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Preface

Calmness and tolerance act like air conditioning in a hot room and increase everyone’s
efficiency.

The applications and the importance of nanomaterials in many dimensions are al-
ready well known since its creation in the domain of low dimensional science and
technology. An enormous range of powerful applications of such low dimensional
structures in the quantum regime together with a rapid increase in computing
power, have generated considerable interest in the study of the quantum effect de-
vices based on various new materials of reduced dimensionality. Examples of such
new applications include quantum registers, quantum switches, quantum sensors,
quantum logic gates, quantum well (QWs), nanowires (NWs), quantum box (QBs),
quantum wire transistors, quantum cascade lasers, high-speed digital networks,
high-resolution terahertz spectroscopy, advanced integrated circuits, superlattice
photo-oscillator, superlattice photo-cathodes, resonant tunneling diodes and tran-
sistors, superlattice coolers, thermoelectric devices, thin film transistors, micro-
optical systems, high performance infrared imaging systems, single electron/mole-
cule electronics, nano-tube based diodes, and other nano-electronic devices [1-14].

In volume 1 of the series on nanomaterials, we have investigated few Electronic
Properties of Opto electronic nanomaterials having various band structures
under different physical conditions in the presence of intense photon field with
the use of the Heisenberg’s Uncertainty Principle (HUP). In this context, it may be
written that the available reports on the said areas cannot afford to cover even an
entire chapter regarding the ENTROPY in heavily doped (HD) nanomaterials and
after thirty years of continuous effort, we see that the complete investigations of the
entropy comprising of the whole set of materials and allied sciences is really a sea
and is a permanent member of the domain of impossibility theorems.

It may be noted that the entropy is a significant concept and a physical phe-
nomenon which occupies a singular position in the whole arena of science and
technology in general and whose importance has already been established since
the inception of second law of thermodynamics which in recent years finds exten-
sive applications in modern thermodynamics of nanomaterials, characterization
and investigation of condensed matter systems, thermal properties of thermal semi-
conducting devices and related aspects in connection with the investigations of the
thermal properties of nanomaterials [15-19].

It is well known that the entropy is the measure of disorder or uncertainty
about a system [15-19]. The equilibrium state of a system maximizes the entropy as
all the information about the initial conditions except that the conserved variables
are lost. According to the second law of thermodynamics the total entropy of any
system will not decrease other than by increasing the entropy of some other system.
A reduction in the increase of entropy in a specified process, such as a chemical
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reaction, means that it is energetically more efficient. In accordance to the second
law of thermodynamics the entropy of a system that is not isolated may decrease.
In mechanics, the second law in conjunction with the fundamental thermodynamic
relation places limits on a system’s ability to do useful work. The entropy change of
a system at temperature T absorbing an infinitesimal amount of heat §g in a revers-
ible way is given by 6q/T. Statistical mechanics demonstrates that entropy is gov-
erned by probability, thus allowing for a decrease in disorder even in an isolated
system. According to Boltzmann’s the entropy is a measure of the number of possi-
ble microscopic states (or microstates) of a system in thermodynamic equilibrium.
Entropy is the only quantity in the physical sciences that seems to imply a particu-
lar direction of progress, sometimes called an arrow of time.

The significant work of Zawadzki [20] reflects the fact that the entropy for mate-
rials having degenerate electron concentration is independent of scattering mecha-
nisms and is exclusively determined by the dispersion laws of the respective
carriers. It will, therefore, assume different values for different systems and varies
with the doping, the magnitude of the reciprocal quantizing magnetic field under
magnetic quantization, the nanothickness in ultrathin films, quantum wires and
dots, the quantizing electric field as in inversion layers, the carrier statistics in vari-
ous types of quantum confined superlattices having different carrier energy spectra
and other types of low-dimensional field assisted systems.

It is well known that heavy doping and carrier degeneracy are the keys to un-
lock the important properties of Materials and they are especially instrumental in
dictating the characteristics of Ohomic contacts and Schottky contacts, respectively
[21-31]. It is an amazing fact that although the heavily doped materials (HDS) have
been investigated in the literature but the study of the corresponding entropies of
HDS is still one of the open research problems. This first monograph solely in-
vestigates the entropy in HD non-linear optical, III-V, II-VI, Gallium Phosphide,
Germanium, Platinum Antimonide, stressed, IV-VI, Lead Germanium Telluride,
Tellurium, II-V, Zinc and Cadmium di-phosphides, Bismuth Telluride, III-V, II-VI, IV-
VI and HgTe/CdTequantum well HD superlattices with graded interfaces under mag-
netic quantization, 11I-V, 1I-VI, IV-VI and HgTe/CdTe HD effective mass superlattices
under magnetic quantization, quantum confined effective mass superlattices and
superlattices of HD optoelectronic materials with graded interfaces respectively. Our
method is not at all related with the Density-of-States (DOS) technique as used in
the literature. From the electron energy spectrum, one can obtain the DOS but the
DOS technique, as used in the literature cannot provide the E-k dispersion relation.
Therefore, our study is more fundamental than those in the existing literature, be-
cause the Boltzmann transport equation, which controls the study of the charge trans-
port properties of the semiconductor devices, can be solved if and only if the E-k
dispersion relation is known.

This book is divided into two parts each containing 5 and 4 chapters and 5 ap-
pendices is partially based on our on-going researches on the entropy in HDS and
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an attempt has been made to present a cross section of the entropy for wide range
of HDS and their quantized-structures with varying carrier energy spectra under
various physical conditions.

It is well known that the band tails are being formed in the forbidden zone of
the HDS and can be explained by the overlapping of the impurity band with the
conduction and valence bands [32]. Kane [33] and Bonch Bruevich [34] have inde-
pendently derived the theory of band tailing for materials having unperturbed para-
bolic energy bands. Kane’s model [33] was used to explain the experimental results
on tunneling [35] and the optical absorption edges [36, 37] in this context. Halperin
and Lax [38] developed a model for band tailing applicable only to the deep tailing
states. Although Kane’s concept is often used in the literature for the investigation
of band tailing [39, 40], it may be noted that this model [33, 41] suffers from serious
assumptions in the sense that the local impurity potential is assumed to be small
and slowly varying in space coordinates [40]. In this respect, the local impurity po-
tential may be assumed to be a constant. In order to avoid these approximations,
we have developed in this book, the electron energy spectra for HDS for studying
the entropy based on the concept of the variation of the kinetic energy [32, 40] of
the electron with the local point in space coordinates. This kinetic energy is then
averaged over the entire region of variation using a Gaussian type potential energy.
On the basis of the E-k dispersion relation, we have obtained the electron statistics
for different HDS for the purpose of numerical computation of the respective en-
tropy. It may be noted that, a more general treatment of many-body theory for the
DOS of HDS merges with one-electron theory under macroscopic conditions [32].
Also, the experimental results for the Fermi energy and others are the average effect
of this macroscopic case. So, the present treatment of the one-electron system is
more applicable to the experimental point of view and it is also easy to understand
the overall effect in such a case [31]. In a HDS, each impurity atom is surrounded by
the electrons, assuming a regular distribution of atoms, and it is screened indepen-
dently [39, 42, 43]. The interaction energy between electrons and impurities is
known as the impurity screening potential. This energy is determined by the inter-
impurity distance and the screening radius (popularly known as the Debye screen-
ing length). The screening length changes with the band structure. Furthermore,
these entities are important for HDS in characterizing the semiconductor properties
[44-47] and the modern electronic devices [39, 46]. The works on Fermi energy and
the screening length in an n-type GaAs have already been initiated in the literature
[47], based on Kane’s model. Incidentally, the limitations of Kane’s model [33, 40],
as mentioned above, are also present in their studies.

The part one deals with the influence of quantum confinement on the entropy of
non-parabolic HDS and in chapter one we study the entropy in QWs of HD nonlinear
optical materials on the basis of a generalized electron dispersion law introducing
the anisotropies of the effective masses and the spin orbit splitting constants respec-
tively together with the inclusion of the crystal field splitting within the framework of
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the E.ﬁ formalism. We will observe that the complex electron dispersion law in
HDS instead of real one occurs from the existence of the essential poles in the
corresponding electron energy spectrum in the absence of band tails. The physical
picture behind the existence of the complex energy spectrum in HD non-linear optical
Materials is the interaction of the impurity atoms in the tails with the splitting con-
stants of the valance bands. The more is the interaction, the more the prominence of
the complex part than the other case. In the absence of band tails, there is no interac-
tion of the impurity atoms in the tails with the spin orbit constants and consequently,
the complex part vanishes. One important consequence of the HDS forming band
tails is that the effective electron mass (EEM) exists in the forbidden zone, which
is impossible without the effect of band tailing. In the absence of band tails, the
effective mass in the band gap of Materials is infinity. Besides, depending on the
type of the unperturbed carrier energy spectrum, the new forbidden zone will ap-
pear within the normal energy band gap for HDS.

The results of HD III-V (e.g. InAs, InSb, GaAs etc.), ternary (e.g. Hg; xCdyTe),
quaternary (e.g. In;-xGaAs: - Py lattice matched to InP) compounds form a special
case of our generalized analysis under certain limiting conditions. The entropy in HD
QWs of II-VI, IV-VI, stressed Kane type materials, Te, GaP, PtSh,,Bi,Tes, Ge, GaSbh,
II-V, Lead Germanium Telluride, Zinc and Cadmium Diphosphides has also been in-
vestigated in the appropriate sections. The importance of the aforementioned materi-
als has also been described in the same chapter. In the absence of band tails and
under the condition of extreme carrier degeneracy together with certain limiting con-
ditions, all the results for all the entropies for all the HD QWs of chapter one get sim-
plified into the form of isotropic parabolic energy bands exhibiting the necessary
mathematical compatibility test. In the second and third chapters, the entropy for HD
nanowires (NWs) and quantum boxes (QBs) of all the materials of chapter 1 have re-
spectively been investigated. As a collateral study we shall observe that the EEM in
such QWs and NWs becomes a function of size quantum number, the Fermi energy,
the scattering potential and other constants of the system which is the intrinsic prop-
erty of such 2D and 1D electronic materials.

In this context, it may be noted that the effects of quantizing magnetic field (B)
on the band structures of compound materials are most striking than that of the para-
bolic one and are easily observed in experiments. A number of interesting physical
features originate from the significant changes in the basic energy wave vector rela-
tion of the carriers caused by the magnetic field. The valuable information could also
be obtained from experiments under magnetic quantization regarding the important
physical properties such as Fermi energy and effective masses of the carriers, which
affect almost all the transport properties of the electron devices [48] of various mate-
rials having different carrier dispersion relations [49].

Specifically in chapter four we study the entropy in HD non-linear optical ma-
terials in the presence of strong magnetic field leading to the magnetic quantiza-
tion of the energy band states of the corresponding bulk HD materials. The results
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of HD III-V (e.g. InAs, InSh, GaAs etc.), ternary (e.g. Hg, ,Cd,Te), quaternary
(e.g.Ini_xGayAs, - Py lattice matched to InP) compounds form a special case of our
generalized analysis under certain limiting conditions. The entropy for HD II-VI,
IV-VI, stressed Kane type materials, Te, GaP, PtSh,,Bi,Tes, Ge, and GaSh has also
been investigated by formulating the respective appropriate HD energy band
structure. In the absence of band tails and under the condition of extreme carrier
degeneracy together with certain limiting conditions, all the results for all the en-
tropies for all the HD materials of this chapter one get simplified into the well-
known parabolic energy bands under strong magnetic quantization exhibiting the
necessary mathematical compatibility test. In chapter five we have studied the en-
tropy for all the HD materials of chapter four in the presence of magneto size
quantization.

In part two we have studied the entropies in HD quantum confined superlatti-
ces (SLs). It is well known that Keldysh [50] first suggested the fundamental con-
cept of a SL, although it was successfully experimental realized by Esaki and Tsu
[51]. The importance of SLs in the field of nano-electronics has already been de-
scribed in [52-53]. The most extensively studied III-V SL is the one consisting of al-
ternate layers of GaAs and Ga; xAl,As owing to the relative ease of fabrication. The
GaAslayer forms quantum wells and Ga;_,Al,As form potential barriers. The III-V
SL’s are attractive for the realization of high speed electronic and optoelectronic de-
vices [54]. In addition to SLs with usual structure, SLs with more complex structures
such as II-VI [55], IV-VI [56] and HgTe/CdTe [57] SL’s have also been proposed. The
IV-VI SLs exhibit quite different properties as compared to the III-V SL due to the
peculiar band structure of the constituent materials [58]. The epitaxial growth of II-
VI SL is a relatively recent development and the primary motivation for studying
the mentioned SLs made of materials with the large band gap is in their potential
for optoelectronic operation in the blue [59]. HgTe/CdTeSL’s have raised a great
deal of attention since 1979, when as a promising new materials for long wave-
length infrared detectors and other electro-optical applications [60]. Interest in Hg-
based SL’s has been further increased as new properties with potential device appli-
cations were revealed [61]. These features arise from the unique zero band gap ma-
terial HgTe [62] and the direct band gap materials CdTe which can be described by
the three band mode of Kane [63]. The combination of the aforementioned materials
with specified dispersion relation makes HgTe/CdTe SL very attractive, especially
because of the possibility to tailor the material properties for various applications
by varying the energy band constants of the SLs. In addition to it, for effective mass
SLs, the electronic sub-bands appear continually in real space [64, 65, 66].

We note that all the aforementioned SLs have been proposed with the assump-
tion that the interfaces between the layers are sharply defined, of zero thickness, i.e.,
devoid of any interface effects. The SL potential distribution may be then considered
as a one dimensional array of rectangular potential wells. The aforementioned ad-
vanced experimental techniques may produce SLs with physical interfaces between
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the two materials crystallographically abrupt; adjoining their interface will change at
least on an atomic scale. As the potential form changes from a well (barrier) to a bar-
rier (well), an intermediate potential region exists for the electrons. The influence of
finite thickness of the interfaces on the electron dispersion law is very important,
since the electron energy spectrum governs the electron transport in SLs.

The chapter six explores the entropy in III-V, II-VI, 1V-VI, HgTe/CdTe and
strained layer heavily doped Quantum wire superlattices (QWHDSLs) with graded
interfaces and heavily doped quantum wire effective mass super lattices respec-
tively. The chapter seven investigates the entropy in quantum dot HDSLs for all
cases of chapter six. The chapter eight of part two of this book contains the study of
the entropy in HD SLs under magnetic quantization for all the cases of chapter six.
The chapter nine contains the conclusions and future research in this context.

With the advent of nano-devices, the built-in electric field becomes so
large that the electron energy spectrum changes fundamentally instead of
being invariant and the chapter 10 (Appendix A) of this book investigates the en-
tropy under intense electric field in bulk specimens of HD III-V, ternary and qua-
ternary materials. The same chapter explores the influence of electric field on the
entropy in the presence of magnetic quantization, cross-fields configuration, QWs,
NWs, QBs, magneto size quantum effect, inversion and accumulation layers, mag-
neto inversion and magneto accumulation layers, doping superlattices, magneto
doping superlattices, QWHD, NWHD and QBHD effective mass superlattices, mag-
neto QWHD effective mass superlattices, magneto HD effective mass superlattices,
QWHD, NWHD and QBHD superlattices with graded interfaces, magneto QWHD
superlattices with graded interfaces and magneto HD superlattices with graded in-
terfaces and respectively magnetic quantization, size quantization, accumulation
layers, HD doping superlattices and effective mass HD superlattices under mag-
netic quantization respectively. It is interesting to note that the EEM depends
on the strong electric field (which is not observed elsewhere) together with the
fact that the EEM in the said systems depends on the respective quantum numbers
in addition to the Fermi energy, the scattering potential and others system con-
stants which are the characteristics features of such hetero-structures.

The Chapter 10 (Appendix A) investigates the entropy in bulk specimens HD
Kane type materials under intense electric field in the presence of strong magnetic
quantization after formulating the electron dispersion law in the present case. The
same appendix studies the entropy under cross-fields configuration, QWs, NWs, QBs,
magneto size quantum effect, inversion and accumulation layers, magneto inversion
and magneto accumulation layers, doping superlattices, magneto doping superlatti-
ces, QWHD, NWHD and QBHD effective mass superlattices, magneto QWHD effective
mass superlattices, magneto HD effective mass superlattices, QWHD, NWHD and
QBHD superlattices with graded interfaces, magneto QWHD superlattices with graded
interfaces and magneto HD superlattices with graded interfaces and respectively.
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In this context we have already noted that the semiconductor superlattices (SLs)
composed of alternative layers of two different degenerate layers with controlled
thickness [67] have found wide applications in many new devices such as photodi-
odes, photo-resistors [67, 68], transistors [69], light emitters [70], tunneling devices
[71], etc. [72-84]. The investigations of the physical properties of narrow gap SLs
have increased extensively; since they are important for optoelectronic devices and
because of the quality of hereto-structures, involving narrow gap materials have
been improved. It may be noted in this context that the doping superlattices, are
crystals with a periodic sequence of ultrathin film layers [85, 86] of the same semi-
conductor with the intrinsic layer in between together with the opposite sign of
doping. All the donors will be positively charged and all the acceptors negatively.
This periodic space charge causes a periodic space charge potential which quan-
tizes the motions of the carriers in the z-direction together with the formation of the
sub-band energies. In Chapter 11(Appendix B), the entropy in doping superlattices of
HD nonlinear optical, III-V, II-VI, IV-VI, and stressed Kane type Materials has been
investigated. In this case we will note that the EEM in such doping supper lattices be-
comes a function of nipi sub-band index, surface electron concentration, Fermi en-
ergy, the scattering potential and other constants of the system which is the intrinsic
property of such 2D quantized systems. In Chapter 12 (Appendix C) the entropy in
QWHDSLs under magnetic quantization have been studied.

It is well known that the electrons in bulk materials in general, have three di-
mensional freedom of motion. When, these electrons are confined in a one dimen-
sional potential well whose width is of the order of the carrier wavelength, the
motion in that particular direction gets quantized while that along the other two
directions remains as free. Thus, the energy spectrum appears in the shape of dis-
crete levels for the one dimensional quantization, each of which has a continuum
for the two dimensional free motion. The transport phenomena of such one dimen-
sional confined carriers have recently studied [87] with great interest. For the
metal-oxide-semiconductor (MOS) structures, the work functions of the metal and
the semiconductor substrate are different and the application of an external voltage
at the metal-gate causes the change in the charge density at the oxide semiconduc-
tor interface leading to a bending of the energy bands of the semiconductor near
the surface. As a result, a one dimensional potential well is formed at the semicon-
ductor interface. The spatial variation of the potential profile is so sharp that for
considerable large values of the electric field, the width of the potential well be-
comes of the order of the de Broglie wavelength of the carriers. The Fermi energy,
which is near the edge of the conduction band in the bulk, becomes nearer to the
edge of the valance band at the surface creating inversion layers. The energy levels
of the carriers bound within the potential well get quantized and form electric sub
bands. Each of the sub-band corresponds to a quantized level in a plane perpendic-
ular to the surface leading to a quasi two dimensional electron gas. Thus, the ex-
treme band bending at low temperature allows us to observe the quantum effects at
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the surface. Although, considerable work has already been done regarding the vari-
ous physical properties of different types of inversion layers having various band
structures, nevertheless it appears from the literature that there lies scopes in the in-
vestigations made while the interest for studying different other features of accumu-
lation layers is becoming increasingly important. In chapter 13 (Appendix D), the
Entropy in accumulation layers of HD nonlinear optical, III-V, II-VI, IV-VI, stressed
Kane type Materials and Ge have been investigated. For the purpose of relative com-
parisons, we have also studied the entropy in inversion layers of the afore-mentioned
materials. It is interesting to note that the EEM in such layers is a function of electric
sub-band index, surface electric field, Fermi energy, the scattering potential and other
constants of the system which is the intrinsic property of such 2D electrons.

It is worth remarking that the influence of crossed electric and quantizing mag-
netic fields on the transport properties of materials having various band structures
has relatively less investigated as compared with the corresponding magnetic quan-
tization, although, the cross-fields are fundamental with respect to the addition of
new physics and the related experimental findings in modern quantum effect devi-
ces. It is well known that in the presence of electric field (Eo) along x-axis and the
quantizing magnetic field (B) along z-axis, the mass of the carriers in materials be-
come modified and for which the carrier moves in both the z and y directions. The
motion along y-direction is purely due to the presence of E, along x-axis and in the
absence of electric field, the effective electron mass along y-axis tends to infinity
which indicates the fact that the electron motion along y-axis is forbidden. The ef-
fective electron mass of the isotropic, bulk materials having parabolic energy bands
exhibits mass anisotropy in the presence of cross fields and this anisotropy depends
on the electron energy, the magnetic quantum number, the electric and the mag-
netic fields respectively, although, the effective electron mass along z- axis is a con-
stant quantity. In 1966, Zawadzki and Lax [88] formulated the entropy for III-V
materials in accordance with the two band model of Kane under cross fields config-
uration which generates the interest to study this particular topic of solid state sci-
ence in general [89].

The chapter 14 (Appendix E) investigates the entropy under cross-field config-
uration in HD nonlinear optical, III-V, II-VI, IV-VI and stressed Kane type materials
respectively. This chapter also tells us that the EEM in all the cases is a function of
the finite scattering potential, the magnetic quantum number and the Fermi energy
even for HD materials whose bulk electrons in the absence of band tails are defined
by the parabolic energy bands. The last chapter 15 (Appendix F) contains the nu-
merical values of the energy band constants of few materials.

It is needless to say that this monograph is based on the ‘iceberg principle’
[90] and the rest of which will be explored by the researchers of different appropri-
ate fields. Since, there is no existing report devoted solely to the study of entropy
for HD quantized structures to the best of our knowledge, we hope that the present
book will a useful reference source for the present and the next generation of the
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readers and the researchers of nano-materials and allied sciences in general. We have
discussed enough regarding the Entropies in different quantized HD materials al-
though lots of new computer oriented numerical analysis are being left for the purpose
of being computed by the readers, to generate the new graphs and the inferences from
them which all together is a sea in itself. The production of error free first edition of
any book from every point of view is a permanent member in the domain of impossibil-
ity theorems, the same stands very true for this monograph also. Various expressions
and a few chapters of this book have been appearing for the first time in printed form.
The suggestions from the readers for the development of the book will be highly appre-
ciated for the purpose of inclusion in the future edition, if any. In this book, from chap-
ter one to till chapter fourteen, we have presented circa 200 open research problems
for the graduate students, PhD aspirants, researchers, engineers in this pinpointed re-
search topic. We strongly hope that alert readers of this monograph will not only solve
the said problems by removing all the mathematical approximations and establishing
the appropriate uniqueness conditions, but also will generate new research problems
both theoretical and experimental and, thereby, transforming this monograph into a
solid book. Incidentally, our readers after reading this book will easily understand that
how little is presented and how much more is yet to be investigated in this exciting
topic which is the signature of coexistence of new physics, advanced mathematics
combined with the inner fire for performing creative researches in this context from the
young scientists since like Kikoin [91] we feel that “A young scientist is no good if his
teacher learns nothing from him and gives his teacher nothing to be proud of”. We
emphatically write that the problems presented here form the integral part of this book
and will be useful for the readers to initiate their own contributions on the entropy for
HDS and their quantized counter parts since like Sakurai [92] we firmly believe “The
reader who has read the book but cannot do the exercise has learned nothing”.

In this monograph, we have formulated the expressions of effective electron
mass and the sub-band energy throughout this monograph as a collateral
study, for the purpose of in-depth investigations of the said important pin-
pointed research topics. Thus, in this book, the readers will get much information
regarding the influence of quantization in HD low dimensional materials having dif-
ferent band structures. Although the name of the book is extremely specific, from
the content, one can easily infer that it should be useful in graduate courses on ma-
terials science, condensed matter physics, solid states electronics, nano-science
and technology and solid-state sciences and devices in many Universities and the
Institutions in addition to both Ph.D. students and researchers in the aforemen-
tioned fields. Last but not the least, we do hope that our humble effort will kindle the
desire to delve deeper into this fascinating and deep topic by any one engaged in ma-
terials research and device development either in academics or in industries.
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o Band non-parabolicity parameter

a The lattice constant

ao,bo The widths of the barrier and the well for superlattice structures

Ao The amplitude of the light wave

A The vector potential

A(E,n;) The area of the constant energy 2D wave vector space for ultrathin films

B Quantizing magnetic field

B, The momentum matrix element
Bandwidth

c Velocity of light

G Conduction band deformation potential

G A constant which describes the strain interaction between the conduction and
valance bands

ACyy Second-order elastic constant

ACyse Third-order elastic constant

0 Crystal field splitting constant

Ao 1 Interface width

A (E) Period of SdH oscillation

do Superlattice period

Do (E) Density-of-states (DOS) function

Dg(E) DOS function in magnetic quantization

Dg(E,A) DOS function under the presence of light waves

dy, dy, d, Nano thickness along the x, y and zdirections

Ay Spin-orbit splitting constants parallel

Ay Spin-orbit splitting constants perpendicular to the C-axis

A Isotropic spin-orbit splitting constant

d’k Differential volume of the k space

€ Energy as measured from the center of the band gap

£ Trace of the strain tensor

& Permittivity of free space

Eoo Semiconductor permittivity in the high frequency limit

Esc Semiconductor permittivity

AEg Increased band gap

le| Magnitude of electron charge

E Total energy of the carrier

Eo,, Electric field

Eg Band gap

E; Energy of the carrier in the ith band

Exi Kinetic energy of the carrier in the jthband

Er Fermi energy

Erg Fermi energy in the presence of magnetic quantization

E, Landau sub band energy

Ers Fermi energy in the presence of size quantization

Ern Fermi energy for nipis

Ers; Fermi energy in superlattices

& Polarization vector

Erqust Fermi energy in quantum wire superlattices with graded interfaces
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Part I: Entropy in heavily doped quantum confined
nonparabolic materials

Knowledge is proud, he knows too much, but the wise is humble, he knows no more.
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1 The entropy in quantum wells of heavily doped
materials

If my only desire is to be desireless, then my consciousness is reversed.

1.1 Introduction

In recent years, with the advent of fine lithographical methods [1, 2], molecular
beam epitaxy [3], organ metallic vapor-phase epitaxy [4], and other experimental
techniques, the restriction of the motion of the carriers of bulk materials in one
[quantum wells (QWSs), doping superlattices, accumulation, and inversion layers],
two (nanowires), and three (quantum dots, magneto-size quantized systems, mag-
neto inversion layers, magneto accumulation layers, quantum dot superlattices,
magneto QW superlattices, and magneto doping superlattices) dimensions has in
the past few years attracted much attention not only for their potential in uncover-
ing new phenomena in nanoscience but also for their interesting quantum device
applications [5-8]. In QWs, the restriction of the motion of the carriers in the direc-
tion normal to the film (say, the z direction) may be viewed as carrier confinement
in an infinitely deep 1D rectangular potential well, leading to quantization (known
as quantum size effect (QSE)) of the wave vector of the carriers along the direction
of the potential well, allowing 2D carrier transport parallel to the surface of the film
representing new physical features not exhibited in bulk materials [9-13]. The low-
dimensional heretostructures based on various materials are widely investigated
because of the enhancement of carrier mobility [14].These properties make such
structures suitable for applications in QWs lasers [15], hereto-junction field-effect
transistors (FETs) [16, 17], high-speed digital networks [18-21], high-frequency mi-
crowave circuits [22], optical modulators [23], optical switching systems [24], and
other devices. The constant energy 3D wave-vector space of bulk materials becomes
2D wave-vector surface in QWs due to dimensional quantization. Thus, the concept
of reduction of symmetry of the wave-vector space and its consequence can unlock
the physics of low-dimensional structures. In this chapter, we study the entropy in
QWs of HD nonparabolic materials having different band structures in the presence
of Gaussian band tails. At first, we shall investigate the entropy in QWs of HD non-
linear optical compounds, which are being used in nonlinear optics and light emit-
ting diodes [25]. The quasi-cubic model can be used to investigate the symmetric
properties of both the bands at the zone center of wave vector space of the same
compound. Including the anisotropic crystal potential in the Hamiltonian, and spe-
cial features of the nonlinear optical compounds, Kildal [26] formulated the electron
dispersion law under the assumptions of isotropic momentum matrix element and
the isotropic spin-orbit splitting constant, respectively, although the anisotropies in
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the two aforementioned band constants are the significant physical features of the
said materials [27-29]. In Section 1.2.1, the entropy in QWs of HD nonlinear optical
materials has been investigated on the basis of newly formulated HD dispersion re-
lation of the said compound by considering the combined influence of the anisotro-
pies of the said energy band constants together with the inclusion of the crystal
field splitting, respectively, within the framework of k- p formalism. The III-V com-
pounds find applications in infrared detectors [30], quantum dot light emitting di-
odes [31], quantum cascade lasers [32], QWs wires [33], optoelectronic sensors [34],
high electron mobility transistors [35], etc. The electron energy spectrum of III-V
materials can be described by the three- and two-band models of Kane [36, 37], to-
gether with the models of Stillman et al. [38], Newson and Kurobe [39] and, Palik
et al. [40], respectively. In this context it may be noted that the ternary and quater-
nary compounds enjoy the singular position in the entire spectrum of optoelec-
tronic materials. The ternary alloy Hg; ,Cd,Te is a classic narrow gap compound.
The band gap of this ternary alloy can be varied to cover the spectral range from
0.8 to over 30pm [41] by adjusting the alloy composition. Hg; ,Cd,Te finds exten-
sive applications in infrared detector materials and photovoltaic detector arrays
in the 8-12um wave bands [42]. The above uses have generated the Hg; ,Cd,Te
technology for the experimental realization of high-mobility single crystal with spe-
cially prepared surfaces. The same compound has emerged to be the optimum
choice for illuminating the narrow sub-band physics because the relevant material
constants can easily be experimentally measured [43]. Besides, the quaternary alloy
Iny_xGa,As,P;_, lattice matched to InP, also finds wide use in the fabrication of ava-
lanche photo-detectors [44], hereto-junction lasers [45], light emitting diodes [46]
and avalanche photodiodes [47], field effect transistors, detectors, switches, modu-
lators, solar cells, filters, and new types of integrated optical devices are made from
the quaternary systems [48]. It may be noted that all types of band models as dis-
cussed for III-V materials are also applicable for ternary and quaternary com-
pounds. In Section 1.2.2, the Entropy in QWs of HD III-V, ternary and quaternary
materials has been studied in accordance with the corresponding HD formulation
of the band structure and the simplified results for wide gap materials having para-
bolic energy bands under certain limiting conditions have further been demon-
strated as a special case in the absence of heavy doping and thus confirming the
compatibility test. The II-VI materials are being used in nano-ribbons, blue green
diode lasers, photosensitive thin films, infrared detectors, ultra-high-speed bipolar
transistors, fiber optic communications, microwave devices, solar cells, semiconduc-
tor gamma-ray detector arrays, semiconductor detector gamma camera and allow for
a greater density of data storage on optically addressed compact discs [49-56]. The
carrier energy spectra in II-VI compounds are defined by the Hopfield model [57]
where the splitting of the two-spin states by the spin-orbit coupling and the crystal-
line field has been taken into account. Section 1.2.3 contains the investigation of the
Entropy in QWs of HD II-VI compounds.
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Lead Chalcogenides (PbTe, PbSe, and PbS) are IV-VI nonparabolic materials
whose studies over several decades have been motivated by their importance in in-
frared IR detectors, lasers, light-emitting devices, photo-voltaic, and high tempera-
ture thermo-electrics [58—62]. PbTe, in particular, is the end compound of several
ternary and quaternary high performance high temperature thermoelectric materi-
als [63-67]. It has been used not only as bulk but also as films [68-71], QWSs
[72] superlattices [73, 74] nanowires [75] and colloidal and embedded nano-crystals
[76, 77, 78, 79], and PbTe films doped with various impurities have also been inves-
tigated [80-87] These studies revealed some of the interesting features that had
been seen in bulk PhTe, such as Fermi-level pinning and, in the case of supercon-
ductivity [88]. In Section 1.2.4, the 2D Entropy in QWs of HD IV-VI materials has
been studied taking PbTe, PbSe, and PbS as examples. The stressed materials are
being investigated for strained silicon transistors, quantum cascade lasers, semi-
conductor strain gages, thermal detectors, and strained-layer structures [89-92].
The Entropy in QWs of HD stressed compounds (taking stressed n-InSbh as an exam-
ple) has been investigated in Section 1.2.5 The vacuum deposited Tellurium (Te) has
been used as the semiconductor layer in thin-film transistors (TFT) [93] which is
being used in CO, laser detectors [94], electronic imaging, strain sensitive devices
[95, 96], and multichannel Bragg cell [97]. Section 1.2.6 contains the investigation of
Entropy in QWs of HD Tellurium. The n-Gallium Phosphide (n-GaP) is being used
in quantum dot light emitting diode [98], high efficiency yellow solid state lamps,
light sources, high peak current pulse for high gain tubes. The green and yellow
light emitting diodes made of nitrogen-doped n-GaP possess a longer device life at
high drive currents [99-101]. In Section 1.2.7, the Entropy in QWs of HD n-GaP has
been studied. The Platinum Antimonide (PtSh,) finds application in device minia-
turization, colloidal nanoparticle synthesis, sensors and detector materials and
thermo-photovoltaic devices [102-104]. Section 1.2.8 explores the Entropy in QWs of
HD PtSh,. Bismuth telluride (Bi,Tes) was first identified as a material for thermo-
electric refrigeration in 1954 [105] and its physical properties were later improved by
the addition of bismuth selenide and antimony telluride to form solid solutions. The
alloys of Bi,Tesare useful compounds for the thermoelectric industry and have been
investigated in the literature [106-110]. In Section 1.2.9, the Entropy in QWs of HD
Bi,Te; has been considered. The usefulness of elemental semiconductor Germanium
is already well known since the inception of transistor technology and, it is also
being used in memory circuits, single photon detectors, single photon avalanche
diode, ultrafast optical switch, THz lasers and THz spectrometers [111-114]. In
Section 1.2.10, the Entropy has been studied in QWs of HD Ge. Gallium
Antimonide (GaSb) finds applications in the fiber optic transmission window, hereto-
junctions, and QWs. A complementary hereto-junction field effect transistor in which
the channels for the p-FET device and the n-FET device forming the complementary
FET are formed from GaSh. The band gap energy of GaSh makes it suitable for low
power operation [115-120]. In Section 1.2.11, the Entropy in QWs of HD GaSb has
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been studied. The II-V materials have been studied in photovoltaic cells constructed
of single crystal semiconductor materials in contact with electrolyte solutions.
Cadmium selenide shows an open-circuit voltage of 0.8V and power conservation co-
efficients near 6 percent for 720-nm light [121]. They are also used in ultrasonic ampli-
fication [122]. The development of an evaporated thin film transistor using cadmium
selenide as the semiconductor has been reported by Weimer [123, 124]. The Entropy
in HD QWs of II-V materials has been presented in Section 1.2.12. In Section 1.2.13,
the Entropy in HDQWs of Pb,_,Ga,Te has been investigated [125]. The diphosphides
finds prominent role in biochemistry where the folding and structural stabilization of
many important extra-cellular peptide and protein molecules, including hormones,
enzymes, growth factors, toxins, and immunoglobulin are concerned [126]. Besides,
artificial introduction of extra diphosphides into peptides or proteins can improve bi-
ological activity [127] or confer thermal stability [128]. The asymmetric diphosphide
bond formation in peptides containing a free thiol group takes place over a wide pH
range in aqueous buffers and can be crucially monitored by spectro-photometric titra-
tion of the released 3-nitro-2-pyridinethiol [129-134]. In Section 1.2.14, the Entropy in
HD QWs of zinc and cadmium diphosphides has been investigated. Section 1.3 con-
tains the result and discussions pertaining to this chapter. The last Section 1.4 con-
tains 25 open research problems.

1.2 Theoretical background
1.2.1 Entropy in quantum wells (QWSs) of HD nonlinear optical materials

The form of k.p matrix for nonlinear optical compounds can be expressed extend-
ing Bodnar [27] as

| H H
H= | (1.1)
Hy H
where,
B 0 Pk 0 0 -f. 0 f.
go| 0 (=23 (VA3 0 o |f. 0 0 0
Pk, (V2A./3) -(8+1a)) O 0 0 0 O
0 0 0 0 f. 0 0 O

in which Eg is the band gap in the absence of any field, P, and P, are the momen-
tum matrix elements parallel and perpendicular to the direction of crystal axis
axis, respectively, § is the crystal field splitting constant, Ajjand A, are the spin-
orbit splitting constants parallel and perpendicular to the C-axis, respectively,
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fs=(P1/V2)(ketiky) and i=+/-1. Thus, neglecting the contribution of the higher
bands and the free electron term, the diagonalization of the above matrix leads to the
dispersion relation of the conduction electrons in bulk specimens of nonlinear optical
materials as

Y(E)=f(E)KZ +f2(E)iZ 1.2)
where

Y(E)=E(E+Eg,)[(E+Eg,)(E+Eg, +A)+6(E+Eg, + ;AH) + ;(Aﬁ -A%)]

E is the total energy of the electron as measured from the edge of the conduction
band in the vertically upward direction in the absence of any quantization,
k2= k2+k2
_ REg (Eg, +A)) o 1 o _ o~ 2
E)=—20_80 " \§(E+Eg, +-A) |+ (E+Eg)|(E+Eg +=A
fl( ) [Zﬁll(Ego"' %AL)] |: ( + g0+ 3 H> ( go)( + g0+ 3 H)
1

+§(Aﬁ—Ai)},

 PEg(Egy+A) [ — (- - 2 _h
f2(E)—m |:(E+Eg0)(E+EgO+§AH>:|, h_i'[

h is Planck’s constant and m’|; and th are the longitudinal and transverse effective
electron masses at the edge of the conduction band, respectively.

Thus the generalized unperturbed electron energy spectrum for the bulk speci-
mens of the nonlinear optical materials in the absence of band tails can be ex-
pressed following (1.2) as

ZﬁlH b, ¢ ) 2m, (Z’HE+1) CH

(XbH ( -A] ) thz BH C, 1) AH a
(9) q (CHE+1) 2ml K?H 2 " 6AH aE+1
5 _[AI-M1) g
i (2 _{ 6 }) qE+1 =

_ G (s 2 N\ e _
b= (Eg, +4) I,CLE<EgO+§AL> by =(Egy+A1)7),

{6E + = (Af - Ai)}

where

/o 2. \! o
CH:(EgO+§AH) and a=(Eg,)"".

EBSCChost - printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



8 —— 1 The entropy in quantum wells of heavily doped materials

The Gaussian distribution F(V) of the impurity potential is given by [131]
F(V) = (mgp)" exp( - V* /) (1.4)

where 1, is the impurity scattering potential. It appears from (1.4) that the variance
parameter 1, is not equal to zero, but the mean value is zero. Further, the impurities
are assumed to be uncorrelated and the band mixing effect has been neglected in
this simplified theoretical formalism.
Using the (1.3) and (1.4), we get
_ .
S[ Fwav|+ <?_&) s jE F(V)av
2m” oo b, ¢ )2m )

{JE (E—V)[Q(E—?) tl][B‘I(E_V)+1F(‘_/)a]_/+ @

WK (F

[ (E-V)+1] q|

BH Ccy 6 Aﬁ_Ai E F(V)Eﬂ_/
b, ¢ 2" 64 aJ_w[a(E—V)+l]
§ AN-A\_ (F F(Wav
+<§+ 6A )Cj_w[q(}?—f/)n] } (15)

The (1.5) can be written as

hzkgl(l) (bfl> nI2 LS

2m ﬁ b, ¢ ) 2m}

={I @+ D [otce)+ 2ot w1 - (2) B - i)ls(q)}

ol q

272 B 71 A B A AZ o
() {(22) (2 o (2 Jer ]}

Let us substitute

E
- J Fv)av %)
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- E (E—V)[a(E—V)+1][BH(E—V)+1]1_:

b= G E-7) 1] )

- E  (E-V)aE-V)+1[b(E-V)+1] - — —_

I(cy) = _N( )[a([c(E)—+V;[+l}( I ]F(V)dV

o F E-V)aE-V)+ by E-V)+1]_ _

Ii(c) = - GE-T)11 F(V)dv
E

1(4) = L (E-V)E(V)dv

[ _Ewav

(@= J @(E-V)+1]

Substituting E - V=x and, X =, we get from (1.7)

g

ONEL

I(1) = (exp (— E—z)/\/ﬁ) (J)“ exp[—f(2)+ (%)}dfo

where Erf(E/n,)s the error function of ((E/n,)).
From (1.9), we can write

I(4)= (1/11g\/7_7) Jio (E-V)exp(-V*/n2)dV = g
1

After computing this simple integration, we obtain
Thus,

— oo

J Vexp(- Vz/ng,)dl_/}

1(4) =g exp(~E* /i) (V) + 5 (1+ Ef(E/n,)) = yo(E:my)

From (1.10), we can write

I(a)=

1 JE exp(—fz/né)c_lf/
\/ T ==

_ =2
When, V — oo, oo — 0 and; exp(~V'/n3) — 0

Thus (1.14) can be expressed as
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10 —— 1 The entropy in quantum wells of heavily doped materials

1= (1/an,v) | exp(-B)a-0 ' (1.1
where,

'Zr —fand u= <1;§E)
It is well known that [123, 124]

W(Z) = (i/m) JZ Z-F) " exp(-P)dE (1.16)

In which i=+/-1and Z, in general, is a complex number.
We also know [123, 124],

W(Z) = (i/m) exp( - Z%)Erfc(-iZ) (1.17)
where

Erfc(Z)=1-Erf(2).

Thus, Erfc(-iu)=1-Erf(-iu)
Since, Erf(—iu)= — Erf(iu)
Thus,

I(a) = [~ iv/m/an,) exp( - u?)[1+Erf (i)] (1.18)

We also know that [123, 124]

e

Erf(X +iy) = Erf(X) + ( em ) [(1 ~ cos(2xy)) +isin(2xy)

2, 2N~ P /D) 5 oo 2 0 ek
e ;W]D‘p(x,y)+1gp(X»y)+£(x,y)] (1.19)

where

f»(%,y) = [2x— 2x cosh(py) cos(2xy) + p sinh(py) sin(2xy)],

8»(%.y) = [2x cosh(py) sin(2xy) + p sinh(py) cos(2xy)]|e(x.y))| = 10~ P |Erf (X + iy)|
Substituting x=0 and y = u in (1.19), we obtain,

Erf (i) = @) 3 {%pz/“)smh(p u)} (1.20)

p=1
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Therefore, we can write

f(a) = 621 (a, E, )’Zg) - iD21 (a, E, )]g)

where,
Ca(aEng) = [an#\/ﬁ} exp( - i) [i { %ﬁz/@smh(ﬁ u)H and
g p=1
Dy(a,E,ng) = [Q—{Ze)(p( - MZ)}

(1.21)

The (1.21) consists of both real and imaginary parts and therefore, I;(a) is complex,
which can also be proved by using the method of analytic continuation of the

subject Complex Analysis.
The integral I5(c)) in (1.8) can be written as

L(e)) = (?)I(s) " <—“C' *b'cfl' _“b')m) ¥ Elu (1- Cﬁ) (1- E—)i(l)
1 a BH T
Aa (-2 e}

From (1.23) we can write
- 1
I(5)= —

E A\ _ _(E 7\ _
Ezj exp —‘2/ dV—ZEJ Vexp —IZ/ dv
mn -0 Mg oo g

E 7\ _
+J 7 exp —‘2/ dv
o n’

The evaluations of the component integrals lead us to write

_ 5 _
I(5) = %exp (_n—f) + %(qg +2E?) [1 +Erf <’7£>} =60(E, 1)
g

g

Thus combining the aforementioned equations, E(EH) can be expressed as
73 (EH ) = A21 (E, )’lg) + ile (E, )’lg)

where,
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12 —— 1 The entropy in quantum wells of heavily doped materials

Au(Eny) - [acbll Bf/_ exp (£> —('1g+2152 {1+Erf <ng> H

(XCH-I-bHCH (XbH UEXP(—EZ/'@)
+ {c—z {2[1+Erf(E/ )]+ T}

1 a by

. (1_ cT) ( c|) S [+ Erf (E/n)

) 2 a by o
{%ﬁ (1-5) ( CH) e ul)}

= [ exp(-p?/4) __|1+qE
[2{417 smh(pm)” [ ame }

p=1

and

- b
321(E, Tlg) = % (1— Cﬁ) <1 Cl) exp( 2)

Therefore, the combination of all the appropriate integrals together with algebraic
manipulations leads to the expression of the dispersion relation of the conduction
electrons of HD nonlinear optical materials forming Gaussian band tails as

n’i n’i2

= =1 1.26
Zﬁlﬁ T21 (E ) 2mL Tzz (E h ) ( )

where, Ty (E, hg) and Tx(E, hy) have both real and complex parts and are given by

T (E, hg) = [Tz (E, hg) +iT2s(E, hg)], Tz (E. hg) = {%::gg))}

TB (E, hg) =

(B + 1 ol ) + 5 (D - D214 Eof B/ >H

b
—{9 (ac)( I~ )521((5\\’]5 h )H

o~ [exp(-p*/4) o
Cth\/_exp -ul pz: {#smh(pul)},

Ts(E, hg) = 5[1 +Erf(E/hg)),

e
o]
&
=
=
o
i

o {Tﬂ,(}s hg)

To(E, hy J’ Tu(Eohe)

[le(E» hg) + gai)u (DH 2 )Hx (), E.h )}
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Hzl(Z'H,E, hg) = {hgifexp(—uf)},Tzz(E, hg) = [ng(E,hg) +iT30(E,hg)],

Too(E, he) = T5(E, hg)Ts5(E, hg) — To4(E, hg) T26 (E, hg)
e [Tos(E, hg)” + Tos(E, hg)°]

Tys(E hy) = [(;C‘}l) % [1+Erf<}i)} + <§LCC¢) (Czl +

bic.\(da [Di-DI]\.
Y ey =| | Ga(ay. E b)),
b, )\2

I
{ 2 exp(— i)

Dj -D} _ _
6DH chzl(aH’E’hg)

Car(a)). E. )

o~ exp(-p’/4) oo
avbhs I; fsmh(pu)H,

_ byc,\(d [Dfj-Di
T(E he)= | —— | [ = -
26( g) (bL C|> <2 |: 6DH

bjc. (d Dﬁ -D?
6D,

> af)21(aH,E, hg)

)HZI(C:E,hg):
and
Mg = hg, D)y =Au, D1 = A,

T24(E, hg) T25 (E, hg) + T23 (E, hg)Tz(, (E, hg)
[(Tss(E. hg))* + (T (E. hg))’]

T30(E, hg)

From (1.26), it appears that the energy spectrum in HD nonlinear optical materials
is complex. The complex nature of the electron dispersion law in HD materials oc-
curs from the existence of the essential poles in the corresponding electron energy
spectrum in the absence of band tails. It may be noted that the complex band struc-
tures have already been studied for bulk materials and superlattices without heavy
doping [135] and bear no relationship with the complex electron dispersion law as
indicated by (1.26). The physical picture behind the formulation of the complex en-
ergy spectrum in HDS is the interaction of the impurity atoms in the tails with the
splitting constants of the valance bands. More is the interaction; more is the promi-
nence of the complex part than the other case. In the absence of band tails, n, — 0,
and there is no interaction of the impurity atoms in the tails with the spin orbit con-
stants. As a result, there exist no complex energy spectrum and (1.26) gets con-
verted into (1.2) when 1N, — 0. Besides, the complex spectra are not related to same
evanescent modes in the band tails and the conduction bands.

It is interesting to note that the single important concept in the whole spectra
of materials and allied sciences is the effective electron mass which is in disguise in
the apparently simple (1.26), and can, briefly be described as follows:
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Effective Electron Mass (EEM): The effective mass of the carriers in materials,
being connected with the mobility, is known to be one of the most important physi-
cal quantities, used for the analysis of electron devices under different operating
conditions [136]. The carrier degeneracy in materials influences the effective mass
when it is energy dependent. Under degenerate conditions, only the electrons at
the Fermi surface of n-type materials participate in the conduction process and
hence, the effective mass of the electrons corresponding to the Fermi level (EEM)
would be of interest in electron transport under such conditions. The Fermi energy
is again determined by the electron energy spectrum and the carrier statistics and
therefore, these two features would determine the dependence of the effective elec-
tron mass in degenerate n-type materials under the degree of carrier degeneracy. In
recent years, various energy wave vector dispersion relations have been proposed
[137-139] which have created the interest in studying the effective mass in such ma-
terials under external conditions. It has, therefore, different values in different ma-
terials and varies with electron concentration, with the magnitude of the reciprocal
quantizing magnetic field undermagnetic quantization, with the quantizing electric
field as in inversion layers, with the nano-thickness as in UFs and nano wires and
with superlattice period as in the quantum confined superlattices of small gap ma-
terials with graded interfaces having various carrier energy spectra [140—156].

The transverse and the longitudinal EEMs at the Fermi energy Er, of HDS in the
presence of band tails as measured from the edge of the conduction band in the
vertically upward direction in the absence of band tails of HD nonlinear optical ma-
terials can, respectively, be expressed as

m, =m {To(E,ng)

B-gy, (127)
and
m) =m {Tx(E, ng)}"E:an (1.28)
where the primes denote the differentiations of the differentiable functions with re-

spect to Fermi energy in the appropriate case.
In the absence of band tails n, — 0 and we get

(1 0)= [wz(E){%(Eﬁz—(gpﬁ(E){wz(E)} B (1.29)
E=Ep
and
50y [ BB EN -~ (B H(B)Y
m (E,O):—[ 3 1 1 3 } (1.30)
IR 2 {¢3(E)} E=Ep
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where Er is the Fermi energy as measured from the edge of the conduction band in
the vertically upward direction in the absence of band tails ¥, (E) = y(E), Y, (E) =

A(E), and Y5(E) =f>(E),

Comparing the aforementioned equations, one can infer that the effective
masses exist in the forbidden zone, which is impossible without the effect of
band tailing. For materials, in the absence of band tails the effective mass in
the band gap is infinity.

The DOS function is given by

o gmfam )
Nip(E: 1) = ——— 5= Ru(E:ng) cos[ipy (.1, )] (1.31a)

where, g, is the valley degeneracy,

%@@FHWMRQYﬂE@+“@%W@@W
2 fx(Eny)

- T30<E,ng>{y<E,ng>}’r

_{T O(E’ng)}, }7(E,Ylg) =
’ 2,/y(E,ng)

* [{729@ ne)Y /Y (Eing) + T”“j TP 1)
— T30 (E, }’Ig){)_((E" 'Tg)}'} 2:| 1/2

+{T30(E.ng)} \/X(E. ) =
s T 2 xEny)

KEg) = 3 |TorEong) + /(T B ) + (T B V]

y(E,ng)

N —

[\/{727@, ng)}z +{Tas(E, ’Tg)}z - Ty(E, ng)]
and

~ o , = Too(E, _ , =
¥y (E,ng) =tan ™" H{ 2(Eg)} \/V(Esng) + M +{T50(E,ng)} /X(E, 1)

2,/¥(Eng)
T3o{x<E,ng>}'H e Tu(En){x(EnyY
0 (T By} ) [X(Eony) + :
2 /x(Eny) R T 2 xEny

Taoft(E, ng)}'} }

—{To(E.np) Y \[V(E 1) + — ==
’ 2,/y(E,ng)
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The oscillatory nature of the DOS for HD nonlinear optical materials is apparent
from (1.31a). For, l,bn(E, ng) >, the cosine function becomes negative leading to the
negative values of the DOS. The electrons cannot exist for the negative values of the
DOS and therefore, this region is forbidden for electrons, which indicates that in
the band tail, there appears a new forbidden zone in addition to the normal
band gap of the semiconductor.

The use of (1.31a) leads to the expression of the electron concentration as

- 28, \/2m"
o= DLV AT

37.[2;;13 |:jll (EFh’ rlg) + ; i(?) [Tll (EFh) T’[g)]:| (131b)

where,

L1(Epy Ng) = [To0(Epy» g) \/ X(ERy» Ng) = T30 (Erys Mg) \/V(ERy 1g)

L(7) = 2(kgT)" (1-2'"2)&(2r) a";
Fs

(1.31c)

7 is the set of real positive integers whose upper s and &(2r) is the Zeta function of
order 2r [133, 134].
The entropy per unit volume which can be written as

— 0Q

_ % 1.31d
O T oTlE-E; (1.31d)

in which Q is the thermodynamic potential which, in turn, can be expressed in ac-
cordance with the Fermi—Dirac statistics as

Er-E
1+ exp [;_50}

QI—T(BTZIH T
B

(1.31e)

where the summation is carried out over all the possible 8, states and kg is Boltzmann
constant.

Thus, combining 1.31d and1.31e, the magnitude of the entropy for HD systems
can be written in a simplified form as

So= (PRT/3) (ﬁ) (1316)

where Ejq is the electron energy within the band gap, as measured from k=0 and
should be obtained from the dispersion relation of the HD materials under the con-
ditions E - Ejy when k = 0. It should be noted that being a thermodynamic relation
and temperature induced phenomena, the entropy as expressed by (1.31f), in gen-
eral, is valid for electronic materials having arbitrary dispersion relations and their
nanostructures. In addition to bulk materials in the presence of strong magnetic
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field, (1.31f) is valid under one-, two- and three-dimensional quantum confinement
of the charge carriers (such as quantum wells in ultrathin films, nipi structures, inver-
sion and accumulation layers, quantum well superlattices, carbon nanotubes, quan-
tum wires, quantum wire superlattices, quantum dots, magneto inversion and
accumulation layers, quantum dot superlattices, magneto nipis, quantum well
superlattices under magnetic quantization, ultrathin films under magnetic quantiza-
tion, etc.). The formulation of S, requires the relation between electron statistics and
the corresponding Fermi energy, which is basically the band structure-dependent
quantity and changes under different physical conditions. It is worth remarking to
note that the number (7% /3) has occurred as a consequence of mathematical analysis
and is not connected with the well- known Lorenz number. For quantum wells in
ultrathin films, nipi structures, inversion and accumulation layers, quantum well
superlattices, magneto inversion and accumulation layers, magneto nipis, quan-
tum well superlattices under magnetic quantization and magneto size quantiza-
tion, the carrier concentration is measured per unit area whereas, for quantum
wires, quantum wires under magnetic field, quantum wire superlattices and such
allied systems, the same can be measured per unit length. Besides, for bulk mate-
rials under strong magnetic field, quantum dots, quantum dots under magnetic
field, quantum dot superlattices and quantum dot superlattices under magnetic
field, the carrier concentration is expressed per unit volume.
For HD nonlinear materials, Ejq is the smallest negative root of the equation

[T27(Enas Ng) T29 (Enas M) — Tos (Ena> Mg) T30 (Enas 1g)] = 0 (1.31g)

Therefore, the entropy can be numerically evaluated by using (1.31b), (1.31f), (1.31g)
and the allied definitions.

For dimensional quantization along z-direction, the dispersion relation of the
2D electrons in this case can be written following (1.26) as

W (n,m/d,)’ L IR

L L (132)
2m”T21(E,ng) sz_Tzz(E,rlg)

where, n;(=1, 2, 3) and d, are the size quantum number and the nano-thickness
along the z-direction, respectively.

The general expression of the total 2D DOS (N,pr(E)) can, in general, be ex-
pressed as

zg_v Nzmax aA(E: ﬁz) B

IV/zDT(I?)=(2ﬂ)2 L T oF H(E-Ey,) (133)

where A(E, ;) is the area of the constant energy 2D Wave vector space and in this case
it is for QWs H(E - E,,) is the Heaviside step function and E,, is the corresponding
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sub-band energy. Using (1.32) and (1.33), the expression of the N,pr(E) for QWs of
HD nonlinear optical materials can be written as

2% & MZmax

— _ m o, R,
Nopr(E) = ;hfv S T (B ) H(E - Evpy) (1.34)

nz=1

where,
o W(n/d) |- -
T E, 5 = 1—7*—7— T E; >
w(E: N Tz) [ 211, T (E. 1) 2(E1g)

H(E-E,,) is the Heaviside step function and E,,p, is the corresponding sub-band
energy which in this case is given by the following equation

W (r,m/d,)

zmHT21(EnZD1>rlg)

Thus we observe that both the total DOS and sub-band energies of QWs of HD non-
linear optical materials are complex due to the presence of the pole in energy axis
of the corresponding materials in the absence of band tails.

EEM in this case is given by

ﬁ‘l* (EFIHD, )’Zg, flz) = ﬁll [Real part Of Tll[) (EFlHD: r[g, ﬁz)} (136)

where Epyp is the Fermi energy in the presence of size quantization of the QWs of
HD nonlinear optical materials as measured from the edge of the conduction band
in the vertically upward direction in the absence of any perturbation.

Thus, we observe that EEM is the function of size quantum number and the
Fermi energy due to the combined influence of the crystal filed splitting con-
stant and the anisotropic spin-orbit splitting constants, respectively. Besides it
is a function of n, due to which EEM exists in the band gap, which is otherwise
impossible.

Combining (1.34) with the Fermi—Dirac occupation probability factor, integrat-
ing betweenE,,p; to infinity and applying the generalized Summerfield’s lemma
[152-153], the 2D carrier statistics in this case assumes the form

—* 5 Nmax

Y_ZZD = % Z [Realpart Of [TID(EFIHD> rlg, flz) + TZD(EFIHDx ng, ﬁz)” (137)
fiz=1
where,
— — § — — —
Top(EpiapsNg>nz) = ) L(1)[T1p (Epips Mg, 1z)], (1.38)

r=1

Therefore combining (1.37) and (1.31f) we can study the entropy in this case.
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In the absence of heavy doping, the 2D dispersion relation EEM in the x-y
plane at the Fermi level, the total 2D DOS and the electron concentration for QWs of
nonlinear optical materials in the absence of band tails can, respectively, be written

as
Dy (E) = (EVRE + () /.
L n N . i\ 2 (1.39)
m(EFs,nz>=<3)[¢z<EFs>] {zpz(EFs){{wl(Eps)} By (%" )}
{lpl(EFs) (B (%) }{t,bz(EFs)}]
o , (1.40)
or(B) = (52) 3 w)z(E)][ <>{{¢1<EFS>} W) ("Z")}
(B - b E)CE P H(E >}} H(E-Ey,) (1.41)
n,m
bl =) () (1420)
op = 2‘%”1 Zi [Ts1(EFs, nz) + Ts2(Eps, 1)) (1.42b)
nz=1

where ), (E) = y(E), ,(E) = fi(E), 5(E) = fo(E), Ey,, are the sub-band energies, E; is
the Fermi energy in the 2D sized quantized material in thepresence of size quantiza-
tion and in the absence of heavy doping as measured from the edgeof the conduc-
tion band in the vertically upward direction in the absence of any quantization,

|:l;b1 (Ers) - l/’a(EFS)(ﬁzﬂ/dZ)z}

TSl(EFs> ﬁz) = l/) (EF )
2 \LEFs

and

TSZ(EFS> flz) = i(f)[ T51 (EFS) flz)] (143)
r=1

In the absence of band tails, the entropy can be written as

- > ano

So= (kG T/3) (1.44)
Thus, using (1.43) and (1.44), we can study the entropy in this case.

In the absence of heavy doping, the DOS for bulk specimens of nonlinear opti-
cal materials is given by
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20 —— 1 The entropy in quantum wells of heavily doped materials

Do(E) =8(37) "', (E) (1.45)

BV EWE] [, E) [, B 1[5 (E)) Ty (E)]
Ya(E)=|5— e — =5 —32 |
U, (E)\/W3(E)  [,(E)]"\/¥s(E) Y, (E)5(E)]

0y E)] = [zrm (Eg + %AH)] WEy B+ ) [2E+2Eg + gA@

Combining (1.45) with the Fermi-Dirac occupation probability factor and using the
generalized Summerfield’s lemma(153], the electron concentration can be written as

where,
M(EF) = [lzbl (EF)P ,

W, (Er)\/¥s(EF)

Er is the Fermi energy of the bulk specimen in the absence of band tails as mea-
sured from the edge of the conduction band in the vertically upward direction and

N(Er) = S L()M(Er) (1.47)
r=1

Thus, using (1.46a) and (1.44), we can study the entropy in this case.

1.2.2 Entropy in quantum wells (QWSs) of HD IlI-V materials

The dispersion relation of the conduction electrons of III-V compounds are de-
scribed by the models of Kane (both three and two bands) [36, 37], Stillman et al.
[38, 39] and Palik et al. [40], respectively. For the purpose of complete and coherent
presentation and relative comparison, the entropy in QWs of HD III-V materials
have also been investigated in accordance with the aforementioned different disper-
sion relations as follows:
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(a) The Three-Band Model of Kane

Under the conditions §=0,A; =A, =A (isotropic spin orbit splitting constant) and
r?l‘*‘ =m', =m, (isotropic effective electron mass at the edge of the conduction band),
(1.2) gets simplified as

i E(E+Eg,)(E+Eg, +A)(Eg, + 2A)

=), ) = e A (E+ By + 20 (1.48)

2m,

which is known as the three-band model of Kane [36] and is often used to investi-
gate the physical properties of III-V materials.

Under the said conditions, the HD electron dispersion law in this case can be
written from (1.26) as
72

Kk L .
o = T31(E, Tlg) +1T32(E, Tlg) (149)
me

where,

o 2 ab , -
Tx(Eng) = <1+Erf(E/11g)> {(_:90(5) 1g)

+ [W} yO(E,ng)Jr % (1— %) (1— 2) % [1+Erf<f)]

g

1. oo _ 352
- % (1_ %) (l_ g) cngzx/ﬁexp( ~t) LZ: Wsmh@uﬂ} ]

=1

-1
BE(Eg+A)_1,EE<Eg+§A>

2 1 a b\ vn/n _
<71+Erf(E/ng)) (1-3) (1‘ E) en, en, P

Thus, the complex energy spectrum occurs due to the term Ts,(E, 1) and this imagi-
nary band is quite different from the forbidden energy band.
EEM at the Fermi level is given by

1+cE = =
ljlz = — and T32(E, n )
cn, g

M’ (Ep, 1) =Me{ T (E. M)} |-k, (150)

S

Thus, EEM in HD III-V, ternary and quaternary materials exists in the band
gap, which is the new attribute of the theory of band tailing.
In the absence of band tails, Ng—0 and EEM assumes the form

m' (Ep) =me{In(E)} |p-g, (1.51)

- printed on 2/13/2023 5:33 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use
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The DOS function in this case can be written as

Nip(Eng)

s (o
37-[2 h2

32
) Ry (E, ny) cos[9x (E, )] (1.52)

where,

RZl(E’ rlg)

HanEng)) | [{Bu(Bng) ]
4all(E’ rlg) 4ﬁ11(E’ rlg)

an(Eny)= 5 | TalEg) +/ (To(En) s (Tolny)Y |
Ts(Eng) = [{Ta(Bny) P -3Tn (Eang {Tn(Einy) Y]
Ty (Eung) = [3Ts2(Em) {Ta(Emp) Y ~ {TBom) ).
BulEng) =3 |\ (TalBng)) s {TauEon) Y - Tl |

and

‘921(E>’1g)5tan‘1[{ﬁ“(E’ng)} . all(E>’1g):|

{all(E> rlg)}, ﬁll(E’ rlg)
Thus, the oscillatory DOS function becomes negative for 9, (E, ng) > and a

new forbidden zone will appear in addition to the normal band gap.
The electron concentration can be expressed as

7 8y (2m
0= 37-[2 hZ

3/2
) |:Illle(EFh, ns) + Z 1(r) [y (EF,» ’ls)}} (1.53)
where
= oz CE 32
Thie (EFh’ ng) = {YZ (EFh’ ng)}
In this case, Ejq is given by
T51(Enasg) =0 (1.54)

The numerical evaluation of the entropy has been done by using (1.53), (1.31f), (1.54)
and the allied definitions.

For dimensional quantization along z-direction, the dispersion relation of the
2D electrons in this case can be written following (1.49) as
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R(n/d,)’ Rk - - o
(M/ ) + Z(ﬁ;) = T51(E, n,) +iT5(E, 1) (1.55)
C C

The expression of the Nypr(E) in this case assumes the form

= = Nzmax
_ _ meg, _, - -
Nopr(E) = 25N ™ T/5(E g, 1) H(E ~ Enys) (1.56)
nz=1
where

Tsp(E, N, 7iz) = [T (E, ng) +iT5(E, mg) — W (Mo /d ) (2mc) ']
and the sub-band energies Enzps in this case given by
{W(nz/d)*}(2mc) ™" = T51(Enps, 1) (1.57)

Thus, we observe that both the total DOS in QWs of HD III-V compounds and
the sub-band energies are complex due to the presence of the pole in energy
axis of the corresponding materials in the absence of band tails.

EEM in this case is given by

' (Er1, Ng» 1iz) = [T 31 (Er1p, N> 112)] (1.58)

Therefore, under the same conditions as used in obtaining (1.48) from (1.2), the 2D
carrier statistics in this case can be written by using the same conditions from (1.37)

as
> o ﬁZZmax
_m o S B
Nop = ﬁg;’ Z [Real part of [Tsp(EFiup, Ng> Nz) + Tep (EFiup, Mg» 1z)]] (1.59)
=1
where

S
Tep(EpiupsNg> z) = Y L(7)[Tsp(EFinp, g, 1z )]
r=1
Therefore, combining (1.31f) and (1.59) we can study the entropy in this case.
In the absence of band tails, the 2D dispersion relation, EEM in the x—y plane at
the Fermi level, the total 2D DOS, the sub-band energy and the electron concentra-
tion for QWs of III-V materials assume the following forms

2712 2 B o
Zﬁl:: + ;;%C (ﬁzﬂ/dx)2 =In(E) (1.60)
m’ (Eps) = mc{hu(Eps)} (1.61)
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Nzmax

Nopr(E) = ’chV) Z {{lu(E)'H(E - Er,))} (1.62)

where the sub-band energies E,,Zz can be expressed as

2

o P
In(Eny,) = 5— (n,m/d,)? (1.63)
C
" o ﬁzmax
_ m o
nZD:( gz) S T (Erer 1) + T (Ero 1) (1.64)
LV ]
where
2 —
Tss(Eps,n;) = |:111(EFS) — (n,m/d,)
C
and
S
Tsy(Eps;nz;) = Y L(7)Ts3(EFs, ) (1.65)

r=1
It is worth noting that the EEM in this case is a function of Fermi energy alone and
is independent of size quantum number.
Thus, using (1.64) and (1.44), we can study the entropy in this case.
In the absence of band tails, the DOS function and the electron concentration,
in bulk III-V, ternary, and quaternary materials in accordance with the unper-
turbed three-band model of Kane assume the following forms.

32
Do(E) = 4ﬂgv<2;nc> I (E)[I'u(E)] (1.66)
_ _ |32
ﬁ0=3g];2 <%> (M1 (EF) + Ny (EF)] (1.67)
where
_ o1 1 1 B 1 TR — [T (E13/2
P =hE) |t R, " BvByen BvEye2a) BRSBTS
and
Nu(Er)= S L(7)M; (Er) (1.68)

Thus using (1.44) and (1.67) we can study the entropy in this case
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Under the inequalities A > > Eg or A < <Eg, (1.48) can be expressed as
nK

Mc

E(1+aE)= (1.69)
It may be noted that (1.69) is the well-known two band model of Kane and is used
in the literature to study the physical properties of those III-V and opto-electronic
materials whose energy band structures obey the aforementioned inequalities.

The dispersion relation in HD III-V, ternary and quaternary materials whose
energy spectrum in the absence of band tails obeys the two band model of Kane as

defined by (1.69), can be written as
e
ZmC

¥, (Es1g) (1.70)

where

[10(E.ng) +abo(E.m)|.

~ 2
yo(Eong) [W

The EEM in this case can be written as
ﬁl*(EFh’rlg) :mC{Y2(E’ r[g)},|E=E‘Fh (1.71)

Thus, one again observes that the EEM in this case exists in the band gap.
In the absence of band tails, Mg — 0 and the EEM assumes the well-known form

m'(Ep) =mc{1+2aE}|;_p, (1.72)

The DOS function in this case can be written as

I 2m.\ >/ /'———*
NHD(E, rlg) 27-[2 ( C) {yz E rlg (173)

Since, the original two band Kane model is an all zero and no pole function in
the finite energy plane with respect to energy, therefore the HD counterpart will
be totally real and the complex band vanishes.

The electron concentration is given by

o ~ \ 3/2 5
r_lo 3g7'-‘;2 <2;.lrzlc) |:jlll (EFS> ﬂg) + ; f:(?) [7111 (EFS: ng)}:| (174)

where
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Tt (Ers: ) = {7, (Erso ) }'?
In this case, Ejq is given by

¥, (Enas 1) =0 (1.75)

One can numerically compute the entropy by using (1.74), (1.75), (1.31f) and the al-
lied definitions in this case.

For dimensional quantization along z-direction, the dispersion relation of the
2D electrons in this case can be written following (1.70) as

W(rn/ds) I (k)
2m, 2m,

=12(E 1) (.76)

The expression of the NZDT(E) in this case can be written

> o Zmax
_ . m o, o
Noor(E) = 50 N ™ T (B gy 1) H(E — Enyr) 1.77)

nz=1
where
Typ(E. Mg, z) = [y, (B, ng) = (Rt dz)* (2mc) 1],
The sub-band energies Ey,p; in this case given by
(W (R7t/d2)*} (2mc) ™ =y, (Enoora 1) (1.78)

Thus, we observe that both the total DOS and sub-band energies of QWs of HD
[II-V compounds in accordance with two band model of Kane are not at all com-
plex since the dispersion relation in accordance with the said model is an all zero
function with no pole in the finite complex plane.

The EEM in this case is given by

M’ (Epitps Ng> 1iz) = e[y, (Epiap, Mg iz)] 1.79)

Therefore under the same conditions as used in obtaining (1.48) from (1.2), the 2D
carrier statistics in this case can be written by using the same conditions from (1.77)
as

Nz max

Z (T7p(ErLap, Ng> 11z) + Tap (Eriap, Mgs 112)] (1.80)

nz=1

_ mcg,
h?

Nnop

where
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I

Tsp(Erimps N 1iz) = Y L(Y) Typ(Eramms Mg, 112)

r=1

Therefore, combining (1.31f) and (1.80) we can get the entropyin this case.
Under the inequalities A > > Eg or A< <Eg, (1.60) assumes the form

_ - KR R [(agm\?
EQ =_—5% = 1.81
(1+aE) 2ﬁ1c+2ﬁlc<dz) (1.81a)

The EEM can be written from (1.81a) as

m’ (Egs) = me(1+ 2aEgs) (1.81b)

The total 2D DOS function assumes the form

Nopr(E) = Me8y > (1+2aE)H(E - Ey,,) (1.82)

where the sub-band energy (Enz3 ) can be expressed as

o -
T (no1/d;)” = En,, (1+ aEy,,) (1.83)

C

The 2D electron statistics can be written as

_ mg, J“’ (1+2aE)dE
Nop =

- Ak’ fiz=1JEn; 1+ exp(E;fEfS)
Z= 3 kgT

1.84

eksTg, " 80

_ MchBLsy T T T

=TSy 1+ 2aE, Foln,) + 20k TF(n,,)

nz=1

where 1, = (Eps —En,,)/ kpT and F;(n) is the one parameter Fermi-Dirac integral of
order j which can be written [154] as

= 1 < Xdx .
B0~ (e5,5) |, ot 7! (18

or for all j, analytically continued as a complex contour integral around the nega-
tive x-axis

(1.86)

I'(-j) ) [“’ X dx

E(n)z <2m/j o1+ exp(-Xx-1)

where 7 is the dimensionless parameter and x is independent variable,
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Therefore in this case the entropy can be investigated by using (1.44) and
(1.84).

The forms of the DOS and the electron statistics for bulk specimens of III-V ma-
terials in the absence of band tails whose energy band structures are defined by the
two-band model of Kane can, respectively, be written as

_\ 32
Do(E) = 47, (zhiz) \/Tue(E) 's1e(E)] (1.87)

_ _ 32
sz%(z;}) (W () + No(Er) (1.88)

where

Lie(E)=E(1+aE), I 11¢(E) = (1+ 2aE),

My (Er) = [Tue(Er)]*? (1.89)
and
No(Er) = > LP)(Er) (1.90)
r=1

(c) Under the constraints A > > Eg; or A< <Eg, together with the inequality aEr < <1,
the (1.87) and (1.88) assumes the forms as

R 15akg T -

1o =8vNc [F1/2(’1)+( 4B )F3/2(’1)} (1.91)
where

(TN Er

c= 2 n= ksT
and

_ Er

n= kel

The entropy can be written as

So=8e( 52 [Foyat + (2520 ) Fyat| (192
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The dispersion relation in HDS whose energy spectrum in the absence of band tails
obeys the parabolic energy bands (1.69) is given by

=y3(E.np) 1.93)

where

_ 2 _
(Eng) = | = o (Burg)
B S W Erf (B/ng)) |0
Since the dispersion relation in accordance with the said model is an all zero func-
tion with no pole in the finite complex plane, therefore the HD counterpart will be
totally real, which is also apparent form the expression (1.93).
The EEM in this case can be written as

1 (Epns Ng) = Me{ y3(Eens 1)} (1.94)
In the absence of band tails, Ny — 0 and the EEM assumes the form

m'(Er) =m, (1.95)

It is well known that the EEM in unperturbed parabolic energy bands is a con-
stant quantity in general excluding cross-fields configuration. However, the
same mass in the corresponding HD bulk counterpart becomes a complicated
function of Fermi energy and the impurity potential together with the fact that
the EEM also exists in the band gap solely due to the presence of finite .

The DOS function in this case can be written as

o g /2m\ > _ ) )
BBy = 55 () /(B B} (1.96)

The electron concentration is given by

_ _ 3/2 S
iy = 57 <2m) [7113(5Fh,ng)+ Zi(r)[fm(Eph,ng)]} (1.97)
r=1

=55
where

T3 (Ery 1) = {73 (B 1g) )
In this case, Eyq is given by

y3(Ena:1g) =0 (1.98)
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One can numerically compute the entropy by using (1.97), (1.98), (1.31f) and the al-
lied definitions in this case.

For dimensional quantization along z-direction, the dispersion relation of the
2D electrons in this case can be written following (1.93) as

W (n,z/d,)  R(ks)’ _
e + e =y;(Eng) (1.99)

The expression of the Nopr(E) in this case can be written as
m g Nzmax
Nopr(E) = ﬂch L Z Top'(E, N, ;) H(E — En,po) (1.100)
=

nz=1

where

Ton(E; N 1z) = [y (B, ) — (R /d)* (21e) 71,
The sub-band energies Ey,po in this case given by

{W(nm/d;)’}(2me) ™ = p3(Enypo. ) (1.101)
The EEM in this case can be written as

M’ (Epiup, Ng> 1iz) = Me[y's(Erp, )] (1.102)

Therefore under the same conditions as used in obtaining (1.48) from (1.2), the 2D
carrier statistics in this case can be written by using the same conditions from (1.77)
as

2 5 [Zmax

. m - A B

nop = ﬂ;,lgzv >~ [Top(Era, N> 1iz) + Trop(Erin, Ng» 112)] (1.103)
nz=1

where
s

Tiop (Epip Ng> 11z) Y L(P)[Top(Erim, Ngs 11z)]s
=1

Therefore combining (1.31f) and (1.80) we can get the entropy in this case.

Under the condition @ — 0, the expressions of total 2D DOS, for materials with-
out forming band tails whose bulk electrons are defined by the isotropic parabolic
energy bands can, be written from (1.82) as

~ 5 Mzmax
NZDT(E) = mcgzv Z H(E _Eflzp> (1.104)
V(e

The sub-band energy (Enzp ) the nyp and the entropy can, respectively, be expressed as
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E _LZ A\ *
" om. \ d,
zmax

- P 3% o)

Nz max

~ mkiTmsg
= Z Foi(n)

(b) The Model of Stillman et al.

(1.105)

(1.106a)

(1.106b)

In accordance with the model of Stillman et al. [38], the electron dispersion law of

III-V materials assumes the form
E = f11k2 - f1zf(4

where

th= i t 1 K 3E, +4A+2A
= ome 2T mo/) \2m, %0 Eq,

and my is the free electron mass

In the presence of band tails, (1.107) gets transformed as

nK

2m,

:TIZ(E’ rlg)

4mct12

The EEM can be written as
m (EFh’ rlg) = ﬁlc{le(EFh’ rlg)},

The DOS function in this case can be written as

g, (2m\? o )
NinEony) = 25 (20) B (B

The electron concentration is given by
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i

g, (2mN\ L I
Ng = g_V2 < 26) |:1121(EFh’rlg) + L(r)[]lzl(EFh,rIg)]
3\ h r=1

where
Ly (Eryng) = {La(ER,» ng)}3/2
In this case, Ejq is expressed through the equation

y3 (Ehd’ rlg) =0

(1111)

(1112

One can numerically compute the entropy by using (1.111), (1.112), (1.31f) and the

allied definitions in this case.

For dimensional quantization along z- direction, the dispersion relation of the

2D electrons in this case can be written following (1.108) as

W(nm/d,) Rk - -
et o, Te(Erg)

the expression of the N,pr(E) in this case can be written as

= = MNzmax
_ _ m _ o, _
Nopr(E) = 252 > Tuup' (g m2) H(E = Encon)

nz=1

where
Tup((Eng.e) = [a(Eung) - KR/ ) (2me) |
The sub-band energies Enznu in this case given by
{7 (n71/d;)*} (2imc) ™' = o (Enyous M)
The EEM in this case assumes the form
m* (Epiup, Ng» Nz) = {1y’ (Epips N> Nz)]

The 2-D electron statistics in this case can be written as

~ m.e Nzmax _ B ~ B B ~
Nop = n;‘gzv Z [T11D(EF1HD,72g,nz)+T1ZD(EF1HD,71g,nz)] (1.117)
nz=1
where

5
Tiop(Ep1s Ng> 1z) = Z L(r) {TllD(EFlHDa Ng> ﬁz)} ,

r=1

Therefore combining (1.117) and (1.31f) we can get the entropyin this case.
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For unperturbed material, the 2-D EEM can be expressed as
m*(Eps) = me{ha(Ers)}’ (1.118)
where

Lo (E) =an [1 -(1- &12@))1/2}

It appears that the EEM in this case is a function of Fermi energy alone and is inde-
pendent of size quantum number.

The total 2D DOS function in the absence of band tails in this case can be writ-
ten as

Nopr(E) = @hi) i {[o(E) E(E- En,,)} (1.119)

nz=1

where the sub-band energies EnZ3 can be expressed as

o o
Iy (En,,) = T (n,m/d,)? (1.120)

The 2D electron concentration assumes the form

M o ﬁzmax
_ m I -
NZD:( Cg2v> Z [T55(EF5’nZ)+T56(EF5,T'IZ)] (1.121)
h |
where
N P W\’
Ts5(Eps, nz) = [Iu(EFS) ~ S <a_z>
and
_ s
Ts¢(Eps,niz) = Y L(F)Tss(Eps, niz)

r=1
Thus using (1.44) and (1.121) we can study the Entropy in this case.
The expression of electron concentration for bulk specimens of III-V materials
(in the absence of band tails) can be written in accordance with the model of
Stillman et al. as

g, (2mN\A
fio = 33;1 5 (7) [Ma,, (EF) + N, (EF)] (1.122)

where
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I

Mayo (Er) = [T2(Ep)]*and Nayo (Er) = > L(7)[May (Er)]

r=1

Thus using (1.44) and (1.122) we can study the entropy in this case.

(c) Model of Palik et al.

The energy spectrum of the conduction electrons in III-V materials up to the fourth
order in effective mass theory, taking into account the interactions of heavy hole,
light hole and the split-off holes can be expressed in accordance with the model of
Palik et al. [40] as

- Buk* (1.123)

where

-2 1
~ n 1+ A m
By = |— 21 (1=-y) i x| 1+ | — dyy=—
[ [1—]( il (g)] ot

The (1.123) gets simplified as

e
— 2113(

=

) (1.124)

where

I ~ __ ~ n _ a
Ii3(E) = b [alz— ((012)2—45311)1/2}) ap = (Zm ) and by, = {fn}

c 1

Under the condition of heavy doping forming Gaussian band tails, (1.124) assumes
the form

e
Zﬁlc 2113(E, T'Ig) (1125)

where
I3(E\ng) =b [6_112 — (@) - 4Buys(E, ﬂg))l/z}
The EEM can be written as
m’ (Ep,,ng) =mc{Li3(Ef,,n )} (1.126)

The DOS function in this case can be expressed as
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_ 32
Nun(Euny) = 25 (20) " la(Eon, ) Ta(Emy ) (1127

Since, the original band model in this case is a no pole function, in the finite com-
plex plane therefore, the HD counterpart will be totally real and the complex band
vanishes.

The electron concentration is given by

g, [2m\?

ng = 387:[2 ( hzc) |:I123 EFh )’lg ZL 1123 EFh rlg)] (1128)
where

IIZB(EF}‘D rlg) = {1123(EFh) ng)}3/2 (1129)

In this case, Eyq is given by

V3 (Enas Mg) (1.130)

One can numerically compute the entropy by using (1.128), (1.129), (1.31f) and the
allied definitions in this case.

For dimensional quantization along z-direction, the dispersion relation of the
2D electrons in this case can be written following (1.108) as

the expression of the Nypr(E) in this case can be written as

= & Mzmax
mcgy, 7 =

Nypr(E) = - Z T'3p(E; Mg, 71z)H(E = Ey,p13) (1.131)

where
Tisn (B, 1) = s (B ) ~ B (oe/ ) (2me) |

The sub-band energies Ey,,p;3 in this case given by
{h(ﬁz”/az)z}(zmc)_l 2713(EnzD13>'1g) (1.132)
The EEM in this case can be expressed as

m (Erinp Ng>Nz) =M [7'13 (Er1aps N> ﬁz)i| (1.133)

The 2-D electron statistics in this case can be written as

Nmax

_ m
v Z [TBD Erip, Mg 1z) + Trap (Erimips Mg 1z) (1.134)

Mop =
T
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where

s
Tyup(Epir, Ng> 1iz) = Y L(r)[T13p(Epum, Mg 112))]
=1

Therefore combining (1.134) and (1.31f) we can get the entropy in this case.
The 2D electron dispersion relation in the absence of band tails this case as-
sumes the form

A &

— I\2_ 7 /p
e + 2ﬁlc(nzn/dz) =I;3(E) (1.1353)

The EEM in this case can be written from (1.135a) as
M’ (E,) = me[Ii3(Eg,)] (1.135h)

The total 2D DOS function can be written as
Nopr(E ( ch> Z {[Is(E En,)} (1.136)

where the sub-band energies E% can be expressed as

_ K
I]3(En24) . (nzrr/d ) (1137)

The 2D electron concentration assumes the form

- ﬁlcgv Nzmax - o
fiop=—=5 > [Ts7(Ers, i) + Tsg (Eps, 11 )] (1.138)
VL —
where

W (nm\? . S
Ts7(Eps,n;) = | I13(Ers) — o\ and Tsg(Eps, ;) = L(7)Ts7(EFs, 1)
Me z r=1
(1.139)

Thus by using (1.138) and (1.44) we can study the entropy in this case.

1.2.3 The entropy in quantum wells (QWs) of HD I1-VI materials

The carrier energy spectra in bulk specimens of II-VI compounds in accordance
with Hopfield model [57] can be written as
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E=aok? + bokZ + Aoks (1.140)

where a’o=h/2m’,, B'ozhz/zmﬂ, and Ao represents the splitting of the two-spin
states by the spin orbit coupling and the crystalline field.

Therefore the dispersion relation of the carriers in HD II-VI materials in the
presence of Gaussian band tails can be expressed as

y3(Esng) = @0k + bok? + Aoks (1.141)

Thus, the energy spectrum in this case is real since the corresponding E-k relation
in the absence of band tails as given by (1.141) is a no pole function in the finite
complex plane.
The transverse and the longitudinal EEMs masses are, respectively, given by
= _ % - ’ ;\0
M, (Er,Mg) =m; {y;(E;ng)} |1+ — — E-Ep, (1.142)
Vo)’ +4a4'y,(E.my)

and
i) (Erpo 1) =10 {5 (B )Y ey, (1143)

Thus the transverse EEM in HD II-VI materials is a function of electron energy and
is double valued due to the presence of A, and due to heavy doping the same mass
exists in the band gap.

In the absence of band tails, Mg — 0, we get

_ Ao

m, (Ep)=m, |1+ BBy (1.144)

m) (Er) =] (1.145)

The volume in k- space as enclosed (1.141) can be expressed as

4 ? 3/2 ( 0 3 g
V E,I] = ——== (1 E, +
( g) S |:{ 3( rlg)} 8 —

2

E"_O)< E () ) i 1[—%(]5’%) H 1.146
1(4\/% ys(Eong) + P sin " — (1.146)
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Therefore, the electron concentration can be written as

_ g o s

no = m |:1124(EFh’rlg) + ;L(") [1124(EFh)rIg)]:| (1.147)
where

(o)’ /y3(E.1y)
T F = 3\ 3\ g
Tiou (Bryo ) = | {13 (B M) P2+ g ————
ao

In this case, Ejq is given by

{y3(Enasng)} =0 (1.148)

Thus, one can numerically evaluate the entropy by using (1.147), (1.31f), (1.148) and
the allied definitions in this case.

The dispersion relation of the conduction electrons of QWs of HD II-VI materials
for dimensional quantization along z- direction can be written following (1.141) as

_ - -, [(1n 2
y3(Esng) =aokZ + bo (ETZ) + Aok (1.149)

4

The EEM can be expressed following (1.149) as

(o)

3 7 37 n 2 —7 T
l:(/lo)z _ 4&0190 (%) + 4a0y3(EF1HD) Tlg):|

M’ (Epiup, Mz, Mg) =1, |17 | (1150)

Thus we observe that the doubled valued effective mass in 2-D QWs of HD II-VI
materials is a function of Fermi energy, size quantum number and the screening
potential, respectively, together with the fact that the same mass exists in the band
gap due to the sole presence of the splitting of the two-spin states by the spin orbit
coupling and the crystalline field.

The sub-band energy in this case is given by

— 2

= —, (TN

¥3(Enzp14, 1) = bo (—a z) (1.151)
Z

The surface electron concentration at low temperatures assumes the form

& ' Nzmax

_ m = = TUD %k g
nZD:g’Vm; S~ (15(Eeims )~ Enyo,, + 0P 2) (1.152)
iy =1

Therefore combining (1.152) and (1.31f) we can get the entropy in this case.
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The dispersion relation of the conduction electrons of QWs of II-VI materials
for dimensional quantization along z- direction in the absence of band tails can be
written following (1.140) as

E= d01<2+b0(n;”) + Aoks (1.153)

4

Using (1.153), the EEM in this case can be written as

(Ao)

m (Eps, 1) =m |17 7 (1.154)
3 \2 —r 37 (in 2 —7 =
|:(A0) - 4(10190 (z) + 4(10EFS:|
The sub-band energy Enﬂ assumes the form
= _, [T\ >
Ey,; =bl (—L> (1.155a)
d,

The area of constant energy 2D quantized surface in this case is given by

- n = = - = =
A, (En,)= [ — [(A0)* +280"(E~ En,, ) £ Ao[(Ao) + 4a0"(E~ Eng)]'*]|  (1.155b)
2(610 )
The surface electron concentration can be expressed in this case as
oy = 28 Zm: r (A, (o 1) +A_ (Ers 1)] = Ao (E)}dE (1.156)
2D 2(2]_[)2 Pl + \LFs, Itz — \LEFs, Iz OF 0 .

where fo (E) is the Fermi-Dirac occupation probability factor.
From (1.156) we get

s m ]2 Tﬁzmax B
= STLEN " Folt,) (1.157)
h o

where
Mg = (Brs = Engg + (0 12 (kg T)

Therefore the entropy is given by

% = Nzmax

- mgTm
So= TRBIMLEY Z Foi(n,,) (1.158)
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1.2.4 The entropy in quantum wells (QWs) of HD IV-VI materials

The dispersion relation of the conduction electrons in IV-VI materials can be ex-

pressed in accordance with Dimmock [156] as

2 "om; T omy

Eg,, R hzl_@} [£+ Ey WK IR

} =PI+ Pk

(1.159)

wheree is the energy as measured from the center of the band gap E, m} and m;*
represent the contributions to the transverse and longitudinal effective masses of
the external L and Lg bands arising from the k-p perturbations with the other

bands taken to the second order.
WEgy

Substituting, P} = (h’Eg, /2m;), P} = (= an ) and e= [E + (E%ﬂ (where m;, and

ﬁll are the transverse and the longltudmal effective masses at k =0), (1.159) gets trans-

formed as

272 272 272 272 2 27,2
[E_hk thlJraEJrahksmhkz]:hk R

2m;  2my; 2m 2mf | 2m;  2my

From (1.160), we can write

47 27,
K (Lo L) ap( Lo LY, oK
4amim; 2m,  2m; 2m; 2m; 4m, m;

+ hz_i( ﬁ + hi’? hzk2 (— - i) + oth@f
2m; 2m, 2 m;  m} 4m; my

(1.160)

(1.161)

=0

Using (1.161), the dispersion relation of the conduction electrons in HD IV-VI mate-

rials can be expressed as

ah* K

2
e ——=—Z(E,ng) + I°I [)ln(E Ng)k; + Ao (E, Ug)}

+ (A3 (B + Aza (B mg K~ Aos (Eom,) | =0
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_ 1 1 \: = 1 1 -
nB.ty) = | (7 - 75 ) 2o(En) + & = o voEon)
t t t t

_ ah'Zo(E,ng) _ _ _
Agu(Eng) = ——~— = and Azs(E. 1) = [y, (E. 1) + abo(E, ng)]
mym,
Thus, the energy spectrum in this case is real since the corresponding dispersion
relation in the absence of band tails as given by (1.162) is a pole-less function with
respect to energy axis in the finite complex plane.
The respective transverse and the longitudinal EEMs’ in this case can be written as

m, (Epong) = {220 (Eumg)} [ZO(E) 1g) {_ {An2(E.ng)} + M}

—{ZO(E,rlg)},[—;l72(E,ﬂg)+ ;178(E)rlg):| (1.163)
where
Jrs(E.n) = [4dvo (B, Aos(Eum )|
and
. w0 {As(BEng)Y {Aes(Eng)} + 2{{Ass(Eng)}
my (B, Mg) = - | ~{Asa(Eng)} + e :
V Aau(En,))’ +42ss (E1,) E-Ey
(1.164)
73(E. A75(E ng)
in which, Ag, (E, Ng) = % <E'Z5 and Ags(E, ng) = A;i(EZg)

Thus, we can see that the both the EEMs’ in thlS case exist in the band gap.
In the absence of band tails, Mg — 0, we get

2 N
(B = mw}ﬁ%%%] (1165)
11 E—EF
where
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_2mim; - 1 aE 1+aFE
an(E) = 4 £ 46 E,a E)= — t =+t —,
()= L2 (). B) Lmt - th}
g 2 2meme () = [ 1
511 3 ul@n) = |72 e m;
1/2 _
2 1 17 > — wm(E
(wn)= *6[—_—++—_—+} T W meme T311(E)EL(2)
16 |m; m; m; mg 4mg; mmgm; (wn)
= = = a2
. aE(1+aE 1 aE 1+aFE
w311(E)E %‘f{ ,*—( _+)+( __):|
mg m; 2m, 2mg 2m;
and
.= mS m; o o
o (o) — !
mH( 2 ( a ) (2m1+ 2m1>
E E 1+2aE
1 1 1 1 1 1 1™
+ = _ 12 (1.166)
2 1, l+aE _ o | , @E(+aE)
zﬁl; m” 2)?11“r m r?11+
E-Ep

The volume in k- space as enclosed by (1.162) can be written through the integral as

_ Age (E.ng) -
VEn)=2r " [~ (B +olEun )|

0
sy (B, 1y Ké + Aea(E g )2 + Aoy (B, )k (1167)
where
\/_ - E— _ 1/2 B
o Ass(E, +4As5(E,m,) — A4 (E, o A (E,
Agé(E,f[g)E [84( rlg)} 85( rlg) 84( rlg) ’ /179(E,7]g)5 271_( _rlg)
2 21°Zo(E,ny)
< Me(Eng) - s = . = =
Asi1(E,ng) = £ Az6(Eong) = [Ani (B, o)), Are (B mg) = [Ara (B )P

4h*(Zo(E, )]

E [27(71 (E,ng)A72(E,ng) — 4Az0(E, ng ) Az3 (E, g ) — 470 (E, g )Aza (E, Ug)}

_ Azs(E,
As3(E, 1) ) ng)

O (Zo(E,m,)|°
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and

/_178 (E’ rlg) = [4/_170 (E’ rlg)/_175 (E’ rlg)]

Thus,
_ - Agg(Esntg) [ —————————— o _
V(E» rlg) = |:A87(E’ rlg)i| J |:\/k§ +A88(E’ rlg)kg'+A89(E) rlg) _A90(E7 rlg) dkz
0
(1.168)
Where
s = =3 % A(Eng) - - Ag3(E, 1)
Ag7(E,n,) =2m\/As1(E\n,),Ags(Esm,) = — ==, Ago(E, ) = — =2
o7 (Eotlg) =21y Asa (B 1), Ao (B ) As1(E,ng) o E1g) As1(E, 1)
and
o Ao(En ) {Ass(En)Y - - o
/190(E, Tlg)52ﬂ|: 79 £ {386 s } +A80(Er rlg)/l89(E) rlg)
The (1.168) can be written as
V(En,)= [}187 (E,ng)Aos (B, 1) — Aso(E, qg)} (1.169)
in which,
- igl(E,)] ) - - - -
Ags(E, M) = [Tg[—Et[A%(E, Ng)>Aou(E; Mg )]

[{Ao1(E, ng) Y + {Aoa(E, mg) } + 2{Aoa(E, 1) o FelAo3 (E, g ), Aoa (E, )]

. ({/‘86(5» Ng)}

3 ) [{Ass (Ex11g) Y + {An (B g) Y + 2{Asa (B i) Y]

[{Ao1 (E.ng)}* + {46 (E. 1) ] * [{Aoa(E.mg) 1 + {As6 (Esmg) Y] %),

{An(E,mg)}’ = % [\/{Zss(a ﬂg)}z — 42g9(E, ) + Ass (E, )], EilA3 (E, 1), Asu (E 1) |
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is the incomplete elliptic integral of the 2°? kind and is given by [133, 134],

Ag3 (Eng) - 2 512
Eldos(B.1y) hu By )= | [{1—{A94<E,ng>} sinc¢) }d&

¢ is the variable of integration in this case,

— — i E, - _ — _ — _ 2 — _
Ag3(E,ng)=tan™! [M]{/bz(ﬂflg)}zfi{Ass(Eyﬂg)—\/{/\ss(E,ﬂg)} ~4Ago(ENg) |5
. Aoa(Bnp)Y' ~{AsaEmg)}’

Aou(Eng)= \/ - /\ggl(E,ng)92 £ JFilAg3(Eing).Aou(Eong)]

is the incomplete elliptic integral of the 1° kind and is given by [133, 134],
o - Ag3 (Eng) - 2 5 12
Bl B AoaEon)= [ [0 OB sin'ey

The DOS function in this case is given by

3 P g 3 P 5y P 3 = 75 P 3 = ’
NHD(E» rlg) = 4;[/3 |:{A87 (E> rlg)} A95 (Es rlg) + {A95 (E> rlg)} Ag7 (E: rlg) - {/‘90 (E> rlg)} i|
(1.170)

Therefore the electron concentration can be expressed as

no= 4g_ { 125 EFthg ZL [1125 EFh,ng)” (1.171)
where

Ls(Er,»ng) = [{7187 (Er, > Mg) o5 (Er,  Ng) — {Aso (EF,» Tlg)}}
In this case, Ejq is given by

Ags (Ena, Mg) =0 (1.172)

Thus, one can numerically evaluate the entropy by using (1.31f), (1.171) and (1.172)
and the allied definitions in this case.

The 2D dispersion relation of the conduction electrons in QWs of IV-VI materi-
als in the absence of band tails for the dimensional quantization along z direction
can be expressed as
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2%, d,
N L A VLS A N L h_2<ﬁz”)2
% 2% My s 2 2 ) 2% \ d,
—(1+aE)h—2<ﬁz—ﬂ)2.—ah—2(ﬁz—n>2 @+@
23\ d, 23\ d, 2, 2AXs

— — 7 27 —
n? <nzﬂ)2 w (nzﬂ)2:@+h_k§+h_2("zﬂ) (1.173)

o (R ORK\ . R (nn _ (PR 1k
E(1+0LE)+0(E<—+75 +aE2XTG(d )—(1+aE) 2)71+2XT2

25\ d, )] 2% \ d, 2m;  2m, 2ms \ d,
where
. omf +2m 3mfm _  __ _  m{+2m; 3m; my
X4 =M, ,X5= X6 = — X1=m, ,Xo= X3 = —— —
€ 30 77t emy t 3 7T omm,
. om+2my
m = m[) mp = 3
and
_3mm
m; +2m,

Therefore, the HD 2-D dispersion relation In this case assumes the form

_ _ (e PR N %
Batg)vanB.ny) (et + 57 ) vans(Eng 3 ()
P(En) +as( ng><m r ) ran ) o (2
L (RR R (R KR (Wi K
‘“*“%(E’"g”(m ") N\ T T

i R\ n (nm\’ _ R (nm\?
_a< + (7 ) —(1+ay3(E,ng))2XTB(a—z>

_ah_z(ﬁzn)z @+@

2)?3 dz ZX4 2)?5

ol (L) ()’ M L &) (L174)
23 \ d, X6 \ d, 2my  2my  2ms \ d,

Substituting, IQX =7Cos6 and 1’<y =1Sin6 (where r and 6 are 2D polar coordinates in 2D
wave vector space) in (1.174), we can write
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H’cos26 . K’sin6
m mp

" { 1 <h2c0526 hzsin29> (hzcosze hzsin29>} 51
las | ——— + — S P
4\ x X2 Xy Xs 2

W <ﬁ2ﬂ>2 <h2c0526 hzsin26> <h2c0329 hzsin26> K (ﬁzr[)Z
+ + +a — +— = |
X2 2X6 dz

A— | — - —
2X3 dz Xy X5 X1

, _ cos’d sin’f\ , - cos?0  sin’@
+h (1+ay3(E,11g))( % + Xz R ay;(E,n,) % + %

. [ ; (nﬂ)z*““ys@ "g”z};_z (nd_n)z

))Z(E’rlg) +a))3(E’rlg)2XTG dz

nt (am\*
_“(42326 (d_z> ﬂ -

The area A(E, 1) of the 2D wave vector space can be expressed as

(1.175)

A(E,n)=],-] (1.176)

where
(1.177)

and
(1.178)

in which
_ [ (h4> (00529 sin29) (cosze sinzeﬂ
a=|al=— — — 42 )
4 X1 X3 Xy X5

- H? (c0520 sin20> W <ﬁzn> 2 (C0529 sin29)
— + +a|l — | (== — =
2X3 dZ Xy Xs

b, =
=12 m m,

( W ) <nzrr> 2 [(coszﬂ sinze)
val—| (== 2
d, m my
cos20 sinzeﬂ } }

_ cos?9 sin’0
+(1+a)’3(E”1g))< X1 i X2 )_ah(E’ng)( Xy i X5

and
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R—"
~(1+ayy(E.n,)) (;i) (%)2 B “(4??;6) (%)4}

The (1.177) can be expressed as

=" En(E, )0
o An(E, n,)cos?0 + By (E, n,)sin’0

where

I R
t1(E, ;) =¢1, An(E, y) = ﬂtu(E» n),
1

tn(E i) = [l+m1[1 ah® <nzﬂ>2 al? <E>2 1+ay,(E ny) ~ ay,(E, nz)H

+— = =
X, 2x3 \ d 24aXe \ d, X1 Xy
2
Bu(E I’lz) = 2—ﬂ!2t21 (E )
and
2 - N2 2 o N2 == ==
— —_ 1 E) E’
bn(E ) = |14, (fh_ (n_z_n> . c_th_ (n_z_n> . +ay§( n) (X)’s(_ n;)
2X3X5 \ d, 20Xe \ d, X2 X5
Performing the integration, we get
Ji=nts1(E, n;)[Au(E, n;) By (E, ;)] ~12 (1.179)
From (1.178) we can write
- at3(E,n,)h* .
h=—2 2T (1.180)
2B}, (E, ;)
where
j = J (al +aZZ )(a +L314Z ) ,( )2: (All(E) ’jlz)), (1181)
0 [(a)z-'-z ] Bll(E> nz)
in which a; = i, a = %, =tan6, 6 is a new variable, a3 = %, a, = ),(l and

ar= (52

The use of the Residue theorem leads to the evaluation of the integral in (1.181) as

EBSCChost - printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



48 —— 1 The entropy in quantum wells of heavily doped materials

I= —[@may +3aa,) (1.182)

Sl

Therefore, the 2D area of the 2D wave vector space can be written as

3 F R o nts (E, n;) [_l(l z)a@l( ﬁ)h}
Am(E7e) V/Au(E, n;)Bu (E, ;) ! Xs ’?1+)?2 8B}, (E, n;) (1183)

The EEM for the HD QWs of IV-VI materials can thus be written as

_ W

m'(E,n;) = Z[BSHD( )| (1.184)

E=Epip

Thus, the EEM is a function of Fermi energy and the quantum number due to the
band nonparabolicity.
The total DOS function can be written as

NZDT(E) = (2g_7‘;> Z Osup (E, nZ)H(E - Enz7HD) (1.185)
iz =1

where the sub-band energy (E in this case can be written as

"z7HD )

W (nn - K (mm\?
N REC NN BRI L ) (81 ) 3 ()

2=0 /= 2 32 2
ol (”fl) h (”Z”) h ("2") (1.186)
26 \d, ) 2\ d 2m; \ d
The use (1.185) leads to the expression of 2D electron statistics as

Vo3 "max

Nop = %Y[ Z (Tsstip (Epiaps nz) + Tserp (Epips 2)] (1.187)

nz=1

where

S

and Tseup(Epimp, ;) = L(7) Tssup (Erp, nz)
r=1

_ _ Awup(Epmp, n
Tssup (Eriap, Nz) = Anp (Eritp. nz)

Using (1.187) and (1.31f) we can numerically study the entropy in this case.
In the absence of heavy doping the EEM in QWs of IV-VI materials can be writ-
ten as

m (Eny)= = [6s(En;)]| (1.188)
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= F 4
0s(E,n,) = [l - ,l (% + ,i) %} [A1o(E,n;)Byo(E, ;)] ™
10\ 5 Tz

o 1/2
V(B Buo(Eon,) (BB - {BolE. nz)}'{%{“‘“’“* Sl
+ > {Bw(E.n,)}’ %} H
1 boEnjan®  1(1 3 {Bro(Bno) Y {to(Bne)Y
8 \/Alo E,n;)Bio(E, n;) X5 (Xl Xz) [Bio(E, ;)] " [{Bio(E, n) }*{t30(E, nz) }

- ZBIO(E) nZ){Bl() (E> nz)}IEBO(E: nz)], E30(E’ nZ) = EO:

Co= {E(l +0aE) +aE (;;) (i’;—f)z ~(1+aE) <2hx_23> (Y_ZZT)Z ~a <4)sz6> (%) 4} ’

h
Ao (E» nz) = Z_ﬁ’ll to (E; nz)> tio (E> nz)
_|1aK? <n2ﬂ>2 ah’ <nzn)2 1+aE aE
=S| l+my|—=— (=) + == =) +t
X4 2\ d, 21X6 \ d, X1 X4
hZ
BlO(E’ nz) =—1 (E» nz)
and

ak? (am\*> ah’ (nm\® 1+aE GE
to(E,n 1+m —_— ) t— = +— - =
to(Eims) = { ? [2X3X5 ( d, ) 2X2Xg < d, ) X2 Xs

Thus, the EEM is a function of Fermi energy and the quantum number due to the
band nonparabolicity.
The total DOS function can be written as

Nan(E) = @) S 65(E ) H(E - En,) (1.189)
iy =1

where the sub-band energy (Enz7) in this case can be written as
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50 —— 1 The entropy in quantum wells of heavily doped materials

. I %% N %A%
B, (1 0, B, 5 (7)) 3 ()
4 Z

_a’*<ﬁzﬂ)2’*<ﬁzﬂ)2_ hz("”)z o
25\ d, ) 2%\ d, 2ms\d, ) |

In the absence of heavy doping, the expression of 2D electron statistics can be writ-

(1.190)

ten as
g ﬁmax

Nop = 5‘;’;[7"550 (EFs, nz) + Tseo (EFs, 1) (1.191)
where

- Ao(Eps,ny) - =

Ts50(EFs,nz) = %Jldﬂ n)

_ 7TZ30(E, nz) l:l— l (l + i) afgo(E, nz)h4:|
V AIO(E, nz)BIO(E: n;) Xs \X1 Xz SB%O(E’ n) )

and

— — 5 — — —

Tseo(Erssnz) = Y L(7) Tsso (Ers, 1) (1.192)

r=1
Thus using (1.44) and (1.192) we can study the entropy in this case.
For bulk specimens of IV-VI materials, the expressions of electron concentra-
tion and the ENTROPY assume the forms

Fig = <%> (WMpa(Er,) + Na, (Er, )] (1.193)
ke’ T
So=8v {36} [M,A4 (EFb) + N,A4 (EFb)] (1.194)
where

_ _ I - o 2mm;
MA4 (pr) = |:a]A1 (pr) —ag(EFb)TAl (pr) - % [TAI (EFb)]3:| , 05 = |: m(;hgnt A1:| ,

144 (EFb) fAl (EFb)
3 3

[(Ta, (Er, )’ + A3 (Er, ) + 2B} (Er, )[4 (Er,) + T3, (Er,)]"*[B} (Er,) + T4, (Er,))

\/ &3 (Er,) - B} (Er,)
Ax(Er,) ’

Jay(EF,) = ~ [ (A4(Er,) + B3 (Er, ) E(A, q) + 2B (Er, )F(A.9)] +

fA(EFb) G
A(Er,) 1

A=tan~!

(o]l
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An(Er,) = [TAZ (Er,) + \/ng (Er,) — 474, (Er,) } 12 /\/5,

Ba(Er,) = |:TA2 (Er,) - \/er (EF,) - 4T, (EFb):| 1/2/\/2

_ a)AZ(EFb) — wA3(EFb)
Ta,(Ep, ) = ———, Ta,(EF,) = —5—,
2\EFp wil 3\=Fp wil
_ al 1 (X.EF 1+(XEF 1 1
wa, (Ep)=|=|— - —L + b = + ——
47 (Er,) [2 [th 2m} 2m; [m; m; mlmt*]

m}m;

o 1 (XEFb 1+(XEFb
m;  2mf o 2my

_ [aEFbl+aEFb N |: 1 aEFb N 1+(XEFb:| apr1+apr

wa, (EF, ) = 2 =~ o= = 2
5 (Ery) mg my 2m, 2m; 2m; mg mg

>

1  aEr, 1+aE _ 1  aEr, 1+aE
" - _Ff " - _Fb ,az(EFb): - _Ff n - _Fb
2m;, 2m; 2m; 2m, 2m, 2m;

L S S
T4 memp omym ]

al? 2m;

2m; m; 2 1 1+aEp, aEp,
p— + —_—
2m;y - mp o 2my

Ta (EFb) = {

2% N — 7+
2m; m, 2m;

1 1+ aEFb aEFb
+ + - ——
m; m’

2 - - 1/291/2
N apr(1+aEFb)} :|

is the in complete Elliptic integral of second kind, F(A,q) is the incomplete Elliptic
integral of first kind Ny, (Epp) = >°,_ L(F)[Ma, (Erp)]
1.2.5 The entropy in quantum wells (QWs) of HD stressed Kane type materials

The electron energy spectrum in stressed Kane type materials can be written
[152-157] as

(c‘zok(XE))2 ' (%) ! (EOk(ZE)>2 =1 (1.195)
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52 —— 1 The entropy in quantum wells of heavily doped materials

where
_ = Ko(E) . . 28| (3E,
[@o(E)] = =—=—7=—= Ko(E)= |E-Cig- —=; B
Ao (E) + 3Do(E) 3E, 2B3

C; is the conduction band deformation potential, € is the trace of the strain tensor &
which can be written as

Ex &y O
E=|&y &y 0|,
0 0 &

C; is a constant which describes the strain interaction between the conduction and
valance bands, E'go =E,, +E-Ci&, B,, is the momentum matrix element,

AO(E) =(1- (ao +Cl) + 3BO‘§XX _ Boé

- 1 2n
:——b 2 ,bE_I_iadE_’
do (bo +2m), bo 3 ( ), do /3
1,m, n are the matrix elements of the strain perturbation operator, Do(E) = (do/3) ngy
g
- Ko(E) _ -2 KoCo(E)
b 2= _ , E) == _
DB a® - mo® P Lo )
and
Lo(E) = [1 _(Go+Cy) | 3botz _ b‘ie}
E 80 E 80 2Ego
The use of (1.195) can be written as
(E— 5(1)12)2( + (E— sz)l_cé + (E - &3)I_<§ :Z1E3 —EzEz + E3E +ty (11968)

e a3 _ (V3. -
o = [Ego —-Cig—(aop+Cy)E+ Ebogxx - 705"' <7> Sxyd01| >

[ 4. . .. 3-_ b 3\
o= [Ego —Cig-(ap+C)e+ Ebo&m - ?Oe - (\é_) sxydo}
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N T P
a3 = [Ego -Cie—(ap+C)e+ Eboezz— ?Oe},

3\ - 1 - - - _
(ZB%) b= (235) [6(Eg0 - C1€) + 3C1€] ,

(239 [3(Eg, - Cié)” + 6Cie(Eg, - Cie) - 20383

3

St
1]

and

/1 Cs(F — Ea st
ty = <E) |:3 - C]S((Ego - C1€)2 + 2C§£)2(yi| .

2

The (1.196a) can be written as

EIC - Ty k2 - T27f<§ - T3kl = [q67E® — Re7E” + V7E + P | (1.196h)
where

Ty=ay, Toy= @, T7= @3, i=Ge7, b=Re7, 5=V;
and

[
Under the condition of heavy doping, (1.196b) can be written as

7(4)’_(2 - T17I(])I_()2( - T27T(1)]_<)2, - T37I_C§I(1) = [Z]67I(6) - R@I(S) + V67T(4) +p677(1)]

(1.196c¢)
where
E —
1(6) = J (E- VPE(V)av (1.197)
The (1.197) can be written as
1(6) =E’I(1) - 3E°I(7) + 3E1(8) - 1(9) (1.198)
In which,
— E —_— = = —
1(7)= J F(V)av (1.199)
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54 —— 1 The entropy in quantum wells of heavily doped materials

Using (1.4), together with simple algebraic manipulations, one obtains

-sen()

1(8)= Z—é [l +Erf (ﬁﬁ)}

and

9)=

- _—ng E +Ej
Y ( )[l né}

Thus (1.197) can be written as

1(6) = E [1+Erf (UE)] [E2+ ;W;

+ 2:1/g_ exp ( E2> [4E2 + né”

(1.200)

(1.201)

(1.202)

(1.203)

(1.204)

(1.205)

Thus, combining the appropriate equations, the dispersion relations of the conduc-

tion electrons in HD stressed materials can be expressed as
pll(E, rzg)l_gz( +Qp (E, ﬂg)lzﬁ + S'11(}75) ﬂg)’_é =1

where

Py (E,ng)

Yo(Esng) = (Ti7 /2)[1 + Erf (E, 1, )]
A (E, 1) ’

E . n
1+Erf( g)} [E + ng} + 2\;’,

~Rerfo(Eny) + Veryo(E.np) + 2211 +Erf(E/ng)]} ,

Ay (Eng) = {%7{

- Yo(Eng) = (T2 /2)[1+ Exf(E/n,)]
Qu(E, T'Ig) { A14(E, ﬂg) ]

and
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Yo(E>ng) = (T /2)[1+ Erf (E/ng)]
A14(E, rlg)

Su(E,ng) == [

Thus, the energy spectrum in this case is real since the dispersion relation of the
corresponding materials in the absence of band tails as given by (1.195) is a pole-
less function in the finite complex plane.

The EEMs along X, y and z directions in this case can be written as

2

o Rl
mxx(EFhv rlg) = ? [YO(EFhv I’lg)

- (T17/2) [1 + Erf(EFh> rlg)” 72[A14(EF},7 ng)}l[)}O(EFh ) rlg)
—(T2/2)[1+ Erf (Er, .1, )]

D | R CO RESWEA |

(1.207)

_ n -
my, (Er,, M) = 5 [[)’O(EFh’ng)
—(Tx/2) 1+ Erf (Eg, ,n)]) > [Awa(Er, ,ng) Y [y0(Er,  1g)
— (Ty/2)[1+Erf (Ep, ,n,)]]]

OREWE)

- A14(E‘Fh ; rlg) |:§
(1.208)

and
_ W _
m:’z(EFh’ rlg) = Bl |:[YO (EFh: rlg)
- (T37/2) [1 +Erf(EFh7 rlg)” _2[A14(EFh ) ng)}/b)O(EFh ) rlg)
= (T5/2)[1 + Erf (EF,,, ng)]]]

[ EREC

(1.209)

- Alll (EFha rlg)

Thus, we can see that the EEMs in this case exist within the band gap.
In the absence of band tails, Mg — 0 we get
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56 =—— 1 The entropy in quantum wells of heavily doped materials

my (Er) = h*ao (Ep){ao(Er)}’ (1.210)

My (Er) = h*bo(Er) {bo(Er)}’ (1.211)
and

My (Er) = h*Co(Er) {Co(Er)}’ (1.212)

The DOS function in this case can be written as

Npp(E,ng) = %{AIS(E/TIg)}_Z |:%{A15(E’ Ng) 1/ Da(E, ) {Ara (E, ’lg)}l
(1.213)

- {Alll(E) rlg)}B/z{Aﬁ(E) rlg)},:|

where
Ass(Eng) = [[yo(E.ng) — (T17/2)[1+ Erf (E.ng)||lyo (E.ng) = (T27/2)[1+ Exf (E. )]
[yo(Esng) = (T37/2)[1+ Erf (E,n, )]

Using (1.213), the electron concentration at can be written as

o = Bg— |:1126 (EF,»Mg) + E L(r 1126(Ethrlg)]:| (1.214)
where
= = _ {AM(EFh’rIg)}B/Z
I (EpypMg) = |——=——+—
A15(EFh7rlg)

In this case, Ejq is given by
{M4(Enas1g)} =0 (1.215)

Thus, one can numerically evaluate the entropy by using (1.214), (1.215), (1.31f) and
the allied definitions in this case.

The dispersion relation of the conduction electrons in HD QWs of Kane type ma-
terials can be written as

1 (1.216)

2
Pu(E.ng) K2 + Qu(E:n,)+ Su(E.m,) (’Z’)

Z

The EEM can be expressed as
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— % et — hz 2’ T —
m (Epinp, g, Nz) = ?A 56 (EF1HD, Ng> 11z) (1.217)

where
_ 72
s |:1 - Sll (E> ng) (%) :|

\/Pu(E, r[g)éll(E> rlg)

Ase(Erbp, Mg 11z) =

From (1.217), it appears that the EEM is a function of Fermi energy, and size quan-
tum number and the same mass exists in the band gap.
Thus, the total 2D DOS function can be expressed

5 Mzmax

Nopr(E) g Z A'sg(Epaps Ng>z) (1.218)
The sub-band energies (E,,ZSHD) are given by
S‘ll(li?nzgl_ﬂ_j>71g)(7'”712/‘_iz)2 =1 (1.219)

The 2D surface electron concentration per unit area for QWs of stressed HD Kane
type compounds can be written as

—i
"= S

Z Ts7up (Eriaps Mg M) + Tssrp (Erins Ng» 11,)] (1.220)
nz

where
Ts7up(Ermp, Ne> 1) = Aseup (Erimp, Ne> 1)

and

S

Tssup (Erimp, Ne>Mz) = L(7)Ts7up (EFimps Ne>1M2)
r=1

Using (1.31f) and (1.220) we can study the entropy in this case.
In the absence of band tails, the 2D electron energy spectrum in QWs of
stressed materials assumes the form

k’zf S+ — k’zi S+ 17 s (nom/d;)’ =1 (1.221)
[ao(E)]” [bo(E)]” [Co(E)]

The area of 2D wave vector space enclosed by (1.221) can be written as

A(E, ny) =nP*(E, ny)ao (E)bo (E)
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58 —— 1 The entropy in quantum wells of heavily doped materials

where
P(E, ;) = [1- [f,71/d,Co (E)]?]

From (1.221), the EEM can be written as

2
m' (Ep,, ;) = % [P?(Ep,, 11 )ao (Er, )bo(Er, )] (1.222)

Thus, the total 2D DOS function can be expressed as
anax
Nopr(E ( ) Z 06(E, n;)H(E - Ey,, ) (1.223)

in which,
06 (E. ;) = [2P(E, 7i.){P(E, ;) } @0 (E)bo (E) +{P(E, i) }*{ao (E) } 'bo (E)
+{P(E, 1)} {bo(E)} o (E)]

The sub-band energies (E,

211

) are given by
Co(En,,, ) =nzm1/d; (1.224)

The 2D surface electron concentration per unit area for QWs of stressed Kane type
compounds can be written as

o ﬁzmax
Nop = TY[ Fzzz=1 [Te1(EFs nz) + Te2(EFs, 1)) (1.225)
where
Te1(Ers, 1) = [p*(Ers, 2) @0 (Ers ) bo (Es )]

and

i

T62 (EFS) ﬁz) = I:(?) T61 (EFS> ﬁz)
=1

The entropy in this case assumes the form

_ 7 2= n
- akpg T|[&&r— - _ . o=
So = |:gv 6B :| |:HZZ=1 |:T 61 (EFS, nz) +T 62(EFs, nz)i|:| (1226)

The DOS function for bulk specimens of stressed Kane type materials in the absence
of band tail can be written as

- printed on 2/13/2023 5:33 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use



1.2 Theoretical background =— 59

Do(E)=8,(3m) " [ao(E)bo(E)[co(E)] +ao(E)[bo (E)] Co(E) + [ao(E)) bo(E)co(E)]
(1.227)

Combining (1.227) with the Fermi—Dirac occupation probability factor and using the
generalized Summerfield lemma the electron concentration in this case can be ex-
pressed as

o =g,(3m) " [M4(Er) + N4 (Er)] (1.228)
where
My (Er) = [ao(Er)bo (Er)Co(EF)]
and
Ny (Er) = ES;L(Y)MZo (Er)
The entropy in this case is given by
ks'T g, v

S() = |:T:| [M,4(EF) +N,4(EF)] (1229)

1.2.6 The entropy in quantum wells (QWs) of HD Te

The dispersion relation of the conduction electrons in Te can be expressed as [158]

E= 1+, + [W2Kk2 +y2kl] (1.230)
where the values of the system constants are given in table as given annexure (15).

The carrier energy spectrum in HD Te can be written as

- - . - —511/2
V3 (Esng) =i K2 + 9,k + [3k2 + Yik] (1.231)
The EEMs along k, and k; directions assume the forms
. & W _
mz(EFh’ng) =——|1- > — V3 (EFh’rlg) (1232)
2¢1 L \/ll)% +4ll)ly3(EFh> ng)_
and
. n P _
ms(EFh>ng) =——|1- > = YB(EFW rlg) (1233)
2¢1 L \/wi + 4¢1Y3(EFh’ng)_
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60 —— 1 The entropy in quantum wells of heavily doped materials

The investigations of EEMs require the expression of electron concentration, which
can be written from (1.231) as

1%

Mo=35 tinp (EF,» Ng) + tarn (Er, » 1)

where

tin (Ery» Ng) = BWsup (Ery» Mg ) T3 (Er» Mg) = Welapp (Ery - g )]

_ 5 —
z y3(EF,» 1) ',bz - \/l/)3 + 4,y (EF,» 1)
Er , =|—F—+—=|, T Er,, =
Wsup (EF,» Ng) [ b, + 20 3up (EFy» Ng) 0,
2
Y=~
° Y,
and
— — g — — —
tup(Ery»Ng) = ) LNt (EF, M) (1.234a)
r=1
In this case Epgq is given by
{y3(ErygoMg)} =0 (1.234b)

Therefore by using (1.31f), (1.234a) and (1.234b) we can study the entropy in this
case
The 2D electron energy spectrum in HD QW of Te can be written using (1.230) as

_ .2 _ 2112

&= y(Eny) -y () 2, [wébmw, w-(52) } 1.239)
where

b o Yav/ Py

77 3/2
2

and

(B = [P A Ene bl + 03

RRA

The EEM in this case is given by

o R,
m (Epg, ;) = Et 40(Epg> 1)
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2

e _ Yeup (Eriaps 1)V sup (EFians 1)
m (Eriup, Mg, Nz) = lPsHD(EFlHD,Ylg ¥ Ak £

\/'1[)8HD (Epnp. 1) ~ (i /d; )

The total DOS function in this case can be expressed as

& Zmax
o _ 8y
NZDT(E) T Z '1[) SHD(E I’lg)H( "259HD)
ny=1
where EnzngD is the lowest positive root of the equation

1/2

W'stp(Engsopp» Mg) ~ W (nnz) 1, |:lptstD (EnsoppTg) = <ﬂa—f:z) 2} =0

The surface electron concentration is given by

max

a=8v Z tiapre (Eribp, Mg> z) + Eatipre (EF1p, N> 2]
where

_ .2
_ _ o _ _ - _ nn
tirpte (EFimp, N> Nz) = tinte (EF1HD, Ng> Nz) | Wspp (EF1HD, Mg» Mz) — P (a—z> }
Z
and

s
tnpre(Erimp, Mg Nz) = Z L(7)[t:anre (Ep1bp, N> 2]
=1

Thus using (1.239) and (1.31f) we can study the entropy in this case.
The 2D electron energy spectrum in QWs of Te in the absence of band
sumes the form

~bs(B)- (3 )+¢{¢8<> (’;—")]

1/2
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and
lpz (E) _ lpz + 4Elp2¢)§ + 4ll)§ll)§
a(E) =
wp,,
Thus, the total 2D DOS function can be expressed as
fopr(E) = (g_v) mi(f’m(fs, n,)H(E-E,. ) (1.241)
T = Z12
where
B 2 1/2 1/2
- _ mn - mn
b )= | sl8) - (73 07 | 3B - ()
d, d;
The sub-band energies (E"zlz) are given by
_ N2 _
- mn mn
En, =t (—_Z) +1h; (——Z) (1.242a)
d, d,
Using (1.240) the EEM can be expressed as
. .,
i (Epo,iz) = - tio (B, ) (1.242b)

The 2D surface electron concentration per unit area for QWs of Te can be written as

— Nzmax
op = 5>~ [fao(Ers, ) H (B o) (1.243)

nz=1

where

L(P)t40(Ers, 1)

N

tu (Eps, ;) =

r=1

The entropyin this case is given by
g,k T e
So= [%} {Z [E40(EFs, z) + t41 (Ers, 1) (1.244)
nz=1

The electron concentration and the entropy for bulk specimens of Te in the absence
of band tails can, respectively, be expressed as

[My(EF) + Ny (EF)] (1.245)
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and
_ 7221 ~
So= {gksﬂ [M's(Er) + N's(Er)]] (1.246)
where

My (Er) = 3¢5 (EF)T3(EF) — T3 (EF)), s (EF) = [ll’s ' le‘/j}

=2, {,/¢3+4¢1EF 1/;3} and Ny (Er) = ZL (F)My(Er)

1.2.7 The entropy in quantum wells (QWs) of HD gallium phosphide

The energy spectrum of the conduction electrons in n-GaP can be written as [159]

T 12
— [A'I2+ 1) - {h*z (I +12) +|Vg| ] +|Vg| (1.247)
my

where ko and |V;| are constants of the energy spectrum and A’=1.
The dispersion relation of the conduction electrons in HD n- GaP can be ex-
pressed as

- h2k2 H?
YB(E> rlg)_ sz 2—‘*‘

_ 1/2
~ (M
[A'K + kﬁ]—{m,zo(k§+k§)+|VG|2} — Vg (1.248)
Il

The EEMs assume the forms as

. Wy (Er, , s
m, (Ep,, Ng) = W [1 + (C+bD)[C’ +4bD’ + 4bCy; (Er, . n)
(1.249)
~ 4bCD + 4b”y;(Eg, ,1,)D]
And
. o, _ 5
Mg (EF,, N,) = > [ty 3(EF,>Ng) — tuat s (EF,» 1)) (1.250)
where
2 27 2 =
B:L) C:l h7,50 )D—|VG|;t11:i, a:L+A’5, t41—é;
2m, 2 m, a | a
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g3 = (4abc +4a’c), & (Er,, ng) = 82— 4aCy; (Er,, 1,))(83) > 82 = (4a’b” + C* + 4aCD)

The electron concentration can be expressed as

(L7 (Erymg) + ZL (I127(EFy > ,)]]

i = 4g (1.251)

where
Ly (EF,[, Ng) = [Mizp (EFh; Tlg)]

Mupp(Eg,»1g) = | 2(tnys(Ery» Mg) + )/ ts1 + torys (Er,» Mg) + < 3 )93 (Ep,»Mg)

<t471> |:9) - (EFhJ'lg)\/ez, (EFh’ T]g) + ts(EFh, rlg) - \/tS(EFh’ rlg):|

o 0 _(Er,.ng) + /0" (Er,.n,) + t5(EF, . 1)
+(t41t5(EFh,ng)/2)ln he \/ — i} > h*%s
t5(EFh>r1g)

Q\I [yl

81 8= — (C+2aD), tay = [t + 48 Entn + (45, 618) (83) ). b =

to1 = [4tntaity, + 8tutnts, — (1665, ,aC)(g3) 71],

0_ (Er,»ng) = (t1v2) [Eel+f71Y3(EFh,ng)— l_‘81+Z91Y3(EFhJ1g)],z61=(El +2bt31)

and 271 = (2?11?31)
The Ej in this case is given by the equation
(1.252)

¥3(Ena>Mg) =0

Therefore using (1.251), (1.252), and (1.31f) we can study the entropyin this case
The 2D dispersion relation in QW of HD GaP can be expressed following (1.248)

as
1/2
(1.253)

= _\2
_ _ _ _ - mn m —
ks =tuys(E.ng) + b — b (ZTZ) —tu [((;) +8(E, 'lg)}

The EEM in this case can be written following (1.253) as
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hZ

m (Epip, Ngs n;)=— |:E11)’,3(EF1HD7 Tlg) — tats(Eram, Tlg)tls (Erit, Ng)

2

_\?2 -1/2
mn — =
|:< dZ) +t§(EF1HD7rIg):| :|

The total DOS function assumes the form

(1.254)

5 Zmax

Nopr(E, Ng) = f—;_/[ Z {Zu)’lg (Er1ps Ng) ~tuts (EF1HD,72g)fl5 (EF1mm, 1)

nz=1

2 -1/2
;Y\ - H(E_E
l:(d) +t§(EF1HD>rIg):| :|H(E_E"28tHD)

4

(1.255)

where E| is given by the equation

"Z8THD
— _ .2 1/2
nn, mn -
tys(En — - t31( L ) —ty [(d—z> + té(E"zSTHD’ng):| =0 (1.256)

Z

The surface electron concentration in QW of HD n-GaP can be written as

o "max

ns = % Z [ t30Gap(EFieD, Mg» 1z) + tatinGap(EFimm, Mg 1z )] (1.257)

nz=1

where
tipcap (Eriaps Mg Miz) = tiy; (Epiap, Mg, Miz) + En (%m ) 2 i (ndr‘zz> 2
+ & (Epis. Ngo 1))/
taripGap (Eriems Ng> z) = Z L(7)[t3up6ap (EF1, Mg 1z )]

Thus using (1.257) and (1.31f) we can study the entropy in this case.
The 2D electron dispersion relation in size-quantized n-GaP in the absence of
band tails assumes the form

N N
E:az‘<§+5(%) _[(Z) e+ Vol
Z Z

The sub-band energy (Ej, ,13) are given by

1/2
+| Vgl (1.258)
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2 e 32172
Ey,,, = c(nit, /d,)? + |Vg| - [|VG| +D(ntn/d,) }

The (1.258) can be expressed as
i(z = E42(E, nz)

in which,

tio(E,n,) = [{2a(E-t,) + D} - {[2a(E-t,) + D)* - 4a®|(E- t,)* -

t=|Vg| + C(ntn,/d,)?
and
= |VG|2 + C(”ﬁZ/EIZ)z)

The total DOS function is given by

o NzZmax

Nopr(E o Z [t22'(E, i) | H(E - En,13)

Using (1.260) the EEM can be expressed as

N
m (Epg, ;) = Et 52 (Erpg, 1)

The electron statistics in QWs in n-GaP assumes the form

fap = [( f ) f’zmzax [tua(EFg» Nz) + tuz(EFg, 1) |

nz=1

where

i

ty3(Ep,, ;) = [t42(EFs, 112).]
=1

The entropy in this case is given by

_ 7 271 [ng
_ kg T\ NS v &2 o\ B s
%0° |:gv i :| |:Z [Z42(EF5, nz) +t43(EFS’nz)}

12a o

)

(1.259)

(1.260)

(1.261a)

(1.261b)

(1.262)

(1.263)

The EEMs in bulk specimens of n-GaP in the absence of band tails can be written as
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my(EF) = h—fu—tm (Er)t's(Er)]

2
. (Er) = " (1~ Cl4BCEs + 45°D° + C2 ~4BVCD)

where

_ Az 1/2
= - 4aCE
f5(Er) = [ng]

3

The electron concentration and the entropy in this case assume the forms

o = 4% My (Er) + Ny ()]
_ 7221 _
50— {gv’;g T\ M4 (Br) + N )
where

M(Er) = | 2(tnEr +tn)\/ to1Er +ts1 + ?(ﬁ (Er) + 2

'¢(EF) + ¢2(EF) +1t5 (EF)

Z41Z5 (EF)
T

In

ts(EF)

P(Er)= (f31\[2) o [fel +Erty - [ta: +f91EF]] v

1.2.8 The entropy in quantum wells (QWs) of HD platinum antimonide

The dispersion relation for the n-type PtSh, can be written as [160]
_oat, —,at - @, _,af] L[a*\-
E+Aozk2—lkgzj| |:E+60 —Vzkz—n kgzj| :I<E)k4

The (1.268) assumes the form
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¢(Er)\/¢°(EF) +t5(EF)
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E + ik + oIk 2)[E + 60 + w3k — wikl]) = L (K2 +12)° (1.269)
where
@ -a @> L@@ @ . (@)
Wy = {AOZ +IZ}’w2:AOZ’w3: {n " _VZ}’M':VZ’ 1=I<Z) ,

Ao, 1, 80,7, and @ are the band constants.
The carrier dispersion law in HD PtSbh, can be written as

Tukg = IC[Ton(E, ng) — Tsnkl] + [Tunks — Tsy (E, g )k; — Ter (E, g )] = O (1.270)
Where
T = (I - ww3), Ta(E ng) = [160 + wry;(E ng) + wsys (E, )],
T3 = 211 + wowy — wows), Tay = [2I1 + wow4)], Tsy (E, ’lg) = w2y, — wyys (E, 'lg)
+ ways(Eng)), Ter (Eo ng) = [ys (Es 1) + yo5(Es )]
and yg (E, ng) = 200 (E, ) [1+ Erf (En)] !
The EEMs are given by

= hz = = (Tzl EF >N T21, EF N +2T11T61,(EF N
ms(EFh’rlg): 2*7 Ty (EFh,rIg)'f' ( h_zg)_ ( h g_) = h g)
\/TZI(EFh’ng) +4TuTer (Er,» 1)

Tll

(1.2711)
2

_ % h s s e s -
mz(EFh’rlg) = (Fll) |:T51 (EFh’rlg) + [T51 (EF),’rlg)Tﬂ (EFh’rlg) +2T5 (EFh’rlg)]

(T2, (EF, ng) + 4T Ty (Er, )] _1/2}
(1.272)
The electron concentration assumes the form

o= B0

37;2 Iog(Er,omg) + Y L(7) [Ilzg(EFh,ng)]} (1.273)
r=1

where

L (EFh) Hg) = [MéHD(EFh> Ug)]
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- o o )
Menp (EF,» 1) = |:T91HD (EFy» Ng)Pap (Ery> g) = Tror % = TuJ5(EFy»ng)

T (Ep, 1)

Torp (Ery1g) = i

1/2

>

Pasin(Ery M) = | 2Ta) " T (i) + ) T (Bryo) + 4T Ter (o)
Tio1 = [T31 /2T

. P Erp M) (25 = T
Ts(Er,ong) = =55 (A3 (Eryo M) + By (o 1) Vo (1(Eryo 1), E(Eryo )

- [AgHD(EFh’ rlg) _BgHD(EFh’ rlg)]FO(rl(EFh’ rlg)’f(EFh’ rlg))]

P (EF 1 ) A L E B E
+ % [(A3mp (EEy»Mg) - P (EF» ng))(B§HD (Ery>11g)

—PﬁHD(EFhJ?g))]l/z,
Eo(1(Eg, 1)), t(EE,»g)
and

FO EO(rI(EFh’ rlg))’f(EF}p ng)

are the incomplete elliptic integrals of second and first, respectively.

o 1rre - — ——

Ay (Eryotg) = 5| [ TuaBryng) + \/ To(Bryo ) ~ 4T By .
Tio(Er,» Ng) = [T7(EF, ) / Ten]

Tey = [T3, - 4Tu Tu], T7(Ef, , ng) = [2T51 Tt (Epyo M) — 4T1a Ts1 (Ey o1, )]

TB(EFh’rIg) = (TB(EFh’ng)/TS)’ TB(EFh’ rlg) = [Tgl(EFh’ rlg) + 4T11T61 (EFh’rlg)}’

o 1rr. . [ R _ _
Bp(Er,ng) = 5 HTlZ(EFh’ Ng) = \/T122(EFh’ng) _4T13(EFh’ng):| } T =[VTe1/2T1]

t(Eg, 1g) = [B3(Ery 1g) /A3 (s )]s (ERy M) =sin ™"

BB(EFh> rlg)

pZ(E!Fh’ rlg):|

The Ejq in this case is given by the equation

T1(Enas1g) =0 (1.273b)

Using (1.273a), (1.273b), and (1.31f), we can study the entropy in this case.
From (1.270) the dispersion relation in QWs of HD PtSh2can be expressed as
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Tyki = Piaip (E, g, 112)KZ + Popyp (E, M, 112) = O (1.274)
where

Pip(E, N, 1iz) = [T (E, Mg, 1) = T (/)]

Potip (E: Mg 1z) = [Taa (M1 /o) — Ty (g, ) (10122 )? — T (B i)
(1.274) can be written as

I =Aeo (EF,ng>112) (1.275)

where

Ago(EF,» g ) = |:P1HD (EF,ys Ngs T12) — \/prD (EF, N> Nz) = 4T11Papp (EFy s Ng» 1)

The EEM assumes the form

. N _
m (EFiHp, Ng» Nz) = 54 60 (EF1aD, Ng> Mz) (1.276)

The surface electron concentration is given by

= Nzmax
_ 8 - [ _
=" fg:l (EF1HD; Ng> z) + Boo (EF1Hp, Mg» Nz )] (1.277)
where

S

Beo(Erinps Ng:z) = > L(7)[Aso(Erinp, g» 112)]
=1

Thus by using (1.277) and (1.31f) we can study the entropy in this case.
From (1.269), we can write the expression of the 2D dispersion law in QWs of
n-PtSh, in the absence of band tails as

I¢ =ty (E, 1) (1.278)

where

it (. z) = (2] [~ Aro (B, 1) + /A% (E, ) + 4A9An (E. 7)),
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Z

N2 N2
n, _ (min,
wHow3 [ — 2[ (| =—= R
e 3(@) ' 1<dz”
and

—\ 2 ~\2 N\ 2 —\ 4
A(E 7y = {E{”w(ﬂd_> }w(d_) [”w(ﬂd_> }I(d_) }

The area of ks space can be expressed as

=\ 2
Ag=[I) + wyws), Ao (E, ny) = [a)3E+a)l{E+80 —w, (%) }

A(E, ) = rityy (E, ;) (1.279)

The total DOS function assumes the form

& zmax

Nopr(E) = ngVT S [ua(Eui)H(E-En,,,) (1.280)

nz=1

where the quantized levels (E,ZM) can be expressed through the equation

v o) (2]
it ) i\ |
+{[mz<a—:> +50—w4<a—:>} (1.281a)
N N4 29812
() () (2]

Using (1.278), the EEM in this case can be written as

2

M’ (Epo, 7iy) = %?44 (Ep,> 1) (1.281b)

The electron statistics can be written as

o ™Zmax

Nop = %‘; ﬁzZﬂ [t4s (Eps, ;) + tus (Eps, ;)] (1.282)

where
5

EZIS (EFS) ﬁz) = i(?) [E44 (EFS! r_zz) + ?45 (EFSa ﬁz)]
-1

~
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The entropyin this case is given by

B g T[I_( ZT Nzmax _ B
So= [63} { > [t44(Ers> 1iz) + T a5 (Eps, )] (1.283)
nz=1

1.2.9 The entropy in quantum wells (QWs) of HD bismuth telluride

The dispersion relation of the conduction electrons in Bi,Te; can be written as [161]

E(1+aE) = ik} + wok; + wsk? + 2w,k Kk, (1.284)
where

w1 = zaw—hza w—hza w—hza

1—2’,710 11> 2—2’,710 22> 3_27'710 33> 4—2r—no 23>

in which a1, ax, @33 and a,; are system constants.
The dispersion relation in HD Bi,Te; assumes the form

¥,(ENg) = ik + w3k + w3k + 2w,k K, (1.285)

The EEMs can, respectively, be expressed as

L .

mX(EFh,qg) = Z_MYZ(EFh’rIg) (1286)
. o

my(EFh’rlg) = Z_MYZ(EFh’rIg) (1.287)
. o

mz(EFh’ rlg) = T%Y(EFh’ng) (1.288)

The DOS function in this case is given by

(1.289)

o img\ 2\ naEng)yy(Emg)
N(E)=4ng, <_h2°)
Q1 @033 — 401103,

Thus combining (1.289) with the Fermi—Dirac occupation probability factor, the
electron concentration can be written as

- _ 32

_ g, (2m 1/9= - _ _

no = 3—7_;2 <h_20) (an0nass - 4010%;) ~*[Uinp (B, Ng) + Usrp (Er, . 11, )]

(1.290a)
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where
Utip (Er,» Ng) = [7,(Erys )%, Uatin (Eryo M) = > () [Ustan (Ery» 1))
r=1

The E}4 in this case is given by the equation

¥2(Enasg) =0 (1.290b)

Using (1.290a), (1.290b), and (1.31f), we can study the entropy in this case.
The dispersion relation in QWs of HD Bi,Te; can be expressed as

_\2
yy(Eomg) =y (’:_1"*) + W,k + w3k + 204K K, (1.291)

X

The EEM can be expressed as

= m ’ =
m (Epinp, Ng) = ——— ¥, (Erum 1g) (1.292)
£/ 133 — 4{153
The surface electron concentration can be written as

g. anax

nop = on : [Reo (EF1ms Ng> Tx) + Re1 (Erimms Ngs Ty (1.293)
7 =1
- i 1 2oy (EpipsN,)  2imo (1 2
Reo(EF1HD, Ng> x) = [ 2 5 g - —20 (a—x> an
A/ anoss — 4&%3 h h X

and
o 5
Re1(EFiHp, Ng> Nz) = Z (7)[Reo (Er1tp, Mg 117)]
=1
Using (1.293) and (1.31f) we can study the entropy in this case.
The 2D electron dispersion law in QWs of Bi,Te; in the absence of band tails
assumes the form

_ 2
E(1+aE)=w, (ngn) + wzlgz/ + w3k + 2wk, k, (1.294)

X

The area of the ellipse is given by

I n 2moE(1+aE) (ﬁxn)z
Ay (E, = — = - = 1.295
B ) m[ v g (1.295)

The total DOS function assumes the form
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74 =—— 1 The entropy in quantum wells of heavily doped materials

_ n
h? apas3 — 4&%3 nyx=1

where (E"zls) can be expressed through the equation

Nypr(E) =

(1+2aE)H(E-Ey,,) (1.296)

7 2
En215 (1 + aEnzls ) =w (n(_;r[) (12973)

X
The EEM in this case assumes the form as

= _ ﬁlo(1+2a(EFs))

m' (Epy) = ———3 (1.297b)
Vanos — 4oty
The electron concentration can be written as
ﬁl g Nzmax _
fop = <$> Z [(1+ Z(J(Enz15 )Fo(nnls) + ZockBTFl(n,115 )] (1.298)
\/ AnQ33 — 4“%3 nz=1
where
Eps—En -
rInlS kBT

Using (1.298) the entropy in this case is given by

- m T 20T | [Mamax -
So= ( 0 ) [g B } [ Z [(1+2aE,  )F _l(nnzls)+2akBTF0(nnZlS)]

/ 2
33 — 4(123

(1.299)

1.2.10 The entropy in quantum wells (QWs) of HD germanium

It is well known that the conduction electrons of n-Ge obey two different types of
dispersion laws since band nonparabolicity has been included in two different
ways as given in the literature [162, 163].

(@) The energy spectrum of the conduction electrons in bulk specimens of n-Ge can
be expressed in accordance with Cardona et al. [162] as

CEowrke /BN e\
L [(g) +Eg 2 (%)] (1.300)
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where in this case m’ and m’, are the longitudinal and transverse effective masses
along <111> direction at the edge of the conduction band, respectively
The (1.300) can be written as

}21:? =E(1+aE)+a (ZZ@) ~(1+2akE) (ZZ‘%) (1.301)
The dispersion relation under the condition of heavy doping can be expressed from
(1.301) as

Z;—kf =7,(E.ng) +a <¥> — (1+2aEy;(E,ng)) Z;’;ﬁ (1.302)
The EEMs can be written as

' (Epn,ng) = y 2 (Epny 1) (1.303)

and

yl3 (EF’ rlg) [1 + 2ay3 (EF’ rlg)} - yIZ(EF’ rlg)

m (Er,ng) =1m,y'3(Er, 1) - —— = (1.304)
/11 + 2ay;(Er, )V ~ 4y, (Er, 1)
The electron concentration can be written as
. 8mgmJ2m . I
No = B R [1129 (Eryonig) + > L(T)[Tos (Er, rlg)]:| (1.305a)
F=1

where

Lo (EF, s M) = [Mspp (Er, s 1g));

Moo (E . - a ;- ¥3(EryoTlg) .

Mgmp (EFh’rlg) =Y (EFh’rIg)l/z |:)}2 (EFh’rlg) * g)% (EFh’ng)i| - 3# [1 +2a)’3 (EFh:rIg)]
The Ej4 in this case is given by the equation
¥, (EnasMg) =0 (1.305b)

Thus by using (1.305a), (1.305b) and (1.31f), we can study the entropy in this case.
In the presence of size quantization, the dispersion law in QW of HD Ge can be
written following (1.302) as

R

2m,

=y,(Eng) +a <h (nZZr];[z{le) ) — (1+2ay5(E,ng)) MRt/ d:) (nzzr]:ll{dZ)

(1.306a)
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The EEM assumes the form

ah? <nzn

' (Epinp, Ng» ) = 1) [)’ 2(Epip, 1g) — = 3 ) ¥3(EF,» rlg)} (1.306b)
I

The surface electron concentration per unit area is given by

— nxmax
= m - e _
Nyp = g;;h; [Ry (EF11ps Ng> 1z) + S1(EF1ps Ngs 112)] (1.307)
nx=1
where

K (r,m/d,) )

Ri(Epirp, Ng> 11z) = |:Y2(EF1HD, Ng) + < o
Il

- (1+ 2y, (Erunp. 1) M]

and

S1(Ep1ap, Mg> 11z) = ZL )[R (Ep1p, Ng> 112)]
=

Thus using (1.307) and (1.31f) we can study the entropyin this case.

In the presence of size quantization along k, direction, the 2D dispersion rela-
tion of the conduction relations in QWs of n-Ge in the absence of band tails can be
written by extending the method as given in [158] as

e koo

* — =y(E,n 1.308
2m;  2m, HET:) (1308
where,
my=m,
. om _ 2 (m\’ 2 a2
m,= —=,y(E,n;) = | E(1+aE) - (1+ 2aE) (L> +a ,(L)
3 3 dz 2 3 dZ
and
. 3mm,
2mH+mL

The area of ellipse of the 2D surface as given by (1.308) can be written as
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o 2 mm. -
A(E,7,) = TV oy (1.309a)

The EEM in this case can be written as

i (Bric) = (5, ) B ) (1.309b)

The DOS function per sub-band can be expressed as

— 2 =\ 2
ap = VT |y L o0E - 2a [ A (ﬂ) (1.310)
mth 2ms \ d,

The total DOS function is given by

- 4 . - W [(nn,\? o
Nyp(E) = —3 \/ T {1 +2aE - 2a (E (Ez_:) )} H(E-En,,) (1.311)
where E"zl6 is the positive root of the following equation

2
_ _ - W (nn\’ w(mn\’
En(1+En,, ) - (1+2aE, ) <2m (ETZ) ) +a<M (ZTZ) =0 (1312)
3 z 3 z

Thus combining (1.311) with the Fermi—Dirac occupation probability factor, the 2D
electron statistics in this case can be written as

_ay/mimksT | _ o
Top = Tﬂ x Z [(Ai(nz) +1+2am,,_ )Fo(ny,)2aksTFi(n,,_, )] (1.313)

nz=1

where

o _( ®* (nn,
Al(nz) = |:1 +2a (E ( az

and

)]
1 - _
M6 = ]"(B—T [EFap = En,y]
The entropy in this case is given by
So= {zmmkzgr} [m

31 > [(Ai() + 20y, )F-1(n,,, ) +20ks TFo (1, )]

nz=1

(1.314)
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The expressions of EEMs’ in bulk specimens of Ge in the absence of band tails can
be written following (1.301)

m (Ep) =m, (1.315)
m (Ep) =m (1+2aEy) (1.316)

The DOS function for bulk specimens of Ge in the absence of band tails can be writ-
ten following (1.301) as

_ _ (2m;, 3/2 - B2, 18a (mj; 2] 2 )3
Using (1.317), the electron concentration in bulk specimens of Ge can be written as

2

2k T) i

_ | 5 _ __ 189 m;. kgT — _
no=Ncl[n(n)—ZakBTF%(nw— ot ("5 )| =28, 2

(1.318)

The use of (1.318) leads to the expression of entropy in this case as

o Namkg] | - 5 - - 189 - _ mHkBT
SO—[ 3 } |:F%(l’l)— ZakBTF%(Y[)+ 4akBT< 2 F%(rl) (1.319)

(b) The dispersion relation of the conduction electron in bulk specimens of n-Ge
can be expressed in accordance with the model of Wang and Ressler [163] can be
written as

272 272 272 272 272 272
Egkgk(g_k)(;_") (’;k) aé(’;_"f) (1320)
m - 2m, m, M) \am m
where
om\ -
aa_ﬁz;(hi;)’ﬁz;:“‘ﬁ?
N o 4m’, m
By ) = () s = (T ). o =088,
and
_(m?
=(0.0058;) a
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The energy spectrum under the condition of heavy doping can be written as

272 272 272 272 272 272\ 2
ys(Eng) = Z,kf L S o P e e P e (1.321a)
m, 2m, 2m, 2m, 2mH 2mH

The (1.321) can be expressed as

k2

S =% agk; — atio[k; + auk; + an(E, ) (1.321b)
m,
where
1 as [ K 1 (R 5 2m [ e, -2
== =—\|\== | = | === -4 > = |5
% 2a, % 20 <2m) %o 20, <2m| %5 ~ 4, G R | - 4asas
and
_ 2m,\ [ (1-4a4y,(E, n,)
an(Eny) - (n—') {T
5 Qe
The EEMs’ can be written as
mz(EFh n ): ﬂ M (1.322)
z § R ) |1-4a4y;(Epmsng)
= 2m| m2 y;(Epn, 1)
m? (Egpon,) = | b | |[—=22 0087 (1.323)
L( Fh rlg) hZ 1—40‘4)’3(EFh>’1g)

The electron concentration in HD Ge in accordance with the model of Wang and
Ressler can be expressed as

"2

_ mi8, = = -
g = ﬂthgz L5 (Epns 1) + L (Eeno 15| (1.324)

where

_ _ a _ _
I(Epn, ns)[@spio(Erns M) = ggpfo (Erns ns)@10J10 (Ens )]

1

_ 1 ﬁlﬁ : — 2
P10(EFh”15):E 01—6 [1—\/m]
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A% (EFh’ rlg)
3

(A% (Epno ng) + B} (Erns )] + 2B3 (Epns Ng)Fo (A(Erns Mg )> 4(Epno g ) )]

" A% (EFh> rlg)
3

Jio(Erns1g) = [~ Eo(A(Egn: 1), 4(Ern,1g))

VJIO(EFh’ rls) +A%(EFh> rlg) + ZB%(EFPD rlg”

1 (Epnsng) + 3o (Erns 1)
1 (Erns Mg) +Pio(Erns 15)

— o 1 —
[au +/ o5, — 403, (Epn, ﬂg)] B (Emns1g) = 3 [au +/ag; — 40, (Epn, ng)]

A%(EF}D rlg) - B%(EFh) rlg):|

N =

A%(EF}D rlg) =

= | PoEmeng) | o
A(Egp, =t 2 8 G (Em, =
( Fh rlg) an |:BI(EFh,rlg) q( Fh rlg)

A% (EFh’ ng)

and

S

Li(Emsmg)= > L(r)[I3(Epnng)]
r=1
The Ej, in this case is given by the equation
¥2(Enas 1g) (1.324b)

Thus using (1.324a), (1.324b), and (1.31f) we can study the entropy in this case.
The dispersion relation in QW of HD Ge can be written as

ni )\ 2 nm\ 2 2

S —gg—ao 22 ) —a ,L) a (,L) ap(E, 1.325

am 9(@) 1°[<dz renlg, ) e (1329
The (1.325) can be expressed as

Wi .o
21’71{ =Ai5(E,ng, 1) (1.326)

where

)\ 2 i\ 1\ k&
As(E,ng,1z) = ag—a9<az) —aloKdz) +¢X11<C—TZ) +a12(E,'1g)]

The EEM is given by

mg(Epup, N, Nz)M) = A's5(Erin, Mg Nz) (1.327)

The electron concentration per unit area assumes the form
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% NzZmax
. m . o _
Nop = ;}? Z [A75(EF1:D, Ng> Nz) + A76 (EF1HD, Ng» Nz )] (1.328)
=1
where
— — g — — —
A76(Epinp,Ng:Niz) = > L(T)[A75(Epiap, Ng> 112)]

=1
Using (1.328) and (1.31f) we can study the entropy in this case
The 2D dispersion law in the absence of band tails can be expressed as

E=As(n,) +Ag (1) - as B (1.329)
where

N A w\ /an\2] - 2\ /72

ain= g () 1) () o= o5 ) ()
and

we Ik
The (1.329) can be written as

R
—Y -1(E, 1.
o + o 1(E,nz) (1.330)

where

L(E.R) = (20) A (R) - A2(R) ~ 4B + e A7)
From (1.330), the area of the 2D k; -space is given by

- 2T/ mym,y - -
Ag(E,n,) = %11 (E, 1) (1.331a)

Using (1.331a) in this case can be expressed as

m’ (Er,, 1) = (, /r‘n;fn;) [ (EF;, 1;)| (1.331b)

The DOS function per sub-band can be written as

4/ mm, - =

Nop () = )} (1.332)

EBSCChost - printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco.conlterns-of-use
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o -

where, {I,(E,1,)} = 3F [L(E, n;)]

The total DOS function assumes the form
4/, e
Nopr(E) = 1 2 Z {L(E,n;)} HE- En,,) (1.333)
where the sub-band energy (E,,,,) are given by
_ W <rmz>2 w (rmz>2
E . = ——= —_ 1 —-Q ~—— —_ (1334)
nzyz <2m3> dZ 6 2m3 dz

The electron statistics can be written as

4wy
Mop = h; 2 Z (tas (EFs, ;) + a7 (EFs, ;)] (1.335)
=1
where
—_ —_ —_ —_ — — g — _— —
tue(EFs» z) = I1(EFs, Nz), ta7 (EFs, ;) = L(7)([tss (EFs» 112))
=1

Using (1.335), the entropy in this case is given by

_» — % n k T nzmax —/ I~ — i P —
So=4 2{ 3 :2 } {Z [t 47(EFs,nz)+f48(EFs,nz)}] (1.336)
=1

1.2.11 The entropy in quantum wells (QWs) of HD gallium antimonide

The dispersion relation of the conduction electrons in n-GaSb can be written as
[164]

Wk EgFE WK’ v
oK Eeofe |, (1 1 (1.337)
2m, 2 2 E,, \mc  mo

where

, _ 510°°T°
E, = |E,. + 22— _lev
% [ " 3012+ T)}e

The (1.337) can be expressed as
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e .
e =L (E) (1.338)

where

Lg(E) = [E + Eg — (e /mo) (Eg, /2) ~ [(Ey, /2)[((Eg, )’/ (1~ (/o))
+[(E,, /2)(1 - (me/mo))]2+ EE, (1~ (me/mo))] ]

Under the condition of heavy doping (1.338) assumes the form

e -
s = De(E 1) (1.339)

where
Ti6(E ) = 3 (Bug) + g — (e /o) (B /2)
~ [(Egy /2°[((Egy )*/2) (1= (e /mo))]
+ [(E'go /2)(1- (e /mo))]? +E;0(1 — (e /mo))]"?]

where

o B ., E
136(Ea rlg): |:|:)/3(E,)’Ig) +Eg_ ﬁl_o7 —

E' 2 _ _ 1/2
80 me r ol me
+<2> (1_r?lo>+yg(E7rlg)Ego (1_%)] :|

The EEM can be written as

M’ (Er,,Ng) = Me{ e (Er,»ng) Y (1.340)
The DOS function in this case can be written as
8

o 2mc\ 2 = o ,
Nup(EF,, 1) = 2 ( hzc) L (Er,» Ng) {36 (EF, Mg) } (1.341)

Since, the original band model in this case is a no pole function, therefore, the HD
counterpart will be totally real, and the complex band vanishes.
The electron concentration is given by

EBSCChost - printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

84 —— 1 The entropy in quantum wells of heavily doped materials

= gv 2m, 3/2 T T 3/2
o= 0 (%) (B 1)) (1342

In this case, Ejq is given by

Le(Er,,1g) =0 (1.343)

One can numerically compute the entropy by using (1.342), (1.343), (1.31f) and the
allied definitions in this case.

For dimensional quantization along z- direction, the dispersion relation of the
2D electrons in QWs of HD GaSh can be written following (1.339) as

W(nm/d,)’  W(ks)
ame | 2m,

~Tx(E,np) (1.344)

The expression of the Nypr(E) in this case can be written as

~ = Mzmax
— — m — — _ - - —
Nopr(E) = —C%V Z T 190 (EFy» N> Mz )JH(E = Enpy 1) (1.345)
nz=1
where

Ti1op(Epy» Mlg> 1iz) = (T3 (Er, » Ng) — W (Rom/d) (2imc) 7],

The sub-band energies E in this case given by

"zD119
{R(rm/dc)’ }2me) ™ = Be(Enpyyoo ) (1.346)
The EEM in this case assumes the form

m’ (Eri, N> Mz) =M [?36 (Er1ps Ng> 112)] (1.347)

The 2-D electron statistics in this case can be written as

o Nzmax
_ m _ _ _ = = _
Nopr(E) = ( n;‘_lgzv) Z [T9p (EF1#D> N> Mz) + T19 (EF1mp, Ng» 1z )] (1.348)

fiz=1
where
N s NZmax
Ti29p(Ep1mp, N> z) = > L(T) { > [Tuop(Epimm, g 1)
=1

nz=

Therefore combining (1.348) and (1.31f) we can get the entropyin this case.
The total 2D DOS function in the absence of band tails in this case can be writ-
ten as
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Noos (E) = ( Cgv) Z (B HE - En,,,)}

where the sub-band energies Enz3 can be expressed as
o &
136 (Enz44) 2 ~ (ﬂnl/d )

The EEM in this case can be written as

M’ (Eg,) = (mc) [Ts (Ex, )|

The 2D carrier concentration assumes the form

" o Nzmax
- m = =\ m = o
NZDT:< ngv) E [Ts5(EFs, nz) + Tse(EFs, nz)]
mh” ) 5=

where

(/2.

Tss(Ers, ;) = [l (Ers) —

and

]

T56 (EFS) ﬁz) = y I_,(?) [TSS (EFSa ﬁz)]

Using (1.351), the entropy in this case is given by

S‘O = ﬁ'lcgv |:n’3<;2T:| |: f [(T55 (EF5> flz)), + (TSG(EFS) flz)),}

nz=1

(1.349)

(1.350a)

(1.350Db)

(1.351)

(1.352)

The expression of electron concentration for bulk specimens of GaSb (in the ab-

sence of band tails) can be expressed as

- _ N 3/2
_ 8 (2m R .
No = 32 ( th) [MAlo (EF) +NA10 (EF)]
where
May, (Er) (Lo (Er)]?

and

7]

Ny, (Er) = ) L(7)[Ma,, (EF)]
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The entropy in this case can be expressed as

So= ()[BT 01 1)+ o B (1354)

1.2.12 The entropy in quantum wells (QWs) of HD II-V materials

The dispersion relation (DR) of the holes in II-V compounds in accordance with
Yamada [165] can be expressed as

E =A10,_()2( +A111_C)2, +A12]_(§ +A13]_(X + [(Alz,l_()z( +A15,_<)2, +A16]_(§ +A17’_<x)2 +A18]_(}2, +A%9]
(1.355)

where Ay, Ay, Ap, A, Aw, A, A, Ay, Aig and Ay are energy band con-
stants. The DR under the condition of formation of band tails can be written in this
case as

V3 (E, Ylg) ZAlok)z( +A11]7(}2, +A12]2§ + ABTCX

o o (1.356)
+ [(Amk)z( + A15k)2, +A16k§ +A17kx)2 + Algk)z, +A%9}1/2
The whole energy spectrum in this case assumes the form
_ 2 _
_ - (nm - - - (i
yB(E, rlg) =Aj ( X ) +A11k2y +A12k§ +A3 ( X )
dx dy
(1.357)
2 Nyt S 112 % Ny 7T : 1L 22 11/2
+ (A14 ( ax ) +A15k}2/ +A16kz + A7 ( ax ) +A18k)2/ +A19}
The subband energy (EnZHD401) is the lowest positive root of the following equation
) ) 2 1/2
= = N, JT - [(nym ™ - [(nym -
E, S =A = +A = + (A = +A = +A
)/3( nzHD401 Ug) 10( d. ) 13( a. ) ( 14 ( . ) 17( d >) 19
(1.358)

The EEM and the DOS function for both the cases should be calculated numerically.
Using (1.31f) and (1.358) we can study the entropy numerically.

printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco. confterms-of-use



1.2 Theoretical background =— 87

1.2.13 The entropy in quantum wells (QWs) of HD lead germanium telluride

The dispersion law of n-type Pb,_yGe,Te with x = 0.01 can be expressed following
Vassilev [125] as

[E - 0.606k; — 0.722Kk2] [E + Eg, + 0.411k? + 0377k
- _ _ _ - 1.
=0.23k? +0.02k2 + [0.06Eg, + 0.061k? + 0.0066k2 ] ks (1.359)

where Eg) =0.21 eV, ky, k, and k; are the units of 10°m !
The electron energy spectrumn —type k2Pb, ,Ge, Te under the condition of for-
mation of band tails can be written as

2
— | 6o(E,n,) +y5(E, -0.195k2 - 0.345k2] = |0.23k? + 0.02k?
[1+Erf()g)] (Eng) +y3(E. ng) g S =

+ [0.06Eg, +0.061k? + 0.0066k2 | ks + [Eg, + 0.411k2 +0.377kZ] [0.606kZ + 0.722k2]

(1.360)
The E - ks relation in HD QWs of n-type Pb;_,Ge,Te assumes the form
2 n,m
—————|60(E,n,) +y5(E,n,) | Eq, — 0.195k? - 0345<Z>
[1+E?f(%)] o(Esng) +y3(E.n,) | Eg, L
- n,m 2 — - n,m 2l
=10.23k2 +0.02 <,—> + |0.06Eg, +0.061k; +0.0066( kS ) ks
d, d.
= 2
+ | Eg, +0.4112 +0.377 ("f—”> 0.606iC +0.722 ("Z") (1361)
d. d,
The subband energy (Ey,,,,,) is the lowest positive root of the following equation
2

n.7
— | 6y(E JNg) + s E, —0.345
1+ Erf (Enﬂ;?oo) 0 (Enatipaoo> Mg) *+ ¥3(Enzgipioo ng)[ ( dz> }

n,m 7T n,m
0.02 E, +0.377 0.722
{ (d) [g (d)H (d)
The EEM and the DOS function for both the cases should be calculated numerically.
Using (1.31f) and (1.362) we study the entropy numerically.

} (1.362)
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1.2.14 The entropy in quantum wells (QWs) of HD Zinc and Cadmium diphosphides

The DR of the holes of Cadmium and Zinc diphosphides can approximately be writ-
ten following Chuiko [166] as

- {Bl X ﬁzﬁa(k)] 2, { {MB ® <B5 i /%(k)) kz}

8B, 8B,
27 2\ ) 1/2
+86; <1 - ﬁ—ik)) -B, (1 _B il()> 18} (1363)
S I
where f,, 5,, B, and f; are system constants and f; (k) = ~—=%

Under the condition of formation of band tail, the above equation assumes the

form
B = [+ PE®] e g 5.0 (5, - B0
s 2] ot (- 25
2(]}) Bz(i() ~ 1/2
+8ﬁ3‘<1_ 7 >_B2<1‘ ” )kz} (1.364)

The DR in HD QWs of Zinc and Cadmium diphosphides can be written as
_ O [ 0 (Rem)? . (K
B = [+ P {kz B (%) } . { (i) (- P220)
7 1 7Z ? 2 21 ’E 21 i(
[/<§+k§+ (”dl> H +8ﬁ4(1— 3£f)> —ﬁ2<1— ﬁ))
_ 27 172
y+ (ngﬂ) ” (1.365)

where
2L’
T x Tty d
Bul)= |57
{k}c +I2+ (%) }
The subband energy (Enszoz) is the lowest positive root of the following equation
_ _ 1/2
; g B (Y| L o (5 B | (PemY
V3 (E"ZHD401’ng> = |:ﬁ1 4B, i@ * 2B, ( Bs 4B, 4,
(1.366)
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The EEM and the DOS function for both the cases should be calculated numerically.

Using (1.31f) and (1.366) we can study entropy numerically.

Thus, we can summarize the whole mathematical background in the following
way.

In this chapter, we have investigated the 3D and 2D entropies in HD bulk and QWs
of nonlinear optical materials on the basis of a newly formulated electron dispersion
law considering the anisotropies of the effective electron masses, the spin orbit split-
ting constants and the influence of crystal field splitting within the framework of k- p
formalism. The results for 3D and 2D entropy’s for HD bulk and QWs of III-V, ternary
and quaternary compounds in accordance with the three and two band models of
Kane form a special case of our generalized analysis. We have also studied the entropy
in accordance with the models of Stillman et al. and Palik et al., respectively, since
these models find use to describe the electron energy spectrum of the aforesaid materi-
als. The 3D and 2D entropy’s has also been derived for HD bulk and QWs of II-VI,
IV-VI, stressed materials, Te, n— GaP, p — PtSh,, Bi,Te;, n— Ge, n— GaSh,1I-V, Lead
Germanium Telluride and Zinc and Cadmium Diphosphides compounds by using the
models of Hopfield, Dimmock, Seiler, Bouat et al., Rees, Emtage, Kohler, Cardona,
Wang et al. Mathur et al., Yamada, Vassilev and Chuiko, respectively, on the basis of
the appropriate carrier energy spectra. The well-known expressions of the entropies in
the absence of band tails for wide gap materials have been obtained as special cases of
our generalized analysis under certain limiting conditions. This indirect test not only
exhibits the mathematical compatibility of our formulation but also shows the fact that
our simple analysis is a more generalized one, since one can obtain the corresponding
results for relatively wide gap materials having parabolic energy bands under certain
limiting conditions from our present derivation.

1.3 Result and discussions

Using the appropriate equations and taking the energy band constants as given in
Table of appendix (15), the normalized entropy in QWs of HD CdGeAs, (an example
of nonlinear optical materials) have been plotted as a function of film thickness as
shown in Figure 1.1 in accordance with the generalized band model (6+0), three and
two band HD models of Kane together with parabolic HD energy bands as shown by
curves (a), (c), (d) and (e), respectively. The special case for §=0 has also been
shown in plot (b) in the same figure to assess the influence of crystal field splitting.
The Figure 1.2 exhibits the plots of the normalized entropy in QWs of HD CdGeAs,
as a function of the surface electron concentration per unit area for all cases of
Figure 1.1.The Figures 1.3 and 1.5 exhibit the normalized entropy for QWs of HD
InAs and InSb as a function of film thickness for three and two HD band models of
Kane together with HD parabolic energy bands as shown by curves (a), (b) and (c),
respectively, in both the figures. The Figures 1.4 and 1.6 show the corresponding
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Film thickness (in nm)
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Figure 1.1: Plot of the normalized entropy in UFs of HD CdGeAs, as a function of film thickness in
accordance with (a) the generalized band model (6 #0), (b) 6 =0, (c) the three and (d) the two band
models of Kane together with (e) the parabolic energy bands.

Carrier concentration (in x1018 m=2)

Figure 1.2: Plot of the normalized entropy in UFs of HD CdGeAs, as a function of carrier
concentration for all cases of Figure 1.1.
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Figure 1.3: Plot of the normalized entropy in UFs of HD InAs as a function of film thickness in
accordance with the (a) three and (b) two band models of Kane together with (c) parabolic energy
bands.
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Carrier concentration (in x10'8 m~2)
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Figure 1.4: Plot of the normalized entropy in UFs of HD InAs as a function of carrier concentration
for all the cases of Figure 1.3.
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Figure 1.5: Plot of the normalized entropy of UFs of HD InSbas a function of film thickness for all the
cases of Figure 1.3.

dependences on the surface electron concentration for QWs of HD InAs and InSbh. In
Figure 1.7, the normalized entropy has been plotted in QWs of HD CdS as a function
of film thickness for both Ao =0 and Ao#0 as shown by curves (b) and (a), respec-
tively, for the purpose of assessing the splitting of the two spin states by the spin
orbit coupling and the crystalline field. The Figure 1.8 shows the corresponding car-
rier statistics dependence of the entropy for all the cases of Figure 1.7. In Figure 1.9,
the normalized entropy has been plotted for HD QWs of PbTe, PbSnTe and HD
stressed InSh as a function of film thickness in accordance with the appropriate
band models as shown by curves (a), (b) and (c), respectively. The Figure 1.10 ex-
hibits the corresponding dependence on the surface electron concentration per
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Carrier concentration (in x 108 m~2)
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Figure 1.6: Plot of the normalized entropy in UFs of HD InSbhas a function of carrier concentration
for all the cases of Figure 1.3.

Film thickness (in nm)

0.06 T—— T T T T T T - r
0 20 40 60 80 100 120 140 160 180 200

——
e
g
(P—)‘

e
pr—

Normalized entropy

0.01

Figure 1.7: Plot of the normalized entropy in UFs of HD CdS as a function of film thickness for (a)
Ao #0 and (b) Ao = 0 in accordance with the model of Hopfield.

unit area. Figure 1.11 demonstrates the plots of the normalized entropy in QWs of
HD GaP, PtSh, Bi;Te; and Cadmium Antimonide, respectively, as a function of film
thickness. In Figure 1.12, the normalized entropy has been plotted as a function of
carrier concentration for all the cases of Figure 1.11.

The influence of 1D quantum confinement is immediately apparent from Figure
(1.1), (1.3), (1.5), (1.7), (1.9) and (1.11) since the entropy depends strongly on the
thickness of the quantum-confined materials which is in direct contrast with bulk
specimens. The entropy increases with increasing film thickness in an oscillatory
way with different numerical magnitudes for HD QWs, respectively. It appears from
the aforementioned figures that the entropy in HD QWs exhibits spikes for
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Figure 1.8: Plot of the normalized entropy of UFs of HD CdSas a function of carrier concentration for
the cases of Figure 1.7.
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Figure 1.9: Plot of the normalized entropy for UFs of HDs (a) PbTe, (b) PbSnTe and (c) stressed
InSbas a function of film thickness.
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Figure 1.10: Plot of the normalized entropy for UFs of HDs (a) PbTe, (b) PbSnTe and (c) stressed
InSbas a function of carrier concentration.
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Figure 1.11: Plot of the normalized entropy in HDs QWs of (a) GaP, (b) PtSb, (c) Bi,Tes and (d)
Cadmium Antimonide, respectively, as a function of film thickness.
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Figure 1.12: Plot of the normalized entropy for HDs QWs of (a) Gap, (b) PtSb,, (c) Bi,Tes and (d)
Cadmium Antimonide, respectively, as a function of carrier concentration.

particular values of film thickness which, in turn, is not only the signature of the
asymmetry of the wave vector space but also the particular band structure of the
specific material. Moreover, the entropy in HD QWs of different compounds can be-
come several orders of magnitude larger than that of the bulk specimens of the
same HD materials, which is also a direct signature of quantum confinement. This
oscillatory dependence will be less and less prominent with increasing film thick-
ness. It appears from Figure (1.2), (1.4), (1.6), (1.8), (1.10) and (1.12) that the entropy
decreases with increasing carrier degeneracy for 1D quantum confinement as con-
sidered for the said figures. For relatively high values of carrier degeneracy, the in-
fluence of band structure of a specific HD material is large and the plots of entropy
differ widely from one another whereas for low values of the carrier degeneracy,
they exhibit the converging tendency. For bulk specimens of the same material, the
entropy will be found to increase continuously with increasing electron degeneracy
in a nonoscillatory manner in an altogether different way.

The appearance of the humps of the respective curves is due to the redistribu-
tion of the electrons among the quantized energy levels when the quantum number
corresponding to the highest occupied level changes from one fixed value to the
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others. With varying electron concentration, a change is reflected in the 2D entropy
through the redistribution of the electrons among the quantized levels. Although
the 2D entropy varies in various manners with all the variables in all the limiting
cases as evident from all the curves of Figures. 1.1 and 1.2, the rates of variations are
totally band-structure dependent.The influence of the energy band constants on the
entropy in both the cases is apparent for all the materials as considered here.

The normalized 2D entropy for QWs of HD stressed Kane type n— InSbh has
been plotted in Figures 1.9 and 1.10 as functions of nano-thickness and surface elec-
tron concentration, respectively, as shown in plot (a) in the presence of stress while
the plot (b) exhibits the same in the absence of stress for the purpose of assessing
the influence of stress on the 2D entropy in QWs of HD of stressed n— InSh. In the
presence of stress, the magnitude of the 2D entropy is being increased as compared
with the same under stress free condition. It may be noted that with the advent of
modern experimental techniques, it is possible to fabricate quantum-confined
structures with an almost defect-free surface. If the direction normal to the film was
taken differently from that as assumed in this work, the expressions for the 2D en-
tropy in quasi two-dimensional structures would be different analytically, since the
basic dispersion laws of many important materials are anisotropic.

It may be noted that under certain limiting conditions, all the results for all the
models as derived here get simplified to have transformed into the well-known expres-
sions of 3D and 2D entropy’s. This indirect test not only exhibits the mathematical
compatibility of the present formulation but also shows the fact that our simple analy-
sis is a more generalized one, since one can obtain the corresponding results for rela-
tively wide gap 2D materials having parabolic energy bands under certain limiting
conditions from the present generalized analysis. Thus, the present investigations
cover the study of 2D entropy for QWs of HD nonlinear optical, III-V, ternaries, qua-
ternaries, II-VI, IV-VI, stressed compounds, Te, GaP, PtSh,, Bi,Tes, Ge and GaSh
having different band structures. One striking understanding as a collateral study as
considered here is that, the EEM becomes a function of the size quantum number the
Fermi energy and other energy band constants depending on the respective HD 2D
dispersion laws as formulated already in the respective theoretical background of this
chapter together with the fact that the EEMs exists in the band gap, a phenomena
which is impossible without the concept of band tailing. It must be mentioned that
a direct research application of the quantized materials is in the area of band struc-
ture. The theoretical results as derived in this chapter exhibit the basic qualitative fea-
tures of 2D entropy for different quantum confined HD materials.

One important concept of this chapter is the presence of poles in the finite com-
plex plane in the dispersion relation of the materials in the absence of band tails
creates the complex energy spectrum in the corresponding HD samples. Besides,
from the DOS function in this case, it appears that a new forbidden zone has been
created in addition to the normal band gap of the semiconductor. If the basic dis-
persion relation in the absence of band tails contains no poles in the finite complex
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plane, the corresponding HD energy band spectrum will be real, although it may be
the complicated functions of exponential and error functions and deviate consider-
ably from that in the absence of band tailing.Another important point in this con-
text is the existence of the effective mass within the forbidden zone, which is
impossible without the formation of band tails. It is an amazing fact that the study
of the carrier transport in HD quantized materials through proper formulation of
the Boltzmann transport equationwhich needs in turn, the corresponding HD car-
rier energy spectra is still one of the open research problems.

It may be noted that with the advent of MBE and other experimental techni-
ques, it is possible to fabricate quantum-confined structures with an almost defect-
free surface. In formulating the generalized electron energy spectrum for nonlinear
optical materials, we have considered the crystal-field splitting parameter, the ani-
sotropies in the momentum-matrix elements, and the spin-orbit splitting parame-
ters, respectively. In the absence of heavy doping, the crystal field splitting
parameter together with the assumptions of isotropic effective electron mass and
isotropic spin orbit splitting, our basic relation as given by eq (1.2) converts into eq
(1.48). The eq (1.48) is the well-known three-band Kane model and is valid for III-V
compounds, in general. It should be used as such for studying the electronic prop-
erties of n-InAs where the spin-orbit splitting parameter (A) is of the order of band
gap (Ego). For many important materials A > >Eg0 and under this inequality, eq
(1.48) assumes the form E(1+EE g )= h’k? /2m. which is the well-known two-band
Kane model. Also under the condition, Ego — oo, the above equation gets simplified
to the well-known form of parabolic energy bands as E = h’k?/2in,. It is important to
note that under certain limiting conditions, all the results for all the models as de-
rived here have transformed into the well-known expression of the 2D entropy for
size quantized materials having parabolic bands. We have not considered other
types of compounds or external physical variables for numerical computations in
order to keep the presentation brief. With different sets of energy band constants,
we shall get different numerical values of the HD 2D entropy though the nature of
variations of the HD 2D entropy as shown here would be similar for the other types
of materials and the simplified analysis of this chapter exhibits the basic qualitative
features of the HD 2D entropy for such compounds.

We must note that the study of transport phenomena and the formulation of the
electronic properties of HD nano-compounds are based on the dispersion relations
in such materials. The theoretical results of our chapter can be used to determine
the 2D entropy and the constituent heavily-doped bulk materials in the absence of
size effects It is worth remarking that this simplified formulation exhibits the basic
qualitative features of HD 2D entropy for nano-materials. The basic objective of this
chapter is not solely to demonstrate the influence of quantum confinement on the
2D entropy for HD QWs of nonparabolic materials but also to formulate the appropri-
ate electron statistics in the most generalized form, since the transport and other
phenomena in HD nano-materials having different band structures and the
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derivation of the expressions of many important electronic properties are based on
the temperature-dependent electron statistics in such compounds.

Our method is not at all related to the DOS technique as used in the literature.
From the E-k dispersion relation, we can obtain the DOS, but the DOS technique as
used in the literature cannot provide the E-k dispersion relation. Therefore, our study
is more fundamental than those of the existing literature because the Boltzmann
transport equation, which controls the study of the charge transport properties of
semiconductor devices, can be solved if and only if the E-k dispersion relation is
known. We wish to note that we have not considered the many body effects in this
simplified theoretical formalism due to the lack of availability in the literature of
proper analytical techniques for including them for the generalized systems as consid-
ered in this chapter. Our simplified approach will be useful for the purpose of compar-
ison when methods of tackling the formidable problem after inclusion of the many
body effects for the present generalized systems appear. It is worth remarking in this
context that from our simple theory under certain limiting conditions we get the well-
known result of the entropy for wide gap materials having parabolic energy bands.
The inclusion of the said effects would certainly increase the accuracy of the results,
although the qualitative features of the 2D entropy in QWs of HD materials discussed
in this chapter would not change in the presence of the aforementioned effects. The
influence of energy band models and the various band constants on the entropy for
different materials can also be studied from all the Figures of this chapter.

The numerical results presented in this chapter would be different for other ma-
terials but the nature of variation would be unaltered. The theoretical results as given
here would be useful in analyzing various other experimental data related to this
phenomenon. Finally, we can write that the analysis as presented in this chapter can
be used to investigate, the Burstein Moss shift, the carrier contribution to the elastic
constants, the specific heat, screening length, activity coefficient, reflection coeffi-
cient, Hall coefficient, plasma frequency, various scattering mechanisms and other
different transport coefficients of modern HD nonparabolic quantum confined HD de-
vices operated under different external conditions having varying band structures.

1.4 Open research problems

The problems under these sections of this monograph are by far the most im-

portant part for the readers and few open research problems are presented

from this chapter till appendix 14. The numerical values of the energy band con-

stants for various materials are given in Table of appendix 15 for the related

computer simulations.

(R.1.1) Investigate the entropy for the HD bulk materials whose respective disper-
sion relations of the carriers in the absence of band tails and any externally
applied field are given below:
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(a) The electron dispersion law in n-GaP can be written as [167]

232 242 A A\ = L]
Wk ks A [(%) +P K2+ DikCke

E=_——2+_—
2mH 2m, 2

(R1.1)

where A =335meV, P,=2x10""eVm, D;=P;a; and a; =2x 10" %eVm

(b) The dispersion relation for the conduction electrons for IV-VI materials can
also be described by the models of Cohen [168], McClure and Choi [169],
Bangert et al. [170] and Foley et al. [171], respectively.
(i) In accordance with Cohen [168], the dispersion law of the carriers is given by

_ _ 72 72 aEp2 ap? D _
Eavab) =P P2 T (B ) By g o (R1.2)
2my  2m3  2m, 4mym

where m;, my and ms are the effective carrier masses at the band-edge along x, y
and z directions, respectively, and m’, is the effective mass tensor component
at the top of the valence band (for electrons) or at the bottom of the conduction
band (for holes).
(ii) The carrier energy spectra can be written, following McClure and Choi [169], as
b B Py oy apy

E(l+aE)= 2 5 . 2 aF - —
( ) 2my 2m, 2ms 2m, 2m, 4mom

;|(1+aE)  (R1.3a)

~ B 52 92 72 n2 na app? an’p?
E(1+aE):p%+pfy+p—f+pfyaE{l—(r_n,2>}+ {jy_, - I,Miy - f’yliz
2my  2m, 2ms  2mp m’, 4mom’, 4mimy  4momg

(R1.3b)
(iii) In accordance with Bangert and Kastner [170], the dispersion relation is given by

T(E) = Fy (E)I% + Fy(E) 2 (R1.4)

p2 32 02
Rl Sl Ql

where ['(E) =2E, F,(E) = Filgy T Era, T EvEgy

R (5,+Q,)°
E+Eg, E+A"¢c

PZ(E) =

’

R2=23x10""(eVm)?,C2=0.83x 10" (eVm)?, Q2 =13R2, 53 = 4.6R2, A’ =3.07eV
A”.=3.028¢eV and g,=4. It may be noted that under the S,=0, Q;=0,

5> _ MPEgy 7y _ WE - O ) I )
R?= %0 (CZ=-"% (R1.4)assumes the form E(1+aE) = —* + —Z which is the
1 m, 5 Zm‘ 2mL ZmH

simplified Lax model.
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(iv) The carrier energy spectrum of IV-VI materials in accordance with Foley et al.

[171] can be written as

E+

- _ 1/2
b i [p.0 5] m ik ®15)

W2 k2 h2 h2k2 "1 -
E_ = (k)= 5= + 3= represents the contribution
L

where E, = (k)= 5% + 5%, H

from the interaction of the conduction and the valance band edge states with

the more distant bands and the free electron term, -1 =3 [i + } 11 =
my Mtc My

1 [; + L "

2 |mye — myy

For n-PbTe P, =4.61x10""%Vm, P =4.61x10"eVm, £ =10.36, 72 = 0.75,

Mo — 11.36, mo =1.20 and g, =4 The hole energy spectrum of p- type zero-gap

Mic

Materials (e.g. HgTe) is given by [172]

h2”<2 3e - ZEB
=—+ k-(— | In
2m, 128¢., s

k

(w5l

(R1.6)

ko

Where_ﬁl:, is the effective mass of the hole at the top of the valence band,

= ﬁloe2 - ﬁloez

= an = .
2h’e, °7 e,

(c) The conduction electrons of n-GaSb obey the following two dispersion

relations:
(i) In accordance with the model of Seiler et al. [173]

_ E, E . Egy ’k
E=|- 250 4 500140,k + 1+ 4h_k H(E) (R1.7)
2 2 ch Ego

where a; = 4P(Eg) + 2A)[Eg, (Eg, +A)] !, P is the isotropic momentum matrix
element, fi(k)=k~2[k2k? +k,2k2 + k2k2] represents the warping of the Fermi
surface, fo(k) = [{k~2(k2k} + kK2 + k2k2) — 9@)@5@}” ’k~1) represents the inver-
sion asymmetry splitting of the conduction bandand ¢, vy and w, represent

the constants of the electron spectrum in this case.
(ii) In accordance with the model of Zhang et al. [174]

E: [Egl) + E£2>K41]I_(2 + [Egl) +E£2>K4,1N_(4 + ]_(6 [ES) +Eéz)f<4,1 +ES>I_(6,1 (R18)
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where
_ K+ i+ 14 k2k2k2 I2k2k2
Riy= 2van| oot g (03903910 1 (K 3) L
4 k4 32 k6 22 k6 5 105
the coefficients are in eV, the values of k are 10(%) times those of k in atomic

i i i (1 (2 (1
1{n1ts (ais theilattlce constanﬁt), EV =1.0239620, Eé ) —0, EZ ) = ~1.1320772,
EY =0.05658, E." =1.1072073,E = - 0.1134024 and E. = —0.0072275.

(d) In addition to the well-known band models of III-V materials as discussed in
this monograph, the conduction electrons of such compounds obey the follow-
ing three dispersion relations:

(i) Inaccordance with the model of Rossler [175]

K’k

E=—
2m

oks -+ B | (2K + IR + K] o [k 2022 + K2 + K2I?) — Ok} 2
(R1.9)

where @ =1 + &k, Bio =By +Bpk and y,o =y, + ¥,k in which, ay; = -2132x
107%%eVm®*, a;;=9030x10"0eVm®, B, = -2493x10%eVm*, B, =12594 x
105%eVm?®,
Y1 =30x10-FeVm? and y,, =154 x 10~ “eVm".
(ii) In accordance with Johnson and Dickey [176], the electron energy spec-
trum assumes the form

_ -2 — -2 - - 1/2
E-_ fxo +hz_"{i L} By |1, 4K L(E)

am, " 2 |m, my) 2 o', Egp

where
. 2A — _ 2A

i, Egy + — ~ (Egp +A)(E+Egy + ?) » )
—=h % Fot D) , Ai(E)= - A - , m'-=0.139m, and
Me 80 \™80 (Ego + ?) (E+Eg, +A)

(iii) In accordance with Agafonov et al. [177], the electron energy spectrum
can be written as

n _Ego

> (R1.10)

E-_

— — _ - - 7471/2
K |Dv3-3B| [Ki+kj <k /
2| (L) i

2m

EBSCChost - printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



(e)

(®

(g)

1.4 Open research problems — 101

where

_ K

The energy spectrum of the carriers in the two higher valance bands and the
single lower valance band of Te can, respectively, be expressed as [179]

E = Aloié + B]Qi(g * [A%O + (ﬁlokz)z]l/z and E = AH + A]of(ﬁ + BlOkg iﬁloi(z (Rlll)
where E is the energy of the hole as measured from the top of the valance and
within it,

A =3.77x10"eVm?, Byy=357x10"eVm?, A;p=0.628eV, (Bi)’=6x10"2

(eVm)® and A =1004x10~°eV are the spectrum constants.
The dispersion relation in graphite can be written following Brandt [180] as

1/2

E= [+ B E (B>— B+ 2K (RL12)

where

o k.
E;=A-2y,cos¢y, Py = C6— , E3=2y,cos’p,

and 1n,= ( )a6(y0 +2y,cos¢,) in which the band constants are A,

Yo» Y1» Y2 Yu» V5 Gs and Ce, respectively.

The dispersion relation of the holes in p- InSb can be written in accordance
with Cunningham [181-185] as

E=c,(1+y,f4)K {2[ V€41 /16 + 5y, E4g4k] (R1.13)

where

W H? b, - 3- - n
Ch=—— +04 0= 4Ty, = —,by=> =2
Ca= Sy T 00 Oa= ATy =5 D=3

- 1
fu= 7 [sin”20 + sin“fsin’2¢],
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(h)

(i)

0 is measured from the positive z- axis, ¢ is measured from positive x-axis,
g4 = sin6[cos?6 + Lsin*6sin’2¢] and E, =5x10"*eV

The energy spectrum of the valance bands of CuClin accordance with
Yekimovet. Al. [183] can be written as

_ wK

Eh = ()/6 - 2)/7) E (Rllll)
and

o\ 2712
e A | v (ynK

Els—(y6+y7) e —+y7A1 +9 ;ﬁlo (R1.15)

where

y¢=0.53, y,=0.07, A;=70meV.

In the presence of stress, y, along <001> and <111> directions, the energy spec-
tra of the holes in Materials having diamond structure valance bands can be,
respectively, expressed following Roman [184] et al. as

E=Agk® + B2+ 682 + B;66 (22 - I2)]/? (R1.16)
and
o B D6 B B 1/2
E=Agk*+ B§k4+5§+7357(2k§—k§) (R1.17)

where Ag, B;, D¢ and C¢ are inverse mass band parameters in wh1ch 66_17
(S11-S12)Xe» Sij are the usual elastic compliance constants, B2= (B2 + ) and
6;= (df\/“f‘))(6 For gray tin, ds = - 4.1eV, L = - 23eV, Ag=19.22-, B, _26 3.0

2m > 2m >
Dg =314 and & = - 1112

(R.1.2) Investigate the entropy for bulk specimens of the heavily-doped materi-

als in the presences of Gaussian, exponential, Kane, Halperian, Lax and
Bonch-Burevich types of band tails [37] for all systems whose unper-
turbed carrier energy spectra are defined in R1.1.

(R. 1.3) Investigate the entropy for QWs of all the HD materials as considered in

(R.

R1.2.

1.4) Investigate the entropy for HD bulk specimens of the negative refractive
index, organic, magnetic and other advanced optical materials in the
presence of an arbitrarily oriented alternating electric field.
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(R.1.5)

(R. 1.6)
(R.1.7)
(R.1.8)
(R.1.9)
(R 1.10)

(R. 1.12)

(R.1.12)

(R. 1.13)

(R. 1.14)
(R. 1.15)
(R.1.16)
(R.1.17)
(R.1.18)
(R.1.19)
(R. 1.20)

(R.1.21)
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Investigate the entropy for the QWs of HD negative refractive index, or-
ganic, magnetic and other advanced optical materials in the presence of
an arbitrarily oriented alternating electric field.

Investigate the entropy for the multiple QWs of HD materials whose un-
perturbed carrier energy spectra are defined in R1.1

Investigate the entropy for all the appropriate HD low dimensional sys-
tems of this chapter in the presence of finite potential wells.

Investigate the entropy for all the appropriate HD low dimensional sys-
tems of this chapter in the presence of parabolic potential wells.
Investigate the entropy for all the appropriate HD systems of this chapter
forming quantum rings.

Investigate the entropy for all the above appropriate problems in the
presence of elliptical Hill and quantum square rings.

Investigate the entropy for parabolic cylindrical HD low dimensional sys-
tems in the presence of an arbitrarily oriented alternating electric field for
all the HD materials whose unperturbed carrier energy spectra are de-
fined in R1.1.

Investigate the entropy for HD low dimensional systems of the negative re-
fractive index and otheradvanced optical materials in the presence of an
arbitrarily oriented alternating electric field and nonuniform light waves.
Investigate the entropy for triangular HD low dimensional systems of the
negative refractive index, organic, magnetic and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric
field in the presence of strain.

Investigate the entropy in HD QWs of nonparabolic materials as dis-
cussed in this chapter in the presence of nonuniform magnetic field.
Investigate the entropy for all the problems of (R1.14) in the presence of
arbitrarily oriented magnetic field.

Investigate the entropy for all the problems of (R1.14) in the presence of
alternating electric field.

Investigate the entropy for all the problems of (R1.14) in the presence of
alternating magnetic field.

Investigate the entropy for all the problems of (R1.14) in the presence of
crossed electric field and quantizing magnetic fields.

Investigate the entropy for all the problems of (R1.14) in the presence of
crossed alternating electric field and alternating quantizing magnetic fields.
Investigate the entropy for HD QWs of the negative refractive index, or-
ganic and magnetic materials in the presence of nonuniform electric field.
Investigate the entropy for HD QWs of the negative refractive index, or-
ganic and magnetic materials in the presence of alternating time depen-
dent nonuniform magnetic field.
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(R. 1.22) Investigate the entropy for HD QWs of the negative refractive index, or-

ganic and magnetic materials in the presence of in the presence of crossed
alternating electric field and alternating quantizing nonuniform magnetic
fields.

(R.1.23) a) Investigate the entropy for HD low dimensional systems of the negative

refractive index, organic, magnetic and other advanced optical materi-
als in the presence of an arbitrarily oriented alternating electric field
considering many body effects.

b) Investigate all the appropriate problems of this chapter for a Dirac
electron.

(R. 1.24) investigate all the appropriate problems of this chapter by including the

many body, image force, broadening and hot carrier effects, respectively.

(R. 1.25) Investigate all the appropriate problems of this chapter by removing all

the mathematical approximations and establishing the respective appro-
priate uniqueness conditions.
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2 The entropy in nanowires of heavily doped
materials

To be the best, I must extract the best from myself.

2.1 Introduction

It is well known that in nanowires (NWs), the restriction of the motion of the car-
riers along two directions may be viewed as carrier confinement by two infinitely
deep one-dimensional (1D) rectangular potential wells, along any two orthogonal
directions leading to quantization of the wave vectors along the said directions, al-
lowing 1D carrier transport [1]. With the help of modern experimental techniques,
such1D quantized structures have been experimentally realized and enjoy an enor-
mous range of important applications in the realm of nanoscience in the quantum
regime. They have generated much interest in the analysis of nano-structured devi-
ces for investigating their electronic, optical and allied properties [2-4]. Examples
of such new applications are based on the different transport properties of ballistic
charge carriers which include quantum resistors [5-10], resonant tunneling di-
odes and band filters [11, 12], quantum switches [13], quantum sensors [14-16],
quantum logic gates [17-18], quantum transistors and sub tuners [19-21], hetero-
junction FETs [22], high-speed digital networks [23], high-frequency microwave
circuits [24], optical modulators [25], optical switching systems [26, 27], and other
devices.

In this chapter through Sections 2.2.1-2.2.14 we have investigated the entropy’s
in NWs of heavily doped (HD) nonlinear optical, III-V, II-VI, stressed Kane type,
Te, GaP, PtSh, Bi,Tes, Ge, GaAs, II-V, lead germanium telluride and zinc and cad-
mium phosphides respectively. Section 2.3 contains the summary and conclusions
pertaining to this chapter. Section 2.4 presents 19 open research problems.

2.2 Theoretical background

2.2.1 The entropy in NWs of HD nonlinear optical materials

The dispersion relation of 1D electrons in this case can be written following (1.32) as

W (n,m/d,)’ . ” (d,n/d,)* N Rk’

— == —F = — == =1 21
2mHT21(E>ng) 2mHT22(E)ng) zmHTZI(E:ng)

https://doi.org/10.1515/9783110661194-002
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where n,(=1,2,3,....), d, are the size quantum number and the nanothickness
along the z-direction respectively, n,(=1,2,3,.....) and Ely are the size quantum num-
ber and the nanothickness along the y-direction respectively

The 1D DOS function per sub-band is given by

Nip(E)= —— 2.2
1n(E) = oF (2.2)
The complex sub-band energy (E'\zpaw) can be expressed in this case as
Wn/d)’ Wy 23)
2m| Tor (E'vipnwsMg) 20 Ty (E'tpnws 1) .
The EEM in this case in given by
- o H? 0 ~ o = 2
m (Eppnw, Ny, Nz, g) = — |Real part of —————[Tinpnw (E, 1y, Nz, 1)
2 Erpnw)
(2.4)

where,

2/ 312 2/— 512 i 1/2
= - h*(n,m/d;) n(nyn/d,)” | 2m Tn(E,ng)
Tinpnw (E, 1y, Mz, Mg) = | |1 oo = - == 5

2mHT21(E, )’lg) ZmLTzz(E, rlg) h

and Er;ppyw is the Fermic energy in this case

Thus, we observe that the EEM is the function of size quantum numbers in both
the directions and the Fermi energy due to the combined influence of the crystal
filed splitting constant and the anisotropic spin-orbit splitting constants respec-
tively. Besides it is a function of n, due to which the EEM exists in the band gap,
which is otherwise impossible.

The carrier statistics can be written as

Nip = (%) Real part of
(2.5)

ﬁymax ﬂzmax _ _ _ _
(T1uonw (EFiapnw » Ny, Nz, Ng) + Torpnw (ErFtapnw , 1y, 1z, Mg )]
Ny—q Ny—
y=1 "z=1

and
S

Tormnw (Epepnws Ty, z,Mg) = > L(F) [Tapnw (Epmpnw, Ry, Tz, 1)
=1

Using (2.5) and (1.31f) we can find the entropy in this case.
In the absence of bandtails, for electron motion along x-direction only, the 1D
electron dispersion law in this case can be written following (1.2) as
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WE) =fi(E)k; +fi(E)(nfy /dy)* + fo(E) (2 /) (2.6)
The sub-band energy(E';) are given by the equation
WE) =fi(Ex) iy /dy)? + fo(Ey) (i /d2)° @7)

The electron concentration per unit length can be written as

2g f’)’max f’Zmax o o
fup = (7) Y. D [6(Era by, be) + (B, Dy, 1) (28)
ny=1 nz=1
where Epy, is the Fermic energy in this case,
t(Eria> iy, 17) = [y(Epra) — fi(Erra) iy /dy) ~ o (Epa) (/)2 [ (Epra)] 2

and

S
t(Ep1a, 1y, ;) = Z L(r)[t:(Ep1a> Ny, 11;)]

r=1

using (1.44) and (2.8), we can find entropy in this case.

2.2.2 The entropy in NWsof HD IlI-V materials

(i) Three-band model of Kane
The dispersion relation of 1D electrons in this case can be written following (1.55) as
R (r,m/d;,) . W (nyn/d,)’ . Wk
2m, 2m, 2m,

=Ts(E ng) +iT3(E 1) 29)

The sub-band energy (E%mpaw) in this case can be expressed as

W(nn/d:)’  H(rym/dy)”

2m, me T51(E2HpNw, Ng) + 1131 (E 2npnw, Mg) (2.10)
The EEM in this case is given by
m (Eripnw. M) = me[Ts1"(Erumpnws 1)) (2.11)

The carrier statistics can be written as

Nnip = (%) Real Part of
(2.12)

Mymax "zmax

>N [Tsuoww (Ermonw iy, iz, ) + Taronw (Epmmaws Ay, iz, )]
Ay=1 n;=1
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114 —— 2 The entropy in nanowires of heavily doped materials

where

Tstpnw (Ersmmnw, Ty, iz, 1g) = [ |:T31(EF1HDNW7 Ng) + iT31(Epmpnw, 1)

Ramd) Kamd)t] am ]
2m, 2m. K2

where
— — § — — —
Turpnw (Ertpnw, Ny, Nz, 1) = L(7)[Tsupnw (EFiepnw, Ny, iz, 1)
r=1
Using (1.31f) and (2.12) we can investigate the entropy in this case.
In the absence of doping, 1D electron dispersion law is given by
i

—X + Gy(ny, n,) =In(E) (2.13)
me

where
Ga(fy, ;) = (W 2 ) (R /dy)* + (7 dz)°)
The sub-band energy E5 can be written as
Ga(ny, ;) =In (E') (2.14)

The electron statistics in this case can be written as

B zg. /zm Nymax Mzmax o o o -
nyp = Vﬂ—hc > Y [6(Epa iy iz) + by (Epra, By, 112 (2.15)
ny=1 nz=1

where
t;(Epia, My, 1) = [In(Ep1a) — Go(7y, flz)]l/2

and

hE

tu(Epias iy, i) = Y L(7)[63(Epaa, My, 1)

r=1

Thus using (1.44) and (2.15), we can study the entropy in this case.

(ii) Two band model of Kane
The dispersion relation under heavy doping of 1D electrons in this case can be writ-
ten as
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R(n/d,)’ Rmmn/d) ke -
(zzﬁli ) + (;ﬁli y) + Zﬁl); :yz(E,rlg) (2.16)

The sub-band energy (E'sppaw) in this case can be expressed as

W (nzn/ds)" (nyn/dy)”

=y,(E’ , 2.1
M, e ¥2(E sHpnw, 1g) (2.17)
The EEM in this case is given by
'’ (Epspnws Ng) = Mely, (Epmpnws )] (2.18a)

The carrier statistics can be written as

28 Mymax "zmax B B N
_ v o o
nyp = <7) > > [Truonw(Erronw, iy, iz, 1) + Tsrpnw (Erionw, 1y, iz, 1, )]

ny=1 nz=1

(2.18b)

where

_ _ 12
. . o . H(en/d;)’ K (Ryn/dy)’| 2m
Tupnw (ErpNw, Ry, Nz, 1, ) = Hyz(EFlHDNW,ﬂg) (Zzﬁl/ 2 _ (2};?1/ ) 7h2C
C C

and
S
Tsrpnw (Epipnw, iy, iz g) = > L(7)[Traonw (Epipnw, Ry, iz, 1g)]
=1

Thus using (1.44) and (2.18b) we can study the entropy in this case.

The expression of 1D dispersion relation, for NWs of III-V materials whose en-
ergy band structures are defined by the two-band model of Kane in the absence of
band tailing assumes the form

272
E(1+(XE) h? +G2(ny, nz) (219)
C

In this case, the quantized energy E’; is given by

E5=Qa)" {— 1+4/1+4aG,(ny, r’lz)} (2.20)

The carrier statistics in the case can be expressed as

ng \/ZWC ymi "Zmza:"

ny=1 nz=1

ﬁl EF]d) ny: nz) + t6 (EFld: nyx nz)] (221)
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where,
ts(Epya, iy, ;) = [Epra(1+ aEpg) — Go(7y, ﬁz)]l/z

and

EF]d) ny: nz ZL t5 EFld) ny; nz)]

Thus using (1.44) and (2.21) we can study the entropy in this case.

(iii) Parabolic energy bands
The dispersion relation of 1D electrons under the condition of heavy doping this
case can be written as

®(r,m/d,) . W (nyn/d,)’ . Rk’
2m, 2m, 2m,

=73(E.ng) 22

The sub-band energy (E "supaw) in this case can be expressed as

W (nn/d)'  H(nm/dy)’

=y,(E , 22
e e ¥3(E sonws 1) 2.23)
The EEM in this case is given by
" (Epionw, M) = Melys (Erepnw, )] (2.24a)

Thus the carrier statistics can be written as

25 Mymax "zmax

_ Y - - o - - o

nyp = (_n ) > {T9HDNW(EF1HDNW, Ny, Nz, Mg) + Trorpnw (EFipNw, Ty, Nz, ’lg)}
Ry=1 nz=1

(2.24Db)

where,

_ - 12
_ _ o _ K (rm/d,)’ “H(rm/d,)’|2m
Tonpnw (Eripnw, 1y Nz Mg) = H)/a (ErmmnwyNg) = 22,716 : zymc : 7h26 ’
and
— g — — —
Tioupnw (Eripnw, Ry, Mz, g) = Y L(F)[Torpnw (EFiapnw, y, Nz, Mg )]
=1

Thus using (1.44) and (2.24b) we can study the entropy in this case.
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The expression of 1D dispersion relation, for NWs of III-V materials whose en-
ergy band structures are defined by parabolic isotropic energy bands in the absence
of band tailing assumes that

Rk

2r?1: +Gy(ny, 1) (2.25)

E=
In this case, the quantized energy E’; is given by

E'; = Gy(ny, 1) (2.26)
The carrier statistics in the case can be expressed as

Nymax "zmax
_ \/2mcnkBT Z Z P g () (2.27)

ip
ny=1 nz=
where
_ |:EF1d— (E,7 + W— ’TIV)j|
67 — i(BT

Using(1.44) and (2.27), we can write
_ 7.[2,_<B Nymax "zmax B -1 fymax Mzmax
o= (¥) D2 Fame)| | >0 > Fale)| 229
ny=1 nz=1 fiy=1 nz=1

Under the condition of non degeneracy, (2.28) get transformed into the well-known
expression as given in the preface.

(iv) The Model of Stillman et al.
The dispersion relation of 1D electrons under heavy doping in this case can be writ-

ten as
W(nn/d) W(nma/d,) Wk
ame | 2me | 2me

= 04(E,n,) (2.29)

where,
64(E,n,) = La(E, 1)
The sub-band energy (E'sppnw) in this case can be expressed as

hz(ﬁzﬂ/aZ)2 + hz(ﬁyﬂ/ay)z

=04(E' , 230
e e 4(E ompnw, 1g) (2.30)

The EEM in this case is given by
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' (Epipnw, Mg) = Me[64 (Eprapnw, 1g)] (2.31a)
The carrier statistics canbe written as
zg_ My nax MZmax
Nip = (7‘/) Z Z (Tuspnw (EFEDNW, Ty, Tz, Mg) + Troapnw (EFiDNwW, Ty, Tz, 1g )]

f’y:l ]

(2.31b)

where,

W(nm/d,)

Tumonw (Epipnws s iz, Ng)= [ {94 (Epzpnws B o
C

W (myn/d,) ] 2me |
2m, n

Thus using (1.31f) and (2.31b) we can study the entropy in this case.

The expression of 1D dispersion relation for NWs of III-V materials whose en-
ergy band structures are defined by the model of Stillman et al in the absence of
band tailing assumes the form

2_<2 a
—X 1 Gy(fy, ;) (232

C

In(E) =

In this case, the quantized energy E's is given by
In(E's) = Gy(ny, 1) (2.33)
The carrier statistics in the case can be expressed as

~ "Ymax Nzmax
= e VS
1

> [Po(Epia, 1y, 1iz) + Qo (Epras 1y, 1) (2.34)
ny=1 nz=1

where
Py(Epas iy, 1) = [T (Ep1g) - Ga(7y, 1) Y2

and
— — § — — —
Qo(Epig, Ny, ;) = L(7)[Po(EF1a, Ny, 117)]

r=1

Thus using (1.44) and (2.34), we can study the entropy in this case.

(v) The Model of Palik et al.
The dispersion relation of 1D electrons in this case can be written as
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R (r,m/d,) . R (nym/d,)’ . Wk
2m. 2m. 2m.

=05(E, Ug)
where
05(E,ng) = L3(E, 1)
The sub-band energy (E'10mpnw) in this case can be expressed as

hz(ﬁzn/a2)2 + hz(ﬁyﬂ/ay)z
2m, 2m,

=05(E "\oHDNW> 1)

The EEM in this case is given by
' (Erppnws Mg) = Me (05 (Epupnws )|

The carrier statistics can be written as

(2.35)

(2.36)

(2.37a)

2g. Nymax Mzmax _ _ _ _
_ . o o
Nip = <7) E E [T13upnw (Eptmpyw, Ty, iz, Mg ) + Trarpnw (EFiapnws Ry, Tz, Mg )|

fy=1 fiz=1

where

Wnn/dy) K (ym/d,)

Tisupnw (Epipnwsy Tz, Mg )= | | 05(Eppnwsng)

2me

and

)]

Tvarpnw (Epapnws s Tz, Mg) = > L(7) [ Tyspnw (Ermpnws 1y, iz, 1 )]
=1

Thus, using (1.31f) and (2.37b), we can investigate the entropy in this case.

(2.37h)

2m,

1/2
]

The expression of 1D dispersion relation for NWs of III-V materials whose en-
ergy band structures are defined by the model of Palik et al in the absence of band

tailing assumes the form

272 _
X +Gy(ny, 1)
C

713(E):

In this case, the quantized energy E'y is given by
I3(E'v0) = Gy(ny, ;)

The carrier statistics in the case can be expressed as
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- 2 /_2}’7’1 Nymax Mzmax
nip gv < Z Z [P11(Ep1g, Ty, 1) + Qu2(Ep1a, Ay, 112

ny 1 ngz=

where
Pll(EF1d> ﬁya ﬁz) = [713 (EFld) - Gz(ﬁy’ ﬁZ)]l/z

and

5
Qu2(Epias 1y, ;)= Y L(7)[P11(Epia, 1y, 1))
1

r=

Using (1.44) and (2.40), we can study the entropy in this case.

2.2.3 The entropy in nanowires of HD 11-VI materials

(2.40)

The 1D electron dispersion law in NW of HD II-VI materials can be written follow-

ing (1.141) as

_ 2 _ 2 _ NV2 0 Lo,
Nyt nym . N, 7T nym hl
p=a| (31)'+ () oo | (51) ()| v

The sub-band energy (E'3upaw) in this case can be expressed as

oo (27) o (B o] (1) (22)]
V3£ 13HDNW> Mg 0 d, ay *Ao ax Ely

The EEM in this case is given by

' (Epumnws Ng) = M) y'3(Epummws 1g)

The carrier statistics can be written as

5 ™max "Ymax

(2.41)

(2.42)

(2.43)

nip = ;V >N [Tymonw (Erionws e iy, 1) + Tisrpnw (Erepnw, s 1y, 1)

nx=1 ny=1

Where,

_ 2 _
- _ o _ _ g ny 1
Tyzupnw (Ertpnw, i, Ty, Ng) = |:|:Y3(EF1HDNW7ng) -do {( . ) + (L
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S EORCANIE

Trsrpww (Eppnws oo s Mg) = Y L(7) [Tazapnw (Eptepws o 1y, Mg )]
=1

and

i

Using (1.31f) and (2.44), we can study the entropy in this case.
The 1D dispersion relation for NWs of II-VI materials in the absence of band-
tails can be written as

E=Dok2 +Gs + (y, 1)) (2.45)

where,

o[l () (3 (2 (2]

The 1D electron statistics can be written as

B gv4/2rﬁ‘*‘ﬂ]7(BTﬁYmax Mzmax - _ o
Map = ————— Z Z F’Tl(nes,i)ﬁleg,i = (ksT) " '[Er1a - [G3, = (M, 1)]]

iy=1 nz=1

(2.46)

Thus using (1.44) and (2.46) we can study the entropy in this case.

2.2.4 The entropy in nanwires of HD IV-VI materials
(i) Dimmock Model

The 1D electron dispersion law in NW of HD IV-VI materials can be expressed fol-
lowing (1.174) as

2 2
= - W [ na W (nm - h?
YZ(E’ng) +0‘Y3(E,’2g) (E < é(x > + 2XT5 (%y) > +aY3(E,72g)2XT6k§

oot (5(5) -52(7))
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2 /= N2 32 /5 \2\ 32
h [ nem h [ nynm h
&l — | = | = - kﬁ
2\ dy 2\ d, 2X¢

_ [
- (1+ay;(Eng)) 273’@

o(r (ax\ ®(ar)
B =Y (L U N

_ 2 2
Wl _ 1 (e} K () B g,
bxsxg 2my \ d, 2m \ d, 2m3 *

-

Equation (2.47) can be written as

kZ = T36(E1 rlg) ﬁx» ﬁy)

where
T36(E, Mg, fix, fiy) = [(2C22) ™' [~ Bun (E, 1, T, 1)

+ \/BzHD(E: rlg’ ﬁX’ ﬁ)’) + 4CZZAHD(E> rlg7 ﬁxa ﬁy) Hl/z

. R\ L - ” [

=|a Bup(E ne,ny)=|la| — [ =

e (a‘*)?a)?e)’ o (E: Mg T ) |:a<2)_(1<dx
B hz B hz
+(1+aY3(Eang))§3_aY3(E7ng)§6

o ow(r(aa) ()
o+t | = = t= | =
2ms 2 \ X4 \ dy 2\ dy

and
2 2
KW (anx\ W [amn -

2
—(1+ay3(E,ng))(2X1(d > +2X%

+ =
2x;

The sub-band energy (E'14zpyw) in this case can be expressed as
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0 = T36(E 1umpnw» Ng> x> y) (2.49)

The EEM in this case is given by
2

1’ (Eptapnw, N> s 1) = 23

(T3 (EFipnw, Ng> x> Ty )] (2.50)

The carrier statistics can be written as

2§ f’Xmax Nymax - _ o _ B B
nip <J) [Ts6rpnw (EFtHDNW, o> Ty Mg) + T370p8w (EF1HDNW > Tixs Ty g )]
(2.51)

nx=1 ny=1

where
Tsenpnw (Ertpnw, i, Ty, Ng) = T36 (EFtHDNW Ty Ny T]g)

and

@l

Tszupnw (Epapnws oo ys M) = > L(F) [ T36rpnw (Eriapnws i Ty, Mg )]

thus using (1.31f) and (2.51) we can study the entropy in this case
The 1D electron dispersion law in NW of IV-VI materials in the absence of band

tails can be expressed as
2 2
W [ nn " [ nnm _h
E(1+aE)+aE — 2= F—
(1+aE) +a <2x4<d ) tox i, +a 2)_(6k§

2 /- 2 Lo /o 2 2 /- 2 5 2
C(rap) (L () LB () ) (B () R
dy 2\ d, 2x \ dy 2\ 4,

X

2 /= 2 Lo/ 2 2 - 2 -
LS WO R WO (. SN L.
2%\ dy 2\ d, 2 dy 2%, d,
2 2
n o, n o[ W [ n (nn
— K2 (1+aE a2 (™ o myr
2X6k (Lva )2X3k§ a2>_(3kz 2\ 4y ) 2% d,
47 2 /= 2 2 /= 2 2
h k_n = +hT nr + LE (2.52)
4X3X6 2m1 d 2m, dy 2ms
Equation (2.52) can be written as
(2.53)

kz = Tao(E, x> 11y)
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where

B B B o — — —— 1/2
Tuo(E, iy, 1) = {(2@2) ! [—BO(E, Ty, 1) + \/BZO(E, Ty, 1y) + 4CAo (E, iy, ny)H

where

. v () ® (am)\’\ W _ R R
BO(E)ﬁXsﬁy): al\ — 7X + — —L T+(1+“E)T_QET
pasl dy 2 dy 2X¢ 2X3 2X¢

R (an\. B [(ar)
A (L LN IO (L

and

The sub-band energy (E'50)in this case can be expressed as
0 = Tuo(E 20, i, 11y) (2.54)

The EEM in this case is given by
N (G I
m (Epig, Ny, 1y) = 33 (Tao(Epia iy, 1y)] (2.55)

The carrier statistics assumes the form

B 2— ﬁxmax Flymax _ _ o _ _ o

nip = (%) ﬁxzzl ﬁyZ:l [T40(Er1as Ny, y) + T4 (Eprg, Ny, 1y )] (2.56)
where

— — g — — —

Tw(Epg» o 1y) = Y L(7)[T40(Ep1a> x> 1))

r=1

Thus using (1.44) and (2.56), we can study the entropy in this case.
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(ii) Bangert and Kastner Model
The dispersion relation of the conduction electrons in bulk specimens of IV-VI ma-

terials in accordance with the model of Bangert and Kastner is given by

wi(E)iE +wy(E)iE =1 (2.57a)

where

B _ (o ® & @ }

w1 (E) = (ZE)7 |:Eg0(1+a1E) AC'(1+a2E) A”C(1+a3E)

e (@) $+Q° | 5o 10502 (€ — 4 £(RY
e Lgo(1+a1E)+A”c(l+a3E)} (o e e

A" =3.28eV,A . =3.07eV, (Q)*=13(R)% (A)*=0.8x10"*(eVm?)

The electron energy spectrum in HD IV-VI materials in accordance with this model
can be expressed by using the methods as given in chapter 1 as

512 _
20(4)=1 | {c1(t,E, Egy ) —iDy (i EEgO)}(;;) +{¢)(@,E Eg )—zDz(&z,E,Ego)}(g,)
g0 .
¢s(as,E,E,) —iDs(as, E, E @*2() TP
+{¢3(a3,E,Ey) ’D3(“3’E’Ego)}5~ +k; For {¢1(a,E.Ey) iDy (a1, E, Eg, )}
(Sg,,cf){ 3(05,E,Eg) —iD5(at3,E, Eg,)) }
(2.57b)
where
111

2{} exp( - 117 X {Z{exp p*/4)(sinh(pu;))}p~"

(Xﬂ’]g
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126 =—— 2 The entropy in nanowires of heavily doped materials

= _ = = T _
Dl(al)E)Ego) = [%] eXp( _uiz)
g

Therefore (2.57b) can be written as,
Fi(E,n,)K; + F>(E,n,)K; =1 (2.57¢)

where,

—
|
=
|

1_71(1_?, ’Tg)[ZYo(E’ ’lg)} -

o

+ (AS,) {Z‘z(az,E, Eg) — iDz(C_Yz, 7,Eg )}

0
c

N (AQ,) {63(@5,B, Egy ) — iDs (0. . Ego)}]

c

and

FaEmy) [2r0(En)] [? (6@ B, Ey) ~ Dy (@, E. By, )

S+Q) _ - - - -
+ ( AI ) {C3(a3’E) Eg) - 1D3(a3’E’ Ego)}:|
c
Since F(E,n,) and F,(E,n,) are complex, the energy spectrum is also complex in
the presence of Gaussian band tails.
Following (2.57c), the 1D dispersion relation in NW of IV-VI materials in accor-
dance with the present model can be written as

B 2 B 2
Fi(E,n,) [ (”éf” ) n (’gl) ] +Fy(E gk =1 (2.58)
X y

The (2.58) can be written as

kz = Too(E, Mg iy, Ty ) (2.59)

where

1/2
T60(E’rlg’ Ny, ﬁy): :| [FZ(E’ng)]_l:|

(n,ﬂ)z (nyn>2
= + | ==
dy d,

The sub-band energy (E'\supww) in this case can be expressed as

|:1 _FI(E’ rlg)
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0 = Teo (E 1supnw» Ng> x> y) (2.60)

The EEM in this case is given by

2

= o h“o -, - o
m (EFiHDNW Ng> T Ty ) = 338 (T2, (EFizpnws Ng> x> Ty )| (2.61)

The carrier statistics can be written as

20 Mxmax
- (%) 32
a nx=1

Mymax

[Tsorpnw (Erimpnw , i, Ty, Mg) (Epimpnw , e, Ty, Mg) + Tsirmnw (Eptepnw , fix, Ty, 1g )]
ny=1

(2.62)

where,
Tsonpnw (EFiHDNW, T, Ty Mg ) = Tao (Epimpaw, iy, Ty, 1)

and
S

Tsipnw (Epipnws o Ty g) = > L(P)[Tsompnw (Ermpnws s Ty, 1g)]
)

Thus, using (1.31f) and (2.66), we can study the entropy in this case.
The 1D dispersion relation in the absence of band tailing can be written in this
case following (2.57a) as

wl(E)Krng) + (na—ﬁy) } +wy(E)iZ=1 (2.63)
X y

Then (2.63) can be written as

kz = T61 (E) Ny, ﬁy) (264)

where,

Ter(E. o) = Hl“”l(E) [(néj)2+ (n;;rﬂ

The sub-band energy (E'y) in this case can be expressed as

1/2
[wa(E)] ™!

0=Te(E'xn, iy, 1) (2.65)

The EEM in this case is given by
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128 —— 2 The entropy in nanowires of heavily doped materials

2

o -
(T2, (Ep1as ixs )] (2.66)

ﬁl* (EF1d> ﬁ)() fly) = 3()?

The carrier statistics can be written as

B zg. f‘Xmax Nymax B B o - B o
ip=| —=* Z Z [Te1(Eria> x> y) + Teo(Ep1a, iy, 1y )] (2.67)
0 Mx=1 ny=1
where

5
Te2(Epig> N, y) = Y L(7)[Te1(Ep1a x> 1y)]

r=1

Using (1.44) and (2.67), we can study the entropy in this case.

2.2.5 The entropy in nanowiresof HD stressed Kane-type materials

The 1D dispersion relation in this case can be written following (1.206) as

2 2
- mn _ m _ _
Py (E,ny) ( - ) +Qu(E 1) (—y> +Su(Engk; =1 (2.68)
dy d,
Then (2.68) can be written as
k. = T7o(E, ng, iy, 1)) (2.69)
where
.2 2 1/2
= = _ - mn o mn o _
T70(E, g, oMy ) = | | 1-Pu(E, 1) ( = . > +Qu(E ny) (d—y> [Su(Esng)] ™
2 y
The sub-band energy (E'sompaw) in this case can be expressed as
0 = T70(E s0mpnw> Mgs T Tiy) (270)
The EEM in this case is given by
— 2 — —
m (Epipnw, Ng> N, Ny) = 33 (T50 (EFtpnw. Ng> Txs Ty )| (2.71)

The carrier statistics can be written as

- printed on 2/13/2023 5:33 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use



2.2 Theoretical background =— 129

Mxmax "Ymax

_ 2g - - o = = o
nyp = <%) >N [Troroww (Erimpnw s 1y, ng) + Trimmnw (Erimnw, iy, iy, 17, )]

ix=1 ny=1

(2.72)

where
Tzonpnw (EFiHpNw, Do Dy, 1) = Trompnw (Ertrpyw, T, Ty, 1)

and
S

T71apnw (Epiapnw, Dy, Ty, M) = L(7)[Ts0npnw (Ertrpnw, Ty, Ty, ng)]
i

Thus, using (1.31f) and (2.72), we can study the entropy in this case.
In the absence of band tailing,1D dispersion relation in this case assumes the
form

k, =t7o(E, iy, 1) 2.73)
where

_ 2 _ 2971/2
- o TNy nn
olfmet) = [[CO(E) [l_ <aan(E)> ) (ayBOfE)) }

The sub-band energy (E's2) in this case can be expressed as

0 = teo (E 42, iy, Ty) (2.74)

The EEM in this case is given by
N G S
m (EFld) Ny, ny) = ?E[tGO(EFld: Ny, ny)} (275)

The carrier statistics can be written as

2§ ﬁxmax f’)’max - _ - _
= = | Y [teo(Erias oo 7y) + ter (Erras T Ty )] (2.76)
T ) e ny =1
where

5
te1(Ep1g, N, My ) = Z L(7)tso (EFia» N> 1y)]

r=1

Thus, using (1.44) and (2.76), we can study the ENTROPY in this case.
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2.2.6 The entropy in nanowires of HD Te

The 1D dispersion relation may be written in this case following (1.235) as

ke =t72(E, 1y, 1,1, .77)
where

nym

b2 (Eo Ty, iz i) = [_ (ZI_) +¢5HD(£>”§)‘¢6<%>
4 Z

\2q1/291)2
+1; [lpfstD(Eng)— (T—inz)} }

The sub-band energy (E'51mpaw) in this case can be expressed as

0 =t72(ESimpnw, Ng> Ny, Nz) (2.78)

The EEM in this case is given by
2

m' (Erizpnws Ng> Ny, Nz) = —

2 a_E [E%Z(EFIHDNW) rlg’ ﬁy; ﬁz)] (2.79)

The carrier statistics can be written as

2§ fymax Mzmax B B

_ Y . - . -

= =2 | > " [truonw(Eripnw, Ay, iz, Ng) + traaonw (Epronw, iy, iz, 1)
Ay=1 nz=1

(2.80)

where
trupnw (Eptpnw, Ny, 1z, 1) = trorpnw (EpiDnw, Ty, Mz, Mg)

and
S

trsuonw (Epepnw, Ty, iz, Mg) = > L(P)[trampnw (Erieonw, iy, 1z, 1))
=1

Thus, using (1.31f) and (2.80), we can study the entropy in this case.
In the absence of band tailing the 1D dispersion relation in this case assumes
the form

k=Hzo(E, ny, 1) (2.81)
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Hyo(E,y 1) = [ ("d—”> +¢5<E>—¢6(%> £, {l/»é(E)— (

The sub-band energy (E'44) in this case can be expressed as

0 =Hyo(E s ny,n;)

The EEM in this case is given by

P (i IO
m (Epig, ny, 1) = 338 [Hzy(EF1a> Ry, 117))]

The carrier statistics can be written as

ng ﬁYmax Nzmax _ _ _ _
np=| — Z Z [H70(Epia> Ny, ;) + H71 (Epgs ny, 1)
a fiy=1 nz=1
where

5
Hyy(Epia, iy, 1) = Y L(r)[Hro(Epras Ty, 7))

r=1

Thus, using (1.44) and (2.84), we can study the entropy in this case.

2.2.7 The entropy in nanowires of HD gallium phosphide

The 1D dispersion relation may be written in this case following (1.253) as

kx=uy0 (E» ﬁy; n, r[g)

where

2 2

e nym\ - = - o [

7o (E, My, 11z, 1) = [— (;) +tuys(Es )+t — ta1 (;)
Y z

_ 2 1/271/2
- n,m — =
—t41[<—>+t§(E,ng>} }
d.

The sub-band energy (E'525pnw) in this case can be expressed as
0=uyg (E,BZHDNW’ rlg’ fly; flz)

The EEM in this case is given by
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132 —— 2 The entropy in nanowires of heavily doped materials

_ o _, -

M (Eo iy Mg Ty Mz) = 2 OF 50 (Espip Ng> Ty iz (2.87)

The carrier statistics can be written as

zg. Nymax f’Zmax B B
_ y _ o _ o
np=| — [UzoupNw (EFtHDNW > Ty, 25 Mg ) + UziEpNw (EFiEDNWS Tys 125 1], )]
g g
y=1 nz-1

(2.88)

where,
Uzonpnw (EFiHDNWS Ry, Tz, Ng) = Uzonpnw (EFiDNW, Tys Nz, Tg)

and

S
Uzpnw (EFiHDNw, Ty, Tz, 1) = Z L(7)[u7oupnw (EFipnw, Ty, iz, 1 )]
r=1
By using (1.31f) and (2.88), we can find the entropy in this case.
In the absence of band tailing the 1D dispersion relation in this case can be
written using (1.260) as

ke =X7(E, 0, 0;) (2.89)
where
2 1/2
o N1 o
Xn(E,ny,n;) = {— (dL) +t42(E>nz):|
y

The sub-band energy (E’4) in this case can be expressed as
0= X71(E 46, 1y, 11z) (2.90)
The EEM in this case is given by

o .,

m’" (Epia, Ny, ;) = 3 3F [ X2, (Epia; 1y, 1) | (2.91)

The carrier statistics can be written as
B zg.v f’}'max ﬁzmax B B o B B o
Mp=| —~ f;l ;1 [X71(Ep1as My, 1) + X72(Ep1a, 1y, 1)) (2.92)

where

- printed on 2/13/2023 5:33 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

2.2 Theoretical background

X72(Epia, 1y, 1) = L(r)[X71(Epia> 1y, )]

v

r=1

By using (1.44) and (2.92), we can find the entropy in this case.

2.2.8 The entropy in nanowires of HD platinum antimonide

The 1D dispersion relation may be written in this case following (1.275) as

kX = V70(E’ ﬁy) ﬁZ) flg)

where
1/2

2
o= nym T
V7()(E, ny, nz,ﬂg) = - (%) +A60(E’ rlg’ n)’)
y

The sub-band energy (E34HDNW) in this case can be expressed as
0= V70(E 3ampnw> Mg Ny, 1z)

The EEM in this case is given by
. Ko ., - o
m (EpiHpNw, Tg» Ny, Nz) = >3 (Vo (EFHDNwW, Tlg> Ty, 112)]

The carrier statistics can be written as

— 133

(2.93)

(2.94)

(2.95)

zg Nymax "zmax _ _ _ _
Mip = 7‘/ Z Z [V70HDNW(EF1HDNW) Ny, Nz, Mg) + Viirpnw (Eptapnw, 1y, 1z, ng)}

fiy=1 fz=1

where
Vzoupnw (Ertpnw, ys iz, Mg) = Vzorpnw (Erizpnw, Ty, iz, 1)

and
— — § — — —
Voonw (Eppnw, y, iz, Mg) = Y L(7)[Vaouonw (Eripnw, Ty, iz, 1g)]
=1

By using (1.31f) and (2.96), we can find the entropy in this case.

(2.96)

In the absence of band tailing the 1D dispersion relation in this case can be

written using (1.278) as
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134 —— 2 The entropy in nanowires of heavily doped materials

ky =D (E, iy, 1) (2.97)
where
2 1/2
_ Nyt o
D71(E> ny> nz) = |:_ <dy> + t44(E> nZ):|
Yy

The sub-band energy((E’ 48)) in this case can be expressed as

0 =Dy (E 48, 11y, 1) (2.98)

The EEM in this case is given by
_ 2y
m (Era, iy, Nz) = 338 (D3, (Er1g» 1y, 1) (2.99)

The carrier statistics can be written as

zg. ﬁ)’max ﬁzmax _ _ _ _
fip=| = Z Z [D71(EF1d» Ny 1) + D72(Ep1a, iy, 1) (2.100a)
T ) =1 i=1
where

hE

Dy5(Epia, 1y, ;) = L(7)[D71(EFia, iy, 1))

r=1

Using (1.44) and (2.100a), we can find the entropy in this case.

2.2.9 The entropy in nanowires of HD bismuth telluride

The dispersion relation in this case can be written following (1.285) as

ke = J70(E, 1y, 1z, 1) (2.100b)
where
| A\ nyn,m v
Jro(E, iy, 1z,1,) = H)’z(E ) — W2 (%) —w;( gz > — 2w, éygiz } (w1)1:|
The sub-band energy (E'sompnw) in this case can be expressed as
0 =J70(E sompnw» N> Ty, 1) (2.101)

The EEM in this case is given by
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2

- _ _ . h - - o
m (Epipnw, Ng» Ny, Nz) = 338 2o (Eripaw, Ng> Ty, z)] (2.102)

The carrier statistics which can, in turn, be written as

zg Nymax ﬁzmax B B B B
_ y o o
np=| —= E E Uzorpnw (EFiHDNW Ng> Ny, Tiz) + Jympnw (EFtpnw, Mg, Ty, 1z )]
Ay=1 n;=1

(2.103)

where
Jroronw (Eriepnw, Mgs Ry, tz) = Jrorpnw (Erimnw, Mg, Ty, 1z)
and
— — § — — —
J7ipnw (EFEDNW Mg> Ty, Tz) = Z L(7)Uz0mpnw (Eripnw, Ng» Ty» 1z )]
=1
Using (1.31f) and (2.103), we can find the entropy in this case.

In the absence of band tailing the 1D dispersion relation in this case can be
written using (1.278) as

ky =By (E, ny, 1) (2.104)

where

_ 2 _ 2 o 1/2
o _ _ n,m n,m 1, 71,1 _
By (E, ny,n,) = HE(IHXE)—(uz(dLy) —(u3<d—z> - 2w, éyaz }(wl) 1}

The sub-band energy (E'50) in this case can be expressed as

0=B7(E's, ny,n;) (2.105)

The EEM in this case is given by

U ;RSO
m (Epig, Ny, 1) = ?a_E[BZH(EFld) ny,n;)) (2.106)

The carrier statistics can be written as

2g Nymax ﬁzmax B B B B
fp=| =~ Z Z [B71(EF1a> Ny, Nz) + B2 (Ep1g, Ny, 112 (2.107)
T ) =1 =1
where
— — 3 — — —
B7y(Epias 1y, ;) = Y L(¥)[Br1(Ef1a, 1y, 1))
r=1

- printed on 2/13/2023 5:33 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use



136 —— 2 The entropy in nanowires of heavily doped materials
Using (1.44) and (2.107), we can find the entropy in this case.

2.2.10 The entropy in nanowires of HD germanium

(@) Model of Cardona et al
The dispersion relation in accordance with this model in the present case can be
written following (1.306b) as

ke = Lo (E, 1y, 1z, 1) (2.108)

where
hz ﬁ - 292
L7o(E, ny, nz,m,) = Hyz(E:ﬂg)*'a[Zm* <;)}
[ z

. . 27 /o \ 712
- (1+2ay,(E,n,)) =— (L)} (—Zﬂ
3Vl am \ d, h

The sub-band energy (ESZHDNW) in this case can be expressed as

0= Lo (E sompnw Ng> My> z) (2.109)

The EEM in this case is given by
I N R o
m (E pipnw, Mg, My, 1) = >3 [L70 (E FirpNw, Ng» Ty» 1z )] (2.110)

The carrier statistics can be written as

2gv Nymax Mzmax _ _ _ _
mp=| - >N [Lroroww (Epumnws fys iz, ) + Lyneonw (Epowws Ay, iz, )]
Ry=1 nz-1

(2.111)

where
Lzonpnw (EpirpNw, Ty, Nz, Mg) = Lrorpnw (EFtapnw, Ny, 1z, 1)

and

— — \§ — — —
Lypww (Erwpnws iy, iz, 1g) = Y L(F) [Lrorww (Epummaws Ay, iz, )]
=1

In the absence of band tailing the 1D dispersion relation in this case can be written
using (1.278) as
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ky =Bz (E, ny,n;) (2.112)

B(L+aB) s LZ L 2 z_(1+2aE) = ﬁzn)z] ﬁ 1/2
+ + zm\*l d, zm‘*l d, 7

The sub-band energy (E'60) in this case can be expressed as

where

Bz (E,ny,n;) =

0 =B7;(E 60, 1y, 1) (2.113)

The EEM in this case is given by

U (L. B
M (Bpias Ty ) = = = [B3; (Ep1as 7ty 11| (2.114)

The carrier statistics can be written as

2§ FlYmax ﬁzmax B B B B
fp=| =~ Z Z [B77(EF14» Ny 1z) + B7g (Ep1a, Ny, 1) (2.115)
T ) #=1 ng=1
where

5
Brs(Epia, Ny, 117) = Z L(r)[B77(Ep1a, Ny, ;)]

r=1

Using (1.44) and (2.115), we can study the entropy in this case.

(b) Model of Wang et al.
The dispersion relation in accordance with this model in the present case can be
written following (1.326) as

ky =By (E» ny, nz, rlg) (2.116)

where

2 2
N A\ 2m i,

4 2 1/2911/2
mn mn =
-y [(7:) +0111< t_izz> +ap(E 1) H

The sub-band energy (E54HDNW) in this case can be expressed as

0=y (E surpnws Ng> Ny, z) (2.117)
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138 —— 2 The entropy in nanowires of heavily doped materials

The EEM in this case is given by

. . Ko _ o
m (Epipnw, Ng> Ny, ) = 2 3E [ﬁgo (EFtrDNW, Mg> Ty> 1z)] (2.118)

The carrier statistics can be written as

zg. f’}’max F’Zmax _ _
nip= # Z Z [Brompnw (ErtpNW, Ty iz, Mg) + Brygpnw (EFtDNwW, Ty, Tz, 1, )]

ny=1 nz=1

(2.119)

B70HDNW EPlHDNW > ”y) ”Z) ﬁ 0 EFlHDNW) ny, ”Z) 12
( rlg) 7 ( y g)

and
— § — —
Br1upnw (ErtrpNwW, Ty, iz, Mg ) = Z L(7)[Broupnw (EFtHpNw, Ty, Tz, 1g)]
=1

Using (1.31f) and (2.119), we can study the entropy in this case.
In the absence of band tailing the 1D dispersion relation in this case can be
written using (1.278) as

kx = P7;(E, ny, n,) (2.120)

where

w (an\]/2m\]"
pue - [in- 2 (3] ()]
2 y

The sub-band energy (E'>upaw) in this case can be expressed as

0="Py;(E's0, 11y, 11;) (2.121)

The EEM in this case is given by

W o -

' (Epa, fty ;) = > 3% [P2,(Epya; iy, 11,)] .122)

The carrier statistics can be written as

2§ Nymax Mzmax _ _ _ _
ip= | = > > [Prr(Epas My 1) + Prg(Epia, iy, 1) (2.123)

fiy=1 fiz=1
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where

w2 (na\] [ 2m ks
- e ()] ()
2 y

Using (1.44) and (2.123), we can study the entropy in this case.

2.2.11 The entropy in nanowires of HD galium antimonide

The dispersion relation of the 1D electrons in this case can be written as

W(m/d,) Hmm/d) Bk - -
| R

The sub-band energy (EIIOOHDNW) in this case can be expressed as

W(nen/ds) W(ayn/dy)”

=I6(E :
2m, m, 36 (E 100HDNW> 1)

The EEM in this case is given by

' (E rusonw Ng) =M L6 (E Farzonw ng)]

The carrier statistics can be written as

— 139

(2.124)

(2.125)

(2.126)

2g Mymax "zmax
_ Y - - o - - o
Mp=| -~ E E [R7rpnw (EF1HDNW > Ty, Tz, g ) + Reripww (EFiapnw, fy, iz, 1)

fiy=1 nz=1
where

Lz (Epwpnw, Ng) (Erionw, M)

Rzupnw (EpipNw , Ty, Nz, 1) = {

R@md) Remd)] m ]
2, 2me n

and

[

Rupnw (Erepnw, Tty iz, 1g) = > L(F)[Rymmww (Erionw, iy, iz, 1 )]
r=1

Using (1.31f) and (2.127), we can study the entropy in this case.
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The expression of 1D dispersion relation, for NWs of GaSh whose energy band
structures in the absence of band tailing assumes the form
2,‘<2 _
ﬁl" +Gy(ny, ny) (2.128)

C

736 (E) =

In this case, the quantized energy Flm is given by
Ls(E'101) = Ga(ny, 1) (2.129)

The carrier statistics in the case can be expressed as

— 1 n;
B 2 / Ymax "‘Zmax
Mip = gv Z > [Rior(Erias iy, i) + Ruoa(Epras Ty, 1 )] (2130)
ny=1 nz=1
where

Rio1(Er1a» iy, i) = [l (Epra) — Go(1y, 1))

and

[

Ri02(Epia: iy, i) = Y L(7)[Rio1(Ep1a> My, 112)]
=1

Thus, using (1.44) and (2.160), we can study the entropy in this case.

2.2.12 The entropy in nanowires of HD II-V materials

The DR of the 1D holes in II-V compounds can be expressed as

2 2

Ny T - n,m - - N, TT

En,)=A +An| 2= | + ARk + A =
y3(E.ng) = 10<dx> 11<dy) 12K B<dx)

N 2 _ 2 B 2\2 _ 2
— [ nym - [ nym T N R — [ nym =
+ || A 2= ) +A45| 2= | + Al + A | =2 Al 2L | +A
(14(dx>+ 15(dy>+ 16/ + 17<dx>)+ 18<dy>+ 19

where the numerical values of the energy band constants are given in Appendix A.
The sub-band energy (E ) is the lowest positive root of the following
equation

1/2

(2.131)

"zHD401
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_ 2 _ _ 2 B 2 1/2
Ny T Ny T — [ nym — [y -
Ys(E"zHD401’ng) AlO( dx >+Al3( dx > t [(Al‘*( ax ) +Al7(a_x)> +Aj,
(2.132)
(2.132) can be expressed as
k= Mgz (E, g, Ty, Ty) (2.133)
where
g7 (E, g, T Ty) = (AT, = Afg) ™" [[Aan (B, s T Ty Az + Ar Ay (T, Ty )]
+[[821(E, gy s 7y ) A + Arg A (7, 1y )] = (A2, = ALg) Aas (M, 1y, Eo g )]
RV 2
= o - . % 1T — [ nm
An (E, g, N, 1y ) = [V;(E, 1) — Ao ( a > -An ( 4, ) —As ( a4 )} ,
Ny T - [ nm - [ nym R
Ap(ny,ny) = |Ag +As| 2= | +An | = s Ags (M, 1y, E, 1)
d, dy dy
= A%l (E, Ng> s ny) = A (N, 1y )],
Aoy (T, Tty ) = [A5,(E, Mg, T, 1) + A3 (R )]
and
B 2
_ - n,mm .
Ay (ny) = |Ass (L) + A7
dy
The DOS function in this case can be written as
g Nxmax ymax
Nipgpr(E, ng) = 7_: > Y Ay(E Ay Ay, ng)H(E - Exoonpnw) (2.134)
nx=1 ny=1
In (2.164), E y00mpnw is the sub-band energy and in this case can be expressed as
0 = Ay (E 300mDNW> Ty ny, M) (2.135)
The EEM in this case is given by
o N o
m (E pirpNw, Mg» T, Ny) = 33 (A3, (E Firpaws Ng> o> Ny )| (2.136)

The carrier statistics in this case can be written as
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g Mymax Mzmax , s ,
nip = Fv Z Z |:A27(E FIHDNW T Ty, ) 2 L(r) [A27(E FIHDNW T, Ty, ng)H

ny=1 nz=1
(2.137)
Thus, using (1.31f) and (2.137), we can study the entropy in this case.

In the absence of band-tailing, the 1D hole energy spectrum in this case as-
sumes the form

2 2
- N, 1T - n, 7t - - N, TT
E=A X Ap| 2= ) +Apk2+A 2
10(dx>+ 11<dy>+ 2K+ B(dx)
_ 2 _ 2 _ 2 B 2
- Ny T - nym -y = n, T - nymt -
+ || Ay == | +As| 2= | +Ak2+ Ay | = +Ag| 2= | +A

The subband energy (E'500) is the lowest positive root of the following equation

1/2

(2.138)

_ 2 _ _ 2 _ 2 1/2
= — [ [ A — [ [ A -
E3p=A = +A = +[[A = +A = +A 2.139
(2.139) can be expressed as
kz = A7 (E, g, 1) (2.140)

where
A7 (E, iy, Ty) = (A7, - A%) - [[Aon1 (E, iy, Ty) Ara + A6 A (T, Ty )]

+ [[Aa1 (E, i, Tty ) Ay + A16 A0 (M ﬁy)]z - (A2, —Afé)Azm(ﬁx, ny, E)]l/z

2 2
- Ny 7T - ny - Ny 7T
E-A = -Au| = | -A = >
— 2 — 2 —
_ N, 1T _ n,m - N,
A = A —_ A —= )

2
_ n,JT _
Alg(_L) + A%
d)’

Ao (E, iy, Ty) =

A22 (ﬁx> ﬁy) =

Aoy (T, Tty) = [A,(E, Tiy, 1) + Ags (1) Jand A (y ) =

The DOS function in this case can be written as
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= Txmax Nymax
Nipr(E) = % Z Z A1 (E, iy, y)H(E - Eso0mpnw) (2.141)
=1 fy=1

In (2.171), E'300 is the sub-band energy in this case which can be expressed as

0= A71(E'300, T, 1) (2.142)
The EEM in this case is given by
R o

1 (Epaas g o y) = = 52 (83 (E'pras oo ) (2.143)

The DOS function in this case can be written as

o Mxmax ymax S
fiup = <g;) >N {Azn(EFld, s ﬁy)g;L(f) {Azn(EFld, My, fzy)ﬂ (2.144)
r=

ix=1 ny=1

Using (1.44) and (2.144) we can study the entropy in this case.
2.2.13 Entropy in nanowires of HD lead germanium telluride

The 1D electron energy spectrum in n-type Pb;_,Ge,Te under the condition of forma-
tion of band tails can be written as

2 2
2 = = — N, 7T nym =
2ot oo (3] (3] o
r _ 2 _ 2
- 0.23[(""") - <M)} —o.ozkﬁ}
_ d d,
- RN 2 Q2 \2q12
0.06Ego+o.061[<"_x”> - ("_y_”ﬂ —0.0066k§} [(”ﬁ‘”) - (”_y_””
i d, d, d, d,
- RV RS
+ Ego+o.o411{<"5”) - (’Z—”)}
L X y
2 2
+0.377k§} [0.606 [("_X” ) - ("_y_”> +0.722k§”
dy d,

) is the lowest positive root of the following equation

I+

(2.145)

The subband energy (E"zHDSOO
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144 —— 2 The entropy in nanowires of heavily doped materials

2 2
2 Ny T n,m
HE,f(—"zmm)) 00 (En,zipsoo> M)+ V3 (Enpipsoo: M) [Eso Ol%[( d, > - (&Ly)]
Ng
2 \2 7
[0 23{(""”) <M>] ~0.0212
dy d,
2 2T
+[0. ergo+0061[<""”> - <M>
d, d,
2 _ 2 _ 2 _ 2
+ [Ego+oo411 [(”X”) - (Y”)” !o.eos[(”xn> - <Y”>”]
d, d, 3 d,

The EEM and the DOS function for both the cases should be calculated numerically.
Using (1.31f) and (2.145), we can study the entropy numerically.
The 1D dispersion law of n-type Pb;_xGe,Te with x=0.01 in the absence of
band-tails can be expressed as

2 2
_ N, 7T n,m -
E-0606| 2= - 22 )| -0.72212

[E +Ego +0.411 {(""” ) ("_L")Z} 4 0.377k§}
d ',

2 2
03| (™) - (M) | 400202
d, d,
_ 2 _ 2 _ 291/2
+ 0.06Eg +0.061 nr ) _ BT | o.00e6k2| | [ 27 - (2
d d, d d,

(2.147)

(2.146)

The sub-band energy Esqo in this can be written as

v (o) (5]
(-] )
BIGEG)
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Using (1.44) and (2.147) we can study the entropy numerically.

2.2.14 Entropy in nanowires of HD zinc and cadmium diphosphides

The DR in HD NWs of zinc and cadmium diphosphides can be written as

- RV VR
oo e (52). (2]
+ Ko 7T BBy (ko 7y, 1) 2 n,m ’ n,m ’
= BB (ks 11y, 112) S_T xt a—y + a—z
+8B,2 1_,3312(1_()(>ﬁy)ﬁz) 5 1_‘3312(1_<x>ﬁy>ﬁz) . Ay 2+ i 1y 12
! 4 ’ 4 . a)’ az

where

E

ke () ()
o ()" (2]

The sub-band energy E

o

ﬁ31(i‘x’ ﬁy» ﬁZ) =

D600 111 this case assumes the form

)’3(E"2HD600"7§): { 1+%[;:}“nz>} [(nyn) (nzn)]

i{ |:B4B31(0,ny’nz) (ﬁs_W) |:(n:i/;1> " <;z>]]

+8B,° 1—IM -B 1—IM ﬁy_n2+ ﬁznz )
4 4 2 4 (_iy az

where
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The EEM and the DOS function should be obtained numerically.

Using (1.31f) and (2.149) we can study the entropy numerically.

The 1D DR in NWs of zinc and cadmium diphosphides in the absence of band-
tails can be written as

. 2 2
B BoBsi (ks 1y, 1) | - 7_1_77 n,m
E_[Bl+_38ﬂ4y ]lk§+<(_§y>+<az>}
- 2 2
[ )

+86,” (1 Bl ) " <1 Bulko )

/
K+ ﬁy—"2+ ﬁz—nz - (2.151)
x d, d, ’

The subband energy (o) is the lowest positive root of the following equation

o RV 2
o RV 2
+ { {54/3311(0, ny,n;) (/35 _ ﬁzﬁsllé%Any)”z)) [(%) + (%) ] ]
2 1) V2
2 B0y, 1) B2 (0.7, 7))\ | (7 AT
+8B, (1_ 311 4y )‘52(1— 311 4}’ ){(L}/).F(d_Z)]}

(2.152)

The EEM and the DOS function for both the cases should be calculated numerically.
Using (1.44) and (2.151), we can study the entropy numerically.
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2.3 Results and discussion

Figures 2.1-2.12 exhibits the dependences of the normalized entropy in HD NWs of
all the materials as considered in Chapter 1 in accordance with all the band models
and obtained by using the appropriate equations as formulated in this chapter.
From Figure 2.1 it appears that the entropy in HD NWs of CdGeAs, for all the
models of the same material exhibit quantized variations with increasing film thick-
ness. For a range of film thickness, the dependence exhibit trapezoidal variations
and for higher values of film thickness, the length and width of the trapezoid in-
creases. From Figure 2.2, it appears that the entropy decreases with increasing carrier
concentration per unit length and the value of the entropy is least for the generalized
band model and greatest for the parabolic band model of the same. From Figure 2.3,
we observe that the entropy for HD NWs of InAs exhibits the lowest value in accor-
dance with the three-band model of Kane model of the same whereas for parabolic
energy bands it exhibits the highest value. It is apparent from plot (a) of Figure. 2.3
that the influence of the energy band gap is to reduce the value of the entropy as

100

=
(=}

(e) T

(d)

-

Normalized entropy

10 (C)‘[5_ 20 25 30 35 40 45 50
(b)— Film thickness (in nm)

(a) —

0.1

Figure 2.1: Plot of the normalized entropy for HD NWs of CdGeAs, as a function of film thickness for
all cases of Figure 1.1.

100

\ Carrier concentration (in x108 m™%)
1

1020 30 40_ 50 60 70 80 90 100
(d) (e)

[y
o

0.1+

Normalized entropy

0.01 1

0.001

Figure 2.2: Plot of the normalized entropy for HD NWs of quantum wires of CdGeAs;,as a function
of carrier concentration for all cases of Figure 1.1.
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100
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o H
E 10 — —_—
) (C) :
o —_—
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© ;
E 1 — :
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Film thickness (in nm)
(@
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Figure 2.3: Plot of the normalized entropy for HD NWs of InAs as a function of film thickness for all
cases of Figure 1.3.

compared with parabolic energy bands, and the influence of spin orbit splitting con-
stant is to reduce the entropy further in the whole range of thickness as compared
with two-band model of Kane. From Figure 2.4, we observe that entropy decreases
with increasing concentration and the value of entropy in accordance with all the
band models differs widely as concentration increases. Figures 2.5 and 2.6 exhibit the
plot of the entropy for HD NWs of InSb as functions of thickness and concentration
respectively. Nature of these two figures does not differ as compared with the plot of
entropy in HD NWs of InAs as given in Figures 2.3 and 2.4, respectively. Important
point to note here is that although the nature of the plots is same, the exact numeri-
cal values of the entropy are determined by the numerical values of the energy band
constants of InSb and InAs, respectively. From Figure 2.7, we observe that the influ-
ence of the splitting of the two spin states by the spin orbit coupling and the crystal-
line field enhances the numerical values of the entropy in HD NWs of CdS as
compared with Ay = 0. Besides, trapezoidal variations of entropy in HD NWs of CdS
with respect to thickness as appearing from Figure 2.7 are found to be perfect. From
Figure 2.8, we observe that entropy decreases with increasing carrier concentration
per unit length and by comparing it with Figure 1.8 as the corresponding plot for HD
NWs of CdS, we can state that although entropy decreases with increasing carrier de-
generacy in the latter case the nature and rate of decrement with increasing concen-
tration are totally different in the HD NWs of CdS. From Figure 2.9, we observe that
the entropy for HD NWs of PbTe, PbSnTe and stressed InSb in accordance with the
appropriate band models exhibit quantum steps and trapezoidal variations in the
whole range of thickness as considered with widely different numerical values as ap-
parent from thisfigure. From Figure 2.10, the entropy decreases with increasing car-
rier degeneracy for HD NWs of PbTe,PbSnTe and stressed InSh respectively.
Figure 2.11 exhibits the plots of the normalized entropy in HD NWs of (a) GaP, (b)
PtSh,, (c)Bi,Tes,and (d)cadmium antimonide, respectively, as a function of normal-
ized film thickness.
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100

-
o
L

0\ \M0~_20 30 40 50 60 70 80 90 100

(0)

Carrier concentration (in x108 m™?)

(=]
HN
L

Normalized entropy

0.01

0.001

Figure 2.4: Plot of the normalized entropy for HD NWs of InAs as a function of carrier concentration
for all cases of Figure 1.4.
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Figure 2.5: Plot of the normalized entropy for HD NWs of InSb as a function of film thickness for all
cases of Figure 1.3.
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Figure 2.6: Plot of the normalized entropy for HD NWs of InSb as a function of carrier concentration
for all cases of Figure 1.3.
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Figure 2.7: Plot of the normalized entropy for HD NWs of CdS as a function of film thickness for all
cases of Figure 1.7.
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Figure 2.8: Plot of the normalized entropy for HD NWs of CdS as a function of carrier concentration
for all cases of Figure 1.7.
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Figure 2.9: Plot of the normalized entropy in HD NWs of (a) PbTe, (b) PbSnTe and (c) stressed InSb
as a function of film thickness.
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Figure 2.10: Plot of the normalized entropy in HD NWs of (a) PbTe, (b) PbSnTe and (c) stressed InSb
as a function of carrier concentration.
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Figure 2.11: Plot of the normalized entropy in HD NWs of (a) GaP, (b) PtSb,, (c) Bi,Tes, and
(d) cadmium antimonide respectively, as a function of film thickness.
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Figure 2.12: Plot of the normalized entropy for HD NWs of (a) GaP, (b) PtSb,, (c) Bi,Tes, and
(d) cadmium antimonide respectively, as a function of carrier concentration.
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The influence of 2D quantum confinement appears from Figures 2.1, 2.3, 2.5, 2.7, 2.9
and 2.11, respectively since the entropy depends strongly on the thickness of the quan-
tum-confined materials which is in direct contrast with bulk specimens. The entropy
increases with increasing film thickness in an oscillatory way with different numerical
magnitudes. It appears from the aforementioned figures that the entropy in HD NWs
exhibits spikes for particular values of film thickness which, in turn, is not only the
signature of the asymmetry of the wave vector space but also the particular band struc-
ture of the specific material. Moreover, the entropy in HD NWs of different compounds
can become several orders of magnitude larger than that of the bulk specimens of the
same materials, which is also a direct signature of quantum confinement. This oscil-
latory dependence will be less and less prominent with increasing film thickness.

It appears from Figures. (2.2), (2.4), (2.6), (2.8), (2.10) and (2.12) that the entropy
decreases with increasing carrier degeneracy for 1D quantum confinement as con-
sidered for the said Figures. For relatively high values of carrier degeneracy, the in-
fluence of band structure of a specific 1D material is large and the plots of entropy
differ widely from one another whereas for low values of the carrier degeneracy,
they exhibit the converging tendency. For bulk specimens of the same material, the
entropy will be found to decrease continuously with increasing electron degeneracy
in a non-oscillatory manner in an altogether different way.

For HD NWs, the entropy increases with increasing film thickness in a step like
manner for all the appropriate Figures. The appearance of the discrete jumps in the
Figures for HD NWs is due to the redistribution of the electrons among the quantized
energy levels when the size quantum number corresponding to the highest occupied
level changes from one fixed value to the others. With varying thickness, a change is
reflected in the entropy through the redistribution of the electrons among the size-
quantized levels. It should be noted that although, the entropy varies in various man-
ners with all the variables in all the cases as evident from all the Figures, the rates of
variations are totally band- structure dependent. The two different signatures of 2D and
1D quantization of the carriers of in HD NWs of all the materials as considered here are
apparent from all the appropriate plots, values of entropy for NWs differ as compared
with HD QWs and the nature of variations of the entropy also changes accordingly.

2.4 Open research problems

(R2.1) Investigate the entropy for NWs of all of the HD materials in the presences
of Gaussian, exponential, Kane, Halperian, Lax and Bonch-Burevich types
of band tails for all systems whose unperturbed carrier energy spectra are
defined in R1.1.

(R2.2) Investigate the entropy in the presence of strain for NWs of all of the HD
materials of the negative refractive index, organic, magnetic and other ad-
vanced optical materials.
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Investigate the entropy for the NWs of HD negative refractive index, or-
ganic, magnetic and other advanced optical materials in the presence of
an arbitrarily oriented alternating electric field.

Investigate the entropy for the multiple NWs of HD materials whose unper-

turbed carrier energy spectra are defined in R1.1.

Investigate the entropy for all the appropriate HD 1D of this chapter in the

presence of finite potential wells.

Investigate the entropy for all the appropriate HD 1D systems of this chap-

ter in the presence of parabolic potential wells.

Investigate the entropy for HD 1D systems of the negative refractive index

and other advanced optical materials in the presence of an arbitrarily ori-

ented alternating electric field and non-uniform light waves and in the
presence of strain.

Investigate the entropy for triangular HD 1D systems of the negative refrac-

tive index, organic, magnetic and other advanced optical materials in the

presence of an arbitrarily oriented alternating electric field in the presence
of strain.

Investigate the entropy for all the problems of (R1.1) in the presence of ar-

bitrarily oriented magnetic field.

Investigate the entropy for all the problems of (R1.1) in the presence of al-

ternating electric field.

Investigate the entropy for all the problems of (R1.1) in the presence of al-

ternating magnetic field.

Investigate the entropy for all the problems of (R1.1) in the presence of

crossed electric field and quantizing magnetic fields.

Investigate the entropy for all the problems of (R1.1) in the presence of

crossed alternating electric field and alternating quantizing magnetic

fields.

Investigate the entropy for HD NWs of the negative refractive index, or-

ganic and magnetic materials.

Investigate the entropy for HD NWs of the negative refractive index, or-

ganic and magnetic materials in the presence of alternating time depen-

dent magnetic field.

Investigate the entropy for HD NWs of the negative refractive index, or-

ganic and magnetic materials in the presence of in the presence of crossed

alternating electric field and alternating quantizing magnetic fields.

(a) Investigate the entropy for HD NWs of the negative refractive index,
organic, magnetic and other advanced optical materials in the pres-
ence of an arbitrarily oriented alternating electric field considering
many body effects.

(b) Investigate all the appropriate problems of this chapter for a Dirac
electron.
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154 —— 2 The entropy in nanowires of heavily doped materials

(R2.18) Investigate all the appropriate problems of this chapter by including the

many body, image force, broadening and hot carrier effects, respectively.

(R2.19) Investigate all the appropriate problems of this chapter by removing all

the mathematical approximations and establishing the respective appro-
priate uniqueness conditions.
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3 Entropy in quantum box of heavily doped
materials

A person is measured by not what he says or does, but by what he becomes.

3.1 Introduction

It is well known that as the dimension of the QWs increases from 1D to 3D, the de-
gree of freedom of the free carriers decreases drastically and the density-of-states
function changes from the Heaviside step function in OWs to the Dirac’s delta func-
tion in quantum box (QB) [1].

QBs can be used for visualizing and tracking molecular processes in cells using
standard fluorescence microscopy [2-4]. They display minimal photobleaching [5],
thus allowing molecular tracking over prolonged periods and consequently, single
molecule can be tracked by using optical fluorescence microscopy [6]. The salient
features of quantum dot lasers [7] include low threshold currents, higher power,
and great stability as compared with the conventional one, and the QBs find exten-
sive applications in nanorobotics [8], neural networks [9], and high-density memory
or storage media [10]. QBs are also used in nanophotonics [11] because of their theo-
retically high quantum yield and have been suggested as implementations of Q-bits
for quantum information processing [12]. QBs also find applications in diode lasers
[13], amplifiers [14], and optical sensors [15]. High-quality QBs are well suited for
optical encoding [16] because of their broad excitation profiles and narrow emission
spectra. The new generations of QBs have far-reaching potential for the accurate in-
vestigations of intracellular processes at the single-molecule level, high-resolution
cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting,
and diagnostics [17]. QB nanotechnology is one of the most promising candidates
for use in solid-state quantum computation [18]. It may also be noted that QBs are
being used in single electron transistors [19], photovoltaic devices [20], photoelec-
trics [21], ultrafast all-optical switches and logic gates [22], organic dyes [23], and
other types of nano devices [24—29].

In this chapter in Sections 3.2.1-3.2.14, we have investigated the entropy in QBs
of HD nonlinear optical, III-V, II-VI, stressed Kane-type, Te, GaP, PtSh, Bi,Tes, Ge,
GaSh, II-V, lead germanium telluride, zinc and cadmium diphosphides, respec-
tively. Section 3.3 contains the result and discussions pertaining to this chapter.
Section 3.4 presents 22 open research problems.

https://doi.org/10.1515/9783110661194-003
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158 —— 3 Entropy in quantum box of heavily doped materials

3.2 Theoretical background
3.2.1 Entropy in QB of HD nonlinear optical materials

The dispersion relation in this case can be written following (2.1) as

K (,n/d,) . W (n,m/dy)’ . R (Rt /dy)’

— == — == — == =1 (.1
2m T (Evgsrps Ng) ~ 2M, Toa(Evosrp, ) 2y Tor (Ergann, Ng)
where Ejgppp is the totally quantized energy in this case.
The total density-of-states function in this case is given by
_ _ zg ﬁxmax ﬁymax ;‘Zmax _ _
Nopr(E) = === Z Z Z 6 (E - E1ggHp) (3.2

dyd,d

Z fy=1 Ny=q1 nz=1

where, §(E - Eiganp) is the Dirac’s Delta function.
Using (3.2) and Fermi-Dirac occupation probability factor, the total electron
concentration can be written as

nxmax nymax zmax

Z Z F_1(N31mp) (33)

Ny—1 Ny—1 Nz—1

Nop =

dy EI 21
where
N3 = (kT)~ Y(Eroprp — Ergarp)

and Eroppp is the Fermi energy in this case.

Using (1.31f) and (3.3) we can study the entropy in this case.

For the purpose of comparison we shall also study the entropy in the absence
of band tails in this case.

Let E,,l. (i=x,yand z) be the quantized energy levels due to infinitely deep
potential well along ith-axis with n;(=1,2,3,...) as the size quantum numbers.
Therefore, from (1.2), one can write

2
V(Enx) :fl(Enx) <%) (3.4)
2
Y(Eny) = 1(En,) (ﬂ> (3.5)
dy
2
Y(En,) =fo(En,) (%) (3.6)

From (1.2), the totally quantized energy (Eqp;) can be expressed as
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3.2 Theoretical background =— 159

o RS
y(Eqn1) =fi(Eqp1) (Tglx> + (T) +f2(Eqn1) {(rglz)} (3.7)
X y Z

The total density-of-states function in this case is given by

o Mmax Wmax WZmax
28,

dddZZZ(SE Eqn) (3.8)

YEZ o1 nyoq nzo

Nopr(E) =

The total electron concentration in this case can be written as

g Ty T
- Zg max max max _
Nop = a ava Z Z Z F—l(rbl) (39)
X2y Zﬁx:l ﬁy:l f’z:l
where

N3 = (ksT) ™" (Erop — Eqp1)

and Erqp is the Fermi energy in this case.
Using (1.44) and (3.9), we can find the entropy in this case.

3.2.2 Entropy in QB of HD IlI-V materials

The dispersion relation of the conduction electrons of III-V materials are described
by the models of Kane (both three and two bands together with parabolic energy
band), Stillman et al. and Palik et al., respectively. For the purpose of complete and
coherent presentation, the entropy in QBs of HD III-V compounds have also been
investigated in accordance with the aforementioned different dispersion relations
for relative comparison as follows:

(a) The three-band model of Kane

The dispersion relation in this case can be written as

R (rm/d,) . W (nyn/d,)’ . W () dy)’
Zﬁlc zmc zmc

= Tua(Eaqprp, Mg) (3.10)

where
T4 (Exqpips Ng) = Ts1(Eaqains Ng) + 131 (Eaqarns Ng)

and E,qgpp is the totally quantized energy in this case.
The total electron concentration can be written as

Mnax Wmax max

Nop = 3 ga Re al Part of Z Z Z F_1(ny) (3.11)

X fy=1 My=1 Mz=1
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160 —— 3 Entropy in quantum box of heavily doped materials

where

3210 = (ks T) ™' (Ero prp — Exopmp)

and Eroppp is the Fermi energy in this case.

Using (1.31f) and (3.11) we can study the entropy in this case.

The quantized energy levels (Enx,Eny and E,, along x, y, and z directions, re-
spectively) in the absence of band tails in QBs of III-V materials in accordance with
the three-band model of Kane can be expressed as

2
- W [ mny,
I E = _— = 312
11( nx) ch ( dx ) ( )
K (nn ‘
- y
Iy (En,) = 2. <_c_1y ) (3.13)
and
- W (an,\
Ii(En )= — | == 3.14
w(En) m(dZ) (3.14)

The totally quantized energy (Eqp,) in this case assumes the form

e | (N () ()
In(Eap2) = 57 (I) + <d—y> + (d—> (3.15)
X y Z

The electron concentration in this case is given by

A Ay
B 2g.v max ' Ymax ' Zmax
Nop = a a a Z Z Z F_l(n32) (316)
X2y¥z My=1 ﬁy:l ny-1
where

M52 = (ksT) ™" (Erop — Eqpa)

and Epqp is the Fermi energy in this case.
Using (1.44) and (3.16) we can study the entropy in this case.

(b) The two band model of Kane

The dispersion relation in this case can be written following (2.24) as

®(,n/d,)’ . W (nym/d,)’ . R (Rymt/dy)’
2me 2m, 2m

= y,(E3 qBHp; 1g) (3.17)

and
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Esopmp is the totally quantized energy in this case.
The total electron concentration can be written as

2o MXmax Wmax ™max

Nop = 5 Z Z Z F_1(M33pp) (3.18)

dyd,d
VIZ ayo1 ny=1 Nzo

where

N33up = (kT) “!(Eropnp — E3qsrp)

and Eroppp is the Fermi energy in this case.
Using (1.31f) and (3.18) we can find the entropy in this case.
For two-band model of Kane in the absence of bandtails, Enzobeys the equation

hz 2 2
Enz (1 + aEnz) 2m (;) (319)
C Z

The totally quantized energy (Eqp3) in this case is given by

e | (n (1Y (7)
EQD3(1+aEQD3): Zﬁlc (a—x) + (a—y) + (a—z> (320)
X y z

The electron concentration in this case is given by

MXmax Wmax Zmax

SN Falng) (3.21)

My—1 My=1 Nz=1

Alop = —2V
o= dd@

where
N33 = (ksT) " '[(Erop — Eqps)]

and Erop is the Fermi energy in this case.
Using (1.44) and (3.21), we can find the entropy in this case.

(c) The parabolic energy bands
The dispersion relation in this case can be written as

W(rn/d.)  W(yn/d) K (n/dy)’

=y,(E , 2
2m. 2m. m. 7 (Eagsrn lg) ¢.2)

and Ej,oppp is the totally quantized energy in this case.
The total electron concentration can be written as
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162 — 3 Entropy in quantum box of heavily doped materials

_ 3 2gv ﬁxmax ﬁymax ﬁzmax _
Nop = ===
dyd,d

Z fy=1 Ny=1 Nz=1

F_1(N34mp)

where
N34mp = (kT) ™" (Eroprp — Exgprp)

and Eroppp is the Fermi energy in this case.
Using (1.31f) and (3.23) we can find the entropy in this case.

(3.23)

In the absence of bandtails, the expressions for Angp, Enz and total electron
concentration (nop), for QBs of wide-gap materials can, respectively, be written as

_ 28, =
Angp= =—=Y—F_
Nop &dyd; (’1)

P _ 2
- h n,m
En,=—|—=
2me \ d,

nXmax nymax Zmax

Mop = aa ZZZP

d =1 NMy=1 Mz=1
where
K flﬂz
"= (kgT) Y| Epop — — | ==
n (B) FOD 2mc(dz>

and Erop is the Fermi energy in this case.
Using (1.44) and (3.26) we can find the entropy in this case.

(d) The Model of Stillman et al.

The dispersion relation of the electrons in this case can be written as

K (,n/d,) . W (n,m/dy)’ . R (et /dy)’
Zﬁlc Zﬁlc zmc

= 04(Esqprp: 1g)

and Esqppp is the totally quantized energy in this case.
The total electron concentration can be written as

nxmax ymax zmax

Z Z ZF (M35 1p)

My—1 Ny—1 Nz—1

o = aaaz

where
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N3sup = (ksT)~ "(Eroprp — Esqap)

and Eroppp is the Fermi energy in this case.
Using (1.31f) and (3.28) we can find the entropy in this case.
In the absence of band tails, Enzobeys the equation

(W )2m.)(nn, /d,)* = Ly (En,)

Eqps in this case can be defined as

2

. e | (n\  (n n,\

Iy (Eqps) = o (a—x> + (d—y) + <a—z>
c X 34 4

The electron concentration in this case is given by

2o MXmax Wmax ™max

o= 555 D D D Falny)
XEYPZ o1 Ry=1 Rpo

where
M35 = (ke T) ' [(Erop — Es qps))]

and Erop is the Fermi energy in this case.
Using (1.44) and (3.31), we can find the entropy in this case.

(e) The model of Palik et al.

The dispersion relation of the electrons in this case can be written as

W (n,m/d,)’ . W (nyn/d,)’ . R (et /dy)’
Zﬁlc Zﬁlc Zﬁlc

= 05(EsqpHn: 11,)

and EGQBHD is the totally quantized energy in this case.
The total electron concentration can be written as

Nop = > Z ZF—l(rl%HD)
My =1 ﬁy:l Ny=1

2o MXmax Wmax ™max

where
35 = (kgT)~ ! [(Eropsp — Eeqsrp)]

and Eroppp is the Fermi energy in this case.
Using (1.31f) and (3.33), we can study the entropy in this case.
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(3.30)

(3.31)

(3.32)
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In the absence of band tails, Enz and Egp; are defined by the following equations:

- W [,

I3(Ey,) = o (a—z> (3.34)
4 Z

Iy (Eopr) = n (nnx>2+ mny 2+ (@)2 (3.35)

13\EQD7 zmc ax ay az .

The electron concentration in this case is given by

2o MXmax Wmax ™max

_ g, _
Rop = == S Foalny) (3.36)
X2y¥z My=1 ﬁy:l ny—1
where
_ (Erop —Esqps)
N37 = T

and Erqp is the Fermi energy in this case.
Using (1.44) and (3.36), we can study the entropy in this case.

3.2.3 Entropy in QB of HD II-VI materials

The 0D electron dispersion law in QB of HD II-VI materials can be written following

(2.56) as
_ 2 /= _\? o Y o
= — Ny 7T n,m = N7t nym h*(n,m/d;)
E > =a = + | = + A = + | = + —
Y3( 7QBHD rlg) 0 ( dx ) (dy ) 0 ( dx ) ( dy ) zm\l
(3.37)
where EmBHD is the totally quantized energy in this case.
The total electron concentration can be written as
g. ﬁxmax ﬁ}’max ﬁzmax
Mop = === Z Z Z F_1(37mp) (3.38)
dx ydz My=1 ﬁy:l nz-1

where

N7 = (ks T) ™' (Ero b — E7 aprp)

Using (1.31f) and (3.38), we can study the entropy in this case.
In the absence of band tails the totally quantized energy Egpio, + in this case can
be expressed as
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(3.39)

The electron concentration can be written as

nxmax nymax nzmax

Nop = = Z Z Z F_ 1(’140 + (3.40)
dy d dz 5 : :
x=1 "y=1 Mz=1
where
= 1 (Brop - Eano.s]
MNyo,+ = I_<BT FOD QD10, +

Using (1.44) and (3.40), we can study the entropy in this case.

3.2.4 Entropy in QBof HD IV-VI materials

(a) Dimmock Model
In this case, the dispersion relation of the electrons can be written following (2.65)
as
nm - - _
= T36(EsqBHD> Mg> Tx» Ty ) (3.41)
Z
where Eggppp is the totally quantized energy in this case.
The total electron concentration can be written as

o Mmax Wmax ™max

Nop = = Z Z Zﬁ—l(’bszﬂ)) (3.42)

Ny—1 ﬁy:l ]

where
N3sup = (kB T)" (EFODHD — Esopnp)

Using (1.31f) and (3.42), we can study the entropy in this case.
In the absence of band tailing, the electron dispersion relation in this case can
be written following (2.71) as

I -
dL = Tuo(Eqp11» iy Ty) (3.43)

Z

where Eqpy; is the totally quantized energy in this case.
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The electron concentration per band can be written as

ny, n
max max max

nOD— a a Z Z Z 1()’141 (344)
Z Ny=1 Ny=1 Nz=1
where
1
M =17 [Erop — Eqpn]
BT

Using (1.44) and (3.44), we can study the entropy in this case.

(b) Bangert and Kastner Model
The electron dispersion relation in this case is given by following (2.77) as
nm - - o
EIL = Te0(E9qBHD Ng> N> My ) (3.45)
Z
where Eggppp is the totally quantized energy in this case.
The total electron concentration can be written as

nXmax ymax Zmax

(3.46)

aa

My—1 Ny—1 Nz—1

where
N300 = (ke T) ™" (Eroprp — Eoosrp)

Using (1.31f) and (3.46), we can study the entropy in this case.
In the absence of bandtails following (2.83) the dispersion relation is given by
nmo s - o
—— = T (Enaops Mg» M Ty) (3.47)
d;
where Eiyqp is the totally quantized energy in this case.
The total electron concentration can be written as

nxmax n)/max nzmax

== 3" 33 Fa(ny) (3.48)

My -1 ﬁy:l nz-1

N4z = (ksT) ' (Erop — Enaqp)

and Ergp is the Fermi energy in this case.
Using (1.44) and (3.48), we can study the entropy in this case.
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3.2.5 Entropy in QB of HD stressed Kane-type materials
The electron dispersion relation in this case is given by following (2.89) as

= Tro(Ero gBHDs NMgs s 1)

=]
&8

where Ejggppp is the totally quantized energy in this case.
The total electron concentration can be written as

MWnax Wmax Zmax
28,

t_ix(_iy(_i Z Z Z F—l(’laoHD)

Z Ny=q ﬁy:l Nz=1

Nop =

where
Nuorp = (ke T) ' (Eropsp — Eroosmp)

and Eroppp is the Fermi energy in this case.
Using (1.31f) and (3.50) we can study the entropy in this case.

(3.49)

(3.50)

In the absence of band-tails, the totally quantized energy Eqpys in this case as-

sumes the form

(IZ_IX> (@, (Eap)| " + (?) [by (Eqp)] %+ (7?2) (€ (Eapzs)] * =1

X y z

The electron concentration is given by

zg. Mxmax Wmax max
Mop = = ava D20 > Faly)
XEYEZ iy ﬁy:l ny-1
where

N3 = (kgT) ™" (Erop — Eqpas)

and Erop is the Fermi energy in this case.
Using (1.44) and (3.52), we can study the entropy in this case.

3.2.6 Entropy in QB of HD Te

The 0D dispersion relation may be written in this case as

T - - o
3 T72(Eniosap, Ny, My, 1)
X

where Ejjgpmp is the totally quantized energy in this case.
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The total electron concentration can be written a

o nxmax nYmax nzmax

7100=a§va Z Z Z F_1(N42mp) (3.54)
y

Z”xl"yl"zl

where
Nuorp = (ks T) ™' (Eroprp — Eraqsrn)

and Eroppp is the Fermi energy in this case.
Using (1.31f) and (3.54) we can study the entropy in this case.
In the absence of doping, the totally quantized energy can be written as

()0 (3 () o) (22

The electron concentration is given by

1/2

(3.55)

nxmax ymax 2'max

flop = aa Z D> Fally,.) (3.56)

Ny—1 Nz—q

where
Nus,+ = (Erop — Eqpis, + )/ (ksT)

and Erop is the Fermi energy in this case.
Using (1.44) and (3.56) we can study the entropy in this case.
3.2.7 Entropy in QB of HD gallium phosphide

The 0D dispersion relation may be written in this case following (2.109) as

nxn

=U70(E14 oBHD, Ny, Mz, Ng) (3.57)

X

where Ey,qpmp is the totally quantized energy in this case.
The total electron concentration can be written as

7 _
Xmax ' Ymax ' Zmax

Z > Z F_1(Nyump) (3.58)

My=1 My=1 Mz=1

ElEiEIZ

where
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Nuarn = (ks T) ™" (Eroprp — Evsqpan)

and Eroppp is the Fermi energy in this case.

Using (1.31f) and (3.58), we can study the entropy in this case.

In the absence of doping, the totally quantized energy (Eqgp;s) in this case can
be written as

2 —\2 _\2 5 N2 2 2
B _ h TNy . nny . h ninx . @ . 7{nz
W= om |\ d dy 2w |\ dy dy d;
1/2

wie | (an, N (mn, N [an,\
=22+ (=2 =2 )+ Iv6lP ] + (vl
m dy d, d,

The electron concentration assumes the form

=3

I VI

B zg max ' Ymax ' Zmax

Nop = a ava Z Z Z[ —1(5)146)] (360)
x =1 My=1 Nz=1

where

1
== E E
Nue = kBT( Fop — Eqpie)

and Erqp is the Fermi energy in this case.
Using (1.44) and (3.60), we can study the entropy in this case.

3.2.8 Entropy in QB of HD platinum antimonide
The 0D dispersion relation may be written in this case following (2.119) as

o = I
é( = V70 (E1sqeHD, Ty, Nz, Mg) (3.61)
X

where Eisoppp is the totally quantized energy in this case.
The total electron concentration can be written as

Mmax Wmax nzmax

(3.62)

=1 Ny=1 Mz=1

where

Nusep = (ke T) ™' (Eroprp — Exsqarn)

and Eroppp is the Fermi energy in this case.
Using (1.31f) and (3.62), we can study the entropy in this case.
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In the absence of band tailing the 0D dispersion relation in this case can be
written using (2.124) as

nm - = o
E)I( = D71 (EQD17, ny, nz) (363)

X

where Ejgpy7 is the totally quantized energy in this case.
The total electron concentration can be written as

o nxmax 1y, max nzmax

Nop = 8 Z Z ZF—I(Uso) (3.64)

My -1 f’y:l ny-1

where
Nso = (ks T) ™' (Epop — Eqo17)

and Erop is the Fermi energy in this case.
Using (1.44) and (3.64) we can study the entropy in this case.

3.2.9 Entropy in QB of HD bismuth telluride

The dispersion relation in this case can be written as

na - - o
‘—; =J70(E1s QBHD, My, 1z, 1g) (3.65)
X

where Eigopmp is the totally quantized energy in this case.
The total electron concentration can be written as

o ﬁxmax ﬁymax ﬁzmax
azégva Z E E F—l(’MSHD) (3.66)
xAy

Z ny=1 ﬁy:l ny-1

Nop =

where

Nustp = (ks T) ™" (Eropp — Exsqsp)

and Eroppp is the Fermi energy in this case.

Using (1.31f) and (3.66), we can study the entropy in this case.

The dispersion relation of the conduction electrons in Bi,Te; in the absence of
doping can be written as

_ _ h _ _ _ _
E(1+aE)= T (aukx2 + ky2 + 033 kZ2 +2ax3 kyk) (3.67)
0

where a1, ay, 33 and a,3 are spectrum constants.
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The totally quantized energy Egpss can be written as

2

- _ K i, \ nn i, \ °n, 1

Eqp3s(1+aEqps3) = 3o ay (a—x) +ax (d_y> +033 (——Z) +2003 | =2
X y z ydz

(3.68)
The hole concentration is given by
2g- ﬁxmax ﬁ}'max ﬁzmax
Pop==—=" > [1+exp(ng)] ! (3.69)
dxdydz My=1 ﬁy:l ny—1
where

1 _
= ——|Epop — E|
Ne2 kBT[ Fon — Eqp33)

and Erop is the Fermi energy in this case.
Using (1.44) and (3.69), we can study the entropy in this case.

3.2.10 Entropy in QB of HD germanium

(a) Model of Cardona et al.
The dispersion relation in accordance with this model in the present case can be
written following (2.138) as

nmT - - _
g = L70(E2008HD, Ny, Nz, 1) (3.70)
X

where Exyoppp is the totally quantized energy in this case.
The total electron concentration can be written as

oy ng
Zg max max max _

= Z Z Z F_1(Msonp) (3.71)
dydyd; /

Ny=1 Ny=1 Nz=1

Nop =

where

Nsomn = (ksT) ™" (Eroprp — Exoqsn)

and Eroppp is the Fermi energy in this case.

Using (1.31f) and (3.71) we can study the entropy in this case.

In the absence of doping the totally quantized energy Egpso in this case can be
written as
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172 — 3 Entropy in quantum box of heavily doped materials

- _ 2y 71/2
_ E, ® (ma,\} |E, - [ R ' (an
Eopso = — -2 (== 20 L E, | — e == 3.72
w0=" " omy (dz) e e \am Y\ g ) TG, G72)

The electron concentration assumes the form

br, MXmax Wmax ™Zmax
14

_ g P
Moo= g > 2 > e e
xAydz 3 70 2y o
where

1 - _
=——(Erop—E
) kBT( rop — Eqp3o)

and Erop is the Fermi energy in this case.
Using (1.44) and (3.73) we can study the entropy in this case.

(b) Model of Wang and Ressler
The dispersion relation in accordance with this model in the present case can be
written following (2.148) as
Ny T
dy

= B0 (E2408Hp: Ty, 1z, 1) (3.74)

where Ex4qppp is the totally quantized energy in this case.
The total electron concentration can be written as

o ﬁxmax ﬁymax ﬁzmax
= 3D B B ST 675
xUydz

My—1 Ny—1 Nz—q

Nop =

where

Nsurp = (kgT) ™ "(Eroprp — Exsqpsan)

and Eroppp is the Fermi energy in this case.

Using (1.31f) and (3.75) we can study the entropy in this case.

In the absence of doping, the totally quantized energy Egp,o in this case is
given by

12 _\? 42 _\2 _\2 .2 _\2 ~\2
- h” [ nn, h TNy, nny _"h Ty mny
EQD40 =—|\—= |+ —— = +| = - C1(T) = +| =
2m \ d, 2m dy dy 2m dy dy
Can (N (Y (o () (Y (e
"\ 2m, dy d, ;)\ d; \om) )\ .

(3.76)
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The electron concentration assumes the form

nxmax nymax nzmax

Ron= =23 3 S Foi(ny)] 377)

dd Z"xlnylnzl
where
1
Nso = —= (Erop — Eqpao)
kB

and Erop is the Fermi energy in this case.
Using (1.44) and (3.77) we can study the entropy in this case.

3.2.11 The entropy in quantum box (QB) of HD gallium antimonide

The dispersion relation of the 0D electrons in this case can be written following
(2.158) as

_ -5 2 (2
W(nn/d)"  B/dy)” TG
Zﬁlc Zﬁlc Zﬁlc

= I (E3008HD: 1) (3.78)

where E3ogppp is the totally quantized energy in this case.
The total electron concentration can be written as

MXmax Wmax Zmax

Z Z Z 1(Msomm)] (3.79)

My—1 My=1 Nz=1

Alop = —2V
o= dd@

where
Neorp = (ks T) ™ (Eropmp — E3oqsmp)

and Eroppp is the Fermi energy in this case.
Using (1.31f) and (3.79) we can study the entropy in this case.
In the absence of band tails, the dispersion relation in this case can be written as

. E -
-k’ + Tgl [\/1+a10k2 - 1] (3.80)

2 2
where a9 = % and a;o = <(2h )> [_l - _i}
0

From (3.80), we get

_ E _
kz = a— + a5 — [ale + a13]1/2 (381)
9

where
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E2

g
=55
8a3

-, _
b4ag] Egl Egl ) 10&; 8ayao

ot =0 ) W e |t R, T,
g1 Qg Qg 21 gl

| S

The totally quantized energy Eqpeo assumes the form

~\2 —\? 4
Eqpeo =9 <7T_nx> () <&)
Q dX dy dZ
JEa| |, (n) n(n) y (.82
2 01\a, d, d, '

The electron concentration is given by

_ 2:9-1/7 ﬁxmax ﬁy max
dyd,d

Zfx=1 fMy=1 Mz—q

nzmax

-1(N70) (3.83)

Nop =

where
N70 = (Erop — Eqpeo)/ (ks T)

and Erop is the Fermi energy in this case.
Using (1.44) and (3.83) we can study the entropy in this case.

3.2.12 The entropy in quantum box (QB) of HD II-V materials

The DR of the holes in QDs of HD II-V compounds can be expressed as

_ 2 -\ - \2 S \2
= — (nm — [nym — (n,m [
E s =A = +Au|=— | +Ap|l=) +A =
y3 (Er0008HD ﬂg) 10( a. > 11 < d, > 12( i@ > 13< a. )

5 3 , 2 1/2
— (M o (M) o (Y o (T - (M) o,
+ A = +Ap| = | +A| =) +A = +Aig| = | +A
14(dx> 15<dy> 16(dz> 17(dx> 18<dy) 19
(3.84)
where Eioo0sHD, 1, is the totally quantized energy in this case.
The DOS function is given by
max nymax n max
Ny= —2v_ 3.85
v ) (3.85)

=1 NMy=1 Mz=1

The electron concentration can be expressed as
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_ ny Nz ox

F_1(Neo1rp) (3.86)

x=1 ﬁy:l ]

n
‘max ' Ymax

where

Neotr = (ks T) ™' (Eropn — Eroqsrp, )

and Eroppp is the Fermi energy in this case.

Using (1.31f) and (3.86) we can study the entropy in this case.

In the absence of band-tailing, the OD hole energy spectrum in this case as-
sumes the form

a7 (2) () s ()
QD70,+ =410 ax 1 ay 12 az 13 *X

(3.87)

where Eqpyo, , is the totally quantized energy in this case.
The DOS function is given by

g— Mmax Wmax ™max
14

Tdd Z Z Z 8(E - Eqpromp, +) (3.88)
xydz

Ny=1 ﬁy=1 ny—1

Nopr(E) =

The electron concentration can be expressed as

ﬁx ﬁzmax

Nop = . Z Z ZF—l(rIGOZHD) (3.89)

n
‘max ' Ymax

where

Moo = (ks T) ™" (Epop — Eqoro, =)

and Erop is the Fermi energy in this case.
Using (1.44) and (3.89) we can study the entropy in this case.

3.2.13 The entropy in quantum box (QB) of HD lead germanium telluride

The 0D electron energy spectrum in n-type Pb;.,Ge,Te under the condition of forma-
tion of band tails can be written as
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2
1+ Erf( 101QBgHD +>

[ - \2 =\ 2
= N, 1 nym n,m
Eeo — 0195 | [ = 20| —0345( =

¢ (@>+<@> (@)

6o (ElolQBHD, + ,ﬂg) +¥3 (E101QBHD,¢,72g)

[ =2 /= -V N
=023 {("é‘”) + <rg—">} +o.02(’§l>]
X y z
| (nxn>2 ( L\ % \ n,m i
+ [0.06E,, +0.061 +|—=—|| +0.0066 a) P + =
x X y
N Ego+0411[<""”> (dL)]+0377 "Z” }
2
[oeoe[(""”) ("V"ﬂ 0722("2”>H
(3.90)

where E1g10mp, + is the quantized energy in this case.
The DOS function is given by

nxmax nymax nzmax

Nopr(E El a = Z Z Z 8(E - E10108HD, +) (3.91)

z"xl"yl”zl

The electron concentration can be expressed as

o MXmax Wmax ™max

Nop = : Z Z Z F_1(Meo3mp) (3.92)

where
Neosun = (ke T) ™" (Eropmn — Ero108HD, )

and Eroppp is the Fermi energy in this case.

Using (1.31f) and (3.92) we can study the entropy in this case.

The 0D dispersion law of n-type Pb; ,Ge,Te with x = 0.01 in the absence of
band-tails can be expressed as
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()] o]
| (] ot
o5 e e s 55
oo [(5) ()]

where Egpy1 .« is the totally quantized energy in this case.
The DOS function is given by

Eqpro.s —0.606 {

:l

Eqpri,+ + Ego +0.411 [

:1

o Mmax Wmax ™Zmax

— — gV , = _
Nopr(E) = d,d, - Z > Y 8 (E-Eqpn,) (3.94)
=1 NMy=1 Mz=1

The electron concentration can be expressed as

nxmax nymax nzmax

a ava Z Z F—I(U6O4HD) (3'95)
xAydz 7

Zny=1 F1y:1 nz-1

Nop =

where
Neourp = (ke T) ™' (Erop — Eqpra, +)

and Eroppp is the Fermi energy in this case.
Using (1.44) and (3.95) we can study the entropy in this case.

3.2.14 The entropy in quantum box (QB) of HD zinc and cadmium diphosphides

The DR in HD QDs of Zinc and Cadmium diphosphides can be written as

_ 1 Bpaen.m) | (A [(ma) [Am)
VB(E1OZQBHD,t»ng)— [ L+ F2r31 8B4 y :| |:( ax ) + (—é’y ) + <—az )]
. I BBy (e iy, i)\ | (e (mym ‘2
{ {”‘*B“(”"’”y’”z)(ﬂs ) [(d) ' (dy ) ' <d)H
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+8B,’ (1 - 3312()71271)/, ﬁz)) -B, <1 - 18312('_1)2’_1)/’ ﬁz))

e 12
[(n}”) . <’g_”) N (%L")] (3.96)
X y z

where

2y 2 o7 2
+() 2050

()
o d
ﬁ31(nx’ny> n,)= - 3

N1 2
&’ +

————
G+ ()
and EmQBHD, . is the totally quantized energy in this case.
The DOS function is given by
g ﬁxmax ﬁymax ﬁzmax
_ oV §'(E-E 3.97
dd,d, : Z ( 102QBHD, +) ( )

x=1 My=1 Mz=1

Nopr(E) =

The electron concentration can be expressed as

MXmax Wmax Wmax

Z Z Z F_1(Mgosup) (3.98)

My=1 NMy=1 Nz=1

Ei EI \d;
where
Neosup = (kpT)~ ! (Eropmp — Er0208HD, +)

and Eroppp is the Fermi energy in this case.

Using (1.31f) and (3.98) we can study the entropy in this case

The 0D DR in QDs of Zinc and Cadmium diphosphides in the absence of band-
tails can be written as

X y z
. {ﬁz.ﬁn(ﬁxﬁyﬁz) (e {(271)1 (ndyf)i <ndn>2] ]
+8, (1—@) B, <1—M> (ndﬂ >2+ (%): (nd_ﬂ>2

where Eqpy, - is the quantized energy in this case.
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The DOS function is given by

o ﬁxmax ﬁymax ﬁzma)(
Nopr(E) = Sv Z Z 8§'(E-Eqpr,.) (3.100)

dxdydz My =1 ﬁy:l nz-1

The electron concentration can be expressed as

o MXmax ™max "Zmax

Z F_1(Neotp) (3.101)

Ny =1 f’y:l nz=1

where
Neosrn = (ks T) "' (Erop — Eqpra.+)

and Erop is the Fermi energy in this case.
Using (1.44) and (3.101) we can study the entropy in this case.

3.3 Results and discussion

Using the appropriate equation and the band constants from appendix 15, the nor-
malized entropy in HD QBs of CdGeAs,has been plotted as a function of film thick-
ness for the generalized band model as shown by curve (a) where the curves (b), (c)
and (d) are valid for three and two band models of Kane together with parabolic
energy bands respectively. The case for § = 0 has been plotted in the same figure and
is represented by curve (e) for the purpose of assessing the influence of crystal field
splitting on the entropy in HD QBs of CdGeAs,. The Figure 3.2 exhibits the variations
of normalized entropy in HD QBs of CdGeAs, as a function of electron concentration
for all the cases mentioned as above for Figure 3.1 In Figures 3.3, 3.5 and 3.7, the nor-
malized entropy in HD QBs of InAs, GaAs and InSb has been plotted as a function of
film thickness in accordance with the three and two band models of Kane together
with parabolic energy bands as shown by curves (a), (b) and (c) in the respective fig-
ures. The Figures 3.4, 3.6 and 3.8 demonstrate the concentration dependence of the
normalized entropy in HD QBs of InAs, GaAs and InSb for all the cases of Figure 3.3.
The Figures 3.9, 3.10 and 3.12 illustrate the film thickness dependence of the normal-
ized entropy in HD QBs of InAs, GaAs and InSb in accordance with the models of
Stillman et al., Palik et al. at T=5K and T=15K as represented by curves (a), (b) and (c)
respectively. The Figures 3.11 and 3.13 demonstrate the influence of carrier concentra-
tion on the normalized entropy in HD QBs of GaAs and InSb for all the cases of
Figure 3.11. The Figure 3.14 exhibits the film thickness dependence of the normalized
entropy for HD QBs of InSb and InAs in accordance with the model of Palik et al. at
T=1K as represented by the curves (a) and (b) respectively. The Figure 3.15 illustrates
the concentration dependence of normalized entropy for all the cases of Figure 3.14.
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Figure 3.1: Plot of the normalized entropy in HDQBs of CdGeAs, as a function of film thickness has
been shown in accordance with the (a) generalized band model (6+0), (b) three and (c) two band
models of Kane together with (d) parabolic energy bands. The special case for =0 (e) has also
been shown to assess the influence of crystal field splitting.
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Figure 3.2: Plot of the normalized entropy in HDQBs of CdGeAs, as a function of carrier
concentration for all cases of Figure 3.1.

The Figure 3.16 demonstrates the film thickness dependence of the normalized en-
tropy for HD QBs of InSb and InAs in accordance with the model of Stillman et al. at
T=2K as represented by the curves (a) and (b) respectively. The Figure 3.17 shows the
concentration dependence of normalized entropy for all the cases of Figure 3.16. The
Figure 3.18 depicts the film thickness dependence of the normalized entropy for
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Figure 3.3: Plot of the normalized entropy in HDQBs of InAs as a function of film thickness in
accordance with the (a) three and (b) two band models of Kane together with (c) parabolic energy
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Figure 3.4: Plot of the normalized entropy in HDQBs of InAs as a function of carrier concentration
for all the cases of Figure 3.3.

HDQBs of InSb and InAs in accordance with the model of Palik et al. as represented
by the curves (a) and (b) in this context. The Figure 3.19 models the concentration
dependence of normalized entropy for all the cases of Figure 3.11. The Figure 3.20 ex-
hibits the variation of the normalized entropy with the film thickness in HDQBs of
II-VI materials in accordance with Hopfield model, taking p-CdS as an example and
considering both the cases Ay = 0 and Ao#0) and GaP in accordance with the model of
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Figure 3.5: Plot of the normalized entropy from HDQBs of GaAs as a function of film thickness in
accordance with the (a) three and (b) two band models of Kane together with (c) the parabolic
energy bands.
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Figure 3.6: Plot of the normalized entropy in HDQBs of GaAs as a function of carrier concentration
for all the cases of Figure 3.5.

Rees) as shown by curves (a), (b) and (c) respectively. The Figure 3.21 demonstrates
the concentration variation of the normalized entropy for all cases of Figure 3.20. In
Figure 3.22, the normalized entropy has been plotted as a function of film thickness
for HDQBs of Germanium for both the models of Wang et al. and Cardona et al. as
shown by curves (a) and (b) respectively. The Figure 3.23 exhibits the normalized en-
tropyas a function of film thickness in HDQBs of Tellurium (by using the models of
Bouat et al. at T=10K and T=20K and stressed Kane type materials (taking n-InSb as
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Figure 3.7: Plot of the normalized entropy in HDQBs of InSb as a function of film thickness for all
the cases of Figure 3.3.
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Figure 3.8: Plot of the normalized entropy in HDQBs of InSb as a function of carrier concentration
for all the cases of Figure 3.4.

an example) in accordance with the models of Seiler et al. as shown by curves (a), (b)
and (c) respectively. The Figure 3.24 shows the dependence of the normalized en-
tropy on the carrier concentration for all the cases of Figure 3.23. In Figure 3.25, the
normalized entropy has been plotted as a function of carrier concentration for HDQBs
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Figure 3.9: Plot of the normalized entropy in HDQBs of InAs as a function of film thickness in
accordance with the models of (a) Stillman et al., (b) Newson et al. and (c) Rossler et al. respectively.

104

=
o

w

1

=
o
~

Normalized entropy

=

(=]
-
1

10° T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Film thickness (in nm)

Figure 3.10: Plot of the normalized entropy in HDQBs of GaAs as a function of film thickness for all
the cases of Figure 3.9.
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Figure 3.11: Plot of the normalized entropy in HDQBs of GaAs as a function of carrier concentration
for all the cases of Figure 3.9.
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Figure 3.12: Plot of the normalized entropy in HDQBs of InSb as a function of film thickness for all
the cases of Figure 3.9.

of Platinum Antimonide at T=5K, 10K and Lead Germanium Telluride at T=6K and

10K as shown by curves (a), (b), (c) and (d) respectively.

The Figure 3.26 depicts the plot of normalized entropy as a function of film
thickness of GaSh at T=5K for (a), T=10K for (b) and T=15K for (c) respectively. The
Figure 3.27 exhibits the carrier concentration dependence of the normalized entropy
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Figure 3.13: Plot of the normalized entropy in HDQBs of InSb as a function of carrier concentration
for all the cases of Figure 3.9.
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Figure 3.14: Plot of the normalized entropy in HDQBs of (a) InSb and (b) InAs as a function of film
thickness in accordance with model of Agafonov et al.

for all the cases of Figure 3.26. The Figure 3.28 illustrates the variation of the normal-
ized entropy with film thickness in HDQBs of PbSe at T=5K, 10K, 14K and 16K as shown
by curves (a), (b), (c) and (d) respectively. The Figure 3.29 shows the dependence of
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Figure 3.15: Plot of the normalized entropy in HDQBs of (a) InSb and (b) InAs as a function of carrier
concentration for the case of Figure 1.14.
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Figure 3.16: Plot of the normalized entropy in HDQBs of (a) InSb and (b) InAs as a function of film
thickness in accordance with the model of Johnson et al.

normalized entropy on the carrier concentration in HDQBs of PhSe for all types of band
models as stated in Figure 3.28. The Figure 3.30 shows the variation of entropy on film
thickness for HDQBs of IV-VI materials (taking PbhTe as an example) at T=5K, 10K
and 15K together with Bismuth Telluride as shown by the curves (a), (b), (c) and (d)
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Figure 3.17: Plot of the normalized entropy in HD QBs of (a) InSb and (b) InAs as a function of
carrier concentration for the case of Figure 3.16.
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Figure 3.18: Plot of the normalized entropy in HD QBs of (a) InSb and (b) InAs as a function of film
thickness in accordance with the model of Palik et al.

respectively. The Figure 3.31 models the variation of the entropy with the carrier con-
centration for HDQBs of IV-VI materials and Bismuth Telluride in accordance with the
band models of Figure 3.30. The Figure 3.32 shows the plot of the normalized entropy
as a function of film thickness in HDQBs of (a) [I-V compound (CdSh), (b) zinc diphos-
phide, (c) cadmium diphosphide at T=4K and (d) T=8K as a function of film thickness
respectively. For the purpose of simplified numerical computation, broadening has
been neglected for obtaining all the plots. The inclusion of broadening will change the
numerical magnitudes without altering the physics inside.
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Figure 3.19: Plot of the normalized entropy in HD QBs of (a) InSb and (b) InAs as a function of
carrier concentration for the case of Figure 3.18.
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Figure 3.20: Plot of the normalized entropy in HD QBs of CdS with (a) Ao#0, (b) Ao =0 and
(c) GaP as a function of film thickness in accordance with the models of Hopfield and Rees

respectively.

The signature of 3D quantization is forthwith evident from the Figures 3.1, 3.3,
3.5, 3.7, 3.9, 3.10, 3.12, 3.14, 3.16, 3.18, 3.20, 3.22, 3.23, 3.26, 3.28, 3.30 and 3.32 for all
materials as discussed having different band structures. It can be facilely discerned
from the same that the normalized entropy oscillates with film thickness exhibiting
spikes for various values of film thickness which are totally band structure depen-
dent. The occurrence of peaks in the said figures originates from the totally quantized
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Figure 3.21: Plot of the normalized entropy in HD QBs of CdS with (a) A0, (b) Ao =0 and (c) GaP as
a function of carrier concentration for all the cases of Figure 3.20.
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Figure 3.22: Plot of the normalized entropy in HD QBs of Germanium as a function of film thickness
in accordance with the models of (a) Wang et al. and (b) Cardona et al. respectively.

energy levels of the carriers of the concerned dots. The entropy spectra are found
bearing composite oscillations as function of the nano-thickness. These are generally
due to selection rules in the quantum numbers along the three confined directions.
The dependence of the normalized entropy on the carrier concentration is manifested
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Figure 3.23: Plot of the normalized entropy in HD QBs of Tellurium and stressed Kane type material
(n-InSb) as a function of film thickness in accordance with the models of (a) Bouat et al.,
(b) Ortenberg et al. and (c) Seiler et al. respectively.
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Figure 3.24: Plot of the normalized entropy in HD QBs of Tellurium and stressed Kane type material
(n-InSb) as a function of carrier concentration for all the cases of Figure 3.23.

by the Figures 3.2, 3.4, 3.6, 3.8, 3.11, 3.13, 3.15, 3.17, 3.19, 3.21, 3.24, 3.25, 3.27, 3.29
and 3.31 for the different materials as considered here. It can be ascertained from
the same figures that the entropy of all the corresponding materials decreases
with increasing carrier concentration for relatively higher values of the carrier de-
generacy. Although the entropy varies in various manners with all the variables in
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Figure 3.26: Plot of the normalized entropy in HD QBs of Gallium antimonide as a function of film
thickness in accordance with the models of (a) Seiler et al., (b) Mathur et al. and (c) Zhang

respectively.

all the limiting cases as evident from all the figures, the rate of variations in each

Film thickness (in nm)

case are totally band-structure dependent.

The quantum oscillations of the entropy in HD QBs exhibit different numerical
compared to the same in UFs and QWs. It may be comprehended that
the HD QBs lead to the discrete energy levels, somewhat like atomic energy levels,

magnitudes as
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Figure 3.27: Plot of the normalized entropy in HD QBs of Gallium antimonide as a of normalized
carrier concentration for all cases of Figure 3.26.
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Figure 3.28: Plot of the normalized entropy in HD QBs of Bismuth as a function of film thickness in
accordance with the models of (a) McClure et al, (b) Takaoka et al. (Hybrid model), (c) Cohen and

(d) Lax et al. respectively.

which produce very large changes. This is in accordance to the inherent nature of the
quantum confinement of the carrier gas as dealt with here. In HDQBs, there remain no
free carrier states in between any two allowed sets of size-quantized levels unlike that
found for UFs and QWs where the quantum confinements are 1D and 2D respectively.
Consequently, the crossing of the Fermi level by the size-quantized levels in HD QBs
would have much greater impact on the redistribution of the carriers among the al-
lowed levels, as compared to that found for UFs and QWs respectively.
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Figure 3.29: Plot of the normalized entropy in HD QBs of Bismuth as a function of carrier
concentration for all the cases of Figure 3.28.
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Figure 3.30: Plot of the normalized entropy in HD QBs of PbTe as a function of film thickness in
accordance with the models of (a) Dimmock, (b) Bangert et al. and (c) Foley et al. The plot (d) refers
to Bi,Tes in accordance with the model of Stordeur et al.

The effect of spin splitting of the carriers in HD QBs of p-CdS on entropy can be
numerically investigated from Figures 3.20 and 3.23. It appears that the absence of
the spin splitting constant decreases the numerical value of the entropy in CdS for a
particular range of film thickness. Itappears from Figure 3. 22 that the entropy in
Germanium in accordance with the model of Wang et al. is comparatively low with
that of the Cardona et al. model. The entropies in HDQBs of Te and stressed Kane
type materials are depicted in Figures 3.23 and 3.24 with respect to film thickness and
carrier concentration respectively. It appears that at extremely low and high film
thicknesses, the entropy in HDQBs of Te dominates over that of the corresponding
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Figure 3.31: Plot of the normalized entropy in HD QBs of PbTe and Bi,Tes as a function of carrier
concentration for all the cases of Figure 3.30.
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Figure 3.32: Plot of the normalized entropy in HD QBs of (a) II-V compound (CdSb), (b) zinc
diphosphide, (c) cadmium diphosphide and (d) antimony as a function of film thickness in
accordance with the models of Yamada, Chuiko and Ketterson respectively.

stressed InSh, although, at mid zone thickness, the entropy in stressed InSb exhibits
a high peak together with the fact that the periods of oscillations of the entropy are
comparatively higher in Te than that of stressed compounds.

In Figure 3.25, the entropy in HD QBs of Platinum antimonide and Pb, ,Ge,Te
materials have been plotted as a function of carrier concentration. From Figure 3.28,
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it appears that the entropy in PbSe exhibits the high sharp peak in the mid thickness
zone. From Figure 3.26, it is evident that the entropy in GaSb oscillates with film
thickness exhibiting spikes. In Figures 3.30 and 3.31, the variation of the entropy in
PbTe and Bi,Te; against film thickness and carrier concentration has been demon-
strated in accordance with the appropriate band models. In Figure 3.32, the variation
of entropy in II-V compound, zinc and cadmium diphosphides as a function of film
thickness has been shown in accordance with the appropriate band models. From
Figure 3.30, it appears that the numerical values of entropy in HD QBs of PbTe and
Bi,Te; in accordance with all the band models are extremely higher than all other
materials.

3.4 Open research problems

(R3.1) Investigate the entropy for QBs of the HDS in the presences of Gaussian,
exponential, Kane, Halperian, Lax and Bonch-Burevich types of band
tails for all systems whose unperturbed carrier energy spectra are defined
in R1.1

(R3.2) Investigate the entropy for QBs of all the HD materials as considered in
R4.1.under non uniform strain

(R3.3) Investigate the entropy in the presence of non uniform strain for QBs of
HD negative refractive index, organic, magnetic and other advanced opti-
cal materials in the presence of an alternating electric field.

(R3.4) Investigate the entropy for the QBs of HD negative refractive index, or-
ganic, magnetic and other advanced optical materials in the presence of
an arbitrarily oriented alternating electric field.

(R3.5) Investigate the entropy for the multiple QBs of HD materials whose unper-
turbed carrier energy spectra are defined in R1.1.

(R3.6) Investigate the entropy for all the appropriate HD zero dimensional sys-
tems of this chapter in the presence of finite potential wells.

(R3.7) Investigate the entropy for all the appropriate HD zero dimensional sys-
tems of this chapter in the presence of parabolic potential wells.

(R3.8) Investigate the entropy for all the above appropriate problems in the pres-
ence of elliptical Hill and quantum square rings in the presence of strain.

(R3.9) Investigate the entropy for parabolic cylindrical HD zero dimensional sys-
tems in the presence of an arbitrarily oriented alternating electric field for
all the HD materials whose unperturbed carrier energy spectra are defined
in R1.1 in the presence of strain.

(R3.10) Investigate the entropy for HD zero dimensional systems of the negative
refractive index and other advanced optical materials in the presence of
an arbitrarily oriented alternating electric field and non-uniform light
waves and in the presence of strain.
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Investigate the entropy for triangular HD zero dimensional systems of the
negative refractive index, organic, magnetic and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric
field in the presence of strain.

Investigate the entropy for all the problems of (R4.1) in the presence of ar-
bitrarily oriented magnetic field.

Investigate the entropy for all the problems of (R4.1)in the presence of al-
ternating electric field.

Investigate the entropy for all the problems of (R4.1)in the presence of al-
ternating magnetic field.

Investigate the entropy for all the problems of (R4.1)in the presence of
crossed electric field and quantizing magnetic fields.

Investigate the entropy for all the problems of (R4.1)in the presence of
crossed alternating electric field and alternating quantizing magnetic fields.
Investigate the entropy for HD QBs of the negative refractive index, or-
ganic and magnetic materials.

Investigate the entropy for HD QBs of the negative refractive index, or-
ganic and magnetic materials in the presence of alternating time depen-
dent magnetic field.

Investigate the entropy for HD QBs of the negative refractive index, or-
ganic and magnetic materials in the presence of in the presence of crossed
alternating electric field and alternating quantizing magnetic fields.

a) Investigate the entropy for HD QBs of the negative refractive index, or-
ganic, magnetic and other advanced optical materials in the presence of an
arbitrarily oriented alternating electric field considering many body effects.
b) Investigate all the appropriate problems of this chapter for a Dirac
electron.

Investigate all the appropriate problems of this chapter by including the
many body, image force, broadening and hot carrier effects respectively.
Investigate all the appropriate problems of this chapter by removing all
the mathematical approximations and establishing the respective appro-
priate uniqueness conditions.
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4 Entropy in heavily doped materials under
magnetic quantization

If my only desire is to be desire-less then I will surely get the permanent visa to live in the wonder-
ful world of SOLITUDE.

4.1 Introduction

It is well known that the band structure of materials can be dramatically changed by
applying external fields. The effects of the quantizing magnetic field on the band
structure of compound materials are more striking and can be observed easily in ex-
periments [1-3]. Under magnetic quantization, the motion of the electron parallel to
the magnetic field remains unaltered while the area of the wave vector space perpen-
dicular to the direction of the magnetic field gets quantized in accordance with the
Landau’s rule of area quantization in the wave-vector space [3]. The energy levels of
the carriers in a magnetic field (with the component of the wave-vector parallel to the
direction of magnetic field be equated with zero) are termed as the Landau levels and
the quantized energies are known as the Landau sub-bands. It is important to note
that the same conclusion may be arrived either by solving the single-particle time in-
dependent Schrodinger differential equation in the presence of a quantizing magnetic
field or by using the operator method. The quantizing magnetic field tends to remove
the degeneracy and increases the band gap. A semiconductor, placed in a magnetic
field B, can absorb radiative energy with the frequency (@, = (|e|B/mc)). This phe-
nomenon is known as cyclotron or diamagnetic resonance. The effect of energy quan-
tization is experimentally noticeable when the separation between any two
consecutive Landau levels is greater than kzT. A number of interesting transport phe-
nomena originate from the change in the basic band structure of the semiconductor
in the presence of quantizing magnetic field. These have been widely been investi-
gated and also served as diagnostic tools for characterizing the different materials
having various band structures [4-7]. The discreteness in the Landau levels leads to a
whole crop of magneto-oscillatory phenomena, important among which are (i)
Shubnikov-de Haas oscillations in magneto-resistance; (ii) De Haas—van Alphen os-
cillations in magnetic susceptibility; (iii) magneto-phonon oscillations in thermoelec-
tric power, etc.

In this chapter in Section 4.2.1, of the theoretical background, the entropy has
been investigated in HD nonlinear optical materials in the presence of a quantiz-
ing magnetic field. Section 4.2.2 contains the results for HD III-V, ternary, and
quaternary compounds in accordance with the three- and the two-band models
of Kane. In the same section, the entropy in accordance with the models of Stillman

https://doi.org/10.1515/9783110661194-004
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et al. and Palik et al. has also been studied for the purpose of relative comparison.
Section 4.2.3 contains the study of the entropy for HD II-VI materials under magnetic
quantization. In Section 4.2.4, the entropy in HD IV-VI materials has been discussed
in accordance with the models of Cohen, Lax, Dimmock, Bangert and Kastner, and
Foley and Landenberg, respectively. In Section 4.2.5, the magneto-entropy for the
stressed HDKane-type materials has been investigated. In Section 4.2.6, the entropy
in HD Te has been studied under magnetic quantization. In Section 4.2.7, the mag-
neto-entropy in n-GaP has been studied. In Section 4.2.8, the entropy in HD PtSh, has
been explored under magnetic quantization. In section 4.2.9, the magneto-entropy in
HD Bi,Te; has been studied. In Section 4.2.10, the entropy in HD Ge has been studied
under magnetic quantization in accordance with the models of Cardona et al. and
Wang and Rossler, respectively. In Sections 4.2.11 and 4.2.12, the magneto-entropy in
HD n-GaSb and II-V compounds has respectively been studied. In Sections 4.2.13 the
magneto-entropy in HD Pb; ,Ge,Te has been discussed. The Section 4.3 explores the
result and discussions andSection 4.4 contains 11 open research problems.

4.2 Theoretical background
4.2.1 Entropy in HD nonlinear optical materials under magnetic quantization

The dispersion relation in non-linear optical materials can be written as

N P eBhEg | (Egy+AL) || - Af-aL
y(E) = zf*fs( )+ zf*fa( )k c g (Eg00+§AL):| [E+Ego+6+ 3,
4.1

where,

}?(E)=7gEg+Al {(E E)(E+E+ A)+6(E+E+ A) —(A? Az)}

P (Eg+ A1) s7 37 1)+
and

. E¢(Eq+A)) [, -

=T, gy (650 (55

The (4.1) can be expressed as

R (bies\ (W) _ [ [aby g @ +bye=abyp 10 @y () by
2m  \boey ) \2m| g ¢ N g &

EBSCChost - printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



4.2 Theoretical background =— 203

1 a b\ 1 ab, 2 2ab) (A - A7)
-2 (-9) (l cl) <cHE+1>“ oo gie-an) - 56 @EFD }
RIZ\ [ (byec\ [ (6 A1-A1\  a 5 A=A\ g
“Nam ) \big ) [\27 6AH @E+1)  \2~ 6A, ((‘:|E+1)} }
o | P p
e |:_ +1Eg i E+Egi- %AH (42)
where

S _ = - 2 2
o eBh(Fg0+§AH) (_Eg+2AL) ’ 1:(—Ego+c;l)’61: Ego+5+AH—AL
6(Eg0 + AH) (Eg + §Al) (

and

3[4y, A2
L _§
P2= 2 { 34

Therefore, the dispersion relation of the conduction electrons in HD nonlinear optical
materials in the presence of a quantizing magnetic field B can be written following
the methods as developed in Chapter 1 as

e - P
2’*2 =U,: (E.nng) +iUy s+ (E 11, ) (4.3a)
m
where B B
o -eB(/_ 1\(bjcL 1+Erf(E/ny) ab . -
Uns (Bomg) = { m, (n+§> (ch> i 2 7, DoEng)

Eu+bHCH ab 1 (. a\(, by\|[1+Ef(E/n,)
& o(Eng) + g (1 5|><1 E|){ 2

1 b\ -
-7 - q)(l—a)cwl,anw

) [ 52 )

heB(_ 1 BHEL 5 AH Ai o _
om <n+§>{<ﬁli’l> [(2 Fen, )P B

5 A-ALN o Pi1_(p = PR (p 7
+ ¢ cl B, E, +—=—c(pB,.E, + ——=-——C|(fsE s
<2 6A, ) (8, '@” E, (8221 (Egy + 24)) (B Em)

aby | -
N {5)’0 (E;ng)
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o Erf(E/m,)]" i b

U2’+(E)n’ng):[l+ rf; /flg)] [;(1_:)( q) (FuEong

2&1_7“ 3 _ “heB 1 BHZ‘L 6 Aﬁ_AZL _ = =
fog, (AmAUPEER) <“+§>{(c|m) <5+ 64| )aD(ﬁz’E’ng)

Jlak mmf@w—ﬁﬂ—ﬂ%ﬂ@ﬂ

Eg, (Ego +%AHS)
_ 1, 1
Bi=C1oBy= 7 =@ fy=
R Ego ’ (Ego + %AH)
C(B,,E.n,) = 2 exp( - u?) x i —eXp(#) sinh(pw;) |, u; = L+BE
e _Birlg\/ﬁ ' p=1 f) v Birlg
and
o [ /n B
D(B,E.ng) = B exp( - ;)
L ing
EEM at the Fermi level can be written from (4.3a) as
M . (Ergan, 1, 1g) = ﬁlﬂﬁl, + (Erprp, 11, 1g) (4.3b)

where Eppyp is the Fermi energy in this case.

Therefore, the double valued EEM in this case is a function of Fermi energy,
magnetic field, quantum number and the scattering potential together with the
fact that EEM exists in the band gap which is the general characteristics of HD

materials.
The complex density-of-states function under magnetic quantization is given by
_ _ Nmax Xl
Ng(E) = Npg(E) +iNg; (E \/ m [2\/— } (4.43)
where

X=

2
; V(O s B + (U s (Ban,) - (U : (ERny))
- 2

and x'and )7 are the differentiations of x and y with respect to energy E.
Therefore, from (4.4a), we can write
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(4.4b)

NBReal th\/ 7*2\/_

and

Nmax ’
NBImagmary n2h2\/ 2, Z\/— (4.4C)

The electron concentration is given by

|

r=1

~ gveB ﬁlelmax
2mR V2 i

1/2
_ _ _ _ 2 _ _
\/Ul, + (EFBHD: fla rlg)z + (UZ, + (EFBHD> fl: rlg)) + (Ul, + (EFBHD> ﬁ: rlg)):|

~I
A

\/(UL + (Erprp, 11, qg))z + (Uz, + (Epprp, 11, ng)) + ([71, + (Ergap, 1, ’Ig)ﬂ 1/2}
(4.5)

Using (1.31f) and (4.5), we can study the entropy in this case.

4.2.2 Entropy in QWs of HD IlI-V materials under magnetic quantization

(a) The electron energy spectrum in III-V materials under magnetic quantization is

given by

-l DR Z 4+ S—
Eg,(Eg, +A)(E+Eg, + 2A) 2 2m; ~ 6mc(E+Eg, + 2A)
(4.6)

E(7 +Ego)(E+Eg0 +A)(Eg0 + %A) _ (fl-}— l)ha)o-f- hzl_(z eBhA

The (4.6) can be written as

F,—b}‘zﬁ (M)h ! <1— E) <1— 2) -
c e el e

= r’1+1 hwo + Uil + cBha

= 5 °" 2m, 6mc(1+CE)(Eg, + 2A)

Ol =
N
—
|
all Ql
~—
7 N
—_
|
all S
N~

—
—
: —_
1
N
—_

1

where, a=z-.,b Ego cand c= Boo v
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Therefore

?T(s) + (@)1(4) + E (1 - g) (1— g) - (ﬁ+ %) h@o]

11)-8. [G(C.En) - iH(C.Eny)| - Z,,’j 1) (4.7)
where,

%<1—s><1—9>+ﬁm
|3

_p
{exp 4 }smh(p u)} 1+CE,

'EMg

Cng
Therefore
22 - _ E -1
hhz = [%}eo(g,ng) {%} +(ac+bc ab) [1+Erf E/rzg]
_ -1r_ _ _ o
+[11-9 (1-8) - (n+ Yhao - [M} {G(C,E, ng) ~iH(C.E.n,)]
(4.8)
Therefore, the dispersion relation is given by
WK o
>, =Us, + (E,n,n,) +1Us, + (E 1) (4.9a)
where

_ _ - 1+Erf(E/ng)] ~1 . 1+ Ef (E/ng)] ~!
Ug)t(E,n,ng): [%%(E,ng)x { + r2 ’Ig:| +(ac be- ab)yo(E ﬂg) {+ r2 ng}

0909 (e [27 ocea]

and

o

~
g

5

0. (En) -5 f’ffz“”’”} HC
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The complex Landau energy E,xp; in this case can be obtained by substituding k,=0
and E = Eyp in (4.9a)
EEM at the Fermi level can be written from (4.9a) as

m’ s (Erprp, 1,1g) = ﬁlﬂ?} + (Erprp, 1,1, (4.9b)

Thus, EEM is a function of Fermi energy, Landau quantum number and scattering
potential together with the fact it is double valued due to spin.
The complex density of states function under magnetic quantization is given by

o Nmax 7
(E) NBReal(E) +1NBImagmary n2h2 \/ Z |:2\/— :| (4103)

where

and X’ 1 and )71are the differentiations of x and y with respect to energy E .
From (4.10a), we can write

_ _ B )
N, E)=——./2m. — 4.10b
BReal(E) V2 Z 7% (4.10b)

and

_/

Nmax
NB Imagmary n2h2 \/ m; Z (4.10C)

The electron concentration is given by

aah s
m
- 2m2h? ,,Z

=0

1/2

\/03, + (Erpap, 1, ﬂg)z +(Us, + (Ergp, 1, Tlg))z +(Us, + (Erprp, 1, Ug))]

»l

~I

- — P — o 1/2
L(r) [\/(Ua, + (Ergrp, Mo Mg))" + (Us, + (Ergap, M, Mg)) + (Us, + (EFprp, 1,7g))] ]

(4.11)

r=1

Using (1.31f) and (4.11) we can study the entropy in this case.
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(b) Two band model of Kane
The magneto-dispersion law in this case is given by

272
z

- 1N, 1. -
e =y, (E ng) - <n+ 5) hwo ¥ 5g MoB (4.12a)

where g'is the magnitude of the effective g factor at the edge of the conduction
band and p,is the Bohr magnetron.
EEM at the Fermi level can be written from (4.12a) as

M’ (Ergp, M) = Mcy 2(Ersap, Ng) (4.12b)

Thus EEM is independent of quantum number.
The electron concentration is given by

_ geB Tmaxr -~
rrvzhz \/m Z [ (Us, + (Ergrp, 1, 1)) )Y+ Z , + (Epgrp, 1, Tlg))l/2
(4.13)

where

_ _ B _ _ 1 1. -

Us, + (Ergup, 1, Ng) = y,(EFgHD, Mg) — (n + i) hwo ¥ 58 MoB
Using (1.31f) and (4.13a), we can study the entropy in this case.
(c) Parabolic Energy Bands
The magneto-dispersion law in this case is given by

n’i2 _ 1 1. -

e ys(Esng) - (n + 5) hwo ¥ 58 MoB (4.14a)
EEM at the Fermi level can be written from (4.14a) as

m’ (Ergups Ng) = M.y'3(Ersrps 1) (4.14b)

Thus, EEM in heavily doped (HD) parabolic energy bands is a function of Fermi en-
ergy and scattering potential, whereas in the absence of bandtails the same mass is
a constant quantity invariant of any variables.

The electron concentration is given by

r=s

eB Nmax B B o B B
=& ym Z { (U, (Ersans 1)) + >~ L()[(Us (Erans 1. 1))

242
m2h F=1

(4.15)
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where
_ - _ _ 1 1_. -
Us, + (Erpp, 1, 1) = y3(Erprp, g) — (n + 5) hwo ¥ 58 MoB

Using (1.31f) and (4.15), we can find the entropy in this case.

(d) The model of Stillman et al.
The (1.107) under the condition of band tailing assumes the form

| =/ (E0)? - Atys (Eong)]
i = \/ e (4.16)
2ty

Therefore, the magneto-dispersion law is given by

i =Us(E,n,ng) (4.17a)
where

bEnm - | V(0 -ty Eng)] 2B (1

7B Tg) = 2t h 2
The EEM at the Fermi Level can be written from (4.17a) as
_ w— -
m (Eppnp, Ng) = > U'7(Erpap, 1, 1,) (4.17b)

The electron concentration is given by

_ geB Tmaxr - =S i
no = ivzhz \/”Tc Z l:(U7(EFBHD,n, qg))1/2+ Z L(7)[(U7 (Epgap, 1, ng))l/z (4.18)
n=0 =1

Using (1.31f) and (4.18), we can study the entropy in this case.

(e) The model of Palik et al

To the fourth order in effective mass theory and taking into account the interactions
of the conduction, light hole, heavy-hole and split-off hole bands, the electron en-
ergy spectrum in III-V materials in the presence of a quantizing magnetic field B
can be written as
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- 1 Wi 1 /m . _
E=Jy+ (n+ i) hwo + 2@2 + 3 <—;) hwog, + ksox (n+ 7> (hwo)z
) (4.19)
. g AN 1. K2
+ k31 ahwg ,:: + k3ot hwo(n+ —) + me
where,
- 1 ~ ol -
1=~ iahwo {(1—)’11)/(2“(11) }]32,
- 1. 5 5 S _ _
J2= 3(1—)(11) —(2+x3 |]2+xu)yu + 5(1—X31)(1+X11)(1+)’11) ;
- (1-)711)} {(1-)711)”
=241- — — ,
8o { [(2+X11) Y
. _ _ 3., (1-yy) 2_
k3o =(1-yu)(1 —xn){ {(2+ % +X3,). (2+x1111)2} - 3J’11}
- - (1—)711)} 3. oy A=y)| 2,0
k31=(1- —|. 2+ =X +Xj3). --(1-x ,
51=(1-yn) {(2_”(11) ( > 1) (2+7(11)2 3( 1)¥u
1 1 AN 7
. _ _ e _ m
ks = - {<1+ 5"%1) /<1+ 5"11)] (1-yn)*xu = [1+ <E_g0>:| and y;; = m—;
Under the condition of heavy doping, the (A.20) assumes the form
J3uk + T35, + (R)E + J36, + () — y5(E, ng)=0 (4.20)
where
(). | oo w 1
]34 = ak32 <2mz> )35, + (n) = |:2m:: + ak31ha)0. Zﬁlz. + akgzhwo. Zﬁlz (n + 2):| ,
- - 1/m. _ 1\ - 1.1?
]36’ + (fl) = |:]31 + Z (—C) thg'O ik30a(h(l)0)2 (fl+ —) +k320( |:(h(l)0)(fl+ —):| :|
mo 2 2
The (4.20) can be written as
,_(g =A35, + (E, n, l’lg) (4213)

where,
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Ass + (E; 1) = (234) - {—735, +(n)+ \/(735, L (1)* 4T3 {736, + (1) —y;(E, ’lg)H

EEM at the Fermi level can be written from (A.22a) as

% T = hz a7 = —
m s (Erpap, 1,1g) = S A (Ergrp, 1, 1g) (4.21b)

Thus, EEM is a function of Fermi energy, Landau quantum number and the scatter-
ing potential.
The electron concentration is given by
eBg Nmax
v

o= 3 > [1734HD(EFBHD, 1,Mg) + Z3unp (Ersp, 1, ?’lg)} (4.22)
n=0

where

Y3urp (Erprp, 1, 1g) = [\/ABSHD, + (Ergrp, 1, 1g) + \/ABSHD, + (Erprps 1, rlg)}

and

i

Z3urp (Ersrp, 1) = > Lp(P)[Y34mp (Ersrp, 1, 1)]
=1

Using (1.31f) and (4.22), we can study the entropy in this case.
4.2.3 Entropy in HD 11-VI materials under magnetic quantization

The magneto dispersion relation of the carriers in heavily doped II-VI materials are
given by

I —7 zeB — ]. FRAES 7 zeB — 1 1/2
y3(E,r1g):aoT(n+i>+b0k§i}lo[7(n+i>} (4.23)
The (4.23) can be written as
Tcﬁ =Us. (E, n, )]g) (4.24a)

where
—— = | - 2eBay /. 1\ - [2eB/_ 1\
Us: (E.n,ng) = (b'o) 1{)/3(E,)1g)— h °<n+§) ¢AO{T <n+§)] }

EEM at the Fermi level can be written from (4.24a) as
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. o, _
m.(Erpup, Ng) = 5 U s+ (Ergap, 11, 1g) (4.24b)

The electron concentration is given by

B eBg Nmax B - - - )
No = nzi; Z [Y35HD (EFBHD, n, rlg) + Z35HD (EFBHD: n, qg)} (4‘25)
n=0

where

Y3sup (Ersmp, n,n,)= [\/DS+ (Erap, 1, Ng) + \/Ug- (Ergmp, 11, ilg)}

and

vl

Z34up (Ersrp, 1. Mg) = > Lp()[Yasun (Ersap, 11, 1)
=1

Using (1.31f) and (4.25), we can study the entropy in this case.

4.2.4 Entropy in HD IV-VI materials under magnetic quantization

The electron energy spectrum in IV-VI materials are defined by the models of Cohen,
Lax, Dimmock and Bangert and Kastner, respectively. The magneto entropy in HD
IV-VI materials is discussed in accordance with the said model for the purpose of
relative comparison.

(a) Cohen Model
In accordance with the Cohen model, the dispersion law of the carriers in IV-VI
materials is given by

_ = Fn2  p2 E n*
E(1+aE)= A + p: kR py(1+ak) + Wy
2my  2m;  2m, 2m, 4mym’,

(4.26)

where, ﬁizhl}i, i=X, ¥, z, my, my and ms are the effective carrier masses at the
band-edge along x, y and z directions respectively and ﬁl,z is the effective-mass
tensor component at the top of the valence band (for electrons) or at the bottom of
the conduction band (for holes).

The magneto electron energy spectrum in IV-VI materials in the presence of
quantizing magnetic field B along z-direction can be written as

n’i
2m;

E(1+aE)= (r"z + %) hw(E) + =8 poB+ %a (Flz +R+ %) Ww?(E) + (4.27a)
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where,
1/2
- e|B
w(E)= €] 1+aE( _)
mlmz m2
Therefore, the magneto dispersion law in HD IV-VI materials can be expressed as
| -
=U, (E,n 4.27b
o, 6. (E;n,ng) (4.27b)
where,
- _ 1\ heB 1. - 3a/, _ 1\/ heB \’
U, = (E, En,)- S| —7F g u,B-= | n? -
o+ (B [n( (14 3) e 7 3 B (P4 ) ()

- a/_ 1\ heB my\ 3¢*/, _ 1 heB \’ m,
_%(E’ng)[Z(mZ)r‘nlr‘nz<1_m’2)+8<n+"+2 )\,

EEM at the Fermi level can be written from (4.27b) as

1, (Eggups 1, 1g) = M3U 16, + (Epgrp, 71, 1g) (4.27¢)

Thus, EEM is a function of Fermi energy, Landau quantum number and the scatter-
ing potential.
The carrier statistics in this case can be expressed as

Nmax

_ eB
Ny = & vm Z [ (Ute+ (Erprps 1)) "> + ZLB )(Usé + (Ergrp, 1, ng))l/z

h
(4.28)

Using (1.31f) and (4.28), we can study the entropy in this case.

(b) Lax Model
In accordance with this model, the magneto dispersion relation assumes the form

E(1+aE)= fz+1 hw (E)+hzl_(§+1 g'B (4.29)
B Y A N T '
where
_ eB
wo3(E) = —=—
mym;

The magneto-dispersion relation in HD IV-VI materials, can be written following
(A.30) as
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_ 1 Rk 1.
Y2(Eng) = n+ s +hw03(E)+2, J_rigyOB (4.30)
3

(4.30) can be written as

Wi

2 U17 + (E ng) (4313)
where

_ 1 - 1. -
Ui (B. 1) = (B g) ~ (7 5 ho )2 3870

EEM at the Fermi level can be written from (4.31a) as

m’ (Ergup, Ng) = m3U' 17,5 (Erprp, 1 Ng) (4.31b)

The electron concentration can be written as

Nmax

_ eB
no = g‘;hz vm Z [ (Urz+ (Ergp, ,1,))' + ZLB ) (U7 (Ersap, 1,1,))"

(4.32)

Using (1.31f) and (4.32), we can study the entropy in this case.

(c) Dimmock Model
The dispersion relation under magnetic quantization in HD IV-VI materials can be
expressed in accordance with Dimmock model as

_ _ 2B [ 1\F 1 N T2
B +apEng) 5 (103) 5 (e - i ) +an Bk (s - )

T
me m

i wkk riE w2 Rk Rk K 'k
Sttt A —— —— 4 — o ——=
2m, 2m; 2mg;  2my 4momS 4mpm' o 4mimg o 4mpm)t

2B/_ 1\HK /1 1 W 1
=— N+ )|\l =— |t X | ===
h 2) 2 \m{ my 2\m;p my

n* 2B/ 1\, _[ h'eB h"eB 1 n
ta|——o = (At 2 ) X |t =——— | (A 2 | + —— X
4m;mi " h 2 2mm;h  2m/m; h 2] 4mmf

(4.33)

where X = k2
Therefore, the magneto dispersion relation in HD IV-VI materials, whose un-
perturbed carriers obey the Dimmock Model can be expressed as
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]_(g = [7170 (E, 77[, flg) (434)
where
Urro(E, 7, ) = [290] '~ o (B, ) + (@5 (E, T mg) + 4PoRo (B, my )], (4.35)

_ an G (B, = i LI +ah3eB . o1
Po= amymy P = 5 T 2 2)\m;mf " mpymg

and
2
Ro(E, n,n,) = y5(E, ng) + aeBy,(E, n,) (ﬁ+ ;)h(mll+ + r?lll‘) - m?rz_:l; [eB <ﬁ+ %) }
(4.36a)
EEM at the Fermi level can be written from (4.34) as
. o, -
m (Erpup, 1, 1g) = 5 U'17(ErpHp, 1, 1g) (4.36b)

Thus, EEM is a function of Fermi energy, Landau quantum number and the scatter-
ing potential.
The electron concentration can be written as

B o eBﬁmax o ) = L )
Mo = il;hz Z |:(Ul7(EFBHD>n> ng))1/2+ Z L(7)(Uy7 (Egppp, 0, ng))l/Z 4.37)
n=0 =1

Using (1.31f) and (4.37), we can study the entropy in this case.

(d) Model of Bangert and Kastner
In accordance with this model [8], the carrier energy spectrum in HD IV-VI materi-
als can be written following (3.68) as

i(g ]})2/ 1 (4.38)
— + = = .
ph(Eng)  ph(E ng)

where

)= ———,

_ 1 _
P (Esng) = —=—==,pp(E. 1, =
\/S1(Eng) Sy(E, 1)
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216 —— 4 Entropy in heavily doped materials under magnetic quantization

e e R NS

SiE.n) = [200(Eny)] :, {e1(@E.Ep) ~iDy(@E, Eg) } = {ealeaF. Ey)
R (+) i P
—1D2(a2E,Eg)}+ o {c3(a3E,Eg)—1D3(a3E,Eg)}

and

Eg
S+Q°
+ % {¢s(a3E, Eg) —iDs(asE, Eg)}]

[

SiEny)+ Py {(z“” (O Ey) - D@E E)

Since Sy(E,n,) and S,(E,n,) are complex, the energy spectrum is also complex in
the presence of Gaussian band tails.

Therefore, the magneto dispersion law in the presence of a quantizing magnetic
field B which makes an angle 6 with k, axis can be written as

I = Uss(E, ,1,) (4.39a)
where

Us(E,n,m,) = [pfl (E,ng)sin’6 + p, (E, rzg)cosze} -

2¢B,_ 1 _ _ _ _ . _
2 1 D[4 (BB 65 (B s+ .y o)

EEM at the Fermi level can be written from (A.39a) as

. _ n o -
m,(Egpnp, 1, 1,) = 5 Real part of [Uig(Ergup, 11, 1) (4.39b)

Thus, EEM is a function of Fermi energy, Landau quantum number and the scatter-
ing potential and the orientation of the applied quantizing magnetic field. The elec-
tron concentration can be written as

_eg,B wmar _ L= S _
Ao = ri‘?/? > Real Part of [Z {(Ulg(EFBHD,n, ne))"*+> " L(F)(Urs(Ersp, 1, qg))l/zﬂ
n=0 r=1

(4.40)

Using (1.31f) and (4.40), we can study the entropy in this case.
(e) Model of Foley and Langenberg

The dispersion relation of the conduction electrons of IV-VI materials in accor-
dance with Foley et al. can be written as [9]
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= = 1/2
- o _ _ E I
E+ 7g =Eo(k) + |[E, (k) + ?g]2 + Pl I+ Pk (4.41)
here E, (k)= "5 & F_(g)= IR, Ik h bution from th
where E, (k) = 5= zmH+’ (k)= e Zh represents the contribution from the

interaction of the conduction and the valence band edge states with the more dis-
_171 1] 1 _171 1
tant bands and the free electrons term, ’I =3 [m—tc + mw] — = i[m_lc + f"_lv]
Following the methods as given in chapter 1, the &1sper510n relation in HD

IV-VI materials in the present case is given by

— — 2 — — =
H)’s(E Ng) + Eﬁ] - {thg + hz@” = {hzkﬁ + hzkﬁ} + E—éo
) 5 — — — —

2m; - 2m 2m; 2m 4

P [hsz Hi2

2
0|3 2|}+P2k2+P2k (4.42)

Therefore, the magneto-dispersion relation in HD IV-VI materials can be written as

2 = 2_
_ - _ heB 1. hx .
2 —S0 i Z —_
BER) + 5 +EgnEng+ |51 9+ 2|y5(Enny)

. _0] heB(n + 2) _ |heB(n+3) hfz

2 m; 2mH mi 2my
_ .

+ h,eB <ﬁ+ 1) + h,— +Pix+ P — 2¢B ( 1) (4.43)

mt 2) " 2my 2

where I}ﬁ =X Therefore, the magneto dispersion relation in IV-VI HD materials,
where unperturbed carriers follow the model of Foley et al. can be expressed as

I = Uso(E, 1, 1,) (4.44a)
Where
Uo(E, 7, 1) = [2Do] ™ {—5191(1_5, n,ng) + {5151(}_5 1, 1g) + 4Po;Ror (E, 1, ’Ig)} }

LA IS
4 |omh) (mp)’

Do1 =
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o WeB (_ 1\ ., WEg,, HKeB(n+l) W . Eg,
Gor(Eo 1 1g) = {mlﬁﬁ ("+5>+Pﬁ+ am mim; +E(Y3(E’”g)+7)

o _ o 2heB [ - E 1
R91(E’ rlg’ n) = l:)%(E’ rlg) +EgoY3(E’ rlg) - m- <YB(E’ rlg) + §0> <n + _)
1

. heB (, 1) —, 2eB <, 1)}
~E,, — (n+=)-P>.==(n+=
fomt 2) "t h 2

EEM at the Fermi level can be written from (A.44a) as

2

— % — h ’ I —
m (Eppup, N, 1g) = 5U 19(EFBHD 11, 1) (4.44b)

Thus, as noted already in this case also EEM is a function of Fermi energy, Landau
quantum number and the scattering potential.
The electron concentration can be written as

__geB

Ny e [f {(019 (Erprps 1, Tlg))l/z + ; L(7)(Uso(Erprps 1, Ug))l/ZH (4.45)

n=0

Using (1.31f) and (4.45), we can study the entropy in this case.

4.2.5 Entropy in HD stressed Kane-type materials under magnetic quantization

The dispersion relation of the conduction electrons in HDKane-type materials can
be written following (1.206) of Chapter 1 as

i I K2
ZEn,) BEn) GEn) (4.46)
where
a)(Eny) = ———— by () = ———
VPIEy) Q(Esng)
and
C|(Esng) = %
S)(Esng)

The electron energy spectrum in HDKane-type materials in the presence of an arbi-
trarily oriented quantizing magnetic field B which makes an angle a;, §; and y, with
ky,k, and k, axes respectively, can be written as
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(K2)2=Usa(E. 1, 1,) (4.472)

Where

Ui (E, n,n,) = L(E, n,)[1-(E, n,n,)]

L(E,n,) = [[an (E, n, )’ cos’ay + [by (E, n, )| cos’B, + [cn (E, 1) cos’y]

L(E,n,n,)= ZZB (n+ )[au(E Ng)bu(E.ng)en(Eng)] ' [L(E.n,)]?

EEM at the Fermi level can be written from (4.47a) as

2

. _ h— _
m (Egppp, M, 1g) = S Uu (ErBrp, 11, 1) (4.47b)

From (4.47b) we observe that EEM is a function of Fermi energy, Landau quantum
number, the scattering potential and the orientation of the applied quantizing mag-
netic field.

The electron concentration can be written as

_ geB["

Nmax
o= "o [Zo |:(U41(EFBHD>ﬁarl T ZL (Ust (Erprp, 1 1,))" 2” (4.48)
n=

Using (1.31f) and (4.48), we can study the entropy in this case.

4.2.6 Entropy in HD Te under magnetic quantization

The magneto dispersion relation of the conduction electrons in HD Te can be ex-
pressed as

I =Usa (E, 7,my) (4.49a)

= -1/2
2B ) i - ¢1¢2¢3>} }

EEM at the Fermi level can be written from (4.49a) as
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220 — 4 Entropy in heavily doped materials under magnetic quantization

- _ = _
m, (Eppup, n,1g) = 5 U 42+ (Epgrp, 1, 1) (4.49b)

Thus from (4.49b), we note that EEM is a function of three variables namely Fermi
energy, Landau quantum number and the scattering potential.
The electron concentration can be written as

B — eB Nmax B B B —
no= i/th [Z {(Uz;z, + (Ergrp, 11, ’1g + ZL (Usz, + (Erprp, 1, ng))l/ZH
n=0

(4.49¢)

Using (1.31f) and (4.49c), we can study the entropy in this case.

4.2.7 Entropy in HD Gallium Phosphide under magnetic quantization

The magneto-dispersion relation in HD GaP can be written following (1.248) of
chapter 1 as

I =Uss(E, n,n) (4.50a)
where

Uss(E,ng) = (252) -1 szg(E, Ng)b+c—2Db —4&}3% (n+ %)}

{[CZ « 4bey,(E,n,) + 45" - 42Db) - 52 (1 )

o B B B B B B -1/2
(2ab°D + 4y, (E,n,)b’a + abc - 2b°ay, (E, ng) - b'c) } }

2 2 27\ ?
CELLY 5 S L3 B S
m, 2mH

EEM at the Fermi level can be expressed from (4.50a) as

IR o,
m (Ergup, N, 1g) = > U 43(EFBup, 1, Ng) (4.50b)

Thus, from (4.50b) it appears that EEM is the function of Fermi energy, Landau
quantum number and the scattering potential.
The electron concentration can be written as

_ geB[uxr _
ng = i‘;hz [Z |:(U43(EFBHD:n, 1)) "%+ ZL (Uss(Erpaps 1, ng))1/2” (4.50¢)
n=0

Using (1.31f) and (4.50c), we can study the entropy in this case.
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4.2.8 Entropy in HD platinum antimonide under magnetic quantization

The magneto dispersion relation in HD PtSb, can be written as

k. = Usu(E, 2,1 (4.51a)

where

_ 1 - - _ Eoa— = = =
U44(E,n,)’1g):E[T71(E,H,T2g)+\/T%( sn,ng)+4T41T71(E, ,ﬂg)L

EEM at the Fermi level can be written from (4.51a) as

PO e
m (Erpup, N, 1g) = > U 44(ErpHp, 11, 1) (4.51b)

Thus, from the above equation we infer that EEM is a function of Landau quantum
number, the Fermi energy and the scattering potential.
The electron concentration can be written as

_ geB[waxr - _ ) = )
o= il;hz [Z {(UZ‘S(EFBHD’n’ '73))1/2 + ZL(r)(U45(EFBHD>n; ng))l/ZH (4.52)
n=0 =1

Using (1.31f) and (4.52), we can study the entropy in this case.

4.2.9 Entropy in HD Bismuth Telluride under magnetic quantization

The magneto-dispersion relation in HD Bi,Te; can be written as

i = Uss(E,ng, 1) (4.53a)

where

nEng) - (e ) 22

w1

045 (E, )’lg, fl) =

and
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Mo
- 12
o o (@)
(11220(33— 243

EEM at the Fermi evel can be written from (4.53a) as

M31 =

2

- - _
— U 45(EFpHp, 1, Mg) (4.53b)

m’ (Ergrp, Ng) = 5

The electron concentration can be written as

_ geB[wmar - res i
o= ighz [Z {(U““(EFBHD’ n, ng))l/z + > L(7)(Uss(Erprp, 1, ng))l/ZH (4.54)
n=0 =1

Using (1.31f) and (4.54), we can study the entropy in this case.

4.2.10 Entropy in HD Germanium under magnetic quantization

(a) Model of Cardona et al.
The magneto-dispersion relation in HD Ge can be written following (1.300) as

I = Use(E, g, 1) (4.55a)
where
_ — = — _ /2
o 2m _ E E2 E, 2B _ 1]
> _ 8 8 g =
UrelBorto) = 5 {YB(E’%)* 2 [T° T h )

EEM at the Fermi level can be written from (4.55a) as

= i - - _
m (Eppup, N, 7g) = > U 46(EFBHD, 1, 1g) (4.55b)

From (4.55b) it appears that EEM is a function of Fermi energy and Landau quan-
tum number due to band non-parabolicity.
The electron concentration can be written as

B *VeB Mmax [ B ) r=s o ) )
o= izhz [Z {(U%(EFBHD’H’ ng))"? + > " L(r)(Uas(Erprp, 1, ng))mH (4.56)
n=0 =1

Using (1.31f) and (4.56), we can study the entropy in this case.
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(b) Model of Wang and Ressler
The magneto-dispersion relation in HD Gecan be written following (1.321) as

k; = Usz(E,ng, 1) (4.57a)
where
_ m, 1 - 1/2 eB
N LLCTIR W PR e | B - _eb
Uy (E, n,m,) = <h2a6) {1 as (n + 2) hw, {67(”) 4agy, (E, ng)} } NO 7
and

6, (7) = {1 ; (as)z{(fw ;)hm}z ~2as (m %) hw, +4ag (m %) hw,

- 40(60(4{(?1 + %)hau }2}

EEM at the Fermi level can be written from (4.57a) as

I e
m (Erpup, N, 1g) = > U 47(EFsHp, 1, 1g) (4.57b)

From (4.57b) we note that the mass is a function of Fermi energy and quantum
number due to band non-parabolicity.
The electron concentration under the condition of extreme degeneracy can be

written as
__geB[wRl = 1/2 S TN ~ 1/2
o= "2 Z (Us7(Ergap, 1img)) ' + ZL(r)(UM(EFBHD)n) Ng)) (4.58)
n=0 =1

Using (1.31f) and (4.58), we can study the entropy in this case.

4.2.11 Entropy in HD Gallium antimonide under magnetic quantization

The magneto-dispersion relation in HD GaShcan be written following (1.338) as

I = Uss (E, ng, 1) (4.59a)

where

—7 2
o 2B [ 1 : = g, Go(E
Ui (E.nny) - [ () o) le%y%(E,ng) ook + 2 }
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(m_) [l -5 (fz + %) hw, - {6;(n) - 4asy,(E, ’Tg)}l/z} W = ?B

n*as
= 4 = 35 1/2
—, a (E ) - = agal()(E )
- {ag(Ego)z + % +a9a10y3(E, Ylg)(EgO)z + 270\ 80/

2

n 2w (11

angandalo=f —-— - —
mo Ego me moy

EEM at the Fermi level can be written from (4.59a) as

oz - _
m (ErHp, Ng) = 5 Us (Erprp, 11, 1) (4.59b)

The electron concentration can be written as

_ g,eB Tmax [ - =S i
Mo = 7g12h2 [Z |:(U48(EFBHD>n: ﬂg))1/2+ ZL(r)(UliS(EFBHD) a, ng))l/ZH (4.60)
n=0 =1

Using (1.31f) and (4.60), we can study the entropy in this case.

4.2.12 The entropy in HD II-V materials under magnetic quantization
The dispersion relation of the holes are given by [10]
_ _ _ _ _ _ _ _ _ _ 1/2
E =01k + 05K + 03K, + 84k [ {65K5 + Ok, + 67K, + 85k} + Gy + 3] x4
(4.61)

where, ky, ky and k, are expressed in the units of

1 o o
91=§(al+b1)»92: (a2+D,),05= 5 (a3 +bs), 64 =

1
2

NI —= NI=

1 _ B _
6525(81—]31),96: (az—sz),07=

ai(i=1,2,3,4),b;, A, B,G; and A; are system constants
The hole energy spectrum in HD II-V materials can be expressed following the
method of Chapter 1 as

1
2

_ — — — — _ _ — _\2 ___
h@mﬁ:&@+%@+%@+&hi“%@+%@+%@+&h}+@@+¥}i&
(4.62)

the magneto dispersion law in HD II-V materials assumes the form
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I = Uso, + (E, g, 1) (4.63a)
where,

Uss, + (E.umg) = = [Bsy5 (E:g) + T, (1) £ 3 (E:g) + 95 (Esg) s, (1) + o, ()] 7]

. 0, - Is. o T —
Lis= m,gé, L (n)= ﬁ,g& . (R) = (462) " '[460,153 - (R) + 862D, - (1)

- 9?31, + (n)],
o, s = (402) " '[P33, 1 (M) + 463034, 1 (N) — 463D, 4 ()], I3, + (1)
= [Gg + 295732 (ﬁ) — 292731’ + (ﬁ)],

Ly, + (1) = (B, , (1) + A5~ Iy, - (M),

o 1 5; _ 6:

131,1(1'1): (n+§)ha)31—4—911A3 ,I32(Tl)= (n+2)hw32—49

_ eB B h2 D S

w3 = \/m,wz W Mz, = Msz E»MB 20
and

_ h?

M34—2—07.

EEM at the Fermi level can be written from (4.63a) as
2

o (F h = = _
m., (Epgup, M, 1Mg) = — 5 U (ErBHp, 11, 1) (4.63Db)

From (4.63b) we note that EEM is a function of Fermi energy, Landau quantum

number and the scattering potential.
The electron concentration under extreme degeneracy can be written as

~ eB Timax _ _ _

ny = ighz [Z |:(U49,1(EFBHD;n)rIg + ZL )(Uss, + (Erep, 1, ’Tg))m”
0

(4.64)

Using (1.31f) and (4.64), we can study the entropy in this case.
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4.2.13 Entropy in HD lead germanium telluride under magnetic quantization

The dispersion relation of the carriers in n-type Pb, yGa,Te with x=0.01 can be writ-
ten following Vassilev [11] as

[E - 0.606k? - 0.0722k?|[E + Eg, +0.411k2 + 0.0377k2] = 0.23k? + 0.02k?

_ . . (4.65)
+ [0.06Eg, +0.061k2 + 0.0066k2]k

where Ego =(0.21eV)is the energy gap for the transition point, the zero of the energy
E is at the edge of the conduction band of the I'point of the Brillouin zone and is
measured positively upwards, ky ,k, and k; are in the units of 10°m 1.

The magneto-dispersion law in HD Pb,_,Ge,Te can be expressed following the
methods as given in Chapter 1 as

204 (E, Ng) eB 1
87 E, —0.345x-0.390 — =
1 +Erf(E/)1g) YB( rlg) |: 80 X = 9 h ( 2):|
0 46eB 1 eB 1
o 2)+002x+[006Eg0+0122h (n+3)
2eB 1 _ .822eB 1
+0.0066% 22 (74 )2 4 By + 2828 (4 by L0377k
h 2 0 h 2
1.212eB 1
2 .
{ (14 5) + 072)(] (4.66)
The (4.66) assumes the form
’_(g = U50, 4 (E, rlg, Fl) (4673)

Where
_ _ I I e L o 1/2
Uso, + (E; M, 1g) = (2D10) | — quo(E 1, mg) + {qw (E,n,ng) +4PyoRio, + (Es 1, rzg)}

1/2
2

P10(0.377x0.722), g1 (E, 1, 1,) = [o 02+0.345y;(E,n,) + 0.0066(2 (7 + 1))
+0.377 x L2428 (7 1. 1) 4 0,722 [Ego +0.822B (7 + )H

and

- _— 200(E,n,) eB 1
Ruo, = (E,n,mg) = {HErf(E/ghg) +7;(E, ng)[ ~0390— ( i)}

o eB/_ 1\/2B,_ 1\"*
+ (006Eg0 + 0122? (n+ 5) (T (n+ E))
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eB _ 1)> 1.212eB ,_ 1. 0.46eB 1)

- (Ego +08227(n+ E n (n+ E) n (n+

N

EEM at the Fermi level can be written from (4.67a) as

m . (Epup, Ng) = 5 U'so,  (Erprp, 11, 1) (4.67b)

Thus, from (4.67b) we note that EEM is a function of the Fermi energy, Landau
quantum number and the scattering potential.
The electron concentration under extreme degeneracy can be written as

B = eB Nmax B B r=s _ = = —
no = ivzhz [Z [(Uso,t(EFBHD,rL )2+ > L(F) (Uso, + (Ersip, 1, flg))l/ZH
=0 r=1

(4.68)

Using (1.31f) and (4.68), we can study the entropy in this case.

4.3 Results and discussion

Using the appropriate equations and the energy band constants as given in
Appendix 15, in Figure 4.1 the normalized entropy has been plotted as a function
of inverse magnetic field for HD Cd;As, as shown in plot (a) of Figure 4.1 where
the plot (b) represents the case for § =0 and has been drawn to assess the influ-
ence of crystal field splitting on the entropy in HD Cd;As,. The plot (c) and (d) in
the same Figure refer to the three and two band models of Kane; whereas the plot
(e) exhibits the parabolic energy bands. Figure 4.2 exhibits the plot of the normal-
ized entropy as a function of impurity concentration for HD CdsAs; for all cases of
Figure 4.1. The plot (a) of Figure 4.3 shows the variation of the normalized en-
tropy in HD CdsAs; as a function of orientation of the quantizing magnetic field
for 6+0 and the plot (b) refers for §=0. Figures 4.4 to 4.6 represent the variation
of entropy as functions of inverse quantizing magnetic field, impurity concentra-
tion and angular orientation of the quantizing magnetic field for HD CdGeAs, for
the respective cases of Figures 4.1 to 4.3. It should be noted that under varying
magnetic field, the concentration has been set to the value of 10%m~3, while,
under varying electron concentration, the magnetic field is fixed to 2 tesla. It ap-
pears from Figures 4.1 and 4.4 that the entropy oscillates with1/B. It is well
known that density-of-states in materials under magnetic quantization exhibits
oscillatory dependence with inverse quantizing magnetic field, which is being re-
flected in this case. In fact, all electronic properties of electronic materials in the
presence of quantizing magnetic field exhibit periodic variation with inverse
quantizing magnetic field. The origin of oscillations of the entropy is the same as
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Figure 4.1: Plot of the normalized entropy as function of inverse magnetic field for HD CdsAs, in
accordance with the (a) generalized band model (6+0), (b) =0, (c) three- and (d) two-band models
of Kane together with parabolic energy bands (e).

that of the Shubnikov de Haas oscillations. The influence of crystal field splitting,
on the entropy can easily be conjectured by comparing the appropriate plots of
Figures 4.1 and 4.4. Besides, the differences among three and two band models of
Kane together with parabolic energy bands for entropy of HD CdsAs,, and HD
CdGeAs, can easily be assessed by comparing the appropriate plots of Figures 4.1
and 4.3. From Figures 4.2 and 4.5, it appears that entropy oscillates with impurity
concentration in HD

CdsAs; and HD CdGeAs, with different numerical values exhibiting the signature
of the SdH effect. Although the rates of variations are different, the influence of spec-
tra constants on all types of band models follows the same trend as observed in
Figures 4.2 and 4.5, respectively. From Figures 4.3 and 4.6, it appears that the entropy
shows sinusoidal dependence with increasing 6 and the variation is periodically re-
peated which appears from these figures. For three- and two-band models of Kane
together with parabolic energy bands, the entropy becomes 6 invariant and for
this reason these plots are not shown in Figures 4.3 and 4.6 respectively. The
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Figure 4.2: Plot of the normalized entropy as function of impurity concentration for HD CdsAs, for
all the cases of Figure 4.1.
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Figure 4.3: Plot of the normalized entropy as function of angular orientation of the quantizing
magnetic field for HD CdsAs, for (a) 6+0 and (b) 6 =0.
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Figure 4.4: Plot of the normalized entropy as a function of inverse magnetic field for HD CdGeAs; in
accordance with the generalized band model (a) 6+0, (b) =0 (c) three- and (d) two-band models
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Figure 4.5: Plot of the normalized entropy as a function of impurity concentration for HD CdGeAs,
for all the cases of Figure 4.4.
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Figure 4.6: Plot of the normalized entropy as a function of angular orientation of the quantizing
magnetic field for HD CdGeAs, for (a) 6+0 and (b) =0.

normalized entropy for InAs and InSb as a function of 1/B has been plotted in
Figures 4.7 and 4.9 for three and two-band models of Kane together with parabolic
energy bands, respectively. The normalized entropy as a function of impurity con-
centration for three and two band models of Kane for HD InAs and InSb has been
plotted in Figures 4.8 and 4.10, respectively. It appears from the numerical values
that the influence of the three band model of Kane in the energy spectrum of III-V,
ternary and quaternary compounds are difficult to distinguish from that of the
two band model of Kane. The normalized entropy has been plotted as a function
of 1/B for HD p-CdS in Figure 4.11 where the plots (a) and (b) are valid for Ag=0
and Ao#0 respectively. Figure 4.12 exhibits the plot of the same as a function of
impurity concentration for all cases of Figure 4.11. The influence of the term
Aowhich represents the splitting of the two-spin states by the spin orbit coupling
and the crystalline field is apparent from Figures 4.11 and 4.12.

The normalized entropy in HD PbTe accordance the models of Cohen, Lax,
Dimmock, Bangert and Kastner and Foley and Langenberg have been plotted
in Figures 4.13 and 4.14, respectively, as functions of inverse quantizing magnetic
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Figure 4.7: Plot of the normalized entropy as a function of inverse magnetic field for HD InAs in
accordance with the (a) three and (b) two-band models of Kane together with (c) the parabolic
energy bands.

field and impurity concentration, respectively. Figures 4.15 and 4.16 exhibit the
plots of normalized entropy in this case as functions of inverse quantizing magnetic
field and impurity concentration for HD PbSnTe. Figures 4.17 and 4.18 demonstrate
the same for stressed HD InSb and it appears that the influence of stress leads to
the enhancement of the entropy in this case. The influence of spin splitting has not
been considered in obtaining the oscillatory plots since the peaks in all figures
would increase in number with decrease in amplitude if spin splitting term is in-
cluded in the respective numerical computations without introducing new physics.
The effect of collision broadening has not been taken into account in this simplified
analysis although the effects of collisions are usually small at low temperatures,
the sharpness of the amplitude of the oscillatory plots would somewhat be reduced
by collision broadening. Nevertheless, the present analysis would remain valid quali-
tatively since the effects of collision broadening can usually be taken into account
by an effective increase in temperature. Although in a more rigorous statement
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Figure 4.8: Plot of the normalized entropy as a function of impurity concentration for HD InAs in
accordance with the (a) three and (b) two-band energy models of Kane.
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Figure 4.9: Plot of the normalized entropy as a function of inverse magnetic field for HD InSb in

accordance with the (a) three- and (b) two-band models of Kane together with (c) the parabolic
energy bands.
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Figure 4.10: Plot of the normalized entropy as a function of impurity concentration for HD InSb in
accordance with the (a) three and (b) two-band models of Kane.
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Figure 4.11: Plot of the normalized entropy as a function of inverse magnetic field in HD p-CdS for
(@) Ao =0 and (b) Ag#0.
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Figure 4.12: Plot of the normalized entropy as a function of impurity concentration field in HD
p-CdS for (a) Ag =0 and (b) Ao#0.
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Figure 4.13: Plot of the normalized entropy as a function of inverse magnetic field for HD PbTe in
accordance with the models of (a) Cohen, (b) Lax, (c) Dimmock, (d) Bangert and Kastner and
(e) Foley and Langenberg, respectively.

the effect of electron—electron interaction should be considered along with the
self-consistent procedure, the simplified analysis as presented in this chapter ex-
hibits the basic qualitative features of the entropy in the present case for degener-
ate materials having various band structures under the magnetic quantization
with reasonable accuracy.
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Figure 4.14: Plot of the normalized entropy as a function of impurity concentration for HD PbTe for
all the cases of Figure 4.13.
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Figure 4.15: Plot of the normalized entropy as a function of inverse magnetic field for HD PbSnTe.
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Figure 4.16: Plot of the normalized entropy as a function of impurity concentration field for HD
PbSnTe.

0.40

0.35 1

0.30 A

0.25 -

0.20 A

0.15

0.10 A

0.05

0 T T T T
0 0.5 1 1.5 2 2.5 3

Inverse magnetic field (1/B) in telsa™

Figure 4.17: Plot of the normalized entropy as a function of inverse magnetic field for stressed HD
InSb.

4.4 Open research problems
(R4.1) Investigate the entropy both in the presence and the absence of an arbi-

trarily oriented quantizing magnetic field by considering all types of scat-
tering mechanisms including broadening and the electron spin (applicable
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stressed HD InSb.

(R4.2)

(R4.3)

(R 4.4)

(R4.5)

(R 4.6)

under magnetic quantization) for all the bulk materials whose unperturbed
carrier energy spectra are defined in Chapter 1.

Investigate the entropy considering all types of scattering mechanisms
in the presence of quantizing magnetic field under an arbitrarily oriented
(@) non-uniform electric field and (b) alternating electric field respectively
for all the materials whose unperturbed carrier energy spectra are defined
in Chapter 1 by including spin and broadening, respectively.

Investigate the entropy by considering all types of scattering mechanisms
under an arbitrarily oriented alternating quantizing magnetic field by in-
cluding broadening and the electron spin for all the materials whose un-
perturbed carrier energy spectra as defined in Chapter 1.

Investigate the entropy by considering all types of scattering mechanisms
under an arbitrarily oriented alternating quantizing magnetic field and
crossed alternating electric field by including broadening and the electron
spin for all the materials whose unperturbed carrier energy spectra as de-
fined in Chapter 1.

Investigate the entropy by considering all types of scattering mechanisms
under an arbitrarily oriented alternating quantizing magnetic field and
crossed alternating nonuniform electric field by including broadening
and the electron spin whose for all the materials unperturbed carrier en-
ergy spectra as defined in Chapter 1.

Investigate the entropy in the presence and absence of an arbitrarily ori-
ented quantizing magnetic field by considering all types of scattering mech-
anisms under exponential, Kane, Halperin, Lax, and Bonch—Bruevich band

printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco. confterms-of-use



EBSCChost -

References =—— 239

tails [4] for all the materials whose unperturbed carrier energy spectra as
defined in Chapter 1 by including spin and broadening (applicable under
magnetic quantization).

(R 4.7) Investigate the entropy in the presence ofan arbitrarily oriented quantiz-

ing magnetic field by considering all types of scattering mechanisms for
all the materials as defined in (R5.6) under an arbitrarily oriented (a) non-
uniform electric field and (b) alternating electric field, respectively,
whose unperturbed carrier energy spectra as defined in Chapter 1.

(R 4.8) Investigate the entropy by considering all types of scattering mechanisms

for all the materials as described in (R5.6) under an arbitrarily oriented al-
ternating quantizing magnetic field by including broadening and the elec-
tron spin whose unperturbed carrier energy spectra as defined in Chapter 1.

(R 4.9) Investigate the entropy by considering all types of scattering mechanisms

as discussed in (R5.6) under an arbitrarily oriented alternating quantizing
magnetic field and crossed alternating electric field by including broaden-
ing and the electron spin for all the materials whose unperturbed carrier
energy spectra as defined in Chapter 1.

(R 4.10) Investigate all the appropriate problems of this chapter after proper mod-

ifications introducing new theoretical formalisms for functional, negative
refractive index, macro molecular, organic and magnetic materials.

(R4.11) Investigate all the appropriate problems of this chapter for HD p-InSb,

p-CuCl and stressed materials having diamond structure valence bands
whose dispersion relations of the carriers in bulk materials are given by
Cunningham [6], Yekimov et al. [7], and Roman et al. [8], respectively.
(replace the green part by (r1.14 to r1.17)
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5 The entropy in heavily doped nanomaterials
under magneto-size quantization

I'must pray as if everything depends on God but i must work as if everything depends on me.

5.1 Introduction

In Section 5.2.1, of the theoretical background, the entropy has been investigated in
ultra-thin films (UFs) of HD nonlinear optical materials in the presence of a quantiz-
ing magnetic [1-15] (Place the references at the indicated place).

field.Section 5.2.2 contains the results for UFs of HD III-V, ternary, and quaternary
compounds in accordance with the three- and the two-band models of Kane. In the
same section, the entropy in accordance with the models of Stillman etal. and Palik
etal. have also been studied for the purpose of relative comparison. Section 5.2.3 con-
tains the study of the entropy for UFs of HD II-VI materials under magnetic quantiza-
tion. In Section 5.2.4, the entropy in UFs of HD IV-VI materials has been discussed in
accordance with the models of Cohen, Lax, Dimmock, Bangert and Kastner, and Foley
and Landenberg, respectively. In Section 5.2.5, the magnetoentropy for the stressed
UFs of HDKane-type materials has been investigated. In Section 5.2.6, the entropy in
UFs of HD Te has been studied under magnetic quantization. In Section 5.2.7, the mag-
netoentropy in UFs of HD n-GaP has been studied. In Section 5.2.8, the entropy
in ultra-thin film of HD PtSb, has been explored under magnetic quantization. In
Section 5.2.9, the magnetoentropy in UFs of HD Bi,Te; has been studied. In
Section 5.2.10, the entropy in UFs of HD Ge has been studied under magnetic quantiza-
tion in accordance with the models of Cardona etal. and Wang and Rossler, respec-
tively. In Sections 5.2.11 and 5.2.12, the magnetoentropy in UFs of HD n-GaSb and II-V
compounds have respectively been studied. In Section 5.2.13, the magnetoentropy in
UFs of HD Pb; _ ,Ge,Te has been discussed.Section 5.3 explores the result and discus-
sion and it contains 12 open research problems for this chapter.

5.2 Theoretical background

5.2.1 Electron energy spectrum in HD nonlinear optical materials under
magneto-size quantization

The entropy of the conduction electrons in UFs of HD nonlinear optical materials in
the presence of a quantizing magnetic field B can be written following (4.3a) as

https://doi.org/10.1515/9783110661194-005
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hz (nﬂ!)z
dz = _ = _
T = Ul, + (681) n, ng) + U2>t(681> n, rlg) (51)
|

where eg; is the totally quantized energy in this case.
The DOS function is given by

B o eB Nmax "Zmax , -
Nin, = S;Vﬂ =Y > S(E-ew) .2)

n=0 nz=1

The electron concentration can be expressed as

Nmax "Zmax

h 1(M5,1) (5.3)
n=0 nz=1

where 15 ;= (kgT) ' (Ers — es1), Ers is the Fermi energy in this case and F;(n) is the

one parameter Fermi-Dirac integral of order j as defined in (1.85).

Thus, using (5.3) and (1.31f), we can study the entropy in this case.

5.2.2 Entropy in QWs of HD IlI-V materials under magneto-size quantization

(a) Three-band model of Kane
In accordance with three-band model of Kane, DR in the present case can be written as

2
"(E) o e O o 0

:U + > Ity U + (g2, N,
2m“ 3,_(eszn’1g)+ 4 + (€82 ’Tg)

where eg; is the totally quantized energy in this case.
The DOS function is given by

> fimax Zmax

Ny, = Znh Z (E-es) (5.5)

=0 nz=

The electron concentration can be expressed as

fimax WZmax

__geB
o= Real Part of ; nZZ:I F_1(ne,,) (5.6)

where

NMe,1= (kT) _I(EFS -ew),

Thus, using (5.6) and (1.31f), we can study the entropy in this case.
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(b) Two band model of Kane
The electron energy spectrum in this case is given by

hz ngm 2
(?) ~ _ T
“om, =y,(es3, 1) — ( N+ 5 wo + ﬁg Ho

where eg; is the totally quantized energy in this case.
The DOS function is given by

Nmax "Zmax

Ny, = g;‘;fg Z Z &' (E-eg3)

n=0 nz=1

The electron concentration can be expressed as

~ ph nz
B gveB max max _

np = 2h 2 Z F_1(ny,)

n=0 nz=1

where
M7= (ksT) ™" (Eps —es3),

Thus, using (5.9) and (1.31f), we can study the entropy in this case.

(c) Parabolic Energy Bands
The electron energy spectrum in this case is given by

_ 2
hz(%) 1 1.
27m::y3(eg4,ng)— n+§ hw0+§gy0B

where eg, is the totally quantized energy in this case.
The DOS function is given by

B g eB fAimax "Zmax ,
Ngn, = 2‘;_[}\1 Z Z 6 (E-ess)

n=0 nz=1
The electron concentration can be expressed as
~ g.veB fimax MZmax _

o= 4 . Z F_1(ng,)

n=0 nz=1

where
Ng1= (ksT) _I(EFS —egs),

Thus, using (5.12) and (1.31f), we can study the entropy in this case.
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(d) The model of Stillman et al.
The DR in the present case can be written as
n,m

2
(a—> = U7(€85, fl, Ylg) (513)

Z

where egs is the totally quantized energy in this case.
The DOS function is given by

Nzmax

 geBlmama
Nan = g;/Th Z 1) (E— 685) (514)

n=0 nz=1

The electron concentration can be expressed as

- gvéB fAimax "Zmax B
Np = h Z F_1(Tl9)l) (515)

n=0 nz=1

where

No1=(ksT) " (Ers — egs),

Thus, using (5.15) and (1.31f), we can study the entropy in this case.

(e) The model of Palik et al.
DR in the present case can be written as

= 2
n,m _
( a ) = A35, + (686> n, ng) (516)

where egg is the totally quantized energy in this case.
The DOS function is given by

H fimax "Zmax
eB

2Vnh Z > 6'(E-ese) (5.17)

n=0 nz=1

Nan =

The electron concentration can be expressed as

eB Nmax "zmax B
Z F_1(My0,1) (5.18)

n=0 nz=1

_ &
"= S

where
Mo,1= (ksT) _I(EFs —€g6),

Thus, using (5.18) and (1.31f), we can study the entropy in this case.
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5.2.3 Entropy in HD II-VI materials under magneto-size quantization

DR in the present case can be written as

N
n,m _ _
(EIL) =Us, + (es7,10,1,)

4

where eg; is the totally quantized energy in this case.
The DOS function is given by

B gv eB Nmax "Zmax ,
N, Bn, = —— 1) (E - 687)
©2nh = f;l

The electron concentration can be expressed as

= nn nz,
B gveB max max _

np = 2k - Z Fo1(ny1)

n=0 nz=1

where
N1= (’}BT) 71(EF5 —es7),

Thus, using (5.21) and (1.31f), we can study the entropy in this case.

5.2.4 Entropy in HD IV-VI materials under magneto size-quantization

(5.19)

(5.20)

(5.21)

The electron energy spectrum in IV-VI materials is defined by the models of Cohen,
Lax, Dimmock and Bangert, and Kastner, respectively. The magnetoentropy in HD
IV-VI materials is discussed in accordance with the said model for the purpose of

relative comparison.

(a) Cohen Model
DR in the present case can be written as
n,m

2
= :U + , 1,
(dz ) 16, (€88, 1 rlg)

where egg is the totally quantized energy in this case.
The DOS function is given by
B g eB Nmax "Zmax
_ Sv

Ngy, = > 6'(E-egs)

2rth n=0 nz=1

The electron concentration can be expressed as
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No =
°~ nh

g eB Nmax "Zmax B
== Z F_o1(Mp,1)

n=0 nz=1

where

N1 = (kT) 71(EF5 —esgg),

Thus, using (5.24) and (1.31f), we can study the entropy in this case.

(b) Lax Model
DR in the present case can be written as

N
n,m — _
(é) = Uy, + (es0, 71,1)
d,

where ego is the totally quantized energy in this case.
The DOS function is given by

— ph nz
gveB max max

= O0h < Z 8'(E - ess)

n=0 nz=1

Nan

The electron concentration can be expressed as

- gv eB Nmax "Zmax B
No = F_1(n33,1)
where

M31= (ksT) _1(EF5 —eg9),

Thus, using (5.27) and (1.31f), we can study the entropy in this case.

(c) Dimmock Model
DR in the present case can be written as

N
nm\° - _
(—L> = Unzo (€90, 71, 1,)
d;

where eq is the totally quantized energy in this case.
The DOS function is given by

B o eB fimax "Zmax , -
Nan=gvh > 8(E-es)
n n=0 nz=1

The electron concentration can be expressed as
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~ g eB Nmax "Zmax B
= ;[h Z F—l(n14,1)

n=0 nz=1

where
M4 = (RBT) 71(EF5 —e90),
Thus, using (5.30) and (1.31f), we can study the entropy in this case.

(d) Model of Bangert and Kastner
DR in the present case can be written as

N
nm\° - _
(—L) = Uss (€91, 1, 1,)

d, e=0

where ey is the totally quantized energy in this case.
The DOS function is given by

Nmax "Zmax
Nan gveB Za Z 5 (E 891

=0 nz=

The electron concentration can be expressed as

Nimax MzZmax

Z 1(M55,1)

n=0 nz=1

where
M1 = (ksT)" 1(EFS - €o91),

Thus, using (5.33) and (1.31f), we can study the entropy in this case.

(e) Model of Foley and Langenberg
DR in the present case can be written as

= 2
n,m = _
(a_) = U19 (e92> n, rlg)

Z

where ey, is the totally quantized energy in this case.
The DOS function is given by

eBYlmax Nzmax ,
Npn, = g;m Y3 F(E-en)

n=0 nz=1

The electron concentration can be expressed as
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gv eB Aimax "Zmax B
= rh Z F_1(My6,1) (5.36)

n=0 nz=1

where

Mie1= (ksT) 71(EF5 - €9),

Thus, using (5.36) and (1.31f), we can study the entropy in this case.

5.2.5 Entropy in HD stressed Kane type materials under magneto-size
quantization

DR in the present case can be written as

= 2
n,7mm _ _
(a—z> =Us (€93, 1, r[g) st (5.37)

where eqs is the totally quantized energy in this case.
The DOS function is given by

N, - 88X nzi 5'(E - e03) (5.38)
Bnz = 7h 93 .

n=0 nz=1

The electron concentration can be expressed as

_ = Amax 1z
o gVeB Nmax "Zmax _
ng= o Real Part of f;) f,22=1 F_1(ny74) (5.39)

where
M71= (IEBT) 71(EF5 -e93),

Thus, using (5.39) and (1.31f), we can study the entropy in this case.

5.2.6 Entropy in HD Te under magneto size-quantization

DR in the present case can be written as

_ 2
N, _ _
(?) =Usz * (€94, 11, 1) (5.40)

where ey, is the totally quantized energy in this case.
The DOS function is given by

EBSCChost - printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



5.2 Theoretical background =— 249

B 5 eB Mimax "Zmax ,
Nan: g;[h Z Z 6 (E—eg4)

n=0 nz=1

The electron concentration can be expressed as

- g eB fimax MZmax B
no = 71:(}‘1 Z Z F_1(Mg,1)
=0 nz=1
where

Mg 1= (ksT)" ! (Eps — €94),

Thus, using (542) and (1.31f), we can study the entropy in this case.

5.2.7 Entropy in HD gallium phosphide under magneto size quantization

DR in the present case can be written as

N
n,m _ _
(ET) =Us3(e9s, 11, 1)

4

where ey, is the totally quantized energy in this case.
The DOS function is given by

B 5 eB Nmax "Zmax , -
Nan = g;[h Z Z 6 (E—694)

n=0 nz=1
The electron concentration can be expressed as

5 6B fimax MZmax B
n :g;; Z Z F_1(Myo,1)

n=0 nz=1

where
Myo,1 = (ksT) ™ (Eps — €os)

Thus, using (5.45) and (1.31f), we can study the entropy in this case.
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5.2.8 Entropy in HD platinum antimonide under magneto size quantization

The DR in the present case can be written as

- .2
n,m _ _
(%7) ~tu(ess.ny (5.46)

where eg;s is the totally quantized energy in this case.
The DOS function is given by
B 5 eB fimax Mzmax , -
Nin, = g;m Y S(E-es) (5.47)

n=0 nz=1

The electron concentration can be expressed as

- 5 eB Nmax MZmax B
nozg;m S Foalng) (5.48)

n=0 nz=1

where

Mo,1 = (ksT) ™" (Ers — eos)
Thus, using (5.48) and (1.31f), we can study the entropy in this case.

5.2.9 Entropy in HD bismuth telluride under magneto size quantization

DR in the present case can be written as

_ 2
n,m _ _
(EI_> = Uss (€96, 11, 1,) (5.49)

4

where eq is the totally quantized energy in this case.
The DOS function is given by

Ny~ BBREE (5.50)
Bz =~ Z Z (E—eo6) .

n=0 nz=1

The electron concentration can be expressed as

~ g eB Timax Zmax B
Np = ;/Th Z Z F,l(nzm) (551)
n=0 nz=1
where

M1 = (ks T) ™ (Eps — es6)
Thus, using (5.51) and (1.31f), we can study the entropy in this case.
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5.2.10 Entropy in HD germanium under magneto size quantization

(@) Model of Cardona et al.
DR in the present case can be written as
N
n,m _ _
(*L> = U46(€97, n, rlg)
d.
where eyy; is the totally quantized energy in this case.
The DOS function is given by

N —gVeB%ﬁzZm:M( 5'(E - es)
Bnz = h 97

=0 n;=1
The electron concentration can be expressed as

Nmax "Zzmax

_ g,eB ~
No = 71:[77 Z F_1(Np,1)

n=0 nz=1

where

NMp1= (kBT) _1(EF5 - €g7)

Thus, using (5.54) and (1.31f), we can study the entropy in this case.

(b) Model of Wang and Ressler
DR in the present case can be written as

_ 2
n,m _ _
(—L) = Us(e9s, 11, 1)
d,

where eog is the totally quantized energy in this case.
The DOS function is given by
B 5 eB Nmax "Zmax L
Ny, = g;/_[h Z Z 6 (E—eos)

n=0 nz=1

The electron concentration can be expressed as

~ g eB "max Mzmax
no = 7V'rh Z F_1(Ny3,1)

n=0 ng=1

where
Mg = (ksT) ™" (Eps — €sg)

Thus, using (5.57) and (1.31f), we can study the entropy in this case.
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5.2.11 Entropy in HD gallium antimonide under magneto-size quantization

DR in the present case can be written as

N
n,m _ _

(—L) = Uss (€99, 7, 1g) (5.58)
d,

where ey is the totally quantized energy in this case.
The DOS function is given by
g eB Nmax "Zmax
\4

Non, === > 6'(E-eso) (5.59)

=0 nz=1

The electron concentration can be expressed as

gv eB Nmax "Zmax B
No =

h Z F_1(N1) (5.60)

n=0 nz=1

where
M1 = (i<B T) 71(EF5 —eg9)

Thus, using (5.60) and (1.31f), we can study the entropy in this case.

5.2.12 Entropy in HD II-V materials under magneto size quantization

DR in the present case can be written as

S 2

n,m _ _

(%) = Usg + (€100, 11, 1g) (5.61)
Z

where ey is the totally quantized energy in this case.
The DOS function is given by

B 5 EB Nmax MZmax ,
N, = g;VTh > §(E-ew) (5.62)

n=0 nz=1

The electron concentration can be expressed as
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~ gveB fimax Zmax B
= Z F_1(N,1) (5.63)

n=0 nz=1

where

M5, = (ksT) ™' (Ers — e100)

Thus, using (5.63) and (1.31f), we can study the entropy in this case.

5.2.13 Entropy in HD lead germanium telluride under magneto size quantization

DR in the present case can be written as

N
nm\° - _
(a—) = Uso+ (€101, 11, 1) (5.64)

4

where ey, is the totally quantized energy in this case.
The DOS function is given by
g eB Nmax MZmax
_ 5v

Ny, = s Z Z 8 (E-eio1) (5.65)

n=0 nz=1

The electron concentration can be expressed as

~ gveB Nmax "zmax B
o =22 S Foalngg,) (5.66)
n=0 fz=1
where

Noe1 = (ksT) ™' (Eps — e101) Thus, using (5.66) and (1.31f), we can study the entropy
in this case.

5.3 Results and discussion

Using the appropriate equations, in Figure 5.1, the normalized entropy in ultrathin
films of tetragonal materials (taking HD Cds;As, as an example) as a function of in-
verse magnetic field have been plotted in curve (a) where as the curve (b) of the same
figure represents the same variation for HD CdGeAs, (an example of non-linear opti-
cal material)in accordance with the generalized band model (6 #0). The curve (c) is
valid for III-V materials (taking InSb as an example).

The three-band energy model of Kane for InSb is valid for such highly
non-parabolic material. The influence of energy band constants for the three
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() @

(b)

Normalized entropy

1076 T T T T
0 1 2 3 4 5

Figure 5.1: Plot of the normalized entropy as a function of inverse magnetic field for HD UFs of (a)
CdsAs, and (b) CdGeAs, in accordance with the generalized band model (6 # 0). The plot (c) refers
to n-InSb in accordance with the three band model of Kane (no =10*m~2 and d, = 10nm).

aforementioned compounds can be estimated from the said curves. For all figure of
this chapter lattice temperature has been taken as T =10K and consequently for the
purpose of simplified numerical computation we have considered only the first sub-
band occupancy in connection with the quantization due to the Born-Von Karman
boundary condition for various Landau levels due to the quantizing magnetic field.
It appears that the thermoelectric power exhibits a periodic oscillation with increase
in the magnetic field, which has also been discussed in Chapter 5.

In Figure 5.2, we have plotted the normalized entropy as a function of film thick-
ness under constant magnetic field for all the cases of Figure 5.1. The entropy appears
to exhibit composite oscillations because of the ad-mixture of size quantized levels
with the Landau sub-bands. The nature of the variation of the entropy from a stair
case to the highly zigzag can be explained as the combined influence of the magnetic
quantization with the size quantization. As the thickness starts lowering, the influ-
ence of the field decreases due to which the stair case variation is retrieved.

The entropy as function of carrier concentration for said materials for both mag-
netic (n=0) and size (n,=1) quantum limits has been plotted in Figure 5.3 from
which we can conclude that the entropy decreases with carrier concentration for
relatively large values where as for the relatively low values of the carrier degener-
acy, the magneto thermo power shows the converging tendency. It appears from
Figures 5.1 to 5.3 that HD InSb exhibits largest numerical entropy as compared to
HD CdsAs;, and HD CdGeAs, for UFs under magnetic quantization. In Figures 5.4 to
5.6, we have plotted the entropy for ultrathin films of HD II-VI and stressed III-V
materials as functions of inverse magnetic field, thickness and carrier concentration
respectively. The film thickness for Figures 5.4 and 5.6 are kept to 10nm, while B=2
tesla for Figures 5.5 and 5.6 respectively.
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Figure 5.2: Plot of the normalized entropy as a function of film thickness for HD UFs of (a) CdsAs,
and (b) CdGeAs, in accordance with the generalized band model (6 # 0). The plot (c) refers to
n-InSb in accordance with the three-band model of Kane.
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Figure 5.3: Plot of the normalized entropy as a function of carrier concentration for HD UFs of

(@) CdsAs, and (b) CdGeAs, in accordance with the generalized band model (6 # 0). The plot
(c) refers to n-InSb in accordance with the three-band model of Kane.
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Figure 5.4: Plot of the normalized entropy as a function of inverse magnetic field for HD UFs of
(@) HD CdS (Ao #0) and (b) stressed HD InSb.
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Figure 5.5: Plot of the normalized entropy as a function film thickness for HD UFs of (a) HDCdS
(Ao #0) and (b) stressed HD InSb.

It appears form the Figures 5.4 to 5.6 that the normalized entropy for UFs of
stressed HD InSb exhibits higher numerical values as compared to the correspond-
ing UFs of HD CdS. Figure 5.7 exhibits the plots of the normalized entropy as func-
tion of inverse magnetic field for UFs of HD PbSe in accordance with the models of
(a) Lax and (b) Cohen, respectively. Besides the plot (c) in the same figure is valid
for HD IV-VI materials (using HD PbTe as an example) whose carrier dispersion
laws follow the Cohen model. The Figures 5.8 and 5.9 demonstrate the said varia-
tions as a function of film thickness and carrier concentration respectively. It
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Figure 5.6: Plot of the normalized entropy as a function of carrier concentration for HD UFs of
(@) HD CdS (Ao #0) and (b) stressed HD InSbh.
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Figure 5.7: Plot of the normalized entropy as a function of inverse magnetic field for UFs of HD PbSe
in accordance with the (a) Lax and (b) Cohen models. The plot (c) refers to HD PbTe following Cohen
model.
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Figure 5.8: Plot of the normalized entropy as a function of film thickness for UFs of HD PbSe in
accordance with the (a) Lax and (b) Cohen models. The plot (c) refers to HD DHDPbTe following
Cohen model.
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Figure 5.9: Plot of the normalized entropy as a function of carrier concentration for UFs of HD PbSe
in accordance with the (a) Lax and (b) Cohen models. The plot (c) refers to HD PbTe following Cohen

model.

appears that the HD PbSe exhibits higher entropy than that of HD PbTe. For the
purpose of simplicity the spin effects has been neglected in the computations. The
inclusion of spin increases the number of oscillatory spikes by two with the decre-
ment in amplitudes. The use of the data in the figures as presented in this chapter

can also be used to compare the entropy for other types of materials.
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5.4 Open research problems

(R5.1)

(R5.2)

(R5.3)

(R5.4)

(R5.5)

(R5.6)

(R5.7)

(R5.8)

(R5.9)

Investigate the entropy in the presence of arbitrarily oriented quantizing
magnetic field in the presence of electron spin and broadening by consid-
ering all types of scattering mechanisms for UFs by considering the pres-
ence of finite, parabolic and circular potential wells applied separately for
all the HD materials whose unperturbed carrier energy spectra are defined
in Chapter 1.

Investigate (R5.1) in the presence of an additional arbitrarily oriented (a)
non-uniform electric field and (b) alternating electric field respectively for
all the HD materials whose unperturbed carrier energy spectra are defined
in this Chapter 1 by considering all types of scattering mechanisms.
Investigate the entropy in the presence of arbitrarily oriented alternating
quantizing magnetic field in the presence of electron spin and broadening
by considering all types of scattering mechanisms for HD UFs by incorpo-
rating the presence of finite, parabolic and circular potential wells applied
separately for all the HD materials whose unperturbed carrier energy spec-
tra are defined in Chapter 1.

Investigate the entropy under an arbitrarily-oriented alternating quantiz-
ing magnetic field and crossed alternating electric field by including
broadening and the electron spin for HD UFs of all the materials whose
unperturbed carrier energy spectra are defined in Chapter 1 by considering
all types of scattering mechanisms.

Investigate the entropy under an arbitrarily-oriented alternating quantiz-
ing magnetic field and crossed alternating nonuniform electric field by in-
cluding broadening and the electron spin whose for HD UFs of all the
materials unperturbed carrier energy spectra are defined in Chapter 1 by
considering all types of scattering mechanisms.

Investigate the entropy in the presence of a quantizing magnetic field under
exponential, Kane, Halperin, Lax, and Bonch-Bruevich band tails [1] for HD
UFs of all the materials whose unperturbed carrier energy spectra are de-
fined in Chapter 1 by considering all types of scattering mechanisms.
Investigate the entropy in the presence of quantizing magnetic field for HD
UFs of all the materials as defined in (R5.6) under an arbitrarily oriented
(a) non-uniform electric field and (b) alternating electric field, respec-
tively, by considering all types of scattering mechanisms.

Investigate the entropy for the HD UFs of all the materials as described in
(R5.6) under an arbitrarily-oriented alternating quantizing magnetic field
by including broadening and the electron spin by considering all types of
scattering mechanisms.

Investigate the entropy for HD UFs of all the materials as discussed in
(R5.6) under an arbitrarily-oriented alternating quantizing magnetic field
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and crossed alternating electric field by including broadening and the
electron spin by considering all types of scattering mechanisms.

(R5.10) Investigate all the appropriate problems after proper modifications intro-
ducing new theoretical formalisms for all types of HD UFs of all the materi-
als as discussed in (R5.6) for functional, negative refractive index, macro
molecular, organic, and magnetic materials by considering all types of
scattering mechanisms in the presence of strain.

(R5.11) Investigate all the appropriate problems of this chapter for all types of HD
UFs for p-InSh, p-CuCl and materials having diamond structure valence
bands whose dispersion relations of the carriers in bulk materials are
given by Cunningham [2], Yekimov et al. [3], and Roman et al. [4], respec-
tively by considering all types of scattering mechanisms in the presence of
strain.

(R5.12) Investigate the influence of deep traps and surface states separately for all
the appropriate problems of all the chapters after proper modifications by
considering all types of scattering mechanisms.
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Part Il: Entropy in heavily doped quantum confined
superlattices

Every accomplishment starts with the decision to try.
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6 Entropy in quantum wires of heavily doped
superlattices

The great aim of education is not knowledge but tremendous action in the positive direction.

6.1 Introduction

In recent years, modern fabrication techniques have generated altogether a new di-
mension in the arena of quantum effect devices through the experimental realization
of an important artificial structure known as semiconductor superlattice (SL) by grow-
ing two similar but different semiconducting compounds in alternate layers with finite
thicknesses [1]. The materials forming the alternate layers have the same kind of band
structure but different energy gaps. The concept of SL was developed for the first time
by Keldysh [2] and was successfully fabricated by Esaki and Tsu [2]. SLs are being ex-
tensively used in thermal sensors [3], quantum cascade lasers [4], photodetectors [5],
light emitting diodes [6], multiplication [7], frequency multiplication [8], photocatho-
des [9], thin film transistor [10], solar cells [11], infrared imaging [12], thermal imaging
[13], infrared sensing [14], and also in other microelectronic devices.

The most extensively studied III-V SL is the one consisting of alternate layers
of GaAs and Ga;_,Al,As owing to the relative easiness of fabrication. The GaAs and
Ga;_ ,Al,As layers form the quantum wells and the potential barriers, respectively.
The III-V SLs are attractive for the realization of high-speed electronic and op-
toelectronic devices [15]. In addition to SLs with usual structure, other types of SLs
such as II-VI [16], IV-VI [17], and HgTe/CdTe [18], SLs have also been investigated
in the literature. The IV-VI SLs exhibit quite different properties as compared to the
III-V SL due to the specific band structure of the constituent materials [19]. The epi-
taxial growth of II-VI SL is a relatively recent development and the primary motiva-
tion for studying the mentioned SLs made of materials with the large band gap is in
their potential for optoelectronic operation in the blue [19]. HgTe/CdTe SLs have
raised a great deal of attention since 1979, when as a promising new materials for
long wavelength infrared detectors and other electro-optical applications [20].
Interest in Hg-based SLs has been further increased as new properties with poten-
tial device applications were revealed [20, 21]. These features arise from the unique
zero band-gap material HgTe [22] and the direct band-gap semiconductor CdTe,
which can be described by the three-band mode of Kane [23]. The combination of
the aforementioned materials with specified dispersion relation makes HgTe/CdTe
SL very attractive, especially because of the tailoring of the material properties for
various applications by varying the energy band constants of the SLs.

We note that all the aforementioned SLs have been proposed with the assumption
that the interfaces between the layers are sharply defined, of zero thickness, that is,

https://doi.org/10.1515/9783110661194-006
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devoid of any interface effects. The SL potential distribution may be then considered as
a one-dimensional array of rectangular potential wells. The aforementioned advanced
experimental techniques may produce SLs with physical interfaces between the two
materials crystallographically abrupt; adjoining their interface will change at least on
an atomic scale. As the potential form changes from a well (barrier) to a barrier (well),
an intermediate potential region exists for the electrons [24]. The influence of finite
thickness of the interfaces on the electron dispersion law is very important, since the
electron energy spectrum governs the electron transport in SLs. In addition to it, for
effective mass SLs, the electronic subbands appear continually in real space [25].

In this chapter, the entropy in III-V, II-VI, IV-VI, HgTe/CdTe, and strained-layer
quantum wire heavily doped SLs (QWHDSLs) with graded interfaces has been studied
in Sections 6.2.1 to 6.2.5. From Sections 6.2.6 to 6.2.10, the entropy in III-V, II-VI,
IV-VI, HgTe/CdTe, and strained-layer quantum wire HD effective mass SLs,respec-
tively, has been presented. Section 6.3 contains the Results and Discussion pertinent
to this chapter. Section 6.4 presents single open research problem.

6.2 Theoretical background
6.2.1 Entropy in IlI-V quantum wire HD SLs with graded interfaces
The electron dispersion law in bulk specimens of the HD constituent materials of

III-V SLs whose undoped energy band structures are defined by three-band model
of Kane can be expressed as

== = Ty(E, Aj, Egj, Ngj) + 1Ty (E, Aj, Egj, 1) (6.1)

where
j=1,2,Ty(E, Aj, Egi,ng) = (2/ (1~ Erf (E/ng;))[(@;b;/¢;)-00 (E/ng;)
+[(aic; + bicy; - ajby) /¢
Yo E/ng) + 1/ )(1- (a;/¢;)) (1 - (b;/c)) % [1+Erf(E/ng)] - (1/¢)(1- (a;/c)))

oo

(1- (b/))) (2/ (G1gv/7) exp( - {Z exp(-p*/4)/p) sinh(p;)] |,

o 2\ 1+GE
b-E(E~+A-)’1,E-E<E-+7A-) U= ——
] 8] J ] 8] 3 J ) C]ﬂgj
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and

o 2 1 @ b\ va _
Ty(E, 0 Egion )= | ——a— | = [1-2 | [1-2 | 2= T
%(E, A, Egj 'lg,) (1+Erf(5/ngj> G ( Ci) ( Ci) =y exp ( u]>

Therefore, the dispersion law of the electrons of HD quantum well III-V SLs with
graded interfacescan be expressed as [25]

I_(g = Gs + 1H8 (62)
> 5
C2-D2
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T bss) |
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p [dz + 62 d% el] p3 [dlel + dzez] pz = Z[dldz + 6162} p4 [dlez eldz]

= [(sin(hy))(cos h(hy))(sinh(g))(cos(g,))
+ (cos(hy))(sinh(hy))(cosh(g1))(sin(g,))]
2 1V)lpa ~papsls
H,=[(sin(hy))(cosh(h,))(sin(g2)(cosh(g1)) - (cos(h)) (sinh(h,))(sin(g1)) (cos(82))]
)"

[el(af - (_1%) - zalazez} - 36’1],

(P3 + Py

p;=l(ef +€;
G;=((sin(hi))(cosh(h,))(cosh(g1))(cos(g2)) +(cos(h)) (sinh(hy)) (sin(g:)) (sin(g2)]
o= (€2 +€2) Vea(d - ) +2didrer] + 3e2),

Hs = [(sin(hy))(cos h(h2))(sin(g>)) (sinh(g1))
~ (cos(hy))(sinh(h2))(cosh(81))(cos(82))]

Pg = [(Eif + ag) -1 [az(e§ - e%) + 2923291] + 3211},

Gy =[(cos(hy))(cosh(hz))(cos(g2))(sinh(g,))
~ (sin(hy))(sinh(h2))(cosh(g1))(sin(g2))]

Pro =~ (di +d5)"'[da — €3+ €7) + 2e,dsen] +3da),

Hy = [(cos(hy))(cosh(hy))(cosh(g1))(sin(g2))
+ (sin(hy))(sinh(hz))(sinh(81)) (cos(82))]

pn=2di +e-d; -efl,

Gs = [(cos(hy))(cosh(h))(cos(g,))(cosh(g))
— (sin(hy))(sinh(hy))(sinh(g;))(sin(gz))]

P = 4[&1&2 + 816’2],

Hs = [(cos(hy))(cosh(hy))(sinh(g1))(sin(g2))
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Hg = [(sin(h;))(cosh(h,))(cosh(g:)) (sin(g2))
~ (cos(hy))(sinh(hy)) (sinh(g1)) (cos(g2))];
H; = [Hi + (psH2/2) + (06 G2/2)
+(80/2){pgGs + p;Hs + p1o Gy + poHy + prGs + pyyHs + (1/12) (1, Ge + p1,He ) },

Hy = [(sin(hy))(sinh(hy)) (cosh(g:))(cos(82))
+ (cos(hy))(cosh(hy)) (sinh(g1)) (sin(g2))),

D7 = Sinh_l(6)7),H8 = (ZC7D7/Z%)

The simplified DR of HD quantum wire III-V SLs with graded interfaces can be ex-

pressed as
I¢=[Gg + ng]‘l;x:%and];y:fg_n (6.3a)
The DOS function can be written as
e e FI(E—Fis1) {ES R iﬁg}
NE)=2Y Y (6.3b)

T3zt ny=1 v/ Gg +iHg

where Ej3; is the sub band energy and the sub-band equation in this case can be
expressed as
0= [68 + ng] |I}x=ﬁ

BL: and@:% and E-Eq3 1

(6.3c)

The EEM in this case is given by

2

e h"—
m (E,ng, ny, ny) = 36 (6.4)

The electron concentration can be written as

Nmax "Zmax

nip = Real part of Z Z [T6 +T7] (6.5)

n=0 nz=1
where
1/2

Te = [Gg + ng}

|Ii(z :n?ﬁz‘ - My = = >
d =—YE=
z ky 3 ,E=EFg
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=Y L)l

r=1

and Erg is the Fermi energy in this case
Using (1.31f) and (6.5), we can study the entropy in this case.

6.2.2 Entropy in II-VI quantum wire HD SLs with graded interfaces

The electron energy spectra of the HD constituent materials of II-VI SLs are given

by
_ i Rk .-
E, = _—*s — *Z x k .
¥3(Esngr) m, + o, + Coks (6.6)
and
e o o
Zﬁl* = le(E, Az,Egzrlgz) + iTzz (E, Az,Egz, ngZ) (67)
c2

where m’, ; and ﬁ’ﬁ,l are the transverse and longitudinal effective electron masses,
respectively, at the edge of the conduction band for the first material. The energy-
wave vector dispersion relation of the conduction electrons in HD quantum well
I1-VI SLs with graded interfaces can be expressed as

’EZ = 619 + iH]g (68)
4
where
_ C-D% -
Gl9 = |: 18]742 18 _ k§:| ,
0

~ -1 - U 1
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_ 1. - o o _ ~ ~ o
Glgzi[Gu+Glz+Ao(GB+Gl4)+Ao(Gl5+616)],Gu=2(cos(g1))(cos(g2))(cosyn(E,ks))

1

_ e o |2m )2

3(Engy) = 5= iCOkS} |,1}
1,

Vll(E T‘S) :’221(Er kS)(bO_AO)jZl(Er kS):{ "

_ 1, - U 1
Cig=cos ™' (wig), w1s = (2) 2 [(1- Gig - Hyg) - \/(1 - Gy~ H}y)" + 4G 2

1 L L - - _
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U D L
Y1 (E ks) = ka1 (Es ks) (bo — Do), kan (E, ks) = [Vg(EJng—zm» + Coks] 2
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[ &-&
|k (Eo k)

2d-d,

O5(E k) = —3kx (E. k |
3( s) 21( ) k21(E)ks)

,94(E’ks) = {

Gua(|5(E. k) (sinh g1) (cos g2) - 06(E,ks)(sin 1) (cosh &) (cos yy (E.ks)))

- = - . - d,
Q5(E,ks)= 3d - =k (E ks) |, Q6 (E. k) = {3d2—d2 d2k21(E k)}

dd2

Gis( [99(E ks)(cosh g1)(cos &) — Q10(E, ks)(sinh g;)(sin gz)} (cos yy, (E. ks)))
Qo(E, k) = {za; - 232 (E, z@] , Q0 (E, k) = [zalaz]
Gie ( {07(}:'7 ks)(sinh g;)(cos g;) — Qs(E, ks)(sin g;)(cosh gz)] (sinyy, (E ks)/12))

_ o 43 - 3d2d o
Q;(E, k) = [5‘1218 (E, ks) + od —3dydy) _ 34ky (E, ks)dl},

R+d? ke (E, ks)
. 5d, _ - 5(d?-3dd,) o
Qgs(E, k — G, (E, ks) + —L——2" 1 34 (E, ks)d |,
s(E, ks) [d%+d§ 1 (Es ks) Kot (E, ks) + 34k (E, k) d,

1 o o
Hig = 3 [Hu + Hip + Ao (Hiz + Hig) + Ao (His + Hig) ),

= ([Q2(E, ks)(sinh g1) (cos &) + 2 (E, ks) (sin &) (cosh &1)] (sin yy; (E, k),
Hys = ([Qu(E, ks)(coshg1) (cos 82) + Qs (E, ks) (sinh g1) (sin 82)] (sin yy, (E. ks))),
[Q6(E, ks) (sinh 81)(cos 82) + Qs (E. ks) (sin 81) (cosh &) (sin yy, (E, ks))),
5)(coshgi)(cos &) + Qo (E, ks) (sinh g1) (sin &)] (cos y, (E, ks)))
His = ([Qs (E. ks)(sinh 81) (cos &) + Q7 (E, ks) (sin 1) (cosh g2)] (sin yy, (. ks) /12)),
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_ 2CisD _
ng = {#} and D18 = Sin_l((l)lg)
LO
The simplified DR of HD quantum wire III-V SLs with graded interfaces can be ex-

pressed as

2 =[Gy + iH. 6.
z [ 1w 19] kx:n;xn andky:né/; ( 9a)
The DOS function can be written as
MXmax Wmax 17/ T ~ sy’
_ H(E-E G H
N(E) = S Z ( 13,2)[G 19 +iH 19] (6.9b)

T =1 ny=1 v/ Gig +1Hqg

where Ej3, is the sub-band energy and the sub-band equation in this case can be
expressed as

(6.9¢)

The EEM in this case is given by
_ W=
m (E’ng’ ﬁX) ﬁy) = 5619 (6'10)
The electron concentration can be written as

Nzmax "Ymax

nyp = Real part of Z Z [Tg + To] (6.11)
nz=1ny=1
where

1/2

and Erg; is the Fermi energy in this case
Using (1.31f) and (6.11), we can study the entropy in this case.
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6.2.3 Entropy in IV-VI quantum wire HD SLs with graded interfaces

The E-k dispersion relation of the conduction electrons of the HD constituent mate-
rials of the IV-VI SLs can be expressed as

K2 = (25,1~ o1 (B Keo igg) + [[0,4(E: Ko 1) P+ 4o, Ro (o] (6.12)
where,

Bo,i= (aih*) /o i = (ah®) /(4 m/), 1=1,2,

Go,1= (E Koo yg) = [(02/2) (11 + (1175 )) +

(R 4)R((1 i g ) + (1 g )) =y (B ) (/1) = (1))
and

Roui(E, ko) = [y, (B ) + 75 (B g [ (B2 2)ak2 (1) — (1))

~ (R 2)R2((1/iy) — (11 ))] = (R /4K (1 g g )

The electron dispersion law in HD quantum well IV-VI SLs with graded interfaces
can be expressed as

cos(Lok) %cpz (E.k) 6.13)

@, (E, ks) = [2cos{B,(E. ks) } cos{y,(E. k) } +&2(E, ks) sinh{B, (E. ks) } sin{y,,(E, ks) }

~3KonE, S)) cosh{B,(E ks)} sin{yy (E.Ks)}

N <31‘<112<E, - 7)) sinh{B,(E.k;)} cos{y(E. ks)}

+ 80 2({Kina(E k) } = {Kana(E, ks) V) cosh {B, (E, ks) } cos{yy, (E, ks) }

1 5{1?112(3@)}3 . 5{K212(E’l_<s
Ko (E, ks) Ko (E, ks

Nl

B

I (Eks)=12Do2] ™ Fgo2 (E-Vo ks Ng2)-[[@02(E-Vo ks ﬂgz)]zmﬁwkw (E-Vokslg,)]
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Yo (E ks) = Koo (E, ks ) [bo — Ao,

1
. o . 3
IG12(E ks) = [2D9,1) { 9,1 (E, ksg,) + l:[Q9,1(E’kSrIg1)]2+4I§9,1R9,1(E’k$rlg1):| }

and

The simplified DR in HD quantum wire IV-VI SLs with graded interfaces can be ex-
pressed as

I = le {cos 1{%@2(]5”_(5)”2_]_{4

The DOS function can be written as

nym (6148)
d

N(E) _ g___vflxmax Mymax cOs*l{%@z(E I}S)}(Dz( k ) (7 k )H(E_EB 3)
milo £ ny =1 (\/cos-l{ D, (E, ks)} -I2 {(}T” +( })\/1_ L@2(E, ks)
(6.14b)

where Ej3 3 is the sub-band energy and the sub-band equation in this case can be
expressed as

1 N U B .
0= [Lz [COS {i‘pz(EB,s,ks)H —ks] Iix:fg—”andl}y:fg—” (6.14c¢)
x y
The EEM in this case is given by

) -12

%z _ _ - 1 5=+

m (E,ng, Ny, ny) = ﬁcos 1{ @, (E, ks)| @5 (E, ks)[1- Z(Dz(E, ks) (6.15)
0

The electron concentration can be written as

Nzmax Mymax
nip = Z Z [T10 + T1i] (6.16)
nz=1ny=1

where

1 1 ’ .
Ti0 = ) COS_l _(DZ(E)’_(S) _kg K, =Tz = >
L3 2 Ty =T E=Fpg
y
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= i L(7)[T10]

r=1

and Efg; is the Fermi energy in this case
Using (1.31f) and (6.16), we can study the entropy in this case.

6.2.4 Entropy in HgTe/CdTe quantum wire HD SLs with graded interfaces

The electron energy spectra of the constituent materials of HgTe/CdTe SLs are given

by
_ BZ +4A1E—B01 BZ +4A1E
kzz{ 2z MZV 2 (6.17)
1
and
e .. - o
- T1a(E, Az, Ego, Ngy) +1T2(E, Ag, Ega, Ngy) (6.18)
c2

where By, = (3|e|’/128&501), A; = (h?/2m,). £sc1.65a1is the semiconductor permittivity
of the first material. The energy-wave vector dispersion relation of the conduction
electrons in HD quantum well HgTe/CdTe SLs with graded interfaces can be ex-
pressed as

I_(g = (_;192 + iH192 (619)

where,

G2 =

(@f& —Dfszms) ; kﬂ ,

2
— —_1 — — — — —
Cisa=cos ™' (w1g2), wig2 = (2)2 [(1 - Gfsz - Hfsz) - \/(1 - G%sz - H%sz)z + 4G%82:|

_ 1 _ _ _ _ _
Gig2= 2 (G112 + G122 + Ao (G2 + Giaz) + Ao (Gisz + Gie2))s

G2 =2(cos(g12))(cos(82)) (cos yg (E, ks))

_ o _ o B(2n+4A1E—B0“/B%1+4A1E
yg(E»ks):ktS(E) S)(bO_AO)’kS(EkS)_ JA2
1

12
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276 =—— 6 Entropy in quantum wires of heavily doped superlattices

Gi22([Q12(E, ks ) (sinh 812)(cos 82) — Qxn(E, ks)(sin gx)(cosh g1)](sin yg(E, ks)))

dp ks (E, I_(s)au

__ ks(Esks, d» _’_fs(E,]_(s)azz
ks(E, ks) a, +d3,

ks (E, ks) afz + a%z

,On(E ks) = [

G132 = ([Q32(E, ks)(cosh g12)(cos §2) — Qua(E, ks)(sinh g1)(sin g2)](sin yg(E, ks ))),

R I R _ 2dpd
Qn(E k) = | =222 _3kg(E, ks) |, Qua(E, ks) = | — 222 |,
5(E ks) = ( o) s(E ks) |, Qua(E, ks) [kg(E,ks)
6142 = ([Q52(E, ]_(5)(Sinh glz)(COS g'zz) Qe,z(E ks)(Sll'l gzz)(COSh gzz)}(COS )/8 E
Qs (E, ks) = —32112 2d12 ~IR(E k)|, Qea(E ks) = |3dn + ——— K3 (E,
L diy+ dy d12 dzz

Gis2 = ([Qo2(E, ks)(cosh g12)(cos 82) — Q102 (E, ks ) (sinh g12)(sin 82)](cos yg (E, ks))
Q0 (E, ks) [ dr, ~2d%, ~ kg (E k )} Qi (E. ks) = [2d12d22}

Gi62([Q72(E, ks ) (sinh g12)(cos 82) — Qs>(E, ks)(sin g12)(cosh g»)](sin yg(E, ks)/12))

_ 5di  i3,- 5 . 5(d—3d%dn) S
Q5 (E ks) = kg (E, ks) + —=———==—"" —34kg(E, ks)dy, |,
72( s) |:d%2+d%2 ( ) kg(E,ks) 8( s) 12
. 5dy i3, 5 . 5(d3—3d%dn) I
Qg (E, k. ——~ I (E kg) + m—=——-2="" +34kg(E, ks )d12 |,
82( S) |:d%2+d§2 ( ) kg(E,ks) 8( S) 12

_ 1ro _ _ _ _ _
Higr = 3 [HHZ +Hip + Ao (Hizp + Hisp) + Ao (Hiso + H162)}

Hipp =2(sinh gy, sin g2 cos yg(E, ks)),

Hiy = ([Qn(E, ks)(sinh g12) (cos §2) + Qua(E, ks ) (sin §22) (cosh g12) ] (sin yg (E. ks))),

Hi3 = ([Q42(E, ks) (cosh §12) (c0s 822) + Q52(E, ks ) (sinh 812) (sin 82)] (sin yg (E; ks ),

Hi = ([Q6(E, ks) (sinh g12) (c08 822) + 252(E, ks) (sin g12) (cosh 822)] (cos yg (E, ks)),

Hisy = ([2102(E, ks) (cosh §12) (08 §22) + Qo2 (E. k) (sinh g12) (sin 822)](cos yg (E. ks)) )
ks)(singu)(coshgx)] (sinyg (E. ks) /12)),

Higr = [((2Ci2D1s5) /L3)] and Dygy = sinh ™! (wygy)

Hig= ([Qsz(E, I_(s) (sinhgi,)(cosgx) +Q72(

The simplified entropy in HD quantum wire HgTe/CdTe superllatices with graded
interfaces can be expressed as
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= - 7 .
kz = [6192 + 1H192} ke =% and l}y =% (6203)

The DOS function can be written a

= Txmax Wmax 7/ _ L A 3
_ HE-E G H
NE)=23T Y (E~Ep0)[Gron + H 1] (6.20b)
T3zt ny=1 V Gi9z +iH19)
where Ej3 4 is the sub band energy and the sub — band equation in this case can be
expressed as

N 6.20c
(G192 192] kx:%n,ky:rg—nandE:EBA | |
X Y

The EEM in this case is given by

= o n”—
m (E,ng, Ny, Ny) = 3G 192 (6.21)

The electron concentration can be written as

Nzmax ﬁ)’max
nyp = Real part of Z Z [T12 + T13] (6.22)

nz=1ny=1
where
1/2
T2 = | | Gro2 + iHi92 kp =Tz . >
2" ky ==Y, E=Epg,
dy
5

T3= Z,(f) [le]

and Erg, is the Fermi energy in this case.
Using (1.31f) and (6.22), we can study the entropy in this case.
6.2.5 Entropy in strained layer quantum wire HD SLs with graded interfaces

The dispersion relation of the conduction electrons of the constituent materials of
the strained layer super lattices can be expressed as

[E - Tli]i()z( + [E— Tzl]f()zl + [E— T3,]’2§ = E]iE3 - RiEZ + V,E + (i (623)

where
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278 —— 6 Entropy in quantum wires of heavily doped superlattices

2 "7

_ _ e e 3 l_7i€i \/ 3ai3xyi

T1i=06;,0;= | Egi — Cji&i — (a; + CY;)&i + Ebigxxi - ,
- - _ b \/3di€xyi

Tyi = Wy, Wi = [Eg G (@ e+ o i€ lm} :

)€+ EbiSXXi_T_ P

_ L 3. big;
Tgl 51, 6 {Egi - Cfigi - (ai + Ci-)é‘i + 5bi£m~ - ”:| s

2
Ri =q; [ZAI + Ei—gi, qi= ZBZ ,A Eg, Ci&'l,
|, 2Ck 2Cse -
V,' =qi 1412 1:13 i + 2A Cisb (l =(qi |:1ITXYI CfiSiAiz

Therefore, the electron energy spectrum in HD stressed materials can be written as
pi(E, I'Igl)i()z(-Fél(E, ngi)k§+gi(E) rlgi)ié:l (624)
where

b)O (E ngl) IO Tli]

(E ng) Az (E) rlgi)
) Do (Bonige) ~ToTai] .~ [0 (B> ngi) ~IoT51]
To= 51+ BB/} QBong) = YA(E—%) nd (B~ ym—ng)}

The energy-wave vector dispersion relation of the conduction electrons in heavily
doped strained layer quantum well SLs with graded interfaces can be expressed as

cos(Lok) = ¢6(E ks) (6.25)

6 (Eks) =[2c0sh[T4 (E.ng,)] cos[Ts (Eutgy)]] +[Ts (E.ks) sinh[ T4 (E.ng,)  sin[Ts (Eo gy )]

A Kk((Ei”:f) K (E, ng1)> cosh [T4 (B )] sin [Ts(E. )|

’,

()g—:g) sinh [T, (E, ng,)] cos [Ts(E, n,,)]

= =

‘ (3120 (Enp) -
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+ 80203 (E,ngy) — K (Engy)) cosh[ Ty (E, )] sin(Ts(E, )]

— — =3 -
i 5k(3)(E’rlg2) +5k (E’rlgl)
kl(E,ngl) kO(Earlgz)

[Ta(E, ngy)] = ko(E. Mgy) [0 = Ao,
ko(E>Ngy) = (S2(E = Vo 1gy)) ™ *[Pa(E — Vo, gy + Qa(E — Vo, ngp) k2~ 172,
TS(E’ rlgl) = El(E> rlgl)[BO - AOL

K (Engy) = [S1(E.ngy)] 1= Po(E. gy K — Qa(Esmgy )

~34ko(E.ngy K (E, ﬂg1)> sinh|[T4(E,ng,)|sin[Ts(E,ng)]

and

Sl

Ts

>

L ’EO(E’ngl) B Z‘,(E’ngl)
K(Eng) ko(Eng)

Therefore the entropy of the conduction electrons in HD strained layer quantum
well SL with graded interfaces can be expressed as

R- Li% [cosl{%@g(f?,ks)}r—kz} - iy 22 (6260
The DOS function can be written as
Mmiig?%ﬂ myﬁ@(hwmwmwmwmm ~Enys)
=1 ny=1 <\/cos*1{%d)6 )} —L3{(%= ""” )\/ -1 (E, ks)]
(6.26b)

where Ej3 5 is the sub — band energy and the sub - band equation in this case can
be expressed as

1 (1 - =Y S|l A .7
0= []:—(2) {cos 1{§®6(E13,3,k3)H —kﬁ} k= é‘x andky:aLy (6.26¢)
EEM in this case is given
B h2 B B o -1/2
(B, o) = 5pcos” B R n(E R |1~ p0ERE| 620

The electron concentration can be written as
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280 —— 6 Entropy in quantum wires of heavily doped superlattices

Nzmax Mymax

flu): Z Z [T17+T18] (628)

fiz=1 ny=1
where
1/2
1 =\ s
Ti7= | |= |[cos 1 =D (E ks) p | — K2 ||, _mny . ’
2 ke="% 0y o o
0 z ky:a—y’E:EF&’a
§ —
Tig = L(7)[t17]
=1

and Erg is the Fermi energy in this case.
Using (1.31f) and (6.28), we can study the entropy in this case.

6.2.6 Entropy in IlI-V quantum wire HD effective mass SLs

Following Sasaki [24], the electron dispersion law in III- V heavily doped effective
mass superlattices (EMSLs) can be written as

1 - - _
= |7 feos  Fa(E Ky k) ) - K2 (6.29)
0

in which
(fﬂ(E, ,_(y,’_( ) a1 COS[a0C21 (E kL’rlgl) + boDzl(E I_( I] )}

- COS[EIOC21(E, i(L, rlgl) - BoDzl(E, i(L, rng)} ki k}Z[

_ M;(0,7,,) ’ M;(0, 1) 1/2 o
al—[ Miil(OJlgl) +1} {4(—M1(O»’1g1)) }

2 — -1
_ M;(0,1n,,) M>(0,1,,) 1/2
= { 0,7, 1] {4(M1(0,n;)) }

_ . 2 1 al-Ei+?:iB,~—aiB,~ 1 Qi Bi
Miz(o’rlgi):ma |:\/7—.[ (0 ’1g1)+2|: \/gl < 2 >+\/7T_Z'i<1_é_i> (1_6_1.)
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. 7. — a n

_,l<1—&) (l—g), 2 { 2 o = (exp( p)) —sinh 7p
Ci Ci Ci) CngVm Clng, c: ’Yg1 =i 4 D Cillgi

) (2 (‘f’z)

+exp exp —cosh
( rlgz) (Z 4 gl lngz

7 _ ail_vi’l_ﬁi aiCi + biCi - a;b; T 1 (@) (4 bi
T(O’ng")‘z[ G 4 ( 2 ava e\

-9 (=) e ( n) S PP o (n)]

Cu(E ki, Ng1) = €1 +1i€5, Dy (E, ki, Ngy) = €3 + ey,

(TR o () )

- [2my o I -
ti= |: hz (E Ay, rlgl’ gl) ki:|’t2: thl TZl(E, Ay, rlglaEgl)
— _q1/2 — _.1)2
B+t +ts B+t -t
e=|——| ,e=|——F—
2 2

m._ _ _
2C2 T22(E: Al) rlgl) Egz))

_ 2M ., - - = - - 2
[ { hzd Tio(E, M, Mgy Ega) - ki} =

Therefore, (6.29) can be expressed as
I =6;+18g (6.30)

where

1 _
;= L—Z (6:-67) - ki} ,85=cos " 'ps,
0

12
1-82-82\/(1-8 - 62)" + 46
2

63 = (a; cos A; cosh A, — a; cos As cosh Ay),
04 = (ay sin AsSinhA; — a; sin AssinhA,),

= (@oe; +boes), Ay = (@pe; + boes), As = (aper — boes), Ay = (aoer — boey),
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282 —— 6 Entropy in quantum wires of heavily doped superlattices

8¢ =sinh ™ 'ps and &g = [26564 /L3

The entropy in III-V HD effective mass quantum wire SLs can be written as

and k, = M| (6.31a)

5, +i6
= (67 + 8] T A d,

The DOS function can be written as

— Mxmax MYmax 7/ T ’ . of

— = 8y H(E—E13’6)[67+168]

N(E)=2¥ - (6.31b)
4 ﬁXZ:1 f,yZ:1 Vv 67 + 168

where Ej3 ¢ is the sub-band energy and the sub-band equation in this case can be
expressed as

Moo My -
X Ky = X and E-E36 (6.31¢)

5, +16
= (67 + 8] T d,

The EEM in this case is given by
_ 2
m (E, N> s n)= ?6 7 (6.32)
The electron concentration can be written as

Mzmax "Ymax

nyp = Real part of Z Z [T15 + T16] (6.33)

fiz=1 ny =1
where
1/2

Ti5= 57 + 168 Tmz 5
d Ty
z k 3 JE= EF67

Tis= Y L(7)[11s]

and Efg; is the Fermi energy in this case.
Using (1.31f) and (6.33), we can study the entropy in this case.

6.2.7 Entropy in lI-VI quantum wire HD effective mass SLs

Following Sasaki [24], the electron dispersion law in HD II-VI EMSLs can be written as
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]_(g = A13 + iA14, (634)

1 _
b= 7 (8 -8~
0

As =cos P,

1/2/
2
1- 82 - A2,/ (1- 83 - 82, + 42,

Ds= 5

Ag = (@3 cos Ag cosh A7 — a, cos Ag cosh A7),
A1 = (a; sin AgsinhA; + a; sin AgsinhAy),
A = [@oC(E, ks, 1gy) + boes], A7 = boes, Ag = [@oCoa(E, ks, Ngy) — boes]

*

C —(E k )— Hl{ (E )—72’{3 +C k } 1/2
22 > )JZ - Y >]1 * 0 >
S 7lgl hZ 3 81 2m 1 S

- — 2T _ 1/2' -1
[M3(0, M;(0, _ .
a = M_,_l 4 M >Ml(0>’1g1):fnc1<1_g>>
L MI(O’ rlgl) ] MI(O’ ngl) n

- 2T _ 1/27
Gy = MZ(O’ rlgz) 1 4 MZ(O’ rlgz)
H= [ - i o 84
M](O, rlgl) MI(O’ rlgl)

2A11A
Ly

A =cos ™ 'pe, Ay =
Entropy in III-V HD effective mass quantum wire SLs can be written as

I_(g = [613 + i614] (6353)

Koy =TT e, =Y
kx = dar and ky a3
The DOS function can be written as

— Nxmax Wmax 17/ T ’ Lot

= By H(E-Ei36)[613 +16 14]

N(E) =% : (6.35h)
( nt ,,Xzzl ny=1 V013 +1614

where Ei3 ;7 is the sub band energy and the sub - band equation in this case cane be
expressed as

0=[63+10u]| s, . n -
[ 3 14} kx=£ ,ky:M and E-E;371
dy dy >

(6.35¢)
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The EEM in this case is given by
2
(6.36)

.= _ . Kk,
m (E,ng, Ny, Ny) = ?6

The electron concentration can be written as

ﬁzmax Fl}’max
nip = Real part of Z Z [T19 + T20] (6.37)
fiz=1 ny =1
where
1/2

Tig= |[Az +1Au] |y ..
dz” ky ==Y, E=Ep
y dy F610

]

T20=, L(7)[T10]

and Ergo is the Fermi energy in this case
Using (1.31f) and (6.37), we can study the entropy in this case.

6.2.8 Entropy in IV-VI quantum wire HD effective mass SLs
Following Sasaki [24], the electron dispersion law in IV-VI, EMSLs can be written

as
(6.38)

1 - _
= i—z{COS*l(fB(E, ke ky)) Y K2
0

where

f23(E’ ’EX)I} ) a3 COS[a0C23( k

-a, COS[aQCB( E, ky 7yl]g2) BOD23 (E, ky, l}yngz)],

)
- 3(0 rlgl M3(0 Mg )

)
)

G = |: 3(0 rIgZ :| |: <M3 0 ng2)>1/2:| '
- 3(0 rlgl M3(0 ngl)

|§\
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N (N[ o

_ _ 2 il
619,i(0,71gi)+2p9,i<1—5+ ﬁ)”

mm my; o mg;
alrlgl 1 rlgl (Xﬂ’l;
- = \=x " =_)| R > i) = | —— >
mom mll)} 21015 [ 2
o -1 L - X
Co(E kM) = | [2B0.1] | ~o1(B koo Ky ) + | @51 (B K Ky gy)

+ (4P9,1)Ro,1(E, ky, Ky, rlgl)} l/zﬂ 1/2,

-1
o o o 2
Dy (E, ke, ky,ngy) = HZPM} [—%,Z(E’ ke kysngy) + [{49,2(5 ks ky"lgz)}

1/2471/2
+ (4P9,2)Ro,2(E, ky, Ky, ngz):| :|:| >
o | 1 n - 1 1
Q9 I(E k k)“rlgz) I:? (m_lj.l + ﬁl—]}) +ai—k§<m£—imh—i + ﬁllj-iﬁzl,—i)

4
1 1
-entinn (7775
i 51

w 11
R9 I(E kX’ k)/’ rlgl) [Vz(E rlgl) + Y3(E rlg'[)a kg (_ - _>

e 2 e\ 2 -1
as= | /=2 +1 4(_3)
m, m,

Therefore, the entropy in HD IV-VI, quantum wire EMSLs can be written as

- 1o ol ) 2] (- ana, - 27 (6399
0
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The DOS function can be written as

nXmax Mymax

N(E) = & 3%

nx=1 ny=1

cos {1 (52, 27) 1 (B, 22,2 [y (. 22,20 BCE — Ei)

(o {m(ese 3} (" () ) alinCee )

(6.39b)

where Ej3 g is the sub-band energy and the sub-band equation in this case can be

expressed as

1 - = - = Sy M - s
0= | (cos (B o))} - ] k= 2 and =" (639)
0 X Yy
EEM in this case is given by
N Y ¥ o
m (E, ng, Ny, ny) = 2T%cos [Efzs <E & d
, 1 -1/2
7T Ny 1|; (o mat nym
e 1- = E —=— 6 2 6.40
fza( e d)] ! fB( . d)] (6.40)
The electron concentration can be written as
ﬁxmax ﬁ}’max
fllD = Z [T21 + Tzz} (641)
nx=1 ny=1
where
1 2 1/2
T = |:|:I7 |: Osl{f23(E,kx,ky)}:| —k§:| - N
0 =G ky ==, E=Epen
§ —
Tpn = L(I’)[Tﬂ]

and EF(,H is the Fermi energy in this case.
Using (1.31f) and (6.41), we can study the entropy in this case.
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6.2.9 Entropy in HgTe/CdTe quantum wire HD effective mass SLs

Following Sasaki [24], the electron dispersion law in HDHgTe/CdTeEMSLs can be
written

IZ = Aizg + D, (6.42)

where,

1 _
b= [ (B~ D) - ]
0

1/2
2
1-A5 — Aoy ~ \/(1 — A5y~ Aor)” +4h3y

,17 —
Ay1g = COS ™ DeH, D6l = 3 ,

Aog = (@1 cOs Asy cosh Agyy — oy €OS A7y cosh Agy),
A10H = (EllH sin A5H sinh A6H + doy sin A7H sinh A6H)>

Asy = [aoézzH(E, 7(5, > rlgl) + Boéﬂ, Aoy = 5054, A7p= [EIQCzZH(E, I?s) , ngl) - Boé3]

~ =7 BZ + ZAIE - BOI BZ + 4A1E 12
CZZH(E)kS,’ngl): { 01 2;12( 01 ) ,
1

— 2 _ 1/27 -1
M;(0, M (0,

Ay = 2( *ng2)+1 a 2( *rlgz) ,
my my

— 2 _ 1/27 -1
Qo = MZ(O’ng2)+1 4 MZ(O’rng)
my ’ my

2A1gA
Aoy =08~ Per, Aar = %
0
The entropy in HDHgTe/CdTe QWEMSLSs can be written as

l_(g = [Asp + Aa] |7<x BT g, T (6.433)

dx dy

The DOS function can be written as

N(E) = g, nxfx % H(E - E3,9)[A 135 + 1A 141]

: (6.43b)
=1 ny=1 VAzg +1AH

where Ej3 5 is the sub-band energy and the sub-band equation in this case can be
expressed as
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0= [ABH + lAmH] ooty a5 (6.43c)
The EEM in this case is given by
~ 2
m (E, I’lg, Ny, ﬁy) = ?A 13H (644)
The electron concentration can be written as
Txmax ﬁ)’max
nip = Real part of Z Z [T23 + T24) (6.45)

ix=1 ny=1
where

1/2

T3 = | [As +1A14n] fe

_mix o
dx k,,:%,E:EFGM

<

I

Ty = i(?) [TZS]
r=1

and Erey4 is the Fermi energy in this case
Using (1.31f) and (6.45), we can study the entropy in this case.

6.2.10 Entropy in strained layer quantum wire HD effective mass SLs

The dispersion relation of the constituent materials of HD III-V SLs can be written
as

Pi(E, ng)k; + Qi(E,ng)k; + Si(E, gy )k =1 (6.46)
where

Pi(E,ng;) = (yo(E:ng) ~ I Tu) (Ai(Engy)) ' To = (1/2)[1+ Erf (E/ngy)],

Tji = [Egi — Cligi — (@ + Cf)&i(3/2) bigxxi — (bei/2) + (1) 3di€xyi/2));

Ai(E, ng) = [( = Gimgy/2v/m) exp(— (B /mg;) ) [1+ (E* /ngy)] = Ribi(E, ) + Viyo (Es )

+($i/2)+ Erf (E/ng)]), i = (3/2B3), Ri = qi[2A; + Cjei), Ai = Egi - Cei,

Vi=@iA] - (2C58xi/3) + 2AiCiel], §; = Gil(2C56xi/3) - CieiA]),
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Q (E rlgl) ()}O(E rlgl) ToTZi)(Ai(E’ rlgi))_l’
Tyi= |Egi — Ciei — (@i + C§)&i + (3/2)bigxyi — (bigi/2) - ( Baigxyi/z)]>
Si(E. ) = (yo(Engt) = ToTi) (Ai(E,gg))
T3i = [Egi - Clcigi (al + Ch)Sl (3/2)1_91'8221' - (Bisi/z)],
Therefore entropy in HD IV-VI, quantum wire EMSLs can be written as

2 1 7 1
k= [Lz {cos ™ (Fuo (B ki Ky )) 12 kz} b8 -

The DOS function can be written as
b ﬁ}’max ﬁ}’max

N(E):fLVO SNy

nx=1 ny=1

(cor{37oE:53) o (B4 3) o (3 3) e

— 289

(6.47a)

\/cosl{%fz.o (E%%) }2 - ié{ (%)2 + (%1)2

where Ej3 10 is the sub-band energy and the sub-band equation in this case can be

expressed as

0= [le {cos ™! (f10(E1,10, ke ’zy))}z kz}
0

koo =128 7 and ky = n
dy

The EEM in this case is given by

= o W _ - (- nm nm
m(E,ng,nx,ny)=ﬁC05 1[ f4o(E ; c}l/ )}
0 X y

ol 257 ’Zfﬂ i3 (527 2

The electron concentration can be written as

Mxmax Mymax
nip = Z Z [Tao +Ta1]

fix=1 ny=1

where
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1/2

1 o
4o - {L c0s™ o (B k) V1B =2 [ _mny ,
0 dx’

- o
kY:Tyy and E=Epg;s5

I

Ti= )  L(P)[T40]
=1
and Ergs is the Fermi energy in this case.
Using (1.31f) and (6.48b), we can study the entropy in this case.

6.3 Results and discussion

Using the appropriate equations and the band constants from Appendix 15, the entropy
in HD QW III-V SLs (taking GaAs/Ga;_,AlAs and In,Ga;_,As/InP QW SLs) with graded
interfaces has been plotted as functions of the film thickness and impurity concentra-
tion at 10 K, respectively, as shown in Figures 6.1 and 6.2, respectively.

0.89690
0.89685 -
(b)

0.89680
0.89675 1
0.89670 -

0.89665 @)

Normalized entropy

0.89660 1
I

0.89655 - —|_

0.89650 -
0.89645

10 15 20 25 30 35 40 45 50
Film thickness (in nm)

Figure 6.1: Plot of the normalized entropy in (a) GaAs/Ga;_,AlAs and (b) In,Ga;_,As/InP HD
quantum wire SLs with graded interfaces as a function of film thickness.

The normalized entropy has been plotted for (a) CdS/ZnSe with A, =0, (b) CdS/ZnSe
with A,#0 (c) HgTe/CdTe and (d) PbSe/PbTe HD quantum wire SLs with graded interfa-
ces as functions of film thickness and impurity concentration in Figures 6.3 and 6.4,
respectively. The entropy in GaAs/Ga, ,Al,As, HgTe/CdTe, CdS/ZnSe, HgTe/Hg, ,Cd,Te
and PbSe/PbTe quantum wire effective mass SLs have been plotted as functions of film
thickness and impurity concentration in Figures 6.5 and 6.6, respectively.

EBSCChost - printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost

6.3 Results and discussion = 291
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0.001

Impurity concentration (10° m™)

Figure 6.2: Plot of the normalized entropy in (a) GaAs/Ga;_AlAs and (b) In,Ga;_,As/InP HD
quantum wire SLs with graded interfaces as a function of impurity concentration.
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Figure 6.3: Plot of the entropy in (a) CdS/ZnSe with A, =0, (b) CdS/ZnSe with A, # 0 (c) HgTe/CdTe
and (d) PbSe/PbTe HD quantum wire SLswith graded interfaces as a function of film thickness.

The effect of size quantization is clearly exhibited by Figures 6.1 and 6.3, in which
the composite fluctuations are due to the combined influence of the Landau quanti-
zation effect (due to magnetic field) with the size quantization effect. It also appears
from the same figures that the entropy bears step functional dependency function
of film thickness due to the Van Hove Singularity. Since the Fermi level decreases
with the increase in the film thickness, the entropy increases. This physical fact
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0.0001

Impurity concentration (10° m™)

Figure 6.4: Plot of the entropy in (a) CdS/ZnSe with A, = 0, (b) CdS/ZnSe with A, #0 (c) HgTe/CdTe
and (d) PbSe/PbTe HD quantum wire SLs with graded interfaces as a function of impurity
concentration.

0.98 0.9804
) " o 0.965
0.97 1 B e MMt S AN A e PR
s - =90.960 | | 980,
0.96 0.955
2 0.951 6:956-% | og
S ol 0.945
3 0-940 1 4.9798
= 0.93 4 0.935
£
S 0921 0.930 | 4 9796
| 0.925
0.91
0.920 | 9794
0.90 - 0.915
0.89 —— 0910 | 9792

10 11 12 13 14 15 16 17 18 19 20
Film thickness (in nm)

Figure 6.5: Plot of the entropy in (a) GaAs/Ga,_,AlAs, (b) CdS/ZnSe, (c) HgTe/CdTe and (d) PbSe/
PbTe HD quantum wire effective mass SLs as a function of film thickness.

also governs the nature of oscillatory variation of all the curves where the change
in film thickness with respect to entropy for all type of SLs appears. The entropy
changes with film thickness in oscillatory manner, where the nature of oscillations
is totally different. It should also be noted that the entropy decreases with the in-
creasing carrier degeneracy exhibiting different types of oscillations as is observed
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0.001

1074

Impurity concentration @02 m™Y

Figure 6.6: Plot of the entropy in (a) GaAs/Ga;.,AlAs, (b) CdS/ZnSe, (c) HgTe/CdTe and (d) PbSe/
PbTe HD quantum wire effective mass SLsas a function of impurity concentration.

from Figure 6.2. It may be also noted that due to the confinement of carriers along
two orthogonal directions, the entropy exhibits the composite oscillations in
Figures 6.1 and 6.3, while in Figures 6.2 and 6.4, the absence of composite oscilla-
tion are due to the suppression of the size quantization number along one direction
by another. It appears from Figure 6.5 that the entropy in GaAs/Ga;_,Al,As, CdS/
ZnSe, HgTe/CdTe and PhSe/PbTe HD quantum wire effective mass SLs also exhibits
such composite oscillations with increasing film thickness. The nature of oscillation
in effective mass SLs are radically different than that of the corresponding graded
interfaces which is the direct signature of the difference in band structure in the
respective cases as found from all the respective corresponding figures.

From Figure 6.6, we observe that the entropy in the aforementioned case de-
creases with increasing impurity concentration and differ widely for large values of
impurity concentration, whereas for relatively small values of the carrier degener-
acy, the entropy converges to a single value in the whole range of the impurity con-
centration considered.

6.4 Open research problem

(R6.1) Investigate all the appropriate problems of Chapter 3 for all types of quan-
tum wire SLs in the presence of strain.
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7 Entropy in quantum dot HDSLs

It is much better to know something about your own pin pointed topic of research than to know
everything about one thing.

7.1 Introduction

In this chapter, the entropy from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer
quantum dot heavily doped superlattices (QDHDSLs) with graded interfaces [1-10]
has been studied in Sections 7.2.1 to 7.2.5. From Sections 7.2.6 to 7.2.10, the entropy
from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum dot heavily doped
effective mass SLs [6-10], respectively, has been presented. Section 7.3 contains the
summary and conclusion pertinent to this chapter. Section 7.4 presents 14 open re-
search problems.

7.2 Theoretical background
7.2.1 Entropy in l1I-V quantum dot HD SLs with graded interfaces

The simplified DR of heavily doped quantum dot III-V SLs with graded interfaces
can be expressed as

(f’fl):[asnﬁs]] e (7.1)

where Ey, ; is the totally quantized energy in this case.
The DOS function is given by

o Mmax Wmax WZmax
28,

DD OB LI 72

Zny=q Ny=1 Nz=1

nogpst (E) =

The electron concentration can be expressed as

e nxmax nYmax Zmax
= 28,
”OzaaazzzF 1(1M7,1) (7.3)
Z My=1 Ny=1 Nz=1
where 17, , = % and Ep; ; is the Fermi energy in this case.

Using (1.31f) and (7.3), we can study the entropy in this case.

https://doi.org/10.1515/9783110661194-007
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7.2.2 Entropy in II-VI quantum dot HD SLs with graded interfaces

The simplified DR of heavily doped quantum dot III-V SLs with graded interfaces
can be expressed as

= 2

n,m - =

-] = G1 +lH19 ‘
(dz) [ ? ] ky = n;"andk =

where E, ; is the totally quantized energy in this case.
The DOS function is given by

E-Ey4,2

. (7.4)
o

Mnax Wmax Zmax
28,

aa,ZZZ6E E142 (7.5)

z"xl”ylnzl

nogpst (E) =

The electron concentration can be expressed as

g Xmax Wmax Zmax
No = =
d,d

- ZZZF (n7,,) 7.6)

Y72 o1 Ny—1 Nz—q

dyd,d,

where n; , = % and Ep; , is the Fermi energy in this case.
Using (1.31f) and (7.6), we can study the entropy in this case.

7.2.3 Entropy in IV-VI quantum dot HD SLs with graded interfaces

The simplified DR in heavily doped quantum dot IV-VI SLs with graded interfaces
can be expressed as

()[4

where Ey, 3 is the totally quantized energy in this case.
The DOS function is given by

n 7.7

kx = "X" and _yn
dy

i fiy . iy
B B ng max ' Ymax ' ?max ,
Nogost (E) = 4.4, Z Z Z 6 (E-Ew3) (7.8)

Z =1 ﬁy:l Ny -1

The electron concentration can be expressed as

nxmax nYmax nzmax

o= 2 NN S Foalg) 7.9
xGy

Zx=1 fy=1 Mz=y
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E -E = . . . .
where 1; ;= 22— and Ej,3 is the Fermi energy in this case.

Using (1.31f) gnd (7.9), we can study the entropy in this case.

7.2.4 Entropy in HgTe/CdTe quantum dot HD SLs with graded interfaces

The simplified DR of heavily doped quantum dot III-V SLs with graded interfaces
can be expressed as

— 2
n,mn - <=
(_L) = [6192 + lngz} I}X Ty

_ hym -
= g, =Y~ and E-E
dZ dx Y dy 14,4

(7.10)

where Ey, 4 is the totally quantized energy in this case.
The DOS function is given by

o MXmax Wmax Zmax
28,

qai Y > 2 SE-Eu) 1)
xUyldz

My -1 ﬁy:l nz—1

Noqpst (E)

The electron concentration can be expressed as

o MXmax Wmax Wmax
28,

Ro= == Z Z Zﬁ,l(nm) (7.12)
XEYEZ ny_q ny=1 Nz=1
where 1, , = w and Eg 4 is the Fermi energy in this case.

Using (1.31f) gnd (7.12), we can study the entropy in this case.

7.2.5 Entropy in strained layer quantum dot HD SLs with graded interfaces

DR of the conduction electrons in heavily doped strained layer quantum dot SL
with graded interfaces can be expressed as

(%T) = {é |:COS1{%@6(E14>5»,}S)}:|2_,_<§:|

where Ey, 5 is the totally quantized energy in this case.
The DOS function is given by

o (7.13)

fo =T gnd iy =7
kx = dr and ky 3

_ E B zg-v nxmax nymax anaX
Noqpst (E)

- a EI a Z Z Z 5,(E_El4,5) (7~14)
XYy

Z x=1 Ny=1 Nz=1

The electron concentration can be expressed as
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_ o my W
_ 2gv max max max _
Np = a a a *1(’17,6) (715)
Xy Zﬁx:l ﬁy:l ny—1
Epz6-E
where 1, 5 = % and Eg;,6 is the Fermi energy in this case.

Using (1.31f) and (7.15), we can study the entropy in this case.

7.2.6 Entropy in IlI-V quantum dot HD effective mass SLs

DR in III-V heavily doped effective mass quantum dot SLs can be written as

(”;”) [57+168]] S (7.16)

_nym nyn
., é(x Jky = Z;’—yand E-Ey6

where Ey ¢ is the totally quantized energy in this case.
The DOS function is given by

5 Mnax Wmax WZmax
28,

34,4 SN D S (E-Eus) (7.17)

VEZ g Ny—1 M-y

nogpst (E) =

The electron concentration can be expressed as

o Mnax Wmax Zmax
28,

Mo==-3 >0 2 Falme) (7.18)
XEVTZ g ny—q npoq
where 1, ¢ = % and Ef; ¢ is the Fermi energy in this case.

Using (1.31f) and (7.18), we can study the Entropy in this case.

7.2.7 Entropy in lI-VI quantum dot HD effective mass SLs

DR in III-V heavily doped effective mass quantum dot SLs can be written as

(fz—ﬂ) = [613 + 1'514} ‘, = ~ = o (719)

o= k=" and E-E
z i 14,6

where Ey, 7 is the totally quantized energy in this case.
The DOS function is given by

O nxmax ymax n max
nogost (E) = zcilgva Z Z Z §'(E-Eu,7) (7.20)

VP2 o1 My=q Npoq
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The electron concentration can be expressed as

nxmax nymax nzmax

o= =23 ST S Foanyy)

dxdydz My=1 ﬁy:l nz-1
E, -E = . . . .
where n, ; = F27—1L and Ef 7 is the Fermi energy in this case.

Using (1.31f) %nd (7.21), we can study the entropy in this case.

7.2.8 Entropy in IV-VI quantum dot HD effective mass SLs

DR_in heavily doped IV-VI, quantum dot EMSLs can be written as

DT g, = T
kx = . andky a3

N
(ngl) - [%Z [cos ™ {fs(Eua, sk Ky) 1] - ]}4
z 0

where Ey, g is the totally quantized energy in this case.
The DOS function is given by

o ﬂxmax ﬁymax nzmax
28,

aaa Z Z ZéI(E_EM,S)
xUylz

Ny=1 f’y:l nz=1

N, 0QDSL (E ) =

The electron concentration can be expressed as

5 Mnax Wmax Zmax
28,

ﬁO:a d.d Z Z Zp—l(n%S)
XEVPE g1 ny=q nz=q
where
_Ep;s—Eus
rl7,8_ ’_<BT

and Ep; g is the Fermi energy in this case.
Using (1.31f) and (7.24), we can study the entropy in this case.
7.2.9 Entropy in HgTe/CdTe quantum dot HD effective mass SLs

DR in heavily doped HgTe/CdTe QWEMSLSs can be written as

N
n,m .
— | =|Ag+iduul| L. g
( d; ) [ ] o= ky =" and E=Eyg,
x ly

where Ey, ¢ is the totally quantized energy in this case.
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The DOS function is given by

i _
Xmax ymax Zmax

Nopsi(E) = dzjvd Z Z Z 8'(E-Euo) (7.26)

VI ayo1 My=1 Nzo

The electron concentration can be expressed as
2g MWnax Wimax Zmax
14

dd,d

z fy=1 ﬁy:l nz—1

Flo = 7,1()’17,9) (727)

E E
where 1, o = % and E7,o is the Fermi energy in this case.

Using (1.31f) and (7.27), we can study the entropy in this case.
7.2.10 Entropy in strained layer quantum dot HD effective mass SLs

DR in heavily doped IV-VI, quantum dot EMSLs can be written as

(ﬁgl) {le [COS {f40 (E1a, 10>kx)k )}]2 —124 (7.28)

foe = X i, =97
o =72 andky =3~

where E, 10 is the totally quantized energy in this case.
The DOS function is given by

o Mnax Wmax WZmax
- 28,

Nopst (E) = ad,d Z Z Z 8'(E - E,10) (7.29)

ZMy=1 Ny=1 Nz=1

The electron concentration can be expressed as

5 Mnax Wmax Zmax
28,

o= ==X Z Z Z F_1(n7.10) (7.30)
XUYEZ iy g Ny—-1 Nz=1
where 11; ;o = = Erra0-Fa10 5 g Ep7 10 is the Fermi energy in this case.

kT
Using (1.31f) aﬁd (7.30), we can study the entropy in this case.

7.3 Results and discussion

Using the band constants from appendix 15, the normalized entropy in this case in
HgTe/Hg,_CdsTe, CdS/ZnSe, PbSe/PbTe and HgTe/CdTeHD quantum dot SLs with
graded interfaces have been plotted as a function of film thickness as shown by
curves (a), (b), (c), and (d), respectively, in Figure 7.1. Figure 7.2 demonstrates the
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Figure 7.1: Plot of the entropy in (a) HgTe/Hg;_Cd,Te, (b) CdS/ZnSe, (c) PbSe/PbTe, and
(d) HgTe/CdTe HD quantum dot SLs with graded interfaces as a function offilm thickness.
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Figure 7.2: Plot of the entropy in (a) HgTe/Hg,_,Cd,Te, (b) CdS/ZnSe, (c) PbSe/PbTe, and
(d) HgTe/CdTe HD quantum dot SLs with graded interfaces as a function of carrier concentration.

normalized entropy for the said quantized structures as a function of impurity con-
centration. Figure 7.3 exhibits the normalized entropy as a function of film thick-
ness in HgTe/Hg;-CdyTe, CdS/ZnSe, PbSe/PbTe and HgTe/CdTe HD quantum dot
effective mass SLs as shown by curves (a), (b), (c), and (d), respectively. The nor-
malized entropy in HgTe/Hg;-xCdyTe, CdS/ZnSe, PbSe/PbTe and HgTe/CdTeHD
quantum dot effective mass SLs has been plotted as a function of electron concen-
tration in Figure 7.4.
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Figure 7.3: Plot of the entropy in (a) HgTe/Hg;_,Cd,Te, (b) CdS/ZnSe, (c) PbSe/PbTe, and
(d) HgTe/CdTeHD quantum dot effective mass SLs as a function of film thickness.
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Figure 7.4: Plot of the entropy in (a) HgTe/Hg,_,Cd,Te, (b) CdS/ZnSe, (c) PbSe/PbTe, and (d) HgTe/
CdTeHD quantum dot effective mass SLs as a function of carrier concentration.

It appears from Figure 7.1 that the entropy in HgTe/Hg;_,Cd Te, CdS/ZnSe,
PbSe/PbTe and HgTe/CdTe HD quantum dot SLs with graded interfaces increases
with increasing film thickness exhibiting quantum jumps for fixed values of film thick-
ness depending on the values of the energy band constants of the particular quantized
structures. It is observed from Figure 7.2 that the entropy in quantum dots of afore-
mentioned SLs decreases with increasing carrier degeneracy and differ widely for
large values of same whereas for relatively small values of electron concentration, the
entropy exhibits a converging behavior. From Figure 7.3, it is observed that the TPSM
in HgTe/Hg;-CdyTe, CdS/ZnSe, PbSe/PbTe and HgTe/CdTe quantum dot effective
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mass SLs oscillates with increasing film thickness. From Figure 7.4, it appears that the
entropy of the aforementioned SLs decrease with increasing concentration. It should
be noted that all types of variations of entropy with respect to thickness and concen-
tration are basically band structure dependent.

It may further be noted that the entropy of a two-dimensional electron gas in
the presence of a periodic potential has already been formulated in the literature.
SL is a three-dimensional system under periodic potential. There is a radical differ-
ence in the dispersion relations of the 3D quantized structures and the correspond-
ing carrier energy spectra of the 2D systems. From the dispersion relations of
various SLs as discussed in this chapter, the energy spectra of the various other
types of low-dimensional systems can be formulated and the corresponding entropy
can also be investigated. The results will be fundamentally different in all cases due
to system asymmetry together with the change in the respective wave functions ex-
hibiting new physical features in the respective cases. Therefore, it appears that the
dispersion law and the corresponding wave function

play a cardinal role in formulating any electronic property of any electronic ma-
terial, since they change in a fundamental way in the presence of dimension reduc-
tion. Consequently, the derivations and the respective physical interpretations of
the different transport quantities change radically.

It is imperative to state that our investigations excludes the many-body, hot elec-
tron, spin, broadening and the allied quantum dot and SL effects in this simplified
theoretical formalism due to the absence of proper analytical techniques for includ-
ing them for the generalized systems as considered here. Our simplified approach
will be appropriate for the purpose of comparison when the methods of tackling the
formidable problems after inclusion of the said effects for the generalized systems
emerge. Finally, it may be noted that the inclusion of the said effects would certainly
increase the accuracy of the results although the qualitative features of the entropy
would not change in the presence of the aforementioned effects.

7.4 Open research problems

(R7.1) Investigate the entropy in the absence of magnetic field by considering all
types of scattering mechanisms for III-V, II-VI, IV-VI and HgTe/CdTe SLs
with graded interfaces and also the effective mass SLs of the aforemen-
tioned materials with the appropriate dispersion relations as formulated
in this chapter.

(R7.2) Investigate the entropy in the absence of magnetic field by considering all
types of scattering mechanisms for strained layer, random, short period,
Fibonacci, polytype and saw-toothed SLs, respectively.

(R7.3) Investigate the entropy in the absence of magnetic field by considering all
types of scattering mechanisms for (R3.1) and (R3.2) under an arbitrarily
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(R7.4)

(R7.5)

(R7.6)

R7.7)

(R7.8)

(R7.9)

(R7.10)

(R7.17)
(R7.12)
(R7.13)

(R7.14)

oriented (a) nonuniform electric field and (b) alternating electric field,
respectively.

Investigate the entropy by considering all types of scattering mechanisms
for (R3.1) and (R3.2) under an arbitrarily oriented alternating magnetic
field by including broadening and the electron spin, respectively.
Investigate the entropy by considering all types of scattering mechanisms
for (R3.1) and (R3.2) under an arbitrarily oriented alternating magnetic
field and crossed alternating electric field by including broadening and
the electron spin, respectively.

Investigate the entropy by considering all types of scattering mechanisms
for (R3.1) and (R3.2) under an arbitrarily oriented alternating magnetic
field and crossed alternating non-uniform electric field by including
broadening and the electron spin, respectively.

Investigate the entropy in the absence of magnetic field for all types of
SLs as considered in this chapter under exponential, Kane, Halperin, Lax
and Bonch-Bruevich band tails [30], respectively.

Investigate the entropy in the absence of magnetic field for the problem
as defined in (R3.7) under an arbitrarily oriented (a) nonuniform electric
field and (b) alternating electric field, respectively.

Investigate the entropy for the problem as defined in (R3.7) under an arbi-
trarily oriented alternating magnetic field by including broadening and
the electron spin, respectively.

Investigate the entropy for the problem as defined in (R3.7) under an arbi-
trarily oriented alternating magnetic field and crossed alternating electric
field by including broadening and the electron spin, respectively.
Investigate the problems as defined in (R3.1) to (R3.10) for all types of
quantum dot SLs as discussed in this chapter.

Investigate the problems as defined in (R3.1) to (R3.10) for all types of
quantum dot SLs as discussed in this chapter in the presence of strain.
Introducing new theoretical formalisms, investigate all the problems of
this chapter in the presence of hot electron effects.

Investigate the influence of deep traps and surface states separately for all
the appropriate problems of this chapter after proper modifications.
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8 Entropy in HDSLs under magnetic quantization

Real gentleness in a person is the power that sees, understands and yet interferes in a positive
way.

8.1 Introduction

In this chapter, the magneto entropy in III-V, II-VI, IV-VI, HgTe/CdTe, and
strained layerheavily doped superlattices (HDSLs) with graded interfaces [1-10] has
been studied in Sections 8.2.1 to 8.2.5. From Sections 8.2.6 to 8.2.10, the magneto-
entropy in III-V, II-VI, IV-VI, HgTe/CdTe and strained layer heavily doped (HD)
effective mass superlattices (SL), respectively, has been presented. Section 8.3 con-
tains the result and discussions pertinent to this chapter. Section 8.4 presents 14
open research problems.

8.2 Theoretical background

8.2.1 Entropy in llI-VHD SLs with graded interfaces under magnetic quantization

The simplified DR of HD quantum well III-V SLs with graded interfaces under mag-
netic quantization can be expressed as

l_cﬁz(_}&E,,,HHgE,n (8.1&)

where
= C‘%E _D%E ZeB 1
o (20
Lé h 2

_1 - — — — 2 _ 2
wrgn=(2) 2[(1—G%E,n—H%E,n>— -Gy -2, ) +4G%E,n}

»C7g,.n=c0s ™ (w7g,n),

Grgn= |:GlE,n + (05, nG2E.n/2) = (Peg, nH2E R /2)

+ (Ao /2){P6E,nH2E,n _pSE,nHBE,n + Py, nH4E,n —P10E,nH4E,n

Pk, nH5E>" _ple,nHSEn +(1/12) (P12£,nG6E,n _p14E,nH6E,n)}:| >

https://doi.org/10.1515/9783110661194-008
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Gig,n = [(cos(hig,n)) (cosh(hag, ) (cosh(gig, n)) (COS(82,n))
+ (sin(hig, ) (sinh(hag, ) ) (sinh (&g, n)) (si0(2£,n) ),

— — _l . — —
hig,n = €ign(bo — Ao), €15,n-2 2(\/ e, +B+ tlE,n)

- . o 2eB [ _
tiEn= (2mc1/h2)T11(E, Eg, Alrlgl) - { <n *

|
Nl—

=]
N =

?2 = (27?[;1/?—12) T21 (E, Egla Alrlgl)

— — 71 [ . —
hog,n = eg,n(bo — Ao), €25,n =2 2(\/ t%E,n +t% —tlE,n> >

_ S - 1/ [ =
S1E,n=dign(bo — Ag), dig,n =2 2( XfE,n+)’%—X1E,n)

NI—

N—

- . - o = 2¢B,_ 1
XiEn= | — (chz/hz) Tll(E— Vo,Eg(), A()Tlgz) - {T (n + i) }:| 5
V2= (2m,/h*) Ty(E - Vo, Egy, Aomgy)

_ - - _1 — — _
gZE,n:dZE,n(ao_AO): dog,n=2 2(\/7(%5," +y%_X1E,n) >

Psgn= (ng,n +p3¢E,n) o [plE, nP3E,n P2k, nploE,n]’

NI—

PiEn= [a%E,n + egE,n - a%E,n — ezl P3gn= [d1E,n€1E, n + doF, n€2E,n)»
P n= z[alE,naZE,n + elE,neZE,nL Pugn= [alE,nezE,n - elE,nazE,n})
Gor,n = [(sin(hig, n)) (cOsh(hag, n)) (sinh(81£, n)) (COS(82£.n))

+ (cos(hig. n)) (sinh(Ras,n)) (cosh(ir, n)) (sin(&2x,n))],

Potn=P3En+Pagn) [ PiEnPuEn +PognP3E )
Hog, n = [(sin(hig, n)) (cosh(hag, ) ) (sin(82z,n)) (cOSh(&1E,n))
— (cos(hag, n)) (sinh(hag, ) ) (Sinh (815, n) ) (COS(82£,n))]»
P70 = (€35, + €35 ) ' [€15,n(dig,  — dp ) — 215 ok, n€35 ] — 3€1E, ),
GsE,n = [(sin(hig, n)) (cosh(hag, n)) (cosh(g1k, n)) (COS(82£,n))
+ (cos(hig,n)) (sinh(hag, ) (sinh(8ig,n) ) (sin(2£,n) ),

Psgn= [(e%E,n + eiE,n) _1[92E,n(a%E,n - a%En) — 2015, ndoE, n1E, n) + 3€26,n)»
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Hig, = [(sin(hig,n)) (cosh (Mo, ) (SiN(2£,n) ) (SINN (15 )
~ (cos(hug, n)) (sinh(hag, n)) (cosh(gig,n) ) (cOS(82£,n) )],

Pog,n= [(a%E,n + agE,n) ! [aZE,n(e%E,n - eiE,n) + 2elE,na2E,ne1E,n] + 3alE,n]’

Gug.n = [(cos(hig.n)) (cosh(hag, n)) (c0S(82x.n)) (Sinh (&1, n))

= (sin(hug,n)) (sinh (hag, n)) (cosh(gir,n)) (sin(826,n) )]
Proen=1~ (a%E,n + a%E,n) “dag (- e%E,n + e%E,n) +2e15, ndar, neik, ] + 3ag, nl,
Hug,n=[(cos(hug.n)) (cosh(hag, n)) (cosh(gig, n)) (sin(826.n))
+ (sin(hug,n)) (sinh (hag, n)) (sinh (815, n)) (cOS(826,n) )]
Prig.n = 2ldig 5 + €3, — €35 0 — A1 )s
Gsg.n = [(cos(hig,n))(cosh(hag 1)) (cOS(82E 1)) (cosh(81E )
~ (sin(hig,n)) (sinh (g, n)) (sinh (e, ) (SI0(825.))];
P1gn = 4[dyg,n + dog, 0 — €15 n + €25, 1),
Hsg, = [(cos(hig,n)) (cosh(hag, n) ) (Sinh(g1E,n)) (SIN(82E,n))
+ (sin(hig,n)) (sinh(hag, n)) (cosh(g1)) (cosh(g2))],
Pr3g,n = [{5(ci,n + €5 p —3€1E,n€3p  + Aok, n) + 5026, n> (€35 — 3€T, n€25n) }
(i, + g, ) e (€75, n+€p5,n) “H5(- e+ dop, n — 325, n€iE, y + i, n)
+5daE n, (— e?E)n - BegE,nelE,n)}(afE,n + agE,n) -
+34(d1E,n€2E,n — doE, n€1E, )]
Heg,n = [(sin(hig,n)) (cosh(hag, n)) (cosh(8iz,n) ) (sin(82e.n))
~ (cos(hg, n)) (sinh(har, ) (sinh(81,n) ) (cOS(825.n))):
Hyg, = [Hig n + (Psg, nHoE,n/2)
+ (Pog, nG2E.n/2) + (80/2){Ps, nG3E.n + P75 nH3En + Prog, nG4E.n + Pog, nHAE n
+ P12, nGsE,n +Prig, nHsg.n + (1/12) (0145, 5 GoE.n + P13, nHlekn) }]

Hig, = [(sin(hig, ) ) (sinh (ha, ) ) (cOSh(&1E, n)) (COS(82z,n) )
+ (cos (g, n)) (cosh(hag, n)) (sinh (g1, n) ) (SIn (825, n))):

D7g = sinh ™ (wy, n), Hsg,n = (2C7,nD7E,n/L3)

The DOS function can be written a
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— - eB Mtmax (EgE) + l'FgE, )H(E - E15! 1)
N(E)= 5 e
TN =5 \/ Ggg,n +iHgg,n

where Ejs,; is the sub-band energy in this case and is given by

0= [Ggg, n + iHgE, n]

E=E51

EEM can be written as

2

_x = _. h"—=
m (E,rlg,n): ?G 8E,n

The electron statistics can be expressed as

ny = 518 Realpart of niaf[(é +iHs g.n)"?
0= 8E, 8E,
n*h =0 " " Epy =1

where Ep3,; is the fermi energy in this case.

Using (1.31f) and (8.4), we can study the entropy in this case.

(8.1b)

(8.1¢0)

(8.2)

S
L(N)[(Gg,p.n+1Hg g.n)"?

Episn

8.2.2 Entropy in II-VI HD SLs with graded interfaces under magnetic quantization

The simplified DR in HD II-VI SLs with graded interfaces under magnetic quantiza-

tion can be expressed as
= .
k: = Giog, n + iH19g,n

where

_ Cp - D? 22B/_ 1
Gl9E,n = |:418E,n[_42 18E,n — (T (n + 2))
0

Cigk,n =€0S ' (W1sE, n)>

=1 — - — 2 - 1
wisgn=(2)2 [(1- G%BE,n _HIZSE,n) - \/(1 — Gigg,n — Hig, )+ 4Gigopl2,

_ 1 _ _ _ _ _ _
Gige,n = 3 [GuiE n + Giog,n + Ao (G13E,n + Gi4g,n) + Ao(Gisg,n + GisE,n) >

Gtz n = 2(c0S(81E,n)) (COS(825,n)) (COS yyy (E, 1)), yyy (E, 1) = Ky (E, 72) (bo — Ao)

,7(21(7,771) = {
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Giok,n = ([Q1(E, n) (sinh g1g, ) (COS 825, n)
- Qy(E, n)(sin g, n) (cosh gk, n)]) (sin yy, (E, 1))

Cdign  ka(En)dig n:|

dign  kn(E n)dig n,
a(En) &+

kx(E, n) de nt d2

Q(E,n) = ], Q(E, 1) =

Gu3g,n = ([Q3(E, n)(cosh g1, n) (COS 825, n)
—Q4(E, n)(sin g5k, n) (cosh gig, »)]) (sin y,, (E, 1))

2d1E,nd2E)n:|

&y, -y _
15"7 ,Q4(E,n):[_ 2
k21(E,n)

ka (E, 1)
Giag,n = ([Qs(E, n)(sinh gix, ) (cOS 82k )
— Q4 (E, n)(sin g2z, n) (cosh gig n)]) (cos yy, (E, 1))

Q3(E,n) = - 3kx (E, 1)

Qs(E,n)=

- d I _ - d —
3dig ﬁ —1&,(E, 1)), Q6 (E, 11) = [3dag. n ﬁ -1&(E, n)]
1E,n 2E,n 1E,n 2E,n
Gisg,n = ([Qo(E, 1) (cosh g1k, ) (COS 8, n)
— Qy0(E, n)(sinh g1 ) (sinh gog, n)]) (cos yy, (E, 1)) )

Qo(E, ) = 2d3; ,, — 255, — k1 (E, )], Quo (E, 1) = 201, nclo, n]

Gik,n = ([Q7(E, 1) (sinh g1E, ) (COS §2E,n)

— Qs (E, )(sin 8i,n) (cosh &g n)]) (sin yy, (E, ) /12))

_ d o 5(d3, —3d%. d o
O;(E,n) = |—2—1I3 Sdl“z IS, (E, 1) + (dig.n L VY0 -8 N
dig , + d5g ko1 (E, n)
_ d o 5(dy , —3d2; .d o
Qs(E, ) = %kﬂ(mp Gorn = 3pniin _3up (B g |,
dip o+ d3g ka (E, 1)

_ 1. _ _ _ _ _
Hispn=5 [Hu, £ n + Hiog,n + Ao (His B n + Higk,n) + Ao (Hisg, o + Hik, n) |

Hug,n = 2(sinh gig, n) (sin g2z, n) (cos y, (E, 1))

HlZE,n = ([ ( )(Sll’lh glE,n)(COS gZE,n)
+04(E, n)(sin g5, ) (cosh gig n)](sinyy, (E, 1)),
Qu(E,

n)(cosh gig n)(COS ga2E n)
+Q3(E, n)(sinh gz, ) (sin g2,,)] (sin yy, (E, 1)),

EBSCChost - printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



314 — 8 Entropy in HDSLs under magnetic quantization

Hiug,n = ([Qs(E, 1) (sinh g1, )(cOS 8ok, n)
+Qs(E, n)(sin gig n)(cosh g n)](cos y,, (E 1))

Hisg,n = ([Q10(E, ) (cosh gig,n)(COS ok, n)
+Qo(E, n)(sin g1, n)(Sin gor,n)](cos yy, (E, 1)),
Hiog,n = ([Qs(E, n)(sinh gig,n)(COS &25,n)

+Qy(E, n)(sin gig, ) (cosh g, n)|(sin Yu (E,n)/2))

_ 2Cigg,nD _ -
ngE,n = {W} aﬂlegE,n = smh l(a)lgE)n)
0

The DOS function can be written as

_ eB "1 (G'i9, n + iH 195,n)H(E - Eis,5)

N(E) = _ (8.3b)
2m°h = v/ G1og, n +iH19g,
where Ejs , is the sub-band energy in this case and is given by
0= [Giog, n + Hiog,n) (8.30)
E=Ei5
EEM can be written as
= W=
m (E,ng,n)= 36 19E,n (8.4)

The electron statistics can be expressed as

_ 8B

N = —on Real part of
Mmax | _ 1/2 ] _ __ 1/2
> |:(G19,E,n + +1H19,E,n) ’ > L) [(619,E,n+ +1H19,E,n) |EF13221|:|
=0 Eri3n v

(8.5)

where Ery3, is the fermi energy in this case.
Using (1.31f) and (8.7), we can study the entropy in this case.

8.2.3 Entropy in IV-VI HD SLs with graded interfaces under magnetic quantization

The simplified DR in HD IV-VI SLs with graded interfaces under magnetic quantiza-
tion can be expressed as
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,
2 I:i {cos 1{%%(]2’, ﬁ)H - ? <ﬁ+ %) (8.6)

where

®,(E, ) = 2 cosh {B,(E,)} cos {1, (E.)} + ex(E, w)sinh {B,(E, )} sin {y,(E.)}
+ o[ ({Kua(E.) Y /Koo (E.)) - 3Kona (E,))cosh {By(E, ) sin{ yy, (E.)}

{Ku2(E0)}

+ (Rin(Em) 2T Lsinh {B(E,m) cos (B

Ko
+A0[2{R112(E,n)} —{Kxp(E,n )}ZCOSh{ﬁz(Eﬁ)}COS{sz(E’ﬁ)}
1 [5{KEnY  5{KnEn)
12 K (E, 1) i Ki2(E,n)
—34K1,(E, n)Kipz (E, n) sinh{B, (E,n) sin{y,, (E, n) }]]

B,(E, 1) = Kz (E, 1) [@ — Ao,

ko (E, 1) = 2D, 2] _1[ —~qo,m(E - I_/Orlgz) ~[[q9,2n(E - Vongz)]z
+4P9, 2nRo, 2n(E - VOrIgZ)]%]
s B Vo) (0/2)((1 ) + b )25 (4 3) (0 )
+ (1 mym;) - aays (E - Vong) (1/m) - (1/m )]
2
Roan(But) + 1l Vo) + (B~ Vang) | (5 ) w52 (e 1) o/
~a/ma)l- | (5 )R/ + i)
6 2
~a( 5 )| 5 (7 3)] (asmema
¥2(E, ) = Koo (E, 1) [bo — Ao), K515 (E, )
= 200, n] ™= @o,10(E: Mgy) + (195,10 (E: M) + 4P5,1uRo,10(Es M)

tonEor) = [ (% Ysmi e aymi) v (5 ) 22 (e 1) capmim)

+ (1 )~ vy (B m (g ) — (1g ﬂ ,
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Roun )= B + v (1 JaueBm (a3 ) o

il [ YRt 4 /m )

()R mim
n

The DOS function can be written as

ity [BED)

E,n
Kp(E,n)  Kin(E,

N(E) - B8 Sreos B BRIt E R PAENAE-Bs) o
2ehlo i lcos Bpa(E )] - Lo’ %2 (1+ 3]

where Ej5 ; is the sub-band energy in this case and is given by

1 1. .- _\1* 2B/ 1
0= Lz {cos I{E(DZ(Elig,n)}] —T<n+§> (8.8)

EEM can be written as
2

. h 1 1 N e
m’ (E,ng,n)= —cos ™! {—(pz(E, n)(1- —p%(E, n)} ©5(E,n) (8.9)
2L, 2 4

The electron concentration can be written as

_8&e h Aimax H 10 [Cos—l(%(pz(l:?, fl)r_ ? <ﬁ+ ;)}I/Z‘EFBB
; L(r) {2 H% {Cos’l (%(PZ(E, n)}2 - % (ﬁ+ %)] v Emzz” (8.10)

where Epy3)3 is the fermi energy in this case.
Using (1.31f) and (8.10) we can study the entropy in this case.

8.2.4 Entropy in HgTe/CdTe HD SLs with graded interfaces under magnetic
quantization

The simplified DR in HDHgTe/CdTeSLs with graded interfaces under magnetic
quantization can be expressed as

printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco. confterms-of-use



8.2 Theoretical background =— 317

(kz)* = Gr9ag,n + iH192E, n (8.11a)
where
G _ Clsor,n — Disor,n 2B\ (1
192E,n = T - T n+ 5 >

_ 1 _ _
Cigaop = COS ™~ (W1g2E, n)> Wig2g, n = (2) “2[(1- %82E,n - H1282E,n)

_ — 2 - 1
- \/(1 ~ Glgop n — Higop ) +4Gigyp )2

Gurar,n =2(c05(812)) (05 (822)) (cos y5 (E, 1)), y (E, 1) =ks (E, ) (bo — o),

o BZ +4A1E—B01 BZ +4A1E B 1/2
kg(E,n):{ 01 \/ Por _(26B)(n+1)] ’

243

Gioop = ([Qu2(E, 1) (sinh g1g, 1) (COS 812k, n)

dign  ks(E, n)dIZE,n:|’sz(E) ) = [ doen _ ks(E, n)cjzzE,n]’

Qp(E,n)= [, . - -
’ kg(E,n)  dign+daEgn kg(E,n)  dign+doen

G320 = ([Q32(E, ) (cosh &1p,n)(COS &2k, n)
—Qu(E, n)(sinh 815g,n)(COS 81ak,n)](sin yg(E, 1)),

£ [Foen—Ben 5 g o [2digd
Q5o(E, 1) = {% ~3ks(E, ﬁ)}, Qua(E, 1) = [%}

G120 = ([Qs2(E, ) (Sinh 8125,n) (COS 822E, )
- Qe (E, n)(sinh gpg ) (cosh gy, n)](cos yg(E, 1)),

_ d I o
Qsy(E,n) = [3d12E,n_ ﬁkﬁ(ﬂ n)],Qez(E, n)
12E,n 22E,n
d22E n l*(z T
e (E’ ) R
d%ZE,n + d%ZE,n ¢

S|

= [321225 nt

Gis20p = ([Q72(E, ) (cosh 1oz, n) (COS 2o n)

— 0u02(E, 1) (sinh giar n)(cosh gag,n)](sin ygop(E,11)/12)),
Qop(E, 1) = [2dyg , ~ 255, , ~ kg (E )], Quoa (E. 1) = [2d15, noar, n]
Gi62k,n = ([Q72(E, n)(sinh gpop ) (COS Zxg n)

— Qg (E, n)(sinh g1g,n)(cosh gop n)](sin ygop(E,1)/12)),
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318 —— 8 Entropy in HDSLs under magnetic quantization

5(dhg, n_ 35,5 nd12k,n)
ks(E, n)

Qp(E,7) = [# IG(E, ) +

T - 34k (E, fz)duE,n]
12E,n 22E,n

5dyE,n
2 2
AhE n + A%p

S(d%ZE, n— 3d%ZE nd125> ?1)
ks(E, n)

ng(E, fl) = |: ]_(g(E, Fl) + —341_(8(7,f1)d125’n:|

1

Higopn = > [Hip28, n + Hizok,n + Ao (Hi3ok,n + Husoe,n) + Ao (Hisoe,n + Hieok, n) | »

Hing,n =2(sinh g n) (sinh 82 ) (cos yg(E, 1)),
Hiop = ([Qx(E, n)(sinh g1k n)(c0S 82k, n)
+Qup(E,n)(sinh gxE n)(cosh gk a)](sin yg(E, 1)),
Hisog,n = ([Qu2(E, 1) (cosh giog,n)(cOS §22,n)
+ Q3 (E,n)(sinh giogn)(sinh g2 »)|(sin yg(E, 1)),
Hi3o.n = ([Qa2(E, 1) (cosh &1z ,) (COS 855 )
+Q3,(E, 1) (SinthZE,n) (SinhgzzE,n)] (sinyg (E, fl)))>
Hugn = ([Qe(E, n)(sinh g5 ) (COS 825k )
+ Qs (E, n (Sinhguan)(cos}lgzzanﬂ (COS Vs (E, ﬁ)))
Higon = ([Qe2(E, ) (sinh 812k 1) (cOS 8225 1)
+Qsy(E, n)(sinh g1or,n) (cosh gxg,n)](cos yg(E, 1)),
Hisoop = ([Q102(E, 1) (cosh g1, n)(COS 82k, n)
+Qoy(E, n)(sinh gy, ) (csinh Zup,n)|(sin yg(E, 1)),

H192£,n = [((ZalszE,ndsz,n)/iéﬂ and D182E,n = Sinhil((UISZE,n)
The DOS function can be written as

o~ eB "I (G n +iH 1928,n)H(E — Ei5,4)

N(E) = = = (8.11b)
2h = /G192, n + 928, n
where Ej5 4 is the sub-band energy in this case and is given by
0=[G192E,n +H192E,n”E:E15,4 (8.11¢)
EEM can be written as
= n—
m (E,ng,n)= EG 192E,n (8.12)
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The electron statistics can be expressed as

_ 8B
Np = h
Nmax

5 1/2
E [(6192 En++iH192,E n) ’EFBM E L(r { G92,E,n ++iHi92 £ n) / ’EFBMH

n=0
(8.13)

Realpart of

where Epi3,4 is the fermi energy in this case.
Using (1.31f) and (8.13), we can study the entropy in this case.

8.2.5 Entropy in strained layer HD SLs with graded interfaces under magnetic
quantization

DR of the conduction electrons in HD strained layer SL with graded interfaces can
be expressed as

N
o o fnal 23

Where

s (E. 1) = [2cosh[T4 (E, 1, ng, )] cos[Ts (E, . ngy)]]

+[T6(E, 1)) sinh|(T4(E, 1, n5)] sin[Ts (E, 1, 1, )]
+4o K_ké,z(E’ . 1g2) =3ko'(E, 1,y >cos Ngy)] sin[Ty(E, 1, 1n,,)]
<0 (E’ ﬁ)”gl)
f)(E’ ﬁ’ﬂgl T =
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Kol ) = So(E )] 2| (3 b/ (Br Bp()] -1 "

pi(E) =1/ (2p2(E - Vo, ngy)). po(E) = 1/ (2Q2(E - Vo 15))

Ts(E, 1, Ngy) = ko(E, 11, gy ) [Bo — Ao),

KY(E, i ng,) = [S1(E iung,)) 2 {1— [(fl+1/2)heB/( p3(E)P4(E)>”1/2

ps(E) =1/ (21(E.ngy)). py (E) =1/ (2Q1 (Es gy )

run-[olE01a) _E )
ko(E 1) Ko(E,ongy)

The DOS function can be written as

— T -1/ E ! E
e eBg, "max COS 1[%%(}5,,—1)(1_ 1 [Be(Esn }2} 1 2[¢6(E’r_’)] H(E-Eiss)
2m?hLo £=5 [[Cos’l[%@@’ )]’ -L' 5 (1 %)}1/2
(8.14b)

where Eis 5 is the sub-band energy in this case and is given by

1 1o _1* 2eB/. 1
OII‘—%)|:COS 1{5@6(E15’5,n)}:| —T(n+§> (814(:)

EEM can be written as

IR & 1. 1SR,
m (E,ng,n)= ——cos™! L%(E, n) (1— —[pe(E, )] ] [@6(E, 1)) (8.15)
2L, 2 4
The electron concentration can be written as
_ geB Tmay 11 q (1, 7% 2B /(. 1\]"*
= Real P. = -¢,(E, - — -
no h eal Part Of;; HL(Z) {cos (2(;[)2( n)] n n+ s ‘Emzs
8 [ oo (o] 5 (3)] )
L(r — |cos™! En)| -=—(n+-= . (8.16)
; ( )L,Z:O HL%) 2¢2( ) h 2 ‘EFBZS

where Eri3s5 is the Fermi energy in this case.
Using (1.31f) and (8.16), we can study the entropy in this case.
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8.2.6 Entropy in IlI-V HD effective mass SLs under magnetic quantization

DR in this case assumes the form
(ky)? =875 n +165E 1 (8.17a)

Where

1 2B (_ 1 -
65E,n= i_2(6§E,n_5éE,n)_ {T <n+ 5) }:|, 55E’n=COS 1p5E,n:
0

2 2 2 2 2 2
1- 63E,n - 54E,n - \/(1 - 53E,n - 64E,n) +464E,n

ﬁSE,n = 5 >

83,0 = (@1 COS AiE, n COS Agk,n — @2 COS A3, COS Ay, )

04k, n = (a2 SIN A1g, n SIN Agp n — G5 SIN Asg, p SIN Ayg )

A, n = (@o€1E,n + bo€3g,n), Aok, n = (@0€2E,n + Bo€uE,n), As,n
= (@o€1E,n — bo€3E,n)> A, n = (@o€2E,n — Po€uE,n),

66E,n = Sil’lh_lﬁﬂi,1 and (SgE)n = [255E,n66E,n/ié],
%
eirn = K(q/th)n+t§+t15,n>/2>} e [((,/tfaﬁtg—tw,n)/zﬂ
- — 1/2 - — 1)2
\/ B, + 2+ GEn \/ B+ th —GEn

€3En= 3 > €4En = 3 >

Nol—

- [2my L . 2B(/_ 1
tlE,n |:?C1 Tll(E> Ay, rlnggl) - T (n+ *>:| s

2
i - 2¢B/_ 1
B {72 TialEs o gy Bya) — 2o (n N 5)}

The DOS function can be written as

_ eB "8 (85, +18gg ) H(E - Eis,6)

N(E)= - (8.17b)
2mh n=0 vV 87E,n + 168E, n
where Ei5 ¢ is the sub-band energy in this case and is given by
0=67E; ¢+ 108k, ¢.n (8.17¢)

EEM can be written as
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2

= . h
m (E,ng,n)= 75 7En (8.18)

The electron statistics can be expressed as

B g B Nmax P
No = 2h [68En++68En) ‘EF1326
S
> L@t Snn) ] (8.19)
r=1

where Epi356 is the Fermi energy in this case.
Using (1.31f) and (8.19) we can study the entropy in this case.

8.2.7 Entropy in II-VI HD effective mass SLs under magnetic quantization
DR in HD II-VI EMSL can be written as
(kz)* = Assg,n + A4, s (8.20a)

where,

1 2B/ 1
Agn= i (Mg 0= Adyg ) — {T ("+ 5) H
0

2
1= A3g = Alog,n - \/(l ~ A5p 0 = Dlog.n)” + 4005,
2

12

1= —
A11E,n =COS "P6E,n> D6E,n =

Agg, n = (@1 €OS AgE, n cOSh A7g  — @; COS Agp, n cOsh Azg ),
A1og,n = (a1 sin Agg,  sSinh Azg , + a; sin Agg, , sSinh Azg ),

Asg,n = [@0CxE, n(Eg,ns Ne1) + +bo@3g, n) A7E,n = bo@uE, n» AsE,n

= [aoCxg, n(EE n, Ne1) ~boesg,n)s
o (E H? {ZeB (fz . 1> }
E, — -
(B nng:) o, | h 2

2A11E, nA12En
Ly

—:f

CZZE n(EE n, ’Igl |:

+l
('3\

1
A1pE n =COS™ "PeEn, A14En =

>

The DOS function can be written as
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. eB "% (A'3g  +iA1g n)H(E - Ess,7)

N(E) = , (8.20b)
2m?h = v/ ABEn +1A14E R
where Ej5 ; is the sub-band energy in this case and is given by
0= A13515) 7n + iA14E15,7,n (820C)
EEM can be written as
- 2
m (Eng.1) = = Mg (8.20d)
The electron statistics can be expressed a
 geB
ng = = Realpart of
ey 1/2 5. 1/2
Zo |:(A13,E,n ++Augn)" |Epy27 Z; LO)[(An++ A gn) |Epyszr)
n= r=
(8.21)
where Epy3,7 is the Fermi energy in this case.
Using (1.31f) and (8.21), we can study the entropy in this case.
8.2.8 Entropy in IV-VI HD effective mass SLs under magnetic quantization
DR in HD IV-VI, EMSL sunder magnetic quantization can be written as
_ _ I 2eB 1
(k)= |[1/L2] {cos ! (f»(E, ﬁ))}2 - (T (ﬁ + 5) )} (8.22a)

where,
f(E, 1) = a5 cos[aoCosg, n(E, 1, 1gy) + boDa3e,n(E, 11, gy )]
— 4 c0s[ao Cosg,n(E, 1,1,) - boDxg n(E,n, Ng))s
Cx(E,n, Ng1) = [[2Do4] 71[— ‘_19,1(E» n, Mg )+ [{o.1(E, 1, 'lg1)}2
+ (g 1)Roa(E, 1, 1) )2,

D23(Ea n, ’ng) = [[2139,2] _1[_ 69,2(E7 n, "lgz)

+ [{QQ,Z(Ev n, rlgz)}z + (4139,2)R9,2(E7 n, rlgz)}l/z]]l/zv
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Do.ilb1ng)= | 5 my o m; "4\ h 2 MM My
_ 1 1
_aiY3(E>rlgi)(ﬁ_ﬁl—l’—i)}’
- _ H* / 2eB 1 1 1
R i(E,n,Ng;) = {Yz(E Mgi) +v3(EsNgy) + i = <T (“* 5)) <ﬁ - mgi>

R (2B V(11 af G
2\ h 2 me;  mg; 4 mgme;

The DOS function can be written as

-1/2_,

N(E) = eBgV flmzax COS_l[%fB(E, n)(1- %fzsz(E’ n] f 23(E> ﬁ)H(E _EIS,S)
2m?hLy £ S (B AT 22eB 12
n=0 [[cos~'[3f5(E,n)]]" = Lo" 57 (1+ 3)]
(8.22b)
where Eis g is the sub-band energy in this case and is given by
2eB 1
=[[1/Lo’}{cos ~}(f(Eis, s, 1 } - (— ( 5))} (8.22¢)
EEM can be written as
= _ n 12 = o 1.2, 17" __
m (E,ng,n)=——cos | sfn(E,n)| 1- ~f" (E.n) f»(En) (8.23)
2L, 2 4
The electron concentration can be written as
. ey
No = ﬁ Real Part Of ; [@3,15 + 68,16] (824)

where
1 17 (T —\111/2 112
03,15 = [L%[COS_ {f(Erss,n)}]"" - (T(nJr 5)} ,

Os,16 = i L(7)[Og,15]
=1

and Erg g is the Fermi energy in this case.
Using (1.31f) and (8.24), we can study the entropy in this case.
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8.2.9 Entropy in HgTe/CdTe HD effective mass SLs under magnetic quantization

DR in HDHgTe/CdTe EMSLs under magnetic quantization can be written as
(k2)” = Ai3HE,n + iDaHE n (8.25a)

where

1 2eB 1
A13HE R = 73 (AtisiE,n = Aotz n) — { n <n+ 5) H

-1
A11HE, n = COS™ " P6HE, n» P6HE, n

1/2
2
1- AgHE,n - A%OHE,n - \/(1 - ASHE,n - A%OHE,n) + 4A%OHE, n
B >

AoHE, n = (@1# COS AsE, n COSh AgHE, n — Qi COS A7pE, n COSh AgHE, n ),

A10HE, n = (@1# SIN AspE, n SINh Agpg, n + Gom SIN A7, n SInh Agpg, n),

Aspg, n = [0 CoomE, n(EE n> Ng1) + bo€3], AehE,n = bo€s, A7hE, n

= (@0 Coaik, n(EE, ns Ne1) = boes],

. _  [B3,+2A:Eg, ,— Boy(BY, + 4AsEg,)  [2eB [ 1\]]"
C22HE,n(EE,n,ng1)— I v >

— n+ -
2A2 h 2
2A1HE, nA2HE, n

,l —
A12HE,n = COS ™" P6HE, n» A4HE, n = 7
0

>

The DOS function can be written as

_ eB "8 (N y3pg y + A 1y, n)H(E — Exs.9)

N(E) = , (8.25h)
2h = v/ ABHE n + 1A14HE, n
where Eis ¢ is the sub-band energy in this case and is given by
0= A13HE 5 o,n + IA14HE 5 o,n (8.26a)
The EEM can be written as
_ n o,
m (E,ng,n)= 7A 13HE,n (8.26b)
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The electron concentration can be written as

Nmax

ng= Th Real part of Z [Osg,17 + Og, 18] (8.27)

where

s, 17 = [A13HERg g n + IA14HELg o] > Os 18 = g L(7)[8g,1/]

and Erg o is the Fermi energy in this case.
Using (1.31f) and (8.27) we can study the entropy in this case.

8.2.10 Entropy in strained layer HD effective mass SLs under magnetic
quantization

DR in HD strained layer effective mass SLs under magnetic quantizationcan be ex-
pressed as

(k) {cos Y(fuo(E, n))}2 (? (fz+ %))} (8.28a)

where

Fao(E, 1) = @z c0s[@xCao (E, 1, Mg;) + boDao (E, 1, Mgy )|
—ay cos[aoCuo(E,n, Ng2) = boDuo(E, 1, Ne2)ls

= 1/2
CAO(E’ n, rlgl) = |:1_ h—i) (fl+ %>:| [Sl(E,r[gl)]zl/z’

bso(Esng
b5 (E, Ne1) =1/ Yo (E, Ne1)¥sillg1>
- 2 2
¢50(E>ng1):m W51 (E ) = m

_ 1/2
= = heB _ 1 - = _1/2
Dy (E,n,ny)=|1- ————— <n+—) S2(E.n ,
40( gZ) |: ¢50 (E, rlgz) 2 :| [ 2( gZ)]

bso1 (E, 'ng) = \/’psm(E’ ’ng)’a[’sungz
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2 2

E) ==, E’ P —

Wsou ( ’ng) 2PI(E”1g2) Ysn ’lgz) 2Qz(E)71g2)

The DOS function can be written as

- eBg

N(E)= th Real Part of
fmax e -1[1F (F 7 1 2 V2o m oo mE B
Z Cos [EfAO(E’ n) (1= 2f40 (E;n)] — f4o(E,n)H(E - Ei510)

_ _ _ = 1/2

llcos*fsolE )| ~Lo* 28 1+ 1))

where Ej5 19 is the sub-band energy in this case and is given by
_ - _ 2B/ 1
= [[I/Loz] {cos ™ (f40(Eis,10, n))}2 - (T (n + 5) >]

EEM can be written as

2

EPEE h I S
m (E,ng,n) = PCOS {Efz;o(E, n) (1— —fuo” (E, n)] f 40(E, 1)
0

The electron concentration can be written as

~ B Nmax
o= Real Part of Z 03,19 + O3, 20]
where
1/2
1 I 2B/ _ 1
0,19 = | [cos ™ {40 (Ers 10, n)}]"? - T (" + 5) 05,20 = ZL

0

and Erg 19 is the Fermi energy in this case.
Using (1.31f) and (8.30) we can study the entropy in this case.

8.3 Results and discussion

— 327

(8.28b)

(8.28¢)

(8.29)

(8.30)

7)[Og,19]

Using Appendix 15, we have plotted in Figures 8.1 and 8.2 the entropy as functions of
inverse quantizing magnetic field and impurity concentration, respectively, for HgTe/
CdTe, PbTe/PbSnTe, CdS/CdTe, and GaAs/Ga;_,Al,As HD SLs with graded interfaces.
With decreasing magnetic field intensity, the thermoelectric power increases periodi-
cally as a result of SAH periodicity. However, with increasing impurity concentration,
the thermoelectric power increases to some extent exhibiting spikes for higher values,
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Figure 8.1: The plot of the entropy as a function of inverse quantizing magnetic field for
(@) HgTe/CdTe, (b) PbTe/PbSnTe, (c) CdS/CdTe, and (d) GaAs/Ga,_,Al,As HDSLs with graded interfaces.
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Figure 8.2: Plot of the entropy as a function of impurity concentration for all the cases of Figure 8.1.

a result which already been discussed in previous chapter. It appears that the entropy
is lower in magnitude for HD GaAs/Ga;_4Al,As and higher in magnitude for HD HgTe/
CdTe for all the cases. In Figures 8.3 and 8.4, the entropy as functions of inverse
quantizing magnetic field and impurity concentration for HgTe/CdTe, PbTe/PbSnTe,
CdS/CdTe, and GaAs/Ga;_ ,Al,As effective mass HDSLs structures. The concentration
has been fixed at a value 10?m for varying magnetic field intensity, while 10 tesla
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Figure 8.3: Plot of the entropy as a function of inverse quantizing magnetic field for (a) HgTe/CdTe,
(b) PbTe/PbSnTe, (c) CdS/CdTe, and (d) GaAs/Ga,_AlAs effective mass HD SLs.
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Figure 8.4: Plot of the entropy as a function of impurity concentration for all the cases of Figure 8.3.

was fixed for varying impurity concentration. With decreasing magnetic field inten-
sity, the thermoelectric power increases periodically as a result of SAH periodicity.
However, with increasing impurity concentration, the entropy decreases.

In Figures 8.5 and 8.6, the entropy as functions of film thickness and 2D carrier
concentration for HgTe/CdTe, PbTe/PbSnTe, CdS/CdTe, and GaAs/Ga;_,AlAs for HD
QWSLs with graded interfaces. It appears that the entropy in this case signatures an
increasing step like variation with increasing film thickness and decreases with in-
creasing 2D carrier concentration. In Figures 8.7 and 8.8, the magneto thermoelectric
power as function of film thickness and 2D carrier concentration for HgTe/CdTe,
PbTe/PbSnTe, CdS/CdTe, and GaAs/Ga;_4Al,As for HD QW effective mass SLs.
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Figure 8.5: Plot of the normalized entropy as a function of film thickness for (a) HgTe/CdTe, (b)
PbTe/PbSnTe, (c) CdS/CdTe, and (d) GaAs/Ga,_Al,Asquantum well HD SLs with graded interfaces.
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Figure 8.6: Plot of the normalized entropy as a function of impurity concentration for all the cases
of Figure 8.6.

Finally, it may be remarked from the Figures 8.7 and 8.8 and Figures 8.5 and 8.6
that the nature of variations of the entropy for all types of HD QW effective mass SLs
does not differ widely as compared with the corresponding HD QWSLs with graded
interfaces.
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Figure 8.7: Plot of the normalized entropy as a function of film thickness for (a) HgTe/CdTe,
(b) PbTe/PbSnTe, (c) CdS/CdTe, and (d) GaAs/Ga;_Al,Asquantum well effective mass HD SLs.
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Figure 8.8: Plot of the normalized entropy as a function of impurity concentration for all the cases
of Figure 8.7.

8.4 Open research problems

(R8.1) Investigate the entropy in the absence of magnetic field by considering all
types of scattering mechanisms for HD III-V, II-VI, IV-VI, and HgTe/CdTe
quantum well and quantum wire SLs with graded interfaces and also the
effective mass SLs of the aforementioned materials.
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(R8.2)

(R8.3)

(R8.4)

(R8.5)

(R8.6)

(R8.7)

(R8.8)

(R8.9)

(R8.10)

(R8.11)
(R8.12)
(R8.13)

(R8.14)

Investigate the entropy in the absence of magnetic field by considering
all types of scattering mechanisms for HD strained layer, random, short
period and Fibonacci, polytype and saw-tooth quantum well and quan-
tum wire SLs.

Investigate the entropy in the presence of an arbitrarily oriented quan-
tizing magnetic field in the presence of spin and broadening by consid-
ering all types of scattering mechanisms for (R8.1) and (R8.2) under an
arbitrarily oriented (a) nonuniform electric field and (b) alternating
electric field respectively.

Investigate the entropy by considering all types of scattering mechanisms
for (R8.1) and (R8.2) under an arbitrarily oriented alternating magnetic
field by including broadening and the electron spin, respectively.
Investigate the entropy by considering all types of scattering mechanisms
for (R8.1) and (R8.2) under an arbitrarily oriented quantizing alternating
magnetic field and crossed alternating electric field by including broaden-
ing and the electron spin, respectively.

Investigate the entropy by considering all types of scattering mechanisms
for (R8.1) and (R8.2) under an arbitrarily oriented alternating quantizing
magnetic field and crossed alternating non-uniform electric field by in-
cluding broadening and the electron spin respectively.

Investigate the entropy in the absence of magnetic field for all types of quan-
tum well and quantum wire SLs as considered in this chapter under exponen-
tial, Kane, Halperin, Lax, and Bonch-Bruevich band tails [2], respectively.
Investigate the entropy in the presence of quantizing magnetic field in-
cluding spin and broadening for the problem as defined in (R8.7) under an
arbitrarily oriented (a) nonuniform electric field and (b) alternating elec-
tric field, respectively.

Investigate the entropy for the problem as defined in (R8.7) under an arbi-
trarily oriented alternating quantizing magnetic field by including broad-
ening and the electron spin, respectively.

Investigate the entropy for the problem as defined in (R8.7) under an arbi-
trarily oriented alternating quantizing magnetic field and crossed alternating
electric field by including broadening and the electron spin, respectively.
Investigate all the appropriate problems as defined in (R8.1) to (R8.10) for
all types of quantum dot SLs.

Investigate all the appropriate problems as defined in (R8.1) to (R8.10) for
all types of quantum dot SLs in the presence of strain.

Introducing new theoretical formalisms, investigate all the problems of
this chapter in the presence of hot electron effects.

Investigate the influence of deep traps and surface states separately for all
the appropriate problems of this chapter after proper modifications.
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9 Conclusion and scope for future research

The greatest pleasure in life is doing what people say we cannot do.

This monograph deals with the entropy in various types of HD materials and their
quantized counter parts. The quantization and strong electric field alter profoundly
the basic band structures, which, in turn, generate pinpointed knowledge regarding
entropy in various HDS and their nanostructures. The in-depth experimental inves-
tigations covering the whole spectrum of nano materials and allied science in gen-
eral, are extremely important to uncover the underlying physics and the related
mathematics in this particular aspect. We have formulated the simplified expres-
sions of entropy for few HD quantized structures together with the fact that our in-
vestigations are based on the simplified I?.ﬁ formalism of solid-state science without
incorporating the advanced-field theoretic techniques. In spite of such constraints,
the role of band structure, which generates, in turn, new concepts are truly amazing
and discussed throughout the text.

We present the last bouquet of open research problem in this pin-pointed topic
of research of modern physics.

(R9.1) Investigate the entropy in the presence of a quantizing magnetic field
under exponential, Kane, Halperin, Lax and Bonch-Bruevich band tails [1]
for all the problems of this monograph of all the HD materials whose un-
perturbed carrier energy spectra are defined in Chapter 1 by including spin
and broadening effects.

(R9.2) Investigate all the appropriate problems after proper modifications introduc-
ing new theoretical formalisms for the problems as defined in (R9.1) for HD
negative refractive index, macro molecular, nitride and organic materials.

(R9.3) Investigate all the appropriate problems of this monograph for all types of
HD quantum confined p-InSh, p-CuCl and materials having diamond
structure valence bands whose dispersion relations of the carriers in bulk
materials are given by Cunningham [2], Yekimov et. al. [3] and Roman
et. al. [4], respectively.

(R9.4) Investigate the influence of defect traps and surface states separately on
the entropy of the HD materials for all the appropriate problems of all the
chapters after proper modifications.

(R9.5) Investigate the entropy of the HD materials under the condition of non-
equilibrium of the carrier states for all the appropriate problems of this
monograph.

(R9.6) Investigate the entropy for all the appropriate problems of this monograph
for the corresponding HD p-type materials and their nanostructures.

(R9.7) Investigate the entropy for all the appropriate problems of this monograph
for all types of HD materials and their nanostructures under mixed con-
duction in the presence of strain.

https://doi.org/10.1515/9783110661194-009
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(R9.8)

(R9.9)

(R9.10)

(R9.17)
(R9.12)
(R9.13)
(R9.14)

(R9.15)

(R9.16)

(R9.17)

(R9.18)

(R9.19)
(R9.20)
(R9.21)

(R9.22)

(R9.23)

Investigate the entropy for all the appropriate problems of this monograph
for all types of HD materials and their nanostructures in the presence of
hot electron effects.

Investigate the entropy for all the appropriate problems of this monograph
for all types of HD materials and their nanostructures for nonlinear charge
transport.

Investigate the entropy for all the appropriate problems of this monograph
for all types of HD materials and their nanostructures in the presence of
strain in an arbitrary direction.

Investigate all the appropriate problems of this monograph for strongly
correlated electronic HD systems in the presence of strain.

Investigate all the appropriate problems of this chapter in the presence of
arbitrarily oriented photon field and strain.

Investigate all the appropriate problems of this monograph for all types of
HD nanotubes in the presence of strain.

Investigate all the appropriate problems of this monograph for HD Bi,Tes-
Sh,Te; superlattices in the presence of strain.

Investigate the influence of the localization of carriers on the entropy in
HDS for all the appropriate problems of this monograph in the presence of
crossed fields.

Investigate entropy for HD p-type SiGe under different appropriate physi-
cal conditions as discussed in this monograph in the presence of strain
and crossed fields.

Investigate entropy for HD GaN under different appropriate physical con-
ditions as discussed in this monograph in the presence of strain and
crossed fields.

Investigate entropy for different disordered HD conductors under different
appropriate physical conditions as discussed in this monograph in the
presence of strain and crossed fields.

Investigate all the appropriate problems of this monograph for HD Bi,Tes ,Se,
and Bi,,Sh,Te; Respectively, in the presence of strain and crossed fields.
Investigate all the appropriate problems of this monograph in the pres-
ence of crossed electric and alternating quantizing magnetic fields.
Investigate all the appropriate problems of this monograph in the pres-
ence of crossed alternating electric and quantizing magnetic fields.
Investigate all the appropriate problems of this monograph in the pres-
ence of crossed alternating non uniform electric and alternating quantiz-
ing magnetic fields.

Investigate all the appropriate problems of this monograph in the pres-
ence of alternating crossed electric and alternating quantizing magnetic
fields.
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(R9.24) Investigate all the appropriate problems of this monograph in the pres-
ence of arbitrarily oriented pulsed electric and quantizing magnetic fields.

(R9.25) Investigate all the appropriate problems of this monograph in the pres-
ence of arbitrarily oriented alternating electric and quantizing magnetic
fields.

(R9.26) Investigate all the appropriate problems of this monograph in the pres-
ence of crossed in homogeneous electric and alternating quantizing mag-
netic fields.

(R9.27) Investigate all the appropriate problems of this monograph in the pres-
ence of arbitrarily oriented electric and alternating quantizing magnetic
fields under strain.

(R9.28) Investigate all the appropriate problems of this monograph in the pres-
ence of arbitrarily oriented electric and alternating quantizing magnetic
fields under light waves.

(R9.29) (a) Investigate the entropy for all types of HD materials of this mono-
graph in the presence of many body effects, strain and arbitrarily
oriented alternating light waves, respectively.

(b) Investigate all the appropriate problems of this chapter for the
Dirac electron.

(c) Investigate all the problems of this monograph by removing all the
physical and mathematical approximations and establishing the
respective appropriate uniqueness conditions.

The formulation of entropy for all types of HD materials and their quantum-
confined counterparts considering the influence of all the bands created due to
all types of quantizations after removing all the assumptions and establishing
the respective appropriate uniqueness conditions is, in general, an extremely
difficult problem. Around 200 open research problems have been presented in
this monograph and we hope that the readers will not only solve them but also gen-
erate new concepts, both theoretical and experimental. Incidentally, we can easily
infer how little is presented and how much more is yet to be investigated in this
exciting topic which is the signature of coexistence of new physics, advanced math-
ematics combined with the inner fire for performing creative researches in this con-
text from the young scientists since like Kikoin [5] we firmly believe that “A young
scientist is no good if his teacher learns nothing from him and gives his teacher
nothing to be proud of.” In the mean time, our research interest has been shifted
and we are leaving this particular beautiful topic with the hope that (R9.29) alone is
sufficient to draw the attention of the researchers from diverse fields and our read-
ers are surely in tune with the fact that “Exposition, criticism, appreciation is the
work for second-rate minds” [6].
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field in HD Kane type materials

My life equation is Mission = Vision = Passion = Creation

10.1 Introduction

With the advent of modern nano devices, there has been considerable interest in
studying the electric field-induced processes in materials having different band struc-
tures. It appears from the literature that the studies have been made on the assump-
tion that the carrier dispersion laws are invariant quantities in the presence of intense
electric field, which is not fundamentally true. In this chapter, we shall study the en-
tropy in quantum-confined optoelectronic materials under strong electric field. In
Section 10.2.1, an attempt is made to investigate the entropy in the presence of intense
electric field in HD III-V, ternary and quaternary materials Section 10.2.2, contains
the investigation of the entropy under magnetic quantization in HD Kane-type materi-
als in the presence of intense electric field. In Section 10.2.3, entropy in QWs of HD
Kane-type materials in the presence of intense electric field has been studied. In
Section 10.2.4, we investigatethe entropy in NWs of HD Kane-type materials in the
presence of intense electric field. In Section 10.2.5, the magneto entropy in QWs in HD
Kane-type materials in the presence of intense electric field has been studied. In
Section 10.2.6, the entropy in accumulation and inversion layers of Kane-type materi-
als in the presence of intense electric field has been studied. In Section 10.2.7,the en-
tropy in doping superlattices of HD Kane-type materials in the presence of intense
electric field has been studied. In Section 10.2.8, the entropy in QWHD effective mass
superlattices of Kane-type materials in the presence of intense electric field has been
investigated. In Section 10.2.9, the entropy in NWHD effective mass superlattices of
Kane type materials in the presence of intense electric field has been studied. In
Section 10.2.10, the magneto entropy in QWHD effective mass superlattices of Kane-
type materials in the presence of intense electric field has been studied. In
Section 10.2.11, the entropy in QWHD superlattices of Kane-type materials with graded
interfaces in the presence of intense electric field has been studied. In Section 10.2.12,
the entropy in NWHD superlattices of Kane-type materials with graded interfaces in
the presence of intense electric field has been investigated. In Section 10.2.13, the en-
tropy in Quantum dot HD superlattices of Kane-Type materials with graded interfaces
in the presence of intense electric field is studied. In Section 10.2.14, the magneto en-
tropy in HD superlattices of Kane-type materials with graded interfaces in the pres-
ence of intense electric field has been investigated. In Section 10.2.15, the magneto

https://doi.org/10.1515/9783110661194-010
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entropy in QWHD superlattices of Kane-type materials with graded interfaces in the
presence of intense electric field has been investigated. Section 10.3 presents Six open
research problems that challenge the first-order creativity of the readers from diverse
fields.

10.2 Theoretical background

10.2.1 Entropy in the presence of intense electric field in HD IlI-V,
ternary, and quaternary materials

The expression of the inter-band transition matrix element (X;,) in this case can be
written as

Xp=i [a;l(f). % i, (F) 7 (10.1)

X

where iy, () = iy (k, ) and uty,(F) = iz (k, 7) in which u; (k, 7) and u,(k, ¥)are given by
In the case of the presence of an external electric field, F; along x-axis, the intet-
band transition matrix-element, X;,, has finite interaction band same band, e.g.,

48| = aX|Xn=a¥| Vi = az|Zi =1
aX|Vit=a¥|Zh = aZ|XA=0
aS|Xin = aX|Si = 0;

48|V = ¥ |Sh =0 and S| Zi = 4Z|SA = 0.

Using the appropriate equations, we can write

(X/\_/;Y/> T,:| +Ek+ [Z/ l/}} %
() e
o) ()

Xip= inBT{ah [(iE) U+ Bk+

{C_lk_ [(iS) '] = br_
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_ Bk+£5k* X' — iV T (X —iY) |
(X —iY") 1) (X' =iY") |]

)[(2/ (X =1Y") 1]}

:in3rH< a. ck_) 168) 1T 2 1]~ (”"ﬁ a%ck_)[o‘f’—ﬁ') 12 )
+ (Ck+ a‘; o >[Z/ l/}*.[*/ T/]}:|

Therefore,

(10.2)

{ [( a%ak)«fswsm 1) K”ﬁ 5) (@)1 u>}
: [( ;> @8 T'>} H
l

[("}a‘;bk> (iS|(X"-iY")) (1| i'>}

) (-8 ) 1120

(
([C"zakak><z &=V (1)1 ’>} H

Ao gck).aszw r'ﬂ | (Bse Jiow-mzyain)

(10.3)
Therefore, we can write,

f=id = (@ e 0110+ (e, e )10 ) (10.4)
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We can prove that

(111 = (r1 +ir,) (10.5)

Therefore, by (10.4) and (10.5), we get

X12=i{—<ak+a%ak_>+(ék+ —Cy )}<i|T>

= —i{ - (C_lk+ ail},(ak_) + ((_fk+ aii(x(_fk_) }%(;’1 +17'2) (10.6)
L QAP
where
- 0 0
All)=|ax, —ax_ | - | Cxy —Ck- 10.
(k) (ak 3 > (ck 3o ) (10.7)

From (10.6), we find,

Xl = %Az(l_c)(l 1) = %le(l_() Isince, |#1] = [fa] = 1] (10.8)
considering spin-up and spin-down, we have to multiply by 2

IXpp|* =2 x %AZ(I}) =A%(k) (10.9)

We can evaluate X;; and X», in the following way:

o e 0 3
XllzlJukl(r).aTllid(r).dBT
X

- 0 - 0 - 0
“ild# (a 2 a 2 & 2 F
IJ r{ (a"* ok, “"‘) ’ ( b ok "‘) ’ (C"* ok, C"‘>}

1.(s.f 0 5 3+ - 1-(=3_f 0 T .
:Eljd r{a—h(ai+bi+ci)}:§lfd r{a—’_cx(l)}:o, since a;, +b;, +c;, =1.

Therefore, X;; =0, and similarly we can prove X», = 0. Thus, we conclude that intra-
band momentum matrix element due to external electric field (X..) is zero. From the
expression of a,, we can write

— — ’ 2 = = 4 2
P Ego_yi+(Eg_5) ) _ > Ego_yi_(Ego_é)
— and ak_ =To = 7 .
Eg)+6 Egy+6
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_3 Ego -6\ | om_ _ 1 (Egp-8\ 1 9%
Therefore, 2a;_ > 3 @k- =To { <Ego " 6,>] s and == -5 el Ko
.. o = oay_ o E‘g -6 ag a)’]z(_
C'on%bmlngi the a_bove, W(-,i can Yvrlte A 5= == <$> ﬁk_tW
Similarly, ¢y, =ty and ¢, =ty .
Therefore,
0. Po. oy
Cky = Ck-== >
ok 2 Cr- oky
_ _ -2 _
A(i{)= _ﬁ go_(s g+ _Lck+ a)’i,
2 E +8 | @ 2¢. ok
Now,
T ’T‘Ego

(ak+)2: ?go —yi_'_ (?go —5l) _ Ego - 2<7’I+§I) (Ego _6)

ay.- Eg, —yi_(Egy—06) E,, - 2?(1;1:‘5,) (E,—5)

= (1+8) = (1 Fgy(Byy =8) _ nlFgy +8) + By (Bgy +6)
2Eg(’1+5,) —(n+Egy)(Eg, _6,) ’T(Ego +5) go( 20 _35)

Therefore,
(f:1k+ )22: n+Ey _n+Eg
k- ‘Ego(EEg;f;) n-Eg
where

E Eg, (Eg0 36")

o =
0 e

a +E E,
Thus, %+ = /1 go Slmllarly, ,k + = Yer - 17280 apq thus,
Ay - n- - k- n+Eg,

NG NG oy
I _ + — -
Ak = - P(”,g()) +Q<” ,g°> (S (10.10)
n-Eg, n+Eg, ok

where

72 [E. -6 o

p=T0 (28 % and Q=¢*/ 2.

2 \ Eg,+6
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+E, )’ +E
Now, y3_ =L Esg , so that 5= = 3 [on/Oke _ 1*Pq on)

20+6) 2+8)  (q+6)” Ok
Thus,
O _L|n+d-n-Egjon_ 1(E;-6) on (10.11)
ke 2| (n+8) |k 2(p+6) Ok
From (10.10) and (10.11), we get
’ = 1/2 - 1/2
o Eg, -6 _ E _ -
A(k) = l%ﬂ. p('“,gO) +Q<” ,g°> (10.12)
2(’1+5) ok, q—EgO n+Eg,
This implies
311 Egohz ’}X
On _ Pt & 10.13
% m o n (10.13)
From (10.12) and (10.13), we can write
_ o , - 1/2 _ 1/2
. E. K E, -6) |- E _(n-E
A(k) = =22 ﬁ.( £0 ,2). P[0 ) g1 2% (10.14)
2m, n n+6) )‘[—Ego I’[+Ego
Thus
_ B _ 2
_ 5 E (Eg -8\ | _(n+Eg, v n-Eg, 1z
|A(k)| 7, = e P — +Q| —+
4m, m, n (n+6) n—EgO )’1+Eg0
(10.15)
and
|Xe|*= [A(%) [ (10.16)

From (10.15) and (10.16), we can write the square of the magnitude of the inter-band
transition matrix element due to external electric field (|XCV|2)

It is well known that the energy Eigen value, E,(f) (l}), in the presence of a per-
turbed Hamiltonian, H', is given by [1]

EQ (k) = Eq (k) + <n1’<‘ﬂnl’<> +{ (k[ B [mI)?/[En () ~ En(F)] } (10.17)
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where
HY, (k,7)=Ep(k,T) (10.18)
H=Hy+H (10.19)
Hoity (k, 7) = En (k) tin (k, 7) (10.20)

where H is the total Hamiltonian, 1(k, ) is the wave function, ii,(k, 7) is the periodic
function of it, Hy is the unperturbed Hamiltonian, n is the band index, and En(l}) is
the energy of an electron in the periodic lattice.

For an external electric field (Fs) applied along the x-axis, the perturbed
Hamiltonian (H')can be written as

H=_-Fx (10.21)
where
F = (eFs)

Therefore, we get
E@ (k) = Ey (k) —F<n1’<‘ﬂnf<> + F2{|<n1’<‘ﬁ‘nl’<> 12/ [En(k) - Em(K)] (10.22)

In (10.22), the second and the third terms are due to the perturbation factor.

For

Xom (k) = (nk|x|mk) (10.23)
we find

Xum(k) =1 [, (k, 7)(0/0u) [t (k, 7)|dF (10.24)

where k, is the x component of the k and the integration in (10.24) extends over the
unit cell. From (10.22), (10.23) and (10.24), with the n corresponds to the conduction
band (C) and m corresponds to the valance band (V), we get

E2) (k) = En(k) - FXcc + {F*|Xcv[*[Ec(k) - Ev (k)] (10.25)

Thus, combining the appropriate equations, the dispersion relation of the conduc-
tion electrons in the presence of electric field along x-axis can be written as
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_ R PR ORI X
) = e o T, T
_| PR Iy Rk
2m. 2m. 2mc

~ e , 12 (10.26)
Lk am FRE(Eg, - 6) 1 1 (o fn+Eg /
2m. m, 4, P +8) | \n-E,
1/272
A n-Eg
+Q| —==
when F — 0, we have from (10.26), k> — 2’”C ' [,,(E)and n,% = [E2 +Eg, 2,'11"6 I (E)].
Using the method of successive appr0x1mat10n, we can write
272 h2/_<2 272 272 o
s Y hk; s ®(E,F) (10.27)

=y T+ —— 4 X
chlu(E) ZmCIn(E) 2mCIn(E) 2m5111(E)
where,

22,230, "2 - 1/2 1272
O(E,F) 2mF thé(Ego -5 1 1 p( M +Eg, +0 1, - Eg,
m, 4m, (g, +6)" n, — Eg, 1y +Eg,

Therefore, the E — k dispersion relation in the presence of an external electric field
for III-V, ternary, and quaternary materials whose unperturbed energy band struc-
tures are defined by the three-band model of Kane can be expressed as

]’()2( + ]22 + Ig =1 (10.28)
[ L] BB D |

In (10.28), the coefficients of I_cy, and k, are not same and, for this reason, this basic
equation is “anisotropic” in nature, together with the fact that the anisotropic dis-
persion relation is the ellipsoid of revolution in the k-space.

From (10.28), the expressions of the effective electron masses along x, y, and z
directions can, respectively, be written as

I ok, -

m(E,F) = k= 3F iy -0k -0 = Me[1+ O(E, F)] *[[1+ O(E, F)]'y(E) - In (E)'(E, F)]
(10.29)

o ok,

m, (E,F) = i’k Y57 =0,k o =mmol 11 (E) (10.30)
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AER)-REE o o
where I'y(E) = & (I (E)) and @' (E, F) = & [®(E, F)]

It may be noted from (10.29) that the effective mass along x-direction is a func-
tion of both electron energy and electric field, respectively, whereas from (10.30)
and (10.31), we can infer the expressions of the effective masses along y and z direc-
tions are same and they depend on the electron energy only. Thus, in the presence
of an electric field, the mass anisotropy for Kane-type materials depends both on
electron energy and electric field, respectively.

The use of the usual approximation [2]

_ 1-
I~ §kz (10.32)

in (10.28) leads to the simplified expression of the electron energy spectrum in the
present case as

i’
I“(E) 2m.
FRE(Eg, - 8) 2. . 1
T T Pe\e —Y) AMc 2
+ 2m, 7 Iy(E) n (10.33)

1/2 _ 1/25 2

1 {P<’71+ g0> +(—2<r11—Eg0> }
NS o
(n,+6) M~ Egy M +Eg,

The (10.33) can approximately be written as

2

K’k
2m,

_ _ _ _ e I
= |eiE* + e,F> + esE? + e4E + e5 — n +GCE +e;(1+CE)? (10.34)

where
e1=Qrwi, Q =—ﬁzcE“‘[5e E,?-6Gs+7hE, "]
1=Uf.wy, Uf m, ¢ g f g b

er=APf, Af=[FhEg)(Eg, - 6")'mc(6m2(8")") ™",

F: er, Gf = ef(46,+ Cf), Cf = (ZEgOGZ +PO(Eg0 —Elg()) —szEgO),

1/2
v _Ee(Ee-38) o B (Eq-6) _ [6. L2 P
EW Vs B i e R A B
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e;=Qr.wy, w,=2ab;, by=(c) *(ac+hbc-ab),

(_33 = (1 —Pf)&l + Of.w3, w3 = (E% + 2[1161),

1/, a b . _ _ _
1= l:E (1—2) (1—5):|, €4=[(1—Pf)b1+wa4}, w4=2b161, €5=[(1—Pf)61+a)5Qf]

C

I _ _ o 26,b cc
w5=(Cf—ZC1b1),97=wa7>w7=cf, es= | (1-Pf)c1 — Qrws| and we = é 1(1—_—1”

b,

Using (10.26b) and (10.34), we get

We can prove that

E B 2 E
J(E—V)“F(f)df/ S W+ Erf(E/ng)]+ 25 g [1+Erf(E/ng) %exp (%é)]

E’n, B\ 2 P 7
2 En B E g+ e (S . )+ ZEen (5 : )i+ n}
=Wo(E: 1) (10.36)

UJ

From Chapter 2, we know that

E
J Ufé(% =ai(6Eny) - ic(c,Eny) (10.37)
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where
By = | 2 ep(-)| S enp (L)) 'sinhion
£ Erlg\/ﬁ p=1
- Vvr
& By = iexp( i)
and u = 1gifE
We know that
o " OB (X) 2A(%)
_ _ i X) -, X
P F(x,{)d( = E[F(x,()]d(+F(x,B(x)) 3 -F(x,A(X)) 3 (10.38)
A(x) A(x)
Using (10.37) and (10.38), we get
E -
F(V)dv = — o=
J [1+(E(]:«2_‘7)] =¢3(C, E,ng) —iC4(C E,mg) (10.39)
where
o | —suexp(-@) [ & N 1 -F
C3(C,E,r[g)— |:Z‘2)’l§4\/7_'[ [;exp (T)(p) Slnh(pu)} + ane p( )’lg )

22y oo 22
—%Zexp (Tp) Cosh(pu)
=

- = 2u
andD5(C,E,ng) = EznZeXp( u?)
g

Therefore, the DR in HD Kane-type materials can be written using (10.35), (10.36),
(10.37), and (10.39) as

e - o _

o =N(E &1y, F) +iD(E, &1, F) (10.40)
where,

J1(E, &0, F) =21+ Erf(E/n, )] " [enpo (E, 1) + ety (E,n,) + €300 (E, ) + €4y, (Esng)

+95%[1+Erf(E/ng)]_9661(E’ &1g) +ers(E.C.np)l y (Eon)

— 2
:E[HErf(E/ng)][E%%q;} '3} < =i )(4}3 +ng)}
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and

J(E, &g, F) =21+ Erf (E/ng)] ' [esC2(E, &, ) + e7D3((E, €, 11,)]
The DOS function is given by

3
N3 = 27C 2 4 P — = o/ I~ = T T = = . T = =
NF(E)=47Tgv( ;; > {h(E,c,ng,F)H]z(E, ,rzg,F)}\/{h(E,c,ng,F)+l]z(E,c,ng,F)}

The EEM in this case is given by

(10.41)
m'(E,ng, F) =mcJ'1(E,c,n,, F) (10.42a)
The electron concentration can be expressed as
3
1 (2m.\’ _ _ i, _
=32 77 Real part of [020,1(Ef0,1, Mg F) + ©20,2(Ef20,1,M,, F)]  (10.42D)
where

@l
[SeY]

020,1(Ef20,1, ’Tg,F) = 1(Ef20,1, G Ylg»F) +j1(Ef20,1, G, ﬂg,F)] ;

020,2(Ef20,1, ng,F) =

L(7)[©20,1(Ef20,1, Mg, F)]

and Ef20,1 is the Fermi energy in this case.
Using (1.31f) and (10.42b) we can study the entropy in this case.

10.2.2 The entropy under magnetic quantization in HD Kane-type materials
in the presence of intense electric field

The DR of the conduction electrons in HD optoelectronic materials under electric

field can be written in presence of quantizing magnetic field B along x-direction

whose unperturbed electron energy spectra are defined by the three band of Kane as
( 1 ) %
n+ 5 hwg +

o eB
= =[1(E,c,11g,F)+1]2(E,c,11g,F)]w0=
C

ﬁl—c (10.43)
From (10.43) we get,
ki’ = (E.F, 7, n,)
where,

(10.44)
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== 2m
wi(E,F,n,n,) = hzc

R == = _ 1
[ 1(E, Cng, F) +1(E, ¢, ng, F) - (n+ §>hwo}

The density-of-states function for both the cases can, respectively, be expressed as

_ _ eB Jtmax (1’ (E, ¢, n,, F) +i] 5(E, ¢,n,, F)|H(E - E,
N(E,en, )= ge \2/ : ) ]2 (E,C,ng _)] ( nlHD)
eh ¢ U1(E.cng.F) + (., F)] - 1+ Yha
(10.45)
where E,qp is the Landau level in this case and can be expressed a
_ 1 - _
(n+ E)hWO = [1(Ens € Ng> F) + 1T2(Enapis €, Mg, F)] (10.46)
The EEM in this case is given by
m'(E,n,, F) =m.J'1(E, c,n,, F) (10.47a)
The electron concentration can be written as
B Nmax
No = = Real part of Z [020,3(Ef0, 21g 1, F) +050,4(Ef20,2 N>, F)) (10.47b)
where
- _ 1
©20,3(Ef20,2, N> 1, F) = [wi1(Efo,2, F, 1, ng)1%
020,4(Ef20,2, F. 1, M) = ZL 7)[020,3(Ef20,2,. F, 1, 1g)]
and Ej , is the Fermi energy in this case
Using (1.31f) and (10.47h), we can study the entropy in this case.
10.2.3 Entropy in QWs in HD Kane-type materials in the presence
of intense electric field
The DR in this case is given by
o mmN2 ke oo
= = , ,Co Ngs 10.
zmc( . ) + i =BG F) + (B g F)] (10.48)

The DOS function in this case is given by
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= — Nzmax
— - - m, - = -
Non(E, ¢, F) = nc—hg; N V(B g F) + 2B eng F)HE-Euyg ) (10.49)
nz=1
where E,zl& p 18 the sub-band energy in this case and can be expressed as
v ()
Tr_nc (i) - Ul(E"zls 1HD’C ng’ )+ 1]2( "zl&lHD’E’ ng’F)] (10'50)

The EEM in this case is given by

m'(E,n,, F) =mcJ',(E,c,n,, F) (10.51a)
Nmax
_ &M
lo=="5 Real part of Z [©20,5(Ef20,3: N> F) + ©20,6 (Ef20,3, N> F)] (10.51b)
where
2

- mn,

030,5(Ef20,3:Mgs F) = | J1(Ef20,3, C Mg F) + jJ2(Efa0,3, &, Mg F) = (c_l_)
Z

vl

©20,6(Ef20,3: Mg F) = > L(7)[020,5(Ef20,3, N> F)]
¢

~I

and Ejy 5 is the Fermi energy in this case.
Using (1.31f) and (10.51b), we can study the entropy in this case.

10.2.4 Entropy in NWs in HD Kane-type materials in the presence
of intense electric field

The DR in this case is given by

2 /= \? 2 /o \? o3
h_ <E> + h_ <M> +hl_<x =[h(E,c,ng F) +il,(E, C,ng, F)] (10.52)

2mc d z zmc dy zmc

The DOS function in this case is given by

gV\/zWCﬁymax Nzmax U'l (E ¢, F) +1]2(E c, Mg )} (E_Enzls,ZHD)
h Ay=1 ;=1 \/[f (E,c 1 F)+iJ,(E, ¢, Ngs F)] - Gy(ny, 1)
(10.53)

Nin(E; &, 11,0 F) =

where E, is the sub-band energy in this case and can be expressed as

1218,2HD
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2 2
W ([ W ([ I _ =
2mc (dLZ> " 2m. (dLZ> - []l(E"zls ZHD’C Ng )HJZ( "zlS,ZHD’C’ng’F)} (10.54)

and G,(ny, n,), is defined in (10.13) of chapter 3.
The EEM in this case is given by

m'(E,ng, F) =m.J'\(E,¢,ng, F) (10.55a)

The electron concentration can be given as

~ 26 / Mymax Nzmax
fig= =2V ¢ 8y pos ™ Real part of Z Z [020,7(Ef20,45 Mg ) + ©20,8 (Ef20,45 N> F)]
ny=1nz=1
(10.55b)
where

N2 _\ 23
_ N e = o nn nn
020,7(Ef20,4:Ng> F) = |J1(Ef20,4> € Ngs F) +jJ2(Ef20,4, Mgy F) = <—dz> - <_y) } i

920,8(Ef20,4,ng, ZL 7)[020,7(Ef20, 4> Ng> F)]

and Ejy 4 is the Fermi energy in this case.
Using (1.31f) and (10.55b) we can study the entropy in this case.

10.2.5 Magneto entropy in QWs of HD Kane-type materials in the presence
of intense electric field

The DR in this case is given by

2
W (nn
— (=] + n+ = | hwo =1 (En,yg 4> & Mgs F) +12(Enyyg 4> &M F)] - (10.56)
2m. \ d,

where, E,,zl& .p 18 the totally quantized energy in this case

The DOS function in this case is given by

B B B g.veBﬁXmax Nmax Lo
Nowsrn(E,ng, F) = =2 >N 8 (E-E

nx=1n=0

(10.57a)

1218, 4HD )

The electron concentration be written as
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MXmax Tlmax

h 1(M0,7) (10.57h)

nx=1n=0

Ef30,7 = Enyig amp
where 1, ; = 2L sl

and Epy 7 is the Fermi energy in this case
Using (1.31f) and (10.57b), we can study the entropy in this case.

10.2.6 Entropy in accumulation and inversion layers of Kane-type materials
in the presence of intense electric field

(a) The 2D DR in accumulation layers of HD III-V, ternary and quaternary materi-
als, in this case can be expressed as

py_ IR hlelFs 2/25°%\ -, _
2. \2m,

Uh(E,¢,ng, F) +12(E, &g, F)] = 3 ) U'1(E e, F)
(10.58)

+1J5(E, ¢, ng, F)]’

Since the DR in accordance with the HD three-band model of Kane is complex in
nature, (10.60) will also be complex. The both complexities occur due to the pres-
ence of poles in the finite complex plane of the dispersion relation of the materials
in the absence of band tails.

The EEM can be expressed as

m'(E,¢,ng, F,i) =m.Real part of [Psupp(E, ¢,n,, F,i) ]’ (10.59)

where,
pBHDLl(E> E) rlg)-F: i) = [Ul(E: E‘) rlg)F) + ijZ(E) E) ng)F)]

nelF. (2v3822\ . .
- |2‘r?zz (Tl U1(E, ¢, F) +1] o(E, ¢, N, F)]]

Thus, one can observe that the EEM is a function of electric field, scattering poten-
tial, the sub-band index, surface electric field, the Fermi energy, and the other spec-
trum constants due to the combined influence of Eg, and A.
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The sub-band energy E4oomp is given by

= = [ o hlelFs (2v257*N L - L
U1(Esoomp, €, Mg, F) + U2(Esoon, € Ng» F)] = ‘2|ms (TI U 1(Esoomp, €, Mg» F)
C
+1J'2(Es00mD, G, Ng> F) (10.60)
The DOS function can be written as
_ -~ _ m 5 limax -
Nyp(E,¢,ng, F)= - VZ Psppa (E, €, g, F,1)]” H(E - E4o0mp) (10.61a)

Thus, the DOS function is complex in nature.
The electron concentration can be expressed as

]

imax

fls g;h < Real Part sz [P3HDL1 Efzo g,C r[g, ) I_,()_’) [PgHDLl(Elfzo,g,(_,‘, )’lg,F)]
i=0 r=1

& (2m )’ 7, _ o _
32\ [020,1(E f20,1> Mg F) + ©20,2(E f20,1, 1> F)]

(10.61b)

Eimax
where tl E’FS (1+imax)’

Eimax is root of the Real Part of (10.62) when ks=0 and E’ 20,8 =€Vg —
d

€sdox 4 B,
Using (1.31f) and (10.61b) we can study the entropy in this case.

(b) In the absence of bandtails, the DR in this case assumes the form

o R RlelFs (V252 L
Ju(E F)]= e + o < 3 U (EF)] (10.62)

where Ji1(E, F)=[eE* + e,E> + e3E? + e,E + e5 — o CE +e;(1+CE) %)(10.63) represents
the DR of the 2D electrons in inversion layers of III-V, ternary, and quaternary materi-
als under the intense electric field limit whose bulk electrons in the absence of any
perturbation obey the three band model of Kane.

The EEM can be expressed as
m’(E, F,i) =m, [Py (E,F,i)] (10.63)

where,
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_ AN
. ~ h‘ijj <2ﬂ:fl )[]11(E’F)] ]

Thus, one can observe that the EEM is a function of the sub-band index, the light
intensity, surface electric field, the Fermi energy, and the other spectrum constants
due to the combined influence of Eg and A.

The sub-band energy E,; in this case can be obtained from the (10.64) as

= *3/2 . B
0= |:U11 (Ez,()l,F)] — T};'# (2\/5381 > Ull(E401’F)],:| (1064)

Thus, the 2D total DOS function in weak electric field limit can be expressed as

Z [P31(E, F,1)] H(E - Eu0) (10.65a)

The electron concentration can be expressed as

- 5 m imax _ s I _
g = gvhzc D {pﬂ(gfzo,g,F, i)+ > L(7) [Pa1(Epao,r F. 1] (10.65b)
i=0 r=1

where Efz(),g is the Fermi energy in this case
Using (1.31f) and (10.65b), we can study the entropy in this case.

10.2.7 Entropy in doping superlattices of HD Kane-type materials
in the presence of intense electric field

The DR in doping superlatticesof HD III-V, ternary and quaternary materials in the

presence of intense electric field whose unperturbed electrons are defined by the

three-band model of Kane can be expressed as

272
S

2, (10.66)

e 1 L
[i(E, ¢, ng,F) +if,(E,c, ng,F)] = (ni + E)hwngDI(E, G, ng,F) +

where

1
ns|e\2

p
dogsclJ1(E, ¢, ng, F) +11,(E, ¢, ng, F)]'m, )

worn (E, ¢, 1y, F) = <

The sub-band energies E;s, can be written as
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T SR | e
U1(Ess2, €, Ng, F) +12(Ens2, €, Mg, F)] = (ni + §>hw9mm (Eus2,C, Mg, F) (10.67)

The EEM in this case is given by

,F,n;) =1 Real part of [Psupi3(E, ¢, n,, F, 1))’ (10.68)

The DOS function in this case is given by

meg,

nh?

"imax [J', (E, ¢,y F) + 1 5(E, €1, F) = (s + )’ o1pip1 (E, €, 1, F) H(E ~ Ey52)
70 (B eng F)+1h(E &g F)) - (i + D hasusm (E, €1, F)

Nappst (E, ¢, ng, F) =

(10.69a)
The electron concentration can be written as
e Timgy [ - ~ s ~ -
ng= nCth Z |:P3HDL3(Ef20,20;C» Ne> Foni) + ) L(T)[Psupr3(Ef20,20, €, Mg, Fy i)
=1 r=1
(10.69Db)

where Efzo, 20 is the Fermi energy in this case.
Using (1.31f) and (10.69b) we can study the entropy in this case.

10.2.8 Entropy in QWHD effective mass superlattices of Kane-type materials

in the presence of intense electric field
Following Sasaki [3], the electron dispersion law in HD III-V effective mass super-
lattices (EMSLs) in the presence of light waves, the dispersion relations of whose

constituent materials in the absence of any perturbation are defined by the three
band model of Kane can be written as

2
]_()2(: [;{COS_I(flgHDl(E,I_(y, I_(Z,F))} —I_Ci:| (1070)
0

In which,
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fisti (E, ky, kz, F) = @ippa, 1 €08(@o Cippn, 18 (E, k 1, F) + boDipipn, 18 (E, k1, F)]

— @onp1, 18 €08 (a0 Ciapy, 18 (E, kot , F) + boDippy, 18 (E k1, F)]

-\/ﬁch Realpart of [J5(0,¢,1,,, F)] +1} 2
]

a = = _
1D 18 meq Real partof [J3(0,¢,1,, F)

. _ NS
mg Realpartof [J3(0,¢,n4,,F)] \* '
me Realpart of [J3(0,¢,1y,, F)] ’

. - [ [maRealpart of [J5(0,¢,1,, F)] . ?
2HDL1S = |\ maRealpart of [5(0,¢,ngy, F)]

- - N
meRe alpart of [J3(0,¢, 1y, F)] | * !
maRe alpartof [J3(0,¢,1g, F)]

Ji(E, ¢, ng,F) +iL(E, ¢, ng,F) =J5(E,c, ng,F),

1
- T T
Cinp1,18(E ki, F) = JI(E, ¢, ngl,F)—kzL

and

2

_ o g \e - - -
Dinipy,18(E; k1, F) = [( hzl>]3(E’C>’1gz’F)—k2¢}

The DR in QWHD effective mass superlattices of Kane type materials in the presence
of intense electric field, the dispersion relations of whose constituent materials in
the absence of any perturbation are defined by the three-band model of Kane can
be written as

2 2
Ny 7T 1 - o _
( a > = |:L—2 {COS 1(flSHD1(E’ ky,kz,F))} —ki:| (1071)
X 0

The EEM in this case assumes the form

R
m (k. ,EF)= 7 (10.72)
0

[COS ! [flsHDl (E, ’_<y> kz, F)]_,lsHDl (E, ’_<y> k,F) }
)

The subband energies Eggo can be written as
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I =

)]

The density of states function, the electron concentration and the entropy have to
be evaluated numerically.

{COSl(flgHDl(E6oo,ky, kz)F))}:| (1073)

10.2.9 Entropy in NWHD effective mass superlattices of Kane-type materials
in the presence of intense electric field

Following Sasaki [3], the magneto entropy in HD III-V effective mass superlattices
(entropySLs) in the presence of intense electric field, the dispersion relations of
whose constituent materials in the absence of any perturbation are defined by the
three-band model of Kane can be written as

2 -
. 2z B
I = [ii%{cosl(flgm(ﬂ n,F))} - —2; <n+ %)} (10.74)

In which,
fisup2(E, 1, F) = @iy, 18 €08[aoCinpa,18(E, 1, F) + boDigpa 18(E, 1, F)]

~ @onp1, 18 €O8[ao Cipz 18 (E, 1, F) +boDippy 18(E, 1, F)]

a1HD1,18 =

[ [moRe al part of [J5(0, ¢, Mgy F)] ' :
meRe al part of [J3(0, ¢, Ny, F)]

a _ 1
, (MeRealpartof 30, ¢ng, F)L\ 7]
|\ MmaRealpartof [J3(0,¢, 1y, F)] ’

I — = 2
. _ | [meRealpart of [J5(0,C, ng,, F)] .
2018 = N\ ' Re al part of [J5(0, ¢, Ng1>F)]

- - N
meRe al part of [15(0,¢, 1, F)) \ 2]~
mqRe al part of [J5(0, ¢, g, F)]

and
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_ o W\ - o 22B[_ 1\|’
DlHDZ,lS(E, n’F)E |:( h2C1>]3(E’C>rIg2)F)_ T <n+ 2>:|

The DOS function in this case is given by

_ - e eBﬁmax o
Nioo(E, F) = 822N " (wioo (B, 1, F)] (10.75)
mh =
where
5
Fn R o 2eB 1
Wioo(E, 1, F) = [ {cos  (Figmpa (B, F)) ) - == +§)H

The EEM in this case assumes therefore

' (n, E, F) = Zé [COS ~Vosana(E P e . F) } (10.76)
0 1_f128HD2(E> n, F)
The Landau sub-band energies E¢y, can be written as
2eB 1

0= [ {cos™!(f1amp(Ee02, 1, F) } y <n+ 5)} (10.77a)
The electron concentration can be written as

~ B Vlmax 5. ~ _ o

no = B o nF)]+ » L(7) [wioo(Ef0,23. 1, F)]]

r=1
(10.77b)

Using (1.31f) and (10.77b), we can study the entropy in this case.

10.2.10 Magneto entropy in QWHD effective mass superlattices of Kane-type
materials in the presence of intense electric field

Following Sasaki [3], the electron dispersion law in HD III-V effective mass super-

lattices in the presence of light waves, the dispersion relations of whose constitu-

entmaterials in the absence of any perturbation are defined by the three-band
model of Kane can be written as

- 2
('Z”) { {cos™!(f1amp2(Esor, 1, F) }—Z;B<n+;ﬂ (10.78)
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where, E¢; is the totally quantized energy in this case.
The DOS function is given by

Nxmax Nmax

o B
Neot (E,F,n,) gve 3 25 (E - Eeon) (10.79a)

ny=1n=

The electron concentration can be written as

MXmax Mmax

(10.79b)

nx=1n=0

Ef0,25 ~ Ego1
where 1, 55 = T

and Efzo, 25 is the Fermi energy in this case.
Using (1.31f) and (20.89b) we can study the entropy in this case.

10.2.11 Entropy in QWHD superlattices of Kane-type materials with graded
interfaces in the presence of intense electric field

The DR in bulk specimens of the HD constituent materials of III-V SLs in the pres-
ence of intense electric field can be expressed as

R
P =Jy(E, AI’EgOJ’rl]’ F) +iJy(E, APEgOJ:’Yp F) (10.80)
]
wherej=1,2,

Ti(Es &y Egey 1, F) =211+ Erf(E/ng )| lethoy(Bong) + exy (B
1
+e500(E ) +euyolEn,) + ess [1+Ef(E/n,)

- 86]'61]‘(E, o rlgj) + e7j631'(E’ G rlg}-)]’ ll)lj(E> rlgj)
- E 1+ Brf(E/n, ) {EZ : %n;}
Mg, ~“E\ .
+ %ﬁexp <’7§j) (4E2+n§j)},

J5(E, Ay, Egoju mj, F) = 2[1+ Erf(E/ﬂgj)} “esicy(E g )+ e;iD3(E, ¢, g;)):

erj=AyiPrj Afj=FhEg (Eg - 6')"me(6my(8)") ™",
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F=eF;, Gpj=es;(48+Cp)), Cpj=(2E5Q + PiQj(Eg — E ) - 2P7Ey),

_, Eg(Eg-367) _ R (E.-6; _ 2\ L g2
Eg.=7g](_ & 7 ]), szﬂ _g] ,I 5 ?sz E(Eg.+Aj) Eg4+*Aj 5 j=tL,
] Egj+6]' 2 Egj+5]' Xj ] 73 2

1/2
_[ef. 2 _ L
tj= [)? (Eg,*gAi)} . hyj=(48'je7iCrj) (Bj) ™', Byj=(Pj+Q)’°
]

ajb;

B _F-3(5, F-2_(. 0. P-4 =2 -
Prj=Eg (eriky” ~Gpj+ hjEg "), wy=ay, ay= G

-1
1 - 1 - 2
ai:r, bj=7 5 Ej= Eg.+— j ,
Egj Egl.+Aj 73

_ .
€= Qpj.wy, Wy =2ayby, byj=(¢;) “(a;C; + bic; — a;by)),

esj= (1= Pj)ay + Qrj.wsj, w3 = (b + 2ay¢yy),

_ 1 a; bj B AL 1A
C1j= L—}( - g}’) (1— a’ﬂ €4 = (1= Prj)byj + Qrjway),

w4 =2byCyj, es;=[(1- Pf;)Cyj + ws;Qy)]

wsj = (€5 = 20ybyy), €5 = Qpjwy, w7 =5, €6 =(1-Prj)Cyj — Qjwej]

2¢iby; CiC1j
and we; = % <1— I]J—lh)}
J

Therefore, the DR in HD III-V SLs with graded interfaces in the presence of intense
electric field can be expressed as [4]

i(g = Gg)]g + l'H& 19 (1081)

where

S

~ C%,19_D%,19 2| £ -1
Gg 9= | ———=——-ki|, C;,19=c0s" (w7,19),

1
2

-1 ~ _ ~ 2 -
w7,19=(2)2 [(1—63,19—1'1;,19)—\/(1—6%,19—H%,19) +4G3 1

P, 191:[5,19 —P, 19H5, 19+ (1/12)(py,, 1966, 19 ~ P14, 19H6, 19)}],
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G119 = [(cos(hy,19)) (cosh(hy, 19)) (COSh(Zy 19)) (€OS(85 19))
+ (sin(}_zl,lg))(sinh(ﬁz)lg))(sinh(gl, 19))(8in(8519))], hy, 10

1
!
_ 1 _
=e1,19(bo —Ao), €1,19=2 2(\/&,19+t72,19+t1,19) ,
1
_ _ 1 - _ _ 2
hy19 =€5,19(bo — Ao), 6’2,19=2_§<\/ti19+t%,19—t1,19> ,

1
2
_ - _ — —1 ~ - B
8119 =d1,19(@0 — Ao), dy,19=272 (1 /X2 15+ V2 10 +x1,19> :
X119 = [~ (2Me2/1%).Ju (E = Vo, Ega, Ao, Ngo F) + K],
1= [(2Me2 /) Joo(E - Vo, Ega, Ay, Mgy, F)],
1
_ _ 1 2
8219 =dz,19(@0 — Ao), da19=2"2 (m—&w) ,
2 2\ -1
Ps19= (319 +P419)  [P1,19P3,19 — P2,19P4 19>
P119= [af 19t e%) 19~ aﬁ, 19~ ei 19) P3,19 = [d1,10€1,19 + d3,19€2,19)»
P29 = 2[‘_11,19f_12,19 +e1,19€2,19),
Pu19 = [al, 19€2,19 — 91,1932,19],

Gy10= [(Sin(ﬁl,w))(COSh(’_lz,w))(Sinh@l,w))(Cos(g’z, 19))
+ (cos(hy,19)) (sinh(hy,19)) (cosh(gy,16) ) (SIN(85,1))],
Pe,19 = (P§)19 +P2, 19) _I[PL 19P4,19 + P2,19P3,19)>

Hy o= [(sin(le,19))(c05(}_12,19))(Sin(gz, 19))(cosh(gy,19))
— (cos(hy,19))(sinh(hy, 19))(Sinh(81,19))(€08(85,19))]s

Pr19=(€] 19+ €3 19) " ! le1,19(d} 1 — 5 15) — 2d1,1905,19€2,19] — 3€1,19),

Gs,19 = [(sin(hy, 1)) (cosh(hy, 19))(cosh(gy,19))(c0s(83,19))
+ (cos(hy,10)) (sinh(hy, 19))(sinh(gy,19)) (sIn(8519))],

Pg 19 = [(ei 19t 35,19) ! [92,19(‘_1%, 197~ ag,w) +2dy,19d>, 19€1,19] +3€2,19),

Hs o= [(Sin(ﬁl,w))(COSh(ﬁz,w))(Sin@z 19))(sinh(gy 19))
— (cos(hy,19)) (sinh(hy 19)) (cosh(gy, 19)) (cOS(85,19))],
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Po10= (3 19+ d5 15) "' [d1,19(€3 19 — €1 19) + 262 1905 19€1,19] + 3d1,19]

Ga,19 = [(cos(hy,19)) (cosh(hy, 19)) (COS(85 10)) (SINh (81 1))
- (Sin(ﬁl, 19))(5inh(h2, 19))(cosh(gy,19))(8In(8519))],

Pro.10=[(d} 10+ 5 19) [, 19(€3 19 — €1 19) +2€5,1905 19€1,190] + 3d, 19,

Hy 10 =[(cos(hy,19))(cosh(hy,19)) (cosh(gy 19)) (sin(g; 19))
+ (sin(hy,10)) (sinh(hy, 19))(sinh(gy,19))(c08(8219))],

32 2 ) 2
Pi1,19=2[d} 19+ €5 19 =5 19— €] 19>

Gs,19 = [(c0s(hy,19)) (cosh(hy,19)) (cOS(85,19)) (cOsh(gy, 19))
— (sin(hy,10))(sinh(hy, 19))(sinh(gy,19)) (sin(83,19))],

P12,10 = 4[d1,10d2,19 + €1,19€2,19],

Hs,19 = [(cos(hy,19)) (cosh(h,19)) (sinh (g 1)) (SIn(g5,19))

+ (sin(hy,19)) (sinh(hz,19)) (cosh(gy,19)) (c0S (82 19)));
Pi3,10 = [{5(d119€7 19— 3€1,19€3 1961,19) +5d2,19(€] 19—~ 3€] 19€2,19) }(d 19 + 5 19) -
+ (€119 +€319) " {5(e11907 19~ 3d219€] 19di19) + 5(d3 19€2.19 =3 1921982,19) }
~34(dy 191,19 + da,19€2,19)],

Ge, 19 = [(sin(hy,19)) (cosh(h,, 19))(sinh(gy 19))(c08(85,19))
+(cos(hy,19))(sinh(hy, 19))(cosh(8y,19))(sin(83,19))],

P1a,19 = [{5(31, 1993, 19~ 3€2, 199;, 19a1,19) +5d,10( — ei vt 33%, 19€1,19) } (af 19t Eii 19) o
+ (€1 19+ €519) " {5(—e1,19d3 19 +3d} 19d3 19€1,19)
+5(- c_ii 19€2,19 + 36—1%) 196_11,1962, 19)} +34(d1, 19€2 19 — da,19€1,19)),

Hg 10 = [(Sin(ﬁl,w))(COSh(’_lz,w))(COSh@’l,w))(Sin(g’z, 19))
— (cos(hy,19))(sinh(hy,19) ) (sinh(gy,19)) (cOS(82 19) )],

Hy 19 = [Hy,19 + (05, 10H2,19/2) + (P6,10G2,19/2) + (Ao /2)

{Ps,19G3,19 +P7,19H3,19 + P10,19G4,19 + Pg, 19Ha4,19

+P1319G5,19 + P11, 10H5,19 + (1/12) (14, 10G6, 19 + P13, 10H6,19) ],

Hi 19 = [(sin(hy,19))(cosh(hy,19)) (cosh(gy 10)) (Sin(85,10))
+ (COS(EL 19))(5inh(ﬁ2, 19))(sinh(gy 19))(c08(8519))],

D719 =sin" ! (@7,19), H 19 = (2C7,19D7,19 /L3)
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The simplified DR of HD QWs of III-V superlattices with graded interfaces can be
expressed as

2
n,m — _

<_L) = Gg’ 19 + l'Hg) 19 (1082)
d;

The sub-band equation in this case can be expressed as

Z

2
n,m — -
<_d ) =|Gs,19 +1H8,19},}S:03ndE:E700 (10.83)

where Eyqo is the sub-band energy in this case.
The EEM and the DOS function should be obtained numerically in this case.

10.2.12 Entropy in NWHD superlattices of Kane-type materials with graded
interfaces in the presence of intense electric field

Entropy in NWHD III-V SLs with graded interfaces in the presence of intense elec-
tric fieldcan be expressed as [4]

]7(‘5 = Gg,zo + l'Hg)zo (1084)

where,

C-Diy

= 3 3 2| A “1/-

Gs,20 = o —k2|, C7,20=cos ' (@7,0),
0

1/2

~1/2

W7,20 = (2) 1- G?,zo _H%zo) - \/(1 G7 20~ Hj 20) + 465,20

G7,20 = [G1,20 + (P5,2062.20/2) = (P6,20H2,20/2) + (Ao /2)

{P6,20H2,20 = Pg, 20H3,20 + Po, 20H,20 = Pro, 20H4,20
+P11,20H5, 20 ~ P12, 20H5,20 +(1/12)(p1,20G6,20 = P1a, 20H6, 20)}]

Gy,20 = [(cos(hy,20)) (cosh(h3 20) ) (cosh(g; ) ) (€05 (83, 20))
+ (sin(hy,20)) (sinh(hy,20)) (sinh( 5)) (sin(85 20))],

1)2
Ry, 20 = €1,20(bo — Ao), 1,20 =22 (\/ 50+ +f1,2o> ,
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t,20 = [(2Me1 /%) Ju (E, Ay, Egy . F) = Go(Ry, 117)], 1,20 = [(2me1 /)] (E, A1, Egy . F)],

1/2

2,20 = €2,20(bo — Ao), €2,20 = 2712 (\/ 5 +z§,2o +f1,2o> ,
12
81,20 = d1,20(Go — Ag), di, 20 =271/ <\/ X2 50+ Y5 20 +?_(1,20> ,

)?1)20 = [ - (Zﬁlcz/hz)ju (E — VQ, Egz, Az, ngZ’ F) + Gz(fly, ﬁ)],

V1= 1(2Me2/ 1) Joa((E = Vo, Ega, Ao, Mg, F),

12
8220=dy20(@0 —Ao), dy, 20 =22 (\/ X2 50 +¥3 20 —Xl,zo) ,

2 2 -1
Ps.20= (03,20 +Pis20)  [P1,20P3,20 ~ P2,20P4, 20>
2 2 2 2
P1,20 = 1A, 20 + €350 = d3 20 ~ €1, 0] P3,20 = [d1,20€1,20 + d2,20€2,20]
P20 = 2[d1,2002,20 + €1,20€2,20]> P4y 20 = [d1,20€2,20 — €1,20d2, 20

G20 = [(sin(hy,20)) (cosh (R, 20)) (sinh(gy, 20)) (€05(8, 50))
+ (cos(hy,20)) (sinh(hy, 20))(cosh(8y,50))(sin(852))),

2 2 \-1
P6,20 = (P3,20 TP420)  1P1,20P4,20 +P2,20P3,20)>

Hj 20 =[(sin(hy,2))(cos(hy,20) ) (sin(g1,20)) (cosh(gi, 20))
— (cos(hy,2))(sinh(hy,2))(sinh(gy,0)) (08(83,20)));

P7.20= (€] 20+ €320) [€1,20(d] 0 — d3 50) — 2d1,2082,20€3,20] — 31,205

Gs,20 = [(sin(hy,20))(cosh(hy,5))(cosh(g; »))(c0s(83 )
+ (Cos(ﬁl,zo))(Sinh(ﬁlZO))(Sinh(g’l,zo))(Sin(gz,zo))]’

Ps.20 = (€ 20+ €3 5) “Heaa0(d2 50— d3 50) + 24,2002, 20€1,20] +3€2,20],

H3 50 = [(sin(hy,20)) (€08 (h3,20)) (5in(85,2)) (Sinh(&; )
— (cos(hy,20))(sinh(hy, 20))(cosh(gy 50))(cos(83,20)))>

Po 20 = (A7 50 + 3 50) "' [d1,20(€3 20 — €] 50) + 22,2062, 20€1,20] + 31, 20]
Gu,20 = [(cos(hy,20)) (cosh(hy,20))(cos(g,20) ) (sinh(g1,20))
— (sin(hy,5))(sinh(hy,20)) (cosh(8; 5)) (Sin(85,5))]»

EBSCChost - printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



10.2 Theoretical background =— 367

P1o,20 == (d] 20+ @ 20) ' [da,20( — €3 50 + €7 59) +2€2 2002, 20€1,20] + 32, 20),

Hy, 50 = [(cos(hy,20) ) (cosh (B3 20) ) (cosh (&, ) (sin(g5, 20))
+ (Sin(ﬁl,Zo))(Sinh(ﬁl 20))(sinh(gy 50))(€0s(8320)))>

iR 2 2 2
P11,20 =2[d] 20 + €3 20 — d3 20 — €1, 20>

Gs,20 = [(cos(hy,20))(cosh(h3,2)) (€08 (83, 0)) (cOsh(&;, 5))
- (Sin(ﬁl,zo))(Sinh(EZ,ZO))(Sinh(gl, 20))(810(83,20))];

P12,20 = 4[d1,20d2,20 + €1,20€2,20]

Hs, 50 = [(cos(hy,20)) (cosh(hy, 20)) (sinh(g;, 2) ) (sin(82, 20))
+ (sin(hy,20))(sinh(hy, 20))(cosh(gy 50))(cos(83,20)))>

P13,20= [{S[dl,zoeizo - 3‘31,206'3,20‘11,20) +5d3,20 (eizo - 36%,2092,20)}(‘1%,20 + d%,zo) B
+ (€1 20+€520) " {5(€1,2005 0 ~3d2 2087 501,20) +5(d3 20€2,20 =303 503, 20€2.20) }
—34(dy,20€1,20 + d2,20€2,20) ]

Ge,20 = [(Sin(ﬁl,zo))(COSh(ﬁz, 20))(sinh(gy 50))(c0s(g3 20)) +
(cos(hy,20))(sinh(hy,2))(cosh(8y, 5))(sin(85,20))],

P14,20 = [{S[dl)ZOeizo - 3‘?1,203%, 20d1,20) +5d2,20( = eizo + 33%,2031,20)}(61%, 207t d%, 20) o
+ (ei 207t e%, 20) 71{5( - e'1,20di 207t 3di 20d2,20€1,20)
+5( = dj 50€2,20 + 305 50d1,20€2,20) } + 34(dh, 20€2,20 — d3,20€1,20)]»

Hg,20 =[(sin(hy,20) ) (cosh(hy,20)) (cosh(8;,5)) (sin(85,20))
— (cos(hy,20)) (sinh(hy 20) ) (sinh (&, 0)) (c0s(85,20) )],

Hy 50 = [H1,20 + (P5,20H2,20/2) + (P 20G2,20/2) + (Ao /2){pg 20G3,20 +P7,20H3,20
* P10, 20, G20 +P9,2oﬁ 4,20 +Ppo, 2065)20 +P1, on 5,20

+(1/12) (P14,2OG6,20 +P13,20H6,20)}]>

Hi, 50 = [(sin(hy,20)) (sinh(hy, 20) ) (cosh(g; 5))(c0s(85,20))
+(cos(hy,20) ) (cosh(hy, 20))(sinh(gy 50))(sin(85,20))]>

D7, 20 =sinh™ ! (w7, 20), Hs, 20= (267,19D7, zo/i(z))
The sub-band equation in this case can be expressed as
0= [Gg’ 20 t+ l'Hg,zo] |E=E610 (1085)

where Eg is the sub-band energy in this case.
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At low temperatures where the quantum effects become prominent, the DOS
function for the lowest SL mini-band is given by

5 ™max n max [/ -y’
N _ g O [G'g 20 +iH's,20] o = =
st (E; g, F) = == E —=————H(E-Een) (10.86)

T =1 ay=1 V Gs,20 +1Hg,20

The EEM can be written as

T
m (E,ny,n.n,, F) = ?(G 8,20) (10.87)

The electron concentration is given by

[

MXmax n,Vmax
n gv —YReal Part Of Z Z [Glg)zo + iH,& 20] + i(?) [GIB, 20+ iH,S,ZO}

) ME=Epp0.26
nx=1ny=1 r=1

(10.88)

where Ej, 5 is the Fermi energy in this case.

10.2.13 Entropy in QDHD superlattices of Kane-type materials with graded
interfaces in the presence of intense electric field

The DR in QDHD superlattices of Kane-type materials with graded interfaces in the
presence of intense electric field can be expressed as

2
n,m ~ -
; = [Gg,zo + ng’z()} |E‘=E (1089)
d 620

z

where Eg) is the sub — band energy in this case.
The DOS function is given by

= Txmax Wmax MZmax

7 a az > Z &8 (E - Egy) (10.90a)

nx=1 ny=1nz=

Noppst(E, g, F) =

The electron concentration can be written as

NXmax MYmax MZmax

flo= =—="'—Real Part of » > Z F_1(N0,620) (10.90b)
d d d nx=1ny=1nz=

_ Ef0,620 Eex0
where 120,620 = kgT

and Efyo, 620 is the Fermi energy in this case
Using (1.31f) and (10.90b) we can study the entropy in this case.
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10.2.14 Magneto entropy in HD superlattices of Kane-type materials with graded
interfaces in the presence of intense electric field

Magnetoentropy in HD III-V SLs with graded interfaces in the presence of intense
electric field can be expressed as

I_(g = Gg, 19n + lI:Ig 19n (1091)
where
_ c2., —-D? 2¢B(_ 1 _
Gg,19n = M =——|n+= || Crion=cos™(w7,19n)s
Lj h 2

1/2
_ ~ - - = 2 -
w7,19n = (2) 2 {(1 - G§,19n _H%, 1on) ~ \/(1 - G%, 19n " H%19n) + 4G%,19n >

67, 19n = [67,19n + (Ps, 19n GZ, 19n/2) = (Pe, 19nH2, 19n/2) + (Ao/ 2){P7, 19nH2, 19n — Py, 19nH 3,19n
+ P9, 19nH4,19n = P10, 190 Ha, 19n + P11, 190H5,19n = P13 190 H5, 19m
+(1/12) (01, 19nGé,19n — P14 19nHe6,19) >

Gi1,19n = [(cos(hy,19n)) (cosh(hy, 19n)) (cosh(8y 10n)) (COS(85,19n))
+ (sin(hy, 19n)) (sinh(hy, 19n)) (SINh (81, 9n)) (SIN(85, 19n))]

- = _
\/ taon T 100 T 10, 19n>

1\ o
(fH- 2> t19n=[(2Me1/ 7)o (E, Av, Egor, F)],

_ _ YRy
Ry 19n = €1,19n(bo — Ao)s €1 190 =227,

R

208
h

1/2

= = B
( t1)19n+t2,19n_t1,19n> ,
1/2

> > B
(\/’mﬂﬁ,m) ,

B - S 2B (_ 1
Xi,10n = | — (2Mez + B?) Ju (E - Vo, Ega, A2, Mgy, F) + W <n+ 5)}

t,19n=[(2Me1 + 1) Ju (E, Av, Egor, F) -

7 7 ~1/2
Ry, 19n = €2,19n(bo — Ao), €2,10n =27V

81,19n = di, 190 (@0 — Ao), diy, 190 =27 1/?

1= [(2Me /W) n(E - Vo, Eq2, Az,ﬂgz,ﬁ)],
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1/2
= _ = =12 /a2 2 >
82,19n =y 19n (G0 — Ao), da 190 =2 / ( X1 19n T Y1100 — X1, 19n) >

a2 2 -1 2
Ps,19n = (P3,19n T Py, 10n)  [P1,19nP3,19n — P2, 19nP4, 190>

e 2 2 2 _
P1,19n = (A3 190 + €3 190 = D3, 190 — €1, 19n)> P3, 190 = [d1,19n€1,19n + da, 19n€2, 190,
P219n = 2[d1,19nd2, 19n + €1,19n€2, 19n], Py19n = [d1, 19n€2,19n — €1,19n02, 19n],

Gy, 10n = [(Sin(’_h, 19n))(C05h(’_?2, 19n)) (8inh (g7, 19n)) (€OS(83,19n))
+(cos(hy,19n)) (sinh (hy, 19n)) (€osh(8y 10n)) (SIN(85,19n) )]

2 2 -1
Pé19n = (03,190 + P4, 10n)  [P1,19nP4, 190 t P2, 19093, 19>

Hj 19n = [(sin(hy,19n)) (coS (hy, 19n)) (SI0(83,10n) ) (COSh(81 19n))
— (cos(hy,19n)) (sinh(hy, 19) ) (Sinh (81, 101)) (COS(85,19n))]

-1
P7,19n = (€5 100+ €5,10n) ~ [€1,19n(d5 19, = A5 19,] — 201, 19002, 19n€2,19n] — 3€1,19n);

G3,10n = [(sin(hy,19n) ) (cosh (b, 19n)) (cosh(81,19n))(COS(85,19n))
+ (cos(hy,10n)) (sinh (hz, 19n)) (SiNh (81, 19n)) (SIN(85,190))]»

P 100 = (€] 10n + €3 190) ' [€2,19n (0 19 = 3 19,] + 21, 1902, 19n€1, 19m] + 3€3,19n),

Hs 190 = [(Sin(’_?l,wn))(COSh(’_lz,19n))(Sin(§2, 19n)) (SN (81, 19n))
— (cos(hy,19n)) (sinh(hy, 19n)) (COSh(81,19n)) (COS(82,19n)) ]

P, 100 = (A5 100+ 3 10,) "' [d1,19n(€3 190 — €], 19n] + 262 19002, 19n€1,19n] + 30k1, 190);

G, 1on = [(COS(EL 19n))(C05h(ﬁ2, 19n)) (€0S(82,19n) ) (SINA(81,10))
— (sin(hy,19n)) (sinh (M3, 19n)) (cOSh(81, 19n) ) (SIN(85,19n)) -

-1
P10,19n = [(di 1on T d%, 19n) [d2,19n(e§, 190~ ei 19n] +2€2,19nd>, 19n€1, 197) + 34, 19n]>

Hu,19n = [(c0s(h1,19n)) (cosh (hy,19n)) (COSh(81,19n)) (SIN(82, 19n))
- (Si"(fll,wn))(Sinh(}_lz,19n))(5inh(§1,19n))(C05(§2,19n))]r

o2 > 22
P11, 19n = 2[(A3 197 + €3, 190 — D, 190 — €1, 19n)>

Gs,19n = [(€0(hy,19n)) (cOsh (hy,19n)) (COS(85,19n)) (COSh(&1, 19n)) (STMA(81, 16n))
— (sin(h,, 19n)) (Sinh(8y 10n)) (SIN(8&3,10n))]>

P12, 190 = 24[(d1,19nd2, 190 + €1,19n€2,19n)>
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Hs 190 = [(c0S(hy,19n)) (cOSh (R3,19n) ) (SIN(81, 19) ) (SIN(85,19n))
+ (Sin(}_ll, 19n)) (sinh(hy, 19n)) (cosh(8y,10n)) (€OS(83,10n)) >

P13,10n = [{5(d1>19nei19n -3e 19ne§, 19nd1,19n)
+5da, 19 (€3 19— 37 19n€2.19n) } (A5 190 + A3 100)
+ (€7 190 +€3,10n) {5y, 19nd3 197 —3d2,19n€] 19,01, 19n)
+ 5(d§,19n92,19n - 3di 19nd2,19n€2,19n) }

- 34(d1,19n€1,19n + d2,19n€2,19n)]

G, 19n = [(sin(hi,19n) ) (cosh(hy, 10n)) (sinh (g 19)) (COS(85,19n))
+ (cos(hy,10n)) (sinh(hy, 19n)) (COSh(81,19n)) (SIN(83,190))],

P, 1on = [{5(d1,19n€3, 19, — 3€2, 1907 19,01, 19n)
+5d2,19n( — €] 197 +3€3 197€1,19n) } (A5 190 + &5, 191) o
+ (€5 190+ €3 19n) H5(—e,19nd > 19n 343 191, 19781, 19n)
+5(- di 19n€2,19n + 3d2, 19nd1,19n€2,19n) }

+34(d1,19n€2,19n — d2,19n€1,19n)|

He,19n = [(sin(hy,19n)) (cosh(hy,19)) (cOSh(8y 19,) ) (SIN(85,19,))
— (cos(hy,19n))(sinh(hy, 19n)) (Sinh(g,19)) (€OS(85,19n))]>

H7,19n = [H7,10n + (D5, 19nH12,19n/2) + (P 190 G2,19n/2) + (A0 /2){Pg 190 G3,19n +P7,19nH3, 197
+010,19nG4,19n + Po, 190 Ha,19n + P12, 100 G5,19n + P11, 190 H5,19n

+(1/12) (P14, 19nG6, 19n P13, 19nH6, 19n) }]>

Hy, 100 = [(sin(hy,10n) ) (sinh(hy, 19n)) (cosh(8y 10n)) (€OS(85,19n))
+ (co8(hy, 19n) ) (cosh(hy,19n)) (SIN (81, 19,)) (SN (5, 10n))]-

D;,190 = sinh ™' (@7,19n), Hs, 19n = (2C7,10nD7,19n/L3)
The sub-band equation in this case can be expressed as
0 =[Gsg,19 + iHs, 19n] |E:}:7630 (10.92)

where Eg;3 is the Landau sub-band energy in this case.

At low temperatures where the quantum effects become prominent, the DOS
function for the lowest SL mini-band is given by
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o erlmax E }7 o
gvz Z [ 8,19n +1 .78,19n] H(E - Eex) (10.93)
2121 £=¢ /Gy 190 + iHs, 10n

The EEM can be written as

Npps (E,ng, F) =

iz W =
m (E,n,n,) = ?(G 8,19n) (10.94a)

The electron concentration is given by

_ eB Ry . Sy i
ng = g N [Z[[GS,19n+lH8,19n}+ L(r)[G8,19n+lH8,19nH|E:Ef63O]
n=0 r=1
(10.94hb)

where Efg3 is the Fermi energy in this case.
Using (1.31f) and (10.94h), we can study the entropy in this case.

10.2.15 Magneto entropy in QWHD superlattices of Kane-type materials with
graded interfaces in the presence of intense electric field

The magneto DR in QWHD superlattices of Kane-type materials with graded interfa-
ces in the presence of intense electric field can be expressed as

2
n,m ~ .
(i) = [G8,19n+1H8,19n]|E:E650 (10.95)

where Eg5 is the totally quantized energy in this case.
The DOS function is given by

5 MZmax Mmax

Nownpsts(E.ng, F) = Z 25 (E - Egs0) (10.96a)

nz 1 n=

The electron concentration can be expressed as

Nzmax nmax

h 1(M20,650) (10.96b)

nzan

_ Eppo,650 ~Ees50
where 1y ¢50 = T kgl

and Ef20>650 is the Fermi energy in this case
Using (1.31f) and (10.96b) we can study the entropy in this case.
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10.3 Open research problems

(R.10.1)

(R.10.2)

(R.10.3)

(R.10.4)
(R.10.5)

(R.10.6)

Investigate the entropy in the presence of intense external non-uniform
electric field for all the HD superlattices whose respective dispersion rela-
tions of the carriers are given in this chapter.

Investigate the entropy for the HD materials in SLs the presences of
Gaussian, exponential, Kane, Halperian, Lax and Bonch-Burevich types
of band tails [16] for all SL systems as discussed in this chapter in the
presence of external oscillatory and non-uniform electric field.

Investigate the entropy in the presence of external non-uniform electric
field for short period, strained layer, random and Fibonacci HD superlatti-
ces in the presence of an arbitrarily oriented alternating electric field.
Investigate all the appropriate problems of this chapter for a Dirac electron.
Investigate all the appropriate problems of this chapter by including the
many body, broadening and hot carrier effects respectively.

Investigate all the appropriate problems of this chapter by removing all
the mathematical approximations and establishing the respective appro-
priate uniqueness conditions.
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11 Appendix B: Entropy in doping superlattices
of HD nanomaterials

Change is the only unchangeable law of nature.

11.1 Introduction

The technological importance of superlattices in general, and specifically doping
superlattices has already been stated in the preface and also in the references [1-20] of
this chapter. In Section 11.1.1, of the theoretical background, the entropy in doping
superlattices of HD nonlinear optical materials has been investigated. Section 11.2.2
contains the results for doping superlattices of HD III-V, ternary and quaternary mate-
rials in accordance with the three- and the two-band models of Kane together with par-
abolic energy bands and they form the special cases of Section 11.11.1. Sections 11.2.3,
11.2.4, and 11.2.5 contain the study of the entropy for doping superlattices of HD II-VI,
IV-VI, stressed and Kane type materials, respectively. Section 11.3 contains five open
research problems for this chapter.

11.2 Theoretical background
11.2.1 Entropy in doping superlattices of HD nonlinear optical materials

DR of the conduction electrons in doping superlattices of HD nonlinear optical
materials can be expressed by using (1.26) and following the method as given in [19,
20] as

(ni+3)

hTZ](E, )]g)

. 5
E, —3 =1 11.1
W (B 1) + 2m’ Tx(E, n,) -y

Where

olel 1/2
w E, = Real party of - *O* ' (E
sup (E>1g) doesc[mHT 21(E,ng)]

ni(=0,1,2...) is the mini-band index for nipi structures and dyis the superlattice
period.
EEM in this case assumes the form

https://doi.org/10.1515/9783110661194-011

printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco. confterms-of-use


https://doi.org/10.1515/9783110661194-011

EBSCChost -

376 —— 11 Appendix B: Entropy in doping superlattices of HD nanomaterials

P _ n\ ., = _
m (Ernmp, i, Ng) = Real part of <7> G 2160 (Epnpp, i, Mg) (11.2)

where,

~ . __ 2m Tp(En,) | (mj+i _
oo B ) = 22 g{<,9

AL E,
H? hTx(E, ’lg) wern (E:7lg)

and Epp is the Fermi energy in the present case as measured from the edge of the
conduction band in vertically upward direction in the absence of any quantization.
From (11.2), we observe that the EEM is a function of the Fermi energy, nipisub-
band index, scattering potential and the other material constants, which is the
characteristic feature of doping superlattices of HD nonlinear optical materials.
The subband energy ElniHD can be written as

(fli + %) =
—_— Ein.mps =1 11.3
hTx(E,ng) i Eingio: ) 3
The DOS function for doping superlattices of HD nonlinear optical materials can be
expressed as

Vo nimax

Nhipitip (E, 1g) = ng; Z G “np(E, ng, i) H — (E — Eynyip) (11.4)
;=0

The electron concentration can be written as
g Mimax - s - ~
no = >-Real Part of {Z {GZIHD(EFnHm Mg M)+ ) L(r) [621HD(EFnHD: Ng> fli)] H
fli =0 r=1

(11.4Db)

Using (1.31f) and (11.4b), we can study the entropy in this case.
DR of the conduction electrons in doping superlattices of nonlinear optical ma-
terials in the absence of band tails assumes the following form

BB =B+ (B) (4 3) o) (15)
where
o nele N R (BB - (B (E)]
“ﬁ*@@ﬁwoamW”ﬁ{ B }

The EEM in this case can be written as
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e (R .
m (Ep,n;) = (3> Rei(Emi)l, 5 (11.6)

where,

and Ejp, is the Fermi energy in the present case as measured from the edge of the
conduction band in vertically upward direction in the absence of any quantization.
The subband energy (E,;) can be written as

_ _ 1 Zﬁll*‘ _

1/11 (Elni) = l/)3 (Elni) n; + E Tws (Elm') (11.7)
The DOS function for doping superlattices of nonlinear optical materials can be ex-
pressed as

mpl E Z R81 E H E Eln ) (11.8)

The electron concentration in this case can be written as
B gv Imax
o=2% [ZO {Rm Epa, 1) ZL [Re1 (En» ,)}H (11.8b)
=

Using (1.44) and (11.8b), we can study the entropy in this case.

11.2.2 Entropy in doping superlattices of HD IlI-V, ternary, and quaternary
materials

(@) The electron energy spectrum in doping superlattices of HD III-V, ternary, and qua-
ternary materials can be expressed from (11.1) under the conditions A=A =A, 6=0
andm" =m," =mc, as

nK
2m.

T (Eany) +T(Eon) - (r‘zi+ ;) hawsin E, ng)} (11.9)
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where

_ fiole|? )1
wonp (E, T'5(E
onp (E, 1) (dogSCT 31(Esng)me

The EEM in this case assumes the form
_ n\= _

m (Ernnp, i, Ng) = Re al part of 5 G 2300 (Epntp, 1, Mg) (11.10)
where

o 2 - o

Gup (EFnp, i Ng) = 7 [T31 (Epntp, Ng) +1T52(Epntp, Ng)

_ 1 -
- (ni + 5) hwopp (EFnHD»TIg)}

The subband energy Eznl gp can be written as

o o 1 _

[T51(E2n; 1> Ng) + 1132 (Eanips Ng) — (ni + 5) hwoup (Eangep, Mg)] = 0 (11.11)

The DOS function for doping superlattics of HD III-V, ternary, and quaternary ma-
terials can be expressed as

lmax

= m
gv < Z G23HD E r]g, ) (E Ez,, HD) (11123)

Nuipirip (E, 1) = e

The electron concentration can be written as

5 Mimax 5
= %‘_’[Re al Part of LZ_O |:GZBHD(EFHHD:f[g> ni) + 4 L(r) [GBHD(EFnHDJ]g,ni)}H
(11.12b)
Using (1.31f) and (11.12b), we can study the entropy in this case.
In the absence of band tails, the DR in this case assumes the form
o 1 .
111 (E) = <n,~ + i) ha)19 (E) + Zﬁlj (1113)

where

Folel? 1/2
= 0
|:d0€scl 11 (E)mc:|

The EEM in this case can be written as
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M’ (Epn, 1) = McRsa (E, ) | g, (11.14)

in which
Rex(E, 1) = {[IH(E)}' - (fzi + %)h[wD(E)],}

From (11.14), we observe that EEM in this case is a function of the Fermi energy,
nipisubband index and other material constants which form the characteristic fea-
ture of doping superlattices of III-V, ternary, and quaternary compounds whose
bulk DR is defined by the three-band model of Kane.

The subband energies (E»,;) can be written as

o 1 _
L1 (Eopi) = (ni + 5) haw1o(Eani) (11.15)

The DOS function in this case can be expressed as

o lmax

_ o m
mpl = Cgv Z R82 E nl E EZn ) (11.16a)

The electron concentration in this case can be written as

n;
max

nop= % |:Z |:R82 Epn,nl ZL R32 Epn,n,)]H (1116b)

;=0

Using (1.44) and (11.16b), we can study the entropy in this case.

(b) The electron energy spectrum in doping superlattices of HD III-V, ternary
and quaternary materials whose energy band structures in the absence of band
tails are described by the two-band model of Kane can be expressed from (11.13)
under the conditions A >> Eg or A << Eg, as

ni2
2m

{Yz( Mg) = (ﬁi+%)hw10HD(E>ng):| (11.17)

where

nole? )"
np|e
w E T —
o (F) = <d0€scy (E, Wg)m6>

The EEM in this case assumes the form

em o P\= _
M (Epnpp, Ny, Ng) = (?> G 251 (Epntn, Mg 1i) (11.18)
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where,

m _ 1 _
— [Vz (Epntp, Mg) = <”i + 5) hwionp (EFnmp, M)

Gastip (Epnmp, Ng: Ni) = 2

The subband energy E3ni gp can be written as

, 1 ~
|:)’2(E3nl~HD» Ng) — <ni + 5) 1 wopp (EBniHD>ng):| =0 (11.19)

The DOS function in this case is given by

lmax

m
8uMMe Z GZSHD E, Ng> N )JH(E - Esn1p) (11.20)

Nuipitin (E,1g) = e

The electron concentration can be written as

5 [Mimax B ~
No = %‘; LZ_O |:GZSHD(EFnHDangx n;) ZL [GZSHD (Efntips Tig> 1 )}H (11.20b)

Using (1.31f) and (11.20b), we can study the entropy in this case.
In the absence of band tails, the DR in this case assumes the form

i} (1 .
E(1+aE)= nit s hwy (E) + P (11.21)
C

where

nole? )"
= Npl|e
wyE)zs|—r-—"—=—
20(E) <doesc(1+2aE)ﬁlc)
The EEM in this case can be written as
M (Epn, i) = McRisa (B, 1) g, (11.22)

in which Rigy(E, ;) = {[1+2aE] - (n; + 1) hlwio(E))] }

From (11.22), we observe that the EEM in this case is a function of the Fermi
energy, nipi subband index and the other material constants which form the char-
acteristic feature of doping superlattices of III-V, ternary, and quaternary com-
pounds whose bulk DRs is defined by the three-band model of Kane.

The subband energies (Es, ) can be written as

E3n (1 + aE3n ) (n, l) hwzo (E3”i) (1123)

The DOS function in this case can be expressed as

EBSCChost - printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



11.2 Theoretical background =— 381

1 O ﬁimax
_ . m _ o
Nipi (E) = ﬁgzv > Riga(E, i) H — (E - Esn,) (11.24a)
n;=0

The electron concentration in this case can be written as

- flimax
no= 57; [Z |:R182 (Epn, i) + ZL ) [Rig2(Epn> 11 1)]H (11.24b)

n;=0
Using (1.44) and (11.24b), we can study the entropy in this case.

(c) The electron energy spectrum in nipi structures of HD III-V, ternary, and
quaternary materials whose energy band structures in the absence of band tails are
described by the parabolic energy bands can be expressed as

27

RO 1 _
—=5 = |:)/3 (E, rlg) - (ﬁi + i) hwllHD (E> rlg):| (1125)

2m.

where

B 1/2
wup(E) = nNo |e|2
11HD —doescyz Eny)m

The EEM in this case assumes the form
_ w\= _
m (Epnmp, i, Ng) = (2> G 2710 (EFntp, Nis Mg) (11.26)
where
o _ 2me [ - 1 =
Go7up (EFnp, i, Ng) = e {)’3 (Epntp,Mg) — (Yli + E) hwipp (Epnap, 1g)
The subband energy EmiHD can be expressed as

_ 1 _
[)’3 (EangepsMg) = (ni + 5) hzwllHD(E4niHD, rlg)] =0 (11.27)

The DOS function in this case is given by

v lmax

_ _ m
Nuipirip (E, 1) = gvhzc Z G 2710 (E, 1gs i) H (E — Eanypin) (11.28a)

The electron concentration can be written as
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S

no = 8 {Z {GZ7HD(EFnHD)flg> )+ ) L(r) [GZ7HD(EFnHD>ﬁg’ fli)]H (11.28b)
=1

27-[ ni=0

Using (1.31f) and (11.28b), we can study the entropy in this case.
In the absence of band tails, the DR in this case assumes the form

272
E= <f1i 1) hwa + ks (11.29)
2,

where

wm®)= [P0l
A do&scme

The EEM in this case can be written as

M’ (Epn, ) = M, (11.30)

Thus the EEM in this case is a constant quantity.
The subband energies (E,y;) can be written as

- 1
Elmi = (fli + i) ha)21 (1131)

The DOS function in this case can be expressed as

lmax

. m
Noipi (E) = Cgv ZH (E - Ean,) (11.32a)

The electron concentration in this case can be written as
B g Imax _
np = 27'; {Z |:R1821 (Epn, 1) ZL ) [Ris21 (Epns 1 z)]H (11.32b)

n;j=0

where,

_ _ _ I |
Rign(E, nj) = {EFn - ("i + 5) hwz1}

Using (1.44) and (11.32b), we can study the entropy in this case.

11.2.3 Entropy in doping superlattices of HD II-VI materials

The 2D electron dispersion law in doping superlattices of HD II-VI materials can be
expressed as
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B 1/2
(@)
doy 5 (E, Mg)EscM

(11.33)

_ . /1 _ o _
y3(Esng) =d okl + (ni+ 5) hwso (E, ng) + Aoks, w30 (E, 1)

EEM in this case assumes the form as
1’ (Epntp, i, Ng) =1, {1 -Ao {(/_10)2 +44 05 (Epnin, )

= (. 1 = Sy,
—4a’y (ni + 5) w30 (Epnip, ﬂg)} }y 3(Epnn, Mg) (11.34)
The subband energy can be written as

_ 1 _
[73 (Een;eps Mg) = (ni + 5) hwso (Een;np, rlg)} (11.35)
The DOS function in this case is given by
O ﬁfmax
= 8y

Nipirp (E) = — > [GBOHD(E, Ng> fli)} "H(E - Eonaip) (11.36a)
4r(ay) n;=0

where

o ] o o o
Gaomn (B gy ) = {(A()) ~2dp (ni + 5) hwso(E g )~ (B, m)}]

The electron concentration can be written as

o imax g
n, = gf, 5 [Z |:GBOHD(E FNHD> Tig, Th;) Z |:GBOHD (E rNup, Tig, nl)]”
4r(ao) [n=0 P

(11.36b)

Using (1.31f) and (11.36b), we can study the entropy in this case.
In the absence of bandtails, the carrier dispersion law in doping superlattices
of II-VI compounds can be expressed as

1/2
E=a ()ksz + (ni + 5) hw10 i/loks, w10 = <M> (1137)

dogscmH

Using (11.37), EEM in this case can be written as

T _ - -1/2
m' (Fpy, i) =1, {1 -Ao {(/\0)2 +4a oEp, — 4a’o <f1i + %) hzavlo} } (11.38)
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Thus, the EEM in this case is a function of the Fermi energy, the nipi subband index
number and the energy spectrum constants due to the presence of A,.
The subband energies (Eg,,i) assume the form as

_ 1
Egn, = (ﬁi + 5) hwio (11.39)

The DOS function in this case can be expressed as

_ _ m* o max a o
Nupi(E) = T80 N 1 L\ (- Eg) (11.40a)
mh n;=0 E+ bg](ni)

in which ag; =

Ao N la a2 7 (s, 1
A (n) = [430 [(/lo) 4a’o (i + z)hwloH.
The use of Equation (8.22) leads to the electron concentration as

ok Tﬁimax - —
flo=m;§+d: Z {FO(’M)— (% [2( gy + Ca1(11;) \/Cf%l—n)}>

ﬁ*O
2r-1/~=
20-2")¢ M} 11.40b
+Z ) = e ) (11.400)

b81( ) + E3m
k

where, 7g, = EF"k; i and cg (1) =
Using (1.44) and (11.40b), we can study the entropy in this case.
11.2.4 Entropy in doping superlattices of HD IV-VI materials

The 2D electron dispersion law in this case is given by
I = 615(E, n,, 1) (11.41)

where

815(E,1g, i) = [2612(E, )] ™! |:_613(E’r1g’ﬁi) + \/5f3(E”7g>ﬁi) ~4612(Eng) 814 (E,ngo i) |

an*Zy(E,n,)

6ua(Esng) = AT , 813(E, Mg, i) = W2 (A1 (E, 1g) 811 (E, 1, 1) + Ara(E, g ),
¢ m

and
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. - K

En,)=——— |2Au(En,) - { —A'7;(E,
mHD( rlg) 4A§6(E,r[g)|: 74( rlg) { 73( rlg)

+

15 (B g 73 (B 1) + 2274 (B, g s (B, ) + 2474 (B, g ) A (Ex ) }
\/}@3 (E,ng) + 4474 (E, ng)Ass (E 1)

- 2/174(E T[g){ /].73 E I’lg \//173 E T[g + 4/174(E, l’lg)/l75(E, l’lg) }:| :|
EEM in this case assumes the form

o W\ ,
M (Franp, iy Ng) = (2> 615 (Epntp, Ng> i) (11.42)

The subband energy Egni up can be expressed as in this case as
0= 815(Eonps Mg 1) (11.43)

The DOS function in this case is given by

o nlmax

zgn;;)wlS(E Ng>n )} H(E- E9nHD) (11.44a)

NnipiHD (E) =

The electron concentration can be written as

imax

no = f;_/[ [ Zo |:515(EFHHD)7_]g> n;) ZL ) (615 (Entin, Ng» _)]H (11.44b)
ni =
Using (1.31f) and (11.44b), we can study the entropy in this case.
The carrier energy spectrum in doping superlatticesof IV-VI compounds in the
absence of band tails can be written as

I_(gz (h2.§19) |: Szo E n \/S E n; +4819521(E n,)} (1145)

In which,
- [24
Si9= |——|,
v L_nf m; }

o 1 aE\ 1+aE ah’ N~ - ah’ 1N - -
N=d = - (E) L M (A TE) - (f+ =\ T(E
S20(E: i) {m; (m;>+ m;  2mim; ("’+2> ( )2mfm; ("’+2> ( )}
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. RN V2
nmﬁﬂmmmﬁmﬁﬂm”)mmz@ﬂﬂ®>,

m,+m

b \/tz(E ) +4Et (1+ aF)

m'(E) = 1 —(H(E)) + H(E)(B(E)) +2t1(1+2aE)]

Using (11.45), EEM in this case can be written as
M (Epn, 1) = Rea (B, 1) g, (11.46)

where,

So(E.) S (B Wu%m@mq
B BN + 455 (B

Rg,(E, 1) = {— (Sx0(E, ﬁi)), +

Thus, one can observe that EEM in this case is a function of both the Fermi energy
and the nipi subband index number together with the spectrum constants of the
system due to the presence of band nonparabolicity.

The subband energies (Ewn,-) can be written as

Eion, — i T(Eion,) r"1~+1 1+ aEion; + A== il —T(Eon,) | +1

10n; m l_ 10n; i 2 10n; om 1 10n; 2
= h—ZT(E )| i+ ! (11.47)
- 2 — ; 10n,- 1 2 .

The DOS function in this case assumes the form as

lmax

Noipi(E) = Z Rg4(E, n;)H(E - Exon,) (11.48a)

The electron concentration in this case can be written as
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o nimax _ _
fig= S0 [Z {R84(Epn,r"zi) +

s

2

fi;=0

L(7) [Rs4(EFn, ﬁi)ﬂ ] (11.48b)

Using (1.44) and (11.48b) we can study the entropy in this case.

11.2.5 Entropy in doping superlattices of HD stressed Kane-type materials

The 2D DR in this case is given by

pu (E, )’lg)i()z( + Qu (E, )'lg)i(}z, + Sll (E, )]g)619 (E, ng’ ﬁl) =1 (1149)
where,
1/2
- _ 2 . _ 1 ﬁiez
69(E,n,,nj)=+-m_(0, n+—=||l=——
The EEM in this case assumes the form
_ B\, -
M (Fnup, i, ) = (3) 820 (Epntp, Ng» 1) (11.50)

where

_ _ [1—3 (EF HD> 1] ,fl)a Q(EF HD> 1] ,fl)]
820 (Epntp, Ng> Ni) = e TP e
\/Pn (EFntp> Mg) Qu (EFnp, 1)

The sub-band energy E15,,l.HD can be expressed in this case as
Su1(Ersntins Ng) 19 (Evsnytin, Mg» i) = 1 (11.51)

The DOS function in this case is given by

5 Mimax B o
Nyipirip (E) = Sv [620(E, n,, 1)) H(E — Eisn;p) (11.52a)
2 g

;=0

The electron concentration can be written as

= Mimax B s _
o= %VT > [520 (Epntips g 1) + > _ L(7)[820(Epntip Tlg> )] (11.52b)
;=0 T=1

Using (1.31f) and (12.52b), we can study the entropy in this case
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The electron dispersion law in the doping superlatticesof stressed Kane-type
materials can be written as

2 k; 1 2m(0) (,

1
i n(E)=1 11.53
@ET BoE] B N\ 2)“’ ()= (1.53)

doescim,(

where wy,(E) = (%)i and m(E) = h*co(E) < [¢o (E)]

The use of (11.53) leads to the expression of EEM as

o (R
m (EFII’ nf) = (?) R85(E’ ni)|E:EFn (1154)

Res(E, ) = | [(@o(E)) Bo(E) + (Bo (E)) ao E)] {1— — 0 (e 5) m((ﬁ))]
0
[ao®boE 2 0) (1)
o) B <n’+2>[w”(Eﬂ]
ao(E)bo (B)So(B)] 475(0) (- 1Y, o

Thus, EEM is a function of the Fermi energy and the nipisubband index due to the
presence of stress and band nonparabolicity only.
The subband energies (Esy, ) can be written as

1 2m;(0)
Co(Exn))” 1

_ 1 -
(l’li + i) w12 (E25nl.) =1 (1156)

The DOS function can be written as

o lmax

mpz 2 Z RSS(E n E E25n ) (11'57)
The electron concentration in this case can be written as
g ﬁlmax
Ro=>" Z {Rss (Epns i ZL )[Rss EFn,nl)]} (11.58)

=0

Using (1.44) and (11.58), we can study the entropy in this case.
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11.3 Open research problems

R.11.1 Investigate the entropy in the presence of an arbitrarily oriented nonquan-

tizing magnetic field for nipi structures of HD nonlinear optical materials by
including the electron spin. Study all the special cases for HD III-V, ter-
nary, and quaternary materials in this context.

R.11.2 Investigate the entropy s in nipi structures of HD IV-VI, II-VI, and stressed

Kane-type compounds in the presence of an arbitrarily oriented nonquantiz-
ing magnetic field by including the electron spin.

R.11.3 Investigate the entropy for HD nipi structures of all the materials as stated

in this chapter in the presence of nonuniform strain.

R.11.4 Investigate the entropy for all the problems from R.11.1 to R.11.3 in the pres-

ence of an additional arbitrarily oriented electric field.

R.11.5 Investigate the entropy for all the problems from R.11.1 to R.11.5 in the pres-

ence of arbitrarily oriented crossed electric and magnetic fields.
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12 Appendix C: Entropy in QWHDSLs under
magnetic quantization

The Smallest deeds always exceed the grandest of intentions.

12.1 Introduction

In this chapter, the magneto entropy in III-V, II-VI, IV-VI, HgTe/CdTe, and strained
layer quantum well heavily doped superlattices (QWHDSLs) with graded interfaces
[1-10] has been studied in Sections 12.2.1-12.2.5 From Sections 12.2.6-12.2.10, the mag-
netoentropy in III-V, II-VI, IV-VI, HgTe/CdTe, and strained layer quantum well HD
effective mass superlattices, respectively, has been presented. This appendix presents
four open research problems.

12.2 Theoretical background

12.2.1 Entropy in llI-V QWHDSLs with graded interfaces under magnetic
quantization

The entropy in HD quantum well III-V superlattices under magnetic quantization
assumes the form

= \2
n,m - =

(é) = 68541 n + 1H8E41 n (12.1)
dz , ,

where E,; , is the totally quantized energy in this case.
The DOS function in this case can be expressed as

eB Nzmax Mmax , - _
NMQWSL(E)< ps ) Z Z 0 (E-Eu,n) (12.2a)

nz=1nz=0

The electron concentration can be written as

Nzmax nmax

h 1(M41,n) (12.2b)

nz=1 n=1

https://doi.org/10.1515/9783110661194-012
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Where

_ EF41,n _E41,n
Ny, = T

and Er;, , is the fermic energy in this case.
Using (1.31f) and (12.2b), we can study the entropy in this case.

12.2.2 Entropy in lI-VI quantum well HD superlattices with graded interfaces
under magnetic quantization

The entropy in quantum well HD II-VI superlattices under magnetic quantization
assumes the form

S \2
n,m _ -
( 5 ) = Gl9E4z,n +iHiog,, , (12.3)

Z

Where E, , is the totlly quantized energy in this case.
The DOS function in this case can be expressed as

B _ o eB Nzmax Mmax , - _
Nuowst (E) (‘g;‘;_[h> Z Z 6 (E—-Eu,n) (12.4a)
nz=1nz=0

The electron concentration can be written as

g eB Nzmax Mmax B
o = 7Vr_h SN Foalun) (12.4h)
nz=1 n=1
where
72 _ EF42,11 _E42,n
42,n kBT

and Ef, n is the fermic energy in this case.
Using (1.31f) and (12.4b) we can study the entropy in this case.

12.2.3 Entropy in IV-VI quantum well HD superlattices with graded interfaces
under magnetic quantization

The entropy in quantum well HD quantum well IV-VI superlattices under magnetic
quantization assumes the form
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_ \2 2 B
(%) le [COS 1{%@@,",@}] 2B (m%) (125)
Z

where Ej;, , is the totlly quantized energy in this case.
The DOS function in this case can be expressed as
eB ”Zmax nmax _ _
NMQWSL (E) —h Z Z 6 (E —E43)n) (1263)

nz=1nz=0

The electron concentration can be written as

Nzmax "max
g eB
;th Z F_1(M43,n) (12.6b)
nz=1 n=1
where
Erss,n—Easn
N3, n 7}(37,

and Er3 p is the Fermi energy in this case.
Using (1.31f) and (12.6b) we can study the entropy in this case.

12.2.4 Entropy in HgTe/CdTe quantum well HD superlattices with graded
interfaces under magnetic quantization

The entropy in quantum well HD HgTe/CdTe superlatices under magnetic quantiza-
tion assumes the form

= 2

n,m -, =

(—5 ) = Gl92E44,n + lH192E44,n (127)
z

Where Ey, » is the totlly quantized energy in this case.
The DOS function in this case can be expressed as

"Zmax Nmay

Numawst E) Z Z 8'(E-Eun) (12.8a)

nz=1nz=

The electron concentration can be written as

Nzmax Mmax

(12.8b)

h

nz=1 n=
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where

n  Epun—Euun
44,n — kBT

and Er, , is the fermic energy in this case.
Using (1.31f) and (12.8b), we can study the entropy in this case.

12.2.5 Entropy in strained layer quantum well HD superlattices with graded
interfaces under magnetic quantization

The entropy of the conduction electrons in HD quantum well strained layer SLs
with graded interfaces can be expressed as

_ 2
(%) le {cos l{%%@mm,n)}] - @ <ﬁ+ %) (12.9)

where E; , is the totlly quantized energy in this case.
The DOS function in this case can be expressed as

Nzmax Mmax
eB

Numawst(E Z Z 8 (E~Eu7,n) (12.10a)

nz=1nz=

The electron concentration can be written as

— _phy n
B g eB max ’‘max _
= 7Vr_h Z Z F_1(My7n) (12.10b)
nz=1 n=1
where
n _ Epuz.n—Eizn
47,n = kBT

and Er,;,, is the fermic energy in this case.
Using (1.31f) and (12.10b), we can study the entropy in this case.

12.2.6 Entropy in llI-V quantum well HD effective mass super lattices under
magnetic quantization

The dispersion relation in quantum well HD III-V superlattices under magnetic
quantization assumes the form

EBSCChost - printed on 2/13/2023 5:33 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



12.2 Theoretical background

n,m . .
—— ) =67a1,n +168a1,n
d,

where A1 is the totlly quantized energy in this case.
The DOS function in this case can be expressed as

”Zmax Mmax

Nuowst E)— Z ZS E-A1)

z=1n=

The electron concentration can be written as

Mzmax ”max

h rIAl)

nz=1 n=1
fl _ EFAl —EAI
Al kBT

and Epy; is the fermic energy in this case.
Using (1.31f) and (12.12b) we can study the entropy in this case.

— 395

(12.11)

(12.12a)

(12.12b)

12.2.7 Entropy in lI-VI quantum well HD effective mass super lattices under

magnetic quantization

The dispersion relation in quantum well HD III-V superlattices under magnetic

quantization assumes the form

-2
n,m .
—— | =Azant1ABA2n
d,

where A2 is the totlly quantized energy in this case.
The DOS function in this case can be expressed as

"Zmax "max

Numowst E)— Z Z &' (E-A2)

nz=1nz=

The electron concentration can be written as

Nzmax Nmax

_ B
no gve ZZF (M42)

nz=1 n=
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where
_ Epay—Ep

72A2 - I_(B T

and Epy; is the fermic energy in this case.
Using (1.31f) and (12.14b), we can study the entropy in this case.

12.2.8 Entropy in IV-VI quantum well HD effective mass super lattices under
magnetic quantization

The entropy of the conduction electrons in HD quantum well strained layer SLs
with graded interfaces can be expressed as

— 2 D
(%) le {cos l{%fzg(AB, H)H - 2‘6')% <Fl+ %) (12.15)

where A3 is the totlly quantized energy in this case.
The DOS function in this case can be expressed as

Nzmax Mmax
eB

NMQWSL Z Z (S E A3 (12163)

nz=1nz=

The electron concentration can be written as

g eB "Zmax Nmax
o ="="" SN Foa(ng) (12.16b)
nz=1 n=1
where
Epu3n—Eusn
Ny3n= T

and Epy;s is the fermic energy in this case.
Using (1.31f) and (12.16b), we can study the entropy in this case.

12.2.9 Entropy in HgTe/CdTe quantum well HD effective mass super
lattices under magnetic quantization

The entropy in quantum well HD III-V superlattices under magnetic quantization
assumes the form
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N
n,m .

—=— | =A3a4,n +1A1344,n
d,

where A4 is the totlly quantized energy in this case.
The DOS function in this case can be expressed as

”Zmax Tmax

Nuowst E)— Z Z 8 (E-A4)

nz=1nz=

The electron concentration can be written as

Mzmax Vlmax

~1(Mag)

h

nz=1 n=1
where
Mie= Epas —Eny
A4 kBT

and Ery, is the fermic energy in this case.
Using (1.31f) and (12.18b), we can study the entropy in this case.

(12.17)

(12.18a)

(12.18b)

12.2.10 Entropy in strained layer quantum well HD effective mass super lattices

under magnetic quantization

Entropy of the conduction electrons in HD quantum well strained layer SLs with

graded interfaces can be expressed as

Y 1 1s 0 -1 2eB /. 1

(a—z) L2 |:COS {§f40(A8, n)}:| - T n+ 5
where A8 is the totlly quantized energy in this case.

The DOS function in this case can be expressed as

"Zmax "max

Numowst E)— Z Z &' (E-A8)

nz=1nz=

The electron concentration can be written as

Nzmax Nmax

_ B
gve Z ZF (M4s)

nz=1 n=
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where

Mg = EFAS - EAS
A8 kBT

and Epyg is the fermic energy in this case.
Using (1.31f) and (12.20b), we can study the entropy in this case.

12.3 Open research problems

R.12.1 Investigate the magneto entropy in the presence of an arbitrarily oriented
nonquantizing magnetic field in III-V, II-VI, IV-VI, HgTe/CdTe, and strained
layerHD quantum well superlattices with graded interfacesby including the
electron spin.

R.12.2 Investigate the magneto entropy in III-V, II-VI, IV-VI, HgTe/CdTe, and
strained layer HD effective mass quantum well superlattices in the presence
of an arbitrarily oriented nonquantizing magnetic field by including the elec-
tron spin.

R.12.3 Investigate the entropy for all the problems from R.12.1 to R.12.2 in the pres-
ence of an additional arbitrarily oriented electric field.

R.12.4 Investigate the entropy for all the problems from R.12.1 to R.12.3 in the pres-
ence of arbitrarily oriented crossed electric and magnetic fields.
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13 Appendix D: Entropy in accumulation and
inversion layers of non-parabolic materials

Excellence is nothing but an attitude of mind.

13.1 Introduction

It is well known that the electrons in bulk materials in general, have three dimen-
sional freedom of motion. When, these electrons are confined in a one dimensional
potential well whose width is of the order of the carrier wavelength, the motion in
that particular direction gets quantized while that along the other two directions re-
mains as free. Thus, the energy spectrum appears in the shape of discrete levels for
the one dimensional quantization, each of which has a continuum for the two dimen-
sional free motion. The transport phenomena of such one dimensional confined car-
riers have recently studied [1-30] with great interest. For the metal-oxide-materials
(MOS) structures, the work functions of the metal and the materials substrate are dif-
ferent and the application of an external voltage at the metal-gate causes the change
in the charge density at the oxide materials interface leading to a bending of the en-
ergy bands of the materials near the surface. As a result, a one dimensional potential
well is formed at the materials interface. The spatial variation of the potential profile
is so sharp that for considerable large values of the electric field, the width of the po-
tential well becomes of the order of the de Broglie wavelength of the carriers. The
Fermi energy, which is near the edge of the conduction band in the bulk, becomes
nearer to the edge of the valance band at the surface creating accumulation layers.
The energy levels of the carriers bound within the potential well get quantized and
form electric subbands. Each of the subband corresponds to a quantized level in a
plane perpendicular to the surface leading to a quasi two dimensional electron gas.
Thus, the extreme band bending at low temperature allows us to observe the quantum
effects at the surface. Though considerable work has already been done, nevertheless
it appears from the literature that the entropy in accumulation layers of non-parabolic
Materials has yet to be investigated in details. For the purpose of comparison we shall
also study the entropy for inversion layers of non-parabolic compounds.

In what follows in Section 13.2.1, of the theoretical background, the entropy in
accumulation and Inversion layers of nonlinear optical materials has been studied
under weak electric field limit. Section 13.2.2 contains the results for accumulation
and Inversion layers of III-V, ternary and quaternary materials for the weak electric
field limit whose bulk electrons obey the three and the two band models of Kane to-
gether with parabolic energy bands and they form the special cases of Section 13.2.1.
Section 13.2.3 contains the study of the entropy for accumulation and Inversion layers
of II-VI Materials, which is valid for all values of electric field. Sections 13.2.4 and

https://doi.org/10.1515/9783110661194-013
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13.2.5 contain the study of the entropy in accumulation and inversion layers of IV-VI
and stressed materials respectively. Section 13.2.6 contains the study of the entropy
in accumulation and inversion layers of Ge. This appendix contains 12 open research
problems.

13.2 Theoretical background

13.2.1 The entropy in accumulation and inversion layers of non-linear optical
materials

In the presence of a surface electric field F; along Z direction and perpendicular to

the surface, (1.26) assumes the form
wk: Wk Ta(E-|e[Fsz,n,)
am,  2m, Tp(E - |e|FsZ,n,)

ZTzl(E— ‘6|F52, rlg) (131)

where, for this chapter, E represents the electron energy as measured from the edge
of the conduction band at the surface in the vertically upward direction.
The quantization rule for 2D carriers in this case, is given by [5]

2t _
J k,dz =

2 =32
0 3

(i) (13.2)
where, Z; is the classical turning point and S; is the zeros of the Airy function
(4i(-5;) =0)

Using (13.1) and (13.2) leads to the DRof the 2D electrons in accumulation layers
of HD non-linear optical materials under the condition of weak electric field limit as

272
s =Le(E,i1,) (133)
Il

where

2/3

- . Ry S hle|Fs
s L3(Ein,) =S[Tn(En,)” | =
L4 (E, ;) Tlg) 3 g if4 21 g 2mﬂ

= = (TaEny) - . Tu(En,)  2[TaEn) TaEn)
udﬂ,wg)ﬂ g 3 M5 lg) L2\l
Ty (E.ng) T (E,ng) T (Esmy)

The EEM in this case can be written as
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i (E i, 1,) = Re al part of ILo(Epi, 1)) (13.4)
where

- Mgdex

Ep=eV, - £5%  Epy,

(06

V, is the gate voltage, ns is the surface electron concentration, d,, is the thickness
of the oxide layer, &,, is the permittivity of the oxide layer, F; = % &sc is the materials
permittivity and Erp should be determined from the equation

g, /o
@2n? ®

ng Real Part Of |:T22(EFB, rlg) TZl(EFB’rIg):| (135)

and np is the bulk electron concentration.
The sub-band energy E; can be determined from the equation

0=Real part of Lg(E;i,n,) (13.6)

The surface electron concentration in the regime of very low temperatures where
the quantum effects become prominent can be written as

- may [T, 1 2m,\/2m
ns =2g, Real part of the ; {ﬁLE‘(Ef’ i, ng)} + (27_[)3Tt,~n3
5 2m,./2m,
2 il = — ——
= (2?;3T [TZZ(EFB:ng) T21(EFB,71g)H (13.7)
where ¢; = —*EL?X,EimaX) is the root of the Real part of the equation
eFs(1+imax)

TZl (Eimax, rlg) - ZB (Eimax) Imax» rlg) =0 (13.8a)

Using (1.31f) and (13.7) we can study the entropy in this case.

In what follows, we shall discuss the entropy in inversion layers of non-linear
optical materials for the purpose of relative comparison. In the presence of a surface
electric field F; along z direction and perpendicular to the surface, the (2.2) assumes
the form

Dy (E- |e[F2) =, (E - [e[F2)K, + 5 (E - |e[F2)K, (13.8b)

where,
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¥, (E) =y(E), Y,(E) =f,(E) and ¥s(E) =f,(E)

Using (13.2) and (13.8b), under the weak electric field limit, one can write,

Zt —_— — 2 _
J \/Ay(E)—\e|FSzD7(E)dz=§(S,~)3/2 (13.9)
0

in which,

1,(F) = [W} - [B,(B) - 7, (), (B)].

¥s(E)
— — 2 —

B(F) = {(zpl (E)) - %,(E)) ks} and ()= [(%@) } |
¥,(E) ¥s(E)

Thus, the 2D electron dispersion law in inversion layers of nonlinear optical materi-
als under the weak electric field limit can approximately be written as

,(E) =P, (E, )k + @ (E. ) (13.10)

where,

P(Ei)= {w@ . (%) %(E)Eiuefzf”}
3[t:(E)]

and
Q:(E, ) =Sithy (E) e Fsta ().

The EEM in the x—y plane can be expressed as
= P\= —
7 (Eri. i) = <3> G,(E.i) ]HFW (13.10)

where,

G B:)=PoE.)] 2 P { (0 B) - @ (0 |- (B)- @B (B |
and Ep, is the Fermi energy under the weak electric field limit as measured from

the edge of the conduction band at the surface in the vertically upward direction.
Thus, we observe that EEM is the function of subband index, the Fermi energy and
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other band constants due to the combined influence of the crystal filed splitting
constant and the anisotropic spin-orbit splitting constants, respectively.
The subband energy (E”iwl) in this case can be obtained from (13.10) as

¥, (Eny,,) = Q7 (Eny,, 1) (13.12)

The general expression of the 2D total DOS function in this case can be written as

2 [AE)HE-E,)] (13.13)

where A(E, i) is the area of the constant energy 2D wave vector space for inversion
layers and En,- is the corresponding subband energy.
Using (13.10) and (13.13), the total 2D DOS function under the weak electric field
limit can be expressed as
o imax

Nop, (E) = : f;)z Y [G(E)HE-Ey,)] (13.14a)
i=0

The electron concentration in this case can be written as

o gv imax
Mo = (271)1._2[67 (E) + ZL ) [G7(EFiw) ] (13.14b)

Using (1.31f) and (13.13b) we can study the entropy in this case.

13.2.2 Entropy in accumulation and inversion layers of IlI-V, ternary,
and quaternary materials

(a) Using the substitutions =0, Aj=A; =A and m‘*‘ =m, =m,, (13.3) under the con-
dition of weak electric field limit, assumes the form

2/3

27 _ h|e|F Tgo(E,rI )
Too(E, Ug)— —h k +5; s{ __ ¢ } (13.15)
2m.

where,
Too(E,1g) = T1(E 1g) +iT3(E, )

(13.15) represents the entropy of the 2D electrons in accumulation layers of HD
III-V, ternary and quaternary materials under the weak electric field limit whose
bulk electrons obey the HD three-band model of Kane. Since the electron energy
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spectrum in accordance with the HD three-band model of Kane is complex in na-
ture, (13.15) will also be complex. The both complexities occur due to the presence
of poles in the finite complex plane of the dispersion relation of the materials in the
absence of band tails.

The EEM can be expressed as

i (E i, 1,) =T, Real part of Pun(Epi, M) (13.16)

where,

2/3

hle|Fs[Too(Ey.1,)]"
2m.

P3mp (Ef ing)= Too (Ef, i,1g) - Si [ —

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the com-
bined influence of E; and A.

The subband energy E;; is given by

, 23
0= Real part of |Too(Ei 1)~ HelFs[TooEy)| ) 2| | 137

The DOS function can be written as

. me imax . L
Nop, (E) = ﬁg;z [P;HD(E, z,qg)H(E—Eﬂ)} (13.18)
i=0

Thus the DOS function is complex in nature.
The surface electron concentration is given by

imax

- E— S L ch 3/2—. — — 3/2
nis 8, Real part of the ; Hﬂhz P3HD(Ef,l>r[g):| * 3 ( 2 )7t |:T9O(EFB)rlg)}
(13.19)
where Erp should be determined from the following equation
_ B (2 - -
Mg = % ( h;) Real part of the [Tgo(EpB,ng)]3/2 (13.20)

Using (1.31f) and (13.19) we can study the entropy in this case.
Using the substitutions §=0, Aj=A, =A and ﬁ‘*‘ =m, =M, (13.10) under the
condition of weak electric field limit, assumes the form
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2m, 2m,

B m2/3
_ WK - |nle|Fs[u(E
Iy(E)= === +5; {'d sl (E)] ] (13.21)
(13.21) represents the dispersion relation of the 2D electrons in inversion layers of
III-V, ternary and quaternary materials under the weak electric field limit whose
bulk electrons obey the three-band model of Kane.
The EEM can be expressed as

7 (B ) =elPy(B, )] [5_5,,,  (13.22)

where,
, - F1P
P5(E,i) = {[711(5)] - {%Si Kl/lz%Fj {Tu@E)]'} () }}

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the com-
bined influence of Eg, and A.

The subband energy (E”iwz) in this case can be obtained from the (13.21) as

— - m2/3
S _ | hle|Fs[I11(Enp,
Iy (En,,,) =S; {"[“(“”} (13.23)

2m.

Thus the 2D total DOS function in weak electric field limit can be expressed as

Nop. () = ':’T;g;Z[E(E, \H(E-En,,,)] (13.24a)
i=0

The electron concentration can be written as

S 37 Imax

b = =25 > [ Puw(Eriws 1) + Quw (Eriw- 1)) (13.24b)
i=0

and
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5
Qu(Erunri) = S {L()Pa(Erur )]}
=1
Using (1.31f) and (13.24b) we can study the entropy in this case.
(a) Using the constraints A >>Eg or A<<Eg, (13.21), under the low electric field
limit, assumes the form

N

ya(Eng) = e (13.25)

- = n2/3
< |lelFsly,(E. )]
’ om,

(13.25) represents the dispersion relation of the 2D electrons in - accumulation
layers of HD III-V, ternary and quaternary materials under the weak electric field
limit whose bulk electrons obey the HD two band model of Kane.

The EEM can be expressed as

m* (E,f, i, I’lg) = ﬁcl_?'mm (Elf, i, r[g) (1326)

where,

Psypi (E'p.1, Ng) = [Vz(Efﬂl )= Si

Hle[F [y, (Ey, ng)]} ]

2m.

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the com-
bined influence of Eg; and A.

The subband energy E';; is given by

2/3
[n( 1:1g) =i hlelFs [y (E'no )| (2m) ™| } (13.27)
The DOS function can be written as

NZDI- (E)= mcg,
nh?

Z[P3Hm (E.i,ng)H(E-Ep)] (13.28)

i=0
Thus, the DOS function is complex in nature.
The surface electron concentration is given by

e 1 (2 32
ns=8, ZH hZPBHm(EfJ ﬂg)} 32 ( h;) [ {YZ(EFB:rIg)} } (13.29)

where Egp should be determined from the following equation
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_ g [mN\r - 3/2
np= 3—7_;2 < hz ) {YZ(EFB’ng)} (1330)

Using (1.31f), (13.29) and (13.30) we can study the entropy in this case.
Using the constraints A >>E, or A<<Eg, (13.21) under the low electric field
limit assumes the form

(13.31)

_ WK {he|ﬁs(1+2af)r/3
= s G T
2m.

E(1+aE) = o
C

For large values of i, i, S; — [2Z (i + )]2/ > [5], and the (13.31) gets simplified as

E(1+aE)= (13.32)

2m,

WK , [BrhlelFs (3 (1+2aE) 23
2mc 2 4

(13.32) was derived for the first time by Antcliffe et al. [3].
The EEM in this case is given by

0 (Epiws ) = c[Pe(E. )] 5_5,. (1333)

where,

2/3
136@,1-);{1 ZaE——Sl[}z/‘?TF} {1+2aE}1/3}

Thus, one can observe that the EEM is a function of the subband index, surface elec-
tric field and the Fermi energy due to the presence of band nonparabolicity only.
The subband energies (Ey,,,) are given by

— — 2/3
_ _ _ |hle|Fs(1+2aE,,
(E"iw3)(1 + aE"iw3) =5 {L_"W‘B)} (13.34)
2m.
The total 2D DOS function can be written as
2/3
= _ M, o h|e|F] =135 T
= 1+ ZaE——S 1+ 2aE H(E-E,.
kS Z{[ [\/ﬁ (1+2aE) (E=Enys)

(13.35a)

Under the condition aE << 1, the use of (13.29) and the Fermi-Dirac integral leads to
the expression of n,py, as

_ g, MckpT ) max - T -
Fiop = (%) Z{ [1 +Di+ 2aEniw3} Fo(ny,) +20ks TFl(niw)} (13.35b)
i=0
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where,

D= 4asS; h|e|fs and n,, = EFiw__ Enm
3 2m, T

For all values of aEp;,, the yp,, can be written as

_ om imax o )
Topw = <grvrhzc> > [ Pw(Eriws 1) + Qs (Erws 1) (13.35¢)
izo
where,
= — — [nle|F. —
Psy (Epiw, 1) = {Eﬁw(l +aEFiw) - Si Uz—‘m—g 1+ 2aEFiw)} 2/3}

and
— — § — — —
Qsw(EFiws1)= » L(7)Psy(Epiw, 1)
-1

~I

Using (1.31f) and (13.35c) we can study the entropy in this case.
(b) Using the constraints a« — 0, (13.25) under the low electric field limit assumes
the form

y3(Esng) 5 i (13.36)

me 2m.

=§§+§rmamwnJT”
(13.36) represents the dispersion relation of the 2D electrons in accumulation layers
of HD II-V,

Ternary, and quaternary materials under the weak electric field limit whose
bulk electrons obey the HD parabolic band model.

The EEM can be expressed as

M (E'f.i,0g) =P 32 (E . i, 11,) (13.37)

where

EmWM@=P%%%E °

_ — 2/3
hle|Fsly;(Ef: 1))
2m.

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and other spectrum constants due to the combined
influence of Eg, and A.

The subband energy Ej, is given by
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0= {)’3(3‘2, ng) - Si [ hlelFuly; (B ng)| .(2m.) ’| 2/1 (13.38)

The DOS function can be written as

N, (E) = ; > [PomalEi,n, H(E - E)| (13.39)

i-0
The surface electron concentration is given by

imax

_ me
ns=g, Z H hZPBHDZ(Ef»l M) | +

1 m N\ —
z(7> ti[y3(EFBarIg)]3/2:| (13.40)

where Epp should be determined from the following equation

g, (2mN\N - 3/2
nB=3n2<h2) [y3(EFB,)1g)} (13.41)

Using (1.31f) and (13.40), we can study the entropy in this case.
For a — 0, as for inversion layers, whose bulk electrons are defined by the par-
abolic energy bands, we can write

E=

(13.42)

wk. .5 {h|e\F r“
2m. ! 2m.

(13.32) is valid for all values of the surface electric field [1].
The electric subband energy (E,M) assumes the form, from (13.32) as

(13.43)

hle|Fs r”

”14 = Sl |: om,

The total density-of-states function can be written using (13.33) as

& lImax

— _ cgv ZH nlq (13443)

The use of (13.34) leads to the expression of 71,p; as [1]

_ gmkT
oni =SB N " Fo () (13.44D)
" i3

where
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Ep; is the Fermi energy as measured from the edge of the conduction band at the
surface.
Using (1.31f) and (13.44b), we can study the entropy in this case.

13.2.3 Entropy in accumulation and inversion layers of 1I-VI materials

The use of (2.105) and (13.2) leads to the expression of the quantization integral as

@

[72(E.ng) ~ €lFszy's(E.ng) — ok, + (Ro)ks (13.45)

o% NI

where,
_ = 7 = -1 — 7 32 = 7
z= (lelFsysEng))  [1s(Eng) - dok; ¥ Mok

Therefore, the 2D electron dispersion law for accumulation layers of HD II-VI mate-
rials can be expressed as

2/3
oo~ |nelFy,(En,)

¥3(E ) =a'oks + (Ro)ks + S | —— =2 (13.46)
The area of the 2D surface as enclosed by the (13.46) can be expressed as

—= . T = .

A(E g, 1) = = A (E, 1, 1) (13.47)

ay
where
2/3
— . = — — — [ hle|F Yl (E,ng)

Ai0(Eng )= | (Ro)* ~2d"0 | = y3(Eing) +§i | —— =
The EEM in this case assumed the form

i (Ef, Mg, 1) =1, Mo (Ep N> 1) (13.48)
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The subband energy E;; can be written as
2/3
- < [ hle[Fsy's(En, )
¥3(Ei, g) = Si s;:g (13.49)

The surface electron concentration can be written as

*

fis=3, mz [ K%) [Alo (Ep. g i) + Au(Eong, i)H

i=0

7 — = .2
kT b" Fi (EFB> + %F_l (EFB) (13.50)
7Tb (1 0 kBT 2a ()kBT kgT
Erp can be determined from the following equation
g (%T\ (P E o)’ E
mp=Sv (22 ) (20 F/z( FB)+ %) 7, ( FB) (13.51)
2 \nb'y a’o ksT/)  2aoksT kgT

Using (1.31f) and (13.50), we can study the entropy in this case.
The expression of the quantization integral for inversion layers in this case as

2m, g =5 _q1)2 2 _
—Vh”“ -~ lelFz - o ¥ o)k dz=3 5" (13.52)
0

where
= (lelFs) "' [E-d'ok; ¥ (Ro)k;]

Therefore, the 2D electron dispersion law for n-channel inversion layers of II-VI ma-
terials can be expressed for all values of Fs as

2/3

Y —_ = — F
E=dok. 7 (Ao)ks +5i hlelFs (13.53)

2@]

The area of the 2D surface as enclosed by (13.43) can be expressed as

(i, ) o (helF, \" onE
A1) = 2(Ao)* - o +—
h4 "
mL 2m m;
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/ /
N ) F 2W’E
-2(Ao) {(/to)2 ;&-(he' f) o } (13.54)
mL 2mH ml
The EEM is given by
" (Eppyi) =11, |1- —2 (13.55)

\/ Epi +P7n

where Ep; is the Fermi energy in this case,

23
hle|Fs

Ao and p;,= | (p )2 -
/—_ 2= | \Pn -

Thus, EEM depends on both the Fermi energy and the subband index due to the
presence of the term A,.
The subband energy (Enié) can be written as

2/3
— = | nle|F.
En, =Si el : (13.56a)
ZWH
The total 2D density-of-states function can be written as
—* — Imax
7 mlzvz 1- # H(E-Ey,) (13.56b)
mh Y E+p;,
The surface electron concentration assumes the form
_ g kgT | max | _ Aof ,(Egi, i
Tlopi = % > |Folm) - @ (13.56¢)
T i=0 2\/ alokBT
where

: 1o e (D7 T @2r- 1)
+ {2(1—2 )((2r)—(ni+672)2r H

r=1

and
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Using (1.31f) and (13.56¢) we can study the entropy in this case.

13.2.4 Entropy in accumulation and inversion layers of IV-VI materials

The 2D electron dispersion relation in accumulation layers of IV-VI materials can
be written as

0. (E, i, rlg)kf( +6,(E, 1, ng)k)z, =65(E,1i, ng) (13.57)
where

6:(E,i.ng) = [Fi(En) + Si(eFs (Eong))Fa(Eomy)|

[F 2E1) En,)-FA(E. ng)]
Ng)

i 23 _ _ F)(En,)
T, (era1 E, ng)) F(E, ng)} and C(E,n,) = [Fj@—ng)
2\ g
EEM can be expressed as
p— ] hz 4 =14 .
m (E,i,ng)= ?9 4(Ep,01g) (13.58)

where

. 6:(E'p.imy)
04(Ef>l’rlg): =, . g_, -
VOE 0, 0:(E i,

The subband energy Ej; is given by

03(Egs, i, N,)=0 (13.59)
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The 2D electron concentration in accumulation layer of IV-VI materials under the
condition of extreme degeneracy and low electric field limit can be written as
imax e -1
ns=g, Real part of Z [94 E}d, ng) {FI(EFB 1) FZ(EFB,ng)} } (13.60)

i=0

where Epp can be determined from the equation
e -1
np =8, Real part of [ [Fl (Erp, M) \/ F2(Ers ﬂg)} ] (13.61)

Using (1.31f) and (13.60) we can study the entropy in this case.
The 2D electron dispersion relation of the inversion layers of [V-VI materials in
the low electric field limit can be written as

k, =B5(E, i) (13.62)
where
. _B(Ed)
A= &)
FVHE)|7 2(A) 5+0)
T3 _1_ sV 2 ST\ T (T _ T\ — 1
A I B N e A"c(1+a3E)} s
oz [EFVH(E) 3_ _2V5(E) [ViEVAE)  ViE)
ﬁz(E»l) |: 1 ) Vi(E) 1V2( )3V (E) | V;(E) VZ(E)
and
=2 =2 =2
VA(E) = [ ® 6 @ ]
EgO (1+a1E) A C(1+(X2E) A C(1+a3E)_
EEM can be expressed as
m (Ep, 1) = hjﬁ'a (EFi» 1) (13.63)
The subband energy (Ej;) can be written as
0=B5(Eu, 1) (13.64a)

The electron concentration can be given as

[max \/B5(Eri 1) + ZL [\ /B (Ei, i )” (13.64b)
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Using (1.31f) and (16.64), we can study the entropy in this case

13.2.5 Entropy in accumulation and inversion layers of stressed IlI-V materials

The 2D electron entropy in accumulation layers of stressed III-V materials can be
written as

63(E.i,n, ), + 653(E. L, )k, = 03B .m,)

(13.65)
where

' . o 23 _
6u(E.iony) = [FBivny) +5i(eFan(Bany)) Fo(Eom)

_ 1 (E rlg) rg
aB(E)rlg)_fg(E>ng) |:f3(E,rlg) 1( ) f (E’rlg)

a3 (E, ”lg)>2/3§if2(E’ 'Tg)} }

rlg) __’ T
f (E.1,) FaEng fZ(E’ng)}

— . _ 2a23(E,r1 ) —
05(E,i,n,) = E, —— 8" (eF,
»(E, i ’Tg) H Bl 'Ig) + 36113(Eﬂ1g) (e

_ o 2/3_ 7.(En)
m&(eﬂan( )) f5(E, ng)} and G(E,n,)= [ (Engg)])

and

f1E ng). f2(Eong). f3(Esng), Pu(E ng), Qu(E, ng) and Sy (E, 1)

are defined in Chapter 2, respectively
EEM can be expressed as

hz
6 43 (E b i, r]g) (1366)
where

m (Ep i, M) =

033(E'f, 1,
6o(E i) = 3(Ein,)

\/913 (E'p1, ﬂg)ezs(EfJ 1g)
The subband energy E3; is given by
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033(Eis3,1,1,) =0 (13.67)

The 2D electron concentration in accumulation layers of stressed III-V materials
under the condition of extreme degeneracy and low electric field limit can be writ-
ten as

imax

o _ o ~1/2
fis=g, Real part of Z {943 Efi, ng) + 12 [fl(EFBJ]g) 2(EFB>rlg)f3(EFB)ng)} }

i=0
(13.68)
The Erp can be determined from the following equation
I - _ -1/2
ng=§y |:f1 (EFB’ rlg)fZ(EFBs rlg)fB (EFB’ rlg)i| (1369)

Using (1.31f) and (13.68) we can study the entropy in this case.
The expression of the entropy of the 2D electrons in inversion layers of stressed
III-V materials under the low electric field limit as

[Ts/(E. )]k, + [Ter (E. i) | K, = Trs (. ) (13.70)

where

Ts;(E, i) = [E a + 35 <| |> (nznw)2/3z17(E)]

S

(E al)
(E- a3)2/3[T47 (E)]

, N 23
Ta®) - [ip,8)Y - (22 )] T B - [E—Tz+ & ("”) <ﬁmw>2/3fzy<F>} ,

1/3

~(E-5)" [Ty (E)] 1/3} ,

Ea;

. (E-ay) B (E—a3)1/3>}
Ly (E) |:(E—a3)2/3[T47(E)]1/3 ([7"47@)]1/3 )

N 2/3 2/3
T7(Ei)= [ps (E)-Si <%> (Rapw)”*Ls7(E), L7 (E) = (E - a5) " [T4 (E)J

and

ps(E) = {zf “&E +HE+ a} ,
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The area of the 2D surface under the weak electric field limit can be written as

A(E, i) = — — (13.71)
The sub-band energies (E,, ) in this case are defined by
e\
Tuz (Eniws) =S <€—> (ﬁzpw)2/3z37 (Eniws) (13.72)
SC

The expression of EEM in this case can be written as

2

= . R
(B 1) = 5 L (B D)5, (13.73)
where
N 1 = B AL T NT T /2 T77(E)i))
Li7(E)i)= |=——=———|[{T#(E, Ts;(E,i)Te;(E, - —=
B0 [Ty(E,i)T@(E,i)} B0} B DT (5.0 < 2
= = aq1/2 = T n71/2
T T oY T67(E,l):| = . '|:T57(E,l):|
T E, = — T E, ==
{{ ol l)}{TEJ(E,i) a0 7 &y
The total 2D DOS function can be expressed as
. _ gv imax _ — = = _
Ny (E) = Z;{LM (E,)H(E—En, )} (13.74a)

The surface electron concentration under the weak electric field limit assumes the
form

=3 imax
ﬁZDw = (i‘;) {Z PBW(EFWB 1) + st(EFwi, 1)] } (13'74b)
i=0
where
- T77(Epwir i o S
PgW(EFW,', l) = —= _77( FT )_ and QSW(EFwia 1) = L(r)PSW(EFWi’ 1)
\/ Ts7(Erwi» 1) Te7(EFwi> 1) r=1

Using (1.31f) and (13.74b), we can study the entropy in this case.
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13.2.6 Entropy in accumulation and inversion layers of germanium

The 2D entropy in accumulation layers of Ge can be written as

_ -2
Wk, Kk, _
L E. i, 13.75
o, o, Y10 (E>1.1g) ( )
where
2/3
. _ _ _ |WeFsy',(E,n,)
10(E i) = 1B 1+ ay,(Eung)| - | —2=—=
2m,
2/37 2
_ _ | heFgy',(E,
{1+2ay3.5(E,ng)} +alS; M
2m,
The EEM can be expressed as
' (Ep i) =/, [yllo E.i, ng)} (13.76)
The band nonparabolicity and heavy doping makes the mass quantum number
dependent.
The subband energy Ej, can be written as
Y10 (Eillh I ']g) =0 (13.77)

The surface electron concentration in accumulation layers can be written as

. o« __x — 3/2
_ _ Imax m1m2 = . B 87TmL ZmH _
ns=2g, Z [ [7 Yio(Ep>11g)] +i i (2y;(EFs, 1g)]
i-0
qda -
{1 + gya(EFB»ng)H (13.78)

where Epg can be determined from the following equation

8mm | \/2m, _ 32 4o —
np =§v |:| |:2Y3(EFB’ng):| [1+ ?Y3(EFB>”I§):| (1379)

h3

Using (1.31f) and (13.78) we can study the entropy in this case.
The 2D electron dispersion law in inversion layers of Ge at low electric field
limit can be expressed as
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2ok o, _
Wy | _f:[E(1+aE)+aEfzo—Ei20(1+2aE)] (13.80)
2m;, 2m,

where,

_5, (her )
120 \/ﬁ

The area of 2D space is
2/ mim,
hz

EEM assumes the form

A= [E(l +0E) + By — Eno(1+ 2@)} (13.81)

M (Efiw» 1) = /1M [1+ 2aE gy, — Epo24] (13.82)

Thus, EEM is the function of both Fermi energy and quantum number due to band
nonparabolicity.

The DOS function is given by

— - 28 Zm/ml imay -

Ny (E) = G R Z; [1+2aE - 2aE 0| H(E - Epo) (13.83a)

The electron concentration can be given as

_ k T\/
7, = Sl Vimm, Zro Mino) + 20K5TF (No)] (13.83b)
where
Moo = Eriw — Eio
i20 EBT

Using (1.31f) and (13.83b), we can study the entropy in this case.

13.3 Open research problems

R.13.1 Investigate the entropy in the presence of an arbitrarily oriented electric
quantization for accumulation layers of tetragonal materials. Study all the
special cases for III-V, ternary and quaternary materials in this context.

R.13.2 Investigate the entropy in accumulation layers of [V-VI, II-VI, and stressed
Kane-type compounds in the presence of an arbitrarily oriented quantizing
electric field.
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R.13.3

R.13.4

R.13.5

R.13.6

R.13.7

R.13.8

R.13.9

R.13.10

R.13.11

R.13.12

Investigate the entropy in accumulation layers of all the materials as stated
in R.1.1 of Chapter 1 in the presence of an arbitrarily oriented quantizing
electric field.

Investigate the entropy in the presence of an arbitrarily oriented nonquan-
tizing magnetic field in accumulation layers of tetragonal materials by in-
cluding the electron spin. Study all the special cases for III-V, ternary and
quaternary materials in this context.

Investigate the entropy in accumulation layers of IV-VI, II-VI, and stressed
Kane-type compounds in the presence of an arbitrarily oriented non-
quantizing magnetic field by including the electron spin.

Investigate the entropy in accumulation layers of all the materials as stated
in R.1.1 of Chapter 1 in the presence of an arbitrarily oriented non-quantizing
magnetic field by including electron spin.

Investigate the entropy in accumulation layers for all the problems from
R.13.1 to R.13.6 in the presence of an additional arbitrarily oriented electric
field.

Investigate the entropy in accumulation layers for all the problems from
R.13.1 to R.13.3 in the presence of arbitrarily oriented crossed electric and
magnetic fields.

Investigate the entropy in accumulation layers for all the problems from
R.13.1 to R.13.8 in the presence of surface states.

Investigate the entropy in accumulation layers for all the problems from
R.13.1 to R.13.8 in the presence of hot electron effects.

Investigate the entropy in accumulation layers for all the problems from
R.13.1 to R.13.6 by including the occupancy of the electrons in various elec-
tric subbands.

investigate the problems from R.13.1 to R.13.11 for the appropriate p-channel
accumulation layers.
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14 Appendix E: Entropy in HDs under cross-fields
configuration

The reading of old good books is like conversation with the finest men of the past centuries.

14.1 Introduction

The influence of crossed electric and quantizing magnetic fields on the transport
properties of materials having various band structures are relatively less investi-
gated as compared with the corresponding magnetic quantization, although the
cross-fields are fundamental with respect to the addition of new physics and the
related experimental findings. In 1966, Zawadzki and Lax [1] formulated the elec-
tron dispersion law for III-V materials in accordance with the two-band model of
Kane under cross-fields configuration that generates the interest to study this par-
ticular topic of semiconductor science in general [2-14].

In Section 14.2.1 of theoretical background, the entropy in HD nonlinear optical
materials in the presence of crossed electric and quantizing magnetic fields has
been investigated by formulating the electron dispersion relation. Section 14.2.2 re-
flects the study of the entropy in HD III-V, ternary, and quaternary compounds as a
special case of Section 14.2.1. Section 14.2.3 contains the study of the entropy for
the HD II-VI materials in the present case. In Section 14.2.4, the entropy under
cross-fields configuration in HD IV-VI materials has been investigated in accor-
dance with the models of the Cohen, the Lax nonparabolic ellipsoidal and the para-
bolic ellipsoidal respectively. In Section 14.2.5, the entropy for the HD-stressed
Kane-type materials has been investigated. Sections 14.2.6, 14.2.7, 14.2.8, 14.2.9,
and 14.2.10 discuss the entropys in QWs of the above HD materials in the presence
of cross-fields configuration, respectively. This appendix presents three open re-
search problems.

14.2 Theoretical background
14.2.1 Entropy in HD nonlinear optical materials under cross-fields configuration

The (2.26) of Chapter 2 can be expressed as

N U p—
Tn(Eng)= P + M, Tn(Eng) [T21(E) Tlg)} 14.1)
1

https://doi.org/10.1515/9783110661194-014
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424 —— 14 Appendix E: Entropy in HDs under cross-fields configuration

where
P, = hks and p, = hk,

We know that from electromagnetic theory that,

—

B=VxA (14.2)

where 4 is the vector potential. In the presence of quantizing magnetic field B
along z direction, (14.2) assumes the form

OB, oA,

5y oz

0Ax 0A, _ (14.3)
5z ox 0 '
oX 0y

where, i, ] and k are orthogonal triads. Thus, we can write

0B, OB,
oy 0z
0Ax 0A
X _z_ (14.4)
0Z OX 0
oy % _p
oX 0y

This particular set of equations is being satisfied for A, =0, A, =B, and A, =0.

Therefore in the presence of the electric field E, along x-axis and the quantizing
magnetic field B along z-axis for the present case following (14.1), we can approxi-
mately write,

B, (BleBX)’  p2

Ty (E 1) + |e[EoXp(e,1g) = o, o, AT (14.5)
where

p(E)= % [Tzz(ﬁ ng)}
and

a(qu) =, {TZZ(E, ng)} o [Tzl(E "lg)}

Let us define the operator 6 as
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14.2 Theoretical background =— 425

R _ . m Eop(E,
b= —p, +[e[Bx - # (14.6)

Eliminating the operator X, between (14.5) and (14.6) the dispersion relation of the
conduction electron in tetragonal semiconductors in the presence of cross fields
configuration is given by

(v )] (S521)- (2522

— — =2
M, p*(E,n,)E
- —== (14.7)
2B
where,

le|B

Wo1 = —=

m,

The EEMs along Z and Y directions can, respectively be expressed from (14.7) as

e = _ = = - /= 1
m,(Ergpm, g, 1, Eo) = Real part of [a (Erppa, 1) [Tzz (EFBDH, Ug) - (n + 5) hwo

M. p? (Brmon Mg)By | = =
= = £ 0} + [a(EFBDH, flg)[T 22(Erspn, 1)

— — ’ = =2
M pE E E
. Mo p(Eraoi )P’ (Eran, ) OH (14.8)

=2

B

and

m; (EFBDH) - EO) ) ( ]_% ) zReal part of [p (EFBDH’ 'Ig) -3 [Tzz (EFBDH, ’lg)

(_ 1) M, p*(ErspH, flg)E?)]
- n+§ hwop + —

2B2

M., p(Ersp, )P’ (Erspa, ’lg)Eg}

{p (EFBDH, ng> {Tzz (EFBDH, ’lg) + 7

— = =2
_ 1 M, p*(Egppn, 1, )E
T22(EFBDH, )’lg) - <n+ E) hw()l L = g/—0

o (EFBDH, ﬂg)} (14.9)

where Epgpp is the Fermi energy in the presence of cross-fields configuration and
heavy doping as measured from the edge of the conduction band in the vertically
upward direction in the absence of any quantization.
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426 =—— 14 Appendix E: Entropy in HDs under cross-fields configuration

When m;(EFBHD,r[g,ﬁ, Ey) — oo, which is a physically justified result. The de-
pendence of EEM along y direction on the Fermi energy, electric field, magnetic
field and the magnetic quantum number is an intrinsic property of cross fields to-
gether with the fact in the present case of heavy doping, EEM exists in the band
gap. Another characteristic feature of cross-field is that various transport coeffi-
cients will be sampled dimension dependent. These conclusions are valid for even
isotropic parabolic energy bands and cross fields introduce the index dependent
anisotropy in the effective mass.

The formulation of DR requires the expression of the electron concentration
which can, in general, be written excluding the electron spin as

= -8 } : T T afo T
= = I E, —_dE 1410
0 an-Z e J ( ng) aE ( )

where L, is the sample length along x direction, E, is determined by the equation

I(E,n,)=0 (14.11)
where,
Yh(E”Ig>
1En)- | KBk,
x)(E.ng)
in which,
_ ~EoM p(E,n,) elBLy  _ =
M(Eny) = PN anaxEny) = AP 5 )
Thus, we get

n+ —

L

B\/2a(En,) [[_ _ “hlelB  _ _  _
2 V__gHTzz<E,ng>—(— )L p )

_ - _x=2, = P %
To(En,)- (ﬁ@ hje|B mLEOLof,ng)}} H

2B m; 2B
(14.12)
Therefore, the electron concentration is given by
_ ZEVE\/Z ) Mmax o _ o
= | ————— ] Real part o, T, nE , +T. nE R
<3an2h2E0 p f;[ w1t (M, Epgrp, g ) + Ta2rp (M, Epprp ﬂg)}
(14.13)
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where

\/@(Erzip, 1)

Tunp (M, Epgp, 1) = ~—=
¥ p(Erup,ng)

NIw

m, {P(EFBHD) Ug)} ’

- _ 1\ hle|B -
T (EFBHDarlg) - <”+ 5) i, |e|EoLyxp(EFprp Ng) — =

3

e = 273
1) hle|B i, E, [P(EFBHD,ﬂg)]
2) m, B

— | T(Ersrn, Ng) - (ﬁ +

where Epgyp is the fermic energy in this case.
and
5

Tuonp (M, Erpgrp, M) = Z [f (7) Taarip (M, Errp, ﬂg)}

r=1

Using (1.31f) and (14.13) we can study the entropy in this case.

14.2.2 Entropy in HD Kane-type I11-V materials under cross-fields configuration

(@) Under the conditions §=0, Aj=A, =A and m,=m, =m,, (14.7) assumes the
I I
form

[h]_(Z(E)]z _Eo - }'_ mEj [{TB(E ng)}r

= = _ 1 _

(14.14)
where
T33(E.ng) = Tx(E.ng) +iT5(E. 1)
The use of (14.14) leads to the expressions of the EEM s’ along z and y directions as

i, (EgsHp, Mg, Eo) = i Real part of [{733 (Erpap, Ng) }”

m.E, {733 (Erprp, 1g) } {733 (ErprpsNg) } }

N (14.15)

EZ
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2

(T - T E - 7 —
m, (EFBHDs Ng> T Eo) = (f) Real part of [[{T33(EFBHDJ1g)}] !
0

Mo [{Tss (Erprp. 1) }"]2} }

_ 1
+ | T33(EFBHD> N,) — (ﬁ+ —) hwo + —
|: 8 2 ZBZ

) T E ) ” -
{T33(Erpup ﬂg),}z |:T33(EFBHD’)1g)_ (ﬁ+ %) o

[{T33(Ergan, Ng)}]

meE2[{Ts5(Ergup, )Y meE2{ T3 (Epgrp,n.)
. meEol{ 33(_§BHD Mg)} ]] o 1 MeEol 33(_;BHD Mg)} ] (14.16)
2B
The Landau energy (Ey, ) can be written as
ro2
=2 (= =
o 1 mcEo |:{T33(En1>rlg)} ]
T33(Enyo1lg) = (n + i) hw, - g (14.17)
The electron concentration in this case assumes the form
_ 28,By2m Mmax- _
Nop = ‘g:—z_cReal Part Of Z [TZBHD(H»EFB: Tlg) + T44HD(n:EFB) Tlg)} (1418)
3Lxﬂ2h EO -0

where,

s = - _ 1 MeEy [ m — 72
Tu3up (1, Epprip, Ng) = |:[T33(EFB>71g) - (n+ i) hwo - 2%20 [{TB(EFB,I]g)}}

3
2

+|e|EoLy {{Tsa(EFBJIg)},H - [TB(EFB’%’) - (ﬁ+ %) havo

1

{Ts3(Erz, 'Ig)}}

iraw]

and
— — g J— p— —
Tuunp (M, Errp, Ng) = [L(f) Tsump (ﬁ) EFrpup, ﬂg)}
1

Using (1.31f) and (14.18), we can study the entropy in this case
(b) Under the condition A > Eg , (14.15) assumes the form
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- = — =12
1 Eo, = . TicEg( " — [k, (E)]
yZ(E’ I’lg) = (Yl + 5) ha)() - fhkyyZ(E’ I'Ig) — 2%20 (YZ(E’ rlg)) + 2—mc (1419)

The use of (14.20) leads to the expressions of the EEM s’ along z and y directions as

1, (ErsHp, Ng» 71, Eo) = i {{ ¥, (ErBHD, Ylg)}

. mcEi{yz(EFBHD>ng_)2} {Yz(EFBHD’ng)}”} (14.20)

B

2

e E 1 _ - 1
my (Ereip. Ng> 1 Eo) = <E_) ; {)’2 (ErgHp, Mg) — <n+ 5) hwo
’ [{Yz(EFBHD»’?g)} ]

m.E> {{Vz (ErsHp» Ng) }} 2 ]

+

2B

2

m.E, H)’z (Erprp, 1g) }'}

—{9,(Egrp.ny)” — _ 1
z——g,z yZ(EFBHD,)'Ig)— (n+ 5>hwo+ — +1
({y,(ErBrp, Ng) } ] 2B
— =2 — ”
m.E E )
e o{Vz(_l“;BHD ng)} (14.21)
The Landau energy (E,,) can be written as
AN By [ ' = 2
y2(Eng) = (n+ 5) hwo - 7 (yz(En2>rlg)> (14.22)
The expressions for 1y in this case assume the forms
_ 2, BVImoma_ _
Ny = S’ZZTITEO ﬁzo [TMHD(YL Ergup, Ng) + Tasup (M, Epgap, ng)} (14.23)

where

_ o _ 1 L
Tu7up (M, Erprp, 1) = HYZ(EFBHDJTg) - (n+ 5) hwo + |e|EoLx ()/ Z(EFBHDJ]g))

_ rr;%E;, (y2 (ErBHD> ng))2:|

3
2

- H(Yz(EFBHDJIg)) - (ﬁ+ %) hwo

m.E. 3

_ = (yz(EFBHD:ng))2:| 2} {)’)Z(EFBHD:rlg)}:| 7
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and
5

Tusup (7, Erprp, M) = [Z(?)TMHD(E Erpp, Ylg)}

r=0

Using (1.31f) and (14.23) we can study the entropy in this case.
(c) For a — 0 and we can write,

- — — =12
(1 Eo, = . B/, = 2 [hk(E)]
y3(E,ng)_(n+§>hwo—§hkyy3(E,ng)— = (v )

(14.24)

The use of (14.25) leads to the expressions of the EEMs along z and y directions as

’

L o _ . mcfé{)g(EFBHDJ]g)} {)’g(EFBHDJ]g)}"
1, (EpgHp, N> Eo) =Mc |q v3(ErsHp M) =

(14.25)
1
{y(Ersrp, 1g)} }

N ﬁj’é ({y; (ErgHp, ’lg)},]z }

=12

= _ = B — 1

m, (Ergt, g, 11 Eo) = <E_> { [)’3 (ErBHp, Ng) = <n + E) hwo
0

—2

2B

12
_ o ” mciz {y (E‘ )}
{Y3EEFBHD”’I§),}2 ¥s (EFBHD,YZg) _ (ﬁ+ i) hwe + 0 [ 3 ZBHD A ]
({73 (Ersap>ng) } | -

. Eo{y, (Erptim, )}
+ =

(14.26)
The Landau energy (Ey,) can be written as
— 1 meE [ ) 2

Y3 (Bngoy) = (ﬁ+ 5) hwo — # (y'3(En3, ng)) (14.27)
The expressions for ng in this case assume the forms

_ 28BV2m e -

no = LZ—C > [T49HD(n> Ergup, Ng) + Tsonp (1, Epprp, ’Ig)} (14.28)

3L*h°Eo =5
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where

- , = 1 - =
Tuonp (1, Erpup, Mg) = HY 3(Erpap, 1g) - <H+ i) hwo + |e[EoLx ()’ 3(EFBHDrrlg))

mcfé ' (T 2 2 /T _ 1
a SB (v'3(Eru. 1) = | (¥'3(ErBHp, ) = n+§ hwo

n;

_ s
= ('3(Ersan, ﬂg)z] } [y'3(Ersins 1))~

and
— — 5 - p— —
Tsonp (M, Epprp, 1) = [L(f) T4omp (M, EFprp, ﬂg)}
=

~

Using (1.31f) and (14.28), we can study the entropy in this case.

14.2.3 Entropy in HD II-VI materials under cross-fields configuration

The electron energy spectrum in HD II-VI Materials in the presence of electric field
E, along x direction and quantizing magnetic field B along z direction can approxi-
mately be written as

_ o Eo, o~ ME ., 2 [Wk(E)]
Eng) =B Bo) = 2 h 5 By i (YEmy)) ¢ P (1429)
where
1
. - V3 _
B, (7, Eo) = (ﬁ+1)hwo— Emy b <n+1)hw02-<52°_”})} o= 1418
2 2B 2 2B m,
and

h

The use of (14.30) leads to the expressions of EEMsalong z and y directions as

, Eé {y3 (EFaHp ﬂg)},{)’zz (Erti, ng)} ”]
B

m, (Erpap, N> 1, Eo) =m‘*| [{)@ (Erap, ng)} + =

(14.30)
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i, (Erprp, g, 1, Eo) = (%) M [{)@ (Erprm>1g) }

=2 = n2
(7 o) + mﬁo[‘[)’;(f;HD,ﬂg)H }
—{y5(Ersrn 1)} E mﬁ}_if)[{% (Ersisng)} |’
— 5 Ng) =By (nE —
L— 1B )Y [Y3( e ) =B Eol 25
1+ miEol(r, (:fBHD’ng )}’]} (14.31)
B

The Landau energy (Ey,) can be written as

_ mE , - ,
YB(EH4’ng):B1(n’EO)_ ZEZ ())3(Eﬂ4)ng)) (1432)

The expression for ny in this case assumes the form

_ g ByIm ma_ L
- T H,E 5 + T n,E > 1433
0= 3L 2E, ﬁ:o[ 5310 (1L, Epgrp, M) + Tsanp (1, Epppp, 1) (14.33)
where
Ts3up (7, Erprps flg) = {[)@ (ErgHps 11g) - B,(,Eo) + |€|E0Ix()/’3 (Erprps ng))
m\*\E(z) ' 2 o T — =
- B )| = [ o) By o)
ﬁﬁfg , - 10, ~ -1
"7 (YB(EFBHD’rlg)):| ]{YB(EFBHD’ng)}

and
— — § — — —
Ts4np(T, Eprp, Ng) = [L (") T's3up (1, Epprp, flg)}

r=0

Using (1.31f) and (14.33), we can study the entropy in this case.
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14.2.4 Entropy in HD IV-VI materials under cross-fields configuration

The (2.143) can be written as

———+ ——~2—=g(E,n,) (14.34)
2I\Jl(E’ rlg) ZMB(E’ rlg)

where

W, (E.n,) = {g {1 (@0, F. Byy) - D, B )} + 2 (B By
80 ¢

= -1
— D(ap B By )} (AQ {¢5(a0, E. Egy ) - D@, E, Ego)}}

. 2A04Y . -
M3(E>’1g)_ |: (Eg) {Cl(al’E’Ego)_lDl(al’EEgo)}
0 P
+ A {¢5(a3,E, Eg) —iD5(a3,E, Egy)) }

and
g» (E’ rlg) = 2h2)’0 (E’ rlg)

In the presence of quantizing magnetic field B along Zz direction and the electric
field along x-axis, from above equation we obtain

42 - B2 42
DPx " (py_ ‘elBX) " b,

—— —— —~—— =5 (E,n,) +e[Eoxp; (E.n,) (14.35)
M,(En,)  2My(Eng)  2(Eny) ) )
where
“ = 0 [ =
pl(E’ rlg) - ﬁ [g (E’ rlg)i|
Let us define the operator 6 as
o p(ERE M (Eny)]
0= —py+|e|Bx - — (14.36)

B

Eliminating x, between the above two equations, the dispersion relation of the con-
duction electrons in HD-stressed Kane-type semiconductors in the presence of cross
fields configuraration can be expressed as
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o L E,
g(E»ng)=< )hwn(Eng) W_an) —=Pi(Eny) hky—g[pl(E ng)} {(Exm)

(14.37)
where
wq(E.n,) =eBM, (E.n,)] !

The use of (14.41) leads to the expressions of the EEMs along z and y directions as
11, (Erprps Ng> M, Eo) = Real part of H 5 (ErBHp, ng)} [E* (Ergrp, M)

- <ﬁ+ %) hw;(Erprps1g) + ZE; {P1(EFBHD ng)*M M, (Ersrn, ’Tg)}

+ [M;(FFBHD:’Ig)} HE (FFBHD)’Ig)},— (ﬁ+ %) h [w,-(FFBHD,ng)}'
(14.38)

and

-3

m;,(EFBHD, rlg, n, Eo) = (E/Eo)zReal part of [p; (EFBHD’ T’[g)} [g* (EFBHDr l’lg)
<n+ 1) hwi (Ergrp, 1g) + g [P (Ersrn. 11g)"M (EFBHD>’1g)i|
H:[pI(EFBHD rlg)} Hg (ErBHp» ﬂg)} —(m+ %)h [wi(EFBHm ﬂg)} ’

+ ZE]: [[pl(EFBHD> ng)? [ (EFBHDxng)} } [p;(EpBHD,ng)T

. = 1 —
{E (ErpHp,1Mg) — (M+ i)hwil(EFBHD>71g):| (14.39)

The Landau level energy E,g in this case can be expressed through the equation

*

o B o
& (Bt = (74 3 )M 1)~ % [p3Bn )| W B ) (14.40)

The electron concentration can be written as

ZE Nmax - _ o o
WRQGZ part of Z [T4131HD(H,EFBHD,ng) + Taamp (M, EFphp, Tlg)]
n=0

(14.41)
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where

*

_ o 2M;(Eppupsn) | 1 —
Tu131up (M, Epgrp, 1g) = R " [[T51(n) Ergp, Mg)
p1(Ersap, 1)

E . _ B o 3/2
+ fopl (ErBp, Ng) MXna1 (Ersrp, Mg) Py (EFsHD, ﬂg)}

- {751 (%, Erprp, 1g)

Eo .- - o o
+ fopl (ErBrp> Ng) Xntp1 (EFprD, Ng)P1 (EFBHD, Ylg)} }

- = e 1 -
Ts1 (1, Epgp, Ng) = {g (ErBHp, 1) — (n+ i) hwii (Ergup, 1)
M*(EFBHD:TI VER . 2
+ % [pl(EFBHD»Ug)} :|

~ M, (Erpip, ng)Eo {Pl (Erprp, ng)}

X101 (EFprps Ng) = X1 (Ersrp, M)

B
elBL, _ -
_| |h * +Xup1 (Ergr, 1g)
and
— — § — p— —
Ta1s1mp (M, Epprp, Ng) = [L (F) Ta1311p (M, Epprp, ng)}

r=1
Using (1.31f) and (14.41), we can study the entropy in this case.
14.2.5 Entropy in HD stressed materials under cross-fields configuration
In this case we get

—2 p2
b L P _GEn (14.42)

where
i (B tg) = [202 [0 Bong) -T) T ]|

Tl7 =

Ego —E1€ - (50 + E1)€ + %Eoexx - %S + (?) Sxya():|
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(Eung) = [202 o Bong) - 1)

- = = _ - 3= b E
Ty = {Ego -Cie-(ap+Cy)e+ Ebosxx - 708 + (%) sxydo}

s (Butg) = (2 o (Bong) -T0Tr]|

_ _ o 3_ bo V3 _
T3, = [Ego - Cie—(ap+Cr)e+ Ebogxx - 78 + (T) exydo}
and the other symbols are mentioned in Chapter 2.
In the presence of quantizing magnetic field B along z direction and the electric
field along x-axis, from (14.46) one obtains

* —

.2 - )2 5 2 %
p Dy — le|Bx p G (E Eox| B |° .
X + ( y ) + z =G (E,ng)+|e|on _}(Tg P (E’ rlg)

ZMI(E’ rlg) ZMZ(E’ rlg) ZMB(E’ rlg) m, ,Ylg)
(14.43)

where

= 0 = =

pEny)= =[G Eny)|
Let us define the operator 6 as

S V2.
P EngE [ (B, (Eon,)|
0= -p,+|e|Bx— — (14.44a)

B

Eliminating x, between the above two equations, the dispersion relation of the con-
duction electrons in HD-stressed Kane-type semiconductors in the presence of cross
fields configuration can be expressed as

*

)= (145 ) @By

Ql

Y B .. [mE)] -
2my(E,n,) B m,(E, n,)

Brom .-
- 2'?02 [P (E, ’Tg)rml (Eng) (14.44b)

where

Nl

wi(E, ng) = eB[iy (E, ng )7, (E, g )]~

The use of (14.44b) leads to the expressions of the EEMs along z and y directions as
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—* J—— = ’ —* = _ 1 —
M, (Erprp, Mg, M, Eo) = Hm3 (EFBHD,ﬂg)} [G (ErBrp> Ng) — (YH E) hw;(Erpup, 1)

E .- - S
' 23?02 [p (EFBHD>)1g)2m1(EFBHD>’1g)} + [m3(EFBHD;T]g)}

[[G* (ErBHp, rlg)} - (ﬁ i %) h {wi(EFBHD’ ng)} ,

+ % {Z[P* (Erpip, g) [0 (ErsHn, Ug),}

[ﬁi (ErsHp ﬂg)} + [ml (Ersip, ﬂg)} ' [P* (Erpip rlg):| 2} } }

(14.45)

-3

%

m;,(EFBH& Mg, Eo) = (B/Eo)’ [ﬁ4 (EFaHp Ylg)} {G (Ergrp, 1)

S Ey .- -
- (n+ 5) hw;(Ersnp, 1g) + 2'?02 [P (Erprp>ng)’m, (EFBHDang)}

l:[mZ(EFBHD, Ylg)} |:[6*(EFBHD, ng)} "~ (a+ %)h {wi(EFBHD; Ylg)} ’

+ 2.?02 [[p*(EFBHD;ng)zmI(EFBHD»rIg)}]:| [WZ(EFBHD,ng)}
S 1\ -
{G (EFBHD,ng)} - (n+ 5) hw;(EFgmp, Ng)
Eo [ .m -
+ 2‘?02 [P* (Ersrp, 1), (EFBHDJIg)H (14.46)

where

1

o o m, (Ergrp, 1) |2

m4(EFBHD’ r[g): |:|:p (EFBHD) rlg)i| {m}
g

The Landau level energy (Ey, ) in this case can be expressed through the equation

—*

— 1 _ Eo.- 2
G (Eng,1,) = (n+ 5) hw;(Eng,1,) - 2.?02 [p (Ens,ng)} 1, (Eng» 1) (14.47)
The electron concentration can be written as
2§ Nmax

Z {7413HD (%, Ergrp, Ng) + Toaann (7, Ersrn, Tlg)} (14.48)
-0

No=————
°” 3LmKE,

where
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2111, (Erprp, 1g)

Tu13up (T, Erprp, Ng) = =
413HD ) o (Erorn 1)

{ [Ts (M, Errp, M)

_ 3
Eo « — _ _ . — 2
+ fop (ErBrp; Ng ) WXntp (Ersrp, )P (EFBHD, 1)

_ Ey . — _ =
- |:T5(n>EFBHD,rlg) + fop (ErHp> Ng)WXimp (EFBHD, 1)

3
0 (Ergup, T’lg)] 2} ,
- = o+ _ 1 —
Ts(n, Epgup, Ng) = [G (EFBHD,Mg) = <n+ 5) hw;(Erpup, Ng)
. mI(EFBHD,ng)Eé -

= {p* (ErBHD> Ug)} 2}

— 11, (Ersap, ’Tg)Eo {P* (ErgHp> ng)}

Xitip (Erprps Ng) = s Xniip (ErBHD, Mg )

B
elBLy _ -
_| lh * +Xip (Ersrp, 1)
and
— — g — f— —
Tu14np (M, Epgrp, Ng) = Y L(F)Tuasup (W, Epprp, 1)
Fo1

Using (1.31f) and (14.48), we can study the entropy in this case.

14.3 Open research problems

R.14.1 Investigate the entropy in the presence of an arbitrarily oriented quantizing
magnetic and crossed electric fields in HD tetragonal materials by including
broadening and the electron spin. Study all the special cases for HD III-V,
ternary, and quaternary materials in this context.

R.14.2 Investigate the entropy for all models of HD IV-VI, II-VI, and stressed Kane-
type compounds in the presence of an arbitrarily oriented quantizing mag-
netic and crossed electric fields by including broadening and electron spin.

R.14.3 Investigate the entropy for all the materials as stated in R.1.1 of Chapter 1 in
the presence of an arbitrarily oriented quantizing magnetic and crossed
electric fields by including broadening and electron spin.
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band constants of few materials

Whenever we meet a man of high intellect, let us ask him what he reads

Materials

Numerical Values of the Energy Band Constants

The conduction
electrons of
n-Cadmium
Germanium Arsenide
can be described by
three types of band
models

1. The values of the energy band constants in accordance with the
generalized electron dispersion relation of nonlinear optical
materials are as follows E'go =0.57eV, A =0.30eV, A, =0.36eV,
m| =0.034mo, m', =0.039mo, T=4K, 5=-0.21eV, g, =1,
£sc=18.4¢€ (5sc and g are the permittivity of the semiconductor
material and free space, respectively) and
W (electron affinity) = 4eV [1]

. In accordance with the three-band model of Kane, the spectrum
constants are given by
A=(Aj+A1)/2=0.33eV,Eg, = 0.57eV,m. = (mj +m’ )/2=0.0365m
and 0 =0eV

. In accordance with two-band model of Kane, the spectrum
constants are given by Ego =0.57eV and m.=0.0365mq

N

w

n-Indium arsenide

The values E'go =0.36eV, A=0.43eV, m.=0.026m,, g, =1,
&sc=12.25¢, are valid for three-band model of Kane.

n-Gallium aluminium
arsenide

Egy = (1.424+1.266X+0.26X°)eV,
A=(034-0.5%)eV,g, =1, =[0.066 +0.088x|mo,
£5c=[13.18 - 3.12X]g,

n-Mercury cadmium
telluride

Eg, =(-0.302+1.93X+535x10*(1-2x)T - 0.810%* + 0.832x%)eV,
A=(0.63+0.24x - 0.27%*)eV, m = 0.1mokEq (eV) "1, gy =1,
£5c=[20.262 —14.812x + 5.22795%%]¢, [1, 2] and

W =(4.23-0.813(E,, - 0.083))eV

n-Indium gallium
arsenide phosphide
lattice matched to
indium phosphide

Eg, =(1.337-0.73y +0.13y%)eV, A= (0.114 + 0.26y — 0.22)%)eV,

¥ =(0.1896 — 0.4052x)/(0.1896 - 0.0123x), M. = (0.08 — 0.039¥) M,
gv=1,&sc =[10.65 + 0.1320¥]¢, and

W(X,y)=[5.06(1-X)y +4.38(1-X)(1-¥) + 3.64X y + 3.75{X(1 - y) }|eV

n-Indium antimonide

Eg, =0.2352eV, A=0.81eV, m.=0.01359mq, g, =1, &5c = 15.56& [1]

n-Gallium antimonide

The values of Eg, =0.81eV, A=0.80eV, P=9.48 x10 eV,
Go=-21,vo=-149,00=042,g9,=1 [1-19] and &, = 15.85¢&( [1-19]
are valid for the model of Seiler et. al.

n-Cadmium sulphide

m)| = 0.7mo, M, =150, Co=14x10"%eVm, g, =1[1], &5 =15.5¢0 [53]
and W=4.5eV [8]
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(continue)
Materials Numerical Values of the Energy Band Constants
10 n-Lead telluride The values m; =0.070mo, m; =0.54my, m; =0.010mo, M, =1.4mo,

Py =141meVnm, P, = 486meVnm, Eg) =190meV, g, =4 [1], &5 =33&o
[1, 18] and W = 4.6eV are valid for the Dimmock model [20]. The
values M = 0.0239mg, M, = 0.024Mq, M, = 0.31M,, ms=0.24m, [21]
are valid for the Cohen model [21-23] .

11

Stressed n-Indium
antimonide

The values m, =0.048m,, £, =0.081eV, B, =9x 10~ °eVm, C;=3eV,
Cz =2eV, ap=-10eV, bo =-17eV, do = —4.4eV,

S =0.6x10"3(kbar) %, S,, =0.42 x 10~ (kbar) *,
S,;=0.39x1073(kbar) ™, S, =0.5x10 3 (kbar) ', &x = 0Sx,

Eyy =0Syy, £, =05, £y =05y, 0 is the stress in kilobar, g, =1[24]
are valid for the model of Seiler et. al. [24].

12

Bismuth

Eg, =0.0153eV, my=0.00194mq, my =0.313mg, m3 = 0.00246mo,
m'z = 0.36"10, gv= 3 [25],M2 = 1.25"70, Mz’ = 036m0 [25, 26]

13

Mercury telluride

m, =0.028mMo, gy =1, £ =15.2€0 [27]

14

Platinum antimonide

For valence bands, along <100> direction, Ao = (0.02/4)eV,
[=(-0.32/4)eV,v=(0.39/4)eV, n=(-0.65/4)eV, a=0.643nm,
1=0.30(eV)?, 3, = 0.02eV, g, = 6[32], &5 = 30, [28-30] and

¢, ~3.0eV [31, 32].

For conduction bands, along <111> direction, g, = 8[28-32],

Ao =(0.33/4)eV, [=(1.09/4)eV, v=(0.17/4)eV and n = (0.22/4)eV

15

Germanium

Eg, =0.785eV, m =157mo, m =0.0807mq [1] and g, = 4

16

Tellurium

The values ¢, = 6.7 x 10" meVm?, ¢, = 4.2 x 10 " meVm?,
¥;=6x10"%meVm and ¢, = (3.6 x 10~ 8meVm) [33] are valid for the
model of Bouat et. al. [33].

17

Lead germanium
telluride

The values g, =4 [34-40] and ¢, = 6eV [34-40] are valid for the
model of Vassilev [38]

18

Cadmium antimonide

The values a; = - 32.3x10 " 2%eVm?, b; = — 60.7 x 10~ 2°eVm?,
a;=-16.3x10"2%eVm?, b, = - 24.4x10~°eVm?,

a3 = —91.9x10 2%eVm?, b3 = —-105 x 10~ 2%eVm?,
A=292x10"YeVm, B= -3.47x10 ®eVm, G3 =13 x10" eVm,
As =0.070eV [40]

19

Cadmium
diphosphide

The values B, = 8.6 x10 " 2'eVm?, B, =1.8 x 10~ ?(eVm)?,
,=0.0825¢eV, B, = —1.9 x 10~ “eVm?are valid for the model of
Chuiko [41-43].

20

Zinc diphosphide

The valuesB, = 8.7 x 10~ 2leVm?, B, =1.9 x 102 (eVm)?,
B,=0.0875eV, Bs = —1.9 x 10~ eVm?are valid for the model of
Chuiko [31-43]
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(continue)
Materials Numerical Values of the Energy Band Constants

21 Bismuth telluride The values Eg, =0.145eV, 041 =4.9, @y =5.92, 33 =9.5, (3 =4.22,
gv=6[44-51] and ¢, =5.3eV [51]

22

23 Antimony The values a1 =16.7, a2, =5.98, a33 =11.61, a3 =7.54 [50] and
W =4.63eV are valid for the model of Ketterson [50]

24 Zinc selenide M =0.16mg, Ay =0.42eV, Eq . =2.82eV

25 Lead selenide m; =0.23mg, m; =0.32mg, m; =0.115mq, m;" =0.303m,,
P =138meVnm, P, = 471meVnm, Eg = 0.28eV [53], &5, = 21.0&.
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