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Preface
This book presents the key technologies and components employed in modern processor 
and computer architectures and discusses how various architectural decisions result in 
computer configurations optimized for specific needs.

To understate the situation quite drastically, modern computers are complicated devices. 
Yet, when viewed in a hierarchical manner, the functions of each level of complexity 
become clear. We will cover a great many topics in these chapters and will only have 
the space to explore each of them to a limited degree. My goal is to provide a coherent 
introduction to each important technology and subsystem you might find in a modern 
computing device and explain its relationship to other system components.

I will not be providing a lengthy list of references for further reading. The Internet  
is your friend in this regard. If you can manage to bypass the clamor of political and  
social media argumentation on the Internet, you will find yourself in an enormous, cool, 
quiet library containing a vast quantity of accumulated human knowledge. Learn  
to use the advanced features of your favorite search engine. Also, learn to differentiate 
high-quality information from uninformed opinion. Check multiple sources if you have 
any doubts about the information you're finding. Consider the source: if you are looking 
for information about an Intel processor, search for documentation published by Intel.

By the end of this book, you will have gained a strong grasp of the computer architectures 
currently used in a wide variety of digital systems. You will also have developed an 
understanding of the relevant trends in architectural technology currently underway, 
as well as some possibly disruptive advances in the coming years that may drastically 
influence the architectural development of computing systems.

Who this book is for
This book is intended for software developers, computer engineering students, system 
designers, computer science professionals, reverse engineers, and anyone else seeking to 
understand the architecture and design principles underlying all types of modern computer 
systems from tiny embedded devices to smartphones to warehouse-sized cloud server farms. 
Readers will also explore the directions these technologies are likely to take in the coming 
years. A general understanding of computer processors is helpful but is not required.
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What this book covers
The information in this book is presented in the following sequence:

Chapter 1, Introducing Computer Architecture, begins with a brief history of automated 
computing devices and describes the significant technological advances that drove leaps 
in capability. This is followed by a discussion of Moore's law, with an assessment of its 
applicability over previous decades and the implications for the future. The basic concepts 
of computer architecture are introduced in the context of the 6502 microprocessor.

Chapter 2, Digital Logic, introduces transistors as switching elements and explains their 
use in constructing logic gates. We will then see how flip-flops and registers are developed 
by combining simple gates. The concept of sequential logic, meaning logic that contains  
state information, is introduced, and the chapter ends with a discussion of clocked  
digital circuits.

Chapter 3, Processor Elements, begins with a conceptual description of a generic processor. 
We will examine the concepts of the instruction set, register set, and instruction loading, 
decoding, execution, and sequencing. Memory load and store operations are also 
discussed. The chapter includes a description of branching instructions and their use in 
looping and conditional processing. Some practical considerations are introduced that 
lead to the necessity for interrupt processing and I/O operations.

Chapter 4, Computer System Components, discusses computer memory and its interface 
to the processor, including multilevel caching. I/O requirements including interrupt 
handling, buffering, and dedicated I/O processors are described. We will discuss some 
specific requirements for I/O devices including the keyboard and mouse, the video 
display, and the network interface. The chapter ends with descriptive examples of these 
components in modern computer applications, including smart mobile devices, personal 
computers, gaming systems, cloud servers, and dedicated machine learning systems.

Chapter 5, Hardware-Software Interface, discusses the implementation of the high-
level services a computer operating system must provide, including disk I/O, network 
communications, and interactions with users. This chapter describes the software 
layers that implement these features starting at the level of the processor instruction 
set and registers. Operating system functions, including booting, multiprocessing, and 
multithreading, are also described.

Chapter 6, Specialized Computing Domains, explores domains of computing that tend to 
be less directly visible to most users, including real-time systems, digital signal processing, 
and GPU processing. We will discuss the unique requirements associated with each of 
these domains and look at examples of modern devices implementing these features.
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Chapter 7, Processor and Memory Architectures, takes an in-depth look at modern 
processor architectures, including the von Neumann, Harvard, and modified Harvard 
variants. The chapter discusses the implementation of paged virtual memory. The practical 
implementation of memory management functionality within the computer architecture 
is introduced and the functions of the memory management unit are described.

Chapter 8, Performance-Enhancing Techniques, discusses a number of performance-
enhancing techniques used routinely to reach peak execution speed in real-world 
computer systems. The most important techniques for improving system performance, 
including the use of cache memory, instruction pipelining, instruction parallelism, and 
SIMD processing, are the subjects of this chapter.

Chapter 9, Specialized Processor Extensions, focuses on extensions commonly implemented 
at the processor instruction set level to provide additional system capabilities beyond generic 
data processing requirements. The extensions presented include privileged processor modes, 
floating-point mathematics, power management, and system security management.

Chapter 10, Modern Processor Architectures and Instruction Sets, examines the 
architectures and instruction set features of modern processor designs including the 
x86, x64, and ARM processors. One challenge that arises when producing a family of 
processors over several decades is the need to maintain backward compatibility with  
code written for earlier-generation processors. The need for legacy support tends to 
increase the complexity of the later-generation processors. This chapter will examine  
some of the attributes of these processor architectures that result from supporting  
legacy requirements.

Chapter 11, The RISC-V Architecture and Instruction Set, introduces the exciting new 
RISC-V (pronounced risk five) processor architecture and its instruction set. RISC-V is a 
completely open source, free-to-use specification for a reduced instruction set computer 
architecture. A complete user-mode (non-privileged) instruction set specification 
has been released and a number of hardware implementations of this architecture 
are currently available. Work is ongoing to develop specifications for a number of 
instruction set extensions. This chapter covers the features and variants available in the 
RISC-V architecture and introduces the RISC-V instruction set. We will also discuss the 
applications of the RISC-V architecture in mobile devices, personal computers, and servers.

Chapter 12, Processor Virtualization, introduces the concepts involved in processor 
virtualization and explains the many benefits resulting from the use of virtualization. The 
chapter includes examples of virtualization based on open source tools and operating 
systems. These tools enable the execution of instruction-set-accurate representations of 
various computer architectures and operating systems on a general-purpose computer.  
We will also discuss the benefits of virtualization in the development and deployment  
of real-world software applications.
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Chapter 13, Domain-Specific Computer Architectures, brings together the topics discussed 
in previous chapters to develop an approach for architecting a computer system design 
to meet unique user requirements. We will discuss some specific application categories, 
including mobile devices, personal computers, gaming systems, Internet search engines, 
and neural networks.

Chapter 14, Future Directions in Computer Architectures, looks at the road ahead for 
computer architectures. This chapter reviews the significant advances and ongoing trends 
that have resulted in the current state of computer architectures and extrapolates these 
trends in possible future directions. Potentially disruptive technologies are discussed 
that could alter the path of future computer architectures. In closing, I will propose some 
approaches for professional development for the computer architect that should result  
in a future-tolerant skill set.

To get the most out of this book
Each chapter in this book includes a set of exercises at the end. To get the most from the 
book, and to cement some of the more challenging concepts in your mind, I recommend 
you try to work through each exercise. Complete solutions to all exercises are provided 
in the book and are available online at https://github.com/PacktPublishing/
Modern-Computer-Architecture-and-Organization.

In case there's an update to the code examples and answers to the exercises, updates will 
appear on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at (https://bit.ly/2UWc6Ov). 
Code in Action videos provide dynamic demonstrations of many of the examples and 
exercises from this book.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "Subtraction using the SBC instruction tends to be a bit more 
confusing to novice 6502 assembly language programmers."

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization
https://github.com/PacktPublishing/Modern-Computer-Architecture-and-Organization
https://github.com/PacktPublishing/
https://bit.ly/2UWc6Ov


Preface     xv

A block of code is set as follows:

; Add four bytes together using immediate addressing mode

LDA #$04

CLC

ADC #$03

ADC #$02

ADC #$01

Any command-line input or output is written as follows:

C:\>bcdedit

Windows Boot Manager

--------------------

identifier              {bootmgr}

Bold: Indicates a new term, an important word, or words that you see onscreen. Here is  
an example: "Because there are now four sets, the Set field in the physical address reduces 
to two bits and the Tag field increases to 24 bits."

Tips or important notes
Appear like this.

Get in touch
Any errors in this book are the fault of the author, me. I appreciate receiving feedback on 
the book including bug reports on the contents. Please submit bug reports on GitHub at 
https://github.com/PacktPublishing/Modern-Computer-Architecture-
and-Organization/issues. Feedback from readers is always welcome.

As necessary, errata will be made available online at https://github.com/
PacktPublishing/Modern-Computer-Architecture-and-Organization.
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Section 1:  
Fundamentals 

of Computer 
Architecture

In this section, we will begin at the transistor level and work our way up to the computer 
system level. You will develop an understanding of the key components of modern 
computer architectures.

This section comprises the following chapters:

• Chapter 1, Introducing Computer Architecture

• Chapter 2, Digital Logic

• Chapter 3, Processor Elements

• Chapter 4, Computer System Components

• Chapter 5, Hardware–Software Interface

• Chapter 6, Specialized Computing Domains
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1
Introducing 

Computer 
Architecture

The architecture of automated computing devices has evolved from mechanical systems 
constructed nearly two centuries ago to the broad array of modern electronic computing 
technologies we use directly and indirectly every day. Along the way, there have been 
stretches of incremental technological improvement interspersed with disruptive advances 
that have drastically altered the trajectory of the industry. These trends can be expected  
to continue into the future.

In past decades, the 1980s, for example, students and technical professionals eager to learn 
about computing devices had a limited range of subject matter available for this purpose. 
If they had a computer of their own, it might have been an IBM PC or an Apple II. If 
they worked for an organization with a computing facility, they might have used an IBM 
mainframe or a Digital Equipment Corporation VAX minicomputer. These examples, and 
a limited number of similar systems, encompassed most people's exposure to computer 
systems of the time.
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4     Introducing Computer Architecture

Today, numerous specialized computing architectures exist to address widely varying  
user needs. We carry miniature computers in our pockets and purses that can place phone 
calls, record video, and function as full participants on the Internet. Personal computers 
remain popular in a format outwardly similar to the PCs of past decades. Today's PCs, 
however, are orders of magnitude more capable than the first generations of PCs in  
terms of computing power, memory size, disk space, graphics performance, and 
communication capability.

Companies offering web services to hundreds of millions of users construct vast 
warehouses filled with thousands of closely coordinated computer systems capable  
of responding to a constant stream of requests with extraordinary speed and precision. 
Machine learning systems are trained through the analysis of enormous quantities  
of data to perform complex activities, such as driving automobiles.

This chapter begins by presenting a few key historical computing devices and the leaps  
in technology associated with them. This chapter will examine modern-day trends related 
to technological advances and introduce the basic concepts of computer architecture, 
including a close look at the 6502 microprocessor. These topics will be covered:

• The evolution of automated computing devices

• Moore's law

• Computer architecture

The evolution of automated computing 
devices
This section reviews some classic machines from the history of automated computing 
devices and focuses on the major advances each embodied. Babbage's Analytical Engine 
is included here because of the many leaps of genius contained in its design. The other 
systems are discussed because they embodied significant technological advances and 
performed substantial real-world work over their lifetimes.

Charles Babbage's Analytical Engine
Although a working model of the Analytical Engine was never constructed, the  
detailed notes Charles Babbage developed from 1834 until his death in 1871 described  
a computing architecture that appeared to be both workable and complete. The Analytical 
Engine was intended to serve as a general-purpose programmable computing device. The 
design was entirely mechanical and was to be constructed largely of brass. It was designed 
to be driven by a shaft powered by a steam engine.
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The evolution of automated computing devices     5

Borrowing from the punched cards of the Jacquard loom, the rotating studded barrels 
used in music boxes, and the technology of his earlier Difference Engine (also never 
completed in his lifetime, and more of a specialized calculating device than a computer), 
the Analytical Engine design was, otherwise, Babbage's original creation.

Unlike most modern computers, the Analytical Engine represented numbers in signed 
decimal form. The decision to use base-10 numbers rather than the base-2 logic of most 
modern computers was the result of a fundamental difference between mechanical 
technology and digital electronics. It is straightforward to construct mechanical wheels 
with ten positions, so Babbage chose the human-compatible base-10 format because it was 
not significantly more technically challenging than using some other number base. Simple 
digital circuits, on the other hand, are not capable of maintaining ten different states with 
the ease of a mechanical wheel.

All numbers in the Analytical Engine consisted of 40 decimal digits. The large number 
of digits was likely selected to reduce problems with numerical overflow. The Analytical 
Engine did not support floating-point mathematics.

Each number was stored on a vertical axis containing 40 wheels, with each wheel capable 
of resting in ten positions corresponding to the digits 0-9. A 41st number wheel contained 
the sign: any even number on this wheel represented a positive sign and any odd number 
represented a negative sign. The Analytical Engine axis was somewhat analogous to the 
register used in modern processors except the readout of an axis was destructive. If it was 
necessary to retain an axis's value after it had been read, another axis had to store a copy 
of the value. Numbers were transferred from one axis to another, or used in computations, 
by engaging a gear with each digit wheel and rotating the wheel to read out the numerical 
value. The axes serving as system memory were referred to collectively as the store.

The addition of two numbers used a process somewhat similar to the method of addition 
taught to schoolchildren. Assume a number stored on one axis, let's call it the addend, was 
to be added to a number on another axis, let's call it the accumulator. The machine would 
connect each addend digit wheel to the corresponding accumulator digit wheel through 
a train of gears. It would then simultaneously rotate each addend digit downward to zero 
while driving the accumulator digit an equivalent rotation in the increasing direction. 
If an accumulator digit wrapped around from nine to zero, the next most significant 
accumulator digit would increment by one. This carry operation would propagate across 
as many digits as needed (think of adding 1 to 999,999). By the end of the process, the 
addend axis would hold the value zero and the accumulator axis would hold the sum 
of the two numbers. The propagation of carries from one digit to the next was the most 
mechanically complex part of the addition process.
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6     Introducing Computer Architecture

Operations in the Analytical Engine were sequenced by music box-like rotating barrels in 
a construct called the mill, which is analogous to the processing component of a modern 
CPU. Each Analytical Engine instruction was encoded in a vertical row of locations on 
the barrel where the presence or absence of a stud at a particular location either engaged 
a section of the Engine's machinery or left the state of that section unchanged. Based on 
Babbage's hypothesized execution speed, the addition of two 40-digit numbers, including 
the propagation of carries, would take about three seconds.

Babbage conceived several important concepts for the Engine that remain relevant today. 
His design supported a degree of parallel processing that accelerated the computation of 
series of values for output as numerical tables. Mathematical operations such as addition 
supported a form of pipelining, in which sequential operations on different data values 
overlapped in time.

Babbage was well aware of the complexities associated with mechanical devices such as 
friction, gear backlash, and wear over time. To prevent errors caused by these effects, the 
Engine incorporated mechanisms called lockings that were applied during data transfers 
across axes. The lockings forced the number wheels into valid positions and prevented 
accumulated errors from allowing a wheel to drift to an incorrect value. The use of 
lockings is analogous to the amplification of potentially weak input signals to produce 
stronger outputs by the digital logic gates in modern processors.

The Analytical Engine was programmed using punched cards and supported branching 
operations and nested loops. The most complex program for the Analytical Engine was 
developed by Ada Lovelace to compute the Bernoulli numbers.

Babbage constructed a trial model of a portion of the Analytical Engine mill, which is 
currently on display at the Science Museum in London.

ENIAC
ENIAC, the Electronic Numerical Integrator and Computer, was completed in 1945 and 
was the first programmable general-purpose electronic computer. The system consumed 
150 kilowatts of electricity, occupied 1,800 square feet of floor space, and weighed 27 tons.

The design was based on vacuum tubes, diodes, and relays. ENIAC contained over 
17,000 vacuum tubes that functioned as switching elements. Similar to the Analytical 
Engine, it used base-10 representation of ten-digit decimal numbers implemented using 
ten-position ring counters (the ring counter will be discussed in Chapter 2, Digital Logic). 
Input data was received from an IBM punch-card reader and the output of computations 
was sent to a card punch machine.
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The ENIAC architecture was capable of complex sequences of processing steps including 
loops, branches, and subroutines. The system had 20 ten-digit accumulators that were 
similar to registers in modern computers. However, it did not initially have any memory 
storage beyond the accumulators. If intermediate values were required for use in later 
computations, they had to be written to punch cards and read back in when needed. 
ENIAC could perform about 385 multiplications per second. 

ENIAC programs consisted of plugboard wiring and switch-based function tables. 
Programming the system was an arduous process that often took the team of talented 
female programmers weeks to complete. Reliability was a problem, as vacuum tubes  
failed regularly, requiring troubleshooting on a day-to-day basis to isolate and replace 
failed tubes.

In 1948, ENIAC was improved by adding the ability to program the system via  
punch cards rather than plugboards. This improvement greatly enhanced the speed  
with which programs could be developed. As a consultant for this upgrade, John 
von Neumann proposed a processing architecture based on a single memory region 
containing program instructions and data, a processing component with an arithmetic 
logic unit and registers, and a control unit with an instruction register and a program 
counter. Many modern processors continue to implement this general structure, now 
known as the von Neumann architecture.

Early applications of ENIAC included analyses related to the development of the  
hydrogen bomb and the computation of firing tables for long-range artillery.

IBM PC
In the years following the construction of ENIAC, several technological breakthroughs 
resulted in remarkable advances in computer architectures:

• The invention of the transistor in 1947 by John Bardeen, Walter Brattain, and 
William Shockley delivered a vast improvement over the vacuum tube technology 
prevalent at the time. Transistors were faster, smaller, consumed less power, and, 
once production processes had been sufficiently optimized, were much more 
reliable than the failure-prone tubes.

• The commercialization of integrated circuits in 1958, led by Jack Kilby of Texas 
Instruments, began the process of combining large numbers of formerly discrete 
components onto a single chip of silicon.

• In 1971, Intel began production of the first commercially available microprocessor, 
the Intel 4004. The 4004 was intended for use in electronic calculators and was 
specialized to operate on 4-bit binary coded decimal digits.
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8     Introducing Computer Architecture

From the humble beginning of the Intel 4004, microprocessor technology advanced 
rapidly over the ensuing decade by packing increasing numbers of circuit elements  
onto each chip and expanding the capabilities of the microprocessors implemented  
on the chips.

The 8088 microprocessor
IBM released the IBM PC in 1981. The original PC contained an Intel 8088 
microprocessor running at a clock frequency of 4.77 MHz and featured 16 KB of RAM, 
expandable to 256 KB. It included one or, optionally, two floppy disk drives. A color 
monitor was also available. Later versions of the PC supported more memory, but  
because portions of the address space had been reserved for video memory and  
read-only memory, the architecture could support a maximum of 640 KB of RAM.

The 8088 contained fourteen 16-bit registers. Four were general purpose registers  
(AX, BX, CX, and DX.) Four were memory segment registers (CS, DS, SS, and ES) that 
extended the address space to 20 bits. Segment addressing functioned by adding a 16-bit 
segment register value, shifted left by four bit positions, to a 16-bit offset contained in an 
instruction to produce a physical memory address within a one megabyte range.

The remaining 8088 registers were the Stack Pointer (SP), the Base Pointer (BP), the 
Source Index (SI), the Destination Index (DI), the Instruction Pointer (IP), and the 
Status Flags (FLAGS). Modern x86 processers employ an architecture remarkably similar 
to this register set (Chapter 10, Modern Processor Architectures and Instruction Sets, will 
cover the details of the x86 architecture). The most obvious differences between the 8088 
and x86 are the extension of the register widths to 32 bits in x86 and the addition of a 
pair of segment registers (FS and GS) that are used today primarily as data pointers in 
multithreaded operating systems.

The 8088 had an external data bus width of 8 bits, which meant it took two bus cycles to 
read or write a 16-bit value. This was a performance downgrade compared to the earlier 
8086 processor, which employed a 16-bit external bus. However, the use of the 8-bit bus 
made the PC more economical to produce and provided compatibility with lower-cost 8-bit 
peripheral devices. This cost-sensitive design approach helped to reduce the purchase price 
of the PC to a level accessible to more potential customers.

Program memory and data memory shared the same address space, and the 8088 
accessed memory over a single bus. In other words, the 8088 implemented the von 
Neumann architecture. The 8088 instruction set included instructions for data movement, 
arithmetic, logical operations, string manipulation, control transfer (conditional and 
unconditional jumps and subroutine call and return), input/output, and additional 
miscellaneous functions. The processor required about 15 clock cycles per instruction on 
average, resulting in an execution speed of 0.3 million instructions per second (MIPS).
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The 8088 supported nine distinct modes for addressing memory. This variety of modes 
was needed to efficiently implement methods for accessing a single item at a time as well 
as for iterating through sequences of data.

The segment registers in the 8088 architecture provided a clever way to expand the range 
of addressable memory without increasing the length of most instructions referencing 
memory locations. Each segment register allowed access to a 64-kilobyte block of memory 
beginning at a physical memory address defined at a multiple of 16 bytes. In other words, 
the 16-bit segment register represented a 20-bit base address with the lower four bits set  
to zero. Instructions could then reference any location within the 64-kilobyte segment 
using a 16-bit offset from the address defined by the segment register.

The CS register selected the code segment location in memory and was used in fetching 
instructions and performing jumps and subroutine calls and returns. The DS register 
defined the data segment location for use by instructions involving the transfer of data to 
and from memory. The SS register set the stack segment location, which was used for local 
memory allocation within subroutines and for storing subroutine return addresses.

Programs that required less than 64-kilobyte in each of the code, data, and stack segments  
could ignore the segment registers entirely because those registers could be set once at 
program startup (compilers would do this automatically) and remain unchanged through 
execution. Easy!

Things got quite a bit more complicated when a program's data size increased beyond 
64-kilobyte. Compilers for the 8088 architecture distinguished between near and far 
references to memory. A near pointer represented a 16-bit offset from the current segment 
register base address. A far pointer contained 32 bits of addressing information: a 16-bit 
segment register value and a 16-bit offset. Far pointers obviously required 16 bits of extra 
data memory and they required additional processing time. Making a single memory 
access using a far pointer involved the following steps:

1. Save the current segment register contents to a temporary location.

2. Load the new segment value into the register.

3. Access the data (read or write as needed) using an offset from the segment base.

4. Restore the original segment register value.

When using far pointers, it was possible to declare data objects (for example, an array 
of characters) up to 64 KB in size. If you needed a larger structure, you had to work out 
how to break it into chunks no larger than 64 KB and manage them yourself. As a result 
of these segment register manipulations, programs that required extensive access to data 
larger than 64 KB were susceptible to code size bloat and slower execution.
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10     Introducing Computer Architecture

The IBM PC motherboard also contained a socket for an optional Intel 8087 floating-
point coprocessor. The designers of the 8087 invented data formats and processing rules 
for 32-bit and 64-bit floating point numbers that became enshrined in 1985 as the IEEE 
754 floating-point standard, which remains in near-universal use today. The 8087 could 
perform about 50,000 floating-point operations per second. We will look at floating-point 
processors in detail in Chapter 9, Specialized Processor Extensions.

The 80286 and 80386 microprocessors
The second generation of the IBM PC, the PC AT, was released in 1984. AT stood for 
Advanced Technology and referred to several significant enhancements over the original 
PC that mostly resulted from the use of the Intel 80286 processor.

Like the 8088, the 80286 was a 16-bit processor, and it maintained backward compatibility 
with the 8088: 8088 code could run unmodified on the 80286. The 80286 had a 16-bit 
data bus and 24 address lines supporting a 16-megabyte address space. The external data 
bus width was 16 bits, improving data access performance over the 8-bit bus of the 8088. 
The instruction execution rate (instructions per clock cycle) was about double the 8088 
in many applications. This meant that at the same clock speed the 80286 would be twice 
as fast as the 8088. The original PC AT clocked the processor at 6 MHz and a later version 
operated at 8 MHz. The 6 MHz variant of the 80286 achieved an instruction execution 
rate of about 0.9 MIPS.

The 80286 implemented a protected virtual address mode intended to support multiuser 
operating systems and multitasking. In protected mode, the processor enforced memory 
protection to ensure one user's programs could not interfere with the operating system or 
with other users' programs. This groundbreaking technological advance remained little 
used for many years, mainly because of the prohibitive cost of adding sufficient memory 
to a computer system to make it useful in a multiuser, multitasking context.

The next generation of the x86 processor line was the 80386, introduced in 1985. The 
80386 was a 32-bit processor with support for a flat 32-bit memory model in protected 
mode. The flat memory model allowed programmers to address up to 4 GB directly, 
without the need to manipulate segment registers. Compaq introduced an IBM 
PC-compatible personal computer based on the 80386 called the DeskPro in 1986. The 
DeskPro shipped with a version of Microsoft Windows targeted to the 80386 architecture.
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The 80386 maintained a large degree of backward compatibility with the 80286 and 8088 
processors. The design implemented in the 80386 remains the current standard x86 
architecture. Much more about this architecture will be covered in Chapter 10, Modern 
Processor Architectures and Instruction Sets.

The initial version of the 80386 was clocked at 33 MHz and achieved about 11.4 MIPS. 
Modern implementations of the x86 architecture run several hundred times faster  
than the original as the result of higher clock speeds, performance enhancements such  
as extensive use of cache memory, and more efficient instruction execution at the 
hardware level.

The iPhone
In 2007, Steve Jobs introduced the iPhone to a world that had no idea it had any use 
for such a device. The iPhone built upon previous revolutionary advances from Apple 
Computer including the Macintosh computer in 1984 and the iPod music player in  
2001. The iPhone combined the functions of the iPod, a mobile telephone, and an 
Internet-connected computer.

The iPhone did away with the hardware keyboard that was common on smartphones of 
the time and replaced it with a touchscreen capable of displaying an on-screen keyboard 
or any other type of user interface. The screen was driven by the user's fingers and 
supported multi-finger gestures for actions such as zooming a photo.

The iPhone ran the OS X operating system, the same OS used on the flagship Macintosh 
computers of the time. This decision immediately enabled the iPhone to support a vast 
range of applications already developed for Macs and empowered software developers 
to rapidly introduce new applications tailored to the iPhone, once Apple began allowing 
third-party application development.

The iPhone 1 had a 3.5" screen with a resolution of 320x480 pixels. It was 0.46 inches thick 
(thinner than other smartphones), had a 2-megapixel camera built in, and weighed 4.8 
oz. A proximity sensor detected when the phone was held to the user's ear and turned off 
screen illumination and touchscreen sensing during calls. It had an ambient light sensor to 
automatically set the screen brightness and an accelerometer detected whether the screen 
was being held in portrait or landscape orientation.

The iPhone 1 included 128 MB of RAM, 4 GB, 8 GB, or 16 GB of flash memory, and 
supported Global System for Mobile communications (GSM) cellular communication, 
Wi-Fi (802.11b/g), and Bluetooth.
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12     Introducing Computer Architecture

In contrast to the abundance of openly available information about the IBM PC, 
Apple was notoriously reticent about releasing the architectural details of the iPhone's 
construction. Apple released no information about the processor or other internal 
components of the first iPhone, simply calling it a closed system.

Despite the lack of official information from Apple, other parties have enthusiastically 
torn down the various iPhone models and attempted to identify the phone's components 
and how they interconnect. Software sleuths have devised various tests to attempt to 
determine the specific processor model and other digital devices implemented in the 
iPhone. These reverse engineering efforts are subject to error, so descriptions of the 
iPhone architecture in this section should be taken with a grain of salt.

The iPhone 1 processor was a 32-bit ARM11 manufactured by Samsung running at 412 
MHz. The ARM11 was an improved variant of previous generation ARM processors and 
included an 8-stage instruction pipeline and support for Single Instruction-Multiple 
Data (SIMD) processing to improve audio and video performance. The ARM processor 
architecture will be discussed further in Chapter 10, Modern Processor Architectures and 
Instruction Sets.

The iPhone 1 was powered by a 3.7V lithium-ion polymer battery. The battery was not 
intended to be replaceable, and Apple estimated it would lose about 20 percent of its 
original capacity after 400 charge and discharge cycles. Apple quoted up to 250 hours  
of standby time and 8 hours of talk time on a single charge.

Six months after the iPhone was introduced, Time magazine named the iPhone the 
"Invention of the Year" for 2007. In 2017, Time ranked the 50 Most Influential Gadgets  
of All Time. The iPhone topped the list.

Moore's law
For those working in the rapidly advancing field of computer technology, it is a significant 
challenge to make plans for the future. This is true whether the goal is to plot your 
own career path or for a giant semiconductor corporation to identify optimal R&D 
investments. No one can ever be completely sure what the next leap in technology will be, 
what effects from it will ripple across the industry and its users, or when it will happen. 
One technique that has proven useful in this difficult environment is to develop a rule  
of thumb, or empirical law, based on experience.
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Gordon Moore co-founded Fairchild Semiconductor in 1957 and was later the chairman 
and CEO of Intel. In 1965, Moore published an article in Electronics magazine in which he 
offered his prediction of the changes that would occur in the semiconductor industry over 
the following ten years. In the article, he observed that the number of formerly discrete 
components such as transistors, diodes, and capacitors that could be integrated onto  
a single chip had been doubling approximately yearly and the trend was likely to continue 
over the subsequent ten years. This doubling formula came to be known as Moore's law. 
This was not a scientific law in the sense of the law of gravity. Rather, it was based on 
observation of historical trends, and he believed this formulation had some ability  
to predict the future.

Moore's law turned out to be impressively accurate over those ten years. In 1975, he 
revised the predicted growth rate for the following ten years to doubling the number of 
components per integrated circuit every two years rather than yearly. This pace continued 
for decades, up until about 2010. In more recent years, the growth rate has appeared to 
decline slightly. In 2015, Brian Krzanich, Intel CEO, stated that the company's growth  
rate had slowed to doubling about every two and a half years.

Despite the fact that the time to double integrated circuit density is increasing, the current 
pace represents a phenomenal rate of growth that can be expected to continue into the 
future, just not quite as rapidly as it once progressed.

Moore's law has proven to be a reliable tool for evaluating the performance of 
semiconductor companies over the decades. Companies have used it to set goals for the 
performance of their products and to plan their investments. By comparing the integrated 
circuit density increases for a company's products against prior performance, and against 
other companies, it is possible for semiconductor executives and industry analysts to 
evaluate and score company performance. The results of these analyses have fed directly 
into decisions to build enormous new fabrication plants and to push the boundaries of 
ever-smaller integrated circuit feature sizes.

The decades since the introduction of the IBM PC have seen tremendous growth in the 
capability of single-chip microprocessors. Current processor generations are hundreds of 
times faster, operate on 32-bit and 64-bit data natively, have far more integrated memory 
resources, and unleash vastly more functionality, all packed into a single integrated circuit. 
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The increasing density of semiconductor features, as predicted by Moore's law, has 
enabled all of these improvements. Smaller transistors run at higher clock speeds due to 
the shorter connection paths between circuit elements. Smaller transistors also, obviously, 
allow more functionality to be packed into a given amount of die area. Being smaller  
and closer to neighboring components allows the transistors to consume less power  
and generate less heat.

There was nothing magical about Moore's law. It was an observation of the trends in 
progress at the time. One trend was the steadily increasing size of semiconductor dies. 
This was the result of improving production processes that reduced the density of 
defects, hence allowing acceptable production yield with larger integrated circuit dies. 
Another trend was the ongoing reduction in the size of the smallest components that 
could be reliably produced in a circuit. The final trend was what Moore referred to as the 
"cleverness" of circuit designers in making increasingly efficient and effective use of the 
growing number of circuit elements placed on a chip.

Traditional semiconductor manufacturing processes have begun to approach physical 
limits that will eventually put the brakes on growth under Moore's law. The smallest 
features on current commercially available integrated circuits are around 10 nanometers 
(nm). For comparison, a typical human hair is about 50,000 nm thick and a water 
molecule (one of the smallest molecules) is 0.28 nm across. There is a point beyond  
which it is simply not possible for circuit elements to become smaller as the sizes  
approach atomic scale.

In addition to the challenge of building reliable circuit components from a small number 
of molecules, other physical effects with names such as Abbe diffraction limit become 
significant impediments to single-digit nanometer-scale circuit production. We won't 
get into the details of these phenomena; it's sufficient to know the steady increase in 
integrated circuit component density that has proceeded for decades under Moore's law  
is going to become a lot harder to continue over the next few years.

This does not mean we will be stuck with processors essentially the same as those that 
are now commercially available. Even as the rate of growth in transistor density slows, 
semiconductor manufacturers are pursuing several alternative methods to continue 
growing the power of computing devices. One approach is specialization, in which circuits 
are designed to perform a specific category of tasks extremely well rather than performing 
a wide variety of tasks merely adequately.
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Graphical Processing Units (GPUs) are an excellent example of specialization. Original 
GPUs focused exclusively on improving the speed at which three-dimensional graphics 
scenes could be rendered, mostly for use in video gaming. The calculations involved in 
generating a three-dimensional scene are well defined and must be applied to thousands 
of pixels to create a single frame. The process must be repeated for each subsequent frame, 
and frames may need to be redrawn at a 60 Hz or higher rate to provide a satisfactory 
user experience. The computationally demanding and repetitive nature of this task is 
ideally suited for acceleration via hardware parallelism. Multiple computing units within 
a GPU simultaneously perform essentially the same calculations on different input data 
to produce separate outputs. Those outputs are combined to generate the final scene. 
Modern GPU designs have been enhanced to support other domains, such as training 
neural networks on massive amounts of data. GPUs will be covered in detail in Chapter 6, 
Specialized Computing Domains.

As Moore's law shows signs of beginning to fade over the coming years, what advances 
might take its place to kick off the next round of innovations in computer architectures? 
We don't know for sure today, but some tantalizing options are currently under intense 
study. Quantum computing is one example of these technologies. We will cover that 
technology in Chapter 14, Future Directions in Computer Architectures.

Quantum computing takes advantage of the properties of subatomic particles to perform 
computations in a manner that traditional computers cannot. A basic element of quantum 
computing is the qubit, or quantum bit. A qubit is similar to a regular binary bit, but in 
addition to representing the states 0 and 1, qubits can attain a state that is a superposition 
of the 0 and 1 states. When measured, the qubit output will always be 0 or 1, but the 
probability of producing either output is a function of the qubit's quantum state prior to 
being read. Specialized algorithms are required to take advantage of the unique features  
of quantum computing.

Another possibility is that the next great technological breakthrough in computing devices 
will be something that we either haven't thought of, or if we did think about it, we may 
have dismissed the idea out of hand as unrealistic. The iPhone, discussed in the preceding 
section, is an example of a category-creating product that revolutionized personal 
communication and enabled use of the Internet in new ways. The next major advance may 
be a new type of product, a surprising new technology, or some combination of product 
and technology. Right now, we don't know what it will be or when it will happen, but we 
can say with confidence that such changes are coming.
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Computer architecture
The descriptions of a small number of key architectures from the history of computing 
mentioned in the previous section included some terms that may or may not be familiar 
to you. This section will provide an introduction to the building blocks used to construct 
modern-day processors and related computer subsystems.

One ubiquitous feature of modern computers is the use of voltage levels to indicate data 
values. In general, only two voltage levels are recognized: a low level and a high level. The 
low level is often assigned the value zero and the high level assigned the value one. The 
voltage at any point in a circuit (digital or otherwise) is analog in nature and can take 
on any voltage within its operating range. When changing from the low level to the high 
level, or vice versa, the voltage must pass through all voltages in between. In the context 
of digital circuitry, the transitions between low and high levels happen quickly and the 
circuitry is designed to not react to voltages between the high and low levels.

Binary and hexadecimal numbers
The circuitry within a processor does not work directly with numbers, in any sense. 
Processor circuit elements obey the laws of electricity and electronics and simply react 
to the inputs provided to them. The inputs that drive these actions result from the code 
developed by programmers and from the data provided as input to the program. The 
interpretation of the output of a program as, say, numbers in a spreadsheet, or characters 
in a word processing program, is a purely human interpretation that assigns meaning to 
the result of the electronic interactions within the processor. The decision to assign zero to 
the low voltage and one to the high voltage is the first step in the interpretation process.

The smallest unit of information in a digital computer is a binary digit, called a bit, which 
represents a discrete data element containing the value zero or one. A number of bits 
can be placed together to enable representation of a greater range of values. A byte is 
composed of eight bits placed together to form a single value. The byte is the smallest unit 
of information that can be read from or written to memory by most modern processors.

A single bit can take on two values: 0 and 1. Two bits placed together can take on four 
values: 00, 01, 10, and 11. Three bits can take on eight values: 000, 001, 010, 011, 100, 
101, 110, and 111. In fact, any number of bits, n, can take on 2n values, where 2n indicates 
multiplying n copies of two together. An 8-bit byte, therefore, can take on 28 or 256 
different values.
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The binary number format is not most people's first choice when it comes to performing 
arithmetic, and working with numbers such as 11101010 can be confusing and error 
prone, especially when dealing with 32- and 64-bit values. To make working with these 
numbers somewhat easier, hexadecimal numbers are often used instead. The term 
hexadecimal is often shortened to hex. In the hexadecimal number system, binary 
numbers are separated into groups of four bits. Since there are four bits in the group, 
the number of possible values is 24, or 16. The first ten of these 16 numbers are assigned 
the digits 0-9. The last six are assigned the letters A-F. Table 1.1 shows the first 16 binary 
values starting at zero along with the corresponding hexadecimal digit and the decimal 
equivalent to the binary and hex values.

Table 1.1: Binary, hexadecimal, and decimal numbers

The binary number 11101010 can be represented more compactly by breaking it into  
two 4-bit groups (1110 and 1010) and writing them as the hex digits EA. Because binary 
digits can take on only two values, binary is a base-2 number system. Hex digits can take 
on 16 values, so hexadecimal is base-16. Decimal digits can have ten values, therefore 
decimal is base-10.
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When working with these different number bases, it is possible for things to become 
confusing. Is the number written as 100 a binary, hexadecimal, or decimal value? Without 
additional information, you can't tell. Various programming languages and textbooks have 
taken different approaches to remove this ambiguity. In most cases, decimal numbers are 
unadorned, so the number 100 is usually decimal. In programming languages such as C 
and C++, hexadecimal numbers are prefixed by 0x so the number 0x100 is 100 hex. In 
assembly languages, either the prefix character $, or the suffix h might be used to indicate 
hexadecimal numbers. The use of binary values in programming is less common, mostly 
because hexadecimal is preferred due to its compactness. Some compilers support the use 
of 0b as a prefix for binary numbers. 

Hexadecimal number representation
This book uses either the prefix $ or the suffix h to represent hexadecimal 
numbers, depending on the context. The suffix b will represent binary numbers, 
and the absence of a prefix or suffix indicates decimal numbers.

Bits are numbered individually within a binary number, with bit zero as the rightmost, 
least significant bit. Bit numbers increase in magnitude leftward. Some examples should 
make this clear: In Table 1.1, the binary value 0001b (1 decimal) has bit number zero  
set and the remaining three bits are cleared. In 0010b (2 decimal), bit 1 is set and the  
other bits are cleared. In 0100b (4 decimal), bit 2 is set and the other bits are cleared.

Set versus cleared
A bit that is set has the value 1. A bit that is cleared has the value 0.

An 8-bit byte can take on values from $00h to $FF, equivalent to the decimal range 0-255. 
When performing addition at the byte level, it is possible for the result to exceed 8 bits. 
For example, adding $01 to $FF results in the value $100. When using 8-bit registers, this 
represents a carry, which must be handled appropriately.

In unsigned arithmetic, subtracting $01 from $00 results in a value of $FF. This constitutes 
a wraparound to $FF. Depending on the computation being performed, this may or may 
not be the desired result.
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When desired, negative values can be represented using binary numbers. The most 
common signed number format in modern processors is two's complement. In two's 
complement, 8-bit signed numbers span the range from -128 to 127. The most significant 
bit of a two's complement data value is the sign bit: a 0 in this bit represents a positive 
value and a 1 represents a negative value. A two's complement number can be negated 
(multiplied by -1) by inverting all of the bits, adding 1, and ignoring any carry. Inverting  
a bit means changing a 0 bit to 1 and a 1 bit to 0.

Table 1.2: Negation operation examples

Note that negating zero returns a result of zero, as you would expect mathematically.

Two's complement arithmetic
Two's complement arithmetic is identical to unsigned arithmetic at the bit level. 
The manipulations involved in addition and subtraction are the same whether 
the input values are intended to be signed or unsigned. The interpretation of 
the result as signed or unsigned depends entirely on the intent of the user.

Table 1.3: Signed and unsigned 8-bit numbers
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Signed and unsigned representations of binary numbers extend to larger integer data 
types. 16-bit values can represent unsigned integers from 0 to 65,535 and signed integers 
in the range -32,768 to 32,767. 32-bit, 64-bit, and even larger integer data types are 
commonly available in modern programming languages.

The 6502 microprocessor
This section will introduce the architecture of a processor with a relatively simple design 
compared to more powerful modern processors. The intent here is to provide a whirlwind 
introduction to some basic concepts shared by processors spanning the spectrum from 
the very low end to sophisticated modern processors.

The 6502 processor was introduced by MOS Technology in 1975. The 6502 found 
widespread use in its early years in video game consoles from Atari and Nintendo and  
in computers marketed by Commodore and Apple. The 6502 continues in widespread  
use today in embedded systems, with estimates of between five and ten billion (yes, 
billion) units produced as of 2018. In popular culture, both Bender the robot in Futurama 
and the T-800 robot in The Terminator appear to have employed the 6502, based on 
onscreen evidence.

Many early microprocessors, like the 6502, were powered by a constant voltage of 5 volts 
(5V). In these circuits, a low signal level is any voltage between 0 and 0.8V. A high signal 
level is any voltage between 2 and 5V. The low signal level is defined as logical 0 and the 
high signal level is defined as logical 1. Chapter 2, Digital Logic, will delve further into 
digital electronics.

The word length of a processor defines the size of the fundamental data element the 
processor operates upon. The 6502 has a word length of 8 bits. This means the 6502 reads 
and writes memory 8 bits at a time and stores data internally in 8-bit wide registers.

Program memory and data memory share the same address space and the 6502 accesses 
its memory over a single bus. As was the case with the Intel 8088, the 6502 implements  
the von Neumann architecture. The 6502 has a 16-bit address bus, enabling access to  
64 KB of memory.

One kilobyte (abbreviated KB) is defined as 210, or 1,024 bytes. The number of unique 
binary combinations of the 16 address lines is 216, equal to 64 multiplied by 1,024, or 
65,536 locations. Note that just because a device can address 64 KB, it does not mean 
there must be memory at all of those locations. The Commodore VIC-20, based on the 
6502, contained just 5 KB of Random Access Memory (RAM) and 20 KB of Read-Only 
Memory (ROM).
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The 6502 contains internal storage areas called registers. A register is a location in a 
logical device in which a word of information can be stored and acted upon during 
computation. A typical processor contains a small number of registers for temporarily 
storing data values and performing operations such as addition or address computation.

The following figure 1.1 shows the 6502 register structure. The processor contains five 
8-bit registers (A, X, Y, P, and S) and one 16-bit register (PC). The numbers above each 
register indicate the bit numbers at each end of the register:

Figure 1.1: 6502 register set

Each of the A, X, and Y registers can serve as a general-purpose storage location. Program 
instructions can load a value into one of those registers and, some instructions later, use 
the saved value for some purpose, as long as the intervening instructions did not modify 
the register contents. The A register is the only register capable of performing arithmetic 
operations. The X and Y registers, but not the A register, can be used as index registers  
in calculating memory addresses.

The P register contains processor flags. Each bit in this register has a unique purpose, 
except for the bit labeled 1. The 1 bit is unused and can be ignored. Each of the remaining 
bits in this register is called a flag and indicates a specific condition that has occurred or 
represents a configuration setting. The 6502 flags are as follows:

• N: Negative sign flag: This flag is set when the result of an arithmetic operation sets 
bit 7 in the result. This flag is used in signed arithmetic.

• V: Overflow flag: This flag is set when a signed addition or subtraction results in 
overflow or underflow outside the range -128 to 127.
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• B: Break flag: This flag indicates a Break (BRK) instruction has executed. This bit is 
not present in the P register itself. The B flag value is only relevant when examining 
the P register contents as stored onto the stack by a BRK instruction or by an 
interrupt. The B flag is set to distinguish a software interrupt resulting from a BRK 
instruction from a hardware interrupt during interrupt processing.

• D: Decimal mode flag: This flag indicates processor arithmetic will operate in 
Binary-Coded Decimal (BCD) mode. BCD mode is rarely used and won't be 
discussed here, other than to note that this base-10 computation mode evokes  
the architectures of the Analytical Engine and ENIAC.

• I: Interrupt disable flag: This flag indicates that interrupt inputs (other than the 
non-maskable interrupt) will not be processed.

• Z: Zero flag: This flag is set when an operation produces a result of zero.
• C: Carry flag: This flag is set when an arithmetic operation produces a carry.

The N, V, Z, and C flags are the most important flags in the context of general computing 
involving loops, counting, and arithmetic.

The S register is the stack pointer. In the 6502, the stack is the region of memory from 
addresses $100 to $1FF. This 256-byte range is used for temporary storage of parameters 
within subroutines and holds the return address when a subroutine is called. At system 
startup, the S register is initialized to point to the top of this range. Values are "pushed" onto 
the stack using instructions such as PHA, which pushes the contents of the A register onto 
the stack. When a value is pushed onto the stack, the 6502 stores the value at the address 
indicated by the S register, after adding the fixed $100 offset, then decrements the S register. 
Additional values can be placed on the stack by executing more push instructions. As 
additional values are pushed, the stack grows downward in memory. Programs must take 
care not to exceed the fixed 256-byte size of the stack when pushing data onto it.

Data stored on the stack must be retrieved in the reverse of the order from which it was 
pushed onto the stack. The stack is a Last-In, First-Out (LIFO) data structure, meaning 
when you "pop" a value from the stack, it is the byte most recently pushed onto it. The PLA 
instruction increments the S register by one, then copies the value at the address indicated 
by the S register (plus the $100 offset) into the A register.

The PC register is the program counter. This register contains the memory address of 
the next instruction to be executed. Unlike the other registers, the PC is 16 bits long, 
allowing access to the entire 6502 address space. Each instruction consists of a 1-byte 
operation code, called opcode for short, and may be followed by zero to two operand 
bytes, depending on the instruction. After each instruction executes, the PC updates to 
point to the next instruction following the one that just completed. In addition to these 
automatic updates during sequential instruction execution, the PC can be modified by 
jump instructions, branch instructions, and subroutine call and return instructions.
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The 6502 instruction set
Each of the 6502 instructions has a three-character mnemonic. In assembly language 
source files, each line of code contains an instruction mnemonic followed by any operands 
associated with the instruction. The combination of the mnemonic and the operands 
defines the addressing mode. The 6502 supports several addressing modes providing  
a great deal of flexibility in accessing data in registers and memory. For this introduction, 
we'll only work with the immediate addressing mode, in which the operand itself contains 
a value rather than indicating a register or memory location containing the value. An 
immediate value is preceded by a # character.

In 6502 assembly, decimal numbers have no adornment (48 means 48 decimal) while 
hexadecimal values are preceded by a $ character ($30 means 30 hexadecimal, equivalent 
to 00110000b and to 48 decimal). An immediate decimal value looks like #48 and an 
immediate hexadecimal value looks like #$30.

Some assembly code examples will demonstrate the 6502 arithmetic capabilities. Five 6502 
instructions are used in the following examples:

• LDA loads register A with a value.

• ADC performs addition using the Carry (C flag) as an additional input and output.

• SBC performs subtraction using the Carry flag as an additional input and output.

• SEC sets the Carry flag directly.

• CLC clears the Carry flag directly.

Since the Carry flag is an input to the addition and subtraction instructions, it is 
important to ensure it has the correct value prior to executing the ADC or SBC 
instructions. Before initiating an addition operation, the C flag must be clear to indicate 
there is no carry from a prior addition. When performing multi-byte additions (say, with 
16-bit, 32-bit, or 64-bit numbers), the carry, if any, will propagate from the sum of one 
byte pair to the next as you add the more significant bytes to each other. If the C flag is 
set when the ADC instruction executes, the effect is to add one to the result. After the ADC 
completes, the C flag serves as the ninth bit of the result: a C flag result of 0 means there 
was no carry, and a 1 indicates there was a carry from the 8-bit register.

Subtraction using the SBC instruction tends to be a bit more confusing to novice 6502 
assembly language programmers. Schoolchildren learning subtraction use the technique 
of borrowing when subtracting a larger digit from a smaller digit. In the 6502, the C flag 
represents the opposite of Borrow. If C is 1, then Borrow is 0, and if C is 0, Borrow is 1. 
Performing a simple subtraction with no incoming Borrow requires setting the C flag 
before executing the SBC command. 
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The examples in the following employ the 6502 as a calculator using inputs defined 
directly in the code and with the result stored in the A register. The Results columns  
show the final value of the A register and the N, V, Z, and C flags.

Table 1.4: 6502 arithmetic instruction sequences
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If you don't happen to have a 6502-based computer with an assembler and debugger 
handy, there are several free 6502 emulators available online that you can run in your 
web browser. One excellent emulator is at https://skilldrick.github.io/
easy6502/. Visit the website and scroll down until you find a default code listing with 
buttons for assembling and running 6502 code. Replace the default code listing with a 
group of three instructions from Table 1.4, then assemble the code. To examine the effect 
of each instruction in the sequence, use the debugger controls to single-step through the 
instructions and observe the result of each instruction on the processor registers.

This section has provided a very brief introduction to the 6502 processor and a small 
subset of its capabilities. One point of this analysis was to illustrate the challenge of 
dealing simply with the issue of carries when performing addition and borrows when 
doing subtraction. From Charles Babbage to the designers of the 6502, computer 
architects have developed solutions to the problems of computation and implemented 
them using the best technology available to them.

Summary
This chapter began with a brief history of automated computing devices and described 
significant technological advances that drove leaps in computational capability. A 
discussion of Moore's law was followed with an assessment of its applicability over 
previous decades and implications for the future. The basic concepts of computer 
architecture were introduced through a discussion of the 6502 microprocessor. The 
history of computer architecture is fascinating, and I encourage you to explore it further.

The next chapter will introduce digital logic, beginning with the properties of basic 
electrical circuits and proceeding through the design of digital subsystems used in 
modern processors. You will learn about logic gates, flip-flops, and digital circuits 
including multiplexers, shift registers, and adders. It includes an introduction to hardware 
description languages, which are specialized computer languages used in the design of 
complex digital devices such as computer processors.
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Exercises
1. Using your favorite programming language, develop a simulation of a single-

digit decimal adder that operates in the same manner as in Babbage's Analytical 
Engine. First, prompt the user for two digits in the range 0-9: the addend and the 
accumulator. Display the addend, the accumulator, and the carry, which is initially 
zero. Perform a series of cycles as follows: 

a. If the addend is zero, display the values of the addend, accumulator, and carry 
and terminate the program. 

b. Decrement the addend by one and increment the accumulator by one. 

c. If the accumulator incremented from nine to zero, increment the carry. 

d. Go back to step a. 

Test your code with these sums: 0+0, 0+1, 1+0, 1+2, 5+5, 9+1, and 9+9. 

2. Create arrays of 40 decimal digits each for the addend, accumulator, and carry. 
Prompt the user for two decimal integers of up to 40 digits each. Perform the 
addition digit by digit using the cycles described in Exercise 1, and collect the carry 
output from each digit position in the carry array. After the cycles are complete, 
insert carries, and, where necessary, ripple them across digits to complete the 
addition operation. Display the results after each cycle and at the end. Test with  
the same sums as in Exercise 1 and test 99+1, 999999+1, 49+50, and 50+50.

3. Modify the program of Exercise 2 to implement subtraction of 40-digit decimal 
values. Perform borrowing as required. Test with 0-0, 1-0, 1000000-1, and 0-1.  
What is the result for 0-1?

4. 6502 assembly language references data in memory locations using an operand 
value containing the address (without the # character that indicates an immediate 
value). For example, the LDA $00 instruction loads the byte at memory address 
$00 into A. STA $01 stores the byte in A into address $01. Addresses can be any 
value in the range 0 to $FFFF, assuming memory exists at the address and the 
address is not already in use for some other purpose. Using your preferred 6502 
emulator, write 6502 assembly code to store a 16-bit value into addresses $00-$01, 
store a second value into addresses $02-$03, then add the two values and store the 
result in $04-$05. Be sure to propagate any carry between the two bytes. Ignore 
any carry from the 16-bit result. Test with $0000+$0001, $00FF+$0001, and 
$1234+$5678.
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5. Write 6502 assembly code to subtract two 16-bit values in a manner similar to 
Exercise 4. Test with $0001-$0000, $0001-$0001, $0100-$00FF, and $0000-$0001. 
What is the result for $0000-$0001?

6. Write 6502 assembly code to store two 32-bit integers to addresses $00-03 and 
$04-$07, then add them, storing the results in $08-$0B. Use a looping construct, 
including a label and a branch instruction, to iterate over the bytes of the two values 
to be added. Search the Internet for the details of the 6502 decrement and branch 
instructions and the use of labels in assembly language. Hint: The 6502 zero-page 
indexed addressing mode works well in this application.
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2
Digital Logic

This chapter builds upon the introductory topics presented in Chapter 1, Introducing 
Computer Architecture and provides a firm understanding of the digital building blocks 
used in the design of modern processors. We begin with a discussion of the properties 
of electrical circuits, before introducing transistors and examining their use as switching 
elements in logic gates. We then construct latches, flip-flops, and ring counters from 
the basic logic gates. More complex components, including registers and adders, are 
developed by combining the devices introduced earlier. The concept of sequential logic, 
meaning logic that contains state information that varies over time, is developed. The 
chapter ends with an introduction to hardware description languages, which are the 
preferred design method for complex digital devices.

The following topics will be covered in this chapter:

• Electrical circuits

• The transistor

• Logic gates

• Latches

• Flip-flops

• Registers

• Adders
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• Clocking

• Sequential logic

• Hardware description languages

Electrical circuits
We begin this chapter with a brief review of the properties of electrical circuits. 

Conductive materials, such as copper, exhibit the ability to easily produce an electric 
current in the presence of an electric field. Nonconductive materials, for example, glass, 
rubber, and polyvinyl chloride (PVC), inhibit the flow of electricity so thoroughly that 
they are used as insulators to protect electrical conductors against short circuits. In metals, 
electrical current consists of electrons in motion. Materials that permit some electrical 
current to flow, while predictably restricting the amount allowed to flow, are used in the 
construction of resistors.

The relationship between electrical current, voltage, and resistance in a circuit is analogous 
to the relation between flow rate, pressure, and flow restriction in a hydraulic system. 
Consider a kitchen water tap: pressure in the pipe leading to the tap forces water to flow 
when the valve is opened. If the valve is opened just a tiny bit, the flow from the faucet is a 
trickle. If the valve is opened further, the flow rate increases. Increasing the valve opening 
is equivalent to reducing the resistance to water flow through the faucet.

In an electrical circuit, voltage corresponds to the pressure in the water pipe. Electrical 
current, measured in amperes (often shortened to amps), corresponds to the rate of water 
flow through the pipe and faucet. Electrical resistance corresponds to the flow restriction 
resulting from a partially opened valve.

The quantities voltage, current, and resistance are related by the formula V = IR, where 
V is the voltage (in volts), I is the current (in amperes), and R is the resistance (in ohms). 
In words, the voltage across a resistive circuit element equals the product of the current 
through the element and its resistance. This is Ohm's Law, named in honor of Georg 
Ohm, who first published the relationship in 1827.

Figure 2.1 shows a simple circuit representation of this relationship. The stacked 
horizontal lines to the left indicate a voltage source, such as a battery or a computer 
power supply. The zig-zag shape to the right represents a resistor. The lines connecting the 
components are wires, which are assumed to be perfect conductors. The current, denoted 
by the letter I, flows around the circuit clockwise, out the positive side of the battery, 
through the resistor, and back into the negative side of the battery. The negative side of the 
battery is defined in this circuit as the voltage reference point, with a voltage of zero volts:
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Figure 2.1: Simple resistive circuit

In the water pipe analogy, the wire at zero volts represents a pool of water. A "pump"  
(the battery in the diagram) draws in water from the pool and pushes it out of the  
"pump" at the top of the battery symbol into a pipe at a higher pressure. The water flows 
as current I to the faucet, represented by resistor R to the right. After passing through the 
flow-restricted faucet, the water ends up in the pool where it is available to be drawn into 
the pump again.

If we assume that the battery voltage, or pressure rise across the water pump, is constant, 
then any increase in resistance R will reduce the current I by an inversely proportional 
amount. Doubling the resistance cuts the current in half, for example. Doubling the 
voltage, perhaps by placing two batteries in series as is common in flashlights, will  
double the current through the resistor.

In the next section, we will introduce the transistor, which serves as the basis for all 
modern digital electronic devices.

The transistor
A transistor is a semiconductor device that, for the purpose of this discussion, functions 
as a digital switch. This switching operation is electrically equivalent to changing between 
very high and very low resistance based on the state of an input signal. One important 
feature of switching transistors is that the switching input does not need to be very strong. 
This means that a very small current at the switching input can turn on and turn off a 
much larger current passing through the transistor. A single transistor's output current 
can drive many other transistor inputs. This characteristic is vital to the development of 
complex digital circuits.
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Figure 2.2 shows the schematic diagram of the NPN transistor. NPN refers to the 
construction of the interconnected silicon regions that make up the transistor. An N 
region of silicon has material added to it (using a process called doping) that increases the 
number of electrons present, making it somewhat negatively charged. A P region is doped 
to have a reduced number of electrons, making it somewhat positively charged. An NPN 
transistor contains two N sections, with a P section sandwiched between them. The three 
terminals of the device are connected to each of these regions:

Figure 2.2: NPN transistor schematic symbol

The collector, labeled C in Figure 2.2, is connected to one of the N regions, and the 
emitter, E, is connected to the other N region. The base, B, connects to the P region 
between the two N regions. The collector "collects" current and the emitter "emits" 
current, as indicated by the arrow. The base terminal is the control input. By changing the 
voltage applied to the base terminal, and thus altering the amount of current flowing into 
the base, current entering via the collector and exiting via the emitter can be turned on 
and off. 

Figure 2.3 is a schematic diagram of a transistor NOT gate. This circuit is powered by  
a 5 V supply. The input signal might come from a pushbutton circuit that produces 0V 
when the button is not pressed and 5 V when it is pressed. R1 limits the current flowing 
from the input terminal to the transistor base terminal when the input is high (near 5 V). 
In a typical circuit, R1 has a value of about 1,000 ohms. R2 might have a value of 5,000 
ohms. R2 limits the current flowing from the collector to the emitter when the transistor 
is switched on: 

Figure 2.3: Transistor NOT gate
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The input terminal accepts voltage inputs over the range 0 to 5 V, but since we are 
interested in digital circuit operation, we are only interested in signals that are either near  
0 V (low) or near 5 V (high). All voltage levels between the low and high states are assumed 
to be transient during near-instantaneous transitions between the low and high states.

A typical NPN transistor has a switching voltage of about 0.7 V. When the input terminal 
is held at a low voltage, 0.2 V for example, the transistor is switched off and has a very 
large resistance between the collector and emitter. This allows R2, connected to the 5 V 
power supply, to pull the output signal to a high state near 5 V.

When the input signal goes above 0.7 V and into the range 2 V to 5 V, the transistor 
switches on and the resistance between the collector and the emitter becomes very small. 
This, in effect, connects the output terminal to 0 V through a resistance that is much 
smaller than R2. As a result, the output terminal is pulled to a low voltage, typically 
around 0.2 V.

To summarize the behavior of this circuit, when the input terminal is high, the output 
terminal is low. When the input terminal is low, the output terminal is high. This function 
describes a NOT gate, in which the output is the inverse of the input. Assigning the low 
signal level the binary value 0 and the high signal level the value 1, the behavior of this 
gate can be summarized in the truth table shown in Table 2.1.

Table 2.1: NOT gate truth table

A truth table is a tabular representation of the output of a logical expression as a function 
of all possible combinations of inputs. Each column represents one input or output, with 
the output(s) shown on the right-hand side of the table. Each row presents one set of input 
values as well as the output of the expression given those inputs.

Logic gates
Circuits such as the NOT gate in Figure 2.3 are so common in digital electronics that 
they are assigned schematic symbols to enable construction of higher-level diagrams 
representing more complex logic functions.
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The symbol for a NOT gate is a triangle with a small circle at the output, shown in  
Figure 2.4:

Figure 2.4: NOT gate schematic symbol

The triangle represents an amplifier, meaning this is a device that turns a weaker  
input signal into a stronger output signal. The circle represents the inversion operator. 

More complex logical operations can be developed by building upon the design of the  
NOT gate.

The circuit in Figure 2.5 uses two transistors to perform an AND operation on the 
inputs Input1 and Input2. An AND operation has an Output of 1 when both inputs are 1, 
otherwise the Output is 0. Resistor R2 pulls the Output signal low unless both transistors 
have been switched on by the high levels of the Input1 and Input2 signals:

Figure 2.5: Transistor AND gate

Table 2.2 is the truth table for the AND gate circuit. In simple terms, the Output  
signal is true (at the 1 level) when both the Input1 and Input2 inputs are true, and  
false (0) otherwise.

Table 2.2: AND gate truth table
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The AND gate has its own schematic symbol, shown in Figure 2.6:

Figure 2.6: AND gate schematic symbol

An OR gate has an output of 1 when either the A or B input is 1, and also if both inputs 
are 1. Here is the truth table for the OR gate.

Table 2.3: OR gate truth table

The OR gate schematic symbol is shown in Figure 2.7:

Figure 2.7: OR gate schematic symbol

The exclusive-OR, or XOR, operation produces an output of 1 when just one of the A and 
B inputs is 1. The output is 0 when both inputs are 0 and when both are 1. Here is the XOR 
truth table.

Table 2.4: XOR gate truth table

The XOR gate schematic symbol is shown in Figure 2.8:

Figure 2.8: XOR gate schematic symbol
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Each of the AND, OR, and XOR gates can be implemented with an inverting output. The 
function of the gate is exactly the same as described in the preceding section, except the 
output is inverted (0 is replaced with 1 in the Output column in Table 2.2, Table 2.3, and 
Table 2.4, and 1 is replaced with 0). The schematic symbol for an AND, OR, or XOR gate 
with inverted output has a small circle added on the output side of the symbol, just as 
on the output of the NOT gate. The names of the gates with inverted outputs are NAND, 
NOR, and XNOR. The letter 'N' in each of these names indicates NOT. For example, 
NAND means NOT AND, which is functionally equivalent to an AND gate followed  
by a NOT gate.

Low-level logic gates can be combined to produce more complex functions. A multiplexer 
is a circuit that selects one of multiple inputs to pass through to an output based on the 
state of a selector input. Figure 2.9 is a diagram of a two-input multiplexer: 

Figure 2.9: Two-input multiplexer circuit

The two single-bit data inputs are I0 and I1. The selector input A passes the value of I0 
through to the output Q when A is high. It passes I1 to the output when A is low. One use 
of a multiplexer in processor design is to select input data from one of multiple sources 
when loading an internal register.

The truth table representation of the two-input multiplexer is shown in. In this table, the 
value X indicates "don't care", meaning it does not matter what value that signal has in 
determining the Q output.

Table 2.5: Two-input multiplexer truth table
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The logic gates presented in this section, and the circuits made by combining them, are 
referred to as combinational logic when the output at any moment depends only on 
the current state of the inputs. For the moment, we're ignoring propagation delay and 
assuming that the output responds immediately to changes in the inputs. In other words,  
the output does not depend on prior input values. Combinational logic circuits have  
no memory of past inputs or outputs.

Latches 
Combinational logic does not directly permit the storage of data as is needed for digital 
functions such as processor registers. Logic gates can be used to create data storage 
elements through the use of feedback from a gate output to an input.

The latch is a single-bit memory device constructed from logic gates. Figure 2.10 shows a 
simple type of latch called the Set-Reset, or SR, latch. The feature that provides memory 
in this circuit is the feedback from the output of the AND gate to the input of the OR gate: 

Figure 2.10: SR latch circuit

Based on the inputs S and R, the circuit can either set the output Q to high, reset Q to low, 
or cause the output Q to be held at its last value. In the hold state, both S and R are low, 
and the state of the output Q is retained. Pulsing S high (going from low to high then back 
to low) causes the output Q to go high and remain at that level. Pulsing R high causes Q 
to go low and stay low. If both S and R are set high, the R input overrides the S input and 
forces Q low.

The truth table for the SR latch is shown in Table 2.6. The output Qprev represents the most 
recent value of Q selected through the actions of the S and R inputs.

Table 2.6: SR latch truth table

 

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



38     Digital Logic

One item to be aware of with this latch circuit, and with volatile memory devices in 
general, is that the initial state of the Q output upon power-up is not well defined. The 
circuit startup behavior and the resulting value of Q depend on the characteristics and 
timing of the individual gates as they come to life. After power-on, and prior to beginning 
use of this circuit for productive purposes, it is necessary to pulse the S or R input to place 
Q into a known state.

The gated D latch, where D stands for data, has many uses in digital circuits. The term 
gated refers to the use of an additional input that enables or inhibits the passage of data 
through the circuit. Figure 2.11 shows an implementation of the gated D latch: 

Figure 2.11: Gated D latch circuit

The D input passes through to the Q output whenever the E (Enable) input is high. When 
E is low, the Q output retains its previous value regardless of the state of the D input. The  
Q output always holds the inverse of the Q output (the horizontal bar on Q means NOT).

Table 2.7: Gated D latch truth table

It is worth taking a moment to trace the logical flow of this circuit to understand its 
operation. The left half of Figure 2.11, consisting of the D input, the NOT gate, and the  
two leftmost NAND gates, is a combinational logic circuit, meaning the output is always  
a direct function of the input.
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First, consider the case when the E input is low. With E low, one of the inputs to each 
of the two left-hand NAND gates is low, which forces the output of both gates to 1 
(refer to Table 2.2 and the AND gate truth table, and remember that the NAND gate is 
equivalent to an AND gate followed by a NOT gate). In this state, the value of the D input 
is irrelevant, and one of Q or Q must be high and the other must be low, because of the 
cross-connection of the outputs of the two rightmost NAND gates feeding back to the  
gate inputs. This state will be retained as long as E is low.

When E is high, depending on the state of D, one of the two leftmost NAND gates will 
have a low output and the other will have a high output. The one with the low output will 
drive the connected rightmost NAND gate to a high output. This output will feed back 
to the input of the other right-hand side NAND gate and, with both inputs high, will 
produce a low output. The result is that the input D will propagate through to the  
output Q and the inverse of D will appear at output Q.

It is important to understand that Q and Q cannot both be high or low at the same 
time, because this would represent a conflict between the outputs and inputs of the 
two rightmost NAND gates. If one of these conditions happens to arise fleetingly, such 
as during power-up, the circuit will self-adjust to a stable configuration, with Q and Q 
holding opposite states. As with the SR latch, the result of this self-adjustment is not 
predictable, so it is important to initialize the gated D latch to a known state before using 
it in any operations. Initialization is performed by setting E high, setting D to the desired 
initial Q output, and then setting E low.

The gated D latch described previously is a level-sensitive device, meaning that the output 
Q changes to follow the D input as long as the E input is held high. In more complex 
digital circuits, it becomes important to synchronize multiple circuit elements connected 
in series without the need to carefully account for propagation delays across the individual 
devices. The use of a shared clock signal as an input to multiple elements enables this type 
of synchronization. In a shared-clock configuration, components update their outputs 
based on clock signal edges (edges are the moments of transition from low to high or  
high to low) rather than directly based on high or low input signal levels. 

Edge triggering is useful because the clock signal edges identify precise moments at which 
device inputs must be stable. After the clock edge has passed, the device's inputs are free 
to vary in preparation for the next active clock edge without the possibility of altering 
the outputs. The flip-flop circuit, discussed next, responds to clock edges, providing this 
desirable characteristic for use in complex digital designs.
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Flip-flops
A device that changes its output state only when a clock signal makes a specified transition 
(either low-to-high or high-to-low) is referred to as an edge-sensitive device. Flip-flops 
are similar to latches, with the key difference being that the output of a flip-flop changes  
in response to a signal edge rather than responding to the signal level.

The positive edge-triggered D flip-flop is a popular digital circuit component used in a 
variety of applications. The D flip-flop typically includes set and reset input signals that 
perform the same functions as in the SR latch. This flip-flop has a D input that functions 
just like the D input of the gated D latch. Instead of an enable input, the D flip-flop has a 
clock input that triggers the transfer of the D input to the Q output and, with inversion, 
to the Q output on the clock's rising edge. Other than within a very narrow time window 
surrounding the rising edge of the clock signal, the flip-flop does not respond to the  
value of the D input. When active, the S and R inputs override any activity on the D  
and clock inputs.

Figure 2.12 shows the schematic symbol for the D flip-flop. The clock input is indicated  
by the small triangle on the left-hand side of the symbol:

Figure 2.12: D flip-flop schematic symbol

Consider the following table. The upward-pointing arrows in the CLK column indicate  
the rising edge of the clock signal. The Q and  outputs shown in the table rows with 
upward-pointing arrows represent the state of the outputs following the rising clock edge. 

Table 2.8: D flip-flop truth table
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Flip-flops can be connected in series to enable the transfer of data bits from one flip-flop 
to the next. This is achieved by connecting the Q output of the first flip-flop to the D input 
of the second one, and so on for any number of stages. This structure is called a shift 
register and has many applications, two of which are serial-to-parallel conversion and 
parallel-to-serial conversion.

If the Q output at the end of a shift register is connected to the D input at the other end, 
the result is a ring counter. Ring counters are used for tasks such as the construction 
of finite state machines. Finite state machines implement a mathematical model that is 
always in one of a set of well-defined states. Transitions between states occur when inputs 
satisfy the requirements to transition to a different state. 

The ring counter in Figure 2.13 has four positions. The counter is initialized by pulsing 
the RST input high and then low. This sets the Q output of the first (leftmost) flip-flop to 
1 and the remaining flip-flop Q outputs to 0. After that, each rising edge of the CLK input 
transfers the 1 bit to the next flip-flop in the sequence. The fourth CLK pulse transfers the 
1 back to the leftmost flip-flop. At all times, all of the flip-flops have a Q output of 0 except 
for one that has a 1 output. The flip-flops are edge-sensitive devices and all of them are 
driven by a common clock signal, making this a synchronous circuit:

Figure 2.13: Four-position ring counter circuit

This circuit contains four ring counter states. Adding six more flip-flops would bring the 
number of states to 10. As we discussed in Chapter 1, Introducting Computer Architecture, 
the ENIAC used vacuum tube-based 10-position ring counters to maintain the state of 
decimal digits. A 10-state ring counter based on the circuit in Figure 2.13 can perform  
the same function.

In the next section, we will construct registers for data storage from flip-flops.
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Registers
Processor registers temporarily store data values and serve as input to and output from 
a variety of instruction operations, including data movement to and from memory, 
arithmetic, and bit manipulation. Most general-purpose processors include instructions 
for shifting binary values stored in registers to the left or right, and for performing 
rotation operations in which data bits shifted out one end of the register are inserted at the 
opposite end. The rotation operation is similar to the ring counter, except that the bits in 
a rotation can hold arbitrary values, while a ring counter typically transfers a single 1 bit 
through the sequence of locations. Circuits performing these functions are constructed 
from the low-level gates and flip-flops discussed earlier in this chapter.

Registers within a processor are usually loaded with data values and read out in parallel, 
meaning all the bits are written or read on separate signal lines simultaneously under the 
control of a common clock edge. The examples presented in this section will use four-bit 
registers for simplicity, but it is straightforward to extend these designs to 8, 16, 32, or  
64 bits as needed.

Figure 2.14 shows a simple four-bit register with parallel input and output. This is a 
synchronous circuit, in which data bits provided on inputs D0-D3 are loaded into the  
flip-flops on the rising edge of the CLK signal. The data bits appear immediately at the 
Q0-Q3 outputs and retain their state until new data values are loaded on a subsequent 
rising clock edge:

Figure 2.14: Four-bit register circuit

To perform useful functions beyond simply storing data in the register, it is necessary to be 
able to load data from multiple sources into the register, perform operations on the register 
contents, and write the resulting data value to one of potentially many destinations. 
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In general-purpose processors, a data value can usually be loaded into a register from 
a memory location or an input port, or transferred from another register. Operations 
performed on the register contents might include incrementing, decrementing, arithmetic, 
shifting, rotating, and bit operations such as AND, OR, and XOR. Note that incrementing 
or decrementing an integer is equivalent to addition or subtraction of an operand with 
a second implied operand of 1. Once a register contains the result of a computation, its 
contents can be written to a memory location, to an output port, or to another register.

Figure 2.9 presented a circuit for a two-input multiplexer. It is straightforward to extend 
this circuit to support a larger number of inputs, any of which can be selected by control 
inputs. The single-bit multiplexer can be replicated to support parallel operation across all 
the bits in a processor word. Such a circuit can be used to select among a variety of sources 
when loading a register with data. When implemented in a processor, logic triggered by 
instruction opcodes sets the multiplexer control inputs to route data from the appropriate 
source to the specified destination register. Chapter 3, Processor Elements, will expand on  
the use of multiplexers for data routing to registers and to other units within the processor.

The next section will introduce circuits that add binary numbers.

Adders
General-purpose processors usually support the addition operation for performing 
calculations on data values and, separately, to manage the instruction pointer. Following 
the execution of each instruction, the instruction pointer increments to the next 
instruction location. When the processor supports multi-word instructions, the updated 
instruction pointer must be set to its current value plus the number of words in the  
just-completed instruction.

A simple adder circuit adds two data bits plus an incoming carry and produces a one-bit 
sum and a carry output. This circuit, shown in Figure 2.15, is called a full adder because 
it includes the incoming carry in the calculation. A half adder adds only the two data bits 
without an incoming carry:

Figure 2.15: Full adder circuit
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The full adder uses logic gates to produce its output as follows. The sum bit S is 1 only if 
the total number of 1 bits in the group A, B, Cin is an odd number. Otherwise, S is 0. The 
two XOR gates perform this logical operation. Cout is 1 if both A and B are 1, or if just  
one of A and B is 1 and Cin is also 1. Otherwise, Cout is 0.

The circuit in Figure 2.15 can be condensed to a schematic block with three inputs and 
two outputs for use in higher-level diagrams. Figure 2.16 is a four-bit adder with four 
blocks representing copies of the full adder circuit of Figure 2.15. The inputs are the two 
words to be added, A0-A3 and B0-B3, and the incoming carry, Cin. The output is the sum, 
S0-S3, and the outgoing carry, Cout:

Figure 2.16: 4-bit adder circuit

It is important to note that this circuit is a combinational circuit, meaning that once the 
inputs have been set, the outputs will be generated directly. This includes the carry action 
from bit to bit, no matter how many bits are affected by carries. Because the carry flows 
across bit by bit, this configuration is referred to as a ripple carry adder. It takes some 
time for the carries to propagate across all the bit positions and for the outputs to stabilize 
at their final value.

Since we are now discussing a circuit with a signal path that passes through a significant 
number of devices, it is appropriate to discuss the implications of the time required for 
signals to travel from end to end across multiple components.

Propagation delay
When the input of a logic device changes, the output does not change instantly. There is 
a time delay between a change of state at the input and the final result appearing at the 
output called the propagation delay.

Placing multiple combinational circuits in series results in an overall propagation delay 
that is the sum of the delays of all the intermediate devices. A gate may have a different 
propagation delay for a low-to-high transition than for a high-to-low transition, so the 
larger of these two values should be used in the estimation of the worst-case delay.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



Adders     45

From Figure 2.15, the longest path (in terms of the number of gates in series) from input 
to output for the full adder is from the A and B inputs to the Cout output: a total of three 
sequential gates. If all of the input signals in Figure 2.16 are set simultaneously on the full 
adder inputs, the three-gate delay related to those inputs will take place simultaneously 
across all the adders. However, the C0 output from Full Adder 0 is only guaranteed to 
be stable after the three-gate delay across Full Adder 0. Once C0 is stable, there is an 
additional two-gate delay across Full Adder 1 (note that in Figure 2.15, Cin only passes 
through two sequential levels of gates).

The overall propagation delay for the circuit in Figure 2.16 is therefore three gate delays 
across Full Adder 0 followed by two gate delays across each of the remaining three full 
adders, a total of nine gate delays. This may not seem too bad, but consider a 32-bit adder: 
the propagation delay for this adder is three gate delays for Full Adder 0 plus two gate 
delays for each of the remaining 31 adders, a total of 65 gate delays.

The path with the maximum propagation delay through a combinational circuit is called 
the critical path, and this delay places an upper limit on the clock frequency that can be 
used to drive the circuit. 

Logic gates from the Advanced Schottky Transistor-Transistor Logic family, abbreviated 
(AS) TTL, are among the fastest individually packaged gates available today. An (AS) TTL 
NAND gate has a propagation delay of 2 nanoseconds (ns) under typical load conditions. 
For comparison, light in a vacuum travels just under two feet in 2 ns.

In the 32-bit ripple carry adder, 65 propagation delays through (AS) TTL gates result 
in a delay of 130 ns between setting the inputs and receiving final, stable outputs. For 
the purpose of forming a rough estimate, let's assume this is the worst-case propagation 
delay through an entire processor integrated circuit. We'll also ignore any additional time 
required to hold inputs stable before and after an active clock edge. This adder, then, 
cannot perform sequential operations on input data more often than once every 130 ns.

When performing 32-bit addition with a ripple carry adder, the processor uses a clock 
edge to transfer the contents of two registers (each consisting of a set of D flip-flops) plus 
the processor C flag to the adder inputs. The subsequent clock edge loads the results of the 
addition into a destination register. The C flag receives the value of Cout from the adder.
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A clock with a period of 130 ns has a frequency of (1/130 ns), which is 7.6 MHz. This 
certainly does not seem very fast, especially when many low-cost processors are available 
today with clock speeds in excess of 4 GHz. Part of the reason for this discrepancy is 
the inherent speed advantage of integrated circuits containing massive numbers of 
tightly packed transistors, and the other part is the result of the cleverness of designers, 
as referenced by Gordon Moore in Chapter 1, Introducting Computer Architecture. To 
perform the adder function efficiently, many design optimizations have been developed to 
substantially reduce the worst-case propagation delay. Chapter 8, Performance-Enhancing 
Techniques, will discuss some of the methods processor architects use to wring higher 
speeds from their designs.

In addition to gate delays, there is also some delay resulting from signal travel through 
wires and integrated circuit conductive paths. The propagation speed through a conductive 
path varies depending on the material used for conduction and the insulating material 
surrounding the conductor. Depending on these and other factors, the propagation speed 
in digital circuits is typically 50-90% of the speed of light in a vacuum.

The next section discusses the generation and use of clocking signals in digital circuits.

Clocking
The clock signal serving as the heartbeat of a processor is usually a square wave signal 
operating at a fixed frequency. A square wave is a digital signal that oscillates between 
high and low states, spending equal lengths of time at the high and low levels on each 
cycle. Figure 2.17 shows an example of a square wave over time:

Figure 2.17: Square wave signal

The clock signal in a computer system is usually generated with a crystal oscillator 
providing a base frequency of a few megahertz (MHz). 1 MHz is 1 million cycles per 
second. A crystal oscillator relies on the resonant vibration of a physical crystal, usually 
made of quartz, to generate a cyclic electrical signal using the piezoelectric effect. Quartz 
crystals resonate at precise frequencies, which leads to their use as timing elements in 
computers, wristwatches, and other digital devices.
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Although crystal oscillators are more accurate time references than alternative timing 
references that may be used in low-cost devices, crystals exhibit errors in frequency that 
accumulate over periods of days and weeks to gradually drift by seconds and then minutes 
away from the correct time. To avoid this problem, most Internet-connected computers 
access a time server periodically to reset their internal clocks to the current time as 
defined by a precise atomic reference clock.

Phase-locked loop (PLL) frequency multiplier circuits are used to generate the  
high-frequency clock signals needed by multi-GHz processors. A PLL frequency 
multiplier generates a square wave output frequency at an integer multiple of the input 
frequency provided to it from the crystal oscillator. The ratio of the PLL clock output 
frequency to the input frequency it receives is called the clock multiplier.

A PLL frequency multiplier operates by continuously adjusting the frequency of its 
internal oscillator to maintain the correct clock multiplier ratio relative to the PLL input 
frequency. Modern processors usually have a crystal oscillator clock signal input and 
contain several PLL frequency multipliers producing different frequencies. Different clock 
multiplier values are used to drive core processor operations at the highest possible speed 
while simultaneously interacting with devices that require lower clock frequencies, such  
as system memory.

Sequential logic
Digital circuitry that generates outputs based on a combination of current inputs and 
past inputs is called sequential logic. This is in contrast to combinational logic, in which 
outputs depend only on the current state of the inputs. When a sequential logic circuit 
composed of several components operates those components under the control of a 
shared clock signal, the circuit implements synchronous logic.

The steps involved in the execution of processor instructions take place as a series of 
discrete operations that consume input in the form of instruction opcodes and data values 
received from various sources. This activity takes place under the coordination of a master 
clock signal. The processor maintains internal state information from one clock step to the 
next, and from one instruction to the next.

Modern complex digital devices, including processors, are almost always implemented as 
synchronous sequential logic devices. Low-level internal components, such as the gates, 
multiplexers, registers, and adders discussed previously, are usually combinational logic 
circuits. These lower-level components, in turn, are provided inputs under the control of 
synchronous logic. After allowing sufficient time for propagation across the combinational 
components, the shared clock signal transfers the outputs of those components into other 
portions of the architecture under the control of processor instructions and the logic 
circuits that carry out those instructions.
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Chapter 3, Processor Elements, will introduce the higher-level processor components 
that implement more complex functionality, including instruction decoding, instruction 
execution, and arithmetic operations.

The next section introduces the concept of designing digital hardware using computer 
programming languages.

Hardware description languages
It is straightforward to represent simple digital circuits using logic diagrams similar to the 
ones presented earlier in this chapter. When designing digital devices that are substantially 
more complex, however, the use of logic diagrams quickly becomes unwieldy. As an 
alternative to the logic diagram, a number of hardware description languages have been 
developed over the years. This evolution has been encouraged by Moore's Law, which 
drives digital system designers to continually find new ways to quickly make the most 
effective use of the constantly growing number of transistors available in integrated circuits.

Hardware description languages are not the exclusive province of digital designers at 
semiconductor companies; even hobbyists can acquire and use these powerful tools  
at an affordable cost, even for free in many cases.

A gate array is a logic device containing a large number of logic elements such as NAND 
gates and D flip-flops that can be connected to form arbitrary circuits. A category of gate 
arrays called field programmable gate arrays (FPGAs) enables end users to implement 
their own designs into gate array chips using just a computer, a small development board, 
and an appropriate software package. 

A developer can define a complex digital circuit using a hardware description language and 
program it into a chip directly, resulting in a fully functional, high-performance custom 
digital device. Current-generation low-cost FPGAs contain a sufficient number of gates to 
implement complex modern processor designs. As one example, an FPGA-programmable 
design of the RISC-V processor (discussed in detail in Chapter 11, The RISC-V Architecture 
and Instruction Set) is available in the form of open source hardware description  
language code.
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VHDL
VHDL is one of the leading hardware description languages in use today. Development of 
the VHDL language began in 1983 under the guidance of the U.S. Department of Defense. 
The syntax and some of the semantics of VHDL are based on the Ada programming 
language, which, incidentally, is named after Ada Lovelace, the programmer of Charles 
Babbage's Analytical Engine, discussed in Chapter 1, Introducting Computer Architecture. 
Verilog is another popular hardware design language with capabilities similar to VHDL. 
This book will use VHDL exclusively, but the examples could be implemented just as 
easily in Verilog.

VHDL is a multilevel acronym where the V stands for VHSIC, which means Very 
High-Speed Integrated Circuit, and VHDL stands for VHSIC Hardware Description 
Language. The following code presents a VHDL implementation of the full adder  
circuit shown in Figure 2.15:

-- Load the standard libraries

library IEEE;

  use IEEE.STD_LOGIC_1164.ALL;

-- Define the full adder inputs and outputs

entity FULL_ADDER is

  port (

    A     : in    std_logic;

    B     : in    std_logic;

    C_IN  : in    std_logic;

    S     : out   std_logic;

    C_OUT : out   std_logic

  );

end entity FULL_ADDER;

-- Define the behavior of the full adder

architecture BEHAVIORAL of FULL_ADDER is
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begin

  S     <= (A XOR B) XOR C_IN;

  C_OUT <= (A AND B) OR ((A XOR B) AND C_IN);

end architecture BEHAVIORAL;

This code is a fairly straightforward textual description of the full adder in Figure 2.15. 
Here, the section introduced with entity FULL_ADDER is defines the inputs and 
outputs of the full adder component. The architecture section toward the end of the 
code describes how the circuit logic operates to produce the outputs S and C_OUT given 
the inputs A, B, and C_IN. The term std_logic refers to a single-bit binary data type. 
The <= characters represent wire-like connections, driving the output on the left-hand 
side with the value computed on the right-hand side.

The following code references the FULL_ADDER VHDL as a component in the 
implementation of the four-bit adder design presented in Figure 2.16:

-- Load the standard libraries

library IEEE;

  use IEEE.STD_LOGIC_1164.ALL;

-- Define the 4-bit adder inputs and outputs

entity ADDER4 is

  port (

    A4        : in    std_logic_vector(3 downto 0);

    B4        : in    std_logic_vector(3 downto 0);

    SUM4      : out   std_logic_vector(3 downto 0);

    C_OUT4    : out   std_logic

  );

end entity ADDER4;

-- Define the behavior of the 4-bit adder

architecture BEHAVIORAL of ADDER4 is
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  -- Reference the previous definition of the full adder

  component FULL_ADDER is

    port (

      A             : in    std_logic;

      B             : in    std_logic;

      C_IN          : in    std_logic;

      S             : out   std_logic;

      C_OUT         : out   std_logic

    );

  end component;

  -- Define the signals used internally in the 4-bit adder

  signal c0, c1, c2 : std_logic;

begin

  -- The carry input to the first adder is set to 0

  FULL_ADDER0 : FULL_ADDER

    port map (

      A          => A4(0),

      B          => B4(0),

      C_IN       => '0',

      S          => SUM4(0),

      C_OUT      => c0

    );

  FULL_ADDER1 : FULL_ADDER

    port map (

      A          => A4(1),

      B          => B4(1),

      C_IN       => c0,

      S          => SUM4(1),

      C_OUT      => c1

    );
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  FULL_ADDER2 : FULL_ADDER

    port map (

      A          => A4(2),

      B          => B4(2),

      C_IN       => c1,

      S          => SUM4(2),

      C_OUT      => c2

    );

  FULL_ADDER3 : FULL_ADDER

    port map (

      A          => A4(3),

      B          => B4(3),

      C_IN       => c2,

      S          => SUM4(3),

      C_OUT      => C_OUT4

    );

end architecture BEHAVIORAL;

This code is a textual description of the four-bit adder in Figure 2.16. Here, the section 
introduced with entity ADDER4 is defines the inputs and outputs of the four-bit 
adder component. The phrase std_logic_vector(3 downto 0) represents a  
four-bit data type with bit number 3 in the left-hand (most significant) position and bit  
number 0 on the right-hand side.

The FULL_ADDER component is defined in a separate file, referenced here by the section 
beginning component FULL_ADDER is. The statement signal c0, c1, c2 : 
std_logic; defines the internal carry values between the full adders. The four port 
map sections define the connections between the four-bit adder signals and the inputs and 
outputs of each of the single-bit full adders. To reference a bit in a multi-bit value, the bit 
number follows the parameter name in parentheses. For example, A4(0) refers to the least 
significant of the four bits in A4.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



Summary     53

Note the use of hierarchy in this design. A simple component, the single-bit full adder, 
was first defined as a discrete, self-contained block of code. This block was then used to 
construct a more complex circuit, the four-bit adder. This hierarchical approach can be 
extended through many levels to define an extremely complex digital device constructed 
from less complex components, each of which, in turn, is constructed from even simpler 
parts. This general approach is used routinely in the development of modern processors 
containing hundreds of millions of transistors, while managing complexity in a manner 
that keeps the design understandable by humans at each level of the architectural hierarchy.

The code in this section provides all the circuit information that a logic synthesis software 
tool suite requires to implement the four-bit adder as a component in an FPGA device. Of 
course, additional circuitry is required to present meaningful inputs to the adder circuit and 
then to process the results of an addition operation after allowing for propagation delay.

This has been a very brief introduction to VHDL. The intent here has been to make you 
aware that hardware description languages such as VHDL are the current state of the art 
in complex digital circuit design. In addition, you should know that some very low-cost 
options are available for FPGA development tools and devices. The exercises at the end  
of this chapter will introduce you to some highly capable FPGA development tools at  
no cost. You are encouraged to search the Internet and learn more about VHDL and  
other hardware description languages and try your hand at developing some simple  
(and not-so-simple) circuit designs.

Summary
This chapter began with an introduction to the properties of electrical circuits and showed 
how components such as voltage sources, resistors, and wires are represented in circuit 
diagrams. The transistor was introduced, with a focus on its use as a switching element 
in digital circuits. The NOT gate and the AND gate were constructed from transistors 
and resistors. Additional types of logic gates were defined and truth tables were presented 
for each one. Logic gates were used to construct more complex digital circuits, including 
latches, flip-flops, registers, and adders. The concept of sequential logic was introduced, 
and its applicability to processor design was discussed. Finally, hardware description 
languages were introduced, and a four-bit adder example was presented in VHDL.

You should now have an understanding of the basic digital circuit concepts and design 
tools used in the development of modern processors. The next chapter will expand upon 
these building blocks to explore the functional components of modern processors, leading 
to a discussion of how those components coordinate to implement the primary processor 
operational cycle of instruction loading, decoding, and execution.
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Exercises
1. Rearrange the circuit in Figure 2.5 to convert the AND gate to a NAND gate.  

Hint: there is no need to add or remove components.

2. Create a circuit implementation of an OR gate by modifying the circuit in  
Figure 2.5. Wires, transistors, and resistors can be added as needed.

3. Search the Internet for free VHDL development software suites that include a 
simulator. Get one of these suites, set it up, and build any simple demo projects  
that come with the suite to ensure it is working properly.

4. Using your VHDL tool set, implement the four-bit adder using the code listings 
presented in this chapter.

5. Add test driver code (search the Internet to learn how) to your four-bit adder to 
drive it through a limited set of input sets and verify that the outputs are correct.

6. Expand the test driver code and verify that the four-bit adder produces correct 
results for all possible combinations of inputs.
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This chapter begins our development of a comprehensive understanding of modern 
processor architectures. Building upon the basic digital circuits introduced in Chapter 
2, Digital Logic, we discuss the functional units of a simple, generic computer processor. 
Concepts related to the instruction set and register set are introduced, followed by 
a discussion of the steps involved in instruction loading, decoding, execution, and 
sequencing. Addressing modes and instruction categories are discussed in the context of 
the 6502 architecture. The need for processor interrupt handling is introduced, using the 
example of 6502 interrupt processing. The standard approaches modern processors employ 
for input/output (I/O) operations are introduced, including direct memory access.

After completing this chapter, you will understand the basic parts of a processor and 
the structure of processor instruction sets. You will have learned the types of processor 
instructions, why interrupt processing is necessary, and will understand I/O operations.

The following topics will be covered in this chapter:

• A simple processor
• The instruction set
• Addressing modes
• Instruction categories
• Interrupt processing
• Input/output operations
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A simple processor
The 6502 processor architecture and a small subset of its instructions were introduced 
in Chapter 1, Introducing Computer Architecture. In this section, we will build upon 
that introduction to present the generic functional components universally employed 
in processor architectures, from the tiniest embedded controllers to the most powerful 
server CPUs.

The integrated circuit at the core of a computer system goes by a few different names: the 
Central Processing Unit (CPU), microprocessor, or, simply, processor. A microprocessor 
is a single integrated circuit that implements the functions of a processor. This book will 
refer to all categories of CPUs and microprocessors as processors.

A typical processor contains three logically distinct functional units:

• The control unit, which manages the overall operation of the device: This 
management activity includes fetching the next instruction from memory, decoding 
the instruction to determine the operation to perform, and distributing the 
execution of the instruction to appropriate elements within the processor. 

• The Arithmetic Logic Unit (ALU): This is a combinational circuit that executes 
arithmetic and bit manipulation operations. 

• The register set: This provides temporary storage as well as source and destination 
locations for instruction inputs and outputs.

The following diagram shows the flow of control and data among the control unit, the 
registers, the ALU, system memory, and input/output devices:

Figure 3.1: Interactions between processor functional units
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The control unit directs overall processor operations to carry out each instruction. The 
registers, ALU, memory, and input/output devices respond to commands initiated by  
the control unit.

Control unit
The control unit of a modern processor is a synchronous sequential digital circuit. 
Its function is to interpret processor instructions and manage the execution of those 
instructions by interacting with the other functional units within the processor and with 
external components, including memory and input/output devices. The control unit is  
a key part of the von Neumann architecture.

For the purposes of this chapter, the term memory refers to system Random Access 
Memory (RAM) external to the processor's execution units. Cache memory will be 
covered in later chapters.

Some examples of I/O devices are the computer keyboard, mouse, disk storage, and 
graphical video displays. Other common I/O devices include network interfaces, Wi-Fi 
and Bluetooth® wireless interfaces, sound output to speakers, and microphone input.

When a computer system is powered on, the processor undergoes a reset process to 
initialize its internal components to defined values. During the reset process, it loads the 
Program Counter (PC) register with the memory location of the first instruction to be 
executed. Software developers who construct the lowest-level system software components 
must configure their development tools to produce a code memory image that begins 
execution at the address required by the processor architecture.

The PC is a central component of the control unit. The PC register contains the memory 
address of the next instruction to be executed. At the beginning of the instruction 
execution cycle, the control unit reads the data word at the memory address indicated by 
the PC and loads it into an internal register for decoding and execution. The first word of 
an instruction contains an opcode. Based on the opcode bit pattern, the control unit may 
read additional memory locations following the opcode to retrieve data needed by the 
instruction, such as a memory address or data operand.
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As the control unit completes the reset process and begins executing instructions,  
it performs the repetitive cycle shown in Figure 3.2:

Figure 3.2: Instruction execution cycle

Once the reset has completed, the PC register contains the initial instruction location. The 
control unit fetches the first instruction from memory and decodes it. Decoding is the 
process the control unit performs to determine the actions required by the instruction.

As part of the decoding process, the control unit identifies the category of instruction. 
The two basic instruction categories represented in Figure 3.2 are branching instructions 
and all other instructions. Branching instructions are implemented directly by the control 
unit. These instructions cause the contents of the PC to be replaced with the memory 
address of the branch destination. Examples of instructions that perform branching are 
conditional branch instructions (when the branch is taken), subroutine calls, subroutine 
returns, and unconditional branching (also called jump) instructions.

Instructions that do not involve branching are carried out by processor circuitry under 
the direction of the control unit. In a sense, the control unit manages the execution of 
the non-branching instructions in a manner similar to the Analytical Engine's mill (see 
Chapter 1, Introducing Computer Architecture), except instead of using the presence of 
studs on a rotating barrel to engage portions of the mill machinery, the control unit 
uses the decoded bits of the instruction opcode to activate particular sections of digital 
circuitry. The selected circuit components perform the tasks required by the instruction.
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The steps in executing an instruction include tasks such as reading or writing a register, 
reading or writing a memory location, directing the ALU to perform a mathematical 
operation, or other miscellaneous activities. In most processors, the execution of a single 
instruction takes place over multiple processor clock cycles. The instruction clock cycle 
count can vary significantly from simple instructions that require only a small number 
of clock cycles to complex operations that take many cycles to complete. The control unit 
orchestrates all of this activity.

The circuits managed by the control unit are constructed from the simple logic gates 
discussed in Chapter 2, Digital Logic and are often composed of higher-level constructs 
such as multiplexers, latches, and flip-flops. Multiplexers, in particular, are commonly 
used in control unit logic to selectively route data to a destination.

Executing an instruction – a simple example
Consider a simplified example of two 6502 instructions, TXA and TYA. TXA copies the 
contents of register X to register A, and TYA does the same thing using the Y register 
as the source. If we consider these two instructions in isolation, the execution of both 
instructions can be implemented as shown in Figure 3.3:

Figure 3.3: 6502 TXA and TYA instructions

The circuit in Figure 3.3 assumes the X and Y registers are D flip-flop registers (as in 
Figure 2.14), except in the 6502, they are 8-bit registers rather than holding just 4 bits. 
The multiplexer is implemented as eight copies of the two-input, single-bit multiplexer of 
Figure 2.9, all controlled by a single selector input. In Figure 3.3, thicker lines represent 
8-bit data buses and thinner lines are individual logic signals. The short lines crossing the 
thick lines with the numeral 8 above them indicate the number of bits in the bus.
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To execute the TXA instruction, these steps are performed:

1. The control unit first sets the Select input to direct the X register data bits through 
to the output of the multiplexer. This presents the data from X at the inputs to the  
A register. 

2. After the Select input to the multiplexer has been set, the control unit must pause 
for the propagation of the data bits to the multiplexer outputs. 

3. After the multiplexer outputs have stabilized, the control unit generates a rising 
edge on the CLK signal to load the X register data bits into register A.

To execute the TYA instruction, the control unit performs the same sequence of steps, 
except it initially sets the Select input to feed the Y register to the multiplexer output.

This is a very simple example of control unit instruction execution, but it emphasizes the 
points that any individual instruction may require multiple steps and may involve only 
a small portion of the circuitry present in the processor. Most of the processor circuitry 
is not used in the execution of any individual instruction. Unused components within 
the processor must be managed by the control unit to ensure they remain idle when not 
required by an executing instruction.

Arithmetic logic unit
The ALU performs arithmetic and bit-oriented operations under the direction of the 
control unit. To perform an operation, the ALU requires data input values, called 
operands, and a code indicating the operation to be performed. The ALU output is the 
result of the operation. ALU operations may use one or more processor flags, such as 
the carry flag, as input and set the states of processor flags as outputs. In the 6502, ALU 
operations update the carry, negative, zero, and overflow flags.

An ALU is a combinational circuit, implying the outputs update asynchronously in 
response to changes at the inputs and that it retains no memory of previous operations. 
To execute an instruction involving the ALU, the control unit applies inputs to the ALU, 
pauses for the propagation delay across the ALU, then transfers the ALU output to the 
destination specified by the instruction.

The ALU contains an adder circuit to perform addition and subtraction operations. In 
a processor with two's complement arithmetic, subtraction can be implemented by first 
performing a two's complement negation of the right operand and adding that result 
to the left operand. Mathematically, when performing subtraction in this manner, the 
expression A-B is transformed into A+(-B).
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As you'll recall, the two's complement negation of a signed number is achieved by 
inverting all of the bits in the operand and adding 1 to the result. Incorporating this 
operation, subtraction represented as A+(-B) becomes A+(NOT(B)+1). Looking at 
subtraction in this form should make the use of the 6502 carry flag in conjunction with 
the SBC instruction clear. The C flag provides the "+1" in subtraction when there is no 
borrow. If there is a borrow, the sum must be reduced by 1, which is accomplished by 
setting the C flag to 0.

To summarize, in the 6502, subtraction logic is identical to addition logic with the single 
difference that the B operand in A-B is routed through a set of NOT gates to invert all 
eight of the bits prior to feeding NOT(B) to the adder input.

Figure 3.4 is a functional representation of the addition and subtraction operations in  
the 6502:

Figure 3.4: 6502 addition and subtraction operations

Similar to Figure 3.3, Figure 3.4 is a highly simplified representation of the 6502  
processor depicting only the components involved in the ADC and SBC instructions. 
The Select input in Figure 3.4 chooses whether the operation is addition or subtraction. 
Addition requires selecting the upper multiplexer input, while the lower multiplexer  
input selects subtraction. In the 6502 architecture, the A register is always the left  
operand for subtraction.

The inputs to the adder are the left and right operands and the C flag. When executing 
an ADC or SBC instruction, the control unit presents the right operand to the multiplexer 
data inputs and sets the multiplexer select input to the appropriate state for the given 
instruction. After pausing for propagation through the NOT gate, the multiplexer, and  
the adder, the control unit generates a clock edge that latches the adder outputs into the  
A register and the processor flags register. 
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The processor flags are set as shown in the following execution of an ADC or  
SBC instruction:

• C indicates whether an addition generated in a carry (C = 1) or whether a 
subtraction produced a borrow (C = 0).

• N contains the value of bit 7 of the result.

• V indicates whether a signed overflow occurred (V = 1 if overflow occurred).

• Z is 1 if the result is zero. Z is 0 otherwise.

An ALU supports a variety of operations in addition to adding and subtracting two 
numbers. In the 6502, operations with two operands generally use the A register as the 
left operand. The right operand is either read from a memory location or provided as an 
immediate value in the next memory location after the opcode. All 6502 ALU operands 
and results are 8-bit values. The 6502 ALU operations are as follows:

• ADC, SBC: Add or subtract two operands with carry input.
• DEC, DEX, DEY: Decrement a memory location or register by one.
• INC, INX, INY: Increment a memory location or register by one.
• AND: Perform a bitwise logical AND operation on two operands
• ORA: Perform a bitwise logical OR operation on two operands.
• EOR: Perform a bitwise logical XOR operation on two operands.
• ASL, LSR: Shift the A register or memory location left or right by one bit position 

and insert 0 into the vacated bit position.
• ROL, ROR: Rotate the A register or memory location left or right by one bit position 

and insert the C flag value into the vacated bit position.
• CMP, CPX, CPY: Subtract two operands and discard the result, setting the N, Z, and 

C flags based on the result of the subtraction.
• BIT: Perform a bitwise logical AND between two operands and use the Z flag to 

indicate whether the result is 0. In addition, copy bits 7 and 6 of the left operand  
to the N and V flags.

The 6502 has limited ALU capabilities in comparison to more complex modern processors 
such as the x86 family. For example, the 6502 can perform addition and subtraction, 
but multiplication and division must be implemented in code as repetitive addition 
and subtraction operations. The 6502 can shift or rotate a value by just one bit position 
per instruction. The x86 processors instruction set, however, directly implements 
multiplication and division instructions, and the shift and rotate instructions include  
a parameter indicating the number of bit positions to shift in a single instruction.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



A simple processor     63

An ALU is a necessarily complex logic device, making it an ideal candidate for design with 
a hardware design language. The following listing is a VHDL implementation of a portion 
of a 6502-like ALU:

-- Load the standard libraries

library IEEE;

   use IEEE.STD_LOGIC_1164.ALL;

   use IEEE.NUMERIC_STD.ALL;

-- Define the 8-bit ALU inputs and outputs

entity ALU is

   port (

     -- Left operand

     LEFT        : in    std_logic_vector(7 downto 0);

     -- Right operand

     RIGHT       : in    std_logic_vector(7 downto 0);

     -- ALU operation

     OPCODE      : in    std_logic_vector(3 downto 0);

     -- Carry input

     C_IN        : in    std_logic;

     -- ALU output

     RESULT      : out   std_logic_vector(7 downto 0);

     -- Carry output

     C_OUT       : out   std_logic;

     -- Negative flag output

     N_OUT       : out   std_logic;

     -- Overflow flag output

     V_OUT       : out   std_logic;

     -- Zero flag output

     Z_OUT       : out   std_logic

   );

end entity ALU;

-- Define the behavior of the 8-bit ALU
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architecture BEHAVIORAL of ALU is

begin

   P_ALU : process (LEFT, RIGHT, OPCODE, C_IN) is

     variable result8  : unsigned(7 downto 0);

     variable result9  : unsigned(8 downto 0);

     variable right_op : unsigned(7 downto 0);

   begin

     case OPCODE is

       when "0000" | "0001" => -- Addition or subtraction

         if (OPCODE = "0000") then

           right_op := unsigned(RIGHT);     -- Addition

         else

           right_op := unsigned(not RIGHT); -- Subtraction

         end if;

         result9 := ('0' & unsigned(LEFT)) +

                    unsigned(right_op) +

                    unsigned(std_logic_vector'(""& C_IN));

         result8 := result9(7 downto 0);

         C_OUT <= result9(8);               -- C flag

         -- V flag

         if (((LEFT(7) XOR result8(7)) = '1') AND

             ((right_op(7) XOR result8(7)) = '1')) then

           V_OUT <= '1';

         else

           V_OUT <= '0';

         end if;

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



A simple processor     65

       when "0010" =>                          -- Increment

         result8 := unsigned(LEFT) + 1;

       when "0011" =>                          -- Decrement

         result8 := unsigned(LEFT) - 1;

       when "0101" =>                          -- Bitwise AND

         result8 := unsigned(LEFT and RIGHT);

       when "0110" =>                          -- Bitwise OR

         result8 := unsigned(LEFT or RIGHT);

       when "0111" =>                          -- Bitwise XOR

         result8 := unsigned(LEFT xor RIGHT);

       when others =>

         result8 := (others => 'X');

     end case;

     RESULT <= std_logic_vector(result8);

     N_OUT <= result8(7);                      -- N flag

     if (result8 = 0) then                     -- Z flag

       Z_OUT <= '1';

     else

       Z_OUT <= '0';

     end if;

   end process P_ALU;

end architecture BEHAVIORAL;

Registers
Processor registers are internal storage locations that serve as sources and destinations for 
instruction operations. Registers provide the quickest data access in a processor, but are 
limited to a very small number of locations. The width of a register in bits is generally the 
same as the processor word size.
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The 6502, as we have seen, has only three 8-bit registers: A, X, and Y. The x86 has six 
32-bit registers suitable for temporary data storage: EAX, EBX, ECX, EDX, ESI, and EDI. 
In many processor architectures, specific registers are assigned to support functions 
performed by certain instructions. For example, in the x86 architecture, a single REP 
MOVSD instruction moves a block of data with a length (in words) provided in ECX 
beginning at a source address in ESI to a destination address in EDI.

When designing a new processor architecture, it is critical to evaluate the tradeoff between 
the number of registers and the number and complexity of instructions available to the 
processor. For a given integrated circuit die size and fabrication process (which together 
define the number of transistors available for the processor), adding more registers to the 
architecture reduces the number of transistors available for executing instructions and 
other functions. In contrast, adding instructions with complex capabilities may limit the 
die space available for registers. This tension between instruction set complexity and the 
number of registers is expressed in the categorization of an architecture as CISC or RISC. 

CISC (Complex Instruction Set Computer) processors are characterized as having a rich 
instruction set providing a variety of features, such as the ability to load operands from 
memory, perform an operation, and store the result to memory, all in one instruction. 
In a CISC processor, an instruction may take many clock cycles to execute as the 
processor performs all of the required subtasks. The REP MOVSD instruction mentioned 
previously is an example of a single instruction with a potentially lengthy execution 
time. CISC processors tend to have a smaller number of registers due, in part, to the die 
space required for the circuitry occupied by the instruction set logic. The x86 is a classic 
example of CISC architecture.

RISC (Reduced Instruction Set Computer) processors, on the other hand, have a 
smaller number of instructions that each perform simpler tasks in comparison to CISC 
instructions. Performing an operation on data values stored in memory might require 
a pair of load instructions to load two operands from memory into registers, another 
instruction to perform the operation, and a final instruction to store the result back 
to memory. The key difference between CISC and RISC is that RISC architectures are 
optimized to execute individual instructions at very high speed. Even though reading 
memory, performing the operation, and writing the result back to memory require 
several more instructions in a RISC processor than in a CISC processor, the overall 
start-to-finish time may be comparable or even faster for the RISC processor. Examples 
of RISC architectures are ARM, discussed in Chapter 10, Modern Processor Architectures 
and Instruction Sets, and RISC-V, discussed in Chapter 11, The RISC-V Architecture and 
Instruction Set.
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The reduction in instruction set complexity in RISC processors leaves more die space 
available for registers, which generally results in a larger number of registers in RISC 
processors compared to CISC. The ARM architecture has 13 general-purpose registers, 
while the RISC-V base 32-bit architecture has 31 general-purpose registers. The larger 
number of registers in RISC architectures reduces the need to access system memory 
because more registers are available for storage of intermediate results. This helps with 
performance because accessing system memory is significantly more time consuming 
than accessing data located in processor registers.

You can think of a processor register as a set of D flip-flops in which each flip-flop 
contains one bit of the register's data. All of the flip-flops in the register are loaded with 
data by a common clock signal. Input to a register may arrive at the flip-flop inputs after 
passing through a multiplexer that selects one of potentially many data sources under the 
control of the executing instruction.

As an alternative to using a multiplexer to select a register's input, an instruction may load 
a register from a data bus internal to the processor. In this configuration, the control unit 
manages the internal bus to ensure that only the desired data source is driving the data 
bus lines during the clock edge that loads the register, while all other data sources on the 
bus are inhibited from placing data on the bus. 

This leads us to the next section, which introduces the full range of instructions in a 
processor instruction set and the addressing modes they use.

The instruction set
The following sections introduce the full range of instruction categories implemented by 
the 6502 processor. Similar instructions are implemented within most general-purpose 
architectures, though more sophisticated processors augment their capabilities with 
additional types of instructions. The more advanced instructions available in modern 
processor architectures will be introduced in later chapters.

CISC processors generally support multiple addressing modes. Addressing modes are 
designed to enable efficient access to sequential memory locations for software algorithms 
running on the processor. The next section describes the instruction addressing modes 
implemented by the 6502 processor. The section following that will introduce the 
categories of instructions implemented by the 6502, most of which are represented in 
some way in modern processor architectures. Specialized instructions for interrupt 
processing and input/output operations will then be covered, including an explanation of 
special processor features that enable high-performance input and output operations.
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Addressing modes
CISC processors support multiple addressing modes for instructions that require 
transferring data between memory and registers. RISC processors have a more limited 
number of addressing modes. Each processor architecture defines its collection of 
addressing modes based on an analysis of the anticipated memory access patterns  
that software will use on that architecture.

To introduce the 6502 addressing modes, this section will employ a simple example of 
6502 code that adds together four data bytes. To avoid extraneous details, the example  
will ignore any carry from the 8-bit sum.

Immediate addressing mode
For the first example, assume we are given the values of the four bytes to sum and asked to 
write a 6502 program to perform that task. This allows us to enter the byte values directly 
into our code. The bytes in this example are $01 through $04. We'll be adding the bytes 
together in reverse order ($04 down to $01) in anticipation of the use of a looping 
construct later in this section. This code uses immediate addressing mode to add the  
four bytes together:

; Add four bytes together using immediate addressing mode

LDA #$04

CLC

ADC #$03

ADC #$02

ADC #$01

Note that assembly language comments begin with a semicolon character. When these 
instructions complete execution, the A register will hold the value $0A, the sum of the 
four bytes.

Recall from Chapter 1, Introducing Computer Architecture, that in 6502 assembly language, 
an immediate value is preceded by a # character and the $ character indicates the value 
is hexadecimal. An immediately addressed operand is read from the memory address 
following the instruction opcode. Immediate addressing is handy because there is no need 
to reserve the memory location from which to read the operand. However, immediate 
addressing mode is only useful when the data value is known at the time the program  
is written.
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Absolute addressing mode
Absolute addressing mode specifies the memory location containing the value to be 
read or written by the instruction. The 6502 has 16 address bits, so an address field that 
supports accessing all available memory is two bytes long. A complete instruction to 
access data at an arbitrary 6502 memory location consists of three bytes: the first byte is 
the opcode followed by two bytes for the address to be read or written. The two address 
bytes must be stored with the lower-order byte first, followed by the higher-order byte.

The convention of storing the lower-order byte of a two-byte address at the lower  
memory address makes the 6502 a little-endian processor. The x86 and RISC-V are also 
little-endian. The ARM architecture allows selection of big- or little-endian mode under 
software control (this is called bi-endianness), but most operating systems running on  
the ARM architecture select little-endian mode.

For the absolute addressing mode example, we begin with some setup code to store the 
four bytes to be added together into addresses $200 through $203. The instructions to 
add the four bytes follow the setup code. This example uses absolute addressing mode  
to sum the four bytes:

; Initialize the data in memory

LDA #$04

STA $0203

LDA #$03

STA $0202

LDA #$02

STA $0201

LDA #$01

STA $0200

; Add four bytes together using absolute addressing mode

LDA $0203

CLC

ADC $0202

ADC $0201

ADC $0200
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Unlike immediate addressing mode, absolute addressing permits summing four values 
that are not known until the time of program execution: the code will add together 
whatever values have been stored in locations $200-$203. A limitation of this addressing 
mode is that the addresses of the bytes to be added must be specified when the program  
is written. This code cannot sum bytes located at an arbitrary location in memory.

Our simple example has the downside of unnecessarily stringing together a sequence 
of nearly identical instructions. To avoid this, it is usually desirable to place repetitive 
sequence of code into a loop construct. The next two examples use a 6502 addressing 
mode that facilitates looping operations, though we won't implement a loop until the 
second example.

Absolute indexed addressing mode
Absolute indexed addressing mode computes a memory address by adding a base 
address provided in the instruction to a value contained in the X or Y register. The 
following example adds the bytes at addresses $0200 through $0203 using absolute 
indexed addressing. The X register provides an offset from the base of the byte array  
at address $0200:

; Initialize the data in memory

LDA #$04

STA $0203

LDA #$03

STA $0202

LDA #$02

STA $0201

LDA #$01

STA $0200

; Add four bytes together using absolute indexed addressing 
mode

LDX #$03

CLC

LDA $0200, X

DEX

ADC $0200, X
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DEX

ADC $0200, X

DEX

ADC $0200, X

The DEX instruction decrements (subtracts 1 from) the X register. Although this code 
makes things worse in terms of increasing the number of instructions it takes to add the 
four bytes together, note that the instruction sequence, DEX, followed by ADC $0200, X 
now repeats three times.

By using conditional branching, we can perform the same addition sequence in a loop:

; Initialize the data in memory

LDA #$04

STA $0203

LDA #$03

STA $0202

LDA #$02

STA $0201

LDA #$01

STA $0200

; Add four bytes together using absolute indexed addressing 
mode

LDX #$03

LDA $0200, X

DEX

CLC

ADD_LOOP:

ADC $0200, X

DEX

BPL ADD_LOOP

The BPL instructions means "branch on plus," which conditionally transfers control  
to the instruction preceded by the ADD_LOOP label. BPL executes the branch only when 
the processor N flag is clear. If the N flag is set, BPL continues with the next instruction  
in memory.
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The code in this example might not seem to have been worth the effort involved in 
constructing a loop just to add up four bytes. However, note that this version can be 
modified to add together 100 sequential bytes by simply changing the operand of the 
LDX instruction. Extending the previous example to add 100 bytes together in the same 
manner would require quite a bit more work, and the instructions would consume far 
more memory.

This example has the same limitation as the absolute address mode example, both of 
which set the start of the byte array at a memory location defined at the time the program 
was written. The next addressing mode will remove this limitation and sum an array of 
bytes starting at any address in memory.

Indirect indexed addressing mode
Indirect indexed addressing mode uses a two-byte address stored in the memory address 
range $00-$FF as the base address and adds the contents of the Y register to that base to 
produce the memory address used by the instruction. In the following example, the base 
address of the byte array ($0200) is first stored in little-endian order at addresses $0010 
and $0011. The code uses indirect indexed addressing in a loop to add the bytes together:

; Initialize the data in memory

LDA #$04

STA $0203

LDA #$03

STA $0202

LDA #$02

STA $0201

LDA #$01

STA $0200

; Initialize the pointer to the byte array

LDA #$00

STA $10

LDA #$02

STA $11

; Add four bytes together using indirect indexed addressing 
mode
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LDY #$03

LDA ($10), Y

DEY

CLC

ADD_LOOP:

ADC ($10), Y

DEY

BPL ADD_LOOP

With indirect indexed addressing, any memory address can be stored at addresses 
$10-$11 before the summing code executes. Note that indirect indexed addressing must 
use the Y register as the address offset. The X register is not available in this addressing 
mode.

The 6502 has some other addressing modes available: zero-page addressing mode 
provides instructions that are smaller (one byte less in length) and faster to execute for 
absolute and absolute indexed addressing by working only with memory addresses in the 
range $00-$FF. The term zero-page refers to the high byte of the 16-bit address, which is 
zero for addresses in this range. Other than exhibiting improved performance in terms of 
faster execution speed and reduced code memory usage, the zero-page addressing modes 
behave the same as the corresponding addressing modes described earlier.

Another mode is called indexed indirect addressing mode, which is similar to indirect 
indexed addressing, except the X register is used instead of Y and the offset contained in  
X is added to the address provided in the instruction to determine the address of the 
pointer to the data. For example, assume X contains the value 8. The LDA ($10, X) 
instruction will add the contents of X to $10, producing the result $18. The instruction 
then uses the 16-bit memory address read from addresses $18-$19 as the target memory 
address to load into the A register.

Indexed indirect addressing is not relevant to our example summing a sequence of 
bytes. One example application of this mode is selecting a value from a sequential list of 
pointers, where each pointer contains the address of a character string. The X register 
can reference one of the strings as an offset from the beginning of the pointer list. An 
instruction similar to LDA ($10, X) will load the address of the selected string into A.

The addressing modes available in CISC processor architectures and, to a more limited 
degree, in RISC processors are intended to support efficient methods for accessing  
various types of data structures in system memory.

The next section will discuss the categories of instructions implemented in the 6502 
architecture and how each instruction makes use of the available addressing modes.
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Instruction categories 
This section lists the categories of instructions available in the 6502 processor. The 
purpose of discussing the 6502 here is to introduce the concepts associated with the 
instruction set of a processor architecture that is much simpler than the modern 32- and 
64-bit processors we will examine in later chapters. By the time we get to those processors, 
the underlying instruction set concepts should be quite familiar to you.

Memory load and store instructions
The 6502 uses load and store instructions to read data values from system memory into 
processor registers and to write registers out to system memory. In the 6502 architecture, 
the LDA, LDX, and LDY instructions load the register identified in the instruction with an 
8-bit word from system memory. LDA supports all addressing modes available in the 6502, 
while LDX and LDY each support a more limited subset of addressing modes: immediate, 
absolute, and absolute indexed.

After each of these instructions finishes executing, the N and Z flags indicate whether the 
value that was loaded is negative (that is, bit 7 equals 1) and whether the value is zero.

STA, STX, and STY store the register identified in the instruction to memory. Each 
store instruction supports the same addressing modes as the load instruction for that 
register, except the store instructions do not support immediate addressing mode. These 
instructions update the N and Z flags to reflect the value stored.

Register-to-register data transfer instructions
These instructions copy an 8-bit word from one of the A, X, and Y registers to another 
register. These instructions use implied addressing mode, which means the source and 
destination of each instruction are indicated directly by the instruction opcode.

TAX copies the A register contents to the X register. TAY, TXA, and TYA perform similar 
operations between the register pairs indicated by the instruction mnemonic. These 
instructions update the N and Z flags.

Stack instructions
The TXS instruction copies the X register to the stack pointer (S) register. This instruction 
must be used to initialize the S register during system startup. TSX copies the S register  
to the X register. TSX updates the N and Z flags. TXS does not affect any flags.
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PHA pushes the A register contents onto the stack. PHP pushes the processor flags onto the 
stack as an 8-bit word. These instructions do not affect the processor flags. Pushing a value 
onto the stack consists of writing the register to the memory address computed by adding 
$100 to the S register, then decrementing the S register.

PLA and PLP pop the A register and the flags register from the stack respectively. Popping 
a value first increments the S register then transfers the value at the location computed by 
adding $100 to the S register to the target register location.

PLA updates the N and Z flags. PLP sets or clears six of the seven processor flags based 
on the value popped from the stack. The B (break) flag is only meaningful in a copy of 
the processor flags register that has been pushed onto the stack by an interrupt or by 
the PHP instruction. This distinguishes a BRK instruction from a hardware interrupt 
request. Both the PHP and BRK instructions push the flags register with the B bit (bit 4) 
set. Hardware interrupts generated via the processor IRQ (Interrupt Request) and NMI 
(Non-Maskable Interrupt) pins push the processor flags register with the B bit cleared.

Arithmetic instructions
As we've already discussed, addition and subtraction are performed by the ADC and 
SBC instructions. The left operand to each instruction is the A register, which is also 
the destination for the result of the operation. All addressing modes are available for 
designating the right operand. The Z, C, N, and V flags are updated to reflect the result  
of the operation.

INC and DEC, respectively, increment or decrement the specified memory location by 
adding 1 to, or subtracting 1 from, the value at that location. The result is stored at the 
same memory location. Absolute and absolute indexed addressing modes are supported. 
These instructions update the N and Z flags based on the result of the operation.

The INX, DEX, INY, and DEY instructions increment or decrement the X or Y register,  
as indicated by the mnemonic. These instructions update the N and Z flags.

The CMP instruction performs a comparison by subtracting the operand value from the A 
register. The behavior of CMP is very similar to the instruction sequence SEC followed by 
SBC. The N, Z, and C flags are set to reflect the result of the subtraction. The differences 
between CMP and SBC are as follows:

• CMP discards the result of the subtraction (the value in A is unaffected by the  
CMP instruction). 

• CMP does not use decimal mode if the D flag is set. 
• CMP does not affect the value of the V flag.
• CMP supports all addressing modes.
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The CPX and CPY instructions are similar to CMP except the X or Y register is used as 
the left operand as indicated in the mnemonic and only absolute and absolute indexed 
addressing modes are supported for the right operand.

Logical instructions
The AND, EOR, and ORA instructions perform bitwise AND, XOR, and OR operations 
respectively between the A register and the operand. The result is stored in the A register. 
The Z and N flags are updated to reflect the result of the operation. All addressing modes 
are supported.

The ASL instruction shifts the operand one bit left, inserting a zero as the least significant 
bit. The most significant bit is shifted into the C flag. This is equivalent to multiplying the 
A register by two and placing the most significant bit of the 9-bit result in C.

Similar to ASL, LSR shifts the operand one bit right, inserting a zero as the most 
significant bit. The least significant bit is shifted into the C flag. This is equivalent to 
division by two of an unsigned operand, with the remainder placed in C.

The ROL and ROR instructions shift the A register one bit to the left or right, respectively. 
The previous value of the C flag is shifted into the bit location vacated by the shift 
operation. The bit shifted out of A is stored in the C flag.

ASL, LSR , ROL, and ROR support accumulator addressing mode, which uses the A 
register as the operand. This mode is specified by using the special operand value "A,"  
as in ASL A. These four instructions also support absolute and absolute indexed 
addressing modes.

The BIT instruction performs a bitwise AND between the operand and the A register,  
and the result is discarded. The Z flag is updated based on the result of this operation.  
Bits 7 and 6 from the memory location are copied to the N and V flags, respectively.  
Only absolute addressing mode is supported.

Branching instructions
The JMP instruction loads the operand into the PC register and continues execution from 
the instruction at that location. The destination is a two-byte absolute address and can be 
anywhere in the 6502's 16-bit address space.

The BCC and BCS instructions perform conditional branching if the C flag is clear  
or set, respectively.
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The BNE and BEQ instructions perform conditional branching if the Z flag is clear  
or set, respectively.

The BPL and BMI instructions perform conditional branching if the N flag is clear  
or set, respectively.

The BVC and BVS instructions perform conditional branching if the V flag is clear  
or set, respectively.

The conditional branch instructions use relative addressing mode, which is a signed 8-bit 
offset (in the range -128 to +127 bytes) from the address of the instruction following the 
branch instruction.

Subroutine call and return instructions
The JSR instruction pushes the address of the instruction following the JSR instruction 
(minus one) onto the stack, then loads the address specified as the 16-bit operand into the 
PC and continues execution from the instruction at that location.

RTS is used to end a subroutine. The return PC value (minus one) is pulled from the stack 
and loaded into the PC register. The RTS instruction increments the PC register after 
pulling it from the stack, before it is used as the address of the next instruction to execute.

Processor�flag�instructions
The SEC and CLC instructions set and clear the C flag, respectively.

The SED and CLD instructions set and clear the D flag, respectively.

The CLV instruction clears the V flag. There is no instruction that simply sets the V flag.

Interrupt-related instructions
The SEI and CLI instructions set and clear the I flag, respectively. When the I flag is set, 
maskable interrupts are disabled.

The BRK instruction triggers a non-maskable interrupt. The memory address two bytes 
after the BRK instruction is pushed onto the stack, followed by the processor flags register. 
The PC register is loaded with the interrupt service routine address, which is read from 
memory addresses $FFFE-$FFFF. The interrupt service routine then begins to execute.

The BRK instruction does not alter any register contents (other than the stack pointer) or 
processor flags. The flags register pushed onto the stack has the B bit set to indicate the 
interrupt is the result of a BRK instruction.
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RTI returns from an interrupt service routine. This instruction restores the processor flags 
from the stack and restores the PC register. After the processor flags are restored, the B 
flag is not meaningful and should be ignored.

Interrupt processing and the use of the BRK instruction will be discussed further in the 
Interrupt processing section later.

No operation instruction
The NOP instruction (often referred to as no-op) does nothing except advance the PC 
register to the following instruction.

NOP instructions are sometimes used as a debugging tool during program development. 
For example, one or more instructions can be effectively "commented out" by filling the 
memory addresses for those instructions with $EA bytes. $EA is the hexadecimal value  
of the 6502 NOP opcode.

Interrupt processing
Processors generally support some form of interrupt handling for responding to service 
requests from external devices. Conceptually, interrupt handling is similar to a scenario 
in which you are busy working on a task and your phone rings. After answering the call 
and perhaps jotting a note for later action ("buy bread"), you resume the task that was 
interrupted. We humans employ several similar mechanisms, such as doorbells and 
alarm clocks, which enable us to interrupt lower priority activities and respond to more 
immediate needs.

IRQ processing
The 6502 integrated circuit has two input signals that allow external components to notify 
the processor of a need for attention. The first is the interrupt request input, IRQ. IRQ is 
an active low (that's what the bar over the IRQ characters means) input that generates a 
processor interrupt when pulled low. Think of this signal as similar to a telephone ringer 
notifying the processor that a call is coming in.

The 6502 cannot respond instantly to a low signal level on the IRQ input. Before the 
6502 can begin to process the interrupt, it must first complete the instruction already 
in progress. Next, it pushes the return address (the address of the next instruction that 
would have been executed after the instruction in progress) onto the stack, followed by the 
processor flags register. Since this interrupt was generated by the IRQ input, the B flag in 
the processor flags on the stack will be 0.
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Unlike the JSR instruction, the return address pushed in response to the IRQ input is the 
actual address of the next instruction to be executed, rather than the instruction address 
minus 1. The interrupt return address will not be incremented to generate the return 
address as occurs during RTS instruction execution.

In the next stage of interrupt processing, the processor loads the address of the IRQ 
handler routine from memory addresses $FFFE-$FFFF into the PC register. The 6502  
then begins executing the interrupt handler code at that address.

When the interrupt handler is finished, it executes the RTI instruction. RTI pops the 
processor flags and the PC register values from the stack and resumes execution at the 
instruction following the instruction that was in progress when the IRQ input was  
driven low.

The IRQ input is a maskable interrupt, meaning it is possible to perform the equivalent of 
putting the telephone ringer on mute. When IRQ processing begins, the 6502 automatically 
sets the I flag, which masks (disables) the IRQ input until the I flag is cleared.

The I flag will be cleared by the RTI instruction because the I flag could not have been  
set when the processor began responding to the IRQ. The I flag can also be cleared by the 
CLI instruction, which means it is possible to enable IRQ interrupts while processing an 
IRQ interrupt. An interrupt handled while processing another interrupt is referred to as a 
nested interrupt.

The IRQ input is level-sensitive, which means any time the IRQ input is low and the I flag 
is cleared, the processor will initiate the interrupt processing sequence. The consequence 
of this is that, at the completion of processing an interrupt, the 6502's interactions with 
the interrupt source must ensure the IRQ input is no longer low. If IRQ remains low when 
the RTI instruction is executed, the 6502 will immediately begin the interrupt handling 
process all over again.

Interrupts initiated via the IRQ input handle most routine interactions between the 
6502 and peripheral devices. For example, the keyboard is an interrupt source in most 
computers. Each keypress generates an IRQ interrupt. During keyboard interrupt 
processing, the 6502 reads the identification of the key from the keyboard interface and 
stores it into a queue for later processing by the currently active application. The IRQ 
handler code does not need to know anything about what the key press information will 
be used for; it just saves the data for later use.

NMI processing
The second interrupt input to the 6502 is the non-maskable interrupt, NMI. As its name 
implies, the NMI input is not masked by the I flag. NMI is an edge-sensitive input that 
triggers on the falling edge of the signal.
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The processing of NMI interrupts is similar to the processing of IRQ interrupts, except the 
address of the interrupt handler routine is loaded from memory addresses $FFFA-$FFFB 
and the I flag has no effect on this type of interrupt.

Because NMI is non-maskable, it can be triggered at any time, including when the  
6502 is in the middle of handling an IRQ interrupt, or even while handling an earlier  
NMI interrupt.

The NMI input is normally reserved for very high priority conditions that cannot be 
delayed or missed. One possible use of NMI interrupts is to trigger the incrementing  
of a real-time clock at regular intervals.

This NMI handler code increments a 32-bit clock counter located at addresses $10-$13 
each time the interrupt occurs:

; Increment a 32-bit clock counter at each /NMI interrupt

NMI_HANDLER:

INC $10

BNE NMI_DONE

INC $11

BNE NMI_DONE

INC $12

BNE NMI_DONE

INC $13

NMI_DONE:

RTI

Notice that when referring to hardware signals in program source code, a leading forward 
slash can be used to indicate active low. NMI is represented as /NMI in the preceding  
code comment.

BRK instruction processing
The BRK instruction triggers processing similar to an IRQ interrupt. Because BRK is an 
instruction, there is no need to wait for the completion of an instruction in progress 
before initiating interrupt processing. During BRK execution, the return address (the 
address of the BRK instruction plus 2) and the processor flags are pushed onto the stack, 
similar to the response to a low level on the IRQ input. Note that by adding 2 to the BRK 
instruction address, the return address is not pointed to the byte after BRK, but to the 
second byte after it.
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The BRK instruction is non-maskable: the state of the I flag does not affect the execution 
of the BRK instruction.

The BRK handler address is the same as the IRQ handler, which is located at memory 
addresses $FFFE-$FFFF. Since the BRK instruction and IRQ share the same handler, the 
B flag must be consulted to identify the interrupt source during processing. The B flag in 
the processor flags pushed onto the stack (note that this is not the B flag in the processor 
flags (P) register) will be set in response to a BRK instruction and it will be clear during 
the processing of an IRQ interrupt.

The BRK instruction finds little use in most 6502 applications. A traditional usage for this 
instruction is to set breakpoints when debugging a program. By temporarily replacing 
the opcode byte at the desired break location with a BRK instruction, it is possible for the 
debugging program (often called a monitor in smaller computer systems) to gain control 
and allow the user to display and modify register contents and memory contents and then 
resume execution.

This code example implements a minimal IRQ handler that differentiates between IRQ 
interrupts and BRK instructions. It uses memory address $14 as a temporary storage 
location dedicated for use by this routine:

; Handle /IRQ interrupts and BRK instructions

IRQ_BRK_HANDLER:

; Save the A register

STA $14

; Retrieve the processor flags from the stack into A

PLA

PHA

; Check if the B bit is set in the flags on the stack

AND $10 ; $10 selects the B bit

; If the result is nonzero, B was set: Handle the BRK

BNE BRK_INSTR

; B was not set: Handle the /IRQ here

; …

JMP IRQ_DONE
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BRK_INSTR:

; Handle the BRK instruction here

; …

IRQ_DONE:

; Restore the A register and return

LDA $14

RTI

This example showed how to differentiate between interrupts initiated by the processor 
IRQ input and those resulting from the BRK instruction in the 6502 architecture. In more 
sophisticated processors, including those we will discuss in later chapters, the architectures 
generally implement unique interrupt vectors (interrupt service routine starting addresses) 
for each interrupt source. These architectures contain extensive support for debugging 
actions such as setting breakpoints at specified instruction locations.

This section introduced the categories of instructions in the 6502 architecture and 
provided a brief description of each instruction within those categories. Although the 
6502 is much simpler than modern 32- and 64-bit processors, this discussion introduced 
the most common categories of instructions and addressing modes used in even the most 
sophisticated modern processors, including instructions supporting the universal concept 
of interrupt processing.

The next section will present the fundamentals of I/O processing, which performs data 
transfer between the processor and peripheral devices.

Input/output operations
The goal of the I/O portion of a processor architecture is to efficiently transfer data 
between external peripheral devices and system memory. Input operations transfer data 
from the external world into memory and output operations send data from memory  
to an outside destination.

The format of the data on the external side of the I/O interface varies widely. Here are 
some examples of the external representations of computer I/O data:

• Signals on a video cable connected to a monitor

• Voltage fluctuations on the wires in an Ethernet cable

• Magnetic patterns on the surface of a disk

• Sound waves produced by computer speakers
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Regardless of the form the data takes when it is outside the computer, the connection of 
any I/O device with the processor must comply with the processor's I/O architecture, and 
the I/O device must be compatible with any other I/O devices that happen to be present in 
the computer system.

The processor uses the instruction categories, addressing modes, and interrupt processing 
methods described earlier in this chapter for interactions with I/O devices. The difference 
here is that instead of reading and writing system memory, the instructions read from and 
write to locations that communicate with an I/O device.

Memory-mapped I/O and port-mapped I/O are the two main approaches employed 
in modern processors to access I/O devices. Memory-mapped I/O dedicates portions 
of the system address space to I/O devices. The processor accesses peripheral devices at 
predefined addresses using the same instructions and addressing modes it uses to read 
and write system memory. The 6502 uses memory-mapped I/O to communicate with  
its peripherals.

Processors using port-mapped I/O implement a separate category of instructions for 
performing I/O operations. Port-mapped I/O devices have a dedicated address space 
independent of system memory. I/O devices are assigned port numbers as addresses.  
The x86 architecture employs port-mapped I/O.

One drawback of memory-mapped I/O is the need to dedicate part of the system address 
space to I/O devices, which reduces the maximum amount of memory that can be 
installed in the computer system. A drawback of port-mapped I/O is the requirement  
for the processor to implement additional instructions to perform the I/O operations.

Some implementations of port-mapped I/O provide additional hardware signals to 
indicate when an I/O device is being addressed as opposed to system memory. Using this 
signal as a selector (essentially another address bit), the same address lines can then be 
used for accessing memory and I/O devices. Alternatively, some higher-end processors 
implement a completely separate bus for performing port-mapped I/O operations. This 
architecture allows I/O and memory access operations to proceed simultaneously.

In the simplest approach to I/O, the processor handles all steps in an I/O operation itself, 
using instructions to transfer data between memory and the I/O device. More complex 
processor architectures provide hardware features to accelerate repetitive I/O operations. 
We will now discuss three methods of performing I/O with varying degrees of processor 
involvement: programmed I/O, interrupt-driven I/O, and direct memory access.
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Programmed I/O
Programmed I/O simply means the processor performs every step of the I/O data transfer 
operation itself using program instructions. Consider a keyboard that presents itself to 
the processor as two memory-mapped one-byte addresses in the processor's I/O address 
region. One of these bytes contains status information, specifically a bit indicating when  
a key has been pressed. The second byte contains the value of the key that was pressed.

Each time a key is pressed, the key available status bit is set. When using programmed I/O, 
the processor must periodically read the keyboard status register to see whether a  
key has been pressed. If the status bit indicates a key has been pressed, the processor  
reads the keyboard data register, which turns off the key available status bit until the  
next keypress occurs.

If the keyboard data register can only hold one key at a time, this keyboard status checking 
operation must occur frequently enough that no key presses get lost, even when a very fast 
typist is at the keyboard. As a result, the processor must spend a significant amount of its 
time checking to see whether a key has been pressed. Most of these checks will turn out  
to be fruitless whenever fast typing is not taking place.

It should be clear that programmed I/O is not a very efficient method for general use. It  
is similar in concept to checking your phone every few seconds to see whether someone  
is calling you.

The use of programmed I/O makes sense in some situations. For example, the one-time 
configuration of a peripheral device during system startup is a reasonable use of  
this technique.

Interrupt-driven I/O
An I/O device can use interrupts to notify the processor when action is needed. In the 
case of the simple keyboard interface, instead of merely setting a bit in a status register, 
the peripheral could pull the 6502's IRQ line low to initiate an interrupt each time a 
key is pressed. This allows the processor to go about its business without checking for 
keypresses. The processor will only focus attention on the keyboard interface when 
there is work to be done, as indicated by the interrupt. Using interrupts to trigger I/O 
operations is analogous to adding a ringer to the phone that we had to check for incoming 
calls every few seconds when using programmed I/O.
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The 6502 has a single maskable interrupt input signal (IRQ) available for I/O operations. 
Computer systems usually contain multiple sources of I/O interrupts. This makes the  
task of servicing interrupts a bit more complicated in the 6502 because the processor 
must first identify which peripheral initiated the interrupt before it can begin transferring 
data. The interrupt service routine must poll each interrupt-capable device to locate the 
interrupt source. In the case of the keyboard interface, this polling operation consists 
of reading the keyboard status register to determine whether the bit is set, indicating 
a keypress occurred. Once the processor has identified the device responsible for the 
interrupt, it branches to code that interacts with the device to complete the requested I/O 
task. In the case of the keyboard interface, this processing performs the steps of reading 
the keyboard data register and clearing the key available status bit, which deactivates the 
IRQ input signal.

Interrupts from external devices are asynchronous events, meaning they can occur at 
any time. Computer system design must include careful consideration of the possibility 
that interrupts may be generated at potentially unexpected times such as during system 
startup or while processing other interrupts. Interrupts from multiple devices may occur 
simultaneously, or nearly simultaneously, and in random order. Interrupt handling 
hardware circuitry and interrupt servicing code must ensure that all interrupts are 
detected and processed regardless of any timing peculiarities.

Interrupt-driven I/O eliminates the processor's need to periodically check I/O devices to 
see whether action is needed. However, handling an interrupt may consume significant 
processor time if it involves transferring a large block of data, such as when reading from 
or writing to a disk drive. The next I/O method we will discuss removes the need for the 
processor to perform the work of transferring large blocks of data.

Direct memory access
Direct Memory Access (DMA) permits peripheral device I/O operations to access system 
memory independent of the processor. When using DMA to transfer a block of data, the 
processor sets up the operation by configuring a DMA controller with the starting address 
of the data block to be transferred, the block length, and the destination address. After 
initiating the DMA, the processor is free to continue other work. At the completion of the 
operation, the DMA controller generates an interrupt to inform the processor the transfer 
is complete.

Within a computer system, a DMA controller may be implemented as a separate integrated 
circuit managed by the processor, or a processor architecture may contain one or more 
integrated DMA controllers.
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I/O devices that move substantial amounts of data, such as disk drives, sound cards, 
graphics cards, and network interfaces, generally rely on DMA to efficiently transfer data 
into and out of system memory. DMA is also useful for transferring blocks of data within 
system memory.

The 6502 architecture does not support DMA operations, but the original IBM PC 
included a DMA controller, and almost every 32- bit and 64-bit processor architecture  
provides extensive support for DMA operations.

DMA is one of many techniques that improve computer system performance by 
accelerating repetitive operations. DMA will be discussed further in later chapters.

Summary
This chapter described the primary functional units of a simple processor, consisting of 
the control unit, the ALU, and the registers. An overview of processor instructions and 
addressing modes followed. The instruction categories implemented by the 6502 processor 
were introduced with the intent of demonstrating the variety and utility of instructions 
available in a simple processor architecture.

The concepts involved in interrupt processing were introduced and demonstrated in the 
context of the 6502 architecture. This chapter concluded with an overview of the most 
common architectural approaches to input/output operations (memory-mapped I/O 
and port-mapped I/O) and the basic modes of performing I/O in a computer system 
(programmed I/O, interrupt-driven I/O, and DMA).

Having completed this chapter, you should now possess a conceptual understanding 
of processor functional units, instruction processing, interrupt handling, and input/
output operations. This information forms the basis for the next chapter, which covers 
architecture at the computer system level.

Exercises
1. Consider the addition of two signed 8-bit numbers (that is, numbers in the range 

-128 to +127) where one operand is positive and the other is negative. Is there 
any pair of 8-bit numbers of different signs that, when added together, will exceed 
the range -128 to +127? This would constitute a signed overflow. Note: We're only 
looking at addition here because, as we've seen, subtraction in the 6502 architecture 
is the same as addition with the right operand's bits inverted.
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2. If the answer to Exercise 1 is "no," this implies the only way to create a signed 
overflow is to add two numbers of the same sign. If an overflow occurs, what can 
you say about the result of performing XOR between the most significant bit of each 
operand with the most significant bit of the result? In other words, what will be 
the result of the expressions, left(7) XOR result(7) and right(7) XOR 
result(7)? In these expressions, (7) indicates bit 7, the most significant bit.

3. Review the VHDL listing in the Arithmetic logic unit section in this chapter and 
determine whether the logic for setting or clearing the V flag is correct for addition 
and subtraction operations. Check the results of adding 126+1, 127+1, -127+(-1), 
and -128+(-1).

4. When transferring blocks of data over an error-prone transmission medium, 
it is common to use a checksum to determine whether any data bits were lost 
or corrupted during transmission. The checksum is typically appended to the 
transferred data record. One checksum algorithm uses these steps:

a. Add all of the bytes in the data record together, retaining only the lowest 8 bits  
of the sum.

b. The checksum is the two's complement of the 8-bit sum.

c. Append the checksum byte to the data record.

After receiving a data block with the appended checksum, the processor can 
determine whether the checksum is valid by simply adding all of the bytes in the 
record, including the checksum, together. The checksum is valid if the lowest 8 
bits of the sum are zero. Implement this checksum algorithm using 6502 assembly 
language. The data bytes begin at the memory location stored in addresses $10-$11 
and the number of bytes (including the checksum byte) is provided as an input in 
the X register. Set the A register to 1 if the checksum is valid, and to 0 if it is invalid.

5. Make the checksum validation code from Exercise 4 into a labeled subroutine that 
can be called with a JSR instruction and that ends with an RTS instruction.

6. Write and execute a set of tests to verify the correct operation of the checksum 
testing subroutine you implemented in Exercises 4-5. What is the shortest block of 
data your code can perform checksum validation upon? What is the longest block?
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4 
Computer System 

Components
This chapter begins with an introduction to the metal-oxide-semiconductor (MOS) 
transistor, used extensively in memory circuits and in most other modern digital devices. 
We then examine the design of computer memory circuits based on MOS transistors and 
their interface to the processor. We'll look at modern computer input/output interfaces, 
with a focus on the use of high-speed serial communication within the computer's case, 
as well as over cable connections to external peripherals. The functional requirements 
of system I/O devices including the graphics display, network interface, keyboard, and 
mouse will be discussed. The chapter ends with a descriptive example of the specifications 
for a modern computer motherboard.

After completing this chapter, you will have a solid understanding of the hardware 
components of modern computer systems, from the technical specifications down to 
the circuit level. You will have learned how system memory is implemented, including 
the basics of caching. You will understand the mechanisms of efficient I/O operations, 
and how USB is used to connect the keyboard, mouse, and other I/O devices. You will 
understand the computer's network interface and will have become familiar with several 
examples of modern computer system architectures.
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The following topics will be covered in this chapter:

• Memory subsystem

• Introducing the MOSFET 

• Constructing DRAM circuits with MOSFETs 

• Input/output subsystem

• Graphics display interfaces

• Network interface

• Keyboard and mouse

• Modern computer system specifications

Technical requirements
Files for this chapter, including answers to the exercises, are available at  
https://github.com/PacktPublishing/Modern-Computer-
Architecture-and-Organization.

Memory subsystem
The Babbage Analytical Engine's design employed a collection of axes, each holding  
40 decimal digit wheels, as the mechanism for storing data during computations. Reading 
data from an axis was a destructive operation, resulting in zeros on all of an axis's wheels 
after the read had completed.

From the 1950s to the 1970s, the preferred technology for digital computer memory was 
the magnetic core. One bit of core memory is stored in a small toroidal (donut-shaped) 
ceramic magnet. The cores making up a memory array are arranged in a rectangular grid 
with horizontal and vertical connecting wires. Writing to a bit location involves producing 
enough current in the wires connected to the bit location to flip the polarity of the core's 
magnetic field. A 0 bit might be defined as clockwise magnetic flux circulation within the 
core and a 1 bit as counterclockwise flux circulation.

Reading a bit from core memory consists of attempting to set the bit to the 0 polarity 
and observing the response. If the selected core already contains a 0 bit, there will be no 
response. If the core holds a 1, a detectable voltage pulse occurs as the polarity changes. 
As in the Analytical Engine, a core memory read operation is destructive. After reading a 
word of memory, an immediate write must be performed to restore the state of the bits.
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Magnetic core memory is non-volatile: the contents continue to be retained indefinitely 
without power. It also has characteristics that make it valuable in applications such  
as spacecraft where radiation tolerance is important. The Space Shuttle computers 
employed core memory into the late 1980s.

Modern consumer and business computer systems use MOSFET-based DRAM  
circuits almost exclusively for main system memory. The next section describes  
the features of the MOSFET.

Introducing the MOSFET
Chapter 2, Digital Logic, introduced the NPN transistor, a type of bipolar junction 
transistor (BJT). The NPN transistor is called bipolar because it relies on both positive 
and negative charge carriers to function.

In semiconductors, electrons serve as the negative charge carriers. There are no physical 
particles with positive charge involved in a semiconductor operation; rather, the absence of 
a normally present electron in an atom exhibits the same properties as a positively charged 
particle. These missing electrons are referred to as holes. Holes function as the positive 
charge carriers in bipolar junction transistors. 

The concept of holes is so fundamental to semiconductor operation that William 
Shockley, one of the inventors of the transistor, wrote a book entitled Electrons and Holes 
in Semiconductors, published in 1950. We'll next examine the behavior of positive and 
negative charge carriers in unipolar transistors.

As an alternative to the BJT transistor structure, the unipolar transistor relies on only one 
of the two types of charge carriers. The metal-oxide-semiconductor field-effect transistor 
(MOSFET) is a unipolar transistor suitable for use as a digital switching element. Like the 
NPN transistor, the MOSFET is a three-terminal device employing a control input that 
turns the flow of current across the other two terminals on and off. The following figure  
is the schematic representation of an n-channel enhancement mode MOSFET:

Figure 4.1: N-channel enhancement mode MOSFET
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For our purposes, the n-channel enhancement mode MOSFET functions as a switch: 
When the gate terminal voltage is low (below a threshold voltage), there is very high 
resistance between the drain and source terminals. When the gate terminal voltage is high 
(above a threshold voltage), there is very low resistance between those terminals. The "n" 
in n-channel refers to a channel in the silicon doped to produce an increased number of 
electrons (negative charge carriers).

This behavior is similar to the operation of the NPN transistor discussed in Chapter 2, 
Digital Logic. There is, however, a key difference: the MOSFET is a voltage-controlled 
device, while the NPN transistor is a current-controlled device. The base terminal of 
the NPN transistor requires a small but steady current to activate the device as a switch, 
allowing current to flow between the emitter and collector terminals. The MOSFET, on the 
other hand, requires only a voltage level above a threshold on the gate terminal to switch 
the current flow on between the drain and source terminals. The gate input requires almost 
no current flow to keep the switch open. Because of this, a MOSFET consumes significantly 
less power than an NPN transistor performing the equivalent digital function.

Mohamed Atalla and Dawon Kahng invented the MOSFET at Bell Telephone Laboratories 
in 1959. It was not until the early 1970s that production processes had matured sufficiently 
to support the reliable production of MOS integrated circuits. Since then, the MOSFET 
has been by far the most common type of transistor used in integrated circuits. As of 2018, 
it is estimated that 13 sextillion (a sextillion is one followed by 21 zeros) transistors had 
been manufactured, 99.9 percent of which were MOS transistors. The MOSFET is the 
most frequently manufactured device in human history.

The p-channel enhancement mode MOSFET is similar to the n-channel enhancement 
mode MOSFET, except it exhibits the opposite response to the gate terminal: a low voltage 
on the gate allows current to flow between the drain and source, while a high voltage 
on the gate inhibits current between the drain and source. The "p" in p-channel refers 
to channel doping that increases the number of holes (positive charge carriers). The 
following figure is the schematic diagram of a p-channel enhancement mode MOSFET:

Figure 4.2: P-channel enhancement mode MOSFET
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In the schematic representations of both the n-channel and p-channel MOSFETs, the source 
terminal is connected to the center of the three internal connections. The directional arrow 
on this connection points toward the gate for an n-channel MOSFET and away from the 
gate for a p-channel MOSFET.

MOS transistors are most commonly employed in n-channel and p-channel pairs to 
perform logic functions. A device built from these pairs of MOS transistors is called a 
complementary MOS (CMOS) integrated circuit. Except when switching is taking place, 
CMOS circuits consume almost no power because the gate input requires essentially no 
current. Chih-Tang Sah and Frank Wanlass of Fairchild Semiconductor developed the 
CMOS configuration in 1963.

The following diagram presents a NOT gate circuit with the NPN transistor replaced  
by a complementary pair of MOSFETs:

Figure 4.3: CMOS NOT gate circuit

When the Input signal is low (near 0V), the lower n-channel MOSFET is switched off  
and the upper p-channel MOSFET is switched on. This connects the Output to the 
positive side of the voltage source, raising the Output signal to nearly 5V. When Input is 
high, the upper MOSFET is switched off and the lower MOSFET is switched on, pulling 
the Output to nearly 0V. The Output signal is always the inverse of the Input signal, which 
is the definition of NOT gate behavior.

Today, virtually all high-density digital integrated circuits are based on CMOS technology. 
In addition to performing logic functions, the MOSFET is a key component of modern 
random-access memory circuit designs. The next section discusses the use of the 
MOSFET in memory circuits.
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Constructing DRAM circuits with MOSFETs
A single bit in a standard dynamic random-access memory (DRAM) integrated circuit 
is composed of two circuit elements: a MOSFET and a capacitor. The following section 
provides a brief introduction to the electrical characteristics of capacitors.

The capacitor
A capacitor is a two-terminal passive circuit element capable of storing energy. Energy 
enters and leaves a capacitor as electrical current. The voltage across the capacitor 
terminals is proportional to the quantity of electrical energy contained in the capacitor.

To continue the hydraulic system analogy introduced in Chapter 2, Digital Logic, think 
of a capacitor as a balloon attached to the side of the pipe leading to a water tap. Water 
pressure in the pipe causes the balloon to inflate, filling it with some of the water from 
the pipe. Let's assume this is a strong balloon, and that as it inflates, the balloon stretches, 
increasing the pressure inside the balloon. The balloon inflates until the pressure in the 
balloon equals the pressure in the pipe, and then stops filling.

If you open the tap at the end of the pipe all the way, the release of water causes the 
pressure in the pipe to decrease. Some of the water in the balloon will flow back into  
the pipe, until the balloon pressure again equals the pipe pressure.

Hydraulic devices called water hammer arrestors function in exactly this manner to solve 
the problem of pipes that make banging noises when water taps are turned on and off. A 
water hammer arrestor uses balloon-stretching-like behavior to smooth out the abrupt 
changes in water pressure that result from taps opening and closing.

The quantity of electrical energy contained in a capacitor is analogous to the amount of 
water in the balloon. The voltage across the capacitor is analogous to the pressure inside 
the balloon exerted by stretching.

An electrical capacitor can be constructed from two parallel metal plates separated by 
an insulating material, such as air. One terminal is connected to each of the plates. The 
ratio of the quantity of stored electrical energy to the voltage across the capacitor is called 
capacitance, and it depends on the size of the parallel plates, the distance separating them, 
and the type of material used as the insulator between them. The capacitance of a capacitor 
is analogous to the size of the balloon in the hydraulic example. A capacitor with a larger 
capacitance corresponds to a larger balloon. A large balloon requires more water to fill to a 
given pressure than a smaller balloon. The schematic symbol for a capacitor is shown here:

Figure 4.4: Capacitor schematic symbol
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The two horizontal lines with space between them represent the metal plate capacitor 
architecture described in the preceding section. The unit of capacitance is the farad, 
named after the English scientist Michael Faraday.

The DRAM bit cell
A DRAM bit cell is a readable and writeable storage location for a single bit of data. The 
DRAM modules used in modern computers contain billions of these bit cells. A single bit 
in a DRAM circuit consists of a MOSFET and a capacitor, arranged as follows:

Figure 4.5: DRAM bit cell circuit

In this figure, the symbol with three horizontal lines at the bottom right is the ground 
symbol, which is an alternative to the 0V designation used in earlier figures such as  
Figure 4.3.

This single-bit cell must be replicated in a rectangular grid to form a complete DRAM 
memory bank. The following figure shows the configuration of a 16-bit DRAM bank 
consisting of 4 words with 4 bits in each word:

Figure 4.6: DRAM memory bank organization
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Of course, real DRAM banks contain a much larger number of bits than the simple circuit 
in this diagram. Typical DRAM devices have a word size of 8 bits (rather than the four  
bits labeled B0-B3 in the figure). This means each DRAM chip can store or retrieve 8 bits 
in parallel. 

The number of instances of bit cells along a wordline in an actual DRAM bank array is 
an integer multiple of the device word size. The large DRAM modules used in personal 
computers contain many words along each wordline. A DRAM chip implemented with 
8-bit words and 1,024 words per row contains 8,192 bits per row, with all of the MOSFET 
gate terminals along the row controlled by a single wordline signal. These devices include 
additional multiplexer logic to select the specific word the processor is requesting from 
the numerous words in the row selected by the active wordline.

The vertical dimension of the DRAM bank consists of replicated copies of cell rows with 
one wordline controlling each row. The wordline connects all the bit cells horizontally 
while the bitline signals connect the cells in all of the rows vertically. 

The state of each memory bit is stored in the cell's capacitor. A low voltage on the 
capacitor represents a 0 bit while a high voltage represents a 1 bit. In the context of  
real-world DRAM devices, low voltage is near 0V and high is typically near 1.2V.

The wordline for each row is held low most of the time. This keeps the MOSFET turned 
off, maintaining the capacitor state. When it is time to read a word (actually, an entire 
row) of DRAM memory, addressing circuitry selects the appropriate wordline and drives 
it high while keeping all the other wordlines in the bank low. This turns on the MOSFET 
in each bit cell along the active wordline, allowing the cell capacitors to drive their voltages 
onto the connected bitlines. Bitlines for cells at the 1 (high) voltage level will have higher 
voltages than cells at the 0 (low) voltage level. The bitline voltages are sensed by circuitry 
in the DRAM device and latched into the chip's output register.

Writing to a DRAM word begins by setting the selected wordline high in the same manner 
as reading a word. Instead of sensing the voltage on the bitlines, the DRAM device drives 
each bitline with the voltage to be written to each cell, either 0V or 1.2V, depending on 
whether the data bit is a 0 or a 1. As with filling or emptying a balloon, it takes a bit of 
time for each capacitor to charge or discharge to the voltage presented on its bitline. After 
this delay has transpired, the wordline is driven low to turn the MOSFETs off and lock the 
capacitors at their new charge levels.

DRAM circuit technology is complicated by the fact that capacitors leak. After charging a 
capacitor to a non-zero voltage, the charge will bleed off over time, reducing the quantity 
of stored charge and the voltage across the capacitor. Because of this, the contents of each 
cell must be refreshed periodically. 
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A refresh operation consists of reading each cell value and writing it back to the cell. This 
recharges the capacitor to its "full" voltage level, if it is a 1, or drives it to near 0V if it is a 
0. A typical refresh interval for modern DRAM devices is 64 ms. DRAM refresh proceeds 
continuously, row by row, in the background during system operation and synchronizes 
with processor access to memory to avoid conflicts.

While the need for periodic refreshing significantly complicates the design of systems 
using DRAM devices, the benefit of storing a bit with just one transistor and one capacitor 
is so immense that DRAM has supplanted all alternatives as the preferred technology for 
main memory in consumer and business computer systems.

DDR4 SDRAM
Intel produced the first commercial DRAM integrated circuit in 1970. The Intel 1103 
held 1,024 bits of data with a word size of 1 bit. The 1103 had to be refreshed every 2 ms. 
By the early 1970s, MOS semiconductor DRAM overtook magnetic core memory as the 
preferred memory technology in computer systems. DRAM is volatile, meaning when 
power is removed, the charge in the bit cell capacitors dissipates and the data content is 
lost. The current generation of DRAM technology in widespread use is DDR4 SDRAM.

Modern personal computers and personal devices such as smartphones generally contain 
multiple gigabytes (GB) of RAM. One GB is 230 bytes, equivalent to 1,073,741,824 (just 
over one billion) bytes. As the name implies, random access memory allows the processor 
to read or write any memory location within the RAM address space in a single operation. 
As of 2019, a high-end memory module available for use in laptop computers contains  
32 GB of DRAM distributed across 16 integrated circuits. Each DRAM chip in this 
module contains 2 gigawords, with a word length of 8 bits.

As of 2019, the leading memory module standard is DDR4 SDRAM, an evolutionary 
optimization of DRAM interface technologies built upon the DDR1, DDR2, and DDR3 
generations. A DDR4 memory module is packaged as a dual inline memory module 
(DIMM). A DIMM has electrical contacts on both sides of the circuit board edge 
(hence the term dual in the name), providing connectivity to the DIMM socket in the 
motherboard. A standard DDR4 DIMM has 268 pins. A smaller module format called the 
small outline DIMM (SODIMM) is available for systems such as laptops where space is 
at a premium. A DDR4 SODIMM has 260 pins. Because of the reduced number of pins, 
SODIMM modules lack features that some DIMMs support, such as the ability to detect 
and correct bit errors in data retrieved from the device.
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The term double data rate DDR refers to the transfer timing characteristics between 
a memory module and the processor memory controller. The original single data rate 
(SDR) DRAM performed one data transfer per memory clock cycle. DDR memory 
devices perform two transfers per clock cycle: one on the clock rising edge and one on the 
falling edge. The number following "DDR" identifies the generation of DDR technology. 
DDR4, therefore, is the fourth generation of the DDR standard. The term synchronous 
DRAM (SDRAM) indicates the DRAM circuitry is synchronized with the processor 
memory controller through a shared clock signal.

DDR4 memory modules are nominally powered by 1.2V and use a 2.5V auxiliary 
voltage input to provide a "boost" for the wordline signal. As a representative example, a 
particular DDR4 module can perform up to 3.2 billion data transfers per second, double 
the memory clock speed of 1600 MHz. At 8 bytes per transfer, this DDR4 device can move 
25.6 GB per second. DDR4 modules are available in a variety of clock speeds, memory 
sizes, and price points.

Although real-world DRAM modules implement rectangular banks of single-bit cells 
as described in the previous section, the internal architecture of a DDR4 device is 
somewhat more complex. A DRAM integrated circuit generally contains multiple banks. 
The addressing logic selects the bank containing the desired memory location before 
performing a read or write operation. In DDR4 modules, banks are further arranged into 
bank groups, necessitating additional addressing logic to choose the correct group. A 
DDR4 device contains four bank groups, each with four banks. The reason for partitioning 
the DDR4 memory module architecture into multiple bank groups is to maximize data 
transfer speed by enabling multiple simultaneous, overlapped memory access operations 
to proceed in parallel. This allows data transfer between processor and RAM to flow 
at peak speed while minimizing the need to wait for each internal DRAM bank access 
operation to complete.

In addition to specifying the correct address location within a DDR4 memory module,  
the system must provide a command via interface signals to indicate the action to be 
taken, specifically, whether to read from, write to, or refresh the selected row.

The DDR4 SDRAM standard, available for purchase from the Joint Electron Device 
Engineering Council (JEDEC) at https://www.jedec.org/standards-
documents/docs/jesd79-4a, provides the detailed definition of the DDR4 memory 
interface to host computer systems. This standard contains all the information needed to 
design memory modules compatible with any computer system supporting DDR4.
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Historically, each numerical generation of the DDR SDRAM standards has been 
incompatible with previous generations. A motherboard built for DDR4 memory modules 
will only work with DDR4 modules. The slot for each DDR generation is constructed 
in such a way that it is not possible to insert an incorrect module. For example, a DDR3 
DRAM module will not fit into a DDR4 slot.

As memory technologies evolve, the primary improvements in each new generation are 
increased data transfer rate and greater memory density. To assist in achieving these 
goals, power supply voltages have decreased in later generations, reducing system power 
consumption and enabling denser memory circuitry without excessive heating.

Most modern processors view system memory as a linear array of sequential addresses. 
In less sophisticated processor architectures, such as the 6502, the processor directly 
addresses RAM chips using addresses provided in instructions. Because of the complexity 
of the control signals and bank management logic in DDR4 SDRAM devices, modern 
computer systems must provide a memory controller to translate each linear processor 
address into command and addressing signals selecting the appropriate DDR4 module  
(in a system with multiple memory modules), bank group, bank, and row/column 
location within the selected bank. The memory controller is a sequential logic device 
that manages the details of communication between the processor and DRAM memory 
modules. To achieve peak system performance, the memory controller must intelligently 
exploit the capability for overlapped operations provided by DDR4 memory modules. 

Sophisticated modern processors generally integrate the memory controller function into 
the processor integrated circuit itself. It is also possible to design a system with a separate 
memory controller that sits between the processor and RAM. 

A memory controller interface may contain multiple channels, where each channel is a 
separate communication path between the processor and one or more memory modules. 
The benefit of providing multiple channels in a memory architecture is that it is possible 
to perform memory accesses over each channel in parallel.

A system containing multiple memory channels does not achieve an automatic increase 
in memory access speed, however. System software must actively manage the assignment 
of memory regions to each application or system process to balance memory usage access 
across channels. If the operating system were to simply assign processes to physical 
memory regions sequentially, filling one memory module first then moving to the next, 
there would be no benefit from multi-channel memory when all processes are forced  
to use the same memory channel.
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DDR5
The next-generation DDR5 standard is in development and is scheduled for 
release in 2020. DDR5 is planned to double the bandwidth of DDR4 while 
further reducing power consumption by operating at 1.1V.

Graphics DDR
Graphics DDR (GDDR) is a DDR memory technology optimized for use as video  
RAM in graphics cards. GDDR has a wider memory bus to support the high-throughput 
requirements of video display. Standard DDR memory, on the other hand, is optimized 
to provide minimum latency access to data. Note that the generation numbers for GDDR 
and DDR are not aligned. As of 2019, GDDR5 modules have been available for several 
years, while the DDR5 standard remains in development.

Prefetching
One DRAM performance attribute that improves very little from one generation to the 
next is the speed of reading from or writing to an individual bit location in DRAM. To 
achieve an increase in the average data transfer rate into and out of DRAM modules, 
the devices must employ other techniques to improve performance. One technique for 
achieving faster average data transfer speeds is prefetching. 

The idea behind prefetching is to exploit the fact that whenever a particular memory 
location is being accessed by a processor, it is likely that access will soon be needed to 
a location close to the first location. Prefetching consists of reading a larger block of 
memory than the single location a processor instruction references and passing the entire 
block from the DRAM device to the processor. In the context of a DDR4 memory module, 
the block size is normally 64 bytes.

The DDR4 module can read 64 bytes quickly because it accesses all 512 bits of those  
64 bytes simultaneously. In other words, the DDR4 module reads an integer multiple of 
512 bitlines from the cells selected by a wordline. The bits of the selected row are read 
simultaneously, then pass through a multiplexer to select the desired 512 bits from the 
perhaps 8,192 bits in the entire row, which are then latched into an output register. The 
latched bits transfer from the DRAM module to the processor using DDR clocking. With 
the effective use of multiple bank groups, multiple reads of memory and transfers of 
the resulting data can overlap in time and ensure the data moves between the memory 
module and the processor at the highest rate the interface can support.
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Upon receiving the 64-byte block, the processor stores the data in internal cache memory 
and selects the specific data element (perhaps as small as one byte) from the block 
requested by the executing instruction. If a subsequent instruction accesses different  
data contained in the same block, the processor only needs to consult its local cache, 
resulting in much faster execution than the instruction that originally retrieved the  
data block from DRAM.

In addition to interacting with main memory, the processor must communicate with 
the outside world through input and output devices. The next section discusses the 
implementation of I/O interfaces in modern computer systems.

I/O subsystem
Chapter 3, Processor Elements, introduced two broad categories of I/O architecture: 
memory-mapped I/O and port-mapped I/O. The pros and cons of each of these 
approaches were significant in the early days of PCs when the number of physical address 
lines limited the total processor memory space to a 1 MB range. Modern processor 
architectures are capable of addressing a far larger memory range, typically in the tens 
of gigabytes. A consequence of this address space expansion is the ready availability of 
address regions for use in I/O interfaces. Modern 32-bit and 64-bit general-purpose 
processors employ memory-mapped I/O for most of their interface requirements.

Sophisticated modern processors usually implement a memory controller within 
the processor chip, interfacing directly with DDR memory modules. Most other I/O 
performed by these processors is offloaded to one or more external integrated circuits, 
typically referred to as a chipset. The term chipset is commonly used even when only  
one chip is needed to implement the I/O functions.

The chipset provides interfaces to a wide range of peripherals, such as graphics cards, disk 
drives, network interface, the keyboard, the mouse, and many others via USB. Most of 
these interfaces are implemented using one form or another of a serial bus. The following 
sections introduce the most common I/O technologies used in modern computers.

Parallel and serial data buses
A parallel data bus communicates multiple data bits simultaneously across separate 
conductors between two or more communication endpoints. Early PCs employed parallel 
buses for such functions as connecting a printer to the computer. Over time, several 
limitations of parallel buses became evident:

• Depending how many bits the bus supports, a parallel bus connection may need 
a lot of wires, which means cables are more expensive, and there is a greater 
possibility of problems when cable wires break, or connectors have dirty contacts.
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• As computer system developers made efforts to increase performance (and thereby 
gain a competitive edge), another limitation of parallel buses became significant: 
even though the device transmitting a data word on the bus may output all of the 
parallel bits essentially simultaneously, the signals may not arrive at the destination 
at the same time. This could be caused by differences in the path length of the 
conductors in the cable or across the circuit board. Because of this, there is an  
upper limit on the data transfer rate a parallel bus can support. 

• Another limitation of parallel buses is they can only transfer data in one direction at 
a time (referred to as half-duplex) unless a duplicate set of connections is available 
for simultaneously transferring data in the opposite direction. Parallel buses usually 
do not provide simultaneous bi-directional communication capability, referred to as 
full-duplex operation. 

A serial data bus transfers data between two communication endpoints a single bit at a 
time using a pair of conductors. Most of the high-speed communication paths between 
the processor and peripheral devices in modern computers use some form of serial bus. 
While at first blush, switching from a parallel bus architecture to a serial bus seems to 
represent a substantial loss in throughput capability, serial buses exhibit several important 
advantages that make their use attractive in performance-critical applications.

High-speed serial buses in personal and business computer systems communicate 
over pairs of conductors using differential signaling. Differential signaling uses two 
conductors, carefully matched to be of the same length and to exhibit nearly identical 
electrical characteristics. When used in cables, these conductors are insulated wires 
twisted around each other to form twisted pairs.

The following figure represents a serial data bus using differential signaling:

Figure 4.7: Serial bus circuit using differential signaling

The digital signal to be transmitted arrives at the transmitter (labeled Tx) via the input 
at the left edge of the figure. The input is transformed into a pair of voltages on the 
two parallel lines crossing the center of the diagram. The small circle indicates that the 
transmitter top signal is inverted relative to the bottom signal. 
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In a typical serial circuit, a high signal level at the transmitter input will generate a voltage 
of 1.0V on the top serial conductor and 1.4V on the bottom conductor. A low signal input 
produces 1.4V on the top conductor and 1.0V on the bottom conductor. The inputs to the 
receiver (labeled Rx) are high impedance, meaning the receiver draws a negligible amount 
of current from the circuit. The receiver measures the voltage across the resistor (which 
has a typical value of 100 Ω), with the upper resistor terminal at -0.4V relative to the lower 
terminal when the Tx input is high. When the Tx input is low, the upper resistor terminal 
is +0.4V relative to the lower terminal.

The receiver generates its output by inverting one of the inputs (the top one, with the 
small circle) and adding the resulting voltage to the other input. In other words, the 
receiver only measures the difference between the voltages on the two conductors. The 
primary benefit of this approach derives from the fact that most forms of corrupting 
interference cause voltage variations in the conductors carrying the signal. By placing the 
two conductors very close together, most of the noise voltage introduced on one of the 
conductors will also appear on the other conductor. The subtraction operation cancels out 
a large portion of the noise that would otherwise interfere with the accurate detection of 
the signal by the receiver.

A serial data bus can perform several billion bit transfers per second, far more than the old 
PC's parallel bus. It is possible to run several serial buses alongside each other, effectively 
multiplying the data transfer bandwidth by the number of buses. A crucial difference 
between multiple serial buses connecting two endpoints and a parallel bus making the 
same connection is that, for some interface standards, the serial buses are all operating 
somewhat independently. They do not synchronize at the level of each bit transfer as all 
the bits in a parallel bus must. This makes it easier to design interconnections capable of 
supporting very high data rates while only needing to worry about precisely matching  
the length and electrical characteristics within each pair of serial conductors.

The connection between a modern processor and its motherboard chipset generally 
consists of several serial data buses called High-Speed Input Output (HSIO) lanes. Each 
lane is a serial connection with one data path like Figure 4.7 flowing in each direction, 
supporting full-duplex operation. Individual lanes can be assigned to specific types of 
peripheral interfaces that are also implemented as serial connections, such as PCI Express, 
SATA, and USB. The following sections will examine each of these interfaces.
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PCI Express
The original Peripheral Component Interconnect (PCI) bus was a 32-bit parallel bus 
used in PC-compatible computers from about 1995 through 2005. The PCI slots on 
computer motherboards accepted a wide variety of expansion cards performing functions 
such as networking, video display, and audio output. By the early 2000s, the limitations of 
the parallel bus architecture had become apparent and development began on a serial bus 
replacement for PCI named PCI Express.

PCI Express, abbreviated to PCIe, is a bi-directional differential signaling serial bus 
used primarily to connect communication endpoints on computer motherboards. PCIe 
performance is expressed in billions of transfers per second, or GT/s. One "transfer" is a 
single bit propagated across the bus from transmitter to receiver. PCIe inserts additional  
bit periods in each communication to ensure data integrity. Different generations of PCIe 
have varying amounts of these overhead bits, influencing the effective data transfer rate. 
The following table shows the major generations of PCIe, the year each was introduced,  
the single-lane transfer rate in GT/S, and the effective data transfer rate in MB/s.

Table 4.1: PCI Express generations

The effective data rate presented here is for one-way communication, though PCIe 
supports full-speed data transfer in both directions simultaneously.

The PCIe standards support multi-lane connections indicated by the notations x1, x2, 
x4, x8, x16, and x32. Most modern motherboards implement, as a minimum, PCIe x1 
and x16 slots. PCI x1 slots are compatible with a board edge connector length of 25mm 
while x16 slots expect a board edge connector length of 89mm. A PCIe card will operate 
correctly in any slot it can physically fit into. For example, a PCIe x1 card can be plugged 
into an x16 slot and will use just one of the 16 available lanes.

A primary application for PCIe x16 slots is the interface between the processor and the 
graphics card, with the goal of peak performance for graphics-intensive applications such 
as gaming. A PCIe 4.0 x16 interface is capable of unidirectional data transfer at 31.5 GB/s.
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In modern computer architectures, the processor chip usually provides a PCIe 16-lane 
interface as a direct connection to a graphics board installed in a PCIe x16 slot. This avoids 
the need to pass the graphics card PCIe signals through the chipset integrated circuit.

Except for the graphics display and the system memory interface, most I/O in modern 
computer systems is managed by the chipset. The processor and chipset communicate 
through a collection of HSIO lanes. The chipset supports interfaces to peripheral devices 
such as disk drives, network interfaces, keyboard, and mouse. The interfaces to these 
devices commonly use SATA, M.2, and USB serial interfaces.

SATA
The Serial AT Attachment (SATA) is a bi-directional serial interface standard for 
connecting computer motherboards to storage devices. The "AT" in SATA refers to 
the original IBM PC AT. Similar to a single PCIe lane, SATA contains two differential 
signaling pairs of conductors, with one pair carrying data in each direction. Unlike 
PCIe, SATA is intended for operation over cables rather than using signal traces on 
motherboards. In addition to electrical and data format requirements, the SATA  
standard contains detailed specifications for compatible cables and connectors.

A SATA cable contains one bi-directional lane supporting connection between the 
processor and storage devices such as magnetic disk drives, optical disk drives, and  
solid-state drives. This table shows the major revisions of the SATA standard, the year 
each was introduced, and performance parameters.

Table 4.2: SATA generations

The data transfer rate in this table describes one-way communication, though, like PCIe, 
SATA supports full-duplex data transfer.

The SATA standard continues to undergo incremental improvements, but as of 2019  
there has been no announcement of an upcoming SATA generation with a faster data 
transfer rate.
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M.2
Modern solid-state drives (SSDs) employ flash memory to store data rather than the 
rotating magnetic platters in traditional hard drives. Because of the radically different 
technology of SSDs, the SATA drive interface that works well enough in most cases for 
rotating disks has proven to be a significant performance barrier for SSDs.

To access an arbitrary block of data (called a sector) on a magnetic disk drive, the drive 
head must physically move to the track containing the sector, then it must wait for the 
beginning of the sector to rotate to the head position before the drive can begin reading 
data. In contrast to these steps, an SSD can directly address any data sector in a manner 
very similar to the way in which a processor accesses a DRAM location.

The M.2 specification was developed to provide a small form factor and high-performance 
interface for flash memory storage in small, portable devices. The performance limitations 
of the SATA interface are removed, and it is possible to have data transfer rates to and 
from an SSD several times faster than SATA can support.

In addition to mass storage devices, M.2 supports other interfaces including PCIe, USB, 
Bluetooth, and Wi-Fi. Modern motherboards have begun to include M.2 slots, which, in 
addition to the higher performance, consume much less space in the computer case than 
traditional disks in their drive bays.

USB
The Universal Serial Bus (USB) interface provides a simple (from the user's viewpoint) 
interface for connecting a wide variety of peripheral devices to a computer system. USB 
cables have easily identifiable connector types and support hot-plugging (plugging devices 
together while powered on). USB devices are self-configuring, and, in most cases, users do 
not need to concern themselves with installing device drivers when attaching a new device 
to a computer with a USB cable.

Early USB data cables (through USB 2.0) contained a single differential signaling pair. 
These connections pass data in only one direction at a time. Later versions of the USB 
standard (USB 3.0 onward) support simultaneous bi-directional data transfer. In addition, 
USB 3.2 onward provides up to two lanes, doubling the data transfer rate. 
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The following table shows the major revisions of the USB standard, the date each was 
introduced, the maximum number of lanes supported, and data transfer performance.

Table 4.3: USB generations

In USB generations through 2.0, communication takes place entirely under the control of 
the host. The host initiates each communication interaction by sending packets addressed 
to a particular device and performs data transfers to or from the device. Beginning with 
USB 3.0, devices can initiate communication with the host, effectively providing an 
interrupt capability for connected peripherals.

Thunderbolt
Thunderbolt is a collection of high-speed serial interface standards introduced in 2011. 
The original Thunderbolt interface combined PCIe and DisplayPort signal transmission 
using two serial Thunderbolt lanes. 

Thunderbolt 3 is the latest generation of the Thunderbolt standard, adding USB 
compatibility while supporting connectivity to PCIe devices and to multiple  
high-resolution displays from a single computer port. Thunderbolt 3 uses the same 
connector as USB 3.1 and later generations (the USB-C connector), and supports the  
40 Gbit/s Thunderbolt 3 data rate while providing full compatibility with USB 3.1 at 
10 Gbit/s. Any USB device should operate properly when connected to a computer's 
Thunderbolt 3 port. Thunderbolt 3 peripheral devices are not compatible with 
non-Thunderbolt 3 USB-C ports.

The next section provides an overview of the most popular graphics display  
interface standards.
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Graphics displays
In the domains of gaming, video editing, graphic design, and animation, video processing 
performance is critical. Generating and displaying high-resolution graphics requires an 
enormous number of mathematical calculations. While general-purpose processors can 
perform the necessary computations, such processors lack the performance that users of 
these applications have come to expect.

High-performance graphics cards, called graphics processing units (GPUs), are essentially 
miniature supercomputers, heavily optimized to perform graphical computational tasks 
such as 3-D scene rendering. Because the computations involved in scene rendering 
are highly repetitive, substantial performance gains can be achieved through the use of 
hardware parallelization. Graphics processors contain a large number of relatively simple 
computational units, each performing a small portion of the overall task.

A GPU may contain thousands of individual processing units that function in a manner 
similar to an ALU. While the original driving force that led to the development of high-
performance GPUs was 3-D scene generation, later generations of this technology have 
found broad use in fields such as the analysis of "big data" and in machine learning. Any 
numerically intensive computational task that can be broken into a collection of parallel 
operations is suitable for acceleration with a GPU architecture.

Of course, not all users require extreme video performance. To accommodate users with 
modest graphics needs and more limited budgets, modern processors often integrate a 
GPU with less extreme capabilities into the processor chip. In many applications, this 
approach provides more than adequate graphical performance. This configuration is 
referred to as integrated graphics, meaning the GPU function is integrated into the 
processor die and shares system memory with the processor. Computer systems with 
integrated graphics are lower in cost while providing adequate graphics performance  
for basic computing tasks such as email, web browsing, and watching videos.

Many desktop computer systems, as well as some laptops, provide integrated graphics 
while offering the option of installing a high-performance graphics card. This allows  
users to tailor the computer system to their cost and performance needs.

Several different video standards are currently in use for connecting displays to computers. 
Because the output generated by a computer graphics interface must be compatible with 
the connected display, it is common for computers to provide more than one type of video 
connector. Computer monitors and high-definition televisions usually provide a selection 
of video connection types as well. The following sections describe some of the popular 
video interface standards used in computer applications, past and present.
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VGA
The Video Graphics Array (VGA) video standard for personal computers was introduced 
by IBM in 1987. VGA is an analog interface that remains in widespread use today, though 
most modern computers do not provide a VGA connector. It is not uncommon to find 
older computers with VGA outputs using a converter cable to present a display on a 
monitor supporting DVI or HDMI video input. Modern versions of the VGA standard 
support display resolutions up to 1,920 pixels wide by 1,200 pixels high, refreshed at  
60 Hz. Because the VGA video signal is analog, some loss of signal quality occurs during 
transmission to the display. This effect is most noticeable at high screen resolutions.

DVI
The Digital Visual Interface (DVI) video standard was developed to improve the visual 
quality of computer displays by transferring the video signal digitally from the computer 
to the monitor. To maintain backward compatibility with older computers and monitors, 
DVI cables are capable of carrying VGA analog signals as well. 

Similar to the high-speed serial interfaces discussed earlier in this chapter, DVI uses 
differential serial signaling to transfer video data. A DVI connector contains four serial 
lanes: individual lanes carry red, green, and blue color information, and the fourth lane 
carries the common clock signal.

Three DVI variants are defined, depending on the combination of digital and analog  
video options supported:

• DVI-A supports only the analog video signal. This option is intended to provide 
backward compatibility with VGA computers and monitors. The DVI-A connector 
has a different pin layout than traditional VGA connectors, so an adapter cable is 
required to connect to legacy VGA devices.

• DVI-D is a digital-only interface supporting single-link and dual-link options. 
The dual-link option provides additional serial data lanes to increase the video 
bandwidth for higher-resolution displays. Dual-link does not mean the cable 
supports dual monitors.

• DVI-I is an integrated interface supporting both the analog interface of DVI-A and 
the digital modes of DVI-D. A DVI-I digital interface may be single- or dual-link.

DVI interfaces are used primarily in computer display applications. The effective data rate 
of a single-link DVI-D connection is 3.96 gigabits per second (Gbit/s). Dual-link DVI-D 
transfers video data at twice the single-link rate, 7.92 Gbit/s.
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HDMI
The High-Definition Media Interface (HDMI) is supported by most modern computers 
and monitors, and by virtually all modern televisions and related video entertainment 
devices, such as DVD players. HDMI supports digital video only (there is no analog 
capability) and uses the same differential serial bus as DVI-D. In addition to video data, 
HDMI cables also transport multi-channel digital audio.

The HDMI standard has undergone several revisions since its introduction in 2002. Each 
successive revision has maintained backward compatibility while adding new capabilities. 
Later versions of the standard have increased video bandwidth, increased the range of 
supported screen resolutions, added high-definition audio capabilities, added support for 
Ethernet communication over the HDMI cable, and added features to support gaming. 
Although each HDMI version is backward compatible, newer features are only available 
in configurations where the signal source device, the display device, and the connecting 
cable are all compatible with the newer standard.

HDMI version 2.1 was released in 2017. This standard supports an effective data rate of 
42.6 Gbit/s over four differential serial lanes.

DisplayPort
DisplayPort, introduced in 2006, is a digital interface standard supporting digital video, 
audio, and USB connections. While HDMI is targeted at consumer electronics such as 
televisions and home theater systems, DisplayPort is oriented more toward computer 
applications. DisplayPort transfers data in packets with clocking information embedded  
in each packet, eliminating the need for a separate clock channel.

A single computer DisplayPort output can drive multiple monitors connected in a daisy 
chain fashion, where one cable connects the computer to the first monitor, a second cable 
connects the first and second monitors, and so on. The monitors must provide support for 
this capability. The maximum number of displays that can be combined in this manner is 
limited only by the capabilities of the graphics card and the resolution and refresh rate of 
the displays.

DisplayPort 2.0 was released in 2019, with an effective data rate of up to 77.4 Gbit/s over 
four differential serial lanes.
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Network interface
A computer network is a collection of digital devices interacting over a shared 
communication medium. A local area network (LAN) consists of a limited number of 
computers that might reside in a single physical location such as a home or office building. 
The connected computers, phones, and other digital devices in your home represent a 
LAN. Device connections within a LAN environment may use a wired interface, usually 
Ethernet, or wireless interface, typically Wi-Fi.

Geographically separated computers and LANs communicate using a wide area network 
(WAN). WAN services are often provided by a telecommunication company such as a 
cable television provider or telephone company. Your home LAN most likely connects to 
the Internet via WAN services provided by your telephone or cable company. Home and 
business networking devices provided by WAN service providers usually provide Ethernet 
and Wi-Fi options for connecting local devices to the WAN. The following sections 
introduce the technologies of Ethernet and Wi-Fi.

Ethernet
Ethernet is a set of networking standards for connecting computers using cables in a  
LAN environment. The original version of Ethernet was developed by Robert Metcalfe  
at Xerox Palo Alto Research Center in 1974. Ethernet was released commercially in  
1980 as a 10 Mbit/s communication technology for groups of computers connected 
with coaxial cabling. The name of the technology was derived from the historical term 
luminiferous aether, a hypothesized medium filling all of space and enabling the  
propagation of electromagnetic waves. The Ethernet cable serves as a conceptually  
similar communication medium.

The Institute of Electrical and Electronic Engineers (IEEE) began developing standards 
for LAN technologies, including Ethernet, in 1980. The IEEE 802.3 Ethernet standard was 
published in 1985. Since then, the standard has undergone several revisions supporting 
increased data rates and different network topologies. The most obvious difference in 
modern computers from the original Ethernet standard is the use of point-to-point 
twisted pair cables in place of the original shared coaxial cable.

Modern computers commonly use Gigabit Ethernet interfaces to communicate over 
unshielded twisted-pair cabling. Gigabit Ethernet is formally defined in the IEEE 802.3ab 
standard and supports 1.0 Gbit/s with an effective data transfer rate up to 99% of the 
raw bit rate, though the amount of overhead varies considerably depending on the 
communication protocol in use. 
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Ethernet communication is composed of variable-size data units called frames up to 1,518 
bytes in length. The header of each frame contains addressing information identifying 
the source and destination Ethernet interfaces. Because modern twisted-pair connections 
are point-to-point, the most common structure for connecting a group of computers is 
to run a cable from each computer to a switch. A switch is a device that receives frames 
transmitted by the connected computers and, based on the destination address contained 
in each frame, immediately forwards it to the correct recipient. Ethernet cables are limited 
to a maximum recommended length of 100 meters, constraining the physical size of an 
Ethernet LAN to an area such as a single office building or home.

Modern motherboards usually contain a built-in Ethernet interface. This eliminates any 
need to consume a PCIe slot with an Ethernet card. An Ethernet interface, whether built 
into the motherboard or installed in a PCIe expansion slot, uses one HSIO lane between 
the processor and chipset.

Wi-Fi
The IEEE released the first version of the 802.11 wireless communication standard in 1997 
with a raw data rate of 2 Mbit/s in the 2.4 GHz band. The 802.11b standard, released in 
1999 with an 11 Mbit/s raw data rate, proved to be commercially popular. The technology 
was named Wi-Fi in 1999 as a reference to the term "hi-fi," referring to high-fidelity  
sound reproduction.

The 802.11g standard, released in 2003, has a raw bit rate of 54 Mbit/s. 802.11n, released 
in 2009, supports multiple-input-multiple-output (MIMO) antennas and optional 
operation in the 5 GHz band. The 802.11ac standard, published in 2013, supports a bit 
rate in the 5 GHz band of over 500 Mbit/s using enhanced MIMO antenna configurations.

Wi-Fi devices can suffer from interference produced by household appliances such as 
cordless phones, microwave ovens, and other Wi-Fi networks in the area. Wi-Fi signal 
propagation is affected by factors such as walls and other obstacles between transmitter 
and receiver, multipath (the destructive interference between a direct-path signal and  
a reflected copy of the signal), and is limited by the maximum amount of power a Wi-Fi 
transmitter is permitted to emit. The use of multiple antennas in 802.11n and 802.11ac 
configurations significantly mitigates multipath-related propagation issues.
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Modern WAN interface devices supplied by telecommunication service providers  
usually contain a combination of Ethernet and Wi-Fi communication interfaces. A 
primary benefit of Wi-Fi in comparison to Ethernet for these applications is the reduction 
in the amount of cabling required. One drawback of Wi-Fi is the potential for security 
issues because the radio frequency signal can propagate far outside of the building 
containing the communicating systems. The Wi-Fi protocols provide substantial support 
for secure communication using protocols such as Wi-Fi Protected Access 2 (WPA2), but 
system administrators and users must ensure the appropriate security features are enabled 
and that secret information such as the network password is sufficiently complex and is 
stored securely.

Support for Wi-Fi is ubiquitous in portable digital devices such as laptops, smartphones, 
and tablets, and is directly built into many motherboards.

The next section discusses the computer interfaces with the lowest bandwidth 
requirements: the keyboard and mouse.

Keyboard and mouse 
Compared to the high-speed device interfaces discussed earlier in this chapter, the 
bandwidth requirements for a keyboard and mouse are quite modest. These devices are 
the sole input methods used by the human operator in most computer configurations,  
and thus are only required to operate at the speed of human actions. Even the fastest  
typist can only press one or two dozen keys per second.

Keyboard
A mechanical computer keyboard consists of a collection of keys, each of which operates 
an electrical momentary switch. A standard full-size keyboard contains 104 keys, including 
the arrow keys, control keys (Home, Scroll Lock, and so on), and the numeric keypad. 
Modern keyboards commonly provide a USB cable for connection to the computer system 
via cable or wirelessly. Because the bandwidth requirements for human interaction are so 
low, some computer motherboards provide a slower USB 2.0 port for keyboard connection 
while offering higher-performance USB 3.0 or better interfaces for high-speed peripherals. 
This results in a small cost reduction for the motherboard components.

Because the keyboard reports the press and release of each key separately, the computer 
is able to process combinations of keys pressed simultaneously. For example, holding the 
shift key down while pressing the a key produces a capital A.
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Some computers and digital devices such as tablets and phones provide a touchscreen 
interface. When text input is required on these devices, the system displays a keyboard 
pattern on the screen and the user touches letter locations to produce keypresses.

Mechanical keyboards tend to provide more accurate input and are favored by users 
entering significant quantities of text. Because the surface of a touchscreen is completely 
flat, there is no feedback to the user's fingers indicating if the fingers are aligned with 
the keys. This results in more frequent input errors when using touchscreen keyboards. 
Of course, a touchscreen keyboard means there is no need to provide a mechanical 
keyboard for the device, a substantial benefit for portable devices. In addition, touchscreen 
keyboard input does not suffer from mechanical failures that can affect the components of 
mechanical keyboards, though touchscreen input is more difficult for users wearing gloves.

Mouse
A computer mouse is a hand-held device that moves a pointer horizontally and vertically 
across a computer screen. The user initiates actions based on the pointer location by 
pressing buttons on the mouse. Modern mice often provide a small wheel capable of rolling 
in either direction, used to perform tasks such as scrolling through a text document.

As with the keyboard, the mouse usually connects to the computer via USB over a wired 
or wireless connection. The mouse has low bandwidth requirements and can be supported 
via a USB 2.0 port.

The operation of a mouse requires a horizontal surface, typically a desktop, for the user 
to move the mouse upon. Modern mice usually use optical emitters and sensors to detect 
motion across the surface. Many mice have difficulty operating on highly reflective 
surfaces such as glass tables.

A trackball is similar in concept to a mouse, except that rather than moving a mouse 
across a surface, a ball is held at a fixed location but is allowed to rotate in any direction 
using hand motion. By rolling the ball forward, backward, left, and right, the user is able 
to move the pointer on the computer display.

A trackball does not require the quantity of surface space a mouse needs, and the trackball 
can be fixed at a stationary location. The ability to firmly attach a trackball to a surface 
makes the trackball the preferred pointing device for computer stations installed in 
ground vehicles, ships, and aircraft.
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As with the keyboard, the computer detects the press and release of each mouse button as 
separate events. Users can exploit this capability to perform operations such as dragging 
an icon across the screen by following these steps:

1. Place the pointer over the icon.

2. Press and hold the left mouse button.

3. Move the pointer (with the icon now attached) to the new location.

4. Release the mouse button.

Together, the keyboard and mouse provide all of the input capability most computer users 
need to perform their interactive tasks.

The next section brings together the interface descriptions provided in this chapter  
to examine the specifications of a modern computer motherboard.

Modern computer system specifications
Having absorbed the information provided up to this point, you should be able to 
interpret most of the specifications of a modern computer motherboard, processor, 
and chipset. This section provides an example of the specifications for a current (2019) 
motherboard with some explanation of the individual features.

The designers of a computer motherboard must make a number of decisions such as the 
number of PCIe expansion ports, number of DIMM slots, number of USB ports, and the 
number of SATA ports to be provided in a particular motherboard model. These decisions 
are guided by the target customer demographic, whether it be gamers, business users,  
or cost-conscious home users. 

The following example motherboard presented is the Gigabyte Z390 Designare, a  
higher-performance board intended for gaming applications that supports gaming-related 
technical capabilities such as overclocking. Overclocking involves increasing the  
clock frequencies for the processor and other system components with the goal of 
improving performance. 
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Overclocking introduces the possibility of increased heat generation and unstable 
performance if a component is driven at an excessive frequency.

Table 4.4: Example motherboard specifications
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This example is intended to provide some perspective on the specifications of higher-end 
consumer-grade computer capabilities as of 2019. If you are looking to purchase a computer, 
use the information in this chapter to make yourself a more informed consumer.

Summary
This chapter began with an introduction to the computer memory subsystem, the 
MOSFET, and the capacitor. We examined the circuitry that implements the DRAM 
bit cell. We reviewed the architecture of DDR4 memory modules and the operation of 
multichannel memory controllers. Other types of I/O devices were introduced, with a 
focus on high-speed differential serial interfaces and their ubiquitous use in connection 
technologies such as PCIe, SATA, USB, and video interfaces.

Popular video standards were presented, including VGA, DVI, HDMI, and DisplayPort. 
We looked at the Ethernet and Wi-Fi networking technologies as well. We concluded 
with a discussion of standard computer peripheral interfaces including the keyboard and 
mouse. The chapter concluded with a description of an example modern motherboard, 
highlighting some of its interesting features.

With the information presented in this chapter, you should have a solid general 
understanding of modern computer components from the level of technical  
specifications down to the technologies used in implementing the circuitry.

In the next chapter, we will explore the high-level services computer systems must 
implement, such as disk I/O, network communications, and interactions with users.  
We'll examine the software layers that implement these features, starting at the level  
of the processor instruction set and registers. Several key aspects of operating systems  
will be covered including booting, multithreading, and multiprocessing.

Exercises
1. Create a circuit implementation of a NAND gate using two CMOS transistor pairs. 

Unlike NPN transistor gate circuits, no resistors are required for this circuit.

2. A 16-gigabit DRAM integrated circuit has two bank group selection inputs, two 
bank selection inputs, and 17 row address inputs. How many bits are in each row  
of a bank in this device?
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Interface
The vast majority of computer software is not written at the processor instruction level in 
assembly language. Most of the applications we work with on a daily basis are written in 
one high-level programming language or another, using a pre-built library of capabilities 
that the application programmers extended during the software development process. 
Practical programming environments, consisting of high-level languages and their 
associated libraries, offer many services, including disk input/output (I/O), network 
communication, and interactions with users, all easily accessible from program code. 

This chapter describes the software layers that implement these features, beginning at the 
level of processor instructions in device drivers. Several key aspects of operating systems 
will be covered in this chapter, including booting, multithreading, and multiprocessing. 

After completing this chapter, you will understand the services provided by operating 
systems and the capabilities provided in Basic Input/Output System (BIOS) and Unified 
Extensible Firmware Interface (UEFI) firmware. You will have learned how execution 
threads function at the processor level and how multiple processors coordinate within 
a single computer system. You will also have a broad understanding of the process of 
booting into an operating system, beginning with the first instruction executed.
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We will cover the following topics:

• Device drivers

• BIOS and UEFI

• The boot process

• Operating systems

• Processes and threads

• Multiprocessing

Device drivers
A device driver provides a standardized interface for software applications to interact with 
a category of peripheral devices. This avoids the need for the developer of each application 
to understand and implement all of the technical details required for the proper operation 
of each type of device. Most device drivers allow multiple simultaneously executing 
applications to interact with multiple instances of associated peripherals in a secure  
and efficient manner.

At the lowest level of interaction, device driver code provides software instructions  
that manage communication interactions with the peripheral, including handling 
interrupts generated by device service requests. A device driver controls the operation  
of hardware resources provided by the processor, the peripheral device, and by other 
system components such as the processor chipset.

In computer systems supporting privileged execution modes, device drivers usually 
operate at an elevated privilege level, which grants access to peripheral interfaces that are 
inaccessible to less privileged code. This ensures that only trusted code is permitted to 
interact with these interfaces directly. If unprivileged application code were able to access 
a peripheral's hardware interface, a programming error that caused the device to behave 
improperly would immediately affect all applications that attempt to use the device. 
The steps involved in transitioning the flow of instruction execution and data between 
unprivileged user code and privileged driver code will be introduced in Chapter 9,  
Specialized Processor Extensions.

As we learned in Chapter 3, Processor Elements, the two principal methods for  
accessing I/O devices are port-mapped I/O and memory-mapped I/O. Although  
memory-mapped I/O is predominant in modern computers, some architectures—such  
as x86—continue to support and use port-mapped I/O. In an x86 system, many modern 
peripheral devices provide an interface that combines port-mapped I/O and  
memory-mapped I/O.
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Programming tools for modern operating systems, such as those available for Linux and 
Windows, provide resources for developing device drivers capable of interacting with 
peripheral devices using port- and memory-mapped I/O techniques. Installing a device 
driver in these operating systems requires elevated privilege, but users of the driver  
do not require any special privileges.

Although device drivers for sophisticated peripheral devices can be quite complex and 
difficult to understand for those not intimately familiar with the device's hardware and 
internal firmware, some legacy devices are fairly simple. One example is the parallel printer 
port introduced on early PCs, and a standard component of personal computers for many 
years. Even though modern computers rarely include these interfaces, inexpensive parallel 
port expansion cards remain readily available, and modern operating systems provide 
driver support for these interfaces. Electronics hobbyists frequently use a parallel port as 
a simple interface for interacting with external circuits using Transistor-Transistor Logic 
(TTL) 5V digital signals on PCs running Windows or Linux.

The next section will examine some of the device driver-level details of the parallel  
port interface.

The parallel port
The programming interface for the PC parallel printer port consists of three 8-bit registers, 
originally located at sequential I/O port numbers beginning at 0x378. This collection 
of I/O ports provides the interface for printer 1, identified as LPT1 in PC-compatible 
computers running MS-DOS and Windows. Modern PCs may map the parallel port to 
a different range of I/O ports during Peripheral Component Interconnect (PCI) device 
initialization, but operation of the interface is otherwise unchanged from early PCs.

Device drivers for the parallel port in modern computers perform the same functions 
using the same instructions as in early PCs. In this section, we'll assume that the printer  
port is mapped to the legacy I/O port range.

To interact with parallel port hardware, the x86 processor executes in and out 
instructions to read from and write to I/O ports, respectively. If we assume the parallel 
port driver has been installed and initialized, a user application can call a driver function 
to read the data present on the parallel port input lines. The following pair of instructions 
within the driver code reads the digital voltage levels present on the eight data lines of the 
parallel port and stores the resulting 8-bit value in the processor's al register:

mov    edx,0x378

in     al,dx
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In x86 assembly language, instructions containing two operands are written in the form 
opcode destination, source. This example uses the al, edx, and dx processor 
registers. The al register is the lowest 8 bits of the 32-bit eax register. dx is the lowest  
16 bits of the 32-bit edx register. This sequence of instructions loads the immediate value 
0x378 into the edx register, and then reads the 8-bit data value from the port number 
contained in dx into al.

The C language source code that generated the preceding assembly instructions is  
as follows:

char input_byte;

input_byte = inb(0x378);

The inb function is provided by the Linux operating system to perform 8-bit input from 
an I/O port. This code will only function properly if it is running at the elevated privilege 
level of the operating system. An application running with a user privilege will fail if it 
attempts to execute these instructions, because such code is not authorized to perform 
port I/O directly.

Drivers that execute at this elevated level are referred to as kernel-mode drivers. The 
kernel is the central core of the operating system, serving as the interface between 
computer hardware and higher-level operating system functions such as the scheduler. 

The instructions for writing a byte to the parallel port data register, and thus setting the 
state of the eight digital output signals, are shown in the following code block:

mov    edx,0x378

movzx  eax,BYTE PTR [rsp+0x7]

out    dx,al

These instructions set the edx register to the port number, and then load eax from a 
variable on the stack. rsp is the 64-bit stack pointer. rsp is 64 bits because this driver 
is running on a 64-bit version of Linux. movzx stands for "move with zero extension", 
which means move the 8-bit data value (designated by BYTE PTR) at the address given as 
rsp+0x7 into the lower 8 bits of the 32-bit eax register, and fill the 24 remaining bits in 
eax with zeros. The final instruction writes the byte in al to the port number in dx.

The C source code that produces these instructions is as follows:

char output_byte = 0xA5;

outb(output_byte,0x378);  
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Similar to inb, the outb function is provided by Linux to enable device drivers to write 
an 8-bit value to the given I/O port.

This example demonstrates how interaction between software executing on the 
processor and peripheral device hardware registers happens at the lowest level of device 
driver operation. Drivers for more complex devices on x86 systems usually combine 
port-mapped I/O (as shown in the preceding examples) with memory-mapped I/O, 
which accesses a device interface using reads and writes that are, in terms of processor 
instructions, identical to memory accesses. 

These examples presented hardware access methods used by drivers on the original 
parallel PCI bus architecture. The next section discusses features that allow legacy PCI 
drivers to continue to operate properly on modern PCI Express (PCIe)-based computers, 
taking full advantage of PCIe's high-speed serial communication technology.

PCIe device drivers
As we saw in the previous chapter, PCIe uses high-speed serial connections for 
communication between the processor and PCIe peripheral devices. You may be 
wondering about the steps a device driver must perform to interact with this fancy 
hardware. The simple answer is that drivers do not need to do anything special to take 
full advantage of the high-performance capabilities of PCIe. PCIe was expressly designed 
to be software-compatible with the parallel PCI bus used in PCs of the 1990s. Device 
drivers written for PCI continue to work properly in computers using the serial PCIe bus. 
The task of translating between processor I/O instructions such as in and out and the 
sequential serial data transfers necessary to communicate with PCIe devices is handled 
transparently by the PCIe bus controllers in the processor, chipset, and PCIe devices.

PCI and PCIe devices perform an automated configuration operation during system 
startup and when a device is hot plugged in a running system. Hot plugging is the 
installation of hardware in a system that is powered on.

Once configuration is complete, the device interface is known to the operating system. 
The interface between a PCI or PCIe peripheral and the processor may include any 
combination of the following communication paths:

• One or more I/O port ranges

• One or more memory regions supporting memory-mapped I/O

• Connection to a processor interrupt handler
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The interface configuration procedure applies to both PCI and PCIe drivers, enabling 
legacy PCI drivers to work properly in PCIe systems. Of course, the physical card interface 
differs greatly between parallel PCI and serial PCIe devices, so the cards themselves are 
not interchangeable across bus technologies. The bus slots for PCIe are intentionally 
different from PCI slots to prevent the accidental insertion of PCI devices into PCIe slots, 
and vice versa.

Bulk data transfer to and from peripheral devices generally relies on Direct Memory 
Access (DMA) in both PCI and PCIe systems. In PCIe systems, DMA operations take 
full advantage of the high data rates possible with multi-lane serial connections, blasting 
data across the interface at close to the theoretical maximum speed each single- or multi-
lane link can support. The technological evolution that supplanted legacy parallel bus PCI 
technology with the vastly higher-performing multi-lane serial technology of PCIe, while 
retaining seamless device driver compatibility, has been quite remarkable.

Device driver structure
A device driver is a software module that implements a set of predefined functions, 
enabling the operating system to associate the driver with compatible peripheral devices 
and perform controlled access to those devices. This allows system processes and user 
applications to perform I/O operations on shared devices. 

This section provides a brief overview of some of the most commonly used functions a 
Linux device driver must implement for use by application developers. This example will 
prefix the function names with the fictitious device name mydevice and is written in  
the C programming language.

The following functions perform tasks related to initialization and termination of the 
driver itself:

int mydevice_init(void);

void mydevice_exit(void);

The operating system calls mydevice_init to initialize the device at system startup  
or at a later time if the device is connected by hot plugging. The mydevice_init 
function returns an integer code, indicating if the initialization was successful or, if 
unsuccessful, the error that occurred. Successful driver initialization is indicated by  
a return code of zero.

When the driver is no longer needed, such as during system shutdown or when the device 
is removed while the system is running, mydevice_exit is called to release any system 
resources allocated by the driver.
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The next pair of functions, shown here, allows system processes and user applications to 
initiate and terminate communication sessions with the device:

int mydevice_open(struct inode *inode, struct file *filp); 

int mydevice_release(struct inode *inode, struct file *filp);

mydevice_open attempts to initiate access to the device and reports any errors that may 
occur in the process. The inode parameter is a pointer to a data structure containing 
information required to access a specific file or other device. The filp parameter is a 
pointer to a data structure containing information about the open file. In Linux, all types 
of devices are consistently represented as files, even if the device itself is not inherently 
file-based. The name filp is short for file pointer. All functions operating on the file 
receive a pointer to this structure as an input. Among other details, the filp structure 
indicates whether the file is opened for reading, writing, or both.

The mydevice_release function closes the device or file and deallocates any resources 
allocated in the call to mydevice_open.

Following a successful call to mydevice_open, application code can begin to read from 
and write to the device. The functions performing these operations are as follows:

ssize_t mydevice_read(struct file *filp, char *buf, 

                      size_t count, loff_t *f_pos); 

ssize_t mydevice_write(struct file *filp, const char *buf, 

                       size_t count, loff_t *f_pos);

The mydevice_read function reads from the device or file and transfers the resulting 
data to a buffer in application memory space. The count parameter indicates the 
requested amount of data, and f_pos indicates the offset from the start of the file at 
which to begin reading. The buf parameter is the address of the destination for the data. 
The number of bytes actually read (which may be less than the number requested) is 
provided as the function return value, with a data type of ssize_t.

The mydevice_write function has most of the same parameters as mydevice_read, 
except that the buf parameter is declared const (constant) because mydevice_write 
reads from the memory address indicated by buf and writes that data to the file or device.

One point of interest in the implementation of these functions is that the privileged driver 
code cannot (or at least should not, if the system permits it) access user memory directly. 
This is to prevent driver code from accidentally or intentionally reading from or writing  
to inappropriate memory locations, such as kernel space.
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To avoid this potential problem, special functions named copy_to_user and  
copy_from_user are provided by the operating system for use by drivers to access  
user memory. These functions take the necessary steps to validate the user-space  
addresses provided in the function call before copying data.

This section provided a brief introduction to the hardware-level operations performed  
by device drivers and introduced the top-level structure of a device driver.

During system power-up, before the operating system can boot and initialize its drivers, 
firmware must execute to perform low-level self-testing and system configuration. The 
next section presents an introduction to the code that first executes when the computer 
receives power: the BIOS.

BIOS
A computer's BIOS contains the code that first executes at system startup. In the early days 
of personal computers, the BIOS provided a set of programming interfaces that abstracted 
the details of peripheral interfaces such as keyboards and video displays.

In modern PCs, the BIOS performs system testing and peripheral device configuration 
during startup. After that process has completed, the processor interacts with peripheral 
devices directly without further use of the BIOS.

Early PCs stored the BIOS code in a read-only memory (ROM) chip on the motherboard. 
This code was permanently programmed and could not be altered. Modern motherboards 
generally store the motherboard BIOS in a reprogrammable flash memory device. This 
allows BIOS updates to be installed to add new features or to fix problems found in  
earlier firmware versions. The process of updating the BIOS is commonly known as 
flashing the BIOS. 

One downside of BIOS reprogrammability is that this capability makes it possible for 
malicious code to be introduced into a system by writing to the BIOS flash memory. 
When this type of attack is successful, it enables the malicious code to execute every time 
the computer starts up. Fortunately, successful BIOS firmware attacks have proven to be 
quite rare.

As the BIOS takes control during system startup, one of the first things it does is run a 
Power-On Self-Test (POST) of key system components. During this testing, the BIOS 
attempts to interact with system components including the keyboard, video display, and 
boot device, typically a disk drive. Although the computer may contain a high-performance 
graphics processor, the video interface used by the BIOS during startup is normally a 
primitive video mode, supporting text display only.
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The BIOS uses the video and keyboard interfaces to display any errors detected during 
system testing and allows the user to enter configuration mode and change stored settings. 
The keyboard and video interfaces provided by the BIOS enable the initial setup and 
configuration of a computer that does not yet contain a boot device.

When the video display is not working properly, the BIOS will be unable to present 
information related to the error. In this situation, the BIOS attempts to use the PC speaker 
to indicate the error, using a pattern of beeps. Motherboard documentation provides 
information about the type of error indicated by each beep pattern.

Depending on the system configuration, either the BIOS or the operating system manages 
the initialization of PCI devices during system startup. At the completion of a successful 
configuration process, all PCI devices have been assigned compatible I/O port ranges, 
memory-mapped I/O ranges, and interrupt numbers.

As startup proceeds, the operating system identifies the appropriate driver to associate 
with each peripheral based on manufacturer and device identification information 
provided through PCI/PCIe. Following successful association, the driver interacts directly 
with each peripheral to perform I/O operations upon request. System processes and user 
applications call a set of standardized driver functions to initiate access to the device, 
perform read and write operations, and close the device.

One common BIOS-related procedure is to select the boot order among the available 
storage devices. For example, this feature lets you configure the system to first attempt  
to boot from an optical disk containing a valid operating system image, if such a disk is in 
the drive. If no bootable optical disk is found, the system might then attempt to boot from 
the main disk drive. Several mass storage devices can be configured in priority order in 
this manner.

BIOS configuration mode is accessed by pressing a specific key, such as Esc or the F2 
function key, during the early stage of the boot process. The appropriate key to press is 
usually indicated on screen during boot-up. Upon entering BIOS configuration mode, 
settings are displayed on screen in a menu format. You can select among different screens 
to modify parameters associated with features such as boot priority order. After making 
parameter changes, an option is provided to save the changes to nonvolatile memory 
(NVM) and resume the boot process. Be careful when doing this, because making 
inappropriate changes to the BIOS settings can leave the computer unbootable.
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The capabilities of BIOS implementations have grown substantially over the years since 
the introduction of the IBM PC. As PC architectures grew to support 32-bit and then 
64-bit operating systems, the legacy BIOS architecture, however, failed to keep pace with 
the needs of the newer, more capable systems. Major industry participants undertook an 
initiative to define a system firmware architecture that left behind the limitations of the 
BIOS. The result of this effort was the UEFI standard, which replaced the traditional BIOS 
capabilities in modern motherboards.

UEFI
UEFI is a 2007 standard defining an architecture for firmware that implements  
the functions provided by the legacy BIOS and adds several significant enhancements.  
As with BIOS, UEFI contains code executed immediately upon system startup.

UEFI supports a number of design goals, including enabling support for larger boot disk 
devices (specifically, disk sizes greater than 2 terabytes (TB), faster start up times, and 
improved security during the boot process. UEFI provides several features that, when 
enabled and used properly, substantially reduce the possibility of accidental or malicious 
corruption of firmware stored in UEFI flash memory.

In addition to the capabilities provided by legacy BIOS implementations described 
previously, the UEFI supports these features:

• UEFI applications are executable code modules stored in UEFI flash memory. 
UEFI applications provide extensions of capabilities available in the motherboard 
pre-boot environment and, in some cases, provide services for use by operating 
systems during runtime. One example of a UEFI application is the UEFI shell, 
which presents a command-line interface (CLI) for interacting with the processor 
and peripheral devices. The UEFI shell supports device data queries and permits 
modification of nonvolatile configuration parameters. The GNU GRand Unified 
Bootloader (GRUB) is another example of a UEFI application. GRUB supports 
multi-boot configurations by presenting a menu from which the user selects one  
of multiple available operating system images to boot during system startup.

• Architecture-independent device drivers provide processor-independent 
implementations of device drivers for use by UEFI. This enables a single 
implementation of UEFI firmware to be used on architectures as diverse as x86 
and Advanced RISC Machine (ARM) processors. Architecture-independent UEFI 
drivers are stored in a byte-code format that is interpreted by processor-specific 
firmware. These drivers enable UEFI interaction with peripherals such as graphics 
cards and network interfaces during the boot process.
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• Secure Boot employs cryptographic certificates to ensure that only legitimate  
device drivers and operating system loaders are executed during system startup. 
This feature validates the digital signature of each firmware component before 
allowing it to execute. This validation process protects against many classes of 
malicious firmware-based attacks.

• Faster booting is achieved by performing operations in parallel that took place 
sequentially under the BIOS. In fact, booting is so much faster that many UEFI 
implementations do not offer the user an option to press a key during boot because 
waiting for a response would delay system startup. Instead, operating systems such 
as Windows enable entry to UEFI settings by allowing the user to request access 
while the operating system is running, followed by a reboot to enter the UEFI 
configuration screen.

The UEFI does not simply replace the functions of the old BIOS. It is a miniature 
operating system that supports advanced capabilities, such as allowing a remotely located 
technician to use a network connection to troubleshoot a PC that refuses to boot.

Following POST and the low-level configuration of system devices, and having identified 
the appropriate boot device based on boot priority order, the system begins the operating 
system boot process.

The boot process
The procedure for booting a system image varies, depending on the partition style of the 
mass storage device containing the image. Beginning in the early 1980s, the standard disk 
partition format was called the master boot record (MBR). An MBR partition has a boot 
sector located at the logical beginning of its storage space. The MBR boot sector contains 
information describing the device's logical partitions. Each partition contains a filesystem 
organized as a tree structure of directories and the files within them.

Due to the fixed format of MBR data structures, an MBR storage device can contain  
a maximum of four logical partitions and can be no larger than 2 TB in size, equal  
to 232 512-byte data sectors. These limits have become increasingly constraining as 
commercially available disk sizes grew beyond 2 TB. To resolve these issues, and in 
tandem with the development of UEFI, a new partition format called GUID partition 
table (GPT) (where GUID stands for globally unique identifier) was developed to 
eliminate restrictions on disk size and the number of partitions, while providing some 
additional enhancements.
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A GPT-formatted disk has a maximum size of 264 512-byte sectors, accommodating over 
8 billion TB of data. As normally configured, GPT supports up to 128 partitions per 
drive. The type of each partition is indicated by a 128-bit GUID, allowing an effectively 
unlimited number of new partition types to be defined in the future. Most users do not 
need very many partitions on a single disk, so the most obvious user benefit of GPT is  
its support for larger drives.

The boot process takes place with some differences between BIOS and UEFI 
motherboards, as described in the following sections.

BIOS boot
Following POST and device configuration, BIOS begins the boot process. BIOS attempts 
to boot from the first device in the configured priority sequence. If a valid device is 
present, the firmware reads a small piece of executable code called the boot loader from 
the MBR boot sector and transfers control to it. At that point, the BIOS firmware has 
completed execution and is no longer active for the duration of system operation.  
The boot loader initiates the process of loading and starting the operating system.

If a boot manager is used with a BIOS motherboard, the MBR boot sector code must start 
the manager rather than loading an operating system directly. A boot manager (such as 
GRUB) presents a list from which the user selects the desired operating system image. The 
BIOS firmware itself has no knowledge of multi-booting, and the boot manager operating 
system selection process takes place without BIOS involvement.

Multi-booting versus boot priority order
Multi-booting allows the user to select the desired operating system from a 
menu of available choices. This differs from the boot priority list maintained by 
the BIOS, which empowers the BIOS itself to select the first available operating 
system image.

UEFI boot
After the POST and device configuration stages have completed (in a manner very similar 
to the corresponding BIOS steps), UEFI begins the boot process. In a UEFI motherboard, 
a boot manager may be displayed as part of the UEFI start up procedure. A UEFI boot 
manager, which is part of the UEFI firmware, presents a menu from which the user can 
select the desired operating system image.
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If the user does not select an operating system from the boot manager within a few 
seconds (or if no boot manager menu is displayed), the UEFI attempts to boot from  
the first device in the configured priority sequence. 

The UEFI firmware reads the boot manager executable code (which is separate from the 
UEFI boot manager) and boot loader files from configured locations on the system disk 
and executes these files during the start up process. 

The following screenshot shows portions of the system boot configuration data 
(BCD) information stored on a Windows 10 system. To display this information on 
your computer, you must run the bcdedit command from a command prompt with 
Administrator privilege:

C:\>bcdedit

Windows Boot Manager

--------------------

identifier              {bootmgr}

device                  partition=\Device\HarddiskVolume1

path                    \EFI\MICROSOFT\BOOT\BOOTMGFW.EFI

…

Windows Boot Loader

-------------------

identifier              {current}

device                  partition=C:

path                    \WINDOWS\system32\winload.efi

…

In this example, the Windows Boot Manager is located at \EFI\MICROSOFT\BOOT\
BOOTMGFW.EFI. This file is normally stored on a hidden disk partition and is not readily 
available for display in directory listings.

The Windows boot loader is identified as \WINDOWS\system32\winload.efi and  
is located at C:\Windows\System32\winload.efi.

Unlike personal computers, most embedded devices use a much simpler boot process 
that does not involve BIOS or UEFI. The next section discussions the boot process in 
embedded devices.
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Embedded devices
Most embedded systems, such as smartphones, do not generally have separate boot 
firmware such as the BIOS or UEFI in a PC. As we saw with the 6502, these devices 
perform a processor hardware reset when power is turned on and begin code execution 
at a specified address. All code in these devices is typically located in a nonvolatile storage 
region such as flash memory.

During startup, embedded devices perform a sequence of events similar to the PC boot 
process. Peripheral devices are tested for proper operation and initialized prior to first use. 
The boot loader in such devices may need to select among multiple memory partitions to 
identify an appropriate system image. As with UEFI, embedded devices often incorporate 
security features during the boot process to ensure that the boot loader and operating 
system image are authentic before allowing the boot process to proceed.

In both PC and embedded systems, startup of the boot loader is the first step in bringing 
up the operating system, which is the subject of the next section.

Operating systems
An operating system is a multilayer suite of software, providing an environment in which 
applications perform useful functions such as word processing, placing telephone calls, or 
managing the operation of a car engine. Applications running within the operating system 
execute algorithms implemented as processor instruction sequences and perform I/O 
interactions with peripheral devices as required to complete their tasks. 

The operating system provides standardized programming interfaces that application 
developers use to access system resources such as processor execution threads, disk files, 
input from a keyboard or other peripherals, and output to devices such as a computer 
screen or instruments on a dashboard.

Operating systems can be broadly categorized into real-time and non-real-time systems.

A real-time operating system (RTOS) provides features to ensure that responses to 
inputs occur within a defined time limit. Processors performing tasks such as managing 
the operation of a car engine or a kitchen appliance typically run an RTOS to ensure that 
the electrical and mechanical components they control receive responses to any change  
in inputs within a bounded time.

Non-real-time operating systems do not attempt to ensure that responses are generated 
within any particular time limit. Instead, these systems attempt to perform the processing 
as quickly as possible, even if it sometimes takes a long time.
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Real-time versus non-real-time operating systems
RTOSes are not necessarily faster than non-real-time operating systems. A 
non-real-time operating system may be faster on average compared to an 
RTOS, but the non-real-time system may occasionally exceed the time limit 
specified for the RTOS. The goal of the RTOS is to never exceed the response 
time limit.

For the most part, general-purpose operating systems such as Windows and Linux are 
non-real-time operating systems. They try to get assigned tasks—such as reading a file 
into a word processor or computing a spreadsheet—finished as quickly as possible, though 
the time to complete an operation may vary widely, depending on what other tasks the 
system is performing. 

Some aspects of general-purpose operating systems, particularly audio and video output, 
have specific real-time requirements. We've all seen poor video replay at one time or 
another, in which the video stutters and appears jerky. This behavior is the result of failing 
to meet the real-time performance demands of video display. Cell phones have similar 
real-time requirements for supporting two-way audio during voice telephone calls.

For both real-time and non-real-time operating systems, in standard PCs as well as in 
embedded devices, operating system startup tends to follow a similar sequence of steps. 
The boot loader either loads the operating system kernel into memory or simply jumps  
to an address in NVM to begin executing operating system code. 

The operating system kernel performs the following steps, not necessarily in this order:

• The processor and other system devices are configured. This includes setting up any 
required registers internal to the processor and any associated I/O management 
devices, such as a chipset.

• In systems using paged virtual memory (introduced in Chapter 7, Processor and 
Memory Architectures), the kernel configures the memory management unit. 

• Base-level system processes, including the scheduler and the idle process, are 
started. The scheduler manages the sequence of execution for process threads. The 
idle process contains the code that executes when there are no other threads ready 
for the scheduler to run.

• Device drivers are enumerated and associated with each peripheral in the system. 
Initialization code is executed for each driver, as discussed earlier in this chapter.

• Interrupts are configured and enabled. Once interrupts have been enabled, the 
system begins to perform I/O interactions with peripheral devices.

• System services are started. These processes support non-operating system activities 
(such as networking) and persistent installed capabilities (such as a web server).
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• For PC-type computers, a user interface process is started, which presents a 
login screen. This screen allows the user to initiate an interactive session with the 
computer. In embedded devices, the real-time application begins execution. The 
basic operational sequence for a simple embedded application is to read inputs  
from I/O devices, execute a computation algorithm to generate outputs, and write 
the outputs to I/O devices, repeating this procedure at fixed time intervals.

This section uses the term process to indicate a program running on a processor. The term 
thread indicates a flow of execution within a process, of which there may be more than 
one. The next section examines these topics in more detail.

Processes and threads
Many, but not all, operating systems support the concept of multiple threads of execution. 
A thread is a sequence of program instructions that logically executes in isolation from 
other threads. An operating system running on a single-core processor creates the illusion 
of multiple simultaneously running threads with time-slicing.

When performing time-slicing, an operating system scheduler grants each ready-to-run 
thread a period of time in which to execute. As a thread's execution interval ends, the 
scheduler interrupts the running thread and continues executing the next thread in its 
queue. In this manner, the scheduler gives each thread a bit of time to run before going 
back to the beginning of the list and starting over again.

In operating systems capable of supporting multiple runnable programs simultaneously, 
the term process refers to a running instance of a computer program. The system allocates 
resources such as memory and membership in the scheduler's queue of runnable threads 
to each process.

When a process first begins execution, it contains a single thread. The process may create 
more threads as it executes. Programmers create multithread applications for various 
reasons, including the following:

• One thread can perform I/O while a separate thread executes the main algorithm of 
the program. For example, a primary thread can periodically update a user display 
with received information while a separate thread waits in a blocked state for user 
input from the keyboard.

• Applications with substantial computational requirements can take advantage 
of multiprocessor and multi-core computer architectures by splitting large 
computational jobs into groups of smaller tasks capable of execution in parallel. 
By running each of these smaller tasks as a separate thread, programs enable the 
scheduler to assign threads to execute on multiple cores simultaneously.
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A process passes through a series of states during its life cycle. Some process states 
assigned by operating systems are as follows:

• Initializing: When a process is first started, perhaps as the result of a user  
double-clicking an icon on the desktop, the operating system begins loading  
the program code into memory and assigning system resources for its use.

• Waiting: After process initialization has completed, it is ready to run. At this point, 
its thread is assigned to the scheduler's queue of runnable threads. The process 
remains in the Waiting state until the scheduler permits it to start running.

• Running: The thread executes the program instructions contained in its  
code section.

• Blocked: The thread enters this state when it requests I/O from a device that causes 
execution to pause. For example, reading data from a file normally causes blocking. 
In this state, the thread waits in the Blocked state for the device driver to finish 
processing the request. As soon as a running thread becomes blocked, the scheduler 
is free to switch to another runnable thread while the first thread's I/O operation 
is in progress. When the operation completes, the blocked thread returns to the 
Waiting state in the scheduler queue and eventually returns to the Running state, 
where it processes the results of the I/O operation.

Ready-to-run processes rely on the system scheduler to receive execution time. The 
scheduler process is responsible for granting execution time to all system and user threads.

The scheduler is an interrupt-driven routine that executes at periodic time intervals, as 
well as in response to actions taken by threads such as the initiation of an I/O operation. 
During operating system initialization, a periodic timer is attached to the scheduler 
interrupt handler, and the scheduler timer is started.

While each process is in the Initializing state, the kernel adds a data structure called 
a process control block (PCB) to its list of running processes. The PCB contains 
information that the system requires to maintain and interact with the process over 
its lifetime, including memory allocations and details regarding the file containing its 
executable code. A process is usually identified by an integer that remains unique during 
its lifetime. In Windows, the Resource Monitor tool (you can start this tool by typing 
Resource Monitor into the Windows search box and clicking on the result identified 
as Resource Monitor) displays running processes, including the process identifier 
(PID) associated with each process. In Linux, the top command displays the processes 
consuming the most system resources, identifying each by its PID.
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The scheduler maintains information associated with each thread in a thread control 
block (TCB). Each process has a list of associated TCBs, with a minimum of one entry 
in the list. The TCB contains information related to the thread, including processor 
context. The processor context is the collection of information the kernel uses to resume 
execution of a blocked thread, consisting of these items:

• The saved processor registers

• The stack pointer

• The flags register

• The instruction pointer

Similar to the PID, each thread has an integer thread identifier that remains unique during 
its lifetime.

The scheduler uses one or more scheduling algorithms to ensure that execution  
time is allocated equitably among system and user processes. Two main categories  
of thread scheduling algorithms have been widely used since the early days of  
computing—non-preemptive and preemptive, described here:

• Non-preemptive scheduling grants a thread complete execution control, allowing 
it to run until it terminates, or voluntarily releases control to the scheduler so that 
other threads have a chance to run.  

• In preemptive scheduling, the scheduler has the authority to stop a running thread 
and hand execution control over to another thread without requesting approval 
from the first thread. When a preemptive scheduler switches execution from one 
thread to another, it performs the following steps:

1. Either a timer interrupt occurs that causes the scheduler to begin execution,  
or a running thread performs an action that causes blocking, such as initiating  
an I/O operation.

2. The scheduler consults its list of runnable threads and determines which thread  
to place in the Running state.

3. The scheduler copies the departing thread's processor registers into the context 
fields of the thread's TCB.

4. The scheduler loads the context of the incoming thread into the processor registers.

5. The scheduler resumes execution of the incoming thread by jumping to the 
instruction pointed to by the thread's program counter.
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Thread scheduling occurs at a high frequency, which implies the code involved in 
scheduler activity must be as efficient as possible. In particular, storing and retrieving 
processor context takes some time, so operating system designers make every effort  
to optimize the performance of the scheduler's context switching code.

Because there may be numerous processes competing for execution time at a given 
moment, the scheduler must ensure that critical system processes are able to execute at 
required intervals. At the same time, from the user's point of view, applications must 
remain responsive to user inputs while providing an acceptable level of performance 
during lengthy computations.

Various algorithms have been developed over the years to efficiently manage these 
competing demands. A key feature of most thread scheduling algorithms is the use  
of process priorities. The next section introduces several priority-based thread  
scheduling algorithms.

Scheduling algorithms and process priority
Operating systems supporting multiple processes generally provide a prioritization 
mechanism to ensure that the most important system functions receive adequate processing 
time, even when the system is under heavy load, while continuing to provide adequate time 
for the execution of lower-priority user processes. Several algorithms have been developed 
to meet various performance goals for different types of operating systems. Some algorithms 
that have been popular over the years, beginning with the simplest, are as follows:

• First come, first served (FCFS): This non-preemptive approach was common in 
legacy batch processing operating systems. In an FCFS scheduling algorithm, each 
process is granted execution control and retains control until execution is completed. 
There is no prioritization of processes, and the time to complete any process is 
dependent on the execution time of processes preceding it in the input queue.

• Cooperative multithreading: Early versions of Windows and macOS used 
a non-preemptive multithreading architecture that relied on each thread to 
voluntarily relinquish control to the operating system at frequent intervals. This 
required significant effort by application developers to ensure a single application 
did not starve other applications of opportunities to execute by failing to release 
control at appropriate intervals. Each time the operating system received control,  
it selected the next thread to execute from a prioritized list of runnable threads.

• Round-robin scheduling: A preemptive round-robin scheduler maintains a list of 
runnable threads and grants each of them an execution interval in turn, starting over 
at the beginning of the list upon reaching the end. This approach effectively sets all 
process priorities equally, giving each a chance to execute for defined periods of time,  
at time intervals dependent on the number of processes in the scheduler's list.
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• Fixed-priority preemptive scheduling: In this algorithm, each thread is assigned 
a fixed priority value indicating the importance of its receiving execution control 
when it is in the Waiting state. When a thread enters the Waiting state, if it has 
a higher priority than the currently running thread, the scheduler immediately 
stops the running thread and turns control over to the incoming thread. The 
scheduler maintains the list of Waiting processes in priority order, with the highest 
priority threads at the head of the line. This algorithm can result in the failure of 
lower-priority threads to get any execution time at all if higher-priority threads 
monopolize the available execution time.

• Rate-monotonic scheduling (RMS) is a fixed-priority preemptive scheduling 
algorithm commonly used in real-time systems with hard deadlines (a hard 
deadline is one that cannot be missed). Under RMS, threads that execute more 
frequently are assigned higher priorities. As long as a few criteria are satisfied  
(the thread execution interval equals the deadline; there can be no delay-inducing 
interactions between threads; and context switch time is negligible), if the 
maximum possible execution time of each thread is below a mathematically  
derived limit, deadlines are guaranteed to be met.

• Fair scheduling: Fair scheduling attempts to maximize the utilization of processor 
time while ensuring that each user is granted an equal amount of execution time. 
Rather than assigning numeric priorities to threads, the effective priority of each 
thread is determined by the amount of execution time it has consumed. As a thread 
uses more and more processor time, its priority declines, enabling other threads 
more opportunities to run. This approach has the benefit that, for interactive users 
who do not consume much execution time, the responsiveness of the system is 
improved. The Linux kernel uses a fair scheduling algorithm as its default scheduler.

• Multilevel feedback queue: This algorithm uses multiple queues, each with a 
different priority level. New threads are added at the tail of the highest-priority 
queue. At each scheduling interval, the scheduler grants execution to the thread at 
the head of the high-priority queue and removes the thread from the queue, which 
moves the remaining threads closer to execution. Eventually, the newly created 
thread receives an opportunity to execute. If the thread consumes all the execution 
time granted to it, it is preempted at the completion of its interval and added to 
the tail of the next lower-priority queue. The Windows Scheduler is a multilevel 
feedback queue.

The system idle process contains the thread that executes when there is no user- or 
system-assigned thread in the Waiting state. An idle process may be as simple as a single 
instruction that forms an infinite loop, jumping to itself. Some operating systems place the 
system in a power-saving mode during idle periods, rather than executing an idle loop. 
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The percentage of processor time consumed by running processes is computed by 
determining the fraction of time the system was executing a non-idle thread over  
a measurement period.

The following screenshot is a Windows Resource Monitor view of running processes 
consuming the highest average share of processor time:

Figure 5.1: Windows Resource Monitor process display

In this figure, the PID column displays the numeric process identifier, and the Threads 
column shows the number of threads in the process. The process state is Running for all 
of the processes visible in this display.
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The following screenshot shows the result of running the top command on a  
Linux system:

Figure 5.2: Linux top command process display

The upper part of the display contains summary information, including the number  
of processes (referred to as Tasks here) in each state.

Each row in the lower part of the display presents information about one running process. 
As in Windows, the PID column indicates the PID. The state of each process is shown in 
the S column, with these possible values:

• R: Runnable, meaning either running or in the queue of ready-to-run threads.

• S: Sleeping: Paused while blocked; waiting for an event to complete.

• T: Stopped in response to a job control command (pressing CTRL+Z will do this).

• Z: Zombie, which occurs when a child process of another process terminates, but 
the child process information continues to be maintained by the system until the 
parent process ends.

• PR: The PR column displays the scheduling priority of the process. Smaller 
numbers represent higher priorities.

Up to this point, we have referred to the computer processor as a singular entity. In most 
modern PCs, the processor integrated circuit contains two or more processor cores, each 
implementing the features of a complete, independent processor, including a control unit, 
register set, and arithmetic logic unit (ALU). The next section discusses the attributes of 
systems containing multiple processing units.
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Multiprocessing
A multiprocessing computer contains two or more processors that simultaneously 
execute sequences of instructions. The processors in such a system typically share access 
to system resources, such as main memory and peripheral devices. The processors in a 
multiprocessing system may be of the same architecture, or individual processors may 
be of differing architectures to support unique system requirements. Systems in which 
all processors are treated as equal are referred to as symmetric multiprocessing systems. 
Devices that contain multiple processors within a single integrated circuit are called 
multi-core processors. 

At the level of the operating system scheduler, a symmetric multiprocessing environment 
simply provides more processors for use in thread scheduling. In such systems, the 
scheduler treats additional processors as resources when assigning threads for execution.

In a well-designed symmetric multiprocessing system, throughput can approach the ideal 
of scaling linearly with the number of available processor cores, as long as contention for 
shared resources is minimal. If multiple threads on separate cores attempt to perform 
heavy simultaneous access to main memory, for example, there will be inevitable 
performance degradation as the system arbitrates access to the resource and shares it 
among competing threads. A multichannel interface to dynamic random-access memory 
(DRAM) can improve system performance in this scenario.

A symmetric multiprocessing system is an example of a multiple instruction, multiple 
data (MIMD) architecture. MIMD is a parallel processing configuration in which each 
processor core executes an independent sequence of instructions on its own set of data. A 
single instruction, multiple data (SIMD) parallel processing configuration, on the other 
hand, performs the same instruction operation on multiple data elements simultaneously.

Modern processors implement SIMD instructions to perform parallel processing on large 
datasets such as graphical images and audio data sequences. In current-generation PCs, 
the use of multi-core processors enables MIMD execution parallelism, while specialized 
instructions within the processors provide a degree of SIMD execution parallelism. SIMD 
processing will be discussed further in Chapter 8, Performance-Enhancing Techniques.

Processor clock speeds have grown from the 4.77 MHz of the original PC to over 4 GHz 
in modern processors, nearly a thousand-fold increase. Future speed increases are likely to 
be more limited as fundamental physical limits present looming obstacles. To compensate 
for limited future performance gains from increases in clock speed, the processor industry 
has turned to emphasizing various forms of execution parallelism in personal computer 
systems and smart devices. Future trends are likely to continue the growth in parallelism 
as systems integrate dozens, then hundreds, and eventually thousands of processor cores 
executing in parallel in PCs, smartphones, and other digital devices.
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Summary
This chapter began with an overview of device drivers, including details on the instruction 
sequences used by driver code to read from and write to a simple I/O device, the PC 
parallel port. We continued with a discussion of the legacy BIOS and the newer UEFI, 
which provide the code that first executes on PC power-up, performs device testing and 
initialization, and initiates loading of the operating system.

We continued with a description of some of the fundamental elements of operating systems, 
including processes, threads, and the scheduler. Various scheduling algorithms used in past 
computers and the systems of today were introduced. We examined the output of tools 
available in Windows and Linux that present information about running processes.

The chapter concluded with a discussion of multiprocessing and its performance impact 
on the computer systems of today, as well as the implications of MIMD and SIMD parallel 
processing for the future of computing.

The next chapter will introduce specialized computing domains and their unique 
processing requirements in the areas of real-time computing, digital signal processing, 
and graphics processing unit (GPU) processing.

Exercises
1. Restart your computer and enter the BIOS or UEFI settings. Examine each of the 

menus available in this environment. Does your computer have BIOS or does it use 
UEFI? Does your motherboard support overclocking? When you are finished, be 
sure to select the option to quit without saving changes unless you are absolutely 
certain you want to make changes.

2. Run the appropriate command on your computer to display the currently running 
processes. What is the PID of the process you are using to run this command?
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Specialized 

Computing Domains
Most computer users are, at least superficially, familiar with key performance-related 
attributes of personal computers and smart digital devices, such as processor speed and 
random-access memory (RAM) size. This chapter explores the performance requirements 
of computing domains that tend to be less directly visible to users, including real-time 
systems, digital signal processing, and graphics processing unit (GPU) processing. 

We will examine the unique computing features associated with each of these domains 
and review some examples of modern devices implementing these concepts.

After completing this chapter, you will be able to identify application areas that require 
real-time computing and you will understand the uses of digital signal processing, with an 
emphasis on wireless communication. You will also understand the basic architecture of 
modern GPUs and will be familiar with some modern implementations of components  
in the computing domains discussed in this chapter.

This chapter covers the following topics:

• Real-time computing

• Digital signal processing

• GPU processing

• Examples of specialized architectures
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Real-time computing
The previous chapter provided a brief introduction to some of the requirements of real-
time-computing in terms of a system's responsiveness to changes in its inputs. These 
requirements are specified in the form of timing deadlines that limit how long the system 
can take to produce an output in response to a change in its input. This section will look 
at these timing specifications in more detail and will present the specific features real-time 
computing systems implement to ensure timing requirements are met.

Real-time computing systems can be categorized as providing soft or hard guarantees 
of responsiveness. A soft real-time system is considered to perform acceptably if it 
meets its desired response time most, but not necessarily all, of the time. An example of 
a soft real-time application is the clock display on a cell phone. When opening the clock 
display, some implementations momentarily present the time that was shown the last 
time the clock display was opened before quickly updating to the correct, current time. Of 
course, users would like the clock to show the correct time whenever it is displayed, but 
momentary glitches such as this aren't usually seen as a significant problem.

A hard real-time system, on the other hand, is considered to have failed if it ever misses 
any of its response-time deadlines. Safety-critical systems such as airbag controllers 
in automobiles and flight control systems for commercial aircraft have hard real-time 
requirements. Designers of these systems take timing requirements very seriously 
and devote substantial effort to ensuring the real-time processor satisfies its timing 
requirements under all possible operating conditions.

The control flow of a simple real-time system is shown in the following screenshot:

Figure 6.1: Real-time system control flow
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Figure 6.1 represents a real-time computing system using a hardware interval timer  
to control the time sequencing of its operation. A down-counting interval timer  
performs a repetitive cycle of the following steps:

1. Load the counter register with a predefined numeric value.

2. Decrement the counter at a fixed clock rate.

3. When the count reaches zero, generate an event such as setting a bit in a register  
or triggering an interrupt.

4. Go back to Step 1.

An interval timer generates a periodic sequence of events with timing accuracy that 
depends on the accuracy of the system clock, which is often driven by a quartz crystal.  
By waiting for the timer event at the top of each loop, the system in Figure 6.1 begins  
each execution pass at fixed, equal time intervals. 

To satisfy the demands of hard real-time operation, the execution time of the code 
inside the loop (the code contained in the Read inputs, Compute outputs, and Write 
outputs blocks in Figure 6.1) must always be less than the timer interval. Prudent system 
developers ensure that no path through the code results in execution time anywhere close 
to the hard real-time limit. A conservative system design rule might insist the longest 
execution path for code inside the loop consumes no more than 50% of the timer interval.

Practical real-time systems constructed in this configuration might be based on an 8-, 
16-, or 32-bit processor running at a clock frequency in the tens to hundreds of MHz. The 
timer employed in the main loop of such systems generates events at a developer-selected 
frequency, often in the range 10 to 1000 Hz.  

The code represented in Figure 6.1 runs directly on the processor hardware with no 
intervening software layers. This configuration contains no operating system of the type 
described in Chapter 5, Hardware-Software Interface. A sophisticated real-time application 
is likely to have more extensive needs than can be met by this simplistic architecture, 
making the use of a real-time operating system attractive.

Real-time operating systems
A real-time operating system (RTOS) contains several features superficially similar 
to the general-purpose operating systems discussed in Chapter 5, Hardware-Software 
Interface. An RTOS design differs significantly from general-purpose operating systems, 
however, in that all RTOS aspects—from kernel internals, to device drivers, to system 
services— are focused on meeting hard real-time requirements.
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Most RTOS designs employ preemptive multithreading, often referred to as multitasking in 
RTOS literature. The terms task and thread are somewhat synonymous in the RTOS context, 
so for consistency we will continue to use the term thread to indicate an RTOS task.

RTOS designs at the lower end of the sophistication scale typically support multithreading 
within the context of a single application process. These simpler RTOSes support thread 
prioritization but often lack memory protection features.

More sophisticated RTOS architectures provide multiple thread privilege levels and 
operating system features such as memory protection, in addition to prioritized, 
preemptive multithreading. These RTOSes allow multiple processes to be in the Running 
state simultaneously, each potentially containing several threads. In protected memory 
systems, kernel memory access by application threads is prohibited and applications 
cannot reach into each other's memory regions. Many RTOSes support multi-core 
processor architectures.

RTOS environments, from lower to higher levels of sophistication, provide several data 
structures and communication techniques geared toward efficient data transfer between 
threads, and to support controlled access to shared resources. Some examples of these 
features are as follows:

• Mutex: A mutex (short for mutual exclusion) is a mechanism for a thread to claim 
access to a shared resource, without blocking the execution of other threads. In its 
simplest form, a mutex is a variable accessible to all threads that has the value 0 
when the resource is free and 1 when the resource is in use. A thread that wants  
to use the resource reads the current value of the mutex variable and, if it is 0, sets it 
to 1 and performs the operation with the resource. After completing the operation, 
the thread sets the mutex back to 0. There are, however, some potential problems 
with mutexes:

Thread preemption: Let's say a thread reads the mutex variable and sees that it is 
0. Because the scheduler can interrupt an executing thread at any time, that thread 
might be interrupted before it has a chance to set the mutex to 1. A different thread 
then resumes execution and takes control of the same resource because it sees the 
mutex is still 0. When the original thread resumes, it finishes setting the mutex  
to 1 (even though, by now, it has already been set to 1). At this point, both threads 
incorrectly believe they have exclusive access to the resource, which is likely  
to lead to serious problems.
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To prevent this scenario, many processors implement some form of a  
test-and-set instruction. A test-and-set instruction reads a value from a memory 
address and sets that location to 1 in a single, uninterruptable (also referred to 
as atomic) action. In the x86 architecture, the BTS (bit test and set) instruction 
performs this atomic operation. In processor architectures that lack a test-and-set 
instruction (such as the 6502), the risk of preemption can be eliminated by disabling 
interrupts before checking the state of the mutex variable, then re-enabling 
interrupts after setting the mutex to 1. This approach has the disadvantage of 
reducing real-time responsiveness while interrupts are disabled.

Priority inversion: Priority inversion occurs when a higher-priority thread  
attempts to gain access to a resource while the corresponding mutex is held by a 
lower-priority thread. In this situation, RTOS implementations generally place 
the higher-priority thread in a blocked state, allowing the lower-priority thread 
to complete its operation and release the mutex. The priority inversion problem 
occurs when a thread with a priority between the upper and lower levels of the two 
threads begins execution. While this mid-priority thread is running, it prevents the 
lower-priority thread from executing and releasing the mutex. The higher-priority 
thread must now wait until the mid-priority thread finishes execution, effectively 
disrupting the entire thread prioritization scheme. This can lead to failure of the 
high-priority thread to meet its deadline.

One method to prevent priority inversion is priority inheritance. In an RTOS 
implementing priority inheritance, whenever a higher-priority thread (thread2) 
requests a mutex held by a lower-priority thread (thread1), thread1 is temporarily 
raised in priority to the level of thread2. This eliminates any possibility of a 
mid-priority thread delaying the completion of the (originally) lower-priority 
thread1. When thread1 releases the mutex, the RTOS restores its original priority.

Deadlock: Deadlock can occur when multiple threads attempt to lock multiple 
mutexes. If thread1 and thread2 both require mutex1 and mutex2, a situation 
may arise in which thread1 locks mutex1 and attempts to locks mutex2, while 
at the same time thread2 has already locked mutex2 and attempts to lock 
mutex1. Neither task can proceed from this state, hence the term deadlock. Some 
RTOS implementations check the ownership of mutexes during lock attempts and 
report an error in a deadlock situation. In simpler RTOS designs, it is up to the 
system developer to ensure deadlock cannot occur.
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• Semaphore: A semaphore is a generalization of the mutex. Semaphores can be of 
two types: binary and counting. A binary semaphore is similar to a mutex except 
that rather than controlling access to a resource, the binary semaphore is intended 
to be used by one task to send a signal to another task. If thread1 attempts to take 
semaphore1 while it is unavailable, thread1 will block until another thread or 
interrupt service routine gives semaphore1.

A counting semaphore contains a counter with an upper limit. Counting semaphores 
are used to control access to multiple interchangeable resources. When a thread 
takes the counting semaphore, the counter increments and the task proceeds. When 
the counter reaches its limit, a thread attempting to take the semaphore blocks until 
another thread gives the semaphore, decrementing the counter.

Consider the example of a system that supports a limited number of simultaneously 
open files. A counting semaphore can be used to manage file open and close 
operations. If the system supports up to 10 open files and a thread attempts to 
open an 11th file, a counting semaphore with a limit of 10 will block the file open 
operation until another file is closed and its descriptor becomes available.

• Queue: A queue (also referred to as a message queue) is a unidirectional 
communication path between processes or threads. The sending thread places  
data items into the queue and the receiving thread retrieves those items in the same 
order they were sent. The RTOS synchronizes accesses between the sender and 
receiver so the receiver only retrieves complete data items. Queues are commonly 
implemented with a fixed-size storage buffer. The buffer will eventually fill and 
block further insertions if a sending thread adds data items faster than the receiving 
thread retrieves them.

RTOS message queues provide a programming interface for the receiving thread  
to check if the queue contains data. Many queue implementations also support the 
use of a semaphore to signal a blocked receiving thread when data is available.

• Critical section: It is common for multiple threads to require access to a shared 
data structure. When using shared data, it is vital that read and write operations 
from different threads do not overlap in time. If such an overlap occurs, the reading 
thread may receive inconsistent information if it accesses the data structure while 
another thread is in the midst of an update. The mutex and semaphore mechanisms 
provide options for controlling access to such data structures. The use of a critical 
section is an alternate approach that isolates the code accessing the shared data 
structure and allows only one thread to execute that sequence at a time. 
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A simple method to implement a critical section is to disable interrupts just before 
entering a critical section and re-enable interrupts after completing the critical 
section. This prevents the scheduler from running and ensures the thread accessing 
the data structure has sole control until it exits the critical section. This method has 
the disadvantage of impairing real-time responsiveness by preventing responses  
to interrupts, including thread scheduling, while interrupts are disabled.

Some RTOS implementations provide a more sophisticated implementation of the critical 
section technique, involving the use of critical section data objects. Critical section objects 
typically provide options to allow a thread to either enter a blocked state until the critical 
section becomes available or test if the critical section is in use without blocking. The 
option for testing critical section availability allows the thread to perform other work 
while waiting for the critical section to become free.

This section provided a brief introduction to some of the communication and resource 
management capabilities common to RTOS implementations. There are far more  
real-time computing systems in operation today than there are PCs we think of as 
computers. General-purpose computers represent less than 1% of the digital processors 
produced each year. Devices ranging from children's toys, to digital thermometers, to 
televisions, to automobiles, to spacecraft contain at least one, and often contain dozens  
of embedded processors, each running some type of RTOS.

The next section introduces processing architectures used in the processing of digital 
samples of analog signals.

Digital signal processing
A digital signal processor (DSP) is optimized to perform computations on digitized 
representations of analog signals. Real-world signals such as audio, video, cell phone 
transmissions, and radar are analog in nature, meaning the information being processed 
is the response of an electrical sensor to a continuously varying voltage. Before a digital 
processor can begin to work with an analog signal, the signal voltage must be converted  
to a digital representation by an analog-to-digital converter (ADC). The following 
section describes the operation of ADCs and digital-to-analog converters (DACs).

ADCs and DACs
An ADC measures an analog input voltage and produces a digital output word 
representing the input voltage. ADCs often use a DAC internally during the conversion 
process. A DAC performs the reverse operation of an ADC, converting a digital word  
to an analog voltage.
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A variety of circuit architectures are used in DAC applications, generally with the goal of 
achieving a combination of low cost, high speed, and high precision. One of the simplest 
DAC designs is the R-2R ladder, shown here in a 4-bit input configuration:

Figure 6.2: R-2R ladder DAC

This DAC uses a 4-bit data word on the inputs d0-d3 to generate an analog voltage, VO. 
If we assume each bit of the 4-bit word d is driven at either 0 V (for a 0-bit) or 5 V (for a 
1-bit), the output VO equals (d / 24) * 5 V, where d is a data value in the range 0 to 15. An 
input word of 0 has an output of 0 V, and an input word of 15 has an output of (15/16) 
* 5V = 4.6875V. Intermediate values of d produce equally spaced output voltages at 
intervals of (1/16) * 5V = 0.3125V.

An ADC can use an internal DAC in this manner (though usually with a larger number  
of bits, with a correspondingly finer voltage resolution) to determine the digital equivalent 
of an analog input voltage.

Because the analog input signal can vary continuously over time, ADC circuits generally 
use a sample-and-hold circuit to maintain a constant analog voltage during the 
conversion process. A sample-and-hold circuit is an analog device with a digital hold 
input signal. When the hold input is inactive, the sample-and-hold output tracks the input 
voltage. When the hold input is active, the sample-and-hold circuit freezes its output 
voltage at the input voltage that was present at the moment the hold signal was activated.

With its input held constant, the ADC uses its DAC to determine the digital equivalent 
of the input voltage. To make this determination, the ADC uses a comparator, which is a 
circuit that compares two analog voltages and produces a digital output signal indicating 
which is the higher voltage. The ADC feeds the sample-and-hold output voltage into 
one input of the comparator and the DAC output into the other input, as shown in the 
following diagram, in which the DAC input word size is n bits:
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Figure 6.3: ADC architecture

The job of the ADC is to determine the DAC input word that causes the comparator to 
change state. A simple way to do this is to count upward from zero, writing each numeric 
value to the DAC inputs and observing the comparator output to see if it changed state. 
The DAC output that first causes the comparator to change state is the smallest DAC 
output voltage that is greater than the sample-and-hold output voltage. The actual sampled 
analog voltage is between this DAC output and the DAC output from a data word one 
count smaller. This ADC configuration is called a counter type ADC.

While simple in concept, the counter type ADC can be quite slow, especially if the word 
size is large. A faster method is to sequentially compare each bit in the DAC data word, 
beginning with the most significant bit. Starting with a data word of 1000b in our 4-bit 
example, the first comparator reading indicates if the analog input voltage is above or 
below the DAC voltage midpoint. This determines if bit d3 of the ADC reading is 0 or 1. 
Using the now-known value of d3, d2 is set to 1 to indicate which quarter of the full-scale 
range the input voltage lies within. This procedure is repeated to sequentially determine 
each of the remaining bits, ending with the least significant bit.

This ADC conversion technique is referred to as successive approximation. A successive 
approximation ADC is much faster than a counter type ADC. In our example, the 
maximum possible number of comparisons drops from 16 to 4. In a 12-bit successive 
approximation ADC, the potential number of comparisons drops from 4,096 to 12. 
Successive approximation ADCs are available with resolutions from 8 to 18 bits, with 
maximum conversion rates up to several MHz.

ADCs and DACs are characterized by resolution and maximum conversion speed. The 
resolution of an ADC or DAC is determined by the number of bits in its data word. The 
maximum conversion speed determines how quickly the ADC or DAC can produce 
sequential outputs.
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To process real-time data, an ADC produces a sequence of measurements at periodic time 
intervals for use as input to further processing. Requirements for data word resolution  
and sample rate vary widely depending on the particular DSP application. Some examples 
of standard digitized analog data formats are as follows:

• Compact disk digital audio is sampled at 44.1 kHz with 16 bits per sample in two 
channels, corresponding to the left and right speakers.

• Video cameras measure the analog light intensity received at each pixel in a 
two-dimensional array and convert the reading to a digital word, usually 8 bits  
wide. Separate closely spaced sensors with color filters produce red, green, and  
blue measurements for each pixel in the image. The complete dataset for a single 
pixel consists of 24 bits, composed of three 8-bit color values. A single image can 
contain tens of millions of pixels, and video cameras typically produce 30 to 60 
frames per second. Because digital video recording produces such an enormous 
quantity of data, compression algorithms are generally used to reduce storage and 
transmission requirements.

• A mobile phone contains a radio frequency transceiver that down-converts the 
received radio frequency signal to a frequency range suitable for input to an ADC. 
Typical parameters for a mobile phone ADC are 12 bits of resolution and a sample 
rate of 50 MHz.

• An automotive radar system samples radio frequency energy reflected from nearby 
obstacles with a resolution of 16 bits at a rate of 5 MHz.

DSP hardware features
DSPs are optimized to execute signal processing algorithms on digitized samples 
of analog information. The dot product is a fundamental operation used in many 
algorithms performed by DSPs. If A and B are two equal-length vectors (a vector is a 
one-dimensional array of numeric values), the dot product of A and B is formed by 
multiplying each element of A by the corresponding element of B, and summing the 
resulting products. Mathematically, if the length of each vector is n (indexed from 0 to 
n-1), the dot product of the vectors is as follows:

The repetitive nature of the dot product calculation provides a natural path for 
performance optimization in digital systems. The basic operation performed in  
the dot product computation is called multiply-accumulate (MAC). 
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A single MAC consists of multiplying two numbers together and adding the result to 
an accumulator, which must be initialized to zero at the beginning of the dot product 
calculation. The mathematical performance of DSP chips is commonly measured in terms 
of MACs per second. Many DSP architectures are capable of performing one MAC per 
instruction clock cycle.

To perform a MAC on every clock cycle, a DSP cannot dedicate separate clock cycles to 
read a MAC instruction from program memory, read each of the vector elements to be 
multiplied from data memory, compute the product, and add it to the accumulator. All  
of these things must happen in one step.

The von Neumann architecture, introduced in Chapter 1, Introducing Computer 
Architecture, uses a single memory region for program instructions and data. This 
configuration results in a limitation known as the von Neumann bottleneck, resulting 
from the need to pass program instructions and data values sequentially across a single 
processor-to-memory interface.

This effect can be mitigated by using an architecture that separates program instructions 
and data storage into two separate memory regions, each with its own processor interface. 
This configuration, called the Harvard architecture, allows program instruction and data 
memory access to occur in parallel, enabling instructions to execute in a smaller number 
of clock cycles.

A DSP with a Harvard architecture must perform two data memory accesses to retrieve 
the elements of the A and B vectors to be multiplied in a MAC operation. This normally 
requires two clock cycles, failing to meet the performance goal of one MAC per clock 
cycle. A modified Harvard architecture supports the use of program memory to store 
data values in addition to instructions. In many DSP applications, the values of one of 
the vectors (let's say the A vector) involved in the dot product are constant values known 
at the time the application is compiled. In a modified Harvard architecture, the elements 
of the A vector can be stored in program memory and the elements of the B vector, 
representing input data read from an ADC, are stored in data memory.

To perform each MAC operation in this architecture, one element of the A vector is 
read from program memory, one element of the B vector is read from data memory, and 
the accumulated product is stored in an internal processor register. If the DSP contains 
cache memory for program instructions, the MAC instruction performing each step 
of the dot product will be read from cache once the first MAC operation reads it from 
program memory, avoiding further memory access cycles to retrieve the instruction. This 
configuration (modified Harvard architecture with program instruction caching) enables 
single-cycle MAC operations for all iterations of the dot product once the first MAC has 
completed. Since the vectors involved in real-world dot product computations commonly 
contain hundreds or even thousands of elements, the overall performance of the dot 
product operation can closely approach the ideal of one MAC per DSP clock cycle.
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A DSP can be categorized as having a fixed-point or a floating-point architecture.  
Fixed-point DSPs use signed or unsigned integers to perform mathematical operations 
such as MAC. Fixed-point DSPs are generally less costly than floating-point DSPs. 
However, fixed-point mathematics has the potential for numeric issues such as overflow, 
which can manifest by exceeding the range of the dot product accumulator.

To reduce the possibility of overflow, DSPs often implement an extended range 
accumulator, sometimes 40 bits wide in a 32-bit architecture, to support dot products 
on lengthy vectors. Due to concerns regarding overflow and related numerical issues, 
programming fixed-point DSPs requires extra effort to ensure these effects don't result  
in unacceptable performance degradation.

Floating-point DSPs often use a 32-bit wide numeric format for internal calculations. 
Once an integer ADC reading has been received by the DSP, all further processing 
is performed using floating-point operations. By taking advantage of floating-point 
operations, the potential for issues such as overflow is drastically reduced, resulting  
in quicker software development cycles.

The use of floating-point also improves the fidelity of computation results, realized  
in terms of improved signal-to-noise ratio (SNR) in comparison to an equivalent  
fixed-point implementation. Fixed-point calculations quantize the result of each 
mathematical operation at the level of the integer's least significant bit. Floating-point 
operations generally maintain accurate results from each operation to a small fraction  
of the corresponding fixed-point least significant bit.

Signal processing algorithms
Building upon our understanding of DSP hardware and the operations it supports,  
we will next look at some examples of digital signal processing algorithms in  
real-world applications.

Convolution
Convolution is a formal mathematical operation on par with addition and multiplication. 
Unlike addition and multiplication, which operate on pairs of numbers, convolution 
operates on pairs of signals. In the DSP context, a signal is a series of digitized samples  
of a time-varying input measured at equally spaced time intervals. Convolution is the 
most fundamental operation in the field of digital signal processing.
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In many practical applications, one of the two signals involved in a convolution operation 
is a fixed vector of numbers stored in DSP memory. The other signal is a sequence of 
samples originating from ADC measurements. To implement the convolution operation, 
as each ADC measurement is received, the DSP computes an updated output, which is 
simply the dot product of the fixed data vector (let's say the length of this vector is n)  
and the most recent n input samples received from the ADC. To compute the convolution 
of these vectors, the DSP must perform n MAC operations each time it receives an  
ADC sample.

The fixed vector used in this example, referred to as h, is called the impulse response. 
A digital impulse is defined as a theoretically infinite sequence of samples in which one 
sample is 1 and all the preceding and following samples are 0. Using this vector as the 
input to a convolution with the vector h produces an output identical to the sequence h, 
surrounded by preceding and following zeros. The single 1 value in the impulse sequence 
multiplies each element of h on successive iterations, while all other elements of h are 
multiplied by 0. 

The particular values contained in the h vector determine the effects of the convolution 
operation on the input data sequence. Digital filtering is one common application  
of convolution.

Digital�filtering
A frequency selective filter is a circuit or algorithm that receives an input signal 
and attempts to pass desired frequency ranges to the output without distortion while 
eliminating, or at least reducing to an acceptable level, frequency ranges outside the 
desired ranges.

We are all familiar with the bass and treble controls in audio entertainment systems. These 
are examples of frequency selective filters. The bass function implements a variable gain 
lowpass filter, meaning the audio signal is filtered to select the lower frequency portion of 
the audio signal, and this filtered signal is fed to an amplifier that varies its output power 
in response to the position of the bass control. The treble section is implemented similarly, 
using a highpass filter to select the higher frequencies in the audio signal. The outputs of 
these amplifiers are combined to produce the signal sent to the speakers.

Frequency selective filters can be implemented with analog technology or using digital 
signal processing techniques. Simple analog filters are cheap and only require a few  
circuit components. However, the performance of these filters leaves much to be desired.
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Some key parameters of a frequency selective filter are stopband suppression and the 
width of the transition band. Stopband suppression indicates how good a job the filter 
does of eliminating undesired frequencies in its output. In general, a filter does not 
entirely eliminate undesired frequencies, but for practical purposes these frequencies can 
be reduced to a level that is so small they are irrelevant. The transition band of a filter 
describes the frequency span between the passband and the stopband. The passband is 
the range of frequencies to be passed through the filter, and the stopband is the range 
of frequencies to be blocked by the filter. It is not possible to have a perfectly sharp edge 
between the passband and stopband. Some separation between the passband and the 
stopband is required, and trying to make the transition from passband to stopband as 
narrow as possible requires a more complex filter than one with a wider transition band.

A digital frequency selective filter is implemented with a convolution operation using a 
carefully selected set of values for the h vector. With the proper selection of elements in 
h, it is possible to design highpass, lowpass, bandpass, and bandstop filters. As discussed 
in the preceding paragraphs, highpass and lowpass filters attempt to pass the high 
and low frequency ranges, respectively, while blocking other frequencies. A bandpass 
filter attempts to pass only the frequencies within a specified range and block all other 
frequencies outside that range. A bandstop filter attempts to pass all frequencies except 
those within a specified range.

The goals of a high-performance frequency selective filter are to impart minimal 
distortion of the signal in the passband, provide effective blocking of frequencies in the 
stopband, and have as narrow a transition band as possible. An analog filter implementing 
high-performance requirements may require a complex circuit design involving costly 
precision components.

A high-performance digital filter, on the other hand, is still just a convolution operation. 
A digital circuit implementing a high-performance lowpass filter with minimal passband 
distortion and a narrow transition band may require a lengthy h vector, possibly 
containing hundreds—or even thousands—of elements. The design decision to implement 
such a filter digitally depends on the availability of cost-effective DSP resources, capable  
of performing MAC operations at the rate required by the filter design.

Fast Fourier transform (FFT)
The Fourier transform, named after the French mathematician Jean-Baptiste Joseph 
Fourier, decomposes a time-domain signal into a collection of sine and cosine waves 
of differing frequencies and amplitudes. The original signal can be reconstructed by 
summing these waves together through a process called the inverse Fourier transform.
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DSPs operate on time-domain signals sampled at fixed intervals. Because of this 
sampling, the DSP implementation of the Fourier transform is called the discrete Fourier 
transform (DFT). In general, a DFT converts a sequence of n equally spaced time samples 
of a function into a sequence of n DFT samples, equally spaced in frequency. Each DFT 
sample is a complex number, composed of a real number and an imaginary number. An 
imaginary number, when squared, produces a negative result.

We won't delve into the mathematics of imaginary (also called complex) numbers 
here. An alternative way to view the complex number representing a DFT frequency 
component (called a frequency bin) is to consider the real part of the complex number 
to be a multiplier for a cosine wave at the bin frequency and the imaginary part to be a 
multiplier for a sine wave at the same frequency. Summing a bin's cosine and sine wave 
components produces the time-domain representation of that DFT frequency bin.

The simplest implementation of the DFT algorithm for a sequence of length n is a  
double-nested loop in which each loop iterates n times. If an increase in the length of the 
DFT is desired, the number of mathematical operations increases as the square of n. For 
example, to compute the DFT for a signal with a length of 1,000 samples, over a million 
operations are required.

In 1965, James Cooley of IBM and John Tukey of Princeton University published a paper 
describing the computer implementation of a more efficient DFT algorithm, which came 
to be known as the FFT. The algorithm they described was originally invented by the 
German mathematician Carl Friedrich Gauss around 1805.

The FFT algorithm breaks a DFT into smaller DFTs, where the lengths of the smaller 
DFTs can be multiplied together to form the length of the original DFT. The efficiency 
improvement provided by the FFT algorithm is greatest when the DFT length is a power 
of 2, enabling recursive decomposition through each factor of 2 in the DFT length. A 
1,024-point FFT requires only a few thousand operations compared to over a million  
for the double-nested loop DFT implementation.

It is important to understand the FFT operates on the same input as the DFT and 
produces the same output as the DFT; the FFT just does it much faster.

The FFT is used in many practical applications in signal processing. Some examples are  
as follows:

• Spectral analysis: The output of a DFT on a time-domain signal is a set of complex 
numbers representing the amplitude of sine and cosine waves over a frequency 
range representing the signal. These amplitudes directly indicate which frequency 
components are present at significant levels in the signal and which frequencies 
contribute smaller or negligible content.
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Spectral analysis is used in applications such as audio signal processing, image 
processing, and radar signal processing. Laboratory instruments called spectrum 
analyzers are commonly used for testing and monitoring radio frequency systems 
such as radio transmitters and receivers. A spectrum analyzer displays a periodically 
updated image representing the frequency content of its input signal, derived from 
an FFT of that signal.

• Filter banks: A filter bank is a series of individual frequency selective filters, each 
containing the filtered content of a separate frequency band. The complete set of 
filters in the bank covers the entire frequency span of the input signal. A graphic 
equalizer, used in high-fidelity audio applications, is an example of a filter bank.

An FFT-based filter bank is useful for decomposing multiple frequency-separated 
data channels transmitted as a single combined signal. At the receiver, the FFT 
separates the received signal into multiple bands, each of which contains an 
independent data channel. The signal contained in each of these bands is further 
processed to extract its data content.

The use of FFT-based filter banks is common in radio receivers for wideband 
digital data communication services, such as digital television and 4G mobile 
communications.

• Data compression: A signal can be compressed to reduce its data size by 
performing an FFT and discarding any frequency components considered 
unimportant. The remaining frequency components form a smaller dataset  
that can be further compressed using standardized coding techniques.

This approach is referred to as lossy compression because some of the information 
in the input signal is lost. Lossy compression will generally produce a greater degree 
of signal compression compared to lossless compression. Lossless compression 
algorithms are used in situations where any data loss is unacceptable, such as when 
compressing computer data files.

• Discrete cosine transform (DCT): The DCT is similar in concept to the DFT 
except that rather than decomposing the input signal into a set of sine and cosine 
functions as in the DFT, the DCT decomposes the input signal into only cosine 
functions, each multiplied by a real number. Computation of the DCT can be 
accelerated using the same technique the FFT employs to accelerate computation  
of the DFT.
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The DCT has the valuable property that, in many data compression applications, 
most of the signal information is represented in a smaller number of DCT 
coefficients in comparison to alternative algorithms such as the DFT. This allows  
a larger number of the less significant frequency components to be discarded, 
thereby increasing data compression effectiveness.

DCT-based data compression is employed in many application areas that computer users 
and consumers of audio and video entertainment interact with daily, including MP3 
audio, Joint Photographic Experts Group (JPEG) images, and Moving Picture Experts 
Group (MPEG) video.

DSPs are most commonly used in applications involving one- and two-dimensional  
data sources. Some examples of one-dimensional data sources are audio signals and the 
radio frequency signal received by a mobile phone radio transceiver. One-dimensional 
signal data consists of one sample value at each instant of time for each of possibly several 
input channels.

A photographic image is an example of two-dimensional data. A two-dimensional image 
is described in terms of the width and height of the image in pixels, and the number of 
bits representing each pixel. Each pixel in the image is separated from the surrounding 
pixels by horizontal and vertical spatial offsets. Every pixel in the image is sampled at the 
same point in time.

Motion video represents three-dimensional information. One way to define a video 
segment is as a sequence of two-dimensional images presented sequentially at regular time 
intervals. While traditional DSPs are optimized to work with the two-dimensional data 
of a single image, they are not necessarily ideal for processing sequential images at a high 
update rate. The next section introduces GPUs, which are processors optimized to handle 
the computing requirements of video synthesis and display.

GPU processing
A GPU is a digital processor optimized to perform the mathematical operations associated 
with generating and rendering graphical images for display on a computer screen. The 
primary applications for GPUs are playing video recordings and creating synthetic images 
of three-dimensional scenes. The performance of a GPU is measured in terms of screen 
resolution (the pixel width and height of the image) and the image update rate in frames 
per second. Video playback and scene generation are hard real-time processes, in which 
any deviation from smooth, regularly time-spaced image updates is likely to be perceived 
by a user as unacceptable graphical stuttering.
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As with the video cameras described earlier in this chapter, GPUs generally represent each 
pixel as three 8-bit color values, indicating the intensities of red, green, and blue. Any 
color can be produced by combining appropriate values for each of these three colors. 
Within each color channel, the value 0 indicates the color is absent, and 255 is maximum 
intensity. Black is represented by the color triple (red, green, blue) = (0, 0, 0), and white is 
(255, 255, 255). With 24 bits of color data, over 16 million unique colors can be displayed. 
The granularity between adjacent 24-bit color values is, in general, finer than the human 
eye can distinguish.

In modern personal computers, GPU functionality is available in a variety of configurations:

• A GPU card can be installed in a PCI Express (PCIe) slot.

• A system can provide a GPU as one or more discrete integrated circuits on the main 
processor board.

• GPU functionality can be built into the main processor's integrated circuit.

The most powerful consumer-class GPUs are implemented as PCIe expansion cards. These 
high-end GPUs contain dedicated graphics memory and feature a fast communication 
path with the main system processor (typically PCIe x16) for receiving commands 
and data representing the scene to be displayed. Some GPU designs support the use of 
multiple identical cards in a single system to generate scenes for a single graphical display. 
This technology features a separate high-speed communication bus linking the GPUs to 
each other. The use of multiple GPUs in a system effectively increases the parallelization  
of graphics processing.

GPUs exploit the concept of data parallelism to perform identical computations 
simultaneously on a vector of data items, producing a corresponding vector of outputs. 
Modern GPUs support thousands of simultaneously executing threads, providing the 
capability to render complex, three-dimensional images containing millions of pixels  
at 60 or more frames per second.

The architecture of a typical GPU consists of one or more multi-core processors, each 
supporting multithreaded execution of data parallel algorithms. The interface between 
the GPU processors and graphics memory is optimized to provide maximum data 
throughput, rather than attempting to minimize access latency (which is the design goal 
for main system memory). GPUs can afford to sacrifice a degree of latency performance 
to achieve peak streaming rate between the GPU and its dedicated memory because 
maximizing throughput results in the highest possible frame update rate.
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In computer systems with less extreme graphical performance demands, such as business 
applications, a lower-performance GPU integrated on the same circuit die as the main 
processor is a lower-cost and often perfectly acceptable configuration. Integrated GPUs 
are able to play streaming video and provide a more limited level of three-dimensional 
scene-rendering capability compared to the higher-end GPUs.

Rather than using dedicated graphics memory, these integrated GPUs use a portion of 
system memory for graphics rendering. Although the use of system memory rather than 
specialized graphics memory results in a performance hit, such systems provide sufficient 
graphics performance for most home and office purposes.

Smart devices such as portable phones and tablets contain GPUs as well, providing 
the same video playback and three-dimensional scene-rendering capabilities as larger 
non-portable computer systems. The constraints of small physical size and reduced power 
consumption necessarily limit the performance of portable device GPUs. Nevertheless, 
modern smartphones and tablets are fully capable of playing high-definition streaming 
video and rendering sophisticated gaming graphics.

GPUs as data processors
For many years, GPU architectures were designed very specifically to support the 
computational needs of real-time three-dimensional scene rendering. In recent years, users 
and GPU vendors have increasingly recognized that these devices are actually small-scale 
supercomputers suitable for use across a much broader range of applications. Modern GPUs 
provide floating-point execution speed measured in trillions of floating-point operations 
per second (teraflops). As of 2019, a high-end GPU configuration provides floating-point 
performance measured in the dozens of teraflops, and is capable of executing data-parallel 
mathematical algorithms hundreds of times faster than a standard desktop computer.

Taking advantage of the immense parallel computing power available in high-end GPUs, 
vendors of these devices have begun providing programming interfaces and expanded 
hardware capabilities to enable the implementation of more generalized algorithms. Of 
course, GPUs, even with enhancements to support general computing needs, are only 
truly effective at speeding up algorithms that exploit data parallelization.
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Some application areas that have proven to be suitable for GPU acceleration are:

• Big data: In fields as diverse as climate modeling, genetic mapping, business 
analytics, and seismic data analysis, problem domains share the need to analyze 
enormous quantities of data, often measured in terabytes (TB) or petabytes (PB) 
(1 PB is 1,024 TB) in as efficient a manner as possible. In many cases, these analysis 
algorithms iterate over large datasets searching for trends, correlations, and more 
sophisticated connections among what may seem at first to be disparate, unrelated 
masses of samples.

Until recently, analysis of these datasets at the appropriate level of granularity has 
often been perceived as infeasible due to the extensive execution time required 
for such an analysis. Today, however, many big data applications produce results 
in a reasonable length of time by combining the use of GPU processing, often on 
machines containing multiple interconnected GPU cards, and splitting the problem 
across multiple computer systems in a cloud environment. The use of multiple 
computers, each containing multiple GPUs, to execute highly parallel algorithms 
across an enormous dataset can be accomplished at a surprisingly low cost today  
in comparison to the historical costs of supercomputing systems.

• Deep learning: Deep learning is a category of artificial intelligence (AI) that uses 
multilayer networks of artificial neurons to model the fundamental operations 
of the human brain. A biological neuron is a type of nerve cell that processes 
information. Neurons are interconnected via synapses and use electrochemical 
impulses to pass information to each other. During learning, the human brain 
adjusts the connections among neurons to encode the information being learned  
for later retrieval. The human brain contains tens of billions of neurons.

Artificial neural networks (ANNs) use a software model of neuron behavior  
to mimic the learning and retrieval processes of the human brain. Each artificial 
neuron receives input from potentially many other neurons and computes a single 
numeric output. Some neurons are driven directly by the input data to be processed, 
and others produce outputs that are retrieved as the result of the ANN computation. 
Each communication path between neurons has a weighting factor associated with 
it, which is simply a number that multiplies the strength of the signal traveling along 
that path. The numeric input to a neuron is the sum of the input signals it receives, 
each multiplied by the weight of the associated path.

The neuron computes its output using a formula called the activation function.  
The activation function determines the degree to which each neuron is "triggered" 
by its inputs.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



GPU processing     163

The following diagram represents an example of a single neuron that sums the 
inputs from three other neurons (N1-N3), each multiplied by a weighting factor 
(w1-w3). The sum passes to the activation function, F(x), which produces the 
neuron's output signal. The use of three inputs in this example is arbitrary; in actual 
applications, each neuron can receive input from any number of other neurons:

Figure 6.4: A neuron receiving inputs from three neurons
ANNs are organized in layers, where the first layer, called the input layer, is 
followed by one or more internal layers (called hidden layers), which are followed 
by an output layer. Some ANN configurations are arranged in a data flow sequence 
from input to output, called a feedforward network, while other configurations 
provide feedback from some neurons to neurons in preceding layers. This 
configuration is called a recurrent network.

The following screenshot shows an example of a simple feedforward network with 
three input neurons, a hidden layer consisting of four neurons, and two output 
neurons. This network is fully connected, meaning each neuron in the input and 
hidden layers connects to all neurons in the following layer. The connection weights 
are not shown in this diagram:

Figure 6.5: A three-layer feedforward network
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Training an ANN consists of adjusting the weighted connections between neurons so 
that, when presented with a particular set of input data, the desired output is produced. 
Through the use of an appropriate learning algorithm, an ANN can be trained with  
a dataset composed of known correct outputs for a wide variety of inputs.

Training a large, sophisticated ANN to perform a complex task such as driving a car or 
playing chess requires a tremendous number of training iterations drawn from a very 
large dataset. During training, each iteration makes small adjustments to the weighting 
factors within the network, slowly driving the network to a state of convergence. Once 
fully converged, the network is considered trained and can be used to produce outputs 
when presented with novel input. In other words, the network generalizes the information 
it learned during training and applies that knowledge to new situations.

The feature that makes ANNs particularly suitable for GPU processing is their parallel 
nature. The human brain is effectively a massively parallel computer with billions of 
independent processing units. This form of parallelism is exploited during the ANN 
training phase to accelerate network convergence by performing the computations 
associated with multiple artificial neurons in parallel.

The next section will present some examples of computer system types based on the 
architectural concepts presented in this chapter.

Examples of specialized architectures
This section examines some application-focused computing system configurations 
and highlights the specialized requirements addressed in the design of each. The 
configurations we will look at are as follows:

• Cloud compute server: A number of vendors offer access to computing platforms 
accessible to customers via the Internet. These servers allow users to load their own 
software applications onto the cloud server and perform any type of computation 
they desire. In general, these services bill their customers based on the type and 
quantity of computing resources being used and the length of time they are in use. 
The advantage for the customer is that these services cost nothing unless they are 
actually in use.
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At the higher end of performance, servers containing multiple interconnected 
GPU cards can be harnessed to perform large-scale, floating-point intensive 
computations on huge datasets. In the cloud context, it is straightforward and 
often cost-effective to break a computation into smaller parts suitable for parallel 
execution across multiple GPU-enabled servers. In this manner, it is feasible for 
organizations—and even individuals with limited funding—to harness computing 
capabilities that, until just a few years ago, were the exclusive province of 
government, big business, and research universities possessing the wherewithal  
to implement supercomputing facilities.

• Business desktop computer: Business information technology managers strive  
to provide employees with the computing capability they need to do their jobs  
at the lowest cost. Most office workers do not require exceptional graphics or  
computing performance, though their computer systems need to support modest 
video presentation requirements for such purposes as displaying employee  
training videos.

For business users, the GPU integrated into modern processors is usually more than 
adequate. For a reasonable price, business buyers can purchase computer systems 
containing processors in the midrange of performance with integrated graphics. 
These systems provide full support for modern operating systems and standard 
office applications such as word processors, email, and spreadsheets. Should the 
need arise to expand a system's capabilities with higher-performance graphics,  
the installation of a GPU in an expansion slot is a straightforward upgrade.

• High-performance gaming computer: Computer gaming enthusiasts running the 
latest 3D games demand an extreme level of GPU performance to generate detailed, 
high-resolution scenes at the highest achievable frame rate. These users are willing 
to invest in a powerful, power-hungry, and fairly costly GPU (or even multiple 
GPUs) to achieve the best possible graphics performance.

Almost as important as the graphics performance, a high-performance gaming 
computer must have a fast system processor. The processor and GPU work together 
over the high-speed interface connecting them (typically PCIe x16) to determine the 
position and viewing direction of the scene observer, as well as the number, type, 
location, and orientation of all objects in the scene. The system processor passes this 
geometric information to the GPU, which performs the mathematical operations 
necessary to render a lifelike image for display. This process must repeat at a rate 
sufficient to deliver a smooth presentation of complex, rapidly changing scenes.
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• High-end smartphone: Today's smartphones combine high-performance 
computational and graphic display capabilities with strict limits on power 
consumption and heat generation. Users insist on fast, smooth, vibrant graphics  
for gaming and video display, but they will not tolerate this performance at the 
expense of unacceptably short battery life or a device that becomes hot to the touch.

Modern phone displays contain millions of full-color pixels, up to 12 GB of RAM, 
and support up to 1 TB of flash storage. These phones generally come with two high-
resolution cameras (one on the front and one on the back), capable of capturing still 
images and recording video. High-end phones typically contain a 64-bit multi-core 
processor with an integrated GPU, as well as a variety of features intended to achieve 
an optimal combination of energy efficiency and high performance.

Smartphone architectures contain DSPs to perform tasks such as encoding and decoding 
voice audio during telephone calls and processing the received and transmitted radio 
frequency signals flowing through the phone's various radio transceivers. A typical 
phone includes support for digital cellular service, Wi-Fi, Bluetooth, and near-field 
communication (NFC). Modern smartphones are powerful, well-connected computing 
platforms optimized for operation under battery power.

This section discussed computer system architectures representing just a tiny slice of 
current and future applications of computing technology. Whether a computer system  
sits on an office desk, is in a smartphone, or is flying a passenger aircraft, a common  
set of general architectural principles applies during the process of system design  
and implementation.

Summary
This chapter examined several specialized domains of computing, including real-time 
systems, digital signal processing, and GPU processing. Having completed this chapter, 
you should have greater familiarity with the features of modern computers related to  
real-time operation, the processing of analog signals, and graphics processing 
in applications including gaming, voice communication, video display, and the 
supercomputer-like applications of GPUs. These capabilities are important extensions  
to the core computing tasks performed by the central processor, whether in a cloud  
server, a desktop computer, or a smartphone.

The next chapter will take a deeper look at modern processor architectures, specifically 
the von Neumann, Harvard, and modified Harvard variants. The chapter will also cover 
the use of paged virtual memory (PVM) and the features and functions of a generalized 
memory management unit.
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Exercises
1. Rate monotonic scheduling (RMS) is an algorithm for assigning thread priorities 

in preemptive, hard, real-time applications in which threads execute periodically. 
RMS assigns the highest priority to the thread with the shortest execution period, 
the next-highest priority to the thread with the next-shortest execution period, and 
so on. An RMS system is schedulable, meaning all tasks are guaranteed to meet 
their deadlines (assuming no inter-thread interactions or other activities such as 
interrupts cause processing delays) if the following condition is met:

This formula represents the maximum fraction of available processing time that 
can be consumed by n threads. In this formula, Ci is the maximum execution time 
required for thread i, and Ti is the execution period of thread i.

Is the following system composed of three threads schedulable?

2. A commonly used form of the one-dimensional discrete cosine transform is  
as follows:

In this formula, k, the index of the DCT coefficient, runs from 0 to N-1.

Write a program to compute the DCT of the following sequence:

The cosine terms in the formula depend only on the indexes n and k, and do not 
depend on the input data sequence x. This means the cosine terms can be computed 
once and stored as constants for later use. Using this as a preparatory step, the 
computation of each DCT coefficient reduces to a sequence of MAC operations.

This formula represents the unoptimized form of the DCT computation, requiring 
N2 iterations of the MAC operation to compute all N DCT coefficients.
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3. The hyperbolic tangent is often used as an activation function in ANNs. The 
hyperbolic tangent function is defined as follows:

Given a neuron with inputs from three preceding neurons as depicted in Figure 6.4, 
compute the neuron's output with the hyperbolic tangent as the activation function 
F(x) using the following preceding neuron outputs and path weights:

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



Section 2:  
Processor 

Architectures and 
Instruction Sets

In this section, we will examine the architectures of modern computer processors and 
their instruction sets. We will take a detailed look at the cutting-edge RISC -V instruction 
set architecture.

This section comprises the following chapters:

• Chapter 7, Processor and Memory Architectures

• Chapter 8, Performance-Enhancing Techniques

• Chapter 9, Specialized Processor Extensions

• Chapter 10, Modern Processor Architectures and Instruction Sets

• Chapter 11, The RISC-V Architecture and Instruction Set
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7
Processor 

and Memory 
Architectures

This chapter takes a deeper look at modern processor architectures, specifically the von 
Neumann, Harvard, and modified Harvard variants, and the computing domains in which 
each architecture tends to be applied. The concepts and benefits of paged virtual memory, 
used extensively in consumer and business computing and in portable smart devices,  
are also introduced. We will examine the practical details of memory management in the 
real-world context of Windows NT and later Windows versions. The chapter concludes  
with a discussion of the features and functions of a memory management unit.

After completing this chapter, you will have learned the key features of modern processor 
architectures and the use of physical and virtual memory. You will understand the benefits 
of memory paging and the functions of the memory management unit.

This chapter covers the following topics:

• The von Neumann, Harvard, and modified Harvard architectures
• Physical and virtual memory
• Paged virtual memory
• The memory management unit
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Technical Requirements
Answers to the Exercises can be found at: https://github.com/
PacktPublishing/Modern-Computer-Architecture-and-Organization

The von Neumann, Harvard, and modified 
Harvard architectures
In earlier chapters, we touched briefly on the history and modern applications of the von 
Neumann, Harvard, and modified Harvard processor architectures. In this section, we'll 
examine each of these configurations in greater detail and look at the types of computing 
applications where each of these architectures tends to be applied.

The von Neumann architecture
The von Neumann architecture was introduced by John von Neumann in 1945. This 
processor configuration consists of a control unit, an arithmetic logic unit, a register 
set, and a memory region containing program instructions and data. The key feature 
distinguishing the von Neumann architecture from the Harvard architecture is the use 
of a single area of memory for program instructions and the data acted upon by those 
instructions. It is conceptually straightforward for programmers, and relatively easier  
for circuit designers, to locate all of the code and data a program requires in a single 
memory region.

This diagram shows the elements of the von Neumann architecture:

Figure 7.1: The von Neumann architecture
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Although the single-memory architectural approach simplified the design and construction 
of early generations of processors and computers, the use of shared program and data 
memory has presented some significant challenges related to system performance and,  
in recent years, security. Some of the more significant issues were as follows:

• The von Neumann bottleneck: Using a single interface between the processor 
and the main memory for instruction and data access frequently requires multiple 
memory cycles to retrieve a single instruction and to access the data it requires. In 
the case of an immediate value stored next to its instruction opcode, there might be 
little or no bottleneck penalty because, at least in some cases, the immediate value is 
loaded along with the opcode in a single memory access. Most programs, however, 
spend much of their time working with data stored in memory allocated separately 
from the program instructions. In this situation, multiple memory access operations 
are required to retrieve the opcode and any required data items.

The use of cache memories for program instructions and data, discussed in detail 
in Chapter 8, Performance-Enhancing Techniques, can significantly mitigate this 
limitation. However, when working with code sequences and data objects that 
exceed the size of cache memory, the benefit of caching is reduced, possibly by a 
substantial amount. There is no avoiding the fact that placing code and data in the 
same memory region with a shared communication path to the processor will,  
at times, act as a limitation on system performance.

• von Neumann security considerations: The use of a single memory area for 
code and data opens possibilities for creative programmers to store sequences 
of instructions in memory as "data," and direct the processor to execute 
those instructions. Programs that write code into memory and execute it are 
implementing self-modifying code. Besides being difficult to troubleshoot and 
debug (because many software debugging tools expect the program in memory  
to contain the instructions that were originally compiled into it), this capability  
has been exploited for years by hackers with more sinister motives.

Buffer overflow is a distressingly common flaw in widely used software tools such 
as operating systems, web servers, and databases. Buffer overflow occurs when 
a program requests input and stores that input in a fixed-length data buffer. If 
the code is not careful to check the length of the input provided by the user, it is 
possible for the user to enter an input sequence longer than the available storage 
space. When this happens, the additional data overwrites memory intended for 
other purposes.
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If the buffer being overwritten is stored on the program's stack, it is possible for a 
creative user to provide a lengthy input sequence that overwrites the return address 
of the currently executing function, which happens to be stored on the same stack. 
By carefully crafting the contents of the input data sequence, the attacker can seize 
control of the executing application and direct it to execute any desired sequence of 
instructions. To do this, the hacker must prepare an input sequence that overflows the 
input buffer, overwrites the function's return address with a different, carefully chosen 
address, and writes a sequence of instructions into memory that begins execution at 
this address. The sequence of instructions inserted by the attacker begins execution 
when the function that originally requested user input returns, transferring control  
to the hacker's code. This allows the hacker to "own" the computer.

Various attempts to resolve the buffer overflow problem have occupied an enormous 
amount of computer security researchers' time over the years since the first widespread 
occurrence of this type of attack in 1988. Processor vendors and operating system 
developers have implemented a variety of features to combat buffer overflow attacks, such 
as data execution prevention (DEP) and address space layout randomization (ASLR). 
While these fixes have been effective to some degree, the fundamental processor feature 
that enables this type of exploitation is the use of the same memory region for program 
instructions and data in the von Neumann architecture.

The Harvard architecture
The Harvard architecture was originally implemented in the Harvard Mark I computer in 
1944. A strict Harvard architecture uses one address space and memory bus for program 
instructions and a separate address space and memory bus for data. This configuration has 
the immediate benefit of enabling simultaneous access to instructions and data, thereby 
implementing a form of parallelism. Of course, this enhancement comes at the expense 
of essentially duplicating the number of address lines, data lines, and control signals that 
must be implemented by the processor to access both of the memory regions.

The following diagram shows the layout of a processor implementing the Harvard 
architecture:

Figure 7.2: Harvard architecture
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The Harvard architecture potentially provides a higher performance level by parallelizing 
accesses to instructions and data. This architecture also removes the entire class of security 
issues associated with maliciously executing data as program instructions, as long as the 
instruction memory cannot be modified by program instructions. This assumes that the 
program memory is loaded with instructions in a trustworthy manner.

In hindsight, with knowledge of the proliferation of von Neumann architecture-enabled 
security threats, there is reason to wonder whether the entire information technology 
industry would not have been vastly better off had there been early agreement to embrace 
the Harvard architecture and its complete separation of code and data memory regions, 
despite the costs involved.

In practice, a strict Harvard architecture is rarely used in modern computers. Several 
variants of the Harvard architecture are commonly employed, under the name  
modified Harvard architecture.

The�modified�Harvard�architecture
Computers designed with a modified Harvard architecture have, in general, some degree 
of separation between program instructions and data. This separation is rarely absolute. 
While systems with modified Harvard architectures contain separate program instruction 
and data memory regions, such systems typically support some means of storing data in 
program memory and, in some cases, storing instructions in data memory.

The following diagram shows a typical modified Harvard architecture representing  
a variety of real-world computer systems:

Figure 7.3: Modified Harvard architecture
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As we saw in the previous chapter, digital signal processors (DSPs) achieve substantial 
benefits from the use of a Harvard-like architecture. By storing one numeric vector  
in instruction memory and a second vector in data memory, a DSP can execute one 
multiply-accumulate (MAC) operation per processor clock cycle. In these systems, 
instruction memory and the data elements it contains are typically read-only memory 
devices. This is indicated by the unidirectional arrow connecting the instruction memory 
to the processor in Figure 7.3. Consequently, only constant data values are suitable for 
storage in the instruction memory region.

Besides DSPs, most modern general-purpose processors contain separate instruction 
and data caches, thereby implementing significant aspects of the Harvard architecture. 
Processor architectures such as x86 and ARM support parallel, independent access to 
instructions and data when the requested items happen to reside in the first level of cache 
memory. When on-chip cache lookups are unsuccessful, the processor must access the 
main memory over the von Neumann-style shared bus, which takes significantly longer.

As a practical matter, the implementation details of a particular processor in terms of von 
Neumann-versus-Harvard architectural features seldom matter to software developers, 
other than in terms of performance considerations. Programmers generally develop 
programs in their high-level language of choice and the compiler or interpreter handles 
the details related to allocating data and instructions to the appropriate memory regions.

Physical and virtual memory
Memory devices in computers can be categorized as random-access memory (RAM), 
which can be read from and written to at will, and read-only memory (ROM), which, as 
the name indicates, can be read but not written. Some types of memory devices, such as 
flash memory and electrically erasable programmable read-only memory (EEPROM), 
inhabit a middle ground, where the data content of the devices can be changed, just not  
as easily, or as quickly, or updated such a large number of times, as standard RAM.

Memory devices within a computer must be configured to ensure that each device 
occupies a unique span of the system address space, enabling the processor to access 
each of possibly several RAM and ROM devices by setting its address lines appropriately. 
Modern computer systems generally perform this address space allocation automatically, 
based on the slot a memory device occupies.

Software running on early computer systems, and on the less-sophisticated computers  
and embedded processors of today (such as 6502-based systems), uses the addresses of 
RAM and ROM devices in program instructions to perform reads and writes.
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For example, a 6502 instruction such as JMP $1000 instructs the processor to load its 
instruction pointer with the hexadecimal value $1000 and execute the instruction at that 
memory location. In executing this instruction, the 6502 control unit places the value 
$1000 on the 6502's 16 address lines and reads the byte from that memory address. This 
byte is interpreted as the opcode of the next instruction to be executed. Similarly, loading 
a byte from memory with an instruction such as LDA $0200 results in placing the value 
$0200 on the address lines and copying the byte at that address into the A register.

In systems using physical addressing, the memory addresses in instructions are the  
actual addresses of the referenced instruction or data item. This means the memory 
address contained in an instruction is the same address used to electrically access  
the appropriate location in a memory device.

This architectural approach is conceptually straightforward to implement in processor 
designs, but in any application scenario involving multiple simultaneously executing 
programs (referred to as multiprogramming), the burden of software development can 
become excessive. If each one of multiple programs is developed in isolation from the 
others (in a scenario with multiple independent developers, for example), there must be 
some way to allocate the available RAM and ROM address spaces to individual programs 
so that multiple programs can be in the running state simultaneously (perhaps in the 
context of an RTOS) without interfering with each other's use of memory.

One well-known early effort to support the execution of multiple programs in a single 
address space is the MS-DOS terminate and stay resident (TSR) program concept. TSR 
programs allocate memory and load their code into it, and then return control to the 
operating system. Users can continue to work with the system normally, loading and using 
other applications (one at a time, of course), but they can also access the TSR as needed, 
typically by typing a special key combination. It is possible to load multiple TSR programs 
in memory simultaneously, each accessible via its own key combination. After activating  
a TSR program, the user interacts with it as needed, and then executes a TSR command  
to return to the currently running main application.

While limited in many ways (including consuming a portion of the maximum of 640 KB 
of RAM available in those early PCs), TSR programs effectively enabled the execution  
of multiple programs in a single RAM address space.

Developing TSR applications was a challenging task, and the more advanced TSR 
programs available in the 1980s and 1990s took advantage of undocumented MS-DOS 
features in order to provide maximum utility to their users. As a result of this complexity, 
TSR programs developed a reputation for causing system instability. A different approach 
for supporting multiprogramming was clearly needed.
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The use of virtual memory overcomes the biggest challenges that prohibited the 
widespread use of multiprogramming in the original PC design. Virtual memory is 
a method of memory management that enables each application to operate in its own 
memory space, seemingly independent of any other applications that may be in the 
running state simultaneously on the same system. In a computer with virtual memory 
management, the operating system is responsible for the allocation of physical memory 
to system processes and to user applications. The memory management hardware and 
software translate memory requests originating in the application's virtual memory 
context to physical memory addresses.

Apart from easing the process of developing and running concurrent applications, virtual 
memory also enables the allocation of a larger amount of physical memory than actually 
exists in the computer. This is possible through the use of secondary storage (typically 
a disk file) to temporarily hold copies of sections of memory removed from physical 
memory to allow a different program (or a different part of the same program) to run  
in the now-free memory.

In modern general-purpose computers, memory sections are usually allocated and moved 
in multiples of a fixed-size chunk, called a page. Memory pages are typically 4 KB or 
larger. Moving memory pages to and from secondary storage in virtual memory systems  
is called page swapping. The file containing the swapped-out pages is the swap file.

In a virtual memory system, neither application developers nor the code itself need  
to be concerned about how many other applications are running on the system or how 
full the physical memory may be getting. As the application allocates memory for data 
arrays and calls library routines (which requires the code for those routines to be loaded 
into memory), the operating system manages the use of physical memory and takes the 
steps necessary to ensure that each application receives memory upon request. Only in 
the unusual case of completely filling the available physical memory while also filling the 
swap file to its limit is the system forced to return a failure code in response to a memory 
allocation request.

Virtual memory provides several notable benefits besides making things easier  
for programmers:

• Not only are applications able to ignore each other's presence, they are prevented 
from interfering with each other, accidentally or intentionally. The virtual memory 
management hardware is responsible for ensuring that each application can only 
access memory pages that have been assigned to it. Attempts to access another 
process's memory, or any other address outside its assigned memory space,  
result in an access violation exception.
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• Each memory page has a collection of attributes that restrict the types of operations 
supported within it. A page may be marked read-only, causing any attempts to write 
data to the page to fail. A page may be marked executable, meaning it contains code 
that can be executed as processor instructions. A page may be marked read-write, 
indicating the application is free to modify the page at will. By setting these attributes 
appropriately, operating systems can improve stability by ensuring that instructions 
can't be modified and that the execution of data as instructions cannot occur, 
whether such an attempt is the result of an accident or malicious intent.

• Memory pages can be marked with a minimum required privilege level, allowing 
pages to be restricted for access only by code running with kernel privilege. This 
restriction ensures that the operating system continues operating properly even 
in the presence of misbehaving applications. This allows system memory to be 
mapped into each process's address space while prohibiting application code from 
interacting directly with that memory. Applications can only access system memory 
indirectly, via a programming interface consisting of system function calls.

• Memory pages can be marked as shareable among applications, meaning a page 
can be explicitly authorized as accessible from more than one process. This enables 
efficient interprocess communication. 

Early versions of Microsoft Windows implemented some features of memory 
virtualization using 80286 and 80386 processor memory segmentation capabilities. In the 
Windows context, the use of virtual memory came into its own with the introduction of 
Windows NT 3.1 in 1993. The Windows NT system architecture was based on the Digital 
Equipment Corporation Virtual Address Extension (VAX) architecture, developed in 
the 1970s. The VAX architecture implemented a 32-bit virtual memory environment with 
a 4 GB virtual address space available to each of potentially many applications running 
in a multiprogramming context. One of the key architects of the VAX operating system, 
Virtual Memory System (VMS), was David Cutler, who later led the development of 
Microsoft Windows NT.

Windows NT has a flat 32-bit memory organization, meaning any address in the entire 
32-bit space is accessible using a 32-bit address. No additional programmer effort is 
required to manipulate segment registers. By default, the Windows NT virtual address 
space is divided into two equal-sized chunks: a 2 GB user address space in the lower  
half of the range, and a 2 GB kernel space in the upper half.
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The next section delves into the implementation of paged virtual memory in 32-bit 
Windows NT on Intel processors in some detail. While Windows NT is not entirely 
representative of virtual memory implementations in other operating systems, similar 
general principles apply even if other environments differ in the details. This introduction 
will provide background on the concepts of virtual memory, while holding off on 
additional details related to more modern architectures, such as 64-bit processors and 
operating systems, until later chapters.

Paged virtual memory
In 32-bit Windows NT on Intel processors, memory pages are 4 KB in size. This implies 
that addressing a location within a particular page requires 12 address bits (212=4096).  
The remaining 20 bits of a 32-bit virtual address are used in the virtual-to-physical 
translation process.

In Windows NT, all memory addresses in a program (both in the source code and in 
compiled executable code) are virtual addresses. They are not associated with physical 
addresses until the program runs under the control of the memory management unit.

A contiguous 4 KB section of Windows NT physical memory is called a page frame. The 
page frame is the smallest unit of memory managed by the Windows virtual memory 
system. Each page frame starts on a 4 KB boundary, meaning the lower 12 address bits 
are all zero at the base of any page frame. The system tracks information related to page 
frames in page tables.

A Windows NT page table is sized to occupy a single 4 KB page. Each 4-byte entry in a 
page table enables the translation of a 32-bit address from the virtual address space used 
by program instructions to a physical address required to access a location in RAM or 
ROM. A 4 KB page table contains 1,024 page address translations. A single page table 
manages access to 4 MB of address space: each page table contains 1,024 page frames 
multiplied by 4 KB per page. A process may have several associated page tables, all of 
which are managed by a page table directory.

A page table directory is a 4 KB page containing a series of 4-byte references to page tables. 
A page table directory can contain 1,024 page table references. A single page table directory 
covers the entire 4 GB address space (4 MB per page table multiplied by 1,024 page table 
references) of 32-bit Windows NT.
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Each Windows NT process has its own page table directory, set of page tables, and collection 
of page frames allocated for its use. The process page tables apply to all threads within 
the process because all of a process's threads share the same address space and memory 
allocations. When the system scheduler switches from one process to another, the virtual 
memory context of the incoming process replaces the context of the outgoing process. 

Intel x86 processors maintain the address of the current process page table directory in the 
CR3 register, also known as the Page Directory Base Register (PDBR). This single entry 
point to the page table directory, and indirectly to the page tables, enables the processor to 
translate any valid virtual address to the corresponding physical address.

In accessing an arbitrary valid location in memory, and assuming information to expedite 
the access is not already stored in cache memory, the processor first looks up the physical 
address of the relevant page table in the page table directory using the upper 10 bits of 
the virtual address. It then accesses the page table and uses the next most significant 
10 address bits to select the physical page containing the requested data. The lower 12 
bits of the address then specify the memory location in the page frame requested by the 
executing instruction.

Page frames do not represent actual divisions in physical memory
Physical memory is not actually divided into page frames. The page structure is 
merely a method that the system uses to keep track of the information required 
to translate virtual addresses to physical memory locations.

To meet users' performance needs, memory access must be as fast as possible. At least one 
virtual-to-physical translation must take place during the execution of every instruction to 
fetch instruction opcodes and data. Due to the high-frequency repetition of this process, 
processor designers expend an extraordinary amount of effort ensuring that the process  
of virtual address translation takes place as efficiently as possible.

In modern processors, cache memory retains the results of recent virtual memory 
translation lookups. When implemented effectively, this approach enables a very high 
percentage of virtual memory translations to occur internally in the processor, without 
any of the clock cycles that would be required if the processor needed to look up a page 
table address in the page table directory and then access the page table to determine the 
requested physical address.

The data structures used in virtual-to-physical address translations are not accessible to 
applications running at user privilege level. All of the activity related to address translation 
takes place in processor hardware and in kernel mode software processes.
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To help clarify the use of virtual memory, the following diagram presents an example of 
how Windows translates a 32-bit virtual address to a physical address:

Figure 7.4: Virtual to physical address translation

We'll go through the translation process in Figure 7.4 step by step. Assume the processor 
is requesting the 8-bit data value stored at virtual address $00402003 with an instruction 
such as mov al, [ebx], where ebx has previously been loaded with the value 
$00402003. We will assume the translation for this address is not already stored in the 
processor cache, and we'll also assume that the page is resident in the main memory. The 
following procedure describes the translation process:

1. The processor attempts to execute the mov al, [ebx] instruction, but it cannot 
complete it because it does not have immediate access to the information needed  
to perform the translation of the virtual address in ebx to the corresponding 
physical address. This generates a page fault, which transfers control to the 
operating system so that it can resolve the address translation. The use of the  
term fault here does not imply that some kind of error occurred. Page faults  
are a routine part of application execution.

2. The requested virtual address is shifted right by 22 bit positions, leaving the 10-bit 
directory offset, which has the value 1 in this example.
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3. The directory offset is shifted left by 2 bit positions (because each entry in the  
page directory is 4 bytes) and is added to the content of processor register CR3  
(the PDBR). The result is the address of the page table directory entry containing 
the address of the relevant page table.

4. The requested virtual address is shifted right by 12 bit positions, and masked  
to leave only the 10-bit table offset, which has the value 2 in this example.

5. The table offset is shifted left by 2 bit positions (because each entry in this table  
is also 4 bytes) and added to the page table address identified in Step 3. The 32-bit 
address read from this location is the physical address of the page frame containing 
the requested data.

6. The processor stores the translation, which is a conversion from the upper 20 bits  
of a virtual address to the corresponding upper 20 bits of a page frame address,  
in its translation cache.

7. The processor restarts the mov al, [ebx] instruction, which will now  
succeed in moving the requested data byte into the al register using the cached 
virtual-to-physical translation. The lower 12 bits of the virtual address (the frame 
offset), which contain the value 3 in this example, are added to the page frame 
address computed in Step 5 to access the requested byte.

Once these steps are complete, the translation for the requested page frame remains 
available in the processor cache memory. Subsequent requests for the same virtual address 
or for other locations in the same page frame will execute without delay until the cache 
entry for this page frame is overwritten by code executing at a later time.

The page fault procedure described in the preceding steps is a soft fault, which sets up  
the virtual-to-physical translation for a page that is already accessible by the processor  
but that is not in the translation cache.

A hard fault occurs when accessing a page that has been swapped to secondary storage. 
Processing a hard fault requires several additional steps, including allocating a page frame 
to receive the requested frame, requesting the page from secondary storage, and updating 
the page table with the physical address of the page. Because hard faults involve a disk 
transfer, this type of fault has a much greater impact on application performance than  
a soft fault.
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The translation process converts the upper 20 bits of a virtual address to the corresponding 
20 bits of the physical address. This leaves 12 bits in each page table entry available to 
contain status and configuration information for the page frame. The use of these bits is 
described in the following section.

Page status bits
The following table describes each of the 12 status bits in a 32-bit Windows NT page  
table entry.

Table 7.1: Page status bits
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The processor uses the page status bits to maintain status information and to control 
access to each page by system and user processes. The Owner bit identifies a page as 
owned by the kernel or by a user. User processes cannot read or write any pages owned by 
the kernel. Any attempt to write to a page marked read-only (where the page's Write bit 
is 0) results in an access violation exception.

The system uses the page status bits to manage memory as efficiently as possible. If the 
Accessed bit is clear, the page has been allocated but never used. When the system 
needs to free physical memory, pages that have never been accessed are prime candidates 
for removal because there is no need to save their contents when removing them from 
memory. Similarly, if a page's Dirty bit is clear, the page has not had its contents 
modified since it was brought into memory. The memory manager can release pages that 
do not have the Dirty bit set with the knowledge that when the page is needed again,  
it can be reloaded from its source location (typically a disk file) to restore it accurately.

Pages that have the Dirty bit set require storage in the swap file when they are removed 
from memory. When a page is moved to the swap file, the page table entry is updated in 
a different format from Table 7.1 to indicate that it is not valid for translation (the Valid 
bit is clear) and to store its location within the swap file.

The format for valid page table entries is defined by the processor architecture, in this 
case, the Intel x86 family. The processor hardware directly accesses the page table entries 
to perform virtual-to-physical address translation and enforce page protections as the 
processor runs at full speed.

In addition to managing the memory used by each process, the system must keep track of 
all of the RAM and ROM page frames in the computer, whether in use by a process or not. 
The system maintains this information in lists called memory pools, described next.

Memory pools
Windows NT categorizes memory pools into two types: non-paged and paged.

• Non-paged pool: The non-paged pool contains all page frames that are guaranteed 
to remain resident in memory at all times. Code for interrupt service routines, 
device drivers, and the memory manager itself must always remain directly 
accessible by the processor for system performance reasons and, in the case of 
the memory manager itself, for the system to function at all. Non-paged virtual 
addresses reside in the system portion of a process's virtual address space.

• Paged pool: The paged pool contains virtual memory pages that can be temporarily 
swapped out of physical memory as needed. 
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The system tracks the status of every page frame in physical memory in a structure called 
the page frame number (PFN) database. The PFN is the upper 20 bits of the physical base 
address of a page frame. Each page frame can be in one of several states depending on  
its current and previous usage. These are some of the key page frame states:

• Active: The page frame is part of a system or user process working set. A working 
set is the portion of a process's virtual address space currently present in  
physical memory.

• Standby: Standby pages have been removed from process working sets and have not 
been modified.

• Modified: Modified pages have been removed from process working sets and  
have been modified. These pages must be written to disk before their page frames 
are reused.

• Free: Free pages are unused but still contain data from their last membership in a 
working set. For security reasons, these pages cannot be made available to a user 
process until their data content has been overwritten with zeros.

• Zeroed: Zeroed pages are free and have been overwritten with zeros. These pages 
are available for allocation by user processes.

• Bad: Bad pages have generated hardware errors during processor accesses. Bad 
pages are tracked in the PFN database and are not used by the operating system.

As system services and applications start up, run, and shut down, page frames transition 
between states under system control. In Windows NT, a system task runs during idle 
periods and converts free pages to zeroed pages by overwriting those pages with zeros.

This discussion has focused on the implementation of virtual memory in the x86 
processor architecture under Windows NT. Other processor architectures and operating 
systems implement virtual memory using similar concepts.

The processor component that controls the memory allocation, address translation, and 
protection functions is called a memory management unit. The next section examines the 
memory management unit as a generalized computer system component.

Memory management unit
Processor architectures supporting paged virtual memory either implement the memory 
management unit (MMU) functionality within the processor itself or, sometimes, 
particularly in the case of older designs, as a separate integrated circuit. Within the  
MMU, the processor's virtual address space is divided into page-sized allocation units.
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Pages may be of a fixed size, as in the Windows NT example, or an MMU may support 
multiple sizes. Modern processors, including later generation x86 processors, often 
support two page sizes, one small and one large. Small pages are typically a few KB while 
 a large page may be a few MB. Large page support avoids the inefficiencies associated  
with allocating numerous smaller pages when working with large data objects.

As discussed, the MMU generally contains a cache to improve the speed of memory  
access by avoiding the need to traverse the page table directory and perform a page 
table lookup during each memory access. Although the use of caching for performance 
enhancement is a topic of Chapter 8, Performance-Enhancing Techniques, we'll introduce 
the virtual-to-physical address translation cache here because this capability is a core 
feature of most MMU designs.

The caching component within the MMU that stores previously used virtual-to-physical 
translations is called a translation lookaside buffer (TLB). In order to avoid looking 
up a page table in the page table directory, and then looking up the page frame in the 
referenced page table on every memory access, the TLB stores translations between virtual 
addresses and page frames resulting from those lookups in a hardware structure called  
an associative memory.

Each time the processor needs to access physical memory, which may occur multiple 
times during the execution of a single instruction, it first checks the TLB's associative 
memory to determine whether the translation information is resident in the TLB. If it 
is, the instruction immediately uses the information stored in the TLB to access physical 
memory. If the TLB does not contain the requested translation, a page fault occurs and 
the processor must traverse the page table directory and a page table to determine the 
translated address, assuming the referenced page is resident in memory.

The following diagram represents the operation of the TLB:

Figure 7.5: Translation lookaside buffer operation
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On each memory access, the processor extracts the upper 20 bits of the virtual address 
to identify the virtual page number. This page number, $10000 in this example, is used 
to search the TLB for a matching entry. The TLB hardware simultaneously compares the 
requested virtual page number with all of the virtual page numbers resident in the TLB. If 
a match is found, the corresponding page frame number is immediately provided for use 
in accessing physical memory.

The TLB contains a limited number of entries, typically 64 or fewer. The processor must 
manage which TLB entries are retained and which are discarded as address requests for 
disparate memory locations are processed. When the TLB is full, the MMU decides which 
of the existing TLB entries to overwrite with the new information. The MMU may choose 
a TLB entry at random to replace, or a more sophisticated implementation may use age 
information to replace the TLB entry that has gone the longest without being used.

In addition to performing virtual-to-physical address translation, MMUs generally 
perform the following functions:

• Separation of virtual memory into kernel space and user space: Kernel memory 
is reserved for use by the operating system and related components such as device 
drivers. User space is available for use by applications and for other actions initiated 
by users, such as processing commands typed into a command prompt window. 
User-level code cannot access system memory directly. Instead, user code must  
call system functions to request services such as the allocation of memory.

• Isolation of process memory: Each process has its own address space, which is the 
only memory it is allowed to access. Unless a system-authorized memory sharing 
region is set up between processes, each process is prohibited from accessing 
memory in use by another process. One process cannot erroneously or intentionally 
modify memory that is private to another process.

• Page-level access restrictions: In addition to protecting system pages from user 
access and protecting process-private pages from access by other processes, a 
process can set protections on individual pages that it owns. Pages can be marked 
read-only, which prohibits the modification of the contents. Pages marked 
no-execute cannot be used to provide instructions for processor execution. In some 
architectures, pages can be marked no-access, which prohibits both reading and 
writing. Pages containing executable code may be marked read-only to prevent  
the accidental or intentional modification of instructions in memory.
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• Detection of software problems: In some programming languages, particularly the 
C language, it is unfortunately common to attempt to use a pointer (a pointer is a 
variable that contains the address of another variable) containing an invalid address. 
The most common invalid address encountered in this situation is 0, because variables 
are often initialized to zero. This problem is so common that the system's response 
to it has its own name: the null pointer exception. When a C program attempts to 
access a memory location that is not in the program's valid virtual address range, such 
as the address $00000000, the MMU triggers an exception, which, unless handled 
by the program, typically results in a program crash with an error message printed 
to the console window. In systems without virtual memory, accesses to erroneous 
locations may simply read or write the memory at the referenced address without 
any indication of an error, leading to the incorrect operation of the application or the 
entire system. Such bugs in systems without an MMU can be extremely difficult to fix 
if the problem does not become apparent immediately.

Modern processors running Linux, Windows, and most smart device operating systems 
generally require their host systems to use virtual memory management and provide the 
page protection mechanisms described in this chapter.

Real-time embedded processors performing safety-critical tasks such as operating aircraft 
flight controls or managing automotive airbag operation may or may not support the 
full feature set of an MMU. One drawback related to the use of virtual memory in hard 
real-time systems is the variable time delay resulting from the need to process soft faults 
and, if page swapping is implemented, hard faults. Because execution timing must be 
strictly controlled in many real-time systems, their designers often avoid the use of virtual 
memory. Such systems do not contain an MMU, but they normally implement many of 
the other features an MMU provides, such as hardware protection of system memory  
and access control for RAM regions.

Summary
This chapter examined the principal modern processor architectural categories, including 
the von Neumann, Harvard, and modified Harvard variants, and their use in different 
computing domains. The concepts of paged virtual memory were examined, including 
some details pertaining to the implementation of paged virtual memory in Windows NT 
on the x86 processor.
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The general structure of memory management units was discussed, with emphasis on the 
use of the TLB as a virtual-to-physical translation performance optimization technique.

The next chapter will expand beyond the performance enhancement provided by the 
TLB to look in depth at widely used processor acceleration methods including caching, 
instruction pipelining, and instruction parallelism.

Exercises
1. A 16-bit embedded processor has separate memory regions for code and data. Code 

is stored in flash memory and modifiable data is stored in RAM. Some data values, 
such as constants and initial values for RAM data items, are stored in the same flash 
memory region as the program instructions. RAM and ROM reside in the same 
address space. Which of the processor architectures discussed in this chapter best 
describes this processor?

2. The processor described in Exercise 1 has memory security features that prevent 
executing code from modifying program instruction memory. The processor uses 
physical addresses to access instructions and data. Does this processor contain  
an MMU?

3. The order of accessing sequential elements in a large data structure can have a 
measurable impact on processing speed due to factors such as the reuse of TLB 
entries. Accessing distant array elements in sequence (that is, elements that are not 
in the same page frame as previously accessed elements) requires frequent soft faults 
as new TLB entries are loaded and old TLB entries are discarded.

Write a program that creates a two-dimensional array of numbers with a large size 
such as 10,000 rows by 10,000 columns. Iterate through the array in column-major 
order, assigning each element the sum of the row and column indices. Column-
major means the column index increments fastest. In other words, the column 
index increments in the inner loop. Measure precisely how long this procedure 
takes. Note, you may need to take steps to ensure your programming language does 
not optimize away the entire calculation if the results from the array are not used 
later. If may suffice to print one of the array values after the timing is complete, or 
you may need to do something like sum all the array elements and print that result. 
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Repeat the process, including the timing, exactly as explained before, except change 
the inner loop to iterate over the row index and the outer loop to iterate over the 
column index, making the access sequence row-major.

Since general-purpose computers perform many other tasks while running your 
code, you may need to perform both procedures a number of times to get a 
statistically valid result. You might start by running the experiment 10 times  
and averaging the times for column-major and row-major array access.

Are you able to determine a consistently superior array access method? Which 
order is fastest on your system using the language you selected? Note that the 
difference between the column-major and row-major access order may not be 
dramatic – it might be just a few percent.
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8
Performance-

Enhancing 
Techniques

The fundamental aspects of processor and memory architectures discussed in previous 
chapters enable the design of a complete and functional computer system. However, 
the performance of such a system would be poor compared to most modern processors 
without the addition of features to increase the speed of instruction execution.

Several performance-enhancing techniques are employed routinely in processor and 
system designs to achieve peak execution speed in real-world computer systems. These 
techniques do not alter what the processor does in terms of program execution and data 
processing; they just help get it done faster. 

After completing this chapter, you will understand the value of multilevel cache memory 
in computer architectures and the benefits and challenges associated with instruction 
pipelining. You'll also understand the performance improvement resulting from 
simultaneous multithreading and the purpose and applications of single instruction, 
multiple data processing.
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The following topics will be covered in this chapter:

• Cache memory

• Instruction pipelining

• Simultaneous multithreading

• SIMD processing

Cache memory
A cache memory is a memory region that stores program instructions or data, usually 
instructions or data that have been accessed recently, for future use. The primary purpose 
of cache memory is to increase the speed of repeatedly accessing the same memory 
location or nearby memory locations. To be effective, accessing the cached data must 
be significantly faster than accessing the original source of the data, referred to as the 
backing store.

When caching is in use, each attempt to access a memory location begins with a search 
of the cache. If the data is present, the processor retrieves and uses it immediately. This 
is called a cache hit. If the cache search is unsuccessful (a cache miss), the data must be 
retrieved from the backing store. In the process of retrieving the requested data, a copy  
is added to the cache for anticipated future use.

Cache memory is used for a variety of purposes in computer systems. Some examples  
of cache memory applications are:

• Translation lookaside buffer (TLB): The TLB, as we saw in in Chapter 7, Processor 
and Memory Architectures, is a form of cache memory used in processors supporting 
paged virtual memory. The TLB contains a collection of virtual-to-physical address 
translations that speed access to page frames in physical memory. As instructions 
execute, each main memory access requires a virtual-to-physical translation. 
Successful searches of the TLB result in much faster instruction execution compared 
to the page table lookup process following a TLB miss. The TLB is part of the MMU, 
and is not directly related to the varieties of processor cache memory discussed later 
in this section.
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• Disk drive caches: Reading and writing the magnetized platters of rotating disk 
drives is orders of magnitude slower than accessing DRAM devices. Disk drives 
generally implement cache memory to store the output of read operations and 
to temporarily hold data in preparation for writing. Drive controllers often read 
more data than the amount originally requested in internal cache memory in the 
expectation that future reads will request data adjacent to the initial request. If this 
turns out to be a correct assumption, which it often is, the drive will satisfy the 
second request immediately from cache without the delay associated with accessing 
the disk platters.

• Web browser caches: Web browsers generally store copies of recently accessed web 
pages in memory in the expectation that the user will sometimes click the "Back" 
button to return to a previously viewed page. When this happens, the browser 
can retrieve some or all of the page content from its local cache and immediately 
redisplay the page without the need to access the remote web server and retrieve  
the same information again.

• Processor instruction and data caches: The following sections examine processor 
cache structures in detail. The purpose of these caches is to improve the speed 
of access to instructions and data in comparison to the latency incurred when 
accessing DRAM modules.

Cache memory improves computer performance because many algorithms executed by 
operating systems and applications exhibit locality of reference. Locality of reference 
refers to the reuse of data that has been accessed recently (this is referred to as temporal 
locality) and to the access of data in physical proximity to data that has been accessed 
previously (called spatial locality).

Using the structure of the TLB as an example, temporal locality is exploited by storing 
a virtual-to-physical translation in the TLB for some period of time following initial 
access to a particular page frame. Any additional references to the same page frame in 
subsequent instructions will enjoy speedy access to the translation until it is eventually 
replaced in the cache by a different translation.

The TLB exploits spatial locality by referencing an entire page frame with a single TLB 
entry. Any subsequent accesses to different addresses on the same page will benefit from 
the presence of the TLB entry resulting from the first reference to the page.
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As a general rule, cache memory regions are small in comparison to the backing store. 
Cache memory devices are designed for maximum speed, which generally means they 
are more complex and costly per bit than the data storage technology used in the backing 
store. As a consequence of their limited size, cache memory devices tend to fill quickly. 
When a cache does not have an available location to store a new entry, an older entry must 
be discarded. The cache controller uses a cache replacement policy to select which cache 
entry will be overwritten by the new entry.

The goal of processor cache memory is to maximize the percentage of cache hits over 
time, thus providing the highest sustained rate of instruction execution. To achieve this 
objective, the caching logic must determine which instructions and data will be placed 
into the cache and retained for future use. 

In general, a processor's caching logic does not have any assurance that a cached data 
item will ever be used again once it has been inserted into the cache. The logic relies on 
the likelihood that, due to temporal and spatial locality, there is a very good chance the 
cached data will be accessed in the near future. In practical implementations on modern 
processors, cache hits typically occur on 95 to 97 percent of memory accesses. Because the 
latency of cache memory is a small fraction of the latency of DRAM, a high cache hit rate 
leads to a substantial performance improvement in comparison to a cache-less design.

The following sections discuss the multilevel caching technologies of modern processors 
and some of the cache replacement policies commonly used in their implementations.

Multilevel processor caches
In the years since the introduction of personal computers, processors have undergone 
dramatic increases in the speed of instruction processing. The internal clocks of modern 
Intel and AMD processors are close to 1,000 times faster than the 8088 processor used 
in the first IBM PC. The speed of DRAM technology, in comparison, has increased at a 
much slower rate over time. Given these two trends, if a modern processor were to access 
DRAM directly for all of its instructions and data, it would spend the vast majority of its 
time simply waiting for the DRAM to respond to each request.

To attach some approximate numbers to this topic, consider a modern processor capable 
of accessing a 32-bit data value from a processor register in 1 ns. Accessing the same value 
from DRAM might take 100 ns. Oversimplifying things somewhat, if each instruction 
requires a single access to a memory location, and the execution time for each instruction 
is dominated by the memory access time, we can expect a processing loop that accesses 
the data it requires from processor registers to run 100 times faster than the same 
algorithm accessing main memory on each instruction.
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Now, assume a cache memory is added to the system with an access time of 4 ns. By taking 
advantage of cache memory, the algorithm that accesses DRAM on each instruction will 
suffer the 100 ns performance penalty the first time a particular address is referenced, 
but subsequent accesses to the same and nearby addresses will occur at the cache speed 
of 4 ns. Although accessing the cache is four times slower than accessing registers, it is 
25 times faster than accessing DRAM. This example represents the degree of execution 
speedup achievable through the effective use of cache memory in modern processors.

High-performance processors generally employ multiple cache levels with the goal of 
achieving peak instruction execution rate. Processor cache hardware is constrained in 
terms of size and performance by the economics of semiconductor technology. Selecting 
an optimally performing mix of processor cache types and sizes while achieving a price 
point acceptable to end users is a key goal of processor designers.

The two types of RAM circuits in common use as main memory and for processor 
internal storage are dynamic RAM (DRAM) and static RAM. DRAM is inexpensive, 
but has a comparatively slow access time, due largely to the time required to charge and 
discharge the bit cell capacitors during read and write operations. Static RAM is much 
faster than DRAM, but is much more costly, resulting in its use in smaller quantities in 
applications where performance is critical. DRAM designs are optimized for density, 
resulting in the largest possible number of bits stored on a single DRAM integrated 
circuit. Static RAM designs are optimized for speed, minimizing the time to read or  
write a location. Processor cache memory is generally implemented using SRAM.

Static RAM
Static RAM (SRAM) boasts a substantially faster access time than DRAM, albeit at the 
expense of significantly more complex circuitry. SRAM bit cells take up much more space on 
the integrated circuit die than the cells of a DRAM device capable of storing an equivalent 
quantity of data. As you will recall from Chapter 4, Computer System Components, a single 
DRAM bit cell consists of just one MOSFET transistor and one capacitor.
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The standard circuit for a single bit of SRAM contains six MOSFET transistors. Four of 
these transistors are used to form two NOT gates. These gates are based on the CMOS 
circuit shown in Figure 4.3 in Chapter 4, Computer System Components in the Digital 
switching circuits based on the MOSFETsection. These gates are labeled G1 and G2 in the 
following diagram:

Figure 8.1: SRAM circuit diagram

The output of each of the NOT gates is connected to the input of the other, forming a flip-
flop. Most of the time, the wordline is low, which turns off transistor switches T1 and T2, 
isolating the pair of gates. While the wordline is low, as long as power is applied, the gates 
will persist on one of two states:

• The stored bit is 0: The input of G1 is low and its output is high.

• The stored bit is 1: The input of G1 is high and its output is low.

The access transistors (T1 and T2) function as switches that connect the bitlines to the cell 
for reading and writing. As with DRAM, driving the wordline high enables access to the 
bit cell by reducing the resistance across each access transistor to a very small value. To 
read the cell contents, the readout circuitry measures the voltage between the bitline pair 
labeled Bitline and Bitline where the overbar represents the NOT operation). The two 
bitline signals always have opposing senses, forming a differential pair. Measuring the  
sign of the voltage difference between the two signals determines whether the cell  
contains a 0 or a 1.

To write the bit cell, the wordline is driven high, and the  and  signals are driven to 
opposite voltage levels representing the desired value (0 or 1) to be written. The transistors 
writing the data to the bitlines must have substantially greater drive capability than the bit 
cell NOT gate transistors. This allows the desired value to be written to the cell, even if the 
flip-flop state must be overpowered to switch it to the state being written.
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An SRAM bank is arranged in a rectangular grid of rows and columns in the same 
manner as DRAM. The wordline enables access to all SRAM bit cells along a single row. 
The bitlines connect to all columns of the grid of bit cells. 

Note that, unlike DRAM, SRAM does not require periodic refreshes to retain its data 
content. This is why it is referred to as static RAM.

Level 1 cache
In a multilevel cache architecture, the cache levels are numbered, beginning with 1. A 
level 1 cache (also referred to as an L1 cache) is the first cache the processor searches 
when requesting an instruction or data item from memory. Because it is the first stop in 
the cache search, an L1 cache is generally constructed using the fastest SRAM technology 
available and is physically located as close to the processor's logic circuitry as possible. 
The emphasis on speed makes an L1 cache costly and power-hungry, which means it must 
be relatively small in size, particularly in cost-sensitive applications. Even when it is quite 
small, a fast level 1 cache can provide a substantial performance boost in comparison to 
an equivalent processor that does not employ caching.

The processor (or the MMU, if present) transfers data between DRAM and cache in fixed-
size data blocks called cache lines. Computers using DDR DRAM modules generally use a 
cache line size of 64 bytes. The same cache line size is commonly used in all cache levels.

Modern processors often divide the L1 cache into two sections of equal size, one for 
instructions and one for data. This configuration is referred to as a split cache. In a split 
cache, the level 1 instruction cache is referred to as the L1 I-cache and the level 1 data 
cache is referred to as the L1 D-cache. The processor uses separate buses to access each 
of the two caches, thereby implementing a significant aspect of the Harvard architecture. 
This arrangement speeds instruction execution by enabling access to instructions and  
data in parallel, assuming L1 cache hits for both.

Modern processors employ a variety of strategies to organize cache memory and control 
its operation. The simplest cache configuration is direct mapping, introduced in the  
next section.

Direct-mapped cache
A direct-mapped cache is a block of memory organized as a one-dimensional array  
of cache sets, where each address in the main memory maps to a single set in the cache.  
Each cache set consists of the following items:

• A cache line, containing a block of data read from main memory
• A tag value, indicating the location in main memory corresponding to the cached data
• A valid bit, indicating whether the cache set contains data
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There are times when the cache contains no data, such as immediately following processor 
power-on. The valid bit for each cache set is initially clear to indicate the absence of data 
in the set. When the valid bit is clear, use of the set for lookups is inhibited. Once data has 
been loaded into a cache set, the hardware sets the valid bit.

We will use a small L1 I-cache size of 512 bytes as an example. Because this is a read-only 
instruction cache, it need not support the ability to write to memory. The cache line size is 
64 bytes. Dividing 512 bytes by 64 bytes per set results in 8 cache sets. The 64 bytes in each 
set equals 26 bytes, which means the least significant 6 bits in the address select a location 
within the cache line. Three additional bits of an address are required to select one of the 
eight sets in the cache. 

From this information, the following diagram shows the division of a 32-bit physical 
memory address into tag, set number, and cache line byte offset components:

Figure 8.2: Components of a 32-bit physical memory address

Each time the processor reads an instruction from DRAM (which is necessary any time 
the instruction is not already present in the cache), the MMU reads the 64-byte block 
containing the addressed location, and stores it in the L1 I-cache set selected by the three 
Set bits of Figure 8.2. The upper 23 bits of the address are stored in the Tag field of the 
cache set, and the Valid bit is set, if it was not already set.

As the processor fetches each subsequent instruction, the control unit uses the three 
Set bits in the instruction's address to select a cache set for comparison. The hardware 
compares the upper 23 bits of the executing instruction's address with the Tag value 
stored in the selected cache set. If the values match, a cache hit has occurred, and the 
processor reads the instruction from the cache line. If a cache miss occurs, the MMU 
reads the line from DRAM into cache and provides the instruction to the control unit  
for execution.

The following diagram represents the organization of the entire 512-byte cache and its 
relation to the three fields in a 32-bit instruction address:
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Figure 8.3: Relation of a 32-bit physical address to cache memory

To demonstrate why a direct-mapped cache can produce a high hit rate, assume we're 
running a program containing a loop starting at physical memory address 8000h (we're 
ignoring the upper 16 bits of the 32-bit address here for simplicity) and containing 256 
bytes of code. The loop executes instructions sequentially from the beginning to the end 
of the 256 bytes, and then branches back to the top of the loop for the next iteration.

Address 8000h contains 000b in its Set field, so this address maps to the first cache set,  
as shown in Figure 8.3. On the first pass through the loop, the MMU retrieves the 64-byte 
Set 000b cache line from DRAM and stores it in the first set of the cache. As the remaining 
instructions stored in the same 64-byte block execute, each will be retrieved directly from 
cache. As execution flows into the second 64 bytes, another read from DRAM is required. 
By the time the end of the loop is reached, Sets 000b through 011b have been populated 
with the loop's 256 bytes of code. For the remaining passes through the loop, assuming the 
thread runs without interruption, the processor will achieve a 100 percent cache hit rate, 
and will achieve maximum instruction execution speed.

Alternatively, if the instructions in the loop happen to consume significantly more 
memory, the advantage of caching will be reduced. Assume the loop's instructions occupy 
1,024 bytes, twice the cache size. The loop performs the same sequential execution flow 
from top to bottom. When the instruction addresses reach the midpoint of the loop, the 
cache has been completely filled with the first 512 bytes of instructions. At the beginning 
of the next cache line beyond the midpoint, the address will be 8000h plus 512, which 
is 8200h. 8200h has the same Set bits as 8000h, which causes the cache line for address 
8000h to be overwritten by the cache line for address 8200h. Each subsequent cache line 
will be overwritten as the second half of the loop's code executes.
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Even though all of the cached memory regions are overwritten on each pass through 
the loop, the caching structure continues to provide a substantial benefit because, once 
read from DRAM, each 64-byte line remains in the cache and is available for use as its 
instructions are executed. The downside in this example is the increased frequency of 
cache misses. This represents a substantial penalty because, as we've seen, accessing an 
instruction from DRAM may be 25 (or more) times slower than accessing the same 
instruction from the L1 I-cache.

Virtual and physical address tags in caching
The example in this section assumes that cache memory uses physical memory 
addresses to tag cache entries. This implies that the addresses used in cache 
searches are the output of the virtual-to-physical address translation process in 
systems using paged virtual memory. It is up to the processor designer to select 
whether to use virtual or physical addresses for caching purposes.

In modern processor caches, it is not uncommon to use virtual address tags 
in one or more cache levels and physical address tags in the remaining levels. 
One advantage of using virtual address tagging is speed, due to the fact that 
no virtual-to-physical translation is required during cache accesses. As we've 
seen, virtual-to-physical translation requires a TLB lookup and potentially a 
page table search in the event of a TLB miss. However, virtual address tagging 
introduces other issues such as aliasing, which occurs when the same virtual 
address refers to different physical addresses. As with many other aspects of 
processor performance optimization, this is a trade-off to be considered during 
cache system design.

This example was simplified by assuming instruction execution flows linearly from the top 
to the bottom of the loop without any detours. In real-world code, there are frequent calls 
to functions in different areas of the application memory space and to system-provided 
libraries. In addition to those factors, other system activities such as interrupt processing 
and thread context switching frequently overwrite information in the cache, leading to a 
higher cache miss frequency. Application performance is affected because the main-line 
code must perform additional DRAM accesses to reload the cache following each detour 
that causes a cache entry to be overwritten.

One way to reduce the effects of deviations from straight-line code execution is to set up 
two caches operating in parallel. This configuration is called a two-way set associative 
cache, discussed next.
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Set associative cache
In a two-way set associative cache, the memory is divided into two equal-sized caches. 
Each of these has half the number of entries of a direct-mapped cache of the same total 
size. The hardware consults both of these caches in parallel on each memory access 
and a hit may occur in either one. The following diagram illustrates the simultaneous 
comparison of a 32-bit address tag against the tags contained in two L1 I-caches:

Figure 8.4: Set associative cache operation

The cache configuration shown here contains the same cache line size (64 bytes) as the 
cache in Figure 8.3, but only half as many sets per cache. The overall size of cache memory 
is the same as the previous example: 64 bytes per line times 4 rows times 2 caches equals 
512 bytes. Because there are now four sets, the Set field in the physical address reduces to 
two bits and the Tag field increases to 24 bits. Each set consists of two cache lines, one in 
each of the two caches.

When a cache miss occurs, the memory management logic must select which of the two 
cache tables to use as the destination for the data being loaded from DRAM. A common 
method is to track which of the relevant sets in the two tables has gone the longest without 
being accessed, and overwrite that entry. This replacement policy, called least-recently 
used (LRU), requires hardware support to keep track of which cache line has been idle the 
longest. The LRU policy relies on the temporal locality heuristic stating that data that has 
not been accessed for an extended period of time is less likely to be accessed again in the 
near future.

Another method for selecting between the two tables is to simply alternate between them 
on successive cache insertions. The hardware to implement this replacement policy is 
simpler than the LRU policy, but there may be a performance impact due to the arbitrary 
selection of the line being invalidated. Cache replacement policy selection represents 
another area of trade-off between increased hardware complexity and incremental 
performance improvements.
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In a two-way set associative cache, two cache lines from different physical locations with 
matching Set fields are present in cache simultaneously, assuming both cache lines are 
valid. At the same time, in comparison to a direct-mapped cache of the same total size, 
each of the two-way set associative caches is half the size. This represents yet another 
design tradeoff. 

The number of unique Set values that can be stored in a two-way set associative cache is 
reduced compared to direct mapping, but multiple cache lines with identical Set fields can 
be cached simultaneously. The cache configuration that provides the best overall system 
performance will depend on the memory access patterns associated with the types of 
processing activity performed on the system.

Set associative caches can contain more than the two caches of this example. Modern 
processors often have four, eight, or 16 parallel caches, referred to as 4-way, 8-way, and 
16-way set associative caches, respectively. These caches are referred to as set associative 
because an address Tag field associates with all of the cache lines in the set simultaneously. 
A direct-mapped cache implements a one-way set associative cache.

The advantage of multi-way set associative caches over direct-mapped caches is that  
they tend to have higher hit rates, thereby providing better system performance than 
direct-mapped caches in most practical applications. If multi-way set associative caches 
provide better performance than one-way direct mapping, why not increase the level  
of associativity even further? Taken to the limit, this progression ends with fully  
associative caching.

Fully associative cache
Assuming the number of lines in the cache is a power of two, repetitively dividing the 
overall cache memory into a larger number of smaller parallel caches, until each cache 
contains only one line, results in a fully associative cache. In our example of a 512 byte 
cache with 64 bytes per cache line, this process would result in eight parallel caches,  
each with only one set.

In this architecture, every memory access leads to a parallel comparison with the 
Tag values stored in all of the cache lines. A fully associative cache using an effective 
replacement policy such as LRU can provide a very high hit rate, though at a substantial 
cost in circuit complexity and a corresponding consumption of integrated circuit die area. 
In power-sensitive applications such as battery-powered mobile devices, the additional 
circuit complexity of a fully associative cache leads to increased battery drain. In desktop 
computers and cloud servers, excessive processor power consumption must be minimized 
to avoid the need for extraordinary cooling requirements and to minimize the electric 
utility bill for cloud providers operating thousands of servers. Because of these costs, fully 
associative caches are rarely used as instruction and data caches in modern processors.
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The concept behind the fully associative cache may sound familiar because it is the same 
concept employed in the TLB presented in Chapter 7, Processor and Memory Architectures. 
The TLB is typically a fully associative cache containing virtual-to-physical address 
translations. Although the use of fully associative caching in the TLB results in the 
drawbacks of circuit complexity, die area consumption, and power consumption described 
in the preceding paragraph, the performance benefit provided by the TLB is so substantial 
that full associativity is used in virtually all high-performance processors that implement 
paged virtual memory.

Our discussion to this point has focused on instruction caching, which is normally  
a read-only process. The functional requirements for the data cache are similar to those  
of the instruction cache, with one significant extension: in addition to reading from  
data memory, the processor must be free to write to data memory.

Processor cache write policies
In processors with split caches, the L1 D-cache is similar in structure to the L1 I-cache, 
except that the circuitry must permit the processor to write to memory as well as read 
from it. Each time the processor writes a data value to memory, it must update the L1 
D-cache line containing the data item, and, at some point, it must also update the DRAM 
location in physical memory containing the cache line. As with reading DRAM, writing  
to DRAM is a slow process compared to the speed of writing to the L1 D-cache.

The most common cache write policies in modern processors are as follows:

• Write-through: This policy updates DRAM immediately every time the processor 
writes data to memory.

• Write-back: This policy holds the modified data in the cache until the line is about 
to be evicted from cache. A write-back cache must provide an additional status bit 
associated with each cache line indicating whether the data has been modified since 
it was read from DRAM. This is called the dirty bit. If set, the dirty bit indicates that 
the data in that line is modified and the system must write the data to DRAM before 
its cache line can be freed for reuse.

The write-back policy generally results in better system performance because it allows the 
processor to perform multiple writes to the same cache line without the need to access 
main memory on each write. In systems with multiple cores or multiple processors, the 
use of write-back caching introduces complexity, because the L1 D-cache belonging to a 
core that writes to a memory location will contain data that differs from the corresponding 
DRAM location, and from any copies in the caches of the other processors or cores. This 
memory content disagreement will persist until the cache line has been written to DRAM 
and refreshed in any processor caches it occupies.
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It is generally unacceptable to have different processor cores retrieve different values 
when accessing the same memory location, so a solution must be provided to ensure that 
all processors see the same data in memory at all times. The challenge of maintaining 
identical views of memory contents across multiple processors is called the cache 
coherence problem.

A multi-core processor can resolve this issue by sharing the same L1 D-cache among all 
the cores, but modern multi-core processors usually implement a separate L1 D-cache for 
each core to maximize access speed. In multiprocessor systems with shared main memory, 
where the processors are on separate integrated circuits, and in multi-core processors that 
do not share L1 cache, the problem is more complex.

Some multiprocessor designs perform snooping to maintain cache coherence.  
Each processor snoops by monitoring memory write operations performed by the  
other processors. When a write occurs to a memory location present in the snooping 
processor's cache, the snooper takes one of two actions: it can invalidate its cache line 
by setting the Valid bit to false, or it can update its cache line with the data written by 
the other processor. If the cache line is invalidated, the next access to the line's physical 
memory location will result in a DRAM access, which picks up the data modified by the 
other processor.

Snooping can be effective in systems with a limited number of processors, but it does  
not scale well to systems containing dozens or hundreds of processors, because each 
processor must monitor the write behavior of all the other processors at all times. Other, 
more sophisticated, cache coherence protocols must be implemented in systems with  
large numbers of processors.

Level 2 and level 3 processor caches
The discussion to this point has focused on L1 instruction and data caches. These caches 
are designed to be as fast as possible, but the focus on speed limits their size because 
of cache circuit complexity and power requirements. Because of the great disparity in 
the latency performance of L1 cache and DRAM, it is reasonable to wonder whether 
providing an additional level of cache between L1 and DRAM could improve performance 
beyond that of a processor containing just an L1 cache. The answer is, yes: adding an  
L2 cache provides a substantial performance enhancement.
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Modern high-performance processors generally contain a substantial bank of L2 cache 
on-chip. Unlike an L1 cache, an L2 cache typically combines instruction and data memory 
in a single memory region, representing the von Neumann architecture more than 
the Harvard architectural characteristic of the split L1 cache structure. An L2 cache is 
generally slower than an L1 cache, but still much faster than direct accesses to DRAM. 
Although an L2 cache uses SRAM bit cells with the same basic circuit configuration 
shown in Figure 8.1, the L2 circuit design emphasizes a reduction in the per-bit die area 
and power consumption relative to L1. These modifications permit an L2 cache to be 
much larger than an L1 cache, but they also make it slower.

A typical L2 cache might be four or eight times as large as the combined L1 I- and 
D-caches, with an access time 2-3 times as long as L1. The L2 cache may or may not be 
inclusive of the L1 cache, depending on the processor design. An inclusive L2 cache 
always contains the cache lines contained in the L1 cache, plus others.

As we have seen, each time the processor accesses memory, it first consults the L1 cache. 
If an L1 miss occurs, the next place to check is the L2 cache. Because L2 is larger than L1, 
there is a significant chance the data will be found there. If the cache line is not in L2, a 
DRAM access is required. Processors generally perform some of these steps in parallel to 
ensure that a cache miss does not result in a lengthy sequential search for the needed data.

Each miss of both an L1 and L2 cache results in a DRAM read that populates the 
corresponding cache lines in L1 and L2, assuming L2 is inclusive. Each time the processor 
writes to data memory, both L1 and L2 must be updated eventually. An L1 D-cache 
implements a cache write policy (typically write-through or write-back) to determine when 
it must update the L2 cache. L2, similarly, implements its own write policy to determine 
when to write dirty cache lines to DRAM.

If using two cache levels helps with performance, why stop there? In fact, most modern 
high-performance processors implement three (or more!) levels of cache on-chip. As with 
the transition from L1 to L2, the transition from L2 to L3 involves a larger block of memory 
with slower access speed. Similar to L2, an L3 cache usually combines instructions and 
data in a single memory region. On a consumer-grade PC processor, an L3 cache typically 
consists of a few megabytes of SRAM with an access time 3-4 times slower than an  
L2 cache.
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The programmer's view of cache memory
Although software developers do not need to take any steps to take advantage 
of cache memory, an understanding of the execution environment in which 
their software operates can help improve the performance of code running on 
processors containing multilevel cache. Where flexibility permits, sizing data 
structures and code inner loops to fit within the confines of anticipated L1, L2, 
and L3 cache sizes can result in a significant increase in execution speed.

Since the performance of any piece of code is affected by many factors related 
to the processor architecture and system software behavior, the best way to 
determine the optimal algorithm among multiple viable alternatives is to 
carefully benchmark the performance of each one.

The multilevel cache hierarchy in modern processors results in a dramatic performance 
improvement in comparison to an equivalent system that does not use cache memory. 
Caching allows the speediest processors to run with minimal DRAM access delay. 
Although cache memory adds substantial complexity to processor designs and consumes 
a great deal of valuable die area and power, processor vendors have determined that the 
use of a multilevel cache memory architecture is well worth the cost.

Cache memory speeds the execution of instructions by reducing memory access latency 
when retrieving instructions and the data referenced by those instructions. The next area 
of performance enhancement that we'll look at is optimization opportunities within the 
processor to increase the rate of instruction execution. The primary method modern 
processors use to achieve this performance boost is pipelining.

Instruction pipelining
Before we introduce pipelining, we will first break down the execution of a single 
processor instruction into a sequence of discrete steps:

• Fetch: The processor control unit accesses the memory address of the next 
instruction to execute, as determined by the previous instruction, or from the 
predefined reset value of the program counter immediately after power-on, or in 
response to an interrupt. Reading from this address, the control unit loads the 
instruction opcode into the processor's internal instruction register.

• Decode: The control unit determines the actions to be taken during instruction 
execution. This may involve the ALU and may require read or write access  
to registers or memory locations.
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• Execute: The control unit executes the requested operation, invoking an ALU 
operation if required.

• Writeback: The control unit writes the results of instruction execution to register or 
memory locations, and the program counter is updated to the address of the next 
instruction to be executed.

The processor performs this fetch-decode-execute-writeback cycle repetitively from the 
time of power application until the computer is turned off. In a relatively simple processor 
such as the 6502, the processor executes each of these steps as essentially isolated, 
sequential operations. From the programmer's viewpoint, each instruction completes 
all of these steps before the next instruction begins. All of the results and side effects of 
each instruction are available in registers, memory, and processor flags for immediate 
use by the following instruction. This is a straightforward execution model, and assembly 
language programs can safely assume that all the effects of previous instructions are 
completed when the next instruction begins execution.

The following diagram is an example of instruction execution in a processor that requires 
one clock cycle for each of the fetch-decode-execute-writeback steps. Note that each step 
in this diagram is indicated by its initial: F, D, E or W:

Figure 8.5: Sequential instruction execution

Each instruction requires four clock cycles to complete. At the hardware level, the 
processor represented in Figure 8.5 consists of four execution subsystems, each of which 
becomes active during one of the four instruction clock cycles. The processing logic 
associated with each of these steps reads input information from memory and from 
processor registers, and stores intermediate results in latches for use in later execution 
stages. After each instruction finishes, the next instruction begins execution immediately.

The number of completed instructions per clock (IPC) provides a performance metric 
indicating how quickly a processor executes instructions relative to the processor  
clock speed. The processor in the example of Figure 8.5 requires four clock cycles  
per instruction, leading to an IPC of 0.25.
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The potential for improved performance in this example arises from the fact that the 
circuitry involved in each of the four steps is idle while the three remaining steps execute. 
Suppose that instead, as soon as the fetch hardware finishes fetching one instruction, 
it immediately begins fetching the next instruction. The following diagram shows the 
execution process when the hardware involved in each of the four instruction execution 
steps shifts from processing one instruction to the next instruction on each clock cycle:

Figure 8.6: Pipelined instruction execution

This execution procedure is referred to as a pipeline because instructions enter and move 
through the execution stages from beginning to completion, like fluid moving through 
a physical pipeline. The processor pipeline contains multiple instructions at various 
stages of execution simultaneously. The reason for going to this trouble is evident in the 
preceding example: the processor is now completing one instruction per clock cycle, an 
IPC of 1.0, a four-fold speedup from the non-pipelined execution model of Figure 8.5. 
Similar levels of performance improvement are achieved in real-world processing using 
pipelining techniques.

In addition to overlapping the execution of sequential instructions via pipelining, there 
may be other opportunities to make productive use of processor subsystems that may 
otherwise be idle. Processor instructions fall into a few different categories that require 
different portions of the processor circuitry for their execution. Some examples include 
the following:

• Branching instructions: Conditional and unconditional branch instructions 
manipulate the program counter to set the address of the next instruction  
to be executed.

• Integer instructions: Instructions involving integer arithmetic and bit 
manipulation access the integer portion of the ALU.
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• Floating-point instructions: Floating-point operations, on processors that  
provide hardware support for these operations, generally use separate circuitry  
from the integer ALU.

By increasing the sophistication of the processor's instruction scheduling logic, it may 
be possible to initiate the execution of two instructions on the same clock cycle if they 
happen to use independent processing resources. For example, it has long been common 
for processors to dispatch instructions to the floating-point unit (FPU) for execution in 
parallel with non-floating-point instructions executing on the main processor core.

In fact, many modern processors contain multiple copies of subsystems such as integer 
ALUs to support the execution of multiple instructions simultaneously. In this architecture, 
the processor initiates the execution of multiple instructions at the same time, referred to 
as multiple-issue processing. The following diagram depicts multiple-issue processing in 
which two instructions are initiated on each processor clock cycle:

Figure 8.7: Multiple-issue pipelined instruction execution

This execution model doubles the number of instructions completed per clock cycle from 
the single-path pipeline of Figure 8.6, resulting in an IPC of 2.0. This is an example of a 
superscalar processor, which can issue (in other words, begin executing) more than one 
instruction per clock cycle. A scalar processor, in comparison, issues only one instruction 
per clock cycle. To be clear, both Figures 8.5 and 8.6 represent the behavior of a scalar 
processor, while Figure 8.7 represents superscalar processing. A superscalar processor 
implements instruction-level parallelism (ILP) to increase execution speed. Virtually  
all modern high-performance, general-purpose processors are superscalar.
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Superpipelining
Looking back at the scalar, non-pipelined processing model presented in Figure 8.5,  
we can consider how the processor clock speed is selected. In the absence of concerns 
about power consumption and heat dissipation, it is generally desirable to run the 
processor clock at the fastest possible speed. The upper limit on the clock speed for the 
processor of Figure 8.5 is determined by the lengthiest path through each of the four 
subsystems involved in the execution stages. Different instructions may have drastically 
different execution time requirements. For example, an instruction to clear a processor 
flag requires very little execution time while a 32-bit division instruction may take much 
longer to produce its output.

It is inefficient to limit overall system execution speed based on the worst-case timing of a 
single instruction. Instead, processor designers look for opportunities to break the execution 
of complex instructions into a larger number of sequential steps. This approach is called 
superpipelining, and it consists of increasing the number of pipeline stages by breaking 
complex stages into multiple simpler stages. A superpipeline is, in essence, a processor 
pipeline with a large number of stages, potentially numbering in the dozens. In addition  
to being superscalar, modern high-performance processors are generally superpipelined.

Breaking a pipeline into a larger number of superpipeline stages allows the simplification 
of each stage, reducing the time required to execute each stage. With faster-executing 
stages, it is possible to increase the processor clock speed. As long as the rate of instruction 
issue can be sustained, superpipelining represents an instruction execution rate increase 
corresponding to the percentage increase in processor clock speed.

RISC processer instruction sets are designed to support effective pipelining. Most 
RISC instructions perform simple operations, such as moving data between registers 
and memory or adding two registers together. RISC processors usually have shorter 
pipelines compared to CISC processors. CISC processors, and their richer, more complex 
instruction sets, benefit from longer pipelines that break up long-running instructions 
into a series of sequential stages.

A big part of the challenge of efficiently pipelining processors based on legacy instruction 
sets such as x86 is that the original design of the instruction set did not fully consider the 
potential for later advances involving superscalar processing and superpipelining. As a 
result, modern x86-compatible processors devote a substantial proportion of their die  
area to the complex logic needed to implement these performance-enhancing features.

If breaking a pipeline into one or two dozen stages results in a substantial performance 
boost, why not continue by breaking the instruction pipeline into hundreds or  
even thousands of smaller stages to achieve even better performance? The answer:  
Pipeline hazards.
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Pipeline hazards
Implementing pipelining in a general-purpose processor is not as straightforward as the 
discussion to this point might imply. If the result of an instruction relies on the outcome 
of the previous instruction, the current instruction will have to wait until the result of the 
prior instruction becomes available. Consider this x86 code:

inc eax

add ebx, eax

Let's assume these two instructions are executed on a processor operating as in Figure 8.6 
(single-issue pipelining). The first instruction increments the eax register and the second 
adds this incremented value to the ebx register. The add instruction cannot execute the 
addition operation until the result of the increment operation in the previous instruction 
is available. If the second instruction's execute stage (labeled "2:E" in Figure 8.6) cannot 
execute until the first instruction's writeback stage has completed ("1:W" in the diagram), 
the 2:E stage has no choice but to wait for the 1:W stage to complete. Situations like 
this, where the pipeline cannot process the next stage of an instruction due to missing 
dependent information, are referred to as pipeline hazards.

One way in which processor pipelines deal with this issue is by implementing bypasses. 
After the first instruction's execute stage completes (labeled "1:E" in the diagram), the 
incremented value of the eax register has been computed, but it has not yet been written 
to the eax register. The second instruction's execute stage ("2:E" in the diagram) requires 
the incremented value of the eax register as an input. If the pipeline logic makes the result 
of the 1:E stage directly available to the 2:E stage without first writing to the eax register, 
the second instruction can complete execution without delay. The use of a shortcut to 
pass data between source and destination instructions without waiting for the completion 
of the source instruction is called a bypass. Bypasses are used extensively in modern 
processor designs to keep the pipeline working as efficiently as possible.

In some situations, a bypass is not possible because the necessary result simply cannot be 
computed before the destination instruction is ready to consume it. In this case, execution 
of the destination instruction must pause and await the delivery of the source instruction 
result. This causes the pipeline execution stage to become idle, which usually results in the 
propagation of the idle period through the remaining pipeline stages. This propagating delay 
is called a pipeline bubble, analogous to an air bubble passing through a fluid pipeline. The 
presence of bubbles in the processing sequence reduces the effectiveness of pipelining.
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Bubbles are bad for performance, so pipelined processor designers undertake substantial 
efforts to avoid them as much as possible. One way to do this is out-of-order instruction 
execution, referred to as OOO. Consider the two instructions listed in the earlier 
example, but now followed by a third instruction:

inc eax

add ebx, eax

mov ecx, edx

The third instruction does not depend on the results of the previous instructions. Instead 
of using a bypass to avoid a delay, the processor can employ OOO execution to avoid  
a pipeline bubble. The resulting instruction sequence would look like this:

inc eax

mov ecx, edx

add ebx, eax

The outcome of executing these three instructions is the same, but the separation in time 
between the first and third instructions has now grown, reducing the likelihood of a 
pipeline bubble, or, if one still occurs, at least shortening its duration.

OOO execution requires detection of the presence of instruction dependencies and 
rearranges their execution order in a way that produces the same overall results, just not 
in the order originally coded. Some processors perform this instruction reordering in real 
time, during program execution. Other architectures rely on intelligent programming 
language compilers to rearrange instructions during the software build process to minimize 
pipeline bubbles. The first approach requires a substantial investment in processing logic 
and the associated die real estate to perform reordering on the fly, while the second 
approach simplifies the processor logic, but substantially complicates the job of assembly 
language programmers, who must now bear the burden of ensuring that pipeline bubbles 
do not excessively impair execution performance.

Micro-operations and register renaming
The x86 instruction set architecture has presented a particular challenge for processor 
designers. Although several decades old, the x86 architecture remains the mainstay of 
personal and business computing. As a CISC configuration with only eight registers  
(in 32-bit x86), the techniques of extensive instruction pipelining and exploiting a large 
number of registers used in RISC architectures are much less helpful in the native  
x86 architecture.
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To gain some of the benefits of the RISC methodology, x86 processor designers have 
taken the step of implementing the x86 instructions as sequences of micro-operations. A 
micro-operation, abbreviated μop (and pronounced micro-op), is a sub-step of a processor 
instruction. Simpler x86 instructions decompose to 1 to 3 μops, while more complex 
instructions require a larger number of μops. The decomposition of instructions into μops 
provides a finer level of granularity for evaluating dependencies upon the results of other 
μops and supports an increase in execution parallelism.

In tandem with the use of μops, modern processors generally provide additional 
internal registers, numbering in the dozens or hundreds, for storing intermediate μop 
results. These registers contain partially computed results destined for assignment to the 
processor's physical registers after an instruction's μops have all completed. The use of 
these internal registers is referred to as register renaming. Each renamed register has an 
associated tag value indicating the physical processor register it will eventually occupy. 
By increasing the number of renamed registers available for intermediate storage, the 
possibilities for instruction parallelism increase.

Several μops may be in various stages of execution at any given time. The dependencies of 
an instruction upon the result of a previous instruction will block the execution of a μop 
until its input is available, typically via the bypass mechanism described in the preceding 
section. Once all required inputs are available, the μop is scheduled for execution. This 
mode of operation represents a dataflow processing model. Dataflow processing allows 
parallel operations to take place in a superscalar architecture by triggering μop execution 
when any data dependencies have been resolved.

High-performance processors perform the process of decoding instructions into μops 
after fetching each instruction. In some chip designs, the results of this decoding are 
stored in a Level 0 instruction cache, located between the processor and the L1-I cache. 
The L0-I cache provides the fastest possible access to pre-decoded μops for execution 
of code inner loops at the maximum possible speed. By caching the decoded μops, the 
processor avoids the need to re-execute the instruction decoding pipeline stages upon 
subsequent access of the same instruction.

In addition to the hazards related to data dependencies between instructions, a second  
key source of pipeline hazards is the occurrence of conditional branching, discussed in  
the next section. 
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Conditional branches
Conditional branching introduces substantial difficulty into the pipelining process. The 
address of the next instruction following a conditional branch instruction cannot be 
confirmed until the branch condition has been evaluated. There are two possibilities: if the 
branch condition is not satisfied, the processor will execute the instruction that follows the 
conditional branch instruction. If the branch condition is satisfied, the next instruction is 
at the address indicated in the conditional branch instruction.

Several techniques are available to deal with the challenges presented by conditional 
branching in pipelined processors. Some of these are as follows:

• When possible, avoid branching altogether. Software developers can design 
algorithms with inner loops that minimize or eliminate conditional code. Optimizing 
compilers attempt to rearrange and simplify the sequence of operations to reduce the 
negative effects of conditional branching.

• The processor may delay fetching the next instruction until the branch destination 
has been computed. This will typically introduce a bubble into the pipeline, 
degrading performance.

• The processor may perform the computation of the branch condition as early  
in the pipeline as possible. This will identify the correct branch more quickly, 
allowing execution to proceed with minimal delay.

• Some processors attempt to guess the result of the branch condition and begin 
executing instructions along that path. This is called branch prediction. If the 
guess turns out to be incorrect, the processor must clear the results of the incorrect 
execution path from the pipeline (called flushing the pipeline) and start over on 
the correct path. Although an incorrect guess leads to a significant performance 
impact, correctly guessing the branch direction allows execution to proceed without 
delay. Some processors that perform branch prediction track the results of previous 
executions of branch instructions and use that information to improve the accuracy 
of future guesses when re-executing the same instructions.

• Upon encountering a conditional branch instruction, the processor can begin 
executing instructions along both branch paths using its superscalar capabilities. 
This is referred to as eager execution. Once the branch condition has been 
determined, the results of execution along the incorrect path are discarded. Eager 
execution can only proceed as long as instructions avoid making changes that 
cannot be discarded. Writing data to main memory or to an output device is an 
example of a change that can't easily be undone, so eager execution would pause  
if such an action occurred while executing along a speculative path.
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Modern high-performance processors devote a substantial portion of their logic resources 
to supporting effective pipelining under a wide variety of processing conditions. The 
combined benefits of multicore, superscalar, and superpipelined processing provide key 
performance enhancements in recent generations of sophisticated processor architectures. 
By performing instruction pipelining and executing instructions in a superscalar context, 
these features introduce parallelism into code sequences not originally intended to exploit 
parallel execution.

It is possible to further increase processing performance by introducing parallel execution 
of multiple threads on a single processor core with simultaneous multithreading.

Simultaneous multithreading
As we learned in previous chapters, each executing process contains one or more threads 
of execution. When performing multithreading using time-slicing on a single-core 
processor, only one thread is in the running state at any moment in time. By rapidly 
switching among multiple ready-to-execute threads, the processor creates the illusion 
(from the user's viewpoint) that multiple programs are running simultaneously.

This chapter introduced the concept of superscalar processing, which provides a single 
processing core with the ability to issue more than one instruction per clock cycle. The 
performance enhancement resulting from superscalar processing may be limited when 
the executing sequence of instructions does not require a mixture of processor resources 
that aligns well with the capabilities of its superscalar functional units. For example, in a 
particular instruction sequence, integer processing units may be heavily used (resulting in 
pipeline bubbles), while address computation units remain mostly idle.

One way to increase the utilization of processor superscalar capabilities is to issue 
instructions from more than one thread on each clock cycle. This is called simultaneous 
multithreading. By simultaneously executing instructions from different threads, there 
is a greater likelihood that the instruction sequences will depend on disparate functional 
capabilities within the processor, thereby allowing increased execution parallelism.

Processors that support simultaneous multithreading must provide a separate set of 
registers for each simultaneously executing thread, as well as a complete set of renamed 
internal registers for each thread. The intention here is to provide more opportunities  
for utilizing the processor's superscalar capabilities.

Many modern, high-performance processors support the execution of two simultaneous 
threads, though some support up to eight. As with most of the other performance 
enhancement techniques discussed in this chapter, increasing the number of simultaneous 
threads supported within a processor core eventually reaches a point of diminishing 
returns as the simultaneous threads compete for access to shared resources.
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Simultaneous multithreading versus multicore processors versus 
multiprocessing
Simultaneous multithreading refers to a processor core with the ability to 
support the execution of instructions from different threads in the same 
pipeline stage on the same clock cycle. This differs from a multicore processor, 
in which each of the multiple processor cores on a single silicon die executes 
instructions independently of the others, and only connects to the other cores 
through some level of cache memory.

A multiprocessing computer contains multiple processor integrated circuits, 
each of which is usually contained in a separate package. Alternatively, a 
multiprocessor may be implemented as multiple processor chips assembled  
in a single package.

The performance optimization techniques discussed to this point attempt to enhance the 
performance of scalar data processing, meaning that each instruction sequence operates 
on a small number of data values. Even superscalar processing, implemented with or 
without simultaneous multithreading, attempts to accelerate the execution of instructions 
that typically operate on, at most, one or two register-size data items at a time.

Vector data processing involves performing the same mathematical operation on an array 
of data elements simultaneously. Processor architectural features that improve execution 
parallelism for vector processing operations are the subject of the next section.

SIMD processing
Processors that issue a single instruction, involving one or two data items, per clock cycle, 
are referred to as scalar processors. Processors capable of issuing multiple instructions 
per clock cycle, though not explicitly executing vector processing instructions, are called 
superscalar processors. Some algorithms benefit from explicitly vectorized execution, 
which means performing the same operation on multiple data items simultaneously. 
Processor instructions tailored to such tasks are called single instruction, multiple  
data (SIMD) instructions.

The simultaneously issued instructions in superscalar processors are generally performing 
different tasks on different data, representing a multiple instruction, multiple data 
(MIMD) parallel processing system. Some processing operations, such as the dot product 
operation used in digital signal processing described in Chapter 6, Specialized Computing 
Domains, perform the same mathematical operation on an array of values.
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While the multiply-accumulate (MAC) operation described in Chapter 6, Specialized 
Computing Domains performs scalar mathematical operations on each pair of vector 
elements in sequence, it is also possible to implement processor hardware and instructions 
capable of performing similar operations on more than a single pair of numbers at one time.

In modern processors, SIMD instructions are available to perform tasks such as 
mathematics on numeric arrays, manipulation of graphics data, and substring searches  
in character strings.

The Intel implementation of Streaming SIMD Extensions (SSE) instructions, introduced 
in the Pentium III processors of 1999, provides a set of processor instructions and execution 
facilities for simultaneously operating on 128-bit data arrays. The data contained in the 
array can consist of integers or floating-point values. In the second generation of SSE (SSE2) 
instructions, the following data types can be processed in parallel:

• Two 64-bit floating-point values

• Four 32-bit floating-point values

• Two 64-bit integer values

• Four 32-bit integer values

• Eight 16-bit integer values

• Sixteen 8-bit integer values 

SSE2 provides floating-point instructions for the familiar mathematical operations of 
addition, subtraction, multiplication, and division. Instructions are also available for 
computing the square root, reciprocal, reciprocal of the square root, and returning the 
maximum value of the array elements. SSE2 integer instructions include comparison 
operations, bit manipulation, data shuffling, and data type conversion.

Later generations of the SSE instruction set have increased the data width and variety 
of supported operations. The latest iteration of SSE-type capabilities (as of 2019) is 
found in the AVX-512 instructions. AVX stands for Advanced Vector Extensions, and 
provides register widths of 512 bits. AVX-512 includes, among other features, instructions 
optimized to support neural network algorithms.

One impediment to the widespread adoption of the different generations of SSE and AVX 
instructions is that, for end users to be able to take advantage of them, the instructions 
must be implemented in the processor, the operating system must support the instructions, 
and the compilers and other analytical tools used by the end users must take advantage 
of the SSE features. Historically, it has taken years, following the introduction of new 
processor instructions, before end users could easily take advantage of their benefits.
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The SIMD instructions available in modern processors have perhaps seen their most 
substantial application in the area of scientific computing. For researchers running 
complex simulations, machine learning algorithms, or sophisticated mathematical 
analyses, the availability of SSE and AVX instructions provides a way to achieve  
a substantial performance boost in code that performs extensive mathematical  
operations, character manipulations, and other vector-oriented tasks.

Summary
The majority of modern 32-bit and 64-bit processors combine most, if not all, of the 
performance-enhancing techniques presented in this chapter. A typical consumer-grade 
personal computer or smartphone contains a single main processor integrated circuit 
containing four cores, each of which supports simultaneous multithreading of two 
threads. This processor is superscalar, superpipelined, and contains three levels of cache 
memory. The processor decodes instructions into micro-ops and performs sophisticated 
branch prediction.

Although the techniques presented in this chapter might seem overly complicated and 
arcane, in fact, each of us uses them routinely and enjoys the performance benefits that 
derive from their presence each time we interact with any kind of computing device. 
The processing logic required to implement pipelining and superscalar operation is 
undeniably complex, but semiconductor manufacturers go to the effort of implementing 
these enhancements for one simple reason: it pays off in the performance of their products 
and in the resulting value of those products as perceived by end users.

This chapter introduced the primary performance-enhancing techniques used in 
processor and computer architectures to achieve peak execution speed in real-world 
computing systems. These techniques do not change in any way what the processor 
produces as output; they just help get it done faster. We examined the most important 
techniques for improving system performance, including the use of cache memory, 
instruction pipelining, simultaneous multithreading, and SIMD processing.

The next chapter focuses on extensions commonly implemented at the processor 
instruction set level to provide additional system capabilities beyond generic computing 
requirements. The extensions discussed in Chapter 9, Specialized Processor Extensions, 
include privileged processor modes, floating-point mathematics, power management,  
and system security management.
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Exercises
1. Consider a direct-mapped L1-I cache of 32 KB. Each cache line consists of 64 bytes 

and the system address space is 4 GB. How many bits are in the cache tag? Which 
bit numbers (bit 0 is the least significant bit) are they within the address word?

2. Consider an 8-way set associative L2 instruction and data cache of 256 KB,  
with 64 bytes in each cache line. How many sets are in this cache?

3. A processor has a 4-stage pipeline with maximum delays of 0.8, 0.4, 0.6, and 0.3 
nanoseconds in stages 1-4, respectively. If the first stage is replaced with two stages 
that have maximum delays of 0.5 and 0.3 nanoseconds respectively, how much will 
the processor clock speed increase in percentage terms?
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9
Specialized 

Processor 
Extensions

In the preceding chapters, we discussed the features of general-purpose computer 
architectures as well as some architectural specializations intended to address  
domain-specific requirements. This chapter will focus on extensions commonly 
implemented at the processor instruction set level to provide additional system 
capabilities beyond generic computing needs. 

After reading this chapter, you will understand the purpose of privileged processor modes 
and how they operate in multiprocessing and multiuser contexts. You will be familiar 
with the concepts of floating-point processors and instruction sets, techniques for power 
management in battery-powered devices, and processor features intended to enhance 
system security.
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We will discuss the following processor extensions in this chapter:

• Privileged processor modes

• Floating-point mathematics

• Power management

• System security management

Technical requirements
The files for this chapter, including solutions to the exercises, are available at https://
github.com/PacktPublishing/Modern-Computer-Architecture-and-
Organization.

Privileged processor modes
Most operating systems running on 32-bit and 64-bit processors control access to system 
resources using the concept of privilege levels. The primary reasons for managing access 
in this manner are to enhance system stability, prevent unauthorized access to system 
hardware, and prevent unauthorized access to data.

Privileged execution improves system stability by ensuring only trusted code is allowed to 
execute instructions with unrestricted access to resources such as processor configuration 
registers and I/O devices. The operating system kernel and related modules, including 
device drivers, require privileged access to perform their functions. Because any crash of 
a kernel process or a device driver is likely to halt the entire system immediately, these 
software components generally undergo a careful design process and rigorous testing 
before being released for general use.

Running the operating system in a privileged context prevents unauthorized applications 
from accessing system-managed data structures such as page tables and interrupt vector 
tables. Whether by accident or as a result of malicious intent, a user application may 
attempt to access data contained in system-owned memory or in memory belonging to a 
different user. The system prevents such access attempts from succeeding, and informs the 
misbehaving application of its transgression by initiating an exception, which commonly 
results in a program crash with an error message.

Chapter 3, Processor Elements, introduced the concepts associated with interrupts and how 
they  are handled by the processor. Before getting into the details of privileged processor 
modes, we will first discuss interrupt and exception handling in more detail.
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Handling interrupts and exceptions
Hardware interrupts, as we have seen, allow processors to respond promptly to requests 
for services from peripheral devices. A hardware interrupt notifies the processor of a need 
to take some action, usually involving data transfer to or from an external device.

Exceptions are similar to interrupts, with the key difference that exceptions generally 
involve responding to some condition arising internal to the processor. One example  
of an internally generated exception is division by zero.

It is possible for user code to intentionally generate exceptions. In fact, this is a standard 
method used by unprivileged code to request system services provided by privileged code 
in the operating system kernel and device drivers.

The distinction between the terms interrupt and exception is not precisely defined. 
Interrupt processing and exception processing typically rely on the same or similar 
processor hardware resources operating in much the same manner. In fact, in the x86 
architecture, the mnemonic for the instruction that initiates a software interrupt  
(or exception) is int, short for interrupt. 

Exceptions include error conditions occurring during software execution such as 
division by zero, as well as non-error situations such as page faults. Unless the interrupt 
or exception results in the drastic response of terminating the application, an interrupt 
service routine or exception handler processes the event and returns control to the  
system scheduler, which eventually resumes execution of the interrupted thread.

When an interrupt or exception occurs, the processor transfers control to the 
corresponding handler as follows:

• When an interrupt occurs, the processor allows the currently executing instruction 
to complete, then transfers control to an interrupt service routine (ISR) without 
the awareness or approval of any threads that may have been executing at the time 
of the interrupt.

• When responding to an exception, the processor transfers control to an exception 
handling routine, which is similar to an ISR. An exception may arise during the 
execution of an instruction, preventing completion of the instruction's operations. 
If the execution of an instruction is disrupted by an exception, the same instruction 
will be restarted after the exception handler completes and thread execution 
resumes. This mechanism allows page faults to occur at any point during program 
execution without affecting the results produced by the program (other than 
introducing a delay for page fault processing).

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



226     Specialized Processor Extensions

Each interrupt or exception type has a vector number referencing a row in the system 
interrupt vector table. The processor hardware consults the interrupt vector table (IVT) 
when an interrupt or exception occurs to determine the appropriate response. The IVT 
row indexed by the vector number contains the address of the handler for that vector.

When handling an interrupt or exception, the processor pushes any required context 
information onto the stack and transfers control to the handler. In the case of an interrupt, 
the handler services the device and clears its interrupt request. After processing the 
interrupt or exception, the handler returns control to the operating system. The following 
table summarizes some of the interrupt and exception types available in x86 processors 
running in protected mode:

Table 9.1: Example x86 IVT entries

These are some details of interest related to the interrupts and exceptions listed in  
Table 9.1:

• The operation of the NMI input signal on vector 2 is similar to the NMI input of the 
6502 processor, discussed in Chapter 3, Processor Elements.
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• Although modern processors provide sophisticated, non-intrusive breakpoint 
capabilities, the x86 architecture retains the breakpoint facility provided by the 
int 3 instruction from the early days of 8086. As we saw in Chapter 3, Processor 
Elements, the mechanism used by 6502 software debuggers to break program 
execution at a specified address is to temporarily replace the opcode at the break 
location with the 6502 BRK opcode. When execution reaches that location, the 
BRK handler takes control to allow user interaction with the system. The int 3 
instruction in the x86 architecture functions in the same manner. In fact, unlike 
the x86 int instruction used with any of the other vector numbers, the int 3 
instruction is implemented as a single-byte opcode, with the value CCh. A software 
interrupt to a different vector, such as int 32, is a two-byte instruction. The int 
3 instruction enables breakpoint insertion by replacing a single byte of code with 
the value CCh.

• Vector 13, the general protection exception handler, activates on any attempt by  
an application to access memory or a system resource not allocated for its use. In 
32-bit and 64-bit operating systems, by default, the system-provided handler for  
this vector terminates the running application and displays an error message.

• Vector 14, the page fault handler, activates when an application attempts to access 
a page that is not present in physical memory. The handler attempts to locate the 
referenced page, which may be in a disk file or in the system swap file, loads the 
page into memory, updates the virtual-to-physical translation tables, and restarts 
the instruction that triggered the exception.

To summarize, hardware interrupts are initiated by I/O devices in need of data transfers 
or other types of servicing. System exceptions occur when the execution of an instruction 
sequence must be paused to handle a condition such as a page fault or attempted 
unauthorized access. 

Hardware interrupts and system exceptions tend to occur at random times relative to 
the ongoing execution of program code, while behavior related to software-generated 
exceptions is generally repeatable if the same code executes again while operating on  
the same data.
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While some exceptions, such as a general protection fault, result in the termination of the 
process causing the exception, most interrupts and exceptions end with the interrupted 
thread resuming execution after the interrupt or exception handler has completed  
its processing.

Programming language exceptions
Many programming languages provide a facility for performing exception 
handling within an application. It is important to understand that 
programming language exceptions are significantly different from the types of 
exceptions handled by the processor. Exceptions in programming languages 
generally relate to error conditions at a much higher level than exceptions 
handled by processor hardware.

For example, C++ will generate (or "throw," in C++ terminology) an exception 
when a memory allocation request fails. This is not the same type of exception 
as system exceptions handled at the processor level. Be careful not to confuse 
exceptions in high-level programming language with exceptions handled 
directly by the processor.

Protection rings
We can think of the protection strategy employed by modern processors and operating 
systems as similar in significant ways to the defenses implemented in the designs of 
medieval castles. A castle usually has a high wall surrounding the castle grounds, 
sometimes enhanced by the presence of a moat. This outer wall has a small number of 
well-defended access points, each of which is fortified against intruders by mechanisms 
such as drawbridges and around-the-clock guard details. Within the castle compound, the 
castle itself has sturdy walls and a small number of well-defended access points, further 
limiting access to the most sensitive areas.

The most privileged members of the castle hierarchy enjoy unrestricted access in and 
out of the castle and the outer wall. Less privileged members of the society may have 
authorization to pass inward through the outer wall but are prohibited from accessing the 
castle directly. The least privileged members of the local population are prohibited from 
entering the castle under most conditions and may have to accept limitations on what they 
can do on occasions when they are granted access, such as being permitted to access only 
specified public areas.
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The protections provided by this strategy can be represented as concentric rings, with the 
highest privilege required to access the innermost rings, while the outer ring represents 
the area requiring the least privilege, as shown in this figure:

Figure 9.1: Protection ring example

This protection strategy contains three privilege levels that determine the types of access 
available to each individual in the system. Ring 0 requires the highest privilege level, while 
ring 2 requires no special privilege.

Modern processors and the operating systems that run on them use a very similar 
approach to prevent unauthorized access to critical resources, while granting unprivileged 
users access to system capabilities approved for their use.

Although, in principle, it is possible to provide multiple intermediate levels between the 
highest and lowest privileged rings, most modern computer architectures implement just 
two rings: a privileged ring, called the kernel or supervisor, and an unprivileged user ring. 
Some operating systems implement an intermediate ring containing device drivers, which 
grants access to the resources required to interact with I/O devices, but does not provide 
the unfettered system-wide access of the kernel ring.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



230     Specialized Processor Extensions

One reason operating systems such as Windows and Linux support only two privilege 
rings is because these systems have a design goal of portability across different processor 
architectures. Some processors support only two privilege rings, while others support a 
greater number. A portable operating system cannot implement more than two privilege 
rings if any of the underlying processor architectures do not support the desired number 
of rings. The x86 architecture, for example, supports up to four rings, but only two of 
those (ring 0, the most privileged, and ring 3, the least privileged) are used by Windows 
and Linux.

The following figure represents the ring organization of most operating systems running 
on the x86 architecture:

Figure 9.2: Protection rings in x86 processors

This ring-based privilege management system is the primary reason the infamous 
Windows "Blue Screen of Death," which was common in the 1990s, appears so rarely for 
users of recent versions of Windows. User applications such as web browsers, email clients, 
and word processors will, on occasion, experience problems that cause the programs to 
crash. By virtue of the privilege enforcement mechanisms provided by operating systems 
such as Windows, Linux, macOS, and Android, the crash of an individual application 
is contained by the operating system, preventing the crash from affecting the operating 
system itself or any other program running on the system (at least, those programs that 
aren't dependent upon the program that crashed for their correct operation).
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Following an application crash, the operating system cleans up any resources in use by the 
crashed program, including allocated memory pages and open files. This allows computer 
systems such as web server hosts to remain operational continuously for hundreds of days, 
despite the occasional crashes and restarts of software applications running on them.

In addition to protecting against application crashes, ring-based privilege control provides 
substantial security benefits against malicious actors. One type of attack a hacker might 
attempt is to insert some code into a system module that runs in ring 0. This insertion 
could occur in an executable file on disk, or the attacker may try to modify kernel code 
while it is running in memory. If successful, the attacker could then use this code to  
access data anywhere in the system because it is running in ring 0.

While achieving success with this type of attack is by no means impossible, modern 
processors and operating systems have implemented an extensive array of security measures 
and repaired many vulnerabilities found in earlier versions of operating systems. When 
system administrators and users take full advantage of the ring-based security measures 
available in modern computer systems, there are very few feasible paths an attacker can take 
to access protected data. In fact, in most cases, a key element of successful hacks that make  
it into the news is a human-related security breakdown exploited by the attacker.

Supervisor mode and user mode
In a two-level protection ring hierarchy, the protection level of the currently executing 
thread is typically represented by a bit in a register. When operating in ring 0, the supervisor 
mode bit is 1, and when operating in user mode (ring 3 on x86) the supervisor mode bit is 
0. The supervisor mode bit can only be modified by code running in supervisor mode.

The state of the supervisor mode bit determines which instructions are available for 
execution by the thread. Instructions that could interfere with system operation, such as 
the x86 hlt instruction, which halts processor instruction execution, are unavailable in 
user mode. Any attempt to execute a prohibited instruction results in a general protection 
fault. In user mode, access by user applications to system memory regions and the 
memory allocated to other users is prohibited. In supervisor mode, all instructions are 
available for execution and all memory regions are accessible. 

In the castle analogy, the supervisor mode bit represents the identification presented to 
the castle guards that enables access to the castle grounds and to the castle itself. When 
set, the supervisor mode bit provides the keys to the kingdom.
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System calls
All code belonging to the kernel and device drivers runs in ring 0, always. All user code 
runs in ring 3, always, even for users with enhanced operating system privileges such as 
system administrators. Code running in ring 3 is strictly controlled by the system and 
cannot directly do anything that involves allocating memory, opening a file, displaying 
information to the screen, or interacting with an I/O device. To access any of those system 
features, ring 3 user code must make a service request to the kernel.

The kernel service request must first pass through a gate (just like visitors entering our 
castle!) where the type of operation being requested, as well as any associated parameters, 
are scrutinized and validated before the execution of the operation is allowed to proceed. 
The code performing the requested operation runs in supervisor mode at ring 0 and, 
when complete, returns control to the user mode calling routine in ring 3.

In early versions of Windows (prior to Windows XP), an application used the software 
interrupt mechanism with vector 2eh to request system services. The system call protocol 
involved placing the parameters required by the requested service into processor registers 
and executing the int 2eh instruction, triggering a software interrupt. The handler 
would run in supervisor mode, resulting in a transition from ring 3 to ring 0. Upon 
completion of the handler, the system returned to ring 3 at the instruction following  
int 2eh.

One problem with the use of the int 2eh mechanism for requesting kernel services is 
that it is not very efficient. In fact, it takes over 1,000 processor clock cycles to get from the 
point at which the int 2eh instruction executes to the kernel code that actually begins 
to handle the exception. A busy system may request kernel services thousands of times 
per second.

To address this inefficiency, Intel implemented the sysenter and sysexit instructions 
in the x86 architecture beginning with the Pentium II processor in 1997. The purpose of 
these instructions is to accelerate the process of calling from ring 3 to ring 0, and later 
returning to ring 3. By using these instructions instead of int 2eh, entry into and exit 
from kernel mode speeds up by about a factor of three.

Around the time Intel began producing processors with the sysenter and sysexit 
instructions, AMD released the syscall and sysret instructions in their processor 
architectures, with the same performance objective. Unfortunately, the instructions in the 
Intel and AMD processor architectures are not compatible, which leads to a requirement 
for operating systems to differentiate between architectures when using accelerated kernel 
calling instructions.

Next, we will look at the data formats and operations associated with floating-point 
mathematical processing.
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Floating-point mathematics
Modern processors usually support integer data types in widths of 8, 16, 32, and 64 
bits. Some smaller embedded processors may not directly support 64-bit or even 32-bit 
integers, while more sophisticated devices may support 128-bit integers. Integer data types 
are appropriate for use in a wide range of applications, but many areas of computing, 
particularly in the fields of science, engineering, and navigation, require the ability to 
represent fractional numbers with a high degree of accuracy.

As a simple example of the limitations of integer mathematics, suppose you need to divide 
5 by 3. On a computer restricted to using integers, you can perform an integer calculation 
of this expression as follows, in C++:

#include <iostream>

int main(void)

{

    int a = 5;

    int b = 3;

    int c = a / b;

    std::cout << "c = " << c << std::endl;

    return 0;

}

This program produces the following output:

c = 1

If you punch this expression into your pocket calculator, you'll find the printed result 
is not very close to the actual result, which is approximately 1.6667. In computing 
applications where accurate calculations involving real numbers are required, the use  
of floating-point mathematics provides a practical solution.

Mathematically, the set of real numbers consists of all of the numbers, including all integers 
and fractions, along the number line from negative infinity to positive infinity. There is no 
limit to the number of digits in the integer and fractional parts of a real number.
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Given the finite storage available in even the largest computer, it is clearly not possible 
to represent the entire range of real numbers in computer programs. A compromise 
is required if we are to represent real numbers in a useful manner. The compromise 
implemented nearly universally is to represent real numbers in terms of a mantissa  
and exponent.

In areas of study involving the mathematics of very large or very small numbers, it is 
common to represent such numbers in terms of a mantissa and an exponent. For example, 
in physics, the gravitational constant . In this format, the mantissa 
represents the nonzero digits of the number after multiplication by a scaling factor that 
places those digits within a convenient range. The exponent represents the scaling factor 
by which the mantissa must be multiplied to produce the actual value.

In this example, the mantissa is 6.674 and the exponent is -11. This example uses a base-10 
mantissa, which is convenient for manual calculation because multiplication by the scale 
factor 10-11 can be performed by simply moving the position of the mantissa decimal point. 
In this example, an exponent of -11 requires moving the decimal point 11 places to the left, 
resulting in the equivalent number 0.00000000006674. The use of floating-point notation 
avoids the error-prone use of lengthy sequences of zeros and allows both extremely large 
and very tiny numbers to be represented in a compact notation.

Any number along the real number line can be represented in floating-point notation. 
However, there can be no limit on the number of digits in the mantissa or exponent of  
the notation if the goal is to truly represent all real numbers. 

In computer representations of floating-point numbers, both the mantissa and exponent 
are limited to predefined bit widths. These ranges have been chosen to fit floating-point 
numbers within standard data widths, typically 32 or 64 bits, while providing an adequate 
number of mantissa and exponent digits for a wide variety of applications.

Increasing the number of mantissa digits increases the precision of the numerical values 
representable in floating-point format. Increasing the number of exponent digits increases 
the range of numbers that can be represented. Because of the finite lengths of the mantissa 
and exponent, the result of a floating-point calculation often does not precisely equal the 
actual real-valued result. Instead, the best we can expect is that the floating-point result 
will be the nearest representable value to the correct result.
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Modern processors commonly support 32-bit and 64-bit representations of floating-point 
numbers. Rather than the base-10 exponents described on the preceding page, computers 
work with base-2 exponents. The general format of a computer floating-point number is 
as follows:

The sign is simply +1 or -1. In the binary representation, a positive number has a sign bit 
of 0 and a negative number has a sign bit of 1. Having separated the sign from the rest of 
the number, the remaining value is nonnegative. For any value other than zero (which 
is handled as a special case), this number can be scaled into the range of greater than or 
equal to 1 and less than 2 by multiplying it by some power of 2.

Continuing the example of the gravitational constant, because the sign is +1, the value 
after removing the sign is unchanged: . The mantissa for this number can be 
scaled into the range , where m represents the mantissa, by multiplying by 234. 
The result of this scaling is:

We multiplied the original number by 234 to get the mantissa into the desired range,  
so the floating-point representation of the number must be multiplied by 2-34 to undo  
the scaling operation.

Since our computer operates on binary numbers, we must next convert the mantissa to 
a binary representation. The format used in floating-point processing is to represent the 
range between 1 and 2 with an unsigned integer.

For example, if we assume the binary mantissa is 16 bits wide, the mantissa of 1.0 is 
represented by 0000h and the value just below 2.0 (actually 1.99998474) is represented  
by FFFFh. A decimal mantissa m is converted to a 16-bit binary mantissa using the 
expression  and rounding the result to the nearest integer. A 16-bit binary 
mantissa m is converted to decimal with the expression .

In our example, the decimal mantissa of 1.1465845 converts to a 16-bit binary mantissa  
of 0010010110000111b, or 2587h.
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Using the scaling procedure described in the preceding section, floating-point numbers 
can be represented in binary form with any desired bit widths for the mantissa and 
exponent. For the purposes of compatibility, it is helpful to define a limited number of 
binary floating-point formats capable of supporting a wide variety of use cases and to 
adopt those formats industry-wide.

The IEEE 754 standard for the computer representation of floating-point numbers was 
adopted in 1985 for this reason. Before looking at the standard, we'll explore the design of 
the Intel 8087 floating-point coprocessor, which was the source of many of the concepts 
later enshrined in the IEEE 754 standard.

The�8087�floating-point�coprocessor
Modern processors with floating-point hardware generally implement a set of instructions 
for floating-point computations and perform these operations in a dedicated functional 
unit. In a superscalar processor, the main processor core continues to execute other 
categories of instructions while the floating-point unit (FPU) executes floating-point 
calculations in parallel.

Recall from Chapter 1, Introducting Computer Architecture, that the original IBM PC 
of 1981 contained a socket for an 8087 floating-point coprocessor. The 8087 performs 
floating-point computations in hardware at speeds roughly 100 times faster than a 
functionally equivalent software implementation running on the host processor. Because 
installation of the 8087 was optional, most PC software applications that wished to take 
advantage of its capabilities first tested for the presence of the 8087 and, if it was not 
found, reverted to a library of much slower floating-point code.

The 8087 supports the following data types for numeric processing:

• 16-bit two's complement integer

• 32-bit two's complement integer

• 64-bit two's complement integer

• 18-digit signed packed binary coded decimal (BCD)

• 32-bit signed short real with a 24-bit mantissa and an 8-bit exponent

• 64-bit signed long real with a 53-bit mantissa and an 11-bit exponent

• 80-bit signed temporary real with a 64-bit mantissa and a 15-bit exponent
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Each data type is stored as a series of bytes in memory. The formats used for the real data 
types are shown in the following figure:

Figure 9.3: 8087 coprocessor floating-point data formats

The short and long real formats use an implied 1 bit as the most significant bit of the 
mantissa, and do not include this bit in their binary representations. As a special case,  
the value zero is represented in these formats by setting both the mantissa and exponent 
to zero.

The temporary real format is used internally in the 8087 to store intermediate results.  
This format has extended precision in comparison to the long real format to minimize  
the propagation of rounding errors over a series of calculations.

Each of the real number formats can be represented as , where S is the sign 
bit, E is the exponent, and m is the mantissa. This bias is 127 in the short real format, 1023 
in the long real format, and 16,383 in the temporary real format. The bias term converts 
the unsigned integer stored in the exponent field to a signed value.

Our example real number, G, which has a decimal mantissa of 1.1465845 and a binary 
scale of 2-34, is represented with a sign bit of 0, an exponent of (-34 + 127) = 5Dh, and a 
mantissa of . Combining all three components, the 32-bit 
representation of is .

The 8087 adds 68 opcode mnemonics to the 8086/8088 instruction set for performing 
arithmetic, trigonometric, exponential, and logarithmic functions. In a PC program using 
the 8087, the code consists of a single stream of 8088 and 8087 instructions retrieved in 
the usual sequential manner by the 8088 host processor. The 8087 passively monitors 
the address and data buses as the host processor executes instructions and only becomes 
active when an 8087 opcode appears. The 8088 treats 8087 instructions as no-operation 
(or nop) instructions and ignores them.
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When the 8087 begins executing an instruction, it is able to take control of the host bus 
to transfer data between its internal registers and system memory using DMA cycles. 
The 8087 and 8088 do not directly transfer data between themselves, and can only share 
data by storing it in memory for use by the other processor. 8087 instruction execution 
proceeds independent of the 8088, making an 8087-equipped PC a truly parallel 
processing system. The 8087 has a BUSY output signal for use by the 8088 host processor 
to determine whether the 8087 is currently processing an instruction. 

When the 8088 requires the results of an 8087 operation, the 8088 must wait for the 8087 
BUSY signal to de-assert, at which point the 8088 is free to access the memory locations 
containing the output of the 8087 instruction.

The�IEEE�754�floating-point�standard
The most widely used formats for representing floating-point numbers in modern 
computer systems are those defined in the IEEE 754 standard. IEEE, the Institute of 
Electrical and Electronic Engineers, publishes a wide variety of standards related to 
electricity, electronics, and computing. The original version of the IEEE 754 standard  
was adopted in 1985, based largely on the data types and mathematical operations of  
the Intel 8087.

The 8087 was not entirely compliant with the initial IEEE 754 standard, which was 
published several years after the introduction of the 8087. Later Intel floating-point 
coprocessors, beginning with the 80387 in 1987, were fully standard-compliant. Today's 
32-bit and 64-bit processors generally implement an IEEE 754-compliant floating-point 
coprocessor on the same silicon die as the main processor.

The IEEE 754 standard was updated in 2008 and again in 2019. The current version is 
IEEE 754-2019 and contains definitions for base-2 floating-point number formats with 
bit widths of 16, 32, 64, 128, and 256 bits. It also contains base-10 floating-point number 
formats with bit widths of 32, 64, and 128 bits. The 32-bit and 64-bit base-2 floating-point 
formats are generally supported in programming languages that include floating-point 
operations. Support for the remaining IEEE 754 data types tends to be more limited and 
non-standardized across processors, programming languages, and operating systems.

The next section presents features that many modern processor architectures implement 
to manage system power consumption.
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Power management
For users of portable battery-powered devices such as smartphones, tablets, and laptop 
computers, the ability to operate for long time periods without recharging is an important 
feature. Designers of portable systems place great emphasis on ensuring battery power 
consumption is minimized under all operating conditions. Some techniques designers  
use to reduce power consumption are as follows:

• Placing idle subsystems in a low-power state, or turning them off completely when 
they are not needed. This solution may not be possible for peripherals that must be 
available to respond to incoming requests, such as network interfaces.

• Reducing integrated circuit supply voltages and clock speeds during periods when 
execution speed is not critical.

• When possible, saving system state information and turning the processor power 
off completely. Users of laptop computers are familiar with two options for reducing 
power consumption when the system is not in use: standby and hibernate. In 
standby mode, system RAM continues to be powered while the rest of the system 
is turned off. Standby mode enables very fast startup when the user resumes using 
the system. This responsiveness comes at a cost: keeping RAM powered consumes 
a significant amount of power. In hibernate mode, the entire system state is written 
to disk storage and the system powers down completely. Hibernate mode requires 
essentially zero power, though it normally takes quite a bit longer than standby 
mode to resume operation.

• When periodic processing is required, such as in real-time applications, place the 
processor in a low-power state each time processing completes. The processor 
remains in that state until a timer interrupt wakes the processor for the next iteration. 
Many embedded processors provide a low-power idle mode in which the instruction 
pipeline is halted, but remains ready to instantly resume execution in response to an 
interrupt. Some RTOS implementations support this concept by idling the processor 
when all tasks are blocked waiting for an interrupt or other event.

Smartphones and other battery-powered devices make extensive use of all of these 
methods to drive battery usage to a minimum while remaining instantly responsive to 
user inputs and to external inputs such as incoming calls and social media notifications.
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Modern processors in high-performance computers and in embedded devices generally 
support the ability to adjust processor clock speed during code execution, and in 
some cases provide the ability to alter the processor power supply voltage as well. This 
combination of power management techniques is addressed in the next section.

Dynamic voltage frequency scaling
Optimization of processor clock frequency and supply voltage to minimize power 
consumption is called dynamic voltage frequency scaling (DVFS). When performing 
DVFS, a processor regularly evaluates the performance requirements of its current 
operating state and adjusts the processor clock frequency and power supply voltage  
to minimize battery usage while continuing to perform at an acceptable level.

In a CMOS chip containing a large number of transistors, a reasonable estimate of power 

consumption is . In this expression, P represents the total power consumption  

of the chip, which contains N MOS transistors. Ci is the capacitance driven by the ith 
transistor, vi is the transistor's supply voltage, and fi is its operating frequency.

Examining this formula, we see that circuit power consumption is proportional to the square 
of the supply voltage, and is directly proportional to capacitance and operating frequency. 
Because capacitance in the circuit plays a significant role in power consumption, it is 
beneficial to implement the device using a fabrication process that reduces the size of circuit 
gates, keeping the capacitance to a minimum. This is one reason a transition to an integrated 
circuit fabrication process supporting smaller feature sizes results in devices with reduced 
power consumption.

DVFS attempts to minimize overall power consumption by reducing both the supply 
voltage and processor clock frequency as much as possible, at all times.

Reducing the circuit supply voltage can provide a dramatic reduction in power 
consumption. However, any reduction of the processor supply voltage must be carefully 
coordinated with adjustments to the clock frequency. When the supply voltage is reduced, 
CMOS transistors switch more slowly. This is because the capacitance driven by each 
transistor remains unchanged, but that capacitance charges and discharges at a slower  
rate because there is less voltage driving the charge/discharge process. As the system 
voltage is reduced, the clock frequency must be reduced in tandem for the circuit to 
function properly.
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Recalling the hydraulic system analogy from Chapter 2, Digital Logic, the effect of 
reducing the CMOS supply voltage is equivalent to reducing the water pressure that fills 
the balloon attached to the side of the pipe: with reduced system pressure, the balloon fills 
more slowly.

Reducing the processor supply voltage also reduces the circuit's noise immunity. When 
this happens, it becomes easier for external interference, such as the electrical field 
emanating from a motor starting up in a household appliance, to disrupt the internal 
operation of the processor. Any processor voltage reduction must be limited to ensure 
continued reliable operation.

Reducing the processor clock frequency (in addition to any clock slowing required by 
supply voltage reduction) reduces power consumption by an approximately proportional 
amount. Reducing the operating frequency also increases system reliability because each 
gate transition has more time to propagate and reach its final state before being latched by 
the gates it is driving.

A complex embedded device such as a smartphone may need to transition rapidly 
between higher and lower power states as its various inputs stimulate it with user actions, 
timer-triggered events, and information arriving over wireless connections. While it is 
beneficial for the system to nimbly switch between lower and higher power modes as 
circumstances change, it is also important to limit the rate at which such transitions occur 
because the mere act of switching between power modes consumes some power itself.

Users expect their computers and other sophisticated digital devices to consume no more 
power than absolutely necessary, and they also expect those systems to be secure. The next 
section introduces the key aspects of system security management.

System security management
We have seen how the separation of privilege levels between kernel and user modes 
supports the effective separation of applications started up by one user from those of 
other users and from system processes. This represents security at the level of executing 
software. This is fine as far as it goes, but what about systems that must remain secure even 
when untrusted users have unrestricted physical access to them? Additional measures 
must be implemented at the hardware level to prevent curious or malicious users from 
accessing protected code, data, and hardware resources.
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Before getting into the details of hardware-level security features, it is helpful to list  
some of the categories of information and other resources that must be protected in  
digital systems:

• Personal information: Information such as government identification numbers, 
passwords for accessing web accounts, contact lists, emails, and text messages must 
be protected even if a portable device containing that information is lost or stolen.

• Business information: Trade secrets, customer lists, research products, and 
strategic plans are some categories of confidential business data that may have 
great value in the hands of competitors or criminals. Businesses also collect a great 
deal of personal information about their customers and are required to undertake 
substantial efforts to keep this information secure.

• Government information: Government organizations maintain a great deal of 
personal information about their citizens and must ensure it can only be used for 
authorized purposes. Governments also develop a vast quantity of information 
related to national security that requires extensive security protocols.

Beyond the obvious physical security measures of storing sensitive information in a 
sturdy, access-controlled facility with effective alarm systems, a number of measures  
can be taken to ensure a system is secure against a wide variety of attacks.

Consider the smartphone. A technically capable individual or organization may be able to 
disassemble the phone's case and gain access to the circuit-level hardware. If this person 
is able to monitor the external electrical signals of the processor and its communication 
paths to other system components, what kinds of information might be gathered? The 
answer depends on the types and quantity of hardware security implemented in the 
system design.

A first step in secure system design is to avoid inserting security vulnerabilities during 
development. During the development of a system containing an embedded processor, it 
is quite useful to provide a hardware debugger interface. A hardware debugger enables 
the connection of a PC to the device using a special interface cable. Using this connection, 
developers can reprogram flash memory, set breakpoints in the code, display the values  
of registers and variables, and single-step through code. If the debugger connection 
remains in the circuit board in the released version of the design, it may be possible for 
users to connect their own debugger to the system and work with it in the same manner  
as the developers.
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This is clearly undesirable for any system intended to operate securely. Because the 
ability to connect a debugger continues to be quite useful even after a product is released, 
developers sometimes attempt to leave the debugger signals present in the circuit but 
camouflage them in some manner to make their functions less obvious. While this 
approach may be effective to some degree, dedicated hackers have demonstrated the ability 
to ferret out the presence of even the most cleverly disguised debugging interfaces and 
leverage those interfaces to access the processor's internals. Leaving an accessible hardware 
debugging interface present in a released product is a serious security vulnerability.

Many processor vendors have begun implementing security features to prevent even 
dedicated, technically capable attackers from breaching processor protections. To be 
effective, system developers must enable and fully leverage these capabilities in their 
system designs. Some examples of security technologies include the following:

• Password-protected hardware debugger interface: Some processor families 
support the addition of a password to the standard hardware debugging interface. In 
these systems, an initial handshake must take place in which the connected system 
provides a strong password (such as a 256-bit number) before the processor enables 
debug functionality. This is an effective approach that retains the ability to securely 
troubleshoot issues that arise after the product is released.

• Internal encryption engine with key storage: Some processors provide encryption 
and decryption capabilities and store secret keys for use during operation. The keys 
must be stored in the processor during system manufacture and are not externally 
accessible after they have been stored. This combination of encryption engine and 
stored keys allows secure communication with authorized external devices. The use 
of high-speed, hardware-based encryption and decryption capabilities allows secure 
full-speed communication between physically separated subsystems such as those 
within an automobile.

• Device memory protection: Many processor families provide several options for 
the protection of memory regions. For example, a ROM bank containing code can 
be locked after programming to ensure it cannot be reprogrammed at a later time. 
Code regions can also be blocked from being read as data while still allowing access 
for execution. Processors that lack a full memory management unit often have 
a subsystem called the memory protection unit (MPU) to manage the security 
requirements of the various processor memory regions.
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It is not sufficient to design in a standard set of security features and assume hackers 
will be unable to penetrate those defenses. Attackers have demonstrated extraordinary 
cleverness and will use any avenue to gain insight into the inner workings of a system  
they find interesting. Some areas to consider beyond the standard security techniques  
are as follows:

• Power, timing, and emission analysis: By using fine-grained monitoring of 
system power consumption, the timing of external signal activity, or even the radio 
frequency emissions generated during algorithm execution, it may be possible to 
reverse engineer the activities going on within the processor. Attacks based on 
these methods have been successful at extracting secret encryption keys during 
cryptographic algorithm execution, for example.

• Power disruption: Intentionally inducing power supply voltage fluctuations or 
dropouts during system power-up or operation has been shown to leave many 
systems in a vulnerable state in which some security features are inactive. A robust 
system design must anticipate such behavior, whether natural or intentional, and 
revert to a safe, secure state whenever the power supply is not performing within 
established parameters.

• Physical alteration: An attacker may replace some components in the system in 
an attempt to gain control. For example, replacing a boot ROM device may allow 
the system to operate normally while also enabling the attacker to gain unrestricted 
internal access using code in the replacement ROM. A growing number of 
processor families support the use of digital signatures to verify the authenticity of 
ROM code. To check the contents of the ROM device, the processor runs a hash 
algorithm, which is a complex mathematical calculation on the ROM data. The 
results of the hash algorithm (the signature) must match the signature preloaded 
in the processor before the ROM code will be executed. The hash algorithm is 
designed to make it essentially impossible to alter the ROM data content while still 
producing the expected signature. For good measure, the ROM data content can 
also be encrypted, which prevents the attacker from analyzing the code it contains.

This section has listed some fundamental approaches to implementing security in digital 
devices, and briefly examined some of the more esoteric security vulnerabilities that have 
been exploited by dedicated attackers. The design of a secure system must begin with a 
firm grounding in the basics of security, but also requires some ingenuity in considering 
the many ways a determined attacker may attempt to breach system security.
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Summary
This chapter built upon the preceding chapters, which presented the basic aspects of 
computer architecture and architectural variations addressing domain-specific requirements. 
We focused here on extensions commonly implemented at the processor instruction set level 
to provide additional system capabilities beyond generic computing requirements.

You should now have a good understanding of privileged processor modes and how 
they are used in multiprocessing and multiuser contexts, the concepts of floating-point 
processors and instruction sets, techniques for power management in battery-powered 
devices, and processor features intended to enhance system security.

This background has prepared us for the next chapter, in which we will, the most popular 
processor architectures and instruction sets currently used in personal computing, 
business computing, and in smart portable devices. These architectures are the x86,  
the x64, and the 32-bit and 64-bit variants of ARM.

Exercises
1. Using a programming language that allows access to the byte representation of 

floating-point data types (such as C or C++), write a function that accepts a 32-bit 
single-precision value as input. Extract the sign, exponent, and mantissa from the 
bytes of the floating-point value and display them. Remove the bias term from the 
exponent before displaying its value and display the mantissa as a decimal number. 
Test the program with the values 0, -0, 1, -1, 6.674e-11, 1.0e38, 1.0e39, 1.0e-38,  
and 1.0e-39. The numeric values listed here containing e are using the C/C++  
text representation of floating-point numbers. For example, 6.674e-11 means  
6.674 x 10-11

2. Modify the program from Exercise 1 to also accept a double-precision floating-point 
value, and print the sign, exponent (with the bias removed), and mantissa from the 
value. Test it with the same input values as in Exercise 1, and also with the values 
1.0e308, 1.0e309, 1.0e-308, and 1.0e-309.

3. Search the Internet for information about the NXP Semiconductors i.MX RT1060 
processor family. Download the product family datasheet and answer the following 
questions about these processors.

4. Do the i.MX RT1060 processors support the concept of supervisor mode 
instruction execution? Explain your answer.
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5. Do the i.MX RT1060 processors support the concept of paged virtual memory? 
Explain your answer.

6. Do the i.MX RT1060 processors support floating-point operations in hardware? 
Explain your answer.

7. What power management features do the i.MX RT1060 processors support?

8. What security features do the i.MX RT1060 processors support? 
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Modern Processor 
Architectures and 

Instruction Sets
Most modern personal computers contain a processor supporting either the Intel or AMD 
version of the x86 32-bit and x64 64-bit architectures. Almost all smartphones, smart 
watches, tablets, and many embedded systems, on the other hand, contain ARM 32-bit  
or 64-bit processors. This chapter takes a detailed look at the registers and instruction  
sets of all of these processor families.

After completing this chapter, you will understand the top-level architectures and unique 
attributes of the x86, x64, 32-bit ARM, and 64-bit ARM registers, instruction sets, 
assembly languages, and key aspects of legacy feature support in these architectures.

This chapter covers the following topics:

• x86 architecture and instruction set

• x64 architecture and instruction set

• 32-bit ARM architecture and instruction set

• 64-bit ARM architecture and instruction set
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Technical requirements
The files for this chapter, including the answers to the exercises, are available at  
https://github.com/PacktPublishing/Modern-Computer-
Architecture-and-Organization.

x86 architecture and instruction set
For the purpose of this discussion, the term x86 refers to the 16-bit and 32-bit instruction 
set architecture of the series of processors that began with the Intel 8086, introduced in 
1978. The 8088, released in 1979, is functionally very similar to the 8086, except it has an 
8-bit data bus instead of the 16-bit bus of the 8086. The 8088 was the central processor  
in the original IBM PC.

Subsequent generations of this processor series were named 80186, 80286, 80386, and 
80486, leading to the term "x86" as shorthand for the family. Subsequent generations 
dropped the numeric naming convention and were given the names Pentium, Core,  
i Series, Celeron, and Xeon. 

Advanced Micro Devices (AMD), a semiconductor manufacturing company that 
competes with Intel, has been producing x86-compatible processors since 1982. Some 
recent AMD x86 processor generations have been named Ryzen, Opteron, Athlon,  
Turion, Phenom, and Sempron.

For the most part, compatibility is good between Intel and AMD processors. There 
are some key differences between processors from the two vendors, including the chip 
pin configuration and chipset compatibility. In general, Intel processors only work in 
motherboards and with chipsets designed for Intel chips, and AMD processors only work 
in motherboards and with chipsets designed for AMD chips. We will see some other 
differences between Intel and AMD processors later in this section.

The 8086 and 8088 are 16-bit processors, despite the 8-bit data bus of the 8088. Internal 
registers in these processors are 16 bits wide and the instruction set operates on 16-bit 
data values. The 8088 transparently executes two bus cycles to transfer each 16-bit value 
between the processor and memory.

The 8086 and 8088 do not support the more sophisticated features of modern processors, 
such as paged virtual memory and protection rings. These early processors also have only 
20 address lines, limiting the addressable memory to 1 MB. A 20-bit address cannot fit 
in a 16-bit register, so it is necessary to use a somewhat complicated system of segment 
registers and offsets to access the full 1 MB address space.
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In 1985, Intel released the 80386 with enhancements to mitigate many of these limitations. 
The 80386 introduced these features:

• 32-bit architecture: Addresses, registers, and the ALU are 32 bits wide and 
instructions operate natively on operands up to 32 bits wide.

• Protected mode: This mode enables the multi-level privilege mechanism, consisting 
of ring numbers 0 to 3. In Windows and Linux, ring 0 is kernel mode and ring 3 is 
user mode. Rings 1 and 2 are not used in these operating systems.

• On-chip MMU: The 80386 MMU supports a flat memory model, enabling any 
location in the 4 GB space to be accessed with a 32-bit address. Manipulation of 
segment registers and offsets is no longer required. The MMU supports paged 
virtual memory.

• 3-stage instruction pipeline: The pipeline accelerates instruction execution,  
as discussed in Chapter 8, Performance-Enhancing Techniques.

• Hardware debug registers: The debug registers support setting up to four 
breakpoints that stop code execution at a specified virtual address when the address 
is accessed and a selected condition is satisfied. The available break conditions are 
code execution, data write, and data read or write. These registers are only available 
to code running in ring 0.

Modern x86 processors boot into the 16-bit operating mode of the original 8086, which 
is now called real mode. This mode retains compatibility with software written for the 
8086/8088 environment, such as the MS-DOS operating system. In most modern systems 
running on x86 processors, a transition to protected mode occurs during system startup. 
Once in protected mode, the operating system generally remains in protected mode until 
the computer shuts down.

MS-DOS on a modern PC
Although the x86 processor in a modern PC is compatible at the instruction 
level with the original 8088, running an old copy of MS-DOS on a modern 
computer system is unlikely to be a straightforward process. This is because 
peripheral devices and their interfaces in modern PCs are not compatible with 
the corresponding interfaces in PCs from the 1980s. MS-DOS would need a 
driver that understands how to interact with the USB-connected keyboard of a 
modern motherboard, for example.
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These days, the main use for 16-bit mode in x86 processors is to serve as a bootloader for 
a protected mode operating system. Because most developers of computerized devices  
and the software that runs on them are unlikely to be involved in implementing such  
a capability, the remainder of our x86 discussion in this chapter will address protected 
mode and the associated 32-bit flat memory model.

The x86 architecture supports unsigned and signed two's complement integer data types 
with widths of 8, 16, 32, 64, and 128 bits. The names assigned to these data types are  
as follows:

• Byte: 8 bits

• Word: 16 bits

• Doubleword: 32 bits

• Quadword: 64 bits

• Double quadword: 128 bits

In most cases, the x86 architecture does not mandate storage of these data types on 
natural boundaries. The natural boundary of a data type is any address evenly divisible  
by the size of the data type in bytes.

Storing any of the multi-byte types at unaligned boundaries is permitted, but is 
discouraged because it causes a negative performance impact: instructions operating on 
unaligned data require additional clock cycles. A few instructions that operate on double 
quadwords require naturally aligned storage and will generate a general protection fault  
if unaligned access is attempted.

x86 natively supports floating-point data types in widths of 16, 32, 64, and 80 bits. The 
32-bit, 64-bit, and 80-bit formats are those presented in Chapter 9, Specialized Processor 
Extensions. The 16-bit format is called half-precision floating-point and has an 11-bit 
mantissa, an implied leading 1 bit, and a 5-bit exponent. The half-precision floating-point 
format is used extensively in GPU processing.

The x86 register set
In protected mode, the x86 architecture has eight 32-bit wide general-purpose registers, 
a flags register, and an instruction pointer. There are also six segment registers and 
additional processor model-specific configuration registers. The segment registers and 
model-specific registers are configured by system software during startup and are, in 
general, not relevant to the developers of applications and device drivers. For these 
reasons, we will not discuss the segment registers and model-specific registers further.
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The 16-bit general-purpose registers in the original 8086 architecture are named AX, 
CX, DX, BX, SP, BP, SI, and DI. The reason for listing the first four registers in this 
non-alphabetic order is because this is the sequence in which these eight registers are 
pushed onto the stack by a pushad (push all registers) instruction.

In the transition to the 32-bit architecture of the 80386, each register grew to 32 bits. The 
32-bit version of a register's name is prefixed with the letter "E" to indicate this extension.

It is possible to access portions of 32-bit registers in smaller bit widths. For example, the 
lower 16 bits of the 32-bit EAX register are referenced as AX. The AX register can be further 
accessed as individual bytes using the names AH (high-order byte) and AL (low-order 
byte). The following diagram shows the register names and subsets of each:

Figure 10.1: Register names and subsets

Writing to a portion of a 32-bit register, for example, register AL, affects only the bits in 
that portion. In the case of AL, loading an 8-bit value modifies the lowest 8 bits of EAX, 
leaving the other 24 bits unaffected.
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In keeping with the x86's complex instruction set computer (CISC) architecture,  
several functions associated with various instructions are tied to specific registers. The 
following table provides a description of the functions associated with each of the x86 
general-purpose registers:

Table 10.1: x86 general-purpose registers and associated functions

These register-specific functions contrast with the architectures of many reduced 
instruction set computer (RISC) processors, which tend to provide a greater number 
of general-purpose registers. Registers within a RISC processor are, for the most part, 
functionally equivalent to one another.

The x86 flags register, EFLAGS, contains the processor status bits described in the 
following table:

Table 10.2: x86 flags register status bits
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All bits in the EFLAGS register that are not listed in the preceding table are reserved.

The 32-bit instruction pointer, EIP, contains the address of the next instruction  
to execute, unless a branch is taken.

The x86 architecture is little-endian, meaning multi-byte values are stored in memory 
with the least significant byte at the lowest address and the most significant byte at the 
highest address.
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x86 addressing modes
As befits a CISC architecture, x86 supports a variety of addressing modes. There are several 
rules associated with addressing source and destination operands that must be followed to 
create valid instructions. For instance, the sizes of the source and destination operands of 
a mov instruction must be equal. The assembler will attempt to select a suitable size for an 
operand of ambiguous size (for example, an immediate value of 7) to match the width of a 
destination location (such as the 32-bit register EAX). In cases where the size of an operand 
cannot be inferred, size keywords such as byte ptr must be provided.

The assembly language in these examples uses the Intel syntax, which places the operands 
in destination-source order. The Intel syntax is used primarily in the Windows and 
MS-DOS contexts. An alternative notation, known as the AT&T syntax, places operands 
in source-destination order. The AT&T syntax is used in Unix-based operating systems. 
All examples in this book will use the Intel syntax.

The x86 architecture supports a variety of addressing modes, which we will look at now.

Implied addressing
The register is implied by the instruction opcode:

clc ; Clear the carry flag (This is CF in the EFLAGS register)

Register addressing
One or both source and destination registers are encoded in the instruction:

mov eax, ecx ; Copy the contents of register ECX to EAX

Registers may be used as the first operand, the second operand, or both operands.

Immediate addressing
An immediate value is provided as an instruction operand:

mov eax, 7 ; Move the 32-bit value 7 into EAX

mov ax, 7 ; Move the 16-bit value 7 into AX (the lower 16 bits 
of EAX)

When using the Intel syntax, it is not necessary to prefix immediate values with  
the # character.
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Direct memory addressing
The address of the value is provided as an instruction operand:

mov eax, [078bch] ; Copy the 32-bit value at hex address 78BC 
to EAX

In x86 assembly code, square brackets around an expression indicate the expression is an 
address. When performing moves or other operations on square-bracketed operands, the 
value being operated upon is the data at the specified address. The exception to this rule  
is the LEA (load effective address) instruction, which we'll look at later.

Register indirect addressing
The operand identifies a register containing the address of the data value:

mov eax, [esi] ; Copy the 32-bit value at the address contained 
in ESI to EAX

This mode is equivalent to using a pointer to reference a variable in C or C++.

Indexed addressing
The operand indicates a register plus offset that calculates the address of the data value:

mov eax, [esi + 0bh] ; Copy the 32-bit value at the address 
(ESI + 0bh) to EAX

This mode is useful for accessing the elements of a data structure. In this scenario, the ESI 
register contains the address of the structure and the added constant is the byte offset of 
the element from the beginning of the structure.

Based indexed addressing
The operand indicates a base register, an index register, and an offset that sum together  
to calculate the address of the data value:

mov eax, [ebx + esi + 10] ; Copy the 32-bit value starting at 
the address (EBX + ESI + 10) to EAX

This mode is useful for accessing individual data elements within an array of structures. In 
this example, the EBX register contains the address of the beginning of the structure array, 
ESI contains the offset of the referenced structure within the array, and the constant value 
(10) is the offset of the desired element from the beginning of the selected structure.
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Based indexed addressing with scaling
The operand is composed of a base register, an index register multiplied by a scale factor, 
and an offset that sum together to calculate the address of the data value:

mov eax, [ebx + esi*4 + 10] ; Copy the 32-bit value starting at 
the address (EBX + ESI*4 + 10) to EAX

In this mode, the value in the index register can be multiplied by 1 (the default), 2, 4, or 
8 before being summed with the other components of the operand address. There is no 
performance penalty associated with using the scaling multiplier. This feature is helpful 
when iterating over arrays containing elements with sizes of 2, 4, or 8 bytes.

Most of the general-purpose registers can be used as the base or index register in the 
based addressing modes. The following diagram shows the possible combinations of 
register usage and scaling in the based addressing modes:

Figure 10.2: Based addressing mode

All eight general-purpose registers are available for use as the base register. Of those eight, 
only ESP is unavailable for use as the index register.

x86 instruction categories
The x86 instruction set was introduced with the Intel 8086 and has been extended  
several times over the years. Some of the most significant changes relate to the extension 
of the architecture from 16 to 32 bits, which added protected mode and paged virtual 
memory. In almost all cases, the new capabilities were added while retaining full  
backward compatibility.
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The x86 instruction set contains several hundred instructions. We will not discuss all 
of them here. This section will provide brief summaries of the more important and 
commonly encountered instructions applicable to user mode applications and device 
drivers. This subset of x86 instructions can be divided into a few general categories: 
data movement; stack manipulation; arithmetic and logic; conversions; control flows; 
string and flag manipulations; input/output; and protected mode. There are also some 
miscellaneous instructions that do not fall into any specific category. 

Data movement
Data movement instructions do not affect the processor flags. The following instructions 
perform data movement:

• mov: Copies the data value referenced by the second operand to the location 
provided as the first operand.

• cmovcc: Conditionally moves the second operand's data to the register provided as 
the first operand if the cc condition is true. The condition is determined from one 
or more of the processor flags: CF, ZF, SF, OF, and PF. The condition codes are e 
(equal), ne (not equal), g (greater), ge (greater or equal), a (above), ae (above or 
equal), l (less), le (less or equal), b (below), be (below or equal), o (overflow), no 
(no overflow), z (zero), nz (not zero), s (SF=1), ns (SF=0), cxz (register CX is 
zero), and ecxz (the ECX register is zero).

• movsx, movzx: Variants of the mov instruction performing sign extension and  
zero extension, respectively. The source operand must be a smaller size than  
the destination.

• lea: Computes the address provided by the second operand and stores it at the 
location given in the first operand. The second operand is surrounded by square 
brackets. Unlike the other data movement instructions, the computed address is 
stored in the destination rather than the data value at that address.

Stack manipulation
Stack manipulation instructions do not affect the processor flags. These instructions are  
as follows:

• push: Decrements ESP by 4, then places the 32-bit operand into the stack location 
pointed to by ESP.

• pop: Copies the 32-bit data value pointed to by ESP to the operand location  
(a register or memory address), then increments ESP by 4.
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• pushfd, popfd: Pushes or pops the EFLAGS register.

• pushad, popad: Pushes or pops the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and 
EDI registers, in that order.

Arithmetic and logic
Arithmetic and logic instructions modify the processor flags. The following instructions 
perform arithmetic and logic operations:

• add, sub: Performs integer addition or subtraction. When subtracting, the second 
operand is subtracted from the first. Both operands can be registers, or one operand 
can be a memory location and the other a register. One operand can be a constant.

• adc, sbb: Performs integer addition or subtraction using the CF flag as a carry 
input (for addition) or as a borrow input (for subtraction).

• cmp: Subtracts the two operands and discards the result while updating the OF, SF, 
ZF, AF, PF, and CF flags based on the result.

• neg: Negates the operand.

• inc, dec: Increments or decrements the operand by one.

• mul: Performs unsigned integer multiplication. The size of the product depends on 
the size of the operand. A byte operand is multiplied by AL and the result is placed 
in AX. A word operand is multiplied by AX and the result is placed in DX:AX, with 
the upper 16 bits in DX. A doubleword is multiplied by EAX and the result is placed 
in EDX:EAX.

• imul: Performs signed integer multiplication. The first operand must be a register 
and receives the result of the operation. There may be a total of two or three operands. 
In the two-operand form, the first operand multiplies the second operand and the 
result is stored in the first operand (a register). In the three-operand form, the second 
operand multiplies the third operand and the result is stored in the first operand 
register. In the three-operand form, the third operand must be an immediate value.

• div, idiv: Performs unsigned (div) or signed (idiv) division. The size of the 
result depends on the size of the operand. A byte operand is divided into AX, the 
quotient is placed in AL, and the remainder is placed in AH. A word operand is 
divided into DX:AX, the quotient is placed in AX, and the remainder is placed in  
DX. A doubleword is divided into EDX:EAX, the quotient is placed in EAX, and  
the remainder is placed in EDX.

• and, or, xor: Performs the corresponding logical operation on the two operands 
and stores the result in the destination operand location.
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• not: Performs a logical NOT (bit inversion) operation on a single operand.

• sal, shl, sar, shr: Performs a logical (shl and shr) or arithmetic (sal and 
sar) shift of the byte, word, or doubleword argument left or right by 1 to 31 bit 
positions. sal and shl place the last bit shifted out into the carry flag and insert 
zeros into the vacated least significant bits. shr places the last bit shifted out into 
the carry flag and inserts zeros into the vacated most significant bits. sar differs 
from shr by propagating the sign bit into the vacated most significant bits.

• rol, rcl, ror, rcr: Performs a left or right rotation by 0 to 31 bits, optionally 
through the carry flag. rcl and rcr rotate through the carry flag while rol and 
ror do not.

• bts, btr, btc: Reads a specified bit number (provided as the second operand) 
within the bits of the first operand into the carry flag, then either sets (bts), resets 
(btr), or complements (btc) that bit. These instructions may be preceded by the 
lock keyword to make the operation atomic.

• test: Performs a logical AND of two operands and updates the SF, ZF, and  
PF flags based on the result.

Conversions
Conversion instructions extend a smaller data size to a larger size. These instructions are 
as follows:

• cbw: Converts a byte (register AL) into a word (AX).

• cwd: Converts a word (register AX) into a doubleword (DX:AX).

• cwde: Converts a word (register AX) into a doubleword (EAX).

• cdq: Converts a doubleword (register AX) into a quadword (EDX:EAX).

Control�flow
Control flow instructions conditionally or unconditionally transfer execution to an 
address. The control flow instructions are as follows:

• jmp: Transfers control to the instruction at the address provided as the operand.

• jcc: Transfers control to the instruction at the address provided as the operand if 
the condition cc is true. The condition codes were described earlier, in the cmovcc 
instruction description. The condition is determined from one or more of the 
processor flags: CF, ZF, SF, OF, and PF.
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• call: Pushes the current value of EIP onto the stack and transfers control to the 
instruction at the address provided as the operand.

• ret: Pops the top-of-stack value and stores it in EIP. If an operand is provided,  
it pops the given number of bytes from the stack to clear parameters.

• loop: Decrements the loop counter in ECX and, if not zero, transfers control  
to the instruction at the address provided as the operand.

String manipulation
String manipulation instructions may be prefixed by the rep keyword to repeat the 
operation the number of times given by the ECX register, incrementing or decrementing 
the source and destination location on each iteration, depending on the state of the DF 
flag. The operand size processed on each iteration can be a byte, word, or doubleword.  
The source address of each string element is given by the ESI register and the destination 
is given by the EDI register. These instructions are as follows:

• mov: Moves a string element.
• cmps: Compares elements at corresponding locations in two strings.
• scas: Compares a string element to the value in EAX, AX, or AL, depending on  

the operand size.
• lods: Loads the string into EAX, AX, or AL, depending on the operand size.
• stos: Stores EAX, AX, or AL, depending on the operand size, to the address in EDI.

Flag manipulation
Flag manipulation instructions modify bits in the EFLAGS register. The flag manipulation 
instructions are as follows:

• stc, clc, cmc: Sets, clears, or complements the carry flag, CF.
• std, cld: Sets or clears the direction flag, DF.
• sti, cli: Sets or clears the interrupt flag, IF.

Input/output
Input/output instructions read data from or write data to peripheral devices. The input/
output instructions are as follows:

• in, out: Moves 1, 2, or 4 bytes between EAX, AX, or AL and an I/O port, depending 
on the operand size.

• ins, outs: Moves a data element between memory and an I/O port in the same 
manner as string instructions.
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• rep ins, rep outs: Moves blocks of data between memory and an I/O port  
in the same manner as string instructions.

Protected mode
The following instructions access the features of the protected mode:

• sysenter, sysexit: Transfers control from ring 3 to ring 0 (sysenter) or  
from ring 0 to ring 3 (sysexit) in Intel processors.

• syscall, sysret: Transfers control from ring 3 to ring 0 (syscall) or from 
ring 0 to ring 3 (sysret) in AMD processors. In x86 (32-bit) mode, AMD 
processors also support sysenter and sysexit.

Miscellaneous instructions
These instructions do not fit into the categories previously listed:

• int: Initiates a software interrupt. The operand is the interrupt vector number.

• nop: No operation.

• cpuid: Provides information about the processor model and its capabilities.

Other instruction categories
The additional instructions listed in this section are some of the more common  
general-purpose instructions you will come across in x86 applications and device drivers. 
The x86 architecture contains a variety of instruction categories, including the following:

• Floating-point instructions: These instructions are executed by the x87  
floating-point unit.

• SIMD instructions: This category includes the MMX, SSE, SSE2, SSE3, SSE4, AVX, 
AVX2, and AVX-512 instructions.

• AES instructions: These instructions support encryption and decryption using the 
Advanced Encryption Standard (AES).

• MPX instructions: The memory protection extensions (MPX) enhance memory 
integrity by preventing errors such as buffer overruns.

• SMX instructions: The safer mode extensions (SMX) improve system security in 
the presence of user trust decisions.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



262     Modern Processor Architectures and Instruction Sets

• TSX instructions: The transactional synchronization extensions (TSX) enhance 
the performance of multithreaded execution using shared resources.

• VMX instructions: The virtual machine extensions (VMX) support the secure and 
efficient execution of virtualized operating systems.

Additional processor registers are provided for use by the floating-point and  
SIMD instructions.

There are still other categories of x86 instructions, a few of which have been retired  
in later generations of the architecture.

Common instruction patterns
These are examples of instruction usage patterns you will come across frequently in 
compiled code. The techniques used in these examples produce the desired result while 
minimizing code size and the number of execution cycles required:

xor reg, reg ; Set reg to zero

test reg, reg ; Test if reg contains zero

add reg, reg ; Shift reg left by one bit

x86 instruction formats
Individual x86 instructions are of variable length, and can range in size from 1 to 15 bytes. 
The components of a single instruction, including any optional bytes, are laid out in  
memory in the following sequence:

• Prefix bytes: One or more optional prefix bytes provide auxiliary opcode execution 
information. For example, the lock prefix performs bus locking in a multiprocessor 
system to enable atomic test-and-set type operations. rep and related prefixes enable 
string instructions to perform repeated operations on string elements in a single 
instruction. Other prefixes are available to provide hints for conditional branch 
instructions or to override the default size of an address or operand. 

• Opcode bytes: An x86 opcode, consisting of 1 to 3 bytes, follows any prefix bytes. 
For some opcodes, an additional 3 opcode bits are encoded in a ModR/M byte 
following the opcode.
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• ModR/M byte: Not all instructions require this byte. The ModR/M byte contains 
three information fields providing address mode and operand register information. 
The upper two bits of this byte (the Mod field) and the lower three bits (the R/M 
field) combine to form a 5-bit field with 32 possible values. Of these, 8 values identify 
register operands and the other 24 specify addressing modes. The remaining 3 bits 
(the reg/opcode field) either indicate a register or provide three additional opcode bits, 
depending on the instruction.

• Address displacement bytes: Either 0, 1, 2, or 4 bytes provide an address 
displacement used in computing the operand address.

• Immediate value bytes: If the instruction includes an immediate value, it is located 
in the last 1, 2, or 4 bytes of the instruction.

The variable-length nature of x86 instructions makes the process of instruction decoding 
quite complex. It is also challenging for debugging tools to disassemble a sequence of 
instructions in reverse order, perhaps to display the code leading up to a breakpoint. 
This difficulty arises because it is possible for a trailing subset of bytes within a lengthy 
instruction to form a complete, valid instruction. This complexity is a notable difference 
from the more regular instruction formats used in RISC architectures.

x86 assembly language
It is possible to develop programs of any level of complexity in assembly language. Most 
modern applications, however, are largely or entirely developed in high-level languages. 
Assembly language tends to be used in cases where the employment of specialized 
instructions is desirable, or a level of extreme optimization is required that is unachievable 
with an optimizing compiler.

Regardless of the language used in application development, all code must ultimately 
execute as processor instructions. To fully understand how code executes on a computer 
system, there is no substitute for examining the state of the system following the execution 
of each individual instruction. A good way to learn how to operate in this environment  
is to write some assembly code.

The x86 assembly language example in the following listing is a complete x86 application 
that runs in a Windows command console, printing a text string and then exiting:

.386

.model FLAT,C

.stack 400h
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.code

includelib libcmt.lib

includelib legacy_stdio_definitions.lib

extern printf:near

extern exit:near

public main

main proc

    ; Print the message

    push    offset message

    call    printf

    

    ; Exit the program with status 0

    push    0

    call    exit

main endp

.data

message db "Hello, Computer Architect!",0

end

A description of the contents of the assembly language file follows:

• The .386 directive indicates that the instructions in this file should be interpreted 
as applying to 80386 and later-generation processors.

• The .model FLAT,C directive specifies a 32-bit flat memory model and the use  
of C language function calling conventions.

• The .stack 400h directive specifies a stack size of 400h (1,024) bytes.

• The .code directive indicates the start of executable code.

• The includelib and extern directives reference system-provided libraries and 
functions within them to be used by the program.

• The public directive indicates the function name, main, is an externally  
visible symbol.
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• The lines between main proc and main endp are the assembly language 
instructions making up the main function.

• The .data directive indicates the start of data memory. The message db 
statement defines the message string as a sequence of bytes, followed by a zero byte.

• The end directive marks the end of the program.

This file, named hello_x86.asm, is assembled and linked to form the executable 
hello_x86.exe program with the following command, which runs the Microsoft 
Macro Assembler:

ml /Fl /Zi /Zd hello_x86.asm

The components of this command are as follows:

• ml runs the assembler.

• /Fl creates a listing file.

• /Zi includes symbolic debugging information in the executable file.

• /Zd includes line number debugging information in the executable file.

• hello_x86.asm is the name of the assembly language source file.

This is a portion of the hello_x86.lst listing file generated by the assembler:

                                .386

                                .model FLAT,C

                                .stack 400h

 00000000                       .code

                                includelib libcmt.lib

                                includelib legacy_stdio_
definitions.lib

                                extern printf:near

                                extern exit:near

                                public main

 00000000                       main proc

                                    ; Print the message

 00000000  68 00000000 R            push    offset message
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 00000005  E8 00000000 E            call    printf

                                    

                                    ; Exit the program with  
                                    status 0

 0000000A  6A 00                    push    0

 0000000C  E8 00000000 E            call    exit

 00000011                       main endp

 00000000                       .data

 00000000 48 65 6C 6C 6F        message db "Hello, Computer  
                                Architect!",0

          2C 20 43 6F 6D

          70 75 74 65 72

          20 41 72 63 68

          69 74 65 63 74

          21 00

The preceding listing displays the address offsets from the beginning of the main function 
in the left column. On lines containing instructions, the opcode follows the address 
offset. Address references in the code (for example, offset message) are displayed 
as 00000000 in the listing because these values are determined during linking, and not 
during assembly, which is when this listing is generated.

This is the output displayed when running this program:

C:\>hello_x86.exe

Hello, Computer Architect!

Next, we will look at the extension of the 32-bit x86 architecture to the 64-bit x64 
architecture.

x64 architecture and instruction set
The original specification for a processor architecture extending the x86 processor and 
instruction set to 64 bits, named AMD64, was introduced by AMD in 2000. The first 
AMD64 processor, the Opteron, was released in 2003. Intel found itself following AMD's 
lead and developed an AMD64-compatible architecture, eventually given the name Intel 
64. The first Intel processor that implemented their 64-bit architecture was the Xeon, 
introduced in 2004. The name of the architecture shared by AMD and Intel came to be 
called x86-64, reflecting the evolution of x86 to 64 bits, and in popular usage, this term 
has been shortened to x64.
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The first Linux version supporting the x64 architecture was released in 2001, well  
before the first x64 processors were even available. Windows began supporting the  
x64 architecture in 2005.

Processors implementing the AMD64 and Intel 64 architectures are largely compatible 
at the instruction level of user mode programs.  There are a few differences between the 
architectures, the most significant of which is the difference in support of the sysenter/
sysexit Intel instructions and the syscall/sysret AMD instructions we saw 
earlier. In general, operating systems and programming language compilers manage these 
differences, making them rarely an issue of concern to software and system developers. 
Developers of kernel software, drivers, and assembly code must take these differences  
into account.

The principal features of the x64 architecture are as follows:

• x64 is a mostly compatible 64-bit extension of the 32-bit x86 architecture. Most 
software, particularly user mode applications, written for the 32-bit environment 
should execute without modification in a processor running in 64-bit mode. 64-bit 
mode is also referred to as long mode.

• The eight 32-bit general-purpose registers of x86 are extended to 64 bits in x64. The 
register name prefix R indicates 64-bit registers. For example, in x64, the extended 
x86 EAX register is called RAX. The x86 register subcomponents EAX, AX, AH, and 
AL continue to be available in x64.

• The instruction pointer, RIP, is now 64 bits. The flags register, RFLAGS, also 
extends to 64 bits, though the upper 32 bits are reserved. The lower 32 bits of 
RFLAGS are the same as EFLAGS in the x86 architecture.

• Eight 64-bit general-purpose registers have been added, named R8 through R15.

• 64-bit integers are supported as a native data type.

• x64 processors retain the option of running in x86 compatibility mode. This mode 
enables the use of 32-bit operating systems and allows any application built for  
x86 to run on x64 processors. In 32-bit compatibility mode, the 64-bit extensions 
are unavailable. 

Virtual addresses in the x64 architecture are 64 bits wide, supporting an address space of  
16 exabytes (EB), equivalent to 264 bytes. Current processors from AMD and Intel,  
however, support only 48 bits of virtual address space. This restriction reduces processor 
hardware complexity while still supporting up to 256 terabytes (TB) of virtual address 
space. Current-generation processors also support a maximum of 48 bits of physical address 
space. This permits a processor to address 256 TB of physical RAM, though modern 
motherboards do not support the quantity of DRAM devices such a system would require.
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The x64 register set
In the x64 architecture, the extension of x86 register lengths to 64 bits and the addition  
of registers R8 through R15 results in the register map shown in the following diagram: 

Figure 10.3: x64 registers

The x86 registers  described in the preceding section, and present in x64, appear in 
a darker shade. The x86 registers have the same names and are the same sizes when 
operating in 64-bit mode. The 64-bit extended versions of the x86 registers have names 
starting with the letter R. The new 64-bit registers (R8 through R15) can be accessed  
in smaller widths using the appropriate suffix letter:

• Suffix D accesses the lower 32 bits of the register: R11D.

• Suffix W accesses the lower 16 bits of the register: R11W.

• Suffix B accesses the lower 8 bits of the register: R11B.

Unlike the x86 registers, the new registers in the x64 architecture are truly general purpose 
and do not perform any special functions at the processor instruction level.
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x64 instruction categories and formats
The x64 architecture implements essentially the same instruction set as x86, with 64-bit 
extensions. When operating in 64-bit mode, the x64 architecture uses a default address 
size of 64 bits and a default operand size of 32 bits. A new opcode prefix byte, rex, is 
provided to specify the use of 64-bit operands.

The format of x64 instructions in memory matches that of the x86 architecture, with 
some exceptions that, for our purposes, are minor. The addition of support for the rex 
prefix byte is the most significant variation from the x86 instruction format. Address 
displacements and immediate values within some instructions can be 64 bits wide,  
in addition to all the bit widths supported in x86.

Although it is possible to define instructions longer than 15 bytes, the processor 
instruction decoder will raise a general protection fault if an attempt is made to decode  
an instruction longer than 15 bytes.

x64 assembly language
The x64 assembly language source file for the hello program is similar to the x86 version 
of this code, with some notable differences:

• There is no directive specifying a memory model because there is a single x64 
memory model.

• The Windows x64 application programming interface uses a calling convention 
that stores the first four arguments to a called function in the RCX, RDX, R8, and R9 
registers, in that order. This differs from the default x86 calling convention, which 
pushes parameters onto the stack. Both of the library functions this program calls 
(printf and exit) take a single argument, passed in RCX.

• The calling convention requires the caller of a function to allocate stack space 
to hold at least the number of arguments passed to the called functions, with a 
minimum reservation space for four arguments, even if fewer are being passed. 
Because the stack grows downward in memory, this requires a subtraction from 
the stack pointer. The sub rsp, 40 instruction performs this stack allocation. 
Normally, after the called function returns, it would be necessary to adjust the 
stack pointer to remove this allocation. Our program calls the exit function, 
terminating program execution, which makes this step unnecessary.
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The code for the 64-bit version of the hello program is as follows:

.code

includelib libcmt.lib

includelib legacy_stdio_definitions.lib

extern printf:near

extern exit:near

public main

main proc

    ; Reserve stack space

    sub     rsp, 40

    

    ; Print the message

    lea     rcx, message

    call    printf

    

    ; Exit the program with status 0

    xor     rcx, rcx

    call    exit

main endp

.data

message db "Hello, Computer Architect!",0

end

This file, named hello_x64.asm, is assembled and linked to form the executable 
hello_x64.exe program with the following call to the Microsoft Macro  
Assembler (x64):

ml64 /Fl /Zi /Zd hello_x64.asm

The components of this command are:

• ml64 runs the 64-bit assembler.

• /Fl creates a listing file.
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• /Zi includes symbolic debugging information in the executable file.

• /Zd includes line number debugging information in the executable file.

• hello_x64.asm is the name of the assembly language source file.

This is a portion of the hello_x64.lst listing file generated by the assembler command:

 00000000                       .code

                                includelib libcmt.lib

                                includelib legacy_stdio_
definitions.lib

                                extern printf:near

                                extern exit:near

                                public main

 00000000                       main proc

                                    ; Reserve stack space

 00000000  48/ 83 EC 28             sub     rsp, 40

                                    

                                    ; Print the message

 00000004  48/ 8D 0D                lea     rcx, message

           00000000 R

 0000000B  E8 00000000 E            call    printf

                                    

                                    ; Exit the program with  
                                    status 0

 00000010  48/ 33 C9                xor     rcx, rcx

 00000013  E8 00000000 E            call    exit

 00000018                       main endp

 00000000                       .data

 00000000 48 65 6C 6C 6F        message db "Hello, Computer  
                                Architect!",0

          2C 20 43 6F 6D

          70 75 74 65 72

          20 41 72 63 68

          69 74 65 63 74

          21 00
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The output of running this program is as follows:

C:\>hello_x64.exe

Hello, Computer Architect!

This completes our brief introduction to the x86 and x64 architectures. There is a great deal 
more to be learned, and indeed the Intel 64 and IA-32 Architectures Software Developer's 
Manual, Volumes 1 through 4, contain nearly 5,000 pages of detailed documentation on 
these architectures. We have clearly just scratched the surface in this chapter.

Next, we will take a similarly top-level tour of the ARM 32-bit and 64-bit architectures.

32-bit ARM architecture and instruction set
The ARM architectures define a family of RISC processors suitable for use in a wide 
variety of applications. Processors based on ARM architectures are preferred in designs 
where a combination of high performance, low power consumption, and small physical 
size is needed.

ARM Holdings, a British semiconductor and software company, developed the ARM 
architectures and licenses them to other companies who implement processors in 
silicon. Many applications of the ARM architectures are system-on-chip (SoC) designs 
combining a processor with specialized hardware to support functions such as cellular 
radio communications in smartphones.

ARM processors are used across a broad spectrum of applications, from tiny  
battery-powered devices to supercomputers. ARM processors serve as embedded 
processors in safety-critical systems, such as automotive anti-lock brakes, and as  
general-purpose processors in smart watches, portable phones, tablets, laptop computers, 
desktop computers, and servers. As of 2017, over 100 billion ARM processors have  
been manufactured.

ARM processors are true RISC systems, with a large set of general-purpose registers  
and single-cycle execution of most instructions. Standard ARM instructions have a fixed 
width of 32 bits, though a separate instruction set named T32 (formerly called Thumb)  
is available for applications where memory is at a premium. The T32 instruction set 
consists of 16- and 32-bit wide instructions. Current-generation ARM processors support 
both the ARM and T32 instruction sets, and can switch between instruction sets on the 
fly. Most operating systems and applications prefer the use of the T32 instruction set over 
the ARM set because code density is improved.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



32-bit ARM architecture and instruction set     273

ARM is a load/store architecture, requiring data to be loaded from memory to a register 
before any processing such as an ALU operation can take place upon it. A separate 
instruction then stores the result back to memory. While this might seem like a step 
back from the x86 and x64 architectures, which operate directly on operands in memory 
in a single instruction, in practice, the load/store approach permits several sequential 
operations to be performed at high speed on an operand once it has been loaded into  
one of the many available registers.

ARM processors are bi-endian. A configuration setting is available to select little-endian 
or big-endian byte order for multi-byte values. The default setting is little-endian, which  
is the configuration commonly used by operating systems.

The ARM architecture natively supports these data types:

• Byte: 8 bits

• Halfword: 16 bits

• Word: 32 bits

• Doubleword: 64 bits

What's in a word?
There is a confusing difference between the data type names of the ARM 
architecture and those of the x86 and x64 architectures: in x86 and x64, a word 
is 16 bits. In ARM, a word is 32 bits.

ARM processors support eight distinct execution privilege levels. These levels, and their 
abbreviations, are as follows:

• User (USR)

• Supervisor (SVC)

• Fast interrupt request (FIQ)

• Interrupt request (IRQ)

• Monitor (MON)

• Abort (ABT)

• Undefined (UND)

• System (SYS)
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For the purposes of operating systems and user applications, the most important privilege 
levels are USR and SVC. The two interrupt request modes, FIQ and IRQ, are used by 
device drivers for processing interrupts.

In most operating systems running on ARM, including Windows and Linux, kernel  
mode runs in ARM SVC mode, equivalent to Ring 0 on x86/64. ARM USR mode is 
equivalent to Ring 3 on x86/x64. Applications running in Linux on ARM processors  
use software interrupts to request kernel services, which involves a transition from  
USR mode to SVC mode.

The ARM architecture supports system capabilities beyond those of the core processor via 
the concept of coprocessors. Up to 16 coprocessors can be implemented in a system, with 
predefined functions assigned to four of them. Coprocessor 15 implements the MMU and 
other system functions. If present, coprocessor 15 must support the instruction opcodes, 
register set, and behaviors specified for the MMU. Coprocessors 10 and 11 combine  
to provide floating-point functionality in processors equipped with that feature. 
Coprocessor 14 provides debugging functions.

The ARM architectures have evolved through several versions over the years. The 
architectural variant currently in common use is ARMv8-A. ARMv8-A supports 32-bit 
and 64-bit operating systems and applications. 32-bit applications can run under a 64-bit 
ARMv8-A operating system.

Virtually all high-end smartphones and portable electronic devices produced since 2016 are 
designed around processors or SoCs based on the ARMv8-A architecture. The description 
that follows will focus on ARMv8-A 32-bit mode. We will look at the differences in 
ARMv8-A 64-bit mode later in this chapter.

The ARM register set
In USR mode, the ARM architecture has 16 general-purpose 32-bit registers named R0 
through R15. The first 13 registers are truly general-purpose, while the last three have  
the following defined functions:

• R13 is the stack pointer, also named SP in assembly code. This register points to the 
top of the stack.

• R14 is the link register, also named LR. This register holds the return address while 
in a called function. The use of a link register differs from x86/x64, which pushes 
the return address onto the stack. The reason for using a register to hold the return 
address is because it is significantly faster to resume execution at the address in 
LR at the end of a function than it is to pop the return address from the stack and 
resume execution at that address.
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• R15 is the program counter, also named PC. Due to pipelining, the value contained 
in PC is usually two instructions ahead of the currently executing instruction. 
Unlike x86/x64, it is possible for user code to directly read and write the PC register. 
Writing an address to PC causes execution to immediately jump to the newly 
written address.

The current program status register (CPSR) contains status and mode control bits, 
similar to EFLAGS/RFLAGS in the x86/x64 architectures. 

Table 10.3: Selected CPSR bits

CPSR bits not listed in the preceding table are either reserved or represent functions not 
discussed in this chapter.

By default, most instructions do not affect the flags. The S suffix must be used with, for 
example, an addition instruction (adds) to cause the result to affect the flags. Comparison 
instructions are the exception to this rule; they update the flags automatically.

ARM addressing modes
In true RISC fashion, the only ARM instructions that can access system memory are those 
that perform register loads and stores. The ldr instruction loads a register from memory, 
while str stores a register to memory. A separate instruction, mov, transfers the contents 
of one register to another or moves an immediate value into a register.
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When computing the target address for a load or store operation, ARM starts with a 
base address provided in a register and adds an increment to arrive at the target memory 
address. There are three techniques for determining the increment that will be added  
to the base register in register load and store instructions:

• Offset: A signed constant is added to the base register. The offset is stored as part 
of the instruction. For example, ldr r0, [r1, #10] loads r0 with the word at 
the address r1+10. As shown in the following examples, pre- or post-indexing can 
optionally update the base register to the target address before or after the memory 
location is accessed.

• Register: An unsigned increment stored in a register can be added to or subtracted 
from the value in a base register. For example, ldr r0, [r1, r2] loads r0  
with the word at the address r1+r2. Either of the registers can be thought of as the 
base register.

• Scaled register: An increment in a register is shifted left or right by a specified 
number of bit positions before being added to or subtracted from the base register 
value. For example, ldr r0, [r1, r2, lsl #3] loads r0 with the word at 
the address r1+(r2×8). The shift can be a logical left or right shift, lsl or lsr, 
inserting zero bits in the vacated bit positions, or an arithmetic right shift, asr,  
that replicates the sign bit in the vacated positions.

The addressing modes available for specifying source and destination operands in ARM 
instructions are presented in the following sections.

Immediate
An immediate value is provided as part of the instruction. The possible immediate values 
consist of an 8-bit value, coded in the instruction, rotated through an even number of bit 
positions. A full 32-bit value cannot be specified because the instruction itself is, at most, 
32 bits wide. To load an arbitrary 32-bit value into a register, the ldr instruction must be 
used instead to load the value from memory:

mov r0, #10 // Load the 32-bit value 10 decimal into r0

mov r0, #0xFF000000 // Load the 32-bit value FF000000h into r0

The second example contains the 8-bit value FFh in the instruction opcode. During 
execution, it is rotated left by 24 bit positions into the most significant 8 bits of the word.
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Register direct
This mode copies one register to another:

mov r0, r1 // Copy r1 to r0

mvn r0, r1 // Copy NOT(r1) to r0

Register indirect
The address of the operand is provided in a register. The register containing the address is 
surrounded by square brackets:

ldr r0, [r1] // Load the 32-bit value at the address given in 
r1 to r0

str r0, [r3] // Store r0 to the address in r3

Unlike most instructions, str uses the first operand as the source and the second as  
the destination.

Register�indirect�with�offset
The address of the operand is computed by adding an offset to the base register:

ldr r0, [r1, #32] // Load r0 with the value at the address 
[r1+32]

str r0, [r1, #4] // Store r0 to the address [r1+4]

Register�indirect�with�offset,�pre-incremented
The address of the value is determined by adding an offset to the base register. The 
base register is updated to the computed address and this address is used to load the 
destination register:

ldr r0, [r1, #32]! // Load r0 with [r1+32] and update r1 to 
(r1+32)

str r0, [r1, #4]! // Store r0 to [r1+4] and update r1 to (r1+4)

Register�indirect�with�offset,�post-incremented
The base address is first used to access the memory location. The base register is then 
updated to the computed address:

ldr r0, [r1], #32 // Load [r1] to r0, then update r1 to (r1+32)

str r0, [r1], #4 // Store r0 to [r1], then update r1 to (r1+4)
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Double register indirect
The address of the operand is the sum of a base register and an increment register. The 
register names are surrounded by square brackets:

ldr r0, [r1, r2] // Load r0 with [r1+r2]

str r0, [r1, r2] // Store r0 to [r1+r2]

Double register indirect with scaling
The address of the operand is the sum of a base register and an increment register  
shifted left or right by a number of bits. The register names and the shift information  
are surrounded by square brackets:

ldr r0, [r1, r2, lsl #5] // Load r0 with [r1+(r2*32)]

str r0, [r1, r2, lsr #2] // Store r0 to [r1+(r2/4)]

The next section introduces the general categories of ARM instructions.

ARM instruction categories
The instructions described in this section are from the T32 instruction set.

Load/store
These instructions move data between registers and memory:

• ldr, str: Copies an 8-bit (suffix b for byte), 16-bit (suffix h for halfword), or 
32-bit value between a register and a memory location. ldr copies the value from 
memory to a register, while str copies a register to memory. ldrb copies one byte 
into the lower 8 bits of a register.

• ldm, stm: Loads or stores multiple registers. Copies 1 to 16 registers to or from 
memory. Any subset of registers can be loaded from or stored to a contiguous 
region of memory.

Stack manipulation
These instructions store data to and retrieve data from the stack.

• push, pop: Pushes or pops any subset of the registers to or from the stack; for 
example, push {r0, r2, r3-r5}. These instructions are variants of the ldm 
and stm instructions.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



32-bit ARM architecture and instruction set     279

Register movement
These instructions transfer data between registers.

• mov, mvn: Moves a register (mov), or its bit-inversion (mvn), to the destination 
register.

Arithmetic and logic
These instructions mostly have one destination register and two source operands. The first 
source operand is a register, while the second can be a register, a shifted register, or an 
immediate value. 

Including the s suffix causes these instructions to set the condition flags. For example, 
adds performs addition and sets the condition flags.

• add, sub: Adds or subtracts two numbers. For example, add r0, r1, r2, lsl 
#3 is equivalent to the expression r0 = r1 + (r2 × 23). The lsl operator performs  
a logical shift left of the second operand, r2.

• adc, sbc: Adds or subtracts two numbers with carry or borrow.

• neg: Negates a number.

• and, orr, eor: Performs logical AND, OR, or XOR.

• orn, eon: Performs logical OR or XOR between the first operand and the  
bitwise-inverted second operand.

• bic: Clears selected bits in a register.

• mul: Multiplies two numbers.

• mla: Multiplies two numbers and accumulates the result. This instruction has  
an additional operand to specify the accumulator register.

• sdiv, udiv: Signed and unsigned division, respectively.

Comparisons
These instructions compare two values and set the condition flags based on the result of the 
comparison. The s suffix is not needed with these instructions to set the condition codes.

• cmp: Subtracts two numbers, discards the result, and sets the condition flags. This  
is equivalent to a subs instruction, except the result is discarded.

• cmn: Adds two numbers, discards the result, and sets the condition flags. This is 
equivalent to an adds instruction, except the result is discarded.
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• tst: Performs a bitwise AND, discards the result, and sets the condition flags. This is 
equivalent to an ands instruction, except the result is discarded.

Control�flow
These instructions transfer control conditionally or unconditionally to an address.

• b: Performs an unconditional branch to the target address.

• bcc: Branches based on one of these condition codes as cc: eq (equal), ne (not 
equal), gt (greater than), lt (less than), ge (greater or equal), le (less or equal), 
cs (carry set), cc (carry clear), mi (minus: N flag = 1), pl (plus: N flag = 0), vs 
(V flag set), vc (V flag clear), hi (higher: C flag set and Z flag clear), ls (lower or 
same: C flag clear and Z flag clear).

• bl: Branches to the specified address and stores the address of the next instruction 
in the link register (r14, also called lr). The called function returns to the calling 
code with the mov pc, lr instruction.

• bx: Branches and selects the instruction set. If bit 0 of the target address is 1, 
T32 mode is entered. If bit 0 is clear, ARM mode is entered. Bit 0 of instruction 
addresses must always be zero due to ARM's address alignment requirements.  
This frees bit 0 to select the instruction set.

• blx: Branches with link and selects the instruction set. This instruction combines 
the functions of the bl and bx instructions.

Supervisor mode
This instruction allows user mode code to initiate a call to supervisor mode:

• svc (Supervisor call): Initiates a software interrupt that causes the supervisor 
mode exception handler to process a system service request.

Miscellaneous
This instruction does not fit into the categories listed:

• bkpt (Trigger a breakpoint): This instruction takes a 16-bit operand for use by 
debugging software to identify the breakpoint.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



32-bit ARM architecture and instruction set     281

Conditional execution
Many ARM instructions support conditional execution, which uses the same condition 
codes as the branch instructions to determine whether individual instructions are 
executed. If an instruction's condition evaluates false, the instruction is processed as  
a no-op. The condition code is appended to the instruction mnemonic. This technique  
is formally known as predication.

For example, this function converts a nibble (the lower 4 bits of a byte) into an ASCII 
character version of the nibble:

// Convert the low 4 bits of r0 to an ascii character in r0

nibble2ascii:

    and     r0, #0xF

    cmp     r0, #10

    addpl   r0, r0, #('A' - 10)

    addmi   r0, r0, #'0'

    mov     pc, lr

The cmp instruction subtracts 10 from the nibble in r0 and sets the N flag if r0 is less 
than 10. Otherwise, the N flag is clear, indicating the value in r0 is 10 or greater.

If N is clear, the addpl instruction executes (pl means "plus," as in "not negative"), 
and the addmi instruction does not execute. If N is set, the addpl instruction does not 
execute and the addmi instruction executes. After this sequence completes, r0 contains  
a character in the range '0'-'9' or 'A'-'F'.

The use of conditional instruction execution keeps the instruction pipeline flowing by 
avoiding branches.

Other instruction categories
ARM processors optionally support a range of SIMD and floating-point instructions. 
Other instructions are provided that are generally only used during system configuration.

ARM assembly language
The ARM assembly example in this section uses the syntax of the GNU Assembler, 
provided with the Android Studio integrated development environment (IDE). Other 
assemblers may use a different syntax. As with the Intel syntax for the x86 and x64 
assembly languages, the operand order for most instructions is the destination-source.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



282     Modern Processor Architectures and Instruction Sets

The ARM assembly language source file for the hello program is as follows:

.text

.global _start

_start:

    // Print the message to file 1 (stdout) with syscall 4

    mov     r0, #1

    ldr     r1, =msg

    mov     r2, #msg_len

    mov     r7, #4

    svc     0

    // Exit the program with syscall 1, returning status 0

    mov     r0, #0

    mov     r7, #1

    svc     0

        

.data

msg:

    .ascii      "Hello, Computer Architect!"

msg_len = . - msg

This file, named hello_arm.s, is assembled and linked to form the executable program 
hello_arm with the following commands. These commands use the development tools 
provided with the Android Studio Native Development Kit (NDK). The commands 
assume the Windows PATH environment variable has been set to include the NDK  
tools directory:

arm-linux-androideabi-as -al=hello_arm.lst -o hello_arm.o 
hello_arm.s

arm-linux-androideabi-ld -o hello_arm hello_arm.o

The components of these commands are as follows:

• arm-linux-androideabi-as runs the assembler.

• -al=hello_arm.lst creates a listing file named hello_arm.lst.

• -o hello_arm.o creates an object file named hello_arm.o.
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• hello_arm.s is the name of the assembly language source file.

• arm-linux-androideabi-ld runs the linker.

• -o hello_arm creates an executable file named hello_arm.

• hello_arm.o is the name of the object file provided as input to the linker.

This is a portion of the hello_arm.lst listing file generated by the assembler command:

   1               .text

   2               .global _start

   3               

   4               _start:

   5                   // Print the message to file 1  
                       //(stdout) with syscall 4

   6 0000 0100A0E3      mov     r0, #1

   7 0004 14109FE5      ldr     r1, =msg

   8 0008 1A20A0E3      mov     r2, #msg_len

   9 000c 0470A0E3      mov     r7, #4

  10 0010 000000EF      svc     0

  11               

  12                   // Exit the program with syscall 1,  
                      //returning status 0

  13 0014 0000A0E3      mov     r0, #0

  14 0018 0170A0E3      mov     r7, #1

  15 001c 000000EF      svc     0

  16                       

  17               .data

  18               msg:

  19 0000 48656C6C      .ascii      "Hello, Computer  
                           Architect!"

  19      6F2C2043 

  19      6F6D7075 

  19      74657220 

  19      41726368 

  20               msg_len = . - msg
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You can run this program on an Android device with Developer options enabled.  
We won't go into the procedure for enabling those options here, but you can easily  
learn more about it with an Internet search.

This is the output displayed when running this program on an Android ARM device 
connected to the host PC with a USB cable: 

C:\>adb push hello_arm /data/local/tmp/hello_arm

C:\>adb shell chmod +x /data/local/tmp/hello_arm

C:\>adb shell /data/local/tmp/hello_arm

Hello, Computer Architect!

These commands use the Android Debug Bridge (adb) tool included with Android 
Studio. Although the hello_arm program runs on the Android device, output from  
the program is sent back to the PC and displayed in the command window.

The next section introduces the 64-bit ARM architecture, an extension of the 32-bit  
ARM architecture.

64-bit ARM architecture and instruction set
The 64-bit version of the ARM architecture, named AArch64, was announced in 2011. 
This architecture has 31 general-purpose 64-bit registers, 64-bit addressing, a 48-bit 
virtual address space, and a new instruction set named A64. The 64-bit instruction set is  
a superset of the 32-bit instruction set, allowing existing 32-bit code to run unmodified  
on 64-bit processors.

Instructions are 32 bits wide and most operands are 32 or 64 bits. The A64 register 
functions differ in some respects from 32-bit mode: the program counter is no longer 
directly accessible as a register and an additional register is provided that always returns 
an operand value of zero.

At the user privilege level, most A64 instructions have the same mnemonics as the 
corresponding 32-bit instructions. The assembler determines whether an instruction 
operates on 64-bit or 32-bit data based on the operands provided. The following rules 
determine the operand length and register size used by an instruction:

• 64-bit register names begin with the letter X; for example, x0.

• 32-bit register names begin with the letter W; for example, w1.

• 32-bit registers occupy the lower 32 bits of the corresponding 64-bit register number.
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When working with 32-bit registers, the following rules apply:

• Register operations such as right shifts behave the same as in the 32-bit architecture. 
A 32-bit arithmetic right shift uses bit 31 as the sign bit, not bit 63.

• Condition codes for 32-bit operations are set based on the result in the lower  
32 bits.

• Writes to a W register set the upper 32 bits of the corresponding X register to zero.

The A64 is a load/store architecture with the same instruction mnemonics for memory 
operations (ldr and str) as 32-bit mode. There are some differences and limitations  
in comparison to the 32-bit load and store instructions:

• The base register must be an X (64-bit) register.

• An address offset can be any of the same types as in 32-bit mode, as well as an X 
register. A 32-bit offset can be zero-extended or sign-extended to 64 bits.

• Indexed addressing modes can only use immediate values as an offset.

• A64 does not support the ldm or stm instructions for loading or storing multiple 
registers in a single instruction. Instead, A64 adds the ldp and stp instructions  
for loading or storing a pair of registers in a single instruction.

• A64 only supports conditional execution for a small subset of instructions. 

Stack operations are significantly different in A64. Perhaps the biggest difference in this 
area is that the stack pointer must maintain 16-byte alignment when accessing data.

64-bit ARM assembly language
This is the 64-bit ARM assembly language source file for the hello program:

.text

.global _start

_start:
    // Print the message to file 1 (stdout) with syscall 64
    mov     x0, #1
    ldr     x1, =msg
    mov     x2, #msg_len
    mov     x8, #64
    svc     0
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    // Exit the program with syscall 93, returning status 0

    mov     x0, #0

    mov     x8, #93

    svc     0

    

.data

msg:

    .ascii      "Hello, Computer Architect!"

msg_len = . - msg

This file, named hello_arm64.s, is assembled and linked to form the executable 
hello_arm64 program with the following commands. These commands use the  
64-bit development tools provided with the Android Studio NDK. The use of these 
commands assumes the Windows PATH environment variable has been set to include  
the tools directory:

aarch64-linux-android-as -al=hello_arm64.lst -o hello_arm64.o 
hello_arm64.s

aarch64-linux-android-ld -o hello_arm64 hello_arm64.o

The components of these commands are as follows:

• aarch64-linux-android-as runs the assembler.

• -al=hello_arm64.lst creates a listing file named hello_arm64.lst.

• -o hello_arm64.o creates an object file named hello_arm64.o.

• hello_arm64.s is the name of the assembly language source file.

• aarch64-linux-android-ld runs the linker.

• -o hello_arm64 creates an executable file named hello_arm64.

• hello_arm64.o is the name of the object file provided as input to the linker.

This is a portion of the hello_arm64.lst listing file generated by the assembler:

   1                    .text

   2                    .global _start

   3                    

   4                    _start:

   5                        // Print the message to file 1  
                            //(stdout) with syscall 64
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   6 0000 200080D2          mov     x0, #1

   7 0004 E1000058          ldr     x1, =msg

   8 0008 420380D2          mov     x2, #msg_len

   9 000c 080880D2          mov     x8, #64

  10 0010 010000D4          svc     0

  11                    

  12                        // Exit the program with syscall  
                            //93, returning status 0

  13 0014 000080D2          mov     x0, #0

  14 0018 A80B80D2          mov     x8, #93

  15 001c 010000D4          svc     0

  16                        

  17                    .data

  18                    msg:

  19 0000 48656C6C          .ascii      "Hello, Computer  
                            Architect!"

  19      6F2C2043 

  19      6F6D7075 

  19      74657220 

  19      41726368 

  20                    msg_len = . - msg

You can run this program on an Android device with Developer options enabled,  
as described earlier. This is the output displayed when running this program on an 
Android ARM device connected to the host PC with a USB cable:

C:\>adb push hello_arm64 /data/local/tmp/hello_arm64

C:\>adb shell chmod +x /data/local/tmp/hello_arm64

C:\>adb shell /data/local/tmp/hello_arm64

Hello, Computer Architect!

This completes our introduction to the 32-bit and 64-bit ARM architectures. 
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Summary
Having completed this chapter, you should have a good understanding of the top-level 
architectures and features of the x86, x64, 32-bit ARM, and 64-bit ARM registers, 
instruction sets, and assembly languages.

The x86 and x64 architectures represent a mostly CISC approach to processor design,  
with variable-length instructions that can take many cycles to execute, a lengthy pipeline, 
and (in x86) a limited number of processor registers.

The ARM architectures, on the other hand, are RISC processors with mostly single-cycle 
instruction execution, a large register set, and (somewhat) fixed-length instructions. 
Early versions of ARM had pipelines as short as three stages, though later versions have 
considerably more stages.

Is one of these architectures better than the other, in a general sense? It may be that each 
is better in some ways, and system designers must make their selection of processor 
architecture based on the specific needs of the system under development. Of course, 
there is a great deal of inertia behind the use of x86/x64 processors in personal computing, 
business computing, and server applications. Similarly, there is a lot of history behind  
the domination of ARM processors in smart personal devices and embedded systems. 
Many factors go into the processor selection process when designing a new computer  
or smart device.

In the next chapter, we'll look at the RISC-V architecture. RISC-V was developed from a 
clean sheet, incorporating lessons learned from the history of processor development and 
without any of the baggage needed to maintain support for decades-old legacy designs.

Exercises
1. Install the free Visual Studio Community edition, available at https://

visualstudio.microsoft.com/vs/community/, on a Windows PC.  
After installation is complete, open the Visual Studio IDE and select Get Tools  
and Features… under the Tools menu. Install the Desktop development with 
C++ workload.

In the Windows search box in the Task Bar, begin typing x86 Native Tools 
Command Prompt for VS 2019. When the app appears in the search menu, 
select it to open a command prompt.

Create a file named hello_x86.asm with the content shown in the source listing 
in the x86 assembly language section of this chapter.
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Build the program using the command shown in the x86 assembly language section 
of this chapter and run it. Verify the output Hello, Computer Architect! appears  
on the screen.

2. Write an x86 assembly language program that computes the following expression 
and prints the result as a hexadecimal number: [(129 – 66) × (445 + 136)] ÷ 3. As 
part of this program, create a callable function to print one byte as two hex digits.

3. In the Windows search box in the Task Bar, begin typing x64 Native Tools 
Command Prompt for VS 2019. When the app appears in the search menu, 
select it to open command prompt.

Create a file named hello_x64.asm with the content shown in the source listing 
in the x64 assembly language section of this chapter.

Build the program using the command shown in the x64 assembly language section 
of this chapter and run it. Verify that the output Hello, Computer Architect! 
appears on the screen.

4. Write an x64 assembly language program that computes the following expression 
and prints the result as a hexadecimal number: [(129 – 66) × (445 + 136)] ÷ 3. As 
part of this program, create a callable function to print one byte as two hex digits.

5. Install the free Android Studio IDE, available at https://developer.
android.com/studio/. After installation is complete, open the Android Studio 
IDE and select SDK Manager under the Tools menu. In the Settings for New 
Projects dialog, select the SDK Tools tab and check the NDK option, which may 
say NDK (Side by side). Complete the installation of the native development  
kit (NDK).

Locate the following files under the SDK installation directory (the default location 
is under %LOCALAPPDATA%\Android) and add their directories to your PATH 
environment variable: arm-linux-androideabi-as.exe and adb.exe.  
Hint: The following command works for one version of Android Studio  
(your path may vary): 

set PATH=%PATH%;%LOCALAPPDATA%\Android\Sdk\
ndk\20.1.5948944\toolchains\arm-linux-androideabi-4.9\
prebuilt\windows-x86_64\bin;%LOCALAPPDATA%\Android\Sdk\
platform-tools

Create a file named hello_arm.s with the content shown in the source listing  
in the The 32-bit ARM assembly language section of this chapter.
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Build the program using the commands shown in the the 32-bit ARM assembly 
language section of this chapter.

Enable Developer Options on an Android phone or tablet. Search the Internet  
for instructions on how to do this.

Connect your Android device to the computer with a USB cable.

Copy the program executable image to the phone using the commands shown in the 
32-bit ARM assembly language section of this chapter and run the program. Verify the 
output Hello, Computer Architect! appears on the host computer screen.

6. Write a 32-bit ARM assembly language program that computes the following 
expression and prints the result as a hexadecimal number: [(129 – 66) × (445 + 
136)] ÷ 3. As part of this program, create a callable function to print one byte as  
two hex digits.

7. Locate the following files under the Android SDK installation directory (the default 
location is under %LOCALAPPDATA%\Android) and add their directories to  
your PATH environment variable: aarch64-linux-android-as.exe and 
adb.exe. Hint: The following command works for one version of Android Studio 
(your path may vary): 

set PATH=%PATH%;%LOCALAPPDATA \Android\sdk\ndk-bundle\
toolchains\arm-linux-androideabi-4.9\prebuilt\
windows-x86_64\bin;%LOCALAPPDATA%\Android\Sdk\platform-
tools

Create a file named hello_arm64.s with the content shown in the source listing 
in the 64-bit ARM assembly language section of this chapter.

Build the program using the commands shown in the 64-bit ARM assembly 
language section of this chapter.

Enable Developer Options on an Android phone or tablet.

Connect your Android device to the computer with a USB cable.

Copy the program executable image to the phone using the commands shown in the 
64-bit ARM assembly language section of this chapter and run the program. Verify the 
output Hello, Computer Architect! appears on the host computer screen.

8. Write a 64-bit ARM assembly language program that computes the following 
expression and prints the result as a hexadecimal number: [(129 – 66) × (445 + 
136)] ÷ 3. As part of this program, create a callable function to print one byte as  
two hex digits.
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The RISC-V 

Architecture and 
Instruction Set

This chapter introduces the exciting, relatively new RISC-V (pronounced risk five) processor 
architecture and its instruction set. RISC-V is a completely open source specification for a 
reduced instruction set processor. A complete user-mode (non-privileged) instruction set 
specification has been released, and several inexpensive hardware implementations of this 
architecture are currently available. Work is ongoing to develop specifications for a number 
of instruction set extensions to support general-purpose computing, high-performance 
computing, and embedded applications. Commercially available processors implement 
many of these developmental extensions.
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The following topics will be covered in this chapter:

• The RISC-V architecture and features

• The RISC-V base instruction set

• RISC-V extensions

• 64-bit RISC-V

• Standard RISC-V configurations

• RISC-V assembly language

• Implementing RISC-V in a field-programmable gate array (FPGA)

After completing this chapter, you will understand the architecture and capabilities of 
the RISC-V processor and its optional extensions. You will have learned the basics of the 
RISC-V instruction set and will understand how RISC-V can be tailored to support a 
variety of computer architectures, from low-end embedded systems to warehouse-scale 
cloud server farms. You will also have learned how to implement a RISC-V processor  
in a low-cost FPGA board.

Technical requirements
Files for this chapter, including answers to the exercises, are available at https://
github.com/PacktPublishing/Modern-Computer-Architecture-and-
Organization.

The RISC-V architecture and features
The RISC-V architecture, publicly announced in 2014, was developed at the University 
of California, Berkeley, by Yunsup Lee, Krste Asanović, David A. Patterson, and Andrew 
Waterman. This effort followed four previous major RISC architectural design projects at 
UC Berkeley, leading to the name RISC-V, where V represents the Roman numeral five.

The RISC-V project began as a clean sheet with these major goals:

• Design a RISC instruction set architecture (ISA) suitable for use in a wide variety 
of applications, spanning the spectrum from micro-power embedded devices to 
high-performance cloud server multiprocessors.
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• Provide an ISA that is free to use by anyone, for any application. This contrasts 
with the ISAs of almost all other commercially available processors, which are the 
carefully guarded intellectual property of the company that designed them.

• Incorporate lessons learned from previous decades of processor design, avoiding 
wrong turns and suboptimal features that other architectures must retain in newer  
generations to maintain compatibility with previous, sometimes ancient in 
technological terms, generations.

• Provide a small but complete base ISA suitable for use in embedded devices. The base 
ISA is the minimal set of capabilities any RISC-V processor must implement. The 
base RISC-V is a 32-bit processor architecture with 31 general-purpose registers. All 
instructions are 32 bits long. The base ISA supports integer addition and subtraction, 
but does not include integer multiplication and division. This is to avoid forcing 
minimal processor implementations to include the fairly expensive multiplication  
and division hardware for applications that do not require those operations.

• Provide optional ISA extensions to support floating-point mathematics, atomic 
memory operations, and multiplication and division.

• Provide additional ISA extensions to support privileged execution modes, similar 
to the x86, x64, and ARM privileged implementations discussed in Chapter 10, 
Modern Processor Architectures and Instruction Sets.

• Support a compressed instruction set, implementing 16-bit versions of many 32-bit 
instructions. In processors implementing this extension, 16-bit instructions may be 
freely interspersed with 32-bit instructions.

• Provide optional ISA extensions to support 64-bit, and even 128-bit, processor  
word sizes using paged virtual memory on single- and multi-core processors,  
and in multiprocessing configurations.

RISC-V processors are available on the market today at competitive prices and, given the 
sophistication of the ISA design and the advantages of its free-to-use nature, we can expect 
the market share of RISC-V processors to grow rapidly in the coming years. RISC-V Linux 
distributions are available, which include all the software development tools needed to 
build and run applications on RISC-V-based computers and smart devices.
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The following diagram shows the RISC-V base ISA regster set:

 

Figure 11.1: RISC-V base ISA register set

The registers are 32 bits wide. General-purpose registers x1 through x31 are available for 
use without any restrictions or special functions assigned by the processor hardware. The 
x0 register is hardwired to return zero when it is read, and will discard any value written 
to it. We will see some interesting uses of the x0 register shortly.

Each register has one or two alternate names, shown in Figure 11.1. These names 
correspond to the usage of registers in the standard RISC-V application binary interface 
(ABI). Because registers x1-x31 are functionally interchangeable, it is necessary for the 
ABI to dictate which register should serve as the stack pointer, which registers should 
contain arguments to functions, which should contain return values, and so forth. The 
meanings of the register designations are as follows:

• ra: Function return address.

• sp: Stack pointer.

• gp: Global data pointer.

• tp: Thread-local data pointer.

• t0-t6: Temporary storage.
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• fp: Frame pointer for function-local stack data (this usage is optional).

• s0-s11: Saved registers (if the frame pointer is not in use, x8 becomes s0).

• a0-a7: Arguments passed to functions. Any additional arguments are passed on the 
stack. Function return values are passed in a0 and a1.

The pc register contains the 32-bit program counter, holding the address of the  
current instruction.

You may be surprised to see there is no processor flags register in the RISC-V ISA. Some 
operations that modify flags in other processor architectures instead store their results 
in a RISC-V register. For example, the signed (slt) and unsigned (sltu) RISC-V 
comparison instructions subtract two operands and set a destination register to 0 or 1 
depending on the sign of the result. A subsequent conditional branch instruction can  
use the value in that register to determine which code path to take. 

Some of the flags found in other processors must be computed in RISC-V. For example, 
there is no carry flag. To determine whether an addition resulted in a carry, it is necessary 
to perform a comparison between the sum and one of the operands of the addition 
instruction. If the sum is greater than or equal to the addend (either addend can be used 
for the comparison), a carry did not occur; otherwise, the addition produced a carry.

Most of the base ISA computational instructions use a three-operand format, in which the 
first operand is a destination register, the second operand is a source register, and the third 
operand is either a source register or an immediate value. The following is an example 
three-operand instruction:

add x1, x2, x3

This instruction adds the x2 register to the x3 register and stores the result in the  
x1 register.

To avoid introducing instructions that are not strictly necessary, many instructions 
take on extra duties that are performed by dedicated instructions in other processor 
architectures. For example, RISC-V contains no instruction that simply moves one 
register to another. Instead, a RISC-V addition instruction adds a source register and an 
immediate value of zero and stores the result in a destination register, producing the same 
result. The instruction to transfer the x2 register to the x1 register is therefore add x1, 
x2, 0, assigning the value (x2 + 0) to x1.

The RISC-V assembly language provides a number of pseudo-instructions using 
terminology that may be more familiar to implement such functions. The assembler 
translates the mv x1, x2 pseudo-instruction to a literal add x1, x2, 0 instruction.
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The RISC-V base instruction set
The RISC-V base instruction set is composed of just 47 instructions. Eight are system 
instructions that perform system calls and access performance counters. The remaining 
39 instructions fall into the categories of computational instructions, control flow 
instructions, and memory access instructions. We will examine each of these categories  
in the following sections.

Computational instructions
All of the computational instructions except lui and auipc use the three-operand form. 
The first operand is the destination register, the second is a source register, and the third 
operand is either a second source register or an immediate value. Instruction mnemonics 
using an immediate value (except for auipc) end with the letter i. This is a list of the 
instructions and their functions:

• add, addi, sub: Perform addition and subtraction. The immediate value in the 
addi instruction is a 12-bit signed value. The sub instruction subtracts the second 
source operand from the first. There is no subi instruction because addi can add 
a negative immediate value.

• sll, slli, srl, srli, sra, srai: Perform logical left and right shifts (sll and 
srl), and arithmetic right shifts (sra). Logical shifts insert zero bits into vacated 
locations. Arithmetic right shifts replicate the sign bit into vacated locations. The 
number of bit positions to shift is taken from the lowest 5 bits of the second source 
register or from the 5-bit immediate value.

• and, andi, or, ori, xor, xori: Perform the indicated bitwise operation on the 
two source operands. Immediate operands are 12 bits.

• slt, slti, sltu, sltui: The set if less than instructions set the destination 
register to 1 if the first source operand is less than the second source operand. This 
comparison is in terms of two's complement (slt) or unsigned (sltu) operands. 
Immediate operand values are 12 bits.

• lui: Load upper immediate. This instruction loads bits 12-31 of the destination 
register with a 20-bit immediate value. Setting a register to an arbitrary 32-bit 
immediate value requires two instructions. First, lui sets bits 12-31 to the upper 20 
bits of the value. Then, addi adds in the lower 12 bits to form the complete 32-bit 
result. lui has two operands: the destination register and the immediate value.

• auipc: Add upper immediate to PC. This instruction adds a 20-bit immediate 
value to the upper 20 bits of the program counter. This instruction enables 
PC-relative addressing in RISC-V. To form a complete 32-bit PC-relative address, 
auipc forms a partial result, then an addi instruction adds in the lower 12 bits.
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Control�flow�instructions
The conditional branching instructions perform comparisons between two registers and, 
based on the result, may transfer control within the range of a signed 12-bit address offset 
from the current PC. Two unconditional jump instructions are available, one of which 
(jalr) provides access to the entire 32-bit address range.

• beq, bne, blt, bltu, bge, bgeu: Branch if equal (beq), not equal (bne), less 
than (blt), less than unsigned (bltu), greater or equal (bge), or greater or equal, 
unsigned (bgeu). These instructions perform the designated comparison between 
two registers and, if the condition is satisfied, transfer control to the address offset 
provided in the 12-bit signed immediate value.

• jal: Jump and link. Transfer control to the PC-relative address provided in  
the 20-bit signed immediate value and store the address of the next instruction  
(the return address) in the destination register.

• jalr: Jump and link, register. Compute the target address as the sum of the source 
register and a signed 12-bit immediate value, then jump to that address and store 
the address of the next instruction in the destination register. When preceded by the 
auipc instruction, the jalr instruction can perform a PC-relative jump anywhere 
in the 32-bit address space.

Memory access instructions
The memory access instructions transfer data between a register and a memory location. 
The first operand is the register to be loaded or stored. The second operand is a register 
containing a memory address. A signed 12-bit immediate value is added to the address  
in the register to produce the final address used for the load or store.

The load instructions perform sign extension for signed values or zero extension for 
unsigned values. The sign or zero extension operation fills in all 32 bits in the destination 
register when a smaller data value (a byte or halfword) is loaded. Unsigned loads are 
specified by a trailing u in the mnemonic.

• lb, lbu, lh, lhu, lw: Load an 8-bit byte (lb), a 16-bit halfword (lh), or a 32-bit 
word (lw) into the destination register. For byte and halfword loads, the instruction 
will either sign-extend (lb and lh) or zero-extend (lbu and lhu) to fill the 32-bit 
destination register. For example, the  lw x1, 16(x2) instruction loads the word 
at the address (x2 + 16) into register x1.

• sb, sh, sw: Store a byte (sb), halfword (sh), or word (sw) to a memory location 
matching the size of the data value.
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• fence: Enforce memory access ordering in a multithreaded context. The purpose 
of this instruction is to ensure a coherent view of cached data across threads. This 
instruction takes two operands. The first specifies the types of memory accesses 
that must complete prior to the fence instruction. The second specifies the types of 
memory accesses controlled following the fence. The operation types ordered by 
this instruction are memory reads and writes (r and w) and I/O device inputs and 
outputs (i and o). For example, the fence rw, rw instruction will guarantee 
that all loads and stores involving memory addresses occurring before the fence 
instruction will complete before any subsequent memory loads or stores take place. 
This instruction ensures that any values present in processor caches are properly 
synchronized with memory or the I/O device.

• fence.i: This instruction ensures that any stores to instruction memory have 
completed before the fence.i instruction completes. This instruction is primarily 
useful in the context of self-modifying code.

System instructions
Of the eight system instructions, one invokes a system call, one initiates a debugger 
breakpoint, and the remaining six read and write system control and status registers 
(CSRs). The CSR manipulation instructions read the current value of the selected CSR 
into a register, then update the CSR by either writing a new value, clearing selected bits, or 
setting selected bits. The source value for the CSR modification is provided in a register or 
as an immediate 5-bit value. CSRs are identified by a 12-bit address. Each CSR instruction 
performs the read and write of the CSR as an atomic operation.

• ecall: Invoke a system call. Registers used for passing parameters into and 
returning from the call are defined by the ABI, not by processor hardware.

• ebreak: Initiate a debugger breakpoint.

• csrrw, csrrwi, csrrc, csrrci, csrrs, csrrsi: Read the specified CSR into a 
destination register and either write a source operand value to the register (csrrw), 
clear any 1 bit in the source operand in the register (csrrc), or set any 1 bit in the 
source operand in the register (csrrs). These instructions take three operands:  
the first is the destination register receiving the value read from the CSR, the second 
is the CSR address, and the third is a source register or a 5-bit immediate value  
(i suffix).
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Six CSRs are defined in the base RISC-V architecture, all read-only. To execute any of the 
CSR access instructions in a read-only mode, the x0 register must be provided as the third 
operand. These registers define three 64-bit performance counters:

• cycle, cycleh: The lower (cycle) and upper (cycleh) 32 bits of the 64-bit 
count of elapsed system clock cycles since a reference time—typically, system 
startup. The frequency of the system clock may vary if dynamic voltage and 
frequency scaling (DVFS) is active.

• time, timeh: These are the lower (time) and upper (timeh) 32 bits of the  
64-bit count of elapsed real-time clock cycles since a reference time—typically, 
system startup.

• instret, instreth: The lower (instret) and upper (instreth) 32 bits of  
the 64-bit count of processor instructions retired.

The two 32-bit halves of each performance counter cannot be read in a single atomic 
operation. To prevent erroneous readings, the following procedure should be used  
to reliably read each of the 64-bit counters:

1. Read the upper 32 bits of the counter into a register.

2. Read the lower 32 bits of the counter into another register.

3. Read the upper 32 bits into yet another register.

4. Compare the first and second reads of the upper 32 counter bits. If they differ,  
jump back to Step 1.

This procedure will read a valid count value, even though the counter continues to run 
between the reads. In general, execution of this sequence should require, at most,  
one backward jump in Step 4.

Pseudo-instructions
The RISC-V architecture has a truly reduced instruction set, lacking several types of 
instructions present in the instruction sets we have investigated in earlier chapters. The 
functions of many of those more familiar instructions can be performed with RISC-V 
instructions, though perhaps not in an immediately intuitive manner.

The RISC-V assembler supports a number of pseudo-instructions, each of which 
translates to one or more RISC-V instructions providing a type of functionality one might 
expect in a general-purpose processor instruction set. The following table presents a few 
of the most useful RISC-V pseudo-instructions:
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Table 11.1: RISC-V pseudo-instructions
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In these instruction listings, rd is the destination register, rs is the source register, csr 
is a control and status register, symbol is an absolute data address, and offset is a 
PC-relative instruction address.

Instructions combining the upper 20 bits of an address or immediate value with an 
immediate value containing the lower 12 bits must perform a step to reverse the effect 
of the sign extension of bit 11 of the lower 12-bit value in the second instruction of each 
sequence. This is necessary because the immediate value in the addi instruction is  
always treated as signed. The most significant bit of the 12-bit immediate value will be 
sign-extended through bit 31 before being added to the upper 20 bits.

The following example demonstrates the problem and the solution. Assume we want  
to load the value 0xFFFFFFFF into a register using lui and addi and naively add  
the upper and lower portions, as shown here 

lui x1, 0xFFFFF # x1 now equals 0xFFFFF000

addi x1, x1, 0xFFF

The addi instruction sign-extends 0xFFF to 0xFFFFFFFF before adding it to 
0xFFFFF000. The result of the addition is then 0xFFFFEFFF, which is not what we 
want. Adding bit 11 of the lower 12 bits to the upper 20 bits will fix this, as shown in  
the following code block:

lui x1, 0xFFFFF+1 # Add bit 11; x1 now equals 0x00000000

addi x1, x1, 0xFFF

The result is now 0xFFFFFFFF, the correct value. This procedure will work for any other 
numeric value. If bit 11 happens to be zero, nothing will be added to the upper 20 bits.

One point to note regarding assembly code in this chapter is that the RISC-V assembler 
uses the # character to begin a comment.
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Privilege levels
The RISC-V architecture defines three privilege levels at which a thread can run:

• User (U) privilege level

• Supervisor (S) privilege level

• Machine (M) privilege level

All RISC-V implementations must support M mode, the most privileged level, which is 
capable of accessing all system features. M mode is entered at system reset. The code in  
a simple embedded system can run entirely in M mode.

In a slightly more sophisticated use case, a secure boot process might run at the M privilege 
level, loading and starting an application that runs in U mode. This approach is appropriate 
for a secure embedded solution.

In addition to the mandatory M level, a RISC-V processor may implement either or both 
of the S and U privilege levels. A system running a general-purpose operating system uses 
S mode and U mode in the same manner as the kernel and user modes of the processors 
and operating systems discussed in previous chapters. RISC-V U-mode applications 
request system services with the ecall (environment call) instruction, generating an 
exception handled at the S level. The privilege architecture of RISC-V directly supports 
modern operating systems such as Linux.

Separate collections of CSRs are defined to enable configuration, control, and monitoring 
of the system at each of the three privilege levels. Depending on the privilege level of the 
running thread and the level of a CSR, the thread may have read-write, read-only, or no 
access to the CSR. Threads at higher privilege levels can access CSRs at lower privilege levels.

The RISC-V S privilege level supports paged virtual memory with a 32-bit address space 
divided into 4 KB pages. A 32-bit virtual address is separated into a 20-bit virtual page 
number and a 12-bit page offset. Two additional virtual memory configurations are 
defined for the RISC-V 64-bit environment. The first is a 39-bit address space, supporting 
512 GB of virtual memory. For applications requiring even more virtual addresses, a 
48-bit address space is available, supporting 256 TB of virtual memory. Although the 
48-bit configuration offers far more memory than the 39-bit configuration, it also requires 
additional storage for page tables, and consumes more processing time during traversal  
of those tables.
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The following instructions support privileged execution levels:

• mret, sret, uret: These instructions return from the exception handler initiated 
by an ecall instruction. Each of these instructions can be executed at the privilege 
level indicated by the first letter of the instruction or higher. Executing one of these 
instructions referencing a privilege level lower than that of the current thread will 
return from the exception initiated at the lower level.

• wfi: Wait for interrupt. This instruction requests the current thread to stall until 
an interrupt becomes available for servicing. The RISC-V specification only requires 
that this instruction serve as a hint, so a particular implementation may process 
a wfi instruction as a no-op rather than actually stalling the thread. Because it is 
possible for the processor to handle wfi as a no-op, the code that follows a wfi 
instruction must explicitly check for the presence of pending interrupts in need  
of processing. This sequence typically occurs inside a loop.

• sfence.vma: Flush virtual memory page table data from cache to memory. The 
leading s in the instruction mnemonic indicates this instruction is targeted for use 
at the supervisor privilege level.

RISC-V defines additional instructions and CSRs supporting virtualization and the 
hypervisor that manages the virtual environment. RISC-V virtualization will be covered  
in Chapter 12, Processor Virtualization.

RISC-V extensions
The instruction set described earlier in this chapter is named RV32I, which stands for the 
RISC-V 32-bit integer instruction set. Although the RV32I ISA provides a complete and 
useful instruction set for many purposes, it lacks several functions and features available 
in other processors such as x86 and ARM.

The RISC-V extensions provide a mechanism for adding capabilities to the base instruction 
set in an incremental and compatible manner. Implementors of RISC-V processors can 
selectively include extensions in a processor design to optimize tradeoffs between chip 
size, system capability, and performance. These flexible design options are also available to 
developers of low-cost FPGA-based systems. We'll see more about implementing a RISC-V 
processor in an FPGA later in this chapter. The major extensions we will cover now are 
named M, A, C, F, and D, and we'll mention some other available extensions.
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The M extension
The RISC-V M extension adds integer multiplication and division functionality to the base 
RV32I instruction set. The following instructions are available in this extension:

• mul: Multiply two 32-bit registers and store the lower 32 bits of the result in the 
destination register.

• mulh. mulhu, mulhsu: Multiply two 32-bit registers and store the upper 32 bits of 
the result in the destination register. Treat the multiplicands as both signed (mulh), 
both unsigned (mulhu), or signed rs1 times unsigned rs2 (mulhsu). rs1 is the 
first source register in the instruction and rs2 is the second.

• div, divu: Perform division of two 32-bit registers, rounding the result toward 
zero, on signed (div) or unsigned (divu) operands.

• rem, remu: Return the remainder corresponding to the result of a div or divu 
instruction on the operands.

Division by zero does not raise an exception. To detect division by zero, code should test 
the divisor and branch to an appropriate handler if it is zero.

The A extension
The RISC-V A extension provides atomic read-modify-write operations to support 
multithreaded processing in shared memory.

The atomic load-reserved (lr.w) and store-conditional (sc.w) instructions work 
together to perform a memory read followed by a write to the same location as an atomic 
sequence. The load-reserved instruction places a reservation on the memory address 
during the load. If another thread writes to the same location while the reservation is  
in effect, the reservation is canceled.

When the store-conditional instruction executes, it returns a value indicating whether 
it successfully completed the atomic operation. If the reservation remains valid (in 
other words, no intervening write occurred to the target address), the store-conditional 
instruction writes the register to memory and returns zero, indicating success. If the 
reservation was canceled, the store-conditional instruction does not alter the memory 
location and returns a nonzero value indicating the store operation failed. The following 
instructions implement the load-reserved and store-conditional operations:

• lr.w: Load a register from a memory location and place a reservation on  
the address.
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• sc.w: Store a register to a memory location conditionally. Set the destination 
register to zero if the operation succeeded and the memory location was written, or 
set the destination register to a nonzero value if the reservation was canceled. If the 
reservation was canceled, the memory location is not modified by this instruction.

The atomic memory operation (AMO) instructions atomically load a word from a 
memory location into the destination register, perform a binary operation between the 
value that was loaded and rs2, and store the result back to the memory address. The 
following instructions implement the AMO operations:

• amoswap.w: Atomically swap rs2 into the rs1 memory location.

• amoadd.w: Atomically add rs2 into the rs1 memory location.

• amoand.w , amoor.w, amoxor.w: Atomically perform AND, OR, or XOR 
operations with rs2 into the rs1 memory location.

• amomin.w , amominu.w, amomax.w, amomaxu.w: Atomically perform 
minimum or maximum selection of signed or unsigned (instructions with the  
u suffix) values with rs2 into the rs1 memory location.

C extension
The RISC-V C extension implements compressed instructions with the goals of 
minimizing the amount of memory consumed by instruction storage and reducing  
the amount of bus traffic required to fetch instructions.

All RV32I instructions discussed previously are 32 bits in length. The C extension provides 
alternate 16-bit representations of many of the most frequently used RV32I instructions. 
Each compressed instruction is equivalent to one full-length instruction. No mode 
switching is necessary, meaning programs can freely intermix 32-bit RV32I instructions 
and compressed 16-bit instructions. In fact, assembly language programmers do not even 
need to take steps to specify whether an instruction should be generated in compressed 
form. The assembler and linker are capable of transparently emitting compressed 
instructions where possible to minimize code size, with no execution performance penalty.

When working with processors and software development tool sets supporting  
the RISC-V C extension, the benefits of compressed instructions are immediately  
available to developers working in assembly language as well as to those working with 
higher-level languages.
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The F and D extensions
The RISC-V F and D extensions provide hardware support for single-precision (F)  
and double-precision (D) floating-point arithmetic in accordance with the IEEE 754 
standard. The F extension adds 32 floating-point registers named f0-f31 and a control 
and status register named fcsr to the architecture. These registers are all 32 bits. The 
extension includes a set of floating-point instructions that complies with the IEEE 
754-2008 single-precision standard.

Most floating-point instructions operate on the floating-point registers. Data  
transfer instructions are provided to load floating-point registers from memory, store 
floating-point registers to memory, and move data between floating-point registers and 
integer registers.

The D extension widens f0-f31 to 64 bits. In this configuration, each f register can hold 
a 32-bit value or a 64-bit value. Double-precision floating-point instructions are added, in 
compliance with the IEEE 754-2008 double-precision standard. The D extension requires 
the F extension be present.

Other extensions
Several additional extensions to the RISC-V architecture, detailed in the following  
list, have been defined, are in development, or are at least under consideration for  
future development: 

• RV32E architecture: This is not actually an extension; rather, it is a modified 
architecture intended to reduce processor hardware requirements below those of 
the RV32I instruction set for the smallest embedded systems. The only difference 
between RV32I and RV32E is the reduction in the number of integer registers to 
15. This change is expected to reduce processor die area and power consumption 
by about 25% compared to an otherwise equivalent RV23I processor.  x0 remains 
a dedicated zero register. Halving the number of registers frees up 1 bit in each 
register specifier in an instruction. These bits are guaranteed to remain unused in 
future revisions and are thus available for use in customized instruction extensions.

• Q extension: The Q extension supports 128-bit quad-precision floating-point 
mathematics, as defined in the IEEE 754-2008 standard.

• L extension: The L extension supports decimal floating-point arithmetic, as defined 
in the IEEE 754-2008 standard.
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• B extension: The B extension supports bit manipulations such as inserting, 
extracting, and testing individual bits.

• J extension: The J extension supports dynamically translated languages such as  
Java and JavaScript.

• T extension: The T extension supports memory transactions consisting of atomic 
operations across multiple addresses.

• P extension: The P extension provides packed Single Instruction Multiple Data 
(SIMD) instructions for floating-point operations in small RISC-V systems.

• V extension: The V extension supports data-parallel, or vector, operations. The V 
extension does not specify the lengths of data vectors; that decision is left to the 
implementers of a RISC-V processor design. A typical implementation of the V 
extension might support 512-bit data vectors, though implementations with up  
to 4,096-bit vector lengths are currently available. 

• N extension: The N extension provides support for handling interrupts and 
exceptions at the U privilege level.

• Zicsr extension: The Zicsr extension performs atomic read-modify-write 
operations on the system CSRs. These instructions are described earlier in this 
chapter in the System instructions section.

• Zifencei extension: The Zifencei extension defines the fence.i instruction, 
described in the Memory access instructions section.

The next section covers the extension of the base RISC-V ISA to 64 bits.

64-bit RISC-V 
The RISC-V introduction to this point has discussed the 32-bit RV32I architecture and 
instruction set, with extensions. The RV64I instruction set extends RV32I to a 64-bit 
architecture. As in RV32I, instructions are 32-bits wide. In fact, the RV64I instruction  
set is almost entirely the same as RV32I, except for these significant differences:

• All of the integer registers are widened to 64 bits.

• Addresses are widened to 64 bits.

• Bit shift counts in instruction opcodes increase in size from 5 to 6 bits.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



308     The RISC-V Architecture and Instruction Set

• Several new instructions are defined to operate on 32-bit values in a manner 
equivalent to RV32I. These instructions are necessary because most instructions 
in RV64I operate on 64-bit values, and there are many situations in which it is 
necessary to operate efficiently on 32-bit values. These word-oriented instructions 
have an opcode mnemonic suffix of W. The W-suffix instructions produce signed 
32-bit results. These 32-bit values are sign-extended (even if they are unsigned 
values) to fill the 64-bit destination register. In other words, bit 31 of each result  
is copied into bits 32-63.

The following new instructions are defined in RV64I:

• addw, addiw, subw, sllw, slliw, srlw, srliw, sraw, sraiw: These 
instructions perform equivalently to the RV32I instruction with the same 
mnemonic, minus the W suffix. They work with 32-bit operands and produce  
32-bit results. The result is sign-extended to 64 bits.

• ld, sd: Load and store a 64-bit doubleword. These are the 64-bit versions of the  
lw and sw instructions in the RV32I instruction set.

The remaining RV32I instructions perform the same functions in RV64I, except addresses 
and registers are 64 bits in length. The same opcodes, both in assembly source code and 
binary machine code, are used in both instruction sets.

In the next section, we will examine some standard 32-bit and 64-bit RISC-V 
configurations that are commercially available. Each of these consists of a base ISA  
plus selected extensions.

Standard RISC-V configurations
The RV32I and RV64I instruction sets provide a base set of capabilities useful mainly in 
smaller embedded system designs. Systems intended to support multithreading, multiple 
privilege levels, and general-purpose operating systems require several of the RISC-V 
extensions to operate correctly and efficiently.

The minimum RISC-V configuration recommended for establishing an application 
development target consists of a base RV32I or RV64I instruction set architecture 
augmented with the I, M, A, F, D, Zicsr, and Zifencei extensions. The abbreviation 
for this combination of features is G, as in RV32G or RV64G. Many G configurations 
additionally support the compressed instruction extension, with the names RV32GC  
and RV64GC.
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In embedded applications, a common configuration is RV32IMAC, providing the base 
instruction set plus multiply/divide functionality, atomic operations, and compressed 
instruction support. Marketing materials for RISC-V processors frequently use these 
shorthand descriptions of processor capabilities.

The following section presents a complete program in RISC-V assembly language.

RISC-V assembly language
The following RISC-V assembly language example is a complete application that runs on  
a RISC-V processor:

.section .text

.global main

main:

    # Reserve stack space and save the return address

    addi    sp, sp, -16

    sd      ra, 0(sp)

    # Print the message using the C library puts function

1:  auipc   a0, %pcrel_hi(msg)

    addi    a0, a0, %pcrel_lo(1b)

    jal     ra, puts

    # Restore the return address and sp, and return to caller

    ld      ra, 0(sp)

    addi    sp, sp, 16

    jalr    zero, ra, 0

.section .rodata

msg:

    .asciz "Hello, Computer Architect!\n"
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This program prints the following message in a console window and then exits:

Hello, Computer Architect!

The following are some points of interest within the assembly code:

• The %pcrel_hi and %pcrel_lo directives select the high 20 bits (%pcrel_hi) 
or low 12 bits (%pcrel_lo) of the PC-relative address of the label provided as an 
argument. The combination of the auipc and addi instructions places the address 
of the message string in a0.

• 1: is a local label. When referencing a local label, the letter b is appended to 
reference a label earlier in the code (backward), or f is appended to reference a label 
later in the code (forward). The %pcrel_hi and %pcrel_lo directives are paired: 
the 1: local label resolves the lower 12 bits of the offset to the msg address.

In the next section, we will run some code in a fully functional RISC-V processor 
implemented in an FPGA.

Implementing RISC-V in an FPGA
All of the source code, processor hardware design intellectual property, and development 
tools required to build and implement a complete RISC-V processor in a low-cost FPGA 
are freely available on the Internet. This section provides a high-level overview of the open 
source RISC-V design and the steps for bringing it up in an FPGA device. The total cost 
for the hardware to accomplish this task is less than US$200.

The RISC-V FPGA target in this example is the Digilent Arty A7-35T board, 
available at https://store.digilentinc.com/arty-a7-artix-7-fpga-
development-board-for-makers-and-hobbyists/. The Arty A7-35T costs 
US$129 at the time of this writing.

The Arty A7-35T contains a Xilinx Artix-7 XC7A35TICSG324-1L FPGA, which can 
be programmed to implement a RISC-V processor. The XC7A35TICSG324-1L has the 
following features:

• 5,200 logic slices.

• 1,600 of the logic slices can implement a 64-bit RAM.

• 41,600 flip-flops. Each logic slice contains eight flip-flops.
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• 90 DSP slices supporting high-performance DSP MAC operations.

• 400 kbits of distributed RAM.

• 1,800 kbits of total RAM.

The Artix-7 FPGA architecture uses lookup tables (LUTs) to implement combinational 
logic. Each of the Artix-7 LUTs has six input signals and one output signal, where each 
signal is one data bit. A single LUT can represent any feedback-free circuit composed of 
AND, OR, NOT, and XOR gates operating on the six input signals by simply storing the 
results of each input combination as a bit in a small ROM. With 6 input bits, the ROM 
contains 64 (26) bits of data addressed by the six input signals. If desired, each LUT can 
instead be configured as two 32-bit LUTs operating on five shared inputs with 2 output 
bits. Optionally, the LUT output can be stored in a flip-flop.

A logic slice contains four LUTs and eight flip-flops, plus additional multiplexer and 
arithmetic carry logic. Four of the eight flip-flops in a slice can be configured as latches. 
Each of the 1,600 slices with 64-bit RAM capability can alternatively implement a 32-bit 
shift register or two 16-bit shift registers.

The low-level LUTs and other facilities provided by the several thousand logic slices 
represent the raw materials needed to assemble a complete RISC-V processor plus 
peripheral devices within a single FPGA. The FPGA programming process interconnects 
components within the FPGA to form a complex digital device defined in a hardware 
definition language.

From the perspective of the system designer, it is not necessary to understand the detailed 
inner workings of the Xilinx FPGA. The designer works at the hardware design language 
level. A tool such as Vivado, introduced in the solutions to the exercises in Chapter 2, 
Digital Logic, translates the hardware design language (typically, VHDL or Verilog, though 
the RISC-V design is implemented in the Chisel and Scala languages) into a compiled 
format suitable for programming an FPGA device.

The designer's primary concerns in regard to the FPGA are that the system design 
is capable of fitting within the resource constraints of the FPGA device and that the 
resulting implementation operates with acceptable efficiency. In this example, the 
XC7A35TICSG324-1L FPGA provides more than enough resources to implement the 
RISC-V processor efficiently.
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To develop and run programs on the Arty A7-35T RISC-V processor, you also need a 
low-cost hardware debugger. The Olimex ARM-TINY-USB-H debugger is available for 
US$45.67 at https://www.digikey.com/product-detail/en/olimex-ltd/
ARM-USB-TINY-H/1188-1013-ND/3471388. You will also need some jumper wires 
to connect the debugger to the Arty A7-35T board. These are available for US$3.95 at 
https://www.adafruit.com/product/826. Finally, the Arty A7-35T processor 
requires a Universal Serial Bus (USB) cable to connect its USB Micro-B connector 
to your host computer system. Other than your host computer system, no additional 
hardware is required. All of the software and design data required to implement the 
RISC-V in Arty is available for free download from the Internet.

The processor we will implement in the Arty A7-35T is the Freedom E310 Arty, an open 
source implementation of an RV32IMAC core with support for interrupt processing. 
Peripheral devices include 16 general-purpose I/O (GPIO) signals and a serial port.

The Freedom E310 processor is provided as source code, and is therefore modifiable by 
users who wish to implement customized versions of the processor. The hardware design 
languages used in the RISC-V processor hardware code are Chisel and Scala.

Chisel is a domain-specific language targeted to the development of complex digital 
hardware devices such as SoCs. Chisel runs on top of Scala, a modern, general-purpose 
programming language supporting the functional and object-oriented programming 
paradigms. Scala is a pure object-oriented language in which every value is an object.  
It is also a functional language in the sense that every function is a value. Scala compiles  
to Java bytecode and runs on the standard Java Virtual Machine. Scala programs can 
directly use any of the thousands of available Java libraries.

RISC-V support for customized extensions
The RISC-V architecture explicitly supports customized variations in the form 
of custom opcodes, coprocessors, and other modifications, so long as they 
are compatible with the RISC-V customization rules. Starting from the open 
source RISC-V design, you can implement custom modifications that will be 
guaranteed to remain compatible with future versions of RISC-V standards  
and extensions.
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Chisel and Scala are preferred in the design of complex digital systems today because of the 
higher-level nature of these languages compared to traditional hardware design languages 
such as VHDL and Verilog. While it's true that any circuit you might design in Chisel can 
also be designed in VHDL, there are some substantial benefits to using Chisel. For example, 
the compilation process transforms the Chisel/Scala code into a form called Flexible 
Intermediate Representation for RTL (FIRRTL), where RTL stands for register-transfer 
level, which is the abstraction level used in synchronous circuit hardware design languages 
such as VHDL. Using freely available tools, it is possible to perform optimizations on the 
FIRRTL representation of a circuit that result in a better-performing FPGA implementation 
than a comparable design in VHDL or Verilog would be likely to provide.

One way to appreciate the difference between Chisel and VHDL/Verilog is the analogous 
differentiation between the Python and C programming languages. While you can 
implement the functional equivalent of any Python program in C, Python programs  
can express far more high-level functionality in a few lines of code than a similar size 
program in C.

We can compare Chisel code to the VHDL example we looked at in the Hardware 
description languages section of Chapter 2, Digital Logic. Consider the VHDL version  
of the single-bit full adder presented in that chapter, shown in the following code block:

-- Load the standard libraries

library IEEE;

  use IEEE.STD_LOGIC_1164.ALL;

-- Define the full adder inputs and outputs

entity FULL_ADDER is

  port (

    A     : in    std_logic;

    B     : in    std_logic;

    C_IN  : in    std_logic;

    S     : out   std_logic;

    C_OUT : out   std_logic

  );

end entity FULL_ADDER;
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-- Define the behavior of the full adder

architecture BEHAVIORAL of FULL_ADDER is

begin

  S     <= (A XOR B) XOR C_IN;

  C_OUT <= (A AND B) OR ((A XOR B) AND C_IN);

end architecture BEHAVIORAL;

The Chisel equivalent of the full adder is shown in the following code block:

import chisel3._

class FullAdder extends Module {

  val io = IO(new Bundle {

    val a     = Input(UInt(1.W))

    val b     = Input(UInt(1.W))

    val c_in  = Input(UInt(1.W))

    val s     = Output(UInt(1.W))

    val c_out = Output(UInt(1.W))

  })

  io.s := (io.a ^ io.b) ^ io.c_in

  io.c_out := (io.a & io.b) | ((io.a ^ io.b) & io.c_in)

}

In this code, the IO bundle defines the module inputs and outputs. The argument  
to each Input and Output parameter defines the data type (Uint) and the bit width 
(1.W, indicating each input and output signal is 1 bit wide).

While this simple example does not demonstrate the full range of benefits of developing 
complex circuits in Chisel, it shows that, at the level of detailed implementation, it does 
not look too different from VHDL. We won't delve further into the details of Chisel here. 
For further information, consult the Chisel repository at https://github.com/
freechipsproject/chisel3.
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The process of building the RISC-V processor and programming it into the Arty A7-35T 
board consists of the following steps:

1. Translate the Chisel and Scala code into the FIRRTL form.

2. Translate the FIRRTL into Verilog.

3. Compile the Verilog into an FPGA image.

4. Program the FPGA image onto the Arty A7-35T board.

The detailed commands to perform each of these steps are presented in the answers to the 
exercises at the end of this chapter.

Once you have programmed the RISC-V image onto the Arty board, it will be possible to 
connect a software development suite to the board through the debugger interface. From 
this point, you can develop RISC-V code in assembly language or in high-level languages, 
compile it, and run it on the FPGA RISC-V processor in the same manner as with a 
hardware processor.

Summary
This chapter introduced the RISC-V processor architecture and its instruction set. The 
RISC-V project has defined a complete user-mode instruction set specification and 
a number of extensions to support general-purpose computing, high-performance 
computing, and embedded applications requiring minimal code size. RISC-V processors 
are offered commercially, and open source products are available to implement 
instantiations of RISC-V in FPGA devices.

Having completed this chapter, you should understand the architecture and features of 
the RISC-V processor and its optional extensions. You learned the basics of the RISC-V 
instruction set and now understand how RISC-V can be tailored to target a variety of 
application domains, from low-end micropower embedded systems to warehouse-scale 
cloud server farms. You also learned how to implement a RISC-V processor in a low-cost 
FPGA board.

The next chapter introduces the concept of processor virtualization, where rather than 
running code directly on a host processor, an entire virtual environment is implemented 
to run perhaps several virtual processors, each with its own operating system and 
applications, on a single physical processor.
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Exercises
1. Visit https://www.sifive.com/boards/ and download Freedom Studio. 

Freedom Studio is an Eclipse integrated development environment (IDE)-based 
development suite with a complete set of tools for building a RISC-V application 
and running it on a hardware RISC-V processor or in the emulation environment 
included with Freedom Studio. Follow the instructions in the Freedom Studio User 
Manual to complete the installation. Start Freedom Studio and create a new Freedom 
E SDK project. In the project creation dialog, select qemu-sifive-u54 as the 
target (this is a single-core 64-bit RISC-V processor in the RV64GC configuration). 
Select the hello example program and click the Finish button. This will start a 
build of the example program and the RISC-V emulator. After the build completes, 
the Edit Configuration dialog box will appear. Click Debug to start the program in 
the emulator debug environment. Single-step through the program and verify the 
text Hello, World! appears in the console window.

2. With the project from Exercise 1 still open, locate the hello.c file in the src 
folder in the Project window. Right-click on the file and rename it hello.s. 
Open hello.s in the editor and delete the entire contents. Insert the assembly 
language program shown in the RISC-V assembly language section in this chapter. 
Perform a clean, and then rebuild the project (press Ctrl+ 9 to initiate the clean 
operation). Select Debug under the Run menu. Once the debugger starts, open 
windows to display the hello.s source file, the Disassembly window, and 
the Registers window. Expand the Registers tree to display the RISC-V 
processor registers. Single-step through the program and verify the text Hello, 
Computer Architect! appears in the console window.

3. Write a RISC-V assembly language program that computes the following expression 
and prints the result as a hexadecimal number: . As 
part of this program, create a callable function to print 1 byte as two hex digits.

4. Program an Arty A7-35T board with a RISC-V processor image. Build and  
run the hello assembly language program shown in the RISC-V assembly  
language section in this chapter on the RISC-V processor using the Olimex 
ARM-TINY-USB-H debugger, as described in the Implementing RISC-V in an 
FPGA section near the end of this chapter. Verify the program outputs the text 
Hello, Computer Architect!.
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Section 3:  
Applications 
of Computer 
Architecture

In this section, we will learn about the issues and trade-offs involved in the development 
of computer architectures intended to satisfy demanding user requirements across  
a variety of domains.

This section comprises the following chapters:

• Chapter 12, Processor Virtualization

• Chapter 13, Domain-Specific Computer Architectures

• Chapter 14, Future Directions in Computer Architectures
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12 
Processor 

Virtualization
This chapter introduces the concepts underlying processor virtualization and explores the 
many benefits to individual users and large organizations that are achievable through the 
effective use of virtualization. We will discuss the principal virtualization techniques and 
the open source and commercial tools that implement them. 

Virtualization tools enable the emulation of instruction set–accurate representations of 
various computer architectures and operating systems on general-purpose computers. 
Virtualization is used widely in the deployment of real-world software applications in 
cloud environments.

After completing this chapter, you will understand the technology and benefits associated 
with hardware virtualization and how modern processors support virtualization at 
the instruction set level. You will have learned the technical features of several open 
source and commercial tools providing virtualization capabilities and will understand 
how virtualization is used to build and deploy scalable applications in cloud computing 
environments.
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The following topics will be presented in this chapter:

• Introducing virtualization
• Virtualization challenges
• Virtualizing modern processors
• Virtualization tools
• Virtualization and cloud computing

Technical requirements
The files for this chapter, including the answers to the exercises, are available at  
https://github.com/PacktPublishing/Modern-Computer-
Architecture-and-Organization.

Introducing virtualization
In the domain of computer architecture, virtualization refers to the use of hardware and 
software to create an emulated version of an environment in which a piece of software 
runs, as opposed to the real environment in which the code normally expects to run.

We have already looked at one form of virtualization in some depth: virtual memory. Virtual 
memory uses software, with supporting hardware, to create an environment in which each 
running application functions as if it has exclusive access to the entire computer, including 
all the memory it requires at the addresses it expects. Virtual address ranges used by a 
program can even be the same as those in use by other currently running processes.

Systems using virtual memory create multiple sandboxed environments in which each 
application runs without interference from other applications, except in competition 
for shared system resources. In the virtualization context, a sandbox is an isolated 
environment in which code runs without interference from anything outside its 
boundaries, and which prevents code inside the sandbox from affecting resources external 
to it. This isolation between applications is rarely absolute, however. For example, even 
though a process in a virtual memory system cannot access another process's memory, it 
may do something else, such as delete a file that is needed by a second process, which may 
cause problems for the other process.

Our primary focus in this chapter will be on virtualization at the processor level, allowing 
one or more operating systems to run in a virtualized environment on a computer system, 
abstracted from the physical layer of the hardware. Several other types of virtualization  
are also widely used.
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The next section will briefly describe the various categories of virtualization you are likely 
to encounter.

Types of virtualization
The term virtualization is applied in several different computing contexts, especially in 
larger network environments, such as businesses, universities, government organizations, 
and cloud service providers. The definitions that follow here will cover the most common 
types of virtualization you are likely to come across.

Operating system virtualization
We will cover operating system virtualization in detail later in this chapter. A virtualized 
operating system runs under the control of a hypervisor. A hypervisor is a combination 
of software and hardware capable of instantiating and running virtual machines. The 
prefix hyper refers to the fact that the hypervisor supervises the supervisor mode of the 
operating systems running in its virtual machines. Another term for hypervisor is virtual 
machine monitor.

There are two general types of hypervisor:

• A type 1 hypervisor, sometimes referred to as a bare metal hypervisor, includes 
software for managing virtual machines that runs directly on the hardware of  
a host computer.

• A type 2 hypervisor, also called a hosted hypervisor, runs as an application program 
that manages virtual machines under a host operating system.

Hypervisor versus virtual machine monitor
Technically, a virtual machine monitor is not exactly the same as a hypervisor, 
but for our purposes, we will treat the terms as synonymous. A virtual machine 
monitor is responsible for virtualizing a processor and other computer 
system components. A hypervisor combines a virtual machine monitor with 
an underlying operating system, which may be dedicated to hosting virtual 
machines (a type 1 hypervisor), or it may be a general-purpose operating 
system (a type 2 hypervisor).

The computer running the hypervisor is referred to as the host. Operating systems running 
within hypervisor-managed virtual environments on a host system are called guests.
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Regardless of its type, a hypervisor enables guest operating systems and applications 
running within them to be brought up and executed in virtualized environments. A single 
hypervisor is capable of supporting multiple virtual machines running on a single processor 
simultaneously. The hypervisor is responsible for managing all requests for privileged 
operations initiated by guest operating systems and the applications running within them. 
Each of these requests requires a transition from user mode to kernel mode, and then 
back to user mode. All I/O requests from applications on guest operating systems involve 
privilege level transitions.

Since operating system virtualization in a type 2 hypervisor involves running an operating 
system under the hypervisor in the host operating system, a natural question is, what 
happens if you run another copy of the hypervisor within the operating system of the virtual 
machine? The answer is that this approach is supported in some, but not all, combinations of 
hypervisor, host OS, and guest OS. This configuration is referred to as nested virtualization.

The next thing you might wonder about nested virtualization is why anyone would want 
to do such a thing. Here is one scenario where nested virtualization is useful: assume that 
your business's primary web presence is implemented as a virtualized operating system 
image containing a variety of installed and custom software components. If your cloud 
service provider goes offline for some reason, you will need to bring the application up  
at an alternative provider quickly.

The Google Compute Engine (https://cloud.google.com/compute), for 
example, provides an execution environment implemented as a virtual machine. 
Compute Engine allows you to install a hypervisor in this virtual machine and bring up 
your application virtual machine within it, putting your web presence back online with 
minimal installation and configuration.

Application virtualization
Instead of creating a virtual environment to encapsulate an entire operating system, it is 
possible to virtualize at the level of a single application. Application virtualization abstracts 
the operating system from the application code and provides a degree of sandboxing. 

This type of virtualization allows programs to run in an environment that differs from the 
intended application target environment. For example, Wine (https://www.winehq.
org/) is an application compatibility layer allowing programs written for Microsoft 
Windows to run under POSIX-compliant operating systems, typically Linux variants. 
The Portable Operating System Interface (POSIX) is a set of IEEE standards providing 
application programming compatibility between operating systems. Wine translates 
Windows library and system calls to equivalent POSIX calls in an efficient manner.
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Application virtualization replaces portions of the runtime environment with a 
virtualization layer and performs tasks such as intercepting disk I/O calls and redirecting 
them to a sandboxed, virtualized disk environment. Application virtualization can 
encapsulate a complex software installation process, consisting of hundreds of files 
installed in various directories, as well as numerous Windows registry modifications, in 
an equivalent virtualized environment contained within a single executable file. Simply 
copying the executable to a target system and running it brings up the application as  
if the entire installation process had taken place on the target.

Network virtualization
Network virtualization is the connection of software-based emulations of network 
components, such as switches, routers, firewalls, and telecommunication networks, 
in a manner that represents a physical configuration of these components. This 
allows operating systems and the applications running on them to interact with and 
communicate over the virtual network in the same manner they would on a physical 
implementation of the same network architecture.

A single physical network can be subdivided into multiple virtual local area networks 
(VLANs), each of which appears to be a complete, isolated network to all systems 
connected on the same VLAN.

Multiple computer systems at the same physical location can be connected to different 
VLANs, effectively placing them on separate networks. Conversely, computers at distant 
geographic separations can be placed on the same VLAN, making it appear as if they are 
interconnected within a small local network.

Storage virtualization
Storage virtualization is the separation of physical data storage from the logical storage 
structure used by operating systems and applications. A storage virtualization system 
manages the process of translating logical data requests to physical data transfers. Logical 
data requests are addressed as block locations within a disk partition. Following the 
logical-to-physical translation, data transfers may ultimately interact with a storage  
device that has an organization completely different from the logical disk partition.

The process of accessing physical data given a logical address is similar to the  
virtual-to-physical address translation process in virtual memory systems. The logical  
disk I/O request includes information such as a device identifier and a logical block 
number. This request must be translated to a physical device identifier and block number. 
The requested read or write operation then takes place on the physical disk.
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Storage virtualization in data centers often includes several enhancements that increase 
the reliability and performance of data storage systems. Some of these improvements  
are as follows:

• Centralized management enables monitoring and control of a large collection of 
storage devices, possibly of different sizes, and from different vendors. Because 
all virtualized storage appears the same to client applications, any vendor-specific 
variations in storage devices are hidden from users.

• Replication provides transparent data backup and disaster recovery capabilities for 
mission-critical data. When performing real-time replication, writes to the storage 
array are immediately copied to one or more remote replicas.

• Data migration allows administrators to move data to a different physical location 
or switch to a replica while concurrent data I/O operations continue without 
interruption. Because the storage virtualization management system has full  
control over disk I/O, it can switch the target of any logical read or write operation 
to a different physical storage device at any time.

The next section will introduce some of the most common methods of processor 
virtualization in use today.

Categories of processor virtualization
The ideal mode of operation for a processor virtualization environment is full 
virtualization. With full virtualization, binary code in operating systems and applications 
runs in the virtual environment with no modifications whatsoever. Guest operating 
system code performing privileged operations executes under the illusion that it has 
complete and sole access to all machine resources and interfaces. The hypervisor manages 
interactions between guest operating systems and host resources, and takes any steps 
needed to deconflict access to I/O devices and other system resources for each virtual 
machine under its control.

Our focus in this chapter is processor virtualization, enabling the execution of complete 
operating systems and applications running on them in a virtualized environment. 

Historically, there have been several different methods used for the implementation of 
virtualization at the processor level. We'll take a brief look at each of them, beginning with 
an approach first implemented on systems such as the IBM VM/370, introduced in 1972. 
VM/370 was the first operating system specifically designed to support the execution of 
virtual machines.
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Trap-and-emulate virtualization
In a 1974 article entitled Formal Requirements for Virtualizable Third Generation 
Architectures, Gerald J. Popek and Robert P. Goldberg described the three properties  
a hypervisor must implement to efficiently and fully virtualize a computer system, 
including the processor, memory, storage, and peripheral devices:

• Equivalence: Programs (including the guest operating system) running in a 
hypervisor must exhibit essentially the same behavior as when they run directly  
on machine hardware, excluding the effects of timing.

• Resource control: The hypervisor must have complete control over all of the 
resources used by the virtual machine.

• Efficiency: A high percentage of instructions executed by the virtual machine must 
run directly on the physical processor, without hypervisor intervention.

For a hypervisor to satisfy these criteria, the hardware and operating system of the 
computer on which it is running must grant the hypervisor the power to fully control  
the virtual machines it manages. 

The code within a guest operating system assumes it is running directly on the physical 
processor hardware and has full control of all the features accessible via system hardware. 
In particular, guest operating system code executing at the kernel privilege level must  
be able to execute privileged instructions and access regions of memory reserved for  
the operating system.

In a hypervisor implementing the trap-and-emulate virtualization method, portions of the 
hypervisor run with kernel privilege, while all guest operating systems (and, of course, the 
applications running within them) operate at the user privilege level. Kernel code within 
the guest operating systems executes normally until a privileged instruction attempts to 
execute or a memory-access instruction attempts to read or write memory outside the 
user-space address range available to the guest operating system. When the guest attempts 
any of these operations, a trap occurs.
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Exception types: faults, traps, and aborts
The terms fault, trap, and abort are used to describe similar exception events. 
The primary differences between each of these exception types are as follows:

A fault is an exception that ends by restarting the instruction that caused 
the exception. For example, a page fault occurs when a program attempts to 
access a valid memory location that is currently inaccessible. After the page 
fault handler completes, the triggering instruction is restarted, and execution 
continues from that point.

A trap is an exception that ends by continuing the execution with the 
instruction following the triggering instruction. For example, execution 
resumes after the exception triggered by a debugger breakpoint by continuing 
with the next instruction.

An abort represents a serious error condition that may be unrecoverable. 
Problems such as errors accessing memory may cause aborts.

The fundamental trick (if you want to think of it that way) to enable trap-and-emulate 
virtualization is in the handling of the exceptions generated by privilege violations. While 
it is starting up, the hypervisor routes the host operating system exception handlers into 
its own code. Exception handlers within the hypervisor perform the processing of these 
exceptions before the host operating system has a chance to handle them.

The hypervisor exception handler examines the source of each exception to determine if it 
was generated by a guest operating system under the hypervisor's control. If the exception 
originated from a guest the hypervisor manages, the hypervisor handles the exception, 
emulating the requested operation, and returns execution control directly to the guest. 
If the exception did not come from a guest belonging to the hypervisor, the hypervisor 
passes the exception to the host operating system for processing in the normal manner.

For trap-and-emulate virtualization to work in a comprehensive and reliable manner, the 
host processor must support the criteria defined by Popek and Goldberg. The most critical 
of these requirements is that any guest instruction attempting to access privileged resources 
must generate a trap. This is absolutely necessary because the host system has only one set of 
privileged resources (we're assuming a single-core system here for simplicity) and the host 
and guest operating systems cannot share those resources.
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As an example of the types of privileged information controlled by the hypervisor, 
consider the page tables used to manage virtual memory. The host operating system 
maintains a collection of page tables that oversee the entirety of the system's physical 
memory. Each guest operating system has its own set of page tables that it believes it is 
using to manage physical and virtual memory on the system it controls. These two sets 
of page tables contain substantially different data, even though both of them ultimately 
interact with the same physical memory regions. Through the trapping mechanism, 
the hypervisor is able to intercept all guest operating system attempts to interact with 
page tables and direct those interactions to a guest-specific memory region containing 
page tables used only by the guest operating system. The hypervisor then manages the 
necessary translation between addresses used by instructions executing in the guest 
operating system and the host system's physical memory.

The greatest barrier to the widespread use of virtualization in the late 1990s and early 
2000s was the fact that the general-purpose processors in common use at the time 
(x86 variants) did not support the Popek and Goldberg virtualization criteria. The x86 
instruction sets contained a number of instructions that allowed unprivileged code to 
interact with privileged data without generating a trap. Many of these instructions merely 
permitted unprivileged code to read selected privileged registers. While this may seem 
harmless, it caused a severe problem for virtualization because there is only one copy of 
each of those registers in the entire machine, and each guest OS may need to maintain 
different values in those registers.

Later versions of the x86, beginning in 2006, added hardware features (Intel virtualization 
technology (VT-x), and AMD virtualization (AMD-V)) enabling full virtualization under 
the Popek and Goldberg criteria.

The virtualization requirements defined by Popek and Goldberg assumed the use of the 
trap-and-emulate technique, which was widely viewed as the only practical virtualization 
method in the 1970s, was the only feasible method for processor virtualization. In 
the following sections, we will see how it is possible to perform effective and efficient 
virtualization on a computer system that does not fully comply with the Popek and 
Goldberg criteria.
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Paravirtualization
Because most, if not all, of the instructions that require special handling in the virtualized 
environment reside in the guest operating system and its device drivers, one method  
for rendering the guest virtualizable is to modify the operating system and its drivers  
to explicitly interface with the hypervisor in a non-trapping manner. This approach  
can result in substantially better guest OS performance than a system running under 
a trap-and-emulate hypervisor because the paravirtualized hypervisor interface is 
composed of optimized code rather than a series of trap handler invocations. In the  
trap-and-emulate method, the hypervisor must process every trap in a generic handler 
that begins by determining whether the trap even comes from a guest OS it controls 
before further processing to determine the desired operation and emulate its effects.

The primary drawback of paravirtualization is the need to modify the guest operating 
system and its drivers to implement the hypervisor interface. There has been limited 
interest in fully supporting a paravirtualization interface among the maintainers of  
major operating system distributions.

Binary translation
One way to deal with problematic instructions within processor architectures that lack 
full support for virtualization is to scan the binary code prior to execution to detect the 
presence of nonvirtualizable instructions. Where such instructions are found, the code  
is translated into virtualization-friendly instructions that produce identical effects.

This has proven to be a popular approach for virtualization in the x86 architecture. 
The combination of trap-and-emulate with the binary translation of nonvirtualizable 
instructions permits reasonable guest OS performance. This technique keeps the amount 
of processing required to deal with nonvirtualizable instructions to a reasonable level.

Binary translation can be performed on a static or dynamic basis. Static binary translation 
recompiles a set of executable images into a form ready for execution in the virtual 
environment. This translation takes some time, but it is a one-time process providing  
a set of system and user images that will continue to work until new image versions are 
installed, necessitating a recompilation procedure for the new images.

Dynamic binary translation scans sections of code during program execution to locate 
problematic instructions. When such instructions are encountered, they are replaced with 
virtualizable instruction sequences. Dynamic binary translation avoids the recompilation 
step required by static binary translation, but it results in reduced performance due to the 
ongoing code scanning and translation process for all running code. Each code segment 
only needs to be scanned and translated once and is then cached—so, for example, code 
within a loop will not be rescanned on each iteration.
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Hardware emulation
All of the virtualization techniques that we have discussed to this point have assumed the 
guest OS is expecting to run on a processor with the same instruction set architecture as 
the host processor. There are many situations in which it is desirable to run an operating 
system and application code on a host processor with a completely different ISA from the 
guest OS.

When emulating processor hardware, each instruction executing in an emulated guest 
system must be translated to an equivalent instruction or sequence of instructions  
in the host ISA. As with binary translation, this process can take place in a static or  
dynamic manner. 

Static translation can produce an efficient executable image capable of running in the 
target processor ISA. There is some risk in static translation because it may not be 
straightforward to identify all code paths in the executable file, particularly if branch 
target addresses are computed in the code rather than being statically defined. This risk 
also applies to the static binary translation technique described in the previous section. 

Dynamic translation avoids potential errors that may occur with static translation, but 
performance can be quite poor. This is because dynamic translation with hardware 
emulation involves translating every instruction from one architecture to another. This is 
in contrast to dynamic binary translation for the same ISA, which, although it must scan 
every instruction, typically only needs to perform translation for a small percentage of 
executed instructions.

One example of hardware emulation tools is the open source QEMU (https://www.
qemu.org/) machine emulator and virtualizer, which supports the running of operating 
systems for a wide variety of processor architectures on an impressive list of differing 
architectures, with reasonably good performance. The Freedom Studio tool suite for the 
RISC-V processor includes a QEMU implementation of the RV64GC instruction set 
architecture. This virtualized environment was used to run the code that we worked  
with in the exercises for Chapter 11, The RISC-V Architecture and Instruction Set.

In the next section, we will discuss the challenges and benefits related to virtualization  
in the processor families discussed in the preceding chapters.
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Virtualization challenges
In simple terms, the goal of processor virtualization is to run an operating system within 
a hypervisor, which itself either runs on the bare metal of a computer system or runs as an 
application under the control of another operating system. In this section, we will focus 
on the hosted (type 2) hypervisor because this mode of operation presents a few added 
challenges that a bare-metal hypervisor may not face because the type 1 hypervisor has 
been optimized to support virtualization.

In a type 2 hypervisor, the host operating system supports kernel and user modes, as does 
the guest operating system (in the guest's perception). As the guest operating system and 
the applications running within it request system services, the hypervisor must intercept 
each request and translate it into a suitable call to the host kernel.

In a nonvirtualized system, peripheral devices, such as the keyboard and mouse, interact 
directly with the host operating system. In a virtualized environment, the hypervisor  
must manage the interfaces to these devices whenever the user requests interaction  
with the guest OS.

The degree of difficulty involved in implementing these capabilities depends on the 
instruction set of the host computer. Even if an instruction set was not designed to facilitate 
virtualization, it may or may not be possible for that architecture to support virtualization 
in a straightforward manner. The ease of virtualization on a particular processor ISA is  
a function of the manner in which the processor handles unsafe instructions.

Unsafe instructions
The name of the trap-and-emulate virtualization method refers to the ability of the 
hypervisor to take control of processing exceptions that would normally be dealt with by 
kernel mode handlers in the host operating system. This allows the hypervisor to process 
privilege violations and system calls from guest operating systems and the applications 
that run within them.

Each time an application running on a guest operating system requests a system function, 
such as opening a file, the hypervisor intercepts the request, adjusts the parameters of the 
request to align with the virtual machine configuration (perhaps by redirecting the file open 
request from the host filesystem to the guest's virtual disk sandbox), and passes the request 
on to the host operating system. The process of inspecting and performing the handling of 
exceptions by the hypervisor is the emulation phase of the trap-and-emulate approach.
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In the context of virtualization, processor instructions that either rely on or modify 
privileged system state information are referred to as unsafe. For the trap-and-emulate 
method to function in a comprehensively secure and reliable manner, all unsafe 
instructions must generate exceptions that trap to the hypervisor. If an unsafe instruction 
is allowed to execute without trapping, the isolation of the virtual machine is compromised 
and virtualization may fail.

Shadow page tables
Protected data structures used in the allocation and management of virtual and physical 
memory present an additional challenge to full virtualization. A guest operating system 
kernel presumes it has full access to the hardware and data structures associated  
with the system MMU. The hypervisor must translate guest operating system requests  
for memory allocation and deallocation in a manner that is functionally equivalent  
to running the guest OS on bare metal.

A particular problem arises in the x86 architecture due to the fact that virtual memory 
page table configuration data must be stored within the processor to properly configure the 
system, but that information becomes inaccessible once it has been stored. To resolve this 
issue, the hypervisor maintains its own copy of the page table configuration data, referred to 
as shadow page tables. Because the shadow page tables are not actual page tables managing 
memory for the host OS, it is necessary for the hypervisor to set access permission 
restrictions on shadow page table memory regions and intercept the resulting traps when 
the guest OS attempts to access its page tables. The hypervisor then emulates the requested 
operation by interacting with the physical MMU through calls to the host OS.

The use of shadow page tables incurs a significant performance penalty and has been an 
area of focus for the development of hardware-assisted virtualization enhancements.

Security
There is nothing inherently insecure about using a hypervisor to virtualize one or more 
guest applications. It is, however, important to understand the added opportunities for 
malicious actors to attempt to infiltrate a virtualized environment.

A guest virtual machine presents essentially the same collection of vulnerabilities to 
remote attackers as an identical operating system and set of applications running directly 
on hardware. The hypervisor provides an additional avenue that an attacker may attempt 
to exploit in a virtualized environment. If malicious users manage to penetrate and take 
control of the hypervisor, this will grant full access to all of the guest operating systems, 
as well as the applications and data accessible from within the guests. The guests are 
accessible in this scenario because they operate at a lower privilege level granting the 
hypervisor full control over them.
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When implementing virtualization in a context that permits public access, such as web 
hosting, it is vital that credentials enabling login to hypervisors, and any other access 
methods, be strictly limited to a small number of personnel, and all reasonable protective 
measures must be maintained to prevent unauthorized hypervisor access.

In the next section, we will examine some key technical aspects of virtualization as 
implemented in modern processor families.

Virtualizing modern processors
The hardware architectures of most general-purpose processor families have matured 
to the point that they fully support the execution of virtualized guest operating systems, 
at least in their higher-end variants. The following sections briefly introduce the 
virtualization capabilities provided by modern general-purpose processor families. 

x86 processor virtualization
The x86 architecture was not originally designed to support the execution of virtualized 
operating systems. As a result, x86 processors, from the earliest days through to the 
Pentium series, implemented instruction sets containing several unsafe but non-trapping 
instructions. These instructions caused problems with virtualization by, for example, 
allowing the guest operating system to access privileged registers that do not contain  
data corresponding to the state of the virtual machine.

x86 current privilege level and unsafe instructions
In the x86 architecture, the lower two bits of the code segment (CS) register 
contain the current privilege level (CPL), identifying the currently active 
protection ring. The CPL is generally 0 for kernel code and 3 for user 
applications in a nonvirtualized operating system. In most hypervisor 
implementations, virtual machines run at CPL 3, causing many unsafe x86 
instructions to trap upon execution. Unfortunately, for the early adopters of 
x86 virtualization, not all unsafe x86 instructions in Pentium processors caused 
traps when executed at CPL 3.

For example, the sidt instruction permits unprivileged code to read the 6-byte interrupt 
descriptor table register (IDTR) and store it at a location provided as an operand. There 
is only one IDTR in a physical single-core x86 processor. When a guest operating system 
executes this instruction, the IDTR contains data associated with the host operating 
system, which differs from the information the guest operating system expects to retrieve. 
This will result in erroneous execution of the guest operating system.
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Writing to the physical system's IDTR is only possible for code running at CPL 0. When a 
guest operating system attempts to write to the IDTR while running at CPL 3, a privilege 
violation occurs and the hypervisor processes the ensuing trap to emulate the write 
operation by writing to a shadow register instead, which is just a location in memory 
allocated by the hypervisor. Reads from the IDTR, however, are permitted at CPL 3.  
User-mode software can read the IDTR and no trap occurs. Without a trap, the hypervisor 
is unable to intercept the read operation and return data from the shadow register. In 
short, writes to the IDTR are virtualizable, while reads from the IDTR are not.

Of the hundreds of instructions in the Pentium ISA, 17 were found to be unsafe but 
non-trapping. In other words, these instructions are nonvirtualizable. For the Pentium x86 
architecture, implementing a pure trap-and-emulate virtualization approach is therefore 
not possible.

The unsafe, but non-trapping, instructions are used frequently in operating systems and 
device drivers, but are rarely found in application code. The hypervisor must implement 
a mechanism to detect the presence of unsafe, non-trapping instructions in the code and 
handle them.

The approach settled on by several popular virtualization engines has been to combine 
trap-and-emulate virtualization, where possible, with the binary translation of unsafe 
instructions into functionally equivalent code sequences suitable for the virtualized 
environment.

Most guest user applications do not attempt to use unsafe instructions at all. This allows 
them to run at full speed, once the hypervisor has scanned the code to ensure no unsafe 
instructions are present. Guest kernel code, however, may contain numerous, frequently 
encountered unsafe instructions. To achieve reasonable performance from binary-translated 
code, it is necessary to cache the modified code the first time it executes and reuse the 
cached version on future execution passes.

x86 hardware virtualization 
Between 2005 and 2006, Intel and AMD released versions of the x86 processors 
containing hardware extensions supporting virtualization. These extensions resolved the 
problems caused by the privileged but non-trapping instructions, enabling full system 
virtualization under the Popek and Goldberg criteria. The extensions were named 
AMD-V in AMD processors and VT-x in Intel processors. The virtualization extensions  
in modern Intel processors are referred to as VT.
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The initial implementations of these hardware virtualization technologies removed  
the requirements for the binary translation of unsafe instructions, but overall virtual 
machine performance did not improve substantially following the removal of binary 
translation. This was because page table shadowing was still needed. Page table shadowing 
had been the cause of most of the performance degradation observed during virtual 
machine execution.

Later versions of hardware virtualization technology removed many of the performance 
barriers in virtual machine execution, leading to the widespread adoption of x86 
virtualization across a variety of domains. Today, multiple tools and frameworks are 
available for implementing x86 virtualization solutions within a standalone workstation, 
with options available to scale up to a fully managed data center with potentially 
thousands of servers, each capable of running several virtual machines simultaneously.

ARM processor virtualization
The ARMv8-A architecture supports virtualization in both the 32-bit and 64-bit 
(AArch64) execution states. Hardware support for virtualization includes the following:

• Full trap-and-emulate virtualization

• A dedicated exception category for hypervisor use

• Additional registers supporting hypervisor exceptions and stack pointers

The ARMv8-A architecture provides hardware support for the translation of guest 
memory access requests to physical system addresses.

Systems running ARM processors offer a comprehensive capability for virtual machine 
execution using either a type 1 or type 2 hypervisor. 64-bit ARM processor performance 
is comparable to x64 servers with similar specifications. For many applications, such as 
large data center deployments, the choice between x64 and ARM as the server processor 
may revolve around factors unrelated to processor performance, such as system power 
consumption and cooling requirements.

RISC-V processor virtualization
Unlike the other ISAs discussed in this chapter, the architects of the RISC-V ISA included 
comprehensive virtualization support as a baseline requirement from the beginning of the 
ISA design. Although not yet a finalized standard, the proposal for the RISC-V hypervisor 
extension provides a full set of capabilities to support the efficient implementation of type 
1 and type 2 hypervisors.
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The RISC-V hypervisor extension fully implements the trap-and-emulate virtualization 
method and provides hardware support for the translation of guest operating system 
physical addresses to host physical addresses. RISC-V implements the concept of 
foreground and background control and status registers, which allows the rapid swapping 
of supervisor registers in and out of operation as virtual machines transition into and out 
of the running state.

Each hardware thread in RISC-V runs at one of three privilege levels:

• User (U): This is the same as user privilege in a traditional operating system.

• Supervisor (S): This is the same as supervisor or kernel mode in a traditional 
operating system.

• Machine(M): The highest privilege level, with access to all system features.

Individual processor designs may implement all three of these modes, or they may 
implement the M and S mode pair, or M mode alone. Other combinations are not allowed.

In a RISC-V processor supporting the hypervisor extension, an additional configuration 
bit, the V bit, controls the virtualization mode. The V bit is set to 1 for hardware threads 
executing in a virtualized guest. Both the user and supervisor privilege levels can execute 
with the V bit set to 1. These are named the virtual user (VU) and virtual supervisor 
(VS) modes. In the RISC-V hypervisor context, supervisor mode with V = 0 is renamed 
the hypervisor-extended supervisor mode (HS). This name indicates HS is the mode in 
which the hypervisor itself, regardless of whether it is type 1 or type 2, runs. The remaining 
privilege level, M mode, only functions in a non-virtualized manner (with V = 0).

In both VU and VS modes, RISC-V implements a two-level address translation scheme 
that converts each guest virtual address first to a guest physical address and then to a 
supervisor physical address. This procedure efficiently performs the translation from 
virtual addresses in applications running in guest operating systems to physical addresses 
in system memory.

The next section provides overviews of a number of popular tools that are available for 
processor and operating system virtualization.

Virtualization tools
In this section, we will look at several widely available open source and commercial tools 
that implement different forms of processor virtualization. This information may be useful 
as a starting point when initiating a project involving virtualization.
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VirtualBox
VirtualBox is a free, open source type 2 hypervisor from Oracle Corporation. Supported 
host operating systems include Windows and several Linux variants. One or more guest 
operating systems on a single host can simultaneously run Windows and a variety of 
Linux distributions.

Guest OS licensing requirements
For organizations and individuals to remain in compliance with copyright laws, 
operating systems requiring licensing, such as Windows, must be properly 
licensed even when running as guest operating systems.

Individual virtual machines can be started, stopped, and paused under the control of the 
interactive VirtualBox management program or from the command line. VirtualBox has 
the ability to capture snapshots of executing virtual machines and save them to disk. At a 
later time, a snapshot can resume execution from the precise point at which it was taken.

VirtualBox requires hardware-assisted virtualization provided by platforms with the 
AMD-V or Intel VT extensions. A number of mechanisms are provided enabling virtual 
machines to communicate with the host OS and with each other. A shared clipboard 
supports copy-and-paste between host and guest machines or from guest to guest. An 
internal network can be configured within VirtualBox that allows guests to interact with 
each other as if they were connected on an isolated local area network.

VMware Workstation
VMware Workstation, first released in 1999, is a type 2 hypervisor that runs on 64-bit 
versions of Windows and Linux. VMware products are offered commercially and 
require the purchase of licenses by some users. A version of Workstation called VMware 
Workstation Player is available at no cost with the provision that it can only be used for 
non-commercial purposes.

VMware Workstation supports the execution of potentially multiple copies of Windows 
and Linux operating systems within the host Linux or Windows operating system. Like 
VirtualBox, Workstation can capture snapshots of the virtual machine state, save that 
information to disk, and later resume execution from the captured state. Workstation 
also supports host-to-guest and guest-to-guest communication features, such as a shared 
clipboard and local network emulation.
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VMware ESXi
ESXi is a type 1 hypervisor intended for enterprise-class deployments in data centers 
and cloud server farms. As a type 1 hypervisor, ESXi runs on the bare metal of the 
host computer system. It has interfaces with the computer system hardware, each guest 
operating system, and a management interface called the service console.

From the service console, administrators can oversee and manage the operation of a  
large-scale data center, bringing up virtual machines and assigning them tasks (referred  
to as workloads). ESXi provides additional features necessary for large-scale deployments, 
such as performance monitoring and fault detection. In the event of hardware failure or  
to enable system maintenance, virtual machine workloads can be transitioned seamlessly 
to different host computers.

KVM
The kernel-based virtual machine (KVM) is an open source type 2 hypervisor initially 
released in 2007. KVM supports full virtualization for guest operating systems. When 
used with x86 or x64 hosts, the system hardware must include the AMD-V or Intel VT 
virtualization extensions. The KVM hypervisor kernel is included in the main Linux 
development line.

KVM supports the execution of one or more virtualized instances of Linux and Windows 
on a host system without any modification of the guest operating systems.

Although originally developed for the 32-bit x86 architecture, KVM has been ported 
to x64, ARM, and PowerPC. KVM supports paravirtualization for Linux and Windows 
guests using the VirtIO API. In this mode, paravirtualized device drivers are provided  
for Ethernet, disk I/O, and the graphics display.

Xen
Xen, first released in 2003, is a free and open source type 1 hypervisor. The current 
version of Xen runs on x86, x64, and ARM processors. Xen supports guest virtual 
machines running under hardware-supported virtualization (AMD-V or Intel VT) or as 
paravirtualized operating systems. Xen is implemented in the mainline Linux kernel.

The Xen hypervisor runs one virtual machine at the most privileged level, referred to 
as domain 0, or dom0. The dom0 virtual machine is typically a Linux variant and has 
full access to the system hardware. The dom0 machine provides the user interface for 
managing the hypervisor.
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Some of the largest commercial cloud service providers, including Amazon EC2, IBM 
SoftLayer, and Rackspace Cloud, use Xen as their primary hypervisor platform.

Xen supports live migration, where a virtual machine can be migrated from one host 
platform to another without downtime.

QEMU
QEMU, an abbreviation for quick emulator, is a free and open source emulator that 
performs hardware virtualization. QEMU can emulate at the level of a single application 
or an entire computer system. At the application level, QEMU can run individual Linux or 
macOS applications that were built for a different ISA than the execution environment.

When performing system emulation, QEMU represents a complete computer system, 
including peripherals. The guest system can use an ISA that differs from the host system. 
QEMU supports the execution of multiple guest operating systems on a single host 
simultaneously. Supported ISAs include x86, MIPS, ARMv7, ARMv8, PowerPC,  
and RISC-V.

QEMU supports the setup and migration of KVM machines, performing hardware 
emulation in conjunction with the virtual machine running under KVM. Similarly, 
QEMU can provide hardware emulation for virtual machines running under Xen.

QEMU is unique among virtualization tools in that it is not necessary for it to run  
at elevated privilege because it entirely emulates the guest system in software. The 
downside of this approach is the performance degradation resulting from the software 
emulation process.

The next section will discuss the synergistic effects resulting from implementing cloud 
computing using virtualization.

Virtualization and cloud computing
The terms virtualization and cloud computing are often tossed about with vague, 
sometimes overlapping meanings. Here is an attempt to highlight the difference  
between them:

• Virtualization is a technology for abstracting software systems from the 
environment in which they operate.

• Cloud computing is a methodology for employing virtualization and other 
technologies to enable the deployment, monitoring, and control of large-scale  
data centers.
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The use of virtualization in cloud computing environments enables the flexible 
deployment of application workloads across an array of generic computing hardware in 
a controlled, coherent manner. By implementing applications such as web servers within 
virtual machines, it is possible to dynamically scale online computing capacity to match 
varying load conditions.

Commercial cloud service providers generally offer the use of their systems on a  
pay-per-capacity-used basis. A website that normally receives a fairly small amount  
of traffic may spike substantially if, for instance, it receives a mention on a national  
news program. If the site is deployed in a scalable cloud environment, the management 
software will detect the increased load and bring up additional instances of the website 
and potentially of the backend database as well. This increased resource usage will result 
in a larger bill from the cloud service provider, which most businesses will happily pay if 
the result is a website that remains operational and responsive to user input even under  
a heavy traffic load.

Cloud management environments, such as VMware ESXi and Xen, provide 
comprehensive tools for the configuration, deployment, management, and maintenance  
of large-scale cloud operations. These configurations may be intended for local use by  
an organization, or they may offer public-facing facilities for online service providers  
such as Amazon Web Services.

Electrical power consumption
Electrical power consumption is a significant expense for cloud service providers. Each 
computer in a large-scale server farm consumes power whenever it is running, even if  
it is not performing any useful work. In a facility containing thousands of computers,  
it is important to the bottom line that servers consume power only when needed by 
paying customers.

Virtualization helps substantially with the effective utilization of server systems. Since a 
single server can potentially host several guest virtual machines, customer workloads can 
be allocated efficiently across server hardware in a manner that avoids low utilization of 
a large number of computers. Servers that are not needed at a given time can be powered 
off completely, thereby reducing energy consumption, which, in turn reduces costs to the 
cloud provider and enables more competitive pricing for end users.

This section has provided a brief introduction to the use of virtualization in the context 
of cloud computing. Most organizations and individuals that establish a presence on the 
Internet make use of virtual servers in a cloud computing environment, whether they 
know it or not.
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Summary
This chapter presented the concepts underlying processor virtualization and explained the 
many benefits to individual users and large organizations achieved through the effective 
use of virtualization. We examined the principal virtualization techniques and the open 
source and commercial tools that implement them. 

We also saw the benefits of virtualization in the deployment of real-world software 
applications in cloud environments .

You should now understand the technology and benefits associated with processor 
virtualization and how modern processor ISAs support virtualization at the instruction set 
level. We learned about several open source and commercial tools providing virtualization 
capabilities. You should now understand how virtualization can be used to build and 
deploy scalable applications in cloud computing environments.

In the next chapter, we will look at the architecture of some specific application categories, 
including mobile devices, personal computers, gaming systems, systems that process big 
data, and neural networks.

Exercises
1. Download and install the current version of VirtualBox. Download, install, and 

bring up Ubuntu Linux as a virtual machine within VirtualBox. Connect the guest 
OS to the Internet using a bridged network adapter. Configure and enable clipboard 
sharing and file sharing between the Ubuntu guest and your host operating system.

2. Within the Ubuntu operating system you installed in Exercise 1, install VirtualBox 
and then install and bring up a virtual machine version of FreeDOS, available from 
https://www.freedos.org/download/. Verify that DOS commands,  
such as echo Hello World! and mem, perform properly in the FreeDOS virtual 
machine. After completing this exercise, you will have implemented an instance  
of nested virtualization.

3. Create two separate copies of your Ubuntu guest machine in your host system's 
VirtualBox environment. Configure both Ubuntu guests to connect to the 
VirtualBox internal network. Set up the two machines with compatible Internet 
Protocol addresses. Verify each of the machines can receive a response from 
the other using the ping command. By completing this exercise, you will have 
configured a virtual network within your virtualized environment.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.freedos.org/download/


13
Domain-Specific 

Computer 
Architectures

This chapter brings together the topics discussed in previous chapters to develop an 
approach for architecting a computer system designed to meet unique user requirements. 
We will build upon this approach to gain an understanding of the user-level requirements 
and performance capabilities associated with several different categories of real-world 
computer systems.

This chapter will cover the following topics:

• Architecting computer systems to meet unique requirements

• Smartphone architecture 

• Personal computer architecture

• Warehouse-scale computing architecture

• Neural networks and machine learning architectures
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Technical requirements
The files for this chapter, including answers to the exercises, are available at  
https://github.com/PacktPublishing/Modern-Computer-
Architecture-and-Organization.

Architecting computer systems to meet 
unique requirements
Every device containing a digital processor is designed to perform a particular function 
or collection of functions. This applies even to general-purpose devices, such as personal 
computers. A comprehensive list of the required and desired features and capabilities for 
a device provides the raw information needed to begin designing the architecture of its 
digital components.

The list that follows identifies some of the considerations a computer architect must weigh 
in the process of organizing the design of a digital system:

• The types of processing required: Does the device need to process audio, video, 
or other analog information? Is a high-resolution graphics display included in the 
design? Will extensive floating-point or decimal mathematics be required? Will 
the system support multiple, simultaneously running applications? Are special 
algorithms, such as neural network processing, going to be used?

• Memory and storage requirements: How much RAM will the operating system 
and anticipated user applications need to perform as intended? How much 
non-volatile storage will be required?

• Hard or soft real-time processing: Is a real-time response to inputs within a time 
limit mandatory? If real-time performance is not absolutely required, are there 
desired response times that must be met most, but not necessarily all, of the time?

• Connectivity requirements: What kinds of wired connections, such as Ethernet 
and USB, does the device need to support? How many physical ports for each type 
of connection are required? What types of wireless connections (cellular network, 
Wi-Fi, Bluetooth, NFC, GPS, and so on) are needed? 

• Power consumption: Is the device battery-powered? If it is, what is the tolerable 
level of power consumption for digital system components during periods of high 
usage, as well as during idle periods? If the system runs on externally provided 
power, is it more important for it to have high processing performance or low power 
consumption? For both battery-powered systems and externally powered systems, 
what are the limits of power dissipation before overheating becomes an issue?
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• Physical constraints: Are there tight physical constraints on the size of the digital 
processing components?

• Environmental limits: Is the device intended to operate in very hot or cold 
environments? What level of shock and vibration must the device be able  
to withstand? Does the device need to operate in extremely humid or dry 
atmospheric conditions? 

The following sections examine the top-level architectures of several categories of digital 
devices and discuss the answers the architects of those systems arrived at in response 
to questions similar to those in the preceding list. We'll begin with mobile device 
architecture, looking specifically at the iPhone X.

Smartphone architecture 
At the architectural level, there are three key features a smartphone must provide to  
gain wide acceptance: small size (except for the display), long battery life, and very  
high processing performance upon demand. Obviously, the requirements for long  
battery life and high processing power are in conflict and must be balanced to achieve  
an optimal design.

The requirement for small size is generally approached by starting with a screen size  
(in terms of height and width) large enough to render high-quality video and function  
as a user-input device (especially as a keyboard), yet small enough to easily be carried in  
a pocket or purse. To keep the overall device size small in terms of total volume, we need 
to make it as thin as possible.

In the quest for thinness, the mechanical design must provide sufficient structural 
strength to support the screen and resist damage from routine handling, drops on the 
floor, and other physical assaults, while simultaneously providing adequate space for 
batteries, digital components, and subsystems such as the cellular radio transceiver.

Because users are going to have unrestricted physical access to the external and internal 
features of their phones, any trade secrets or other intellectual property, such as system 
firmware, that the manufacturer wishes to prevent from being disclosed must be protected 
from all types of extraction. Yet, even with these protections in place, it must also be 
straightforward for end users to securely install firmware updates while preventing the 
installation of unauthorized firmware images.

We will examine the digital architecture of the iPhone X in the light of these requirements 
in the next section.
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iPhone X
The iPhone X, also called the iPhone 10, was released in 2017 and discontinued in 2018. 
The iPhone X was Apple's flagship smartphone at the time and contained some of the 
most advanced technologies on the market. Since Apple releases only limited information 
on the design details of its products, some of the following information comes from 
teardowns and other types of analysis by iPhone X reviewers and should therefore be 
taken with a grain of salt.

The computational architecture of the iPhone X is centered on the Apple A11 Bionic 
SoC, an ARMv8-A six-core processor constructed with 4.3 billion CMOS transistors. 
Two of the cores, with an architecture code-named Monsoon, are optimized for high 
performance and support a maximum clock speed of 2.39 GHz. The remaining four cores, 
code-named Mistral, are designed for energy-efficient operation at up to 1.42 GHz. All 
six cores are out-of-order superscalar designs. The Monsoon cores can decode up to seven 
instructions simultaneously, while the Mistral cores can decode up to three instructions 
at a time. When executing multiple processes or multiple threads within a single process 
concurrently, it is possible for all six cores to run in parallel.

Of course, running all six cores simultaneously creates a significant drain on the batteries. 
Most of the time, especially when the user is not interacting with the device, several of the 
cores are placed in low-power modes to maximize battery life.

The iPhone X contains 3 GB of fourth-generation low power double data rate RAM 
(LP-DDR4x). Each LP-DDR4x device is capable of a 4,266 Mbps data transfer rate. The 
enhancement indicated by the x in LP-DDR4x reduces the I/O signal voltage from the 
1.112 V of the previous DDR generation (LP-DDR4) to 0.61 V in LP-DDR4x, reducing 
RAM power consumption in the iPhone X.

The A11 SoC integrates a three-core GPU designed by Apple. In addition to accelerating 
traditional GPU tasks, such as three-dimensional scene rendering, the GPU contains 
several enhancements supporting machine learning and other data-parallel tasks suitable 
for implementation on GPU hardware.

The 3D rendering process implements an algorithm tailored to resource-constrained 
systems (such as smartphones) called tile-based deferred rendering (TBDR). TBDR 
attempts to identify objects within the field of view that are not visible (in other words, 
those that are obscured by other objects) as early in the rendering process as possible, 
thereby avoiding the work of completing their rendering. This rendering process divides 
the image into sections (the tiles) and performs TBDR on multiple tiles in parallel to 
achieve maximum performance.
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The A11 contains a neural network processor, called the Apple Neural Engine, consisting 
of two cores capable of a total of 600 billion operations per second. This subsystem 
appears to be used for tasks such as identifying and tracking objects in the live video  
feed from the phone's cameras.

The A11 contains a motion coprocessor, which is a separate ARM processor dedicated 
to collecting and processing data from the phone's gyroscope, accelerometer, compass, 
and barometric sensors. The processed output of this data includes an estimated category 
of the user's current activity, such as walking, running, sleeping, or driving. Sensor data 
collection and processing continues at a low power level even while the remainder of the 
phone is in sleep mode.

The A11, fully embracing the term system on chip, also contains a high-performance 
solid-state drive (SSD) controller. The iPhone X contains 64 GB or, optionally, 256 GB 
of internal drive storage. The A11 SSD controller manages the interface to this storage, 
including the use of error-correcting code (ECC). The combination of ECC flash  
memory devices and a controller that supports ECC increases the reliability of data 
storage in comparison to devices that do not support ECC. The interface between the  
A11 SoC and flash memory is PCI Express.

The following diagram displays the major components of the iPhone X:

Figure 13.1: iPhone X components
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The iPhone X contains several high-performance subsystems, each described briefly in the  
following table:

Table 13.1: iPhone X subsystems
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The iPhone X brought together the most advanced, small form factor, lightweight mobile 
electronic technologies available at the time of its design and assembled them into a sleek, 
attractive package that took the world by storm.

Next, we will look at the architecture of a high-performance personal computer.
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Personal computer architecture
The next system we'll examine is a gaming PC with a processor that, at the time of writing 
(in late 2019), leads the pack in terms of raw performance. We will look in detail at the 
system processor, the GPU, and the computer's major subsystems.

Alienware Aurora Ryzen Edition gaming desktop
The Alienware Aurora Ryzen Edition desktop PC is designed to provide maximum 
performance for gaming applications. To achieve peak speed, the system architecture is 
built around the fastest main processor, GPU, memory, and disk subsystems available at 
prices that at least some serious gamers and other performance-focused users are willing 
to tolerate; however, the number of customers for this configuration is likely to be limited 
by its cost, which is over US $4,000.

The Aurora Ryzen Edition is available with a variety of AMD Ryzen processors at varying 
performance levels and price points. The current highest-performing processor for this 
platform is the AMD Ryzen 9 3950X. When it was introduced in mid-2019, the 3950X  
was promoted as the world's first 16-core processor targeted at mainstream customers.

The Ryzen 9 3950X implements the x64 ISA in a superscalar, out-of-order architecture 
with speculative execution, register renaming, simultaneous decoding of up to four 
instructions, and a 19-stage pipeline. Based on AMD-provided data, the Zen 2 
microarchitecture of the 3950X has up to 15% higher instructions per clock (IPC)  
than the previous generation (Zen+) AMD microarchitecture.

The Ryzen 9 3950X processor boasts the following features:

• 16 cores

• 2 threads per processor (for a total of 32 simultaneous threads)

• Base clock speed of 3.5 GHz with a peak frequency of 4.7 GHz when overclocking

• A level 0 µ-op cache containing 4,096 entries

• A 32 KB level 1 instruction cache with 8-way associativity

• A 64-entry level 1 fully associative instruction TLB

• A 512-entry level 2 instruction TLB with 8-way associativity

• 4 KB and 2 MB virtual page sizes
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• A 32 KB level 1 data cache with 8-way associativity

• A 64-entry level 1 fully associative data TLB

• A 2,048-entry level 2 data TLB with 16-way associativity

• A 64 MB L3 cache

• 16+4+4 PCIe 4.0 lanes

• Total dissipated power of 105 watts

At the time of its release, Ryzen 9 3950X was arguably the highest performing x86 
processor available for the gaming and performance enthusiast market.

Ryzen 9 3950X branch prediction
The Zen 2 architecture includes a sophisticated branch prediction unit that caches 
information describing the branches taken and uses this data to increase the accuracy of 
future predictions. This analysis covers not only individual branches, but also correlates 
among recent branches in nearby code to further increase prediction accuracy. Increased 
prediction accuracy reduces the performance degradation from pipeline bubbles and 
minimizes the unnecessary work involved in speculative execution along branches that 
end up not being taken.

The branch prediction unit employs a form of machine learning called the perceptron. 
Perceptrons are simplified models of biological neurons and form the basis for many 
applications of artificial neural networks. Refer to the Deep learning section in Chapter 6, 
Specialized Computing Domains, for a brief introduction to artificial neural networks.

In the 3950X, perceptrons learn to predict the branching behavior of individual instructions 
based on recent branching behavior by the same instruction and by other instructions. 
Essentially, by tracking the behavior of recent branches (in terms of branches taken and 
not taken), it is possible to develop correlations involving the branch instruction under 
consideration that lead to increased prediction accuracy.

Nvidia GeForce RTX 2080 Ti GPU
The Aurora Ryzen Edition includes an Nvidia GeForce RTX 2080 Ti GPU. In addition 
to the generally high level of graphical performance you would expect from a top-end 
gaming GPU, this card provides substantial hardware support for ray tracing and includes 
dedicated cores to accelerate machine learning applications.
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In traditional GPUs, visual objects are described as collections of polygons. To render a 
scene, the location and spatial orientation of each polygon must first be determined, and 
then those polygons visible in the scene are drawn at the appropriate location in the image. 
Ray tracing uses an alternative, more sophisticated approach. A ray-traced image is drawn 
by tracing the path of light emitted from one or more illumination sources in the virtual 
world. As the light rays encounter objects, effects such as reflection, refraction, scattering, 
and shadows occur. Ray-traced images generally appear much more visually realistic than 
traditionally rendered scenes; however, ray tracing incurs a much higher computational cost.

When the RTX 2080 Ti was introduced, there were no games on the market capable of 
leveraging its ray-tracing capability. Now, most popular, visually rich, highly dynamic 
games take advantage of ray tracing to at least some degree. For game developers, it is not 
an all-or-nothing decision to use ray tracing. It is possible to render portions of scenes in 
the traditional polygon-based mode while employing ray tracing to render the objects and 
surfaces in the scene that benefit the most from its advantages. For example, a scene may 
contain background imagery displayed as polygons, while a nearby glass window renders 
reflections of objects from the glass surface along with the view seen through the glass, 
courtesy of ray tracing.

At the time of its release, the RTX 2080 Ti was the highest-performing GPU available 
for running deep learning models with TensorFlow. TensorFlow, developed by Google's 
Machine Intelligence Research organization, is a popular open source software platform 
for machine learning applications. TensorFlow is widely used in research involving deep 
neural networks. 

The RTX 2080 Ti leverages its machine learning capability to increase the apparent 
resolution of rendered images without the computational expense of actually rendering 
at the higher resolution. It does this by intelligently applying antialiasing and sharpening 
effects to the image. The technology learns image characteristics during the rendering 
of tens of thousands of images and uses this information to improve the quality of 
subsequently rendered scenes. This technology can, for example, make a scene rendered  
at 1080p resolution (1,920 x 1,080 pixels) appear as if it is being rendered at 1440p  
(1,920 x 1,440 pixels).

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



Personal computer architecture     351

In addition to its ray-tracing and machine learning technologies, the RTX 2080 Ti has the 
following features:

• Six graphics-processing clusters: Each cluster contains a dedicated raster  
(pixel-processing) engine and six texture-processing clusters.

• 36 texture-processing clusters: Each texture-processing cluster contains two 
streaming multiprocessors.

• 72 streaming multiprocessors: Each streaming multiprocessor contains 64 CUDA 
cores, eight tensor cores, and one ray-tracing core. The CUDA cores provide a 
parallel computing platform suitable for general computational applications, such 
as linear algebra. The tensor cores perform the tensor and matrix operations at the 
center of deep learning algorithms.

• A PCIe 3.0 x16 interface: This interface communicates with the main processor.

• 11 GB of GDDR6 memory: GDDR6 improves upon the prior generation of 
GDDR5X technology by providing an increased data transfer rate (up to 16 Gbit/sec 
per pin versus a maximum of 14 Gbit/sec per pin for DDR5X). 

• Nvidia Scalable Link Interface (SLI): The SLI links two to four identical GPUs 
within a system to share the processing workload. A special bridge connector must 
be used to interconnect the collaborating GPUs. The Alienware Aurora Ryzen 
Edition comes with a single GPU, though a second GPU is available as an option.

• Three DisplayPort 1.4a video outputs: The DisplayPort interfaces support 8K 
(7,680 x 4,320 pixels) resolution at 60 Hz. 

• HDMI 2.0b port: The HDMI output supports 4K (3,840 x 2,160 pixels) resolution 
at 60 Hz.

• VirtualLink USB C port: This single-cable connection provides four lanes of 
DisplayPort video output and a USB 3.1 Gen2 (10 Gbps) connection for data 
transfer, and provides up to 27 watts of power to a connected system such as a 
virtual reality headset. The principal purpose of this interface is to support the use 
of a virtual reality headset that connects to the computer system with just one cable.
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Aurora subsystems
The major subsystems of the Alienware Aurora Ryzen Edition are described briefly in the 
following table:

Table 13.2: Alienware Aurora Ryzen Edition subsystems

The Alienware Aurora Ryzen Edition gaming desktop integrates the most advanced 
technology available at the time of its introduction in terms of the raw speed of its 
processor, memory, GPU, and storage, as well as its use of machine learning to improve 
instruction execution performance.

The next section will take us from the level of the personal computer system discussed 
in this section and widen our view to explore the implementation challenges and design 
solutions employed in large-scale computing environments consisting of thousands of 
integrated, cooperating computer systems.
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Warehouse-scale computing architecture
Providers of large-scale computing capabilities and networking services to the public 
and to sprawling organizations, such as governments, research universities, and major 
corporations, often aggregate computing capabilities in large buildings, each containing 
perhaps thousands of computers. To make the most effective use of these capabilities, it 
is not sufficient to consider the collection of computers in a warehouse-scale computer 
(WSC) as simply a large number of individual computers. Instead, in consideration of 
the immense quantity of processing, networking, and storage capability provided by a 
warehouse-scale computing environment, it is much more appropriate to think of the 
entire data center as a single, massively parallel computing system.

Early electronic computers were huge systems, occupying large rooms. Since then, 
computer architectures have evolved to arrive at today's fingernail-size processor chips 
possessing vastly more computing power than those early systems. We can imagine that 
today's warehouse-sized computing environments are a prelude to computer systems 
a few decades in the future that might be the size of a pizza box, or a smartphone, or a 
fingernail, packing as much processing power as today's WSCs, if not far more.

Since the Internet rose to prominence in the mid 1990s, a transition has been in progress, 
shifting application processing from programs installed on personal computers over  
to centralized server systems that perform algorithmic computing, store and retrieve 
massive data content, and enable direct communication among Internet users.

These server-side applications employ a thin application layer on the client side, often 
provided by a web browser. All of the data retrieval, computational processing, and 
organization of information for display takes place in the server. The client application 
merely receives instructions and data regarding the text, graphics, and input controls to 
present to the user. The browser-based application interface then awaits user input and 
sends the resulting requests for action back to the server.

Online services provided by Internet companies such as Google, Amazon, and Microsoft 
rely on the power and versatility of very large data center computing architectures to 
provide services to millions of users. One of these WSCs might run a small number of 
very large applications providing services to thousands of users simultaneously. Service 
providers strive to provide exceptional reliability, often promising 99.99% uptime, 
corresponding to approximately 1 hour of downtime per year.

The following sections introduce the hardware and software components of a typical WSC 
and discuss how these pieces work together to provide fast, efficient, and highly reliable 
Internet services to large numbers of users.
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WSC hardware
Building, operating, and maintaining a WSC is an expensive proposition. While providing 
the necessary quality of service (in terms of metrics such as response speed, data 
throughput, and reliability), WSC operators strive to minimize the total cost of owning 
and operating these systems.

To achieve very high reliability, WSC designers might take one of two approaches in 
implementing the underlying computing hardware:

• Invest in hardware that has exceptional reliability: This approach relies on costly 
components with low failure rates. However, even if each individual computer 
system provides excellent reliability, by the time several thousand copies of 
the system are in operation simultaneously, occasional failures will occur at a 
statistically predictable frequency. This approach is very expensive and, ultimately,  
it doesn't solve the problem because failures will continue to occur.

• Employ lower-cost hardware that has average reliability and design the system 
to tolerate individual component failures at the highest expected rates: This 
approach permits much lower hardware costs compared to high-reliability 
components, though it requires a sophisticated software infrastructure capable of 
detecting hardware failures and rapidly compensating with redundant systems in  
a manner that maintains the promised quality of service.

Most providers of standard Internet services, such as search engines and email services, 
employ low-cost generic computing hardware and perform failover by transitioning 
workloads to redundant online systems when failures occur.

To make this discussion concrete, we will examine the workloads a WSC must support  
to function as an Internet search engine. WSC workloads supporting Internet searches 
must possess the following attributes:

• Fast response to search requests: The server-side turnaround for an Internet  
search request must be a small fraction of a second. If users are routinely forced  
to endure a noticeable delay, they are likely to switch to a competing search engine 
for future requests.

• State information related to each search need not be retained at the server, even 
for sequential interactions with the same user: In other words, the processing of 
each search request is a complete interaction. After the search completes, the server 
forgets all about it. A subsequent search request from the same user to the same 
service does not leverage any stored information from the first request.

Given these attributes, each service request can be treated as an isolated event, 
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independent of all other requests, past, present, and future. The independence of each 
request means it can be processed as a thread of execution in parallel with other search 
requests coming from other users or even from the same user. This workload model is  
an ideal candidate for acceleration through hardware parallelism.

The processing of Internet searches is less a compute-intensive task than it is data intensive. 
As a simple example, when performing a search where the search term consists of a single 
word, the web service must receive the request from the user, extract the search term, and 
consult its index to determine the most relevant pages containing the search term.

The Internet contains, at a minimum, hundreds of billions of pages, most of which users 
expect to be able to locate via searches. This is an oversimplification, though, because a 
large share of the pages accessible via the Internet are not indexable by search engines. 
However, even limiting the search to the accessible pages, it is simply not possible for 
a single server, even one with a large number of processor cores and the maximum 
installable amount of local memory and disk storage, to respond to Internet searches in 
a reasonable time period for a large user base. There is just too much data and too many 
user requests. Instead, the search function must be split among many (hundreds, possibly 
thousands) of separate servers, each containing a subset of the entire index of web pages 
known to the search engine.

Each index server receives a stream of lookup requests filtered to those relevant to the 
portion of the index it manages. The index server generates a set of results based on 
matches to the search term and returns that set for higher-level processing. In more 
complex searches, separate searches for multiple search terms may need to be processed 
by different index servers. The results of those searches will be filtered and merged during 
higher-level processing.

As the index servers generate results based on search terms, these subsets are fed to a 
system that processes the information into a form to be transmitted to the user. For 
standard searches, users expect to receive a list of pages ranked in order of relevance to 
their query. For each page returned, a search engine generally provides the URL of the 
target page along with a section of text surrounding the search term within the page's 
content to provide some context.

The time required to generate these results depends more on the speed of database 
lookups associated with the page index and the extraction of page content from storage 
than it does on the raw processing power of the servers involved in the task. For this 
reason, many WSCs providing web search and similar services use servers containing 
inexpensive motherboards, processors, memory components, and disks.
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Rack-based servers
WSC servers are typically assembled in racks with each server consuming one 1U slot. A 
1U server slot has a front panel opening 19" wide and 1.75" high. One rack might contain 
as many as 40 servers, consuming 70" of vertical space.

Each server is a fairly complete computer system containing a moderately powerful 
processor, RAM, a local disk drive, and a 1 Gbit/sec Ethernet interface. Since the capabilities 
and capacities of consumer-grade processors, DRAM, and disks are continuing to grow, we 
won't attempt to identify the performance parameters of a specific system configuration.

Although each server contains a processor with integrated graphics and some USB  
ports, most servers do not have a display, keyboard, or mouse directly connected, except 
perhaps during their initial configuration. Rack-mounted servers generally operate in 
a so-called headless mode, in which all interaction with the system takes place over its 
network connection.

The following diagram shows a rack containing 16 servers:

Figure 13.2: A rack containing 16 servers
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Each server connects to the rack network switch with a 1 Gbit/s Ethernet cable. The  
rack in this example connects to the higher-level WSC network environment with four 
1 Gbit/s Ethernet cables. Servers within the rack communicate with each other through 
the rack switch at the full 1 Gbit/s Ethernet data rate. Since there are only four 1 Gbit/s 
external connections leading from the rack, all 16 servers obviously cannot communicate 
at full speed with systems external to the rack. In this example, the rack connectivity  
is oversubscribed by a factor of 4. This means that the external network capacity is  
one quarter of the peak communication speed of the servers within the rack.

Racks are organized into clusters that share a second-level cluster switch. The following 
diagram represents a configuration in which four racks connect to each cluster-level 
switch that, in turn, connects to the WSC-wide network:

Figure 13.3: WSC internal network

In the WSC configuration of Figure 13.3, a user request arrives over the Internet to be 
initially processed by a routing device that directs the request to an available web server. 
The server receiving the request is responsible for overseeing the search process and 
sending the response back to the user.
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Multiple web servers are online at all times to provide load sharing and redundancy in 
case of failure. Figure 13.3 shows three web servers, but a busy WSC may have many 
more servers in operation simultaneously. The web server parses the search request and 
forwards queries to the appropriate index servers in the rack clusters of the WSC. Based 
on the terms being searched, the web server directs index lookup requests to one or  
more index servers for processing.

To perform efficiently and reliably, the WSC must maintain multiple copies of each  
subset of the index database, spread across multiple clusters, to provide load sharing  
and redundancy in case of failures at the server, rack, or cluster level.

Index lookups are processed by the index servers, and relevant target page text is collected 
from document servers. The complete set of search results is assembled and passed back 
to the responsible web server. The web server then prepares the complete response and 
transmits it to the user.

The configuration of a real-world WSC will contain additional complexity beyond what 
is shown in Figure 13.2 and Figure 13.3. Even so, these simplified representations permit 
us to appreciate some of the important benefits and challenges associated with a WSC 
implementing an Internet search engine workload.

In to responding to user search requests, the search engine must regularly update its 
database to remain relevant to the current state of web pages across the Internet. Search 
engines update their knowledge of web pages using applications called web crawlers. A web 
crawler begins with a web page address provided as its starting point, reads the targeted 
page, and parses its text content. The crawler stores the page text in the search engine 
document database and extracts any links contained within the page. For each link it finds, 
the crawler repeats the page reading, parsing, and link-following process. In this manner,  
the search engine builds and updates its indexed database of the Internet's contents.

This section summarized a conceptual WSC design configuration, which is based on racks 
filled with commodity computing components. The next section examines the measures 
the WSC must take to detect component failures and compensate for them without 
compromising the overall quality of service.
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Hardware fault management
As we've seen, WSCs contain thousands of computer systems and we can expect that 
hardware failures will occur on a regular basis, even if more costly components have 
been selected to provide a higher, but not perfect, level of reliability. As an inherent part 
of the multilevel dispatch, processing, and return of results implied in Figure 13.3, each 
server sending a request to a system at a lower level of the diagram must monitor the 
responsiveness and correctness of the system assigned to process the request, and if the 
response is unacceptably delayed, or if it fails to pass validity checks, the lower-level 
system must be reported as unresponsive or misbehaving.

If such an error is detected, the requesting system immediately re-sends the request to a 
redundant server for processing. Some response failures may be due to transient events 
such as a momentary processing overload. If the lower-level server recovers and continues 
operating properly, no response is required.

If a server remains persistently unresponsive or erroneous, a maintenance request must 
be issued to troubleshoot and repair the offending system. When a system is identified as 
unavailable, WSC management (both the automated and human portions) may choose to 
bring up a system to replicate the failed server from a pool of backup systems and direct 
the replacement system to begin servicing requests.

Electrical power consumption
One of the major cost drivers of a WSC is electrical power consumption. The primary 
consumers of electricity in a WSC are the servers and networking devices that perform 
data processing for end users, as well as the air conditioning system that keeps those 
systems cool.

To keep the WSC electricity bill to a minimum, it is critical to only turn on computers 
and other power-hungry devices when there is something useful for them to do. The 
traffic load to a search engine varies widely over time and may spike in response to events 
in the news and on social media. A WSC must maintain enough servers to support the 
maximum traffic level it is designed to handle. When the total workload is below the 
maximum, any servers that do not have work to do should be powered down.

A lightly loaded server consumes a significant amount of electrical power. For best 
efficiency, the WSC management environment should completely turn off servers and 
other devices when they are not needed. When the traffic load increases, servers and 
associated network devices can be powered up and brought online quickly to maintain  
the required quality of service.
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The WSC as a multilevel information cache
We examined the multilevel cache architecture employed in modern processors in 
Chapter 8, Performance–Enhancing Techniques. To achieve optimum performance, a web 
service such as a search engine must employ a caching strategy that, in effect, adds more 
levels to those that already exist within the processor. 

To achieve the best response time, an index server should maintain a substantial subset 
of its index data in an in-memory database. By selecting content for in-memory storage 
based on historic usage patterns, as well as recent search trends, a high percentage of 
incoming searches can be satisfied without any need to access disk storage.

To make the best use of an in-memory database, the presence of a large quantity of DRAM 
in each server is clearly beneficial. The selection of the optimum amount of DRAM 
to install in each index server is dependent upon such attributes as the relative cost of 
additional DRAM per server in comparison to the cost of additional servers containing 
less memory, as well as the performance characteristics of more servers with less memory 
relative to fewer servers with more memory. We won't delve any further into such analysis, 
other than to note that such evaluations are a core element of WSC design optimization.

If we consider DRAM to be the first level of WSC-level caching, then the next level is  
the local disk located in each server. For misses of the in-memory database, the next 
place to search is the server's disk. If the result is not found in the local disk, then the 
next search level takes place in other servers located in the same rack. Communications 
between servers in the same rack can run at full network speed (1 Gbit/s in our  
example configuration).

The next level of search extends to racks within the same cluster. Bandwidth between 
racks is limited by the oversubscription of the links between racks and the cluster switch, 
which limits the performance of these connections. The final level of search within the 
WSC goes out across clusters, which will likely have further constraints on bandwidth.

A large part of the challenge of building an effective search engine infrastructure is the 
development of a high-performance software architecture. This architecture must satisfy a 
high percentage of search requests by the fastest, most localized lookups achievable by the 
search engine index servers and document servers. This means most search lookups must 
be completed via in-memory searches in the index servers.

The next section looks at the high-performance architectures employed in dedicated 
neural network processors.
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Neural networks and machine learning 
architectures
We briefly reviewed the architecture of neural networks in Chapter 6, Specialized 
Computing Domains. This section examines the inner workings of a high-performance, 
dedicated neural net processor.

Intel Nervana neural network processor
In 2019, Intel announced the release of a pair of new processors, one optimized for the 
task of training sophisticated neural networks and the other for using trained networks to 
conduct inference, which is the process of generating neural network outputs given a set 
of input data.

The Nervana neural network processor for training (NNP-T) is essentially a miniature 
supercomputer tailored to the computational tasks required in the neural network 
training process. The NNP-T1000 is available in the following two configurations:

• The NNP-T1300 is a dual-slot PCIe card suitable for installation in a standard PC. 
It communicates with the host via PCIe 3.0 or 4.0 x16. It is possible to connect 
multiple NNP-T1300 cards within the same computer system or across computers 
by cable.

• The NNP-T1400 is a mezzanine card suitable for use as a processing module in 
an Open Compute Project (OCP) accelerator module (OAM). OAM is a design 
specification for hardware architectures that implement artificial intelligence systems 
requiring high module-to-module communication bandwidth. Development of 
the OAM standard has been led by Facebook, Microsoft, and Baidu. Up to 1,024 
NNP-T1000 modules can be combined to form a massive NNP architecture with 
extremely high-speed serial connections among the modules.

The NNP-T1300 fits in a standard PC, and is something an individual developer might 
use. A configuration of multiple NNP-T1400 processors, on the other hand, quickly 
becomes very costly and begins to resemble a supercomputer in terms of performance.

The primary application domains for powerful NNP architectures such as Nervana 
include natural language processing (NLP) and machine vision. NLP attempts to 
perform tasks such as processing sequences of words to extract the meaning behind them 
and generating natural language for computer interaction with humans. When you call a 
company's customer support line and a computer asks you to talk to it, you are interacting 
with an NLP system.
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Machine vision is a key enabling technology for autonomous vehicles. Automotive 
machine vision systems process video camera feeds to identify and classify road features, 
road signs, and obstacles, such as vehicles and pedestrians. This processing has to produce 
results in real time to be useful in the process of driving a vehicle.

Building a neural network to perform a human-scale task, such as reading a body of 
text and interpreting its meaning or driving a car in heavy traffic, requires an extensive 
training process. Neural network training involves sequential steps of presenting the 
network with a set of inputs along with the response that the network is expected to 
produce given that input. This information, consisting of pairs of input datasets and 
known correct outputs, is called the training set. Each time the network sees a new input 
set and is given the output it is expected to produce from that input, it adjusts its internal 
connections and weight values slightly to improve its ability to generate correct outputs. 
For complex neural networks, such as those targeted by the Nervana NNP, the training  
set might consist of millions of input/output dataset pairs.

The processing required by NNP training algorithms boils down to mostly matrix and 
vector manipulations. The multiplication of large matrices is one of the most common 
and most compute-intensive tasks in neural network training. These matrices may contain 
hundreds or even thousands of rows and columns. The fundamental operation in matrix 
multiplication is the multiply–accumulate, or MAC, operation we learned about in 
Chapter 6, Specialized Computing Domains.

Complex neural networks contain an enormous number of weight parameters. During 
training, the processor must repetitively access these values to compute the signal 
strengths associated with each neuron in the model and perform training adjustments 
to the weights. To achieve maximum performance for a given amount of memory and 
internal communication bandwidth, it is desirable to employ the smallest usable data type 
to store each numeric value. In most applications of numeric processing, the 32-bit IEEE 
single-precision, floating-point format is the smallest data type used. When possible,  
it can be an improvement to use an even smaller floating-point format.

The Nervana architecture employs a specialized floating-point format for storing  
network signals. The bfloat16 format is based on the IEEE-754 32-bit single-precision, 
floating-point format, except the mantissa is truncated from 24 bits to 8 bits. The  
Floating-point mathematics section in Chapter 9, Specialized Processor Extensions, 
discussed the IEEE-754 32-bit and 64-bit floating-point data formats in some detail.
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The reasons for proposing the bfloat16 format instead of the IEEE-754 half-precision 
16-bit floating-point format for neural network processing are as follows:

• The IEEE-754 16-bit format has a sign bit, 5 exponent bits, and 11 mantissa bits,  
one of which is implied. Compared to the IEEE-754 single-precision (32-bit), 
floating-point format, this half-precision format loses three bits in the exponent, 
reducing the range of numeric values it can represent to one-eighth the range of 
32-bit floating point.

• The bfloat16 format retains all eight exponent bits of the IEEE-754 single-precision 
format, allowing it to cover the full numeric range of the IEEE-754 32-bit format, 
although with substantially reduced precision.

Based on research findings and customer feedback, Intel suggests the bfloat16 format 
is most appropriate for deep learning applications because the greater exponent range 
is more critical than the benefit of a more precise mantissa. In fact, Intel suggests the 
quantization effect resulting from the reduced mantissa size does not significantly affect 
the inference accuracy of bfloat16-based network implementations in comparison to 
IEEE-754 single-precision implementations.

The fundamental data type used in ANN processing is the tensor, which is represented 
as a multidimensional array. A vector is a one-dimensional tensor, and a matrix is a 
two-dimensional tensor. Higher-dimension tensors can be defined as well. In the Nervana 
architecture, a tensor is a multidimensional array of bfloat16 values. The tensor is the 
fundamental data type of the Nervana architecture: The NNP-T operates on tensors at  
the instruction set level.

The most compute-intensive operation performed by deep learning algorithms is the 
multiplication of tensors. Accelerating these multiplications is the primary goal of 
dedicated ANN processing hardware, such as the Nervana architecture. Accelerating 
tensor operations requires not just high-performance mathematical processing; it is also 
critical to transfer operand data to the core for processing in an efficient manner and 
move output results to their destinations just as efficiently. This requires a careful balance 
of numeric processing capability, memory read/write speed, and communication speed.

Processing in the NNP-T architecture takes place in tensor processor clusters (TPCs), 
each of which contains two multiply–accumulate (MAC) processing units and 2.5 MB of 
high-bandwidth memory. Each MAC processing unit contains a 32 x 32 array of MAC 
processors operating in parallel.

An NNP-T processor contains either 22 or 24 TPCs, running in parallel, with high-speed 
serial interfaces interconnecting them in a fabric configuration. The Nervana devices 
provide high-speed serial connections to additional Nervana boards in the same system 
and to Nervana devices in other computers.
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A single NNP-T processor is capable of performing 119 trillion operations per second 
(TOPS). The following table shows a comparison between the two processors:

Table 13.3: Features of the two NNP T-1000 processor configurations

The Nervana neural network processor for inference (NNP-I) performs the inference 
phase of neural network processing. Inference consists of providing inputs to pretrained 
neural networks, processing those inputs, and collecting the outputs from the network. 
Depending on the application, the inference process may involve repetitive evaluations of 
a single, very large network on time-varying input data or it may involve applying many 
different neural network models to the same set of input data at each input update.

The NNP-I is available in two form factors:

• A PCIe card containing two NNP I-1000 devices. This card is capable of 170 TOPS 
and dissipates up to 75 W.

• An M.2 card containing a single NNP I-1000 device. This card is capable of  
50 TOPS and dissipates only 12 W.

The Nervana architecture is an advanced, supercomputer-like processing environment 
optimized for training neural networks and performing inferencing on real-world data 
using pretrained networks.
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Summary
This chapter presented several computer system architectures tailored to particular user 
needs, and built on the topics covered in previous chapters. We looked at application 
categories including smartphones, gaming-focused personal computers, warehouse-scale 
computing, and neural networks. These examples provided a connection between the more 
theoretical discussions of computer and systems architectures and components presented 
in earlier chapters, and the real-world implementations of modern, high-performance 
computing systems.

Having completed this chapter, you should understand the decision processes used in 
defining computer architectures to support specific user needs. You will have gained insight 
into the key requirements driving smart mobile device architectures, high-performance 
personal computing architectures, warehouse-scale cloud-computing architectures, and 
advanced machine learning architectures.

In the next and final chapter, we will develop a view of the road ahead for computer 
architectures. The chapter will review the significant advances and ongoing trends that 
have led to the current state of computer architectures and extrapolate those trends to 
identify some possible future technological directions. Potentially disruptive technologies 
that could alter the path of future computer architectures will be considered as well. 
In closing, some approaches will be proposed for the professional development of the 
computer architect that are likely to result in a future-tolerant skill set.

Exercises
1. Draw a block diagram of the computing architecture for a system to measure and 

report weather data 24 hours a day at 5-minute intervals using SMS text messages. 
The system is battery powered and relies on solar cells to recharge the battery during 
daylight hours. Assume the weather instrumentation consumes minimal average 
power, only requiring full power momentarily during each measurement cycle.

2. For the system of Exercise 1, identify a suitable commercially available processor 
and list the reasons that processor is a good choice for this application. Factors to 
consider include cost, processing speed, tolerance of harsh environments, power 
consumption, and integrated features, such as RAM and communication interfaces.
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14
Future Directions 

in Computer 
Architectures

This chapter anticipates the road ahead for computer architecture design. We will review 
the significant technological advances and ongoing trends that have led us to the current 
state of computer architectures. We will then extrapolate from current trends and identify 
some of the directions that computing system designs are likely to take in the future. We 
will also examine some potentially disruptive technologies that may alter the evolution  
of future computer architectures.

This chapter offers some suggested approaches for the professional development of the 
computer architect. By following these recommendations, you should be able to maintain a 
skill set that remains relevant and tolerant of future advances, whatever they turn out to be.

After completing this chapter, you will understand the historical evolution of computer 
architecture that led to its current state and will be familiar with ongoing trends in computer 
design that are likely to indicate future technological directions. You will have a basic level of 
knowledge of some potentially disruptive technologies that might substantially alter future 
computer architectures. You will also have learned some useful techniques for maintaining 
an ongoing, current skill set in the field of computer architecture.
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The following topics will be presented in this chapter:

• The ongoing evolution of computer architectures

• Extrapolating current trends into the future

• Potentially disruptive technologies

• Building a future-tolerant skill set

The ongoing evolution of computer 
architectures
Chapter 1, Introducing Computer Architecture, presented a brief history of automated 
computing devices from the mechanical design of Babbage's Analytical Engine to the 
advent of the x86 architecture that continues to serve as the basis for most modern 
personal computers. This progress has relied on several groundbreaking technological 
achievements, most notably the invention of the transistor and the development of 
integrated circuit manufacturing processes.

Through the decades since the introduction of the Intel 4004 in 1971, processors 
have grown dramatically in terms of the sheer number of transistors and other circuit 
components integrated on a single-circuit die. In concert with the growth in the number 
of circuit elements per chip, the clock speed of modern devices has increased by several 
orders of magnitude.

This increase in processor capability and instruction execution speed has unleashed the 
growth of software development as an enormous, worldwide industry. In the early days 
of digital computers, software was developed by small teams of highly trained specialists 
in a research setting. Today, powerful personal computers are available at a comparatively 
low cost, and software development tools such as programming language compilers and 
interpreters are widely available, often for free. As processors have increased in capability, 
the availability of widespread computing power has created a strong demand for software 
to run on those devices.

Modern processors have evolved to coalesce far more functionality into the processor's 
integrated circuit than early devices, such as the 6502. The 6502, in essence, contains the 
minimum component set required to perform useful processing: a control unit, a register 
set, an ALU, and an external bus for accessing instructions, data, and peripherals.
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The most sophisticated modern processors targeted at business and home users 
incorporate basic functionally similar to the capabilities of the 6502, along with  
substantial added features and extensions, such as the following:

• Up to 16 processor cores, each supporting simultaneous multithreading

• Multilevel instruction and data cache memory

• A µ-op cache to avoid the processing delay associated with instruction-decode 
operations

• A memory-management unit supporting paged virtual memory

• Integrated multichannel high-speed serial I/O capability

• An integrated graphics processor generating digital video output

To summarize the technological evolution from the 6502 processor to the modern 
x64 processor, modern processors provide multiple 64-bit cores operating in parallel 
compared to the 6502's single 8-bit core, and they implement numerous additional 
features specifically designed to accelerate execution speed.

In addition to the raw computing capability of modern PC processors, the x86/x64 
instruction set provides instructions to implement a wide variety of operations, ranging 
from simple to extremely complex. Modern RISC processors, such as ARM and RISC-V, 
on the other hand, implement intentionally slimmed-down instruction sets, with the goal 
of breaking complex operations into sequences of simpler steps, each of which executes  
at very high speed while working within a larger register set.

The high-level configurations of computer architectures have, arguably, not undergone 
drastic disruption since the days of the 6502. With each extension of the processor 
architecture's instruction set or the introduction of additional caching technology, these 
changes have incrementally expanded the functionality available to software developers  
or increased the speed at which algorithms execute. The expansion to multiple cores and  
to multithreading within a single core allows multiple independent execution threads  
to execute simultaneously rather than running in a time-sliced manner on a single core.

Much of the incrementalism during this evolution has been intentional, to avoid 
introducing changes in processor architectures that would inhibit backward compatibility 
with the immense universe of already-developed operating system and application 
software. The net result has been a series of processor generations that gradually become 
faster and more capable over time, but do not implement any disruptive breaks from  
past technology.
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In the next section, we will attempt to extrapolate from the current generation of  
high-performance computing systems discussed in Chapter 13, Domain-Specific Computer 
Architectures, to predict the advances in computer architectures likely to occur in the next 
one to two decades.

Extrapolating from current trends
The capabilities of current-generation processor technology are beginning to push up 
against some significant physical limits that we can expect to constrain the rate of growth 
going forward. These limits certainly will not lead to an abrupt end of improvements 
in circuit density and clock speed; rather, capability improvements for future processor 
generations may take place in directions that differ from traditional semiconductor 
capability improvement patterns. To look more closely at future processor performance 
growth expectations, we begin by returning to Moore's law and examining its applicability 
to the future of semiconductor technology.

Moore's law revisited
The revised version of Moore's law, published by Gordon Moore in 1975, predicted  
the number of integrated circuit components per device would double roughly every  
two years. This law has demonstrated remarkable predictive accuracy for several decades, 
but as of 2015, according to Intel, the growth rate had slowed to doubling approximately 
every two and a half years. This indicates the rate of growth in integrated circuit density 
has begun to slow, but it certainly has not ended, and is not expected to end in the 
foreseeable future.

Integrated circuit technology will continue to improve, resulting in denser and more 
highly capable devices for many years to come. We can, however, expect the rate of growth 
in circuit density to decrease over time because of the physical limits associated with the 
construction of single-digit nanometer-scale circuit components.

The slower rate of increase in circuit density does not mean that the trend is near an 
end. As of 2020, current mass-produced integrated circuit technology is based on circuit 
features with dimensions as small as 10 nm. Work is in progress to develop the next 
generation of circuit technology with 7 nm feature sizes. A future generation with feature 
sizes of 5 nm is in the planning stages. Although these increased circuit densities are likely 
to be realized at some point, each technological advance comes with increasing cost and 
technical challenges that result in delays in deployment to production lines. The most 
advanced integrated circuit production technologies are so costly to develop and difficult 
to implement that only a handful of massive semiconductor companies have the financial 
resources and technical expertise to bring such processes online.
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Given the ongoing decline in the rate of improvement in circuit density, semiconductor 
manufacturers have begun to focus on alternative methods for packing smaller components 
together on a chip. Traditionally, integrated circuits have been viewed as primarily 
two-dimensional entities constructed in layers, as follows: 

• Different types of material are laid out in a sequence of masking operations  
to create doped regions of transistors, as well as other circuit components,  
such as capacitors and diodes 

• Conductive traces serving as wires are deposited on the devices as additional layers

Communication between circuit elements within a two-dimensional device layout 
involves electrical interactions between components placed some distance from each 
other on the chip's surface. The chip is small, so the time that the electrical signal takes  
to propagate between components is usually not significant.

You may wonder if it is possible to organize the components of an integrated circuit  
in a manner other than effectively spreading them around on a flat surface. It is indeed 
possible to stack components on top of one another on an integrated circuit die. We will 
look at this design approach in the next section.

The third dimension
By developing techniques for stacking components atop one another on a single integrated 
circuit die, semiconductor manufacturers have taken a step toward extending Moore's law. 
One of the early targets for stacked-component integrated circuit configurations is the 
ubiquitous n-channel and p-channel MOS transistor pair in CMOS circuit designs.

Intel publicly described advances achieved by its researchers in the area of stacked CMOS 
transistor pairs in early 2020. Not only has the company shown an ability to stack devices 
on a silicon die, it has also demonstrated how to use differing fabrication technologies in 
each device layer to achieve maximum performance from the transistor pair.

Silicon n-channel transistors exhibit good performance characteristics, but p-channel 
transistors constructed on silicon have a relatively slower switching speed. P-channel 
transistors implemented with a germanium transistor channel instead of silicon 
provide increased switching speed, improving the performance of the CMOS pair. 
In a demonstration of Intel's mixed-technology device integration, silicon n-channel 
transistors were constructed on a base silicon die with germanium p-channel devices 
stacked on top of them. If this technique can be scaled to support integrated circuit 
production, it holds the promise of continued increases in device density and improved 
clock speeds.
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Another density-increasing approach is to combine multiple separately constructed 
integrated circuit dies in a vertical stack, with connections between the layers for  
power and communication. You can think of this technique as a method of soldering 
integrated circuit dies on top of each other in a manner that is similar to the way  
surface-mounted components are soldered onto a circuit board.

Separately fabricated integrated circuits combined within a single package are referred to 
as chiplets. Chiplets can be laid out side by side on a silicon base or they can be stacked 
atop one another, depending on the needs of the device. This approach allows each of the 
chiplets in a complex device to be constructed using the most appropriate technology 
for that component. For example, one fabrication method may be most appropriate for 
a core processor, while a different process might be more suitable for a memory chiplet 
integrated with the processor. An integrated cellular radio interface in the same device 
package may be constructed using yet another process.

The use of the vertical dimension in the construction of individual integrated circuits 
and in the construction of complex devices composed of multiple chiplets within a single 
package enables a higher level of system-on-chip (SoC) integration and higher overall 
performance. As these techniques continue to be refined and rolled out into production 
lines, we can expect the increasing circuit complexity and functionality predicted by 
Moore's law to continue in future years, though perhaps at a reduced growth rate.

The next trend we will examine is the ongoing growth of the use of highly specialized 
processing devices in place of general-purpose processors.

Increased device specialization
In previous chapters, we explored a few specialized processing technologies targeted 
at application areas such as digital signal processing, three-dimensional graphical 
image generation, and neural network processing. It is certainly possible for all of the 
computations performed by these devices to be carried out by ordinary, general-purpose 
processors. The important difference in the processing performed by these specialized 
devices is the increased execution speed, with throughput that is sometimes hundreds  
or even thousands of times faster than an ordinary processor could achieve.

The growing importance of machine learning and autonomous technologies will continue 
to drive innovation in the computer architectures that underpin future digital systems. As 
automobiles and other complex systems gain autonomous features that either augment 
or replace functionality traditionally performed by human operators, the underlying 
processing architectures will continue to evolve to provide higher levels of performance 
tailored to specific tasks while minimizing power consumption.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



Potentially disruptive technologies     373

Specialized processors will take advantage of the advances discussed earlier in this 
chapter while optimizing individual device designs for particular application niches. The 
trend toward increased specialization of processing devices will continue and may even 
accelerate in the coming years. 

This discussion has focused on the continuation of ongoing trends into future years. 
The next section will examine the possibility that a technological force may arise that 
substantially alters the path from continued incremental improvements in computer 
architecture to something that is entirely different.

Potentially disruptive technologies
So far, this chapter has focused on trends currently in progress and the potential effects of 
their extension into the future. As with the introduction of the transistor, we saw that it 
is always possible that some new technology will appear that creates a drastic break with 
past experience and leads the future of computing technology in a new direction.

In this section, we will attempt to identify some potential sources of such technological 
advances in the coming years.

Quantum physics
Charles Babbage's Analytical Engine tried to take the capabilities of purely mechanical 
computing devices to an extreme that had not been achieved previously. His attempt, 
while ambitious, was ultimately unsuccessful. The development of practical automated 
computing devices had to wait until the introduction of vacuum tube technology  
provided a suitable basis for the implementation of complex digital logic.

Later, the invention of the transistor moved computing technology onto a trajectory 
of increasing capability and sophistication that ultimately brought us to the state of 
computing we enjoy today. Ever since the introduction of the Intel 4004, advances in 
computing technology have taken the form of incremental improvements to what is 
fundamentally the same underlying silicon transistor technology.

Transistor operation is based on the properties of semiconducting materials, such as 
silicon, and the application of those properties to implement digital switching circuits. 
Digital circuits constructed with semiconductors generally perform operations using 
discrete binary data values. These devices are designed to generate reliably repeatable 
results when given the same input on a subsequent execution of the same sequence  
of instructions.
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As an alternative to this approach, numerous research efforts are underway around the 
world exploring the possibility of employing aspects of quantum physics in computing 
technology. Quantum physics describes the behavior of matter at the level of individual 
atoms and subatomic particles. The behavior of particles at the subatomic level differs in 
significant and surprising ways from the familiar behaviors of the macro-scale objects we 
interact with every day under the laws of classical physics. The laws of quantum physics 
have been discovered and described in theories since the mid-1800s.

Quantum physics is rigorously defined by a set of theories that have demonstrated 
remarkable predictive powers. For example, Wolfgang Pauli postulated the existence 
of the neutrino particle within the framework of quantum physics in 1930. Neutrinos 
are comparatively tiny subatomic particles that have barely any interaction with other 
particles, making them extremely difficult to detect. Neutrinos were not proven to exist  
by scientific experiments until the 1950s.

Several other types of subatomic particle have been predicted by theory and ultimately 
shown to exist in experiments. Quantum physics, including the strange behaviors exhibited 
in the subatomic world, offers a promising new direction for future computer architectures. 

Physical parameters associated with human-scale objects, such as the speed of a moving 
vehicle, seem to vary in a continuous manner as a car accelerates or slows. The electrons 
within an atom, on the other hand, can only exist at specific, discrete energy levels. The 
energy level of an electron in an atom corresponds roughly to the speed of a particle 
moving in an orbit around a central body in classical physics.

There is no possibility for an electron in an atom to be between two energy levels. It is 
always precisely in one discrete energy level or another. These discrete energy levels  
lead to the use of the term quantum to describe such phenomena.

Spintronics
In addition to the energy level of an electron in an atom, electrons exhibit a property 
analogous to the spinning of an object in classical physics. As with the energy level, this 
spin state is quantized. Researchers have demonstrated the ability to control and measure 
the spin behavior of electrons in a manner that may prove suitable for use in practical 
digital switching circuits. The use of electron spin as a component of a digital switching 
circuit is referred to as spintronics, combining the terms spin and electronics.

This technology uses the quantum spin state of electrons to hold information in a manner 
similar to the charge state of capacitors in traditional electronics. The spin of an elementary 
atomic particle is a type of angular momentum conceptually similar to the momentum of  
a spinning basketball balanced on a fingertip.
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There are some significant differences in the spin behavior of electrons compared to 
basketballs. Electrons do not actually rotate; however, their spin behavior obeys the 
mathematical laws of angular momentum in a quantized form. A basketball can be made 
to spin at an arbitrarily selected rotational speed, while electrons can only exhibit spin at 
one discrete, quantized level. The spin of an elementary particle is determined by its 
particle type, and electrons always have a spin of , which represents a quantum number.

The spin of a basketball can be fully characterized by the combination of its rotational 
speed and the axis about which the rotation is taking place. A spinning ball balanced on  
a fingertip rotates about the vertical axis. The entirety of the ball's rotational motion can 
be described by a vector pointing along the axis of rotation (in this case, upward) with  
a magnitude equal to its rotational speed.

Electrons always have the same spin value of , defining the angular momentum vector 
length, so the only way to differentiate the spin of one electron from another is the 
direction of the spin vector. Practical devices have been created that can enable the 
alignment of electron spin vectors in two different orientations, referred to as up and down.

Electron spin generates a tiny magnetic field. Materials in which most electron spins are 
aligned directionally produce a magnetic field with the same orientation as the aligned 
electrons. The effect of these aligned electrons is apparent in common devices, such as 
refrigerator magnets.

The magnetic field produced by electron spin cannot be explained by classical physics. 
Magnetism is purely an effect of quantum physics.

A switching device called a spin valve can be constructed from a channel with a magnetic 
layer at each end. The magnetic layers function as gates. If the gates are of the same spin 
polarity, a current consisting of spin-polarized electrons can flow through the device. If 
the gates have opposite polarities, the current is blocked. A spin valve can be switched on 
and off by reversing the polarity of one of the magnets by applying current to it with the 
opposite spin direction.

Switching electron spin directions can be much faster while consuming much less power 
than the process of charging and discharging capacitors that underlies the functioning of 
today's CMOS digital devices. This is the key feature providing a glimpse of the potential 
for spintronics to eventually augment or replace CMOS circuitry in high-performance 
digital devices.
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Spintronics is an area of ongoing, active research. The commercialization and production 
of digital devices that outperform today's CMOS processors is not likely to occur for 
several years, if the technology turns out to be viable at all.

Spintronics relies on the laws of quantum physics to perform digital switching. Quantum 
computing, the subject of the next section, directly exploits quantum-mechanical 
phenomena to perform analog and digital processing.

Quantum computing
Quantum computing holds the promise of dramatic execution speed improvements for 
certain classes of problems. Quantum computing uses quantum-mechanical phenomena 
to perform processing, and can employ analog or digital approaches to solve problems.

Digital quantum computing uses quantum logic gates to perform computing operations. 
Quantum logic gates are based on circuits called quantum bits, or qubits. Qubits 
are analogous in some ways to the bits in traditional digital computers, but there are 
significant differences. Traditional bits can take on only the values 0 and 1. A qubit can be 
in the 0 or 1 quantum state; however, it can also be in a superposition of the 0 and 1 states. 
The principle of quantum superposition states that any two quantum states can be added 
together and the result is a valid quantum state.

Whenever the value of a qubit is read, the result returned is always either 0 or 1. This is 
due to the collapse of the superposition of quantum states to a single state. If, prior to the 
readout, the qubit held the quantum value corresponding to the binary value 0 or 1, the 
output of the read operation will equal the binary value. If, on the other hand, the qubit 
contained a superposition of states, the value returned by the read operation will be  
a probabilistic function of the superposition of states.

In other words, the likelihood of receiving a 0 or 1 as the result of reading the qubit depends 
on the characteristics of its quantum state. The value returned by the read operation will 
not be predictable. The reason for this unpredictability is not simply a lack of knowledge; 
in quantum physics, a particle simply does not have a defined state until a measurement 
has been taken. This is one of the counterintuitive and, frankly, mind-bending features of 
quantum physics.

A qubit state that is close to the binary value 1 will have a higher probability of returning 
a value of 1 when read than one that is closer to the binary value of 0. Performing a read 
operation on multiple qubits that all begin in identical quantum states will not always 
produce the same result because of the probabilistic nature of the read operation.
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Qubit circuits can demonstrate and exploit the properties of quantum entanglement,  
a central principle of quantum physics. Quantum entanglement occurs when multiple 
particles are linked in a manner that causes the measurement of one of the particles to 
affect the measurement of the linked particles. The most surprising aspect of this linkage 
is that it remains in effect even when the particles are separated by great distances. The 
entanglement effect appears to propagate instantaneously, unrestricted by the speed 
of light. While this behavior may seem like science fiction, it has been demonstrated 
experimentally and has even been used in the communication technology of the NASA 
Lunar Atmosphere Dust and Environment Explorer (LADEE) that orbited the moon 
from 2013–2014.

Quantum computers are capable of exploiting entanglement in information processing. 
If you work through the examples at the end of this chapter, you will have an opportunity 
to develop a program for a quantum computer that exhibits the effects of quantum 
entanglement, and you will run this program on an actual quantum computer.

The somewhat unpredictable nature of the results returned by reading a qubit would seem 
to argue against using this technology as the basis for a digital computing system. This 
partial unpredictability is one reason why quantum computers are envisioned as useful 
for only certain classes of problems. Most customers would not appreciate a bank using 
a computer that calculates different account balances each time the computation is run 
because of quantum uncertainty.

Two key application categories currently envisioned for quantum computers are as follows:

• Quantum cryptography: Quantum cryptography uses digital quantum computing 
techniques to break modern cryptographic codes. Many cryptographic algorithms 
in use today are based on the assumption that it is computationally infeasible to 
determine the factors of a large number (containing perhaps hundreds of decimal 
digits) that is the product of two large prime numbers. Factoring such a number 
on modern computers, even with a supercomputer or relying on thousands of 
processors operating in parallel in a cloud environment, cannot be expected  
to produce a correct result in a reasonable period of time.
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Shor's algorithm, developed by Peter Shor in 1994, describes the steps a quantum 
computer must perform to identify the prime factors of a given number. A quantum 
computer running Shor's algorithm can potentially factor a very large number 
in a much shorter time than ordinary computers, thereby rendering modern 
cryptographic systems based on public key cryptography vulnerable to such attacks. 
To date, quantum computing has only demonstrated the ability to factor relatively 
small numbers, such as 21, but the potential threat is recognized by organizations 
and governments that require high levels of communication security. The future 
may bring quantum computing systems capable of cracking the codes we use today 
for securing websites and online banking.

However, there is probably little reason to be concerned about the security of your 
bank account against quantum attacks. An assortment of quantum-computing-
resistant public key encryption algorithms are being researched. Collectively,  
these algorithms are referred to as post-quantum cryptography. We can expect a 
large-scale transition to quantum-resistant cryptographic algorithms in the event 
that the quantum threat to current cryptography methods becomes real.

• Adiabatic quantum computation: This is an analog quantum computing approach 
that holds the promise of efficiently solving a wide variety of practical optimization 
problems. Imagine that you are in a rectangular region of hilly terrain surrounded 
by a fence. You need to find the lowest point within the fenced boundary. In this 
scenario, it is very foggy, and you cannot see the surrounding terrain. The only 
clue you have is the slope of the surface under your feet. You can follow the slope 
downward, but when you reach a level area, you can't be sure if you're in a local 
basin or have truly found the lowest point in the entire bounded region.

This is an example of a simple two-dimensional optimization problem. The goal 
is to find the x and y coordinates of the lowest altitude in the entire region, called 
the global minimum, without being sidetracked and getting stuck in a basin at a 
higher altitude, which is referred to as a local minimum. You don't need anything 
as fancy as quantum computing to find the lowest point in a hilly region, but many 
real-world optimization problems have a larger number of inputs, perhaps 20 to 30, 
that must all be adjusted in the search for the global minimum. The computational 
power required to solve such problems is beyond the capability of even today's 
fastest supercomputers.
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The quantum computing approach to solving such problems begins by setting up a 
configuration of qubits containing the superposition of all possible solutions to the 
problem, then slowly reducing the superposition effect. By constraining the state 
of the quantum circuit configuration during this process, it is possible to ensure 
that the solution that remains after superposition has been removed, and all of the 
quantum bits are resolved to discrete 0 or 1 values, is the global minimum. The term 
adiabatic in the name of this approach refers to an analogy between the process of 
removing the superposition and a thermodynamic system that neither loses nor 
gains heat as it operates.

Adiabatic quantum optimization is an area of active research. It remains to be  
seen what level of capability this technology can ultimately bring to the solution  
of complex optimization problems.

The term quantum supremacy describes the transition point at which quantum 
computing exceeds the capability of traditional digital computing in a particular problem 
domain. There is spirited debate among researchers as to whether quantum supremacy 
has been achieved by any of the major organizations developing quantum computing 
technologies; when this point may be reached at a future date; or whether such a 
transition is ever going to occur.

A number of substantial barriers stand in the way of the widespread deployment 
of quantum computing in a manner similar to the ubiquitous use of CMOS-based 
computing devices by users around the world today. Some of the most pressing issues  
to be addressed are as follows:

• Increasing the number of qubits in a computer to support the solution of large, 
complex problems

• Providing the ability to initialize qubits to arbitrary values

• Providing mechanisms to reliably read the state of qubits

• Eliminating the effects of quantum decoherence

• The components required for quantum computers are hard to find and are  
very expensive 
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Quantum decoherence refers to the loss of phase coherence in a quantum system. For 
a quantum computer to function properly, phase coherence must be maintained within 
the system. Quantum decoherence results from interference from the outside world in 
the internal operation of the quantum system, or from interference generated internally 
within the system. A quantum system that remains perfectly isolated can maintain 
phase coherence indefinitely. Disturbing the system, for example by reading its state, 
disrupts the coherence and may lead to decoherence. The management and correction of 
decoherence effects is referred to as quantum error correction. The effective management 
of decoherence is one of the greatest challenges in quantum computing.

Current quantum computer designs rely on exotic materials such as Helium-3, which 
is produced by nuclear reactors, and they require superconducting cables. Quantum-
computing systems must be cooled to temperatures near absolute zero during operation. 
Current quantum computers are mostly laboratory-based systems that require a dedicated 
staff of experts for their construction and operation. This situation is somewhat analogous 
to the early days of vacuum-tube-based computers. One major difference from the 
vacuum tube days is that today we have the Internet, which provides ordinary users  
with a degree of access to quantum-computing capabilities.

Current quantum-computing systems contain at most a few dozen qubits and are mainly 
accessible only to the commercial, academic, and government organizations that fund 
their development. There are, however, some unique opportunities for students and 
individuals to gain access to real quantum computers.

One example is the IBM Quantum Experience at https://www.ibm.com/quantum-
computing/. With this free collection of resources, IBM provides a set of tools, 
including a quantum algorithm development environment called Qisket, available at 
https://www.qiskit.org/. Using the Qisket tools, developers can learn to code 
quantum algorithms and can even submit programs for execution in batch mode on a real 
quantum computer. The exercises at the end of this chapter suggest steps you can take  
to get started in this domain.

Quantum computing shows great promise for addressing particular categories of 
problems, though the widespread commercialization of the technology is most likely 
several years away.

The next technology we will examine is the carbon nanotube, which has the potential  
to move digital processing at least partially away from the world of silicon.
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Carbon nanotubes
The carbon nanotube field-effect transistor (CNTFET) is a transistor that uses either  
a single carbon nanotube or an array of carbon nanotubes as the gate channel rather than 
the silicon channel of the traditional MOSFET. A carbon nanotube is a tubular structure 
constructed from carbon atoms with a diameter of approximately 1 nanometer.

Carbon nanotubes are exceptionally good electrical conductors, exhibit high tensile 
strength, and conduct heat very well. A carbon nanotube can sustain current densities 
over 1,000 times greater than metals such as copper. Unlike in metals, electrical current 
can propagate only along the axis of the nanotube.

Compared to MOSFETs, CNTFETs have the following advantages:

• Higher drive current.

• Substantially reduced power dissipation.

• Resilience to high temperatures.

• Excellent heat dissipation, allowing for high-density packing of the devices.

• The performance characteristics of n-channel and p-channel CNTFET devices match 
closely. In CMOS devices, on the other hand, there can be substantial variation 
between the performance of the n-channel and p-channel transistors. This limits 
overall circuit performance to the capabilities of the lower performing devices.

As with the other emerging technologies discussed in this chapter, CNTFET technology 
faces some substantial barriers to commercialization and widespread use:

• Production of CNTFETs is very challenging because of the need to place and 
manipulate the nanometer-scale tubes.

• Production of the nanotubes required for CNTFETs is also very challenging.  
The nanotubes can be thought of as starting from flat sheets of carbon fabric that 
must be rolled into tubes along a specific axis in order to produce a material with 
the desired semiconducting properties.

• Carbon nanotubes degrade rapidly when exposed to oxygen. Fabrication technologies 
must take this into account to ensure the resulting circuit is durable and reliable.

Given the challenges of mass-producing CNTFETs, it will likely be several years before 
commercial devices begin to make wide use of carbon nanotube-based transistors.
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The preceding sections have identified some advanced technologies (spintronics, quantum 
computing, and carbon-nanotube-based transistors) as promising areas that may someday 
contribute substantially to the future of computing. None of these technologies are in 
wide-scale use at the time of writing, but research has shown promising results, and many 
government, university, and commercial laboratories are hard at work developing these 
technologies and finding ways to put them to use in the computing devices of the future.

In addition to technologies such as these that are widely reported and appear to be 
advancing along at least a semipredictable path, there is always the possibility that an 
organization or individual may announce an unanticipated technological breakthrough. 
This may occur at any time, and such an event may upend the conventional wisdom 
regarding the anticipated path for the future. Only time will tell.

In the context of the uncertainty of the road ahead for computer architectures, it is 
prudent for the architecture professional to devise a strategy to ensure ongoing relevance 
regardless of the twists and turns future technology takes. The next section presents some 
suggestions for staying up to date with technological advances.

Building a future-tolerant skill set
Given the technological transitions that kicked off the era of transistor-based digital 
computing, and the likelihood of similar future events, it is important for professionals in 
the field of computer architecture to keep up with ongoing advances and to develop some 
intuition as to the likely directions the technology will take in the future. This section 
provides some recommended practices for keeping up with state-of-the-art technology.

Continuous learning
Computer architecture professionals must be willing to embrace the idea that technology 
continues to evolve rapidly, and they must devote substantial ongoing efforts to monitoring 
advances and factoring new developments into their day-to-day work and career-planning 
decisions.

The prudent professional relies on a wide variety of information sources to track 
technological developments and assess their impact on career goals. Some sources of 
information, such as traditional news reports, can be skimmed quickly and fully absorbed. 
Other sources, such as scientific literature and websites curated by experts in particular 
technologies, require time to digest complex technical information. More advanced topics, 
such as quantum computing, may require extended study just to grasp the fundamentals 
and begin to appreciate potential applications of the technology.
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Even with a clear understanding of a particular technology, it can be challenging, or even 
impossible, to accurately predict its impact on the industry and, ultimately, the ways it 
will be integrated into the architectures of computing systems used by governments, 
businesses, and the public.

A practical and easy-to-implement approach for information gathering is to develop a 
collection of trusted sources for both mainstream and technical news and keep up to date 
with the information they offer. Mainstream news organizations, including television 
news, newspapers, magazines, and websites, often publish articles about promising 
technological developments and the impacts digital devices are having on societies around 
the world. In addition to discussing the purely technical aspects of computing systems 
(to some degree), these sources provide information on the social impact of computing 
technologies, such as concerns about its use for government and corporate surveillance 
and its employment in the spread of disinformation.

Technical websites operated by research organizations, individual technology experts, 
and enthusiastic users offer an immense quantity of information related to advances in 
computer architecture. As with all information accessible on the Internet, it is advisable to 
consider the reliability of the source whenever you encounter surprising information. While 
there are many spirited debates underway regarding the efficacy of individual early-stage 
technologies, there are also some people who appear to disagree with published information 
just to hear themselves argue. It is ultimately up to you to determine how much credence 
you should grant any opinions expressed on a web page.

Although individuals will have their own preferences, and the landscape of technology 
news sources is ever-changing, the following list provides a few fairly reliable sources  
of news on computing technology, in no particular order:

• https://techcrunch.com/: TechCrunch reports on the business of the  
tech industry.

• https://www.wired.com/: Wired is a monthly magazine and website that 
focuses on how emerging technologies affect culture, the economy, and politics.

• https://arstechnica.com/: Ars Technica, founded in 1998, publishes 
information targeted at technologists and information technology professionals.

• https://www.tomshardware.com/: Tom's Hardware provides news, articles, 
price comparisons, and reviews of computer hardware and high-technology devices.

• https://www.engadget.com/: Engadget, founded in 2004, covers the 
intersection of gaming, technology, and entertainment.
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• https://gizmodo.com/: Gizmodo focuses on design, technology, and science 
fiction. The website tagline is "We come from the future."

• https://thenextweb.com/: TNW was started in 2006 to bring insight and 
meaning to the world of technology.

This list, while by no means complete, provides some starting points for gathering 
information on the current state and near future of computing technology and  
its applications.

Information retrieved online can, when approached from a reasonably skeptical 
viewpoint, provide current and accurate information on the state of advances in computer 
architecture. Information consumed in this manner does not, however, provide an 
education with the rigorousness associated with formal schooling, or provide any form  
of public declaration that you have absorbed this information and are capable of making 
use of it in a professional context.

A college degree, the subject of the next section, provides a thorough grounding in a 
subject discipline and is generally accepted by potential employers and clients as evidence 
of the attainment of professional skills.

College education
If it has been a few years since you last attended college, or if you began your career 
without a college degree, it may be time to consider enrolling in a degree program. If even 
the thought of undertaking such a journey seems out of the question because of work 
or family responsibilities, consider that many accredited institutions offering excellent 
programs in areas of study directly related to computer architecture provide fully online 
education experiences. Online classes, combined with proctored examinations, can lead to 
Bachelor's and Master's degrees in technical disciplines from some of the most respected 
universities in the world.

For workers with a degree who have been in the workforce for several years, the technology 
and analytical methods learned in school may have become stale and obsolete to some 
degree. To restore relevance and remain fully informed about the forefront of technologies 
involved in the design and production of modern computer systems, the best approach 
may be a return to the classroom to gain a deeper understanding of technical advances  
that have occurred in the intervening years.

If you are not prepared to commit to a degree program, many institutions offer online 
courses leading to a certificate in a subject area such as computer hardware engineering or 
computer engineering technology. While providing a lesser credential than a Bachelor's 
or Master's degree, completion of a technology certificate program nevertheless 
demonstrates a level of educational attainment and knowledge of the subject matter.
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There will be some expense for tuition and books when taking college courses, whether 
the learning venue is in-person or online. Some employers are willing to provide partial  
or complete funding for the participation of employees in accredited degree programs. 
This funding may be accompanied by a mandatory commitment by the student to remain 
with the employer for some period following completion of the coursework. Students 
should take care to fully understand any obligations they may incur if circumstances 
require them to withdraw from school or leave the employer.

Many websites are available to assist with a search for an online college degree or 
certificate program that meets your needs. Some examples follow:

• https://www.usnews.com/education/online-education: U.S. News 
& World Report publishes annual rankings of accredited colleges, including online 
programs, specifically at this URL

• https://www.guidetoonlineschools.com/online-reviews: The 
Guide to Online Schools website provides reviews from students taking online 
programs at hundreds of colleges

Without being too repetitive with our warnings, you should carefully scrutinize any 
information gleaned from the Internet regarding online colleges. Ensure any institution 
under consideration is appropriately accredited and that the degrees it confers are 
accepted and valued by employers. 

Those with the necessary resources, possibly with support provided by an employer, 
may even consider becoming a full-time student for the duration of a degree program. 
Employers who pay for degree programs will typically expect the student to agree to a 
binding commitment to the organization following completion of such a program. This 
approach can provide the quickest turnaround to a college degree and, in many cases, 
presents opportunities for participation in cutting-edge research on some of the most 
advanced computing technologies under development.

While a college degree from a respected institution in a relevant field of study is the  
gold-standard credential sought by employers and recognized by peers, opportunities  
are available to keep up with the latest research findings through participation in 
conferences and by reading scientific literature. These learning options are explored  
in the next section.
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Conferences and literature
For professionals interested in keeping up with the leading edge of research in 
technologies related to the computer architectures of the future, there may be no better 
forum than hearing about the latest developments from the researchers themselves. There 
are regular conferences at locations around the world on every advanced computing topic 
you can imagine. For example, a list of worldwide conferences on the subject of quantum 
behavior, including many focusing on aspects of quantum computing, is available at 
http://quantum.info/conf/index.html.

As with other information from the Internet, it is helpful to view any unfamiliar conference 
with a degree of skepticism until you have vetted it thoroughly. There is, unfortunately, a 
phenomenon known as junk conferences, in which predatory individuals or organizations 
arrange conferences for the purpose of revenue generation rather than for sharing scientific 
knowledge. Be sure that any conference you sign up for and attend is overseen by a 
reputable organization and contains presentations by legitimate researchers in subject  
areas relevant to the conference.

There is a wide variety of scientific literature related to ongoing advances in technologies 
related to computer architecture. Professional organizations, such as IEEE, publish 
numerous scholarly journals devoted to the cutting edge of current research. Journals such 
as these are intended to communicate directly from researcher to researcher, so the level of 
technical knowledge expected of readers is quite high. If you have the necessary background 
and the willingness to appreciate the details in the papers published in scientific journals, 
you can read them to establish and maintain a level of knowledge on par with that of the 
scientists and engineers developing the next generation of computing technology.

Summary
Let's briefly review the topics we've discussed and learned about in the chapters of this book:

• In Chapter 1, Introducing Computer Architecture, we began with the earliest design 
of an automated computing machine, Babbage's Analytical Engine, and traced the 
course of digital computer history from the earliest vacuum tube-based computers 
through to the first generations of processors. We also looked at the architecture of 
an early, but still prevalent, microprocessor: the 6502.

• In Chapter 2, Digital Logic, we learned the basics of transistor technology, digital 
logic, registers, and sequential logic. We also discussed the use of hardware 
description languages in the development of complex digital devices.
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• Chapter 3, Processor Elements, covered the fundamental components of processors, 
including the control unit, the ALU, and the register set. The chapter introduced 
concepts related to the processor instruction set, including details on 6502 
addressing modes, instruction categories, interrupt processing, and I/O operations.

• Chapter 4, Computer System Components, introduced the MOSFET transistor and 
described its use in DRAM circuit technology. The chapter covered the processing 
and communication subsystems of modern computers, including the I/O subsystem, 
graphics displays, the network interface, and interfaces for the keyboard and mouse.

• In Chapter 5, Hardware-Software Interface, we learned about the inner workings 
of drivers and how the BIOS firmware of the original PC has transitioned to UEFI 
in modern computers. This chapter covered the boot process and the concepts 
associated with processes and threads in modern operating systems.

• Chapter 6, Specialized Computing Domains, introduced the unique features of  
real-time computing, digital signal processing, and GPU processing. Examples  
of specialized computing architectures relying on unique processing capabilities 
were presented, including cloud computer servers, business desktop computers,  
and high-performance gaming computers.

• Chapter 7, Processor and Memory Architectures, addressed processor and memory 
architectures, including the unique features of the von Neumann, Harvard, and 
modified Harvard architectures. The chapter described the distinction between 
physical and virtual memory, and introduced the architecture of paged virtual 
memory, including the functions of an MMU.

• In Chapter 8, Performance-Enhancing Techniques, we learned about a variety of 
techniques used in modern processors to accelerate instruction execution speed. 
Topics included cache memory, instruction pipelining, superscalar processing, 
simultaneous multithreading, and SIMD processing.

• Chapter 9, Specialized Processor Extensions, addressed several auxiliary processor 
capabilities, including privileged execution modes, floating-point mathematics, 
power management, and system security management.

• Chapter 10, Modern Processor Architectures and Instruction Sets, delved into the 
details of the architectures and instruction sets of the most prevalent 32-bit and 
64-bit modern processors. For each of the x86, x64, 32-bit ARM, and 64-bit ARM 
processor architectures, the chapter introduced the register set, addressing modes, 
and instruction categories, and presented a simple but functional assembly  
language program.
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• Chapter 11, The RISC-V Architecture and Instruction Set, examined the features of the 
RISC-V architecture in detail. The chapter introduced the base 32-bit architecture, 
including the register set, instruction set, and standard extensions to the instruction 
set. Additional topics included the 64-bit version of the architecture and standard 
configurations available as commercially produced RISC-V processors. The chapter 
included a simple RISC-V assembly language program and provided guidance for 
implementing a RISC-V processor in a low-cost FPGA device.

• Chapter 12, Processor Virtualization, introduced concepts associated with processor 
virtualization, including challenges that virtualization tools must overcome. 
The techniques used to implement virtualization in modern processor families, 
including x86, ARM, and RISC-V, were discussed. Several popular virtualization 
tools were described, and virtualization approaches used in cloud computing 
environments were presented.

• Chapter 13, Domain-Specific Computer Architectures examined some specific 
computer architectures, including smartphones, personal computers, warehouse-
scale cloud-computing environments, and neural networks. The unique 
processing requirements associated with each of these domains were examined 
and the tailoring of processor hardware to optimize the trade-off between cost, 
performance, and power consumption in each case was discussed.

In this chapter, we attempted to gain some perspective on the road ahead for computer 
architectures. We reviewed the major advances and ongoing trends that have led to the 
current state of computer design and attempted to extrapolate forward to identify the 
directions the development of computing system architectures is likely to take in the 
future. We also examined some potentially disruptive technologies that could alter the 
path of future computer architectures. To get a tiny glimpse into this future, if you work 
through the exercises at the end of this chapter, you will develop a quantum computing 
algorithm and run it on an actual quantum computer, for free!

This chapter also reviewed some suggested approaches for professional development for 
the computer architect that should lead to a skill set that remains relevant and tolerant  
of future advances, whatever they may be.

Having completed this chapter, and this book, you will have a good understanding of the 
evolution of computer architecture design from the earliest days to its current state, and 
will be familiar with ongoing trends in computer architecture that are likely to indicate 
future technological directions. You will also be aware of some potentially disruptive 
technologies that may substantially alter computer architectures in the future. Finally,  
you will have learned some useful techniques for maintaining a current skill set in the 
field of computer architecture.
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This brings us to the end of the book. I hope you have enjoyed reading it and working 
through the exercises as much as I have enjoyed writing it and working through the 
exercises myself.

Exercises
1. Install the Qiskit quantum processor software development framework by following 

the instructions at https://qiskit.org/documentation/install.
html. The instructions suggest the installation of the Anaconda (https://www.
anaconda.com/) data science and machine learning tool set. After installing 
Anaconda, create a Conda virtual environment named qisketenv to contain your 
work on quantum code and install Qisket in this environment with the command 
pip install qiskit. Make sure that you install the optional visualization 
dependencies with the pip install qiskit-terra[visualization] 
command.

2. Create a free IBM Quantum Experience account at https://quantum-
computing.ibm.com/. Locate your IBM Quantum Services API token at 
https://quantum-computing.ibm.com/account and install it into 
your local environment using the instructions at https://qiskit.org/
documentation/install.html.

3. Work through the example quantum program at https://qiskit.org/
documentation/tutorials/fundamentals/1_getting_started_
with_qiskit.html. This example creates a quantum circuit containing three 
qubits that implements a Greenberger–Horne–Zeilinger (GHZ) state. The GHZ 
state exhibits key properties of quantum entanglement. Execute the code in  
a simulation environment on your computer.

4. Execute the code from Exercise 3 on an IBM quantum computer.
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Chapter 1: Introducing Computer Architecture

Exercise 1
Using your favorite programming language, develop a simulation of a single-digit decimal 
adder that operates in the same manner as in Babbage's Analytical Engine. First, prompt 
the user for two digits in the range 0-9: the addend and the accumulator. Display the 
addend, the accumulator, and the carry, which is initially zero. Perform a series of cycles 
as follows: 

a. If the addend is zero, display the values of the addend, accumulator, and carry and 
terminate the program. 

b. Decrement the addend by one and increment the accumulator by one. 

c. If the accumulator incremented from nine to zero, increment the carry. 

d. Go back to step a. 

Test your code with these sums: 0+0, 0+1, 1+0, 1+2, 5+5, 9+1, and 9+9.

Answer
The Ex__1_single_digit_adder.py Python file contains the adder code:

#!/usr/bin/env python

"""Ex__1_single_digit_adder.py: Answer to Ch 1 Ex 1."""

import sys
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# Perform one step of the Analytical Engine addition

# operation. a and b are the digits being added, c is the

# carry

def increment_adder(a, b, c):

    a = a - 1        # Decrement addend

    b = (b + 1) % 10 # Increment accum, wrap to 0 if necessary

    

    if b == 0:       # If accumulator is 0, increment carry

        c = c + 1

        

    return a, b, c;

# Add two decimal digits passed on the command line.

# The sum is returned as digit2 and the carry is 0 or 1.

def add_digits(digit1, digit2):

    carry = 0

    

    while digit1 > 0:

        [digit1, digit2, carry] = increment_adder(

        digit1, digit2, carry)

    return digit2, carry

The Ex__1_test_single_digit_adder.py file contains the test code:

#!/usr/bin/env python

"""Ex__1_test_single_digit_adder.py: Tests for answer to 

chapter 1 exercise 1."""

import unittest

import Ex__1_single_digit_adder

class TestSingleDigitAdder(unittest.TestCase):

    def test_1(self):
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        self.assertEqual(Ex__1_single_digit_adder.add_digits(

        0, 0), (0, 0))

    def test_2(self):

        self.assertEqual(Ex__1_single_digit_adder.add_digits(

        0, 1), (1, 0))

    def test_3(self):

        self.assertEqual(Ex__1_single_digit_adder.add_digits(

        1, 0), (1, 0))

    def test_4(self):

        self.assertEqual(Ex__1_single_digit_adder.add_digits(

        1, 2), (3, 0))

    def test_5(self):

        self.assertEqual(Ex__1_single_digit_adder.add_digits(

        5, 5), (0, 1))

    def test_6(self):

        self.assertEqual(Ex__1_single_digit_adder.add_digits(

        9, 1), (0, 1))

    def test_7(self):

        self.assertEqual(Ex__1_single_digit_adder.add_digits(

        9, 9), (8, 1))

if __name__ == '__main__':

unittest.main()

To execute the tests, assuming Python is installed and is in your path, execute the 
following command:

python Ex__1_test_single_digit_adder.py
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This is the output of a test run:

C:\>python Ex__1_test_single_digit_adder.py

.......

--------------------------------------------------------------
--------

Ran 7 tests in 0.001s

OK

Exercise 2
1. Create arrays of 40 decimal digits each for the addend, accumulator, and carry. 

Prompt the user for two decimal integers of up to 40 digits each. Perform the 
addition digit by digit using the cycles described in Exercise 1, and collect the carry 
output from each digit position in the carry array. After the cycles are complete, 
insert carries and, where necessary, ripple them across digits to complete the 
addition operation. Display the results after each cycle and at the end. Test with  
the same sums as in Exercise 1 and test 99+1, 999999+1, 49+50, and 50+50.

Answer
The Ex__2_40_digit_adder.py Python file contains the adder code:

#!/usr/bin/env python

"""Ex__2_40_digit_adder.py: Answer to Ch 1 Ex 2."""

import sys

import Ex__1_single_digit_adder

# Add two decimal numbers of up to 40 digits and return the

# sum. Input and output numeric values are represented as

# strings.

def add_40_digits(str1, str2):

    max_digits = 40
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    # Convert str1 into a 40 decimal digit value

    num1 = [0]*max_digits

    for i, c in enumerate(reversed(str1)):

        num1[i] = int(c) - int('0')

    # Convert str2 into a 40 decimal digit value

    num2 = [0]*max_digits

    i = 0

    for i, c in enumerate(reversed(str2)):

        num2[i] = int(c) - int('0')

        i = i + 1

    # Sum the digits at each position and record the

    # carry for each position

    sum = [0]*max_digits

    carry = [0]*max_digits

    for i in range(max_digits):

        (sum[i], carry[i]) = Ex__1_single_digit_adder.\

        add_digits(num1[i], num2[i])

    

    # Ripple the carry values across the digits

    for i in range(max_digits-1):

        if (carry[i] == 1):

            sum[i+1] = (sum[i+1] + 1) % 10

            if (sum[i+1] == 0):

                carry[i+1] = 1

    # Convert the result into a string with leading zeros

    # removed

    sum.reverse()

    sum_str = "".join(map(str, sum))

    sum_str = sum_str.lstrip('0') or '0'

    return sum_str
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The Ex__2_test_40_digit_adder.py file contains the test code:

#!/usr/bin/env python

"""Ex__2_test_40_digit_adder.py: Tests for answer to

 chapter 1 exercise 2."""

import unittest

import Ex__2_40_digit_adder

class TestSingleDigitAdder(unittest.TestCase):

    def test_1(self):

        self.assertEqual(Ex__2_40_digit_adder.add_40_digits(

        "0", "0"), "0")

    def test_2(self):

        self.assertEqual(Ex__2_40_digit_adder.add_40_digits(

        "0", "1"), "1")

    def test_3(self):

        self.assertEqual(Ex__2_40_digit_adder.add_40_digits(

        "1", "0"), "1")

    def test_4(self):

        self.assertEqual(Ex__2_40_digit_adder.add_40_digits(

        "1", "2"), "3")

    def test_5(self):

        self.assertEqual(Ex__2_40_digit_adder.add_40_digits(

        "5", "5"), "10")

    def test_6(self):

        self.assertEqual(Ex__2_40_digit_adder.add_40_digits(

        "9", "1"), "10")

    def test_7(self):

        self.assertEqual(Ex__2_40_digit_adder.add_40_digits(
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        "9", "9"), "18")

    def test_8(self):

        self.assertEqual(Ex__2_40_digit_adder.add_40_digits(

        "99", "1"), "100")

    def test_9(self):

        self.assertEqual(Ex__2_40_digit_adder.add_40_digits(

        "999999", "1"), "1000000")

    def test_10(self):

        self.assertEqual(Ex__2_40_digit_adder.add_40_digits(

        "49", "50"), "99")

    def test_11(self):

        self.assertEqual(Ex__2_40_digit_adder.add_40_digits(

        "50", "50"), "100")

if __name__ == '__main__':

    unittest.main()

To execute the tests, assuming Python is installed and is in your path, execute the 
following command:

python Ex__2_test_40_digit_adder.py

This is the output of a test run:

C:\>python Ex__2_test_40_digit_adder.py

...........

--------------------------------------------------------------
--------

Ran 11 tests in 0.002s

OK
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Exercise 3
Modify the program of Exercise 2 to implement subtraction of 40-digit decimal values. 
Perform borrowing as required. Test with 0-0, 1-0, 1000000-1, and 0-1. What is  
the result for 0-1?

Answer
The Ex__3_single_digit_subtractor.py Python file contains the single-digit 
subtractor code:

#!/usr/bin/env python

"""Ex__3_single_digit_subtractor.py: Answer to Ch 1 Ex 3 
(single digit subtractor)."""

import sys

# Perform one step of the Analytical Engine subtraction
# operation. a and b are the digits being subtracted (a - b),
# c is the carry: 0 = borrow, 1 = not borrow
def decrement_subtractor(a, b, c):
    a = (a - 1) % 10 # Decrement left operand, to 9 if wrapped
    b = b - 1        # Decrement accumulator
    
    if a == 9:       # If accum reached 9, decrement carry
        c = c - 1
        
    return a, b, c;

# Subtract two decimal digits. The difference is returned as
# digit1 and the carry output is 0 (borrow) or 1 (not borrow).
def subtract_digits(digit1, digit2):
    carry = 1
    
    while digit2 > 0:
        [digit1, digit2, carry] = decrement_subtractor(
        digit1, digit2, carry)

    return digit1, carry
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The Ex__3_test_single_digit_subtractor.py file contains the test code  
for the single-digit subtractor:

#!/usr/bin/env python

"""Ex__3_test_single_digit_subtractor.py: Tests for answer 

to chapter 1 exercise 3 (tests for single digit 

subtractor)."""

import unittest

import Ex__3_single_digit_subtractor

class TestSingleDigitSubtractor(unittest.TestCase):

    def test_1(self):

        self.assertEqual(Ex__3_single_digit_subtractor.

        subtract_digits(0, 0), (0, 1))

    def test_2(self):

        self.assertEqual(Ex__3_single_digit_subtractor.

        subtract_digits(0, 1), (9, 0))

    def test_3(self):

        self.assertEqual(Ex__3_single_digit_subtractor.

        subtract_digits(1, 0), (1, 1))

    def test_4(self):

        self.assertEqual(Ex__3_single_digit_subtractor.

        subtract_digits(1, 2), (9, 0))

    def test_5(self):

        self.assertEqual(Ex__3_single_digit_subtractor.

        subtract_digits(5, 5), (0, 1))

    def test_6(self):

        self.assertEqual(Ex__3_single_digit_subtractor.

        subtract_digits(9, 1), (8, 1))

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



400     Answers to Exercises

    def test_7(self):

        self.assertEqual(Ex__3_single_digit_subtractor.

        subtract_digits(9, 9), (0, 1))

if __name__ == '__main__':

    unittest.main()

The Ex__3_40_digit_subtractor.py Python file contains the 40-digit  
subtractor code:

#!/usr/bin/env python

"""Ex__3_40_digit_subtractor.py: Answer to Ch 1 Ex 3."""

import sys

import Ex__3_single_digit_subtractor

# Subtract two decimal numbers of up to 40 digits and

# return the result. Input and output numeric values are

# represented as strings.

def subtract_40_digits(str1, str2):

    max_digits = 40

    

    # Convert str1 into a 40 decimal digit value

    num1 = [0]*max_digits

    for i, c in enumerate(reversed(str1)):

        num1[i] = int(c) - int('0')

    # Convert str2 into a 40 decimal digit value

    num2 = [0]*max_digits

    i = 0

    for i, c in enumerate(reversed(str2)):

        num2[i] = int(c) - int('0')

        i = i + 1

    # Subtract the digits at each position and record the

    # carry for each position
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    diff = [0]*max_digits

    carry = [0]*max_digits

    for i in range(max_digits):

        (diff[i], carry[i]) = Ex__3_single_digit_subtractor.\

        subtract_digits(num1[i], num2[i])

    

    # Ripple the carry values across the digits

    for i in range(max_digits-1):

        if (carry[i] == 0):

            diff[i+1] = (diff[i+1] - 1) % 10

            if (diff[i+1] == 9):

                carry[i+1] = 0

    # Convert the result into a string with leading zeros

    # removed

    diff.reverse()

    diff_str = "".join(map(str, diff))

    diff_str = diff_str.lstrip('0') or '0'

    return diff_str

The Ex__3_test_40_digit_subtractor.py file contains the test code for the 
40-digit subtractor:

#!/usr/bin/env python

"""Ex__3_test_40_digit_subtractor.py: Tests for answer to 

chapter 1 exercise 3."""

import unittest

import Ex__3_40_digit_subtractor

class TestSingleDigitSubtractor(unittest.TestCase):

    def test_1(self):

        self.assertEqual(Ex__3_40_digit_subtractor.

        subtract_40_digits("0", "0"), "0")
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For the def test_2(self) file, here is the code:

        self.assertEqual(Ex__3_40_digit_subtractor.

        subtract_40_digits("1", "0"), "1")

    def test_3(self):

        self.assertEqual(Ex__3_40_digit_subtractor.

        subtract_40_digits("1000000", "1"), "999999")

    def test_4(self):

        self.assertEqual(Ex__3_40_digit_subtractor.

        subtract_40_digits("0", "1"), 

        "9999999999999999999999999999999999999999")

if __name__ == '__main__':

    unittest.main()

To execute the tests, assuming Python is installed and is in your path, execute the 
following commands:

python Ex__3_test_single_digit_subtractor.py

python Ex__3_test_40_digit_subtractor.py

This is the output of a test run of Ex__3_test_single_digit_subtractor.py:

C:\>python Ex__3_test_single_digit_subtractor.py

.......

--------------------------------------------------------------
--------

Ran 7 tests in 0.001s

OK

This is the output of a test run of Ex__3_test_40_digit_subtractor.py:

C:\>python Ex__3_test_40_digit_subtractor.py

....

--------------------------------------------------------------
--------

Ran 4 tests in 0.001s

OK
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Exercise 4
1. 6502 assembly language references data in memory locations using an operand 

value containing the address (without the # character that indicates an immediate 
value). For example, the LDA $00 instruction loads the byte at memory address 
$00 into A. STA $01 stores the byte in A into address $01. Addresses can be any 
value in the range 0 to $FFFF, assuming memory exists at the address and the 
address is not already in use for some other purpose. Using your preferred 6502 
emulator, write 6502 assembly code to store a 16-bit value into addresses $00-$01, 
store a second value into addresses $02-$03, then add the two values and store the 
result in $04-$05. Be sure to propagate any carry between the two bytes. Ignore 
any carry from the 16-bit result. Test with $0000+$0001, $00FF+$0001, and 
$1234+$5678.

Answer
The 6502 assembly file Ex__4_16_bit_addition.asm contains the 16-bit  
addition code:

; Ex__4_16_bit_addition.asm

; Try running this code at

; https://skilldrick.github.io/easy6502/

; Set up the values to be added

; Remove the appropriate semicolons to select the bytes to add:

; ($0000 + $0001) or ($00FF + $0001) or ($1234 + $5678)

LDA #$00

;LDA #$FF

;LDA #$34

STA $00

LDA #$00

;LDA #$00

;LDA #$12

STA $01

LDA #$01
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;LDA #$01

;LDA #$78

STA $02

LDA #$00

;LDA #$00

;LDA #$56

STA $03

; Add the two 16-bit values

CLC

LDA $00

ADC $02

STA $04

LDA $01

ADC $03

STA $05

Try running this code at https://skilldrick.github.io/easy6502/.

Exercise 5
Write 6502 assembly code to subtract two 16-bit values in a manner similar to Exercise 4. 
Test with $0001-$0000, $0001-$0001, $0100-$00FF, and $0000-$0001. What is 
the result for $0000-$0001?

Answer
The 6502 assembly file Ex__5_16_bit_subtraction.asm contains the 16-bit 
subtraction code:

; Ex__5_16_bit_subtraction.asm

; Try running this code at

; https://skilldrick.github.io/easy6502/

; Set up the values to be subtracted

; Remove the appropriate semicolons to select the bytes to

; subtract:
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; ($0001 - $0000) or ($0001 - $0001) or ($0001 - $00FF) or

; ($0000 - $0001)

LDA #$01

;LDA #$01

;LDA #$01

;LDA #$00

STA $00

LDA #$00

;LDA #$00

;LDA #$00

;LDA #$00

STA $01

LDA #$00

;LDA #$01

;LDA #$FF

;LDA #$01

STA $02

LDA #$00

;LDA #$00

;LDA #$00

;LDA #$00

STA $03

; Subtract the two 16-bit values

SEC

LDA $00

SBC $02

STA $04

LDA $01

SBC $03

STA $05

Try running this code at https://skilldrick.github.io/easy6502/.
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Exercise 6
Write 6502 assembly code to store two 32-bit integers in addresses $00-03 and 
$04-$07, then add them, storing the results in $08-$0B. Use a looping construct, 
including a label and a branch instruction, to iterate over the bytes of the two values to be 
added. Search the Internet for the details of the 6502 decrement and branch instructions 
and the use of labels in assembly language. Hint: the 6502 zero-page indexed addressing 
mode works well in this application.

Answer
The 6502 assembly file Ex__6_32_bit_addition.asm contains the 32-bit  
addition code:

; Ex__6_32_bit_addition.asm

; Try running this code at

; https://skilldrick.github.io/easy6502/

; Set up the values to be added

; Remove the appropriate semicolons to select the bytes to

; add:

; ($00000001 + $00000001) or ($0000FFFF + $00000001) or

; ($FFFFFFFE + $00000001) or ($FFFFFFFF + $00000001) 

LDA #$01

;LDA #$FF

;LDA #$FE

;LDA #$FF

STA $00

LDA #$00

;LDA #$FF

;LDA #$FF

;LDA #$FF

STA $01

LDA #$00

;LDA #$00
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;LDA #$FF

;LDA #$FF

STA $02

LDA #$00

;LDA #$00

;LDA #$FF

;LDA #$FF

STA $03

LDA #$01

STA $04

LDA #$00

STA $05

STA $06

STA $07

; Add the two 32-bit values using absolute indexed

; addressing mode

LDX #$00

LDY #$04

CLC

ADD_LOOP:

LDA $00, X

ADC $04, X

STA $08, X

INX

DEY

BNE ADD_LOOP

Try running this code at https://skilldrick.github.io/easy6502/.
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Chapter 2: Digital Logic

Exercise 1
Rearrange the circuit in Figure 2.5 to convert the AND gate to a NAND gate. Hint: there  
is no need to add or remove components.

Answer
Relocate the R2 resistor and the output signal connection point as follows:

Exercise 2
Create a circuit implementation of an OR gate by modifying the circuit in Figure 2.5. 
Wires, transistors, and resistors can be added as needed.
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Answer
The OR gate circuit is as follows:

Exercise 3
Search the Internet for free VHDL development software suites that include a simulator. 
Get one of these suites, set it up, and build any simple demo projects that come with the 
suite to ensure it is working properly.

Answer
Some freely available VHDL development suites are as follows:

• Xilinx Vivado Design Suite is available at https://www.xilinx.com/
support/download.html.

• Intel® Quartus® Prime Software Lite Edition is available at https://www.intel.
com/content/www/us/en/software/programmable/quartus-prime/
download.html.

• The open source GHDL simulator for VHDL is available at https://github.
com/ghdl/ghdl.

• Mentor ModelSim PE Student Edition is available at https://www.mentor.
com/company/higher_ed/modelsim-student-edition.
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Vivado Design Suite will be used for the examples in this chapter and the following 
chapters, including installing circuit designs in a low-cost FPGA development board. 
These steps describe the installation and setup process for Windows 10:

1. Visit https://www.xilinx.com/support/download.html and select the 
web installer for the latest version of Vivado Design Suite for Windows. Be sure 
to select the full Vivado installer and not an update. During this process, you will 
need to create a Xilinx account if you do not already have one. Be sure to save your 
account username and password for later use.

2. Provide the requested information, download the Windows Self Extracting Web 
Installer, and run it. You may need to change your Windows app installation 
settings to allow the installer to run.

3. You will be asked to log in with your Xilinx account information and accept the 
license agreements.

4. Select the tool suite you want to install. The examples in this book use Vivado.  
Select Vivado and click Next.

5. Select Vivado HL WebPack (this is the free version). Click Next.

6. Accept the default design tools, devices, and installation options for Vivado HL 
Webpack. Click Next.

7. Accept the default installation directory and other options. Click Next.

8. On the Installation Summary page, click Install. Downloading and installation will 
take some time. The time required depends on your Internet connection speed. Plan 
for a few hours.

After the installation completes, follow these steps to build an example project:

1. You should find an icon on your desktop with a name similar to Vivado 2019.2. 
Double-click this icon (and not the icon that says Vivado HLS) to start  
the application.

2. In the Vivado main window, click Open Example Project.

3. Click through to the Select Project Template screen and select CPU (HDL).

4. Click through and accept the defaults on the following screens and click Finish  
to create the project.

5. On the Project Manager page, you'll find the Sources panel. Expand the tree listing 
and double-click some of the files to open them in the editor. Most of the files in 
this design are in the Verilog hardware design language.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.xilinx.com/support/download.html


Exercise 4     411

6. Click Run Synthesis in the Project Manager panel. The Design Runs panel will 
update the status as synthesis proceeds. This may take several minutes.

7. After synthesis completes, a dialog will appear offering to run the implementation. 
Click Cancel.

8. Click Run Simulation in the Vivado main dialog Project Manager section, then 
select Run behavioral simulation. This may, again, take several minutes.

9. After the simulation completes, you will see a timing diagram in the Simulation 
window showing the simulated CPU signals using the input data provided by the 
simulation source files.

10. This completes the exercise. You may close Vivado.

Exercise 4
Using your VHDL toolset, implement the 4-bit adder using the code listings presented in 
this chapter.

Answer
Follow these steps to implement the 4-bit adder:

1. Double-click the Vivado 2019.2 (or similar) icon to start Vivado.

2. Click Create Project in the Vivado main dialog.

3. Click through and accept the default project name and location.

4. Select RTL Project, the default project type.

5. On the Default Part page, select the Boards tab. Type Arty in the search field and 
select the Arty A7-35 then click Next. If Arty does not appear after searching, click 
Update Board Repositories and then search again.

6. Click Finish to create the project.

7. Click Add Sources in the Project Manager panel, select Add or create design 
sources, and add Ex__4_adder4.vhdl and Ex__4_fulladder.vhdl,  
then click Finish.

8. Expand the tree in the Design Sources window in the Project Manager dialog  
and locate the two files you added. Double-click each of them and expand the 
source code window to view the code.
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9. Click Run Synthesis in the Project Manager panel. Leave the options in the 
Launch Runs dialog at their defaults and click OK. The Design Runs panel  
will update the status as synthesis proceeds.

10. Wait for the synthesis to complete, then select View Reports in the Synthesis 
Completed dialog. Double-click some of the reports produced during the synthesis 
process. Only the reports that have an icon with a green dot are present.

11. This completes the exercise. You may close Vivado.

Exercise 5
Add test driver code (search the Internet to learn how) to your 4-bit adder to drive it 
through a limited set of input sets and verify that the outputs are correct.

Answer
Follow these steps to test the 4-bit adder project created in Exercise 4:

1. Double-click the Vivado 2019.2 (or similar) icon to start Vivado.

2. Click Open Project in the Vivado main dialog and open the project you created  
in Exercise 4. You will need to select the project filename ending in .xpr.

3. Click Add Sources in the Project Manager panel, select Add or create simulation 
sources, add Ex__5_adder4_testbench.vhdl, and then click Finish.

4. Expand the tree in the Simulation Sources window in the Project Manager dialog 
and locate the file you added. Double-click the file and expand the source code 
window to view the code. Observe the six test cases present in the code.

5. Click Run Simulation in the Vivado main dialog Project Manager section, then 
select Run behavioral simulation.

6. Wait for the simulation to complete, then expand the windows with the timing 
diagram (probably labeled Untitled 1).

7. Use the magnifying glass icons and the window's horizontal scroll bar to view the 
six test cases in the first 60 nanoseconds (ns) of execution. Determine if the sum 
and carry for each addition operation are correct. You can drag the yellow marker  
to update the information in the Value column.

8. This completes the exercise. You may close Vivado.

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



Exercise 6     413

Exercise 6
Expand the test driver code and verify that the 4-bit adder produces correct results for all 
possible combinations of inputs.

Answer
Follow these steps to test the 4-bit adder project created in Exercise 4:

1. Double-click the Vivado 2019.2 (or similar) icon to start Vivado.

2. Click Open Project in the Vivado main dialog and open the project you created  
in Exercise 4 and modified in Exercise 5. You will need to select the project filename 
ending in .xpr.

3. We're going to replace the test driver code from Exercise 5 with a different test 
driver. Expand the tree in the Simulation Sources window in the Project Manager 
dialog and locate the module you added in Exercise 5 (ADDER4_TESTBENCH). 
Right-click the module name and select Remove File from Project, then click  
OK to confirm the removal.

4. Click Add Sources in the Project Manager panel, select Add or create simulation 
sources, add Ex__6_adder4_fulltestbench.vhdl, and then click Finish.

5. Expand the tree in the Simulation Sources window in the Project Manager dialog 
and locate the file you added. Double-click the file and expand the source code 
window to view the code. Observe the loop with 256 test cases in the code.

6. Click Run Simulation in the Vivado main dialog Project Manager section,  
then select Run behavioral simulation.

7. Wait for the simulation to complete, then expand the windows with the timing 
diagram (probably labeled Untitled 1).

8. Use the magnifying glass icons and the window horizontal scroll bar to view the 
test cases. Uh-oh! The run stops after 1,000 ns, which isn't enough time for all of the 
tests to execute.

9. Right-click Simulation in the Project Manager panel, then select Simulation 
Settings....

10. Click the Simulation tab and change the value for xsim.simulate.runtime  
to 3000ns. Click OK.

11. Click the X on the Simulation window to close the simulation.

12. Re-run the simulation.
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13. After expanding and scaling the timing diagram, you will be able to see all 256 test 
cases. See if the error signal has a value of 1 anywhere along the trace. This would 
indicate that the adder's output did not match the expected output.

14. This completes the exercise. You may close Vivado.

Chapter 3: Processor Elements

Exercise 1
Consider the addition of two signed 8-bit numbers (that is, numbers in the range -128 to 
+127) where one operand is positive and the other is negative. Is there any pair of 8-bit 
numbers of different signs that, when added together, will exceed the range -128 to +127? 
This would constitute a signed overflow. Note: we're only looking at addition here because, 
as we've seen, subtraction in the 6502 architecture is the same as addition with the right 
operand's bits inverted.

Answer
The range of the positive (or non-negative) numbers is 0 to 127. The range of negative 
numbers is -128 to -1. It is only necessary to consider the extremes of each of these  
ranges to cover all possibilities:

In the preceding table, we can see that there is no pair of 8-bit numbers of different signs 
that, when added together, exceeds the range -128 to +127.

Exercise 2
If the answer to Exercise 1 is no, this implies the only way to create a signed overflow is 
to add two numbers of the same sign. If an overflow occurs, what can you say about the 
result of performing XOR between the most significant bit of each operand with the most 
significant bit of the result? In other words, what will be the result of the expressions 
left(7) XOR result(7) and right(7) XOR result(7)? In these expressions, 
(7) indicates bit 7, the most significant bit.
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Answer
Bit 7 is the sign bit. Since overflow can only occur when both operands are of the same 
sign, left(7) must equal right(7) when an overflow occurs.

When overflow occurs, the sign of the result differs from the sign of the two operands. 
This means result(7) differs from bit 7 of both of the operands.

Therefore, left(7) XOR result(7) = 1 and right(7) XOR result(7) = 1 
whenever overflow occurs.

Exercise 3
Review the VHDL listing in the Arithmetic Logic Unit section in this chapter and 
determine whether the logic for setting or clearing the V flag is correct for addition  
and subtraction operations. Check the results of adding 126+1, 127+1, -127+(-1), and 
-128+(-1).

Answer
The listing of the VHDL implementation of a portion of a 6502-like Arithmetic Logic 
Unit (ALU) in this chapter implements the computation of the overflow flag with the 
following code:

if (((LEFT(7) XOR result8(7)) = '1') AND

    ((right_op(7) XOR result8(7)) = '1')) then -- V flag

  V_OUT <= '1';

else

  V_OUT <= '0';

end if;

The following table shows the results of this code for the four test cases in the question:

The logic for setting or clearing the V flag is correct for these test cases.
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Exercise 4
When transferring blocks of data over an error-prone transmission medium, it is common 
to use a checksum to determine whether any data bits were lost or corrupted during 
transmission. The checksum is typically appended to the transferred data record. One 
checksum algorithm uses these steps:

1. Add all of the bytes in the data record together, retaining only the lowest 8 bits  
of the sum.

2. The checksum is the two's complement of the 8-bit sum.

3. Append the checksum byte to the data record.

After receiving a data block with the appended checksum, the processor can determine 
whether the checksum is valid by simply adding all of the bytes in the record, including 
the checksum, together. The checksum is valid if the lowest 8 bits of the sum are zero. 
Implement this checksum algorithm using 6502 assembly language. The data bytes begin 
at the memory location store in addresses $10-$11 and the number of bytes (including 
the checksum byte) is provided as an input in the X register. Set the A register to 1 if the 
checksum is valid, and to 0 if it is invalid.

Answer
The Ex__4_checksum_alg.asm file contains the following checksum code:

; Ex__4_checksum_alg.asm

; Try running this code at https://skilldrick.github.io/
easy6502/

; Set up the array of bytes to be checksummed

LDA #$01

STA $00

LDA #$72

STA $01

LDA #$93

STA $02

LDA #$F4
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STA $03

LDA #$06 ; This is the checksum byte

STA $04

; Store the address of the data array in $10-$11

LDA #$00

STA $10

STA $11

; Store the number of bytes in X

LDX #5

; Entering the checksum algorithm

; Move X to Y

TXA

TAY

; Compute the checksum

LDA #$00

DEY

LOOP:

CLC

ADC ($10), Y

DEY

BPL LOOP

CMP #$00

BNE ERROR

; The sum is zero: Checksum is correct

LDA #1

JMP DONE

; The sum is nonzero: Checksum is incorrect
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ERROR:

LDA #0

; A contains 1 if checksum is correct, 0 if it is incorrect

DONE:

Exercise 5
Make the checksum validation code from Exercise 4 into a labeled subroutine that can be 
called with a JSR instruction and that ends with an RTS instruction.

Answer
The Ex__5_checksum_subroutine.asm file implements the checksum algorithm  
as a subroutine:

; Ex__5_checksum_subroutine.asm

; Try running this code at https://skilldrick.github.io/
easy6502/

; Set up the array of bytes to be checksummed

LDA #$01

STA $00

LDA #$72

STA $01

LDA #$93

STA $02

LDA #$F4

STA $03

LDA #$06 ; This is the checksum byte

STA $04

; Store the address of the data array in $10-$11

LDA #$00

STA $10

STA $11
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; Store the number of bytes in X

LDX #5

; Call the checksum calculation subroutine

JSR CALC_CKSUM

; Halt execution

BRK

; ==============================================

; Compute the checksum

CALC_CKSUM:

; Move X to Y

TXA

TAY

LDA #$00

DEY

LOOP:

CLC

ADC ($10), Y

DEY

BPL LOOP

CMP #$00

BNE CKSUM_ERROR

; The sum is zero: Checksum is correct

LDA #1

JMP DONE

; The sum is nonzero: Checksum is incorrect

CKSUM_ERROR:

LDA #0
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; A contains 1 if checksum is correct, 0 if it is incorrect

DONE:

RTS

Exercise 6
Write and execute a set of tests to verify the correct operation of the checksum testing 
subroutine you implemented in Exercise 4 and Exercise 5. What is the shortest block of 
data your code can perform checksum validation upon? What is the longest block?

Answer
The Ex__6_checksum_tests.asm file implements the following checksum test code:

; Ex__6_checksum_tests.asm

; Try running this code at https://skilldrick.github.io/
easy6502/

; After tests complete, A=$AA if success, A=$EE if error 
detected

; Store the address of the data array in $10-$11

LDA #$00

STA $10

STA $11

; ==============================================

; Test 1: 1 byte; Checksum: 00 Checksum should pass? Yes

LDA #$00

STA $00

; Store the number of bytes in X

LDX #1

; Call the checksum calculation subroutine

JSR CALC_CKSUM

CMP #$01
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BEQ TEST2

JMP ERROR

TEST2:

; ==============================================

; Test 2: 1 byte; Checksum: 01 Checksum should pass? No

LDA #$01

STA $00

; Store the number of bytes in X

LDX #1

; Call the checksum calculation subroutine

JSR CALC_CKSUM

CMP #$00

BEQ TEST3

JMP ERROR

TEST3:

; ==============================================

; Test 3: 2 bytes: 00 Checksum: 00 Checksum should pass? Yes

LDA #$00

STA $00

STA $01

; Store the number of bytes in X

LDX #2

; Call the checksum calculation subroutine

JSR CALC_CKSUM

CMP #$01

BEQ TEST4

JMP ERROR
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TEST4:

; ==============================================

; Test 4: 2 bytes: 00 Checksum: 01 Checksum should pass? No

LDA #$00

STA $00

LDA #$01

STA $01

; Store the number of bytes in X

LDX #2

; Call the checksum calculation subroutine

JSR CALC_CKSUM

CMP #$00

BEQ TEST5

JMP ERROR

TEST5:

; ==============================================

; Test 5: 2 bytes: 01 Checksum: 00 Checksum should pass? No

LDA #$01

STA $00

LDA #$00

STA $01

; Store the number of bytes in X

LDX #1

; Call the checksum calculation subroutine

JSR CALC_CKSUM

CMP #$00

BEQ TEST6

JMP ERROR
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TEST6:

; ==============================================

; Test 6: 3 bytes: 00 00 Checksum: 00 Checksum should pass? Yes

LDA #$00

STA $00

STA $01

STA $02

; Store the number of bytes in X

LDX #3

; Call the checksum calculation subroutine

JSR CALC_CKSUM

CMP #$01

BEQ TEST7

JMP ERROR

TEST7:

; ==============================================

; Test 7: 3 bytes: 00 00 Checksum: 00 Checksum should pass? Yes

LDA #$00

STA $00

STA $01

STA $02

; Store the number of bytes in X

LDX #3

; Call the checksum calculation subroutine

JSR CALC_CKSUM

CMP #$01

BEQ TEST8

JMP ERROR
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TEST8:

; ==============================================

; Test 8: 3 bytes: 00 00 Checksum: 01 Checksum should pass? No

LDA #$00

STA $00

LDA #$00

STA $01

LDA #$01

STA $02

; Store the number of bytes in X

LDX #3

; Call the checksum calculation subroutine

JSR CALC_CKSUM

CMP #$00

BEQ TEST9

JMP ERROR

TEST9:

; ==============================================

; Test 9: 3 bytes: 00 01 Checksum: FF Checksum should pass? Yes

LDA #$00

STA $00

LDA #$01

STA $01

LDA #$FF

STA $02

; Store the number of bytes in X

LDX #3

; Call the checksum calculation subroutine

JSR CALC_CKSUM
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CMP #$01

BEQ TEST10

JMP ERROR

TEST10:

; ==============================================

; Test 10: 5 bytes: 01 72 93 F4 Checksum: 06 Checksum should 
pass? Yes

LDA #$01

STA $00

LDA #$72

STA $01

LDA #$93

STA $02

LDA #$F4

STA $03

LDA #$06 ; This is the checksum byte

STA $04

; Store the number of bytes in X

LDX #5

; Call the checksum calculation subroutine

JSR CALC_CKSUM

CMP #$01

BEQ PASSED

ERROR:

; ==============================================

; Error occurred; Halt execution with $EE in A

LDA #$EE

BRK

PASSED:

; ==============================================
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; All tests passed; Halt execution with $AA in A

LDA #$AA

BRK

; ==============================================

; Compute the checksum

CALC_CKSUM:

; Move X to Y

TXA

TAY

LDA #$00

DEY

LOOP:

CLC

ADC ($10), Y

DEY

BPL LOOP

CMP #$00

BNE CKSUM_ERROR

; The sum is zero: Checksum is correct

LDA #1

JMP DONE

; The sum is nonzero: Checksum is incorrect

CKSUM_ERROR:

LDA #0

; A contains 1 if checksum is correct, 0 if it is incorrect

DONE:

RTS

The checksum routine works for byte sequences with lengths from 1 to 255 bytes.
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Chapter 4: Computer System Components

Exercise 1
Create a circuit implementation of an NAND gate using two CMOS transistor pairs. 
Unlike NPN transistor gate circuits, no resistors are required for this circuit.

Answer
The diagram for this circuit is as follows:

Exercise 2
A 16-gigabit DRAM integrated circuit has two bank group selection inputs, two bank 
selection inputs, and 17 row address inputs. How many bits are in each row of a bank  
in this device?

Answer
The DRAM circuit contains 16 gigabits = 16 × 230 bits.

The number of address bits is 2 bank group bits + 2 bank bits + 17 row address  
bits = 21 bits.

The row dimension of each bank is therefore (16 × 230) ÷ 221 = 8,192 bits.
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Chapter 5: Hardware-Software Interface

Exercise 1
Restart your computer and enter the BIOS or UEFI settings. Examine each of the menus 
available in this environment. Does your computer have a BIOS or does it use UEFI? Does 
your motherboard support overclocking? When you are finished, be sure to select the 
option to quit without saving changes unless you are absolutely certain you want to  
make changes.

Answer
In Windows, you can enter the BIOS/UEFI settings by changing the startup options while 
Windows is running. To access these settings, perform the following steps:

1. In the Windows search box, type startup and select Change advanced startup 
options.

2. Select the Restart now button under Advanced startup.

3. When asked Choose an option, select Troubleshoot.

4. On the Troubleshoot screen, select Advanced options.

5. On the Advanced options screen, select UEFI Firmware Settings.

6. On the UEFI Firmware Settings screen, click the Restart button.

7. The system will restart and display the UEFI configuration main screen. Use the left 
and right arrow keys on the keyboard to move between the screens.

The following is in answer to the questions in this exercise for a specific computer system 
(an Asus ZenBook UX303LA laptop, in this example):

• Although the messages displayed in the menus use the term "BIOS" frequently, 
mentions of "EFI applications" and its age indicate it is actually UEFI.

• No overclocking options are available.

After you've finished examining the UEFI information, exit without saving any changes  
by following these steps:

1. Move to the Save & Exit page.

2. Use the up and down arrow keys to select Discard Changes and Exit.

3. Press Enter.
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4. Select Yes and press Enter on the Exit Without Saving dialog.

5. The system will reboot.

Exercise 2
Run the appropriate command on your computer to display the currently running processes. 
What is the process ID (PID) of the process you are using to run this command?

Answer
In Windows, open a Command Prompt window (type command in the Windows search 
box to locate the application) and type the tasklist command as follows:

C:\>tasklist

Image Name            PID Session Name Session#   Mem Usage

=================== ===== ============ ======== ============

System Idle Process     0 Services            0          8 K

System                  4 Services            0      9,840 K

Registry              120 Services            0     85,324 K

smss.exe              544 Services            0        640 K

csrss.exe             768 Services            0      4,348 K

wininit.exe           852 Services            0      4,912 K

services.exe          932 Services            0      8,768 K

lsass.exe             324 Services            0     18,160 K

svchost.exe          1044 Services            0      2,308 K

svchost.exe          1068 Services            0     27,364 K

    .

    .

    .

svchost.exe         12184 Services            0      8,544 K

cmd.exe             16008 Console             3      3,996 K

conhost.exe         21712 Console             3     18,448 K

tasklist.exe        15488 Console             3     10,096 K

The current process is the one running the tasklist.exe application. The PID of this 
process is 15488.
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Chapter 6: Specialized Computing Domains

Exercise 1
Rate monotonic scheduling (RMS) is an algorithm for assigning thread priorities in 
preemptive, hard, real-time applications in which threads execute periodically. RMS 
assigns the highest priority to the thread with the shortest execution period, the next-
highest priority to the thread with the next-shortest execution period, and so on. An RMS 
system is schedulable, meaning all tasks are guaranteed to meet their deadlines (assuming 
no inter-thread interactions or other activities such as interrupts causing processing 
delays) if the following condition is met:

This formula represents the maximum fraction of available processing time that can be 
consumed by n threads. In this formula, Ci is the maximum execution time required for 
thread i, and Ti is the execution period of thread i.

Is the following system composed of three threads schedulable?

Answer
First, evaluate the left side of the RMS formula using the data from the table:

Then evaluate the right side of the RMS formula: 

Because 0.82 is not less than or equal to 0.7798, this set of tasks is not schedulable in RMS.
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Exercise 2
A commonly used form of the one-dimensional discrete cosine transform (DCT) is  
as follows:

In this formula, k, the index of the DCT coefficient, runs from 0 to N-1.

Write a program to compute the DCT of the sequence .

The cosine terms in the formula depend only on the indexes n and k, and do not depend 
on the input data sequence x. This means the cosine terms can be computed one time and 
stored as constants for later use. Using this as a preparatory step, the computation of each 
DCT coefficient reduces to a sequence of MAC operations.

This formula represents the unoptimized form of the DCT computation, requiring N2 
iterations of the MAC operation to compute all N DCT coefficients.

Answer
The Ex__2_dct_formula.py Python file contains the DCT code:

#!/usr/bin/env python

"""Ex__2_dct_formula.py: Answer to Ch 6 Ex 2."""

import math

# Input vector

x = [0.5, 0.2, 0.7, -0.6, 0.4, -0.2, 1.0, -0.3]

# Compute the DCT coefficients

dct_coef = [[i for i in range(len(x))] for j in range(len(x))]

for n in range(len(x)):

    for k in range(len(x)):

        dct_coef[n][k] = math.cos((math.pi/len(x))*

        (n + 1/2)*k);
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# Compute the DCT

x_dct = [i for i in range(len(x))]

for k in range(len(x)):

    x_dct[k] = 0;

    for n in range(len(x)):

        x_dct[k] += x[n]*dct_coef[n][k];

# Print the results

print('Index', end='')

for i in range(len(x)):

    print("%8d" % i, end='')

print('\nx      ', end='')

for i in range(len(x)):

    print("%8.4f" % x[i], end='')

print('\nDCT(x) ', end='')

for i in range(len(x)):

    print("%8.4f" % x_dct[i], end='')

To run the code, assuming Python is installed and is in your path, execute the  
following command:

python Ex__2_dct_formula.py

This is the output produced by the program:

C:\>Ex__2_dct_formula.py

Index       0     1     2     3     4     5     6     7

x        0.50  0.20  0.70 -0.60  0.40 -0.20  1.00 -0.30

DCT(x)   1.70  0.42  0.64  0.49 -1.20  0.57 -0.49  2.33

Exercise 3
The hyperbolic tangent is often used as an activation function in Artificial Neural 
Networks (ANNs). The hyperbolic tangent function is defined as follows:
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Given a neuron with inputs from three preceding neurons as depicted in Figure 6.4, 
compute the neuron's output with the hyperbolic tangent as the activation function F(x) 
using the following neuron outputs and path weights:

Answer
The Ex__3_activation_func.py Python file contains the following code:

#!/usr/bin/env python

"""Ex__3_activation_func.py: Answer to Ch 6 Ex 3."""

# Output produced by this program:

# Neuron output = -0.099668

import math

# Neuron signal and weight vectors

neuron = [0.6, -0.3,  0.5]

weight = [0.4,  0.8, -0.2]

sum = 0

for i in range(len(neuron)):

    sum = sum + neuron[i] * weight[i]

output = math.tanh(sum)

# Print the results

print('Neuron output = %8.6f' % output)
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To run the code, assuming Python is installed and is in your path, execute the  
following command:

python Ex__3_activation_func.py

This is the output produced by the program:

C:\>Ex__3_activation_func.py

Neuron output = -0.099668

Chapter 7: Processor and Memory 
Architectures

Exercise 1
A 16-bit embedded processor has separate memory regions for code and data. Code is 
stored in flash memory and modifiable data is stored in RAM. Some data values, such as 
constants and initial values for RAM data items, are stored in the same flash memory region 
as the program instructions. RAM and ROM reside in the same address space. Which of the 
processor architectures discussed in this chapter best describes this processor?

Answer
Because the code and data are located in the same address space, this is a von Neumann 
architecture.

The fact that the code and some data items are stored in ROM and other data items reside 
in RAM is not relevant to determining the architecture category.

Exercise 2
The processor described in Exercise 1 has memory security features that prevent executed 
code from modifying program instruction memory. The processor uses physical addresses 
to access instructions and data. Does this processor contain an MMU?
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Answer
While the protection of memory regions is a feature of MMUs, the presence of memory 
protection alone does not mean an MMU is in use. This processor does not contain an MMU.

MMUs generally perform virtual-to-physical address translation, which does not occur in 
the processor described here.

Exercise 3
The order of accessing sequential elements in a large data structure can have a measurable 
impact on processing speed due to factors such as the reuse of TLB entries. Accessing 
distant array elements in sequence (that is, elements that are not in the same page frame as 
previously accessed elements) requires frequent soft faults as new TLB entries are loaded 
and old TLB entries are discarded.

Write a program that creates a two-dimensional array of numbers with a large size, such 
as 10,000 rows by 10,000 columns. Iterate through the array in column-major order, 
assigning each element the sum of the row and column indices. Column-major means 
the column index increments fastest. In other words, the column index increments in the 
inner loop. Measure precisely how long this procedure takes. Note, you may need to take 
steps to ensure your programming language does not optimize away the entire calculation 
if the results from the array are not used later. If may suffice to print one of the array 
values after the timing is complete, or you may need to do something like sum all the 
array elements and print that result. 

Repeat the process, including the timing, exactly as explained before, except change the 
inner loop to iterate over the row index and the outer loop to iterate over the column 
index, making the access sequence row-major.

Since general-purpose computers perform many other tasks while running your code, you 
may need to perform both procedures a number of times to get a statistically valid result. 
You might start by running the experiment 10 times and averaging the times for column-
major and row-major array access.

Are you able to determine a consistently superior array access method? Which order is 
fastest on your system using the language you selected? Note that the difference between 
the column-major and row-major access order may not be dramatic – it might be just a 
few percent.
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Answer
The Ex__3_row_column_major_order.py file contains the following Python 
implementation of a solution to this exercise:

#!/usr/bin/env python

"""Ex__3_row_column_major_order.py: Answer to chapter 7 
exercise 3."""

# Typical output from a run of this script:

# Average row-major time   : 16.68 sec

# Average column-major time: 15.94 sec

# Average time difference  : 0.74 sec

# Winner is column-major indexing; It is faster by 4.42%

import time

  

dim = 10000

matrix = [[0] * dim] * dim

num_passes = 10

row_major_time = 0

col_major_time = 0

for k in range(num_passes):

    print('Pass %d of %d:' % (k+1, num_passes))

    t0 = time.time()

    for i in range(dim):

        for j in range(dim):

            matrix[i][j] = i + j

    t1 = time.time()

    total_time = t1 - t0

    col_major_time = col_major_time + total_time
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    print('  Column-major time to fill array: %.2f sec' %  
        total_time)

    t0 = time.time()

    for i in range(dim):

        for j in range(dim):

            matrix[j][i] = i + j

    t1 = time.time()

    total_time = t1 - t0

    row_major_time = row_major_time + total_time

    print('  Row-major time to fill array: %.2f sec' % total_ 
        time)

    print('')

    

row_major_average = row_major_time / num_passes

col_major_average = col_major_time / num_passes

if (row_major_average < col_major_average):

    winner = 'row'

    pct_better = 100 * (col_major_average - row_major_average)  
        / col_major_average

else:

    winner = 'column'

    pct_better = 100 * (row_major_average - col_major_average)  
        / row_major_average

print('Average row-major time   : %.2f sec' % row_major_ 
    average)

print('Average column-major time: %.2f sec' % col_major_ 
    average)

print('Average time difference  : %.2f sec' % ((row_major_ 
    time-col_major_time) / num_passes))

print(('Winner is ' + winner + '-major indexing; It is faster  
    by %.2f%%') % pct_better)

This program takes a few minutes to run on a Windows PC.
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This is the typical output from a run of this program:

Average row-major time   : 16.68 sec

Average column-major time: 15.94 sec

Average time difference  : 0.74 sec

Winner is column-major indexing; It is faster by 4.42%

Chapter 8: Performance-Enhancing Techniques

Exercise 1
Consider a direct-mapped L1-I cache of 32 KB. Each cache line consists of 64 bytes and 
the system address space is 4 GB. How many bits are in the cache tag? Which bit numbers 
(bit 0 is the least significant bit) are they within the address word?

Answer
The cache contains 32,768 bytes with 64 bytes in each line. There are 32,768 ÷ 64 = 512 
sets in the cache. 512 = 29. The set number is thus 9 bits in length.

Each cache line contains 64 (26) bytes, which means the lower 6 bits of each address 
represent the byte offset within the cache line.

A 4 GB address space requires 32-bit addresses. Subtracting the 9 bits in the set number 
and the 6 bits in the byte offset from the 32-bit address results in 32 - (9 + 6) = 17 bits in 
the cache tag.

The cache tag lies in the 17 most significant bits of the address, so the range of these bits 
within a 32-bit address runs from bit 15 to bit 31.

Exercise 2
Consider an 8-way set-associative L2 instruction and data cache of 256 KB, with 64 bytes 
in each cache line. How many sets are in this cache?

Answer
The number of lines in the cache is 262,144 ÷ 64 = 4,096.

Each set contains 8 lines.

The number of sets = 4,096 lines ÷ 8 lines per set = 512 sets.
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Exercise 3
A processor has a 4-stage pipeline with maximum delays of 0.8, 0.4, 0.6, and 0.3 
nanoseconds in stages 1-4, respectively. If the first stage is replaced with two stages  
that have maximum delays of 0.5 and 0.3 nanoseconds respectively, how much will  
the processor clock speed increase in percentage terms?

Answer
The maximum clock speed is determined by the slowest pipeline stage. The slowest stage 
of the 4-stage pipeline takes 0.8 ns. The maximum clock frequency is 1 ÷ (0.8 × 10-9) = 
1.25 GHz.

The 5-stage pipeline has a slowest stage of 0.6 ns. The maximum clock frequency is 1 ÷ 
(0.6 × 10-9) = 1.667 GHz.

The clock frequency increase resulting from the addition of the pipeline stage is 100 × 
(1.667 × 109 - 1.25 × 109) ÷ (1.25 × 109) = 33.3%.

Chapter 9: Specialized Processor Extensions

Exercise 1
Using a programming language that allows access to the byte representation of floating-
point data types (such as C or C++), write a function that accepts a 32-bit single-
precision variable as input. Extract the sign, exponent, and mantissa from the bytes of 
the floating-point variable and display them. Remove the bias term from the exponent 
before displaying its value and display the mantissa as a decimal number. Test the program 
with the values 0, -0, 1, -1, 6.674e-11, 1.0e38, 1.0e39, 1.0e-38, and 1.0e-39. The numeric 
values listed here containing e are using the C/C++ text representation of floating-point 
numbers. For example, 6.674e-11 means 6.674 x 10-11.

Answer
The Ex__1_float_format.cpp C++ file contains the code for this exercise:

// Ex__1_float_format.cpp

#include <iostream>

#include <cstdint>
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void print_float(float f)

{

    const auto bytes = static_cast<uint8_t*>(

        static_cast<void*>(&f));

    printf(" Float  | %9g |     ", f);

    for (int i = sizeof(float) - 1; i >= 0; i--)

        printf("%02X", bytes[i]);

    printf("     | ");

    const auto sign = bytes[3] >> 7;

    const auto exponent = ((static_cast<uint16_t>(

        bytes[3] & 0x7F) << 8) | bytes[2]) >> 7;

    auto exp_unbiased = exponent - 127;

    uint32_t mantissa = 0;

    for (auto i = 0; i < 3; i++)

        mantissa = (mantissa << 8) | bytes[2 - i];

    mantissa &= 0x7FFFFF; // Clear upper bit

    double mantissa_dec;

    if (exponent == 0) // This is zero or a subnormal number

    {

        mantissa_dec = mantissa / 

            static_cast<double>(0x800000);

        exp_unbiased++;

    }

    else

        mantissa_dec = 1.0 + mantissa /

            static_cast<double>(0x800000);

    printf("  %d  |   %4d   | %lf\n", sign, 

        exp_unbiased, mantissa_dec);
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}

int main(void)

{

    printf("  Type  |   Number  |       Bytes      "

        "| Sign | Exponent | Mantissa\n");

    printf(" -------|-----------|------------------"

        "|------|----------|---------\n");

    print_float(0);

    print_float(-0); // Minus sign is ignored

    print_float(1);

    print_float(-1);

    print_float(6.674e-11f);

    print_float(1.0e38f);

    //print_float(1.0e39f); // Compile-time error

    print_float(1.0e-38f);

    print_float(1.0e-39f);

    return 0;

}

This is the output of the program:

  Type  |   Number  |       Bytes      | Sign | Exponent | 
Mantissa

 -------|-----------|------------------|------|----------|----
-----

 Float  |         0 |     00000000     |   0  |   -126   | 
0.000000

 Float  |         0 |     00000000     |   0  |   -126   | 
0.000000

 Float  |         1 |     3F800000     |   0  |      0   | 
1.000000

 Float  |        -1 |     BF800000     |   1  |      0   | 
1.000000

 Float  | 6.674e-11 |     2E92C348     |   0  |    -34   | 
1.146585
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 Float  |     1e+38 |     7E967699     |   0  |    126   | 
1.175494

 Float  |     1e-38 |     006CE3EE     |   0  |   -126   | 
0.850706

 Float  |     1e-39 |     000AE398     |   0  |   -126   | 
0.085071

These are some notes about the results:

• Zero in IEEE 754 can have a positive or negative sign. The zero passed to the 
print_float function in the second row of the table is preceded with a minus 
sign, but the sign is ignored during the conversion to floating point.

• The value 1.0e39f is not shown because using it causes a compile-time error: 
floating constant is out of range.

• Zero is represented as a mantissa of zero and a biased exponent of zero.

• The last two rows contain numbers that cannot be represented with an implicit 
leading 1 bit because the exponent would underflow. These numbers are called 
subnormals and contain the special biased exponent of 0. Subnormals have  
reduced precision because not all bits of the mantissa contain meaningful digits.

• Numerically, subnormal floats actually use a biased exponent of 1, which translates 
to an unbiased exponent of -126.

Exercise 2
Modify the program from Exercise 1 to also accept a double-precision floating-point 
variable and print the sign, exponent (with the bias removed), and mantissa from the 
variable. Test with the same input values as in Exercise 1, and also with the values 1.0e308, 
1.0e309, and 1.0e-308, 1.0e-309.

Answer
The Ex__2_double_format.cpp.cpp C++ file contains the code for this exercise:

// Ex__2_double_format.cpp

#include <iostream>

#include <cstdint>

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



Answer     443

void print_float(float f)

{

    const auto bytes = static_cast<uint8_t*>(

        static_cast<void*>(&f));

    printf(" Float  | %9g |     ", f);

    for (int i = sizeof(float) - 1; i >= 0; i--)

        printf("%02X", bytes[i]);

    printf("     | ");

    const auto sign = bytes[3] >> 7;

    const auto exponent = ((static_cast<uint16_t>(

        bytes[3] & 0x7F) << 8) | bytes[2]) >> 7;

    auto exp_unbiased = exponent - 127;

    uint32_t mantissa = 0;

    for (auto i = 0; i < 3; i++)

        mantissa = (mantissa << 8) | bytes[2 - i];

    mantissa &= 0x7FFFFF; // Clear upper bit

    double mantissa_dec;

    if (exponent == 0) // This is zero or a subnormal number

    {

        mantissa_dec = mantissa / 

            static_cast<double>(0x800000);

        exp_unbiased++;

    }

    else

        mantissa_dec = 1.0 + mantissa / 

            static_cast<double>(0x800000);

    printf("  %d  |   %4d   | %lf\n", sign, 

        exp_unbiased, mantissa_dec);
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}

void print_double(double d)

{

    const auto bytes = static_cast<uint8_t*>(

        static_cast<void*>(&d));

    printf(" Double | %9g | ", d);

    for (int i = sizeof(double) - 1; i >= 0; i--)

        printf("%02X", bytes[i]);

    printf(" | ");

    const auto sign = bytes[7] >> 7;

    const auto exponent = ((static_cast<uint16_t>(

        bytes[7] & 0x7F) << 8) | bytes[6]) >> 4;

    auto exp_unbiased = exponent - 1023;

    uint64_t mantissa = 0;

    for (auto i = 0; i < 7; i++)

        mantissa = (mantissa << 8) | bytes[6 - i];

    mantissa &= 0xFFFFFFFFFFFFF; // Save the low 52 bits

    double mantissa_dec;

    if (exponent == 0) // This is zero or a subnormal number

    {

        mantissa_dec = mantissa / 

            static_cast<double>(0x10000000000000);

        exp_unbiased++;

    }

    else

        mantissa_dec = 1.0 + mantissa / 

            static_cast<double>(0x10000000000000);

    printf("  %d  |  %5d   | %lf\n", sign, 

        exp_unbiased, mantissa_dec);
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}

int main(void)

{

    printf("  Type  |   Number  |       Bytes      "

        "| Sign | Exponent | Mantissa\n");

    printf(" -------|-----------|------------------"

        "|------|----------|---------\n");

    print_float(0);

    print_float(-0); // The minus sign is ignored

    print_float(1);

    print_float(-1);

    print_float(6.674e-11f);

    print_float(1.0e38f);

    //print_float(1.0e39f); // Compile-time error

    print_float(1.0e-38f);

    print_float(1.0e-39f);

    print_double(0);

    print_double(-0); // The minus sign is ignored

    print_double(1);

    print_double(-1);

    print_double(6.674e-11);

    print_double(1.0e38);

    print_double(1.0e39);

    print_double(1.0e-38);

    print_double(1.0e-39);

    print_double(1.0e308);

    //print_double(1.0e309); // Compile-time error

    print_double(1.0e-308);

    print_double(1.0e-309);

    return 0;

}
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This is the output of the program:

  Type  |   Number  |       Bytes      | Sign | Exponent | 
Mantissa

 -------|-----------|------------------|------|----------|----
-----

 Float  |         0 |     00000000     |   0  |   -126   | 
0.000000

 Float  |         0 |     00000000     |   0  |   -126   | 
0.000000

 Float  |         1 |     3F800000     |   0  |      0   | 
1.000000

 Float  |        -1 |     BF800000     |   1  |      0   | 
1.000000

 Float  | 6.674e-11 |     2E92C348     |   0  |    -34   | 
1.146585

 Float  |     1e+38 |     7E967699     |   0  |    126   | 
1.175494

 Float  |     1e-38 |     006CE3EE     |   0  |   -126   | 
0.850706

 Float  |     1e-39 |     000AE398     |   0  |   -126   | 
0.085071

 Double |         0 | 0000000000000000 |   0  |  -1022   | 
0.000000

 Double |         0 | 0000000000000000 |   0  |  -1022   | 
0.000000

 Double |         1 | 3FF0000000000000 |   0  |      0   | 
1.000000

 Double |        -1 | BFF0000000000000 |   1  |      0   | 
1.000000

 Double | 6.674e-11 | 3DD25868F4DEAE16 |   0  |    -34   | 
1.146584

 Double |     1e+38 | 47D2CED32A16A1B1 |   0  |    126   | 
1.175494

 Double |     1e+39 | 48078287F49C4A1D |   0  |    129   | 
1.469368

 Double |     1e-38 | 380B38FB9DAA78E4 |   0  |   -127   | 
1.701412

 Double |     1e-39 | 37D5C72FB1552D83 |   0  |   -130   | 
1.361129
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 Double |    1e+308 | 7FE1CCF385EBC8A0 |   0  |   1023   | 
1.112537

 Double |    1e-308 | 000730D67819E8D2 |   0  |  -1022   | 
0.449423

 Double |    1e-309 | 0000B8157268FDAF |   0  |  -1022   | 
0.044942

These are some notes about the results:

• Zero in IEEE 754 can have a positive or negative sign. The zero passed to the 
print_double function in the second row of the table containing the Double 
type is preceded with a minus sign, but the sign is ignored during the conversion  
to floating-point.

• The value 1.0e309 is not shown because using it causes a compile-time error: 
floating constant is out of range.

• Zero is represented as a mantissa of zero and a biased exponent of zero.

• The last two rows contain numbers that cannot be represented with an implicit 
leading 1 bit because the exponent would underflow. These numbers are called 
subnormals, and contain the special biased exponent of 0. Subnormals have  
reduced precision because not all bits of the mantissa contain meaningful digits.

• Numerically, subnormal doubles actually use a biased exponent of 1, which 
translates to an unbiased exponent of -1,022.

Exercise 3
Search the Internet for information about the NXP Semiconductors i.MX RT1060 
processor family. Download the product family datasheet and answer the following 
questions about these processors.

Answer
Introductory information about the i.MX RT1060 processor family is available at 
https://www.nxp.com/docs/en/nxp/data-sheets/IMXRT1060CEC.pdf.

The complete i.MX RT1060 reference manual is available only after you create an account 
at https://www.nxp.com.

While logged into your account, search for i.MX RT1060 Processor Reference 
Manual to locate the reference manual and download it. The filename is IMXRT1060RM.
pdf.
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Exercise 4
Do the i.MX RT1060 processors support the concept of supervisor-mode instruction 
execution? Explain your answer.

Answer
Performing a search for supervisor in the i.MX RT1060 processor reference manual 
produces a few hits. However, all of these usages refer to access restrictions related to a 
particular subsystem, such as the FLEXCAN module.

Supervisor mode in the i.MX RT1060 processor does not operate at the instruction 
execution level, so these processors do not implement supervisor mode instruction execution 
as described in Chapter 9, Specialized Processor Extensions.

Exercise 5
Do the i.MX RT1060 processors support the concept of paged virtual memory? Explain 
your answer.

Answer
The i.MX RT1060 processors use physical memory addressing with up to 16 memory 
protection regions. These processors do not support the concept of paged virtual memory.

Exercise 6
Do the i.MX RT1060 processors support floating-point operations in hardware? Explain 
your answer.

Answer
Section 1.3, Features, in the reference manual lists the following capability: Single-
precision and double-precision FPU (Floating Point Unit).

The ARM Cortex-M7 Processor Technical Reference Manual, available at http://
infocenter.arm.com/help/topic/com.arm.doc.ddi0489b/DDI0489B_
cortex_m7_trm.pdf states the FPU provides "floating-point computation functionality 
that is compliant with the ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-
Point Arithmetic, referred to as the IEEE 754 standard."

The i.MX RT1060 processors support floating-point operations in hardware.
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Exercise 7
What power management features do the i.MX RT1060 processors support?

Answer
Section 12.4 of the reference manual describes the processor power management 
subsystem. Some of the key features are as follows:

• Separate power domains for the processor, memory, and the remainder of the system.

• Integrated secondary power supplies that support independently powering a variety 
of subsystems.

• Voltage and clock frequency control enabling dynamic voltage and frequency 
scaling (DVFS).

• Temperature sensors.

• Voltage sensors.

Exercise 8
What security features do the i.MX RT1060 processors support?

Answer
Chapter 6, Specialized Computing Domains, in the reference manual describes the system 
security components. Some of the key features are as follows:

• Secure boot, enforcing digital signature verification of an encrypted code image.

• On-chip, one-time programmable ROM for storing security-related information.

• Hardware cryptographic coprocessor supporting the AES-128, SHA-1, and 
SHA-256 encryption algorithms.

• True random number generator for creating secure cryptographic keys.

• JTAG debug controller with password-enabled secure debug capability.

• Memory interface supporting on-the-fly decryption of encrypted ROM  
instruction data.
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Chapter 10: Modern Processor Architectures  
and Instruction Sets

Exercise 1
Install the free Visual Studio Community edition, available at https://
visualstudio.microsoft.com/vs/community/, on a Windows PC.  
After installation is complete, open the Visual Studio IDE and select Get Tools  
and Features… under the Tools menu. Install the Desktop development  
with C++ workload.

In the Windows search box in the taskbar, begin typing x86 Native Tools Command 
Prompt for VS 2019. When the app appears in the search menu, select it to open 
command prompt.

Create a file named hello_x86.asm with the content shown in the source listing in the 
x86 assembly language section of this chapter.

Build the program using the command shown in the The x86 assembly language section  
of this chapter and run it. Verify the output Hello, Computer Architect! appears on  
the screen.

Answer
Install Visual Studio Community as described in the question, then install the Desktop 
development with C++ workload within Visual Studio Community.

Create your assembly language source file. The Ex__1_hello_x86.asm file contains 
the following example solution to this exercise:

.386

.model FLAT,C

.stack 400h

.code

includelib libcmt.lib

includelib legacy_stdio_definitions.lib

extern printf:near

extern exit:near
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public main

main proc

    ; Print the message

    push    offset message

    call    printf

    

    ; Exit the program with status 0

    push    0

    call    exit

main endp

.data

message db "Hello, Computer Architect!",0

end

Open the x86 Native Tools Command Prompt for VS 2019 and change to the directory 
containing your source file.

Build the executable with this command:

ml /Fl /Zi /Zd Ex__1_hello_x86.asm

This is the output produced by the program:

C:\>Ex__1_hello_x86.exe

Hello, Computer Architect!

This is the listing file created by the build procedure:

Microsoft (R) Macro Assembler Version 14.24.28314.0     
01/15/20 18:40:04

Ex__1_hello_x86.asm          Page 1 - 1

    .386

    .model FLAT,C

    .stack 400h

 00000000   .code
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    includelib libcmt.lib

    includelib legacy_stdio_definitions.lib

    extern printf:near

    extern exit:near

    public main

 00000000   main proc

        ; Print the message

 00000000  68 00000000 R     push    offset message

 00000005  E8 00000000 E     call    printf

        

        ; Exit the program with status 0

 0000000A  6A 00      push    0

 0000000C  E8 00000000 E     call    exit

 00000011   main endp

 00000000   .data

 00000000 48 65 6C 6C 6F message db "Hello, Computer  
                         Architect!",0

    2C 20 43 6F 6D

    70 75 74 65 72

    20 41 72 63 68

    69 74 65 63 74

    21 00

    end

                                

                                

Microsoft (R) Macro Assembler Version 14.24.28314.0     
01/15/20 18:40:04

Ex__1_hello_x86.asm          Symbols 2 - 
1
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Segments and Groups:

                N a m e                 Size     Length   Align   
Combine Class

FLAT . . . . . . . . . . . . . . GROUP

STACK  . . . . . . . . . . . . . 32 Bit  00000400 DWord 
  Stack   'STACK'  

_DATA  . . . . . . . . . . . . . 32 Bit  0000001B DWord 
  Public  'DATA' 

_TEXT  . . . . . . . . . . . . . 32 Bit  00000011 DWord 
  Public  'CODE' 

Procedures, parameters, and locals:

                N a m e                 Type     Value    Attr

main . . . . . . . . . . . . . . P Near  00000000 _TEXT 
Length= 00000011 Public C

Symbols:

                N a m e                 Type     Value    Attr

@CodeSize  . . . . . . . . . . . Number  00000000h   

@DataSize  . . . . . . . . . . . Number  00000000h   

@Interface . . . . . . . . . . . Number  00000001h   

@Model . . . . . . . . . . . . . Number  00000007h   

@code  . . . . . . . . . . . . . Text     _TEXT

@data  . . . . . . . . . . . . . Text     FLAT

@fardata?  . . . . . . . . . . . Text     FLAT

@fardata . . . . . . . . . . . . Text     FLAT

@stack . . . . . . . . . . . . . Text     FLAT

exit . . . . . . . . . . . . . . L Near  00000000 FLAT 
External C
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message  . . . . . . . . . . . . Byte  00000000 _DATA 

printf . . . . . . . . . . . . . L Near  00000000 FLAT 
External C

    0 Warnings

    0 Errors

Exercise 2
Write an x86 assembly language program that computes the following expression and 
prints the result as a hexadecimal number: [(129 – 66) × (445 + 136)] ÷ 3. As part of  
this program, create a callable function to print one byte as two hex digits.

Answer
Create your assembly language source file. The Ex__2_expr_x86.asm file contains the 
following example solution to this exercise:

.386

.model FLAT,C

.stack 400h

.code

includelib libcmt.lib

includelib legacy_stdio_definitions.lib

extern printf:near

extern exit:near

public main

main proc

    ; Print the leading output string

    push    offset msg1

    call    printf

    ; Compute [(129 – 66) * (445 + 136)] / 3

    mov     eax, 129

    sub     eax, 66
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    mov     ebx, 445

    add     ebx, 136

    mul     bx

    mov     bx, 3

    div     bx

    ; Print the most significant byte

    push    eax

    mov     bl, ah

    call    print_byte

    ; Print the least significant byte

    pop     ebx

    call    print_byte

    ; Print the trailing output string    

    push    offset msg2

    call    printf

    push    0

    call    exit

main endp

; Pass the byte to be printed in ebx

print_byte proc

    ; x86 function prologue

    push    ebp

    mov     ebp, esp

    

    ; Use the C library printf function

    and     ebx, 0ffh

    push    ebx

    push    offset fmt_str

    call    printf
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    ; x86 function epilogue    

    mov     esp, ebp

    pop     ebp

    ret

print_byte endp

.data

fmt_str db "%02X", 0

msg1    db "[(129 - 66) * (445 + 136)] / 3 = ", 0

msg2    db "h", 9

end

Open the x86 Native Tools Command Prompt for VS 2019 and change to the directory 
containing your source file.

Build the executable with this command:

ml /Fl /Zi /Zd Ex__1_hello_x86.asm

This is the output produced by the program:

C:\>Ex__2_expr_x86.exe

[(129 - 66) * (445 + 136)] / 3 = 2FA9h

This is the listing file created by the build procedure:

Microsoft (R) Macro Assembler Version 14.23.28107.0     
01/26/20 20:45:09

Ex__2_expr_x86.asm          Page 1 - 1

    .386

    .model FLAT,C

    .stack 400h

 00000000   .code

    includelib libcmt.lib

    includelib legacy_stdio_definitions.lib
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    extern printf:near

    extern exit:near

    public main

 00000000   main proc

        ; Print the leading output string

 00000000  68 00000005 R     push    offset msg1

 00000005  E8 00000000 E     call    printf

        ; Compute [(129 – 66) * (445 + 136)] 
/ 3

 0000000A  B8 00000081      mov     eax, 129

 0000000F  83 E8 42      sub     eax, 66

 00000012  BB 000001BD      mov     ebx, 445

 00000017  81 C3 00000088     add     ebx, 136

 0000001D  66| F7 E3      mul     bx

 00000020  66| BB 0003      mov     bx, 3

 00000024  66| F7 F3      div     bx

        ; Print the most significant byte

 00000027  50       push    eax

 00000028  8A DC      mov     bl, ah

 0000002A  E8 00000017      call    print_byte

        ; Print the least significant byte

 0000002F  5B       pop     ebx

 00000030  E8 00000011      call    print_byte

        ; Print the trailing output string    

 00000035  68 00000027 R     push    offset msg2

 0000003A  E8 00000000 E     call    printf

 0000003F  6A 00      push    0

 00000041  E8 00000000 E     call    exit

 00000046   main endp
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    ; Pass the byte to be printed in ebx

 00000046   print_byte proc

        ; x86 function prologue

 00000046  55       push    ebp

 00000047  8B EC      mov     ebp, esp

        

        ; Use the C library printf function

 00000049  81 E3 000000FF     and     ebx, 0ffh

 0000004F  53       push    ebx

 00000050  68 00000000 R     push    offset fmt_str

 00000055  E8 00000000 E     call    printf

        ; x86 function epilogue    

 0000005A  8B E5      mov     esp, ebp

 0000005C  5D       pop     ebp

 0000005D  C3       ret

 0000005E   print_byte endp

 00000000   .data

 00000000 25 30 32 58 00 fmt_str db "%02X", 0

 00000005 5B 28 31 32 39 msg1    db "[(129 - 66) * (445 + 
136)] / 3 = ", 0

    20 2D 20 36 36

    29 20 2A 20 28

    34 34 35 20 2B

    20 31 33 36 29

    5D 20 2F 20 33

    20 3D 20 00

 00000027 68 09   msg2    db "h", 9

    end

Microsoft (R) Macro Assembler Version 14.23.28107.0     
01/26/20 20:45:09
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Ex__2_expr_x86.asm          Symbols 2 - 
1

Segments and Groups:

                N a m e                 Size     Length   Align   
Combine Class

FLAT . . . . . . . . . . . . . . GROUP

STACK  . . . . . . . . . . . . . 32 Bit  00000400 DWord 
  Stack   'STACK'  

_DATA  . . . . . . . . . . . . . 32 Bit  00000029 DWord 
  Public  'DATA' 

_TEXT  . . . . . . . . . . . . . 32 Bit  0000005E DWord 
  Public  'CODE' 

Procedures, parameters, and locals:

                N a m e                 Type     Value    Attr

main . . . . . . . . . . . . . . P Near  00000000 _TEXT 
Length= 00000046 Public C

print_byte . . . . . . . . . . . P Near  00000046 _TEXT 
Length= 00000018 Public C

Symbols:

                N a m e                 Type     Value    Attr

@CodeSize  . . . . . . . . . . . Number  00000000h   

@DataSize  . . . . . . . . . . . Number  00000000h   

@Interface . . . . . . . . . . . Number  00000001h   
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@Model . . . . . . . . . . . . . Number  00000007h   

@code  . . . . . . . . . . . . . Text     _TEXT

@data  . . . . . . . . . . . . . Text     FLAT

@fardata?  . . . . . . . . . . . Text     FLAT

@fardata . . . . . . . . . . . . Text     FLAT

@stack . . . . . . . . . . . . . Text     FLAT

exit . . . . . . . . . . . . . . L Near  00000000 FLAT 
External C

fmt_str  . . . . . . . . . . . . Byte  00000000 _DATA 

msg1 . . . . . . . . . . . . . . Byte  00000005 _DATA 

msg2 . . . . . . . . . . . . . . Byte  00000027 _DATA 

printf . . . . . . . . . . . . . L Near  00000000 FLAT 
External C

    0 Warnings

    0 Errors

Exercise 3
In the Windows search box in the taskbar, begin typing x64 Native Tools Command 
Prompt for VS 2019. When the app appears in the search menu, select it to open 
command prompt.

Create a file named hello_x64.asm with the content shown in the source listing in the 
x64 assembly language section of this chapter.

Build the program using the command shown in the x64 assembly language section of this 
chapter and run it. Verify the output Hello, Computer Architect! appears on the screen.

Answer
Create your assembly language source file. The Ex__3_hello_x64.asm file contains 
the following example solution to this exercise:

.code

includelib libcmt.lib

includelib legacy_stdio_definitions.lib

extern printf:near

extern exit:near
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public main

main proc

    ; Reserve stack space

    sub     rsp, 40

    

    ; Print the message

    lea     rcx, message

    call    printf

    

    ; Exit the program with status 0

    xor     rcx, rcx

    call    exit

main endp

.data

message db "Hello, Computer Architect!",0

end

Open the x64 Native Tools Command Prompt for VS 2019 and change to the directory 
containing your source file.

Build the executable with this command:

ml64 /Fl /Zi /Zd Ex__3_hello_x64.asm

This is the output produced by the program:

C:\>Ex__3_hello_x64.exe

Hello, Computer Architect!

This is the listing file created by the build procedure:

Microsoft (R) Macro Assembler (x64) Version 14.24.28314.0   
01/15/20 18:44:39

Ex__3_hello_x64.asm          Page 1 - 1

 00000000   .code
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    includelib libcmt.lib

    includelib legacy_stdio_definitions.lib

    extern printf:near

    extern exit:near

    public main

 00000000   main proc

        ; Reserve stack space

 00000000  48/ 83 EC 28      sub     rsp, 40

        

        ; Print the message

 00000004  48/ 8D 0D      lea     rcx, message

    00000000 R

 0000000B  E8 00000000 E     call    printf

        

        ; Exit the program with status 0

 00000010  48/ 33 C9      xor     rcx, rcx

 00000013  E8 00000000 E     call    exit

 00000018   main endp

 00000000   .data

 00000000 48 65 6C 6C 6F message db "Hello, Computer  
                         Architect!",0

    2C 20 43 6F 6D

    70 75 74 65 72

    20 41 72 63 68

    69 74 65 63 74

    21 00

    end

Microsoft (R) Macro Assembler (x64) Version 14.24.28314.0   
01/15/20 18:44:39
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Ex__3_hello_x64.asm          Symbols 2 - 1

Procedures, parameters, and locals:

                N a m e                 Type     Value    Attr

main . . . . . . . . . . . . . . P   00000000 _TEXT Length= 
00000018 Public

Symbols:

                N a m e                 Type     Value    Attr

exit . . . . . . . . . . . . . . L   00000000 _TEXT External

message  . . . . . . . . . . . . Byte  00000000 _DATA 

printf . . . . . . . . . . . . . L   00000000 _TEXT External

    0 Warnings

    0 Errors

Exercise 4
Write an x64 assembly language program that computes the following expression and 
prints the result as a hexadecimal number: [(129 – 66) × (445 + 136)] ÷ 3. As part of  
this program, create a callable function to print one byte as two hex digits.

Answer
Create your assembly language source file. The Ex__4_expr_x64.asm file contains the 
following example solution to this exercise:

.code

includelib libcmt.lib

includelib legacy_stdio_definitions.lib
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extern printf:near

extern exit:near

public main

main proc

    ; Reserve stack space

    sub     rsp, 40

    

    ; Print the leading output string

    lea     rcx, msg1

    call    printf

    ; Compute [(129 – 66) * (445 + 136)] / 3

    mov     eax, 129

    sub     eax, 66

    mov     ebx, 445

    add     ebx, 136

    mul     bx

    mov     bx, 3

    div     bx

    ; Print the most significant byte

    push    rax

    mov     bl, ah

    and     ebx, 0ffh

    call    print_byte

    ; Print the least significant byte

    pop     rbx

    and     ebx, 0ffh

    call    print_byte

    ; Print the trailing output string    

    lea     rcx, msg2

    call    printf

    ; Exit the program with status 0
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    xor     rcx, rcx

    call    exit

main endp

; Pass the byte to be printed in ebx

print_byte proc

    ; x64 function prologue

    sub     rsp, 40

    

    ; Use the C library printf function

    mov     rdx, rbx

    lea     rcx, fmt_str

    call    printf

    ; x64 function epilogue    

    add     rsp, 40

    ret

print_byte endp

.data

fmt_str db "%02X", 0

msg1    db "[(129 - 66) * (445 + 136)] / 3 = ", 0

msg2    db "h", 9

end

Open the x64 Native Tools Command Prompt for VS 2019 and change to the directory 
containing your source file.

Build the executable with this command:

ml64 /Fl /Zi /Zd Ex__3_hello_x64.asm

This is the output produced by the program:

C:\>Ex__4_expr_x64.exe

[(129 - 66) * (445 + 136)] / 3 = 2FA9h
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This is the listing file created by the build procedure:

Microsoft (R) Macro Assembler (x64) Version 14.23.28107.0   
01/26/20 20:58:00

Ex__4_expr_x64.asm          Page 1 - 1

 00000000   .code

    includelib libcmt.lib

    includelib legacy_stdio_definitions.lib

    extern printf:near

    extern exit:near

    public main

 00000000   main proc

        ; Reserve stack space

 00000000  48/ 83 EC 28      sub     rsp, 40

        

        ; Print the leading output string

 00000004  48/ 8D 0D      lea     rcx, msg1

    00000005 R

 0000000B  E8 00000000 E     call    printf

        ; Compute [(129 – 66) * (445 + 136)] / 3

 00000010  B8 00000081      mov     eax, 129

 00000015  83 E8 42      sub     eax, 66

 00000018  BB 000001BD      mov     ebx, 445

 0000001D  81 C3 00000088     add     ebx, 136

 00000023  66| F7 E3      mul     bx

 00000026  66| BB 0003      mov     bx, 3

 0000002A  66| F7 F3      div     bx

        ; Print the most significant byte

 0000002D  50       push    rax

 0000002E  8A DC      mov     bl, ah

 00000030  81 E3 000000FF     and     ebx, 0ffh
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 00000036  E8 00000020      call    print_byte

        ; Print the least significant byte

 0000003B  5B       pop     rbx

 0000003C  81 E3 000000FF     and     ebx, 0ffh

 00000042  E8 00000014      call    print_byte

        ; Print the trailing output string    

 00000047  48/ 8D 0D      lea     rcx, msg2

    00000027 R

 0000004E  E8 00000000 E     call    printf

        ; Exit the program with status 0

 00000053  48/ 33 C9      xor     rcx, rcx

 00000056  E8 00000000 E     call    exit

 0000005B   main endp

    ; Pass the byte to be printed in ebx

 0000005B   print_byte proc

        ; x64 function prologue

 0000005B  48/ 83 EC 28      sub     rsp, 40

        

        ; Use the C library printf function

 0000005F  48/ 8B D3      mov     rdx, rbx

 00000062  48/ 8D 0D      lea     rcx, fmt_str

    00000000 R

 00000069  E8 00000000 E     call    printf

        ; x64 function epilogue    

 0000006E  48/ 83 C4 28      add     rsp, 40

 00000072  C3       ret

 00000073   print_byte endp

 00000000   .data

 00000000 25 30 32 58 00 fmt_str db "%02X", 0
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 00000005 5B 28 31 32 39 msg1    db "[(129 - 66) * (445 + 136)] 
/ 3 = ", 0

    20 2D 20 36 36

    29 20 2A 20 28

    34 34 35 20 2B

    20 31 33 36 29

    5D 20 2F 20 33

    20 3D 20 00

 00000027 68 09   msg2    db "h", 9

    end

Microsoft (R) Macro Assembler (x64) Version 14.23.28107.0   
01/26/20 20:58:00

Ex__4_expr_x64.asm          Symbols 2 - 1

Procedures, parameters, and locals:

                N a m e                 Type     Value    Attr

main . . . . . . . . . . . . . . P   00000000 _TEXT Length= 
0000005B Public

print_byte . . . . . . . . . . . P   0000005B _TEXT Length= 
00000018 Public

Symbols:

                N a m e                 Type     Value    Attr

exit . . . . . . . . . . . . . . L   00000000 _TEXT External

fmt_str  . . . . . . . . . . . . Byte  00000000 _DATA 

msg1 . . . . . . . . . . . . . . Byte  00000005 _DATA 
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msg2 . . . . . . . . . . . . . . Byte  00000027 _DATA 

printf . . . . . . . . . . . . . L   00000000 _TEXT External

    0 Warnings

    0 Errors

Exercise 5
Install the free Android Studio IDE, available at https://developer.android.
com/studio/. After installation is complete, open the Android Studio IDE and select 
SDK Manager under the Tools menu. In the Settings for New Projects dialog, select the 
SDK Tools tab and check the NDK option, which may be called NDK (Side by side). 
Complete the installation of the NDK (NDK means native development kit).

Locate the following files under the SDK installation directory (the default location is 
%LOCALAPPDATA%\Android) and add their directories to your PATH environment 
variable: arm-linux-androideabi-as.exe and adb.exe. Hint: the following 
command works for one specific version of Android Studio (your path may vary): 

set PATH=%PATH%;%LOCALAPPDATA%\Android\Sdk\ndk\20.1.5948944\
toolchains\arm-linux-androideabi-4.9\prebuilt\windows-x86_64\
bin;%LOCALAPPDATA%\Android\Sdk\platform-tools

Create a file named hello_arm.s with the content shown in the source listing in the  
The 32-bit ARM assembly language section of this chapter.

Build the program using the commands shown in the The 32-bit ARM assembly language 
section of this chapter.

Enable Developer Options on an Android phone or tablet. Search the Internet for 
instructions on how to do this.

Connect your Android device to the computer with a USB cable.

Copy the program executable image to the phone using the commands shown in the 
32-bit ARM assembly language section of this chapter and run the program. Verify  
that the output Hello, Computer Architect! appears on the host computer screen.
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Answer
Create your assembly language source file. The Ex__5_hello_arm.s file contains the 
following example solution to this exercise:

.text

.global _start

_start:

    // Print the message to file 1 (stdout) with syscall 4

    mov     r0, #1

    ldr     r1, =msg

    mov     r2, #msg_len

    mov     r7, #4

    svc     0

    // Exit the program with syscall 1, returning status 0

    mov     r0, #0

    mov     r7, #1

    svc     0

        

.data

msg:

    .ascii      "Hello, Computer Architect!"

msg_len = . - msg

Build the executable with these commands:

arm-linux-androideabi-as -al=Ex__5_hello_arm.lst -o Ex__5_
hello_arm.o Ex__5_hello_arm.s

arm-linux-androideabi-ld -o Ex__5_hello_arm Ex__5_hello_arm.o

This is the output produced by copying the program to an Android device and running it:

C:\>adb devices

* daemon not running; starting now at tcp:5037

* daemon started successfully

List of devices attached
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9826f541374f4b4a68      device

C:\>adb push Ex__5_hello_arm /data/local/tmp/Ex__5_hello_arm

Ex__5_hello_arm: 1 file pushed. 0.0 MB/s (868 bytes in 0.059s)

C:\>adb shell chmod +x /data/local/tmp/Ex__5_hello_arm

C:\>adb shell /data/local/tmp/Ex__5_hello_arm

Hello, Computer Architect!

This is the listing file created by the build procedure:

ARM GAS  Ex__5_hello_arm.s    page 1

   1               .text

   2               .global _start

   3               

   4               _start:

   5                   // Print the message to file 1  
                           //(stdout) with syscall 4

   6 0000 0100A0E3      mov     r0, #1

   7 0004 14109FE5      ldr     r1, =msg

   8 0008 1A20A0E3      mov     r2, #msg_len

   9 000c 0470A0E3      mov     r7, #4

  10 0010 000000EF      svc     0

  11               

  12                   // Exit the program with syscall 1,  
                         //returning status 0

  13 0014 0000A0E3      mov     r0, #0

  14 0018 0170A0E3      mov     r7, #1

  15 001c 000000EF      svc     0

  16                       

  17               .data

  18               msg:

  19 0000 48656C6C      .ascii      "Hello, Computer  
                           Architect!"

  19      6F2C2043 

  19      6F6D7075 
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  19      74657220 

  19      41726368 

  20               msg_len = . - msg

Exercise 6
Write a 32-bit ARM assembly language program that computes the following expression 
and prints the result as a hexadecimal number: [(129 – 66) × (445 + 136)] ÷ 3. As part of 
this program, create a callable function to print one byte as two hex digits.

Answer
Create your assembly language source file. The file Ex__6_expr_arm.s contains for an 
example solution to this exercise.

.text

.global _start

_start:

    // Print the leading output string

    ldr     r1, =msg1

    mov     r2, #msg1_len

    bl      print_string

    // Compute [(129 – 66) * (445 + 136)] / 3

    mov     r0, #129

    sub     r0, r0, #66

    ldr     r1, =#445

    add     r1, r1, #136

    mul     r0, r1, r0

    mov     r1, #3

    udiv    r0, r0, r1

    // Print the upper byte of the result

    push    {r0}

    lsr     r0, r0, #8
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    bl      print_byte

    // Print the lower byte of the result    

    pop     {r0}

    bl      print_byte

    

    // Print the trailng output string

    ldr     r1, =msg2

    mov     r2, #msg2_len

    bl      print_string

    

    // Exit the program with syscall 1, returning status 0

    mov     r0, #0

    mov     r7, #1

    svc     0

// Print a string; r1=string address, r2=string length

print_string:

    mov     r0, #1

    mov     r7, #4

    svc     0

    mov     pc, lr

// Convert the low 4 bits of r0 to an ascii character in r0

nibble2ascii:

    and     r0, #0xF

    cmp     r0, #10

    addpl   r0, r0, #('A' - 10)

    addmi   r0, r0, #'0'

    mov     pc, lr

// Print a byte in hex    

print_byte:

    push    {lr}

    push    {r0}

    lsr     r0, r0, #4
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    bl      nibble2ascii

    ldr     r1, =bytes

    strb    r0, [r1], #1

    pop     {r0}

    bl      nibble2ascii

    strb    r0, [r1]

    ldr     r1, =bytes

    mov     r2, #2

    bl      print_string

    

    pop     {lr}

    mov     pc, lr

        

.data

msg1:

    .ascii  "[(129 - 66) * (445 + 136)] / 3 = "

msg1_len = . - msg1

bytes:

    .ascii  "??"

msg2:

    .ascii  "h"

msg2_len = . - msg2

Build the executable with these commands:

arm-linux-androideabi-as -al=Ex__6_expr_arm.lst -o Ex__6_expr_
arm.o Ex__6_expr_arm.s

arm-linux-androideabi-ld -o Ex__6_expr_arm Ex__6_expr_arm.o

This is the output produced by copying the program to an Android device and running it:

C:\>adb devices

* daemon not running; starting now at tcp:5037

* daemon started successfully
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List of devices attached

9826f541374f4b4a68      device

C:\>adb push Ex__6_expr_arm /data/local/tmp/Ex__6_expr_arm

Ex__6_expr_arm: 1 file pushed. 0.2 MB/s (1188 bytes in 0.007s)

C:\>adb shell chmod +x /data/local/tmp/Ex__6_expr_arm

C:\>adb shell /data/local/tmp/Ex__6_expr_arm

[(129 - 66) * (445 + 136)] / 3 = 2FA9h

This is the listing file created by the build procedure:

ARM GAS  Ex__6_expr_arm.s    page 1

   1               .text

   2               .global _start

   3               

   4               _start:

   5                   // Print the leading output string

   6 0000 A8109FE5      ldr     r1, =msg1

   7 0004 2120A0E3      mov     r2, #msg1_len

   8 0008 110000EB      bl      print_string

   9               

  10                   // Compute [(129 – 66) * (445 + 136)] /  
                       // 3

  11 000c 8100A0E3      mov     r0, #129

  12 0010 420040E2      sub     r0, r0, #66

  13 0014 98109FE5      ldr     r1, =#445

  14 0018 881081E2      add     r1, r1, #136

  15 001c 910000E0      mul     r0, r1, r0

  16 0020 0310A0E3      mov     r1, #3

  17 0024 10F130E7      udiv    r0, r0, r1

  18               

  19                   // Print the upper byte of the result

  20 0028 04002DE5      push    {r0}

  21 002c 2004A0E1      lsr     r0, r0, #8

  22 0030 100000EB      bl      print_byte
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  23               

  24                   // Print the lower byte of the result    

  25 0034 04009DE4      pop     {r0}

  26 0038 0E0000EB      bl      print_byte

  27                   

  28                   // Print the trailng output string

  29 003c 74109FE5      ldr     r1, =msg2

  30 0040 0120A0E3      mov     r2, #msg2_len

  31 0044 020000EB      bl      print_string

  32                   

  33                   // Exit the program with syscall 1,  
                       //returning status 0

  34 0048 0000A0E3      mov     r0, #0

  35 004c 0170A0E3      mov     r7, #1

  36 0050 000000EF      svc     0

  37               

  38               // Print a string; r1=string address,  
                   //r2=string length

  39               print_string:

  40 0054 0100A0E3      mov     r0, #1

  41 0058 0470A0E3      mov     r7, #4

  42 005c 000000EF      svc     0

  43 0060 0EF0A0E1      mov     pc, lr

  44               

  45               // Convert the low 4 bits of r0 to an ascii  
                   //character in r0

  46               nibble2ascii:

  47 0064 0F0000E2      and     r0, #0xF

  48 0068 0A0050E3      cmp     r0, #10

  49 006c 37008052      addpl   r0, r0, #('A' - 10)

  50 0070 30008042      addmi   r0, r0, #'0'

  51 0074 0EF0A0E1      mov     pc, lr

  52               

  53               // Print a byte in hex    

  54               print_byte:

  55 0078 04E02DE5      push    {lr}

  56 007c 04002DE5      push    {r0}
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  57 0080 2002A0E1      lsr     r0, r0, #4

ARM GAS  Ex__6_expr_arm.s    page 2

  58 0084 F6FFFFEB      bl      nibble2ascii

  59 0088 2C109FE5      ldr     r1, =bytes

  60 008c 0100C1E4      strb    r0, [r1], #1

  61               

  62 0090 04009DE4      pop     {r0}

  63 0094 F2FFFFEB      bl      nibble2ascii

  64 0098 0000C1E5      strb    r0, [r1]

  65               

  66 009c 18109FE5      ldr     r1, =bytes

  67 00a0 0220A0E3      mov     r2, #2

  68 00a4 EAFFFFEB      bl      print_string

  69                   

  70 00a8 04E09DE4      pop     {lr}

  71 00ac 0EF0A0E1      mov     pc, lr

  72                       

  73               .data

  74               msg1:

  75 0000 5B283132      .ascii  "[(129 - 66) * (445 + 136)] / 3  
                        = "

  75      39202D20 

  75      36362920 

  75      2A202834 

  75      3435202B 

  76               msg1_len = . - msg1

  77               

  78               bytes:

  79 0021 3F3F          .ascii  "??"

  80               

  81               msg2:

  82 0023 68            .ascii  "h"

  83               msg2_len = . - msg2 
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Exercise 7
Locate the following files under the Android SDK installation directory (the default 
location is %LOCALAPPDATA%\Android) and add their directories to your PATH 
environment variable: aarch64-linux-android-as.exe and adb.exe. Hint: the 
following command works for one version of Android Studio (your path may vary): 

 
set PATH=%PATH%;%LOCALAPPDATA \Android\sdk\ndk-bundle\
toolchains\arm-linux-androideabi-4.9\prebuilt\windows-x86_64\
bin;%LOCALAPPDATA%\Android\Sdk\platform-tools

Create a file named hello_arm64.s with the content shown in the source listing in the 
64-bit ARM assembly language section of this chapter.

Build the program using the commands shown in the 64-bit ARM assembly language 
section of this chapter.

Enable Developer Options on an Android phone or tablet.

Connect your Android device to the computer with a USB cable.

Copy the program executable image to the phone using the commands shown in the 
64-bit ARM assembly language section of this chapter and run the program. Verify the 
output Hello, Computer Architect! appears on the host computer screen.

Answer
Create your assembly language source file. The Ex__6_expr_arm.s file contains the 
following example solution to this exercise:

.text

.global _start

_start:

    // Print the leading output string

    ldr     r1, =msg1

    mov     r2, #msg1_len

    bl      print_string

    // Compute [(129 – 66) * (445 + 136)] / 3

    mov     r0, #129
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    sub     r0, r0, #66

    ldr     r1, =#445

    add     r1, r1, #136

    mul     r0, r1, r0

    mov     r1, #3

    udiv    r0, r0, r1

    // Print the upper byte of the result

    push    {r0}

    lsr     r0, r0, #8

    bl      print_byte

    // Print the lower byte of the result    

    pop     {r0}

    bl      print_byte

    

    // Print the trailng output string

    ldr     r1, =msg2

    mov     r2, #msg2_len

    bl      print_string

    

    // Exit the program with syscall 1, returning status 0

    mov     r0, #0

    mov     r7, #1

    svc     0

// Print a string; r1=string address, r2=string length

print_string:

    mov     r0, #1

    mov     r7, #4

    svc     0

    mov     pc, lr

// Convert the low 4 bits of r0 to an ascii character in r0

nibble2ascii:

    and     r0, #0xF
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    cmp     r0, #10

    addpl   r0, r0, #('A' - 10)

    addmi   r0, r0, #'0'

    mov     pc, lr

// Print a byte in hex    

print_byte:

    push    {lr}

    push    {r0}

    lsr     r0, r0, #4

    bl      nibble2ascii

    ldr     r1, =bytes

    strb    r0, [r1], #1

    pop     {r0}

    bl      nibble2ascii

    strb    r0, [r1]

    ldr     r1, =bytes

    mov     r2, #2

    bl      print_string

    

    pop     {lr}

    mov     pc, lr

        

.data

msg1:

    .ascii  "[(129 - 66) * (445 + 136)] / 3 = "

msg1_len = . - msg1

bytes:

    .ascii  "??"

msg2:

    .ascii  "h"

msg2_len = . - msg2
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Build the executable with these commands:

arm-linux-androideabi-as -al=Ex__6_expr_arm.lst -o Ex__6_expr_
arm.o Ex__6_expr_arm.s

arm-linux-androideabi-ld -o Ex__6_expr_arm Ex__6_expr_arm.o

This is the output produced by copying the program to an Android device and running it:

C:\>adb devices

* daemon not running; starting now at tcp:5037

* daemon started successfully

List of devices attached

9826f541374f4b4a68      device

C:\>adb push Ex__6_expr_arm /data/local/tmp/Ex__6_expr_arm

Ex__6_expr_arm: 1 file pushed. 0.2 MB/s (1188 bytes in 0.007s)

C:\>adb shell chmod +x /data/local/tmp/Ex__6_expr_arm

C:\>adb shell /data/local/tmp/Ex__6_expr_arm

[(129 - 66) * (445 + 136)] / 3 = 2FA9h

This is the listing file created by the build procedure:

ARM GAS  Ex__6_expr_arm.s    page 1

   1               .text

   2               .global _start

   3               

   4               _start:

   5                   // Print the leading output string

   6 0000 A8109FE5      ldr     r1, =msg1

   7 0004 2120A0E3      mov     r2, #msg1_len

   8 0008 110000EB      bl      print_string

   9               

  10                   // Compute [(129 – 66) * (445 +  
                           //136)] / 3

  11 000c 8100A0E3      mov     r0, #129

  12 0010 420040E2      sub     r0, r0, #66

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use



482     Answers to Exercises

  13 0014 98109FE5      ldr     r1, =#445

  14 0018 881081E2      add     r1, r1, #136

  15 001c 910000E0      mul     r0, r1, r0

  16 0020 0310A0E3      mov     r1, #3

  17 0024 10F130E7      udiv    r0, r0, r1

  18               

  19                   // Print the upper byte of the  
                         //result

  20 0028 04002DE5      push    {r0}

  21 002c 2004A0E1      lsr     r0, r0, #8

  22 0030 100000EB      bl      print_byte

  23               

  24                   // Print the lower byte of the  
                         //result    

  25 0034 04009DE4      pop     {r0}

  26 0038 0E0000EB      bl      print_byte

  27                   

  28                   // Print the trailng output string

  29 003c 74109FE5      ldr     r1, =msg2

  30 0040 0120A0E3      mov     r2, #msg2_len

  31 0044 020000EB      bl      print_string

  32                   

  33                   // Exit the program with syscall 1,  
                         //returning status 0

  34 0048 0000A0E3      mov     r0, #0

  35 004c 0170A0E3      mov     r7, #1

  36 0050 000000EF      svc     0

  37               

  38               // Print a string; r1=string address,  
                  //r2=string length

  39               print_string:

  40 0054 0100A0E3      mov     r0, #1

  41 0058 0470A0E3      mov     r7, #4

  42 005c 000000EF      svc     0

  43 0060 0EF0A0E1      mov     pc, lr

  44               
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  45               // Convert the low 4 bits of r0 to an  
                       //ascii character in r0

  46               nibble2ascii:

  47 0064 0F0000E2      and     r0, #0xF

  48 0068 0A0050E3      cmp     r0, #10

  49 006c 37008052      addpl   r0, r0, #('A' - 10)

  50 0070 30008042      addmi   r0, r0, #'0'

  51 0074 0EF0A0E1      mov     pc, lr

  52               

  53               // Print a byte in hex    

  54               print_byte:

  55 0078 04E02DE5      push    {lr}

  56 007c 04002DE5      push    {r0}

  57 0080 2002A0E1      lsr     r0, r0, #4

ARM GAS  Ex__6_expr_arm.s    page 2

  58 0084 F6FFFFEB      bl      nibble2ascii

  59 0088 2C109FE5      ldr     r1, =bytes

  60 008c 0100C1E4      strb    r0, [r1], #1

  61               

  62 0090 04009DE4      pop     {r0}

  63 0094 F2FFFFEB      bl      nibble2ascii

  64 0098 0000C1E5      strb    r0, [r1]

  65               

  66 009c 18109FE5      ldr     r1, =bytes

  67 00a0 0220A0E3      mov     r2, #2

  68 00a4 EAFFFFEB      bl      print_string

  69                   

  70 00a8 04E09DE4      pop     {lr}

  71 00ac 0EF0A0E1      mov     pc, lr

  72                       

  73               .data

  74               msg1:
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  75 0000 5B283132      .ascii  "[(129 - 66) * (445 + 136)]  
                           / 3 = "

  75      39202D20 

  75      36362920 

  75      2A202834 

  75      3435202B 

  76               msg1_len = . - msg1

  77               

  78               bytes:

  79 0021 3F3F          .ascii  "??"

  80               

  81               msg2:

  82 0023 68            .ascii  "h"

  83               msg2_len = . - msg2

Exercise 8
Write a 64-bit ARM assembly language program that computes the following expression 
and prints the result as a hexadecimal number: [(129 – 66) × (445 + 136)] ÷ 3. As part of 
this program, create a callable function to print one byte as two hex digits.

Answer
Create your assembly language source file. The Ex__8_expr_arm64.s file contains the 
following example solution to this exercise:

.text

.global _start

_start:

    // Print the leading output string

    ldr     x1, =msg1

    mov     x2, #msg1_len

    bl      print_string

    // Compute [(129 – 66) * (445 + 136)] / 3

    mov     x0, #129

    sub     x0, x0, #66
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    mov     x1, #445

    add     x1, x1, #136

    mul     x0, x1, x0

    mov     x1, #3

    udiv    x0, x0, x1

    // Print the upper byte of the result

    mov     x19, x0

    lsr     x0, x0, #8

    bl      print_byte

    // Print the lower byte of the result    

    mov     x0, x19

    bl      print_byte

    

    // Print the trailng output string

    ldr     x1, =msg2

    mov     x2, #msg2_len

    bl      print_string

    

    // Exit the program with syscall 93, returning status 0

    mov     x0, #0

    mov     x8, #93

    svc     0

// Print a string; x1=string address, x2=string length

print_string:

    mov     x0, #1

    mov     x8, #64

    svc     0

    ret     x30

// Convert the low 4 bits of x0 to an ascii character in x0

nibble2ascii:

    and     x0, x0, #0xF

    cmp     x0, #10
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    bmi     lt10

    

    add     x0, x0, #('A' - 10)

    b       done

lt10:

    add     x0, x0, #'0'

done:

    ret     x30

// Print a byte in hex    

print_byte:

    mov     x21, x30

    mov     x20, x0

    lsr     x0, x0, #4

    bl      nibble2ascii

    ldr     x1, =bytes

    strb    w0, [x1], #1

    mov     x0, x20

    bl      nibble2ascii

    strb    w0, [x1]

    ldr     x1, =bytes

    mov     x2, #2

    bl      print_string

    

    mov     x30, x21

    ret     x30

        

.data

msg1:

    .ascii  "[(129 - 66) * (445 + 136)] / 3 = "

msg1_len = . - msg1
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bytes:

    .ascii  "??"

msg2:

    .ascii  "h"

msg2_len = . - msg2

Build the executable with these commands:

aarch64-linux-android-as -al=Ex__8_expr_arm64.lst -o Ex__8_
expr_arm64.o Ex__8_expr_arm64.s

aarch64-linux-android-ld -o Ex__8_expr_arm64 Ex__8_expr_arm64.o

This is the output produced by copying the program to an Android device and running it:

C:\>adb devices

* daemon not running; starting now at tcp:5037

* daemon started successfully

List of devices attached

9826f541374f4b4a68      device

C:\>adb push Ex__8_expr_arm64 /data/local/tmp/Ex__8_expr_arm64

Ex__8_expr_arm64: 1 file pushed. 0.1 MB/s (1592 bytes in 
0.015s)

C:\>adb shell chmod +x /data/local/tmp/Ex__8_expr_arm64

C:\>adb shell /data/local/tmp/Ex__8_expr_arm64

[(129 - 66) * (445 + 136)] / 3 = 2FA9h

This is the listing file created by the build procedure:

AARCH64 GAS  Ex__8_expr_arm64.s    page 1

   1               .text

   2               .global _start

   3               

   4               _start:

   5                   // Print the leading output string
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   6 0000 C1050058      ldr     x1, =msg1

   7 0004 220480D2      mov     x2, #msg1_len

   8 0008 13000094      bl      print_string

   9               

  10                   // Compute [(129 – 66) * (445 +  
                           //136)] / 3

  11 000c 201080D2      mov     x0, #129

  12 0010 000801D1      sub     x0, x0, #66

  13 0014 A13780D2      mov     x1, #445

  14 0018 21200291      add     x1, x1, #136

  15 001c 207C009B      mul     x0, x1, x0

  16 0020 610080D2      mov     x1, #3

  17 0024 0008C19A      udiv    x0, x0, x1

  18               

  19                   // Print the upper byte of the  
                         //result

  20 0028 F30300AA      mov     x19, x0

  21 002c 00FC48D3      lsr     x0, x0, #8

  22 0030 14000094      bl      print_byte

  23               

  24                   // Print the lower byte of the  
                         //result    

  25 0034 E00313AA      mov     x0, x19

  26 0038 12000094      bl      print_byte

  27                   

  28                   // Print the trailng output string

  29 003c 21040058      ldr     x1, =msg2

  30 0040 220080D2      mov     x2, #msg2_len

  31 0044 04000094      bl      print_string

  32                   

  33                   // Exit the program with syscall 93,  
                         //returning status 0

  34 0048 000080D2      mov     x0, #0

  35 004c A80B80D2      mov     x8, #93

  36 0050 010000D4      svc     0

  37               
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  38               // Print a string; x1=string address,  
                     //x2=string length

  39               print_string:

  40 0054 200080D2      mov     x0, #1

  41 0058 080880D2      mov     x8, #64

  42 005c 010000D4      svc     0

  43 0060 C0035FD6      ret     x30

  44               

  45               // Convert the low 4 bits of x0 to an  
                      //ascii character in x0

  46               nibble2ascii:

  47 0064 000C4092      and     x0, x0, #0xF

  48 0068 1F2800F1      cmp     x0, #10

  49 006c 64000054      bmi     lt10

  50                   

  51 0070 00DC0091      add     x0, x0, #('A' - 10)

  52 0074 02000014      b       done

  53               

  54               lt10:

  55 0078 00C00091      add     x0, x0, #'0'

  56               

  57               done:

AARCH64 GAS  Ex__8_expr_arm64.s    page 2

  58 007c C0035FD6      ret     x30

  59               

  60               // Print a byte in hex    

  61               print_byte:

  62 0080 F5031EAA      mov     x21, x30

  63 0084 F40300AA      mov     x20, x0

  64 0088 00FC44D3      lsr     x0, x0, #4
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  65 008c F6FFFF97      bl      nibble2ascii

  66 0090 C1010058      ldr     x1, =bytes

  67 0094 20140038      strb    w0, [x1], #1

  68               

  69 0098 E00314AA      mov     x0, x20

  70 009c F2FFFF97      bl      nibble2ascii

  71 00a0 20000039      strb    w0, [x1]

  72               

  73 00a4 21010058      ldr     x1, =bytes

  74 00a8 420080D2      mov     x2, #2

  75 00ac EAFFFF97      bl      print_string

  76                   

  77 00b0 FE0315AA      mov     x30, x21

  78 00b4 C0035FD6      ret     x30

  79                       

  80               .data

  81               msg1:

  82 0000 5B283132      .ascii  "[(129 - 66) * (445 + 136)]  
                           / 3 = "

  82      39202D20 

  82      36362920 

  82      2A202834 

  82      3435202B 

  83               msg1_len = . - msg1

  84               

  85               bytes:

  86 0021 3F3F          .ascii  "??"

  87               

  88               msg2:

  89 0023 68            .ascii  "h"

  90               msg2_len = . - msg2
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Chapter 11: The RISC-V Architecture and 
Instruction Set

Exercise 1
Visit https://www.sifive.com/boards/ and download Freedom Studio. 
Freedom Studio is an Eclipse IDE-based development suite with a complete set of tools 
for building an RISC-V application and running it on a hardware RISC-V processor or in 
the emulation environment included with Freedom Studio. Follow the instructions in the 
Freedom Studio User Manual to complete the installation. Start Freedom Studio and create 
a new Freedom E SDK project. In the project creation dialog, select qemu-sifive-u54 
as the target (this is a single-core 64-bit RISC-V processor in the RV64GC configuration). 
Select the hello example program and click on the Finish button. This will start a 
build of the example program and the RISC-V emulator. After the build completes, the 
Edit Configuration dialog box will appear. Click on Debug to start the program in the 
emulator debug environment. Single-step through the program and verify that the text 
Hello, World! appears in the console window.

Answer
Install Freedom Studio as described. Note that the directory path for your workspace 
cannot include spaces. Start Freedom Studio.

1. In the Welcome to SiFive FreedomStudio! Let's Get Started... dialog, select I want 
to create a new Freedom E SDK Project.

2. In the Create a Freedom E SDK Project dialog, select qemu-sifive-u54 as  
the target.

3. Select the hello example program.

4. Click the Finish button.

5. After the build completes, the Edit Configuration dialog box will appear.

6. Click Debug to start the program in the emulator debug environment.

7. Single-step through the program and verify that the text Hello, World! appears  
in the console window.
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Exercise 2
With the project from Exercise 1 still open, locate the hello.c file in the src folder in 
the Project window. Right-click on the file and rename it to hello.s. Open hello.s 
in the editor and delete the entire contents. Insert the assembly language program shown 
in the RISC-V assembly language section in this chapter. Perform a clean and then rebuild 
the project (press Ctrl + 9 to initiate the clean operation). Select Debug under the Run 
menu. Once the debugger starts, open windows to display the hello.s source file, the 
Disassembly window, and the Registers window. Expand the Registers tree to display the 
RISC-V processor registers. Single-step through the program and verify the text Hello, 
Computer Architect! appears in the console window.

Answer
With the project from Exercise 1 still open, locate the hello.c file in the src folder in 
the Project window, then do the following:

1. Right-click on the file and rename it to hello.s.

2. Open hello.s in the editor and delete the entire contents.

3. Insert the assembly language program shown in the RISC-V assembly language 
section in this chapter. This is the assembly code, also available in the Ex__2_
riscv_assembly.s file:

.section .text

.global main

main:

    # Reserve stack space and save the return address

    addi    sp, sp, -16

    sd      ra, 0(sp)

    # Print the message using the C library puts function

1:  auipc   a0, %pcrel_hi(msg)

    addi    a0, a0, %pcrel_lo(1b)

    jal     ra, puts

    # Restore the return address and sp, and return to 
caller
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    ld      ra, 0(sp)

    addi    sp, sp, 16

    jalr    zero, ra, 0

.section .rodata

msg:

    .asciz "Hello, Computer Architect!\n"

4. Perform a clean and then rebuild the project (press Ctrl + 9 to initiate the clean 
operation).

5. Select Debug under the Run menu.

6. Once the debugger starts, open windows to display the hello.s source file, the 
Disassembly window, and the Registers window.

7. Expand the Registers tree to display the RISC-V processor registers.

8. Single-step through the program and verify that the text Hello, Computer 
Architect! appears in the console window.

Exercise 3
Write a RISC-V assembly language program that computes the following expression and 
prints the result as a hexadecimal number: . As part of this 
program, create a callable function to print one byte as two hex digits.

Answer
Create a new Freedom Studio project using the same steps as in Exercise 1 in this chapter. 
Locate the hello.c file in the src folder in the Project window.

1. Right-click on the file and rename it to hello.s.

2. Create your assembly language source code within the hello.s file. The  
Ex__3_riscv_expr.s file contains the following example solution to  
this exercise:

.section .text

.global main

main:
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    # Reserve stack space and save the return address

    addi    sp, sp, -16

    sd      ra, 0(sp)

    # Print the leading output string

    la      a0, msg1

    jal     ra, puts

    # Compute [(129 – 66) * (445 + 136)] / 3

    addi    a0, zero, 129

    addi    a0, a0, -66

    addi    a1, zero, 445

    add     a1, a1, 136

    mul     a0, a1, a0

    addi    a1, zero, 3

    divu    a0, a0, a1

    # Print the upper byte of the result

    sw      a0, 8(sp)

    srl     a0, a0, 8

    jal     ra, print_byte

    # Print the lower byte of the result

    lw      a0, 8(sp)

    jal     ra, print_byte

    # Print the trailng output string

    la      a0, msg2

    jal     ra, puts

    # Restore the return address and sp, and return to 
caller

    ld      ra, 0(sp)

    addi    sp, sp, 16

    ret
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# Convert the low 4 bits of a0 to an ascii character in 
a0

nibble2ascii:

    # Reserve stack space and save the return address

    addi    sp, sp, -16

    sd      ra, 0(sp)

    and     a0, a0, 0xF

    sltu    t0, a0, 10

    bne     t0, zero, lt10

    add     a0, a0, ('A' - 10)

    j       done

lt10:

    add     a0, a0, '0'

done:

    ld      ra, 0(sp)

    addi    sp, sp, 16

    ret

# Print a byte in hex

print_byte:

    # Reserve stack space and save the return address

    addi    sp, sp, -16

    sd      ra, 0(sp)

    addi    t1, a0, 0

    srl     a0, t1, 4

    jal     ra, nibble2ascii

    la      t3, bytes

    sb      a0, 0(t3)

    addi    a0, t1, 0

    jal     nibble2ascii
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    sb      a0, 1(t3)

    la      a0, bytes

    jal     ra, puts

    ld      ra, 0(sp)

    addi    sp, sp, 16

    ret

.section .data

msg1:

    .asciz  "[(129 - 66) * (445 + 136)] / 3 = "

bytes:

    .asciz  "??"

msg2:

    .asciz  "h"

3. Perform a clean and then rebuild the project (press Ctrl + 9 to initiate the  
clean operation).

4. Select Debug under the Run menu.

5. Once the debugger starts, open windows to display the hello.s source file,  
the Disassembly window, and the Registers window.

6. Expand the Registers tree to display the RISC-V processor registers.

7. Single-step through the program and verify that the text [(129 - 66) * (445 + 136)] / 
3 = 2FA9h appears in the Console window.

Exercise 4
Program an Arty A7-35T board with a RISC-V processor image. Build and run the 
hello assembly language program shown in the RISC-V assembly language section in 
this chapter on the RISC-V processor using the Olimex ARM-TINY-USB-H debugger as 
described in the Implementing RISC-V in an FPGA section near the end of this chapter. 
Verify that the program outputs the text Hello, Computer Architect!
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Answer
The instructions in this answer are based on information provided at https://github.
com/sifive/freedom, with some updates to work with more recent versions of 
libraries. Several of these steps are quite time consuming and the entire process may take 
several hours:

Steps 1-11 build a RISC-V firmware image in a file named E300ArtyDevKitFPGAChip.
mcs. If you prefer to skip these steps, you can download this file directly at https://
github.com/PacktPublishing/Modern-Computer-Architecture-and-
Organization/blob/master/Chapter11/Answers%20to%20Exercises/
src/E300ArtyDevKitFPGAChip.mcs and continue at step 12.

1. If you already have a Linux system available for this exercise, you can skip to step 2. 
Otherwise, begin by downloading and installing VirtualBox from https://www.
virtualbox.org/wiki/Downloads. Download an operating system image 
from OSBoxes at https://www.osboxes.org/virtualbox-images/. 
Select the most recent 64-bit Ubuntu VDI image. Follow the instructions at 
https://www.osboxes.org/guide/ to set up the virtual machine (VM) 
image and get logged in to Linux.

2. Install and license Vivado in the Linux VM. See the solution to Chapter 2, Digital 
Logic, Exercise 3 for Vivado installation instructions for Windows. You should 
expect some minor differences because you are now installing on Linux.

3. Execute the following commands to update the Linux operating system and install 
the SiFive RISC-V development kit:

sudo apt update

sudo apt upgrade

sudo apt install git

cd ~

git clone https://github.com/sifive/freedom.git

cd freedom

git submodule update --init --recursive

4. Install additional required tools:

sudo apt-get install autoconf automake autotools-dev curl 
libmpc-dev libmpfr-dev libgmp-dev libusb-1.0-0-dev gawk

build-essential bison flex texinfo gperf libtool 
patchutils bc zlib1g-dev device-tree-compiler pkg-config

libexpat-dev python wget

sudo apt-get install default-jre
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5. Build and install sbt, the Scala Build Tool:

echo "deb https://dl.bintray.com/sbt/debian /" | sudo tee 
-a /etc/apt/sources.list.d/sbt.list

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.
com:80 --recv 642AC823

sudo apt-get update

sudo apt-get install sbt

6. Build and install verilator, a Verilog HDL simulator:

sudo apt-get install git make autoconf g++ flex bison

git clone http://git.veripool.org/git/verilator

cd verilator

unset VERILATOR_ROOT

autoconf

./configure

make -j `nproc`

sudo make install

7. Install Scala, an object-oriented programming language influenced by Java:

sudo apt install scala

8. Download the RISC-V toolchain from https://www.sifive.com/boards/. 
Select the GNU Embedded Toolchain for Ubuntu. Unzip the file as follows:

cd ~

tar xvf Downloads/riscv64-unknown-elf-gcc-8.3.0-
2019.08.0-x86_64-linux-ubuntu14.tar.gz

9. Set environment variables for Vivado. Place these commands in your ~/.bashrc 
file to set them automatically each time you log back in. Use your own directory 
paths if they are different:

export RISCV=/home/osboxes/riscv64-unknown-elf-gcc-8.3.0-
2019.08.0-x86_64-linux-ubuntu14

export PATH=${PATH}:/tools/Xilinx/Vivado/2019.2/bin
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10. Download the Digilent board files from https://github.com/Digilent/
vivado-boards/archive/master.zip. Open the ZIP file in the Linux File 
Manager and navigate to the /vivado-boards-master/new/board_files/ 
directory. Copy the entire contents of this directory. Paste the copied contents into /
tools/Xilinx/Vivado/2019.2/data/boards/board_files.

11. The RISC-V design is programmed in the Chisel language. The first make 
command, as follows, compiles the RISC-V chisel code into Verilog HDL. The 
second make command uses Vivado to compile the Verilog into an FPGA binary 
image. Build the Arty A7-35T RISC-V image with these commands:

cd ~/freedom

make -f Makefile.e300artydevkit verilog

sudo ln -s /usr/lib/x86_64-linux-gnu/libtinfo.so.6 /usr/
lib/x86_64-linux-gnu/libtinfo.so.5

make -f Makefile.e300artydevkit mcs

When this step completes, the output file is located at ~/freedom/builds/
e300artydevkit/obj/E300ArtyDevKitFPGAChip.mcs.

12. Copy the E300ArtyDevKitFPGAChip.mcs file to the Windows host. Follow 
the instructions at https://www.sifive.com/documentation/freedom-
soc/freedom-e300-arty-fpga-dev-kit-getting-started-
guide/ to connect the Olimex debugger to the Arty A7 board and flash the 
E300ArtyDevKitFPGAChip.mcs file onto the board.

13. Close Vivado and shut down the Ubuntu VM. Start Freedom Studio in your 
Windows (or Linux) host. Keep the Arty A7 USB cable connected to the host 
computer and keep the Olimex debugger connected to the host.

14. Select Create a new Freedom E SDK Software Project in the Freedom Studio 
SiFive Tools menu. Select freedom-e310-arty as the target. Select hello as the 
example program. Click Finish to create the project and start a build.

15. After the build completes, a dialog titled Edit configuration and launch will 
appear. Click Debug to download the executable image to the Arty A7. If you watch 
the red LED on the cable side of the Olimex device you should see some flickering 
as the download progresses.

16. Open the Windows Device Manager (type device into the Windows search box 
and select Device Manager from the list). Under Ports (COM & LPT), identify the 
COM port number of the Arty, which will be named USB Serial Port.
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17. In FreedomStudio, close any COM Console windows that are open.

18. In FreedomStudio, click the icon that looks like a screen to create a new COM 
Console window. In the Choose Terminal field, select Serial Terminal. Set the 
serial port to the port you identified in Device Manager. Set the baud rate to 
57600. Click OK to open the console window.

19. Click the mouse cursor inside the FreedomStudio window containing the C 
source code. Press F6 to single-step the C program. The text Hello, World! should 
appear in the console window. This is output from the program running on the 
RISC-V processor implemented in the Arty A7 FPGA.

Chapter 12: Processor Virtualization

Exercise 1
Download and install the current version of VirtualBox. Download, install, and bring up 
Ubuntu Linux as a VM within VirtualBox. Connect the guest OS to the Internet using a 
bridged network adapter. Configure and enable clipboard sharing and file sharing between 
the Ubuntu guest and your host operating system.

Answer
Perform the following steps:

1. Download the VirtualBox 6.1 (or later version) installer from https://www.
virtualbox.org/wiki/Downloads. Be sure to select the version appropriate 
for your host operating system.

2. Run the VirtualBox installer and accept the default prompts.

3. Download a VirtualBox image of 64-bit Ubuntu Linux. One source for such 
an image is https://www.osboxes.org/ubuntu/. If the image is in a 
compressed format, uncompress it. Use 7-zip (https://www.7-zip.org/) if 
the filename ends with .7z. After unzipping, the VirtualBox disk image filename  
will have the extension .vdi.

4. Start VirtualBox Manager and click the New icon. Give the new machine a name, 
such as Ubuntu, select Linux as the type, and select Ubuntu (64-bit) as the version. 
Click Next.
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5. In the Memory size dialog, accept the default memory size (or increase it if  
you prefer).

6. In the Hard disk dialog, select Use an existing virtual hard disk file. Click the 
Browse button (it looks like a folder), then click the Add button in the Hard disk 
selector dialog. Navigate to the .vdi file you downloaded and select Open. Click 
Create to finish creating the VM.

7. Click the Settings icon in VirtualBox. In the General section, on the Advanced tab, 
select Bidirectional for Shared Clipboard.

8. Click Network. In the Adapter 1 tab, select Bridged Adapter next to Attached to:.

9. Create a folder on the Windows disk named share in your Documents folder. 
Click Shared Folders in the VirtualBox Manager Settings dialog for your Ubuntu 
VM. Click the icon to add a shared folder (it looks like a folder with a plus on it). 
Select the share folder you just created on the host computer and click OK.

10. Click OK in the Settings dialog to close it.

11. Click the Start icon to start the VM. When the Ubuntu system finishes booting, 
login with the password osboxes.org.

12. After login has finished, open a Terminal window by pressing Ctrl + Alt + T.

13. In the VM Terminal, create a directory named share with the following command:

mkdir share

14. Enter the following command in the VM Terminal to mount the shared folder:

sudo mount -t vboxsf -o rw,uid=1000,gid=1000 share ~/
share

Exercise 2
Within the Ubuntu operating system you installed in Exercise 1, install VirtualBox 
and then install and bring up a virtual machine version of FreeDOS. Verify that DOS 
commands such as echo Hello World! and mem perform properly in the FreeDOS 
VM. After completing this exercise, you will have implemented an instance of nested 
virtualization.
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Answer
1. With your Ubuntu VM not running, select the Settings icon in the VirtualBox 

manager for the VM. In the System section, under the Processor tab, check the box 
for Enable Nested VT-x/AMD-V. You must be running VirtualBox 6.1 or later for 
this feature to be fully supported. Click OK to save the change.

2. Start your Ubuntu VM. Log in to the VM, open a Terminal window, and install 
VirtualBox in the Ubuntu VM with the following commands:

wget -q https://www.virtualbox.org/download/oracle_
vbox_2016.asc -O- | sudo apt-key add -

sudo add-apt-repository "deb [arch=amd64] http://
download.virtualbox.org/virtualbox/debian $(lsb_release 
-cs) contrib"

sudo apt update && sudo apt install virtualbox-6.1

3. Install 7-zip in the Ubuntu VM with this command:

sudo apt-get install p7zip-full

4. Download a VirtualBox virtual disk image for FreeDOS from https://
www.osboxes.org/freedos/. Perform the following steps (assuming the 
downloaded file is in the ~/Downloads directory, and the FreeDOS image 
filename is 1-2.7.z):

cd

mkdir 'VirtualBox VMs'

cd 'VirtualBox VMs'

mv ~/Downloads/1-2.7.z .

7z x 1-2.7z

5. Start VirtualBox with the following command:

virtualbox &

6. Create a new VM in the VirtualBox instance running in the Ubuntu VM. Select the 
following options:

Name: FreeDOS

Type: Other

Version: DOS
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32MB RAM

Use an existing virtual hard disk file

7. Select the VDI file in ~/VirtualBox VMs and complete the VM configuration.

8. Click the Start icon in VirtualBox manager to start the FreeDOS VM.

9. After the VM completes booting, execute these commands in the FreeDOS prompt:

echo Hello World!

mem

dir

This screenshot shows the output of the mem command:

10. When you are finished using FreeDOS, close the VM with the following command 
in the FreeDOS prompt:

shutdown
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Exercise 3
Create two separate copies of your Ubuntu guest machine in your host system's 
VirtualBox environment. Configure both Ubuntu guests to connect to the VirtualBox 
internal network. Set up the two machines with compatible IP addresses. Verify that  
each of the machines can receive a response from the other using the ping command.  
By completing this exercise, you have configured a virtual network within your  
virtualized environment.

Answer
1. In your host system VirtualBox, open the Settings dialog for the Ubuntu VM you 

set up in Exercise 1 and select the Network settings. Set the Attached to: network 
type to Internal, then click OK.

2. Right-click on the Ubuntu VM in the VirtualBox manager and select Clone... from 
the context menu. Click Next in the Clone VM menu. Leave Full clone selected  
and click Clone. Wait for the cloning process to complete.

3. Open Command Prompt on your host system and navigate to the installation 
directory for VirtualBox. On Windows, this command takes you to the following 
default installation location:

cd "\Program Files\Oracle\VirtualBox"

4. Start a DHCP server for the intnet VirtualBox network with this command:

VBoxManage dhcpserver add --netname intnet --ip 
192.168.10.1 --netmask 255.255.255.0 --lowerip 
192.168.10.100 --upperip 192.168.10.199 --enable

5. Start both of the VMs. Based on the DHCP server settings recommended in the 
previous step, the VMs should be assigned the IP addresses 192.168.10.100  
and 192.168.10.101.

6. Log in to one of the running VMs. Click the downward-facing triangle in the 
upper right corner of the screen. Select Wired Connected from the dialog, then 
click Wired Settings.

7. Click the gear icon in the Wired section of the Settings dialog. The machine's  
IP address will be displayed. It should be one of the two IP addresses listed in step 5.

8. Open a Terminal window in the VM (press Ctrl + Alt + T).
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9. Ping the other machine. For example, if this machine's IP address is 192.168.10.100, 
enter the following command:

ping 192.168.10.101

You should see a response similar to the following. Press Ctrl + C to stop  
the updates:

osboxes@osboxes:~$ ping 192.168.10.101

PING 192.168.10.101 (192.168.10.101) 56(84) bytes of 
data.

64 bytes from 192.168.10.101: icmp_seq=1 ttl=64 
time=0.372 ms

64 bytes from 192.168.10.101: icmp_seq=2 ttl=64 
time=0.268 ms

64 bytes from 192.168.10.101: icmp_seq=3 ttl=64 
time=0.437 ms

64 bytes from 192.168.10.101: icmp_seq=4 ttl=64 
time=0.299 ms

^C

--- 192.168.10.101 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 
3054ms

rtt min/avg/max/mdev = 0.268/0.344/0.437/0.065 ms

osboxes@osboxes:~$ 

10. Log in to the second Ubuntu VM and repeat steps 6-9 to display its IP address and 
ping the first Ubuntu VM.

Chapter 13: Domain-Specific Computer 
Architectures

Exercise 1
Draw a block diagram of the computing architecture for a system to measure and report 
weather data 24 hours a day at 5-minute intervals using SMS text messages. The system 
is battery powered and relies on solar cells to recharge the battery during daylight hours. 
Assume the weather instrumentation consumes minimal average power, only requiring 
full power momentarily during each measurement cycle.
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Answer
Based on the performance requirements, a processor capable of entering a very low power 
state for minutes at a time should be able to operate from a moderately sized battery for 
days at a time. By only powering weather sensors when necessary to take a measurement, 
and only powering the cellular transceiver when it is time to transmit data, power usage is 
minimized.

The following diagram represents one possible configuration for this system:

Exercise 2
For the system of Exercise 1, identify a suitable, commercially available processor and list 
the reasons why that processor is a good choice for this application. Some factors to weigh 
are cost, processing speed, tolerance for harsh environments, power consumption, and 
integrated features such as RAM and communication interfaces.

Answer
Perform the following steps:

1. An Internet search for low-power microprocessor brings up a selection of 
processors from manufacturers including STM, Analog Devices, Texas Instruments, 
Microchip Technology, and several others.

2. A second search for embedded cellular modem produces a list of cellular 
modems suitable for this application. Some of these devices are in the form of a 
system-on-module (SoM), incorporating the RF modem with a programmable 
processor core in a single module.
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3. The MultiTech Dragonfly Nano SoM (https://www.multitech.com/brands/
multiconnect-dragonfly-nano) appears to be suitable for this application. 
This device is available for US$103.95 and integrates an ARM Cortex-M4 processor 
for hosting user applications. The Dragonfly Nano provides I/O interfaces including 
a serial UART, USB, I2C, SPI, 9 analog inputs, and up to 29 digital I/O pins. The 
Cortex-M4 contains 1 MB of flash memory and 128 KB of RAM.

4. The Dragonfly Nano documentation states that when transmitting a small amount 
of data each day, the device can run for years on two AA-size batteries.

5. The reasons for selecting the Dragonfly Nano for this application are as follows:

• Cost: While a price over $US100 is high for a microprocessor board, the integration 
of the cellular modem directly accomplishes a key system design goal.

• Low power consumption: Depending on the power requirements for the weather 
sensors, a small solar panel combined with a small rechargeable battery should 
easily satisfy system power requirements.

• Environmental compatibility: The temperature range specification for the SoM is 
-40° to +85° C (-40° to +185° F), which should support operation anywhere in the 
world. The relative humidity tolerance range (20% to 90% RH, non-condensing) 
will require installation in a weatherproof enclosure.

• Processing power: The SoM contains an STM32L471QG 32-bit ARM processor 
operating at 80 MHz. This processor provides a great deal of capability, including an 
FPU and dynamic voltage scaling. It is possible to perform extensive preprocessing 
(filtering, sensor fault detection, and so on) on sensor measurements prior to the 
transmission of data. The flash and RAM within the device should be more than 
adequate for the application.

• Certified solution: The Dragonfly Nano is certified by the FCC and wireless carriers 
for use on cellular networks.

• Development support: Free development tools and online resources are available at 
https://os.mbed.com/platforms/MTS-Dragonfly-Nano/.
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The dashed box in the following diagram indicates the portion of the system implemented 
by the Dragonfly Nano SoM:

Chapter 14: Future Directions in Computer 
Architectures

Exercise 1
Install the Qiskit quantum processor software development framework by following the 
instructions at https://qiskit.org/documentation/install.html. The 
instructions suggest installation of the Anaconda (https://www.anaconda.com/) 
data science and machine learning toolset. After installing Anaconda, create a Conda 
virtual environment named qiskitenv to contain your work on quantum code and 
install Qiskit in this environment with the pip install qiskit command. Be sure 
to install the optional visualization dependencies with the pip install qiskit-
terra[visualization] command.

Answer
1. Download the Anaconda installer from https://www.anaconda.com/

distribution/. Select the Python 3.7 version, in the appropriate 32-bit or  
64-bit variant for your host computer.

2. Run the Anaconda installer and accept the defaults. Close the installer after  
it completes.

3. Start Anaconda from the Windows search box by typing anaconda and clicking on 
Anaconda prompt when it appears in the search list. A console window will appear.
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4. In the Anaconda prompt, create and activate a virtual environment named 
qiskitenv with the following commands. Install any recommended packages:

conda create -n qiskitenv python=3

conda activate qiskitenv

5. Install Qiskit and the visualization dependencies with these commands:

pip install qiskit

pip install qiskit-terra[visualization]

6. This completes the installation.

Exercise 2
Create a free IBM Quantum Experience account at https://quantum-computing.
ibm.com/. Locate your IBM Quantum Services API token at https://quantum-
computing.ibm.com/account and install it into your local environment using the 
instructions at https://qiskit.org/documentation/install.html.

Answer
1. Visit https://quantum-computing.ibm.com/. If you don't already have  

an account, click the Create an IBMid account link to get started.

2. Once you are logged in, click on the account icon at the top right (it looks like a 
little person).

3. Locate the Copy token button on the screen. Click it to copy your API token  
to the clipboard.

4. Return to the Anaconda prompt for the qiskitenv environment you created  
in Exercise 1.

5. Enter the following commands at the Anaconda prompt to set up your API token. 
You will need to replace MY_TOKEN with the token you copied to the clipboard  
in step 3:

python

import qiskit

from qiskit import IBMQ

IBMQ.save_account('MY_TOKEN')

 EBSCOhost - printed on 2/9/2023 8:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/account
https://quantum-computing.ibm.com/account
https://qiskit.org/documentation/install.html
https://quantum-computing.ibm.com/


510     Answers to Exercises

Exercise 3
Work through the example quantum program at https://qiskit.org/
documentation/tutorial/fundamentals/1_getting_started_with_
qiskit.html. This example creates a quantum circuit containing three qubits that 
implements a Greenberger–Horne–Zeilinger (GHZ) state. The GHZ state exhibits key 
properties of quantum entanglement. Execute the code in a simulation environment  
on your computer.

Answer
1. Start an Anaconda prompt console. Type anaconda in the Windows search 

box and click on Anaconda prompt when it appears in the search list. A console 
window will appear.

2. Enter the qiskitenv environment with this command:

conda activate qiskitenv

3. Enter the following commands at the Anaconda prompt:

python

import numpy as np

from qiskit import *

4. Create a quantum circuit containing a three-qubit GHZ state and add 
measurements for each qubit:

circ = QuantumCircuit(3)

# Add an H gate to qubit 0, creating superposition

circ.h(0)

# Add a CX (CNOT) gate. Qubit 0 is control and qubit 1 is 
target

circ.cx(0,1)

# Add a CX (CNOT) gate. Qubit 0 is control and qubit 2 is 
target

circ.cx(0,2)

# Add a measurement to each of the qubits

meas = QuantumCircuit(3, 3)

meas.barrier(range(3))
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meas.measure(range(3),range(3))

# Combine the two circuits

qc = circ + meas

5. Display the circuit onscreen:

qc.draw()

The output of this command should appear as follows:
>>> qc.draw()

        ┌───┐           ░ ┌─┐

q_0: |0>┤ H ├──■────■───░─┤M├──────

        └───┘┌─┴─┐  │   ░ └╥┘┌─┐

q_1: |0>─────┤ X ├──┼───░──╫─┤M├───

             └───┘┌─┴─┐ ░  ║ └╥┘┌─┐

q_2: |0>──────────┤ X ├─░──╫──╫─┤M├

                  └───┘ ░  ║  ║ └╥┘

 c_0: 0 ═══════════════════╩══╬══╬═

                              ║  ║

 c_1: 0 ══════════════════════╩══╬═

                                 ║

 c_2: 0 ═════════════════════════╩═

>>>

6. Run the circuit on your computer using the qasm_simulator simulator. The 
shots parameter provides a count of the number of times the circuit will be 
executed to collect statistical results:

backend_sim = Aer.get_backend('qasm_simulator')

job_sim = execute(qc, backend_sim, shots=1024)

7. Retrieve and display the count of the number of times each bit pattern resulted from 
a simulation run:

result_sim = job_sim.result()

counts_sim = result_sim.get_counts(qc)

counts_sim
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You should see results similar (but not identical) to these:
>>> counts_sim

{'000': 527, '111': 497}

>>>

Exercise 4
Execute the code from Exercise 3 on an IBM quantum computer.

Answer
1. Repeat steps 1-5 from Exercise 3 to create the quantum circuit.

2. Import your IBMQ account information and list the available quantum computing 
providers:

from qiskit import IBMQ

IBMQ.load_account()

provider = IBMQ.get_provider(group='open')

provider.backends()

3. If you visit the IBM Quantum Experience home page at https://quantum-
computing.ibm.com/, you will be able to see the length of the job queues for 
the available quantum computers. Select a system with sufficient qubits for your 
circuit and a short job queue. This example assumes the ibmq_essex computer  
is your choice.

4. Add your job to the queue and monitor its status with these commands. The 
shots parameter provides a count of the number of times the circuit will be 
executed to collect statistical results:

backend = provider.get_backend('ibmq_essex')

from qiskit.tools.monitor import job_monitor

job_exp = execute(qc, backend=backend, shots=1024)

job_monitor(job_exp)

After the run completes, you will see the following output line:
Job Status: job has successfully run
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5. After the job completes, retrieve the results with this command:

result_exp = job_exp.result()

6. Retrieve and display the count of the number of times each bit pattern resulted  
from a quantum computer run:

counts_exp = result_exp.get_counts(qc)

counts_exp

Approximately 50% of the time, the output bit string for this circuit should be 000, 
and the other 50% of the time it should be 111. However, these systems are noisy, 
intermediate-scale quantum (NISQ) computers

7. You should see results similar (but not identical) to these:

>>> counts_exp

{'000': 459, '010': 28, '011': 35, '110': 17, '111': 428, 
'101': 23, '100': 22, '001': 12}

>>>

If the description for this answer isn't clear, see:

https://github.com/PacktPublishing/Modern-Computer-
Architecture-and-Organization/blob/master/Chapter14/
Answers%20to%20Exercises/Ex__4_run_quantum_computer.md
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6502 microprocessor  20-22
8087 floating-point coprocessor  236, 237

data types, for numeric processing  236
8088 microprocessor  8, 9
80286 microprocessor  10
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hardware debug registers  249
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protected mode  249

80386 microprocessor  10
μops  215

A
A64  284
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absolute addressing mode  69, 70
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access violation  178
accumulator addressing mode  76
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associative memory  187
atomic  147
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B
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bare metal hypervisor  321
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bfloat16  362
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BIOS  126, 127
BIOS boot  130
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BVC instruction  77
BVS instruction  77
bypass  213
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byte ptr  254
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processor cache write policies  205, 206
set associative cache  203, 204
static RAM (SRAM)  197, 198

cache memory applications
disk drive caches  195
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carbon nanotube field-effect 
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about  381
advantages  381

Carry flag  22
Central Processing Unit (CPU)  56
chiplets  372
chipset  101
CISC (Complex Instruction 

Set Computer)   66
classical physics  374
CLC instruction  77
CLD instruction  77
clear

versus set  18
CLI instruction  77
clock multiplier  47
clock signal  46
cloud computing

about  338
virtualization, using  339

CLV instruction  77
CMP instruction

about  75
versus SBC instruction  75

code segment (CS)  332
combinational logic  37
command-line interface (CLI)  128
comparator  150
complementary MOS (CMOS)  93
complex instruction set 

computer (CISC)  252
computational instructions  296
Compute outputs  145
computer architecture

6502 instruction set  23, 25
6502 microprocessor  20-22
about  16

binary numbers  16-20
evolution  368, 369
hexadecimal numbers  16-20

computer systems
architecting  342, 343
connectivity requisites  342
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memory and storage requisites  342
physical constraints  343
power consumption  342
processing, types  342
real-time processing  342
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critical path  45
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current program status register 

(CPSR)  275

D
data execution prevention (DEP)  174
dataflow processing model  215
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data storage systems, improvements

centralized management  324
data migration  324
replication  324
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PCIe device drivers  123, 124
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DEX instruction  71
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DVI-D  109
DVI-I  109

digital filtering  155, 156
digital signal processor (DSP)

about 149, 176, 311
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(DACs)  149-151

Digital Visual Interface (DVI)  109
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Direct Memory Access (DMA)  85, 86, 124
dirty bit  205
discrete Fourier transform (DFT)  157
disk drive caches  195
DisplayPort  110
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about  373
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quantum computing  376-380
Quantum mechanics  373
spintronics  374, 375

doping process  31
dot product  152
double data rate (DDR)  98
DRAM bit cell  95-97
DRAM circuits

capacitor  94, 95
constructing, with MOSFET  94
DDR4 SDDRAM  97-99
DRAM bit cell  95-97
Graphics DDR (GDDR)  100
prefetching  100

dual inline memory module (DIMM)  97
dynamic random-access 

memory (DRAM)
dynamic voltage frequency scaling (DVFS)
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eager execution  216
edge-sensitive device  40
EFLAGS register  253
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electrically erasable programmable  

read-only memory (EEPROM)  176
electrical power consumption  339, 359
Electronic Numerical Integrator and 

Computer (ENIAC)  6, 7
embedded devices  132
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about  4
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and Computer (ENIAC)  6, 7
IBM PC  7, 8
iPhone  11, 12

exabytes (EB)  267
exception  225
exponent  234

F
fair scheduling  138
farad  95
faster booting  129
Fast Fourier transform (FFT)

about  156-159
data compression  158
discrete cosine transform (DCT)  158
filter bank  158
spectral analysis  157

features, overclocking
chipset  116
disk interface  116
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expansion slots  116
graphics card  116
integrated graphics  116
processor  116
system memory  116
USB/Thunderbolt 3 ports  116
video output  116

feedforward network  163

field-programmable gate array (FPGA)
about  292
RISC-V, implementing in  310-315

field programmable gate 
arrays (FPGAs)  48

finite state machines  41
first come, first served (FCFS) 

scheduling  137
fixed-priority preemptive scheduling  138
flag  21
flag manipulation instructions  260
Flexible Intermediate Representation 

for RTL (FIRRTL)  313
flip-flops  40, 41
floating-point instructions  261
floating-point mathematics

8087 floating-point 
coprocessor  236, 237

about  233-235
IEEE 754 floating-point standard  238

floating-point unit (FPU)  236
flushing the pipeline  216
Fourier transform  156
frames  112
frequency bin  157
frequency selective filter  155
full adder  43
FULL_ADDER component  52
full-duplex  102
full virtualization  324
fully associative cache  204, 205
future-tolerant skill set
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college education  384, 385
conferences and literature  386
continuous learning  382, 383
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G
gate array  48
gated  38
gated D latch  38
general-purpose I/O (GPIO) signals  312
general-purpose operating systems  133
general-purpose registers (GPRs)  293
generic processor

about  56, 57
arithmetic logic unit  60-62
control unit  57-60
instruction set  67
registers  65-67

gigabytes (GB)  97, 302
Gizmodo

URL  384
globally unique identifier (GUID)  129
global minimum  378
Global System for Mobile 

communications (GSM)  11
Google Cloud

reference link  322
GPU acceleration

artificial neural networks 
(ANNs)  162-164

big data  162
deep learning  162

GPU processing  159-161
GRand Unified Bootloader (GRUB)  128
graphic equalizer  158
graphics

Digital Visual Interface (DVI)  109
displaying  108
DisplayPort  110
High-Definition Media 

Interface (HDMI)  110
Video Graphics Array (VGA)  109

Graphics DDR (GDDR)  100
graphics processing unit (GPU)

about  108, 143
as data processors  161

guests  321
Guide to Online Schools

reference link  385
GUID partition table (GPT)  129

H
half adder  43
half-duplex  102
half-precision  250
hard fault  183
hard real-time system  144
hardware debugger  242
hardware description languages  48
hardware emulation  329
hardware fault management  359
Harvard architecture  153, 174, 175
hash algorithm  244
headless mode  356
hexadecimal numbers

about  16-20
defining  18

hidden layer  163
High-Definition Media Interface 

(HDMI)  110
highpass filter  155
High-Speed Input Output 

(HSIO) lanes  103
hold input signal  150
holes  91
host  321
hosted hypervisor  321
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hypervisor, properties
efficiency  325
equivalence  325
resource control  325

I
IBM PC

8088 microprocessor  8, 9
80286 microprocessor  10
80386 microprocessor  10
about  7, 8

IBM Quantum
reference link  380

IEEE 754 floating-point standard  238
imaginary number  157
immediate addressing mode  23, 68
implied addressing mode  74
impulse response  155
inb function  122
indexed indirect addressing mode  73
indirect indexed addressing mode  72, 73
input layer  163
input/output instructions  260
Input/Output (I/O)  57, 298
input/output operations

about  82, 83
Direct Memory Access (DMA)  85
interrupt-driven I/O  84, 85
programmed I/O  84

Institute of Electrical and Electronic 
Engineers (IEEE)  111, 238

instruction categories
about  74
Arithmetic instructions  75
branching instructions  76, 77
interrupt-related instructions  77
logical instructions  76

memory load  74
No operation instruction  78
processor flag instructions  77
register-to-register data transfer 

instructions  74
stack instructions  74
store instructions  74
subroutine call and return 

instructions  77
instruction set  67
instruction set architecture (ISA)  292
instructions-per-clock (IPC)  348
integrated development 

environment (IDE)  281
integrated graphics  108
Intel 64  266
Intel Nervana neural network 

processor  361-364
Intel syntax  254
Intel virtualization technology (VT-x)  327
interrupt  225
interrupt descriptor table 

register (IDTR)  332
Interrupt disable flag  22
interrupt-driven I/O  84, 85
interrupt processing

about  78
BRK instruction processing  80, 82
IRQ processing  78, 79
NMI processing  79, 80

interrupt-related instructions  77
interrupt service routine (ISR)  225
interrupt vector table (IVT)  226
inverse Fourier transform  156
I/O subsystem

about  101
M.2  106
parallel data buses  101-103
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PCI Express (PCIe)  104, 105
Serial AT Attachment (SATA)  105
serial data buses  101-103
Thunderbolt  107
Universal Serial Bus (USB)  106, 107

iPhone  11, 12
iPhone X  344, 345
IRQ (Interrupt Request)  75
IRQ processing  78, 79

J
Java Virtual Machine (JVM)  312
J extension  307
JMP instruction  76
Joint Photographic Experts 

Group (JPEG)  159
JSR instruction  77, 79
jump instructions  58
junk conferences  386

K
kernel  122
kernel-based virtual machine (KVM)  337
kernel-mode drivers  122
keyboard  113, 114
kilobyte (KB)  20, 302

L
L1 cache  199
L1 D-cache  199
L1 I-cache  199
land grid array (LGA)  116
Last-In, First-Out (LIFO)  22
latche  37, 39
LDA instruction  24

least-recently used (LRU)  203
level 1 cache  199
level 2 processor cache  206-208
level 3 processor cache  206-208
level-sensitive device  39
L extension  306
little-endian processor  69
load architecture  273
load effective address (LEA)  255
local area network (LAN)  111
locality of reference  195
local minimum  378
lockings  6
logical instructions  76
logically distinct functional units

Arithmetic Logic Unit (ALU)  56
control unit  56
register set  56

logic gates  33-36
lookup tables (LUTs)  311
lossless compression  158
lossy compression  158
lowpass filter  155
low power double data rate RAM 

(LP-DDR4x)  344
luminiferous aether  111
Lunar Atmosphere Dust and Environment 

Explorer (LADEE)  377

M
M.2  106
machine-learning architecture  361
mantissa  234
maskable interrupt  79
master boot record (MBR)  129
megahertz (MHz)  46
memory access instructions  297, 298
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memory management unit (MMU)
about  186
functions  188, 189

memory-mapped I/O  83
memory pools

about  185
non-paged pool  185
paged pool  185

memory protection extensions (MPX)  261
memory protection unit (MPU)  243
memory subsystem  90
message queue  148
metal-oxide-semiconductor  

field-effect transistor (MOSFET)
about  91
digital switching circuits  91-93
used, for constructing 

DRAM circuits  94
metal-oxide-semiconductor (MOS)  89
micro-operations  215
miscellaneous instructions  261
Mistral  344
modern computer system 

specifications  115, 117
modern processors virtualization

about  332
ARM processor virtualization  334
RISC-V processor 

virtualization  334, 335
x86 hardware virtualization  333, 334
x86 processor virtualization  332, 333

Mod field  263
modified Harvard architecture  

153, 175, 176
ModR/M byte  262
monitor  81
Monsoon  344

Moore's law
about  12-15, 370, 371
developing techniques  371, 372

mouse  113, 114
Moving Picture Experts Group 

(MPEG)  159
mov instruction  254
MPX instructions  261
MS-DOS  249
multi-booting

versus boot priority order  130
multi-core processors  141
multilevel feedback queue  138
multilevel processor caches  196, 197
multipath  112
multiple-input-multiple-

output (MIMO)  112
multiple instruction, multiple 

data (MIMD)  141, 218
multiply-accumulate (MAC)  152, 311
multiprocessing computer  141
multiprogramming  177
multitasking  146
mutual exclusion  146

N
nanometers (nm)  14
nanoseconds (ns)  45
natural boundary  250
natural language processing (NLP)  361
near-field communication (NFC)  166
Negative sign flag  21
nested interrupt  79
nested virtualization  322
network interface

about  111
Ethernet  111
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Wi-Fi  112, 113
network virtualization  323
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neural network processor for 
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nibble  281
NMI (Non-Maskable Interrupt)  75
NNP-I, form factors

M.2 card  364
PCIe card  364

NNP T-1000 processor configurations
features  364

non-maskable interrupt  79, 80
non-paged pool  185
non-preemptive scheduling  136
non-real-time operating systems

versus real-time operating systems  133
nonvolatile memory (NVM)  127
NOP instruction  78
null pointer exception  189
Nvidia GeForce RTX 2080 

Ti GPU  349, 350
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object-oriented programming (OOP)  312
offset  276
Olimex ARM-TINY-USB-H debugger

reference link  312
opcode  22, 57
Open Compute Project (OCP)  361
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operating system  132
operating system kernel  133

operating system virtualization  321, 322
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execution (OOO)  214
output layer  163
overclocking  115
Overflow flag  21
oversubscribed  357

P
page  178
Page Directory Base Register (PDBR)  181
paged pool  185
paged virtual memory  180-182
page fault  182
page frame

about  180
states  186

page frame number (PFN)  186
page status bits  184, 185
page swapping  178
page table  180
page table directory   180
parallel data buses  101-103
parallel port  121-123
paravirtualization  328
PCIe device drivers  123, 124
PCI Express (PCIe)  104, 105, 123, 160
perceptron  349
Peripheral Component Interconnect 

(PCI)  104, 121
personal computer architecture

about  348
Alienware Aurora Ryzen Edition 

gaming desktop  348, 349
Alienware Aurora Ryzen 

Edition subsystems  352
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Nvidia GeForce RTX 2080 
Ti GPU  349, 350

Ryzen 9 3950X branch prediction  349
petabytes (PB)  162
P extension  307
PHA instruction  22
Phase-locked loop (PLL)  47
physical memory  176, 177
pipeline bubble  213
pipeline hazards  213, 214
pipelining

about  208-211
conditional branches  216, 217
decode  208
execute  209
fetch  208
micro-operations  214
register renaming  215
superpipelining  212
writeback  209

PLA instruction  22
pointer  189
polyvinyl chloride (PVC)  30
Portable Operating System 

Interface (POSIX)  322
port-mapped I/O  83
port map sections  52
port numbers  83
positive edge-triggered D flip-flop  40
post-quantum cryptography  378
power management

about  239
dynamic voltage frequency 

scaling (DVFS)  240
Power-On Self-Test (POST)  126
predication  281
preemptive scheduling  136

prefetching  100, 101
priority inheritance  147
privileged processor modes

about  224
hardware exceptions, handling  225-227
hardware interrupts, handling  225-227
protection rings  228-231
supervisor mode  231
system calls  232
user mode  231

process
about  134
states  135

process control block (PCB)  135
process identifier (PID)  135
processor cache write policies

about  205, 206
write-back policy  205
write-through policy  205

processor context  136
processor flag instructions  77
processor instruction and data caches  195
processor technology

capabilities  370
processor virtualization, categories

about  324
binary translation  328
hardware emulation  329
paravirtualization  328
trap-and-emulate virtualization  325-327

process priority  139, 140
Program Counter (PC)  57
programmed I/O  84
programming language exceptions  228
propagation delay  44, 46
protected mode instructions  261
pseudo-instructions  299, 301
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Qisket

about  380
reference link  380

quantum  374
quantum behavior

reference link  386
quantum bit (qubit)  15, 376
quantum computing  376-380
quantum cryptography  377
quantum decoherence  380
quantum entanglement  377
quantum-error correction  380
Quantum mechanics  373
Quantum physics  374
quantum superposition  376
quantum supremacy  379
queue  148
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rack-based servers  356-358
Random Access Memory 

(RAM)  20, 143, 310
rate-monotonic scheduling (RMS)   138
Read inputs  145
Read-Only Memory (ROM)  21, 126, 311
real mode  249
real-time computing  144, 145
real-time operating system (RTOS)

about  132, 145, 146

versus non-real-time operating 
systems  133

recurrent network  163
reduced instruction set computer 

(RISC)  66, 252
register  21, 42, 43, 65-67, 276
register renaming  215
register set  56
register-to-register data transfer 

instructions  74
register-transfer level (RTL)  313
reg/opcode field  263
relative addressing mode  77
ring counter  41
ripple carry adder  44
RISC-V

about  291
features  292-295
implementing, in FPGA  310-315

RISC-V 32-bit integer instruction 
set (RV32I)  303

RISC-V A extension  304
RISC-V architecture

about  292-295
privilege levels  302, 303

RISC-V assembly language
examples  309, 310

RISC-V base instruction set
about  296
computational instructions  296
control flow instructions  297
memory access instructions  297, 298
pseudo-instructions  299, 301
system instructions  298, 299
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implementing  305
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additional extensions  306, 307
A extension  304
C extension  305
M extension  304
RISC-V F and D extensions  306

RISC-V F and D extensions  306
RISC-V M extension  304
RISC-V processor virtualization  334, 335
R/M field  263
ROL instruction  76
ROR instruction  76
round-robin scheduling  137
RTI instruction  79
RTOS, features

critical section  148
deadlock  147
mutex  146
priority inversion  147
queue  148
semaphore  148
thread preemption  146

RTS instruction  77, 79
RTX 2080 Ti, features

6 graphics-processing clusters  351
11 GB of GDDR6 memory  351
36 texture-processing clusters  351
72 streaming multiprocessors  351
DisplayPort 1.4a video outputs  351
HDMI 2.0b port  351
Nvidia Scalable Link Interface (SLI)  351
PCIe 3.0 x16 interface  351
VirtualLink USB C port  351

RV32E architecture  306
Ryzen 9 3950X branch prediction  349

S
safer mode extensions (SMX)  261
sample-and-hold circuit  150
sandbox  320
SBC command  23
SBC instruction

about  23, 75
versus CMP instruction  75

scaled register  276
scheduler  135
scheduling

algorithms  137, 138
SEC instruction  77
sector  106
Secure Boot   129
security technologies, examples

device memory protection  243
internal encryption engine 

with key storage  243
password-protected hardware 

debugger interface  243
SED instruction  77
SEI instruction  77
sequential logic  47
Serial AT Attachment (SATA)  105
serial data buses  101-103
set

versus clear  18
set associative cache  203, 204
Set-Reset (SR latch)  37
sextillion  92
shadow page tables  331
shift register  41
Shors algorithm  378
signal-to-noise ratio (SNR)  154
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SIMD processing  218, 219
simultaneous multithreading  217
single data rate (SDR)  98
single instruction, multiple data 

(SIMD)  12, 141, 218, 307
small outline DIMM (SODIMM)  97
smartphone architecture  343
SMX instructions  261
snooping  206
soft fault  183
soft real-time system  144
solid-state drive (SSD)  106, 345
spatial locality  195
specialized architectures

examples  164, 166
specialized architectures, configurations

business desktop computer  165
cloud compute server  164
high--end smartphone  166
high-performance gaming 

computer  165
specialized processing technologies  372
spectrum analyzers  158
spintronics  374, 376
spin valve  375
split cache  199
square wave  46
stack instructions  75
stack manipulation instructions  257
stack pointer  22
standard digitized analog data formats

example  152
standard RISC-V

configurations  308, 309
standard security techniques

emission analysis  244
physical alteration  244

power analysis  244
power disruption  244
timing analysis  244

static RAM (SRAM)  197, 198
std_logic  50
stopband suppression  156
storage virtualization  323
store architecture  273
Streaming SIMD Extensions (SSE)  219
string manipulation instructions  260
subroutine call and return instructions  77
successive approximation  151
superpipelining  212
Supervisor call (svc)  280
supervisor mode  231
swap file  178
switch  112
symmetric multiprocessing  141
synapses  162
synchronous circuit  41
synchronous DRAM (SDRAM)  98
synchronous logic  47
system instructions  298, 299
system-on-chip (SoC)  272, 345, 372
system security management

about  241-244
business information  242
government information  242
personal information  242

T
task  146
TechCrunch

URL  383
temporal locality  195
tensor  363
TensorFlow  350
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terabytes (TB)  128, 162, 267, 302
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terminate and stay resident (TSR)  177
test-and-set instruction  147
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thread  134, 146
thread control block (TCB)  136
Thumb (T32)  272
Thunderbolt  107
tile-based deferred rendering (TBDR)  344
time-slicing  134
TNW
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Tom's Hardware

URL  383
training set  362
transactional synchronization 

extensions (TSX)  262
transistor  31, 33
Transistor-Transistor Logic (TTL)  121
transition band  156
translation lookaside buffer 

(TLB)  187, 194
operation  188

trap-and-emulate virtualization  325-327
truth table  33
TSX instructions  262
twisted pairs  102
two's complement  19
two's complement arithmetic  19
TXA instruction

executing  60
TXS instruction  74
type 1 hypervisor  321
type 2 hypervisor  321

U
UEFI

about  128
supported features  128, 129

UEFI applications   128
UEFI boot  130, 131
unipolar transistor  91
Universal Serial Bus (USB)  106, 312
University of California Berkeley 

(UC Berkeley)   292
user mode  231
U.S. News & World Report

reference link  385

V
V bit  335
vector  152
Very High Speed Integrated 

Circuits (VHSIC)  311
V extension  307
VHSIC Hardware Description 

Language (VHDL)  49-53, 311
Video Graphics Array (VGA)  109
Virtual Address Extension (VAX)  179
Virtual Box  336
virtualization

about  320, 338
in cloud-computing  339

virtualization, challenges
about  330
security  331
shadow page tables  331
unsafe instructions  330
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kernel-based virtual machine 
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QEMU  338
Virtual Box  336
VMware ESXi  337
VMware Workstation  336
Xen  337

virtualization, types
about  321
application virtualization  322, 323
network virtualization  323
operating system virtualization  321, 322
storage virtualization  323, 324

virtual local area networks (VLANs)  323
virtual machine extensions (VMX)  262
virtual machine monitor  321
virtual memory  178, 179
Virtual Memory System (VMS)  179
virtual supervisor (VS) mode  335
virtual user (VU) mode  335
VMware ESXi  337
VMware Workstation  336
VMX instructions  262
von Neumann architecture  172
von Neumann bottleneck  153, 173

W
warehouse-scale computer (WSC)

about  353
multilevel information cache  360

warehouse-scale computing architecture
about  353
electrical power consumption  359
hardware fault management  359
rack-based servers  356-358

WSC hardware  354, 355
WSC, multilevel information cache  360

water hammer arrestors function  94
web browser caches  195
web crawler  358
weighting factor (w1-w3)  163
wide area network (WAN)  111
Wi-Fi  112, 113
Wi-Fi Protected Access 2 (WPA2)  113
Windows Boot Manager  131
Wine

URL  322
Wired

URL  383
word length  20
workloads  337
Write outputs  145
WSC hardware

about  354, 355
approaches  354
attributes  354

X
x64  266
x64 architecture

about  266, 267
features  267

x64 assembly language  269-272
x64 instruction categories  269
x64 instruction formats  269
x64 instruction set  266, 267
x64 register set  268
x86  248
x86-64  266
x86 addressing modes

about  254
based indexed addressing  255
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direct memory addressing  255
immediate addressing  254
implied addressing  254
indexed addressing  255
register addressing  254
register indirect addressing  255
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about  248-250
data types  250

x86 assembly language  263-266
x86 flags register

functions  252
x86 general-purpose registers

arithmetic and logic 
instructions  258, 259

stack manipulation instructions  257
x86 hardware virtualization  333, 334
x86 instruction categories

about  256-261
control flow instructions  259, 260
conversion instructions  259
data movement instructions  257

flag manipulation instructions  260
input/output instructions  260
miscellaneous instructions  261
protected mode instructions  261
string manipulation instructions  260

x86 instruction formats
about  262, 263
address displacement bytes  263
immediate value bytes  263
ModR/M byte  263
opcode bytes  262
prefix bytes  262

x86 instruction patterns  262
x86 instruction set  248-250
x86 processor virtualization  332, 333
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Z
Zero flag  22
zero-page addressing mode  73
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