl methyl alcohols
were obtained as the only product employing an oxidation–hydroboration–oxidation
sequence [70].

2.9 Synthesis of 2-aryl-1,3-benzoselenazole

The reaction of 2-iodoaniline 86 with n-BuLi, subsequent trapping of the lithium
anion with elemental selenium 24 and potassium ferrocyanide oxidation, afforded
the corresponding diselenide 87 (Figure 2.24) [71].

The reaction between bis(2-aminophenyl) diselenide 87 and substituted benzal-
dehyde 88 was carried out by using Na2S2O5 as the reducing agent and DMSO as the
solvent. The reaction was carried out at 120 °C for 24 h. A possible reaction mecha-
nism for the synthesis of 2-aryl-1,3-benzoselenazole 93 is shown in Figure 2.25 [71].
The amino group of bis(2-aminophenyl) diselenide 87 initially reacts with the aryl
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aldehyde 88 to form the imine diselenide compound 89. Next, the Se–Se bond was
cleaved by the radical anion SO2 generated form S2O5

2- by heating [72] to afford the
intermediates 90 and 91. The intermediate 90 can be reoxidized to starting imine dis-
elenide 89. Further, the radical 91 undergoes to the intramolecular cyclocondensa-
tion leading to the aminyl radical 92. Finally, the oxidation of intermediate 92
provides the target product 93.
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2.10 Aerobic radical-cascade cycloaddition

The synthesis of 1,2,4-selenadiazole-5-amine derivatives 101 was successfully
achieved by multicomponent reaction of isocyanide 17, selenium powder 24, and
imidamide compounds 94 under metal-free conditions. The reaction proceeded
under mild conditions with O2 as green oxidant and no extra catalysts or oxidants
were required (Figure 2.26) [73].

In the plausible mechanism, the reaction of isocyanide 17 with selenium pow-
der 24 gives isoselenocyanate 25 under the action of DIPEA (Figure 2.26, eq. 5) [73].
Next, 25 reacts with imidamide 94 to produce the intermediate 95. Subsequently,
95 is oxidized by O2 or superoxide anion radical to give selenium radical intermedi-
ate 96 (Figure 2.26, eq. 6) [73]. Further, 96 may undergo two possible pathways to
generate the desired product 101. In the first pathway, diselenide intermediate 97 is
generated by homocoupling of 96 [74], followed by deprotonation under the action
of DIPEA or peroxide anion, to afford product 101 (Figure 2.26, route a) [73].
Intramolecular cyclization of 96 is involved in the second pathway for the forma-
tion of intermediate 98, and 99 undergoes deprotonation under the influence of
DIPEA or peroxide anion to yield 101 (Figure 2.26, route b) [73]. The TEMPO can trap
intermediate 98 to generate 100, which is unstable under the reaction conditions.
As a result, a molecule of TEMPOH will be eliminated by DIPEA or peroxide anion
to produce 101. The peroxide anion and proton, which is formed in the reaction,
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will combine and thermally decompose to H2O and O2 (Figure 2.26, eq. 7) [73]. In
addition, TEMPO is regenerated from TEMPOH under the action of peroxide anion
(Figure 2.26, eq. 8) [73, 75].

2.11 Conclusions

This chapter offers an updated overview on the synthesis of organoselenium scaf-
folds through selenium radical pathway. Here we have reported the radical path-
way for the synthesis of carbapenem and double chalcogenation of isocyanide. In
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addition, this chapter involved the synthesis of selenide ether, selenourea, and car-
bamimidoselenoate. The cascade reactions including 2-aryl-1,3-benzoselenazole
and selenosulfonation of 1,7-enyne, unsymmetrical diaryl selenide, synthesis of
sulfonated 1-indenone, selenocarbamate, and cyclization of 1,6-diene were reported
by selenium radical pathway.
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3 Role of Isoselenocyanates for the
Synthesis of Selenium-Containing
Heterocycles

3.1 Introduction

Over the past decade, the chemistry of organoselenium compounds has attracted
much attention because of their importance as synthetic tools [1, 2]. In particular,
selenium-containing heterocycles have contributed to the remarkable growth of in-
terest in the organoselenium chemistry. Preparations of selenium-containing het-
erocycles often involve the use of toxic Se-reagents, which are difficult to handle
and to store. Isoselenocyanates are widely employed in the synthesis of selenium-
containing heterocycles as a result of their convenient preparation, low toxicity, rel-
ative stability, and excellent reactivity [3–5].

In this chapter, we focused on the synthesis of organoselenium-containing or-
ganic heterocycles via isoselenocyanate intermediate. Here isoselenocyanate was
used as versatile synthons in the preparation of Se-containing organic heterocycles.
The chapter includes preparation of isoselenocyanate, further reactions with differ-
ent nucleophiles, and synthesis of various important Se-heterocycles.

3.2 Preparation of organic isoselenocyanate

3.2.1 By formation of a C–Se bond

The general procedure for the synthesis of organic isoselenocyanate 3 was achieved
by reaction of isonitrile 1 with selenium powder 2 (Figure 3.1) [6–10].

The reaction of formamide 4 with selenium powder 2 in the presence of triphos-
gene or phosgene or (Cl3CO)2CO and triethylamine is shown in Figure 3.2 [9, 11, 12].
Phosgene is colorless gas, it is very poisonous, and it was used as a chemical weapon
during World War I, where it was responsible for 85,000 deaths. Triphosgene is used
as a safer substitute for phosgene because of solid material.

The synthesis of aryl isoselenocyanate 3 can be achieved by the reaction of
selenoamide 7 with arylhydroximoyl chloride 5 in the presence of triethylamine
(Figure 3.3) [13]. This reaction was proposed to proceed through cycloaddition of
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the selenocarbonyl group of selenoamide with an intermediate nitrile oxide 6, formed
in situ from aryl hydroximoyl chloride 5 and amine, followed by the elimination of
amide accompanied by the migration of the aryl group 8 from carbon to nitrogen [14].

3.2.2 By substitution of halogen atom

The reaction of 5-bromo-1,2,3,4,5-pentaphenylcyclopentadiene 9 with KSeCN in aceto-
nitrile solvent afforded the 1,2,3,4,5-pentaphenylcyclopentadien-5-yl isoselenocyanate
10 (Figure 3.4) [15]. Similar reactions proceeded with three- and seven-membered

R N C

Se (powder) 
2

R N C Se
or

Se (powder) 2, DIPEA1 3

Figure 3.1: Synthesis of isoselenocyanate 3 by isonitrile 1 and Se (powder) 2.

R
N
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Figure 3.2: Preparation of organic isoselenocyanate 3.
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Figure 3.3: The synthesis of aryl isoselenocyanate 3.
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analogues to afford 1,2,3-triphenylcyclopropen-3-yl isoselenocyanate 11 [16], and
1,2,3,4,5,6,7-heptaphenylcycloheptatrien-7-yl isoselenocyanate 12 [17].

The reaction of N-phenyl or N-benzyl-imidoyl chloride 13 with KSeCN proceeded
to afford the corresponding imidoyl isoselenocyanates 14 (eq. (3.1)) [18, 19]. Similarly,
the reaction of acid chloride 15 and thiocarbamoyl chloride 17 (eqs. (3.2) and (3.3))
[20] was reported to produce the corresponding isoselenocyanates 16 and 18, respec-
tively. Although the isoselenocyanates formed in these reactions were not isolated,
their formations were clearly indicated by the spectral data and the products of the
subsequent reactions [21].

(3.1)

(3.2)

(3.3)
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N

Cl

R KSeCN
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R
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O
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S
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3.2.3 By using phase-transfer catalysis

The synthesis of isoselenocyanates was achieved by two methods under phase-
transfer conditions (50% aq NaOH, CH2Cl2, Aliquat 336). The first started from iso-
cyanides 19 and selenium gave isoselenocyanates, while the second started from

Ph

Ph
Ph

Ph

Ph
Br

KSeCN

CH3CN
Ph

Ph
Ph

Ph
Ph
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Ph
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Ph

Ph
Ph Ph
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Ph NCSe
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Figure 3.4: Synthesis of isoselenocyanate 10 by substitution of halogen atom.
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amines 20 with chloroform and selenium by sequentially applying the Hofmann
isonitrile synthesis and the addition of selenium (Figure 3.5) [22].

The isoselenocyanate synthesis involves the use of an aqueous/organic biphasic
system operating under strong alkaline conditions for the addition of selenium to ar-
omatic, aliphatic, and cycloaliphatic (including a cage adamantyl moiety as well as
five- and six-membered nitroxides) isocyanides 19 or directly to the corresponding
amines 20 (Figure 3.5) [22]. Isocyanides 19 were synthesized by the Hofmann isoni-
trile synthesis using amines as starting materials together with chloroform and 50%
aqueous sodium hydroxide solution in the presence of the ammonium salt Aliquat
336. The selenium reacted with aqueous sodium hydroxide solution and underwent
disproportionation according to eq. (3.4) [23]:

3Se+ 6HO− ! SeO3
2− + 2Se2− + 3H2O (3:4)

According to eq. (3.4), the Se2− anion may be considered as a direct agent, which is
the effective nucleophilic agent attacking the isocyanide carbon atom A. A charac-
teristic, strong, broad absorption at 2,100–2,160 cm−1 is visible in the IR spectra that
confirms the presence of the NCSe group (asymmetrical NCSe stretching vibration)
[24]. Recording of NMR spectra in the presence of phenylhydrazine is impossible
due to the reaction of isoselenocyanate group with phenylhydrazine. It should be
noted that in the 13C-NMR spectra, no signals were attributed to an isoselenocyanate
group [24, 25]. The signal of isoselenocyanate group in 77Se NMR was observed at
δ = −278 to −298 for Ar-NCSe and at δ = −345 to −358 for aliphatic and cycloaliphatic
isoselenocyanates [26].

Se, 50% aq NaOH
Aliquat 336

Se, 50% aq NaOH
Aliquat 336, CHCl3
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O
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Figure 3.5: Synthesis of isoselenocyanates by using phase-transfer catalysis.
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3.3 Imidoyl isoselenocyanate

The imidoyl isoselenocyanate derivatives 21 were prepared from N-phenylimidoyl
chlorides and potassium selenocyanate [27]. The reaction of 21 with primary or sec-
ondary amines leads to selenourea derivatives, which on further reaction with acti-
vated bromomethylene compounds and treatment with a strong base yields 2-amino-
1,3-selenazoles 22 (Figure 3.6) [28]. Imidoyl isoselenocyanates 21, Ar2 = 2-(chloro-
methyl)phenyl, react with amines to give 6H-5,1,3-benzoselenadiazocines 23 [29]. In
both cases, the initial reaction is a nucleophilic attack of the amine onto the isosele-
nocyanate 21, followed by the addition of the intermediate thiourea derivative with
an electrophile in an inter- or intramolecular manner. With amidines 24 and 26,
1,3,5-triazineselones 25 and 27, respectively, are formed smoothly at room tempera-
ture (Figure 3.6) [27, 30]. Similarly, 2-amino-4,5-dihydro-1,3-thiazole 28 reacts with 21
to give the fused triazine-selones 29. The formation of the triazine-selones 25, 27, and
29 has been rationalized by the initial formation of a selenourea derivative, followed
by cyclization and the elimination of aniline (Ar2 = Ph).

The next experiment was carried out with imidoyl isoselenocyanate 30 and 2-amino-3-
methylpyridine 31. The reaction worked out in acetone at room temperature; after
stirring for 3 h, the mixture was poured into H2O, leading to a yellowish, crystalline
product 34 in ca. 65% yield. The NMR spectra clearly indicated that no aniline was
eliminated, and also the elemental analyses were in accordance with a 1:1 adduct [28].
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Figure 3.6: Reaction of imidoyl isoselenocyanates 21 with aromatic 2-amino-N-heterocycles.
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The unexpected formation of 34 may be due to the initial addition of the amino
N-atom of 31 onto the isoselenocyanate 30 to yield the intermediates selenoureas 32
and 33. A spontaneous oxidation then leads to the isolated product 34. In contrast to
the reaction of imidoyl isoselenocyanate 30 with 35, in which the ring N-atom was
the most nucleophilic center, the NH2 group of 35 acted as nucleophile, which pro-
ceeds through the reaction intermediates 36, 37, and 38, respectively, to afford the
product 39. This observation may be rationalized by the higher aromaticity of the pyr-
idine ring 31 compared with that of the 1,3-thiazole ring 35 (Figure 3.7) [28].

The reaction mechanism for the unexpected formation of 45 is proposed in
Figure 3.8 [28]. The nucleophilic addition of imidazole 40 to the isoselenocyanate
30 gives a zwitterionic intermediate 41. Further, the reaction undergoes cyclization
to give the fused triazine-selone derivative 42, which then forms a new zwitterion
43 via ring opening. Subsequent ring closure may form the fused 1,3-diazetidine
44, which, by elimination of NCSe−, leads to the isolated imidazolium salt 45.

3.4 1,3-Selenazole

1,3-Selenazole is a five-membered ring system containing selenium and nitrogen
atoms in the 1- and 3-positions, respectively. A synthesis of 1,3-selenazoles using
isoselenocyanate has been developed. Reactions of allenyl isoselenocyanate 46
with carbon-, nitrogen-, oxygen-, or seleno-containing nucleophiles afford the
corresponding 1,3-selenazoles [31]. The allenyl isoselenocyanate 46 have different
reactivity with different nucleophile as shown in Figure 3.9 [32–34].

3.4.1 Synthesis of 2-amino-1,3-selenazole

The reaction of amidinoselenourea 48, prepared by the treatment of isoselenocya-
nate 3 with N,N-diethyl-amidine 47 [35] under basic conditions, with halomethy-
lene/phenacyl bromide 49, formed 2-amino-1,3-selenazoles 50 (Figure 3.10) [36].

A plausible reaction mechanism for the formation of these trisubstituted sele-
nazole derivatives is depicted in Figure 3.10 [36]. The amidinoselenourea 48
formed by the nucleophilic addition of the N,N-diethyl-amidine 47 to the isosele-
nocyanate 3 has one donor (C=Se) site and one acceptor (C-NEt2) site. The sele-
nium atom present in 48 displaces the bromine atom from phenacyl bromide to
form intermediate 49. At this stage, triethylamine abstracts a proton from the
methylene group present in 49, which attacks the carbon atom to which the elec-
tron-pulling quaternary nitrogen atom is attached to furnish the intermediate 51.
This intermediate is converted into the desired 2-amino-1,3-selenazole 50 by elimi-
nation of diethylamine.
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3.4.2 Synthesis of 5-arylamino-1,3,4-selenadiazol-2(3H)-one

The reaction of aryl isoselenocyanate 3 and hydrazine hydrate 52 was stirred in CH2Cl2
at room temperature at 7.5:1 ratio of NaHCO3 to BTC {Bis (trichloromethyl) carbonate}
for 2h. Under these optimized conditions, 5-phenylamino-1,3,4-selenadiazol-2(3H)-one
54 was obtained (Figure 3.11) [37].

Nucleophilic addition of the amino group of the hydrazine 52 to aryl isosele-
nocyanates 9 leads to the adduct intermediate 53, which then reacts with the
bis-electrophilic reagent BTC to form intermediate 55. In the presence of sodium
bicarbonate, the intermediate 56 undergoes a cyclization to afford the final het-
erocycle 54 (Figure 3.11) [37].
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Figure 3.8: Synthesis of unexpected imidazolium salt 45.
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3.4.3 Synthesis of 2-imino-(1,3-selenazolidin-4-one
and 1,3,4-selenadiazin-5-one)

The efficient and regioselective synthesis of 2-imino-1,3-selenazolidin-4-one 59
and 2-amino-1,3,4-selenadiazin-5-one 60 was achieved by one-pot reaction of iso-
selenocyanate 3, hydrazine 52, and ethyl chloroacetate 57 or chloroacetyl chloride
58 (Figure 3.12) [38].

The plausible mechanisms were proposed for the formation of 59 and 60, respec-
tively (Figure 3.13) [38]; selenosemicarbazide 53 obtained from isoselenocyanate 3
reacted with ethyl chloroacetate 57 to form intermediate 61, which then cyclized
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Figure 3.12: Preparation of 2-imino-1,3-selenazolidin-4-one 59 and 2-amino-1,3,4-selenadiazin-5-
one 60.
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to 62. Successively, 62 was converted to the final product 59 by intramolecular
elimination. Compared with ethyl chloroacetate 57, chloroacetyl chloride 58 is
much more reactive. Thus, selenosemicarbazide 53 reacted with chloroacetyl chlo-
ride 58 easily to afford intermediate 63. Further, intermediate 63 was rapidly cy-
clized to the six-membered product 60.

In conclusion, the one-pot condensation of isoselenocyanate 3, hydrazine 52,
and ethyl chloroacetate 57 afforded 2-imino-1,3-selenazolidin-4-one 59, while the
reaction of isoselenocyanate 3, hydrazine 52 and chloroacetyl chloride 58 provided
2-amino-1,3,4-selenadiazin-5-one 60.

3.4.4 Synthesis of benzoselenazole and benzoselenazole-2(3H)-
thione

The one-pot preparation of the 2-aminobenzoselenazole 67 by the phenylselenour-
eas 65 has been accomplished by the copper-catalyzed ligand-free reaction of the 2-
iodoaniline 64 and isoselenocyanate 3 (Figure 3.14) [39, 40]

A possible mechanism for the formation of 2-aminobenzoselenazole 67 from 2-
iodoaniline 64 with isoselenacyanate 3 is shown in Figure 3.14 [39]. The successful
copper-catalyzed intramolecular cyclization of the initial adduct, phenylselenourea
65, proceeded by the intermediate 66 to give the benzoselenazole 67. Evidence for
the generation of the phenylselenourea 65 was confirmed by the isolation.

2-Bromophenyl isothiocyanates 68 were treated with BuLi in THF at −78 °C to
generate 2-lithiophenyl isothiocyanates 69, which were then allowed to react with
Se. Attack of these carbanion on Se and the subsequent ring closure of the resulting
2-isothiocyanatobenzeneselenide by the intramolecular addition of selenide to the
isocyanate C-atom proceeded rapidly at this temperature to lead to the formation of

I

NH2

R N C Se

Cu(OTf)2, Cs2CO3, Xylene N

Se H
N R

3

R N C Se
3

I

N
H

Se

N
H

R
N

Se
Cu

N
H

R

I

Cu(OTf)2,
Cs2CO3

64

65 66

67

Figure 3.14: Synthesis of the 2-aminobenzoselenazole 67.
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lithium benzoselenazole-2-thiolate intermediates 70, which were protonated by
acidic aqueous workup to give 71 (Figure 3.15) [41, 42].

3.5 Multicomponent reactions (MCRs) using
isoselenocyanate

3.5.1 Synthesis of chiral 2-iminoselenazoline

Multicomponent reactions (MCRs) are a powerful synthetic tool for the rapid and
efficient construction of complicated molecular frameworks. MCRs are strategically
amenable with modern synthetic tools such as microwave irradiation, ultrasonica-
tion, polymer-, and ionic liquid-supported synthesis. The reaction of L-amino ester
72, isoselenocyanate 3, and α-substituted bromoketone 74 was carried out in one
pot for the regioselective synthesis of enantiopure 2-iminoselenazole 75 under ultra-
sonication. (Figure 3.16) [12]. The isolated yields were much higher than those previ-
ously reported on the application of sonication [43, 44].
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The plausible mechanism involves the loss of a proton from N1 atom of 73 and the
intramolecular nucleophilic attack of N2 (hard nucleophile) on the carbonyl group of
the ketone (hard electrophile) to deliver 76, which, upon subsequent dehydration of
78, releases the observed 2-iminothiozole 80 (Figure 3.17) [12]. The N2 was more reac-
tive than N1 because N1 was near the electron withdrawing carbonyl group of the
amino ester, causing regioselectivity. Therefore, the formation of the 2-iminoselenazole
80 rather than 81 is due to the preferential attack of selenium because of its enhanced
nucleophilicity, and the driving force for the selective N1 attack on the alkyl carbon is
to eliminate a stable hydrobromide salt. Furthermore, the influence of steric factors on
the reaction time has been effective to characterize the intermediate 2-imino-5-selenol
76, which undoubtedly confirmed that selenourea reacts via a soft nucleophile group
(i.e., the selenium atom).

3.5.2 Synthesis of 2-aminobenzo[d][1, 3]selenazine

The MCR of O-functionalized aryl isocyanide 82, elemental selenium, and amine by
isoselenocyanate formation 83 and subsequently intramolecular Michael addition
reaction under the metal-free condition led to 2-aminobenzo[d][1,3]selenazine 84
(Figure 3.18) [45].

The reaction of methyl (E)-3-(2-isocyanophenyl)acrylate 82 with elemental sele-
nium and piperidine, in the presence of NEt3, was performed in dichloroethane
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Figure 3.17: A plausible mechanism for the formation of 2-iminoselenazole 80.
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solvent for 12 h at room temperature. This approach provides a direct construction of
selenazine derivatives with potential biological and medicinal activities under mild
conditions. Based on the experimental results and literature reports [46–48], the
plausible mechanism was shown in Figure 3.18 [45]. Initially, an isoselenocyanate 83
is generated in situ by the reaction of isocyanide 82 with elemental selenium in the
presence of Et3N. Furthermore, amine 85 reacts with isoselenocyanate 83 to give car-
bamimidoselenoate 86 through intermolecular nucleophilic attack. Following a sub-
sequent Michael addition 87 and further protonation, 84 was formed.

3.6 Selenoimidoylation of alcohol

The compounds containing a selenoimidoyl skeleton (Se–C=N) have been synthe-
sized and used as precursors of imidoyl radicals. The selenoimidates 89 were pre-
pared by (i) alkylation of selenoamides with alkyl halides [49, 50], (ii) reaction of
imidoyl chlorides with selenols [51], (iii) reaction of imidoyl radicals with diaryl dis-
elenides [52], (iv) three-component radical coupling reactions of diselenides with
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Figure 3.18: Synthesis of 2-aminobenzo[d][1,3]selenazine 84.
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isocyanides and alkynes [53], (v) transition-metal-catalyzed addition of diaryl dise-
lenide to isocyanide [54], and (vi) reaction of oxime sulfonates with organoalumi-
num selenolate. For the selenoimidoylation of an alcohol 88, the reaction was
carried out in methanol (2 mmol), cyclohexyl isocyanide (1 mmol), and selenium
(1 mmol) in THF (1 mL) in the presence of DBU (1 mmol) at room temperature. The
black suspension became a yellow homogeneous solution within 3 h. After 20 h the
reaction mixture was quenched with Bu–I and subsequent workup afforded the ex-
pected selenocarbonimidate 89 (Figure 3.19) [47, 55].

The plausible mechanism shows that the reaction of alcohol with selenium and isocya-
nide in the presence of DBU gives oxyimidoylselenoate 90. Trapping of 90 with Bu–I
resulted in the high-yield formation of selenocarbonimidate 89. The 1-amino-2-alkyne
91 reacted with selenium and carbon monoxide in the presence of DBU to yield 5-alky-
lideneselenazolidin-2-one 92 (eq. (3.5)). In addition, alk-2-yn-1-ol 93 was allowed to
react with selenium and isocyanide under similar conditions and new selenium-
containing heterocycle, 2-imino-4-alkylidene-1,3-oxaselenolane 94 (eq. (3.6)), was ob-
tained by cycloaddition of oxyimidoylselenoate 96 (Figure 3.20) [47] generated in situ
by intramolecular addition of selenolate to carbon–carbon triple bonds.
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Figure 3.19: Synthesis of selenoimidate 89.
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A reaction mechanism for this transformation of 100 is suggested in Figure 3.20
[47]. First, alk-2-yn-1-ol 95 undergoes selenoimidoylation by the reaction with selenium
and isocyanide to yield oxyimidoylselenoate 96. The stereoselectivity of the C=C double
bonds of the products can be explained by a trans-addition mechanism (96→99→100)
where proton coordination to the carbon–carbon triple bond facilitates nucleophilic
addition of selenium to the triple bond from the opposite side. 2-Selenoxo-1,3-oxolidine
98 is formed by the nucleophilic addition of nitrogen to the carbon–carbon triple bond
of 97.

3.7 Synthesis of benzo[c]selenophene

The synthesis of the benzo[c]selenophene 107 has been of considerable interest by var-
ious pathways [56–58]. The O-bromoethynylbenzene 101 was lithiated with 1.2 equiv.
of t-BuLi in anhydrous THF at 80 °C under an argon atmosphere, followed by treat-
ment with 1.5 equiv. of aryl isoselenocyanate 3 at room temperature, and further
quenched with ethanol to give the desired (Z)-3-methylidenebenzo[c]selenophene 107.
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Figure 3.20: Reaction pathway for the formation of Z-imino-4-alkylidene-1,3-dioxaselenolane 100.
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The product 107 was obtained in good yield via one-pot 5-exo-dig mode cyclization in-
stead of 6-endo-dig cyclization 106 [59]. A plausible mechanism for the formation of
(Z)-3-methylidenebenzo[c]selenophene 107 from O-bromoethynylbenzene 101 with
aryl isoselenocyanate 3 is shown in Figure 3.21 [59]. The initial adduct, 103 or 104, is
generated by the attack of the carbanion 102 on the sp carbon of the aryl isoseleno-
cyanate 9 and the protonation of 103 or 104 was carried out by EtOH to give unsta-
ble selenol 105. Further, the selenol 105 was cyclized to afford the 5-exo-dig mode
product 107 instead of 6-endo-dig mode cyclization to give product 106. In the ab-
sence of a proton source, no product formation occurs and starting isoselenocya-
nates were obtained. EtOH as a proton source gave the best results. Therefore, it is
clear that the addition of carbanion 102 to the aryl isoselenocyanate 3 gave the ad-
duct 103 or 104, which gradually decomposed during the isolation operation or on
standing.

The iodocyclization reaction of O-ethynylphenyl lithium 109 with cyclohexyl
isoselenocyanate 110 was proceeding stereoselectively, affording the (E)-10-iodo-3-
methylidenebenzo[c]selenophene 111 as shown in Figure 3.22 [59]. O-ethynylphenyl
lithium 109 generated from 108 was similarly treated with cyclohexyl isoselenocya-
nate 110, and then protonated with t-BuOH, followed by iodination with I2, giving
the desired (E)-10-iodobenzo[c]selenophene 111. The NIS gave lower yield compared
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Figure 3.21: The plausible mechanism for the formation of benzo[c]selenophene 107.
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to that of iodine. Finally, iodobenzo[c]selenophene 111 can be reduced to 112 by
treatment with HCOOH/Et3N in the presence of a palladium catalyst. The (E)-10-
phenyl-3-methylidenebenzo[c]selenophene 113 was produced in 56% yield by the
Suzuki cross-coupling of 111 with phenylboronic acid. The Sonogashira reaction of
111 with phenylacetylene gave 114 (84%) [59].

3.8 Cycloaddition of carbodiimide to selenazetidine

The synthesis of four-membered Se-containing heterocycles was reported using isose-
lenocyanate as starting materials [60]. The easy preparation of 1,3-selenazetidine-2,4-
diimines from isoselenocyanate 3 and carbodiimide 115 was shown in Figure 3.23
[61]. The formation of product 116 is formal [2 + 2] cycloaddition; it is favorable that a
two-step mechanism is responsible for the formation of 116. The nucleophilic attack
of the Se-atom at carbodiimide C-atom leads to a zwitterion of type A, which by ring
closure resulted in the product 116.

The selenazetidine 116a is planar. Both the imido group R1 and R2 are (Z)-
configured and the relative configuration was confirmed by X-ray crystallography. The
IR spectrum of 116a shows strong absorption for the C=N group at calculated 1,690 and
1,674 cm−1. The 13C-NMR spectrum shows two signals for C=N at 133.1 and 137.1 ppm,
and CI-MS (NH3), m/z 390 [M+1]+ and 207 ([C6H11)2CN2]

+·). Further, 116b-116f bearing
an arylimino group also have the (Z,Z)-configuration. However, the symmetrically
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substituted 116g with two cyclohexylimido moieties shows three signals for CH and 12
signals for CH2 groups of the cyclohexyl substituents. Therefore, the structure cannot
be symmetric. A likely interpretation is that mixture of (Z,Z)- and (E,Z)-116g is present
in varying ratios. The similar observation has been made in the case of 116h, which, in
the NMR spectra, also shows some doubling of signals.

Thiocarbamoyl isoselenocyanate 118 was prepared by reactions of thiocarbamoyl
chloride 117 with KSeCN [17, 62, 63]. Reactions of the thiocarbamoyl isoselenocyanate
118 with imines 119 were carried out at reflux in THF for 5 h. The reactions gave for-
mal [2 + 2] cycloadducts, 2-imino-1,3-selenazetidines 120 (Figure 3.24) [20].

The [4 + 2] cycloadduct product, 6-amino-2H-1,3,5-thiadiazine-4-selone 121, was
ruled out by the X-ray crystal analysis of the product. The signal in 77Se NMR spectra
of selenazetidines was observed around δ 750, while chemical shifts of selenoureas
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Figure 3.23: Preparation of selenazetidine 116.
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appear in the range δ 170-340 in77Se NMR spectra. In the case of compound 120, the
chemical shifts should be in a range of chemical shifts of selenoureas. Chemical shifts
of 77Se NMR spectra for product 120 appeared at δ 756.9 ± 2.24, which give evidence
of 1,3-selenazetidine structure 120 (Table 3.1).
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Table 3.1: Chemical shifts in 77Se NMR of 1,3-selenazetidines 120 and selenoureas [20].
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3.9 Synthesis of 1,3-oxaselinane,
1,3-oxaselenepane and 1,3-oxaselenolane

The preparation of 1-oxa-3-selenaheterocycle was achieved by the reaction of 3-
chloropropanol 122with aryl isoselenocyanate 3. The mixture of aryl isoselenocyanate
3 and 122 in dichloromethane at room temperature was treated with an equimolar
amount of sodium hydride, and the mixture was stirred for 3–4 h. After chro-
matographic workup, an oily product, which contains aromatic as well as aliphatic H-
atoms (1H-NMR), was obtained in 36–60% yield. Mass spectrometry and elemental
analysis confirmed that the two starting materials had reacted to yield the product by
the elimination of HCl. The addition of the anion of 122 to aryl isoselenocyanate 3
gives the intermediate 123. There are two possibilities for the cyclization reaction: nu-
cleophilic substitution of the chloride by the selenide would lead to 2-imino-1,3-
oxaselinane 124 (path a), whereas the analogous cyclization via the N-atom would
yield 1,3-oxazinane-2-selone 125 (path b) [62, 64, 65]. Both pathways are based on 6-
exo-tet cyclization (Figure 3.25) [66, 67]. On the basis of their spectroscopic data, the
structure for the product was determined as 124. For example, 124 shows a strong IR
absorption at 1,662 cm−1 (C=N); the corresponding absorption of the N-analogue 125
appears at 1,630 cm−1.

The synthesis of 1,3-oxaselenepane 127 was achieved by the reaction of aryl isosele-
nocyanate 3 with 4-bromobutanol 126. The reaction was carried out with NaH in
THF solvent (Figure 3.26) [68].

The synthesis of 1,3-oxaselenolane 130 was achieved by iodocyclization reac-
tion. The reaction of (Z)- or (E)-O-allylselenocarbamate 129, obtained by reactions

Ar NCSe HO Cl
NaH, DCM

rt, 3-4 h
N O

Se
Ar

Cl

Na

-NaCl

O

SeN
Ar

O

NSe
Ar125

3 122
123

124

Path bPath a

Figure 3.25: Synthesis of 1,3-oxaselinane 124.
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of allyl alcohol 128 and aryl isoselenocyanate 3, with iodine or NIS gave five-
membered ring 1,3-oxaselenolane 130, which on treatment with DBU resulted in the
formation (Z)- or (E)-4-alkylidene-2-imino-1,3- oxaselenolane 131 (Figure 3.27) [69].

3.10 Syntheses of 1,3,4-diazaselinan-2-imine
and 2-amino-1,3,4-oxadiazole

The aryl isoselenocyanates 3 are the convenient precursor for the introduction of
selenium into four- [61], five- [70], six- [66, 71], and seven-membered selenahetero-
cycles [72]. The reaction pathway for the syntheses of 1,3,4-diazaselinan-2-imine 137
was shown in Figure 3.28 [67]. The addition of a nucleophile 132, which has a leav-
ing group, leads to the intermediate 133. Further, the nucleophilic Se-atom attacks
to form the cyclized product 134. Alternatively, the adduct 135 of a bis-nucleophile,
for example, hydrazine, reacts with a bis-electrophile to give 136, which undergoes
a ring-closure to yield 1,3,4-diazaselinan-2-imine 137.

The synthesis of nonselenium-containing compounds from isoselenocyanates
has much attention via deselenization processes [11]. The cyclodeselenization of se-
lenosemicarbazide derivatives, which were obtained by the reaction of various iso-
selenocyanates with hydrazide, produced 2-amino-1,3,4-oxadiazoles. The one-pot
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Figure 3.26: Synthesis of 1,3-oxaselenepane 127.
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reaction of isoselenocyanate 3 and hydrazide 138 was performed in DMF at 90 °C
and 2-amino-1,3,4-oxadiazole 139 was obtained in good yield (Figure 3.29) [73]. The
nature of R1 group on the isoselenocyanates 3 affects the reaction rate. Electron-
donating group substituted compounds showed slightly higher reactivity, giving
better yields than those with electron-withdrawing groups. However, when the
methyl or ethyl group was attached to the ortho position of the phenyl isoseleno-
cyanate, the reaction yields were decreased due to the steric effect.
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Figure 3.28: Syntheses of 1,3,4-diazaselinan-2-imine 137.
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A plausible mechanism is proposed for the formation of 2-amino-1,3,4-oxadiazole
139 (Figure 3.29) [73]. First, selenosemicarbazide 140 was generated from isoseleno-
cyanate 3 and hydrazide 146. Subsequently, the intramolecular cyclization of 140
produced the intermediate 141 via attack of oxygen atom on carbonyl to selenocar-
bonyl. The intermediate 141 was then converted to the 2-amino-1,3,4-oxadiazole 139
via cyclodeselenization with the aid of oxygen. To confirm this process, the reaction
was performed in a nitrogen-protected vessel and no desired product and selenium
powder were detected. These results indicated that the oxygen was crucial to this re-
action [74, 75].

The reaction of isoselenocyanate 3 with dihydrazide 142 was carried out. The
desired product bis(1,3,4-oxadiazole) 143 was successfully obtained in excellent
yield in DMF solvent at 90 °C (Figure 3.30) [73].

3.11 Synthesis of 5-amino-2-selenoxo-1,3-imidazole-4-
carboselenoamide

The one-pot synthesis of 5-amino-2-selenoxo-1,3-imidazole-4-carboselenoamide 145
was accomplished by the reaction of isoselenocyanate 3 with 2-aminoacetonitrile
144. The reaction of p-tolylisoselenocyanate 146 with 3-aminopropionitrile 147
gave the corresponding acyclic selenoureas 148 in quantitative yield (Figure 3.31)
[76]. The present reaction required pyridine and 2 equiv. of isoselenocyanate 3 to
obtain 2-selenoxo-1,3-imidazole-5-carboselenoamide 145.

The plausible mechanism for the formation of 145 is explained in Figure 3.32
[76]. The reaction of isoselenocyanate 3 with 2-aminoacetonitriles 144 is initiated by
the nucleophilic addition of the nitrogen atom of 146 to the electrophilic carbon atom
of isoselenocyanate 3 affording the selenourea 149, which is subsequently cyclized to
give 4-imino-1,3-imidazoline-2-selenone 150. Next, the carbanion of 1,3-imidazolidine
ring 150 attacks the electrophilic carbon of another molecule of isoselenocyanate 3 to
form a carboselenoamide 151, which subsequently tautomerizes to the more stable
amine 145.

Reported chemical shifts of selenocarbonyl groups in selenoureas and selenoa-
mides are summarized in Table 3.2 [76].

NH2H2N
90 °C

R
N

C
Se N

H

O

N
H

O

n

DMF

N N

O N
NO

HN
R

H
NR

n3
142 143

Figure 3.30: Synthesis of bis(1,3,4-oxadiazole) 143.
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It is easy to distinguish between selenoamide and selenourea by comparison of
their chemical shift differences in the 77Se-NMR spectra. In 13C-NMR spectra, most
chemical shifts for carbonyl carbons of selenocarbonyl groups in selenoureas are ob-
served at higher fields than those of selenoamides; however, the difference is mini-
mal. In contrast, the chemical shift in 13C NMR of the C-atom of the selenocarbonyl
group in selenoureas A (193.4 ppm ± 3.1), B (180.2 ppm ± 0.6), C (177.3 ppm ± 1.6),
and E (183.6 ppm ± 0.8) is observed at lower fields than the chemical shift (174.9
ppm ± 0.7 or 179.4 ppm ± 0.1) of Se(2) of the selenoamide group in compound 145. In
the case of selenoureas including compounds 145, 77Se-NMR signals for Se-atoms are
observed in the range of 88–336 ppm. The chemical shift values for selenium in sele-
noamides fall in the range of 491–702 ppm, which is obviously lower than those for
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selenoureas. The average chemical shift (94.5 ppm ± 19.3) of Se (1) (urea) for compound
3 (R2 = methyl) is at a higher field than that of 145 (R2 = phenyl, 137.9 ppm ± 24.3).
The average chemical shift (544.3 ppm ± 19.2) of Se (2) (amide) for compound 145 (R2 =
methyl) is also at lower field than that of 145 (R2 = phenyl, 491.3 ppm ± 72.6). This
clearly reflects the variable pattern of electron density provided by the alkyl and aryl
substituents around the selenium atom in 145. Furthermore, the selenoamide and sele-
nourea fragments can be distinguished by their significant differences in their chemical
shifts in the 77Se-NMR spectra [13, 77–83].

3.12 Conclusions

This chapter offers an updated overview on the synthesis of isoselenocyanates, and
its applications for the synthesis of selenium-containing heterocycles. This chapter
includes preparation of isoselenocyanates by various methods, imidoyl isoselenocya-
nates, and their reactions. Isoselenocyanates were used as versatile synthons in the
preparation of Se-containing organic heterocycles. The synthesis of 1, 3-selenazole
via MCRs using isoselenocyanate was also described. The selenoimidoylation of alco-
hol was successfully achieved via isoselenocyanate intermediates. Also this chapter
showed the synthesis of benzo[c]selenophene, 1,3-oxaselenan-2-imine, 1,3-oxaselene-
pane, 2-amino-1,3,4-oxadiazoles, 5-amino-2-selenoxo-1,3-imidazole-4-carboselenoa-
mide and cycloaddition of carbodiimide.
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4 Selenoureas and Their Applications

4.1 Introduction

Selenoureas are organoselenium compounds having two amine groups at both sides
of a selenocarbonyl (C=Se) functional group. The simplest example is a selenium an-
alogue of normal urea and its formula is SeC(NH2)2. In 1884, the synthesis of sele-
nourea (SeC(NH2)2) from hydrogen selenide and cyanamide was reported for the first
time by the French chemist, Auguste Victor Louis Verneuil [1]. Later, a number of the
synthetic procedures have been developed by several research groups in the world
[2, 3]. In addition, selenoureas have been used as precursors for the synthesis of sele-
nium-containing heterocyclic compounds [4–6]. The synthetic studies using sele-
noureas are being actively investigated because of unique chemical behavior of Se
atom. Recently, medicinal and pharmaceutical studies of selenium-containing com-
pounds derived from selenoureas are becoming increasingly interesting due to their
potent and diverse biological properties [7–9]. There are several excellent books and
reviews concerned with selenoureas and their applications [2–9]. This chapter deals
with methods for the preparation of selenoureas, the reactions using selenoureas,
and their valuable applications in various fields of research.

4.2 Preparation of selenoureas

4.2.1 Using isoselenocyanate

The most common method for the preparation of selenoureas is based on the reac-
tion of alkyl and aryl isoselenocyanates with amines (Figure 4.1). In 1937, Irwin B.
Douglass for the first time reported the synthesis of acylselenoureas via in situ gen-
eration of isoselenocyanates using RCOCl and KSeCN [10]. However, intermediates
were not detected. Isoselenocyanates have been extensively used as the starting
materials in the synthesis of selenoureas [11, 12].

Selenoureido analogues (1) of 4-(4-fluorophenylureido)benzenesulfonamide
(SLC-0111) were synthesized as carbonic anhydrase inhibitors (Figure 4.2) [13]. The
selenoureido compounds (1) were obtained by standard coupling reactions of aro-
matic isoselenocyanates with benzenesulfoamides in MeCN. Selenoureidodipeptides
(2) were prepared by the reaction of isoselenocyanates with amino acid esters. These
reactions were clean and complete within 30 min at room temperature [14].
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β-D-Glycopyranosyl selenoureas with gluco and manno configurations (3) were pre-
pared from the corresponding β-D-glycopyranosylamines with phenyl isoselenocya-
nates in aqueous pyridine (Figure 4.3) [15]. This procedure did not require the
protection of hydroxy groups in sugar.

Isoselenocyanates reacted with 3-aminopropanenitrile in toluene/pyridine to af-
ford the corresponding selenoureas (5) as shown in Figure 4.4 [16]. When amino-
acetonitriles were used under the same conditions, isoselenocyanates underwent
cyclization to 4-iminoimidazolidine-2-selenones, which were coupled with the ad-
ditional molecule of aminoacetonitriles, giving 5-amino-2-selenoxo-1,3-imidazole-
4-carboselenoamides (4: cyclic selenoureas).
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Figure 4.1: Preparation of selenoureas using isoselenocyanates.
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4.2.2 Using elemental selenium

The simplest way for the synthesis of selenoureas is by using elemental selenium,
which is easy to handle and affordable. N,N′-Dimethyl-N,N′-diphenylselenourea
(6) was prepared by fusion of elemental selenium with N,N′,N″-trimethyl-N,N′,
N″-triphenylmethanetriamine (Figure 4.5) [17]. In the other way, refluxing orthofor-
mic acid derivatives in toluene or xylene with elemental selenium furnished tetra-
methylselenourea (7) [18]. The condensation of 2-bromophenyl isocyanide with
elemental selenium and piperidine in the presence of 1,8-diazabicyclo[5.4.0]
undec-7-ene in THF afforded N-(2-bromophenyl)selenourea (8) [19]. In addition,
the three-component condensation reactions of elemental selenium with triethyl
orthoformate and primary or secondary diamines were reported [20]. These reac-
tions were conducted under solvent-free conditions at high temperature, giving N,
N’-disubstituted cyclic selenoureas (9 and 10).
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N-methylimidazole-based selenoureas (11) were synthesized by the treatment
of N-methylimidazole with appropriate dibromoalkanes, followed by reaction
with elemental selenium in the presence of K2CO3 by MeOH refluxing (Figure 4.6)
[21]. The selenoureas could rapidly inhibit peroxynitrile- and peroxidase-mediated
nitration of protein tyrosine residues. The reaction of selenourea (n = 3) with per-
oxynitrile or hydrogen peroxide produced the corresponding seleninic acid deriv-
ative, which upon elimination of selenous acid afforded the N-methylimidazole
derivative (Figure 4.7).

4.2.3 Using sodium hydroselenide

In 1956, selenopyrimidine containing a selenourea moiety (12) was prepared from
2,4-dichloropyrimidine with the nucleophilic selenium species sodium hydrosele-
nide (NaSeH) (Figure 4.8) [22]. In the last 1960s, the preparation of tetramethylsele-
nourea (7) by the replacement of S atom by HSe– ion was reported by Daniel L.
Klayman and Robert J. Shine [23]. Treatment of tetramethylthiourea with methyl io-
dide gave the pentamethyl analogue, which was immediately added to an aqueous
ethanolic solution containing NaSeH [24]. With loss of methyl mercaptan, this reac-
tion produced tetramethylselenourea (7).
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Similarly, a selenouridine derivative (13) was prepared from a 2-thioiridine deriv-
ative with maintenance of tert-butyldimethylsilyl protection groups via S-methylation
and nucleophilic substitution using NaSeH generated in situ from Se and NaBH4 in
EtOH (Figure 4.9) [25].

Very recently, pyrimidinic selenoureas (14) were prepared via S-methylation of thio-
ureas, followed by nucleophilic substitution with NaSeH by EtOH refluxing. The
NaSeH did not influence other functionalities (Figure 4.10) [26].
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4.2.4 Using lithium aluminum hydride hydroselenide

Lithium aluminum hydride hydroselenide (LiAlHSeH) is a useful selenating reagent
involved in the preparation of various organoselenium compounds. The LiAlHSeH
was prepared by our group (Mamoru Koketsu and Hideharu Ishihara) from LiAlH4

with elemental selenium in 2001 [27]. The LiAlHSeH has advantages because of its
high efficiency and wide-ranging utility [28, 29]. In addition, this reagent can be ap-
plied for the synthesis of selenoureas. Following activation of cyanamides and car-
bodiimides using HCl in Et2O, treatment with LiAlHSeH affords the corresponding
selenoureas (Figure 4.11).

Recently, the facile one-pot synthesis of selenoureidopeptides (15) employing
LiAlHSeH through the Staudinger aza-Wittig-type reaction was reported (Figure 4.12)
[30]. The general mechanism of the carbodiimide synthesis by aza-Wittig condensation
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proceeds through the reaction of alkyl azides with isothiocyanates to form betaine in-
termediates. The ring-opening of thiaphosphetanes with loss of triphenylphosphine
sulfide gave carbodiimide intermediates, which are subjected to reaction with
LiAlHSeH. The carbodiimidyl selenol species then rearranged to form the desired sele-
noureidopeptides (15).

4.2.5 Using Woollins’ reagent

Woollins’ reagent is a highly efficient selenating reagent [31–37]. As its name sug-
gests, Woollins’ reagent was developed by John Derek Woollins using (PhP)5, or Li2Se
with PhPCl2, and elemental selenium between the late 1980s and the beginning of
the 1990s. In recent years, his research group has proposed the synthetic methods of
selenoureas (18) from cyanamides with Woollins’ reagent (Figure 4.13) [38].

Reactions of cyanamides and Woollins’ reagent in toluene at reflux with post-
water-treatment furnished selenazadiphosphoaminediselenides (16), carbamidoyl
(phenyl)phosphinodiselenoic acids (17), and selenoureas (18). His research group
explained the possible mechanism of the formation of selenoureas as follows:
Woollins’ reagent at elevated temperature was in equilibrium with a diselenaphos-
phorane PhP(Se)2, which was believed to be a true reactive species in refluxing tol-
uene. The initial step was a typical [2 + 2] cycloaddition of a P=Se bond from
diselenaphosphorane PhP(Se)2 across the C≡N bond of cyanamide to give inter-
mediates as three tautomeric forms. The hydrolysis of the intermediate B with one
molecule of H2O can afford selenoureas (18) by further loss of (PhPO2)3 and Se
(Figure 4.14).

4.2.6 Using bis(dimethylaluminium) selenide

Bis(dimethylaluminium) selenide (Me2Al)2Se is a useful selenating reagent, which can
transform various carbonyl compounds [39–43]. This reagent was developed by
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Masahito Segi’s research group in 1990s. His group reported the one-pot synthesis of
selenoureas via selenation of isocyanates with (Me2Al)2Se (Figure 4.15) [44]. This reac-
tion proceeded through in situ generation of isoselenocyanates, followed by the addi-
tion of amines, affording both of symmetrical and unsymmetrical selenoureas.
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4.2.7 Using tetraethylammonium tetraselenotungstate

Tetraethylammonium tetraselenotungstate [Et4N]2WSe4 is a versatile selenium
transfer reagent in organoselenium chemistry. Samuel O’Neal and Joseph W.
Kolis for the first time prepared this reagent by treatment of K2Se3 with W(CO)6
and Et4NBr in 1981 [45], and it has been successfully utilized by Srinivasan
Chandrasekaran’s research group [46–51]. His group presented the one-pot pro-
tocol for the synthesis of N,N-dimethylselenoureas under mild conditions by the
reaction of primary and secondary amines with Viehe’s iminium salt (phosgene
iminium chloride) and [Et4N]2WSe4 (Figure 4.16). The proposed pathway involves
a nucleophilic addition of amines to Viehe’s iminium salt, followed by displace-
ment of one of the chloride ions by the amines. The [Et4N]2WSe4 attacks the in-
termediates, giving the corresponding selenoureas with elimination of WSe3
(Figure 4.17).

NCl

Cl

R1R2NH NCl

Cl
1R2RHN

1R2RHN

1R2RHN

1R2RHN

N

Cl

W
Se

Se

Se

Se

NCl

Se
W

Se

Se
Se

N

Se
W

Se

Se
Se

N N

Se

-WSe3

R1

R2

Figure 4.17: Proposed mechanism for the formation of selenoureas using [Et4N]2WSe4.

[Et4N]2WSe4
N

Cl

Cl

Cl
N
H

N N

SeK2CO3

MeCN
10 - 20 min

++ R1 R1
R2

R2

Figure 4.16: Preparation of selenoureas using [Et4N]2WSe4.

4 Selenoureas and Their Applications 95

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



4.3 Reactions using selenoureas

4.3.1 Synthesis of 1,3-selenazoles

In recent years, various Se-containing five-membered ring compounds have been
extensively studied in organic synthesis and also medicinal chemistry. Selenazoles,
first reported in 1889 by Hofmann G [52], contain one Se atom and one N atom in
their rings. The selenazole moiety is present in many pharmacologically active
substances. Considerable interest in the synthesis and biological activities of sele-
nazoles was grown due to their potentials for practical applications. Especially,
1,3-selenazoles (N atom at the 3-position and two double bonds) are the most in-
teresting heterocycles that are being reported for their potential pharmacological
profile [8].

For the construction of the 1,3-selenazole core, selenoureas and α-halocarbonyl
compounds are commonly employed [53, 54]. In the classical Hantzsch reaction,
ring closure involves amine and carbonyl groups of alkylated isoselenoureas with
the formation of dihydroselenazoles. Through dehydration, the desired 1,3-selena-
zoles are produced (Figure 4.18).

Numerous examples for the synthesis of 2-amino-1,3-selenazoles derived from N,
N′-unsubstituted selenourea and α-halocarbonyl compounds were reported
(Figure 4.19) [55–58]. The selenourea reacted with dichloroacetone, 2-bromo-2-
arenesulfonyl-1-phenylethanones, hydrazonoyl bromides, 2-bromomalonaldehyde,
ethyl 3-bromo-2-oxopropanate, and methyl 2-chloro-3-oxopropanoate, giving
4-chloromethyl-1,3-selenazol-2-amine (21), 5-arenesulfonyl-4-phenyl-1,3-selenazol-2-
amines (22), 5-aryldiazenyl-4phenyl-1,3-selenazol-2-amines (23), 2-amino-1,3-
selenazole-5-carbaldehyde (24), ethyl 2-amino-1,3-selenazole-4-carboxylate (25),
and methyl 2-amino-1,3-selenazole-5-carboxylate (26), respectively.
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There are several reports regarding eco-friendly preparation of 1,3-selenazoles
starting from selenoureas [59–61]. A simple and environmentally benign synthesis of
2-amino-1,3-selenazoles (27) was achieved by microwave irradiation using 1-butyl-3-
methylimidazolium tetrafluoroborate ([Bmim]BF4) ionic liquid (Figure 4.20) [62].

A novel and efficient biomimetic conversion of β-keto esters into 2-amino-1,3-
selenazoles (28) using easily accessible N-bromosuccinimide and the appropriate se-
lenourea was demonstrated (Figure 4.21) [63]. The similar tandem conversion using
phenylacetylenes was successful [64]. In these reactions, β-cyclodextrin plays a sig-
nificant role as a promoter in water. 2-Amino-4-aryl-1,3-selenazoles (30) were also
synthesized from α-bromo ketones and N,N′-unsubstituted selenourea in the presence
of β-cyclodextrin in water [65].

Under solvent-free conditions, 3-(2-amino-1,3-selenazol-4-yl)-2H-chromen-2-
ones (31) were prepared by the reaction of N,N′-unsubstituted selenourea with
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3-bromoacetylcoumarins in the presence of CuPy2Cl2 as an efficient Lewis acid
catalyst (Figure 4.22) [66].

Ferric chloride (FeCl3) is an efficient catalyst for the synthesis of 2-amino-1,3-
selenazoles (32–36) by the reaction of N,N-disubstituted selenoureas with α,β-
unsubstituted aldehydes, α,β-unsubstituted ketones, α-diketones, and ketones
in boiling EtOH (Figure 4.23) [67–70]. The FeCl3 interacts as a Lewis acid with
the selenocarbonyl group, and EtOH as a solvent participates in these reactions.

1,3-Selenazol-4-ones are a subclass of 1,3-selenazoles and have a remaining car-
bonyl group in the C4 position. Reaction of N,N′-dialkylselenoureas with α-haloacyl
halides in pyridine gave 2-imino-1,3-selenazol-4-ones 37 (Figure 4.24). This type of
selenazoles can exist in a tautomeric equilibrium between 2-amino- and 2-iminose-
lenazol-4-ones [71].

2-Piperidinoselenourea reacted with chloroacetonitrile to give 2-piperidino-4,5-
dihydro-1,3-selenazol-4-iminium chloride, which upon water refluxing afforded
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Figure 4.21: Synthesis of 2-amino-1,3-selenazoles (28–30) in the presence of β-cyclodextrin in
water.
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2-piperidinoselenazol-4-one (38) (Figure 4.25) [72]. Treatment of N,N-disubsituted se-
lenoureas with dimethyl acetylenedicarboxylate (DMAD) without any catalyst yielded
2-aminoselenazol-4-ones (39) [73].

4.3.2 Synthesis of 1,3-selenazines

1,3-Selenazines are Se-containing six-membered ring compounds having one N
atom at the 3-position. 1,3-Selenazines gain much attention from organic and me-
dicinal chemists. In 1968, 2-chloro-1,3-benzoselenazin-4-one was for the first time
prepared by Simchen G [74]. 1,3-Selenazinium salts (40) were synthesized from N,
N-dialkylselenoureas with chloropropenylidene imminium salt in 1976 (Figure
4.26) [75].

The synthesis of 2-(N,N-diphenylamino)-5,6-diphenyl-5,6-dihydro-4H-1,3-selenazin-
4-one (41) by the reaction of N,N-diphenylselenourea with diphenylcyclopropane
at reflux was demonstrated (Figure 4.27) [76]. 2-Amino-4H-5,6-dihydro-1,3-selenazin-
4-ones (42) were obtained by the reaction of N,N′-substituted selenoureas with α,
β-unsaturated acid chlorides [77, 78].
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Figure 4.25: Synthesis of 1,3-selenazol-4-ones (38 and 39) using chloroacetonitrile and DMAD.
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A synthetic approach to spiro derivatives of 1,3-selenazines (43) based on intra-
molecular cyclization of selenoureas containing a γ,σ-unsaturated fragment was
achieved (Figure 4.28) [79].

4.3.3 Synthesis of 1,3-selenazepines

Selenazepines are Se-containing seven-membered heterocycles having one N
atom in the ring. The number of their reports is quite limited [80–83]. An iodocyc-
lization of β-allene-selenoureas afforded the 3-selena-1-dethiacephems (44) and
1,3-selenazepines (45) in Figure 4.29 [84]. With the assistance of iodine anion, in-
tramolecular nucleophilic attack of selenium in the sekenourea group on the ter-
minal carbon of allene (when R1 = Me, Et, or c-Hex) in the favored 7-endo mode
affords the corresponding selenazepines (44), accompanied by the simultaneous
elimination of hydrogen iodide.
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Figure 4.27: Synthesis of 1,3-selenazin-4-ones (41 and 42) from selenoureas.
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4.3.4 Synthesis of 1,3-diselenetanes and 1,4-diselenafulvenes

There are only a few reports for the synthesis of 1,3-diselenetane (46) and 1,4-dise-
lenafulvenes (47 and 48) from selenoureas. A novel reaction of N,N′-unsubstituted
selenourea with benzoylbromoacetylene in the presence of triethylamine was de-
scribed (Figure 4.30) [85].

4.3.5 Synthesis of selenolactones

Selenoureas are unsuitable for the formation of selenolactones. A selenolactone-
based fluorescent chemodosimeter (49) for monitoring mercury/methylmercury
species was prepared from Rhodamine B using N,N′-unsubstituted selenourea
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iodocyclization.
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(Figure 4.31) [86]. On the detection mechanism, Hg2+-induced spiro ring-opening
followed by deselenation is likely to be responsible for the fluorescence enhance-
ment (Figure 4.32).

4.3.6 Deselenative reactions of selenoureas

There are several reports on the deselenative reactions of selenoureas. A brief oxi-
dation of selenoureas with NaIO4 afforded the corresponding carbodiimides (50) in
Figure 4.33 [87]. Other oxidants such as NaClO4, KMnO4, and NaCrO4 could not
yield the carbodiimides. This synthesis of carbodiimides from selenoureas by io-
dine-mediated deselenation was reported for the first time [88].

N-Acetylureas were synthesized regioselectively from N,N′-disubstituted sele-
noureas and zinc acetate (Zn(OAc)2) in Figure 4.34 [89]. The regioselectivity was de-
pendent on the pKa of the amine attached to the selenourea and occurred toward
the amine with the lower pKa. A plausible mechanism was proposed as follows:
Triethyl amine interacts with N-phenyl-N′-cyclohexylselenourea followed by reac-
tion with Zn(OAc)2. Similarly, the second attack of Et3N gives the corresponding car-
bodiimide with elimination of Se atom. Then the liberated AcO– ion attacked the
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Figure 4.30: Synthesis of 1,3-diselenetane (46) and 1,4-diselenafulvenes (47 and 48) from
selenoureas.
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carbodiimide to produce isourea, which has a higher pKa after protonation towards
the amine without affecting the imine group of the other side. Lastly, consequential
isourea underwent intramolecular acetyl migration to give the regioselective N-
acetylurea (51). The similar conversion employing ion-supported hypervalent io-
dine reagent [dibmim]+[BF4]

– instead of Zn(OAc)2 was successful [90].

4.4 Applications

4.4.1 As biologically active substances

Interest of selenium-containing therapeutics has grown over last 30 years. The
most successful ones are ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) as an
anti-inflammatory antioxidant agent and selenazofurin (2-β-D-ribofuranosylselena-
zol-4-carboxamide) as an antitumor agent. There are several reviews regarding bio-
logically important selenoureas [91–96]. This section shows some examples.

By using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, sugar-derived selenour-
eas (52) in Figure 4.35 are excellent free radical scavengers compared to ascorbic
acid, Trolox, and BHT [97]. This report suggested that the increasing order of anti-
oxidant profile could be: selenohydantoins < selenocarbamates < selenoureas.
Selenoureas can act as free radical scavengers by donating a H atom from an NH
group to DPPH (Figure 4.36).

Superoxide anion-scavenging activity of N,N-unsubstituted selenoureas (53–57) in
Figure 4.37 was studied [98]. Pyrrolidine, piperidine, and morpholine analogues
(55–57) exerted high activity with IC50 values of 125 nM, 142 nM, and 121 nM, respec-
tively. Their potency was greater than that of L-ascorbic acid (IC50: 227 nM).

Inhibitory effects of N,N-unsubstituted selenourea derivatives (53–57) as in
Figure 4.37 on mushroom tyrosinase and their depigmenting effect in melan-a cells
were investigated [99]. A piperidine analogue (56) at a concentration of 200 μM ex-
hibited 55.5% of inhibition on dopa oxidase activity of mushroom tyrosinase. This
inhibitory effect was higher than that of kojic acid (39.4%), a well-known tyrosinase
inhibitor. Moreover, the analogue (56) was identified as a noncompetitive inhibitor
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Figure 4.35: Sugar-derived selenoureas (52).
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by Lineweaver–Burk plot analysis. In addition, 1-selenocarbamoylpiperidine (56)
also inhibited the melanin production in melan-a cells.

Acetylcholinesterase inhibitory effects of selenourea-containing tacrine deriva-
tives (58) in Figure 4.38 were studied [100]. These derivatives showed a remarkable
increase of activity compared to parent tacrine. Presumably, the planar selenour-
eido motif also undergoes favorable interactions with the aromatic residues of the
enzyme peripheral domain.

A series of acyl selenoureido benzensulfonamides (59) as in Figure 4.39 was evalu-
ated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors against two Vibrio cholerae
such as enzymes (VchCAα over VchCAβ) belonging to the α- and β-classes, potential
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Figure 4.38: Selenourea-containing tacrine derivatives (58).
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novel targets for anti-infective drugs development [101]. These compounds showed
strong inhibitory action against VchCAα over VchCAβ and excellent selectivity over
the human off-target isoforms hCA I and II.

Selenomerocyanine 56 (60) in Figure 4.40 has been identified as a possible
modulator of apoptosis in leukemia and solid tumor cells [102]. Selenobarbitutic
acid analogues (61–63) in Figure 4.5 showed in vitro antiproliferative effects against
melanoma CHL-1 and UACC 903 cells with μM IC50 values [103].

Ferrocene incorporated selenoureas (64) in Figure 4.41 have been reported as an-
ticancer agents by Raja Azadar Hussain and Amin Badshah research group [9,
104, 105]. Cancer termination of the ferrocene incorporated selenoureas (64) is
proved by their cytotoxic activities against neuroblastoma, hepa 1c1c7 and MCF-7
cancerous cell lines. Mostly those ferrocene incorporated selenoureas (64) that
had ortho substitution on the phenyl ring attached with the carbonyl carbon were
found most active.
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Figure 4.39: Acyl selenoureido benzensulfonamides (59).
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4.4.2 Others

1-Selenocarbamoylpiperidine (65) chemoselectively cleaves the O-chloroacetyl
group in the presence of other acyl groups such as acetyl, pivaloyl, and Fmoc with-
out the assistance of a base (Figure 4.42) [106]. Makoto Kiso research group applies
this selenourea (65) as a dechloroacetyl reagent to the total synthesis of complex
gangliosides [107–109].

A chemosensor containing a selenourea moiety (66) was reported [110]. The chemo-
sensor (66) is able to colorimetrically sense the presence of CN– and S2– in H2O/
MeCN (Figure 4.43). Detailed spectroscopic studies resulted to support a sensing
mechanism based on the formation of a diselenide derivative (67). Moreover, when
the chemosensor (66) was loaded into functionalized mesoporous silica nanopar-
ticles an increase in the selectivity toward S2– occurred via a selective fluorescence
response.
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Figure 4.42: Proposed mechanism of dechloroacetylation with 1-selenocarbamoylpiperidine (65).
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Narrow-band gap IV–VI group semiconductors, such as PbS, PbSe, CdSe, and
PbTe, provide unique properties for investigating the effects of strong confine-
ment on electrons and phonons [111]. PbSe can be potentially employed in vari-
ous areas such as laser materials, solar cells, infrared detectors, near-IR
luminescence, photographic planes, photovoltaic absorbers, and thermoelectric
devices [112]. CdSe is an n-type semiconductor with direct band gap (1.73 eV).
Several studies on the electrochemical behavior of CdSe involve cyclic voltam-
metry, both in dispersed solution and on thin films, differential pulse voltamme-
try, spectroelectrochemistry, and electrochemiluminescence [113]. In the
preparation processes of PbSe and CdSe, selenourea can be used as selenium
source replacing SeO2 and toxic selenium powder. In addition, Sfeir MY and
Owen JS research group reported a tunable library of N,N,N′-trisubstituted sele-
noureas and their reaction with lead oleate to form carboxylate-terminated PbSe
nanocrystals in quantitative yields (Figure 4.44) [114]. The conversion kinetics of
PbSe nanocrystals can be finely controlled by adjusting the substitution pattern
of selenourea precursors.

4.5 Conclusions

This chapter provides advances in the preparation of selenoureas and development
of Se-containing molecules using them. Great potentials of selenoureas for wide ap-
plications continuously attract extensive attention of researchers.
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5 Selenium Compounds as Reagents,
Catalysts, and Ligands

5.1 Introduction

Two centuries after the discovery by Barzelius, selenium keeps expanding its spec-
trum of potential in the field of chemistry and biology, at par with its biological
counterpart, sulfur [1]. Initially, the organoselenium chemistry was confined to the
aliphatic selenides, selenols, and diselenides, which were difficult to work with.
With the emergence of new aromatic selenium compounds, synthetic organosele-
nium chemistry was flooded with a tide of new methodological developments. In
addition, as the versatile nature of organoselenium compounds was explored in the
fields of material sciences [2] and biochemistry [3], the concerned chemistry has
drawn much attention over the years [4]. Introduction of selenium into organic mol-
ecules has also resulted in important biological activities [5], which is exploited in
drug designing [6].

The ability of selenium to expand its valency to interact with different atoms
(C, H, N, O etc.) enables organoselenium compounds to participate in different
types of reactions and redox processes [7]. Organoselenium compounds are man-
oeuvred into various forms of reagents of nucleophilic, electrophilic, and radical
natures. These compounds are extensively used as reagents and catalysts to
carry out various types of organic transformations with emphasis on chemo-,
regio-, and stereoselectivities [8]. Moreover, the excellent coordinating ability of
selenium has been utilized in the development of various selenium ligands.
Apart from the classical thermal techniques, alternative activation techniques
like microwave [9], ultrasound [9], and electrolysis [9] are applied to expand the
scope of the organoselenium chemistry. In this chapter, we will bring out the
2008 onward developments in the chemistry of selenium as reagent, catalyst,
and ligand.

5.2 Selenium as reagent

Organoselenium compounds have emerged as versatile reagents, as well as intermedi-
ates in organic synthesis. Selenium can be introduced as electrophile, nucleophile, or
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radical in organic synthesis. The reaction of selenium electrophiles with alkene
involves seleniranium ion intermediate, which is rapidly opened by external nu-
cleophile giving additional products; or internal nucleophilic attack generates
cyclized products. The ability of selenium to stabilize negative charge generates
nucleophilic character of selenium compound. The reaction between selenium-
stabilized carbanions with electrophiles is to promote functional group transfor-
mation and new carbon–carbon bond formation. Due to the stability and the
ease of preparation, organoselenium compounds are also extensively used as
versatile radical precursors, which offer advantages over organic halides as radi-
cal precursors.

5.2.1 Selenium as electrophile

5.2.1.1 Enantioselective selenolactonization

Electrophilic functionalization of unreactive olefins through asymmetric catalysis
has been a topic of great importance in the field of organic chemistry in the past
decades [10]. In 2015, Niu et al. developed a novel and efficient approach of enan-
tioselective selenolactonization of olefinic acids using (DHQD)2PHAL as the catalyst
in the presence of structurally simple and commercially available N-phenylsele-
nophthalimide (NPSP) as the electrophilic selenium reagent [11]. Finally, enantiose-
lective selenolactonization had been obtained successfully up to 96% enantiomeric
excess (ee) (Figure 5.1).

It was suggested that hydrogen-bonded complex 5 was formed by the interaction of
olefinic acid 1 with (DHQD)2PHAL 3. Then, quinuclidine–NPSP complex 6 was gen-
erated by subsequent interaction of 5 with electrophilic selenium source NPSP 2.
Complex 6 was further activated with another carboxylic acid 1 to afford ionic spe-
cies 7 along with the elimination of phthalimide molecule 8. Consequencetly, more
electrophilic selenium species 7 smoothly promoted cyclization to produce the de-
sired product 4 (Figure 5.2).

R OH

O
N

O

O

SePh

(DHQD)2PHAL 3
(20 mol%)

CH2Cl2, 25 °C

OR

SePh

R= 2-naphthyl, 4-CH3-C6H4, 4-CH3O-C6H4, 4-Cl-C6H4, 4-F-C6H4, 4-CF3-C6H4, 3-CH3-C6H4,

3-CH3O-C6H4, 3-Cl-C6H4, 3, 5-(CF3)2-C6H4, 2-CH3C6H4, 3-thienyl, cyclohexyl

1 2 4

Figure 5.1: Asymmetric selenolactonization.
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5.2.1.2 Catalytic selenium-promoted intermolecular Friedel−Crafts alkylation with
simple alkenes

In 2016, Tang et al. reported selenium-promoted intermolecular Friedel−Crafts (F−C)
alkylation reactions with simple alkenes using trimethylsilyl trifluoromethanesul-
fonates as catalyst and NPSP as an efficient selenium source [12]. Electron-rich
arenes smoothly underwent F−C alkylation with a variety of alkenes to afford al-
kylated products in good yields and with high regioselectivity and diastereoselec-
tivity (Figure 5.3).

Mechanistically, it was proposed that TMSOTf activated weak electrophilic or-
ganoselenide NPSP by chelating to the amide carbonyl group to facilitate the forma-
tion of the episelenonium ion intermediates 12 from the alkenes 10 and the
subsequent reaction with the arenes 9 led to the formation of F−C alkylated prod-
ucts 11 and the regeneration of the TMSOTf catalyst (Figure 5.4).
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Figure 5.3: Scope of intermolecular selenium-promoted F–C alkylation with alkenes.
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5.2.1.3 Iodine-mediated vicinal difunctionalization of alkenes for building C–Se
and C–S bonds

Due to the wide spectrum of scientific application in the field of organic synthesis
as well as medicinal biology, organochalcogen (Se, S) compounds are of growing
interest in recent years [13]. Recently, in 2018, Wang et al. developed iodine-medi-
ated vicinal difunctionalization of alkenes 13 with electrophilic selenium species
diselenides 14 and nucleophilic thiolating agent carbamodithioates 15 (Figure 5.5).
A new kind of compound, β-selanylethyl dithiocarbamates 16 with both C–Se and
C–S bonds had been prepared in good yields by this mild reaction condition and
simple procedure [14].

Addition of radical scavenger 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)
into the reaction mixture had no influence on the reaction, and the difunctionali-
zation proceeded well. This observation clearly indicated that the reaction did not
follow radical pathway. The reaction was proposed to follow electrophilic addition
mechanism. First, active electrophilic selenium species R2SeI was generated in
situ by the reaction of molecular I2 with diselenide 14 through the active interme-
diate 17. Then, in situ generated electrophilic selenium species R2SeI 18 reacted
with alkene to form unstable cyclic seleniranium intermediate 19, which was then
attacked by nucleophile sodium dithiocarbamate 15 via an SN1 mechanism to
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Figure 5.4: Mechanistic hypothesis for the intermolecular NPSP-Promoted F–C alkylation reaction
with alkenes.
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afford the desired product 16 as a single isomer with high regioselectivity. But,
SN2 mechanism was observed in case of aliphatic alkene (Figure 5.6).

5.2.1.4 Redox-neutral synthesis of selenoesters by oxyarylation of selenoalkynes

A mild and efficient approach for the synthesis of selenoesters have been reported
by Baldasarri and coworkers in 2018 [15] through an acid-catalyzed, redox-neutral
oxyarylation reaction of selenoalkynes 20. The reaction involved activation of triple
bond of selenoalkyne 20 to generate selenium-stabilized vinyl cation 21, which was
trapped by aryl sulfoxide 22 followed by Claisen-type [3,3]-sigmatropic rearrange-
ment to produce α-arylated selenoester product 23 (Figure 5.7). To elucidate the na-
ture of the Se-stabilized carbocation, computational study was used. The superior
role of selenium to sulfur in stabilizing the vinyl cation intermediate is established
by DFT and NBO analysis.

5.2.1.5 Regio- and stereoselective synthesis of unsaturated compounds with the
S–Se bond and their cyclization to 2,3-dihydro-1,4-thiaselenines

The regio- and stereo-selective synthesis of organoselenium compounds by electro-
philic selenium reagents are very important and interesting area in the field of or-
ganoselenium chemistry [16]. In 2019, Amosova et al. have developed regio- and
stereoselective ring-opening reaction of 2-bromomethyl-1,3-thiaselenole 24 with
thiols to produce unsaturated selanyl sulfides, (Z)-CH2=CHSCH=CHSeSR 26 by
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Figure 5.5: Iodine-mediated vicinal difunctionalization of alkenes.
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nucleophilic attack at the selenium atom of seleniranium intermediate 25 [17].
Then, acid-catalyzed cyclization of this unsaturated selanyl sulfide was devel-
oped to synthesize 2-(organylsulfanyl)-2,3-dihydro-1,4-thiaselenines 28. They
also demonstrated the synthesis of symmetrical polyunsaturated compounds
with two S–Se bonds 27 by involving dithiols in this reaction (Figure 5.8). Mild
reaction conditions and short reaction times were important features of this
methodology.

The anchimeric assistance of selenium atom in thiaselenole 24 was the driving
force for the generation of the seleniranium intermediate 25. Synthesis of symmetrical
polyunsaturated compounds 27 with two S–Se bonds involved nucleophilic attacks
of two mercapto groups at the selenium atom of the seleniranium cation 25. Besides,
synthesis of 2-(organylsulfanyl)-2,3-dihydro-1,4-thiaselenines 28 was mechanistically
rationalized by the formation of thermodynamically more stable heterocycle through
acid-catalyzed cyclization pathway (Figure 5.9).
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Figure 5.7: Synthesis of selenoesters by acid-catalyzed, redox-neutral oxyarylation reaction of
selenoalkynes.
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5.2.1.6 Electrochemical oxidative selenylation of imidazo[1,2-a]pyridines with
diselenides

An efficient protocol for the synthesis of 3-selenylated imidazo[1,2-a]pyridine deriv-
atives 31 has been reported by Kim et al. [18] in 2019 via electrochemical oxidative
selenylation of imidazo[1,2-a]pyridine derivatives 29 with diselenides 30. The reac-
tion was conducted in an undivided electrochemical cell equipped with glassy car-
bon plate as electrodes in the presence of LiClO4 as a supporting electrolyte and
acetonitrile solvent under constant 7mA current (Figure 5.10). This selenylation
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reaction went smoothly with substituted imidazo[1,2-a]pyridines containing halo-
gen and methyl groups, with high yields.

The reaction was not affected by radical scavengers TEMPO and 2,6-di-tert-
butyl-4-methylphenol (BHT). The desired selenylated products were obtained in
high yields, which indicated that the reaction did not follow radical pathway. The
new synthetic strategy was environmentally benign by using shelf-stable disele-
nides as selenium source and electrons as oxidizing reagents. Diphenyl diselenide
was oxidized to generate phenylselenium cation 32, which was then reacted with
imidazo[1,2-a]pyridine 29 to produce intermediate 33 followed by deprotonation to
afford selenylated imidazo[1,2-a]pyridine derivatives 31 (Figure 5.11).

5.2.1.7 Iron(III)-promoted synthesis of 3-(Organoselanyl)-1,2-dihydroquinolines
from diorganyl diselenides and N-arylpropargylamines

Iron salts-catalyzed diorganyl diselenides have been reported in literature [19] as
useful alternatives to the cyclization of unsaturated substrates and to introduce
organoselenium functionality in heterocycles in a one-step reaction. Recently,
Goulart et al. have demonstrated the preparation of 3-(organoselanyl)-1,2-dihydro-
quinolines 35 by iron-promoted tandem cyclization-functionalization reaction of N-
arylpropargylamines 34 with diorganyl diselenides [20]. The optimized reaction
condition was obtained when the reactions of N-arylpropargylamines have been
carried out with the combination of diorganyl diselenides with FeCl3·6H2O in nitro-
methane at 70 °C (Figure 5.12).

It was proposed that the iron-seleno complex 36 was generated in situ by the re-
action of FeCl3 and diorganyl diselenide (RSe)2. Then, coordination of electrophilic
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Figure 5.11: Proposed reaction mechanism.
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portion of the selenium species to the carbon–carbon bond of alkyne of 34 generated
the seleniranium ion 37, which facilitated carbon–carbon bond toward nucleophilic
attack to afford the intermediate 38 via a selective intramolecular 6-endo-dig cycliza-
tion. Removal of the hydrogen by breaking the C–H bond, promoted by the selenolate
anion, finally produced the cyclized product 35 (Figure 5.13).

The synthetic application of 3-(organoselanyl)-1,2-dihydroquinolines 35p has
been demonstrated in the transition metal-catalyzed cross-coupling reactions with
boronic acid (Figure 5.14).

N
Ts

Ph
SePh

N
Ts

Ph
Se

N
Ts

Ph
Se

OMe
N
Ts

Ph
Se

Cl

N
Ts

Ph
Se

N
Ts

Ph
SePh

N

Cl

Ts

Ph
Se

N
Ts

Ph
Se

F

N

MeO

Ts

Ph
SePh

N
Ts

SePh

N
Ts

SePh

N

F3C

Ts

Ph
SePh

N
Ts

SePh

OMe

Cl

N
Ts

Se

F

N
Ts

SePh

Cl N
Ts

SeBu

F

35a, 78% 35b, 55% 35c, 42% 35d, 80%

35e, 73% 35f, 40% 35g, 61% 35h, 40%

35i, 64% 35j, 37% 35k, 40% 35l, 51%

35m, 54% 35n, 54% 35o, 69%

Cl

35p, 82%

N

R1

R1

Ts
N

R1

Ts

R2
SeR3

FeCl3.6H2O

CH3NO2, 70 ºC
R3YYR3

34 35

Figure 5.12: Synthesis of 3-(organoselanyl)-1,2-dihydroquinolines 35.

5 Selenium Compounds as Reagents, Catalysts, and Ligands 127

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



5.2.2 Selenium as nucleophile

5.2.2.1 Synthesis of 2-imino-1,3-thiaselenolanes via iodocyclization

Selenium-containing heterocycles attract increasing attention because of their unique
reactivity [21] and potential biological activity [22]. The method to introduce selenium
into ring is very challenging due to their instability, toxicity and difficulties. In 2012,
Toyoda et al. was successful to synthesize selenium-containing heterocycles 2-imino-
1,3-thiaselenolanes 44 by the reaction of isoselenocyanates 40 with allyl mercaptan
41 via iodocyclization reaction [23]. Finally, 2-imino-1,3-thiaselenolanes 44 were ob-
tained as Z/Emixture at the imine position (Figure 5.15).

Firstly, S-allyl-phenyl-selenothiocarbamate 42 was synthesized by the reaction of
phenylisoselenocyanate 40 and allyl mercaptan 41 under the basic conditions [24].
Next, iodocyclization reaction using selenothiocarbamates 42 was carried out using
1 equiv. of iodine in CH2rCl2 at room temperature. Then both selenium-containing
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heterocyclic ring and exocyclic imines 44 were formed by selenium nucleophilic cy-
clization from the selenocarbonyl intermediates 43 (Figure 5.16).

5.2.2.2 Synthesis of selenophenes and selanyl selenophenes

Selenophenes have attracted great attention due to their diverse biological activities
including antitumoral [25], antiinflammatory [26], antihypertensive [27], and anticon-
vulsant [28] properties. These compounds are also used as versatile building blocks
in the synthesis of many biologically active compounds and natural products [29].
Thus synthesis of selenophenes is of great importance. Previously reported synthesis
of selenophenes in literature either involved harsh condition and high temperature
[30] or multiple reaction steps [31, 32]. So, development of an efficient method for the
preparation of selenophenes is very challenging. In 2014, Maity et al. developed a
general and efficient protocol for the synthesis of selenophenes 46 in high yields by a
simple one-pot CuO nanoparticle-catalyzed coupling of 1,3-dienyl bromides 45 and
potassium selenocyanide [33] (Figure 5.17). The reaction with 1,3-dienyl gem-dibro-
mides 45 was also reported to produce selanyl selenophenes 47, new class of organo-
selenocycles (Figure 5.18). The use of inexpensive CuO nanoparticles as the catalyst,
KSeCN as the selenium source, and an intramolecular nucleophilic cyclization of a
selenium moiety to an alkene unit are the significant characteristic features of this
reaction.
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5.2.2.3 Metal-free synthesis of unsymmetrical organoselenides
and selenoglycosides

Organoselenide compounds take part in organic synthesis as a vital substrate [34].
A number of approaches to synthesize organoselenides have been developed. The
most established methods for C(sp2)−Se bond formation mainly involve Fe [35], Pd
[36], Cu [37], or Ni [38] as catalyst. In 2017, Guan et al. developed a one-pot metal-
free synthesis of organoselenides 52 and selenoglycosides 53, which involved alkyl-
ation, arylation, or alkynylation of selenium anions [39] (Figure 5.19).

In the first step of the reaction, an arylselenocyanate 49 was generated by the ar-
ylation of potassium selenocyanate (KSeCN) with an iodonium reagent in the absence
of a metal catalyst. By the addition of sodium borohydride (NaBH4) after completing
the first arylation reaction, selenol was liberated in a Grieco-type reduction [40]. Then
the reaction of selenium nucleophile with aliphatic electrophile, iodonium re-
agent, or glycosyl halide afforded unsymmetrical organoselenides 52 (Figure 5.20)
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and selenoglycosides 53 (Figure 5.21), respectively. The method represents an um-
polung approach to the synthesis of arylselenides.

5.2.2.4 Synthesis of chiral selenazolines

In 2018, Shibahara et al. demonstrated a new synthetic route of chiral selenazolines
55 from readily available N-acyloxazolidinones 54 via a selenative rearrangement of
a chiral cyclic skeleton in the presence of elemental selenium, a hydrochlorosilane,
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and an amine [41]. A wide variety of chiral selenazolines have been prepared by this
method (Figure 5.22).

Initially, the selenation occurred randomly at the amide or carbamoyl moiety of
54 to give 56 or 57. Diselenated intermediate 58 was produced by further selenation
process. Then, once generated, 57 was decomposed readily under these conditions
via formation of 59 and both reactions were in competition. Highly nucleophilic se-
lenium atom was generated as intermediate 63. Successive intramolecular SN2-type
cyclizations afforded selenazoline derivatives 55 (Figure 5.23).

5.2.2.5 Se-mediated one-pot synthesis of 2-substituted benzoselenazole
derivatives

2-Substituted benzoselenazole derivatives have been of interest due to having unique
skeleton for the construction of bioactive compounds [42]. Furthermore, the synthetic
approach for the synthesis of 2-substituted benzoselenazoles were rare. In 2018, Gu
et al. reported a novel and efficient approach to synthesize 2-substituted benzosele-
nazoles 59 by three-component reactions of 2-iodoanilines 56, selenium powder, and
arylacetic acids 57 or benzyl chlorides58 in the presence of copper salt as a catalyst
and dimethyl sulfoxide (DMSO) as a solvent (Figure 5.24) [43]. The desired compound
was obtained in moderate-to-high yields with good functional group tolerance on the
aromatic and heteroaromatic substrates.

The radical mechanism was not involved in the synthesis of 2-substituted ben-
zoselenazole derivatives as the course of the reaction remained unchanged with
addition of radical scavenger TEMPO in the reaction mixture. A plausible mecha-
nism was proposed that diselenide 60 was produced initially by the reaction of
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2-iodoaniline 56 with selenium powder in the presence of catalyst and base.
Meanwhile, the intermediate 61 was formed by the oxidation of phenylacetic acid
57 using selenium powder. Then condensation reaction between 60 and 61 oc-
curred to give the intermediate 62 or 63, followed by intramolecular cyclization
through the nucleophilic attack by selenium on the iminium carbon atom to gen-
erate the intermediate 64. Subsequently, the Se–Se bond was cleaved by the delo-
calization of an electron pair to generate 1,3-benzoselenazole 59 derivatives
through two routes. The route 1 involved the cyclization of 65, followed by oxida-
tion and release of H+ and CO2 to form desired product 59, and route 2 involved
deprotonation of 66 to produce the desired product C (Figure 5.25).
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5.2.3 Selenium as radical

5.2.3.1 Copper-catalyzed selenylation of imidazo[1,2-a]pyridines with selenium
powder via a radical pathway

In 2017, Sun et al. reported an efficient and simple approach for construction of-
benzo[b]selenophene/imidazo[1,2-a]pyridine 69 framworks through copper-catalyzed
direct selenylation of readily available 2-(2-bromophenyl)imidazo[1,2-a]pyridines 68
via functionalization of C(sp2)−Br and C(sp2)−H bonds [44]. The reaction was carried
out under ligand- and base-free conditions in air using readily available selenium
powder as selenylating agent (Figure 5.26). The reaction was successfully carried out
with various substituted groups including methoxy, methyl, C−Cl bond, and C−Br
bond.

The reaction was suggested to follow radical mechanistic pathway. First, the Cu
(I) was oxidized to Cu(II) in the presence of oxygen in air. The single-electron trans-
fer (SET) took place between 68 and Cu(II) to produce radical cation 70. Proton loss
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from the intermediate 70 generated vinyl radical intermediate 71, which was then
reacted with elemental selenium to give a selenium-free radical 72. Subsequently,
the intramolecular cyclization of radical 72 was involved to generate radical inter-
mediate 73. Then, Cu(I)-mediated bromine abstraction of radical intermediate 73
took place and finally the desired product 69 was released along with Br‒ and Cu
(II) (Figure 5.27).
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5.2.3.2 Synthesis of 3-selenylindole derivatives by TEMPO-catalyzed aerobic
oxidative selenium insertion reaction

In 2018, Liu et al. have developed a novel and efficient approach for selenium func-
tionalization at the C3 position of indoles using selenium powder as the selenium
source, catalyzed by TEMPO with O2 as the green oxidant [45]. With a broad scope
of functional group tolerance 3-selenylindoles derivatives were obtained in moder-
ate-to-high yields (Figure 5.28).

The reaction was suggested to follow radical pathway mechanism. Initially, iso-
selenocyanate 79 was generated in situ by the reaction of isocyanide 75 with elemen-
tal selenium 76 under the basic conditions, which was then reacted with an amine to
produce selenoate 80. The equilibrium was established between selenium anion in-
termediate 80 and nitrogen anion intermediate 81. Then, nitrogen-centered radical
82 was generated by oxidation of intermediate 81 by O2/TEMPO. The more active se-
lenium radical intermediate 83 was then generated by the resonance of the nitrogen-
centered radical 82. Simultaneously, another equilibrium between nitrogen anion in-
termediate 84 and carbon anion intermediate 85 was established by deprotonation of
indole in the presence of Cs2CO3. Finally, the desired product 78 was obtained by
cross-coupling of radical 83 with 85 to generate nitrogen radical cation 86, followed
by SET of intermediate 86 (Figure 5.29).

I

NH2
CuBr

Se
Se

H2N

NH2

COOH
oxidation

Se

O

OH O

OH
N

Se
2

O

O
NH

Se
2

N
HO2C

Se

N
H

Se CO2

N

Se

CO2H

N
H

Se–H

Se

N

–H

Se

H
N CO2H

Route 1

Route 2

CO2

CO2

2H

56

57

59

Se

60

61
62 63

64

65

66

67

Se

Figure 5.25: Plausible mechanism.

5 Selenium Compounds as Reagents, Catalysts, and Ligands 137

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



5.2.3.3 Copper-catalyzed radical selenodifluoromethylation of alkenes

In 2019, Kai Sun et al. have reported Cu-catalyzed selenodifluoromethylation of al-
kenes to construct a series of different types of 4-seleno-substituted α,α-difluoro-γ-
lactams 88 (Figure 5.30) [46]. This attractive strategy has been of much potential
for the preparation of other valuable fIuorinated γ-lactams due to easy scale-up pro-
cess with broad substrate scope as well as the scope for product derivatization.

Mechanistic studies suggested that the catalytic system involved a radical cascade
cyclization pathway. Initially, the reaction was initiated by the reaction of Cu(I) and N-
allyl-2-bromo-2,2- difluoro-N-phenylacetamide 87 to generate radical intermediate 89
along with Cu(II) species via SET process. Then, alkyl radical intermediate 90 has been
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produced by rapid 5-exo-trig cyclization by the addition of the fluoroalkyl radical 89 to
the unsaturated double bond. Since diselenide is an excellent radical trapping agent,
radical intermediate 90 was trapped by the diselenide and afforded desired 4-seleno-
substituted α,α-difluoro-γ-lactams 88. Selenyl radical was converted finally into selenyl
anion (PhSeX) with the reduction of Cu(II) to Cu(I) (Figure 5.31).

5.2.3.4 Electrochemical radical selenylation/1,2-carbon migration
and Dowd−Beckwith-type ring-expansion sequences
of alkenylcyclobutanols

Recently, another efficient strategy for the synthesis of cyclohexanone derivatives
(94) has been reported by Kim et al. via electrochemically induced oxidative radi-
cal selenylation/1,2-carbon migration and Dowd−Beckwith-type rearrangement
sequences of alkenylcyclobutanol derivatives 91 with diselenides 92 [47]. The re-
action was conducted in an undivided electrochemical cell equipped with glassy
carbon plate as electrodes in the presence of n-Bu4N

+BF4
‒ as a supporting electro-

lyte and acetonitrile solvent under constant 7mA current (Figure 5.32).
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The reduced yield of the desired products by radical scavengers (TEMPO and
BHT) indicated the involvement of radical pathway of the reaction. Diphenyl disele-
nide 92a was oxidized to generate cationic radical intermediate 95, which was de-
composed to produce phenyl selenium radical 96 and phenyl selenium cation 97.
Then the reaction was accomplished between phenyl selenium radical 96 with 1-(1-
arylvinyl)cyclobutanol 91 to produce intermediate 98, which was oxidized on anode
to afford the cation 99. 1,2-Carbon migration of cation 99 led to ring expansion pro-
ducing 93 (path a). In another possibility, phenylselenium cation 97 was attacked by
nucleophile 1-(1-arylvinyl)cyclobutanol 91, followed by 1,2-carbon migration to gener-
ate the product 93 (path b) (Figure 5.33).Then Dowd−Beckwith rearrangement of 93
produced the corresponding one-carbon ring-expanded ketones 94.

5.2.4 Synthesis of diselenophosphinic esters

Recently, synthesis of diselenophosphinic esters attracted increasing attention of
researchers because these compounds are broadly used as convenient precursors of
nanocrystalline materials [48], anionic ligands for metal complexes [49], and prom-
ising building blocks for organic synthesis [50]. A new, efficient, atom-economic
synthetic approach of diselenophosphinic esters 104 have been developed by three-
component reactions of alkenes 103, secondary phosphanes 101, and elemental se-
lenium 102 (Figure 5.34) [51].

Oxidation of secondary phosphane 101 by elemental selenium produced sec-
ondary phosphane selenide 105, which was further oxidized by second equivalent
of elemental selenium to produce diselenophosphinic acid 106. Then the addition
of aryl- or hetaryl alkenes 103 to diselenophosphinic acid 106 produced diseleno-
phosphinates 104 (Figure 5.35).
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5.2.5 Markovnikov addition of thioselenophosphinic
acids to double bond

The addition of thioselenophosphinic acids, R2P(Se)SH or R2P(S)SeH, to vinyl
ethers was not known in the literature until in 2013 Oparina et al. reported the elec-
trophilic addition of thioselenophosphinic acids 107, generated from secondary
phosphine sulfides 108 and elemental selenium, to a diverse range of vinyl ethers
109 for the first time [52]. Markovnikov adducts, that is, S-esters 110 and Se-esters
111 of thioselenophosphinic acids, have been obtained in high yields (Figure 5.36).
The major isomers were S-esters and the ratio depends on the structure of the ini-
tial vinyl ethers and thioselenophosphinic acids. This reaction was applicable to
secondary phosphine sulfides bearing alkyl, aryl, and heteroaryl groups and aryl

R1

P
R1 H 2 Se R2 85°C , 3h

1,4-dioxane

R1

PR1

Se

Se

Me

R2

R1 = Ph(CH2)2, 4-OMeC6H4(CH2)2, 2-Furyl(CH2)2

R2 = Ph, 4-t-BuC6H4, 4-ClC6H4, 2-Naphthyl, 2-furyl, 1-pyrrolyl

101 102 103
104

Figure 5.34: One-pot atom-economic synthesis of diselenophosphinic esters from aryl- or
hetarylalkenes, secondary phosphanes and elemental selenium.

SePhPhSe

SePhPhSe + PhSe

SePh1/2 PhSe

OH

PhSe

Ph
OHPh

path a

95 96 97

path b

1/2 H2

H

98

OH

PhSe

Ph –H
O

Ph
SePh

OHPh
PhSe

–H

99
100

Anode
Cathode

91

93

PhSe

Figure 5.33: Proposed reaction mechanism.

5 Selenium Compounds as Reagents, Catalysts, and Ligands 143

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



and alkyl vinyl ethers. Air sensitivity and unstable nature of thioselenophosphinic
acids [53] restricted the employment of one-pot protocol for the preparation of thio-
selenophosphinic esters.

The equimolar mixture of secondary phosphine sulfide 108 and elemental sele-
nium in this three-component reaction was synthetic equivalent of the thioseleno-
phosphinic acids 107, which was then added to electron-rich double bond of
various vinyl ethers 109 in a Markovnikov manner to give a mixture of S-esters 110
and Se-esters 111 of thioselenophosphinic acids where the main isomer was S-ester
110. This type of addition was electrophilic in nature (Figure 5.37).
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5.2.6 Synthesis of 1,4-disubstituted 5-arylselanyl-1,2,3-triazoles

Synthetic methods for constructing multisubstituted 5-selenofunctionalized triazoles
are still in high demand. Click reactions [54] and the formation of C−Se bond are well
known in the literature [55]. Based on these reactions in 2018, Cui et al. reported
a novel and efficient method for the preparation of 1,4-disubstituted 5-arylselanyl-
1,2,3-triazoles 115-117 from propiolic acids 112, diselenides 113, and azides 114 by
Cu-catalyzed decarboxylative/click reaction via intermolecularazide−alkyne cycload-
dition of an alkynyl selenium intermediate (Figure 5.38) [56]. High efficiency and re-
gioselective catalytic reaction featured with mild reaction conditions, easy operational
simplicity as well as excellent compatibility with air are main advantages.

The resulting multisubstituted 5-seleno-1,2,3-triazoles were tested for in vitro
anticancer activity and compounds 115f, 115h, and 115p showed potent cancer cell-
growth inhibition activities.

The plausible mechanism is presented in Figure 5.39. It was proposed that 1,10-
phenanthroline coordinated to Cu(OAc)2·H2O to form the active copper(II) intermediate
118, and then it reacted with phenylacetic acid 112a to generate copper(II) intermediate
119, which produced copper(II) intermediate 120 by decarboxylation through the re-
lease of one molecular CO2 [57]. The intermediate 121 was generated by the reaction of
120 with diphenyl diselenide 113a. The reductive elimination of 121 resulted in phenyl
(phenylethynyl)-selane 125 as well as copper(I) species 122. Subsequently, the interme-
diate 123 was produced by the complexation of 122 with phenyl(phenylethynyl)selane
125 and azide 114a. Then intermediate 124 [58] was generated by oxidative cyclization
of intermediate 123. The reductive elimination of 124 afforded the desired product 115a
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and copper(I) species 122. Finally, 122 was converted into 118 under air atmosphere
(Figure 5.39).

5.2.7 Stereospecific Al-catalyzed tandem C-N/C-Se bond
formation of isoselenocyanates with aziridines

The cycloaddition of isothiocyanates with chiral aziridine has been recently reported
in literature [59]. Recently, in 2019, Satheesh et al. have reported Al-catalyzed stereo-
specific tandem C–N/C–Se bond formation of chiral aziridines 127 with isoselenocya-
nates 126 with 90–99% ee and 77–91% yields (Figure 5.40) [60].

According to experimental and DFT studies, it was suggested that the formation
of Al-complex 130 was generated by chelation of isoselenocyanate 126 with Al-
salen 128. Then, Al-complex 130 coupled with aziridine 127 through a concerted
SN2 pathway 131 to produce the target products 129 (Figure 5.41).
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Figure 5.39: Proposed mechanism.
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Figure 5.40: Al-catalysed tandem C-N/C-Se bond formation of isoselenocyanates with aziridines.
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5.3 Selenium as catalyst in organic reactions

Earlier, we have discussed the versatility of organoselenium reagents in organic syn-
theses. Regarding the toxicity of selenium compounds [61], it is always preferable to
shift toward catalytic processes. The use of organoselenium compounds as catalysts
has opened a new alley for the synthetic organic chemists, with the first venture by
Sonada et al. using elemental Se as a catalyst, in 1975 [62]. Thereafter, the catalytic
use of organoselenium reagents gradually increased till the first decade of 21st cen-
tury, which has been well documented in review articles and book chapters [63]. A
considerable progress has taken place in recent years where versatile chemical nature
of selenium reagents has been explored thoroughly. This, coupled with newly devel-
oped concepts like chiral catalysis and photocatalysis, has enriched the repertoire of
organic chemists for processes like oxidations, haloaminations, oxidative cyclizations,
enantioselective cyclizations and trifluoromethylthiolations, C–N cross coupling reac-
tions, and so on. A number of such representative works are discussed here, which
have been published in the last decade.

5.3.1 Selenium-catalyzed haloamidation reactions

5.3.1.1 Chloroamidation of olefins using Lewis basic selenium catalyst

Selenium-catalyzed allylic chlorination [64], as well as Lewis acid-catalyzed haloa-
midation of olefins [65], using N-halosuccinimide was reported in the literature.
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Figure 5.41: Proposed mechanism.
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Yeung and coworkers, in 2013, demonstrated a Lewis basic diphenylselenide-cata-
lyzed chloroamidation of olefins 132 to prepare synthetically important trans-1,2-
chloroamides 133 [66]. N-chlorosuccinimide (NCS) and acetonitrile were used as the
halogen and the nitrogen source, respectively (Figure 5.42). Yields were good for
both alkyl and aryl olefins and excellent regio- and diastereoselectivities were ob-
served for substituted cyclohexenes. Acid-sensitive functional groups are well toler-
ated in this reaction.

Mechanistically it is proposed that the Lewis basic diphenyl selenide activates the Cl
atom of NCS to form an intermediate 134. This electrophilic Cl atom is intercepted by
the olefin 132. Subsequently, the formed haliranium intermediate 135 undergoes nu-
cleophilic attack by acetonitrile (135 to 136), followed by the quenching by water,
which leads to the chloroamidation product 133 (Figure 5.43).
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Figure 5.42: Chloroamidation of olefins using Lewis basic diphenylselenide catalyst.
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5.3.1.2 Enantioselective bromoaminocyclization of olefinic amides

Driven by their previous asymmetric bromocyclization [67], catalyzed by bifunctional
amino-thiocarbamate, Yeung and coworkers developed a mannitol-derived C2-sym-
metric selenium catalyst and employed it successfully in the novel monofunctional
Lewis basic selenium-catalyzed enantioselective bromocyclization reaction [68].
Pyrrolidine 138 having two chiral centers was synthesized from trisubstituted olefinic
amide using N-bromopthalimide as brominating agent and catalyst 139. Although the
reaction needs to be carried out for 5 days at a much lower temperature (−78 oC),
yields are excellent (up to 93%) with good-to-excellent enantioselectivity (ee up to
95%). Strong electron-rich and electron-poor groups as R2 showed poor enantioselec-
tivity (Figure 5.44).

Similar to the case of chloroamidation (Figure 5.43), probably, the Lewis basic cata-
lyst 139 transfers the bromonium ion from NBP to the alkene 137 to form a tight ion
pair to prevent racemization. Finally, the sulfonated amine attacks intramolecularly
to furnish the chiral pyrrolidine 138 enantioselectively [68]. Recently, in 2017,
Ishihara and coworkers have reported a diastereoselective chlorocyclizaton of trypt-
amine derivatives by cooperative catalysis of diphenyl diselenide and iodine [69].

5.3.2 Selenium-catalyzed trifluoromethylthioamination reactions

Due to their significant potential in pharmaceuticals and agrochemicals [70], organic
molecules containing SCF3 groups demand efficient synthetic routes to the molecules
containing SCF3 groups. Through alkene bifunctionalization by acid activation, incor-
poration of Cl, OTs, CF3COO, and sulfonyl groups along with SCF3 groups was re-
ported in 2009 [71]. However, trifuoromethylthioamination under acid activation was
not reported, might be due to the protonation of amines. This challenge was met suc-
cessfully using Lewis basic selenium catalyst, which, like the activation of Cl from
NCS in the chloroamidation, activates SCF3 from N-SCF3 bonds.
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Figure 5.44: 139-Catalyzed bromocyclization reaction.
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5.3.2.1 Vicinal trifluoromethylthioamination of alkenes

In 2015, research group of Zhao reported the selenium-catalyzed vicinal trifluorome-
thylthioamination of alkenes 140 using 10 mol% of di(p-methoxyphenyl) selenide,
1.3 equiv. of N-trifluoromethylthiosaccharin as SCF3 source, and excess of nitriles
141 as the aminating agent (Figure 5.45). Excess of nitrile might be neutralizing the
TfOH used in the reaction. Terminal as well as internal alkenes provided 142 in
moderate-to-excellent yields (up to 96%) with good diastereoselectivity in case of
the later. The reaction tolerates both alkyl and aryl nitriles well [72].

5.3.2.2 Enantioselective trifluoromethylthiocyclization of olefinic amides

The same group has developed a selenium-catalyzed SCF3-aminocyclization of
olefinicsulfoamides to form various azaheterocycles with high enantioselectivity
[73]. An indane-based chiral bifunctional selenide 146 was used as catalyst in the
presence of BF3.OEt2 or NfOH as acid in a mixed solvent of DCE/DCM (1:1), while
the source of SCF3 being (PhSO2)2NSCF3 (Figure 5.46). As they have mentioned,
the low temperature (-78 oC) was maintained to get the better enantioselectivity
(ee up to 97%). With homoallylic amides 143 (n = 1), chiral pyrrolidine derivatives
were obtained irrespective of the olefinic substituents, whereas, with an increase
of one more C atom (n = 2), two types of products formed. When the terminal sub-
stituents were aliphatic, pyrrolidines formed through 5-exo-trig cyclization. In the
case of Ph as terminal substituent, 6-endo-trig cyclization led to the formation of
chiral piperidine derivative. Some of the examples of the products are shown in
Figure 5.47.

They have taken this ahead for a trifluoromethylthiocarbocyclization of F–C’s
alkylation-type reaction, in 2018, with the same catalyst 146 and the same source of
SCF3 as shown in Figure 5.46. Various substituted trifluoromethylthiolated tetrahy-
dronaphthalenes were prepared with high enantioselectivities [74].
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Figure 5.45: Diaryl selenide catalyzed vicinal trifluoromethylthioamination of alkenes.

152 Baitan Chakraborty, Aniruddha Das and Umasish Jana

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



NHNs
n

catalyst 146 (20 mol%)
(PhSO2)2NSCF3

Ns
N

n

or
Ns
N

F3CS

F3CS
BF3.OEt2orNfOH

CH2Cl2/ClCH2CH2Cl
-78  oC, 12h

n = 1,2

NHTf

Se

Me

OMe
146

up to 97% ee
up to 99% yield

143 144 145
R2

R2 R2R1
R1

R1

Figure 5.46: Selenide-catalyzed enantioselective synthesis of trifluoromethylthiolated
tetrahydronaphthalenes.

Ns
NEt

F3CS

F3CS F3CS F3CS F3CS

F3CSF3CS

F3CS

F3CS

F3CS

F3CSF3CS

F3CS

F3CS

F3CS

F3CS

Ns
NHexyl Ns

N
Ph

Ns
Ni-Bu

144a, 93%
ee 89%

144b, 99%
ee 87%

144c, 89%
ee 90%

144d, 80%
ee 92%

Ns
N

144e, 94%
ee 95%

Ns
N

Ns
N

MeO

Ns
N

Cl

144f, 97%
ee 74%

144g, 85%
ee 93%

144h, 99%
ee 94%

Ns
N

Ns
NS

Ns
NPh

144i, 87%
ee 93%

144j, 83%
ee 90%

144k, 61%
ee 89%

Ns
N

145a, 48%
ee 75%

Ns
N

145b, 86%
ee 86%

Ns
N Ns

N

CH2CH2Ph

145c, 77%
ee 97%

145d, 90%
ee 94%

Ns
N

Pentyl

145e,96%
ee 71%

Figure 5.47: Substrate scope.

5 Selenium Compounds as Reagents, Catalysts, and Ligands 153

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



5.3.3 Selenium-catalyzed oxidative C–H amination reactions

Being one of the most elementary structural foundations of natural products [75], C–N
bonds are always hot targets to be achieved by synthetic chemists. Direct oxidative C–
H amination is a facile method for C–N bond formation. Among catalytic processes,
intramolecular C–H amination reactions using palladium catalysts are well known [76].
However, intermolecular reactions of this type suffer from lack of regioselectivity [77].
A metal-free selenium-catalyzed approach proved to be very successful in this regard.

5.3.3.1 Direct oxidative allylic and vinylic C–H amination

In 2013, Breder and coworkers published the first selenium-catalyzed direct C–H
amination reaction of alkenes using N-fluorobenzenesulfonimide (NFSI) as the N-
source and terminal oxidant [78]. The allylic amination of the alkenes 147 was car-
ried out with NFSI under the catalysis of diphenyl diselenide to get allylic imides
149 (Figure 5.48). As the presence of water leads to a by-product by allylic oxida-
tion, molecular sieves were used to improve the yields of 149. The presence of an
electron-withdrawing group (EWG) at the allylic position appears to be essential for
the reaction. Ester, amide, phosphonate, sulfone, cyano and keto groups as EWG,
alkyl and benzyl groups as olefinic substituent are tolerated well (yields up to
89%). The same procedure was, then, successfully applied to cyclic alkenes 148 to
get vinylic imides 150, mostly, in excellent yields (up to 95%).

Based on the experimental analysis of the reaction, it was concluded that the cata-
lytic cycle starts after a nucleophilic attack of (PhSe)2 to NFSI to form the cationic
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Figure 5.48: Formation of allylic and vinylic amine derivatives through the selenium-catalyzed
intermolecular oxidative imidation of alkenes.
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species 151 (Figure 5.49). After the cationic adduct 152 is formed by the addition of
151 to the alkene 147 or 148, elimination takes place to lead to the formation of the
product 149 or 150 [78].

5.3.3.2 Direct regioselective oxidative C–H amination of simple terminal alkenes

In spite of the above-mentioned work and the work by Zhao’s group [79], for the
terminal amination of allyl alcohols, there was no method for a regioselective direct
C–H amination of simple terminal alkenes. Very recently, Michael and coworkers
introduced a new phosphine selenide catalyst in the metal-free aza-Heck reaction of
simple terminal alkenes for a regioselective C–H amination [80]. Terminal alkenes
153 were converted to terminal E-enamides 154 by using NFSI as the terminal oxidant
and the N-source and tri(o-tolyl)phosphine selenide as the catalyst (Figure 5.50).
Very good regio- and steroselectivities were found with varieties of substituents such
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Figure 5.49: Tentative catalytic cycle for the oxidative imidation of alkenes 147 and 148.
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Figure 5.50: Regioselective metal-free Aza-Heck reactions of terminal alkenes catalyzed by
phosphine selenides.
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as alkyl, aryl, esters, ethers, silyl ethers, sulfonamides, nitriles, and so on. Moderate-
to-high yields (62–87%) were obtained along with E/Z ratios between 6:1 and 17:1.

The proposed catalytic cycle is similar to that of the diphenyl diselenide-catalyzed
reaction shown in Figure 5.49. In this work, deuterium-labeled experiments sug-
gested that E/Z ratio of product increases with Z-deuterated alkene, whereas
the E/Z ratio decreases with E-deuterated alkene as starting material. Based on
this observation, antiaddition/syn-elimination mechanism is explained in Figure
5.51 [80].

5.3.3.3 Intramolecular oxidative C–H amination in the synthesis
of pyrazoloquinazolinones

Among the latest progress in this area, an intramolecular oxidative C–H amination of
alkene, catalyzed by selenium, is noticeable. Breder’s group was the first to exploit
the carbophilicity of selenium electrophiles in the intramolecular C(sp2)-H amination
in 2015 [81]. In the next year, Zhao et al. reported a similar method for the synthesis
of oxygen- and nitrogen-containing heterocycles [82]. This year, Chen and coworkers
synthesized well-known biologically active [83] pyrazolo[5,1-b]quinazolinone deriva-
tives 156 using only 5 mol% of diphenyldislenide from the 2-aryl-3-(arylamino)quina-
zolinones 155 (Figure 5.52) [84]. Here, NFSI acts only as the oxidizing agent. The
reaction goes well with different substituents R1, R2, and R3 at the three aryl rings,
except with highly electron-deficient difluoro and dichloro groups as R3 (Figure
5.52). Yield was highly satisfactory even at the gram scale (78%).
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Figure 5.51: Proposed catalytic cycle.
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5.3.4 Selenium-catalyzed oxidative lactonization reactions

Catalytic use of selenium reagents in cyclization processes dates back to 2007, when
Wirth’s group reported the cyclization of 3-butenoic acids into their corresponding
butenolides using selenium electrophiles as catalyst [85]. This work opened a new
route for cyclization reactions, especially for the lactonization of unsaturated carbox-
ylic acids.

5.3.4.1 Regioselective cyclization of γ,δ- unsaturated carboxylic acids

Wirth and coworkers, subsequently, used the same strategy for the cyclization of stil-
bene-2-carboxylic acids to isocoumarin derivatives [86]. A year later, in 2011, they re-
ported the more challenging aliphatic analogue. Cyclization of γ,δ-pentenoic acids
157 to the corresponding 3,6-dihydro-2H-pyran-2-ones 158 was catalyzed by diphenyl
diselenide with [bis(trifluoroacetoxy)iodo]benzene as oxidant (Figure 5.53).
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Figure 5.52: Selenium-catalyzed oxidative C-H amination of 2-aryl-3-(arylamino)quinazolinones 155.
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Figure 5.53: Regioselective cyclization of γ,δ-pentenoic acids 157 catalyzed by diphenyl diselenide.
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The yields were improved when performed in ultrasonic bath. The products were
formed regioselectively only in 30 min, with yields varying from 51% to 87% [87].

They have proposed the mechanism, shown in Figure 5.54, on the basis of their
earlier proof by NMR that the reaction is initiated by the formation of phenylsele-
nenyl trifluoroacetate 159 that reacts with the substrate 157 to form the selenolac-
tone 160, which is again activated by [bis(trifluoroacetoxy)iodo]benzene to the
intermediate 161. Finally, the elimination of the selenylated hypervalent iodine
compound, which goes back to the catalytic cycle, leads to the product 158.

5.3.4.2 Enantioselective oxidative cyclization of β,γ-unsaturated carboxylic acids

Although Wirth’s group employed their lactonization strategy in enantioselective cyc-
lizations using enantiomeriacally pure diselenides, the enantioselectivity was not
very high [85, 88]. Much later, in 2016, Maruoka and coworkers established a highly
enantioselective lactonization process. Success of this effort relied on the develop-
ment of an indanol-based chiral electrophilic selenium catalyst 165, synthesis of
which is shown in Figure 5.55. The synthesis involves a crucial optical resolution of
rac-162 using phenylalanine derivative 163 to get the vital enantiopure indanol (S)-
162. About 10 mol % of the catalyst 165 enantioselectively converted β,γ-unsaturated
butenoic acids 166 to the corresponding butenolides 167 with 1.1 equiv. of NFSI

(PhSe)2
PhI(OCOCF3)2

I
SePh

Ph
OCOCF3 PhI

PhSe+ CF3COO-
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R2

O

OH
157

O O
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PhSe
HR1

O OR2
R1
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PhSe

O OR2
R1

PhSe
HI

PhI(OCOCF3)2

PhF3COCO
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O O
R2

R1

158
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Figure 5.54: Proposed catalytic cycle.
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acting as oxidizing agent and CaCO3 or TMSOCOCF3 as additive (Figure 5.56).
Varieties of aliphatic and aromatic substituents containing terminal alkenes were
shown to produce products in good-to-excellent yields, with ee up to 97% [89].

5.3.4.3 Oxidative C(sp3)-H acyloxylation of o-allylic benzoic acids

In 2015, Breder’s group reported an intramolecular oxidative cyclization of carbox-
ylic acid with an allylic sp3 carbon atom. o-Allylic benzoic acids 168 were cyclized
to the isobenzofuranones 169 using 10 mol% of diphenyl diselenide (Figure 5.57).

MeO
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DCC (1.1 equiv.)

DMAP (10 mol%)
DCM, rt, 4h

MeO
O

O
Bn

NHBoc

s

s

KOH(6 equiv)
MeOH

60 oC, 4 h

MeO
OH i) tBuLi (4 equiv.)

Et2O, 0 oC, 4 h
ii) PMBSeCN (1.1 equiv.)

THF, 0  oC, 15min

MeO
OHSePMB

TBSCl (3 equiv.)
imidazole (4 equiv.)

DMF, rt, 8 h

MeO
OTBSSePMB

rac-162 (S,S)-163
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Figure 5.55: Catalyst synthesis.
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Figure 5.56: Selenium-catalyzed oxidative cyclization of β,γ-unsaturated carboxylic acid.

5 Selenium Compounds as Reagents, Catalysts, and Ligands 159

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



NFSI acts as the terminal oxidant in this case too. The reaction seems to be a little
sluggish with EWGs at the aromatic ring whereas unwanted addition reaction takes
place with alkyl groups at the olefinic double bond [90].

5.3.5 Selenium-catalyzed oxidative cyclization in the total
synthesis of (+)-Greek tobacco lactone

A new and efficient approach for the total synthesis of a rarely found C11-homoter-
penoid (+)-Greek tobacco lactone 171 [91] was developed in 2017, where the final
step involved a selenium-catalyzed oxidative cyclization of chiral hydroxyalkene
170 (Figure 5.58) [92]. Christmann and coworkers used a (PhSe)2-catalyzed photore-
dox protocol where air is the terminal oxidant and 2,4,6-tri(4-methoxyphenyl)pyry-
lium tetrafuoroborate (5 mol %) is the photocatalyst. Compared to the vanadium- or
palladium-catalyzed reaction, this selenium-catalyzed reaction gave better result,
with the yield being 83% and the diastereomeric ratio of 84:16.
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R1

R2
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23 oC, 18-24 h
O

O

R4168 169
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R1 = H, OMe
R2 = H, Me, OMe, PivNH, CF3
R3 = H, CF3
R4 = Et, Ph, 4-MeC6H4, 4-FC6H4,

4-CF3C6H4, 1-Nap, 2-thienyl

(PhSe)2 (10 mol %)

Figure 5.57: Selenium-catalyzed C(sp3)-H acyloxylation.
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Figure 5.58: Selenium-catalyzed oxidative cyclization.
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5.3.6 Selenium-catalyzed direct oxidation reactions

One of the earliest uses of selenium in organic synthesis was its potential behavior
as an oxidizing agent. Initially, Se at its elemental form was used in many dehydro-
genation reactions [93]. The next name that comes in mind in this regard is sele-
nium dioxide. Those early reactions are well documented in some of the reviews
[94]. Oxidation of alcohols by Barton et al. [95], allylic oxidation of alkenes using
catalytic SeO2 or seleninic acids by Sharpless [96] and by Barton [97], and epoxida-
tion of alkenes by Sharpless [98] are some of the earliest oxidation reactions catalyzed
by selenium. There has been a significant development in organoselenium catalyzed
oxidation reactions in the first decade of this century [99]. In the last decade, signifi-
cant works have been contributed by many organic chemists. Representative reactions
are reported in this section.

5.3.6.1 Oxidation of alkenes to carbonyl compounds by C=C bond cleavage

Oxidative cleavage of C=C bonds usually requires metal catalysts or strong oxidiz-
ing agents [100]. Yu and coworkers have presented a new method for this cleavage
by H2O2 using a relatively green selenium catalysis protocol [101]. As shown in
Figure 5.59, di- or trisubstituted alkenes 172 were oxidized to the carbonyls 173
using 5 mol % of dialkyl diselenides as catalyst. Notably, less used catalysts such
as (PhCH2Se)2, ( n-C4H9Se)2, and (c-C6H11Se)2 were proved to be more efficient in
this reaction. Up to 74% yields were obtained with geminal disubstituted alkenes
whereas the yield was 30% when two substituents were Et and Me. Average yields
were lower in case of trisubstituted alkenes. The reaction did not take place at all
with four phenyl groups as substituents.

5.3.6.2 Catalytic oxidation of sulfides to sulfoxides using cyclic seleninate esters

In 2012, Back and coworkers reported a method for the oxidation of sulfides to
sulfoxides by hydrogen peroxide using cyclic seleninate esters 176 instead of se-
leninic acids (Figure 5.60) [102]. The oxidation was clean in a mixed solvent of

R2

R1 R3

H2O2
(RSe)2 (5 mol%)

EtOH, 80–120 ºC
O

R1

R2

R = alkyl
R1, R2, R3 = H, alkyl or aryl

172 173

Figure 5.59: Oxidation of alkenes 172 into carbonyl compounds 173 by organoselenium-catalyzed
oxidative C=C bond cleavage.
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DCM/MeOH (9:1) at room temperature, with TFA and MgSO4 as additives. Both aryl
and alkyl groups are tolerated well for the formation of sulfoxides in high yields.

According to the proposed mechanism (Figure 5.61), the cyclic seleninate ester
gets protonated by TFA and, subsequently, it reacts with hydrogen peroxide to form
the required peroxyselenurane 177 or peroxyseleninate 178. These Se(IV) intermedi-
ates 177 or 178 are presumed to be the active oxygen transfer species for the cata-
lytic oxidation of sulfides [102].

5.3.6.3 Selective C(sp3)-H oxidation of benzylpyridines with molecular oxygen

Although there are metal-catalyzed C(sp3)-H oxidations of benzylpyridines with mo-
lecular oxygen [103], a metal-free alternative is always desirable. Recently, Law and
coworkers reported a selenium-catalyzed approach for the selective C(sp3)-H
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Figure 5.60: Preparation of sulfoxides.
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Figure 5.61: A plausible mechanism for the sulfide oxidation.
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oxidation of benzylpyridines 179 (Figure 5.62) with molecular oxygen as the oxi-
dant. About 5 mol% of PhSeBr as catalyst and 1 equiv. of AcOH was used to convert
179 into the corresponding benzoylpyridines 180 in good-to-excellent yields. Both
EDGs and EWGs at the aryl and heteroaryl ring underwent smooth reactions. Only,
p-CHO at the aryl ring gave a yield of 28% [104].

Based on the analytical experiments, they have proposed a radical mechanism (Figure
5.63). Protonated benzylpyridine 181 reacts with PhSe radical, which comes from
PhSeBr, to form the key radical intermediate 182. Then, 182 interacts with molecular
oxygen to form 183, which on protonation becomes the hydroperoxidate intermediate
184. This, on elimination of water and HOAc, leads to the formation of the product
180. The final step might also go through the oxidation of the alcohol 185 [104].

N
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ArR

OPhSeBr (5 mol%)
AcOH (1 equiv.)

DMSO/H2O (1:1)
100 oC, 22 h

R = alky
Ar = aryl, heteroaryl

yields up to 97%

179 180

Figure 5.62: Selenium-catalyzed selective C(sp3)-H oxidation of benzylpyridines with molecular
oxygen.

N N
HOAc

O

N
H-OAc O OHH-OAc

H-OAc H-OAc
O O

PhSeBr

PhSe

PhSeH

-H

O2

H-OAc- H2O
OHHOAc

O2

R

R R

R

R

R
R

R'

R'

R'

R'

R'

R'
R'

179
180

181

182 183

184

185N

N

N

N

Figure 5.63: A proposed mechanism.
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5.3.6.4 Selenide ion catalyzed homo- and crossed-Tishchenko reaction

Selenide ions were presented as a better alternative to the metals and thiolate
anions for a practically useful Tishchenko reaction. Connon and coworkers, in 2012,
established a homo- and crossed-Tishchenko reaction with improved catalyst effi-
ciency and broader substrate scope [105]. Benzaldehydes 186 were converted to the
corresponding benzyl esters 187 using benzyl selenide anion (Figure 5.64) gener-
ated by the the addition of commercially available dibutyl magnesium to dibenzyl
diselenide in THF at room temperature. Most of the substrates including the ali-
phatic cyclohexyl aldehyde underwent reactions efficiently. The simple benzyl sele-
nide ions were not effective in case of crossed-Tishchenko reactions involving the
benzaldehydes 188 and α,α,α-trifluoromethylacetophenones 189.M-CF3-substituted
diphenyl diselenide acted as an efficient catalyst for this conversion to the product
190. It has been proposed that this modification is credited to the formation of
highly electrophilic acylating agent 191. In addition, the heteroaryl aldehydes were
tolerated in case of both homo- and crossed Tishchenko reactions [105].

5.3.6.5 Baeyer–Villiger oxidation of α,β-unsaturated ketones

The combination of stoichiometric amount of hydrogen peroxide with catalytic orga-
noselenium reagents has been applied successfully in the Baeyer–Villiger oxidation
reactions. In 2014, Yu and coworkers developed a greener protocol compared to
the earlier methods [106] for Baeyer–Villiger oxidation of α,β-unsaturated ketones.
Α,β-Unsaturated ketones 192 were oxidized by H2O2 to the vinylic esters 193 using
5 mol % of dibenzyl diselenide in acetonitrile at room temperature (Figure 5.65). Both
alkyl and aryl groups as R2 and aryl and alkenyl groups as R1 were tolerated well.
However, EWG such as a keto substituent was not suitable for this reaction [107].
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Figure 5.64: Selenide ions as catalysts for homo- and crossed-Tishchenko reactions.
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As shown in Figure 5.66, selective nucleophilic O–H addition of the organosele-
ninoperoxoic acid 194, generated in situ by the oxidation of the diselenide catalyst
by H2O2, to the C=O of the ketone 192 is probably the initiation of the reaction. This
intermediate 195 would undergo the alkenyl migration in a usual fashion of
Baeyer–Villiger oxidation to produce the vinyl ester 193 [107].

5.3.6.6 Dehydration of aldoximes for the synthesis of nitriles

Encouraged by the observation from a failed attempt to oxidize benzaldoximes 197
to nitrobenzenes by organoselenium catalysis, Yu et al. explored a different path of
oxidation of the aldoximes that leads to benzonitriles 198 by dehydration of 197
(Figure 5.67). The diselenide catalyst (3-FC6H4Se)2 as well the H2O2 were used in a
catalytic load of just 4 mol%. The yields were moderate to very good in the case of
aromatic and alkenylic aldoximes. But only long chain alkyl substrates underwent the
reaction successfully. The catalyst showed its activity up to four to six cycles [108].

According to the proposed mechanism (shown in Figure 5.68), diselenide
(ArSe)2 gets oxidized to ArSeOH (199), which was probably converted to the more
effective seleninic anhydride 200. This might form a mixed anhydride 201 with
the aldoxime 197. This, again, could rearrange to the selenoxide 202. Finally, this
might undergo syn-elimination of 199 to give the product 198 [108].
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192 193

Figure 5.65: Organoselenium-catalyzed Baeyer–Villiger oxidation for vinyl ester 193 synthesis.
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Figure 5.66: Possible mechanism for the organoselenium-catalyzed Baeyer–Villiger oxidation.
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5.3.7 Allylic C–O bond formation by oxidative coupling reaction

5.3.7.1 Oxidative allylic esterification by cooperative catalysis

Alkenes were oxidized to β-selenenylated ethers and esters using stoichiometric
quantities of diphenyl diselenide with 1,4-dicyanonaphthalene as photosensitizers
by Pandey et al. [109]. This concept of activation of diselenides with photosensitizer
was used by Breder and his coworkers in 2016. Catalytic amounts of both diphenyl
diselenide and 2,4,6-tris(4-methoxyphenyl)pyrylium tetrafuoroborate (206) were
combined to carry out the allylic esterification of the alkenes 203 with carboxylic
acids 204 to form the allyl esters 205 (Figure 5.69). Air played the role of the oxi-
dant, whereas the irradiation at 465 nm in acetonitrile at room temperature facili-
tated photosensitization. The reaction provided good-to-excellent yields with high
regioselectivity for both functionalized as well as nonfunctionalized alkenes. Both
alkyl and aryl groups at the olefin terminus increased the substrate scope. No aryl
variant is reported in the carboxylic acids [110].
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Figure 5.68: Possible mechanism for organoselenium catalyzed aldoxime dehydration reaction.
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Figure 5.67: Organoselenium-catalyzed aldoxime dehydration reaction for organonitrile synthesis.
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5.3.7.2 Allylic phosphatation of alkenes by cooperative catalysis

Driven by the above-mentioned method, Breder and coworkers explored the coop-
erative catalysis protocol for the aerobic phosphatation of simple alkenes [111].
This dual photoredox/ selenium π-acid catalysis proved to be highly efficient for
the transformation of the alkenes 207 to the allylic phosphates 209 using simple
phosphoric acids 208 as phosphate source and air or molecular oxygen as termi-
nal oxidant (Figure 5.70). The same set of catalysts, diphenyl diselenide and the
photocatalyst 206, was used in this case also. For an improved yield, Na2HPO4

was used as base in DCE with irradiation at 465 nm. Simple aliphatic and alicyclic
hydrogen phosphates were successfully used in the phosphatation with moder-
ate-to-high yields (up to 89%). No diastereoselectivity was observed with chiral
enantiopure phosphates. When performed with different alkenes, both cyclic and
acyclic substrates showed moderate-to-good results.
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Figure 5.69: Selenium-catalyzed oxidative allylic esterification of alkenes 203 using air as the sole
oxidant.
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Figure 5.70: Photocatalytic aerobic phosphatation of alkenes.
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5.4 Selenium as ligands in organic reactions

As discussed in the previous section, the catalytic activity of organoselenium com-
pounds in metal-free processes has been highlighted. Although metal-free processes
are highly desirable for moving toward a green synthetic world, the synthetic advan-
tages of certain metal-catalyzed processes cannot be ignored [112]. To extract the
maximum activity from minimum amount of metal, judicious use of ligands is very
important. In this context, the demand of selenium is increasing as many selenium
compounds having suitable donor sites have been proven as effective ligands [113].
Uemura and coworkers were the first to report the use of selenium as ligand in a rho-
dium-catalyzed asymmetric hydrosilylation of ketones, in 1994 [114]. Since then, the
use of achiral and chiral ligands in organic transformations has gained momentum
[4, 115]. Some of the recent developments in the applications of selenium ligands in
elementary organic reactions are presented below.

5.4.1 Pd-catalyzed asymmetric allylic alkylation

Chiral organoselenium ligands showed their utility in palladium-catalyzed asym-
metric allylic alkylation reactions in the past [116]. Andrade et al. have prepared
a new set of chiral selenium–amine ligands 210 and 211 and used them for asym-
metric allylic alkylation processes [117]. To synthesize the ligands 210 and 211, they
started with the stereoselective amination of organoselenium acetophenones
(Figure 5.71). Then, the kinetic resolution of racemic organoselenium amines cata-
lyzed by transaminases provided the chiral amine in enantiopure form, which was
then easily converted to the desired ligands 210 and 211 by simple reactions.

These ligands 210 and 211 were then used in the allylic alkylation of allylic ace-
tates 212 with various malonate nucleophiles 213 to get the alkylated products 214
(Figure 5.72). About 10 mol% of the ligand and 5 mol% of the catalyst [Pd(η3-C3H5)
Cl]2 were used under basic conditions. Although the substrate scopes shown are
very limited, high yield of 94% was achieved with Me as R1 and H as R2, with an
enantiomeric excess of 89%. The highest enantioselectivity was obtained with di-
ethyl phenylmalonate, but the yields were very low (yield 18% and ee > 99%) [117].

5.4.2 Asymmetric Darzens reaction catalyzed
by organoselenium–lithium complex

Due to their importance in organic synthesis as useful chiral intermediates [118], enan-
tiopure oxiranes have featured as useful synthetic targets [119]. In 2010, Watanabe
et al. prescribed a new kind of asymmetric Darzens reaction using aorganoselenide–
lithium hydroxide complex for the synthesis of enantiopure trans-oxiranes [120].
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As shown in Figure 5.73, catalytic amounts of the C2-symmetric chiral selenide 218
was promoted by 4 equiv. of LiOH to carry out the reaction between phenacyl bro-
mide 215 and aldehydes 216 for the formation of the oxiranes 217. It was observed
that the selection of solvent was very crucial to get better enantioselectivity. In
addition, aliphatic aldehydes failed to provide any enantioselectivity. In case of
aromatic aldehydes, yields were better for electron-deficient substrates.
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Figure 5.71: Synthesis of new chiral selenium-amine ligands for Pd-catalysis.
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Figure 5.72: Evaluation of novel chiral organoselenium compounds 210, 211 as ligands in the
palladium-catalyzed asymmetric allylic alkylation.
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5.4.3 Enantioselective cross-coupling reaction of arylboronic
acids and aryl aldehydes

Based on the previous methods [121], Braga’s group developed a new ephedrine-
based diselenide ligand 220 for the organozinc reagent to perform the arylation
of aryl aldehydes 222 using arylboronic acids 221 (Figure 5.74 and 5.75). The chiral
diselenide 220 was easily prepared from the chiral amino alcohol 219 by two ele-
mentary reactions (Figure 5.73) in an affordable yield of 53%. About 2.5 mol% of
ligand 220 provided the best result for the cross-coupling reaction.

The substrate scopes with different arylboronic acids 221 and aryl aldehydes 222
suggest the generality of the reaction with good to excellent yields and enantiose-
lectivities. In the absence of the arylboronic acid, asymmetric addition of diethyl
zinc takes place [122].

5.4.4 Palladium-catalyzed Suzuki–Miyaura coupling using
selenium ligands

Among all the palladium-catalyzed cross-coupling reactions to form C–C bonds,
Suzuki–Miyaura coupling is one of the widely used protocols. The most widely used
ligands for this purpose are the phosphorous ligands. But the phosphorous ligands
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Figure 5.73: Asymmetric Darzens reaction with aldehydes using chiral chalcogenides.

Me2N Me2N Me2N
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OH

Ph
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Et3N, MsCl
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2219 220

53%

Figure 5.74: Synthesis of Chiral selenium ligand 220.
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are not that easy to handle due to their sensitivity toward air and moisture [123].
Singh and coworkers showed that these problems can be overcome by replacing
phosphorous ligands by suitable chalcogen ligands that are quite stable in air and
moisture. In their consistent effort in the synthesis and application of new selenium
ligands, they developed two organoselenium ligands to form the palladium com-
plexes 224 [124] and 225 [125], which performed well in the Suzuki–Miyaura coupling
of aryl bromides 226 with phenylboronic acid to prepare the biaryls 227 (Figure 5.76).
The substrate scope was very limited with the complex 225 where both the donor

atoms are Se. A broader substrate scope was established with complex 224 where
one N atom acts as a donor along with the Se atom being the other. Nanoparticles
composed of palladium and selenium and protected with the ligand or its fragment

Ar1 = C6H5, 2-MeC6H4, 4-MeC6H4, 2-OMeC6H4,

Ar2 = 2-MeC6H4, 4-MeC6H4, 2-ClC6H4, 4-ClC6H4,
4-OMeC6H4, 2-CIC6H4, 4-CIC6H4

2-OMeC6H4, 4-OMeC6H4, C6H5

yields 50–97%
ee upto 97%

Ar2

OH
Et2Zn

2. ligand 220 (10 mol%)

3. Ar2CHO 222

1. Toluene, 60 °C, 30 min

221
Ar1B(OH)2

223
Ar1

Ph

Se)2
220

Me2N

Figure 5.75: Boronic acid addition to aldehydes catalyzed by 220.
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R K2CO3 (2 equiv.)
DMF/ water, 90 oC

complex 224 (0.01–0.1 mol%)
or

complex 225 (1 mol%)

Se Pd
N N
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Cl
Cl

224
N

N Se

Se
Pd

Ph

Ph

Cl
Cl

225

R = CHO, CN, NO2, COCH3,
COOH, H, CH3, OMe

yield upto 93%

226 227

Figure 5.76: Suzuki Miyaura coupling reaction catalyzed by complex 224 or 225.
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were found to be formed during the reaction. They also performed the coupling reac-
tion with isolated nanoparticles, which gave very good results [124, 125].

5.4.5 Transition metal-catalyzed base free transfer
hydrogenation of carbonyls and N-alkylation of anilines

In continuation of their work with organoselenium ligands, Singh and coworkers
standardized a protocol for efficient base free transfer hydrogenation of carbonyl
compounds and N-alkylation of anilines with various benzyl alcohols [126, 127].
Initially in 2018, they have synthesized the vital bidentate organoselenium ligand
229 by the Schiff base condensation of anthracene-9-carbaldehyde 228 (Figure 5.76).
Thereafter, this ligand 229 delivered all the positive results for the above-mentioned
two class of reactions. At first, Ir(III) complexes of the ligand 229, 232a, and 232b
were synthesized as shown in Figure 5.77. These complexes very efficiently catalyzed
the transfer hydrogenation of carbonyls 233 to 234 and the N-alkylation of anilines
235 with alcohols 236 to the secondary amines 237 (Figure 5.78) [126]. Next year,
the same protocol was applied in case of Ru(II)- and Rh(III)-catalyzed reactions.
While the rhodium complexes 231a and 231b carried out both the reactions
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Figure 5.77: Synthesis of ligand 230–232.
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efficiently (Figure 5.78), the ruthenium complex 230 could execute only the base
free N-alkylation reaction [127].

5.4.6 Palladium-catalyzed aminocarbonylation using
organoselenium ligands

Palladium-catalyzed CO insertion is a well-known technique for aminocarbonylation
of aryl halides [128]. As stated earlier, there is always a demand for ligands other than
phosphines for the palladium-catalyzed processes. Bhanage and coworkers contrib-
uted to this objective by performing a palladium-catalyzed aminocarbonylation reac-
tion of aryl iodides using organoselenium ligand [129]. Aminocarbonylation of the
aryl iodides 238 with primary amines 239 was carried out using the selenium-ligated
palladium complex 241 under CO atmosphere (Figure 5.79). Although this complex
contained PPh3 ligands as well, the presence of the 4-pyridylselenolate ligand might
stabilize the catalyst to a greater extent. Electronic nature of the aryl iodide and

IR1 R1

R2
R2

N
H

OCO
catalyst 241 (1 mol %)

Et3N, DMF
100 oC, 8h

R 1= 4-OMe, 4-Me, 2-Me, 4-F, 4-Cl,
4-NO2, fused phenyl and
4-pyridyl iodide

R 2= 3-& 4-MeC6H4, 3-& 4-OMeC6H4,
4-NO2C6H4,4-CNC6H4,PhCH2,
cyclopentyl

yields: 70–90%

Pd SeCl
PPh3

PPh3
N

241238 239 240

NH2

Figure 5.79: Palladium-catalyzed aminocarbonylation reaction using organoselenium ligand 241.
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Catalyst 230 or 231 (0.5 mol%)
or

catalyst 232 (0.3 mol%)
touene, 100 oC, N2atm

R = aryl, R' = aryl

233 234

235 236 237

Figure 5.78: Transfer hydrogenation of carbonyl compounds catalyzed with 231–232 as well as
N-Alkylation of aromatic benzyl alcohol and aniline catalyzed with 230–232.
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amine does not affect the reaction significantly. Good-to-excellent yields (up to 90%)
were obtained with merely 1 mol% of the catalyst [129].

5.4.7 Ruthenium-catalyzed oxidation of alcohols

Selenium-ligated transition metal complexes not only catalyze reduction processes
via transfer hydrogenation but also have potential in catalyzing oxidation processes.
It has been demonstrated by Singh’s group that primary and secondary alcohols can
be oxidized to corresponding carbonyl compounds in an organoselenium-ligated ru-
thenium-catalyzed reaction [130]. Primary and secondary alcohols 242 were oxidized
to the corresponding aldehydes and ketones 243 with N-methylmorpholine N-oxide
under the catalysis of the ruthenium(II) complex 244 (Figure 5.80). Only 0.01 mol% of
catalyst load was sufficient for the transformation. Yields were very good with both
electron-rich and electron-deficient substrates. The advantage of this reaction is that
no further oxidation of the product takes place. In addition, the complex 244 can be
synthesized from the corresponding triazole-based ligands in a single easy step [130].

5.4.8 Selenium containing pincer ligands in palladium-catalyzed
copper-free Sonogashira reaction

5.4.8.1 Unsymmetrical (O−, N, Se) pincer ligands in palladium-catalyzed
Sonogashira reaction

There are many symmetrical pincer ligands known to be used in Sonogashira cou-
pling reaction [131], where CuI is required as a cocatalyst. Very few unsymmetrical
pincer ligands containing (P, N, F) and (N, N, C) were reported in palladium-catalyzed

R'R'R R

OH O

243242

NMR yields 85–97%R, R' = alkyl, aryl, H

NMO, DCM, 60 °C,3 h 

catalyst 244 (0.01 mol%)

244

Se
.PF6

N
NNRu

Cl
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Figure 5.80: Oxidation of alcohol with NMO.
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Sonogashira reactions [132]. Singh et al. developed a unique oxine-based unsymmetri-
cal (O−, N, Se) pincer ligand 245 from a simple quinoline derivative (shown in Figure
5.81) [133]. After complexation of 245 with palladium, complex 246 catalyzed a copper
and amine-free Sonogashira reaction with a very low catalyst load. Various aryl hal-
ides 247 coupled with terminal alkynes 248 under the catalysis of 246 to give the
Sonogashira products 249 mostly with very good yields (Figure 5.82). Aryl chlorides
are not much reactive and the reaction was even poorer with silylacetylene.

5.4.8.2 Polystyrene-supported (Se, C, Se) pincer ligands in palladium-catalyzed
Sonogashira reaction

Although palladium-catalyzed C–C cross-coupling reaction was achieved by the
symmetrical (SeCSe) pincer ligand developed in 2004 [134], this type of reaction is
based on homogeneous catalysis. Homogeneous catalysis suffers from the difficulty

N
OH

N
OAc

Ac2O
reflux, 10 h N

OAc Br

NBS, hν
AIBN,CCl4

10 h

N
OH Se

PhSeNa, EtOH
8 h, 70 oC

N
O SePd

Cl

Na2PdCl4
Acetone-water

5 h, rt
245246

Figure 5.81: Synthesis of 245 and its Pd(II) complex 246.

R

X
R' R' R

catalyst 246 (0.5–2 mol%)
K2CO3, DMF, 90 oC

247 248 249

R = H, CH3, CHO, CN, COCH3,
NO2, OMe

R ' = Ph, 4-CF3C6H4, 3-thiophenyl,
Si(iPr)3

X = Br, I, Cl

yields: 14–95 %

Figure 5.82: Sonogashira coupling of various alkynes catalyzed with 246.
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in separation of the products from the catalyst and lack of practicality on the reuse
of catalyst. Inspired by the previous method of heterogeneous catalysis using PEG-
supported selenium pincer ligand [135], Movassagh and coworkers developed a
polystyrene supported ligand 250 from easily available 5-hydroxyisophthalic acid
by some elementary organic reactions (Figure 5.83). This symmetrical pincer 250
formed the complex 251 with PdCl2 to be used in the copper-free Sonogashira reac-
tion. TBAF was used as the base in the coupling reaction of the aryl halides 252
with the alkynes 253 (Figure 5.84). The internal alkynes 254 were obtained mostly
in good to excellent yields (up to 95%). Moreover, this protocol was successfully
applied in the Sonogashira coupling of vinyl bromides to get the desired products
stereoselectively [136].
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Figure 5.83: Synthetic pathway of PS-[PdCl(SeCSe)] 251.
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Figure 5.84: Sonogashira cross-coupling reaction of aryl halides with terminal alkynes catalyzed
with 251.
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5.4.9 Palladium-catalyzed regioselective arylation of imidazoles
using selenium containing NHC ligands

In 2017, Singh and coworkers showed that Pd(II) complex of selenated NHC ligands
can catalyze the Heck reaction to form C–C bonds [137]. One year later, the group of
Singh developed two palladium complexes of NHC amidate from selenated acet-
amide-functionalized 1H‑benzimidazolium salts and applied them in a regioselec-
tive arylation of imidazoles [138]. About 0.5–1 mol% of catalysts 258a or 258b were
sufficient for the arylation of imidazoles 255 with aryl halides 256 in the presence of
pivalates in polar N,N-dimethylacetamide at high temperature (Figure 5.85). The C-5
arylated imidazoles 257 were obtained with good-to-excellent regioselectivity for
both aryl and heteroaryl halides.

5.5 Conclusions

In this chapter, we have brought together the significant developments in the ver-
satile use of organoselenium compounds over the last decade. Various types of
organoselenium reagents have been discussed in detail in the first section. These
reagents give access to a plethora of selenium compounds, for example, sele-
nides, selenophenes, other selenocycles, thiaselenocycles, selenazoles, and so
on. Then, we have described the various synthetically important organic transfor-
mation facilitated by variety of achiral and chiral organoselenium catalysts. Their
catalytic activity spans from the primitive oxidation reactions to the contempo-
rary fields of asymmetric synthesis and C–H functionalization. In the last part,
we have discussed the significant participation of selenium ligands in metal-catalyzed
organic transformations. All these applications suggest that selenium may have
more contributions to make in the field of organic chemistry in the coming days.

N

N
ArXR

N

N
R

Ar

K2CO3, PivOH
DMA, 110 oC255

256
257

N

N
Pd

N

O

Cl
Se

R1

258a: R1= Me
258b: R1= CH2Ph

Catalyst 258a or 258b
(0.5–1.0 mol%)

Ar = aryl, heteroaryl
R = H, Me
X = Br, Cl

yields up to 97%

Figure 5.85: Direct Arylation of 1-Methyl-1H-imidazole 255 with Aryl Halides 256.
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6.1 Introduction

Considering that solvents are responsible for up to 90% of mass utilization in the phar-
maceutical and fine chemical industries [1], the use of nonvolatile and renewable sol-
vents is a hot topic for a greener and sustainable organic synthesis [2–19]. To reduce the
impact of chemical processes on the environment, another prevailing trend is the devel-
opment of efficient reaction conditions by using alternative sources of energy such as
microwave irradiation, sonochemistry, mechanochemistry, and electrochemistry [20].

In the last decade, these concepts in modern chemistry have been widely explored
for the synthesis of organochalcogen compounds [21, 22]. The synthetic applicability
and the biological activities of organochalcogen compounds, mainly those containing
selenium atoms, are well documented in several review articles [23–35] and books [36–
43]. Besides, aspects regarding the application of organoselenium compounds as re-
agents and catalysts with a focus on the development of green protocols have been dis-
cussed in three chapters of this book [44–46]. In this chapter, a comprehensive and
updated review on recent green alternative methods available for the synthesis of orga-
noselenium compounds is presented and discussed. We focus on the use of safe sol-
vents, such as water, polyethylene glycol, glycerol, ionic liquids (ILs) or solvent-free
conditions, as well as alternative sources of energy to promote the reactions.

Considering the large number of synthetic methodologies described, for a better
discussion this chapter was divided into 14 sections, according to the chemical
class of the synthesized organoselenium compounds: (1) diorganyl diselenides;
(2) selenoethers; (3) β-seleno amines; (4) β-oxy selenides; (5) seleno ketones; (6)
selenoesters; (7) vinyl selenides; (8) bis-organoselanyl alkenes; (9) selenoalkynes;
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(10) seleno-functionalized heterocycles; (11) selenium-containing heterocycles;
(12) selenoxides and selenones; (13) organophosphorus selenides; and (14)
diselenocarbamates.

6.2 Diorganyl diselenides

Diorganyl diselenides have attracted special interest due to the large number of chemi-
cal and biological applications of these compounds. They act as possible intermediates
in some biologically important process, such as the catalytic activity of glutathione per-
oxidase, a selenium-containing enzyme (Figure 6.1) [27, 47]. From a synthetic point of
view, the ease of reduction of the Se–Se bond in diselenides by homo- or heterolytic
cleavage and the high reactivity of the generated species (radical, electrophile, and nu-
cleophile) are reasons for a wide use of diselenides to introduce the selenium moiety in
organic compounds or to catalyze organic transformations [43, 44, 48, 49]. In general,
dichalcogenides are relatively more stable in organic reactions such as oxidation, acyl-
ation, and alkylation, compared to the corresponding free species [50]. Besides these,
environmental and safety aspects were responsible to encourage the development of
various methods for the preparation of dichalcogenides.

Despite the various traditional approaches for the synthesis of diselenides, Hu et al.
[51] described water as a solvent in the alkylation of metal diselenides. By this
method, a variety of dialkyl and dialkenyl diselenides 1 were obtained in good
yields and short reaction times. First, hydrazine hydrate was used as a reducing
agent to generate the diselenide dianion from elemental selenium in basic solution.
Then, alkyl halides 2 and tetrabutyl ammonium bromide (TBAB) were added to the
reaction flask under nitrogen atmosphere. Further, the authors reported that the
phase-transfer catalyst TBAB was essential in this procedure, since no reaction oc-
curred in its absence (Scheme 6.1).

Se

Se

O

HO
Se

Se
HO

O

Se

Se
Se

N
N

Diphenyl diselenide

2, 2’ -Dipyridyl diselenide Dicholesteroyl diselenide

Di(ethan-1-amine)phenyl
diselenide

Se H2N

H2N

Figure 6.1: Some examples of diselenides with antioxidant activity.
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A new methodology to prepare symmetrical disulfides 3 and diselenides 1 was pro-
posed by Li et al. [52]. This procedure involves a copper-catalyzed coupling reaction in
water between aryl halides 2 and elemental sulfur or selenium. As described earlier,
the reaction was inefficient without the addition of phase transfer agent [(nBu)4NF].
Generally, aryl iodides gave slightly higher yields than their bromo analogs; however,
this protocol allowed the preparation of the corresponding disulfides 3 and diselenides
1 in good to excellent yields (76–96%) after 24 h at 100 °C (Scheme 6.2).

Recently, another method to synthesize dialkyl dichalcogenides (S, Se) was de-
scribed in aqueous media under catalyst-free conditions [53]. This one-pot and
efficient procedure transformed benzylic, allylic, and primary halides 2 and tosy-
lates 4 with elemental sulfur and selenium into organochalcogen compounds.
Dialkyl dichalcogenides (Se 1, S 3) were obtained as the only products in good yields

R = C6H5CH2, C6H5, C3H7, C4H9, C6H13, allyl; X = Cl, Br, I

RX 2, TBAB
N2, H2O, 70 °C

3–120 min
6 examples

4 Se + 4 NaOH + N2H4         [Na2Se2] Se
Se

1
R

Selected products

Se
Se

Se
Se

Se
Se

1a  94% 1b  90% 1c  87%

76–94%

R

Scheme 6.1: Synthesis of dialkyl and dialkenyl diselenides 1 [51].

X = I, Br; R = aryl, heteroaryl, naphthyl

RX
2

S0, 1, 10-phenanthroline,
(nBu)4NF, CuCl2, CsCO3

Se0, 1, 10-phenanthroline,
(nBu)4NF, CuCl2, CsCO3

100 °C, 24 h, H2O
12 examples

120 °C, 24 h, H2O
11 examples 76–90%

79–96%

Se
Se

SeSe
Se Se NSeNSe

1d 80% 1e 88% 1f 87%

NO2

NO2

R
R

R
S

S
R

3

1

Selected products

Scheme 6.2: Synthesis of disulfides 3 or diselenides 1 using elemental chalcogenium [52].
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and short reaction times from primary, benzylic, and allylic halides after easy workup
(Scheme 6.3). Due to steric hindrance, trisulfides (S–S–S) and triselenides (Se–Se–Se)
were obtained from secondary and tertiary halides under the same conditions.

Kholshin et al. [54] reported a convenient method for the synthesis of 3-
(4-hydroxyaryl)propyl selenosulfates and the corresponding diselenides 1 by the
reaction between Na2SeSO3 and bromopropyl-substituted phenol 2 in 50% aque-
ous ethanol (Scheme 6.4). First, the selenium reactive species is formed in situ
from selenium and Na2SO3 and the nucleophilic selenium species attacks bromide 2.
The hydrolysis of the alkyl selenosulfate intermediate 5 under the reaction conditions
affords the corresponding diselenides 1. To improve the yield of compound 1, the au-
thors proposed an azeotropic removal of ethanol in the final step. Additionally, to
explore the reduction of the Se–Se bond, symmetrical and unsymmetrical selenides
(derivatives of alkylated phenols and pyrocatechol) were synthesized.

6.3 Selenoethers

Organoselenium and organosulfur compounds are part of a range of biologically ac-
tive molecules, participating in multiple therapeutic functions of great importance,

Se0 + Na2SO3

Na2SeSO3
R1

OH
R

R = tC4H9, CH3, Br, H; R1 = tC4H9, CH3, H

Br
2

SeSO3Na Se)2

1  73 –91%5

EtOH, reflux, 1 h

R
OH

Removal ethanol
reflux, 3 h

5 examples

R1 R
OH

R1

H2O
reflux

Scheme 6.4: Synthesis of selenosulfates 5 and diselenides 1 [54].

Se

R X
2 or 4

Selected products

Se SeSe SeSe

1a   97% 1g   95% 1h   90%

R = phenyl, alkyl, allyl; X = Br, Cl, OTs

Y0, KOH, 60 °C
30 min, H2O
13 examples

R

1 (Se = 76–97%)
3 (S = 79–92%)

Y
Y R

Scheme 6.3: Synthesis of dialkyl and dialkenyl diselenides 1 and disulfides 3 [53].

196 Eder J. Lenardão et al.

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



including as anticancer and antiviral agents and in a variety of situations where
free radicals are involved [30]. Specifically, diorganyl chalcogenides are versatile
tools in organic synthesis due to their applicability in asymmetric catalysis [55] and
their usefulness in the generation of reactive organometallics, which are used in
the preparation of bioactive compounds [56]. Their high versatility in synthesis is
linked to the ease of introduction of the organochalcogen moiety as either electro-
philes or nucleophiles in other organic molecules [37, 38].

In this context, a number of green procedures for the synthesis of a variety of se-
leno- and thioethers have been developed. In general, the transition metal-mediated
aryl–chalcogen bond formation is the more common protocol, which mainly includes
metals such as copper, palladium, and zinc, as well as methods involving substitution
reactions [23]. In the last years, some alternatives to the traditional synthetic strategies
to access chalcogenoethers have been reported, and they will be discussed below.

In 2009, Singh et al. [57] reported the cross-coupling of aryl or alkyl bromides 2
with diaryl diselenides 1, catalyzed by copper oxide nanopowder (CuO NPs, 0.5 mol%),
using [bmim][BF4] as the solvent and KOH (2.0 equiv.) as a base (Scheme 6.5). In this
article, unsymmetrical diorganyl selenoethers 6 were isolated from moderate to good
yields (70–82%) after 1 h at room temperature. The results show that when alkyl bro-
mides were used as starting materials, lower yields were obtained compared to the aryl
ones. However, the reaction was not sensitive to electronic effects in the diaryl disele-
nide. Furthermore, to verify the possibility of reusing [bmim][BF4], after the reaction
between 1-bromo-4-methylbenzene and diphenyl diselenide was complete, the IL was
removed by filtration and used directly in the following four coupling reactions, afford-
ing the respective selenoether 6 in 82%, 82%, 80%, and 78% yields.

R– X +

2

O

10

6a 6b 6c 6d

Selected products

1

ref. [58]

82% ref. [58] 72% ref. [58] 87% ref. [58]
88% ref. [57] 80% ref. [57]

75% ref. [57]

7 examples

X = Br; R = aryl, alkyl; R1 = aryl

Cu NPs (20 mol%)
Zn, reflux, 8–12 h

ref. [57]
10 examples
[bmim][BF4]
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KOH, r.t., 60 min

(R1Se)2

R1

R1

R

RH2O

6

6

70–82%

72–92%

Se

Se Se Se

O2N

Se
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Scheme 6.5: Unsymmetrical diorganyl selenoethers 6 by cross-coupling reaction [57, 58].
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Similarly, Saha et al. [58] described the use of Cu(0) NPs (20 mol%) in the presence of
zinc dust (1.5 equiv.) to access selenoethers 6 by cross-coupling of diphenyl disele-
nide 1i with aryl iodides 2 (Scheme 6.5) or vinyl bromides (described in Section 6.8).
In this green method, besides the ligand-free conditions, the reaction was promoted
using water as the solvent. The phenylselenylation reaction shows general applicabil-
ity and compatibility with different functionalities in the aryl iodides, such as OCH3,
CO2H, CO2CH3, CF3, NO2, and Cl, affording the desired compounds in 72–92% yields
under reflux. Interestingly, due to the agglomerating tendency of the catalyst under
the reaction conditions, the remaining Cu NPs were reused with good performance in
only three successive runs (88%, 79%, and 78% yields).

Regardless of the low atom economy, the substitution of alkyl and benzyl halides
with chalcogenolate anions is an easy and simple strategy to prepare selenoethers.
Zinc organoselenolates were used in efficient substitution reactions of alkyl and ben-
zyl halides 2 (Cl, Br, and I) (Scheme 6.6) [59, 60]. The reactive species of selenium
was generated in situ from the reaction between diphenyl diselenide 1i and Zn
dust using [bmim][BF4] as the solvent. Through this Lewis acid-free procedure, a
variety of unsymmetrical diorganyl selenides were prepared from good to excel-
lent yields in a few minutes. The procedure shows a large tolerance to different
functional groups, such as protected aminoester, nitrile, ester, and allyl, affording
the corresponding products 6 in acceptable yields. When the sterically hindered
2-methoxybenzenoselenolate reacted with benzyl chloride, however, a lower yield
of the desired selenoether was obtained (45% yield) after 45 min of reaction.
Moreover, the IL was recovered and reused in five successive reactions between
diphenyl diselenide and benzyl chloride, giving the product in good yields, with a
little decrease only after the fourth reaction.

R– X

2

3

6e 6f 6g 6h

6
52–98%

Se

Se
Se

SeSe

98% ref. [59]
98% ref. [60]

98% ref. [59] 92% ref. [59]
80% ref. [59]92% ref. [60]98% ref. [60]

R

R
Y

72–99%

X = CI, I, Br

X = CI, I, Br
Y = Se, S

6 and 7

R = alkyl, allyl, benzyl
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R1

R1

R1 = aryl, alkyl, benzyl

R1 = aryl, alkyl
5–40 min

Selected products

[bmim][BF4]
15 examples

ref. [59]

[bmim][BF4]
12 examples

ref. [60]

(R1Se)2 1, Zn
r.t. 10–180 min

(R1Y)2 1 or 3, Zn, r.t.

Scheme 6.6: Substitution of organyl halides 2 with chalcogenolate anion in IL media [59, 60].
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Under the same experimental conditions described above to prepare selenoethers
6, the Zn/[bmim][BF4] system was successfully applied in the synthesis of structur-
ally diverse diorganyl sulfides 7 (Scheme 6.6) [60]. Several alkyl and arylthiolates
reacted with benzyl, alkyl, and allyl halides to give the respective unsymmetrical
thioethers in 72–99% yields at room temperature in short reaction times.

In the search for new procedures to prepare unsymmetrical diorganyl selenides
6 using an alternative and recyclable solvent, Braga et al. [61] developed a proce-
dure that uses InI as a reducing agent for the Se–Se bond cleavage of diaryl or dia-
lkyl diselenides 1 in [bmim][BF4] as the solvent (Scheme 6.7). Several diaryl and
alkyl arylselenoethers 6 were obtained in 52–97% yields by the reaction between
alkyl, allyl, and benzyl halides (Cl, I, and Br) 2 and diselenides 1. In this study, no
reaction occurred when tertiary halides 2 were used, and a significant decrease in
yield was observed when the electron-rich 1,2-bis(2-methoxyphenyl)diselenide was
used. Similar to the other procedures using IL, it was successfully reused in five
successive reactions of diphenyl diselenide with benzyl chloride, giving the desired
selenide in 90%, 85%, 82%, 77%, and 76% yields, consecutively.

The same group [62] published the use of a mixture of tin(II) and copper(II) salts
(SnCl2/CuBr2) in [bmim][BF4] in the efficient synthesis of diorganyl selenides 6 and
sulfides 7 from the corresponding dichalcogenides 1 or 3 and aryl or alkyl halides 2
(Scheme 6.7). This bimetallic system (1.2 equiv. of SnCl2 and 0.1 equiv. of CuBr2)
was responsible for the reductive cleavage of the Y–Y bond (Y = S or Se) in the di-
chalcogenide. After the chalcogenolate anion formation and their reaction with the

30 min, r.t.
(R1Se)2 1, Inl (1.0 equiv.) 
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15 examples

ref. [61]

Se
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(PhY)2 1 or 3, SnCI2/CuBr2
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R Y
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ref. [62]
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70% ref. [61] 77% ref. [62]
89% ref. [61] 99% ref. [61]
98% ref. [62] 97% ref. [62]
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Scheme 6.7: Synthesis of unsymmetrical diorganyl selenides 6 and sulfides 7 [61, 62].
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halides, the unsymmetrical selenoethers 6 and thioethers 7 were isolated in 65–99%
and 58–98% yields after 30 and 60 min, respectively. Additionally, by this proce-
dure it was possible to synthesize more complex molecules, such as chiral
β-sulfur and β-selenoamines, in good yields (62–75%) (described in Section 6.4).
As expected, the IL was reused in successive reactions without significant loss in
yields after four successive reactions.

Due to the considerable interest in the development of new efficient strategies
to prepare chalcogenoethers 6, 7 or 8 with diverse patterns of substitution, the use
of substrates alternative to organyl halides has been investigated. For example,
Alves and coworkers [63] reported the use of boronic acids in the copper-catalyzed
cross-coupling reaction to prepare selenoethers 6 (Scheme 6.8). This protocol
worked well with several diaryl diselenides 1 and aryl boronic acids 9, affording the
unsymmetrical diaryl selenides 6 from good to excellent yields under green condi-
tions. Specifically, 4-methoxyphenylboronic acid efficiently reacted with a range of
diaryl diselenides 1 containing electron-withdrawing and electron-donating groups
at the aromatic ring to give the respective products in good yields (76–89%). Also,
ortho- and para-bromo-substituted arylboronic acids were evaluated and the corre-
sponding selenoethers 6 were isolated in 82% and 86% yields, respectively. These

90% ref. [63] 90% ref. [63] 73% ref. [63]
76% ref. [64]90% ref. [64] 83% ref. [64] 91% ref. [64]

95% ref. [65] 83% ref. [65]92% ref. [65]92% ref. [65]
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31 examples
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ref. [65]
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R

R
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Scheme 6.8: Preparation of chalcogenoethers 6, 7 or 8 [63–65].
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results highlight that there is a differentiation on the reactivity between boron and
bromine atoms, because only coupling products at boron moiety were formed, with-
out by-products. In addition, the reaction between 4-methoxyphenylboronic acid
and diphenyl ditelluride afforded the telluroether 8 in 93% yield.

The magnetically separable CuFe2O4 NPs were used as catalyst in the cross-
coupling reaction between heteroaryl or arylboronic acids 9 and phenylselenyl bro-
mide and chloride 11, using polyethylene glycol-400 (PEG-400) as the solvent
(Scheme 6.8) [64]. By this procedure, unsymmetrical diaryl selenides 6 were pre-
pared in good yields (71–91%), with a little influence of electronic effects. In this
work, the reuse of CuFe2O4 was easily performed up to four new reactions with
good activity (82–88% yields). After each reaction of phenylselenyl bromide 11 with
phenylboronic acid 9, the catalyst was magnetically separated, washed with sol-
vents, dried under vacuum, and reused in another reaction.

In a closely related work, the CuFe2O4 NPs/PEG-400 system was employed in
the synthesis of seleno- and telluroethers 6 and 8 by coupling reaction of diphenyl
dichalcogenides (Se and Te) 1i or 10a with a range of organoboronic acids 9
(Scheme 6.8) [65]. This atom-economic and base-free procedure was carried out
with several functionalized organoboranes 9 containing alkyl, styryl, and phenyle-
thynyl groups. The authors also extended the scope of the reaction to aryl trifluoro-
borates (80–92% yields after 10–12 h) and boronic acid pinacol esters (71–92%
yields after 16–18 h) with similar efficiency. Interested in the biological potential as
an antioxidant agent [66], the authors have prepared the telluride derivative of 4,4′-
biphenyl diboronic acid, which was isolated in 85% yield. At the end of the reac-
tions, the catalyst was easily collected by a magnetic rod from the reaction medium
and washed with solvents and was reused. CuFe2O4 was used for up to seven addi-
tional reactions without any considerable loss of activity (the yields remained
above 80%).

In parallel to these studies, Kumar et al. [67] have prepared symmetrical sele-
noethers and thioethers by the copper-catalyzed cross-coupling of aryl halides with
potassium chalcogenocyanates in the presence of a base. This green alternative in-
volves the reaction of aryl iodides or bromides 2 with potassium selenocyanate 12
in water, using CuI (10 mol%) as a catalyst, CsCO3 as a base, and trans-1,2-
diaminocyclohexane as a ligand (Scheme 6.9). Several symmetrical diaryl selenides
6 were prepared from moderate to good yields, with aryl iodides 2 giving better
yields than the aryl bromides 2 analogues. Electron-rich aryl halides were slightly
more reactive than the electron-poor ones.

In 2011, Zhao et al. [68] reported a clean procedure to prepare selenoethers 6, by
the Pd-catalyzed cross-coupling reaction of aryl- or alkyl halides 2 with aryltributyl-
stannyl selenides 13 using the IL [bmim][PF6] as the solvent (Scheme 6.10). In this
work, aryl, alkyl, and benzyl bromides or iodides were efficiently used. However, in
reactions with bromides, long reaction times, higher temperature (110 vs. 80 °C), and
catalyst loading (10 mol%) were required. While 1-chlorooctane was not reactive

6 Synthesis using nonconventional reaction media 201

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



under these conditions, the benzyl and phenyl chlorides afforded poor yields of the
desired compounds, even in reactions at 110 °C (46% and 55% yields, respectively).
Butyl tributylstannyl selenide reacted with aryl or benzyl halides giving excellent
yields of the isolated product (80–95%) in reaction times up to 2 h at 80 °C. Further,
the IL/Pd(PPh3)4 system was recycled and used again in the reaction between 3-
iodotoluene and PhSeSnBu3. Selenoethers were obtained in excellent yields (89–91%)
after six successive reactions, without adding more catalyst.

In 2011, Freitas et al. [69] developed a new catalyst- and metal-free strategy to
obtain unsymmetrical diaryl selenides 6 (Scheme 6.11). The reaction was conducted
at room temperature using electrophilic species of selenium and aryl boronic acids
9 or potassium aryltrifluoroborates 14 as nucleophiles in ILs, such as [bmim][PF6]
and [bmim][BF4]. Arylboronic acids 9 and arylselenium chlorides 11 were used in
the presence of [bmim][PF6] as the solvent, affording the respective diarylselenides
6 in 75–96% yields. The reaction of potassium aryltrifluoroborates 14 and ArSeBr in
[bmim][BF4] afforded a series of diaryl selenides 6 in 73–88% yields after 3 h of

13 examples

R–X

Pd(PPh3)4 (5 mol%)

2 13

+

6  46–91%

Selected products

Se80–110 °C, 0.5–24 h
RR1R1SeSnBu3

X = CI, Br, I; R = aryl, alkyl, benzyl; R1 = phenyl, butyl

[bmim][PF6]

SeSe
Se

SeC4H9

NO2NO2

6a  84% 6d  82% 6i  46% 6o  95%

Scheme 6.10: Unsymmetrical diorganyl selenoethers 6 [68].

16 examples

R–X

2 6

6a  91% 6l  88% 6m  88% 6n  74%

12
+ KSeCN

H2O, 100 °C, 24 h
L1, Cul (10 mol%), Cs2CO3 (2 equiv.)

X = Br, I; R = aryl, naphthyl, heteroaryl

Selected products
Se Se Se

Se

NH2

NH2

NO2

N

RR

59–91%

NSe

O2N

Scheme 6.9: Selenoethers 6 by the reaction between potassium selenocyanate 12 and aryl halides
2 [67].
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reaction. In addition, the ILs can be recovered and reused for five successive reac-
tions after a simple extraction of the product with hexanes.

In 2012, Banerjee et al. [70] described the metal-free synthesis of unsymmetrical se-
lenides 6 using the IL [pmim][Br] (Scheme 6.12). The unsymmetrical diorganyl sele-
nides 6 were obtained after 2–6 h, at 75 °C in 70–86% yields. The unsymmetrical
sulfide analogues 7 were formed in 70–88% yields at 75 °C after 1.5–5.5 h of reac-
tion. The cleavage of the chalcogen–chalcogen bond of diphenyl diselenide or di-
sulfide was promoted by [pmim]Br/PPh3 system and the resulting chalcogenolate
anions reacted efficiently with various benzyl and allyl halides 2.

The authors proposed an addition–elimination mechanism for the reaction, in
which PPh3 reacts with diphenyl diselenide or disulfide to form the intermediate I

R1

R1

R1

BF3K

R1

R

X = Cl, Br

R = H; R 1  = MeO, Me, H, Cl, Br, CF3, naphthyl

R = H, Me, MeO, Cl 
R 1  = MeO, Me, H, Cl, Br, CF3, naphthyl

r.t., N2, 2–6 h, [bmim][PF6]

r.t., N2, 3 h, [bmim][BF4]

Se

Se

Se

SeX

Se
MeO Se

Selected products
Cl

R

R

75–96%
17 examples

11 examples
73–88%

6j  91/84%6p  85/81%6b  95/88%

B(OH)2 9

1411

6

6

Scheme 6.11: Synthesis of diaryl selenides in ionic liquids [69].

PhYYPh       +    RX
PPh3, 75 °C, [pmim][Br]

11 examples RXPh

X= Se 6  70–86%, 2–6 h
      S 7  70–88%, 1.5–5.5 h

Selected products
R = benzyl, aryl, alkyl, vinyl; X = I, Br, Cl

1i and 3a 2 6,7

Se Se Se
Se

Ph
PhPhPh

O

O

O

6q   70% 6r   82% 6s   74% 6f   72%

Scheme 6.12: Synthesis promoted by PPh3/ionic liquid [70].
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(Scheme 6.13). The intermediate I is cleaved generating the selenolate or thiolate
anion, which on reaction with the halide 2 afforded the respective products 6
(Y = Se) or 7 (Y = S).

Mukherjee et al. [71] developed a new solvent-, ligand-, and metal-free protocol to
prepare unsymmetrical diaryl chalcogenides through the reaction between diazo-
nium tetrafluoroborates 15 and diaryl dichalcogenides 1, 3, and 10, in the presence
of KOH (0.75 equiv.) in neutral alumina under ball-milling (6 balls, 600 rpm,
Scheme 6.14). Unsymmetrical diaryl selenides 6 were prepared after 15–20 min at
room temperature in 73–78% yields (Scheme 6.14). Also, unsymmetrical diaryl sul-
fides 7 and diaryl tellurides 8 were prepared in similar yields.

More recently, in 2016, Kumar et al. [72] reported a metal-free methodology to ob-
tain symmetrical diaryl selenides 6 in moderate to good yields (67–82%) using SeO2

and boronic acids 9 in PEG-400. The reaction was conducted in the presence of a
base, K2CO3, for 3 h at 110 °C and various selenides 6 were prepared (Scheme 6.15).

I
2

2

R-X

R-X

¨
¨

Ph3P Ph3P

H2O

Ph3P-YPh

Ph3P=O

Ph
SPh

RYPh
6 or 7

Ph
+ Y Y YPh

PhY 2H

+

+
+

+

+

–

–

δ
+

δ
–

YPh

1: Y = Se
3: Y = S

Scheme 6.13: Mechanism proposed by Banerjee et al. [70].

R = H, 4-MeO, 4-CF3, 4-NO2, 2-Br, 2,6-Me, 4-MeOC,
4-CN, 4-CO2Me, 3-Cl-4-Me, 4-Br; R1 = benzyl, aryl, alkyl, heteroaryl

Selected products
Se

O
O

Se Se

F3C

R

N2BF4

Y = S 7
Y = Se 6
Y = Te 8

R Y

62–90%

R1
+    (R1Y)2

KOH, neutral alumina
6 balls 600 rpm

r.t.,  15–30 min, solvent-free
22 examples

6t   78%

15 1, 3, and 10

6b   78% 6u   76%

Scheme 6.14: Synthesis of unsymmetrical diaryl chalcogenides under ball-milling [71].
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This C–Se cross-coupling was effective for all the tested aromatic boronic acid sub-
strates, including aryl bearing electron-withdrawing and electron-donating groups,
as well as heteroaryl ones.

In the same year, Navarro and coworkers [73] reported the preparation of symmet-
rical organochalcogenides 6, 7, and 8 through an electrochemical synthesis in
aqueous NaOH medium (Scheme 6.16). The reaction proceeded in two steps. In
the first step, selenide (Se2–), sulfide (S2–), and telluride (Te2–) anions were gener-
ated in aqueous medium in an electrochemical cell under argon atmosphere. After
the mixture became colorless, the halogenated compounds 2 were added and the
reaction was left under argon, at room temperature for 12 h. Moreover, the forma-
tion of the respective dichalcogenides as by-products was also observed, but the
monochalcogenides 6, 7, and 8 remained as the major products. When the tellu-
ride ion was employed, the respective products 8 were obtained in moderate to
high yields (64–95%), while the selenide and sulfide were less reactive, giving
lower yields of the respective chalcogenides (5–96% and 5–59%, respectively).

In 2018, an alternative solvent- and metal-free protocol to obtain diaryl chalcoge-
nides in good to excellent yields was reported. Rodrigues et al. [74] described the
use of nontoxic and easily available KIO3 to catalyze the chalcogenations (S and Se)
of several (hetero)arenes 16 in the presence of ethylene glycol (4 equiv.) as an

6v   67% 6w   77% 6x   82% 6y   74%

Se

Se

SeSe Se

S

R R

S
O

O

O

NNN

N

N

N

O

Selected products

67–82%
9 6

R = aryl, thienyl, pyrimidyl, pyridyl, naphthyl

R–B(OH)2    +    SeO2
K2CO3, PEG-400, 110 °C, 3 h

15 examples

Scheme 6.15: Synthesis proposed by Kumar et al. [72].

R = alkyl, benzyl
Selected products

Y2–(aq)Y0 e–, –70 mA
NaOH (0.1 mol/L–1)

R–X 2, THF, 25 °C, 12 h)

22 examples

Se
SeSe

6z 83%6h 5% 6aa 5%

Y
Y = Se 6 5–83%

S 7 5–59%
Te 8 72–96%

Scheme 6.16: Electrochemical synthesis [73].
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additive. Through this direct C(sp2)-H bond chalcogenation, several diaryl selenides
6 and diaryl sulfides 7 were obtained in 52–99% and 30–80% yields, respectively,
after 3 h at 110 °C (Scheme 6.17). Moreover, the synthesized compounds have a
pharmaceutical interest as anti-Alzheimer agents.

In addition, the authors reported two possible mechanisms for the reaction, which
could be contemporary. In the first proposal (Scheme 6.18), the species I attacks KIO3

to form the intermediate II, from which is generated the species III. This intermediate
loses –OH to form the intermediate IV, which undergoes a homolytic cleavage form-
ing the radical V. In the sequence, V reacts with diselenide, forming the product 6
and the species VI that, after reaction with KOH, regenerates the catalyst KIO3.

H

16 (hetero)
arenes

1i and 3a

R = aryl, heteroaryl
Selected products

NH2 NH2

H2NMeO

SePh
SePh

N

N

SePh

N N
6ab 6ac52% 99% 6b 98% 6ad 74%

SePh

KIO3 (20 mol%) EG (4 equiv.)
110 °C, 3h

34 examples X = Se 6

YR

52–99%
30–80%S 7

+ (PhY)2

Scheme 6.17: Synthesis catalyzed by KIO3 [74].
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Scheme 6.18: Possible mechanism of the reaction – suggestion 1 [74].
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The second proposed mechanism differs from the previous one in that intermediate
IV’ reacts with diselenide to give species V and selenolate anion. In the sequence, V
reacts with KOH to form product 6, regenerating the catalyst KIO3 (Scheme 6.19).

More green and alternative methods to prepare densely functionalized selenoethers
were also reported in the literature. For example, Silveira et al. [75] developed a pro-
cedure for the functionalization of nitrogen-containing heterocycle, generating the
selenoether 6ae (Scheme 6.20). In this study, the use of morpholine 17a in a sol-
vent-free reaction with phenylseleno acrylonitrile 18a, provided the corresponding
phenylseleno-β-amino nitriles 6ae in 82% yield after 5 min.

More recently, a new strategy to obtain selenides from a natural and eco-friendly
source was reported by Jacob et al. [76]. Castor bean oil was used to prepare
compound 19, which was used as a starting material in the synthesis of (Z)-12-
organylselenooctadec-9-enoates 20 in good yields (Scheme 6.21). These semisynthetic
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Scheme 6.19: Possible mechanism of the reaction – suggestion 2 [74].
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Scheme 6.20: Synthesis of selenoether 6ae under solvent-free conditions [75].
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selenoethers were formed by the nucleophilic substitution of the tosylate derived
from methyl ricinoleate by arylselenolate anions, using PEG-400 as the solvent.

In 2018, an ultrasound-promoted cyclization procedure to obtain 2-organoselanyl-
naphthalenes 6 was described by Perin et al. (Scheme 6.22) [77]. Using water as the
solvent, selenoethers 6 were prepared by the reaction between diorganyl diselenides
1 and alkynols 21 in the presence of Oxone®. Specifically, Oxone® promoted the oxi-
dative cleavage of the Se–Se bond of diselenides to form the electrophilic species of
selenium in situ. In this paper, the best reaction condition was extended to different
substrates, using electron-donor and electron-withdrawing groups attached to the ar-
omatic ring of the diselenides and the alkynols. Aliphatic diselenides 1 and alkynols
21 were also good substrates for the reaction, and the respective 2-organoselanyl-
naphthalenes 6 were isolated in moderate to excellent yields (56–94%).

Further, the authors proposed a possible mechanism for the reaction, in which the
oxidative cleavage of diphenyl diselenide 1i to form the intermediates I and II was
the first step (Scheme 6.23). Then, the electrophilic species I reacts with the alkynol
21, forming the intermediate III. At this point, a 6-endo-dig cyclization takes place,

R

R

Se)2

Se

O
O

OCH3(CH2)6
OCH3(CH2)6

TsO

H3C(H2C)5 H3C(H2C)5

R = H   85%; Cl  78%;  CH3O  70%

PEG-400, NaBH4

60 °C, 2.5–4.5 h, N2
3 examples19 20

1

Scheme 6.21: Synthesis proposed by Jacob et al. [76].
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6
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SeSe Se
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Scheme 6.22: Synthesis promoted by US, using Oxone® [77].
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generating the species IV. After having restored the aromaticity and losing a mole-
cule of water, the product 6ai is formed.

The same group [78] reported the synthesis of selenoether derivatives 6 of glycerol,
by the reaction of the diselenide derived from glycerol 1j and organyl halides 2
(Scheme 6.24). At first, bis(2,2-dimethyl-1,3-dioxolanylmethyl) diselenide 1j was re-
duced by the sodium borohydride (NaBH4)/PEG-400 system under Ar atmosphere, fol-
lowed by the addition of a variety of alkyl, allyl, and benzyl halides. In all cases, the
products 6 were obtained in acceptable yields (53–90%) after short reaction times.

Further, the authors reported glycerol derivatives containing pyridyl selenides 6,
starting from 2,2′-dipyridyl diselenide 1k [79] and tosyl solketal 4a or carbonate
4b. Selenoethers 6 were isolated in acceptable yields after 2–3 h of reaction at
50 °C. Compounds 6an–6ap showed antioxidant and anticholinesterase proper-
ties (Scheme 6.25).

Oxone®C6H5SeSeC6H5 C6H5SeOSO3K   +   C6H5SeOH

H2O

–H2O

SeC6H5
SeC6H5

SeC6H5I
+

+
SeC6H5

Ph

Ph Ph Ph

II

III

V IV

I

I
21
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6ai

H

Ph

OH OH

OHOH

–OSO3K

– OSO3K

–OSO3K+     C6H5S
+

e

–KHSO4

Scheme 6.23: Mechanism proposed by Perin et al. [77].
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Scheme 6.24: Glycerol-derivatives selenoethers [78].
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6.4 β-Seleno amines

The studies of the chiral β-chalcogen amines has increased due to the versatility of
these compounds as chiral ligands in enantioselective reactions and also as impor-
tant synthetic targets, such as cysteine and selenocysteine derivatives [80, 81].
Additionally, synthetic analogs of this class exhibit interesting biological activities,
including antioxidant, antimicrobial and antitumor ones [28, 82]. The nucleophilic
ring-opening reaction of aziridines is the conventional method for the straightfor-
ward preparation of chiral β-substituted amines [83, 84]. By this procedure, a range
of biologically important molecules can be conveniently prepared, such as amines,
amino acids, amino alcohols, and nitrogen-containing building blocks [85]. The ap-
proach to prepare β-seleno amines involves in a first step the reductive cleavage of
Se–Se bonds with reducing agents, such as NaBH4, Zn, and Zn/InCl3, followed by
the selective ring-opening reaction with the selenolate nucleophiles generated
in situ. The mechanism for the carbon–nitrogen bond cleavage on the C-2 or on C-3
positions in the aziridine is presented in Scheme 6.26 [86].

Salman et al. [87] described an environmentally benign approach to prepare β-seleno
amines 22 by the nucleophilic ring-opening reaction of several aziridines 23 under
neutral conditions, employing a stable phenylselenolate species (PhSeZnBr 24) as a
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Scheme 6.26: The general mechanism of nucleophilic ring-opening reaction of aziridines.
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Scheme 6.25: Selenoether glycerol derivatives [79].
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nucleophile in [bmim][BF4]. The respective products 22 were obtained in short re-
action times from a broad range of unprotected and protected aziridines 23
(Scheme 6.27). Generally, better yields were obtained using N-Ts-protected aziridines
compared to the N-Boc and unprotected ones (85–99% vs. 60–81% vs. 52–70%
yields, respectively). Further, considering economic and environmental aspects, the
possibility of recycling the IL was investigated, and a good level of efficiency was ob-
served for up to four reactions.

The success in the use of [bmim][BF4] as solvent for the synthesis of β-seleno
amines led the same group to develop a new procedure using IL [88]. They reported
the reaction between different protected and unprotected aziridines 23 and dio-
rganyl diselenides 1 mediated by CuO NP and using [bmim][BF4] as solvent
(Scheme 6.27). The reactions proceeded in 60 min to give the expected products
22 in good to excellent yields (62–99%). However, when diaryl diselenides 1 con-
taining electron-donating groups in the aromatic ring or unprotected aziridine 23
were used, lower yields were obtained. Furthermore, the CuO/IL system was

R
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SePh
R = alkyl, benzyl
R1 = Boc, tosyl, H

R = alkyl, benzyl;
R1 = Boc, tosyl; R2 = C6H5
Y = S 25 or Se 22

R = alkyl, benzyl;
R1 = H, Boc, tosyl
R3 = alkyl, aryl, benzyl

SeR2R

Se
HN

(R2Se)2 1, KOH, 80 °C
CuO nano (5.0 mol%)

(R2Y)2 3 or 1, 10 μL HCL
Zn (5.0 mmol)
80 °C, 1.5–2 h

PhSeZnBr 24
1 h, 90 °C

Boc HN Ts HN Ts

Se Se

22

22

22a

23

22b 22c

52–99%

60–90%

62–99%

81% ref. [87]
88% ref. [89]
93% ref. [88]

99% ref. [87]
90% ref. [89]
91% ref. [88]

90% ref. [87]
85% ref. [89]
90% ref. [88]

NHR2

NHR2

NHR1

1 h, [bmim][BF4]
15 examples

ref. [88]

[bmim][BF4]
7 examples

ref. [87]

13 examples
[bmim][BF4]

ref. [89]

Selected products

Scheme 6.27: Synthesis of chiral β-chalcogen amines 22 or 25 [87–89].
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recovered and after a simple pre-treatment, it was used in a new reaction, main-
taining its good level of efficiency for additional four successive reactions.

The same group investigated the possibility of generating the nucleophilic spe-
cies in situ, by the reductive cleavage of diphenyl diselenide 1i and disulfide 3a in
[bmim][BF4] medium (Scheme 6.27) [89]. This new zinc- and HCl-mediated route
provides an easy access to chiral β-seleno 22 or β-sulfur amines 25 in a stereospe-
cific and regioselective manner in good to excellent yields. The chiral β-chalcogen
amines 22 and 25 were obtained by opening N-protected aziridines derived from
L-phenyl alanine, L-leucine, L-valine, and L-isoleucine and the better yields were ob-
tained when R was a small group in the N-Ts aziridines 23. Further, the IL was fur-
ther reused in four additional reactions, affording the desired product in a close
range of yield. Additionally, some tests were conducted on the antimicrobial activ-
ity against Gram-positive bacterial strains. Moderate activities were found using
chiral N-protected β-chalcogen amines derived from L-isoleucine against Listeria
monocytogenes, Bacillus cereus, and Paenibacillus species.

Rodrigues and coworkers [90] described the synthesis of chiral β-seleno amines
22 and selenocysteine derivatives from N-protected β-amino mesylates or tosylates
26 (Scheme 6.28). The reactions were performed using the catalytic system ZnONPs/
[bmim][BF4] and Zn dust, which is able to reduce PhSeSePh, allowing the formation
of the reactive zinc selenolate (PhSeZnSePh). In this interesting study, the method
was successfully applied to different diaryl diselenides 1 bearing electron-withdrawing
or -donating groups, as well as to β-amino mesylates 26 derived from L-leucine,
L-isoleucine and L-valine. For instance, the biologically active selenocysteine de-
rivative 22d was obtained from the corresponding β-amino mesylate in 78% yield.
The authors reported that the effect of the leaving group in the protected β-amino
alcohols was not so pronounced when mesylate or tosylate was used. Additionally,
in the same work it was observed that the catalyst cannot be recycled due to the con-
tamination of ZnONPs with Zn dust. However, the IL was reused in two additional reac-
tions without significant decrease in the yields of the product (84%, 82%, and 75%).
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Scheme 6.28: Accessing chiral β-seleno amines 22 from N-protected β-amino mesylates or tosylates
26 [90].
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Similarly, chiral β-sulfur 25 and β-seleno amines 22 were obtained from the reac-
tion of β-amino mesylate 26 and bromo derivatives with diphenyl diselenide/disulfide
1i and 3a using bimetallic reagent Sn(II)/Cu(II) in [bmim][BF4] (Scheme 6.29) [62].
In this work, four β-chalcogen amines were synthesized under mild conditions
and with good yields. More specifically, the seleno-compounds needed more reac-
tion time than sulfur ones.

6.5 β-Oxy selenides

The β-oxy selenides are important organic compounds in pharmaceutical and natu-
ral products chemistry. They play a key role in the synthesis of natural products,
such as sphingosine [91], siastatin, and their analogues [92].

For the synthesis of β-hydroxy selenides, in 2008 Yang et al. [93] reported a
mild, simple, and environmentally friendly approach, through a regioselective ring
opening of 1,2-epoxides 27 with aryl selenols 28 promoted by the IL [bmim][BF4]. A
large range of β-hydroxy selenides 29 was prepared in excellent yields (91–98%)
after 1–2 h at 50 °C. Also, the thiocompounds 30 were prepared and were obtained
in excellent yields after 3–6 h at 60 °C (81–99%, Scheme 6.30). The IL was used in
five successive reactions between epoxide and 4-chlorophenylthiol, allowing the
desired product in high yields.

In 2015, Santi and Braga [94] developed an ecofriendly, solvent-, and metal-free
procedure to form β-aryl and β-alkyloxy selenides 29. The desired products 29 were
prepared by the reaction of olefins 32 and diorganoyl diselenides 1 in modest to ex-
cellent yields (21–96%) after 10 min microwave irradiation using I2/DMSO as an oxi-
dant catalytic system (Scheme 6.31). Further, the authors performed the reaction
between styrene 32 and different diorganoyl disulfides 3, obtaining the products 30
in satisfactory yields (75–81%). In the case of the reaction between styrene 32 and
diphenyl ditelluride 10, the respective product 33 was formed in only 14% yield.
Noteworthy, the formation of side products from the reaction between the nucleo-
phile and iodine, generated in situ, was not observed. With this methodology a

22a 62–69%
NHBoc

NHBoc

SeC6H5

SC6H5

X = OMs, Br

X

NHBoc
26

25a 71–75%

(C6H5S)2 3a
SnCl2/CuBr2, r.t. 

(C6H5Se)2 1i
SnCl2/CuBr2, r.t. 

[bmim][BF4], 120 min

[bmim][BF4], 180 min

Scheme 6.29: Accessing chiral β-seleno amines 22 from N-protected β-amino mesylates or bromo
derivatives 26 [62].
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seleno-cyclofunctionalization was performed leading to the compounds with poten-
tial biological activity, such as derivatives of lapachol 29d and lawsone, using olefins
with a pendent nucleophile.

The mechanism proposed by the authors involves the formation of the electro-
phile I, generated by the reaction of the catalyst with the diorganyl dichalcogenides
1, 3, and 10. Once formed, I reacts with olefins 32 forming the intermediate II,
which is then attacked by the nucleophile, allowing the formation of the products
29, 30, or 33 (Scheme 6.32). The catalyst is regenerated in the reaction media avoid-
ing competition with the nucleophile [94].

In 2018, a new protocol to obtain α-alkoxyl selenides from terminal olefins 32,
diselenides 1, and different alcohols 34 was reported by Liu et al. [95] (Scheme 6.33).
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Scheme 6.30: Synthesis promoted by recyclable ionic liquid [93].
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Scheme 6.31: Catalytic selenylation via I2/DMSO oxidant system [94].
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This procedure involves the visible light irradiation for 20 h at room temperature, io-
dine as catalyst, the use of air as a supplemental mild oxidant, and only 0.5 equiv. of
H2O2. The desired products 29 were formed in good to excellent yields (40–99%,
Scheme 6.33). To obtain the complete conversion of olefins 32 and diselenides 1 and
to avoid the nonselective overoxidation of diselenides 1, the amount of H2O2 is cru-
cial. The authors performed several control experiments, which demonstrated that
the reaction did not occur in the dark under N2. Instead, the absence of light, I2 and
H2O2, or air are mandatory to afford good yields of the expected products.

The first step in the mechanism is the oxidation of (R2Se)2 to the PhSeOH, which re-
acts with I2 forming the intermediate R2SeI I. This intermediate rapidly reacts with
alkene 32 to form the seleniranium species II, which undergoes a nucleophilic attack
by the iodide, generating the intermediate III. After another nucleophilic attack by
the alcohol, III is converted to product 29, releasing HI, which is re-oxidized for a new
reaction (Scheme 6.34) [95].

Ph Ph
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R3O

R
29

40–99%

PhO O

29g  90%29c  99%29f  86%29e  40%

32 341
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19 examples
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SePhSePh
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Scheme 6.33: Selenoalkoxylation promoted by visible light [95].
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Scheme 6.32: Proposed mechanism [94].
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6.6 Seleno ketones

Other class of selenium ether widely studied are the α- or β-seleno carbonyl deriva-
tives. Generally, the methods to access α-seleno carbonyl compounds consist of the
reaction of an enolate with an electrophilic organoselenium species or by substitu-
tion reactions involving nucleophilic organoselenium. The β-seleno carbonyl deriv-
atives, in turn, are prepared by 1,4-addition reactions to α,β-unsaturated carbonyl
compounds. Some studies were reported in the last years reporting the antioxidant
properties of the seleno ketones (Figure 6.2) [96–98].

Lenardão and coworkers [99] described the synthesis of α-seleno aldehydes and ke-
tones employing the solid-supported base KF/Al2O3 associated with PEG-400 as the
solvent (Scheme 6.35). This clean α-selenylation of carbonyl compounds was suc-
cessfully applied to cyclic and aliphatic ketones 35 and aldehydes 36, giving the
respective α-phenylseleno derivatives 37 and 38 in 67–96% yields after few hours.
It was observed that the reaction was faster using aldehydes (3 h) than using ke-
tones (6–21 h). The solid-supported base was reused for additional four reactions
just by washing it with hexanes and drying under vacuum after each reaction. The
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+
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Scheme 6.34: Possible mechanism of selenoalkoxylation [95].
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Figure 6.2: Chemical structures of (a) α-(phenylselanyl)acetophenone, (b) α-(phenylselanyl)
citronellal, and (c) selenium and sulfur-containing zingerone derivatives.
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semisynthetic α-phenylseleno citronellal 38a, derived from (R)-citronellal, as well
as the alcohol derivative 29e, showed antibacterial activity against Staphylococcus
aureus, Listeria monocytogenes, and Salmonella enteritidis. The results obtained in
these assays indicated that the semisynthetic compound 38a is more bioactive than
the natural precursor.

In the last years, some greener methodologies to these Michael-type reactions
have been described. For example, Yao and coworkers used a catalytic amount of
ceric(IV) ammonium nitrate (CAN) to promote the 1,4-addition of benzeneselenol 28
or thiols 31 to various α,β-unsaturated ketones 39 (Scheme 6.36) [100]. Specifically,
CAN accelerates the solvent-free addition of benzeneselenol 28 to enones, which oc-
curred in short reaction times (5–15 min), affording the respective β-phenylselenyl ke-
tones 40 and 41 in almost quantitative yields. Additionally, it was observed that
exclusive 1,4-addition of thiol 31 to the conjugated double bond is detriment of the
nonactivated one, when dienyl esters are used. The authors proposed a mechanism
of the CAN-promoted 1,4-addition reaction. At first, the generation of the selanyl radi-
cal cation I from selenol 28 occurs, which subsequently is fragmented to radical II.
The selanyl radical II undergoes a radical-chain addition to the enone to form adduct
40 and a new selanyl radical (Scheme 6.36).

A convenient Michael-type addition reaction of unsaturated ketones leading to
synthetically useful β-seleno derivatives was proposed by Santi and coworkers
(Scheme 6.37) [101]. In this work, the Santi’s reagent (PhSeZnCl 24) was applied as
an excellent nucleophile “on water” conditions. The desired β-phenylselanyl ketones
40 were isolated from moderate to quantitative yields. Alternatively, comparable
yields were found when the reactions were performed using THF (140 vs. 24 h).

In 2013, Perin et al. [102] reported the in situ generation of nucleophilic species
of selenium by the reaction of diorganyl diselenides 1 with NaBH4 in PEG-400
as solvent. These nucleophiles reacted with electron-deficient alkenes 39 to afford β-
organylseleno carbonyl compounds 40 (Scheme 6.38). The desired compounds were
isolated in 60–94% yields by reaction of diaryl/dibutyl diselenides and methyl

OO

R1R1 RR
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SeC6H5

(C6H5Se)2 1i, KF/AI2O3, 60 °C
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9 examples
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SeC6H5

OH
CHO

73%80%
29e38a
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Scheme 6.35: α-Selenylation of ketones 35 and aldehydes 36 [99].

6 Synthesis using nonconventional reaction media 217

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



acrylate, acrylonitrile, enones or acrylic acid in short reaction times. Acrylic acid re-
acted with the nucleophile obtained from diphenyl diselenide 1i to give 3-(phenylse-
lanyl)propanoic acid in only 20% yield after 2 h of reaction, while methyl acrylate
worked well, giving 94% yield of the respective product.

O
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RR

O

39
H2O

7 examples

R = alkyl, -(CH2)n-; R1 = H, alkyl, -(CH2)n-, phenyl

Selected products
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Scheme 6.37: Synthesis of β-phenylselanyl ketones 40 [101].
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6.7 Selenoesters

Selenoesters are a class of organic compounds worthy of interest as they exhibit im-
portant physical and biological properties and they are useful intermediates in or-
ganic synthesis. These compounds can be used as liquid-crystalline materials [103],
with applications in optical devices. Moreover, they present antioxidant [104], anti-
proliferative [105], and cytotoxic activities [106]. They are used in the synthesis of
natural compounds [107–109] and are specific reagents in the trans-acylation reac-
tion [110]. In the literature, several methods are reported to obtain selenoesters,
highlighting their relevance in organic synthesis and medicinal chemistry.

In 2010, Singh et al. [111] developed an efficient synthesis of selenoesters 42
mediated by CuO NP by the reaction between acyl chlorides 43 and diaryl disele-
nides 1 using the IL [bmim][PF6] as the solvent. By this method, several selenoesters
42 were isolated in good to excellent yields (57–91%, Scheme 6.39). Additionally,
CuO NP and the solvent were recyclable and were used three times without relevant

O

39

(R3Se)2 1, NaBH4, N2

PEG-400, 50 °C, 1–2 h
8 examples

Selected products

O

R = CH3, -(CH2)3-, CH3O; R1 = H, -(CH2)3-; R2 = H; R3 = aryl, butyl

R
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R1 R2R2 R1 SeR3

SeSeSe
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Scheme 6.38: Michael-type addition reaction to electron-deficient alkenes 39 [102].
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Scheme 6.39: Synthesis of selenoesters catalyzed by CuO nanopowder [111].
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loss of the activity. The same procedure was successfully used to prepare different
functionalized selenocarbonates 44.

In the same year, Braga and coworkers [112] published another protocol, which
employed the same IL [bmim][PF6] as solvent, to prepare chalcogenoesters 42 and
45 from acyl chlorides 43 and a variety of stable diaryl chalcogenides 1 and 3
(Scheme 6.40). In the presence of indium metal as a mild reducing agent, selenoest-
ers 42 were isolated in 13–98% yields and thioesters 45 in 36–78% yields in 1 h; the
lower yields were obtained using aliphatic acyl chlorides 43. In addition, the IL was
recovered and reused in successive reactions, maintaining its good level of efficiency
for two new reactions.

In 2011, Braga and coworkers [60] reported an approach to synthesize selenoesters 42
and thioesters 45 promoted by zinc dust in the presence of IL. Selenoesters 42 and
thioesters 45 were achieved in 3 min at room temperature in 39–95% and 42–99%
yields, respectively (Scheme 6.41). As mentioned in Section 6.3, this method was ap-
plied to obtain diorganyl selenides and sulfides. Moreover, this methodology takes
advantage of the reuse of the solvent, maintaining excellent performance in five con-
secutive reactions.
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Scheme 6.41: Synthesis of selenoesters promoted by Zn [60].
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The IL [bmim][BF4] was used in combination with the bimetallic system Sn(II)/Cu
(II) by Braga and coworkers [62] to generate selenoesters 42 and thioesters 45
(Scheme 6.42). In this chapter, diphenyl diselenide 1 or disulfide 3 reacted with acyl
chlorides 43. The higher yields were obtained starting from aryl chlorides substi-
tuted with electron-withdrawing group in the aromatic ring, due to the increase in
electrophilicity of the carbonyl center. Further, the authors observed a drastic de-
crease in yields when acetyl chloride was used (10–17% yield) compared to aroyl
ones (52–84% yield). Moreover, diorganyl chalcogenides and chiral β-chalcogen
amines were also prepared by this procedure (Sections 6.3 and 6.4).

A solvent-free, microwave-accelerated synthesis of selenoesters 42 was described
by Braga and coworkers in 2012 [113]. In this study, the reductive cleavage of the
selenium–selenium bond of diorganyl diselenides 1 was promoted by Zn. The nucle-
ophilic zinc selenolate species reacted with several aromatic and aliphatic acyl
chlorides 43 in the absence of solvent, affording the desired products 42 in short
reaction times and in 40–95% yields (Scheme 6.43).
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Scheme 6.42: Synthesis of selenoesters and thioesters using a bimetallic system [62].
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Scheme 6.43: Synthesis of selenoesters 42 under solvent-free conditions [113].
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In the proposed reaction mechanism, initially zinc inserts in the Se–Se bond, form-
ing species I, which reacts with acyl chloride 43 to give selenoester 42 and species
II (the Santi’s reagent). Once formed, II can react with other acyl chloride, forming
more product 42 (Scheme 6.44).

In the same year, Santi and coworkers [114] reported a new, green procedure to
form aromatic and aliphatic selenoesters. These compounds are prepared from phe-
nylchalcogeno zinc halides 24 (the Santi’s reagent) and acyl chlorides 43 under “on
water” conditions (Scheme 6.45). The selenoesters 42 were obtained in 20–97%
yields after 3 h of reaction. In this work, it was observed that PhSeZnBr was more
reactive than PhSeZnCl in all the tested examples. 4-Butylbenzoyl chloride was the
unique exception, and in both cases the corresponding selenoester was obtained in
60% yield. Also, thioesters 45f and 45g were prepared in 37% and 55% yields, re-
spectively, under these “on water” conditions (Scheme 6.45). The aqueous medium
can be reused for three times in the reaction between benzoyl chloride and PhSeZnBr
24, after neutralizing the pH (70%, 60%, and 55% yields).
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Scheme 6.44: Mechanism proposed by Braga and coworkers [113].
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Scheme 6.45: Synthesis of selenoesters 42 “on water” [114].
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The reaction involves a concerted mechanism, in which it first generates intermediate
I, following the activation of the carbonyl group and the nucleophilic attack of the
selenium. This intermediate evolves in species II, which affords the desired products
42 (Scheme 6.46). The collateral product is formed by the nucleophilic attack of
water, which happens slowly.

More recently, in 2017, Santi et al. [115] developed a new strategy for the synthesis
of selenoesters 42 under “on water conditions,” which involved the reaction be-
tween acyl chlorides 43 and zinc selenates, such as zinc bis-phenylselenate 46 or
TMEDA-stabilized zinc selenate 47 (Scheme 6.47). The desired products 42 were
formed in 53–90% yields when compound 46 was used, and in 35–80% using com-
plex 47. The authors also performed a “one-pot” synthesis, followed by a direct
chromatographic purification of the Se-phenyl benzoselenoate 42c, thus avoiding
the workup of the reaction and making the process greener.

Perin and coworkers described the synthesis of selenoesters 42 by reacting acyl
chlorides 43 and arylselenol 28, which was generated in situ from the reductive
cleavage of the Se–Se bond of different diaryl diselenides 1 with hypophosphorous
acid (Scheme 6.48) [116]. The reactions were carried out using PEG-400 as solvent
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Scheme 6.46: Concerted mechanism proposed by Santi and coworkers [114].
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and they proceeded efficiently with a range of acyl chlorides and diaryl diselenides,
both containing electron-donating and electron-withdrawing groups, giving the cor-
responding selenoesters in good to excellent yields (60–96%). However, when piva-
loyl chloride or dibutyl diselenide were used, only traces of the desired products
were obtained. Additionally, PEG-400 can be easily recovered and directly reused in
the new reactions between diphenyl diselenide and benzoyl chloride. A moderate
level of efficiency was maintained for three times.

The same group [117] prepared new glycerol-derived selenoesters 42 from the re-
action between anhydrides 48 and bis-(2,2-dimethyl-1,3-dioxolanylmethyl)diselenide
1j in a reducing system of Rongalite®/K2CO3 and PEG-400 as the solvent
(Scheme 6.49). The products 42 were prepared in 55–85% yields, after 20–180 min at
room temperature. Good results were obtained starting from aromatic anhydrides
containing electron‐withdrawing and electron‐donating groups, as well as heteroaro-
matic and aliphatic ones and diselenide 1j, to furnish the respective products 42 in
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acceptable yields. Also, an interesting water-soluble selenoester 42u was formed,
from a ketal deprotection reaction.

The mechanism of the reaction starts by the decomposition of Rongalite® in the
presence of K2CO3 to formaldehyde and anion I (Scheme 6.50A). This anion reacts
with the diselenide 1j through a single electron transfer reaction, forming the inter-
mediates II and III (Scheme 6.50B). Subsequently, radical II undergoes a reduction
to anion III (Scheme 6.50C). Finally, intermediate III attacks anhydride 48, leading
to elenoester 42 (Scheme 6.50D).

6.8 Vinyl selenides

The vinyl chalcogenides are versatile intermediates in organic synthesis, being use-
ful tools for the selective construction of conjugated or isolated olefins [32, 49].
Besides that, vinyl sulfides are also present in natural occurring compounds, such
as griseoviridin and benzylthiocredillidone [118].

Several protocols for the synthesis of vinyl selenides have been reported, and
the most common and atom-economic procedures involve the hydrochalcogenation
of internal or terminal alkynes using organoselenols or the respective selenolate
anions generated in situ [25, 41]. The plausible mechanism of this reaction may
involve either an external nucleophilic attack to the triple bond coordinated with
metals with high Lewis acidity, which leads to the product of the anti-addition of
the nucleophile, or an insertion reaction into the metal–chalcogen bond in the chal-
cogenolate, by formation of a four-membered transition state resulting in the syn-
addition (Scheme 6.51) [119, 120].
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The development of safer reaction conditions for the hydroselenation of termi-
nal alkynes has been increased over the years. Additionally, some studies reported
the substitution reaction of haloalkenes by nucleophilic selenium species using
nonvolatile solvents.

The hydroselenation of alkynes 49 using diorganyl diselenides 1, NaBH4, and
[bmim][BF4] as the solvent was proposed by Lenardão et al. in 2007 [121]. In this
chapter, several alkynyl alcohols 49 were evaluated and in all the cases, a mix-
ture of gem-vinyl selenides 50 and (Z)-50 was obtained. The amount of gem-
product 50 depends on the volume of the substituent at the propargyl alcohol.
Still, when using the homo-propargyl alcohol 49, the lowest selectivity was observed.
Interestingly, (E)-1,2-bis-phenylselenostyrene was formed from phenylacetylene (63%
yield, 3 h), as observed and discussed in Section 6.9 [122]. Moreover, the IL was
reused several times without aqueous workup and no significant decrease in the
yields of successive reactions was observed (Scheme 6.52) [123].

PEG-400 was also successfully employed as solvent in the synthesis of vinyl se-
lenides 50. The nucleophilic species of selenium were easily generated in situ by
the reaction of diphenyl diselenide 1 with NaBH4 as a reducing agent in PEG-400
(Scheme 6.52) [124]. In this chapter, the hydroselenation of several alkynes 49 pro-
moted by NaBH4/PEG-400 was very efficient, and a mixture of Markovnikov and
anti-Markovnikov adducts 50 was obtained in good to excellent yields (50–95%) in
short reaction times. The recycling of PEG-400 was performed in reactions between
diphenyl diselenide and phenylacetylene as starting materials; the product was iso-
lated in similar yields (85–71%) after four runs using the same solvent. When glyc-
erol was used as the solvent in the reaction of phenylacetylene with diphenyl
diselenide, the reaction behavior was similar to that using IL, giving a mixture of
(E)- and (Z)-1,2-bis-phenylseleno styrene 52 [121, 123].
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Scheme 6.51: General mechanism for the hydrochalcogenation of alkynes.
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Functionalized vinyl selenides 50 have been synthesized from diverse sub-
strates, such as electron-deficient alkynes 49, using green conditions. For instance,
Perin et al. developed a solvent-free hydroselenation of methyl propiolate deriva-
tives to obtain various β-phenylseleno-α,β-unsaturated esters 50 preferentially with
Z-configuration (Z:E ratio of 73:27 to 98:2) (Scheme 6.53) [125]. The sodium borohy-
dride supported on alumina (NaBH4/Al2O3) system was used in the generation
in situ of the reactive species of selenium (PhSe–) under three different conditions:
at room temperature, under microwave irradiation (in a domestic microwave oven)
and under heating (oil bath). The results indicated that there is no substantial dif-
ference in the reaction performance among the three procedures. The vinyl sele-
nides 50 were obtained in good yields (50–83%) with comparable selectivity to the
protocols that use volatile organic solvents. Further, the reaction times were re-
duced from several hours to only few minutes under microwave irradiation.

The method described earlier was extended to the preparation of (Z)-β-
phenylseleno-α,β-unsaturated ketone 50 starting from 3-organyl-3-butyn-2-ones 49
(Scheme 6.53) [126]. A remarkable feature of this green protocol is the possibility of
using NaBH4 as a reducing agent in the presence of the carbonyl group of the ke-
tone without parallel reactions, besides no need to using inert atmosphere. The se-
lenides were obtained in a high selectivity (Z:E ratio of 85:15 to 96:04). As shown in
the previous work [125], the irradiation with microwaves allowed the synthesis
of compounds 50 in good yields (62–82%) and short reaction times. For instance,
the reaction between diphenyl diselenide and 4-phenyl-3-butyn-2-one gave the
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Scheme 6.52: Hydroselenation of alkynes 49 using diorganyl dichalcogenides 1 [121, 123, 124].
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respective β-phenylseleno ketone after 40 min under conventional heating (42 °C,
51% yield), versus 1.5 min under microwave irradiation (64% yield). Following this
study, the NaBH4/Al2O3 system was successfully employed in the solvent-free hy-
droselenation of several other Michael-acceptor alkynes 49 (esters, ketones, and ni-
trile) using diphenyl diselenide 1i (Scheme 6.53) [127].

The Santi’s reagent 24 was used as a source of selenium nucleophilic to prepare
functionalized vinyl selenides 50 from electron-deficient alkynes 49 on water. After
stirring an aqueous suspension of an equimolar mixture of alkyne 49 and the
bench-stable PhSeZnCl 24, the respective Michael adducts 50 were isolated from
good to excellent yields with Z-configuration, preferentially (83–100% yield; Z:E
ratio = 66:34–100:0) (Scheme 6.54) [101]. A comparison between water and THF as
the solvent showed a remarkable acceleration of the reaction in aqueous medium.
The authors described that water should play a role in activating the selenium re-
agent 24, with no influence in the reactivity of the substrate. The method tolerates
a range of electron-deficient alkynes 49, such as esters, ketones, and aldehydes. As
mentioned in Section 6.6, the same Santi’s reagent 24 was used in Michael-type ad-
ditions to electron-deficient alkenes, affording the respective diorganyl selenides in
excellent yields.

The vinyl substitution with a nucleophilic or electrophilic organochalcogenium
species is often another strategy used to synthesize vinyl chalcogenides. Through this
approach, vinyl chalcogenides were obtained with total control of the stereochemistry,
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Scheme 6.53: Hydroselenation of electron-deficient alkynes 49 [125–127].
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which depends totally of the purity of starting material. Despite the generally “stereo-
conservative” reaction, this procedure is less atom-economic than the direct hydrochal-
cogenation of alkynes. By using this useful protocol, Kabalka and Venkataiah [128]
described the access to (E)- and (Z)-vinyl selenides 50 by the reaction between vinyl-
boronic acids or vinylboronic esters 54 with phenylselanyl chloride 11 in IL
(Scheme 6.55). After stirring equimolar amounts of PhSeCl 11 and the vinyl boronic re-
agent 54 in [bmim][BF4] as the solvent for 2 h, the (E)- and (Z)-products 50 were pre-
pared from the correspondent (E)- and (Z)-isomers of 50. In addition, the solvent could
be recycled by successive reactions without significant reduction in the product yield.

An alternative protocol to prepare (Z)-vinyl chalcogenides 50 or 53 was reported by
Bao and coworkers [129], which involves a highly stereoselective copper-catalyzed cou-
pling reaction. Several alkenyl and styryl bromides 55 reacted with diaryl diselenides 1
or thiols 31 in the presence of zinc powder and using an IL as solvent (Scheme 6.56).
The IL based on the amino acid N,N-dimethylglycine acts both as a base and as a
solvent in the reaction. Different vinyl selenides 50 were isolated in good to excellent
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yields with high stereoselectivity (Z:E = 94:6 > 98:2). Vinyl bromides 55 afforded
lower yields in the reaction with benzenethiol and diphenyl diselenide, of 70% and
76%, respectively. Additionally, the IL was recycled in the reaction between benzene-
thiol and (Z)-β-bromostyrene. After the product extraction, the IL was concentrated
in vacuo and reused for three times with comparable yields of the vinyl sulfide. To
further new reactions, a pretreatment to remove HBr from IL with potassium carbon-
ate was necessary.

A similar strategy was described by Ranu and coworkers [58], which used Cu(0)
NPs (20 mol%) in the presence of zinc dust (1.5 equiv.) to promote the coupling of
vinyl bromides 55 with diphenyl diselenides 1 in water under ligand-free conditions
(Scheme 6.56). Interestingly, when (E)-vinyl bromide 55 was used, the (E)-vinyl sel-
enide 50 was obtained exclusively, while (Z)-vinyl bromides 55 gave a mixture of
(E)- and (Z)-vinyl selenides 50 (E:Z = 54:46 to 20:80 ratios). The reaction was not
sensible to electronic effects in the aromatic ring of the styryl bromide and both
product yield and stereoselectivity were not affected by the presence of substituents
in the phenyl ring. In addition, the efficiency of the Cu(0) NPs as catalyst was re-
markable when compared with metallic Cu in the reaction between diphenyl disele-
nide and styryl bromides (87–88% vs. 35–43% yields). The authors described the
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Scheme 6.56: Synthesis of vinyl selenides 50 from vinyl bromides 55 [58, 129].
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agglomerating tendency of the Cu NPs after various cycles of reusing, resulting in
the loss of efficiency and a decrease in yields from 90 to about 75% after three suc-
cessive reactions. This procedure was used also to prepare diaryl selenides by the
cross-coupling of diphenyl diselenide with aryl iodides, as reported in Section 6.3.

As mentioned earlier, PhSeZnCl 24 is a good nucleophile in the vinylic substitu-
tion of functionalized vinyl bromides and chlorides 55 to prepare the different vinyl
selenides 50 (Scheme 6.57) [130]. By this procedure, the vinyl selenide 50 was ob-
tained strictly with the same stereochemistry of the substrate utilized as a starting ma-
terial. Only when (Z)-3-chloro-1-phenylprop-2-en-1-one was used as a substrate, a little
amount of (E)-vinyl selenide (5–9%) was isolated together with the (Z)- one. In this
work, several (Z)- and (E)-vinyl selenides were synthetized in good to excellent yields
starting from (Z)- and (E)-β-bromostyrenes, as well as (Z)- and (E)-β-chloro enones and
α,β-unsaturated esters. Additionally, a comparative study on the use of water or THF
as the solvent at room temperature showed that the “on water” reaction afforded
products 50 in higher yields and less time than in THF medium (2 h vs. 24 h).

Encouraged by the results obtained “on water,” the reaction between 4-chloro-
3-nitro-2H-chromen-2-one 56 and PhSeZnCl 24 was studied, yielding the respective
(Z)-vinyl selenide 57 in 78% yield, showing that the reaction tolerates a sort of func-
tionalities in the substrate (Scheme 6.58).

Lenardão and coworkers described the cross-coupling reaction of (Z)- and (E)-vinyl
bromides 55 with diaryl diselenides 1 catalyzed by CuI in the presence of zinc, using
glycerol as the solvent (Scheme 6.59) [131]. Various (Z)- and (E)-vinyl selenides 50
were prepared selectively from styryl bromides 55 bearing electron-withdrawing
and electron-donating groups, with retention of the configuration of the starting
materials 55. After completing the reaction between β-bromostyrene and diphenyl
diselenide, the recyclability of the CuI/Zn/glycerol mixture was explored. The cat-
alyst/solvent system was directly reused for further reactions, simply by adding
more reagents. The recyclable system showed a good level of efficiency in five con-
secutive reactions; after the fourth run, the yields were slightly decreased. The mech-
anism of these coupling reactions involves the initial reduction of Cu(I) to Cu(0) by
metal zinc [132]. Next, Cu(0) undergoes an oxidative addition to diaryl diselenide 1,
giving the intermediate (ArSe)2Cu(II) (Scheme 6.59). After reduction by Zn, this inter-
mediate leads to ArSe–Cu(I), which reacts with aryl vinyl bromides 55 to give the

Cl
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56 57
O O 78%

25 °C, 2 h, H2O
O

SePh

O

NO2NO2

Scheme 6.58: Synthesis of (Z)-vinyl selenide 57 from 4-chloro-3-nitro-2H-chromen-2-one 56 [130].
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respective vinyl selenide 50 via a “transitory” Cu(III) intermediate. Zn(SeAr)2 formed
after the reduction of Cu(SeAr)2 by Zn reacts with CuI to form more ArSeCu(I), with
both ArSe moieties of ArSeSeAr being used in the overall reaction.

In 2016, Perin and coworkers [133] described the monosubstitution of bromine atom
from 1,1-dibromo-alkenes 58 by a diverse array of nucleophilic selenium species,
generated in situ from the corresponding diaryl diselenides 1 by reaction with
NaBH4 as a reducing agent in PEG-400 (Scheme 6.60). This metal-free method em-
ployed diaryl diselenides 1 and 1,1-dibromo-alkenes 58 to prepare (E)-1-bromo-1-
selenoalkenes 59. Nine alkenes 59 were formed in good yields (49–95%) at 50 °C
using conventional heating for 0.5–2.0 h. Additionally, by simple stoichiometry and
temperature-controlling reaction, five ketene selenoacetals 60 were efficiently ob-
tained in a range of 42–76% yield, after 1.0–3.5 h of reaction. The proposed mecha-
nism to give the (E)-1-bromo-1-selenoalkenes 59 starts by the generation of the
saturated intermediate C, after addition of the selenolate anion A to the double
bond, with the involvement of the solvent to stabilize the transition state B. The
elimination of HBr, through an anti-periplanar conformation, results in the forma-
tion of the desired compound 59. A sequential addition of a second phenylse-
lenyl group to 59 affords the ketene selenoacetal 60.

Functionalized vinyl selenides 50 were prepared by the Knoevenagel reaction of
phenylselenoacetonitrile or ethyl (phenylseleno)acetate 61 with aldehydes 36 in the
presence of a solid-supported catalyst (KF/Al2O3) under solvent-free conditions
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Scheme 6.59: Synthesis of vinyl selenides 50 and mechanism involving cross-coupling reactions [131].
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(Scheme 6.61) [134]. By this protocol, β-phenylselenoacrylonitriles and β-phenylseleno-
α,β-unsaturated esters were prepared in 40–80% yields. In all cases, a mixture of (Z)-
and (E)-alkenes 50 was formed, with preference for the (Z)-isomer. The Knoevenagel
approach using KF/Al2O3 is a straightforward alternative to access functionalized com-
pounds. Despite the modest yields, the reaction is versatile and the use of aromatic,
heteroaromatic, and aliphatic α,β-unsaturated aldehydes was suitable. In general,
acrylonitriles were obtained in better yields than the ester analogues. Still, the solid
support was reused in new reactions with comparable yield, after addition of more KF.

Perin and coworkers [135] reported in 2016 the use of PEG-400 as solvent to prepare
selectively enynes 62–64 and dienes 65–66 substituted with chalcogenyl groups,
through the hydrochalcogenation of 1,4-diorganyl-1,3-butadiynes 67 under mild
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Scheme 6.61: Synthesis of functionalized vinyl selenides 50 by the Knoevenagel reaction [134].
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reaction conditions (Scheme 6.62). The first step of this temperature-controlled
strategy was the generation of nucleophilic species of selenium, tellurium and sul-
fur in situ, by the reaction of the respective diorganyl dichalcogenides with NaBH4.
These reactive species reacted with diynes 64 at 30 °C affording the respective
(Z)-chalcogenynes 62–64 (Se, S, and Te), while at 90 °C, (Z,Z)-bis-chalcogen-1,3-
butadienes 65–66 (Se and S) were produced in good to excellent yields. In general,
this stereoselective method works better with aliphatic dichalcogenides, due to
their higher nucleophilicity, giving the products in higher yields. The irradiation
with microwaves as an alternative energy source to the conventional oil bath pro-
vides the expected products in lower reaction times.

A new class of vinyl selenides 68 was prepared by Perin and coworkers, by the
regio- and stereoselective addition of sodium selenide species to two equivalents of
aryl alkynes 49 under green conditions (Scheme 6.63) [136]. In this work, the nucle-
ophilic species of selenium was generated in situ, from the reaction of elemental
selenium with NaBH4, utilizing PEG-400 as the solvent. By this one-pot procedure,
some divinyl selenides 68 were synthesized in moderate to excellent yields with
high selectivity for the (Z,Z)-isomer. These reactions proceeded under gentle heat-
ing at 60 or 90 °C in short reaction times. Additionally, the reactivity of this class of
compounds was explored in the Fe-catalyzed cross-coupling reaction between prop-
erly substituted divinyl selenide 68b and a Grignard reagent leading to the valuable
resveratrol trimethyl ether in 57% yield.
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Scheme 6.62: Synthesis of (Z)-chalcogenynes (Se, S, and Te) 62–64 and (Z,Z)-bis-chalcogen-1,
3-butadienes (Se and S) 65–66 [135].
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6.9 Bis-organoselanyl alkenes

The class of the bis(selanyl)-alkenes is of much importance due to its pharmacologi-
cal properties, such as antioxidant and antinociceptive ones [22, 35]. They are also
versatile tools in organic synthesis, being used as a precursor of enediynes and
other functionalized olefins [137, 138]. Several green methods are reported to form
this class of compounds, which are alternatives to the classical ones.

In 1991, Ogawa et al. [139] published a photocatalyzed reaction, between di-
phenyl or dibutyl diselenides 1 and different internal and terminal alkynes 49 using
a tungsten lamp (500 W). The expected products 52 were isolated in 18–91% yields
with moderate selectivity E:Z = 28:72 to 95:5 (Scheme 6.64).

The reaction mechanism involves the formation of the selenium-centered radical II, by
reaction of PhSeH with oxygen (Scheme 6.65). Then, compound I was added slowly to
a CCl4 solution of diselenide 1 under oxygen atmosphere in the dark, generating spe-
cies IV and product 52a. Alternatively, it is predicted that the addition prompted the
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6 examples
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Scheme 6.63: Synthesis of divinyl selenides [136].
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formation of radical III, which undergoes a substitution with diselenide leading to the
formation of product 52a and species IV, with the regeneration of radical II.

Few years later, in 2003, Ananikov and Beletskaya [140, 141] developed a palla-
dium-catalyzed procedure under solvent-free conditions to obtain bis-organoselanyl
alkenes 52 in only 2 h at 100 °C (Scheme 6.66). The addition of diaryl diselenides 1 to
terminal alkynes 49 was catalyzed by 1 mol% of Pd(OAc)2, PdCl2, or Pd(PPh3)4 com-
plex in the presence of PPh3 in excess (15 mol%). The products were obtained in ex-
cellent yields (95–99%) and high selectivity for the (Z)-isomer. They also performed
the addition of disulfides 3 to alkynes 49, and in all cases the products were obtained
with a high selectivity (Z:E > 97:3).

+ (PhSe)2

+ (PhSe)2

+ PhSeH

Ph
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25 °C, 2 h

+ SePh
Ph

H

IV

III

I1i49a
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Scheme 6.65: Mechanism of the photoaddition [139].
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The mechanism of the solvent-free reaction using Pd(PPh3)4 I as the catalyst was
studied by NMR. The formation of the dinuclear complexes II and III from the reac-
tion of I with the dichalcogenide 1 or 3 is favored in the presence of an excess of
PPh3. Following this intermediate reacts with alkyne 49 to form the key adduct in-
termediate V that leads to products 52 and 69 after reaction with another molecule
of 1 or 3, respectively (Scheme 6.67).

In 2006, Perin et al. [122] described the solvent-free addition of chalcogenolate to prop-
argylic alcohols and phenyl acetylene 49 to form the respective bis-organoselanyl al-
kenes 52 in good yields (Scheme 6.68). The reaction was performed using alumina-
supported NaBH4 as reducing agent to cleave the Se–Se bond in diphenyl disele-
nide 1. (E)-Bis-organoselanyl alkenes 52 and 70 were preferentially obtained start-
ing from phenyl acetylene (E:Z ratio = 71:29 to 88:12), while monosubstituted (Z)-
vinyl chalcogenides 50 and 51 (Z:E ratio = 70:30 to 91:09) were obtained starting
from propargylic alcohols. The reaction was conducted using three different condi-
tions: at room temperature, heating at 60 °C (oil bath), and under microwave irradia-
tion, allowing the formation of the products in only few minutes.

In 2007, Cai et al. [142] reported a new method to obtain (Z)-1,2-bis-chalcogen al-
kenes 52 and 69 using IL [bmim][PF6] as the solvent (Scheme 6.69). The addition of
diaryl diselenides 1 to aliphatic and aromatic terminal alkynes 49was catalyzed by Pd
(PPh3) at 60 °C, and products 52 were obtained in excellent yields (94–98%) and high
selectivity (Z:E ratio > 99:1). Vinyl sulfide 69 analogues were equally formed in
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Scheme 6.67: Mechanism of the Pd-catalyzed reaction [140, 141].
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excellent yields (93–98%) and with the same selectivity than selenides 52. Moreover,
the solvent and the palladium catalyst were reused for four successive reactions and
the product (Z)-1,2-bis(phenylselanyl)-hex-1-ene was obtained without decrease in
yield.

In 2010, Perin and coworkers [143] reported the thiolation of phenylselenoal-
kynes 71 under solvent-free conditions using KF/alumina as base (Scheme 6.70). A
mixture of (Z)- and (E)-isomers 72 was obtained in good yields (49–90%) after stir-
ring at 60 °C for 2.5–3.0 h. Aromatic and aliphatic phenylselanyl alkynes 71 and thi-
ols 31 were employed; however, the best yields were obtained using aromatic
thiols. In all the studied examples, the presence of the organoselenium group in al-
kyne 71 directed the regiochemistry in favor of the (Z)-1,2-bis-chalcogeno alkenes
(Z:E ratio = 62:38 to 75:25).
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Scheme 6.68: Vinyl chalcogenides prepared by Perin et al. [122].
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Scheme 6.69: Vinyl chalcogenides prepared by Cai et al. [142].
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The mechanism involves the reaction of the thiolate anion I with selanylalkyne
71, forming the vinyl anion intermediates II and III. Subsequently, a protonation
occurs giving the expected product 72 (Scheme 6.71).

The same group in 2012 described [144] the use of KF/Al2O3 (50%)/PEG-400 as a re-
cyclable system for the stereoselective synthesis of (Z)-1,2-bis-arylselanyl alkenes
52, both under microwave irradiation and at 90 °C (oil bath). The formation of (Z)-
alkenes 52 almost exclusively was found to be in 32–90% yields using the conven-
tional heating and 22–98% yields under MW irradiation (Scheme 6.72). The reaction
was extended to aromatic, aliphatic, and propargyl alkynes 49 and several diaryl
diselenides 1, and the products were obtained with high selectivity (Z:E ratio > 97:3).
Interesting, when the sterically hindered dimesityl diselenide was used in the reac-
tion with phenyl acetylene 49a, 1-mesitylselanyl-2-phenylethyne was obtained in
72% yield in place of the expected vinyl selenide. Moreover, the reuse study of the
KF/Al2O3 (50%)/PEG-400 system was made for the reaction between diphenyl dise-
lenide and phenylacetylene. The results indicated the need for addition of more
base to the reaction medium after each run. The expected product 52a was isolated
in 68% yield in the second reaction and in only 26% in the third one.

In 2009, Perin and coworkers [124] developed a new protocol to prepare 1,2-bis-
phenylchalcogeno styrenes 52a and 70a in moderate yields using glycerol, at 60 °C in

R = C6H5, C5H11; R1 = aryl
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8 examples
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Scheme 6.70: Synthesis of mixed vinyl chalcogenides by Perin and coworkers [143].
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Scheme 6.71: Mechanism proposed by Lara et al. [143].
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the presence of NaBH4 (Scheme 6.73). By the reaction between phenylacety-
lene 49a and diphenyl diselenide 1i, the products 52a and 70a were isolated
in 75% and 45% yields and with a Z:E ratio of 77:23 to 82:18, respectively.

The mechanism for the reaction using glycerol involves the cleavage of the chalcogen–
chalcogen bond by NaBH4 and the formation of the respective chalcogenolate anion I.
Anion I reacts with phenylacetylene through anti-addition, possibly via the transition
state II, leading to products 52a and 70a after abstraction of a proton from the reaction
medium (Scheme 6.74).

The same reaction conditions were used by Perin et al. [145] to form (Z)-1,2-bis-
chalcogeno alkenes (Se–Se, S–Se, and Te–Se) 52, 72, and 73 through the addition
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OH
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Scheme 6.72: Synthesis of (Z)-1,2-bis-arylselanyl alkenes 52 [144].
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Scheme 6.73: Synthesis of 1,2-bis-phenylchalcogeno styrenes 52a and 70a [124].
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of chalcogenolate anions to phenylselenoalkynes 71 (Scheme 6.75). The reactive
species of chalcogen was generated in situ using NaBH4 as reducing agent in PEG-
400 as the solvent. Products 52, 72, and 73 were obtained in short times and poor to
very good yields (20–83% overall), with a high selectivity for the Z isomer (Z:E
ratio = 97:3 to 100:0).

In 2016, Perin, Alves and coworkers [146] reported an alternative method to
obtain mainly (E)-bis-selanyl alkenes 52 in moderate to excellent yields
(56–96%; E:Z ratio = 85:15 to 100:0) in aqueous H3PO2 as a reducing system.
The protocol is based on the reaction of terminal alkynes 49 with organylse-
lenols, generated in situ by the reaction of diorganyl diselenides 1 with
H3PO2 at 90 °C under N2 atmosphere. The reactions proceeded efficiently
using a range of terminal alkynes and diorganyl diselenides, both containing
electron-donating and electron-withdrawing groups. When the reaction was
conducted in the absence of solvent, (Z)-vinyl selenides 50 were obtained in
good to excellent yields (55–98%) with Z:E ratio of 70:30 to 100:0. Further,
the H3PO2/H2O system was recovered and directly reused for five times in
the reaction between benzeneselenol 28 and phenylacetylene 49a to prepare
bis-selanyl alkene 52a (Scheme 6.76).
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SeC6H5 +  PhYYPh
NaBH4

PEG-400, 60 °C, N2
10 examples

C6H5

C6H5Se C6H5TeC6H5S

OH OH

SePh

SePh

SePh SePh

Selected products

PhY

52a 81%, 3 h 72e 83%, 3 h

1i, 3a, 10a71
Y= Se 52 20–81%, 2–3 h

Te 73 30–70%, 3–4 h
S 72 74–83%, 3 h

73a 70%, 3 h

Scheme 6.75: Synthesis of (Z)-1,2-bis-chalcogeno alkenes using NaBH4/PEG-400 [145].
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6.10 Selenoalkynes

Selenoalkynes are used as versatile building blocks for a wide range of chemical trans-
formations due to their stable triple bond and have been used as useful intermediates
in organic synthesis [147]. These compounds have been reported as precursors to the
bis-phenylchalcogen alkenes [145], 9-iodo-10-organochalcogen-phenanthrenes [148], 2-
selanyl-benzo[b]furans [149], and 2-arylselenanylbenzo[b]selenophenes [150].

Several procedures for the synthesis of this class of compounds were described in
the literature; however, only a few of them are eco-friendly. For example, an atom-
economic protocol using CuFe2O4 NPs in PEG-400 was developed by Ranu and cow-
orkers in 2013 to prepare different chalcogenoalkynes [65]. More specifically, selenoal-
kynes 71 and telluroalkynes 74 were prepared through the coupling reaction of alkynyl
boronic acids 75 with diaryl dichalcogenides 1 and 10 (Se and Te) (Scheme 6.77). These
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Scheme 6.76: Synthesis of vinyl selenides using H3PO2/H2O [146].
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base-free reactions were carried out at 100 °C for 16 h, affording the chalcogenoalkynes
71 and 74 in 78–83% yields.

In 2018, Wu et al. [151] described a metal-free synthesis of alkynyl alkyl selenides
71 in aqueous medium by a three-component coupling reaction via a double C–Se
bond formation process (Scheme 6.78). In this procedure, elemental selenium reacts
with several epoxides 27 and a variety of functionalized terminal alkynes 49, includ-
ing aryl, alkyl, naphthyl, thienyl, and pyridyl. This efficient and straightforward
route is highly regioselective for the preparation of selenoalkynes 71 in moderate to
excellent yields at 45 °C with tolerance to a wide range of functional groups. In addi-
tion, the authors performed with efficience a gram-scale synthesis of compound 71c
(72% yield; 3.95 g). Further, this convenient pathway was applied to the selenation of
pargyline (bioactive molecule) giving the product 71g in acceptable yield.

The proposed mechanism for the double C–Se bond formation involves dispropor-
tionation of elemental selenium under basic conditions to generate a selenide
anion. Subsequently, Se2

2– attacks epoxide 27a to form the ring-opened alkylsele-
nide anion species I. This unstable species is quickly oxidized to the diselenide
intermediate II. Finally, the terminal alkyne underwent alkylselenation in the
presence of a base, to afford the alkynyl alkyl selenide 71 (Scheme 6.79).
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6.11 Seleno-functionalized heterocycles

The heterocyclic motif is present in most of the natural occurring bioactive compounds
[152]. For this reason, the development of methods to prepare new functionalized het-
erocycles is a hot topic in organic synthesis. The introduction of one or more organo-
chalcogen substituents in the chemical structure is a strategy to increase the biological
activities or to prepare molecules applied in asymmetric synthesis [153, 154].

In 2003, Fujita et al. [155] developed the first intramolecular oxyselenenylation,
namely selenolactonization, and the subsequent deselenenylation in water using a
polymer-supported organoselenium reagents, the selenyl bromide 76a and the aryl-
selenenyl bromides 76b and 76c. The use of a polymer support avoids the decompo-
sition of the organoselenium reagents to form diselenide, due to the immobilization
of the organoselenium on the polymer (Scheme 6.80). Compounds 76 were synthe-
sized from aminomethyl-polystyrene and ArgoGel-NH2, respectively. In the optimi-
zation tests, (E)-styrylacetic acid 77 was used as starting material in the reaction
using three different resins, and the expected butenolide 79 was obtained in 29%
yield with 76a, 59% yield with 76b, and 62% yield with 76c. Compound 76c was
then used in various intramolecular oxyselenenylation and deselenenylation reac-
tions to form the corresponding lactones 79 in moderate to good yields (41–83%).
When unsaturated alcohol was used, however, the expected allylic ether was not
formed, probably due to the interruption of the intramolecular nucleophile attack
by water in the oxyselenenylation step.

In 2004, Ericsson and Engman [156] reported a microwave-assisted group-transfer cy-
clization of organoselenides to obtain tetrahydrofuran derivatives 80 (Scheme 6.81).
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The cyclization of benzylic selenide 6af was carried out forming the product 80 in
91% yield after 5 min, in a cis/trans ratio of 1/2.1.

In 2012, Perin et al. [157] described the Zn-catalyzed preparation of new 5-arylchal-
cogenoalkyl-1H-tetrazoles 81 and 82 by the 1,3-dipolar cycloaddition of arylchalco-
genoalkyl nitriles 83 with sodium azide in aqueous solution (Scheme 6.82). Products
81 and 82 were formed in moderate to good yields (61–86%) in 24 h. In general, elec-
tronic effect of the aromatic ring in the arylselenium species did not affect the reac-
tion. Among the prepared compounds, 81a showed good antifungal activity against
Trichosporon asahii and Candida lipolytica.

Lenardão and coworkers in 2013 [158] published a method to prepare 3-
arylselenylindoles 84 through the reaction between ArSeCl 11 and indole 85 at room
temperature, under N2 atmosphere using IL [bmim][SeO2(OCH3)] (Scheme 6.83).
Products 84 were obtained in good yields (53–78%) in a relatively short reaction
time (2–3 h). Moreover, it was observed that the presence of electron-donor or
electron-withdrawing groups in the organoselenium species and in the indole did
not affect the reaction. In addition, the IL could be reused up to four times with
good results to prepare the 3-phenylselenylindole 84c.
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Scheme 6.81: Microwave-assisted group-transfer cyclization [156].
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2-Organylselanyl pyridines 86 were prepared by the reaction of 2-chloropyridines
87 and organylselenols generated in situ from diorganyl diselenides 1 in glycerol,
using hypophosphorous acid as reducing agent (Scheme 6.84) [159]. Products 86
were prepared in short reaction times (1.5–5.5 h) in 44–97% yields. The reaction was
not sensitive to electronic effect in the aromatic ring of diaryl diselenides nor in the 2-
chloropyridines. The reducing solvent–system glycerol/H3PO2 were reused for five
times maintaining good yields (80–99 %) in the synthesis of 2-phenylselanyl pyri-
dine. The authors described that glycerol also acts as a reducing agent that regener-
ates H3PO2 for new successive reactions with diselenide.

In 2014, Potapov et al. [160] developed the green synthesis of two compounds: 1,5-
bis[(3,5)-dimethylpyrazol-1-yl]-3-selena pentane 88 and 1,3-bis(1,2,3-benzotriazol-
1-yl)-2-selena propane 89 (Scheme 6.85). The reaction was conducted using an
inexpensive reagent: elemental selenium and sodium formaldehydesulfoxylate
(HOCH2SO2Na, Rongalite

®) in aqueous NaOH, to generate in situ the selenide ion.
Products 88 and 89 were isolated in 70% and 90% yields, respectively. The
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Scheme 6.83: Synthesis of 3-selenylindoles 13 in ionic liquid [158].
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nitrogen atmosphere was unnecessary, probably due to the reductive atmosphere
created by the formation of SO2.

In 2016, Alves and coworkers [161] described the preparation of (arylselanyl)phe-
nyl-1H-1,2,3-triazoles 92 using microwave irradiation as a nonclassic energy
source (Scheme 6.86). Products 92 were obtained in good to excellent yields
(85–97%) after short reaction time (30 min) through the azide–alkyne cycloaddition
catalyzed by copper (CuAAC), in the presence of sodium ascorbate. A variety of termi-
nal alkynes 49 with different substituents, aryl, alkyl, vinyl, ester, and alcohols, were
used in the reaction with azidophenyl arylselenides 93. Among the obtained prod-
ucts, compounds 92d and 92e, which could present liquid-crystalline properties,
were successfully prepared.
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Scheme 6.85: Synthesis of azole-selenoethers 88 and 89 [160].
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In 2017, Lenardão and coworkers [162] described the copper-catalyzed ultrasound-
promoted synthesis of new Se-containing derivatives of chrysin 94, starting from diaryl
diselenides 1 and chrysin 95 (Scheme 6.87). Products 94 were obtained in good to ex-
cellent yields (60–89%) after 3–8 h of reaction. Different diorganyl diselenides were
used and the yield of the reaction was not affected by the presence of electron-
donating or electron-withdrawing groups in the aromatic portion of the diselenide.
When bis(2-aminophenyl)diselenide was used, no product was formed, probably due
to the presence of the amino group, which could deactivate the copper catalyst.
Further, the reaction doesn’t work well with dibutyl diselenide, and the expected com-
pound 94e was obtained only in trace amounts.

The mechanism of the selenation reaction involves the reaction of diphenyl disele-
nide with Cu, forming intermediate I (Scheme 6.88). Subsequently, I undergoes a
nucleophilic attack from chrysin, generating species II and III. Then, species II do-
nates a proton to III, affording the mono-Se-chrysin IV, PhSeH and regenerating
CuI for a new reaction. A second selenation occurs from IV in the same way to give
the expected product 94.

In the same year, Lenardão and coworkers [163] published a method to obtain 3-
selanyl-1H-indoles 84 and 3-selanyl-2-arylimidazo[1,2-α]pyridines 96 through a one-
step reaction between 1H-indoles 85 or 2-arylimidazo[1,2-α]pyridines 97 and diorganyl
diselenides 1 (Scheme 6.89). This copper-catalyzed reaction proceeded under ultra-
sound in few minutes (15–60 min), affording the expected products in good to excel-
lent yields (57–96%). A variety of heterocycles and diselenides were satisfactorily used
as substrates and no apparent influence of the substituents was observed. Six of the
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Scheme 6.87: Synthesis of new Se derivatives of chrysin 94 [162].
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prepared compounds (84a–d and 96a–d) showed significant antioxidant activity
in vitro, placing them as promising molecules for additional pharmacological studies.

In 2018, Sun and coworkers [164] reported a metal-free, iodide-catalyzed electro-
chemical C–H selenation of various indoles 85 and imidazo[1,2-α]pyridines 97
(Scheme 6.90). The method used an iodide salt both as electrolyte and catalyst,
and the electrolysis was performed using a graphite plate anode and platinum
plate cathode under galvanostatic node (constant current ~18 mA). The reaction
has an excellent regioselectivity and the products 84 substituted in the C3-position
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were formed exclusively in moderate to excellent yields (52–96%). The protocol
worked well with different indoles, unprotected indoles bearing electron-donor or
electron-withdrawing groups and N-methyl indoles. The less reactive substrates
were methyl-4-indolecarboxylate 84g and 7-nitroindole 84h, which afforded the re-
spective products in 52% and 63%, respectively. This low reactivity was attributed to
the steric hindrance and the strong electron-withdrawing effect, respectively.
Moreover, the reaction didn’t work with t-butyl-1H-indole-1-carboxylate and N-(4-
toluenesulfonyl)indole, due to the strong electron-withdrawing effect of the substitu-
ents. Good results were obtained using dialkyl diselenides 1 as substrate, affording
the respective products 84 in very good yields (83–87%). 7-Azaindole and imidazo
[1,2-α]pyridine were suitable substrates for the reaction, and the respective products
84j and 96e were isolated in 84% and 56% yields, showing the versatility of the
reaction.

Two possible mechanisms were proposed for the reaction (Scheme 6.91). In path-
way A, oxidation of iodide at the anode occurs, forming iodonium, which reacts with
the indole to give 3-iodo-indole I. This species is then captured by diselenide, forming
the expected product 84 and molecular iodine. In parallel, iodine is reduced to iodide
anion, which completes the catalytic cycle (Scheme 6.91A). The other possibility,
pathway B, involves the formation of electrophile RSeI in situ, by the reaction of the
pre-formed iodine with diselenide. This species undergoes heterolysis to form the
electrophile RSe+, which reacts with the indole, giving product 84.

In the same year, Yang et al. [165] described a regioselective visible light pro-
moted C–H selenation of 4-amino-substituted coumarin derivatives 98, forming the
selenylated products 99 in moderate to good yields (37–91%) after 24 h (Scheme 6.92).
In the variation of the reaction scope, it was verified that electron-donating and
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electron-withdrawing groups in the coumarin moiety were well tolerated and did
not affect the reactivity. Steric hindrance in the substituted diselenides in turn
affected the reaction, and product 99a was formed in only 37% yield. When
N-substituted-4-(phenylamino)-2H-chromen-2-ones 98 were used, the di-selenylated
products 100 were obtained in 69–80% yields. Substrates with substituent at the para-
position of the 4-aminophenyl group afforded exclusively the C-3-monoselenylated
product (Scheme 6.93).

Two plausible mechanisms could be involved in the reaction. In both cases,
initially the radical anion SO4

–• is formed from the persulfate anion under visi-
ble light. Subsequently, it reacts with the coumarin derivative to form the key
radical cation intermediate I, which coexists with II (Scheme 6.94). In pathway
A (R1 = H in 98), species III (a resonance structure of II) reacts with diselenide
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to afford the iminium intermediate IV. After deprotonation, IV leads to the expected
product monoselenylated 99 (Scheme 6.94A). Instead, in pathway B (R1 = CH3 in 98),
species III′ reacts with diselenide to form intermediate IV′, which leads to the monose-
lenylated intermediate species 99′. Subsequently, 99′ reacts with the radical anion
SO4

–•, affording the radical cation intermediate V, which exists with the resonance
structure VI. Then, VI reacts with diselenide, generating intermediate VII that loses a
proton to give the di-selenylated product 100 (Scheme 6.94-B).

6.12 Selenium-containing heterocycles

The molecular hybridization of two class of compounds is an interesting synthetic
strategy to potentiate biological properties. In this sense, it has been an interest to
develop new procedures to prepare heterocyclic compounds associated with chalco-
gen atoms (S, Se, or Te) [28].

As discussed in Section 6.11, compounds containing nitrogen and chalcogen
atoms in their structure are an important class of molecules, having applications
in asymmetric catalysis [33]; for example, Ebselen (Figure 6.3) is a selenium-
containing heterocycle that has been used as a biological model capable of simu-
lating catalytic functions of natural enzymes, acting as a peroxynitrite scavenger
and a GPx mimic [33].

In 2008, Naik and coworkers [166] described the synthesis of selenopheno[2,3-b]
quinoline derivatives 101 or 102 via the reaction between 2-seleno-3-formyl-quinolines
103 and phenacylbromide 104 or 2-chloroacetamide 105 under basic conditions and
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without solvent (Scheme 6.95). The preparation of five- and six-membered heterocy-
clic compounds containing one or two heteroatoms fused to quinoline ring is interest-
ing from the chemical and biological points of view, due to the significant properties
of the natural analogues. More specifically, the Se-containing quinoline core has re-
ceived great attention due to the potential chemoprevention with low toxic effects. By
this solvent-free procedure under microwave irradiation, a new class of quinolone de-
rivatives 101 and 102 was prepared in 85–90% yields in only 7–8 min. It is necessary
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to point out that the isolation of selenopheno[2,3-b]quinoline derivatives 101 or 102
occurred just by adding water to the reaction mixture.

The synthesis and application of selenium-containing IL was proposed by
Koketsu, Ishihara and Tanaka [167] in 2005. The IL 2-amino-4,5-dihydro-1,3-selenazol
-4-iminium chloride was prepared by using N,N-unsubstituted selenoureas 106 and
chloroacetonitrile 107 in a mixture of ethanol:water 99:1 as the solvent (Scheme 6.96).
By this procedure, five different selenoureas 106 were used to prepare several exam-
ples of IL 108. The reaction of IL 108a with NaBH4 (2 equiv.) in ethanol at room tem-
perature for 4 h afforded 2-piperidino-1,3-selenazole 109 in 56% yield. The refluxing of
2-piperidino-4,5-dihydro-1,3-selenazol-4-iminium chloride 108a (R= -(CH2)5-) for 24 h in
water, in turn, gave 2-piperidino-4,5-dihydro-1,3-selenazol-4-one 110 in 99% yield. The
use of these ILs shows as an alternative to prepare Se-containing five-membered het-
erocycle, specifically 1,3-selenazoles are of special interest as synthetic tools and in me-
dicinal chemistry, due to their antibiotic and cancerostatic activities [168].

Based on experimental evidences, a reaction mechanism for the formation of ILs
108 was proposed, which involves the participation of water (Scheme 6.97). First, a
nucleophilic attack of the selenium atom of selenourea 106 to the methylene carbon
of nitrile 107 occurs, forming salt I. Next, a water-assisted annulation occurs to give
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the ammonium chloride intermediates III and IV. Finally, 108 is formed by releas-
ing water to the reaction medium.

Also interested in selenium-containing heterocycles, Srinivasan and coworkers
[169] described the synthesis of 2-amino-1,3-selenazoles 111 by the condensation of
selenourea 106 with phenacyl bromides 112 under mild conditions (Scheme 6.98).
In this chapter, selenazoles were isolated in excellent yields after few minutes of
reaction, using only IL and water (1:1) as a solvent system. Regarding the use of
water to facilitate the solubility of the selenourea, the IL shows a good miscibility
with water, generating a homogeneous system. After completion of the reaction,
the mixture was poured into water and the product 111a was extracted using ethyl
acetate. To reuse the IL [Hbim][BF4], the aqueous layer containing IL was dried
under reduced pressure (80 °C, at 10 mmHg). After water removal, [Hbim][BF4]
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could be easily recovered and reused three times, affording good yields of product
111a in all the successive reactions.

Considering the chemical and biological importance of the selenazole unit,
Alves and coworkers described in 2017 [170] the domino oxidative cyclization of
methyl ketones with bis(2-aminophenyl) diselenide to prepare 2-acyl-benzo[1,3-d]
selenazoles (Scheme 6.99). This direct one-pot strategy afforded 2-acyl-benzo[1,3-d]
selenazoles 113 from good to excellent yields through in situ generation of 2-
arylethane-1,2-diones 114 from commercially available arylmethyl ketones 35 using
DMSO as solvent and the nontoxic reducing agent Na2S2O5. This intramolecular cy-
clocondensation was more efficient using microwave irradiation compared to the
conventional heating, with the benzo[1,3-d]selenazoles 113 being obtained in good
to excellent yields (60–94%) after 2.3 h under MW versus 48 h under conventional
heating (100 oC). The proposed mechanism involves three steps. First, the formation
of ethane-1,2-dione derivative 114 by the Kornblum oxidation occurs. In the second
step, the amino group of bis(2-aminophenyl) diselenide 1k reacts with ethane-1,2-
dione 114, forming the imine diselenide intermediate I, followed by the Se–Se bond
cleavage, leading to intermediates II and III. Then, radical III undergoes an intra-
molecular cyclization, affording the aminyl radical IV. In the final step, intermedi-
ate IV is oxidized to give the desired selenazole 113 (Scheme 6.99).
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Besides selenoureas, other starting materials for the synthesis of selenium-
containing heterocycles have been explored. For instance, isoselenocyanates 115
can be a useful reagent for cyclization reactions. Sashida et al. [171] reported the
intramolecular cyclization reaction of a selenol intermediate, which is generated
in situ from the reaction between the isoselenocyanate 115 and 2-ethynylanilines
116, to prepare (Z)-4-methylene-3-selenaquinoline derivatives 117 (Scheme 6.100).
The desired compounds were selectively obtained in short reaction time using mi-
crowave irradiation instead of conventional heating (oil bath). The reaction proved
quite sensitive to steric factors, and no reaction occurred using secondary amines,
since they were unable to attack the C-sp of the starting material 116.

Both isothio- 120 and isoselenocyanates 115 were used to prepare S- and Se-
containing heterocycles 119 or 120 “on water” conditions, as described by Sengoden
and Punniyamurthy [172] (Scheme 6.100). The general method involves an iron-
catalyzed [3 + 2] cycloaddition reaction of aziridines 23 with heterocumulenes (the
isochalcogenocyanates 115 or 120) using Fe(NO3)3·9H2O (10 mol%) as the catalyst.
Several aziridines 23 successfully reacted with isoselenocyanates 115, giving the
respective products 120 in good to excellent yields (61–93%). Moreover, the reac-
tion was scaled up for the reaction between 1-isoselenocyanato-2-methoxybenzene
(7.0 mmol) and 1-isopropyl-2-phenylaziridine (7.7 mmol), affording the respective imi-
noazoselenolidine in 91% yield. In this work, aziridines reacted with other heterocu-
mulenes, including isocyanates, isothiocyanates, and carbodiimides, affording the
respective compounds from moderate to good yields (65–79%).

In 2012, Kumar et al. [173] described the use of an IL as a novel soluble support to
prepare 1,2,3-selenadiazoles 121 and 1,2,3-thiadiazoles 122 (Scheme 6.101). The title
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Scheme 6.100: Synthesis of heterocycles 117 [171], 119, and 120 [172].
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compounds are important intermediates in the synthesis of several organic com-
pounds, such as 2-thioindoles and 2-alkoxybenzo[b]thiophenes [174]. Besides, these
compounds possess valuable medicinal properties, including anti-HIV activity [175].
In the first step of the synthesis, the previously synthesized IL-supported hydrazine
123 reacts with an aromatic ketone 35 containing both electron-withdrawing and elec-
tron-releasing groups in the aromatic ring, forming the IL-supported sulfonyl hydra-
zone 124. Next, by using the IL-supported key intermediate 124, the authors prepared
1,2,3-selenadiazoles 121 in acetonitrile medium and 1,2,3-thiadiazoles 122 under sol-
vent-free conditions.

A new heterogeneous catalyst based on cesium loaded on silica was used by
Lavanya and coworkers [176] to promote the one-pot condensation of dicyanome-
thane 125, various substituted ketones 35, and elemental selenium (Scheme 6.102).
By this simple and efficient catalytic protocol, 2-amino-5-substituted selenophene-3-
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Scheme 6.101: Synthesis of ionic liquid-supported sulfonyl hydrazones 124 followed by synthesis
of 1,2,3-chalcogenodiazoles 121 and 122 [173].
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Scheme 6.102: Synthesis of heterocycles 126 [176].
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carbonitrile derivatives 126 were prepared in 82–91% yields in short reaction times
(35–54 min). The authors showed that in Cs/SiO2 cesium moieties are covalently
connected to the silica, and these groups provide active catalytic sites on the sur-
face of silica. In addition, after the reaction the catalyst was recovered by simple
filtration. The recovered Cs/SiO2 catalyst was reused without significant loss in the
product yield for three times.

Liang et al. [177] described the microwave-assisted syntheses of benzimidazole-
containing selenadiazole derivatives 127, targeting new selenium-containing
organic compounds with anticancer potential (Scheme 6.103). In this reaction, a
mixture of selenadiazole 128, HBTU, and N,N-diisopropylethylamine were stirred
at room temperature for 2 h, followed by the addition of o-phenylenediamine 129.
The mixture was stirred for additional 12 h at room temperature and, in the se-
quence, at 150 °C for 30 min under microwave irradiation. By the combination of a
peptide coupling reagent (HBTU) and microwave irradiation, four benzimidazole-
containing selenadiazole derivatives 127 were obtained in good yields via an intramo-
lecular dehydration promoted by microwave irradiation. The synthetic heterocyclic
compounds 127 were identified as potent antiproliferative agents against the human
breast cancer cell lines MDA-MB-231 and MCF-7.

6.13 Selenoxides and selenones

Selenoxides and selenones are important compounds in chemistry and biology.
Selenoxides are important due to their ability to stabilize adjacent anionic centers
[178] and their thermal stability [179–182]. In the selenone molecules, the selenoyl
moiety as an efficient leaving group plays a role as a strong electron-withdrawing
substituent [183]. Several methods to prepare these classes of compounds were re-
ported in literature, by the oxidation of the corresponding selenides. The greener
ones are described here.

In 2010, Khurana and Nand [184] developed the microwave-promoted solvent-
free, chemoselective oxidation of selenides 6 to selenoxides 130 and selenones 131
using solid-supported sodium hypochlorite in aqueous medium (Scheme 6.104).
According to the authors, selenides 6 were converted to the respective selenoxides
130 in 84–89% yields with the aid of neutral alumina, after 7–10 min. Selenones

128 129 127
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R

a) HBTU, DIPEA, DMF
12 h, r.t.

R = H, CH3, Cl, Br

b) 150 °C, MW, 30 min
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N
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N
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H2N

H2N
+
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Scheme 6.103: Synthesis of benzimidazole-containing selenadiazole derivatives 127 [177].
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131, instead, were prepared using silica gel as a solid support in 76–93% yields.
Several substituted aromatic and aliphatic selenides were used for both the trans-
formations. Sodium hypochlorite was added in two portions and the irradiation of
MW was conducted in two times with a break of 1 min to cool the reaction mixture
and to add the reagent.

In 2018, Marini and coworkers [185] reported an Oxone®˗mediated oxidation of
vinyl selenides 50 in water to obtain selenones 132 without organic cosolvents or
additional catalysts (Scheme 6.105). In this work, phenyl vinyl selenones 132 were
prepared using Oxone® (2.2 equiv.) as oxidant in 3˗24 h of reaction at 60 °C under
“on water” conditions. The reaction was highly selective, and only the desired
products 132 were obtained in 45–89% yields, without any parallel reactions of
epoxidation or addition of water on the C=C double bond. Moreover, the results
were compared to those obtained using an excess of m˗CPBA, a conventional pro-
cedure, showing that this new method is a greener and convenient alternative.
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Scheme 6.104: Synthesis of selenoxides 130 and selenones 131 under MW [184].
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Selenoxides 133 were selectively obtained when the amount of Oxone® was reduced
by half (0.6 equiv.) and the reaction was conducted at room temperature. A plausi-
ble mechanism for the oxidation of vinyl selenides 50a indicates that water is not
only the solvent but also a modulator of the Oxone® activity, which can facilitate
the oxygen transfer process (Scheme 6.106) [185].

6.14 Organophosphorus selenides

Organophosphorus compounds have a wide range of applications in different areas,
including medicinal chemistry, industrial, and agricultural due to their unique bio-
logical and physical properties. Phosphorus-functionalized organic molecules offer
fascinating possibilities for synthetic, structural, and mechanistic studies. The phos-
phorus-heteroatom bond formation thus persists as a valid and active field in
chemical research, resulting in new organophosphorus compounds with potential
multifaceted interest [186]. As an example, phosphine selenides were used as a
catalyst in aza-Heck reactions [187].

Among the various green synthetic approaches to prepare phosphorus-containing
organoselenium compounds, those that avoid the use of volatile organic solvents
are advantageous over the conventional, solution phase synthesis. The minimiza-
tion of the generation of toxic and nontoxic wastes and the problem regarding the
disposal of the solvents are features of the solvent-free protocols. In this line, sol-
vent-free mechanochemical protocols are a greener method, alternative to the tradi-
tional ones [188].

In 2018, Kumar and coworkers [189] described the eco-friendly synthesis of phos-
phine selenides 134 and sulfides 135 in moderate to excellent yields (almost quantita-
tive), applying the solventless mechanochemical technique of ball milling and a
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Scheme 6.106: Synthesis of selenoxide 133a and the proposed mechanism [185].

6 Synthesis using nonconventional reaction media 261

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



simple workup procedure, without using chromatographic purification methods
(Scheme 6.107). By this approach, a range of phosphines 136, including tertiary
ones, aminophosphines, and a variety of bisphosphines, reacted with stoichiometric
amounts of elemental sulfur or selenium in a jar in the rotary ball mill containing a
set of different sized ceramic balls (1 × 15 mm, 2 × 12 mm, 7 × 10 mm, 12 × 8 mm, and
40 × 5 mm) for 4 h at a frequency of 450 rpm. The solid-state reactions were monitored
by 31P{1H} NMR spectroscopy and a good performance was observed even in a scale-
up reaction.

In the same year, Sim et al. [190] developed the orthogonal “one-step one-pot” mech-
anochemical reaction to prepare cyclophosphazanes containing selenium 137 or
sulfur 138 bonded to phosphorus atom (Scheme 6.108). In the optimal procedure, the
phosphorous reagent 139, an excess of elemental chalcogen, and an appropriate
organic compound (like alcohol 34 or a primary amine 140) were added into a
10 mL stainless steel milling jar containing a 10 mm ball, in the presence of Et3N
and the mixture was milled from 6 to 10 h at 30 Hz. The organophosphorus
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compound derivatives of the bulky adamantyl alcohol 34 or amine 140 adopt a
cis-conformation when synthesized, as confirmed by NMR and XRD analysis. After
completion of the reaction, the products were purified by recrystallization and
submitted for hydrolytic- and air-stability studies. These studies, conducted for
over 1 and 12 months, showed that the prepared compounds are bench-stable,
without signs of decomposition.

6.15 Diselenocarbamates

The class of diselenocarbamates is used in organic synthesis as intermediates to
prepare new complex molecules [191–194]. Despite its usefulness, there are few pro-
cedures to obtain this class of compounds [191, 195–197].

In 2012, Pan et al. [198] developed a one-pot catalyst- and solvent-free reaction
between CSe2, amines 140, and alkyl halides 2 to prepare diselenocarbamates 141.
A wide range of products was prepared in 10–30 min at −10 °C in moderate to high
yields (72–95%, Scheme 6.109). The reaction works well with a variety of alkyl hal-
ides and secondary amines.

In the same work [198], the authors presented another methodology to obtain prod-
ucts 141, through a Michael-type addition of alkenes 32 with amines 140 and CSe2
at room temperature for 30 min. The best results were obtained when the reaction
was conducted over silica gel, which could absorb amine 140, helping in the nucle-
ophilic addition due to its Lewis acid activity. In this work, secondary amines and
methyl acrylate or acrylonitrile were used as electron-deficient alkenes. By this al-
ternative protocol, the expected diselenocarbamates 141 were obtained in good to
excellent yields (83–91%) (Scheme 6.110).
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6.16 Conclusions and outlook

This chapter presented the panorama regarding the preparation of various classes
of organoselenium compounds. The strategy of introducing a chalcogen atom in dif-
ferent structures is a way to access versatile compounds, which can be important
tools in organic synthesis and medicinal chemistry. Moreover, they are by them-
selves interesting molecules, exhibiting several pharmacological activities.

The methods discussed in this chapter take into account principles of green
chemistry like the noninvolvement of hazardous metals or solvents, high tempera-
ture, or long reaction times. The syntheses have been conducted in green solvents,
such as glycerol, PEG-400, or ILs, or using alternative energy sources, such as ultra-
sound, microwave, or mechanochemistry.

The extensive collection of works summarized here demonstrates the synthesis
of organoselenium compounds, by making it as greener as possible. There are
many opportunities still to be explored in this field and we hope that this chapter
can put some light in the need for cleaner and efficient protocols to prepare such
class of compounds.
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Guilherme M. Martins and Samuel R. Mendes

7 Synthesis and Biological Activity
of Five- and Six-Membered Se-Containing
Heterocycles

7.1 Introduction

In the last decades, there has been tremendous scientific progress in the development
of chemotherapeutic drugs, which are applied in several treatments, for example, for
autoimmune diseases such as multiple sclerosis and rheumatoid arthritis, in addition
to being used to suppress the rejections to several transplants. These drugs usually
have fewer side effects and lower costs. In addition, selenium-containing heterocycles
are considered to be privileged structures of extreme interest to the scientific commu-
nity, not only due to their synthetic structural reactivity, but also due to their diverse
medicinal applications, such as antibacterial, antiviral, antitumor, antioxidant, antide-
pressant, cytotoxic, among others [1]. Five- and six-membered heterocycles include the
structural units of various biologically active compounds, being found in several medi-
cines[2] and comprising a range of natural products [3]. Considering this wide range of
uses as well as biological activities, selenium-containing heterocycles continue to mo-
tivate researchers to develop new compounds as well as to perform biological tests.

7.2 Five-membered Se-containing heterocycles

In this chapter we will discuss the importance of heterocyclic derivatives containing
selenium, demonstrating its importance not only as a synthetic tool, but also in me-
dicinal chemistry. The synthesis and biological activity of five-membered Se-
containing heterocycles published in recent years will be described below.

7.2.1 Selenophene derivatives

Selenophene nucleus belongs to a heterocyclic-aromatic class, being present in a
wide variety of organic compounds with promising pharmacological properties [4].
It has several biological activities, such as antioxidant [5], anti-inflammatory [6],
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antihypertensive [7], anticonvulsant [8, 9], antibacterial [10], antitumor [11] and cy-
tostatic [12, 13], being incorporated in natural product derivatives [14, 15].

Zhou et al. [16] conducted a study to further explore antibreast cancer drugs,
suggesting new treatment possibilities, with fewer side effects than tamoxifen
drugs or other therapeutic agents. The objective is to evaluate the importance of the
selenophene derivatives as estrogen receptors (ER). The authors explored the struc-
tural diversity as well as the activities of these selenophenes in two ERs, ERα and
ERβ, in which ERα is found mainly in the female reproductive system, and ERβ is
found mainly in the prostate, colon, central nervous system, and cardiovascular
system [17]. A wide variety of heterocyclic cores has been explored in the develop-
ment of SERMs (selective estrogen receptor modulators) [18, 19]. Their antiprolifera-
tive activities in cancer and normal cell lines have also been investigated, revealing
what may be a general strategy for obtaining superagonists to other members of the
nuclear receptor superfamily. Four series of novel selenophene core compounds are
shown in Schemes 7.1 and 7.2.

Dibrominated selenophene precursor 2 was prepared by bromination of seleno-
phene 1 using N-bromosuccinimide in dimethylformamide (DMF; Scheme 7.1 –
Series I). After, Suzuki cross-coupling was performed, providing products 4a–d in
modest yields (26–48%). Finally, the compounds 4a–d were treated with boron tri-
bromide, providing the final 2,5-disubstituted diphenolic selenophenes 5a–d in
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Scheme 7.1: Representative examples for dissubstituted selenophene synthesis.

278 Guilherme M. Martins and Samuel R. Mendes

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



good yields (72–86%). Regarding compounds 9a–d (Scheme 7.1 – Series II), the
3,4-dibromoselenophen 7 intermediate cannot be obtained by direct bromination
of selenophene 1. Thus, a debromination of 2,3,4,5-tetrabromoselenophen 6 was
performed with Zn0 and AcOH in water. The respective 6 was achieved through bro-
mination of selenophene 1 with Br2, using CHCl3 and AcOH as solvent. Thereafter, the
treatment of 3,4-dibromoselenophene 7 with aryl boronic acid 3 using Pd(OAc)2/PPh3
as a catalyst afforded the products 8a–d in moderate yields (29–51%). Then, with
cleavage of the methoxy groups of 8a–d by BBr3 in CH2Cl2, the desired products
9a–d was obtained in good yields (51–61%).

To provide compounds 12a–d, 14a–d (Scheme 7.2 – Series III and IV), the tri-
brominated selenophene precursor 10 was prepared by bromination of selenophene
1 with Br2 in DMF. For the series of compounds 11a–d, 2,3,5-tribromoselenophene
10 was treated with aryl boronic acid 3 using Pd(dppf)Cl2 as catalyst to give 11a–d,
followed by cleavage of the ether group, affording the products 12a–d in good
yields (68–86%). To achieve 14a–d compounds, Suzuki cross-coupling was applied
using 10 and aryl boronic acid 3, followed by cleavage of the ether group, produc-
ing good yields (78–88%).

According to the results of ER binding affinity, it has been observed that seleno-
phene core ligands are largely ERβ selective, and the position of the phenolic group
has a marked effect on their binding affinity. This result is similar to that already re-
ported, with selenophene, thiophene, and furan derivatives [19, 20]. In transcription
assays, most selenophenes exhibited partial or complete ERβ agonist activity, while
in ERα a wide range of activities were shown, covering antagonists and agonists,
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Scheme 7.2: Representative examples for trisubstituted selenophene synthesis.
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with some being outlined as superagonists. In comparison to the drug tamoxifen,
compound 14c showed significant antiproliferative potency in MCF-7 breast cancer
cell lines (75.3% inhibition).

Considering that resveratrol core is a natural phenol found in plants with
the function of protecting, Chovanec et al. [21] proposed that benzo[b]seleno-
phene derivatives inspired by resveratrol could act as an antioxidant in yeast.
The study was conducted in lower eukaryotes Saccharomyces cerevisiae, evaluat-
ing the toxicity, DNA damage, and reactive oxygen species (ROS), as well as
their ability to act as active antimicrobials redox agents. Additionally, Arsenyan
et al. [22] developed an aryl/alkyl cyclization pathway via selenobromination,
followed by induced displacement of 3,2-aryl group as a synthetic route for the
preparation of resveratrol-inspired polyhydroxy-2- and -3-arylbenzo[b]seleno-
phenes (Scheme 7.3). The redox properties, free radical scavenging ability, and
cytotoxicity against malignant cell lines (MCF-7, MDA-MB-231, HepG2, and 4T1)
were explored.
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Scheme 7.3: Representative examples for hydroxy substituted benzo[b]selenophenes synthesis.
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In order to obtain the respective hydroxy substituted benzo[b]selenophene de-
rivatives, Chovanec et al. performed a five-step procedure to achieve the 3-aryl de-
rivatives; however, for the derivatives with aryl at the 2-position, an additional step
was required (Scheme 7.3). Initially, the corresponding propargyl alcohol 15, under
selenobromination conditions, produced benzo[b]selenophenes 16 in excellent
yields (83–95%). Thereafter, the 2-unsubstituted derivatives 17 were obtained via de-
acetonation (77–83%). Suzuki cross-coupling of 17 with the appropriate boronic acid
followed by methoxylation via substitution of the fluorine atom provided methoxy-
lated precursors 19. Then, 19 was heated at 90 °C for 4 h using 0.4 M methanesul-
fonic acid solution in toluene, promoting the rearrangement of the aryl group from
position 3 to position 2 of the selenophenic ring, providing good yields of products
21 (60–86%). Finally, the respective benzo[b]selenophenes 19 and 21 were demethy-
lated to provide the desired products 20a–c (32–89%) and 22a–c (73–79%).

The biological activities of this benzo[b]selenophene derivative were examined
in terms of toxic effects and the ability to induce damage in DNA and ROS, and the
data collected provided promising results. Some benzo[b]selenophenes exhibited
toxic effects against yeast cells and could be used as antifungal agents. Finally,
most benzo[b]selenophenes demonstrated antioxidant activity, suggesting their use
as antioxidant supplements in the human diet in those without toxic effects.

In 2019, Martins et al. [23] reported an easy and convenient pathway for the syn-
thesis of 2-aryl-selenopheno[2,3-b]indole derivatives (24). By electrophilic cycliza-
tion of the respective 3(arylalkynyl)indoles 23, using SeCl2 as the electrophilic
source of selenium, the authors obtained 17 new compounds with yields up to 82%.
Electronic and steric properties of the substituent attached to the nitrogen atom
influenced the reaction yield. The halogen atoms attached to the alkyne group and
to the indole ring proved an average 20% reduction in yield (Scheme 7.4).

The antifungal activity of selected derivatives was evaluated against several strains of
Cryptococcus and Candida, as well as Saccharomyces cerevisiae. The values of mini-
mum inhibitory concentrations (MIC) and minimum lethal concentrations (MLC)
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Scheme 7.4: Representative examples for 2-aryl-selenopheno[2,3-b]indoles synthesis.
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were obtained from nystatin and fluconazole comparators. Cryptococcus neoformans,
Cryptococcus gatti, and Candida krusei were most susceptible to this class of com-
pound; 24c showed optimal MIC and MLC values (MIC = 36.3; MLC = 72.5 µM),
(MIC = 36.3; MLC = 145.1 µM), and (MIC = 4.5; MLC = 290 µM), respectively, showing
magnitude below or equivalent to its comparator.

7.2.2 Selenazole derivatives

Selenazoles are an important class of heterocycles, showing significant biological ef-
fects and considerable pharmacological relevance [24,25,26]. However, to date, there
are no organoselium compounds in clinical use as anticancer agents, even with the
promising results already demonstrated. In 2017, Zhang et al. [27] proposed the syn-
thesis of multiheterocyclic molecules from 1,3-selenazole as a template, modified by
pyrazole, 1,2,4-triazole, tetrazole, 1,2,4-triazine, and tetrazole. Inhibitory activities
against the cell division cycle 25B phosphatase (Cdc25B) were tested, and more than
10 compounds showed activities. Additionally, Supuran et al. [28] synthesized a se-
ries of disubstituted selenazole derivatives and evaluated their activity as inhibitors
of carbonic anhydrase (CA, EC 4.2.1.1) against human (h) isoforms hCA I, II, IV, AV,
VB, and IX, which are involved in several diseases, such as glaucoma, epilepsy, reti-
nitis pigmentosa, arthritis, and tumors.

Initially, 4-cyanobenzenesulfonamide 26 was obtained by reaction of sulfonyl
chloride derivative 25 with aqueous ammonium hydroxide solution. Therefore, 4-
sulfamoylbenzoselenoamide 27 was prepared by reacting 26 with Na2Se as a
selenating reagent under reflux in ethanol. Finally, 27 was treated with different
α-haloketones, incorporating aromatic 30a–f or aliphatic 28a–c moieties by re-
fluxing in ethanol, obtaining several 2,5-disubstituted 1,3-selenazoles (31a–f and
29a–c) in good yields (55–83%, Scheme 7.5). Additionally, the authors reported
the synthesis of functionalized 2,5-selenazoles (33, 35, 37, and 39), starting from
29c, as shown in Scheme 7.6.

To obtain 1,3-selenazole 33, compound 29c was treated with thiophenol (32)
and Et3N in acetonitrile, yielding the product in 80%. Tellurite and selenide deriva-
tives were also assessed (35a–c and 37a–c) to provide the desired products in good
yields (74–78%). Finally, the synthesis of 1,3-selenazole 39 was performed, which
has great pharmacological interest.

In general, the compounds showed potent inhibition against the tumor-associated
IX hCA transmembrane, with Ki’s in nanomolar to subnanomolar inhibition range.
They were evaluated for their effects on cell viability against human prostate (PC3)
and breast (MDA-MB-231) cancer cells lines, in which it showed excellent values for
antitumor activity. The authors emphasize that these selenazole derivatives are inter-
esting for developing new Carbonic anhydrases IX inhibitors [29].
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Scheme 7.6: Synthesis of substituted 2,5-selenazoles 33, 35, 37, and 39.
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Scheme 7.5: Examples for the synthesis of selenazole derivatives.
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7.2.3 Selenadiazoles derivatives

Sanmartín et al. [30] developed a series of benzo[c][1,2,5]selenadiazole-5-carboxylic
acids (BSCA) (Scheme 7.7, 43a–k and 44), to evaluate their antiproliferative effect
against five human tumor cell lines, including prostate (PC-3), colon (HT-29), leuke-
mia (CCRF-CEM), lung (HTB-54), and breast (MCF-7), by standard MTT assay and
antioxidant activity using the DPPH test. The authors noted that other 1,2,5-
selenadiazole derivatives have already been identified as potent agents with anti-
proliterative effect against human cancer cells, proving to be less toxic to nontumor
cells [31, 32].

Derivatives 41 were obtained from the appropriate orthoaromatic diamine 40
and selenium dioxide in the 1:1 molar ratio in the absence of solvent, heating to
the melting point. However, derivatives 43 and 44 were obtained in two different
steps starting from the corresponding acyl chloride 42, which was treated with-
out prior purification with the appropriate amine or diamine in chloroform in the
presence of triethylamine at room temperature providing products in moderate-
to-excellent yields (18–99%). The authors highlight the compounds 43c–e and
43h, which showed potent inhibitory activity with GI50 values (concentration at
50% of maximal inhibition of cell proliferation) below 10 μM in cancer cell lines,
being analyzed in non-malignant cell lines from breast (184B5) and lung (BEAS-
2B). In addition, compound 43e showed promising antiproliferative activity in
breast cancer cells (MCF-7). Induction of cell death by compound 43e was inde-
pendent of the apoptotic process, not affecting cell cycle progression. Likewise,
the radical removal properties of the novel selenadiazole derivatives were con-
firmed by testing their ability to eliminate DPPH radicals. Compound 43e has
been identified as a cell growth inhibitory agent and selectively toxic to cancer
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Scheme 7.7: Representative examples for the synthesis of selenadiazole derivatives.
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cells; however, compound 43g has proven to be the most potent antioxidant
among the synthesized selenadioneol derivatives. Considering the high radical
scavenging activity and low toxicity shown by most compounds, the authors em-
phasize the importance of this class of compound to serve as an excellent sup-
port for reaching novel synthetic antioxidant derivatives useful for the treatment
of various diseases, such as cancer, neurodegenerative, cardiac, and leishmaniasis
diseases [33]. Likewise, Chen et al. [34] reported that benzimidazole-containing sele-
nadiazole derivatives may induce cell-cycle arrest and apoptosis in human breast
cancer cell lines by activation of the ROS/AKT (inhibition of protein kinase B)
pathway.

Additionally, substituted 1,2,3-selenadiazoles derivatives have demonstrated
excellent antifungal activity against Cryptococcus neoformans [35], as well as excel-
lent antitumor activity in the growth of human melanoma cells (A375) [36], and
anti-HIV-1 activity against HIV-I in MT-4 cells [37]. Khanna et al. [38] reported the
synthesis of novel 4,5-disubstituted 1,2,3-selenadiazole derivatives, which were
proved to be active against various bacteria and fungi. The authors proposed a sol-
vent-free path for the preparation of 1,2,3-selenadiazoles 46 from the respective
semicarbazones 45 (Scheme 7.8). Semicarbazone derivatives 45 can be readily pre-
pared from the respective ketones and semicarbazide hydrochloride, under heating
in MeOH.

The respective 1,2,3-selenadiazoles (46a–e) showed activity against bacterial and
fungal stains using agar disc diffusion, as well as agar well diffusion, showing better
antibacterial properties compared to established antibiotics, such as tetracycline. The
4-ethyl-5-methyl-1,2,3-selenadiazole 46b demonstrated better antimicrobial activity
among the compounds tested. These compounds were also evaluated for antifungal
activity against Aspergillus niger and Penicillium notatum, showing to be highly active
even in extremely low concentrations. The compound 46a showed good inhibition
against resistant Pseudomonas aeruginosa.
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Scheme 7.8: Representative examples for the synthesis of 1,2,3-selenadiazole derivatives.
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7.2.4 Cyclic selenamides derivatives

Selenoenzyme glutathione peroxidase (GPx) was discovered in 1973 and has since
been studied because of its important role in mechanisms of endogenous response
to exposure to ROS [39, 40]. Several molecules are studied for the purpose of obtain-
ing GPx enzyme activity [41, 42]. In addition, Ebselen derivatives have demonstrated
GPx mimicking characteristics [43, 44, 45, 46], as well as antibacterial activity [47],
showing several advantages. There are several routes to reach Ebselen derivatives,
which were first prepared by Weiss in 1924 [48]. The general procedure for obtaining
cyclic selenamides (Ebselen) and their analogues are described in Scheme 7.9.

From the anthranilic acid 47, diazotization was carried out with sodium nitrite in
aqueous HCl solution, followed by selenenylation with dilithium diselenide, with
the elimination of nitrogen gas to provide 2,2ʹ-diselenodibenzoic acid 48. The re-
spective diselenide with excess of thionyl chloride in the presence of DMF produces
2-(chloroseleno)benzoyl chloride 49. Finally, acylation with the appropriate amine
provides the respective Ebselen 50 (Scheme 7.9).

Another possible path is selenium-nitrogen coupling reaction catalyzed by cop-
per (Scheme 7.10). Lars Engman [49] described the preparation of Ebselen deriva-
tives from the respective N-substituted benzamides via ortho-lithiation with n-BuLi,
with elemental selenium and copper bromide as the oxidant. Additionally, Kumar
et al. [50, 51] demonstrated that 2-chloro-, 2-bromo-, and 2-iodo-arylamides sub-
strates can be applied in the selenium and nitrogen coupling reaction using CuI and
1,10 phenanthroline as ligand with potassium carbonate and DMF as solvent.

Lopez-Ribot and coworkers [52] demonstrated a broad spectrum of antifungal action
for Ebselen derivatives against a variety of important fungi. The authors emphasize
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Scheme 7.9: General procedure for obtaining the cyclic selenamides.
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that Candida auris is resistant to Fluconazole and Amphotericin B, and new possi-
bilities need to be obtained to treat this emerging pathogen. The authors have iden-
tified that Ebselen 50a (Figure 7.1) shows 100% inhibition of C. auris growth, as
well as the ability to inhibit C. auris biofilm formation. According to the results,
Ebselen showed a broad spectrum of antifungal actions against a wide variety of
fungi, including yeasts and molds. Previous studies have shown that Ebselen can
restore the efficacy of Meropenem against a laboratory strain that produces NDM-1
(an enzyme that makes bacteria resistant to a variety of β-lactam antibiotics) [53].

Chan et al. [54] reported trials of 46 analogues of Ebselen, analyzing the structural
relation of these derivatives with their biological potential to increase the antimi-
crobial efficacy of Meropenem against Carbapenems resistant NDM-1 producing
Enterobacteriaceae. In general, the compound 50b (Figure 7.1) showed strong
synergistic antimicrobial activity with carbapenems having low cytotoxicity; it
was observed that the application of these compounds with carbapenem adju-
vants needs to be considered. Mucha and coworkers [55] developed a series of 25
analogues of Ebselen, providing a novel approach for the inhibition of human me-
thionine aminopeptidase 2 (MetAP2) activity. Inhibition of human methionine
aminopeptidase 2 was identified as the major route to inhibit angiogenesis during
growth and metastasis of solid tumors. The authors evaluated their inhibitory ac-
tivity against three neutral aminopeptidases (MetAP2, alanine, and leucine amino-
peptidases), demonstrating that these Ebselen derivatives are selective inhibitors
of MetAP2 slow binding. Most of Ebselen analogues exhibited moderate potency
(IC50 = 1–12 μM), being the most promising obtained with analog 50c (Figure 7.1),
which showed IC50 = 0.121 ± 0.066 μM. In addition, Li et al.[56] have identified
that hybrid derivatives of Ebselen and resveratrol may be related to cancer treat-
ment (Figure 7.1 – 50d). The results indicated that four human cancer cell lines
showed TrxR inhibitory activities, being able to cause apoptosis induced by oxida-
tive stress in cancer cells.
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Figure 7.1: Ebselen derivatives.
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7.3 Six-membered Se-containing heterocycles

The development of six-membered Se-containing heterocycles has increased over
the past 20 years [57]. Like the five-membered showed before, six-membered hetero-
cycles have attracted attention due to their biological activities [58]. Thus, the syn-
thesis and biological activity of these compounds published in recent years will be
described here.

7.3.1 Selenazine derivatives

Alzheimer’s disease (AD) is a complex and most prevalent neurodegenerative dis-
order with multiple dysfunctional pathways. This disease is the most common
form of dementia [59]. In 2015, a series of phenoselenazines (PSZ, 58) were synthe-
sized and evaluated as multitargeting ligands aimed at the cholinergic, amyloid,
and oxidative stress pathways of AD [60]. Rao et al. prepared the PSZ as shown in
Scheme 7.11.

Initially, iodinated 2-cyclohex-2-enone 54 was prepared from the reaction between
cyclohex-2-enone and iodine in the presence of dimethylaminopyridine and potas-
sium carbonate. The starting precursor diphenylamine 56 was synthesized by cou-
pling α-iodinated 2-cyclohex-2-enone (54) with substituted anilines 55 in a metal-free
approach by refluxing overnight in presence of trace amounts of p-TSOH to produce
56 in 40-50% yields. The ring closing of 56 to obtain the PSZ tricyclic ring 57 was
achieved by heating them at 150 °C in a pressure vial, in the presence of selenium,
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Scheme 7.11: Synthesis of tricyclic phenoselenazines 58.
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selenium dioxide (SeO2), and iodine, using sulfolane as the solvent. The final yield of
PSZ derivatives 57a and 57b were 20–26%. In the final step, PSZ derivatives 57a and
57b were subjected to nucleophilic addition/elimination reaction with acid chlorides
to produce PSZ derivatives 58a–l in moderate-to-good yields (28–91%, Scheme 7.11).

In the phenoselenazine series, 58j (2-chloro-10H-phenoselenazin-10-yl-(4-me-
thoxyphenyl)methanone) showed good nonselective cholinesterase inhibition
(AChE IC50 = 5.8 ± 0.4 μM; BuChE IC50 = 4.9 ± 0.5 μM). Interestingly, N-10 unsub-
stituted phenoselenazine 57a (AChE IC50 = 5.6 ± 0.4 μM; BuChE IC50 = 3.0 ± 0.5
μM; Aβ1-42 aggregation inhibition = 45.6%; DPPH scavenging = 84.4%) was able to
show multitargeting ability by demonstrating cholinesterase inhibition, β-amyloid ag-
gregation, and antioxidant properties. These results show that fused tricyclic ring sys-
tems based on either phenoselenazine templates can be useful to develop hybrid small
molecules to target multiple pathological routes associated with Alzheimer’s disease.

Similarly, in 2016, Viglianisi et al. synthesized different benzo[b][1,4]selena-
zines and conducted preliminary investigation of the GPx-like activity. Selenazines
60 were prepared from 2-sulfonylaminoaryl diselenides substituted with electron-
withdrawing or -donating groups (Scheme 7.12) [61].

Initially, the 2-aminophenyl diselenides were transformed into the corresponding
NH-tosyl (NHTs) 59a–e and NH-o-nosyl (NHNs) 59f and 59g sulfonamides. Then, the
reaction conditions to obtain selenazines 60 were optimized, choosing the best sol-
vent and reaction time for each of the different diselenides, as shown in Scheme 7.12.
The procedure takes place in one pot using a substoichiometric amount of Cu(OTf)2
and a weak base (Et3N). The respective products 60a-g were isolated in moderate to
good yields (58–83%).
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Scheme 7.12: Synthesis of benzo[b][1,4]selenazines 60 from diselenides.
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A preliminary investigation of the GPx-like activity was realized with selenazine
60b and the corresponding N-unsubstituted derivative 61 (Figure 7.2) [62, 63]. As
shown in Figure 7.2, when N-unsubstituted benzo[b]selenazine 61 was used as cata-
lyst, 50% of oxidized dithiothreitol (DTTOX) was formed within 150 min. These re-
sults showed that the catalytic function of the heterocycles is strongly influenced
by the nucleophilic character of the selenium atom, and by the presence of free
amine groups. Diphenyl diselenide was employed to compare the activity of 61 with
a selenium derivative commonly used as a standard, and, as expected, diselenide
was appreciably more active.

7.3.2 Flavanone derivatives

Flavones are well known for their antioxidant, anti-inflammatory, and anticancer
activities [64]. The corresponding selenoflavones were also the subject of research
that revealed their potential as a neuroprotective agent [65]. Recently, Jeong et al.
synthesized selenoflavanones 64 and evaluated their neuroprotective effects. The
synthetic pathway is shown in Scheme 7.13. Bromobenzene 62 was acylated with
cinnamoyl chloride using AlCl3 under Friedel–Crafts conditions. In the next step,
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Figure 7.2: Adapted from Viglianisi et al. [61]. GPx-like activity of compounds 60b, 61, and diphenyl
diselenide in the formation of DTTOX from DTTRED with H2O2 in CD3OD. The oxidation of the
substrate was monitored by 1H NMR spectroscopy. A control experiment was carried out in the
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Scheme 7.13: Synthesis of Selenoflavanones 64.
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selenium was introduced to the heterocycle by reaction of 63 with t-BuLi, followed
by elemental selenium. The respective selenoflavanones 64 were produced in good
overall yields (88–92%).

The authors compared the biological activity and physicochemical properties
with the respective flavones and reported that selenoflavanones showed lower polar-
ity and higher lipophilicity than the corresponding flavanones, which suggests that
they would be able to more easily penetrate the blood–brain barrier. The antioxidant
activity was confirmed by in vitro assay. Moreover, hydrogen peroxide-induced cell
death decreased with selenoflavanone treatment. Total infarction volumes in the tran-
sient ischemia mouse model were significantly reduced by the selenoflavanone treat-
ment. Furthermore, selenoflavanones led to more potent neuroprotective activity
than flavanones. Based on these observations, and because selenoflavanones did not
cause cytotoxicity at low concentrations, the authors concluded that selenoflava-
nones 64 could be an effective approach for developing a neuroprotective agent.

7.3.3 Thienopyrimidine derivatives

On the other hand, Sharga et al. prepared fused thienopyrimidine derivatives of phe-
nylselenyl tribromide (Scheme 7.14). First, the compounds 66a–f were synthesized by
reaction of the corresponding thieno[2,3-d]-pyrimidines 65a–f with propargyl bromide
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Scheme 7.14: Synthesis of fused thienopyrimidines 67 derivatives of phenylselenyl tribromide.
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in ethanol at equimolar presence of NaOH. Thereafter, thiaselenazinium salts 67a–f
were obtained by cyclization reaction between 66a–f and phenylselenyl tribromide.

The compounds 67a–f were evaluated for toxicity (method of Poroikov et al.
[66]) and antimicrobial activity. The results revealed that the lowest toxicity level
was estimated for the derivative 67c. Then, 67c and phenylselenyl tribromide were
chosen for the antimicrobial activity tests. The studied compounds were most active
against yeasts and presented poor to moderate activity against bacteria.

7.3.4 Selenorhodamine derivatives

Six-membered Se-containing heterocycles have also been applied as photosensi-
tizers in photodynamic therapy (PDT) [67], which employs these compounds and
light irradiation to induce cell death in the target region [68]. Photosensitizers are
compounds that produce ROS such as singlet oxygen (1O2) [69], but only when
they are light irradiated [68, 70]. The mechanism of action of PDT is best explained
in the review Photodynamic therapeutics: basic principles and clinical applications
[71]. This therapy is employed as treatment for numerous cancers, for example,
prostate, bladder, and actinic keratosis [67]. In this context, Detty et al. prepared
selenorhodamines with an angular 73 or linear 74 fused benzo group (Scheme 7.15)
[72]. These compounds were evaluated for their potential as photosensitizers for
PDT in Colo-26 cells. Initially, selenides 69 and 70 were obtained by addition of
bis-3-dimethylaminophenyl diselenide to 1-lithio-6-dimethylamino-2-naphthamide
or 3-lithio- 6-dimethylamino-2-naphthamide, respectively. Xanthones 71 and 72
were prepared by cyclization of diaryl selenides 69 and 70, respectively. Later, 71
and 72 were separated by chromatography on SiO2. Finally, the addition of phenyl-
magnesium bromide to a stirred suspension of 71 or 72 in THF followed by work up
with 10% aqueous HPF6 produced dyes 73 and 74.

Compounds 73 and 74 were examined for their photophysical properties (absorp-
tion, fluorescence, and ability to generate singlet oxygen), for their dark and photo-
toxicity toward Colo-26 cells, and for their colocalization with mitochondrial-specific
agents in Colo-26 and HUT-78 cells. Dyes 73 and 74 provide the first rhodamine pho-
tosensitizers with λmax > 640 nm. Compound 73 was proved to be an effective photo-
sensitizer in vitro toward Colo-26 cells with values of EC50 of 6.4 × 10-8 M, with only
1.0 Jcm-2 of laser light delivered at λmax ± 2 nm. Longer wavelengths of absorption
gave 73 greater potential for use in vivo. Extended selenorhodamine dye 74 was
proved to be a photosensitizer in vitro toward Colo-26 cells using broad-band light
with values of EC50 of 1.8 × 10-7 M, with 10 J cm-2 of broad-band light.

More recently, Hanaoka and coworkers developed a photosensitizer (75) that
is activated under hypoxic conditions (Figure 7.3) [73]. The azo-based photosensi-
tizer was synthetized as shown in Scheme 7.16. Selenide 78 was obtained by
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addition of bis-4-diallylaminophenyl diselenide to 2-lithio-4-(diallylamino)-N,N-
diethylbenzamide. Compound 79 was prepared by the cyclization of diaryl sele-
nide 78. Later, the addition of 2,6-dimethylphenylmagnesium bromide to a stirred
suspension of 79 in THF followed by reflux produced compound 80, which was
treated with 1,3-dimethylbarbituric acid and Pd(PPh3)4 in CH2Cl2 for the removal
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NH2 SeH2N NH2
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76
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Figure 7.3: Design strategy and chemistry structure of an activatable photosensitizer [73].
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of the allyl groups. 75 was obtained by formation of the diazonium salt from 76
and subsequent reaction with N,N-dimethylaniline.

The novel photosensitizer 75 is selective and reductively activated specifically in
cells under mild hypoxic conditions, allowing the production of 1O2 (Figure 7.3).
The hypoxic condition (around 5% oxygen concentration) is common in solid tu-
mors [74, 75].

Urano et al. also designed γ-glutamil hydroxymethyl selenorhodamine green 81
as a photoinactive compound that can be activated by a tumor-specific peptidase
after topical administration (Figure 7.4) [76].

The synthesis of selenides 83a–b is similar to the one shown in Scheme 7.16.
Compounds 85 were obtained in three steps from selenides 83 as shown in
Scheme 7.17. Finally, the reaction between 85a–b and Boc-Glu-OtBu mediated by
1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexa-
fluorophosphate, followed deprotection reaction provided γ-glutamil hydroxy-
methyl selenorhodamine 81.
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Figure 7.4: Chemical structures of photosensitizers [76].
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After preliminary studies, the authors decided to focus on 81a for evaluation as a
candidate activatable photosensitizer. This occurred since 81b is in the its phototoxic
form at physiological pH (2.5% of 81b exists in its open form at pH 7.4), which can
mediate nonspecific phototoxicity. In contrast, in the case of 81a, only 0.1% exists
in the open form at pH 7.4; therefore, background phototoxicity is strongly sup-
pressed. Photosensitizer 81a is activated by aminopeptidase, which is very inter-
esting, because various peptidases are overexpressed in different types of tumors.
The authors consider that 81a is converted into 82a on the surface of the cells, and
82a is then internalized into the cells due to its greater hydrophobicity, accumulat-
ing mainly in lysosomes. They also confirmed that high-GGT-expressing cells were
specifically killed by PDT with 81a. Furthermore, in a tumor-bearing CAM model,
tumors were selectively ablated by PDT with 81a, without damage to adjacent
healthy tissues.

Mclver et al. prepared new selenorhodamines photosensitizers for extracorporeal
photopheresis (ECP; Figure 7.5) [77]. ECP is a combination of leukapheresis and photo-
dynamic therapy in which blood is treated with photoactivable drugs, which are then
activated with ultraviolet light and re-infused to the patient. ECP has been used in the
treatment of erythrodermic cutaneous T-cell lymphoma and other T-cell-mediated dis-
orders [78].

Selenorhodamines 86a and 86b were synthesized as described by Kryman et al.
[79]. Selenorhodamines 87–88 were synthesized from selenoxanthones 89–90
(Scheme 7.18), which were prepared following the procedure previously reported
[80]. First, piperidin-1-yl(thiophen-2-yl)methanethione was deprotonated with LDA,
and the respective 2-lithiothiophene 91 was then added to THF solutions of 89 and
90 at −78 °C. Workup with aqueous HPF6 gave 87a and 88a in 88% and 79% iso-
lated yields, respectively, as the PF6 salts (Scheme 7.18). Amides 87b and 88b were
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Figure 7.5: Structures of selenorhodamines 86-88.[77].
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obtained by reaction of respective thioamides with trifluoracetic anhydride in 56%
and 55% yields, respectively. All PF6 salts of the rhodamines were converted to
chloride salts 87a–b and 88a–b with a chloride ion-exchange resin.

7.3.5 Selenomorpholine derivatives

Hypochlorous acid (HClO), as one of the highly ROS [69], plays a main role in im-
mune defense against microorganisms and also in inflammation [81]. Thus, the detec-
tion of HClO in biological samples is of significant interest [82]. In 2018, Guo et al.
developed a reversible and mitochondria targetable fluorescent probe 92 for real-
time detection of HClO/ClO– based on the mechanism of inhibition of photoinduced
electron transfer (Figure 7.6) [83]. Probe 92 showed desirable features, including
good water solubility, high sensitivity, fast response time, and good selectivity to-
ward HClO/ClO– over other species. The bioimaging experiments showed that the
probe could be used to sense the exogenous and endogenous HClO in RAW264.7
cells. During the tests, the strongly fluorescent compound 93 was detected by ESI-MS
analysis after incubation of the probe with NaClO, proving that it was the fluorescent
species.

Probe 92 was prepared via integration of selenomorpholine unit on the naph-
thalimide fluorophore (Scheme 7.19). Initially, compound 94 was converted to
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Scheme 7.18: Synthesis of selenorhodamines 87a-88a as the PF6 salts.
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selenomorpholine substituted derivative 95 and then 96 was obtained by treating
95 with phosphorus tribromide (BBr3) in dichloromethane. Finally, 96 was reacted
with triphenylphosphine in the presence of potassium iodide under reflux condi-
tions in acetonitrile to produce 92.

7.4 Conclusions

As seen in this chapter, Se-containing heterocycles may be considered relatively
new chemical compounds. However, the promising results that cover the pharma-
cological area motivate the scientific community to investigate the action of these
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derivatives. Selenium-containing five- and six-membered heterocyclics have an
enormous biological and pharmacological potential, exploited in several countries.
Consequently, this encourages chemists to evaluate their reactivity by considering
various combinations between the respective heteroatoms and substituents, show-
ing that organoselenium chemistry encompasses not only synthetic chemistry but
also explores several applications of medicinal interest.
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8 Chemistry and pharmacology of synthetic
organoselenium compounds

8.1 Introduction

Active support for the importance of selenium (Se) in the cell physiology of mam-
mals was provided in 1973. Two groups of investigators identified Se as part of the
enzyme glutathione peroxidase (GPx) [1, 2]. Up till now, 25 different selenoproteins
have been identified in the human genome [3–5].

After the clear demonstration of Se essentiality to vertebrates, the search for low-
molecular-mass organoselenium compounds that can mimic the selenoproteins has
increased considerably [6]. In this context, the organic chemists have been investing
their efforts in search of synthetic organoselenium compounds, which could mimic
the activity of selenoenzymes (e.g., GPx), as well as to find new Se-containing mole-
cules with pharmacological potential, not necessarily linked to the imitation of sele-
noproteins [6–8]. Some organoselenium compounds were synthesized a few years
after Se discovery, but they were little explored from the biological point of view [9].
Nowadays, there are a large number of structurally different organoselenium com-
pounds, such as diselenides, selenophenes, quinoline derivatives, bis-selenides, sele-
nazoles, and selenides [6]. Here, we highlight the major synthetic pathways, as well
as the pharmacological properties of some important organoselenium compounds
(Figure 8.1).

8.2 History of selenium: emphasis on synthetic
organoselenium compounds

Selenium was discovered accidentally in 1817 by Jöns Jacob Berzelius (1779–1848)
while examining a foul-smelling red mud found in the lead chambers of their sulfuric
acid factory (Figure 8.2). With rudimentary technology, Berzelius was also able to
characterize with an exactness some of the chemical properties of Se, as well as its
similarities with tellurium (Te) and sulfur (S) [10, 11]. In terms of toxicology, Se can
be seen as a classic example of Paracelsus adage (“the dose makes the poison”),
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i.e., when consumed in excess, this essential element is toxic [9, 12–15]. Selenosis
was first identified in farm animals fed with Se accumulator plants. The animals are
affected with loss of hair, and hooves were cracking and sloughing [16]. Moreover, it
was reported that a Chinese population living in a seleniferous area underwent
through symptoms of Se intoxication, such as loss of hair and nails, and skin lesions
[17]. Currently, there is great concern about the dietary overexposure to Se, which
may facilitate the development of neuropathological diseases (amyotrophic lateral
sclerosis and Parkinson’s disease), diabetes type 2, and hypertension [18–20].

In contrast, about five decades ago, Schwarz and Foltz described, for the first
time, the importance of Se to vertebrates. Briefly, they observed that the simultaneous
absence of vitamin E and factor 3 (lately identified as an organoselenium compound),
produced by the American yeasts G and K, caused necrotic liver degeneration in rats
[21, 22]. The molecular physiological role of Se was proved when it was identified as a
component of 25 mammalian proteins. The majority of the selenoproteins of the
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mammalian selenoproteome are classified as oxidoreductases, which regulate the cell
redox state, neutralizing the reactive species generated during the cell metabolism
[3, 5, 23, 24].

Nineteen years after the discovery of Se, the first organoselenium compound,
diethylselenide, was synthesized by C. J. Löwig [9, 25–27]. In 1847, Siemens isolated
a selenomercaptan molecule, bis(ethylselanyl)mercury, possibly after reacting eth-
ylselenol with HgCl2, which in a letter to Berzelius was called “child of selenium”
[10, 28]. However, the first synthetic organoselenium compounds tested as pharma-
cological agents were diselenide diacetic acid and diselenide dibutyric acid, where
they had no anticancer effects in tumor-bearing mice [9]. Nowadays, the number of
synthetic organoselenium compounds that are being tested against tumorigenic
cells is enormous [15, 29–34]. Here it is worth mentioning that the organoselenocya-
nates (BSC and p-XSC) and the selenozidovudine (derivatives of the AZT molecule)
have been demonstrating promising results [35–40].

Some organoselenium compounds that have extensively been studied in recent
times, for example, diphenyl diselenide ((PhSe)2 or DPDS) and ebselen, were syn-
thesized at the end of the nineteenth century or beginning of the twentieth century.
However, their pharmacological effects were recognized long time after their syn-
thesis. The pieces of evidence suggested that (PhSe)2 was first synthesized between
1888 and 1894 by M. C. Chabrie, who believed that he had synthesized chloroben-
zene, diphenyl selenide, and phenylselenol from selenium tetrachloride (SeCl4) and
benzene in the presence of anhydrous aluminum chloride. However, Krafft and col-
leagues, after repeating the Chabrie’s experiment, observed that phenylselenol was
actually (PhSe)2 [41–43].

The first use of diphenyl diselenide as a therapeutic agent was given to a woman
with cancer (acute stem cell leukemia) in 1956. However, ironically, this study re-
mained unnoticed, and it has been barely cited in recent literature. Specifically, di-
phenyl diselenide was given to a patient with leukemia for 7 days to determine
whether it could or not have some beneficial effects, without causing the side-effects
caused by selenocystine. Selenocystine was tested in four patients with severe toxic
effects (hair loss, severe nausea, vomiting, among others). In contrast to selenocys-
tine, diphenyl diselenide did not cause any side-toxic effect nor therapeutic effects
against leukemia [44].

To our knowledge, the first investigation of the chemical properties of diphenyl
diselenide and analogs with potential pharmacological interest was reported by Wilson
et al. [45]. The authors compared the GPx-like activity of ebselen, diphenyl diselenide,
and dozens of its analogs. Notably, they observed that diphenyl diselenide was about
1.6 times more effective than ebselen as GPx-mimic. In the last decades, the number of
studies about the toxicological, biochemical, and pharmacological properties of di-
phenyl diselenide and its derivatives has increased dramatically [46–62].

Ebselen (2-phenyl-1,2-benzoselenazol-3-one, also called PZ 51) was synthesized
in 1924 by R. Lesser and R. Weiß, together with a series of Se-containing aromatic
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compounds [9, 63]. The first studies about the biochemical properties of ebselen
showed its GPx-like activity [64]. Since then, the toxicological and pharmacologi-
cal properties of ebselen have been well studied in several experimental models
[65–73]. Tests with human have been carried out with ebselen in cases of acute
ischemic stroke [74], aneurysmal subarachnoid hemorrhages [75], complete occlu-
sion of the middle cerebral artery [76], as potential lithium mimetic [77–79], car-
diovascular and oxidative stress in diabetes patients [80], and noise-induced
hearing loss [81]. However, the majority of the results were not satisfactory, which
did not justify its therapeutic use in the tested pathologies.

8.3 Synthesis of organoselenium compounds

The first organoselenium compounds reported in the nineteenth century were ele-
mentary molecules, such as diethyl selenide (CH3CH2SeCH2CH3) and ethylselenol
(CH3CH2SeH) [9]. Nowadays, several synthetic methodologies are available to ob-
tain a set of different types of organoselenium molecules; however, here we will
highlight only a few of them, including the classical approaches to produce ebse-
len, diphenyl diselenide, organoselenocyanates, and of the most recent selenozido-
vudine derivatives.

8.3.1 Ebselen

2-Phenyl-1,2-benzoselenazol-3-one (ebselen) can be synthesized mainly by three routes
(Figure 8.3). The diazotization of anthranilic acid followed by the selenenylation of the
diazonium salt with disodium diselenide leads to the 2,2ʹ-diselanediyldibenzoic acid,
which is treated with thionyl chloride, giving the 2-(chloroseleno)benzoyl chloride,
which reacted with aniline forming the ebselen (Route A) [82]. The one-pot prepara-
tion from N-phenylbenzamide, using ortholithiation, selenium insertion, and oxidative
cyclization, is also used (Route B) [83]. In addition, a Cu-catalyzed method can be ap-
plied, using 2-halo-N-phenylbenzamide and Se powder (Route C) [84].

8.3.2 Diphenyl diselenide

Diphenyl diselenide is generally prepared by air oxidation of selenol or selenolate
intermediates from bromobenzene (Figure 8.4, Route A) [85–87] or diazonium salts
(Route C) [63, 88], or can be obtained from Cu-catalyzed coupling reaction between
aryl halides and elemental selenium (Route B) [89]. Also, these synthetic pathways
can be used to produce diaryl diselenide derivatives.
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8.3.3 Selenides

The diaryl diselenide derivatives can be used to produce monoselenides (Figure 8.5),
by the reduction of the respective diselenide by sodium borohydride (NaBH4) or potas-
sium hydroxide (KOH), and the reaction of the generated selenol/selenolate to a elec-
trophilic center, such as tosyl (Ts), mesyl (Ms), or aryl halide (chlorobenzene moiety)
[35, 36, 90–92]. In this way, compounds such as pyridylselenide glycerol derivatives
(Figure 8.5A), alkylseleno-carbohydrates (Figure 8.5B), selenozidovudine derivatives
(AZT-Se) (Figure 8.5C), and 4-arylselenyl-7-chloroquinolines (Figure 8.5D) can be ob-
tained with good yields. The approach used by the group of Dr. O. E. D. Rodrigues [35,
36], which uses AZT as the pharmacophore for the synthesis of S-, Se-, or Te-contain-
ing organochalogens, seems to be much more rational than empirically searching for
pharmacological targets for organoselenides [6, 7]. Furthermore, the AZT derivatives
have low toxicity to mice and healthy human cells [93–95].

The selenium-containing N-heterocycle molecules can be obtained from CuI/
SeO2-catalyzed reactions under ultrasound irradiation (Figure 8.6) [96]. Starting
from 1H-indoles (Figure 8.6A) or imidazo[1,2-a]pyridines (Figure 8.6B) and diphenyl
diselenide derivatives, the corresponding products 3-(organylselanyl)-1H-indole
and 3-(organylselanyl)imidazo[1,2-a]pyridine are obtained. About selenophenes,
these molecules can be prepared from FeCl3–diorganyl diselenide-mediated intra-
molecular cyclization of (Z)-selenoenynes, with good yields (Figure 8.6C) [97].

8.3.4 Organoselenocyanates

The production of organoselenocyanates is effortless [98–100]. Starting from an
electrophile molecule, such as benzyl bromide or p-xylylene dibromide (1,4-bis(bro-
momethyl)benzene), in the presence of potassium selenocyanate (KSeCN), benzyl
selenocyanate – BSC (Figure 8.7A) or p-xyleneselenocyanate – p-XSC (Figure 8.7B)
are formed. The anticancer properties of these compounds have been revised re-
cently by Rocha et al. (2018) [15] and will be discussed briefly in the following sec-
tions of this chapter.

8.4 Pharmacological properties of organoselenium
compounds

The significant advances in the synthesis of organoselenium compounds lead to a
big library of molecules, the majority of them without known applicability. However,
many compounds have been empirically tested and some therapeutic properties,
such as anti-inflammatory, anticancer, antidepressant, antinociceptive, anxiolytic,
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cardioprotective, hepatoprotective, gastroprotective, neuroprotective, and renoprotec-
tive, have been observed. Here, we will highlight some organoselenium compounds
that showed promising results (Table 8.1). Nonetheless, we have to emphasize that a
good part of the promising molecules have such a generic, and sometimes a wide
range of biological effects, making it difficult to identify their molecular targets. As
mentioned earlier, the use of a specific pharmacophore in the organoselenium com-
pounds can be considered a winning strategy [35–37, 93–95, 101, 102].
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8.4.1 Antinociceptive activity

The treatment of pain requires analgesics and anti-inflammatory drugs, which fre-
quently have undesirable side effects [103, 104]. A myriad of studies have demon-
strated the antinociceptive activity of organoselenium compounds, such as ebselen,
diphenyl diselenides, monoselenides, and bis selenide derivatives, in different ro-
dent models of pain (formalin-, acetic acid-induced abdominal writhing, tail-flick
test, capsaicin, and thermal model) [105–109].

The diphenyl diselenide antinociceptive activity appears to involve the interac-
tion with the glutamatergic system, L-arginine-nitric oxide pathway, activation of opi-
oid, dopaminergic, and muscarinic cholinergic receptors [106, 110, 111]. In the case of
m-trifluoromethyldiphenyl diselenide, the antinociceptive effect involves the modula-
tion of the µ-opioid and δ-opioid receptors, and the serotonergic system [112, 113]. For
p-methoxy-diphenyl diselenide, the antinociceptive effects seem to be mediated via
modulation of the glutamatergic and GABAergic systems and protein kinase A path-
way [114–116]. However, there is no conclusive evidence for a direct interaction of or-
ganoselenium compounds with the systems or pathways described earlier.

The pyridine derivative of diphenyl diselenide, the 2,2′-dipyridyl diselenide,
exerted nociceptive actions associated with anti-inflammatory effects, and the
beneficial effects were associated with changes in the inducible nitric oxide syn-
thase (iNOS), nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK)
phosphorylation levels in the spinal cord of mice [117]. The antinociception of bis
(4-methylbenzoyl) diselenide was reported to be mediated by modulation of the
nitrergic system [118].

The 3-(4-chlorophenylselanyl)-1-methyl-1H-indole has been reported to have
antinociceptive and anti-inflammatory effects in mice via modulation of monoaminer-
gic, opioidergic, and adenosinergic systems [107]. For the bis selenide alkene deriva-
tives, their nociceptive effects seemed to involve the modulation of the serotoninergic
system, nitric oxide, cyclic GMP and ATP-sensitive, and voltage-gated K+ channels.
The authors also indicated the potential interaction of 3-(4-chlorophenylselanyl)-1-
methyl-1H-indole with kainate and trans-ACPD receptors and with pro-inflammatory
cytokines [109, 119, 120].

8.4.2 Anxiolytic activity

Diphenyl diselenide, p-methoxyl- and m-trifluoromethyl-diphenyl diselenide have
been proposed to have anxiolytic-like effects in different animal models (mice, chicken,
and zebrafish) [121–123]. The diselenides presented anxiolytic action in the elevated
plus-maze and light–dark box tests [121, 124–126]. The anxiolytic-like effect of diphenyl
diselenide can be associated with modulation of the 5-HT and GABAA receptors [125],
while for m-trifluoromethyl-diphenyl diselenide, the serotonergic system can be
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involved [121]. The compound 4-phenylselenyl-7-chloroquinoline exhibited anxiolytic
activity, and the glutamatergic system seems to be involved [127]. However, as
commented earlier, a direct interaction of organoselenium compounds with spe-
cific molecular components of the neurotransmitter systems cited earlier has not
yet been demonstrated.

8.4.3 Antidepressant-like activity

The organoselenium compounds have been evaluated in animal models of depres-
sion. The mechanisms involved in their activity appear to affect the modulation of
multiple sites. For instance, the antidepressive-like effect of diphenyl diselenide
has been associated with modulation of the serotonergic, noradrenergic, and dopa-
minergic systems [128, 129], while ebselen showed interactions only with the norad-
renergic and dopaminergic systems [130]. Of particular therapeutic significance,
ebselen is under clinical trials as a potential lithium substitute. The studies of ebse-
len as lithium mimetic have indicated that it can inhibit the enzyme inositol mono-
phosphatase (IMPase), which is considered as the molecular target of Li+. In
contrast with ebselen, diphenyl diselenide did not inhibit the IMPase [77, 79].

The m-trifluoromethyl-diphenyl diselenide and p-chloro-diphenyl diselenide
[(p-ClPhSe)2] had an antidepressant-like activity that was associated with modula-
tion of the serotonergic system [131, 132]. The triazole derivatives (4-phenyl-1-
(phenylselanylmethyl)-1,2,3-triazole and phenylselanyl-1H-1,2,3-triazole-4-carbonitrile),
and the selenophene derivatives, which have quite distinct chemical structures
from diselenides, have also been reported to modulate the serotoninergic system
[97, 133, 134].

The antidepressant-like activity of methylphenyl selenide and α-(phenylse-
lanyl) acetophenone was associated with modulation of the dopaminergic system
[135, 136], whereas the compound bis-selenide [(Z)-2,3-bis(4-chlorophenylselanyl)
prop-2en-1-ol] modulated the L-arginine–nitric oxide–cyclic guanosine monophos-
phate pathway, and the serotonergic 5-HT2A/C and 5-HT3 receptors [137, 138].

8.4.4 Hepatoprotective activity

The organoselenium compounds have been showing hepatoprotective action [7].
More recently, diphenyl diselenide was demonstrated to blunt the hepatic oxidative
stress induced by bisphenol A in male mice apparently via upregulation of the Nrf2/
Keap-1 signaling pathway [49]. In silver catfish, diphenyl diselenide was reported to
attenuate the hepatic oxidative damage induced by clomazone [139]. In the mice
thioacetamide-induced hepatic toxicity model, diphenyl diselenide blunted the thioa-
cetamide hepatotoxicity. In contrast, the diselenide analogs (o-methoxyl- and
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p-methyl-diphenyl diselenides), and β-selenoamines did not modulate the thioa-
cetamide-induced hepatic toxicity [140, 141].

In a rat model of sodium glutamate-induced hepatotoxicity, (p-ClPhSe)2 blunted
glutamate toxicity, which was associated with preservation of the mitochondrial
functionality and modulation of the poly(ADP-ribose) polymerase, iNOS, and p38
proteins [142].

Freitas et al. (2012) demonstrated that the addition of chlorine moiety in the para
position of the aromatic ring of diaryl diselenide reduced the liver and kidney toxicity
in mice exposed to HgCl2 [58]. The binaphthyl diselenide showed a protective effect
on 2-nitropropane-induced hepatotoxicity in rats [143]. Also, the bis(4-methylbenzoyl)
diselenide had hepatoprotective effects in the tetrachloride (CCl4)-induced oxidative
damage in mice, possibly by modulating the antioxidant status [144].

8.4.5 Cardioprotective activity

Organoselenium compounds have been studied in different models of cardiovascular
damage. For instance, ebselen was effective against daunorubicin-induced cardiomy-
opathy in rats. Ebselen normalized the serum levels of cardiac enzymes creatine ki-
nase and lactate dehydrogenase, as well as serum GPx [145]. Mordente et al. (2015)
demonstrated the beneficial properties of ebselen for the treatment of anthracycline-
induced cardiotoxicity. The authors demonstrated that ebselen and ebselen disele-
nide were capable of inhibiting human myocardial cytosolic reductases, which are
responsible for the formation of anthracycline cardiotoxic metabolites, probably by
forming covalent adducts with cysteine residues of the reductases (carbonyl reduc-
tase and aldehyde reductase). The pharmacological cardioprotective effects of ebse-
len could be mediated by its capacity to inhibit g-butyrobetaine hydroxylase (BBOX).
The BBOX inhibition was reported to aid in the recovery after cardiac dysfunction in-
duced by ischemia/reperfusion [146, 147]. Ebselen (IC50 = 0.7 µM) has been reported
to be a more potent inhibitor of BBOX than other organoselenium compounds
(IC50 = 5–55 µM). The inhibitory mechanism of BBOX by ebselen involves the dis-
placement of structural zinc after the interactions of ebselen with Cys residues from
the Cys3-His motif, which are involved in the coordination with Zn2+ [148].

The chronic iron overload can cause cardiac failure, and in this sense, ebselen
was used in a model of chronic iron overload in mice. Ebselen exhibited cardio-
protective effects against oxygen free radical damage, decreasing the levels of cy-
totoxic aldehydes (hexanal, 4-hydroxyl-2-nonenal, and malondialdehyde) and
iron in heart tissue. Moreover, mice treated with ebselen showed an increase in
GPx activity [149].

Considering that the lipoprotein oxidation is involved in the development of ath-
erosclerosis, and it affects the vascular wall and leads to coronary artery diseases,
the diphenyl diselenide was tested against copper- and peroxyl radical-induced
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human low-density lipoprotein (LDL) oxidation in vitro. The diphenyl diselenide
inhibited lipid peroxidation and prevented the oxidation of protein moieties of
human LDL, which could be mediated by its thiol-peroxidase-like activity [150].
Hypercholesterolemia and oxidative stress are well-known risk factors in coronary
artery diseases, and diphenyl diselenide was reported to reduce the serum levels
of total cholesterol and the oxidative tissue stress in cholesterol-fed rabbits [151].
However, de Bem et al. [151] did not evaluate the possible participation of inor-
ganic selenium (derived from the metabolism of diphenyl diselenide) in the hypo-
cholesterolemic effects of diselenide in rabbits.

8.4.6 Hypoglycemic activity

The diphenyl diselenide was reported to prevent diabetic complications possibly
via the reduction of blood glucose levels (and consequently, glycated proteins and
oxidative stress) in streptozotocin-induced diabetes in rats [7]. Similarly, diphenyl
diselenide reduced biochemical alterations associated with oxidative stress in rats
fed with fructose [152] and modulate glucose metabolism [153]. However, as dis-
cussed earlier for the modulation of cholesterol levels, the participation of inorganic
selenium in the protective effects of diphenyl diselenide was not investigated in the
cited studies.

(p-ClPhSe)2 reversed the hyperglycemia induced by fructose administration via
modulation of liver enzymes involved in glucose metabolism [154]. The treatment
with (p-ClPhSe)2 was also reported to restore most of the metabolic parameters al-
tered by monosodium glutamate administration in rats, including obesity [155]. As
indicated earlier, the involvement of inorganic selenium in the observed effects is
highly plausible, because organoselenides are well known to release selenium to
the inorganic pool, which modulates the synthesis of selenoproteins [9].

8.4.7 Gastroprotective activity

Gastrointestinal ulcer is a significant disease that affects a considerable number of
people in the world. Chronic alcohol intake, chronic usage of nonsteroidal anti-in-
flammatory drugs, smoking, excessive stress, and Helicobacter pylori infection are
some of the factors that contribute to the development of gastric ulcers [156, 157]. In
this context, ebselen prevented ulceration induced by diclofenac [70], ethanol [158],
aspirin, and water-immersion restraint stress [159]. Moreover, ebselen inhibited
acid secretion in the guinea-pig parietal cells by interaction with thiol groups of the
H+/K+-ATPase (a gastric proton pump) [160]. In the same way, dihydroxy-1-seleno-
lane, diphenyl diselenide, and binaphthyl diselenide also presented protective activi-
ties against indomethacin- and ethanol-induced gastric lesions in rats, via inhibition
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of gastric H+/K+-ATPase and due to its antioxidant activities [61, 143, 161, 162]. The
proton pump inhibitors are used for the reduction of acid secretion from the stomach,
where the H+/K+-ATPase enzyme is an important target [163]. Thus, the organosele-
nium compounds could inhibit the HCl secretion [7].

8.4.8 Renoprotective activity

The antinephrotoxic effects of organoselenium compounds have been presented in
the literature. Ebselen reduced the nephrotoxicity in cisplatin- and gentamicin-in-
duced renal damage in rats [164–166]. This organoselenium also protected against
acute renal ischemia by improving renal function, associated with the reduction of
the lipid peroxidation and oxidative DNA damage, due to suppression of peroxyni-
trite production or its scavenging activity [167]. Also, ebselen significantly reduced
the expression of proteins implicated in kidney fibrosis and inflammation [168].

p-Methoxyl-diphenyl diselenide and (E)-2-benzylidene-4-phenyl-1,3-diselenole
reduced renal injury induced by cisplatin in rats, probably because of their antioxi-
dant activity [169, 170]. In addition, diphenyl diselenide and binaphthyl diselenide
are demonstrated to be effective against acute renal damage induced by glycerol in
rats [171, 172].

8.4.9 Anticancer activity

As discussed in Section 8.2, synthetic organoselenium have been tested as chemo-
preventive agents. The mechanism of the chemopreventive activity of Se is still not
well elucidated, but, probably, its pro-oxidant action is involved [15, 173].

Ebselen, diphenyl diselenide and derivatives, and selenocyanates have been
tested in different types of tumorigenic cells [31], presenting promising results.
These molecules can be reduced forming the very reactive moiety, selenol, which
can react with the intracellular reduced thiol or even trigger the expression of apo-
ptotic genes, leading to cell death [15].

Ethaselen, an ebselen derivative, demonstrated anticancer activity in many
types of tumors (MCF-7, H1666, A549, and LoVo cell lines). The mechanism of ac-
tion of this compound is related to the inhibition of the thioredoxin reductase en-
zyme (TrxR) that is overexpressed in many cancer types. Ethaselen binds in the C-
terminal redox center of TrxR, forming two covalent bonds with Cys497 and Sec498
residues. As a consequence, the increase in oxidized thioredoxin levels enhances
the levels of cellular reactive oxygen species (ROS), which could be involved in the
anticancer activity [174, 175].
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The new class of organoselenium compounds, the AZT-Se derivatives, has been
tested in tumorigenic cell lines. The results have been promising, but little is known
about the mechanism involved. It seems that the AZT-Se compounds could induce
the expression of proapoptotic genes [35–37]. More studies are necessary to study the
effects of these molecules in healthy and cancerous cells.

8.4.10 Neuroprotective activity

Neuroprotective activity is one of the described pharmacological properties of the
synthetic organoselenium compounds [176]. The neuroprotective effects of ebselen
and diphenyl diselenide were widely tested in vitro and in vivo in different experi-
mental models [53, 177–180]. Moreover, ebselen was tested in human clinical trials
in cases of acute ischemic stroke [74], aneurysmal subarachnoid hemorrhages [75],
and complete occlusion of the middle cerebral artery [76].

The neuroprotective activity of the organoselenium compounds (particularly
diselenides) can be due to the ability to feed the Se pool to the selenoprotein syn-
thesis. The selenoproteins are fundamental to the homeostasis of the central ner-
vous system [181, 182] once, in cases of Se deprivation, the brain is one of the last
organs to show a reduction in the Se levels [183]. Moreover, the synthetic organo-
selenium compounds demonstrate an antioxidant and anti-inflammatory activity,
which could be directly involved in their neuropharmacological effects.

8.5 Possible general mechanisms of action
of organoselenides

As briefly discussed in Section 8.4 and Table 8.1, the organoselenium compounds
are found to have significant pharmacological properties. The compounds have
been tested in vitro and in vivo in various animal models. Despite the vast number
of studies showing the pharmacological properties of the organoselenium com-
pounds, the exact molecular mechanism of their action still needs to be clarified.

The putative pharmacological/nutritional mechanism of action of organosele-
nium compounds is depicted in Figure 8.8. Organoselenium compounds can feed
the inorganic selenium pool and can enhance the synthesis of physiologically rel-
evant selenoproteins [23, 184, 185]. Selenium forms weaker sigma-bonds than sul-
fur analogs, and the cleavage of such bonds is fast and proceeds under mild
reaction conditions [186]. Physiologically, a variety of organoselenium com-
pounds can use Se to selenoprotein synthesis, as indirectly observed in the classi-
cal study of Schwarz and Foltz, where they demonstrated the protective effects of
a myriad of structurally distinct organoselenium compounds against hepatic
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necrosis induced by vitamin E and Se- deficient diet in rodents [187]. Except for
ebselen, which was reported not to release inorganic selenium, there are only a
few studies demonstrating that diselenides release inorganic selenium from the
organic moiety [6, 184]. Thus, the reported effects of organoselenium compounds
can be indirect via the release of Se to the synthesis of selenoproteins.

Organoselenium compounds can also weakly imitate the activity of selenopro-
teins [6]. For example, as commented in Section 8.2, diselenides and ebselen have a
GPx-like activity [6, 45, 188], that is, they can reduce the H2O2 or ROOH to H2O or
ROH. However, organoselenium compounds can have a thiol-oxidase or thiol-modi-
fying activity, which can activate transcription factors, such as the Nrf2. The activa-
tion of electrophilic responsive elements or antioxidant response elements
increases the transcription and transduction of antioxidant enzymes, which de-
crease the ROS levels in the cellular milieu (Figure 8.8). On the other hand, the anti-
cancer activity of organic compounds of selenium could be related to its pro-
oxidant capacity, due to the generation of superoxide anion (O2

•–), H2O2, and se-
lenyl radicals (R-Se•) (Figure 8.8) [15, 173].

8.6 Conclusion

The organoselenium compounds have been demonstrated to modulate the cellular
redox status by different mechanisms (Figure 8.8). However, the use of organose-
lenium compounds as potential therapeutic agents still needs much more detailed
in vitro and in silico studies. The empirical approaches used until now are obsolete
and should be abandoned. As discussed in the elegant critical review published
by Orian and Troppo [189], organoselenium compounds have no specific molecu-
lar targets and can modulate any protein having reactive thiol groups.
Accordingly, the thiol-modifying properties of organoselenium compounds seem
to be the significant determinant of their pharmacological effects [6]. The quite
similar and nonspecific pharmacological effects (e.g., antinociceptive and antide-
pressant) of structurally unrelated organoselenium compounds possibly can be
related to the release of inorganic selenium. In this way, the search of organosele-
nium compounds with higher selectivity for specific protein targets still need to
be developed. For this purpose, the design of new molecules with pharmacophore
groups (that have much high probability of interacting with specific molecular tar-
gets) can be considered more appropriate and rational than synthesizing mole-
cules by chance and testing them in vivo using only the obsolete trial-and-error
approaches.
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Bubun Banerjee and Brindaban Chandra Ranu

9 Selenoamides, selenazadienes, and
selenocarbonyls in organic synthesis

9.1 Introduction

During the first discovery of selenium in 1817 [1], this red amorphous powder was
treated as a dangerous component responsible for livestock poisoning [2]. Later on, in
the 1950s, it was established that selenium is an essential nutrient available in many
selenoproteins [3, 4]. Selenium is a homologous element with oxygen and sulfur in the
periodic table but it shows different specific features and reactivity in many occasions
[5]. Various selenium containing molecules were found to possess significant biologi-
cal efficacies such as anticancer [6–9], anti-inflammatory [10, 11], antimelanogenesis
[12, 13], and neuroprotective [14] activities. Organoselenium scaffolds are common in
commercially available drug molecules [15–21]. Figure 9.1 represents a glimpse of sele-
nium containing bioactive scaffolds [22]. As a result, during the last decade, synthesis
of organoselenium compounds dragged considerable attention and thus a large num-
ber of methods are available for the synthesis of selenium containing scaffolds under
various reaction conditions [23].

In many occasions, selenoamides, selenazadienes, and selenocarbonyls are being
used as key starting materials for the synthesis of diverse organoselenium scaffolds
under various reaction conditions [24]. This chapter summarizes the synthesis of vari-
ous organoselenium scaffolds, where either selenoamide or selenazadiene or seleno-
carbonyl plays the key role.

9.2 Synthesis of organoselenium scaffolds
involving selenamide

9.2.1 Synthesis of 4-benzyl-2-phenyl-1,3-selenazole derivatives

A facile and simple method was developed for the synthesis of 4-benzyl-2-phenyl-1,3-
selenazole derivatives (4) via cycloaddition reactions of 3-selanylpropargyl alcohols
(1) and selenamide (2) using scandium(III) triflate (Sc(OTf)3) as catalyst in the
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presence of tetrabutylammonium hydrogensulfate in aqueous nitromethane under re-
flux conditions (Figure 9.2) [25]. It was proposed that the reaction underwent through
the formation of α-selanyl propadienyl cation (5). Bu4NHSO4 may act as a scavenger
of the eliminated hydroxyl group. The plausible mechanism of this reaction is shown
in Figure 9.3. Deselanylation of the cycloadducts (3) using methyl lithium (MeLi) gave
the desired products with excellent yields.

9.2.2 Synthesis of α/β-hydroxy selenoamides

Deprotonation of selenoformamides (6) using lithium diisopropylamide afforded the
corresponding selenocarbamoyllithiums (7) as umpolung reagents. Murai et al. [26]
synthesized a series of α-hydroxyselenoamides (8) via the reactions of structurally di-
verse ketones (8,9)/aldehydes (10) with in situ generated selenocarbamoyllithiums
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Figure 9.2: Sc(OTf)3-catalyzed synthesis of 4-benzyl-2-phenyl-1,3-selenazole derivatives in aqueous
nitromethane.
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Figure 9.3: Plausible mechanism for the synthesis of 4-benzyl-2-phenyl-1,3-selenazole derivatives.
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(7) at −40 °C (Figure 9.4). The same group also synthesized β-hydroxyselenoamides
(8) from the reactions of cyclohexanone (8) and in situ generated lithium eneseleno-
lates (15) starting from selenoamide 14 (Figure 9.5) [27].

9.2.3 Synthesis γ,δ-unsaturated selenoamides

In situ generated lithium eneselenolate (15) was also employed for the synthesis of
γ,δ-unsaturated selenoamides (18) in good yields via seleno-Claisen rearrangement
reactions with 3-bromoprop-1-ene (17) at 0 °C (Figure 9.6) [28]. This reaction is dia-
stereoselective as the diastereomeric ratio of isomers in reactant 17a was found to
be retained in the product 18a. Cyclohex-2-enyl bromide (17b) also afforded the cor-
responding product 18b with excellent yields though it required a higher tempera-
ture and longer reaction time.
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Figure 9.4: Synthesis of α-hydroxy selenoamides in tetrahydrofuran.
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9.2.4 Synthesis of 1,3-selenazoles

1,3-Selenazoles are generally reported as antibiotics and anticancer agents [29–31].
Selenamides are considered as the most important starting material to synthesize
functionalized 1,3-selenazoles under various reaction conditions. A simple, efficient,
and novel method was developed for the synthesis of 2,4-disubstituted 1,3-
selenazoles (20) by the cyclocondensation of primary selenoamides (2) and alkynyl
(phenyl)iodomium salts (19) in the presence of triethyl amine as base in methanol
under reflux conditions (Figure 9.7) [32]. Geisler et al. [33] synthesized another series
of 2,4-disubstituted selenazoles (20) by the reaction of primary selenoamides (2) and
α-bromoacetaldehydes (21) without using any catalyst in ethanol under reflux
(Figure 9.8). 1,4-Bis(4-phenyl-2-selenazolyl)benzene (23) was synthesized via the re-
actions 1,4-benzenedicarboselenoamide (22) and excess α-bromoacetaldehydes (21)
in the absence of any catalyst using dimethylformamide and ethanol mixture as sol-
vent under reflux conditions (Figure 9.9) [34].

4-Aryl-1,3-selenazoles (20a) were synthesized by the cyclization reactions
of selenoformamide (24) and α-bromoacetaldehydes (21) using pyridine as cata-
lyst in methanol at 35 °C (Figure 9.10) [35]. Geisler et al. [36] carried out reac-
tions of α-bromoacetophenones (21) and phenylselenoacetic amide (25) without
using any catalyst in ethanol under reflux conditions, which afforded the corre-
sponding 2-benzyl-1,3-selenazoles (20b) with good yields (Figure 9.11). By re-
fluxing the synthesized compounds (20b) with selenium dioxide in dioxane,
the same group further prepared 2-benzoyl-1,3-selenazoles (26) with good yields
(Figure 9.12) [37].
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Figure 9.6: Synthesis γ,δ-unsaturated selenoamides in tetrahydrofuran.
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Zhang et al. [38] reported synthesis of 2,4-disubstituted selenazoles (20) by the reac-
tion of primary selenoamide (2) and in situ generated α-tosylated ketones (29) in
methanol under reflux. Compound 29 was prepared by the reaction of acetophe-
nones (27) and [hydroxy(tosyloxy)iodo] benzene (28) in acetonitrile under reflux
(Figure 9.13). Acetophenones (27) with both electron-donating and electron-
withdrawing substituent are well tolerated under this reaction conditions, and ex-
cellent yields of products are obtained.
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Figure 9.7: Synthesis of 2,4-disubstituted selenazoles using alkynyl(phenyl)iodomium salts in
methanol.
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Starting from compound 30, Pizzo et al. [39] prepared propargyl selenoamides
(31) by using the Ishihara reagent (LiAlHSeH). Cycloisomerization of this in situ gen-
erated propargyl selenoamides (31) produced the corresponding product 32, which
on further treatment with piperidine in acetic acid under reflux conditions yielded
the desired 2,5-disubstituted selenazoles (33) with excellent yields (Figure 9.14).

5-Amino-2-selenazolines (36) were prepared by the reactions of N,N-dimethylsele-
noformamide (6a) and selenoamide dianions (35), which were generated in situ
from the secondary selenoamides (34) using BuLi (Figure 9.15) [40]. On further
treatment with molecular iodine, 5-amino-2-selenazolines (36) were oxidized to 5-
aminoselenazoles (37) with moderate to good yields (Figure 9.15).

Attanasi et al. [41] studied the reactions of 1,2-diaza-1,3-butadienes (38) and se-
lenobenzamide (2) in dichloromethane at 0 °C, producing two isomers of 2-
selenazoline derivatives (39 and 39a). By following anti-elimination pathway, spe-
cifically the stereoisomer 39a underwent further aromatization by the removal of
one molecule of substituted hydrazine under basic conditions to generate fully
functionalized selenazoles (37) (Figure 9.16).
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Figure 9.13: Synthesis of 2,4-disubstituted selenazoles starting from acetophenones.
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9.2.5 Synthesis of 2-aryl-4,5-dihydroselenazolo[4,5-f]quinoline

Shafiee et al. [42] reported the reactions of primary selenamides (2) and neutralized
6-bromo-7,8-dihydroquinolin-5(6H)-one (41) in acetone as solvent under reflux con-
ditions, which afforded the corresponding 2-aryl-4,5-dihydroselenazolo[4,5-f]quino-
line (42) (Figure 9.17).

9.2.6 Synthesis of 1,3-selenazol-4-ones

A simple and facile method was developed by Koketsu et al. [43] for the synthesis of
2-aryl-5-methoxycarbonylmethylene-4,5-dihydro-1,3-selenazol-4-ones (45) by the
reaction of primary selenoamides (2) and dimethyl acetylenedicarboxylate (43) in
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ethanol at room temperature. Under the same reaction conditions when acetylene-
dicarboxylic acid (44) was employed instead of dimethyl acetylenedicarboxylate
(43), 2-aryl-5-carboxymethylene-4-ethoxy-4,5-dihydro-1,3-selenazol-4-ols (46) was
obtained with moderate yields (Figure 9.18). 2-Aryl-1,3-selenazol-4-ones (49) were
also synthesized by the same group [44] by the reaction of primary selenoamides
(2) and haloacyl halides (47) through the formation of 48 and followed by 48a in
the presence of pyridine as base at room temperature (Figure 9.19).

9.2.7 Synthesis of 8-methyl-4-selena-6-aza-spiro[2.5]oct-5-en-7-ols

A simple, efficient catalyst-free protocol was developed for the synthesis of 4-selena
-6-aza-spiro[2.5]oct-5-en-7-ol (51) by the nucleophilic tandem Michael addition of 2-
cyclopropylidenepropionaldehyde (50) and benzoselenoamides (2) in chloroform at
60 °C (Figure 9.20) [45].
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Figure 9.17: Synthesis of 2-aryl-4,5-dihydroselenazolo [4,5-f] quinoline using primary selenamides.
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Figure 9.18: Synthesis of 2-aryl-5-methoxycarbonylmethylene-4,5-dihydro-1,3-selenazol-4-ones
using selenamides.
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9.2.8 Synthesis of 5-spirocyclopropane-annulated selenazoline-
4-carboxylates

A series of 5-spirocyclopropane-annulated selenazoline-4-carboxylates (53) was pre-
pared via the Michael addition followed by intramolecular substitution reactions of
primary selenoamides (2) and 2-bromo-2-cyclopropylideneacetate (52) using sodium
bicarbonate as a base in acetonitrile at 80 °C (Figure 9.21) [46].

9.2.9 Synthesis of 1,3-selenazine derivatives

1,3-Selenazine scaffolds are found to possess significant antibacterial, antitumor ac-
tivities [47]. Koketsu et al. [48] developed another efficient protocol for the facile
synthesis of 4-alkyl-4-hydroxy-1,3-selenazine derivatives (55) by the reactions of pri-
mary selenoamides (2) and various α,β-unsaturated ketones (54) using BF3.Et2O as
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Figure 9.19: Synthesis of 1,3-selenazol-4-one at room temperature.
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catalyst in dichloromethane at 0 °C (Figure 9.22). Later on, in 2001, the same group
also synthesized another series of 4-hydroxy-1,3-selenazine derivatives (57) by em-
ploying α,β-unsaturated aldehydes (56) instead of α,β-unsaturated ketones (54) and
using the same catalyst in chloroform under reflux (Figure 9.23) [49].

9.2.10 Synthesis of 3,5-diaryl-1,2,4-selenadiazoles

In 1999, Shafiee et al. [50] demonstrated the synthesis of 3,5-diphenyl-1,2,4-selena-
diazole (59) by the reaction of selenobenzamide (2) and α-bromo-α-phenylsulfony-
lacetophenone (58) in the absence of any catalyst using dry acetone at room

Ar NH2

Se

2 53

+

% yield of 53
79
88
84

Ar

MeCN, 80 °C
1–2 h

3-MeC6H4
4-FC6H4

Br

COOEt

4-MeC6H4

NaHCO3

N

Se Ar

EtOOC

3,4-(OCH2O)C6H3 82

% yield of 53
85
83
75

Ar

4-ClC6H4
4-BrC6H4

C6H5

3-BrC6H4 82

52
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temperature (Figure 9.24). Later on, in 2003, Huang et al. [51] synthesized a series
of 3,5-diaryl-1,2,4-selenadiazole derivatives (59) in excellent yields via the dimer-
ization reaction of primary selenoamides (2) using poly[-styrene(iodosodiacetate)]
as an oxidant in dichloromethane at room temperature (Figure 9.25). After comple-
tion of the reaction, the polymer-supported oxidant was recovered by filtration and
reused for several runs. Dimerization of benzoselenoamides (2) was also achieved
by using tert-butyl nitrite to get the desired 1,2,4-selenadiazoles (59) in dichloro-
methane at room temperature (Figure 9.26) [52].
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Ph NH2

Se
Dry acetone

2 59; 44%

+ Ph

O

Br

S Ph

O

O N
Se

N
Ph

Ph

58
aExact temperature was not mentioned

RT, a30 min

Figure 9.24: Synthesis of 3,5-diphenyl-1,2,4-selenadiazoles at room temperature.
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9.2.11 Synthesis of 2,5-diaryl-1,3,4-selenodiazoles

A simple, convenient, and catalyst-free protocol was developed for the efficient synthe-
sis of a series of 2,5-diaryl-1,3,4-selenodiazoles (61) through the reactions of primary
selenoamides (2) and hydrazine hydrate (60) in methanol at room temperature
(Figure 9.27) [53]. The plausible mechanism of this transformation is shown in
Figure 9.28.

9.2.12 Synthesis of 6-methyl-2-phenylselenolo[3,4-d]selenazole

Shafiee et al. [54] also synthesized 1-(4-methyl-2-phenyl-1,3-selenazol-5-yl)ethanone
(63) by refluxing selenobenzamide (2) and 3-chloropentane-2,4-dione (62) mixture
in dry acetone. The product 63 was then treated with N-bromosuccinamide (NBS)
under reflux conditions in carbon tetrachloride, which afforded the corresponding
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Figure 9.25: Synthesis of 3,5-diaryl-1,2,4-selenadiazoles via dimerization of primary selenoamides.
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1-(4-(bromomethyl)-2-phenyl-1,3-selenazol-5-yl)ethanone (64). Reaction with 64
and N,N-diethylselenopropionamide (65) yielded the noble product 6-methyl-2-
phenylselenolo[3,4-d]selenazole (66) in ethanol under reflux conditions
(Figure 9.29).

9.2.13 Synthesis of diacyl selenides

Diacyl selenides are being used as good acylating agents in organic synthesis [55].
A simple and facile method was reported for the efficient synthesis of diacyl sele-
nides (68) with excellent yields by the reactions of primary selenoamides (2) and
benzoyl chlorides (67) in chloroform under nitrogen atmosphere at 60 °C
(Figure 9.30) [56].

Ar NH2
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N N
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Ar % yield of 61
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Ar % yield of 61

4-BrC6H4

4-ClC6H4

C6H5 17
24

18 3,5-(MeO)2C6H3

2-Thienyl 15
aExact temperature was not mentioned

Figure 9.27: Catalyst-free synthesis of 2,5-diaryl-1,3,4-selenodiazoles at room temperature.
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Figure 9.28: Plausible mechanism for the synthesis of 2,5-diaryl-1,3,4-selenodiazoles.
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9.2.14 Synthesis of 6H-1,3,5-oxaselenazines

Sekiguchi et al. [57] reported an efficient stereoselective method for the synthesis of
a series of noble 6H-1,3,5-oxaselenazine derivatives (69) by the reactions of benzo-
selenoamides (2) and various aldehydes (10) in the presence of boron trifluoride
etherate as promoter in chloroform at 20 °C (Figure 9.31). The reaction was com-
pleted within 1 h using acetaldehyde, whereas other bulky aldehydes required 20 h
to complete.
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O
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N
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O
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EtOH, reflux, 4 h
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Figure 9.29: Synthesis of 6-methyl-2-phenylselenolo[3,4-d]selenazole from selenazoles.
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Figure 9.30: Catalyst-free synthesis of diacyl selenides.
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9.2.15 Synthesis of 6-hydroxy-1,3-selenazin-4-ones

A number of 6-hydroxy-1,3-selenazin-4-ones (71) were synthesized starting by the
reactions of primary selenoamides (2) and bisacyl chloride (70) using triethyl amine
as base in dichloromethane at 0 °C (Figure 9.32) [58].

9.2.16 Synthesis of symmetrical diaryldiselenides

Organic diselenides were found to possess various pharmacological efficacies, in-
cluding anticancer [59], antiulcer [60], anti-inflammatory [61], and antioxidant [62]
activities. A facile and efficient method was developed for the synthesis of symmet-
rical diaryldiselenides (73) from the reactions of various aryl halides (72) and N,N-
diethyl selenoformamide (6b) as a Se source in the presence of catalytic amount of
nano-copper(II) oxide in DMF–water mixture as solvent at 110 °C (Figure 9.33) [63].
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Figure 9.31: Boron trifluoride etherate promoted synthesis of 6H-1,3,5-oxaselenazines.
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Figure 9.32: Synthesis of 6-hydroxy-1,3-selenazin-4-ones in dichloromethane.
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9.2.17 Synthesis of 5,6-dihydro-4H-1,3-selenazine

Reactions of selenobenzamide (2) and N,N-dimethylformamide dimethyl acetal (74)
in dichloromethane generated N-selenoacylamidine (75) in situ, which behaves as a
4π heterodienic systems in [4 + 2] cycloaddition reactions with excess of methyl ac-
rylate (76) to afford the corresponding 5,6-dihydro-4H-1,3-selenazine (77) with ex-
cellent yield at 40 °C (Figure 9.34) [64].

9.2.18 Synthesis of selenophenes

N-Selenoacylamidine (75), generated from selenoamide (2), undergoes Diels–Alder re-
action with 4.,4-diethoxy-2-butyn-1-a1 (78) affording 4H-1,3-selenazine (79), which
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Figure 9.33: Nano-copper(II) oxide catalyzed synthesis of diaryldiselenides.
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Figure 9.34: Synthesis of 5,6-dihydro-4H-1,3-selenazine in dichloromethane.
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under reflux conditions in tetrahydrofuran produced the corresponding selenabuta-
diene (80) with 65% yield. In this step, benzonitrile produced as a byproduct. Later
on, oxidative cyclization of 80 under reflux conditions in ethanol generated the de-
sired selenophene (81) with 50% yield (Figure 9.35) [65].

9.3 Synthesis of organoselenium scaffolds
involving selenazadienes

9.3.1 Synthesis of 2-amino-1,3-selenazoles

Koketsu and his group successfully employed selenazadienes (82) for the synthesis
of various selenium containing scaffolds. In 2005, they demonstrated the base-
catalyzed reactions between selenazadienes (82) and chloroacetonitrile (83), which
yielded the corresponding 2-amino-5-cyano-1,3-selenazoles (86) in moderate to high
yields through the formation of intermediate compounds 84 and 85 in acetonitrile
under reflux conditions (Figure 9.36) [66]. They further carried out the reactions of
selenazadienes (82) and chloroacetyl chloride (87) either in tetrahydrofuran or in ace-
tonitrile as solvent under reflux conditions, which produced the corresponding acyl
chloride intermediates (90) through the formation of 88 followed by 89 (Figure 9.36).
Washing of the resulting acyl chloride intermediates (90) with water afforded the cor-
responding 2-amino-1,3-selenazole-5-carboxylic acid (91) (Figure 9.37) [67]. When the
same intermediate 90 was treated with various alcohols (92), it produced a series of
2-amino-1,3-selenazole-5-carboxylate derivatives (93) with good yields (Figure 9.37)
[67]. Reactions of various amines (94) with the intermediate 90 yielded the
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Figure 9.35: Synthesis of selenophenes starting from N-selenoacylamidine derivatives.
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corresponding 2-amino-1,3-selenazole-5-carboxamides (95) (Figure 9.37) [66]. In
2006, by using selenazadienes (82), the same group also synthesized 5-acyl-2-amino
-1,3-selenazoles (96) in high yields by the reactions of α-haloketones (67) in methanol
under reflux conditions (Figure 9.38) [68].

9.3.2 Synthesis of 1,3-selenazol-4-one

Koketsu et al. [69] also reported a simple and efficient method for the synthesis of
1,3-selenazol-4-one derivatives (97) via hetero-Diels–Alder reactions of selenazadiene
(82) and dimethyl acetylenedicarboxylate (43) in methanol at 0 °C (Figure 9.39). The
mechanism of this conversation is shown in Figure 9.40.

9.4 Synthesis of organoselenium scaffolds
involving selenocarbonyls

9.4.1 Synthesis of Diels–Alder adducts

Selenocarbonyls are generally ignored in organic synthesis probably due to their
less stability. Segi et al. [70] successfully synthesized benzoselenaldehyde (100)
starting from acetal derivatives (98) and bis(dimethylaluminum)selenide [(Me2Al)2Se]
(99) as a selenylating agent. The synthesized benzoselenaldehyde (100) was then
employed for the Diels–Alder reaction with various dienes such as cyclopentadiene
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Figure 9.36: Synthesis of 2-amino-5-cyano-1,3-selenazoles in acetonitrile under reflux conditions.
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(101) or 2,3-dimethyl-1,3-butadiene (102) at 100 °C, which yielded the corresponding
adducts 103 or 104, respectively, with excellent yields (Figure 9.41). By following
the retro-Diels–Alder reaction of the corresponding cycloadducts (103), a series of
selenoaldehydes (100) was formed in situ, which on further reactions with trans-l-
acetoxy-l,3-butadiene (105) at 110 °C in toluene gave another series of 3,6-dihydro-2H-
selenopyran derivatives (104a) (Figure 9.42) [71]. In other reports, the same group
showed that the in situ generated selenoaldehydes (100) can be trapped by anthra-
cene (106) to produce the corresponding [4 + 2] cycloaddition adducts (107) at 100 °C
(Figure 9.43) [72–74]. This time selenoaldehydes (100) were generated from the reac-
tions of aromatic aldehydes (10) and bis(dimethylaluminum)selenide [(Me2Al)2Se]
(99).
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Figure 9.38: Synthesis of 5-acyl-2-amino-1,3-selenazoles in methanol under reflux conditions.
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Figure 9.39: Synthesis of 1,3-selenazol-4-one derivatives in methanol.
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Segi et al. [74] regenerated selenoaldehydes (100) by the thermolysis of anthra-
cene cycloadducts (107) following retro-Diels–Alder reaction pathway. [3 + 2] Cyclo-
addition reactions of 2,4,6-trimethylbenzonitrile N-oxide (108) with this in situ gener-
ated benzoselenaldehyde (100) produced the desired 1,4,2-oxaselenazole (109) with
good yield (Figure 9.44). The same group [75] also synthesized a series of 3-aryl-2-
selena-7-phosphabicyclo[2.2.1]hept-5-ene-7-selenide derivatives (111) via the [4 + 2] cy-
loaddition reactions of 3,4-dimethylphosphole selenides (110) and selenoaldehydes
(100), generated in situ by retro Diels–Alder reaction of anthracene cycloadducts (107)
under thermal conditions (Figure 9.45). Considering the steric effect, it was proposed
that the endo addition of selenoaldehyde was predominant over the exo addition, and
as a result, 111a was not formed, only one diastereomer (111) was obtained solely
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Toluene–dioxane
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Me Me

Se
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Figure 9.41: Synthesis of Diels–Alder reaction adducts involving selenoaldehydes.
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Figure 9.42: Synthesis of 3,6-dihydro-2H-selenopyran derivatives via Diels–Alder reaction.
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(Figure 9.46). The same group also reported the reactions of selenoaldehydes (100),
generated in situ by retro-Diels–Alder reaction of anthracene cycloadducts (107) and 2-
methoxyfuran (112), which surprisingly produced penta-2,4-dienoate derivatives (113)
with good yields by the removal of elementary selenium in toluene at 160 °C
(Figure 9.47) [73]. The same in situ generated selenoaldehydes (100) when reacted
with 5-ethoxyoxazoles (114) gave the corresponding 3-selenazoline derivatives (115)
with good yields via the [4 + 2] cycloaddition reaction involving carbon–selenium
bond breakage followed by successive recyclization (Figure 9.48) [72].

Selenoaldehydes (100) were also generated using bis(trimethylsilyl)selenide as a
selenylating agent from various aromatic aldehydes (10) in the presence of a catalytic

Se ArAr

Se

HAr

O

H
100 °C

107

106

100

99

10

(Me2Al)2Se

Ar % yield of 107
C6H5 85

4-F-C6H4 91
4-CF3C6H4 96
4-OMeC6H4 66

4 h

4-SMeC6H4 73
4-CNC6H4 90

Figure 9.43: Synthesis of Diels–Alder reaction adducts involving selenoaldehydes and anthracene.
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amount of cobalt chloride. The in situ generated so formed selenoaldehydes (100)
were then trapped by 2,3-dimethyl-1,3-butadiene (102), which produced the corre-
sponding Diels–Alder adducts (104) in acetonitrile at room temperature (Figure 9.49)
[76].

In 1991, Abelman [77] prepared diethyl selenoxomalonates (100a) from reactions of
diethyl chloromalonate (116) and elemental selenium in the presence of cesium car-
bonate as base. The selenocarbonyls generated in situ were then trapped with 2,3-
dimethyl-1,3-butadiene (102) or anthracene (106) to produce the corresponding
Diels–Alder adducts 104b or 107a, respectively, with excellent yields (Figure 9.50).
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Figure 9.45: Synthesis of 3-aryl-2-selena-7-phosphabicyclo[2.2.1]hept-5-ene-7-selenide.
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9.4.2 Synthesis of 2,4,6-trisubstituted 1,3,5-triselenanes

Takikawa et al. [78, 79] synthesized a new series of 2,4,6-trisubstituted 1,3,5-triselenane
derivatives (117) through the formation of selenoaldehydes (100), generated in situ
from the reactions of aromatic aldehydes (10) with bis(trimethylsilyl)selenide using
BF3.OEt2 as catalyst in dichloromethane at 0 °C (Figure 9.51).
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Figure 9.47: Synthesis of penta-2,4-dienoate derivatives in toluene.

Se Ar
Toluene
reflux

Ar

Se

H

107 100

114

115

160 °C, reflux, 2–3 h

N

O

Me

OEtPh

N

SeAr Me
COOEt

Ph

Ar % yield of 115

C6H5 95
4-OMeC6H4 91
4-CNC6H4 88

Figure 9.48: Synthesis of 3-selenazoline from in situ generated selenoaldehydes.
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9.4.3 Synthesis of trans-olefins using in situ generated
selenocarbonyls

Okuma et al. [79] reported the synthesis of selenoaldehydes (100) from the reac-
tions of elemental selenium and phosphonium ylides (118) through the formation
of intermediate 119 (Figure 9.52). Selenoaldehydes (100) so formed were then fur-
ther reacted with the phosphonium ylides (118) to produce the corresponding trans
olefins (121) via the formation of Wittig intermediate (120) in toluene under reflux
conditions (Figure 9.53).
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Figure 9.49: Formation selenoaldehydes using bis(trimethylsilyl)selenide as a selenylating agent.
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9.5 Conclusions

Organoselenium compounds are found to possess a wide range of biological activities
such as anticancer, antimelanogenesis, anti-inflammatory, and neuroprotective activ-
ities. As a result, the last decade has seen tremendous outburst to design new
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Figure 9.52: Synthesis of selenocarbonyls from elemental selenium and phosphonium ylides.

R
C

H
Se

Ph3P

C

Se

H

R R
H

–Ph3P=Se
+

118 100 120 121

Ph3P C
H

R

R

R

% yield of 121R

COOMe
COOEt

CN
COMe

74
97

Toluene
reflux

52
56

Figure 9.53: Synthesis of trans-olefins using in situ generated selenocarbonyls via Wittig reaction.

+ (Me3Si)2Se
CH2Cl2, 0 °C, N2

Se Se

Se ArAr

Ar

10 mol% BF3.OEt2

10 117

% yield of 117Ar

C6H5

Ar-CHO

5–9 h

79
4-MeC6H4 48

4-OMeC6H4 91

Ar H

Se

100

CH2Cl2, 0 °C

Figure 9.51: BF3.OEt2-catalyzed synthesis of 2,4,6-trisubstituted 1,3,5-triselenanes.

9 Selenoamides, selenazadienes, and selenocarbonyls in organic synthesis 375

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



protocols for the synthesis of various biologically promising organoselenium scaf-
folds under various reaction conditions. Under this direction, among other key pre-
cursors, recently selenoamides, selenazadienes, and selenocarbonyls have gained
considerable attention. This chapter summarizes the applications of selenoamide, se-
lenazadiene, and selenocarbonyl scaffolds as the key precursors for the synthesis of
various organoselenium scaffolds such as diaryldiselenides, selenazoles, selenazolo
[4,5-f]quinolines, selenazolones, selenazines, selenadiazoles, phenylselenolo[3,4-d]
selenazole, oxaselenazines, selenazinones, selenophenes, and 1,3,5-triselenanes.
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10 Understanding the Chemistry
of Selenoenzymes by Synthetic
Organoselenium Compounds

10.1 Introduction

Selenium, which mainly exists as selenocysteine (Sec, U), plays a crucial role in
many biological functions. Selenocysteine, which is coded by a stop codon UGA,
is considered as the 21st amino acid. The insertion of selenocysteine onto grow-
ing polypeptide chain is a complex process involving specific factors. Till date,
around 25 selenoproteins have been identified that contain selenocysteine.
However, the structure and function of many of these proteins are unknown. The
mutation of Sec to Cys results in a significant decrease in the activity of that spe-
cific protein, highlighting the importance of Sec in the active site of many of
these identified proteins. Glutathione peroxidases (GPx), iodothyronine deiodi-
nases (IDs), and thioredoxin reductases (TrxR) are some of the well-known pro-
teins that contain selenocysteine in their active site. As the recombinant DNA
technology failed to produce active selenoproteins, it has become a challenge to
find the role and mechanism of selenocysteine at the active site. Therefore, syn-
thetic organoselenium compounds were prepared as mimetic or as inhibitors to
understand its role and mechanism of action. Earlier scientific reviews and book
chapters highlighted the GPx mimetic activity of selenium compounds. In this
chapter, we provide an overview of the applications of organoselenium com-
pounds in understanding the chemistry of selenoenzymes.

Selenium plays an important role in many physiological functions in mammali-
ans [1–4]. Selenium presents as selenocysteine, a cysteine analogue. It is coded by
a dual function stop codon UGA [5, 6]. As it is cotranslationally coded into proteins
and fulfill all the requirements for a proteinogenic amino acid, it is considered as
the 21st amino acid [7]. Selenocysteine is present mainly in redox enzymes and be-
cause of its low pKa and low negative redox potential it maintains the redox state of
a cell [8, 9]. Till now, around 25 enzymes were identified to have selenocysteine,
which include the major mammalian enzymes GPx [10, 11], IDs [12], and TrxR [13]
that contain selenocysteine in their active site (Table 10.1).
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10.2 Glutathione peroxidase (GPx)

GPx is an antioxidant selenoenzyme that protects the cells from harmful reactive
oxygen species (ROS) such as hydroperoxides. There are four different isoforms of
GPx: cytosolic GPx (cGPx), phospholipid hydroperoxides GPx (PHGPx), plasma GPx
(pGPx), and gastrointestinal GPx (giGPx). All of these isoforms require selenocys-
teine in the form of selenol in the active site for their activity [15–19]. The catalytic
activity of these enzymes depends on the hydroperoxide and thiol cofactor it uses.
The classical GPx mainly utilizes glutathione (GSH) as the thiol cofactor in reducing
hydrogen peroxide (H2O2) and some organic peroxides such as cumene hydroperox-
ides (Cum-OOH) and tert-butyl hydroperoxides (tBuOOH). PHGPx has very broad
substrate specificity. It can reduce hydroperoxides, fatty acid hydroperoxides,
tBuOOH, Cum-OOH, cholesterol hydroperoxides, and H2O2 with good catalytic rate

Table 10.1: Human and bacterial selenoproteins and their physiological roles [14].

Selenoprotein Physiological role

Glutathione peroxidase (GPx-– and
GPx)

First line of defense against oxidative stress.
Catalyzes the reduction of HO and/or lipid
peroxides by using glutathione as cofactor.

Thioredoxin reductases (TrxR) Catalyze the reduction of oxidized thioredoxin to the
corresponding dithiol and play an important role in
the regulation of various signaling cascades.

Iodothyronine deiodinases (ID –) Membrane-bound proteins that activate/inactivate
the thyroid hormones such as thyroxine T and
hence play key roles in the thyroid function.

Integral membrane protein (SelN) Functions in calcium mobilization by direct
modulation of the ryanodine receptor.

Methionine sulfoxide reductase (SelR) Catalyzes the reduction of R-form of methionine
sulfoxides, oxidized methionines.

Selenophosphate synthetase (SPS ) Converts hydrogen selenide into selenophosphate
during the selenocysteine biosynthesis.

Integral membrane protein (Sel K) Not known.

Thioredoxin fold-like proteins (Sel V and
Sel T)

Not known.

Formate dehydrogenase* Conversion of formic acid to carbon dioxide.

Glycine reductases* Reduction of glycine to acetate and ammonium salt.

* Bacterial enzymes.
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using GSH as the cofactor [20]. In contrast to cGPx and PHGPx, pGPx exhibits very
narrow hydroperoxide substrate specificity. Although it can reduce H2O2 and or-
ganic peroxides, its catalytic rate is less than cGPx. In addition, GSH is a very poor
cofactor for this enzyme as the reducing GSH form concentration is very less in
plasma [21].

The catalytic cycle for this enzyme mainly involves three steps. In the first step,
the reduced selenoate residues reduce hydroperoxides to water (or alcohol) to form
oxidized selenenic acid (E-SeOH) [22, 23], which upon reaction with one equivalent of
GSH generates selenenyl sulfide (E-SeSG) intermediate. A second equivalent of GSH
attacks at –Se–S– bond to regenerate the active selenol species with elimination of
oxidized GSH (GSSG) and thus completing the catalytic cycle (Scheme 10.1A). The at-
tack of second equivalent of GSH at the Se–S bond is the rate-determining step in the
catalytic cycle [16, 23]. The GSH concentration in the cellular level is maintained by
the enzyme glutathione reductase (GR), which reduces oxidized GSSG to reduced
GSH by using NADPH as the cofactor [24]. In this overall catalytic process, 2 equiva-
lents of GSH are used to reduce one equivalent of hydroperoxide to the corresponding
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Scheme 10.1: (A) Proposed mechanism for GPx-catalyzed reduction of hydroperoxides involving the
formation of intermediates selenenic acid, seleninic acid, selenenyl sulfide, and active selenol;
(B) Overall reaction catalyzed by GPx enzyme.
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water or alcohol (Scheme 10.1B) [22, 23]. At high hydroperoxide concentration and at
depleting levels of GSH, the selenium center may undergo overoxidation to produce
the corresponding seleninic acid (E-SeO2H) and selenonic acid (E-SeO3H). Seleninic
acid may be converted rapidly to selenenyl sulfide by reaction with GSH. However,
the overoxidized selenonic acid decreases the catalytic activity. Nevertheless, there
are no reports to demonstrate the formation of these overoxidized products in vivo.

The crystal structure of GPx from bovine erythrocyte suggests that the selenium
center exits in seleninic acid form in the active site, which indicates that seleninic
acid form is more stable in air (Figure 10.1A) [25]. From crystal structure it is also ob-
served that Sec is very close to two amino acids, Glutamine (Gln80) and Tryptophan
(Trp158) (Figure 10.1B), by noncovalent interactions forming a catalytic triad [26].
These two amino acid residues are very important for the catalytic activity of GPx, as
the hydrogen bonding stabilizes the selenol moiety in the active site.

Due to many therapeutic applications, several research groups worked on to synthesis
GPx mimetics. These mimetic studies also helped with understanding the chemistry at
the active site of GPx. Based on the structure, these GPx mimetics were classified as
two categories. First category of compounds contains heteroatoms such as nitrogen,
oxygen, or sulfur directly bonded to selenium center. The second category of com-
pounds do not have direct selenium–heteroatom bond, but a heteroatom is placed
near selenium leading to selenium–heteroatom nonbonding interactions [27–29].

10.2.1 Ebselen and cyclic amide-based GPx mimetics

2-Phenyl-1,2-benzisoselenazole-3-(2H)-one (1, ebselen) is the first selenium com-
pound prepared and studied as GPx mimetic. It is one of the most therapeutically
important compounds, which exhibits many biological activities both in vitro and

Figure 10.1: (A) Active site of GPx in seleninic acid form (PDB code: 1GP1) determined by X-ray
crystallography [25]. (B) Structural representation of catalytic traid at active site of GPx [26].
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in vivo [29–33]. It reduces hydrogen peroxide and lipid peroxides, effectively scav-
enges highly reactive peroxynitrite, and it also inhibits a variety of free radical-
generating enzymes such as nitric oxide synthetase, NADPH oxidase, lipoxygenase,
and cyclooxygenase [34–36]. It is found that it is less toxic to cells because of its
stable selenazole moiety. However, some evidence showed that it can be toxic to
cells as it inhibits some cell growth enzymes and induces apoptosis.

Ebselen was first synthesized by Lesser and Weiss [37]. Muller and coworkers [30]
and Wendel and coworkers [31] first demonstrated its in vitro GPx activity. After dis-
covery of its therapeutic applications, extensive research was carried out to synthesize
ebselen and its structural analogues. The simple method was reported by Engman
and Hallberg [38], which involves ortho-lithiation of benzanilide, followed by sele-
nium insertion. Cyclization was carried out in the presence of CuBr as shown in the
Scheme 10.2. A homologue of ebselen, compound 2, was synthesized to increase the
solubility by increasing the ring size from five membered to six membered [39].
Compound 3, which does not have any aromatic ring, was synthesized and was exten-
sively used to understand the redox chemistry of Selenocysteine at GPx active site
[40]. Compound 4, which does not have carbonyl group, was also able to reduce hy-
drogen peroxide [41]. Introduction of NO2 group in the aromatic ring (compound 5)
was found to increase GPx-like activity due to the electron-withdrawing group at
ortho-position [42]. On the other hand, introduction of NO2 group at the para position
for compound 2 generates compound b where its activity is decreased significantly
[43]. The ring size was found to play a key role as the ring size when increased from
five membered (compound 4) to six membered (compound 7) exhibits much high ac-
tivity [44]. However, introduction of methoxy group to compound 7 at para position
(compound 8) does not seem to alter the activity [45]. Satheeshkumar and Mugesh re-
ported the synthesis and antioxidant activity of a number of peptides containing ebse-
len analogues (9–15) [46]. The GPx activity of these analogues was found to be highly
dependent on the nature of peptide chain attached to nitrogen atom and also the per-
oxide used. Compound 9 having Tyr–Val residue was found to be highly active than
ebselen itself in the presence of Cum-OOH, whereas the activity decreased consider-
ably when other peroxides such as H2O2 and t-BuOOH were used. Compound 10–12
with Phe–Val, Phe–Ile, or Phe–Ala residues, respectively, were found to be very poor
catalysts in the presence of Cu-OOH and t-BuOOH. However, in the presence of H2O2,
compound 12 shows better activity than ebselen. The Trp-based ebselen analogues 13

NHPh

O

NPh

O

SeLi
Li N

O

Se
Ph

1. n-BuLi

2. Se powder

CuBr

Scheme 10.2: Synthetic route for ebselen starting from benzanilide, which involves ortho lithiation,
selenium insertion followed by cyclization [38].
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and 14 were much more active than ebselen with both H2O2 and Cum-OOH, but the
activity of these compounds was slightly less than ebselen when t-BuOOH was used.
Compound 15 having Val–Ala residue was found to be very active in the presence of
all three peroxide systems. It was reported that the difference in the activity of these
compounds was mainly because of their reactivity toward GSH (Figure 10.2).

Although extensive work has been done on the reduction of peroxides by ebselen,
its catalytic mechanism is controversial [32, 47–49]. This is probably because of the
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Figure 10.2: Chemical structure of Ebselen and its analogues (1–8) and peptide coupled ebselen
derivatives (9–15).
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usage of different thiols and different peroxides in different assays. Initially, it was
postulated that ebselen first reacts with one equivalent of thiol to produce selenenyl
sulfide 16, which is then converted to selenol species at the expense of another
equivalent of thiol cofactor. The seleol species is believed to be active species and
reacts with H2O2 to produce selenenic acid 18 as shown in Scheme 10.3. The cata-
lytic cycle is completed with the release of a water molecule to regenerate ebselen.
In the presence of excess thiol, the selenenic acid 18 reacts with the thiol to produce
the corresponding selenenyl sulfide 16.

Recent studies have shown that ebselen is a poor catalyst in reducing peroxides
when aryl thiols such as PhSH or BnSH are used as thiol cofactors [50, 51]. Mugesh
and coworkers have synthesized and studied GPx-like activity of ebselen analogues
in the presence of aryl thiols as cofactors in assays [51–53]. It was found that the
reaction of thiols with ebselen does not produce selenol. This is due to extensive
thiol-exchange reaction. Once it forms selenenyl sulfide 16 species, the attack of an-
other thiol molecule can take place either at selenium center or at the sulfur center
as shown in Scheme 10.4. If thiol attacks at the sulfur center, the selenol is pro-
duced with the elimination of a disulfide. However, when the incoming thiol attacks
at selenium center, it leads to the generation of another selenenyl sulfide intermedi-
ate. In the proposed catalytic cycle of ebselen, the selenium center is more electro-
philic than the sulfur due to strong Se···O interaction, which favors the incoming
thiol to attack at the selenium center [51]. As a result, the selenol required for the
reduction of peroxides is not formed in sufficient quantities, which accounts for
poor GPx-like activity of ebselen analogues in aromatic thiol assays.
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Scheme 10.3: Initially postulated catalytic mechanism of ebselen involving intermediates selenenyl
sulfide (16), selenol (17), and selenenic acid (18).
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To understand the different substitution at the N-atom of ebselen, compounds
19–29 (Figure 10.3) were synthesized and their GPx-like activity was studied using
aromatic thiols as cosubstrate and different peroxides as substrate [52]. The syn-
thetic scheme for these compounds is shown in Scheme 10.5. The diselenide is
treated with thionyl chloride (SOCl2) to obtain 2-(chloroseleno)benzoyl chloride,
which is then treated with the corresponding amines in acetonitrile to obtain de-
sired ebselen analogues. All the N-substituted compounds were found to be more
active than 24, indicating the importance of substitution at nitrogen atom. While
the strength of Se–N bond has little effect on the GPx-like activity, the nonbonded
Se–O interaction in the selenenyl sulfide intermediate influences the activity
significantly.
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Figure 10.3: Chemical structure of GPx mimetics where the benzene ring attached to nitrogen atom
has different substituents 19–29.
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77Se NMR spectroscopy and theoretical calculations confirm that irrespective of
substitution, all the compounds were found to have strong Se–O nonbonded inter-
actions. All these selenenyl sulfide intermediates exhibit significant downfield shift
in 77Se NMR as compared to PhSeSPh (526 ppm). This indicates that all these sele-
nenyl sulfides undergo thiol-exchange reactions in the presence of aromatic thiols.
As discussed, strong Se–O interactions in the selenenyl sulfide intermediate derived
from selenenyl amide derivatives reduces GPx-like activity due to thiol-exchange re-
actions. Therefore, weakening such interactions is beneficial for the catalytic effi-
ciency. This can be achieved by the following modifications.
i) Introduction of substituent that will preferentially interact with sulfur center in

the selenenyl sulfide intermediate. For example, compound (Figure 10.4) has
both Se–O and Se–N interactions. The Se–N interaction reduces the Se–O inter-
action considerably and thus decreases the electropositive character of selenium
center. Thus, nucleophilic attack of incoming thiol takes place preferentially at
the sulfur center [54].

ii) Use of dithiol instead of monothiol as the cosubstrate. In this case, the second
free thiol group is expected to attack at the nearby sulfur center. For example,
the attack of second free thiol in selenenyl sulfide intermediates 31 and 32
(Figure 10.4) takes place at sulfur center leading to the generation of free sele-
nol. This was proved by experimentally observing higher activity of ebselen
when dihydrolipoic acid was used instead of GSH as the cofactor [55].

As catalytically active selenol was not generated in the catalytic mechanism of eb-
selen, Mugesh and coworkers have carried out a detailed mechanistic study on the
catalytic reduction of peroxides in the presence of thiol. A revised catalytic mecha-
nism was proposed based on the intermediates confirmed by 77Se NMR spectros-
copy. Some of the intermediates were isolated and characterized completely. It was
observed that ebselen can readily react with peroxides even in the absence of thiol
to produce seleninic acid 18a. Treatment with an excess amount of thiol converts
seleninic acid 18a into corresponding selenenic acid 18, which upon reaction with
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Figure 10.4: Chemical structures of selenenyl sulfides that reduce thiol-exchange reactions.
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another equivalent of thiol generates selenenyl sulfide 33 (Scheme 10.6). In the ab-
sence of thiol, compound 18 eliminates water to regenerate ebselen 1. The dispro-
portionation of selenenyl sulfide 16 to diselenide 34 is the rate-determining step
and the rate of disproportionation depends on the nature of thiol employed.

As diselenide 34 was found to be the key intermediate in the catalytic mechanism
of ebselen, Bhabak and Mugesh synthesized some sec and tert-amide-based dise-
lenides 35–43 and reported their GPx-like activity (Figure 10.5) [56]. These disele-
nides were inactive toward aromatic thiol PhSH, and therefore, their reaction with
H2O2 is important for their catalytic activity. The tert-amide-based diselenides ex-
hibit much better activity than the corresponding sec-amide-based diselenides.
Although the reactivity toward thiols cannot be altered by introduction of tert-
amide groups, the Se–O interactions in selenenyl sulfides derived from tert-amide
-based diselenide compounds (40–43) were found to be much weaker than the
interactions observed for selenenyl sulfides obtained from sec-amide-based dise-
lenides (35–39). This may account for the higher catalytic activity of tert-amide-
based diselenides. The catalytic mechanism of these compounds follows similar
to that of ebselen shown in Scheme 10.6.

As mentioned earlier, the crystal structure of GPx consists of Sec, Trp, and Gln,
which activate the selenol moiety at the active site through hydrogen bonding. This
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concept leads to the development of tert-amine-based diaryl diselenides such as
44–51 (Figure 10.6) [57] and sec-amine-based diaryl diselenides 52–54 [58] having
basic amino functionality near the selenium center. For example, reduction of 44 or
45 produces active selenol, which was stabilized by basic amino group present
nearby. It was reported that the substitution of the tert-amino group by a sec-amino
moiety (52–57) results in a significant enhancement in the catalytic activity [58].
The higher basicity of the sec-amino group facilitates the deprotonation of the sele-
nol, thereby increasing the selenolate ion concentration. Thus, increasing the nu-
cleophilicity of the selenol by deprotonation with a stronger base appears to be an
efficient way to increase the antioxidant activity of the amine-based diaryl disele-
nides. Interestingly, the introduction of methoxy group at the ortho position signifi-
cantly enhances the catalytic activity of parent compound. It assumes that the
methoxy group blocks the attack of incoming thiol at the selenium center. Hence, it
attacks at the sulfur center of selenenyl sulfide to generate the catalytically active
selenol species.
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Later Bhowmick and Mugesh, inspired from these results, synthesized numer-
ous diaryl diselenides 58–64 with different substitutions at aromatic ring and also
at the nitrogen atom (Figure 10.7C) [59]. These compounds having an additional
amino group on the benzylic nitrogen atom can behave as stabilizer for the selenol
group. This structure can be related to the catalytic triad comprising of Sec, Trp,
Gln (Figure 10.7A, B). All these compounds were tested for its GPx-like activity
using all three peroxides. Compound 60 was found to be more active in reducing
H2O2 than corresponding diselenide 44 when PhSH was used as a thiol cofactor. In
addition, the sec-amine-based compound 59 showed higher activity than 52. The
sec-amine-based diselenides (52 and 59) showed higher catalytic activities com-
pared to that of the corresponding tert-amine-based diselenides (44 and 60). It
clearly suggests that the introduction of a sec-amino moiety in the benzylic position
is more effective to increase the catalytic activity than the introduction of an addi-
tional amine on the nitrogen atom, although the additional amine leads to a further
increase in the activity.

The ortho-methoxy-substituted diselenides 48 and 62 showed almost similar cata-
lytic activity, suggesting that the additional amino group does not have any effect
on the activity. Interestingly, the activity of the sec-amine-based diselenide 61
was higher than that of compound 48, which exhibited exceptionally high
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catalytic activity in all the three peroxide systems. When GSH was used as thiol
cofactor compound 59 and 60 showed much less activity than that by compounds
44 and 52, indicating that compounds 59–60 act as poor catalysts in the presence
of GSH as the cofactor in the reduction of H2O2. Similarly, the initial rates for com-
pounds 48, 62, and 61 (534.3 μM min−1, 357.2 μM min−1, and 443.3 μM min−1, re-
spectively), in the presence of H2O2 as the substrate, indicates that compounds
61–62 display lower activities as compared to that of the diselenide 48. The poor
catalytic activities of compounds 58–62 can be ascribed to the severe steric inter-
action induced by the larger amino substituent on the nitrogen atom with the GSH
molecule, which is also larger in size compared to PhSH. Compounds 63–64 were
found to be more active than compounds 59–60 when H2O2 is used as the sub-
strate. However, the activity is much lower in the other two peroxide (Cum-OOH
and t-BuOOH) systems. The enhanced activities of compounds 63–64 in the pres-
ence of H2O2 are probably due to the less steric interaction between GSH and the
relatively smaller alcohol moiety.

Singh and coworkers reported novel isoselenazolines 65–66 and isoselenazoline
Se-oxides 67–68 (Figure 10.8) [60], which are stabilized by intramolecular Se···O in-
teractions. These compounds exhibited higher GPx-like activities compared to that of
ebselen 1 that contains a C = O group. Particularly, the selenoxides 67–68 were al-
most 3–4 times more active than ebselen. Based on the experimental studies, they
have proposed a catalytic mechanism for compound 67.

The proposed mechanism followed as shown in Scheme 10.7. First, the selenenyl
amide bond is cleaved by thiol (PhSH) to produce the selenenyl sulfide intermediate
69, which acts as a true catalyst in the catalytic mechanism involving compounds
selenol 70 and selenenic acid derivative 71. Although this pathway is different from
that of ebselen 1, the formation of the diselenide 72 from the corresponding sele-
nenyl sulfide 69 by disproportionation reaction is quite similar to that observed
during the reduction of peroxides by ebselen.

Recently, Mugesh and coworkers have synthesized similar types of isoselenazole
compounds 74–77 (Scheme 10.8) [58] that contain a methoxy substituent in the
ortho-position and alkyl substituents on the nitrogen atom. Interestingly, it was ob-
served that compounds 74–77 display excellent GPx activity both in vitro and inside
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Figure 10.8: Chemical structures of isoselenazolines 65–66 and their oxides 67–68.

10 Understanding the Chemistry of Selenoenzymes by Synthetic Organoselenium 393

 EBSCOhost - printed on 2/13/2023 2:39 AM via . All use subject to https://www.ebsco.com/terms-of-use



human cells. A comparison of the catalytic activity showed that all the isoselenazole
compounds exert very high activities when compared to that shown by ebselen.
These compounds also mimic the peroxiredoxins in human cells by using cellular thi-
oredoxin (Trx) as reducing agents. Although these isoselenazoles are structurally
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Scheme 10.7: Plausible catalytic cycle for the reduction of H2O2 by compound 67 that involves
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similar to compounds 65–68, the reactivity toward thiol is significantly different. The
GPx‐like activity of compounds 74–77 was studied using GSH as the thiol cofactor
and three different peroxides as the substrates and found to be two to three times
more active than ebselen in all three peroxide systems. It has been shown that the
presence of intramolecular secondary Se⋯O interactions with the nitro group in com-
pounds 65–68 enhances the reactivity of the Se–N bond toward cleavage by thiol
[58]. In contrast, isoselenazoles 74–77 reacted very slowly with thiol to cleave the
Se–N bond as the selenium center is not activated.

The catalytic mechanism of this compound 74 follows oxidation of selenium
center with peroxides and forming selenoxide intermediate 78, which subse-
quently undergoes rapid reaction with an excess amount of PhSH to produce the
corresponding selenenyl sulfide 79. Compound 79 then follows a catalytic cycle
similar to the native enzyme involving the selenol 80 and the selenenic acid 81. It
is noticed that, unlike compound 67, diselenide 82 is produced from the selenol
intermediate 80 after auto-oxidation (Scheme 10.9). Although isoselenazoles 67
and 74 maintain a similar catalytic cycle that involves selenenyl sulfide, selenol,
and selenenic acids as the intermediates, the reactivity toward thiol and peroxides
is significantly different due to the different electronic environments around the
selenium atom.
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Scheme 10.9: Catalytic mechanism for the GPx-like activity of compound 74 that involves
intermediates selenoxide (78), selenenyl sulfide (79), selenol (80), selenenic acid (81), and
diselenide (82) [58].
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10.3 Iodothyronine deiodinases

Thyroid hormones such as thyroxine (T4) and 3,5,5′-triiodothyronine (T3), produced
by the thyroid gland, are iodine-containing compounds that regulate gene expres-
sion in every vertebrate tissue and control the metabolism in the body. T4 is a pro-
hormone, which is produced in vivo by thyroid peroxidase that catalyzes the
conversion of L-tyrosine to T4 by iodination followed by phenolic coupling. The
triiodo derivative T3 is the active thyroid hormone, which is produced from T4 by
an outer ring deiodination by IDs (ID-1 or ID-2, Scheme 10.10) [61–67]. The phenolic
ring is referred as the outer ring and the tyrosyl ring as the inner ring. IDs catalyze
the regioselective deiodination of various iodothyronines.

These enzymes can be classified as ID-1, ID-2, and ID-3 depending on the position
of deiodination and their selectivity for inner or outer ring deiodination. ID-1 re-
moves iodine from both inner as well as outer ring iodine effectively and ID-2 re-
moves outer ring iodine specifically, whereas ID-3 removes iodine from inner ring
specifically [68–73]. Outer ring deiodination of T4 by ID-1 produces active hormone
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Scheme 10.10: Biosynthesis of thyroid hormone in vivo involves iodination of Tyr residues of
thyroglobin by TPO, followed by a phenolic coupling reaction resulting in the formation of
prohormone T4. Outer ring deiodination of T4 by ID1 or ID2 leads to the formation of active
hormone T3.
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T3 and inner ring deiodination produces reverse T3 (rT3). ID-1 also removes iodine
from inner ring of rT3 to generate T2. It is known that rT3 is a better substrate for
ID-1 than T4 or T3. In contrast, ID-2 removes iodine from outer ring of T4 and rT3 to
generate T3 and T2, respectively (Scheme 10.11). As T4 is a better substrate for ID-2
as compared to rT3, ID-2 generally controls the production of active hormone T3.
However, ID-3 removes iodine from inner ring of T4 and T3 to produce rT3 and T2,
respectively. For ID-3, T3 has been shown to be a better substrate than T4. So, ID-3
is mainly responsible for inactivation of thyroid hormone.

All these three enzymes are integral membrane-bound enzymes. Because of difficul-
ties in purification of membrane-bound proteins and expression of selenocysteine
containing proteins, the crystal structures of IDs are not available. Cysteine (Cys) mu-
tants of corresponding enzymes are functionally active, although the catalytic activity
is found to be many folds lower than that of the wild‐type enzyme [12, 74, 75].
Recently, the X‐ray structure of the catalytic domain of mouse Dio3 (mDio3cat) has
been solved [76]. The structure lacks the N‐terminal membrane‐associated domain as
well as the linker connecting it with the catalytic domain. Furthermore, Sec170 was
replaced with Cys to facilitate expression in a prokaryotic host [77]. The crystal struc-
ture reveals that the enzyme adopts a Trx fold containing a five‐stranded mixed β‐
sheet flanked by four α‐helices. A short N‐terminal β‐sheet followed by a 310‐helix
betrays an evolutionary relation to peroxiredoxins (Figure 10.9).

NH2

I

O

I
HO

I

I

O

OH

T4

NH2

I

O

HO

I
I

O

OH

NH2O

I
HO

I
I

O

OH

NH2O

HO

I
I

O

OH

T4

T2

T3rT3

ID-1

ID-3

ID-1
ID-2

ID-3
ID-1

ID-2

Scheme 10.11: Regioselective deiodination reactions catalyzed by different iodothyronine
deiodinases.
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10.3.1 Synthetic mimetics of IDs

As deiodination mechanism of thyroxine by enzyme is very complicated, much ef-
fort was given in the direction of simple molecules as synthetic mimetic of IDs. In
1994, Reglinski and coworkers used benzeneselenol (PhSe−) as deiodinating agent
to remove iodine from some diiodotyrosine derivatives by refluxing in ethanol
[78]. It was observed that only the activated iodo compound 85 undergoes deiodi-
nation to produce compound 88. Other compounds 83 and 84 did not undergo
deiodination to produce 86 and 87, respectively, in the mentioned conditions
(Scheme 10.12).

Figure 10.9: (A) Amino acid sequences at the active sites of ID-3 from different species indicating
the conserved Cys (C) and Sec (U) residues; (B) crystal structure of mouse Dio3 where Sec170 was
replaced by Cys (PDB: 4TR4) [76].
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Scheme 10.12: Deiodination of different diiodo phenols by PhSe−.
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Engman and coworkers reported that phenyltellurolate (PhTe−) can deiodinate phe-
nolic ring of various model compounds. They treated the iodinating compound 89
with different sulfur, selenium, and tellurium containing compounds such as
Na2Te, NaHTe, PhTe

−, Na2Se, and Na2S [79]. Only PhTe− selectively removes iodine
from compound 89 to give 90, whereas Na2S treatment produces compound 91
with removal of both the iodines (Scheme 10.13).

Recently, Goto and coworkers have demonstrated that N-butyrylthyroxine methyl
ester (92), a thyroxine derivative, can be converted to the corresponding triiodo de-
rivatives 93 by a sterically hindered selenol 94 (Scheme 10.14) [80]. In this study,
the nucleophilic attack of selenol at one of the outer ring iodine produces the corre-
sponding selenenyl iodide 95, which was characterized by X-ray crystallography. A
mechanism of this transformation was demonstrated in which the T4 first under-
goes tautomerization to produce the corresponding keto derivative (Scheme 10.15).
The nucleophilic attack of selenol on the positively charged iodine atom leads to
the formation of selenenyl iodide and T3. The reaction was carried out in organic
solvent CDCl3, at higher temperature (50 °C) and longer reaction time (7 days).
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Scheme 10.13: Deiodination of model compounds by sulfur and tellurium compounds.
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Manna and Mugesh reported the first chemical model for the inner ring deiodina-
tion of T4 and T3 to produce rT3 and T2, respectively [81]. It was reported that the
deiodination takes place at physiologically relevant conditions (pH 7.5, 37 °C). The
naphthyl-based thiols and selenols 96–102 (Scheme 10.16A) were studied as ID-3
mimetics. It was observed that selenol 97 removes iodine from the inner ring of T4
more effectively than dithiol 96 (Scheme 10.16B). The lower activity of dithiol 96 is
also in agreement with the mutational studies by Kuiper and coworkers, which dem-
onstrated that the replacement of Sec with Cys in the active site reduces the substrate
turnover number of T4 and T3 by six- and two-fold, respectively [75]. The comparison
studies on compound 97 and 98 reveal that the presence of free selenol is important
for the deiodination, as the compound 98 having a phenyl group attached to sele-
nium was found inactive even at higher concentration. The presence of a thiol group
at the 8-position of naphthyl ring is also important as the activity of compound 100
and 111 having no thiol group was found to be inactive in deiodination of T4.
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Scheme 10.15: Mechanism of deiodination via enol-keto tautomerism as proposed by Goto et al. [80].
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It is reported by Köhrle and others that the presence of His residue near to active
site selenol is important for the deiodination activity of ID-1, as this His residue acti-
vates the selenol by forming an imidazolium–selenolate pair [82, 83]. Goto and cow-
orkers also reported that the deiodination of 92 by selenol 94 takes place only in
the presence of triethylamine. Mugesh and coworkers compared the deiodination of
compound 99, having an amine group near to selenium, with compound 97. It was
observed that compound 99 was less active in deiodination of T4 and the addition
of triethylamine also did not alter its activity [81, 84]. This observation reveals that
the presence of thiol is more important than the additional amine group near to the
active site of IDs. It is also reported that the presence of two selenols 102 in the peri
position of naphthyl ring increases the deiodination by 91-fold [84].

The mechanism proposed by Goto and coworkers involving tautomerization
may not be the actual mechanism in deiodination [80]. As the naphthyl compounds
deiodinase inner ring iodine, there is no free phenolic group to tautomerize. Manna
and Mugesh proposed the mechanism of deiodination of T4 by naphthyl-based
compounds based on experimental and theoretical data (Scheme 10.17) [85]. It in-
volves the initial interaction of one of the selenol moieties with iodine leading to
the formation of a halogen bond. The transfer of electron density from selenium to
the σ* orbital of the C–I bond generates a σ hole or partial positive charge on sele-
nium atom, which facilitates an interaction between the halogen-bonded selenium
atom and the free selenol moiety (intermediate 103). The selenium–selenium inter-
action (chalcogen bond) strengthens the halogen bond, leading to a heterolytic
cleavage of C–I bond. The protonation of the resulting carbanion leads to the
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Scheme 10.17: Proposed mechanism of deiodination of T4 by naphthyl-based compound 102 by
Manna et al., which involves synergic effect of halogen and chalcogen bonds in the intermediate
103 [85].
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formation of rT3. On the other hand, the formation of an Se–Se bond produces the
diselenide 104 with the elimination of iodide as HI. The reductive cleavage of the
Se–Se bond of compound 102 regenerates the diselenol 102.

10.4 Thioredoxin reductase

Thioredoxin reductases (TR or TrxR) (EC 1.8.1.9) are homodimeric flavoproteins
that are known to reduce Trx [86–88]. Two classes of TrxR have been identified:
one, with high molecular weight (55 kDa) having selenocysteine in the active site
present in higher eukaryotes and humans, and another with low molecular weight
(35 kDa) present in bacteria and some eukaryotes [89]. Both classes are flavopro-
teins that function as homodimers. Each monomer contains a FAD prosthetic group
and a NADPH-binding domain. Human genome expresses three different isoforms
of TrxR: thioredoxin reductase 1 (TrxR1, cytosolic), thioredoxin reductase 2 (TrxR2,
mitochondrial) [90], and thioredoxin reductase 3 (TrxR3, testis specific). All these
three isoforms contain N-terminal conserved 59Cys–Val–Asn–Val–Gly–Cys64 active
site and a C-terminal Gly–Cys497–Sec498–Gly motif, which accounts for the broad
substrate specificity [13]. The main function of TrxR is to reduce the oxidized Trx
disulfides to dithiols [91, 92] but, because of highly nucleophilic selenol at C-
terminal, it reduces hydroperoxides and regenerates some antioxidants such as lip-
oate, various selenium compounds, and ubiquinone [93, 94].

In E. coli, the NADPH-binding domain and FAD domain were separated by a
rotation of 66°. NADPH domain rotates by 66° when the FAD domain remains rigid
and the bound NADPH comes close to FAD domain and electron transport from
NADPH to FAD occurs to active site disulfides [87]. In Mammalian TrxR, these two
domains are present in proximity so that electrons pass from NADPH to FAD easily
without any conformational changes. To understand the role of selenium in the ac-
tive site of TrxR, several mutational studies were carried out by substituting Sec498
residue by Cys and reported their activity (Cys mutant TrxR is 100-fold less active
compared with native TrxR) and also some crystal structures [95–103]. The homodi-
meric nature of mammalian TrxR was further confirmed by the crystal structure of
native TrxR1 from rat (Figure 10.10) [104] by Arnér and coworkers. The crystal struc-
ture indicates that the N-terminal Cys59/Cys64 redox pair is located near to C-
terminal redox pair Cys497/Sec498 of another domain.

10.4.1 Mechanism of action of TrxR in reducing Trx

The proposed mechanism of action in mammalians as depicted in Figure 10.11 [95,
105] first involves the electron transfers from NADPH to active N-terminal conserved
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disulfide active site through FAD and reduces the disulfides to active thiols. The
FAD is oriented near to N-terminal selenocysteine and cysteine redox pair and a
charge transfer from Cys64 to FAD produces a charge transfer complex stabilizing
the dithiol intermediate. The nucleophilic attack of Cys59 to the selenium center of
Se–S bond of C-terminal domain forms an intermolecular selenenyl sulfide
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Figure 10.10: Stereo view of the TrxR1 active site of reduced (A) and oxidized (B) forms is shown.
Selenocysteine is shown as U498. Image reproduced from Reference 104.
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Figure 10.11: Proposed mechanism of action of TrxR in mammalians in the reduction of Trx [95, 105].
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intermediate. Reformation of Cys59–Cys64 disulfide bond produces free selenolate.
A second equivalent of NADPH produces the fully reduced form of TrxR. The formed
selenolate moiety attacks at the disulfide bond of Trx to generate TrxR–Se–S–Trx
(Se–S, formed by TrxR Sec498 and Cys32 of Trx) complex and the complex was
cleaved by free thiol (SH of Cys497) of TrxR to regenerate oxidized TrxR at C-terminal
domain for the next catalytic cycle releasing reduced Trx. The catalytic mechanism
involves many steps and thiol-exchange reactions. Brandt and Wessjohann proposed
that a catalytic triad consisting of His472, Glu477, and Sec498 exists as that of GPx
catalytic triad. The selenocysteine at the C-terminal domain is very important for the
catalytic activity, as the mutant Sec498Cys reduces kcat by 100-fold [95, 106] and the
truncated TrxR is completely inactive [107].

10.4.2 Mechanism of action of TrxR in reducing H2O2

As selenocysteine in TrxR at physiological conditions is released as selenol, which
was stabilized by His and Glu, it can not only reduce Trx but also other disulfides,
inorganic selenides, and hydrogen peroxide. Holmgren and Zhong proposed a
mechanism for the reduction of H2O2 by TrxR [95]. As shown in Figure 10.12, it in-
volves three intermediates: selenol, selenenic acid, and selenenyl sulfide. The first step
involves the transfer of electrons form NADPH to active disulfide bond at N-terminal
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domain through FAD. During this step, the reactive dithiols at N-terminal domain of
first subunit generates a thiol–selenol pair in the second subunit. As selenol is
more susceptible to oxidation by H2O2, it forms selenenic acid (–SeOH). At this
step, thiol of Cys497 attacks at the selenenic acid intermediate and regenerates
selenenyl–sulfide bond, releasing H2O. Subsequently, the thiol from the N-terminal
end reacts with Cys497, instead of Sec498, to regenerate the active selenol. The at-
tack of thiol from N-terminal at Cys497 instead of Sec498 is surprising as the sele-
nium center in the selenenyl sulfide is more electrophilic than the sulfur atom. This
unusual feature can be attributed to the basic amino acid groups present nearby
active site redox pair Sec498/Cys497. It is evident from Figure 10.13 that His 108 and
His 472 residues are located very close to the sulfur atoms of Cys497 and Cys59, re-
spectively [96, 108]. The distance between the nitrogen of His472 and sulfur atom
of –S–S bridge is in the proximity of 3.69 Å. Similarly, nitrogen atom of HIS108 is at a
distance of 7.59 Å from sulfur atom of Cys497. The interaction of these His residues
with sulfur or selenium can play a crucial role with regard to deprotonating thiol to
enhance the nucleophilic attack of the thiolate in the selenenic acid intermediate and
interacting with sulfur in the selenenyl sulfide to facilitate a thiol attack at sulfur
rather than at selenium. Mugesh and coworkers have done some computational and
experimental studies with model compounds having basic group near to selenium or

7.59A
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3.70His472

His108

Cys59

Cys497
Cys498 (Sec498)

Cys64

3.69A

Figure 10.13: Active site of the SeCys498Cys mutant of rat
TrxR showing the proximity of His472 and His108 to Cys59
and Cys497, respectively (PDB code: 1H6V) [96, 108].
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sulfur in naphthalene-based molecules and postulated that the involvement of
two His residues in the catalysis [His108−Cys497−SeCys498] and [His472−Cys59
−Cys64] may be responsible for the broader substrate specificity of the mamma-
lian systems [108].

10.4.3 Inhibitors for thioredoxin reductases

TrxR plays an important role by reducing the oxidized Trx to its reduced form,
which in turn reduces many disulfide containing proteins. As mentioned, it
plays a key role in maintaining the redox homeostasis in the cells by modulation
of the concentration of hydrogen peroxides. Owing to their high proliferation
and metabolism, cancer cells generate large amounts of ROS when compared to
that of normal cells. The increase in the ROS levels in the cells leads to an imbal-
ance between the ROS-generating and -scavenging systems, resulting in a condi-
tion called oxidative stress [109]. To combat the deleterious effects of ROS and
oxidative stress, the levels of Trx system are elevated [110–112]. Therefore, it has
been proposed that targeting TrxR/Trx is a promising strategy for cancer treat-
ment [113–120].

TrxR has a unique selenocysteine at the C-terminal domain, which is catalyti-
cally active. As it is present as penultimate aminoamide, it is accessible to small
molecules to interact more. Holmgren and coworkers reported that high electro-
philic compounds 105–110 (Figure 10.14) can act as specific irreversible inhibitors
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representation) [123, 124].
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of the mammalian TrxR in the presence of NADPH, which in turn increases the
NADPH oxidase activity [121, 122]. In the absence of NADPH, it was observed that
these compounds do not have any effect on the TrxR activity, suggesting that it in-
hibits the enzyme only after reduction of the active site selenyl–sulfide bond by
NADPH to the corresponding selenol and thiol. Further, a detailed mass spectral
analysis indicated that the cysteine thiol groups of the enzyme were modified cova-
lently by compound 105 to produce the corresponding S–Ar derivatives. The covalent
bond formed between the enzyme and inhibitor can irreversibly block the enzyme ac-
tivity (Figure 10.14) [123, 124]. There are many other classes of inhibitors of TrxR; as
those are irrelevant to this chapter, we are excluding those (see References [125–130]
for more information).

Arnér and coworkers reported that these small molecules can induce apoptosis
by inhibiting the activity of TrxR, which is an integral part of the antioxidant system
in the cells. The active site of TrxR comprises a C-terminal motif Gly–Cys–Sec–Gly.
The formation of a selenenyl sulfide bond is critical for the redox activity. TrxR
reduces Trx disulfides to dithiols, which in turn reduces the disulfide bonds in
several proteins, particularly the ones involved in redox regulation. Although
the main function of TrxR is to catalyze the reduction of Trx, this enzyme can
also reduce hydroperoxides and regenerates some of the antioxidants such as
lipoate, various selenium compounds, and ubiquinone. All these actions of
TrxR are disturbed in mammalian cells upon inhibition of the enzyme by these
highly electrophilic compounds (105–110) [131, 132]. Arnér and coworkers pro-
posed that the mechanism by which these electrophiles inactivate the enzyme
involves the reactions of both the selenolate and thiolate in the active site with
the electrophiles to form S−C and Se−C bonds with the inhibitor, as shown in
Figure 10.14 [133].

Mugesh and coworkers proved the mechanism of action of these small mole-
cules under oxidative stress condition, by treating aryl selenocysteine derivatives
with hydrogen peroxide. It was shown that under oxidative stress conditions the
adduct of these small molecules with selenocysteine reacts with H2O2 and removes
selenium from the enzyme by converting the selenocysteine moiety to dehydroala-
nine 121 (Scheme 10.18B) [124].

The aryl selenocysteine derivatives were synthesized by the following general
method that involves the attack of highly nucleophilic selenol/selenolate of selenocys-
teine at aromatic halides. However, the yield of the reaction depends on the electrophi-
licity of the aryl halides. When the highly electrophilic 1-chloro-2,4-dinitrobenzene
(CDNB, 105) was used as aryl halide, the reaction afforded compound 120 in 80%
yield. In other cases, particularly with the aryl halides that are less electrophilic, they
observed lower yields [124]. Typically, the procedure involves the initial reduction
of the protected selenocystine derivative 111 to generate the free selenol by NaBH4
in situ in methanol. The addition of the selenol or selenolate to aryl halides
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2-bromopyridine (112), 2-bromopyrimidine (113), 1-chloro-2-nitrobenzene (114), or
1-chloro-4-nitrobenzene (115) in THF afforded the aryl-substituted selenocysteine
derivatives 116–119, respectively. (Scheme 10.18A)

The elimination of the selenium moiety from the selenocysteine derivatives
when treated with hydrogen peroxide was consistent with the proposal that the se-
lenium moiety may be eliminated from the TrxR–inhibitor complex. Although the
inhibition of TrxR by dinitrohalobenzenes such as CDNB is characterized by the ar-
ylation of both the –SeH moiety of the active site selenocysteine and the –SH group
of the adjacent cysteine, only the dinitrobenzeneselenol group may be eliminated
from the peptide, leading to the formation of a dehydroalanine (Figure 10.15).

This agrees with Anestål and Arnér, who reported that the enzymatically fully
active selenocysteine‐containing TrxR1 does not have any cell‐death‐promoting ef-
fects, whereas the truncated or selenium‐compromised forms of TrxR1 may directly
promote apoptosis. The Dha derivative of TrxR1 may be considered as the selenium‐
compromised form, and such a derivative cannot maintain the Trx‐mediated redox
balance in cells [133].
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Scheme 10.18: (A) Synthesis of the selenocysteine derivatives 116–120 from the protected
selenocysteine 111, by reduction followed by treatment with appropriate aryl halides. (a) NaBH4,
MeOH, 5 min 0 °C; (b) 112–115 or 105 in THF, 27 °C, 6 h. (B) Schematic representation of the
formation of dehydroalanine 121 under oxidative stress conditions [124].
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10.4.4 Organoselenium compounds as inhibitors of thioredoxin
reductase (TrxR)

Many organoselenium compounds were reported that can mimic GPx and ID iso-
forms. In contrast, there are no examples of organoselenium compounds that are
mimics of TrxR or any other seleno-proteins. But there are very few reports of organo-
selenium compounds as inhibitors for the TrxR. Zeng and coworkers reported first se-
lenium compound 1,2-(bis-1,2-benzisoselenazol-3(2H)-one)ethane (ethaselen 122) as
an analogue of ebselen to inhibit the activity of TrxR effectively [134, 135]. The com-
pounds where the selenium was replaced by oxygen (123) or sulfur (124) show drastic
decrease in their inhibitory activity (Figure 10.16A) [136], which shows the importance
of Se–N bond in the parental compound 112. The mechanism was postulated to in-
volve the formation of adduct with active Sec/Cys pair at the C-terminal domain.

The interaction of ethaselen with C-terminal domain of TrxR was proved by
showing that hTrxR mutants lacking selenocysteine, as well as human GR, E. coli
TrxR, and human GPx are comparatively insensitive to ethaselen treatment. This
proves that the unique TrxR Cys–Sec redox motif is crucial for the effective enzyme
inhibition. The inhibition action as shown in Figure 10.16B involves ethaselen ap-
proaching Sec/Cys pair at C-terminal end initially and benzisoselenozol ring ini-
tially attacked by nucleophilic Sec498 forming an intermolecular diselenide bridge.
As the benzisoselenozol ring is first opened, the structure becomes more flexible
and finds a position to interact with Cys497 with second benzisoselenozol ring. This
allows the nucleophilic attack by Cys497 and leads to the formation of intermolecu-
lar selenyl–sulfide intermediate [135].

The same group reported that the derivatives of ethaselen were found to be more
efficient in inhibiting TrxR. To study the effects of substituents on the inhibitory
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Se SNO2

NO2

NO2
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NO2

SH
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Figure 10.15: The formation of a relatively stable C−Se bond with the inhibitor and the facile
oxidation of selenium lead to the elimination of the selenium moiety from TrxR, possibly under
oxidative stress conditions. The arylated cysteine residue appears to be stable under these
conditions [124].
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activity of ethaselen, the core bis-1,2-benzisoselenazol-3(2H)-one structure was re-
tained and the aromatic ring was modified (compounds 122–124, 128–137) [136]. The
synthesis of ethaselen involves that benzinediazonium salts were first generated from
2-amino benzoic acid and subsequently were treated with disodium diselenide to
give 2,2′-diselenobisbenzoic acids (126). These compounds were refluxed with thionyl
chloride to generate 2-chloroselenobezoyl chlorides (127), which was added to the di-
amines to give ethaselen (Scheme 10.19).

The synthesis of all these derivatives (Figure 10.17) also involves similar steps with de-
rivatized starting materials and was achieved in a three-step method. All these com-
pounds were tested for the inhibitory activity of TrxR using DTNB-coupled assay.
Their IC50 values ranged from 0.1 to more than 50 µM. These studies also showed that
the R3 group should be an alkyl chain as the replacement of R3 with cyclohexyl or aryl
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Figure 10.16: (A) Ethaselen and its analogues, where selenium is replaced with O and S; (B) its
mechanism of inhibitory action that involves sequential attack of two selenium centers in the
ethaselen with C-terminal active site Sec498 and Cys497 (cartoon representation).
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Scheme 10.19: Synthetic scheme for ethaselen (122): (a) H2O, NaNO2, HCl, Na2Se2; (b) SOCl2,
DMFcat; (c) NH2–CH2–CH2–NH2, triethylamine, CH3CN or CH2Cl2 [136].
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groups leads to a significant decrease in the inhibitory activity. In addition, for the
compounds with alkyl chains, a slight decrease in the activity was observed when the
number of carbon increases from 2 to 5 (Structures not included). Substituents at R1

and R2 also have effects on the inhibitory activity of these compounds. Compound 135
(methoxyl at R1) showed best activity (IC50 = 0.13 ± 0.02), whereas compounds 129
(fluoro at R1) and 136 (hydroxyl at R1) were less active (IC50 = 0.28 ± 0.04 and
0.32 ± 0.02, respectively) but still better than parent compound 122. Among the com-
pounds with halogen atom, fluoro ones were more active than chloro and bromo ana-
logues [136]. IC50 values of the represented compounds are mentioned in Table 10.2.

Chen and coworkers have reported some of the selenadiazoles (141–143) as
radiosensitizers and as effective TrxR inhibitors. It was proved that these sele-
nadiazoles sensitize cancer cells to X-ray via ROS-mediated signaling [137]. In
addition, it was reported later by the same group that compounds 138–140
(Figure 10.18) were promising theranostic agents to achieve synergistic chemo-/
radiotherapy in cancer cells. The results showed that the higher lipophilicity
endowed compound 140 with higher cellular internalization in HeLa cells, thus
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Figure 10.17: The structure of bis-1,2-benzisoselenazol-3(2H)-one and its derivatives. Substitution
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resulting in a much higher anticancer activity than 138 and 139 and also it sig-
nificantly enhanced the sensitivity of HeLa cervical cells to X-rays through inhi-
bition of TrxR and triggering intracellular ROS overproduction, which activated
the downstream ROS-mediated signaling pathways to regulate HeLa cell apo-
ptosis [138].

Table 10.2: In vitro inhibitory activities of
title compounds [136].
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Figure 10.18: Selenadiazoles derivatives with bulky methoxy groups in the aromatic ring of the
side chain and simple selenadiazoles with methyl- and nitro-substituents on the main chain
aromatic ring.
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10.4.5 Cyclic selenenyl sulfides as mimetics of TrxR

TrxR is an enzyme with active site having Sec at the C-terminal end. Thus, attention
was focused to find mimetics of GPx based on this triad, keeping basic group near to
selenium in organoselenium compounds. However, there are only two reports of TrxR
mimetics. One is by Dawson and coworkers who have demonstrated that seleno-
glutaredoxin 3, which has a sequence of C–X–X–U or U–X–X–C instead of C–X–X–C
at the redox active site of glutaredoxin 3, behaves like TrxR in the reduction of oxi-
dized Trx [139]. Another one was by Iwaoka and coworkers who have shown that se-
ries of cyclic selenenyl sulfides (139–146, Figure 10.19) behaved like TrxR in reducing
the oxidized Trx. They have prepared many small cyclic selenenyl sulfides having an
amino substituent nearby such that it can mimic the catalytic triad of TrxR [140].

All these compounds were tested for the reduction of bovine pancreatic insulin
(BPIns) as a substrate and DTTred as an activator. The reductive cleavage of disulfide
bonds of native insulin was monitored by RP HPLC. The activity of compounds 139
and 143 was higher as they are having diselenide and no selenenyl sulfide bond. But
the selenenyl sulfides 140, 144, 141, and 145 show higher activity compared to disul-
fides 142 and 146. Similar trend was observed when another dithiol activator DHLA
(dihydrolipoic acid) was used. However, when monothiol such as GSH was used, the
activity of 139 and 143 was almost the same, but the activity of compounds 140–142
and 144–146 was drastically decreased. TrxR also possesses antioxidant-like activity
by reducing H2O2, and so, the title compounds (139–146) were tested for their antioxi-
dant activity by using DTTred as activator. The rates of reduction of H2O2 were evalu-
ated by monitoring UV absorbance at 310 nm owing to the formation of oxidized DTT
(DTTox). It was reported that the selenenyl sulfides (140, 141 and 144, 145) exhibited
more catalytic activity even compared to diselenide (139, 143) compounds. The disul-
fide compounds (142, 146) did not promote the reaction.

Based on these observations, the postulated mechanism involves reduction of cy-
clic selenenyl sulfides by dithiol activators to active selenolate species. This is done
in two steps. The first step involves attack of thiol of activator with more favorable
selenium rather than sulfur, which generates a mixed selenenyl–sulfide intermediate

X1

X2
X1

X2

NH2HCl NHAc139, 143: X1 = X2 = Se
140, 144: X1 = Se, X2 = S
141, 145: X1 = S, X2 = Se
142, 146: X1 = X2 = S

139–142 143–146

Figure 10.19: Cyclic selenenyl sulfide, disulfide, and diselenide compounds prepared as mimetics
for TrxR [140].
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I′. This species is inactive in reducing the substrate dithiol. In this step also attack of
thiol of activator at the thiol of selenenyl–sulfide is less favorable until and unless it
is coordinated to hetero atom such as N or O. In the second step, the other thiol of
reacted dithiol activator attacks at S atom of Se–S intermediate to produce active se-
lenolate species I releasing disulfide. The formed selenol reacts with oxidized insulin
to be converted to reduced insulin (Figure 10.20) [140].

10.5 Conclusions

Selenium, which exists mostly in the form of selenocysteine, plays several important
physiological roles. Although around 25 selenoproteins have been identified in mam-
mals, the functions of many of these proteins are still unknown. The lower activity
observed for the cysteine mutants of some of the selenoenzymes suggested that Sec
is important for the biological function. Particularly, Sec present in many oxidoreduc-
tase enzymes plays crucial roles in regulating the redox balance in the cell. GPx func-
tions as an antioxidant by reducing the harmful hydroperoxides and maintains
cellular concentration of ROS in vivo. Extensive work has been carried out in the de-
sign and synthesis of mimetics for two selenoenzymes called GPx and IDs. However,
successful functional mimetics for TrxR have not been reported so far. Although the
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main function of TrxR is to reduce the oxidized Trx, its broad substrate specificity
allows this enzyme to reduce lipid peroxides, selenites, organic molecules such as
DTNP, and biologically important hydrogen peroxide. It is speculated that the broad
specificity of this enzyme arises because of the presence of two histidine residues,
which can stabilize the active selenol group. TrxR also plays an important role in can-
cer therapy, as it is overexpressed in cancer cells to control the excess amount of
ROS. Therefore, this enzyme is considered as an active target for the treatment of can-
cer. Many small molecules and metal complexes are known to inhibit the activity of
TrxR. In this chapter, the development of organoselenium compounds to understand
the chemistry of selenoenzymes is discussed. We also described several organosele-
nium compounds that have been used as inhibitors and mimetics of TrxR. Further
studies are required to fully understand the biochemical mechanism of selenoen-
zymes and the development of functional mimetics for TrxR will be challenging.
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