
C
o
p
y
r
i
g
h
t

2
0
2
0
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 10:04 AM via
AN: 2463660 ; Marius Bancila, Raffaele Rialdi, Ankit Sharma, Dino Esposito.; Learn C# Programming : A Guide to Building a Solid Foundation in C# Language for
Writing Efficient Programs
Account: ns335141

Learn C#
Programming

A guide to building a solid foundation in C# language
for writing efficient programs

Marius Bancila

Raffaele Rialdi

Ankit Sharma

BIRMINGHAM—MUMBAI

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learn C# Programming
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri
Senior Editor: Storm Mann
Content Development Editor: Ruvika Rao
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Language Support Editor: Safis Editing
Project Coordinator: Francy Puthiry
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Jyoti Chauhan

First published: April 2020
Production reference: 1280420

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78980-586-4

www.packt.com

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

To my smart boys, Cristian and Bogdan, who love learning
new things every day.

– Marius

To my mom and dad, who ignited my passion with a Sinclair ZX81
when I was a child, and to my beautiful wife, Valeria, who has always

supported me in my adventures. I love you!

– Raffaele

To my mother, Vibha Sharma, for everything she did for me.

– Ankit

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Foreword
As a developer of the 2020s, it's hard to believe that there was a time in which the choice
of programming language was crucial for the success of a software project, with each
programming language coming with its own set of libraries defining the range of possible
actions. Data access, for example, was a no-brainer in Visual Basic but hard to do in C++,
for example. By the same token, calling into low-level Windows API functions was easy in
C but sometimes impossible in Visual Basic.

Then came the .NET platform made of two distinct pillars. One pillar was an object-
oriented framework defining a wide range of predefined behaviors. The other pillar was a
language runtime able to support a variety of programming languages, including Visual
Basic and the new C#. Over the years, C# has then become the primary language for the
whole .NET platform.

So, what does it mean to learn C# today, two decades after .NET 1.0? Learning the sole
syntax and semantics of a programming language makes little to no sense these days,
whether it is C#, Java, or Python. A programming language is a largely interchangeable
tool with limited real programming power without the backbone of a solid framework.

Subsequently, learning the plain syntax of a programming language is a small fraction of
the job and a book that intends to cover any programming language has to go well beyond
data types, operators, and control statements. This is precisely what this book does and in
addition, in it, you will also explore the authors' well-known obsession through clear and
precise topics.

This book is not simply a technical guide about using the C# language. It covers
statements, data types, classes, generics, concurrency, and even functional and dynamic
programming, plus the array of new features in the latest C# language. However, if you are
only armed with these tools, you won't go too far even with building toy applications. It is
also important for you to know about the foundational aspects of the .NET platform, such
as reflection, collections, regular expressions, files, streams, serialization, and LINQ.

Anything else? You bet!

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Error handling, exceptions, garbage collection, and memory management also have a
reserved chapter, before ending with an overview of C#8 in the context of .NET Core 3
and unit testing.

In spite of the title, this is not simply the umpteenth book on a popular programming
language. It is a book about how to use a popular programming language to its fullest for
building .NET applications on a solid foundation.

Dino Esposito
Digital Strategist, Youbiquitous.net

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Contributors

About the authors
Marius Bancila is a software engineer with almost two decades of experience in
developing solutions for the industrial and financial sectors. He is the author of
Modern C++ Programming Cookbook and The Modern C++ Challenge. He works as
a software architect and is focused on Microsoft technologies, mainly developing desktop
applications with C++ and C#, but not solely. He is passionate about sharing his technical
expertise with others and, for that reason, he has been recognized as a Microsoft MVP for
C++ and later developer technologies since 2006.

I would like to thank everybody that made this book possible. To Raffaele
and Ankit for laboring on this project together and making it a great book.
To Omprakash for his useful comments. To Ruvika for all her support and

patience during the project. To Alok, Storm, and all the other people at
Packt that helped turn this book from an idea to reality.

Raffaele Rialdi is a senior software architect working as a consultant, speaker, and trainer.
Since 2003, he is a Microsoft MVP in the Developer Security category. His passion for
the community leads him to be a member of the board of UGIdotNET, president of
DotNetLiguria, and co-founder of the Italian C++ user group. Currently, he is working as
an architect and developer on the backend of an enterprise project with a specific focus on
code generation, and working on cross-platform mobile and IoT development in both C#
and C++. You can find him on Twitter with the handle @raffaeler.

A big thank you goes to my fellow co-authors, Marius and Ankit, for their
great work; Omprakash for his valuable reviews; the entire Packt team, who

did a great job in letting me work with peace of mind; and, last but
not least, Ruvika for her great patience in coordinating with all of us.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Ankit Sharma is a software engineer currently working as Senior Member Technical
with ADP in Hyderabad, India. He has over six years of extensive experience with
Microsoft technologies, including C#, ASP.NET, and SQL Server, and UI technologies
such as jQuery, Angular, and Blazor. Ankit is a technical author and speaker and loves
to contribute to the open source community. He writes articles for multiple platforms,
including c-sharpcorner, Dzone, Medium, and freeCodeCamp. For his dedicated
contribution to the developer's community, he has been recognized as c-sharpcorner
MVP, Dzone MVB, and a top contributor in the technology category on Medium. He
is also the author of the first ever book on Blazor – Blazor Quick Start Guide. You can
tweet him at @ankitsharma_007.

I would like to thank my mother for her continuous support throughout
the process of writing this book.

I would also like to thank my co-authors, Marius and Raffaele, for their
constructive feedback throughout the writing process, which was crucial

in enhancing the quality of the content.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Omprakash Pandey is a seasoned software technology professional associated with
Synergetics. He has provided innovative solutions on C, C++, Java (Core, Intermediate,
and Advanced), .NET (Basic), ADO.NET, WCF, WF, ASP.NET MVC, Microsoft 365,
Microsoft Azure, infrastructure management for portal development and deployment,
and services development.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

1
Starting with the Building Blocks of C#

The history of C# 18
Understanding the CLI 20
Common Type System (CTS) 22
Common Language Specification (CLS) 22
Common Intermediate Language (CIL) 23
Virtual Execution System (VES) 26

The .NET family of frameworks 27
.NET Framework 28
.NET Core 32

Xamarin 32

Assemblies in .NET 33
Global Assembly Cache (GAC) 33
Runtime package store 34

Understanding the basic
structure of
a C# program 35
Summary 37
Test what you learned 37

2
Data Types and Operators

Basic data types 40
The integral types 41
The floating-point types 42
The decimal type 43
The char type 43
The bool type 44
The string type 44
The object type 47

Variables 48
Naming convention 49

Implicity-typed variables 50
Understanding the scope and lifetime
of variables 51

Understanding constants 53
Reference types and value types 53
Value types 53
Reference types 54
Boxing and unboxing 56

Nullable types 57
Arrays 58

Table of Contents

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

One-dimensional arrays 59
Multi-dimensional arrays 60
Jagged arrays 61

Type conversion 63
Implicit type conversion 63
Explicit type conversion 64
User-defined type conversions 66
Conversions with helper classes 67

Operators 67
Arithmetic operators 68
Relational operators 70
Logical operators 71
Bitwise and shift operators 71
Assignment operators 72
Other operators 73

Summary 77
Test what you learned 77

3
Control Statements and Exceptions

Understanding control
statements 80
Selection statements 80
Iteration statements 85

The jump statements 93

Exception handling 98
Summary 102
Test what you learned 102

4
Understanding the Various User-Defined Types

Classes and objects 104
Fields 106
Methods 107
Constructors 109
Properties 111
Indexers 115
The this keyword 118
The static keyword 119
The ref, in, and out parameters 122
Methods with a variable number of
arguments 128
Named and optional arguments 129

Access modifiers 131
Partial classes 133

Structures 134
Enumerations 140
Namespaces 143
Summary 146
Test what you learned 146

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
Object-Oriented Programming in C#

Understanding OOP 148
Abstraction 148
Encapsulation 149
Inheritance 151
Virtual members 155
Abstract classes and members 157
Sealed classes and members 159
Hiding base class members 160
Interfaces 162

Polymorphism 166
Method overloading 167
Operator overloading 169

SOLID principles 174
Summary 175
Test what you learned 175
Further Reading 176

6
Generics

Understanding generics 178
Generic types 178
Generic classes 179
Inheritance with generic classes 181
Generic interfaces 183
Variant generic interfaces 185

Generic structures 189

Generic methods 190
Type parameter constraints 191
Summary 196
Test what you learned 196

7
Collections

Introducing the System.
Collections.Generic namespace 198
The List<T> collection 202
The Stack<T> collection 206
The Queue<T> collection 208
The LinkedList<T> collection 209
The Dictionary<TKey, TValue>

collection 212
The HashSet<T> collection 215
Choosing the right collection type 218

Using thread-safe collections 220
IProducerConsumerCollection<T> 220
BlockingCollection<T> 221
ConcurrentQueue<T> 224

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

ConcurrentStack<T> 224
ConcurrentBag<T> 224
ConcurrentDictionary<TKey, TValue> 224
Choosing the right concurrent

collection type 225

Summary 226
Test what you learned 226

8
Advanced Topics

Delegates and events 228
Delegates 228
Events 233

Anonymous types 236
Tuples 238
The Tuple class 239
Value tuples 240

Pattern matching 246
The is expression 246

The switch expression 248

Regular expressions 252
Overview 252
Matching input text 254
Finding substrings 256
Replacing parts of a text 258

Extension methods 258
Summary 261
Test what you learned 261

9
Resource Management

Garbage collection 264
Finalizers 268
The IDisposable interface 271
The using statement 275
Platform invoke 277

Unsafe code 283
Summary 287
Test what you learned 288
Further reading 288

10
Lambdas, LINQ, and Functional Programming

Functional programming 290
Functions as first-class citizens 293
Lambda expressions 297
LINQ 301

Standard query operators 302
Query syntax 307

More functional programming
concepts 308

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Partial function application 309
Currying 310
Closures 312
Monoids 314

Monads 316

Summary 320
Test what you learned 320

11
Reflection and Dynamic Programming

Understanding reflection 322
Dynamically loading assemblies 327
Understanding late binding 331
Using the dynamic type 335
Attributes 338
System attributes 339

User-defined attributes 339
How to use attributes? 341
Attribute targets 342
Assembly attributes 343
Attributes in reflection 343

Summary 344
Test what you learned 345

12
Multithreading and Asynchronous Programming

What is a thread? 348
Creating threads in .NET 352
Using the ThreadPool class 359

Understanding synchronization
primitives 360
The task paradigm 367
Synchronous implementations of
asynchronous methods 371
Occasionally asynchronous methods 372
Breaking the task chain – blocking the
thread 372
Manually creating a task 373
Long-running tasks 373
Breaking the task chain – fire and forget 374

Task and exceptions 375
Canceling a task 378
Monitoring the progress of a task 381
Parallelizing tasks 382
Signaling tasks with the
TaskCompletionSource object 386
Synchronization context 389

Summary 392
Test what you learned 393
Further reading 393

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

13
Files, Streams, and Serialization

Overview of the System.IO
namespace 396
Working with paths 399
Working with files and
directories 403
Working with streams 411
Overview of the stream classes 412
Working with file streams 414
Working with memory streams 418

Serializing and deserializing
XML 422
Serializing and deserializing
JSON 434
Using Json.NET 434
Using System.Text.Json 441

Summary 445
Test what you learned 446

14
Error Handling

Errors 448
Exceptions 450
Catching exceptions 451
The exception objects 456
Conditional catch 457
Throwing exceptions 458
Creating a custom exception type 462
Rethrowing an exception 464
The finally block 466

Debugging and monitoring
exceptions 468
Debugging second-chance exceptions 469
Debugging first-chance exceptions 470
AppDomain exception events 472
Logging exceptions 473

Summary 474
Test what you learned 475
Further reading 475

15
New Features of C# 8

Nullable reference types 478
Enabling the nullable reference type
feature 482
Working with nullable reference types 484
Migrating existing code to nullable

reference types 486

Default implementation of
interface members 487
Interface versioning 487

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Interface reabstraction 490
Interfaces as traits 491

Ranges and indices 494
Pattern matching 499
Recursive pattern matching 502

The using declaration 506
Asynchronous Dispose 507
Disposable patterns in structs
and ref structs 508
Asynchronous streams 510

Readonly struct members 514
Null coalescing assignment 518
Static local functions 519
Better interpolated verbatim
strings 520
Using stackalloc in nested
expressions 520
Unmanaged constructed types 521
Summary 522
Test what you learned 523
Further reading 524

16
C# in Action with .NET Core 3

Using the .NET command-line
interface (CLI) 527
Developing on Linux
distributions 530
Preparing the development box 531
Writing cross-platform aware code 534

What .NET Standard is and
how can it help the application
design 537
Creating a .NET Standard library 538

Consuming NuGet packages 539
Adding packages to a project 540

Migrating from .NET Framework
to .NET Core 544
Analyzing your architecture 544
Preparing the migration process 547

Migrating the libraries 548
Migrating the tests 549
Migrating the desktop projects 549
Migrating ASP.NET projects 550
Summing up the migration steps 553

Publishing an application 554
Publishing as an FDD 555
Publishing as an SCD 556
Understanding other publishing options 556

Summary 559
Test what you learned 560
Further reading 560

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

17
Unit Testing

What is unit testing? 562
What are Microsoft tools for
unit testing? 563
Creating a C# unit testing
project 564
Writing unit tests 566
Analyzing code coverage 572

The anatomy of a test 574

Writing data-driven unit tests 576
Data from attributes 577
Dynamic data 578
Data from external sources 579

Summary 581
Test what you learned 582

Assessments

Chapter 1 583
Chapter 2 584
Chapter 3 586
Chapter 4 587
Chapter 5 588
Chapter 6 590
Chapter 7 591
Chapter 8 592
Chapter 9 593

Chapter 10 595
Chapter 11 597
Chapter 12 598
Chapter 13 600
Chapter 14 601
Chapter 15 602
Chapter 16 603
Chapter 17 604

Other Books You May Enjoy

Leave a review - let other readers know what you think 609
Index

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
C# is a general-purpose, multi-paradigm programming language that combines
object-oriented, imperative, generic, functional, declarative, and dynamic programming.
Soon after its release, C# became one of the top choices for developers for writing a large
variety of types of applications. Although it is not the only language targeting the CLI (the
others include VB.NET and F#), it is the primary choice for writing .NET applications for
desktop, web, cloud, and mobile platforms.

Over the years, the language has evolved gradually but steadily. Although initially it was
an object-oriented programming language, new versions have opened up the language to
new paradigms such as generic, functional, and dynamic programming. New language
features and more concise syntax have also been added regularly. With its release as an
open source project of the .NET Compiler Platform, also known as Roslyn, which is a set
of compilers and code analysis APIs for C# and VB.NET, the language has entered a new
open era with the community deeply involved in the development of the language.

The current version of the language is known as C# 8. This was released in September
2019 for .NET Core 3.0 and requires Visual Studio 2019 16.3 or a newer version. C# 8 can
also be used with .NET Framework, although not all features are available. That is because
they required runtime changes, which was something Microsoft did not want to do due to
its intent to no longer invest in .NET Framework (other than long-time support) and turn
.NET Core into the one framework used to target all platforms and types of applications.
This framework will be known simply as .NET.

This book is designed to help you learn the language from scratch and eventually master
all its multi-paradigm programming aspects. We start with the very basics: data types,
statements, and other building blocks. We then continue with object-oriented concepts
such as classes, interfaces, inheritance, and polymorphism. We cover generics, functional
programming and LINQ, reflection and dynamic programming, and more advanced
topics, such as resource management, pattern matching, concurrency and asynchronous
programming, error handling, and serialization. Toward the end of the book, we give
special attention to the new features introduced in C# 8. Last, but not least, we discuss
unit testing and how you can write unit tests for your C# code. At the end of each chapter,
we provide you with a set of questions to help you assess what you learned in that chapter.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

x Preface

The book contains many code snippets that are designed to help you easily understand
and learn all the language features. All of them are available in the source code that
accompanies the book. You will need either Visual Studio or Visual Studio Code to try
them. Alternatively, you can use an online compiler, the primary choice in this case being
https://sharplab.io/.

Who this book is for?
If you are a passionate programmer and want to learn C#, this book is for you. If you want
to start learning to program and want to do that with C# and .NET, you will also find the
book valuable. However, we assume you have some basic knowledge of programming
concepts, such as what a compiler is, what classes and methods are, and so on. On the
other hand, if you are an experienced C# programmer but want to learn about the latest
features of C# 8 or how to work with .NET Core and migrate from .NET Framework, this
book will be handy for you, too.

What this book covers
Chapter 1, Starting with the Building Blocks of C#, gives an introduction to the language,
its history, and its relationship with the Common Language Infrastructure and .NET
Framework, as well as providing an introduction to the family of .NET frameworks used
today. At the end, you learn about assemblies, how to create a project in Visual Studio, and
how to write a Hello World program in C#.

Chapter 2, Data Types and Operators, walks you through the basic elements of the
language, including the built-in data types, variables and constants, reference, and value
types, nullable types, and array types, as well as type conversions and built-in operators.

Chapter 3, Control Statements and Exceptions, looks in depth at how to write selection
statements and loops and briefly at working with exceptions.

Chapter 4, Understanding the Various User-Defined Types, provides information about
classes, fields, properties, methods, constructors, how to pass arguments to methods, what
access modifiers are, and other aspects related to classes. Toward the end, you will learn
about structures and how they compare to classes, as well as enumerations.

Chapter 5, Object-Oriented Programming in C#, continues on the foundation built with
the previous chapter and teaches you the core pillars of object-oriented programming and
how you achieve them using C# language features such as interfaces, virtual members,
method overloading, and others.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://sharplab.io/

Preface xi

Chapter 6, Generics, covers all the aspects of generic programming in C# and teaches
you how to write generic types and methods and use constraints for type parameters.

Chapter 7, Collections, provides a walk-through of the generic collections from the .NET
base class library that you typically use when writing C# programs. The chapter ends with
an overview of the concurrent collections used in multithreading scenarios.

Chapter 8, Advanced Topics, contains a variety of more advanced features, such
as delegates and events, tuples, extension methods, pattern matching, and
regular expressions.

Chapter 9, Resource Management, explains how the garbage collector works and how you
should handle resources deterministically. Also, in this chapter, you learn how to make
system or, in general, native API calls with Platform Invocation Services, as well as how
to write unsafe code.

Chapter 10, Lambdas, LINQ, and Functional Programming, provides an overview of
functional programming concepts and details pertaining to lambda expressions in C#.
You learn how to uniformly query various data sources using Language Integrated Query
(or LINQ). At the end of the chapter, we cover several typical functional programming
concepts: partial function application, currying, closures, monoids, and monads and how
they work in C#.

Chapter 11, Reflection and Dynamic Programming, teaches you what reflection services
are and how they can be used to write extensible applications, how to dynamically load
assemblies and execute code, how to use attributes, and how to use the Dynamic Language
Runtime and the dynamic type to interop with dynamic languages.

Chapter 12, Multithreading and Asynchronous Programming, provides an in-depth look
at threads, tasks, and synchronization mechanisms and uncovers the details of the async-
await pattern for writing asynchronous programs in C#.

Chapter 13, Files, Streams, and Serialization, explains how to work with paths, files, and
directories, and how to use streams for reading and writing data from and to a variety of
storage options, such as files and memory. In the second part of the chapter, you will learn
about data serialization with XML and JSON.

Chapter 14, Error Handling, builds on the concepts concerning exception handling
introduced in Chapter 3, Control Statements and Exceptions, and teaches you the inner
workings of exceptions and how exception handling differs from error handling. You will
learn valuable information about debugging and monitoring as well as best practices for
working with exceptions.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

xii Preface

Chapter 15, New Features of C# 8, covers in detail all the new language features introduced
in C# 8, including nullable reference types, async streams, ranges and indices, pattern
matching, and default implementations of interface members.

Chapter 16, C# in Action with .NET Core 3, teaches you about using the .NET CLI for
building .NET Core applications, how you can target and develop for Linux, what .NET
Standard is and how it can help application design, how to consume NuGet packages,
and how you can migrate .NET Framework applications to .NET Core.

Chapter 17, Unit Testing, covers unit testing, the Microsoft tools for unit testing your C#
code, how to create unit testing projects using Visual Studio, and how to write unit tests
and data-driven unit tests.

To get the most out of this book
This is a book that covers C#, from its building blocks to its most advanced features. This
book is intended for people who want to learn C#. Therefore, we do not expect you to
have any prior knowledge of the language. However, we do expect you to have some basic
exposure to programming concepts, such as what a compiler is, the difference between
compile time and runtime, the difference between stack and heap, and others.

All the code samples in this book have been written using C# 8 and a modern
programming style (such as using expression-bodied members, interpolated strings, local
functions, and so on). All these samples are available together with the book in projects
targeting .NET Core 3.1.

The following table lists the software and platform requirements for running
these samples:

In order to run the source code, you need Visual Studio 2019 16.3 or newer, any edition,
or Visual Studio Code. Most of the samples can also be tested using an online compiler.
Should you prefer this option, we recommend that you use https://sharplab.io/.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying/pasting of code.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://sharplab.io/

Preface xiii

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

• WinRAR/7-Zip for Windows

• Zipeg/iZip/UnRarX for Mac

• 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learn-C-Sharp-Programming. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at https://bit.ly/2VaAls9.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781789805864_ColorImages.pdf.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://packt.com
https://www.packtpub.com/support
https://www.packtpub.com/support
http://packt.com
https://github.com/PacktPublishing/Learn-C-Sharp-Programming
https://github.com/PacktPublishing/Learn-C-Sharp-Programming
https://bit.ly/2VaAls9

xiv Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "In this example, we are creating an Employee class with three fields
to represent the ID, first name, and last name of an employee."

A block of code is set as follows:

class Employee
{
 public int EmployeeId;
 public string FirstName;
 public string LastName;
}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

public struct Vector
{
 public float x;
 public float y;
 private readonly float SquaredRo => (x * x) + (y * y);
 public readonly float GetLengthRo() => MathF.
Sqrt(SquaredRo);
 public float GetLength() => MathF.Sqrt(SquaredRo);
}

Any command-line input or output is written as follows:

cd HelloSolution
dotnet new console -o Hello
dotnet sln add Hello

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"When creating a new project, select Console App (.NET Core)."

Tips or important notes
Appear like this.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface xv

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in, and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com/
http://packt.com

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

1
Starting with the

Building Blocks of C#
C# is one of the most widely used general-purpose programming languages. It is a multi-
paradigm language that combines object-oriented, imperative, declarative, functional,
generic, and dynamic programming. C# is one of the programming languages designed
for the Common Language Infrastructure (CLI) platform, which is an open specification
developed by Microsoft and standardized by the International Organization for
Standardization (ISO) and European Computer Manufacturers Association (ECMA)
that describes executable code and a runtime environment to be used on different
computer platforms without being rewritten for specific architectures.

Over the years, C# has evolved with powerful features released version by version. The
most recent version (at the time of writing) is C# 8, which has introduced several features
to empower developers to be more productive. These include nullable reference types,
ranges and indices, asynchronous streams, default implementations of interface members,
recursive patterns, switch expressions, and many others. You will learn about these
features in detail in Chapter 15, New Features of C# 8.

In this chapter, we will introduce you to the language, the .NET Framework, and the basic
concepts around them. We have structured the contents of this chapter as follows:

• Learning the history of C#

• Understanding the CLI

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

18 Starting with the Building Blocks of C#

• Knowing the .NET family of frameworks

• Assemblies in .NET

• Understanding the basic structure of a C# program

At the end of this chapter, you will learn how to write a Hello World! program in C#.

The history of C#
C# development started at Microsoft in the late 1990s by a team led by Anders Hejlsberg.
Initially, it was called Cool, but when the .NET project was first publicly announced in the
summer of 2002, the language was renamed C#. The use of the sharp suffix was intended
to denote that the language is an increment of C++, which, along with Java, Delphi, and
Smalltalk, acted as an inspiration for the CLI and the C# language design.

The first version of C#, called 1.0, was made available in 2002 bundled with .NET
Framework 1.0 and Visual Studio .NET 2002. Since then, major and minor increments
of the language have been released together with new versions of .NET Framework and
Visual Studio. The following table lists all of the versions and some of the key features for
each of these releases:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The history of C# 19

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

20 Starting with the Building Blocks of C#

The latest version of the language at the time of writing, 8.0, is being released with
.NET Core 3.0. Although most features will also work in projects targeting .NET
Framework, some of them will not because they require changes in the runtime, which
is something Microsoft will no longer do as .NET Framework is being deprecated in favor
of .NET Core.

Now that you have an overview of the evolution of the C# language over time, let's start
looking at the platforms that the language is targeting.

Understanding the CLI
The CLI is a specification that describes how a runtime environment can be used on
different computer platforms without being rewritten for specific architectures. It is
developed by Microsoft and standardized by ECMA and ISO. The following diagram
shows the high-level functionality of the CLI:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the CLI 21

Figure 1.1 – Diagram of the high-level functionality of the CLI

The CLI enables programs written in a variety of programming languages (that are
CLS-compliant) to be executed on any operating system and with a single runtime.
The CLI specifies a common language, called the Common Language Specification
(CLS), a common set of data types that any language must support, called the Common
Type System, and other things such as how exceptions are handled and how the state is
managed. The various aspects specified by the CLI are described in more detail in the
following sections.

Information box
Because of the limited scope of this chapter, a deep dive into the specification is
not possible. If you want more information about the CLI, you can visit the ISO
site at https://www.iso.org/standard/58046.html.

There are several implementations of the CLI and among these, the most important ones
are .NET Framework, .NET Core, and Mono/Xamarin.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.iso.org/standard/58046.html

22 Starting with the Building Blocks of C#

Common Type System (CTS)
The CTS is a component of the CLI that describes how type definitions and values
are represented and memory is intended to facilitate the sharing of data between
programming languages. The following are some of the characteristics and functions of
the CTS:

• It enables cross-platform integration, type safety, and high-performance code
execution.

• It provides an object-oriented model that supports the complete implementation of
many programming languages.

• It provides rules for languages to ensure that objects and data types of objects
written in different programming languages can interact with each other.

• It defines rules for type visibility and access to members.

• It defines rules for type inheritance, virtual methods, and object lifetime.

The CTS supports two categories of types:

• Value types: These contain their data directly and have copy semantics, which
means when an object of such a type is copied its data is copied.

• Reference types: These contain references to the memory address where the data is
stored. When an object of a reference type is copied, the reference is copied and not
the data it points to.

Although it is an implementation detail, value types are usually stored on the stack and
reference types on the heap. Conversion between value types and a reference type is
possible and known as boxing, while the other way around is called unboxing. These
concepts will be explained in further detail in the next chapter.

Common Language Specification (CLS)
The CLS comprises a set of rules that any language that targets the CLI needs to adhere
to, to be able to interoperate with other CLS-compliant languages. CLS rules fall into the
broader rules of the CTS and therefore it can be said that the CLS is a subset of CTS. All
of the rules of CTS apply to the CLS unless the CLS rules are stricter. Language constructs
that make it impossible to easily verify the type safety of the code were excluded from the
CLS so that all languages that work with the CLS can produce verifiable code.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the CLI 23

The relationship between the CTS and CLS as well as the programming languages
targeting the CLI is conceptually shown in the following diagram:

Figure 1.2 – A diagram showing the conceptual relationship between the CTS and CLS
and the programming languages that target the CLI

Components built using only the rules of the CLS are called CLS-compliant. An example
of such components is the framework libraries that need to work across all of the
languages supported on .NET.

Common Intermediate Language (CIL)
CIL is a platform-neutral intermediate language (formerly called Microsoft Intermediate
Language or MSIL) that represents the intermediate language binary instruction set
defined by the CLI. It is a stack-based object-oriented assembly language that represents
the code in byte-code format.

Once the source code of an application is compiled, the compiler translates it into the CIL
bytecode and produces a CLI assembly. When the CLI assembly is executed, the bytecode
is passed through the Just-In-Time compiler to generate native code, which is then
executed by the computer's processor. The CPU and the platform-independent nature
of the CIL make it possible that the code is executed on any environment supporting
the CLI.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

24 Starting with the Building Blocks of C#

To help us to understand the CIL, let's look at an example. The following listing shows
a very simple C# program that prints a Hello, World! message to the console:

using System;

namespace chapter_01
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

It is possible to view the content of the assembly produced by the compiler using various
utility tools, such as ildasm.exe, which comes with .NET Framework, or ILSpy, which
is an open source .NET assembly browser and decompiler (available at http://www.
ilspy.net/). The ildasm.exe file shows a visual representation of the program and
its components, such as classes and members:

Figure 1.3 – A screenshot of the ildasm tool showing the content of an assembly

You can also see the content of the manifest (which includes assembly metadata) as well
as the CIL code for each method if you double-click on it. The following screenshot shows
the disassembled code of the Main method:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.ilspy.net/
http://www.ilspy.net/

Understanding the CLI 25

Figure 1.4 – A screenshot of the ildasm tool showing the IL code of the Main method

A human-readable dump of the CIL code is also available. This starts with the manifest
and continues with the class member's declarations. A partial listing of the CIL code for
the preceding program is shown here:

// Metadata version: v4.0.30319
.assembly extern System.Runtime
{
 .publickeytoken = (B0 3F 5F 7F 11 D5 0A 3A)
// .?_....:
 .ver 4:2:1:0
}
.assembly extern System.Console
{
 .publickeytoken = (B0 3F 5F 7F 11 D5 0A 3A)
// .?_....:
 .ver 4:1:1:0
}
.assembly chapter_01
{

}
.module chapter_01.dll
// MVID: {1CFF5587-0C75-4C14-9BE5-1605F27AE750}
.imagebase 0x00400000
.file alignment 0x00000200
.stackreserve 0x00100000
.subsystem 0x0003 // WINDOWS_CUI
.corflags 0x00000001 // ILONLY
// Image base: 0x00F30000

// =============== CLASS MEMBERS DECLARATION
===================

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

26 Starting with the Building Blocks of C#

.class private auto ansi beforefieldinit chapter_01.Program
 extends [System.Runtime]System.Object
{
 .method private hidebysig static void Main(string[] args)
cil managed
 {
 .entrypoint
 // Code size 13 (0xd)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldstr "Hello World!"
 IL_0006: call void [System.Console]System.
Console::WriteLine(string)
 IL_000b: nop
 IL_000c: ret
 } // end of method Program::Main

 .method public hidebysig specialname rtspecialname
 instance void .ctor() cil managed
 {
 // Code size 8 (0x8)
 .maxstack 8
 IL_0000: ldarg.0
 IL_0001: call instance void [System.Runtime]System.
Object::.ctor()
 IL_0006: nop
 IL_0007: ret
 } // end of method Program::.ctor

} // end of class chapter_01.Program

An explanation of the code here is beyond the scope of this chapter, but you can probably
identify at a glance parts of it such as classes, methods, and instructions executed in
each method.

Virtual Execution System (VES)
VES is a part of the CLI that represents a runtime system that provides the environment
for executing the managed code. It has several built-in services to support the execution
of code and handling of exceptions, among other things.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The .NET family of frameworks 27

The Common Language Runtime is .NET Framework's implementation of the
Virtual Execution System. Other implementations of the CLI provide their own
VES implementations.

The .NET family of frameworks
.NET is a general-purpose development platform developed by Microsoft for writing
a variety of types of applications for desktop, cloud, and mobile. .NET Framework was
the first implementation of the CLI but, over time, a series of other frameworks have
been created, such as .NET Micro Framework, .NET Native, and Silverlight. While .NET
Framework works on Windows, other current implementations, such as .NET Core and
Mono/Xamarin, are cross-platform and run on other operating systems, such as Linux,
macOS, iOS, or Android.

The following screenshot shows the main characteristics of the current top .NET
frameworks. .NET Framework is intended for developing .NET applications for Windows
and is distributed with the operating system. .NET Core, which is cross-platform and
open source, is optimized for modern application requirements and developer workflows
and is distributed with the application. Xamarin, which uses a Mono-based runtime, is
also cross-platform and open source. It is intended for developing mobile applications for
iOS, macOS, Android, and Windows, and is distributed with the application:

Figure 1.5 – A diagram with the main characteristic of the most important .NET frameworks

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

28 Starting with the Building Blocks of C#

All of these implementations are based on a common infrastructure that includes
languages, compilers, and runtime components and supports a variety of application
models, some of which are shown in the following screenshot:

Figure 1.6 – A high-level diagram of the .NET frameworks infrastructure and the application
models they support

Here, you can see that each framework resides on top of the common infrastructure and
provides a set of base libraries as well as different application models.

.NET Framework

.NET Framework was the first implementation of the CLI. It is the primary development
platform for Windows Server and client developers. It contains a large class library
that supports many types of applications. The framework is distributed as a part of
the operating system and as a result, new versions are serviced through Windows
Update, although standalone installers are also available. Initially, .NET Framework was
proprietary software developed by Microsoft. In recent years, parts of .NET Framework
have been open-sourced.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The .NET family of frameworks 29

The following table shows the history of .NET Framework, as well as the major features
available in each release:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

30 Starting with the Building Blocks of C#

In the future, Microsoft intends to unify all .NET frameworks into a single one. At the
time of writing this book, this is planned to be named .NET 5.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The .NET family of frameworks 31

.NET Framework includes the Common Language Runtime (CLR), which is the
execution engine of the framework that provides services such as memory management,
type safety, garbage collection, exception handling, thread management, and others. It also
includes an implementation of the CLI foundational standard libraries. The following is a
list of the components of the standard libraries (although not all of them):

• Base Class Library (BCL): It provides types to represent the CLI built-in types,
simple file access, custom attributes, string handling, formatting, collections,
streams, and others.

• Runtime Infrastructure Library: It provides services to dynamically load types
from a stream and other services that allow the compiler to target the CLI.

• Reflection Library: It provides services that make it possible to examine the
structure of types at runtime, instantiate objects, and invoke methods.

• Network Library: It provides networking services.

• Extended Numerics Library: It provides support for floating-point and extended-
precision data types.

• Parallel Library: It provides parallelism in simple forms.

Apart from these libraries, the .NET Framework Class Library (FCL) includes many
other libraries, such as WPF, WinForms, WCF, LINQ, and others. Most of these are in the
System.* or Microsoft.* namespaces.

A key aspect of developing in C# for the .NET platform is how memory is managed. In
general, developers do not have to worry about the lifetime of objects and the disposal of
memory. Memory management is automatically done by the CLR through the Garbage
Collector (GC). The GC handles the allocation of objects on the heap and the disposal of
memory when heap objects are no longer used.

The garbage collection is a non-deterministic process because it happens on a per-need
basis and not at some deterministic moments. A detailed description of the way the
garbage collection works is provided in Chapter 9, Resource Management.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

32 Starting with the Building Blocks of C#

.NET Core

.NET Core is a new implementation of the CLI that is cross-platform, open source, and
modular. It is intended for developing a variety of applications, such as web apps, micro-
services, libraries, or console apps that run on Windows, Linux, and macOS. The .NET
Core framework is packaged using NuGet; as a result, it is either compiled directly into an
application or put into a folder inside the application. Therefore, .NET Core applications
distribute the framework components directly, although a cache system for a centralized
deployment, called runtime package store, is also available starting with version 2.0.

The implementation of the VES for .NET Core is called CoreCLR. Similarly, the
implementation of the CLI foundational standard libraries is called CoreFX.

ASP.NET Core is a part of .NET Core but also runs on the .NET Framework CLR.
However, an ASP.NET Core app is cross-platform only when targeting .NET Core.

With the release of version 3.0 in September 2019, developers can create web apps,
micro-services, desktop applications, machine learning, and AI applications, IoT
applications, libraries, and console applications using .NET Core.

You will learn more about .NET Core in Chapter 16, C# in Action with .NET Core 3.

Xamarin
Xamarin is a CLI implementation based on Mono, which is a cross-platform, open source
.NET framework. In general, Mono APIs followed the progress of .NET Framework and
not .NET Core. The framework is intended for writing mobile applications that can run
on iOS, Android, macOS, and Windows devices.

Applications developed with Xamarin are native, which provides similar performance
to those developed with Objective-C or Swift for iOS and Java or Kotlin for Android.
Xamarin also provides facilities to directly invoke Objective-C, Java, C, and C++ libraries.

Xamarin applications are written in C# and use the .NET Base Class Library. They can
share most of the code, with only a small portion needed to be platform-specific.

Detailed information about Xamarin is beyond the scope of this book. If you want to learn
more about this implementation, you should use additional resources.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assemblies in .NET 33

Assemblies in .NET
An assembly is a basic unit for deployment, versioning, and security. Assemblies come in
two forms, either as an executable file (.exe) or a dynamic-linked library (.dll). An
assembly is a collection of types, resources, and meta-information that forms a logical unit
of functionality. Assemblies are loaded into memory only if needed. For .NET Framework
applications, assemblies could either be located in the application private folder or
shared in the Global Assembly Cache, provided they are strongly-named. For .NET Core
applications, this latter solution is not available.

Each assembly contains a manifest that contains the following information:

• The identity of the assembly (such as name and version)

• A file table describing the files that make up the assembly, such as other assemblies
or resources (such as images)

• A list of assembly references that contains the external dependencies that the
application needs

The identity of an assembly is composed of several parts:

• The name of the file where the name should be compliant with the Windows
Portable Executable file format

• A version of the form of major.minor.build.revision, such as 1.12.3.0

• The culture that should be locale-agnostic except in the case of satellite assemblies
(which are locale-aware assemblies)

• The public key token, which is a 64-bit hash of the private key used to sign
the assembly; signed assemblies have strong names that are meant to provide
a unique name

You will learn more about assemblies in Chapter 11, Reflection and Dynamic Programming.

Global Assembly Cache (GAC)
As mentioned in the preceding section, .NET Framework assemblies could either be
stored locally, in the application folder, or in GAC. This is a machine-wide code cache
that enables the sharing of assemblies between applications. Since the release of .NET
Framework 4, the default location for the GAC is %windir%\Microsoft.NET\
assembly; however, previously, the location was %windir%\assembly. GAC also
enables storing multiple versions of the same assembly, which is not actually possible
in a private folder, since you cannot store multiple files with the same name in the
same folder.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

34 Starting with the Building Blocks of C#

To deploy an assembly to the GAC, you could use the Windows SDK utility tool called
gacutil.exe or an installer that is able to work with the GAC. However, an assembly
must have a strong name to be deployed to the GAC. A strong-name assembly is an
assembly cryptographically signed with a private key that corresponds to a public key
distributed with the assembly. You can sign an assembly using the Strong Name tool
(sn.exe).

Note
For more details about how to sign an assembly, please refer to the following
document, which describes how to sign an assembly with a strong name:
https://docs.microsoft.com/en-us/dotnet/framework/
app-domains/how-to-sign-an-assembly-with-a-strong-
name.

When you add an assembly to GAC, integrity checks are performed on all of the files
contained by the assembly. This is done to ensure that the assembly has not been tampered
with. The cryptographic signing ensures that any change to any of the files in the assembly
invalidates the signature and only someone that has access to the private key can resign
the assembly.

Runtime package store
The GAC is not used for .NET Core assemblies. These are assemblies that can run on any
platform and not just Windows. Prior to .NET Core 2.0, the only option for deployment
was the application folder. Since version 2.0, however, it is possible to package and deploy
applications against a known set of packages that exist in the target environment. This
enables faster deployment and lower disk space requirements. Typically, this store is
available at /usr/local/share/dotnet/store on macOS and Linux and C:/
Program Files/dotnet/store on Windows.

The packages available in the runtime package store are listed in a target manifest file that
is used while publishing an application. This file has a format that is compatible with the
project file format (.csproj).

Detailing the targeting process is beyond the scope of this chapter, but you can learn
more about the runtime package store by visiting the following link: https://docs.
microsoft.com/en-us/dotnet/core/deploying/runtime-store.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/dotnet/standard/assembly/sign-strong-name
https://docs.microsoft.com/en-us/dotnet/standard/assembly/sign-strong-name
https://docs.microsoft.com/en-us/dotnet/standard/assembly/sign-strong-name
https://docs.microsoft.com/en-us/dotnet/core/deploying/runtime-store
https://docs.microsoft.com/en-us/dotnet/core/deploying/runtime-store

Understanding the basic structure of a C# program 35

Understanding the basic structure of
a C# program
So far, we have learned about the basics of C# and the .NET runtime. In this section, we
will write a simple C# program so that we can have a short introduction to some of the
key elements of a simple program.

Before writing a program, you must create a project. For this purpose, you should use
Visual Studio 2019; alternatively, you could use any other version for most of the content
of this book. The source code accompanying this book was written in Visual Studio 2019
using .NET Core projects. When creating a new project, select Console App (.NET Core)
and call the project chapter_01:

Figure 1.7 – Select the Console App (.NET Core) template when creating
a new project in Visual Studio

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

36 Starting with the Building Blocks of C#

A project with the following content will be automatically created for you:

Figure 1.8 – Screenshot of Visual Studio and the code generated for the selected template

This code represents the minimum a C# program must contain: a single file with a single
class having a single method called Main. You can compile and run the project and the
message Hello World! will be displayed to the console. However, to better understand it,
let's look at the actual C# program.

The first line of the program (using System;) declares the namespaces that we want
to use in this program. A namespace contains types and the one used here is the core
namespace of the base class library.

On the following line, we define our own namespace, called chapter_01, which
contains our code. A namespace is introduced with the namespace keyword. In this
namespace, we define a single class called Program. A class is introduced with the
class keyword. Furthermore, this class contains a single method called Main, with
a single argument that is an array of strings called args. The code within namespaces,
types (whether it's a class, struct, interface, or enum), and methods is always provided
within curly braces {}. This method is the entry point of the program, which means
it's where the execution of a program starts. A C# program must have one and only one
Main method.

The Main method contains a single line of code. It uses the System.Console.
WriteLine static method to print a text to the console. A static method is a method
that belongs to a type and not an instance of the type, which means you do not call it
through an object. The Main method is itself a static method, but furthermore, it is
a special method. Every C# program must have a single static method called Main,
which is considered the entry point of the program and the first to be called when
the execution of the program begins.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 37

Throughout the next chapters, we will learn about namespaces, types, methods, and other
key features of C#.

Summary
In this chapter, we looked in short at the history of C#. We then explored the basic
concepts behind the CLI and its constituents, such as CTS, CLS, CIL, and VES. Then, we
looked at the .NET family of frameworks and briefly discussed .NET Framework, .NET
Core, and Xamarin. We also talked about assemblies, the GAC (for .NET Framework)
and the runtime package store (for .NET Core). Finally, we wrote our first C# program
and looked at its structure.

This overview of the frameworks and the runtime will help you to understand the context
of writing and executing a C# program and will provide a good background when we talk
about more advanced features such as reflection, assembly loading, or look at the .NET
Core framework.

In the next chapter, we will explore the basic data types and operators in C# and learn how
to work with them.

Test what you learned
1. When was C# first released and what is the current version of the language?

2. What is the Common Language Infrastructure? What are its main components?

3. What is the Common Intermediate Language and how is it related to the
Just-In-Time compiler?

4. What tools can you use to disassembly and explore the assemblies produced by
the compiler?

5. What is the Common Language Runtime?

6. What is the Base Class Library?

7. What are currently the major .NET frameworks? Which one will no longer
be developed?

8. What is an assembly? What constitutes the identity of an assembly?

9. What is the Global Assembly Cache? What about the runtime package store?

10. What is the minimum a C# program must contain to be executed?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
Data Types and

Operators
In the previous chapter, we learned about .NET Framework and understood the basic
structure of a C# program. In this chapter, we will learn about data types and objects in
C#. Alongside control statements, which we will explore in the next chapter, these are
the building blocks of every program. We will discuss built-in data types, explain the
difference between value types and reference types, and learn how to convert between
types. We will also discuss the operators defined by the language as we move on.

The following topics will be covered in this chapter:

• Basic built-in data types

• Variables and constants

• Reference types and value types

• Nullable type

• Arrays

• Type conversion

• Operators

By the end of this chapter, you will be able to write a simple C# program using the
aforementioned language features.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

40 Data Types and Operators

Basic data types
In this section, we will explore the basic data types. The Common Language
Infrastructure (CLI) defines a set of standard types and operations that are supported
by all programming languages targeting the CLI. These data types are provided in the
System namespace. All of them, however, have a C# alias. These aliases are keywords in
the C# language, which means they can only be used in the context of their designated
purpose and not elsewhere, such as variable, class, or method names. The C# name and
the .NET name, along with a short description of each type, are listed in the following
table (listed alphabetically by the C# name):

The types listed in this table are called simple types or primitive types. Apart from these,
there are two more built-in types:

Let's explore all of the primitive types in detail in the following sections.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic data types 41

The integral types
C# supports eight integer types that represent various ranges of integral numbers. The bits
and range of each of them are shown in the following table:

As shown in the preceding table, C# defines both signed and unsigned integer types.
The major difference between signed and unsigned integers is the way in which the high
order bit is read. In the case of a signed integer, the high order bit is considered the sign
flag. If the sign flag is 0, then the number is positive but if the sign flag is 1, then the
number is negative.

The default value of all integral types is 0. All of these types define two constants
called MinValue and MaxValue, which provide the minimum and maximum value
of the type.

Integral literals, which are numbers that appear directly in code (such as 0, -42, and so
on), can be specified as decimal, hexadecimal, or binary literals. Decimal literals do not
require any suffix. Hexadecimal literals are prefixed with 0x or 0X, and binary literals
are prefixed with 0b or 0B. An underscore (_) can be used as a digit separator with all
numeric literals. Examples of such literals are shown in the following snippet:

int dec = 32;
int hex = 0x2A;
int bin = 0b_0010_1010;

An integral value without any suffix is inferred by the compiler as int. To indicate a long
integer, use l or L for a signed 64-bit integer and ul or UL for an unsigned 64-bit integer.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

42 Data Types and Operators

The floating-point types
The floating-point types are used to represent numbers having fractional components. C#
defines two floating-point types, as shown in the following table:

The float type represents a 32-bit, single-precision floating-point number, whereas
double represents a 64-bit, double-precision floating-point number. These types are
implementations of the IEEE Standard for Floating-Point Arithmetic (IEEE 754), which
is a standard established by the Institute of Electrical and Electronics Engineers (IEEE)
in 1985 for floating-point arithmetic.

The default value for floating-point types is 0. These types also define two constants called
MinValue and MaxValue that provide the minimum and maximum value of the type.
However, these types also provide constants that represent not-a-number (System.
Double.NaN) and infinity (System.Double.NegativeInfinity and System.
Double.PositiveInfinity). The following code listing shows several variables
initialized with floating-point values:

var a = 42.99;
float b = 19.50f;
System.Double c = -1.23;

By default, a non-integer number such as 42.99 is considered a double. If you want to
specify this as a float type, then you need to suffix the value with the f or F character, such
as in 42.99f or 42.99F. Alternatively, you can also explicitly indicate a double literal
with the d or D suffix, such as in 42.99d or 42.99D.

Floating-point types store fractional parts as inverse powers of two. For this reason, they
can only represent exact values such as 10, 10.25, 10.5, and so on. Other numbers,
such as 1.23 or 19.99, cannot be represented exactly and are only an approximation.
Even if double has 15 decimal digits of precision, as compared to only 7 for float,
precision loss starts to accumulate when performing repeated calculations.

This makes double and float difficult or even inappropriate to use in certain types of
applications, such as financial applications, where precision is key. For this purpose, the
decimal type is provided.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic data types 43

The decimal type
The decimal type can represent up to 28 decimal places. The details for the decimal type
are shown in the following table:

The default value for the decimal type is 0. MinValue and MaxValue constants that
define the minimum and maximum value of the type are also available. A decimal literal
can be specified using the m or M suffix as shown in the following snippet:

decimal a = 42.99m;
var b = 12.45m;
System.Decimal c = 100.75M;

It is important to note that the decimal type minimizes errors during rounding but does
not eliminate the need for rounding. For instance, the result of the operation 1m / 3
* 3 is not 1 but 0.9999999999999999999999999999. On the other hand, Math.
Round(1m / 3 * 3) yields the value 1.

The decimal type is designed for use in applications where precision is key. Floats and
doubles are much faster types (because they use binary math, which is faster to compute),
while the decimal type is slower (as the name implies, it uses decimal math, which
is slower to compute). The decimal type can be an order of magnitude slower than
the double type. Financial applications, where small inaccuracies can accumulate to
important values over repeated computations, are a typical use case for the decimal
type. In such applications, speed is not important, but precision is.

The char type
The character type is used to represent a 16-bit Unicode character. Unicode defines
a character set that is intended to represent the characters of most languages in the world.
Characters are represented by enclosing them in single quotation marks (''). Examples of
this include 'A', 'B', 'c' and '\u0058':

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

44 Data Types and Operators

Character values can be literals, hexadecimal escape sequences that have the form '\
xdddd', or Unicode representations that have the form '\udddd' (where dddd is a 16
hexadecimal value). The following listing shows several examples:

char a = 'A';
char b = '\x0065';
char c = '\u15FE';

The default value for the char type is decimal 0, or its equivalents, '\0', '\x0000', or
'\u0000'.

The bool type
C# uses the bool keyword to represent the Boolean type. It can have two values, true
or false, as shown in the following table:

The default value for the bool type is false. Unlike other languages (such as C++),
integer values or any other values do not implicitly convert into the bool type. A Boolean
variable can be either assigned a Boolean literal (true or false) or an expression that
evaluates to bool.

The string type
A string is an array of characters. In C#, the type for representing a string is called
string and is an alias for the .NET System.String. You can use any of these two
types interchangeably. Internally, a string contains a read-only collection of char objects.
This makes strings immutable, which means that you cannot change a string but need
to create a new one every time you want to modify the content of an existing string.
Strings are not null-terminated (unlike other languages such as C++) and can contain any
number of null characters ('\0'). The string length will contain the total number of the
char objects.

Strings can be declared and initialized in a variety of ways, as shown here:

string s1; // unitialized
string s2 = null; // initialized with null
string s3 = String.Empty; // empty string

string s4 = "hello world"; // initialized with text

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic data types 45

var s5 = "hello world";
System.String s6 = "hello world";

char[] letters = { 'h', 'e', 'l', 'l', 'o'};
string s7 = new string(letters); // from an array of chars

It is important to note that the only situation when you use the new operator to create a
string object is when you initialize it from an array of characters.

As mentioned before, strings are immutable. Although you have access to the characters
of the string, you can read them, but you cannot change them:

char c = s4[0]; // OK
s4[0] = 'H'; // error

The following are the methods that seem to be modifying a string:

• Remove(): This removes a part of the string.

• ToUpper()/ToLower(): This converts all of the characters into uppercase or
lowercase.

Neither of these methods modifies the existing string, but instead returns a new one.

In the following example, s6 is the string defined earlier, s8 will contain hello, s9 will
contain HELLO WORLD, and s6 will continue to contain hello world:

var s8 = s6.Remove(5); // hello
var s9 = s6.ToUpper(); // HELLO WORLD

You can convert any built-in type, such as integer or floating-point numbers, into a string
using the ToString() method. This is actually a virtual method of the System.
Object type, that is, the base class for any .NET type. By overriding this method, any
type can provide a way to serialize an object to a string:

int i = 42;
double d = 19.99;
var s1 = i.ToString();
var s2 = d.ToString();

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

46 Data Types and Operators

Strings can be composed in several ways:

• It can be done using the concatenating operator, +.

• Using the Format() method: The first argument of this method is the format, in
which each parameter is indicated positionally with the index specified in curly
braces, such as {0}, {1}, {2}and so on. Specifying an index beyond the number
of arguments results in a runtime exception.

• Using string interpolation, which is practically a syntactic shortcut for using
the String.Format() method: The string must be prefixed with $ and the
arguments are specified directly in curly braces.

An example of all of these methods is shown here:

int i = 42;
string s1 = "This is item " + i.ToString();
string s2 = string.Format("This is item {0}", i);
string s3 = $"This is item {i}";

Some characters have a special meaning and are prefixed with a backslash (\). These are
called escaped sequences. The following table lists all of them:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic data types 47

Escape sequences are necessary in certain cases, such as when you specify a Windows file
path or when you need a text that spawns multiple lines. The following code shows several
examples where escape sequences are used:

var s1 = "c:\\Program Files (x86)\\Windows Kits\\";
var s2 = "That was called a \"demo\"";
var s3 = "This text\nspawns multiple lines.";

You can, however, avoid using escape sequences by using verbatim strings. These are
prefixed with the @ symbol. When the compiler encounters such a string, it does not
interpret escape sequences. If you want to use quotation marks in a string when using
verbatim strings, you must double them. The following sample shows the preceding
examples rewritten with verbatim strings:

var s1 = @"c:\Program Files (x86)\Windows Kits\";
var s2 = @"That was called a ""demo""";
var s3 = @"This text
spawns multiple lines.";

Prior to C# 8, if you wanted to use string interpolation with verbatim strings, you had to
first specify the $ symbol for string interpolation and then @ for verbatim strings. In C# 8,
you can specify these two symbols in any order.

The object type
The object type is the base type for all other types in C#, even though you do not
specify this explicitly, as we will see in the following chapters. The object keyword in C#
is an alias for the .NET System.Object type. You can use these two interchangeably.

The object type provides some basic functionalities to all other classes in the form of
several virtual methods that any derived class can override, if necessary. These methods
are listed in the following table:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

48 Data Types and Operators

Apart from these, the object class contains several other methods. An important one to
note is the GetType() method, which is not virtual and which returns a System.Type
object with information about the type of the current instance.

Another important thing to notice is the way the Equals() method works because its
behavior is different for reference and value types. We have not covered these concepts
yet but will do so later in this chapter. For the time being, keep in mind that, for reference
types, this method performs reference equality; this means it checks whether the two
variables point to the same object on the heap. For value types, it performs value equality;
this means that the two variables are of the same type and that the public and private fields
of the two objects are equal.

The object type is a reference type. The default value of a variable of the object type
is null. However, a variable of the object type can be assigned any value of any type.
When you assign a value type value to object, the operation is called boxing. The
reverse operation of converting the value of object into a value type is called unboxing.
This will be detailed in a later section in this chapter.

You will learn more about the object type and its methods throughout this book.

Variables
Variables are defined as a named memory location that can be assigned to a value.
There are several types of variables, including the following:

• Local variables: These are variables that are defined within a method and their
scope is local to that method.

• Method parameters: These are variables that hold the arguments passed to
a method during a function call.

• Class fields: These are variables that are defined in the scope of the class and are
accessible to all of the class methods and depending on the accessibility of the field
to other classes too.

• Array elements: These are variables that refer to elements in an array.

In this section, we will refer to local variables, which are variables declared in the body
of a function. Such variables are declared using the following syntax:

datatype variable_name;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables 49

In this statement, datatype is the data type of the variable and variable_name is the
name of the variable. Here are several examples:

bool f;
char ch = 'x';
int a, b = 20, c = 42;

a = -1;
f = true;

In this example, f is an uninitialized bool variable. Uninitialized variables cannot be
used in any expression. An attempt to do so will result in a compiler error. All variables
must be initialized before they are used. A variable can be initialized when declared, such
as with ch, b, and c in the preceding example, or at any later time, such as with a and f.

Multiple variables of the same type can be declared and initialized in a single statement,
separated by a comma. This is exemplified in the preceding code snippet with the int
variables a, b, and c.

Naming convention
There are several rules that must be followed for naming a variable:

• Variable names can consist of letters, digits, and underscore characters (_) only.

• You cannot use any special character other than underscore (_) when naming a
variable. Consequently, @sample, #tag, name%, and so on are illegal variable names.

• The variable name must begin with a letter or an underscore character (_). The
name of the variable cannot start with a digit. Therefore, 2small as a variable name
will throw a compile-time error.

• Variable names are case-sensitive. Therefore, person and PERSON are considered
two different variables.

• A variable name cannot be any reserved keyword of C#. Hence true, false,
double, float, var, and so on are illegal variable names. However, prefixing
a keyword with @ enables the compiler to treat them as identifiers, rather than
keywords. Therefore, variables names such as @true, @return, @var are allowed.
These are called verbatim identifiers.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

50 Data Types and Operators

• Apart from the language rules that you must follow when naming variables, you
should also make sure the names you choose are descriptive and easy to understand.
You should always prefer that over short, abbreviated names that are hard to
comprehend. There are various coding standards and naming conventions and you
should adhere to one. These promote consistency and make the code easier to read,
understand, and maintain.

When it comes to naming conventions, you should do the following when programming
in C#:

• Use pascal case for classes, structures, enums, delegates, constructors, methods,
properties, and constants. In Pascal case, each word in a name is capitalized;
examples include ConnectionString, UserGroup, and XmlReader.

• Use camel case for fields, local variables, and method parameters. In camel case, the
first word of a name is not capitalized, but all of the others are; examples include
userId, xmlDocument, and uiControl.

• Do not use underscore in identifiers unless to prefix private fields, such as in _
firstName, and_lastName.

• Prefer descriptive name over abbreviations. For example, prefer labelText over
lbltxt or employeeId over eid.

You can learn more about coding standards and naming conventions in C# by consulting
additional resources.

Implicity-typed variables
As we have seen in previous examples, we need to specify the type of a variable when
we are declaring it. However, C# provides us with another way to declare variables that
allows the compiler to infer the variable type based on the value assigned to it during
initialization. These are known as implicitly typed variables.

We can create an implicitly typed variable using the var keyword. Such variables must
always be initialized on the declaration because the compiler infers the type of the variable
from the value that it is initialized with. Here is an example:

var a = 10;

Since the a variable is initialized with an integer literal, a is considered as an int variable
by the compiler.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Variables 51

When declaring variables with var, you must keep in mind the following:

• An implicitly typed variable must be initialized to a value at the time of declaration,
otherwise, the compiler has no reference to infer the variable type and it results in a
compile-time error.

• You cannot initialize it to null.

• The variable type cannot be changed once it is declared and initialized.

Information box
The var keyword is not a datatype but a placeholder for an actual type.
Using var to declare variables is useful when the type name is long and
you want to avoid typing a lot (for example, Dictionary<string,
KeyValuePair<int, string>>) or you do not care about the actual
type, only the value.

Now that you learned how you can declare variables, let's look at a key concept: the scope
of variables.

Understanding the scope and lifetime of variables
A scope in C# is defined as a block between an opening curly brace and its corresponding
closing curly brace. The scope defines the visibility and lifetime of a variable. A variable
can be accessed only within the scope in which it is defined. A variable that is defined in
a particular scope is not visible to the code outside that scope.

Let's understand this with the help of an example:

class Program
{
 static void Main(string[] args)
 {
 for (int i = 1; i < 10; i++)
 {
 Console.WriteLine(i);
 }

 i = 20; // i is out of scope
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

52 Data Types and Operators

In this example, the i variable is defined inside the for loop, hence it cannot be accessed
outside the for loop as it goes out of scope once the control exits the loop. You will learn
more about the for loop in the next chapter.

We can also have nested scopes. This means a variable defined in a scope can be accessed
in another scope that is enclosed in that scope. However, the variables from the outer
scope are visible to the inner scope but the inner scope variables are not accessible in the
outer scope. The C# compiler won't allow you to create two variables with the same name
within a scope.

Let's extend the code in the previous example to understand this:

class Program
{
 static void Main(string[] args)
 {
 int a = 5;
 for (int i = 1; i < 10; i++)
 {
 char a = 'w'; // compiler error
 if (i % 2 == 0)
 {
 Console.WriteLine(i + a); // a is within the
 // scope of Main
 }
 }

 i = 20; // i is out of scope
 }
}

Here, the integer variable a is defined outside the for loop but within the scope of Main.
Hence, it can be accessed within the for loop as it is in the scope of this. However, the
i variable, which is defined inside the for loop, cannot be accessed inside the scope of
Main.

If we try to declare another variable with the same name in the scope, we will get
a compile-time error. Consequently, we cannot declare a character variable a inside
the for loop as we already have an integer variable with the same name.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding constants 53

Understanding constants
There are some scenarios in which we do not want to change the value of a variable after
it is initialized. Examples can include mathematical constants (pi, Euler's number, and so
on), physical constants (Avogadro's number, the Boltzmann constant, and so on), or any
application-specific constants (the maximum allowed number of logins, the maximum
number of retries for a failed operation, status codes, and many others). C# provides us
with constant variables for this purpose. Once defined, the value of a constant variable
cannot be changed during its scope. If you try to change the value of a constant variable
after it is initialized, the compiler will throw an error.

To make a variable constant, we need to prefix it with the const keyword. The constant
variables must be initialized at the time of declaration. Here is an example of an integer
constant initialized with the value 42:

const int a = 42;

It is important to note that only the built-in types can be used to declare constants. User-
defined types cannot be used for this purpose.

Reference types and value types
The data types in C# are divided into value types and reference types. There are several
important differences between these two, such as copy semantics. We will look at these in
detail in the following sections.

Value types
A variable of a value type contains the value directly. When a value type variable is
assigned from another, the stored value is copied. The primitive data types we have seen
earlier are all value types. All user-defined types declared as structures (with the struct
keyword) are value types. Although all types are implicitly derived from the object, type
value types do not support explicit inheritance, which is a topic discussed in Chapter 4,
Understanding the Various User-Defined Types.

Let's see an example here:

int a = 20;
DateTime dt = new DateTime(2019, 12, 25);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

54 Data Types and Operators

Value types are typically stored on the stack in memory, although this is an
implementation detail and not a characteristic of value types. If you assign the value of a
value type to another variable, then the value is copied to the new variable and changing
one variable will not affect the other:

int a = 20;
int b = a; // b is 20
a = 42; // a is 42, b is 20

In the preceding example, the value of a is initialized to 20 and then assigned to the
variable b. At this point, both variables contain the same value. However, after assigning
the value 42 to the a variable, the value of b remains unchanged. This is shown,
conceptually, in the following diagram:

Figure 2.1 – A conceptual representation of the changes in the stack during the execution of
the previous code

Here, you can see that, initially, a storage location corresponding to the a integer was
allocated on the stack and had the value 20. Then, a second storage location was allocated
and the value from the first was copied to it. Then, we changed the value of the a variable
and therefore, the value available in the first storage location. The second one was left
untouched.

Reference types
A variable of a reference type does not contain the value directly but a reference to a
memory location where the actual value is stored. The built-in data types object and
string are reference types. Arrays, interfaces, delegates, and any user-defined type
defined as a class are also called reference types. The following example shows several
variables of different reference types:

int[] a = new int[10];
string s = "sample";
object o = new List<int>();

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reference types and value types 55

Reference types are stored on the heap. Variables of a reference type can be assigned the
null value that indicates that the variable does not store a reference to an instance of
an object. When trying to use a variable assigned the null value the result is a runtime
exception. When a variable of a reference type is assigned a value, the reference to the
actual memory location of the object is copied and not the value of the object itself.

In the following example, a1 is an array of two integers. The reference to the array is
copied to the a2 variable. When the content of the array changes, the changes are visible
both through a1 and a2, since both these variables refer to the same array:

int[] a1 = new int[] { 42, 43 };
int[] a2 = a1; // a2 is { 42, 43 }
a1[0] = 0; // a1 is { 0, 43 }, a2 is { 0, 43 }

This example is explained conceptually in the following diagram:

Figure 2.2 – The conceptual representation of the stack and the heap during the execution
of the preceding snippet

You can see in this diagram that a1 and a2 are variables on the stack pointing to the same
array of integers allocated on the heap. When the first element of the array is changed
through the a1 variable, the changes are automatically visible to the a2 variable because
a1 and a2 refer to the same object.

Although the string type is a reference type, it appears to behave differently. Take the
following example:

string s1 = "help";
string s2 = s1; // s2 is "help"
s1 = "demo"; // s1 is "demo", s2 is "help"

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

56 Data Types and Operators

Here, s1 is initialized with the "help" literal and then the reference to the actual array
heap object is copied to the s2 variable. At this point, they both refer to the "help"
string. However, s1 is later assigned a new string, "demo". At this point, s2 will continue
to refer to the "help" string. The reason for this is that strings are immutable. That
means when you modify a string object, a new string is created, and the variable will
receive the reference to the new string object. Any other variables referring to the old
string will continue to do so.

Boxing and unboxing
We briefly mentioned boxing and unboxing earlier in this chapter when we talked about
the object type. Boxing is the process of storing a value type inside an object, and
unboxing is the opposite operation of converting the value of an object to a value type.
Let's understand this with the help of an example:

int a = 42;
object o = a; // boxing

o = 43;
int b = (int)o; // unboxing

Console.WriteLine(x); // 42
Console.WriteLine(y); // 43

In the preceding code, a is a variable of the type integer that is initialized with the value
42. Being a value type, the integer value 42 is stored on the stack. On the other hand, o is
a variable of type object. This is a reference type. That means it only contains a reference
to a heap memory location where the actual object is stored. So, when a is assigned to o,
the process called boxing occurs.

During the boxing process an object is allocated on the heap, the value of a (which is 42)
is copied to it, and then a reference to this object is assigned to the o variable. When we
later assigned the value 43 to o, only the boxed object changes and not a. Lastly, we copy
the value of the object referred by o to a new variable called b. This will have the value 43
and, being an int, is also stored on the stack.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Nullable types 57

The process described here is shown graphically in the following diagram:

Figure 2.3 – Conceptual representation of the stack showing the boxing and unboxing
process described previously

Now that you understand the difference between value and reference types, let's look at
the topic of nullable types.

Nullable types
Reference types have the default value null, which indicates that a variable is not
assigned to the instance of any object. Value types do not have such an option. However,
there are cases when no value is a valid value for a value type too. To represent such cases,
you can use a nullable type.

A nullable type is an instance of System.Nullable<T>, a generic value type that can
represent the values of an underlying T type, which can only be a value type, as well as an
additional null value. The following sample shows a few examples:

Nullable<int> a;
Nullable<int> b = null;
Nullable<int> c = 42;

You can use the shorthand syntax, T?, instead of Nullable<T>; these two are
interchangeable. The following examples are alternatives for the preceding ones:

int? a;
int? b = null;
int? c = 42;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

58 Data Types and Operators

You can use the HasValue property to check whether a nullable type object has a value,
and Value to access the underlying value:

if (c.HasValue)
 Console.WriteLine(c.Value);

The following is a list of some of the characteristics of nullable types:

• You assign values to a nullable type object the same way you would assign to the
underlying type.

• You can use the GetValueOrDefault() method to get either the assigned value
or the default value of the underlying type if no value is assigned.

• Boxing is performed on the underlying type. If the nullable type object has not
assigned any value, the result of boxing is a null object.

• You can use the null-coalescing operator, ??, to access the value of the object of a
nullable type (for example, int d = c ?? -1;).

In C# 8, nullable reference types and non-nullable reference types have been introduced.
That is a feature that you must opt for in the project properties. It allows you to make sure
that only objects of reference types that are declared nullable, using the T? syntax can be
assigned the null value. Attempts to do so on non-nullable reference types will result in
a compiler warning (not an error, because that has the potential to affect large portions of
existing code):

string? s1 = null; // OK, nullable type
string s2 = null; // error, non-nullable type

You will learn more about nullable reference types in Chapter 15, New Features of C# 8.

Arrays
An array is a data structure that holds multiple values (including zero or a single one) of
the same data type. It is a fixed-size sequence of homogeneous elements that are stored in
contiguous memory locations. Arrays in C# are zero-indexed, meaning that the position
of the first element of an array is zero and the position of the last element of the array is a
total number of elements minus one.

The array type is a reference type and therefore arrays are allocated on the heap.
The default value for the elements of numeric arrays is zero and for arrays of reference
types, the default value is null. The type of the elements of an array can be of any type,
including another array type.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arrays 59

Arrays in C# can be one-dimensional, multi-dimensional, or jagged. Let's explore these
in detail.

One-dimensional arrays
A one-dimensional array can be defined using the syntax datatype[] variable_
name. Arrays can be initialized when they are declared. If an array variable is not
initialized, its value is null. You can specify the number of elements of the array when
you initialize it, or you can skip this and let the compiler infer it from the initialization
expression. The following sample shows various ways of declaring and initializing arrays:

int[] arr1;
int[] arr2 = null;
int[] arr3 = new int[6];
int[] arr4 = new int[] { 1, 1, 2, 3, 5, 8 };
int[] arr5 = new int[6] { 1, 1, 2, 3, 5, 8 };
int[] arr6 = { 1, 1, 2, 3, 5, 8 };

In this example, arr1 and arr2 have the value null. arr3 is an array of six integer
elements all set to 0 because no initialization was provided. arr4, arr5, and arr6 are
arrays of six integers, all containing the same values.

Once initialized, the size of the array cannot be changed. If you need to do so, you must
either create a new array object or instead use a variable-size container, such as List<T>,
which we will look at in Chapter 7, Collections.

You can access the elements of the array using the indexer, or with an enumerator. The
following snippets are equivalent:

for(int i = 0; i < arr6.Length; ++i)
 Console.WriteLine(arr6[i]);

foreach(int element in arr6)
 Console.WriteLine(element);

Although the effect of these two loops is the same, there is a subtle difference—using
an enumerator does not make it possible to modify the elements of the array. Accessing
the elements by their index using the index operator does provide write access to the
elements. Using an enumerator is possible because array types derive implicitly from the
base type, System.Array, which implements IEnumerable and IEnumerable<T>.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

60 Data Types and Operators

This is shown in the following example:

for (int i = 0; i < arr6.Length; ++i)
 arr6[i] *= 2; // OK

foreach (int element in arr6)
 element *= 2; // error

In the first loop, we access the elements of the array by their index and can modify them.
However, in the second loop, an iterator is used, and this provides read-only access to the
elements. Trying to modify them produces a compile-time error.

Multi-dimensional arrays
A multi-dimensional array is an array with more than one dimension. It is also called
a rectangular array. This can be, for instance, a two-dimensional array (a matrix) or
a three-dimensional array (a cube). The maximum number of dimensions is 32.

A two-dimensional array can be defined using the following syntax: datatype[,]
variable_name;. Multi-dimensional arrays are declared and initialized in a similar
fashion with single-dimensional arrays. You can specify the rank (which is the number
of elements) of each dimension or you can leave it to the compiler to infer it from an
initialization expression. The following snippet shows different ways of declaring and
initializing two-dimensional arrays:

int[,] arr1;
arr1 = new int[2, 3] { { 1, 2, 3 }, { 4, 5, 6 } };
int[,] arr2 = null;
int[,] arr3 = new int[2,3];
int[,] arr4 = new int[,] { { 1, 2, 3 }, { 4, 5, 6 } };
int[,] arr5 = new int[2,3] { { 1, 2, 3 }, { 4, 5, 6 } };
int[,] arr6 = { { 1, 2, 3 }, { 4, 5, 6 } };

In this example, arr1 is initially null and then assigned a reference to an array of two
rows and three columns. Similarly, arr2 is also null. On the other hand, arr3, arr4,
arr5, and arr6 are arrays of two rows and three columns; arr3 has all of the elements
set to zero, while the others are initialized with the specified values. The arrays in this
example have the following form:

1 2 3
4 5 6

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arrays 61

You can retrieve the number of elements of each dimension using the GetLength()
or GetLongLength() methods (the first returns a 32-bit integer, the second a 64-bit
integer). The following example prints the content of the arr6 array to the console:

for (int i = 0; i < arr6.GetLength(0); ++i)
{
 for (int j = 0; j < arr6.GetLength(1); ++j)
 {
 Console.Write($"{arr6[i, j]} ");
 }
 Console.WriteLine();
}

Arrays with more than two dimensions are created and handled in a similar way. The
following example shows how to declare and initialize a three-dimensional array of 4 x 3 x
2 elements:

int[,,] arr7 = new int[4, 3, 2]
{
 { { 11, 12}, { 13, 14}, {15, 16 } },
 { { 21, 22}, { 23, 24}, {25, 26 } },
 { { 31, 32}, { 33, 34}, {35, 36 } },
 { { 41, 42}, { 43, 44}, {45, 46 } }
};

Another form of multi-dimensional arrays is the so-called jagged array. We will learn
about this next.

Jagged arrays
Jagged arrays are arrays of arrays. These consist of other arrays, and each array inside
a jagged array can be of a different size. We can declare a two-dimensional jagged array,
for instance, using the syntax datatype [][] variable_name;. The following
snippet shows various examples of declaring and initializing jagged arrays:

int[][] arr1;
int[][] arr2 = null;
int[][] arr3 = new int[2][];
arr3[0] = new int[3];
arr3[1] = new int[] { 1, 1, 2, 3, 5, 8 };
int[][] arr4 = new int[][]
{
 new int[] { 1, 2, 3 },
 new int[] { 1, 1, 2, 3, 5, 8 }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

62 Data Types and Operators

};
int[][] arr5 =
{
 new int[] { 1, 2, 3 },
 new int[] { 1, 1, 2, 3, 5, 8 }
};
int[][,] arr6 = new int[][,]
{
 new int[,] { { 1, 2}, { 3, 4 } },
 new int[,] { {11, 12, 13}, { 14, 15, 16} }
};

In this example, arr1 and arr2 are both set to null. On the other hand, arr3 is an
array of two arrays. Its first element is set to an array of three elements that are initialized
with zero; its second element is set to an array of six elements initialized from the
provided values.

The arr4 and arr5 arrays are equivalent, but arr5 uses the shorthand syntax for
array initialization. arr6 mixes jagged arrays with multi-dimensional arrays. It is an
array of two arrays, the first one being a two-dimensional array of 2x2, and the second
a two-dimensional array of 2x3 elements.

The elements of a jagged array can be accessed using the arr[i][j] syntax (this
example is for two-dimensional arrays). The following snippet shows how to print the
content of the arr5 array shown earlier:

for(int i = 0; i < arr5.Length; ++i)
{
 for(int j = 0; j < arr5[i].Length; ++j)
 {
 Console.Write($"{arr5[i][j]} ");
 }
 Console.WriteLine();
}

Now that we have looked at the type of arrays we can use in C#, let's move to another
important topic, which is conversion between various data types.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Type conversion 63

Type conversion
Sometimes we need to convert one data type into another, and that is where type
conversion comes in picture. Type conversion can be classified into several categories:

• Implicit type conversion

• Explicit type conversion

• User-defined conversions

• Conversions with helper classes

Let's explore these in detail.

Implicit type conversion
For built-in numeric types, when we assign the value of a variable to one of another
data type, implicit type conversion occurs if both types are compatible and the range of
destination type is more than that of the source type. For example, int and float are
compatible types. Therefore, we can assign an integer variable to a variable of the float
type. Similarly, the double type is large enough to hold values from any other numerical
type, including long and float, as shown in the following example:

int i = 10;
float f = i;

long l = 7195467872;
double d = l;

The following table shows the implicit type conversion between numeric types in C#:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

64 Data Types and Operators

There are several things to note about implicit numeric conversions:

• You can convert any integral type to any floating-point type.

• There is no implicit conversion to the char, byte, and sbyte types.

• There is no implicit conversion from double and decimal; this includes no
implicit conversion from decimal to double or float.

For reference types, the implicit conversion is always possible between a class and one
of its direct or indirect base classes or interfaces. Here is an example with an implicit
conversion from string to object:

string s = "example";
object o = s;

The object type (which is an alias for System.Object) is the base class for all .NET
types, including string (which is an alias for System.String). Therefore, an implicit
conversion from string into object exists.

Explicit type conversion
When an implicit conversion between two types is not possible because there is a risk
of losing information (such as while assigning the value of a 32-bit integer to a 16-bit
integer), explicit type conversion is necessary. Explicit type conversion is also called a
cast. To perform casting, we need to specify the target data type in parentheses in front of
the source variable.

For example, double and int are incompatible types. Consequently, we need to do an
explicit type conversion between them. In the following example, we assign a double
value (d) to an integer using explicit type conversion. However, while doing this
conversion, the fractional part of the double variable will be truncated. Hence, the value
of i will be 12:

double d = 12.34;
int i = (int)d;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Type conversion 65

The following table shows the list of predefined explicit conversions between numeric
types in C#:

There are several things to note about explicit numeric conversions:

• An explicit conversion may result in precision loss or in throwing an exception,
such as OverflowException.

• When converting from an integral type to another integral type, the result depends
on the so-called checked context and may result either in a successful conversion,
which may discard extra most-significant bytes, or in an overflow exception.

• When you convert a floating-point type to an integral type, the value is rounded
toward zero to the nearest integral value. The operation may, however, also result in
an overflow exception.

C# statements can execute either in a checked or unchecked context, which is control either
with the check and unchecked keywords or with the compiler option, -checked.
When none of these are specified, the context is considered unchecked for non-constant
expressions. For constant expressions, which can be evaluated at compile time, the default
context is always checked. In a checked context, overflow checking is enabled for integral-
type arithmetic operations and conversions. In an unchecked context, these checks are
suppressed. When overflow checking is enabled and overflow occurs, the runtime throws
a System.OverflowException exception.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

66 Data Types and Operators

For reference types, an explicit cast is required when you want to convert from a base class
or interface into a derived class. The following example shows a cast from an object to a
string value:

string s = "example";
object o = s; // implicit conversion
string r = (string)o; // explicit conversion

The conversion from string into object is performed implicitly. However, the
opposite requires an explicit conversion in the (string)o form, as shown in the
preceding snippet.

User-defined type conversions
A user-defined conversion can define an implicit or explicit conversion or both from one
type into another. The type that defines these conversions must be either the source or the
target type. To do so, you must use the operator keyword followed by implicit or
explicit. The following example shows a type called fancyint, which defines implicit
and explicit conversions from and to int:

public readonly struct fancyint
{
 private readonly int value;
 public fancyint(int value)
 {
 this.value = value;
 }
 public static implicit operator int(fancyint v) => v.value;
 public static explicit operator fancyint(int v) => new
fancyint(v);

 public override string ToString() => $"{value}";
}

You can use this type as follows:

fancyint a = new fancyint(42);
int i = a; // implicit conversion
fancyint b = (fancyint)i; // explicit conversion

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Operators 67

In this example, a is an object of the fancyint type. The value of a can be implicitly
converted into int, because an implicit conversion operator is defined. However, the
conversion from int to fancyint is defined as explicit, therefore a cast is necessary, as
in (fancyint)i.

Conversions with helper classes
Conversion with a helper class or method is useful to convert between incompatible
types, such as between a string and an integer or a System.DateTime object. There are
various helper classes provided by the framework, such as the System.BitConverter
class, the System.Convert class, and the Parse() and TryParse() methods of
the built-in numeric types. However, you can provide your own classes and methods to
convert between any types.

The following listing shows several examples of conversion using helper classes:

DateTime dt1 = DateTime.Parse("2019.08.31");
DateTime.TryParse("2019.08.31", out DateTime dt2);

int i1 = int.Parse("42"); // successful, i1 = 42
int i2 = int.Parse("42.15"); // error, throws exception
int.TryParse("42.15", out int i3); // error, returns false,
 // i3 = 0

It is important to note the key difference between Parse() and TryParse(). The
former tries to perform parsing and if that succeeds, it returns the parsed value; but if it
fails, it throws an exception. The latter does not throw an exception, but returns bool,
indicating the success or failure, and sets the second out parameter to the parsed value if
successful or to the default value if it fails.

Operators
C# provides an extensive set of operators for built-in types. Operators are broadly
classified in the following categories: arithmetic, relational, logical, bitwise, assignment,
and other operators. Some operators can be overloaded for user-defined types. This topic
will be further discussed in Chapter 5, Object-Oriented Programming in C#.

When evaluating an expression, operator precedence and associativity determine
the order in which the operations are performed. You can change this order by using
parentheses, just like you would do with a mathematical expression.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

68 Data Types and Operators

The following table lists the order of the operators with the highest precedence at the top
and the lowest at the bottom. Operators that are listed together, on the same row, have
equal precedence:

For operators with the same precedence, associativity determines which one is evaluated
first. There are two types of associativity:

• Left-associativity: This determines operators to be evaluated from left to right. All
of the binary operators are left-associative except for the assignment operators and
the null coalescing operators.

• Right-associativity: This determines operators to be evaluated from right to left.
The assignment operator, the null-coalescing operator, and the conditional operator
are right-associative.

In the following sections, we will take a closer look at each category of operators.

Arithmetic operators
Arithmetic operators perform arithmetic operations on the numerical type and can be
unary or binary operators. A unary operator has a single operand, and a binary operator
has two operands. The following set of arithmetic operators are defined in C#:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Operators 69

+, -, and * will work as per the mathematical rules of addition, subtraction, and
multiplication respectively. However, the / operator behaves a bit differently. When
applied to an integer, it will truncate the remainder of the division. For example, 20/3 will
return 6. To get the remainder, we need to use the modulus operator. For example, 20%3
will return 2.

Among these, the increment and decrement operators require special attention. These
operators have two forms:

• A postfix form

• A prefix form

The increment operator will increase the value of its operand by 1, whereas the decrement
operator will decrease the value of its operand by 1. In the following example, the
a variable is initially 10, but after applying the increment operator, its value will be 11:

int a = 10;
a++;

The prefix and the postfix variants differ in the following way:

• The prefix operator first performs the operation and then returns the value.

• The postfix operator first retains the value, then increments it, and then returns
the original value.

Let's understand this with the help of the following code snippet. In the following
example, a is 10. When a++ is assigned to b, b takes the value 10 and a is incremented
to 11:

int a = 10;
int b = a++;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

70 Data Types and Operators

However, if we change this so that we assign ++a to b, then a will be incremented to 11,
and that value will be assigned to b, so both a and b will have the value 11:

int a = 10;
int b = ++a;

The next category of operators that we will learn about is the relational operator.

Relational operators
Relational operators, also called comparison operators, perform a comparison on their
operands. C# defines the following sets of relational operators:

The result of a relational operator is a bool value. These operators support all of the
built-in numerical and floating-point types. However, enumerations also support these
operators. For operands of the same enumeration type, the corresponding values of the
underlying integral types are compared. Enumerations will be later discussed in Chapter 4,
Understanding the Various User-Defined Types.

The next code listing shows several relational operators being used:

int a = 42;
int b = 10;
bool v1 = a != b;
bool v2 = 0 <= a && a <= 100;
if(a == 42) { /* ... */ }

The <, >, <=, and >= operators can be overloaded for user-defined types. However, if
a type overloads < or >, it must overload both of them. Similarly, if a type overloads
<= or >=, it must overload both of them.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Operators 71

Logical operators
Logical operators perform a logical operation on bool operands. The following set of
logical operators are defined in C#:

The following example shows these operands in use:

bool a = true, b = false;
bool c = a && b;
bool d = a || !b;

In this example, since a is true and b is false, c will be false and d will be true.

Bitwise and shift operators
A bitwise operator will work directly on the bits of their operands. A bitwise operator
can only be used with integer operands. The following table lists all of the bitwise and
shift operators:

In the following example, a is 10, which in binary is 1010, and b is 5, which in binary is
0101. The result of the bitwise AND is 0000, so c will have the value 0, and the result of
bitwise OR is 1111, so d will have the value 15:

int a = 10; // 1010
int b = 5; // 0101
int c = a & b; // 0000
int d = a | b; // 1111

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

72 Data Types and Operators

The left-shift operator shifts the left-hand operand to the left by the number of bits defined
by the right-hand operand. Similarly, the right-shift operator shifts the left-hand operand
to the right by the number of bits defined by the right-hand operand. The left-shift
operator discards the higher-order bits that are outside the range of the result type and
sets the lower-order bits to zero. The right-shift operator discards the lower-order bits and
the higher-order bits are set as follows:

• If the value that is shifted is int or long, an arithmetic shift is performed. That
means the sign bit is propagated to the right on the higher-order empty bits. As
a result, for a positive number, the higher-order bits are set to zero (because the sign
bit is 0) and for a negative number, the higher-order bits are set to one (because the
sign bit is 1).

• If the value that is shifted is uint or ulong, a logical shift is performed. In this
case, the higher-order bits are always set to 0.

The shift operations are only defined for int, uint, long, and ulong. If the left-hand
operand is of another integral type, it is converted to int before the operation is applied.
The result of a shift operation will always contain at least 32 bits.

The following listing shows examples of shifting operations:

// left-shifting
int x = 0b_0000_0110;
x = x << 4; // 0b_0110_0000

uint y = 0b_1111_0000_0000_0000_1111_1110_1100_1000;
y = y << 2; // 0b_1100_0000_0000_0011_1111_1011_0010_0000;

// right-shifting
int x = 0b_0000_0000;
x = x >> 4; // 0b_0110_0000

uint y = 0b_1111_0000_0000_0000_1111_1110_1100_1000;
y = y >> 2; // 0b_0011_1100_0000_0000_0011_1111_1011_0010;

In this example, we initialized the x and y variables with binary literals to make it easier
to understand how shifting works. The value of the variables after shifting is also shown
in binary in the comments.

Assignment operators
An assignment operator assigns a value to its left operand based on the value of its right
operand. The following assignment operators are available in C#:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Operators 73

In this table, we have the simple assignment operator (=) that assigns the right-hand
value to the left operand, and then we have compound assignment operators, that first
perform an operation (arithmetical, shifting, or bitwise) and then assign the result of the
operation to the left operand. Therefore, operations such as a = a + 2 and a += 2
are equivalent.

Other operators
Apart from the operators discussed so far, there are other useful operators in C# that work
both on built-in types and user-defined types. These include the conditional operator,
the null-conditional operators, the null-coalescing operator, and the null-coalescing
assignment operator. We will look at these operators in the following pages.

The ternary conditional operator

The ternary conditional operator is denoted by ?: and often simply referred to as the
conditional operator. It allows you to return a value from two available options based on
whether a Boolean condition evaluates to true or false.

The syntax of the ternary operator is as follow:

condition ? consequent : alternative;

If the Boolean condition evaluates to true, the consequent expression will be
evaluated, and its result returned. Otherwise, the alternative expression will be
evaluated, and its result returned. The ternary conditional operator can also be perceived
as a shorthand for an if-else statement.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

74 Data Types and Operators

In the following example, the function called max() returns the maximum of two
integers. The conditional operator is used to check whether a is greater or equal to b, in
which case the value of a is returned; otherwise, the result is the value of b:

static int max(int a, int b)
{
 return a >= b ? a : b;
}

There is another form of this operator called conditional ref expression (available since
C# 7.2) that allows returning the reference to the result of one of the two expressions. The
syntax, in this case, is as follows:

condition ? ref consequent : ref alternative;

The result reference can be assigned to a ref local or ref read-only local variable and
uses it as a reference return value or as a ref method parameter. The conditional ref
expression requires the type of consequent and alternative to be the same.

In the following example, the conditional ref expression is used to select between two
alternatives based on user input. If an even number is introduced, the v variable will hold
a reference to a; otherwise, it will hold a reference to b. The value of v is incremented and
then a and b are printed to the console:

int a = 42;
int b = 21;
int.TryParse(Console.ReadLine(), out int alt);
ref int v = ref (alt % 2 == 0 ? ref a : ref b);
v++;
Console.WriteLine($"a={a}, b={b}");

While the conditional operator checks whether a condition is true or not, the null-
conditional operator checks whether an operand is null or not. We will look at this
operator in the next section.

The null-conditional operators
The null-conditional operator has two forms: ?. (also known as the Elvis operator) to
apply member access and ?[] to apply element access for an array. These operators apply
the operation to their operand if and only if that operand is not null. Otherwise, the
result of applying the operator is also null.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Operators 75

The following example shows how to use the null-conditional operator to invoke a
method called run() from an instance of a class called foo, through an object that might
be null. Notice that the result is a nullable type (int?) because if the operand of ?. is
null, then the result of its evaluation is also null:

class foo
{
 public int run() { return 42; }
}

foo f = null;
int? i = f?.run()

The null-conditional operators can be chained together. However, if one operator in the
chain is evaluated to null, the rest of the chain is short-circuited and does not evaluate.

In the following example, the bar class has a property of the foo type. An array of
bar objects is created and we try to retrieve the value from the execution of the run()
method from the f property of the first bar element in the array:

class bar
{
 public foo f { get; set; }
}

bar[] bars = new bar[] { null };
int? i = bars[0]?.f?.run();

We can avoid the use of a nullable type if we combine the null-conditional operator with
the null-coalescing operator and provide a default value in case the null-conditional
operator returns null. An example is shown here:

int i = bars[0]?.f?.run() ?? -1;

The null-coalescing operator is discussed in the following section.

The null-coalescing and null-coalescing assignment operators
The null-coalescing operator, denoted by ??, will return the left-hand operand if it is
not null; otherwise, it will evaluate the right-hand operand and return its result. The
left-hand operand cannot be a non-nullable value type. The right-hand operand is only
evaluated if the left-hand operand is null.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

76 Data Types and Operators

The null-coalescing assignment operator, denoted by ??=, is a new operator added in
C# 8. It assigns the value of its right-hand operand to its left-hand operand, if and only if
the left-hand operand evaluates to null. If the left-hand operand is not null, then the
right-hand operand is not evaluated.

Both ?? and ??= are right-associative. That means, the expression a ?? b ?? c is
evaluated as a ?? (b ?? c). Similarly, the expression a ??= b ??= c is evaluated
as a ??= (b ??= c).

Take a look at the following code snippet:

int? n1 = null;
int n2 = n1 ?? 2; // n2 is set to 2
n1 = 5;
int n3 = n1 ?? 2; // n3 is set to 5

We have defined a nullable variable, n1, and initialized it to null. The value of n2 will be
set to 2 as n1 is null. After assigning n1 a non-null value, we will apply the conditional
operator on n1 and integer 2. In this case, since n1 is not null, the value of n3 will be
the same as that of n1.

The null-coalescing operator can be used multiple times in an expression. In the following
example, the GetDisplayName() function returns the value of name if this is not
null; otherwise, it returns the value of email if it is not null; if email is also null,
then it returns "unknown":

string GetDisplayName(string name, string email)
{
 return name ?? email ?? "unknown";
}

The null-coalescing operator can also be used in argument checking. If a parameter
is expected to be non-null, but it is in fact null, you can throw an exception from the
right-hand operand. This is shown in the following example:

class foo
{
 readonly string text;

 public foo(string value)
 {
 text = value ?? throw new
 ArgumentNullException(nameof(value));
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 77

The null-coalescing assignment operator is useful in replacing code that checks whether a
variable is null before assigning it with a simpler, more succinct form. Basically, the ??=
operator is syntactic sugar for the following code:

if(a is null)
 a = b;

This can be replaced with a ??= b.

Summary
In this chapter, we learned about built-in data types in C#, which are the numerical types,
floating-point types, Boolean and character types, string, and object. Moreover, we also
covered nullable types and array types. We learned about variables and constants and
looked at the differences between value types and reference types. In addition to this,
we covered the concepts of type conversion and casting. At the end of this chapter, we
learned about the various types of operators available in C#.

In the next chapter, we will explore control statements and exceptions in C#.

Test what you learned
1. What are the integral built-in types in C#?

2. What are the differences between the floating-point types and the decimal type?

3. How do you concatenate strings?

4. What are escape sequences and how are they related to verbatim strings?

5. What is an implicitly typed variable? Can these variables be initialized with null?

6. What are value types? What are reference types? What are the main differences
between them?

7. What are boxing and unboxing?

8. What is a nullable type and how do you declare a nullable integer variable?

9. How many types of arrays exist and what is the difference between them?

10. What are the available type conversions and how do you provide user-defined
type conversion?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

3
Control Statements

and Exceptions
In the previous chapter, we discussed data types and operators in C#. In this chapter,
we will explore control statements in C#. Control statements allow us to implement
conditional execution paths in our code. We will also learn how to implement exception
handling, which will help us to handle errors that might occur while executing
our application.

In this chapter, we will cover the following concepts:

• Control statements

• Exception handling

By the end of this chapter, we will have seen how to implement these statements and
clauses practically. Let's look at each of these topics in detail using examples.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

80 Control Statements and Exceptions

Understanding control statements
Control statements allow us to control the flow of execution of a program. They also allow
us to execute a particular block of code based on a certain condition. C# defines three
categories of control statements, as mentioned here:

• Selection statements: if and switch

• Iteration statements: for, while, do-while, and foreach

• Jump statements: break, continue, goto, return, and yield

We will explore each of these statements in detail in the following sections.

Selection statements
Selection statements allow us to change the execution flow based on whether a condition
is true or not. C# provides us with two types of selection statements: if and switch.

The if statement
The following snippet shows the syntax of an if statement:

if (condition1)
 statement1;
else if(condition2)
 statement2;
else
 statement3;

If condition1 evaluates to true, then statement1 will be executed. Else, if
condition2 evaluates to true, then statement2 will be executed. Otherwise,
statement3 will be executed.

The else-if and else clauses are optional and either of them, or both, can be omitted.
On the other hand, you can have as many else-if clauses as you'd like.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding control statements 81

In this example, we have only one statement to be executed for both the if and else
clauses. If we have to execute a series of statements, we need to add curly braces ({})
to make it a block. This is optional for single statements, although it is often a good
way to make the code clearer or less prone to errors. In this case, the syntax will change
as follows:

if (condition)
{
 statement 1;
 statement 2;
}
else
{
 statement 3;
 statement 4;
}

If condition evaluates to true, then both statement1 and statement2 will be
executed. Otherwise, statement3 and statement4 will be executed. Let's try to
understand the if-else statement with the help of the following code snippet:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("Enter a positive integer");
 var line = Console.ReadLine();
 int.TryParse(line, out int number);

 if (number % 2 == 0)
 {
 Console.WriteLine("Even number");
 }
 else
 {
 Console.WriteLine("Odd number");
 }
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

82 Control Statements and Exceptions

The preceding program checks if a positive integer is even or odd. We are reading an
integer from the console as input. As the value entered on the console is considered
a string, we need to convert it to an integer. We will then find the remainder of division
by 2 by applying the modulus (%) operator. If the remainder is 0 then the number is even,
if not, the number is odd.

The if statements can be nested. We can put an if statement inside another if or
an else statement. The following syntax shows an example of nested if statements:

if (condition1)
{
 if(condition2)
 statement 1;
 if(condition3)
 statement 2;
 else
 statement 3;
}
else
{
 if(condition4)
 statement 4;
 else
 statement 5;
}

In this example, if condition1 evaluates to true, then the control will enter into the
if block and execute the statement based on the evaluation of the nested if statements.
If condition1 is false, then the nested if statements inside the else clauses will
be executed.

In a nested if statement, each else clause belongs to the last if statement that doesn't
have a corresponding else statement. To avoid confusion and errors, it is recommended
that you use curly braces when nesting if statements to pair if and else clauses
correctly. Take, for instance, the following example:

if(condition1)
 if(condition2)
 statement1;
 else
 statement2;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding control statements 83

The preceding example is not the same as the following:

if(condition1)
{
 if(condition2)
 statement1;
}
else
{
 statement2;
}

In the first example, the else clause belonged to the second, inner if clause. On the
other hand, in the second example, the else clause belonged to the first, outer if clause.

The switch statement
The switch statement provides us with a way to execute a set of instructions from several
available alternatives. It will match the value of an expression against a list of available
values. If a match is found, the code associated with that value is executed.

The switch statement is an alternative to the cascading if-else-if statements. If
there is a small number of matches, an if statement may be preferred. However, if the
number of matching conditions is larger, a switch statement is preferred to an if
statement for its better readability and maintainability.

The syntax of a switch statement is as follows:

switch (expression)
{
 case value1:
 statement 1;
 break;
 case value2:
 statement 2;
 statement 3;
 break;
 default:
 statement 4;
 break;
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

84 Control Statements and Exceptions

A switch statement contains one or more sections and each section has one or more
case labels. Each case label can have one or more statements. Each case label specifies
a value that will be matched with the switch expression. If a match is found, the control
will be transferred to the matching case label.

The statements present in the case label will be executed until a break statement is
encountered. If no match is found, the control will go to the default case. After the
execution of a particular case label, the control will exit the switch. The default case
is optional. If no default case is present and no match is found for any case labels, the
control will fall outside of the switch statement.

Note that we have not used curly braces ({}) inside the case labels. The default case
can appear anywhere on the list. It is always evaluated last after all the case labels have
been evaluated.

You can place multiple case labels in the same switch section; in this case, the matching
of any of the case labels will trigger the execution of the switch section. In a switch
statement, only one switch section may execute. It is not possible to fall through from
one section to another. Each switch statement must be followed by a break, goto, or
return statement.

The following example shows a switch statement with multiple switch sections, some
of them with multiple case labels. The default case is placed at the end, as you would
usually do. Each section is exited with a break statement:

Console.WriteLine("Enter number (1-10)");
var line = Console.ReadLine();
int.TryParse(line, out int number);

switch(number)
{
 case 1:
 Console.WriteLine("Smallest number");
 break;
 case 2: case 3: case 5: case 7:
 Console.WriteLine("Prime number");
 break;
 case 4: case 6: case 8:
 Console.WriteLine("Even number");
 break;
 case 9:
 Console.WriteLine("Odd number");
 break;
 default:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding control statements 85

 Console.WriteLine("Not in the range");
 break;
}

The switch statement supports various forms of pattern matching. However, this is a
more advanced topic that will be detailed in Chapter 8, Advanced Topics, and in Chapter
15, New Features of C# 8.

Iteration statements
Iteration statements allow us to execute a set of code in a loop as long as a certain
condition is satisfied. C# provides us with four different kinds of loop:

• for

• while

• do-while

• foreach

Let's explore them in detail.

The for loop
The for loop allows us to execute a code block as long as a Boolean expression evaluates
to true. The following snippet shows the general syntax of a for loop:

for(initializer; condition; iterator)
{
 statement1;
 statement2;
}

The initializer section consists of one or more initialization statements intended to
initialize the counter to control the loop. This will be executed only once before entering
the loop for the first time. If there are multiple statements in the initializer section,
they must be separated by a comma. However, the initializer section is optional and
can be left empty.

The loop controlling counter is also known as the loop control variable. This variable is
local to the loop and cannot be accessed outside the scope of the for loop.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

86 Control Statements and Exceptions

condition is a Boolean expression that will determine if the loop will execute or not.
It will be evaluated for every iteration of the loop. If it evaluates to true, the loop will
be executed. Once the Boolean condition evaluates to false, the loop will terminate,
and the program control will fall out of the loop. This statement is optional and can be
left empty.

iterator is an expression to change (increment/decrement) the loop control variable
after each iteration of the loop. It can have multiple statements separated by a comma.
This statement is also optional and can be left empty. In fact, all three of these statements
(initializer, condition, and iterator) can be omitted, in which case we have
an infinite loop, as in the following snippet:

for(;;)
{
 /* infinite loop, unless a break, goto, return, or throw
 executes */
}

The for loop is an entry controlled loop, which means the Boolean condition will be
evaluated before entering into the loop. If the condition evaluates to false in the first
iteration, then the code block inside the loop will not be executed at all.

Let's understand the for loop with the help of the following code snippet:

for (int i = 0; i <= 10; i++)
{
 if (i % 2 == 0)
 {
 Console.WriteLine($"{i} is an even number");
 }
 else
 {
 Console.WriteLine($"{i} is an odd number");
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding control statements 87

Here, we are running a for loop to check which integers between 0 and 10 are even or
odd. When you execute this code, you will see the following output screen:

Figure 3.1 – A screenshot of the console showing the output of the preceding snippet

We can also put a for loop inside another for loop. In this case, the inner loop will
execute completely for each iteration of the outer loop. Look at the following code snippet.
Here, all of the values of the j variable (that is, 1 and 2) will be printed against each value
of the i variable (that is, 1, 2, 3, and 4):

for (int i = 1; i < 5; i++)
{
 for (int j = 1; j < 3; j++)
 {
 Console.WriteLine($"i = {i},j = {j}");
 }
}

Upon execution, you can see the following output of the program:

Figure 3.2 – The console output from the execution of the preceding snippet

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

88 Control Statements and Exceptions

A typical example of nested for loops is multi-dimensional array traversal. In the
following example, we have an array of integers with three rows and two columns
initialized during its declaration. The nested for loops are used to print the value of its
elements to the console:

var arr = new int[3, 2] { { 1, 2, }, { 3, 4 }, { 5, 6 } };
for (int r = 0; r <= arr.GetUpperBound(0); r++)
{
 for (int c = 0; c <= arr.GetUpperBound(1); c++)
 {
 Console.Write($"{arr[r, c]} ");
 }
 Console.WriteLine();
}

Notice that we used the GetUpperBound() method to retrieve the index of the last
element of the specified dimension to avoid hard-coded values for the size of the array.

You can exit a loop iteration while the condition is still true using a break, goto,
return, or throw statement. You can skip the execution of the loop block for the
current iteration with a continue statement. This is also true for the other loops—
while, do, and foreach. The jump statements will be explored in detail later on
in this chapter.

The while loop

The while loop is an entry controlled loop. It executes a block of statements as long
as a specified Boolean expression evaluates to true. The syntax of a while loop is
as follows:

while (condition)
{
 statement1;
 statement2;
}

Here, condition is a Boolean expression and it controls the loop. The code block inside
the loop will be executed while condition evaluates to true. When condition
becomes false, the program control will fall outside of the loop. Because condition
is evaluated first, the while loop may not execute at all if condition is initially false.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding control statements 89

A while loop is very similar to a for loop. In fact, you can rewrite any while loop as a
for loop and vice versa. You can see in the following snippet how we can re-rewrite the
syntax of a for loop using a while loop:

initializer;
while(condition)
{
 statement1;
 statement2;
 iterator;
}

In the following code snippet, we have rewritten the example from the previous session
that prints even and odd numbers to the console with the help of a while loop:

int i = 0;
while (i <= 10)
{
 if (i % 2 == 0)
 {
 Console.WriteLine($"{i} is an even number");
 }
 else
 {
 Console.WriteLine($"{i} is an odd number");
 }
 i++;
}

The result of the execution of the program is unchanged. In fact, there is yet another way
to achieve the same result, and that is through using a do statement.

The do-while loop
The do-while loop is an exit-controlled loop. This means the Boolean condition will
be checked at the end of the loop. This ensures that the do-while loop will always be
executed at least once, even if the condition evaluates to false in the first iteration. That
is the key difference between a while and a do-while loop; the former may not execute
at all, but the latter is always executed at least once.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

90 Control Statements and Exceptions

The syntax of a do-while loop is as follows:

do
{
 statement1;
 statement2;
} while (condition);

In the following code snippet, we are printing all the numbers between 0 and 10 using
a do-while loop, specifying which is odd and which is even. This code will have the
same output as the example shown for the while loop:

int i = 0;
do
{
 if (i % 2 == 0)
 {
 Console.WriteLine($"{i} is an even number");
 }
 else
 {
 Console.WriteLine($"{i} is an odd number");
 }
 i++;
}
while (i <= 10);

The loops we have learned about so far allow us to execute one or more statements
repeatedly, such as iterating through the elements of a collection based on an index.
Another sort of loop statement, such as foreach, simplifies this iterating in all cases
where we are interested in the element but not the index. Let's take a look at foreach
next.

The foreach loop
The foreach loop allows us to iterate through the items of a collection that implements
the System.Collections.IEnumerable or System.Collections.Generic.
IEnumerable<T> interface. Collections are discussed in detail in Chapter 7, Collections.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding control statements 91

The syntax of the foreach loop is as follows:

foreach(datatype iterator in collection)
{
 statement1;
 statement2;
}

Here, datatype denotes a valid type in C# and it must be the same data type as the
collection, or a type for which an implicit conversion exists. You can also use var instead
of an actual type name, in which case the compiler will infer the type of the iterator
variable from the type of the collection elements.

The iterator variable is a loop iteration variable. The loop iteration variable in
a foreach loop is read-only. This means we cannot change its value inside the body of
the loop. In each iteration of the loop, the iterator is assigned a value from the collection.
When all of the elements of the collection have been iterated, the loop exits. Exiting the
loop can also be done with a break, goto, return, or throw statement.

Let's take a look at the foreach loop with the help of the following code snippet:

string[] languages = { "Java", "C#", "Python", "C++",
"JavaScript" };

foreach (string lang in languages)
{
 Console.WriteLine(lang);
}

In this example, we have defined a string array that contains a list of programming
languages. We are using a foreach loop to iterate through it and print each element of
the array on the console. The output for this code is as in the following screenshot:

Figure 3.3 – The output of printing to the console the content of an array of strings using
a foreach statement

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

92 Control Statements and Exceptions

The preceding foreach statement is semantically equivalent to the following:

var enumerator = languages.GetEnumerator();
while(enumerator.MoveNext())
{
 Console.WriteLine(enumerator.Current);
}

The collection type may not necessarily implement the IEnumerable
or IEnumerable<T> interfaces, but it must have a public method called
GetEnumerator(), that takes no parameters and returns a class, struct, or interface,
and has a return type that contains a public property called Current and a public
parameterless method called MoveNext() that returns bool.

If the Current property of the enumerator type returns a reference return value (which
is made possible with C# 7.3), then you can declare the iteration variable with the ref or
ref only modifier. An example of this is shown in this snippet:

Span<int> arr = stackalloc int[]{ 1, 1, 2, 3, 5, 8 };
foreach(ref int n in arr)
{
 n *= 2;
}

foreach(ref readonly var n in arr)
{
 Console.WriteLine(n);
}

Here, the arr variable is System.Span<int>. The return type of its
GetEnumerator() method, which is Span<T>.Enumerator, satisfies the condition
mentioned earlier. The first foreach loop iterates through the elements of the array
(a stackalloc array is allocated on the stack and disposed of as the function call
returns) and doubles the initial value of each element. The second foreach loop iterates
again through the elements but in a read-only fashion. An attempt to change the value of
the iterator variable in a read-only loop would result in a compiler error.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding control statements 93

The jump statements
Jump statements allow us to immediately transfer the control from one point in the
application to another. C# provides us with five different jump statements:

• break

• continue

• goto

• return

• yield

We will explore them in detail in the following sections.

The break statement
We already saw how to use break to exit out of a switch case. We can also terminate
the execution of a loop using the break statement. Once the program control encounters
a break statement inside a loop, the loop terminates immediately, and the control falls
out of the loop.

Take a look at the following code snippet:

for (int i = 0; i <= 10; i++)
{
 Console.WriteLine(i);
 if (i == 5)
 break;
}

Here, we are iterating from 0 to 10 and writing the current value to the console. If the
value of the loop control variable becomes 5, the loop will break, and no further element
will be printed to the console. Although the loop is expected to run 10 times, the break
statement makes it terminate immediately as the value of the iterator becomes 5. Upon
execution, you can see the following output:

Figure 3.4 – A screenshot of the console showing the output of the preceding snippet

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

94 Control Statements and Exceptions

The break statement is not the only statement that can control the execution of a loop.
Another one is continue, which we will look at in the next section.

The continue statement
The continue statement passes control to the next iteration of an enclosing loop, be
it for, while, do, or foreach. It is used to terminate the execution of the loop body
in the current iteration and skip to the next one. The continue statement does not
determine the return from the loop statement, but only aborts the execution of the
current iteration and moves the control to the evaluation of the loop condition.

Take a look at the following code snippet:

for (int i = 0; i <= 10; i++)
{
 if (i % 2 == 0)
 continue;
 Console.WriteLine(i);
}

In this example, we iterate from 0 to 10; if the value is an even number, then we skip the
current iteration loop and continue to the next one. This code will print only the odd
numbers between 0 and 10. The output is as follows:

Figure 3.5 – The output of the previous snippet that prints to the console the odd numbers
smaller than 10

The break and continue statements control the execution of loops. The next statement
is used to end the execution of functions.

The return statement
The return statement terminates the current execution flow and returns the control to
the calling method. Optionally, we can also return a value to the calling method. If the
method has a return type defined, we need to return a value. Otherwise, when the return
type is void, we can return without specifying any value.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding control statements 95

The following example shows a possible implementation of a function that returns the nth
Fibonacci number:

static int Fibonacci(int n)
{
 if (n > 1)
 return Fibonacci(n - 1) + Fibonacci(n - 2);
 else
 return n;
}

The return statement triggers the stopping of the current function execution and the
return of the control to the calling function.

The goto statement
The goto statement is an unconditional jump statement. When the program control
encounters a goto statement, it will jump to the location specified by it. The target for
goto is specified using a label, which is an identifier followed by a colon (:). We can also
use goto to exit from a loop. In this case, it will behave similarly to a break statement.

Consider the following code snippet:

for (int i = 0; i <= 10; i++)
{
 Console.WriteLine(i);
 if (i == 5)
 {
 goto printmessage;
 }
}

printmessage:
 Console.WriteLine("The goto statement is executed");

In this example, we are iterating from 0 to 10. If the value of the iterator becomes 5, we
will use a goto statement to jump out of the loop. The output for this code snippet is
shown here:

Figure 3.6 – The console output from the preceding code snippet

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

96 Control Statements and Exceptions

The use of a goto statement is generally avoided as a good programming practice because
it can lead to code that is unstructured and hard to maintain.

The yield statement
yield is a contextual keyword (that is, a word that provides a specific meaning in code
without being a reserved word). It indicates that the method, operator, or get accessor,
where it appears preceding a return or break statement, is an iterator. The sequence
returned from an iterator method can be consumed using a foreach statement. The
yield statement makes it possible to return values as they are produced and consume
them as they are available, which is especially useful in an asynchronous context.

To better understand the use of yield, let's consider the following example. We have
a function, let's call it GetNumbers(), that returns a collection with all the numbers
from 1 to 100. A possible implementation is shown in the following snippet:

IEnumerable<int> GetNumbers()
{
 var list = new List<int>();
 for (int i = 1; i <= 100; ++i)
 {
 list.Add(i);
 }

 return list;
}

The problem with this implementation is that we cannot consume the numbers before
all of them are produced. On one hand, in a real example, this could be time consuming
and we might want to consume the numbers as they are produced. On the other hand, we
might be only interested in some of the numbers, but not all of them.

With this implementation, we have to first produce all of them before using those that we
need. In the following example, we only print the first five numbers to the console:

var numbers = GetNumbers().Take(5);
Console.WriteLine(string.Join(",", numbers));

A yield return statement returns an item as soon as it is available. It is shorthand for
creating an iterator, something that would make the code more laborious.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding control statements 97

The implementation of GetNumbers() would change to the following:

IEnumerable<int> GetNumbers()
{
 for (int i = 1; i <= 100; ++i)
 {
 yield return i;
 }
}

We return each number as it is available and do this only as long as we iterated through
the enumerator, such as with a foreach statement. The preceding example, which prints
the first five numbers to the console, remains unchanged. However, the execution is
different because only five iterations in the for loop will be executed.

To understand this better, let's change the example a bit so that a message is displayed to
the console before every item is produced and consumed respectively:

IEnumerable<int> GetNumbers()
{
 for (int i = 1; i <= 100; ++i)
 {
 Thread.Sleep(1000);
 Console.WriteLine($"Produced: {i}");
 yield return i;
 }
}

foreach(var i in GetNumbers().Take(5))
{
 Console.WriteLine($"Consumed: {i}");
}

A call to Thread.Sleep() is used to simulate a one-second delay in producing the next
number. The result of the execution of this code is shown in the following image:

Figure 3.7 – The result of the execution of the preceding code

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

98 Control Statements and Exceptions

Now that we've seen how we can return from the normal execution of the code, let's take
a quick look at how we can handle abnormal situations when unexpected errors occur
during the execution of the code.

Exception handling
There are scenarios where our code produces an error. The error might occur because of
a logical issue in the code, such as trying to divide by zero or access an element in an array
beyond the bounds of the array. For example, trying to access the fourth element in an
array of size three. Errors can also occur because of external factors, such as trying to
read a file that does not exist on a disk.

C# provides us with a built-in exception-handling mechanism to handle these types of
errors at the code level. The syntax for exception handling is as follows:

try
{
 Statement1;
 Statement2;
}
catch (type)
{
 // code for error handling
}
finally
{
 // code to always run at the end
}

The try block can contain one or more statements. The catch block contains the error
handling code. The finally block contains the code that will execute after the try
section. This happens regardless of whether the execution resumed normally, or the
control left the try block because of a break, continue, goto, or return statement.

If an exception occurred and a catch block exists, the finally block is also guaranteed
to execute. If the exception is unhandled, the execution of the finally block depends
on how the exception unwind operation is triggered, which depends on how the running
machine is set up. The finally block is optional.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exception handling 99

Upon execution, the program control will execute the code inside the try block. If no
error occurs in the try block, the execution continues normally and control transfers to
the finally block, if it exists. When an exception occurs inside the try block, program
control will transfer to a catch block, if one exists. After the execution of a catch block,
the program control will transfer to the finally block, if it exists.

Multiple catch clauses may exist for the same try block. The order they are listed in
is important because they are evaluated in that given order. This means more specific
exceptions should be caught before more general ones. It is possible to specify a catch
clause without an exception type in order to catch all exceptions. However, this is
considered rather a bad practice because you should only catch exceptions that you know
how to handle and recover from.

When an exception occurs, the Common Language Runtime (CLR) checks if there is a
catch block to handle it in the method that is currently executing. If one does not exist,
it looks in the method that called the current method, and so on up the call stack. If no
matching catch block is found, an unhandled exception message is displayed, and the
execution of the program is aborted.

Let's try to understand exception handling with the help of the following code snippet:

class Program
{
 static void Main(string[] args)
 {
 try
 {
 int a = 10;
 int b = a / 0;
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex);
 }
 }
}

Here, we are trying to simulate a division by zero error. When an error occurs inside the
try block, it will create an instance of the Exception class and throw the exception. In
the catch block, we are specifying an argument of the Exception type. The exception
provides us with an error message but also with information about where the error
occurred (filename and path) as well as the call stack.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

100 Control Statements and Exceptions

If we only want the message associated with the exception, we can use the Message
property of the Exception class. The output of this code snippet is as follows:

Figure 3.8 – The console showing the message of a division by zero exception

Exceptions are thrown with the throw statement. You must specify an instance of
the System.Exception class or a class derived from it. Classes will be discussed in
Chapter 4, Understanding the Various User-Defined Types, and inheritance in Chapter
5, Object-Oriented Programming in C#, but for the time being keep in mind that there
are many exception types and they are all based on System.Exception. The throw
statement can be used in a catch block without any argument to re-throw the exception,
preserving the call stack. This is useful when you want to do something in the case of an
exception, such as logging, but also want to pass the exception forward to be fully handled
in a different place.

In the following example, a function called FunctionThatThrows() does something,
but not before checking its input argument. If the object argument is null, it throws an
exception of the ArgumentNullException type. However, if the argument is not null
but of a type other than string, it throws an exception of the ArgumentException
type. This is the base class for ArgumentNullException. When invoking the method,
we catch multiple exception types:

• ArgumentNullException

• ArgumentException

• Exception

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exception handling 101

The order is important because it starts with the most-derived class and ends with the
base class of all exceptions. A finally block is used to display a message at the end of
the execution:

void FunctionThatThrows(object o)
{
 if (o is null)
 throw new ArgumentNullException(nameof(o));

 if (!(o is string))
 throw new ArgumentException("A string is expected");

 // do something
}

try
{
 Console.WriteLine("executing");
 FunctionThatThrows(42);
}
catch (ArgumentNullException e)
{
 Console.WriteLine($"Null argument: {e.Message}");
}
catch (ArgumentException e)
{
 Console.WriteLine($"Wrong argument: {e.Message}");
}
catch(Exception e)
{
 Console.WriteLine($"Error: {e.Message}");
}
finally
{
 Console.WriteLine("done");
}

The output of the execution of this program is as follows:

Figure 3.9 – The console output from the execution of the previous snippet

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

102 Control Statements and Exceptions

The topic of exception handling will be discussed in greater detail in Chapter 14, Error
Handling. If you want to learn more about exceptions at this point, you can go ahead
and read this chapter before continuing with the next one.

Summary
In this chapter, we explored control statements in C#. We learned how the different types
of loops and jump statements work with the help of examples. We also looked briefly at
how to throw and catch exceptions.

In the next chapter, we will look at user-defined types and explore what fields, properties,
methods, indexers, and constructors are in a class.

Test what you learned
1. What are the selection statements available in the C# language?

2. Where can the default case of a switch statement appear and when it is evaluated?

3. What is the difference between a for and a foreach statement?

4. What is the difference between a while and a do-while statement?

5. What statements can you use to return from a function?

6. Where can you use a break statement and how does it work?

7. What does the yield statement do and in which scenarios is it used?

8. How do you catch all the exceptions from a function call?

9. What does the finally block do?

10. What is the base class for all exceptions in .NET?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
Understanding

the Various
User-Defined Types

In the previous chapter, we learned about control statements and exceptions in C#. In
this chapter, we will explore the user-defined types in C#. We will learn how to create
custom user types using classes, structures, and enumerations. We will explore what fields,
properties, methods, indexers, and constructors are in a class. We will study the access
modifiers in C# and learn how to use them to define the visibility of types and members.
We will also learn about two important keywords in C#—this and static—and
understand the ref, in, and out parameter modifiers for methods.

We will explore the following topics in detail:

• Classes and objects

• Structures

• Enumerations

• Namespaces

Good knowledge of these concepts is necessary to understand the object-oriented
programming (OOP) concepts that we will cover in the next chapter.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

104 Understanding the Various User-Defined Types

Classes and objects
Before we go further, it is important that you understand these two key concepts. A class
is a template or a blueprint that specifies the form of an object. It contains both data and
code that operates on that data. An object is an instance of a class. Classes are defined
using the class keyword and a type that is a class is a reference type. The default value
for a variable of a reference type is null. You can assign it as a reference to an instance of
the type. Instances—that is, objects—are created using the new operator.

Information box
The terms class and object are often used interchangeably in different technical
documentations. They are not the same and it is improper to use them as
so. The class is the blueprint that specifies the memory layout of objects and
defines functionalities that operate with that memory. Objects are the actual
entities created and operated according to the blueprint.

Take a look at the following code snippet to understand how a class is defined. In this
example, we are creating an Employee class with three fields to represent the ID, first
name, and last name of an employee:

class Employee
{
 public int EmployeeId;
 public string FirstName;
 public string LastName;
}

We will use the new keyword to create an instance of the class. The new operator allocates
memory for an object and returns a reference to it at runtime. This reference is then stored
in the variable that specifies the object's name. The object is stored on the heap, and the
reference to the object is stored in the stack storage location corresponding to the named
variable.

To create an object of the Employee class, we will use the following statement:

Employee obj = new Employee();

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 105

To access the members of a class (fields, properties, methods) using an object, we use the
dot (.) operator. Hence, to assign values to the fields of the object (obj), we will use the
following statements:

obj.EmployeeId = 1;
obj.FirstName = "John";
obj.LastName = "Doe"

The following diagram shows, conceptually, what is happening here:

Figure 4.1 – The conceptual memory layout for the preceding Employee object

The obj variable of the Employee type is allocated on the stack. However, the stack does
not contain the actual Employee object but only a reference to it. The object is allocated
on the heap and the address of the object is stored on the stack so that by using the obj
variable we can access the object that is located on the heap.

Two different instances of a class are two different objects. A reference to an object can
be assigned to multiple variables. In this case, modifications to the object through one
variable will be visible through the other variable. This is shown in the following example:

Employee obj1 = new Employee();
obj1.EmployeeId = 1;

Employee obj2 = obj1;
obj2.FirstName = "John"; // obj1.FirstName == "John"
obj2.LastName = "Doe"; // obj1.LastName == "Doe"

Here, we have created a first instance of the Employee class and only assigned a value
to EmployeeId. Then, we created a second instance and assigned values to the first and
last name, skipping the identifier. These are two different objects, residing in different
locations in memory.

The properties of an employee are stored in the class in member fields. These will be
discussed next.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

106 Understanding the Various User-Defined Types

Fields
These are variables declared directly inside a class and are, therefore, members of the class.
Fields are used for storing the state of the object, which is data that must live for more
than the period of the execution of a class method and that should be accessible from
multiple methods. Variables that are not used outside the scope of a single method should
be defined as local variables and not class fields.

In the preceding section, EmployeeId, FirstName, and LastName are the mentioned
fields. These are called instance fields because they belong to the instance of the class,
meaning that each object has its own instance of these fields. On the other hand, static
fields belong to the class and are shared by all instances of the class. Static members will be
discussed in a later section of this chapter.

These fields have been declared public, which means they can be accessed by anyone.
This is, however, a bad practice. Fields should usually be declared as either private
(to be accessible only to the class members) or protected (to also be accessible to the
derived classes). This ensures better encapsulation, which will be discussed further in
the next chapter. Fields can be accessed both for reading and writing using methods,
properties, and indexers. We will discuss these in the following sections.

Fields that are declared with the const specifiers are called constants. Only built-in types
can be constants. Constants are always initialized with a literal and are values known at
compile time that cannot be changed at runtime:

class Employee
{
 public const int StartId = 100;
}

Constant fields are substituted for their literal value in the intermediate language code,
which means you cannot pass a constant field by reference. But this has another, more
subtle implication: if the constant value is referred in assemblies other than the one
in which the type is defined and the literal value of the constant is changed in a future
version, the assemblies referring the constant will continue to have the old version until
they are recompiled.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 107

For instance, if an integer constant defined in assembly A was initially set to 42 and it was
referred in assembly B, then the value 42 will have been stored in assembly B. Changing
the value of the constant to something else (let's say 100) will not be reflected in assembly
B, which will continue to store the old value until it is recompiled with the new version of
assembly A.

Fields can also be declared with the readonly specifier. These fields can only be
initialized in a constructor and their value cannot be changed later on. They can be
thought of as runtime constants.

In the following example, the EmployeeId field is a readonly field that is initialized in
the constructor. Only the first and last name fields can be changed for an instance of the
class:

class Employee
{
 public readonly int EmployeeId;
 public string FirstName;
 public string LastName;

 public Employee(int id)
 {
 EmployeeId = id;
 }
}

Employee obj = new Employee(1);
obj.FirstName = "John";
obj.LastName = "Doe";

Now that we have seen how to work with fields, let's learn about methods.

Methods
Methods are a series of one or more statements that are executed when the method is
invoked. Instance methods require an object in order to be called. Static methods belong
to the class and are not called using an object.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

108 Understanding the Various User-Defined Types

A method has a so-called signature that consists of several parts:

• An access modifier: This specifies the visibility of the method. This is optional and
private by default.

• Modifiers such as virtual, abstract, sealed, or static: These are all
optional and will be discussed in later sections.

• A return type: This could be void if the method does not return any value.

• A name: This must be a valid identifier.

• Zero, one, or more parameters: These are specified with a type, name, and
optionally, the ref, in, or out specifier.

In the following example, we will add a method to our Employee class:

class Employee
{
 public int EmployeeId;
 public string FirstName;
 public string LastName;

 public string GetEmployeeName()
 {
 return $"{FirstName} {LastName}";
 }
}

Here, we have added a method called GetEmployeeName(). The access modifier is
public, which allows this method to be called from any part of the code. The return type
is string as the method is returning the name of the employee by concatenating the
FirstName and LastName fields separated by a space.

Methods that simply consist of evaluating an expression, and perhaps returning the result
of the evaluation, can be written using an alternative syntax called expression body
definitions. These have the member => expression; form and are supported for all
class members, not just methods, but also fields, properties, indexers, constructors, and
finalizers. The type of the result value of the expression evaluation must match the return
type of the method.

The following code shows the implementation of the GetEmployeeName() method
using an expression body definition:

public string GetEmployeeName() => $"{FirstName} {LastName}";

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 109

Overloaded methods are multiple methods that have the same name but a different
signature. Such methods can exist. The return type of these methods is not a part of the
signature in the context of method overloading. This means that you cannot have two
methods with the same list of parameters but with different return values.

In the following example, GetEmployeeName(bool) is an overloaded method for the
previous GetEmployeeName() method:

public string GetEmployeeName(bool lastNameFirst) =>
lastNameFirst ? $"{LastName} {FirstName}" :
 $"{FirstName} {LastName}";

This method has the same name but a different list of parameters. It takes a Boolean value
that indicates whether the last name should be put first, or else returns the name with the
first name followed by the last name, just like the previous method did.

Constructors
A constructor is a special method defined in a class that is called when we instantiate an
object for the class. Constructors are used to initialize the members of the class upon the
object's creation. A constructor cannot have a return type and has the same name as the
class. Multiple constructors with different parameters may exist.

A constructor without any parameters is called a default constructor. Such a constructor
is provided by the compiler to all classes. The default constructor is created at compile
time and initializes the member variables to their default value. The default value is 0 for
numeric data types, false for bool, and null for reference types. If we define our own
constructor, the compiler will no longer provide the default constructor.

A constructor can have an access modifier. The default access modifier of a constructor is
private. However, this modifier makes it impossible to instantiate the class from outside
the class itself. In most cases, the access modifier of a constructor is defined as public
since a constructor is generally called from outside of the class.

A private constructor is useful in certain situations. An example is when implementing
the singleton pattern.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

110 Understanding the Various User-Defined Types

Let's try to understand all the concepts covered so far with the help of the
following example:

class Employee
{
 public int EmployeeId;
 public string FirstName;
 public string LastName;

 public Employee(int employeeId,
 string firstName, string lastName)
 {
 EmployeeId = employeeId;
 FirstName = firstName;
 LastName = lastName;
 }

 public string GetEmployeeName() =>
 $"{FirstName} {LastName}";
}

We have extended our Employee class and included a constructor in it. This constructor
will accept three parameters to initialize the value of all three fields: EmployeeId,
FirstName, and LastName. When creating an instance of the class, you must specify
proper arguments for the class constructor:

Employee obj = new Employee(1, "John", "Doe");

Console.WriteLine("Employee ID is: {0}", obj.EmployeeID);
Console.WriteLine("The full name of employee is: {0}",
 obj.GetEmployeeName());

Upon execution, this program will give the output shown in the following screenshot:

Figure 4.2 – A screenshot of the console showing the output of the preceding snippet

Objects can be initialized in a declarative manner using the so-called object initializer.
You invoke a constructor and, apart from providing the necessary arguments to the
constructor, you also provide a list of initialization statements for accessible members,
such as fields, properties, or indexers, within curly braces.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 111

Considering the Employee class without a user-defined constructor, having the default
(parameterless) constructor provided by the compiler, we can write the following code to
initialize an instance of the class:

Employee obj = new Employee()
{
 EmployeeId = 1,
 FirstName = "John",
 LastName = "Doe"
};

So far in this chapter, we have used fields to store the state of an object. The C# language
provides an alternative to fields: properties, which is the topic of the next section.

Properties
A property is a combination of a field and a method to access that field. They look like
fields but are actually methods called accessors. Properties make it possible to read or
write the class state in a simple manner and hide the implementation details, including
verification code.

The two accessors that properties define are called get (which is used to return a value
from the property) and set (which is used to assign a new value). Within the context of
the set accessor, the value keyword defines the value being accessed (which is the value
assigned from the user code).

In the following example, the Employee class shown earlier in this chapter is rewritten
so that the employee ID, first name, and last name are private fields made available to the
class clients using properties:

class Employee
{
 private int employeeId;
 private string firstName;
 private string lastName;

 public int EmployeeId
 {
 get { return employeeId; }
 set { employeeId = value; }
 }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

112 Understanding the Various User-Defined Types

 public string FirstName
 {
 get { return firstName; }
 set { firstName = value; }
 }

 public string LastName
 {
 get { return lastName; }
 set { lastName = value; }
 }
}

Using the property's get and set accessors is actually transparent. You do not invoke
them explicitly, but use the properties just as though they were fields. The following
example shows how the three properties of the Employee class are to be accessed for
both writing and reading:

Employee obj = new Employee();
obj.EmployeeId = 1;
obj.FirstName = "John";
obj.LastName = "Doe";

Console.WriteLine($"{obj.EmployeeId} - {obj.LastName}, {obj.
FirstName}");

The implementation of the properties shown in the preceding code is straightforward—it
just returns or sets the value of a private field. However, accessors are just like any
other method, so you can write any code, such as parameter verification, as in the
following example:

public int EmployeeId
{
 get { return employeeId; }
 set {
 if (value < 0)
 throw new ArgumentException(
 "ID must be greater than zero.");
 employeeId = value;
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 113

On the other hand, a property is not required to refer to a corresponding field. A property
may return values that are not read from one field or that are calculated from evaluating
different fields. The following example shows a property, Name, that concatenates the
value of the FirstName and LastName properties:

public string Name
{
 get { return $"{FirstName} {LastName}"; }
}

Notice that in the case of this property, the set accessor is missing. Both the get and
set accessors are optional. However, at least one must be implemented. On the other
hand, a write-only property does not have much value and you might want to implement
such functionalities as a regular method. Also, the get and set accessors may have
different access modifiers.

Implementing properties in this manner is cumbersome because you need to explicitly
define private fields that you do not use elsewhere other than in the properties. Moreover,
each property has to explicitly implement the get and set accessors, basically repeating
the same code over and over again. It is possible to achieve the same result with a shorter
syntax using auto-implemented properties. These are properties for which the compiler
will provide a private field and the implementation of the get and set accessors, as we
did earlier.

The Employee class is re-written with auto-implemented properties, as in the
following code. This very much resembles our first implementation where we were
using public fields:

class Employee
{
 public int EmployeeId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

If you do not want to set the values of these properties, you can declare only the get
accessor public. In such cases, the set accessor would probably be private and you
would provide values through the constructor. Such an example is shown here:

class Employee
{
 public int EmployeeId { get; private set; }
 public string FirstName { get; private set; }
 public string LastName { get; private set; }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

114 Understanding the Various User-Defined Types

 public Employee(int id, string firstName, string lastName)
 {
 EmployeeId = id;
 FirstName = firstName;
 LastName = lastName;
 }
}

Properties can be implemented using expression body definitions. The Name property
shown earlier can be implemented as follows:

public string Name => $"{FirstName} {LastName}";

This is a read-only property that only has the get accessor. However, you can explicitly
implement both the get and set accessors as expression body members. This is shown
in the following listing:

class Employee
{
 private int employeeId;
 public int EmployeeId
 {
 get => employeeId;
 set => employeeId = value > 0 ? value :
 throw new ArgumentException(
 "ID must be greater than zero.");
 }
}

Auto-implemented properties can also be initialized using the syntax shown in the
following example:

class Employee
{
 public int EmployeeId { get; set; } = 1;
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

The value of the EmployeeId property is initialized with 1. Unless otherwise explicitly
set, all instances of the Employee class will have EmployeeId set to 1.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 115

If you are implementing a read-only property using an expression body definition, you
do not need to specify the get accessor. The syntax, in this case, is as follows:

class Employee
{
 public int EmployeeId => 1;
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

This, however, looks very similar to the following:

class Employee
{
 public int EmployeeId = 1;
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

There is a big difference between these syntaxes:

• In the former example, where => is used, EmployeeId is a read-only public
property with an expression body definition.

• In the latter example, where = is used, EmployeeId is a public field with
an initializer.

There is a special form of property that can take parameters and allow access to class
instances using the operator []. These are called indexers and are discussed in the
following section.

Indexers
An indexer allows an object to be indexed like an array. An indexer defines a get and
set accessor, similar to a property. An indexer does not have an explicit name. It is
created by using the this keyword. An indexer has one or more parameters, which can
be of any type. As in the case of properties, the get and set accessors are usually simple
and consist of a single statement that returns or sets a value.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

116 Understanding the Various User-Defined Types

In the following example, the ProjectRoles class contains a mapping of the project IDs
and roles that an employee has in each project. This mapping is private but access to it is
available through an indexer:

class ProjectRoles
{
 readonly Dictionary<int, string> roles =
 new Dictionary<int, string>();

 public string this[int projectId]
 {
 get
 {
 if (!roles.TryGetValue(projectId, out string role))
 throw new Exception("Project ID not found!");
 return role;
 }
 set
 {
 roles[projectId] = value;
 }
 }
}

The indexer is defined with the public string this[int projectId] syntax,
which contains the following:

• An access modifier

• The type of the indexer, which is string

• The this keyword and the list of parameters in square brackets []

The get and set accessors are implemented in the same way as for a regular property.
This ProjectRoles class can be used as follows within the Employee class:

class Employee
{
 public int EmployeeId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public ProjectRoles Roles { get; private set; }

 public Employee() => Roles = new ProjectRoles();
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 117

We can access the employee roles using the Roles[i] syntax, just as if Roles was an
array. In this example, the parameter is not an index in the array but a project identifier,
which is actually the key to the dictionary of projects and roles. The parameters can be of
any type, not just numerical types:

Employee obj = new Employee()
{
 EmployeeId = 1,
 FirstName = "John",
 LastName = "Doe"
};

obj.Roles[1] = "Dev";
obj.Roles[3] = "SA";

for(int i = 1; i <= 3; ++i)
{
 try
 {
 Console.WriteLine($"Project {i}: role is {obj.
Roles[i]}");
 }
 catch(Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

The output from executing this sample code is shown in the following screenshot:

Figure 4.3 – Console output from executing the preceding code snippet

Indexers, including read-only indexers, can be implemented with expression body
definitions. However, there are no auto-implemented indexers; they have to be
implemented explicitly.

As mentioned, indexers are defined using the this keyword. However, this keyword
has other meanings outside the scope of indexers. This topic will be discussed in the
next section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

118 Understanding the Various User-Defined Types

The this keyword
The this keyword is used to represent the current instance of a class. When a method
is called, the reference of the calling object is passed to it using this. This is not done
explicitly, but behind the scenes by the compiler.

The this keyword has two important purposes:

• To qualify class members when parameters or local variables with the same
name exist

• To pass a reference to the current instance as a parameter to another method

Let's look at the following implementation of the Employee class:

class Employee
{
 public int EmployeeID;
 public string FirstName;
 public string LastName;

 public Employee(int EmployeeID,
 string FirstName, string LastName)
 {
 this.EmployeeID = EmployeeID;
 this.FirstName = FirstName;
 this.LastName = LastName;
 }
}

In this example, the parameters of the constructor have the same name as the fields of the
class. C# allows us to use the same name for the parameter and instance variable. Since the
parameter name is local to a method, the local name takes precedence over the instance
variable. To alleviate this situation, we use the this keyword to refer to the instance
variable for the current method invocation.

So far, we have seen the this keyword used for referring to the current instance of a
class and for declaring indexes. However, it is used for yet another purpose, and that is
declaring extension methods. These will be discussed in Chapter 8, Advanced Topics. For
now, let's look at another important keyword: static.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 119

The static keyword
The static keyword can be used to declare classes or class members. These differ
from what we have seen so far because you do not create instances of static classes
or do not need objects to access static members. We will explore these in detail in the
following subsections.

Static members
Fields, properties, methods, and constructors can be declared static. Indexers and
finalizers cannot be declared static. A static member does not belong to the object (as
in the case of an instance member) but rather to the type itself. Therefore, you cannot
access a static member through an object but through the type name.

In the following example, we have an implementation of the Employee class that has a
static field called id and a static method called Create(). The static field is storing the
value of the next employee ID, and the static method is used to create a new instance of
the class because the constructor is private and therefore it can only be called from
within the class:

class Employee
{
 private static int id = 1;

 public int EmployeeId { get; private set; }
 public string FirstName { get; private set; }
 public string LastName { get; private set; }

 private Employee(int id, string firstName, string lastName)
 {
 EmployeeId = id;
 FirstName = firstName;
 LastName = lastName;
 }

 public static Employee Create(string firstName,
 string lastName)
 {
 return new Employee(id++, firstName, lastName);
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

120 Understanding the Various User-Defined Types

We can call the Create() method as follows to instantiate a new object of this class:

Employee obj1 = Employee.Create("John", "Doe");
Employee obj2 = Employee.Create("Jane", "Doe");
Console.WriteLine($"{obj1.EmployeeId} {obj1.FirstName}");
Console.WriteLine($"{obj2.EmployeeId} {obj2.FirstName}");

The first object created like this will have EmployeeID set to 1, the second one will have
EmployeeID set to 2, and so on. Notice that we used the Employee.Create() syntax
to call the static method.

Static classes
A static class is also declared using the static keyword. A static class cannot
be instantiated. Since we cannot create instances of a static class, we access the class
members using the class name itself. All members of a static class must themselves be
static. A static class is basically the same as a non-static class, with a private constructor
and all members declared as static.

A static class is typically used to define methods that operate only on their parameters
(if any) and do not rely on class fields. This is often the case with utility classes.

The following example shows a static class called MassConverters, which contains
static methods to convert between kilograms and pounds:

static class MassConverters
{
 public static double PoundToKg(double pounds)
 {
 return pounds * 0.45359237;
 }

 public static double KgToPound(double kgs)
 {
 return kgs * 2.20462262185;
 }
}

var lbs = MassConverters.KgToPound(42.5);
var kgs = MassConverters.PoundToKg(180);

Because static classes cannot be instantiated, the this keyword has no meaning within
the context of such a class. An attempt to use it would result in a compiler error.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 121

The static constructor
A class can have a static constructor, whether the class itself is static or not. A static
constructor has no parameters or access modifiers and cannot be called by the user.
A static constructor is called by the CLR automatically in the following instances:

• In a static class when the first static member of the class is accessed for the first time

• In a non-static class when the class is instantiated for the first time

Static constructors are useful for initializing static fields. For instance, a static
readonly field can only be initialized during declaration or in the static constructor.
This is useful especially when the values are taken from configuration files, for writing
entries to a log file, or for writing wrappers for unmanaged code, when the static
constructor can call the LoadLibrary() API.

In the following example, the previous implementation of the Employee class is modified
such that a static constructor is provided to initialize the value of the static id field. This
constructor is reading the ID of the next employee from an application file or initializes it
with 1 if the file is not found. Every time a new instance of the class is created, the value of
the next employee ID is written to this file:

class Employee
{
 private static int id;

 public int EmployeeId { get; private set; }
 public string FirstName { get; private set; }
 public string LastName { get; private set; }

 static Employee()
 {
 string text = "1";
 try
 {
 text = File.ReadAllText("app.data");
 }
 catch { }
 int.TryParse(text, out id);
 }

 private Employee(int id, string firstName, string lastName)
 {
 EmployeeId = id;
 FirstName = firstName;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

122 Understanding the Various User-Defined Types

 LastName = lastName;
 }

 public static Employee Create(string firstName,
 string lastName)
 {
 var employee = new Employee(id++, firstName, lastName);
 File.WriteAllText("app.data", id.ToString());
 return employee;
 }
}

If you run the following code several times, the first time the IDs of the two employees
will be 1 and 2, then 3 and 4, and so forth:

Employee obj1 = Employee.Create("John", "Doe");
Employee obj2 = Employee.Create("Jane", "Doe");
Console.WriteLine($"{obj1.EmployeeId} {obj1.FirstName}");
Console.WriteLine($"{obj2.EmployeeId} {obj2.FirstName}");

So far, we have seen how to create methods and constructors. In the next section, we will
learn about the different ways you can pass parameters to them.

The ref, in, and out parameters
When we pass an argument to a method, it is passed by a value. This means a copy is
made. If the type is a value type, then the value of the argument is copied into the method
parameter. If the type is a reference type, then the reference is copied to the method
parameter. When you change the parameter value, it changes the local copy. This means
changes in arguments of value types are not propagated to the caller. As for arguments of
reference types, you can change the referred object on the heap but you cannot change the
reference itself. This behavior can be altered using the ref, in, and out keywords.

The ref keyword
The ref keyword allows us to create a call-by-reference mechanism rather than a call-by-
value mechanism. A ref keyword is specified when we declare and invoke the method.
The use of the ref keyword alters the parameter so that it becomes an alias for an
argument, which must be a variable. This means you cannot pass a property or an indexer
(which is actually a method) as an argument for a ref parameter. A ref parameter must
be initialized prior to the method call.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 123

Let's take a look at the following code sample:

class Program
{
 static void Swap(ref int a, ref int b)
 {
 int temp = a;
 a = b;
 b = temp;
 }

 static void Main(string[] args)
 {
 int num1 = 10;
 int num2 = 20;

 Console.WriteLine($"Before swapping: num1={num1},
num2={num2}");
 Swap(ref num1, ref num2);
 Console.WriteLine($"After swapping: num1={num1},
num2={num2}");
 }
}

In this program, we have defined a Swap method to swap two integer values. We are using
the ref keyword to declare the method parameters. We defined this method as static
so that we can invoke it without an object reference. Inside the Main method, we have
initialized two integer variables.

While invoking the Swap method, we have also used the ref keyword with argument
names. These ref parameters are passed as a reference and the actual value of the num1
and num2 variables will be swapped. The change is reflected in the variables in the Main
method. The output of this program is shown in the following screenshot:

Figure 4.4 – Console showing the values of num1 and num2 before and after swapping

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

124 Understanding the Various User-Defined Types

The ref keyword can be used to specify a reference return value. In this case, it must be
present in the following:

• In the method signature, before the return type.

• In the return statement, between the return keyword and the returned value. Such
a value is called a ref return value.

• In the declaration of a local variable that will receive the returned reference, before
the variable's type. Such a variable is called a ref local variable.

• Before the call to the method with a ref return.

In the following example, the Project class has a member field of the Employee type.
A reference to an Employee instance is set in the constructor. The GetOwner() method
returns a reference to the member field:

class Project
{
 Employee owner;

 public string Name { get; private set; }

 public Project(string name, Employee owner)
 {
 Name = name;
 this.owner = owner;
 }

 public ref Employee GetOwner()
 {
 return ref owner;
 }

 public override string ToString() =>
 $"{Name} (Owner={owner.FirstName} {owner.LastName})";
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 125

This can be used as follows to retrieve and change the owner of a project. In the following
code, notice the use of the ref keyword in the declaration of the local variable and the
invocation of the GetOwner() method:

Employee e1 = new Employee(1, "John", "Doe");
Project proj = new Project("Demo", e1);
Console.WriteLine(proj);

ref Employee owner = ref proj.GetOwner();
owner = new Employee(2, "Jane", "Doe");
Console.WriteLine(proj);

The output of this program is shown in the following screenshot:

Figure 4.5 – A screenshot of the output from the previous snippet

When using ref to return a value, you must be aware of the following:

• It is not possible to return a reference to a local variable.

• It is not possible to return a reference to this.

• It is possible to return references to class fields but also to properties without a set
accessor.

• It is possible to return a reference to ref/in/out parameters.

• Returning by reference breaks the encapsulation because the caller gets full access to
the state, or parts of the state, of an object.

Let's now look at the in keyword.

The in keyword
The in keyword is very similar to the ref keyword. It causes an argument to be passed
by reference. However, the key difference is that an in argument cannot be modified by
the called method. An in parameter is basically a readonly ref parameter. Should
the called method try to modify the value, the compiler will issue an error. A variable that
is passed as an in argument must be initialized before being passed as an argument in a
method called.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

126 Understanding the Various User-Defined Types

The following sample shows a method that takes two in arguments. Any attempt to
change their value results in a compiler error:

static void DontTouch(in int value, in string text)
{
 value = 42; // error
 ++value; // error
 text = null; // error
}

int i = 0;
string s = "hello";
DontTouch(i, s);

Specifying the in keyword when passing the arguments to the method is optional. In the
preceding example, this is omitted.

The in specifier is mostly intended for passing references to value type objects on hot
paths, that is, functions that are called repeatedly. When you pass a value type object to
a function, a copy of the value is made on the stack. Typically, this does not pose any
performance concerns but, when it is happening over and over again, performance issues
arise. By using the in specifier, a read-only reference to the object is passed, thereby
avoiding the copy.

Another benefit of the in specifier is the communication of the clear design intent that a
parameter is not supposed to be modified by a method.

The out keyword
The out keyword is similar to the ref keyword. The difference is that a variable passed as
an out argument does not have to be initialized before the method called, but the method
taking an out parameter must assign a value to it before returning. The out keyword
must be present both in the method definition and in the invocation of the method, before
the argument.

Returning an output value is useful in situations when a method needs to return more
than one value, or when it needs to return a value but also information about whether
the execution was successful or not. An example is int.TryParse(), which returns a
Boolean indicating whether the parsing was successful and the actual parsed value as an
out parameter.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 127

To see how it works, let's take a look at the following example:

static void Square(int input, out int output)
{
 output = input * input;
}

We have defined a static method to return the square of an integer. The Square
method will accept two parameters. The int parameter will be an integer value and it will
return the square of the input number via the out parameter output. It can be used as
follows:

int num = 10;
int SquareNum;
Square(num, out SquareNum);

Upon execution, the output of this program will be 100.

A variable that is used as an out argument can be declared inline in the method
invocation. This produces simpler and more compact code. The scope of the inline
variable is the scope in which the method is being invoked.

The preceding code can be simplified as follows:

int num = 10;
Square(num, out int SquareNum);

There are some restrictions when using these parameter specifiers, which will be explained
in the following section.

Understanding their limitations

When using the ref, in, and out parameters, you must be aware of several limitations.
These keywords cannot be used with the following:

• Async methods, defined with the async modifier.

• Iterator methods, which include either yield return or yield break.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

128 Understanding the Various User-Defined Types

On the other hand, the ref, in, and out keywords are not considered a part of the
method signature in the context of overload resolution. That means you cannot have two
overloads of the same method: one that takes a ref argument and one that takes the same
argument as an out parameter. However, it is possible to have overloaded methods if one
has a value parameter, and the other has a ref, in, or out parameter:

class foo
{
 public void DoSomething(ref int i);
 public void DoSomething(out int i); // error: cannot overload
}

class bar
{
 public void DoSomethingElse(int i);
 public void DoSomethingElse(ref int i); // OK
}

All the methods that we have seen so far in this book have a fixed number of arguments.
The language, however, allows us to define methods that can take a variable number of
arguments. This topic is discussed next.

Methods with a variable number of arguments
So far, we have only seen methods that take zero or a fixed number of arguments.
However, it is also possible to define methods that take any number of arguments of
the same type. To do so, you must have an argument that is a single-dimensional array
preceded by the params keyword. This parameter does not have to be the only parameter
of the method, but no further parameters are allowed after it.

In the following example, we have two methods—Any() and All()—that take a variable
number of Boolean values and return a Boolean value, indicating whether any of them is
true, and respectively, whether all of them are true:

static bool Any(params bool [] values)
{
 foreach (bool v in values)
 if (v) return true;
 return false;
}

static bool All(params bool[] values)
{
 if (values.Length == 0) return false;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 129

 foreach (bool v in values)
 if (!v) return false;
 return true;
}

Both of these methods can be invoked with zero, one, or any other number of arguments,
as shown here:

var a = Any(42 > 15, "text".Length == 3); // a=true
var b = All(true, false, true); // b=false
var c = All(); // c=false

The way the arguments are provided for a method call is flexible. We will look at existing
possibilities next.

Named and optional arguments
In all of the examples we have seen so far, the arguments for a method call were provided
in the order of the parameter declaration in the method signature. These are called
positional arguments because they are evaluated based on the position they are given.
Moreover, all the parameters were mandatory, which means that an invocation cannot
occur unless an argument is supplied for each parameter in the parameters list.

However, C# supports two more types of arguments: optional arguments and named
arguments. These are often used together and enable us to supply only some arguments for
the parameters in a list of optional parameters. These can be used with methods, indexers,
constructors, and delegates.

Optional arguments
When declaring a method, constructor, indexer, or delegate, we can specify a default value
for a parameter. When such a parameter exists, supplying an argument for it upon the
member invocation is optional. If none is provided, the compiler will use the default one.
A default value for a parameter must be one of the following:

• A constant expression

• An expression of the new T() form, where T is a value type

• An expression of the default(T) form, where T is also a value type

A method can have both required and optional parameters. If optional parameters are
present, they must follow all the non-optional parameters. A non-optional parameter
cannot follow an optional parameter.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

130 Understanding the Various User-Defined Types

Let's consider the following implementation of the Point structure:

struct Point
{
 public int X { get; }
 public int Y { get; }

 public Point(int x = 0, int y = 0)
 {
 X = x;
 Y = y;
 }
}

The constructor takes two parameters, both of them having the default value 0. This
means they are both optional. We can invoke the constructor in any of the following
forms:

Point p1 = new Point(); // x = 0, y = 0
Point p2 = new Point(1); // x = 1, y = 0
Point p3 = new Point(1, 2); // x = 1, y = 2

In the first example, no argument to the constructor of Point is supplied, so the compiler
will use 0 for both x and y. In the second example, a single argument is supplied and that
will be used to bind to the first constructor parameter. Therefore, x will be 1 and y will be
0. In the third and last example, two arguments are supplied, and they are bound to x and
y in this order. Therefore, x is 1 and y is 2.

Named arguments
Named arguments enable us to invoke a method specifying the arguments by their name
and not by their position in the parameters list. Arguments can be specified in any order
and, in combination with default arguments, we can specify only some arguments for a
method invocation. Named arguments are provided by specifying the parameter name
followed by a colon (:) and the value.

Let's consider the following examples:

Point p1 = new Point(x: 1, y: 2); // x = 1, y = 2
Point p2 = new Point(1, y: 2); // x = 1, y = 2
Point p3 = new Point(x: 1, 2); // x = 1, y = 2

Point p4 = new Point(y: 2); // x = 0, y = 2
Point p5 = new Point(x: 1); // x = 1, y = 0

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 131

The first three constructor invocations are equivalent; p1, p2, and p3 represent the same
point. The invocation of the constructor uses one or more named arguments but the effect
is the same. When constructing p4, on the other hand, only the value for y is specified.
Therefore, x will be 0 and y will be 2. Lastly, p5 is created by specifying only a named
argument for x. Therefore, x will be 1 and y will be 0.

Access modifiers
An access modifier is used to define the visibility of a type or member in C#. It specifies
what other parts of the code in the assembly or other assemblies can access the type or the
type member. C# defines six types of access modifiers, as follows:

• public: A public field can be accessed by any part of the code in the same
assembly or in another assembly.

• protected: A protected type or member can be accessed only in the current class
and in a derived class.

• internal: An internal type or member is accessible only within the current
assembly.

• protected internal: This is a combination of protected and internal
access levels. A protected internal type or member is accessible in the current
assembly or in a derived class.

• private: A private type or member can be accessed only inside the class or struct.
This is the least-accessible level defined in C#.

• private protected: This is a combination of private and protected
access levels. A private protected type or type member is accessible by code in the
same class, or in a derived class, but only within the same assembly.

Trying to access a type or type member outside its access level will result in a compile-
time error.

There are different kinds of rules for accessibility that apply to types and type members:

• Class and struct accessibility: When declared directly in a namespace, a class or a
struct can only be declared public or internal (which is the default). Derived
classes, on the other hand, cannot have greater accessibility than their base types.
That means if you have an internal class B, you cannot derive from it a public
class D.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

132 Understanding the Various User-Defined Types

• Class and struct member accessibility: Class members can have any of the six
access modifiers. However, struct members can only be public, internal,
or private. These rules apply to nested structs and classes. The default access
level for class and struct members is private. A nested type that is private is
accessible only from the enclosing type. The accessibility of a member cannot be
greater than the type that contains it.

Moreover, the type of a field, property, or event must be at least as accessible as the field
itself. Similarly, the return type of a method, indexer, or delegate, as well as the type of its
parameters, cannot be less accessible than the member itself.

• Other types and members: User-defined operators are always public and
static. Finalizers cannot have accessibility modifiers. Interfaces defined directly
in a namespace can be public or internal (which is the default). Access
modifiers cannot be applied to any interface members, which are implicitly
public. In a similar manner, enumeration members are implicitly public and
cannot have access specifiers. Delegates are like classes and structs – their default
access is internal when defined directly in a namespace, and private when
nesting in another type.

The following code shows various uses of access modifiers for types and type members:

public interface IEngine
{
 double Power { get; }

 void Start();
}

public class DieselEngine : IEngine
{
 private double _power;
 public double Power { get { return _power; } }

 public void Start() { }
}

We have learned in this chapter how to define custom classes. In all the examples so far,
the entire class was defined in a single place. However, it is possible to split a class across
several different definitions, in the same or different files, which is what we will look at in
the next section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classes and objects 133

Partial classes
A partial class allows us to divide our class into multiple class definitions, which is useful
when a class becomes very large or when we want to separate a class logically into multiple
parts. This enables technologies such as WPF to work better because the user code and the
code written by the IDE designers are separated into different source files.

Each part can be defined in a different source file using the partial keyword. This
keyword must appear immediately before the class keyword. The parts must be
available at compile time. During compilation, the parts are combined into a single type.

The partial keyword can be applied not only to classes, but also structures, interfaces,
and methods. The same rules apply to all of them.

An example of the partial class is shown here:

partial class Employee
{
 partial void Promote();
}

partial class Employee
{
 public int EmployeeId { get; set; }
}

partial class Employee
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 partial void Promote()
 {
 Console.WriteLine("Employee promoted!");
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

134 Understanding the Various User-Defined Types

Here, we split the class definition into two partial classes. Both partial classes
contain some properties. We can instantiate the partial class and use its properties
similar to a normal class. Refer to the following code snippet:

Employee obj = new Employee()
{
 EmployeeId = 1,
 FirstName = "John",
 LastName = "Doe"
};

obj.Promote();

The following list contains properties of partial types, as well as rules for them:

• All the parts must have the same accessibility.

• Different parts may specify a different base interface. The final type will implement
all the listed interfaces.

• If multiple parts specify a base class then it must be the same base class, as multiple
inheritances are not supported in C#. A base class can be specified only on one part.
It is optional on the others.

• Attributes of all the parts are merged together at compile type. The final type will
have all the attributes used on all the part declarations.

• Nested classes can also be partial.

Methods can also be partial. This enables us to provide the signature in one part of a
partial class or structure and the implementation in another. This is useful in IDEs to
provide method hooks that developers may or may not implement. If a partial method
does not have an implementation, it is removed from the class definition at compile time.
Partial methods cannot have an access modifier and are implicitly private. Also, a partial
method cannot return a value; the return type of a partial method must be void.

Structures
The content of this chapter so far has been focused on classes. Types that are defined as
classes are reference types. However, in .NET and C#, there is another category of types:
value types. Value types have value semantics, meaning that the value of the object, and
not a reference to the object, is copied on assignment.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structures 135

Value types are defined using the struct keyword instead of class. In most aspects,
structures are identical to classes and the characteristics presented in this chapter for
classes apply to structures too. However, there are several key differences:

• Structures do not support inheritance. Although a structure can implement any
number of interfaces, it cannot derive from another structure. For this reason,
structure members cannot have the protected access modifier. Also, a structured
method or property cannot be abstract or virtual.

• A structure cannot declare a default (parameterless) constructor.

• Structures can be instantiated without using the new operator.

• In a structure declaration, fields cannot be initialized unless they are declared
const or static.

Let's consider the following example where we define a structure called Point with two
integer fields:

struct Point
{
 public int x;
 public int y;
}

We can instantiate this either using the new operator, which would call the default
constructor initializing all the member fields with their default value, or directly, without
the new operator. In this case, the member fields would remain uninitialized. This could
be useful for performance reasons, but such an object cannot be used until all of its fields
are properly initialized:

Point p = new Point()
{
 x = 2,
 y = 3
};

The preceding code uses the new operator to create an instance of the type. On the other
hand, in the following example, the object is created without the new operator:

Point p;
p.x = 2;
p.y = 3;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

136 Understanding the Various User-Defined Types

While structures and classes have many things in common, they also differ in several key
aspects. It is important to understand when you should use classes and when you should
use structures. A structure should be used in the following cases:

• When it represents a single value (such as a point, a GUID, and so on)

• When it is small (typically no larger than 16 bytes)

• When it is immutable

• When it is short-lived

• When it is not used frequently in boxing and unboxing operations (which alter
performance)

In all the other cases, types should be defined as classes.

A variable of a value type cannot be assigned a null value. However, for situations
when no value is a valid value for a value type, a nullable value type (denoted as T? using
shorthand syntax) can be used. Nullable types were discussed in Chapter 2, Data Types
and Operators.

The following shows an example of a nullable Point variable assigned with null:

Point? p = null;

It is often mentioned in the literature that instances of value types are stored on the stack.
This statement is only partially true. The stack is an implementation detail; it is not part of
the characteristics of value types. Local variables or temporaries of value types are indeed
stored on the stack (unless they are not closed over outer variables of a lambda or an
anonymous method) and not part of an iterator block.

Otherwise, they are typically stored on the heap. However, this is entirely an
implementation and compiler detail and, in fact, value types can be stored in many places:
in the stack, in a CPU register, on the FPU frame, on the heap managed by the garbage
collector, on the loader heap of the AppDomain, or in the thread-local storage (if the
variable has the ThreadStorage attribute).

When a value type object (the storage location contains the value directly) is assigned to
a reference type object (the storage location contains a reference to the actual value), the
process of boxing occurs. The other way around the process is called unboxing. We have
discussed these two previously in this book, in Chapter 2, Data Types and Operators.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structures 137

Take a look at the following example:

struct Point
{
 public int X { get; }
 public int Y { get; }

 public Point(int x = 0, int y = 0)
 {
 X = x;
 Y = y;
 }
}

Point p1 = new Point(2, 3);
Point p2 = new Point(0, 3);

if (p1.Equals(p2)) { /* do something */ }

Here, we have two variables of the Point value type and we want to check whether they
are equal. To do so, we invoke the Equals() method that is defined in the System.
Object base class. When we do this, boxing occurs because the parameter of Equals
is an object, that is, a reference type. Boxing may become a performance issue if it is
performed very often. There are two ways to avoid boxing for a value type.

The first solution is to implement the IEquatable<T> interface that contains a single
Equals(T) method. This method allows both value and reference types to implement
a way that determines whether two objects are equal. This interface is used by generic
collections for testing for equality in various methods. Therefore, for performance reasons,
it should be implemented by all types that might be stored in generic collections.

The implementation of the Point structure that implements IEquatable<T> is
as follows:

struct Point : IEquatable<Point>
{
 public int X { get; }
 public int Y { get; }

 public Point(int x = 0, int y = 0)
 {
 X = x;
 Y = y;
 }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

138 Understanding the Various User-Defined Types

 public bool Equals(Point other)
 {
 return X == other.X && Y == other.Y;
 }

 public override bool Equals(object obj)
 {
 if (obj is Point other)
 {
 return this.Equals(other);
 }
 return false;
 }

 public override int GetHashCode()
 {
 return X.GetHashCode() * 17 + Y.GetHashCode();
 }
}

In this example, you should notice that the generic type parameter for IEquatable is
the type itself, Point. This is a technique called the curiously recurring template pattern.
The class implements Equals(Point), checking the properties of the type. However, it
also overrides the System.Object virtual methods, Equals() and GetHashCode(),
making sure the two implementations are consistent.

When implementing the IEquatable<T> interface, you should keep the following in
mind:

• Equals(T) and Equals(object) must return consistent results.

• If the value is comparable, then it should implement IComparable<T> too.

• If the type implements IComparable<T>, then it should implement
IEquatable<T> too.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structures 139

The second solution is to overload the == and != operators. This can be done as follows:

struct Point
{
 public int X { get; }
 public int Y { get; }

 public Point(int x = 0, int y = 0)
 {
 X = x;
 Y = y;
 }

 public override bool Equals(object obj)
 {
 if (obj is Point other)
 {
 return this.Equals(other);
 }
 return false;
 }

 public override int GetHashCode()
 {
 return X.GetHashCode() * 17 + Y.GetHashCode();
 }

 public static bool operator !=(Point p1, Point p2)
 {
 return p1.X != p2.X || p1.Y != p2.Y;
 }

 public static bool operator ==(Point p1, Point p2)
 {
 return p1.X == p2.X && p1.Y == p2.Y;
 }
}

In this case, we will no longer use Equals() to compare values, but the two
operators == and !=:

Point p1 = new Point(2, 3);
Point p2 = new Point(0, 3);

if (p1 == p2) { /* do something */ }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

140 Understanding the Various User-Defined Types

It is, however, possible to both implement IEquatable<T> and overload the
comparison operators, if you want to be able to check for equality both ways. We
will discuss operator overloading in more detail in Chapter 5, Object-Oriented
Programming in C#.

Enumerations
An enumeration is a set of named integral constants. We use the enum keyword to declare
an enumeration. An enumeration is a value type. Enumerations are useful when we want
to use a limited number of integral values for some particular purpose. Defining and using
an enumeration has several advantages:

• We use named constants instead of literal values. This makes the code more
readable and easier to maintain.

• When you use IDEs, such as Visual Studio, you can see the list of possible values
that can be assigned to a variable.

• It enforces type safety for using numerical constants.

The following example shows an enumeration called Priority with four possible values:

enum Priority
{
 Low,
 Normal,
 Important,
 Urgent
}

Each element of an enumeration stands for an integer value. By default, the first identifier
is assigned to zero (0). The value of each successive identifier will increase by one. It is also
possible to specify explicit values for each element. The following rules apply:

• These values must be within the range of the underlying type.

• The values do not have to be consecutive or in order.

• Multiple identifiers with the same numerical value can be defined.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enumerations 141

The enumeration, as defined, is semantically equivalent to the following, where values are
specified explicitly:

enum Priority
{
 Low = 0,
 Normal = 1,
 Important = 2,
 Urgent = 3
}

As mentioned earlier, each element of the enumeration can have any numerical value.
The following example shows a definition of the Priority enumeration. Where some
elements do have explicit values, others are calculated based on them:

enum Priority
{
 Low = 10,
 Normal,
 Important = 20,
 Urgent
}

In this implementation, Low is 10, Normal is 11, Important is 20, and Urgent is 21.

The default underlying type of an enumeration is int, but any integral type can be
specified as the underlying type. The char type cannot be the underlying type for an
enumeration. In the following example, byte is the underlying type for Priority:

enum Priority : byte
{
 Low = 10,
 Normal,
 Important = 20,
 Urgent
}

To use an element of an enumeration, you specify the enumeration name followed by a
dot (.) and the element name, such as Priority.Normal:

Priority p = Priority.Normal;
Console.WriteLine(Priority.Urgent);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

142 Understanding the Various User-Defined Types

Any value of the underlying type can be assigned to an enumeration variable, even if an
element with a corresponding numerical value does not exist. This is only possible with a
cast. However, the literal 0 is implicitly convertible to any enumeration type without the
need for a cast:

Priority p1 = (Priority)42; // p1 is 42
Priority p2 = 0; // p2 is 0
Priority p3 = (int)10; // p3 is Low

On the other hand, there is no implicit conversion between an enumeration and an
integral type. To obtain the integer value of an enum identifier, we must use an explicit
cast, as shown here:

int i = (int)Priority.Normal;

Because all the references to the elements of an enumeration are replaced at compile
time with their literal values, changing the values of the enumeration elements will affect
referencing assemblies. When the enum type is used in other assemblies, the numerical
values will be stored in those assemblies. Changes in the enumeration will not be reflected
in the dependent assemblies unless they are recompiled.

Should you need to parse an enumeration value from a string, you can use the generic
Enum.TryParse() method, as in the following example:

Enum.TryParse("Normal", out Priority p); // p is Normal

However, if you want to parse from a string ignoring the case, then you need to use a
non-generic overload of the same method, as shown here:

Enum.TryParse(typeof(Priority), "normal", true, out object o);
Priority p = (Priority)o; // p is Normal

In this example, the string "normal" is parsed, ignoring the case to identify a possible
value of the Priority enumeration. The value returned in the output parameter is
Priority.Normal.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Namespaces 143

Namespaces
We have mentioned namespaces several times in this book already without explaining
what they really are. Namespaces are used to organize your code in logical units.
A namespace defines a declaration space that contains types. This declaration space has
a name that is part of a type's name. For instance, the .NET type String is declared in
the System namespace. The complete name of the type is System.String. This is
called the fully-qualified name of the type. Typically, we use only the unqualified name
of the type (String, in this case), because we use using directives to bring declarations
into the current scope from a particular namespace.

Namespaces are used for two main purposes:

• To help organize the code. Typically, types that belong together are declared in the
same namespace.

• To avoid possible name collisions for types. A program may rely on different
libraries and it's not unlikely that types with the same name exist in two or more of
these libraries. By using namespaces with a high degree of uniqueness, the chance
for name collisions is drastically reduced.

• Namespaces are introduced with the namespace keyword. They are implicitly
public and you cannot use access modifiers when declaring them. A namespace can
contain any number of types (classes, structures, enumerations, or delegates).

The following example shows how to define a namespace, called chapter_04:

namespace chapter_04
{
 class foo { }
}

Namespaces can be nested; one namespace can contain other namespaces. An example
is shown in the following snippet, where the chapter_04 namespace contains a nested
namespace called demo:

namespace chapter_04
{
 namespace demo
 {
 class foo { }
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

144 Understanding the Various User-Defined Types

In this example, the fully qualified name of the foo type is chapter_04.demo.foo.

For brevity, nested namespaces can be declared with a shorthand syntax: instead of
multiple namespace declarations, only one is necessary. The name of the namespace is the
concatenation of all the namespace names, separated by a dot. The previous declaration is
equivalent to the following:

namespace chapter_04.demo
{
 class foo { }
}

To use an instance of this foo type, you would have to use its fully-qualified name, as
follows:

namespace chapter_04
{
 class Program
 {
 static void Main(string[] args)
 {
 var f = new chapter_04.demo.foo();
 }
 }
}

To avoid this, you can use a using directive, specifying the namespace name as follows:

using chapter_04.demo;
namespace chapter_04
{
 class Program
 {
 static void Main(string[] args)
 {
 var f = new foo();
 }
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Namespaces 145

A using directive can only be present at a namespace level (not locally to a method or
type). Typically, you put them at the beginning of a source file, in which case its types
are available throughout the entire source code defined in that file. Alternatively, you can
specify them in a particular namespace, in which case its types will only be available to
that namespace.

A namespace is said to be open-ended. This means that you can have multiple namespace
declaration with the same name, either in the same or different source files. In this case, all
these declarations represent the same namespace and contribute to the same declaration
space. The following snippet demonstrates an example of this case:

namespace chapter_04.demo
{
 class foo { }
}
namespace chapter_04.demo
{
 class bar { }
}

There is an implicit namespace that is the root of all namespaces (and contains all
namespaces and types that are not declared in a named namespace). This namespace is
called global. If you need to include it to specify a fully qualified name, then you must
separate it with :: and not with a dot, as in global::System.String. This can be
necessary in situations where namespace names collide. Here is an example:

namespace chapter_04.System
{
 class Console { }

 class Program
 {
 static void Main(string[] args)
 {
 global::System.Console.WriteLine("Hello, world!");
 }
 }
}

In this example, without the global:: alias, the user-defined chapter_04.System.
Console type would be used in the Main() function, instead of the expected System.
Console type.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

146 Understanding the Various User-Defined Types

Summary
In this chapter, we have learned about the user-defined types in C#. We learned about
classes and structures that help us to create custom user types in C#. We also learned how
to create and use fields, properties, methods, indexers, and constructors inside a class, and
we learned about the this and static keywords.

We explored the concepts of access modifiers and understood how we can define
various levels of access to types and members. We also learned about ref, in, and out
parameter modifiers, as well as methods with a variable number of arguments. Last but
not least, we learned about namespace and how to use them to organize code and avoid
name collisions.

In the next chapter, we will learn about Object-Oriented Programming (OOP) concepts.
We will explore the building blocks of OOP—encapsulation, inheritance, polymorphism,
and abstraction. We will also learn about abstract classes and interfaces.

Test what you learned
1. What is a class and what is an object?

2. What is the difference between classes and structures?

3. What is a read-only field?

4. What are expression body definitions?

5. What is a default constructor and what is a static constructor?

6. What are auto-implemented properties?

7. What are indexers and how are they defined?

8. What is a static class and what can it contain?

9. What are the parameter specifiers and how do they differ?

10. What are enumerations and when are they useful?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
Object-Oriented

Programming in C#
In the previous chapter, we covered user-defined types and learned about classes,
structures, and enumerations. In this chapter, we will learn about object-oriented
programming (or OOP for short). A good understanding of OOP concepts is essential to
write better programs using C#. OOP reduces code complexity, increases code reusability,
and makes software easy to maintain and scale.

We will cover the following concepts in detail:

• Understanding OOP

• Abstraction

• Encapsulation

• Inheritance

• Polymorphism

• SOLID principles

By the end of this chapter, you will learn how to create classes and methods using OOP.
Let's begin with an overview of OOP.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

148 Object-Oriented Programming in C#

Understanding OOP
Object-oriented programming is a paradigm that allows us to write a program around
objects. As discussed in the previous chapter, objects contain data and methods to act on
that data. Each object has its own set of data and methods. If an object wants to access the
data of another object, it has to access it via the methods defined in that object. An object
can inherit the properties of another object using the concept of inheritance. Hence, we
can say that object-oriented programming is organized around data and the operations
that are permitted on the data.

C# is a general-purpose multi-paradigm programming language. OOP is only one of these
paradigms. Other supported paradigms, such as generic and functional programming,
will be discussed in later chapters.

When discussing object-oriented programming, it is important to understand the
differences between classes and objects. As mentioned already, in the previous chapter,
a class is a blueprint that defines data and how it is represented in memory as well as
functionalities that operate on this data. On the other hand, an object is an instance of
a class built and functioning according to the blueprint. It has a physical representation
in memory, unlike a class that only exists in source code.

When you do object-oriented programming, you start with identifying the entities you
need to operate on, how they relate to each other, and how they interact. This is a process
called data modeling. The result of this is a set of classes that generalize the identified
entities. These can vary from physical entities (people, objects, machines, and so on) to
abstractions (an order, a to-do list, a connection string, and so on).

Abstraction, encapsulation, polymorphism, and inheritance are the core principles of
object-oriented programming. We will explore them in detail in this chapter.

Abstraction
Abstraction is the process of describing entities and processes in simple terms by
removing non-essential characteristics. A physical or abstract entity may have many
characteristics but for the purpose of some application or domain, not all of them are
important. By abstracting entities into simple models (that make sense for the application
domain), we can build simpler and more efficient programs.

Let's consider the example of an employee. An employee is a person. A person has a name;
a birthday; body characteristics, such as height, weight, hair color, and eye color; relatives
and friends; likes and hobbies (such as food, books, movies, and sports); an address;
properties (such as a house or apartment and cars or bikes); one or more phone numbers
and email addresses; and many other things that we could fill pages listing.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Encapsulation 149

Depending on the kind of application we are building, some of these are relevant and
some are not. For instance, if we build a payroll system, we are interested in an employee's
name, birthday, address, phone, and email, as well as hiring date, department, role, salary,
and so on. If we build a social media application, we are interested in a user's name,
birthday, address, relatives, friends, interests, activities, and more.

Sometimes, different levels of abstraction are required—some more general, others more
particular. For instance, if we build a graphical system that can draw shapes, we might
need to model a generic shape with little functionalities, such as the ability to draw itself
or transform (translate and rotate) itself. We can then have two-dimensional shapes and
three-dimensional shapes, each with more specific properties and functionalities based
on the characteristics of these shapes.

We can build lines, ellipses, and polygons as two-dimensional shapes. A line has
properties such as a start point and an end point, but an ellipse has two foci, as well as
an area and a perimeter. Three-dimensional objects, such as a cube, can drop shadows.
Although we are still abstracting concepts, we have moved from more general to more
particular abstractions. When these abstractions are based on each other, the typical way
to implement them is through inheritance.

Encapsulation
Encapsulation is defined as binding data and code that manipulates it together in a single
unit. Data is privately bound within a class without direct access from the outside of
the class. All objects that need to read or modify the data of an object should do it through
the public methods that a class provides. This characteristic is called data hiding and
makes code less error-prone by defining a limited number of entry points to an object's
data.

Let's take a look at the Employee class here:

public class Employee
{
 private string name;
 private double salary;

 public string Name
 {
 get { return name; }
 set { name = value; }
 }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

150 Object-Oriented Programming in C#

 public double Salary
 {
 get { return salary; }
 }

 public Employee(string name, double salary)
 {
 this.name = name;
 this.salary = salary;
 }

 public void GiveRaise(double percent)
 {
 salary *= (1.0 + percent / 100.0);
 }

}

An employee has two properties modeled here: name and salary. These are
implemented as private class fields, which makes them accessible only from within the
Employee class. Both of these values are set in the constructor. The name is exposed for
reading and writing using the property called Name. The salary variable is, however,
only exposed for reading, with the read-only property called Salary. To change
the salary, we must call the GiveRaise() method. Of course, this is just a possible
implementation. We could have used auto-implemented properties instead of fields, or
maybe different other methods to modify the salary. This class can be used as follows:

Employee employee = new Employee("John Doe", 2500);

Console.WriteLine($"{employee.Name} earns {employee.Salary}");
employee.GiveRaise(5.5);
Console.WriteLine($"{employee.Name} earns {employee.Salary}");

We have created an object of the Employee class and set the values to the private fields
using the constructor. The Employee class does not allow direct access to its fields. To
read their values, we use the public get accessor of the public properties. To change the
salary, we use the GiveRaise() method. The output of this program is as shown here:

Figure 5.1 – The console output from the execution of the preceding snippet

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Inheritance 151

Encapsulation allows us to hide the data inside a class from the outside world, which is
why it is also known as data-hiding.

Encapsulation is important because it reduces the dependencies between different
components by defining minimal public interfaces for them. It also increases code
reusability and security and makes code easier to unit test.

Inheritance
Inheritance is a mechanism through which a class can inherit the properties and
functionalities of another class. If we have a set of common functionalities and data
shared among multiple classes, we can put them in one class known as a parent or base
class. Other classes can inherit these functionalities and data of the parent class as well
as extending or modifying them and adding additional functionalities and properties.
A class that inherits from another class is known as a child or derived class. Inheritance,
therefore, facilitates code reusability.

In C#, inheritance is only supported for reference types. Only types defined as classes
can be derived from other types. Types that are defined as structures are value types and
cannot be derived from other types. However, all types in C# are either value or reference
types and are indirectly derived from the System.Object type. This relationship is
implicit and does not require developers to do anything special.

There are three types of inheritance supported in C#:

• Single inheritance: When a class inherits from one parent class. The child class
should not act as the parent class to any other class. Refer to the following diagram,
where class B is inheriting for class A:

Figure 5.2 – A class diagram showing class B inheriting from class A

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

152 Object-Oriented Programming in C#

• Multilevel inheritance: This is actually an extension to the previous case, because
the child is, on the other hand, a parent to another class. In the following diagram,
class B is a child class to class A as well as the parent to class C:

Figure 5.3 – A class diagram showing class A being the base class for class B, which in turn is
the base for class C

• Hierarchical inheritance: A class serves as the parent class to more than one class.
Refer to the following diagram. Here, the classes B and C inherit from the same
parent class, A:

Figure 5.4 – A class diagram showing classes B and C inheriting from the base class A

Unlike other programming languages (such as C++), C# does not support multiple
inheritance. This means that a class cannot be derived from more than one class.

To understand inheritance, let's consider the following example: we are building a game
that must represent objects such as terrain, obstacles, people, machinery, and so on. These
are various types of objects with different properties. For instance, people and machines
can move and battle, obstacles can be destroyed, terrain can be crossable or not, and so on.
However, all of these game objects have some common properties: they all have a position
in the game and they all can be drawn on a surface (which could be a screen, memory, and
so on). We can represent a base class that provides these functionalities as follows:

class GameUnit
{
 public Position Position { get; protected set; }

 public GameUnit(Position position)
 {
 Position = position;
 }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Inheritance 153

 public void Draw(Surface surface)
 {
 surface.DrawAt(GetImage(), Position);
 }

 protected virtual char GetImage() { return ' '; }
}

GameUnit is a class with a property called Position; the accessor get is public, but
the accessor set is protected, which means it is only accessible from this class or its
derived classes. The Draw() public method draws the unit on a surface at the current
unit position. GetImage() is a virtual method that returns the representation on a unit
(which, in our example, is a single character). In the base class, this simply returns a space,
but in the derived classes, this will be implemented to return an actual character.

The Position and Surface classes seen here are implemented as follows:

struct Position
{
 public int X { get; private set; }
 public int Y { get; private set; }
 public Position(int x = 0, int y = 0)
 {
 X = x;
 Y = y;
 }
}

class Surface
{
 private int left;
 private int top;

 public void BeginDraw()
 {
 Console.Clear();
 left = Console.CursorLeft;
 top = Console.CursorTop;
 }

 public void DrawAt(char c, Position position)
 {
 try
 {

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

154 Object-Oriented Programming in C#

 Console.SetCursorPosition(left + position.X,
 top + position.Y);
 Console.Write(c);
 }
 catch (ArgumentOutOfRangeException e)
 {
 Console.Clear();
 Console.WriteLine(e.Message);
 }
 }
}

From the base class, we will now derive several other classes. To keep it simple, we will
focus on terrain objects for the time being:

class Terrain : GameUnit
{
 public Terrain(Position position) : base(position) { }
}

class Water : Terrain
{
 public Water(Position position) : base(position) { }

 protected override char GetImage() { return '░'; }
}

class Hill : Terrain
{
 public Hill(Position position) : base(position) { }

 protected override char GetImage() { return '≡'; }
}

We have defined here a Terrain class, derived from GameUnit, which is itself
a base class for all types of terrain. We don't have many things in this class, but in a real
application, there would be various functionalities. Water and Hill are two classes
derived from Terrain that override the GetImage() class returning a different
character to represent the terrain. We can use these as follows to build a game:

var objects = new List<v1.GameUnit>()
{
 new v1.Water(new Position(3, 2)),
 new v1.Water(new Position(4, 2)),

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Inheritance 155

 new v1.Water(new Position(5, 2)),
 new v1.Hill(new Position(3, 1)),
 new v1.Hill(new Position(5, 3)),
};

var surface = new v1.Surface();
surface.BeginDraw();

foreach (var unit in objects)
 unit.Draw(surface);

The output of this program is as shown in the following screenshot:

Figure 5.5 – The console output from the execution of the previous program

Virtual members
In the preceding example, we have seen a virtual method. This is a method that has
an implementation in a base class but can be overridden in derived classes, which is
helpful for changing implementation details. Methods are non-virtual by default. A
virtual method in a base class is declared with the virtual keyword. An overridden
implementation of a virtual method in a derived class is defined with the override
keyword, instead of the virtual keyword. The method signature of the virtual and
overridden methods must match.

Methods are not the only class members that can be virtual. The virtual keyword can
be applied to properties, indexers, and events. However, the virtual modifier cannot be
used together with static, abstract, private, or override modifiers.

A virtual member that is overridden in a derived class can be further overridden in a class
derived from the derived class. This chain of virtual inheritance continues indefinitely
unless explicitly stopped with the use of the sealed keyword, as described in a
subsequent section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

156 Object-Oriented Programming in C#

The classes shown earlier can be modified to use a virtual property, called Image in the
following code, instead of the virtual method, GetImage(). In this case, they would look
as follows:

class GameUnit
{
 public Position Position { get; protected set; }

 public GameUnit(Position position)
 {
 Position = position;
 }

 public void Draw(Surface surface)
 {
 surface.DrawAt(Image, Position);
 }

 protected virtual char Image => ' ';
}

class Terrain : GameUnit
{
 public Terrain(Position position) : base(position) { }
}

class Water : Terrain
{
 public Water(Position position) : base(position) { }

 protected override char Image => '░';
}

class Hill : Terrain
{
 public Hill(Position position) : base(position) { }

 protected override char Image => '≡';
}

There are cases when you want a method to be overridden in derived classes without
providing an implementation in the base class. Such virtual methods are called abstract
and will be discussed in the next section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Inheritance 157

Abstract classes and members
The examples we have seen so far have an inconvenience because, although the
GameUnit and Terrain classes are just some base classes without an actual
representation in the game, we can still instantiate them. This is unfortunate because we
would want to be able to only create objects of Water and Hill. Also, the GetImage()
virtual method or the Image virtual property must have an implementation in the
base class, which does not make much sense. We would actually only want to have an
implementation in classes representing physical objects. This can be achieved using
abstract classes and members.

An abstract class is declared using the abstract keyword. An abstract class cannot be
instantiated, which means we cannot create the object of an abstract class. If we try to
create an instance of an abstract class, it will result in a compile-time error. An abstract
class is supposed to be the base class for other classes that will implement the abstractions
that a class defines.

An abstract class must include at least one abstract member, which can be a method,
property, indexer, or event. Abstract members are also declared using the abstract
keyword. A non-abstract class that derives from an abstract class must implement all of
the inherited abstract members and property accessors.

We can rewrite the game unit examples using abstract classes and members. This is shown
in the following listing:

abstract class GameUnit
{
 public Position Position { get; protected set; }

 public GameUnit(Position position)
 {
 Position = position;
 }

 public void Draw(Surface surface)
 {
 surface.DrawAt(Image, Position);
 }

 protected abstract char Image { get; }
}

abstract class Terrain : GameUnit
{
 public Terrain(Position position) : base(position) { }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

158 Object-Oriented Programming in C#

}

class Water : Terrain
{
 public Water(Position position) : base(position) { }

 protected override char Image => '░';
}

class Hill : Terrain
{
 public Hill(Position position) : base(position) { }

 protected override char Image => '≡';
}

In this example, the GameUnit class is declared abstract. It has an abstract property,
Image, which no longer has an implementation. Terrain is derived from GameUnit
but because it does not override the abstract property, it is itself an abstract class and
must be declared using the abstract modifier. The Water and Hill classes are both
overriding the Image property, and do so using the override keyword.

The following are a few features of an abstract class:

• An abstract class can have both abstract and non-abstract members.

• If a class contains an abstract member, then the class must be marked abstract.

• An abstract member cannot be private.

• An abstract member cannot have an implementation.

• An abstract class must provide an implementation for all of the members of all of
the interfaces it implements (if any).

Similarly, an abstract method or property has the following characteristics:

• An abstract method is implicitly a virtual method.

• Members declared abstract cannot be static or virtual.

• The implementation in a derived class must specify the override keyword in the
declaration of the member.

So far, we have seen how classes and members can be derived and overridden. However, it
is possible to prevent this from happening. We will learn how to do so in the next section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Inheritance 159

Sealed classes and members
If we want to restrict a class from being inherited by another class, then we declare the
class as sealed. If we try to inherit a sealed class, it will result in a compile-time error.
We use the sealed keyword to create a sealed class. Refer to the following example:

sealed class Water : Terrain
{
 public Water(Position position) : base(position) { }

 protected override char Image => '░';
}

class Lake : Water // ERROR: cannot derived from sealed type
{
 public Lake(Position position) : base(position) { }
}

The Water class here is declared sealed. An attempt to use it as a base class for another
class will result in a compile-type error.

Not only can classes be declared as sealed, but overridden members can too. A class
can stop the virtual inheritance of a member by using the sealed keyword in front
of override. An attempt to override it again in a further derived class will result in
a compiler error.

In the following example, the Water class is not sealed, but its Image property is.
Attempting to override it in the Lake derived class will produce a compiler error:

class Water : Terrain
{
 public Water(Position position) : base(position) { }

 protected sealed override char Image => '░';
}

class Lake : Water
{
 public Lake(Position position) : base(position) { }

 protected sealed override char Image => '░'; // ERROR
}

Now that we have seen how to use sealed classes and members, let's see how to hide base
class members.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

160 Object-Oriented Programming in C#

Hiding base class members
In certain situations, you might want to hide an existing member of a base class with a
member with the same name in the derived class, without virtual invocation (which is the
invocation of virtual methods within the class hierarchy). This is possible by using the
new keyword in front of the return type of the member in the derived class, as shown in
the following example:

class Base
{
 public int Get() { return 42; }
}

class Derived : Base
{
 public new int Get() { return 10; }
}

A new member defined this way will be invoked when called through a reference to the
derived type. However, if the member is invoked through a reference to the base type, the
hidden base member will be called as shown here:

Derived d = new Derived();
Console.WriteLine(d.Get()); // prints 10

Base b = d;
Console.WriteLine(b.Get()); // prints 42

Unlike virtual methods, which are invoked at runtime based on the runtime type of the
object used to invoke them, hidden methods are resolved at compile-time based on the
compile-time type of the object used to invoke them.

A possible use for hiding members is shown in the following example, where we have
a hierarchy of classes that need to support a cloning method. However, each class should
return a new copy of itself and not a reference to the base class:

class Pet
{
 public string Name { get; private set; }

 public Pet(string name)
 { Name = name; }

 public Pet Clone() { return new Pet(Name); }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Inheritance 161

class Dog : Pet
{
 public string Color { get; private set; }

 public Dog(string name, string color):base(name)
 { Color = color; }

 public new Dog Clone() { return new Dog(Name, Color); }
}

With these defined, we can write the following code:

Pet pet = new Pet("Lola");
Dog dog = new Dog("Rex", "black");
Pet cpet = pet.Clone();
Dog ddog = dog.Clone();

Notice that this works only when we invoke the Clone() method from an object of that
class, and not through a reference to the base class. Because the invocation is resolved at
compile time, if you have a reference to Pet, even if the runtime type of the object is Dog,
only Pet will be cloned. This is exemplified in the following sample:

Pet another = new Dog("Dark", "white");
Dog copy = another.Clone(); // ERROR this method returns a Pet

Member hiding is, in general, considered a code smell (that is, an indication of a deeper
problem within the design and the code base) and should be avoided. The goals achieved
through member hiding can usually be reached by better means. For instance, the cloning
example shown here can be implemented by using a creational design pattern, typically
the Prototype pattern, but possibly others such as the Factory Method.

So far in this chapter, we have seen how to create classes and hierarchies of classes.
Another important concept in object-oriented programming is interfaces, which
is the topic we will discuss next.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

162 Object-Oriented Programming in C#

Interfaces
An interface contains a set of members that must be implemented by any class or struct
that implements the interface. An interface defines a contract that is supported by all of
the types that implement the interface. This also means that the clients using interfaces do
not need to know anything about the actual implementation details, which promotes loose
coupling, which helps with maintenance and testability.

Because neither multiple class inheritance nor inheritance for structures is supported in
the language, interfaces provide a means to simulate them. A type, regardless of whether
it is a reference type or a value type, can implement any number of interfaces.

Typically, an interface contains only declarations of members but not implementations.
Beginning with C# 8, interfaces can contain default methods; this is a subject that will be
covered in detail in Chapter 15, New Features of C# 8. In C#, interfaces are declared using
the interface keyword.

The following list contains important points to consider when using interfaces:

• An interface can contain only methods, properties, indexers, and events. They
cannot contain fields.

• If a type implements an interface, then it must provide an implementation for all of
the members of the interface. The method signature and return type of the method
of an interface cannot be altered by the type that is implementing the interface.

• When an interface defines properties or indexers, an implementation can provide
extra accessors for them. For instance, if a property in an interface has only the get
accessor, the implementation can also provide a set accessor.

• An interface cannot have constructors or operators.

• An interface cannot have static members.

• The interface members are implicitly defined as public. If you try to use an access
modifier with a member of an interface, it will result in a compile-time error.

• An interface can be implemented by multiple types. A type can implement
multiple interfaces.

• If a class is inheriting from another class and simultaneously implementing an
interface, then the base class name must come before the name of the interface
separated by a comma.

• Typically, an interface name starts with the letter I, such as IEnumerable,
IList<T>, and so on.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Inheritance 163

To understand how interfaces work, we will consider the example with game units.

In the previous implementations, we had a class called Surface, which was responsible
for drawing the game objects. Our implementation was printing to the console but
this could be anything—the game window, memory, a bitmap, and so on. To make it
possible to easily change between these and not tie the GameUnit class to a particular
implementation of surfaces, we can define an interface that will specify the functionalities
that any implementation must provide. This interface will then be used by the game unit
for rendering. Such an interface can be defined as follows:

interface ISurface
{
 void BeginDraw();
 void EndDraw();
 void DrawAt(char c, Position position);
}

It contains three member functions, all implicitly public. This interface will then be
implemented by the Surface class:

class Surface : ISurface
{
 private int left;
 private int top;

 public void BeginDraw()
 {
 Console.Clear();
 left = Console.CursorLeft;
 top = Console.CursorTop;
 }

 public void EndDraw()
 {
 Console.WriteLine();
 }

 public void DrawAt(char c, Position position)
 {
 try
 {
 Console.SetCursorPosition(left + position.X,
 top + position.Y);
 Console.Write(c);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

164 Object-Oriented Programming in C#

 }
 catch (ArgumentOutOfRangeException e)
 {
 Console.Clear();
 Console.WriteLine(e.Message);
 }
 }
}

The class must implement all of the members of the interface. However, it is possible to
skip that. In that case, the class must be abstract and must declare abstract members to
match the interface members that it does not implement.

In the preceding example, the Surface class implements all three methods of the
ISurface interface. The methods are explicitly declared as public. Using any other
access modifier would result in a compiler error because the members are implicitly public
in the interface and the class cannot lower their visibility. The GameUnit class
will change, so that the Draw() method will have an ISurface parameter:

abstract class GameUnit
{
 public Position Position { get; protected set; }

 public GameUnit(Position position)
 {
 Position = position;
 }

 public void Draw(ISurface surface)
 {
 surface?.DrawAt(Image, Position);
 }

 protected abstract char Image { get; }
}

Let's further extend the example and consider another interface called IMoveable
that defines a MoveTo() method that moves a game object to another position:

interface IMoveable
{
 void MoveTo(Position pos);
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Inheritance 165

This interface will be implemented by all of the game objects that can be moved, such
as people, machines, and so on. A class called ActionUnit acts as a base class for all
such objects and implements IMoveable:

abstract class ActionUnit : GameUnit, IMoveable
{
 public ActionUnit(Position position) : base(position) { }

 public void MoveTo(Position pos)
 {
 Position = pos;
 }
}

ActionUnit is also derived from GameUnit, so the base class comes before the list of
interfaces. However, since this class only acts as a base class for other classes, it does not
implement the Image property and must, therefore, be abstract. A Meeple class, shown
in the following listing, derives from ActionUnit:

class Meeple : ActionUnit
{
 public Meeple(Position position) : base(position) { }

 protected override char Image => 'M';
}

We can use instances of the Meeple class to extend the game we built in
a previous example:

var objects = new List<GameUnit>()
{
 new Water(new Position(3, 2)),
 new Water(new Position(4, 2)),
 new Water(new Position(5, 2)),
 new Hill(new Position(3, 1)),
 new Hill(new Position(5, 3)),
 new Meeple(new Position(0, 0)),
 new Meeple(new Position(4, 3)),
};

ISurface surface = new Surface();
surface.BeginDraw();

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

166 Object-Oriented Programming in C#

foreach (var unit in objects)
 unit.Draw(surface);

surface.EndDraw();

The output of this program is as follows:

Figure 5.6 – The console output from the execution of the modified game

Now that we have learned about inheritance, it is time to look at the last pillar of OOP,
which is polymorphism.

Polymorphism
The last core pillar of object-oriented programming is polymorphism. Polymorphism is a
Greek word that stands for multiple forms. This is the ability to use one entity in multiple
forms. There are two types of polymorphism:

• Compile-time polymorphism: When we have methods with the same name but
different numbers or types of parameters, which is called method overloading.

• Run-time polymorphism: This has two different aspects:

On one hand, Objects of derived classes can be seamlessly used as objects of base
classes in arrays or other types of collections, method parameters, and other places.

On the other hand, Classes can define virtual methods that can be overridden in
derived classes. At runtime, the Common Language Runtime (CLR) will invoke
the implementation of the virtual member corresponding to the runtime type of the
object. An object's declared type and its runtime type differ when objects of derived
classes are used in place of objects of base classes.

Polymorphism promotes code reuse, which can make it easier to read, test, and maintain
the code. It also promotes separation of concerns, which is an important principle in
object-oriented programming. Another benefit is that it helps to hide implementation
details because it allows interacting with different classes through a common interface.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Polymorphism 167

In the previous sections, we have seen examples of both these aspects. We have seen how
to declare virtual members and how to override them, as well as how to stop the virtual
inheritance with the sealed keyword. We have also seen examples of objects of derived
classes used in arrays of base classes. Here is, again, such an example:

var objects = new List<GameUnit>()
{
 new Water(new Position(3, 2)),
 new Hill(new Position(3, 1)),
 new Meeple(new Position(0, 0)),
};

Compile-time polymorphism is represented by method and operator overloading. We will
explore these in the following sections.

Method overloading
Method overloading allows us to declare two or more methods within the same class
with the same name but different parameters. This can be either a different number of
parameters or parameters of different types. The return type is not considered for overload
resolution. If two methods differ only in the return type, then the compiler will issue an
error. Also, the ref, in, and out parameter modifiers do not participate in overload
resolution. That means that two methods cannot differ only in a parameter modifier, such
as one method has a ref parameter and another one has the same parameter specified
with in or out modifiers. On the other hand, a method with a parameter with no
modifier can be overloaded by a method that has the same parameter specified as ref,
in, or out.

Let's look at the following example to understand method overloading. Considering the
IMoveable interface shown earlier, we can modify it so that it contains two methods
called MoveTo() with different parameters:

interface IMoveable
{
 void MoveTo(Position pos);
 void MoveTo(int x, int y);
}

abstract class ActionUnit : GameUnit, IMoveable
{
 public ActionUnit(Position position) : base(position) { }

 public void MoveTo(Position pos)

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

168 Object-Oriented Programming in C#

 {
 Position = pos;
 }

 public void MoveTo(int x, int y)
 {
 Position = new Position(x, y);
 }
}

The ActionUnit class provides implementations for both of these overloads. When
the overloaded method is called, the compiler finds the best match based on the type
and number of supplied arguments and invokes the appropriate overload. An example is
shown here:

Meeple m = new Meeple(new Position(3, 4));
m.MoveTo(new Position(1, 1));
m.MoveTo(2, 5);

The process to identify the best match for a method call is called overload resolution. There
are many rules that define how the best match is found and listing them all is beyond the
scope of this book. In very simple terms, overload resolution is performed as follows:

1. Create a set of members with the specified name.

2. Eliminate all of the members that are not accessible from the calling scope.

3. Eliminate all of the inapplicable members. An applicable member is one that has
a parameter for every argument and the argument is implicitly convertible to the
parameter's type.

4. If a member has a form with a variable number of arguments, then evaluate them
and eliminate non-applicable forms.

5. On the remaining set, apply the rules for finding the best match. A more specific
parameter is better than less specific. This means, for instance, that a derived class,
which is more specific, is better than a base class. Also, a non-generic parameter is
more specific than a generic parameter.

Similar to method overloading but with slightly different syntax and semantics is operator
overloading, which we will look at next.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Polymorphism 169

Operator overloading
Operator overloading allows us to provide user-defined functionality to an operator
with respect to a particular type. A type can provide a custom implementation for an
overloadable operator when one or both of the operands are of that type.

The following are a few important points to consider while implementing operator
overloading:

• The operator keyword is used to declare an operator. Such methods must be
public and static.

• The assignment operators cannot be overloaded.

• The parameters of an overloaded operator method should not use the ref, in,
or out modifiers.

• We cannot change the operator precedence via operator overloading.

• We cannot change the number of operands required by an operator. However,
an overloaded operator can ignore an operand.

The C# language has unary, binary, and ternary operators. However, only operators
of the first two categories can be overloaded. Let's begin by learning how binary
operators can be overloaded.

Overloading a binary operator
At least one of the arguments of a binary operator must be of type T or T?, where T is the
type that defines the operator.

Let's consider the following type for which we want to overload operators:

struct Complex
{
 public double Real { get; private set; }
 public double Imaginary { get; private set; }

 public Complex(double real = 0, double imaginary = 0)
 {
 Real = real;
 Imaginary = imaginary;
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

170 Object-Oriented Programming in C#

This is a very simple implementation for complex numbers, with just two properties for
the real and imaginary parts. We want to be able to do arithmetic operations such as
addition and subtraction, as shown here:

var c1 = new Complex(2, 3);
var c2 = new Complex(4, 5);

var c3 = c1 + c2;
var c4 = c1 - c2;

To do so, we must overload the + and - binary operators as follows (the parts of the
Complex structure shown previously are omitted for simplicity):

public struct Complex
{
 // [...] omitted members

 public static Complex operator +(Complex number1,
 Complex number2)
 {
 return new Complex()
 {
 Real = number1.Real + number2.Real,
 Imaginary = number2.Imaginary + number2.Imaginary
 };
 }

 public static Complex operator -(Complex number1,
 Complex number2)
 {
 return new Complex()
 {
 Real = number1.Real - number2.Real,
 Imaginary = number2.Imaginary - number2.Imaginary
 };
 }
}

We might also want to be able to do object comparison. In this case, we need to overload
the ==, !=, <, >, <=, or >= operators or a combination of them:

if (c3 == c2) { /* do something */}
if (c1 != c4) { /* do something else */}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Polymorphism 171

In the following listing, you can see the implementation of the == and != operators for
the Complex type:

struct Complex
{
 // [...] omitted members

 public static bool operator ==(Complex number1,
 Complex number2)
 {
 return number1.Real.Equals(number2.Real) &&
 number2.Imaginary.Equals(number2.Imaginary);
 }

 public static bool operator !=(Complex number1,
 Complex number2)
 {
 return !number1.Real.Equals(number2.Real) ||
 !number2.Imaginary.Equals(number2.Imaginary);
 }

 public override bool Equals(object obj)
 {
 return Real.Equals(((Complex)obj).Real) &&
 Imaginary.Equals(((Complex)obj).Imaginary);
 }

 public override int GetHashCode()
 {
 return Real.GetHashCode() * 17 +
 Imaginary.GetHashCode();
 }
}

When overloading the comparison operators, you must implement them in pairs, as
mentioned:

• If you overload == or !=, you must overload them both.

• If you overload < or >, you must overload them both.

• If you overload =< or >=, you must overload them both.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

172 Object-Oriented Programming in C#

Moreover, when you overload == and !=, you also need to override the System.
Object virtual methods, Equals() and GetHashCode().

Overloading a unary operator
The single argument of a unary operator must be either T or T? where T is the type that
defines the operator.

We will exemplify again using the Complex type and the increment and decrement
operators. These can be implemented as follows:

struct Complex
{
 // [...] omitted members

 public static Complex operator ++(Complex number)
 {
 return new Complex(number.Real + 1, number.Imaginary);
 }

 public static Complex operator --(Complex number)
 {
 return new Complex(number.Real - 1, number.Imaginary);
 }
}

In this implementation, the increment (++) operator and the decrement (--) operator
alter only the real part of a complex number and return a new complex number. We can
then write the following code to show how these operators can be used:

var c = new Complex(5, 7);
Console.WriteLine(c); // 5i + 7

c++;
Console.WriteLine(c); // 6i + 7

++c;
Console.WriteLine(c); // 7i + 7

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Polymorphism 173

It is important to note that when calling the increment or decrement operators, the
operated object is assigned a new value. For reference types, that means a reference to
a new object is assigned. As a result, the increment and decrement operators should not
modify the original object and return a reference to it. Let's understand the reason by
implementing the Complex type as a class:

public class Complex
{
 // [...] omitted members

 public static Complex operator ++(Complex number)
 {
 // WRONG implementation
 number.Real++;
 return number;
 }
}

This implementation is wrong because it will affect all of the references to the modified
object. Consider the following example:

var c1 = new Complex(5, 7);
var c2 = c1;
Console.WriteLine(c1); // 5i + 7
Console.WriteLine(c2); // 5i + 7

c1++;
Console.WriteLine(c1); // 6i + 7
Console.WriteLine(c2); // 6i + 7

Initially, c1 and c2 are equal. We then increment the value of c1 and because of the
implementation of the ++ operator in the Complex class, both c1 and c2 will have the
same value. The correct implementation is as follows:

class Complex
{
 // [...] omitted members

 public static Complex operator ++(Complex number)
 {
 return new Complex(number.Real + 1, number.Imaginary);
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

174 Object-Oriented Programming in C#

Although this is not a problem with value types, you should get into the habit of returning
a new object from unary operators.

SOLID principles
The principles we discussed in this chapter—abstraction, encapsulation, inheritance, and
polymorphism– are the pillars of object-oriented programming. However, these are not
the only principles that developers employ when doing object-oriented programming.
There are many other principles but some that are worth mentioning at this point are the
five known by the acronym SOLID. These were initially introduced by Robert C. Martin
in 2000, in a paper called Design Principles and Design Patterns. The term SOLID was later
coined by Michael Feathers:

• S stands for the Single responsibility principle that states that a module or a class
should have a single responsibility, where responsibility is defined as a reason to
change. When a class provides functionalities that may change at different times
and for different reasons, it means those functionalities do not belong together and
should be separated into different classes.

• O stands for the Open-close principle that states that a module, class, or function
should be opened for extensions but closed for modifications. That is, when
functionalities need to change, those changes should not affect the existing
implementation. Inheritance is the typical way to achieve this, as derived classes can
either add more functionalities or specialize existing ones. Extension methods is
another technique available in C#.

• L stands for the Liskov substitution principle that states that if S is a sub-type
of T, then objects of T may be substituted with objects of S without disrupting
the functionality of the program. This principle is named after Barbara Liskov, who
first introduced it. To understand the principle, let's consider a system that handles
shapes. We may have an ellipse class with methods to change its two foci.
When implementing a circle, we might be tempted to specialize the ellipse class
because, mathematically, the circle is a special ellipse with the two foci being equal.
In this case, the circle has to set the two foci to the same value in both these two
methods. That is something a client of these classes does not expect and therefore
an ellipse may not be substituted for a circle. To avoid violating the principle, we
would have to implement the circle without deriving from the ellipse. To make sure
you follow this principle, you should define preconditions and post-conditions for
all methods. The preconditions must hold true before the method is executed and
post-conditions must hold true after its execution. When specializing a method,
you can only replace its preconditions with weaker ones and post-conditions with
stronger ones.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 175

• I stands for the Interface segregation principle and says that smaller, specific
interfaces are to be preferred to larger and more general ones. The reason for this
is that a client may only need to implement those functionalities that it needs and
nothing more. By separating responsibilities, this principle facilitates composition
and decoupling.

• D stands for the Dependency inversion principle and is the last in the list.
This principle states that software entities should depend on abstractions and not
on implementations. High-level modules should not depend on low-level modules;
instead, they should both depend on abstractions. Moreover, abstractions should
not depend on concrete implementations but the other way around. Dependency
on implementations introduces tight coupling, making it hard to replace
components. However, dependency on high-level abstractions decouples modules
and facilitates flexibility and reusability.

These five principles enable us to write code that is simpler and more understandable,
which also makes it easier to maintain. At the same time, they make code more reusable
and also easier to test.

Summary
In this chapter, we learned about the core concepts of object-oriented programming:
abstraction, encapsulation, inheritance, and polymorphism. We learned about the
language functionalities that enable them, such as inheritance, virtual members, abstract
types and members, sealed types and members, interfaces, and method and operator
overloading. At the end of this chapter, we briefly discussed other object-oriented
principles known as SOLID.

In the next chapter, we will learn about another programming paradigm in
C#—generic programming.

Test what you learned
1. What is object-oriented programming and what are its core principles?

2. What are the benefits of encapsulation?

3. What is inheritance and what types of inheritance are supported in C#?

4. What are virtual methods? What about overridden methods?

5. How do you prevent a virtual member from being overridden in a derived class?

6. What are abstract classes and what are their features?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

176 Object-Oriented Programming in C#

7. What is an interface and what kinds of members can it contain?

8. What types of polymorphism exist?

9. What is an overloaded method? How do you overload operators?

10. What are the SOLID principles?

Further Reading
• Design Principles and Design Patterns by Robert C. Martin:

https://web.archive.org/web/20150906155800/http://www.
objectmentor.com/resources/articles/Principles_and_
Patterns.pdf

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

6
Generics

In the previous chapter, we learned about OOP in C#. In this chapter, we will explore the
concept of generics. Generics allow us to create classes, structures, interfaces, methods,
and delegates in such a manner that they will work in a type-safe environment with
different data types. Generics were added as a part of the C# 2.0 release. It promotes
code reusability and extensibility and is one of the most powerful features of C#.

We will learn about the following concepts in this chapter:

• Generic classes and generic inheritance

• Generic interfaces and variant generic interfaces

• Generic structures

• Generic methods

• Type constraints

By the end of this chapter, you will have gained the skills necessary to write generic
types, methods, and variant generic interfaces and to use type constraints.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

178 Generics

Understanding generics
Simply put, generics are types parametrized with other types. As we mentioned before, we
can create a class, structure, interface, method, or delegate that accepts one or more data
types they use as parameters. These parameters are known as type parameters and act as
placeholders for the actual data types that are passed during compile time.

For example, we can create a class that models a list, which is a variable-length sequence
of elements of the same type. Instead of having a different class that works with integers,
doubles, strings, or any other user-defined types we might need, we can create a generic
class that has a type parameter specifying the actual type of its elements. We will then
specify the actual type at compile time when we instantiate the class.

Advantages of using generics include the following:

• Generics provide reusability: We can create a single version of the code and reuse
it for different data types.

• Generics promote type safety: While using generics, we do not need to perform
explicit typecasting. The typecasting is taken care of by the compiler.

• Generics provide better performance: They can avoid the need for boxing
and unboxing in the case of value types. Even casting from the object type to
a reference type is time-consuming. Therefore, by avoiding these operations, they
help to improve the execution time.

Generic types and methods can be constrained so that only the types that meet
requirements can be used as type parameters. Information about the actual types is used
to instantiate a generic type that can be obtained at runtime using reflection.

The most common use of generics is to create collection or wrapper classes. Collections
will be the subject of the next chapter.

Generic types
Both reference types and value types can be generic. We have already seen examples
of generic types earlier in this book, such as Nullable<T> and List<T>.

In this section, we will learn how to create generic classes, structures, and interfaces.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generic types 179

Generic classes
The creation of generic classes is no different than non-generic classes. The only thing
that differs is a list of type parameters and their use in the class as a placeholder for actual
types. Let's look at an example of a generic class:

public class GenericDemo<T>
{
 public T Value { get; private set; }

 public GenericDemo(T value)
 {
 Value = value;
 }

 public override string ToString() => $"{typeof(T)} :
{Value}";
}

Here, we have defined a generic class, GenericDemo, that is accepting one type
parameter, T. We have defined a property called Value of the T type and initialized it
inside the class constructor. The constructor is accepting an argument of the T type. The
overridden method, ToString(), will return a string containing the type and value of
the property.

To instantiate objects of this generic class, we will proceed as follows:

var obj1 = new GenericDemo<int>(10);
var obj2 = new GenericDemo<string>("Hello World");

In this example, we are specifying the data type for the type parameter while creating the
object of the generic class, GenericDemo<T>. Both obj1 and obj2 are instances of the
same generic type, but their type parameter differs: one is int and the other is string.
Therefore, they are not type-compatible with each other. This means if we try to assign
one object to another, it will result in a compile-time error.

We can get information about the type of these objects and their generic type parameters
using reflection (which we will look at in Chapter 11, Reflection and Dynamic
Programming), as shown in the following sample:

var t1 = obj1.GetType();
Console.WriteLine(t1.Name);
Console.WriteLine(t1.GetGenericArguments()
 .FirstOrDefault().Name);
var t2 = obj2.GetType();

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

180 Generics

Console.WriteLine(t2.Name);
Console.WriteLine(t2.GetGenericArguments()
 .FirstOrDefault().Name);

Console.WriteLine(obj1);
Console.WriteLine(obj2);

Upon execution, we will see the output shown here:

Figure 6.1 – Screenshot of the console showing the reflected content of a type

We can declare more than one type parameter for a generic type. In this case, we need to
specify all of the type parameters as a comma-separated value inside the angle brackets.
The following shows an example:

class Pair<T, U>
{
 public T Item1 { get; private set; }
 public U Item2 { get; private set; }

 public Pair(T item1, U item2)
 {
 Item1 = item1;
 Item2 = item2;
 }
}

var p1 = new Pair<int, int>(1, 2);
var p2 = new Pair<int, double>(1, 42.99);
var p3 = new Pair<string, bool>("true", true);

Here, Pair<T, U> is a class that requires two type parameters. We are instantiating
objects p1, p2, and p3 using different combinations of types.

This class is actually very similar to the .NET class KeyValueType<TKey, TValue>,
from the System.Collections.Generic namespace. In fact, there are many generic
classes that the framework is providing. You should use existing types when available,
rather than defining your own.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generic types 181

Inheritance with generic classes
A generic class can behave either as a base class or a derived class. When deriving from
a generic class, the child class must specify the type parameters that are required by the
base class. These type parameters can be actual types or type parameters from the derived
class, which is also a generic class.

Let's understand how the inheritance of generic classes works with the example
shown here:

public abstract class Shape<T>
{
 public abstract T Area { get; }
}

We have defined a generic abstract class, Shape, that contains a single and abstract
property called Area that represents the area of a shape. The type of this property is also
T. Consider the class definition here:

public class Square : Shape<int>
{
 public int Length { get; set; }

 public Square(int length)
 {
 Length = length;
 }

 public override int Area => Length * Length;
}

Here, we have defined a class called Square, which is inheriting from the generic abstract
class Shape. We are using the int type for the type parameter. We have defined
a property called Length for the Square class and initialized it in the constructor.
We are overriding the Area property to calculate the area of the square. Now, consider
another class definition shown here:

public class Circle : Shape<double>
{
 public double Radius { get; set; }

 public Circle(double radius)
 {
 Radius = radius;
 }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

182 Generics

 public override double Area => Math.PI * Radius * Radius;
}

The Circle class is also inheriting from the generic abstract class Shape<T>. The type
parameter for the parent class Shape is now specified as double. The Radius property
is defined to store the radius of the circle. We are again overriding the Area property to
calculate the area of a circle. We can use these derived classes as follows:

Square objSquare = new Square(10);
Console.WriteLine($"The area of square is {objSquare.Area}");

Circle objCircle = new Circle(7.5);
Console.WriteLine($"The area of circle is {objCircle.Area}");

We are creating instances of Square and Circle and printing to the console the area
of each shape. Upon execution, we will see the output shown here:

Figure 6.2 – The areas of the square and circle displayed to the console

It is important to note that although both Square and Circle derive from Shape<T>,
these types cannot be treated polymorphically. One is Shape<int> and the other
Shape<double>. Therefore, instances of Square and Circle cannot be put in a
homogeneous container. The only possible solution is to use the object type to hold
references to such instances and then perform type casts.

In this example, Shape<T> is a generic type. Shape<int> is a type that is constructed
from Shape<T> by replacing the type parameter T with int. Such a type is called a
constructed type. This is also a closed constructed type because all of the type parameters
have been substituted. Non-generic types are all closed types. Generic types are open types.
Constructed generic types can be open or closed. An open constructed type is one that
has a type parameter that has not been substituted. A closed constructed type is any type
that is not open.

Another important thing to remember when creating generic types is that some operators,
such as arithmetic operators, cannot be used with objects of type parameters. Let's look at
the following code to exemplify this case:

public class Square<T> : Shape<T>
{
 public T Length { get; set; }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generic types 183

 public Square(T length)
 {
 Length = length;
 }

 /* ERROR: Operator '*' cannot be applied to operands
 of type 'T' and 'T' */
 public override T Area => Length * Length;
}

The Square type is now a generic type. The type parameter T is used for the type
parameter of the base class as well as the Length property. However, when computing
the area, the use of the * operator generates a compiler error. That is because the compiler
does not know what concrete types will be used for T and whether they have the *
operator overloaded. To make sure that, under no circumstances, invalid instantiation
may occur, the compiler generates an error.

It is possible to ensure that only types matching some pre-defined constraints are used at
compile time to instantiate generic types or call generic methods. These are called type
constraints and will be discussed later in this chapter in the Type parameter constraints
section.

Now that we've seen how to create and use generic classes, let's see how to do the same
with generic interfaces.

Generic interfaces
In the previous examples, the generic class Shape<T> does not contain anything other
than an abstract property. This is not a good candidate for a class and it should rather
be an interface. Generic interfaces differ from non-generic interfaces in the same way as
generic classes differ from non-generic classes. The following is an example of a generic
interface:

public interface IShape<T>
{
 public T Area { get; }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

184 Generics

The type parameters are specified in the same manner as they are for classes or structures.
This interface can be implemented as follows:

public class Square : IShape<int>
{
 public int Length { get; set; }

 public Square(int length)
 {
 Length = length;
 }

 public int Area => Length * Length;
}

public class Circle : IShape<double>
{
 public double Radius { get; set; }

 public Circle(double radius)
 {
 Radius = radius;
 }

 public double Area => Math.PI * Radius * Radius;
}

The implementation of the Square and Circle classes is only slightly different from the
one seen in the previous section.

Concrete classes, such as Square and Circle here, can implement closed constructed
interfaces, such as IShape<int> or IShape<double>. Generic classes can also
implement a generic or closed constructed interface if the class parameter list supplies all
of the type parameters required by the interface. On the other hand, generic interfaces can
inherit from non-generic interfaces; however, the generic class must be contravariant.

The variance of generic interfaces will be discussed in the next section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generic types 185

Variant generic interfaces
It is possible to declare type parameters in generic interfaces as covariant or contravariant:

• A covariant type parameter is declared with the out keyword and allows an
interface method to have a return type that is more derived than the specified type
parameter.

• A contravariant type parameter is declared with the in keyword and allows an
interface method to have a parameter that is less derived than the specified type
parameter.

A generic interface that has covariant or contravariant type parameters is called a variant
generic interface. Variance is only supported with reference types.

To understand how covariance works, let's look at the System.IEnumerable<T>
generic interface. This is a variant interface because its type parameter is declared
covariant. The interface is defined as follows:

public interface IEnumerable
{
 IEnumerator GetEnumerator();
}

public interface IEnumerable<out T> : IEnumerable
{
 IEnumerator<T> GetEnumerator();
}

A class that implements IEnumerable<T> (and other interfaces) is List<T>. Because
T is covariant, we can write the following code:

IEnumerable<string> names =
 new List<string> { "Marius", "Ankit", "Raffaele" };
IEnumerable<object> objects = names;

In this example, names is an IEnumerable<string> and objects is an
IEnumerable<object>. The former does not derive from the latter, but string is
derived from object, and because T is covariant, we can assign names to objects.
However, this is only possible while using variant interfaces.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

186 Generics

Classes that implement variant interfaces are not variant themselves but invariant. That
means the following example, where we substitute List<T> for IEnumerable<T>,
will produce a compiler error because List<string> cannot be assigned to
List<object>:

IEnumerable<string> names =
 new List<string> { "Marius", "Ankit", "Raffaele" };
List<object> objects = names; // error

As mentioned earlier, variance is not supported for value types. IEnumerable<int>
cannot be assigned to IEnumerable<object>:

IEnumerable<int> numbers = new List<int> { 1, 1, 2, 3, 5, 8 };
IEnumerable<object> objects = numbers; // error

In summary, a covariant type parameter in an interface must:

• Be prefixed with the out keyword

• Be only used as the return type for methods and not as a type for method parameters

• Not be used as a generic constraint for interface methods

Contravariance is the other form of variance that deals with arguments passed to interface
methods. To understand how it works, let's consider a situation where we want to compare
the size of various shapes, defined as follows:

public interface IShape
{
 public double Area { get; }
}

public class Square : IShape
{
 public double Length { get; set; }

 public Square(int length)
 {
 Length = length;
 }

 public double Area => Length * Length;
}

public class Circle : IShape

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generic types 187

{
 public double Radius { get; set; }

 public Circle(double radius)
 {
 Radius = radius;
 }

 public double Area => Math.PI * Radius * Radius;
}

These are only slightly different from the types used previously because IShape is no
longer generic to keep the example simple. What we want here is to be able to compare
shapes. For this purpose, a series of classes are provided as follows:

public class ShapeComparer : IComparer<IShape>
{
 public int Compare(IShape x, IShape y)
 {
 if (x is null) return y is null ? 0 : -1;
 if (y is null) return 1;
 return x.Area.CompareTo(y.Area);
 }
}

public class SquareComparer : IComparer<Square>
{
 public int Compare(Square x, Square y)
 {
 if (x is null) return y is null ? 0 : -1;
 if (y is null) return 1;
 return x.Length.CompareTo(y.Length);
 }
}

public class CircleComparer : IComparer<Circle>
{
 public int Compare(Circle x, Circle y)
 {
 if (x is null) return y is null ? 0 : -1;
 if (y is null) return 1;
 return x.Radius.CompareTo(y.Radius);
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

188 Generics

Here, ShapeComparer compares IShape objects by their area, SquareComparer
compares squares by their length, and CircleComparer compares circles by their
radius. All of these classes implement the IComparer<T> interface from the System.
Collections.Generic namespace. This interface is defined as follows:

public interface IComparer<in T>
{
 int Compare(T x, T y);
}

This interface has a single method called Compare(), which takes two objects of the T
type and returns one of the following:

• A negative number if the first is smaller than the second

• 0, if they are equal

• A positive number if the first is greater than the second

However, the key to its definition is the in keyword with the type parameter that makes
it contravariant. Because of this, it is possible to pass IShape references where Square
or Circle are expected. That means we can safely pass IComparer<IShape> where
IComparer<Square> is required. Let's see a concrete example of that.

The following class contains a single method that checks whether a Square object
is bigger than another. The IsBigger() method also takes a reference to an object
implementing IComparer<Square>:

public class SquareComparison
{
 public static bool IsBigger(Square a, Square b,
 IComparer<Square> comparer)
 {
 return comparer.Compare(a, b) >= 0;
 }
}

We could call this method passing both SquareComparer or ShapeComparer, and
the result would be the same:

Square sqr1 = new Square(4);
Square sqr2 = new Square(5);

SquareComparison.IsBigger(sqr1, sqr2, new SquareComparer());
SquareComparison.IsBigger(sqr1, sqr2, new ShapeComparer());

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generic types 189

Had the IComparer<T> interface been invariant, passing ShapeComparer would
result in a compiler error. A compiler error is also issued, with the implementation shown
here, if we try to pass CircleComparer because Circle is not a lesser derived class
than Square; it is actually a sibling in the inheritance hierarchy.

In summary, a contravariant type parameter in an interface:

• Must be prefixed with the in keyword

• Must be used only for method parameters and not as a return type

• Can be used as a generic constraint for interface methods

It is possible to define an interface that is both covariant and contravariant as shown here:

interface IMultiVariant<out T, in U>
{
 T Make();
 void Take(U arg);
}

The IMultiVariant<T, U> interface shown in the preceding snippet is covariant with
respect to T and contravariant with respect to U.

Generic structures
Similar to generic classes, we can also create generic structures. The syntax for a generic
structure is the same as that of a generic class. The Circle and Square types used in the
previous example are small and can be defined as structures instead of classes:

public struct Square : IShape<int>
{
 public int Length { get; set; }

 public Square(int length)
 {
 Length = length;
 }

 public int Area => Length * Length;
}

public struct Circle : IShape<double>
{
 public double Radius { get; set; }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

190 Generics

 public Circle(double radius)
 {
 Radius = radius;
 }

 public double Area => Math.PI * Radius * Radius;
}

All of the rules that apply to generic classes also apply to generic structures. Because value
types do not support inheritance, structures cannot derive from other generic types but
can implement any number of generic or non-generic interfaces.

Generic methods
C# allows us to create generic methods that accept one or more generic type parameters.
We can create a generic method inside a generic class as well as a non-generic class. Both
static and non-static methods can be generic. The rules for type inference are the same
for all. The type parameters must be declared after the method name and just before the
parameter list, within angle brackets, just like we did for types.

Let's understand how to use generic methods with the help of the example shown here:

class CompareObjects
{
 public bool Compare<T>(T input1, T input2)
 {
 return input1.Equals(input2);
 }
}

The non-generic class CompareObjects contains a generic method, Compare, which
is used to compare two objects. This method is accepting two parameters—input1 and
input2. We are using the Equals() method from the System.Object base class to
compare the input parameters. The method will return a Boolean based on whether the
inputs are equal or not. Consider the code shown here:

CompareObjects comps = new CompareObjects();
Console.WriteLine(comp.Compare<int>(10, 10));
Console.WriteLine(comp.Compare<double>(10.5, 10.8));
Console.WriteLine(comp.Compare<string>("a", "a"));
Console.WriteLine(comp.Compare<string>("a", "b"));

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Type parameter constraints 191

We are creating an object of the CompareObjects class and invoking the Compare()
method for various data types. In this example, the type argument is explicitly specified.
However, the compiler is able to infer that from the arguments; therefore, it can be
skipped, as shown here:

CompareObjects comp = new CompareObjects();
Console.WriteLine(comp.Compare(10, 10));
Console.WriteLine(comp.Compare(10.5, 10.8));
Console.WriteLine(comp.Compare("a", "a"));
Console.WriteLine(comp.Compare("a", "b"));

If a generic method has a type parameter that is the same as a type parameter of the
class, structure, or interface where it is defined, the compiler issues a warning because
the method type parameter hides the type parameter of the outer type, as shown in the
following code:

class ConflictingGenerics<T>
{
 public void DoSomething<T>(T arg) // warning
 {
 }
}

Generic methods, as well as generic types, support type parameter constraints to impose
restrictions on types. This topic will be discussed in the next section of this chapter.

Type parameter constraints
The type parameters in a generic type or method can be replaced by any valid type.
However, there are scenarios when we want to restrict the types that can be used for a type
parameter. Take, for instance, the generic Shape<T> class or the IShape<T> interface
we saw earlier.

The type parameter T was used for the type of the Area property. We would expect that to
be either an integral type or a floating-point type. But there is no restriction and someone
could use bool, string, or any other type. Of course, depending on the way the type
parameter is used, that could lead to various compiler errors. However, it is useful to be
able to restrict the types used to instantiate generic types or call generic methods.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

192 Generics

For this purpose, we can apply constraints to the type parameters. The constraints are
used to inform the compiler about what kind of capabilities the type parameter must have.
If we do not specify a constraint, then the type parameter can be replaced by any type.
Applying a constraint will limit the types that can be used as a type parameter.

Constraints are specified using the keyword where. C# defines the following eight types
of constraints on generics:

A constraint should be specified after the type parameters. We can use more than
one constraint by separating them with a comma. There are some rules for using
these constraints:

• The struct constraint implies the new() constraint and therefore all value
types must have a public parameterless constructor. These two constraints, struct
and new(), cannot be used together.

• The unmanaged constraint implies the struct constraint; therefore, these two
cannot be used together. It also cannot be used with the new() constraint.

• When using more than one constraint, the new() constraint must be mentioned
last in the list of constraints.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Type parameter constraints 193

• The notnull constraint is available as of C# 8 and must be used in a nullable
context, otherwise, the compiler generates a warning. When the constraint is
violated, the compiler does not generate an error but a warning.

• As of C# 7.3, System.Enum, System.Delegate, and System.
MulticastDelegate can be used as base class constraints.

Type parameters that do not have constraints are called unbounded. There are several rules
for unbounded type parameters:

• You cannot use the!= and == operators with these types since it is not possible to
know whether the concrete type overloads them.

• They can be compared to null. For value types, this comparison will always yield
false.

• They can be converted to and from System.Object.

• They can be converted to and from any interface type.

To understand how constraints work, let's start with the following example of
a generic structure:

struct Point<T>
{
 public T X { get; }
 public T Y { get; }

 public Point(T x, T y)
 {
 X = x;
 Y = y;
 }
}

Point<T> is a structure that represents a point in the two-dimensional space. This class
is generic because we might want to use integral values for the point coordinates or real
values (floating-point values). However, we can instantiate the class using any types, such
as bool, string, or Circle, as shown in the following example:

Point<int> p1 = new Point<int>(3, 4);
Point<double> p2 = new Point<double>(3.12, 4.55);
Point<bool> p3 = new Point<bool>(true, false);
Point<string> p4 = new Point<string>("alpha", "beta");

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

194 Generics

To restrict the instantiation of Point<T> to numerical types (that is integral and floating-
point types), we can write constraints for the type parameter T, as shown here:

struct Point<T>
 where T : struct,
 IComparable, IComparable<T>,
 IConvertible,
 IEquatable<T>,
 IFormattable
{
 public T X { get; }
 public T Y { get; }

 public Point(T x, T y)
 {
 X = x;
 Y = y;
 }
}

We have used two types of constraints: the struct constraint and the interface
constraint, and they are listed separated by a comma. Unfortunately, there is no constraint
to define a type as numeric but these constraints are the best combination to represent
one because all numerical types are value types and they all implement the five interfaces
listed here. The bool type implements the first four but not IFormattable. Therefore,
instantiating Point<T> with bool or string will now produce compiler errors.

A type or method can have more than one type parameter and each of them can have
their own constraints. We can see this in the following example:

class RestrictedDictionary<TKey, TValue> : Dictionary<TKey,
List<TValue>>
 where TKey : System.Enum
 where TValue : class, new()
{
 public T Make<T>(TKey key) where T : TValue, new()
 {
 var value = new T();
 if (!TryGetValue(key, out List<TValue> list))
 Add(key, new List<TValue>() { value });
 else
 list.Add(value);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Type parameter constraints 195

 return value;
 }
}

The RestrictedDictionary<TKey, TValue> class is a special dictionary that
allows only enumeration types for the key type. For this, it uses the base class constraint
with System.Enum. The type of the value must be a reference type with a public default
constructor. For this, it uses the class and new() constraints. This class has a public
generic method called Make<T>().

The type parameter, T, must be either TValue or a type derived from TValue and must
also have a public default constructor. This method creates a new instance of the type, T,
adds it to the dictionary in a list associated with the specified key, and returns a reference
to the newly created object.

Let's also consider the following hierarchy of shape classes. Notice that for simplicity these
are kept to a minimum:

enum ShapeType { Sharp, Rounded };

class Shape { }
class Ellipsis : Shape { }
class Circle : Shape { }
class Rectangle : Shape { }
class Square : Shape { }

We can use the RestrictedDictionary class as shown here:

var dictionary = new RestrictedDictionary<ShapeType, Shape>();
var c = dictionary.Make<Circle>(ShapeType.Rounded);
var e = dictionary.Make<Ellipsis>(ShapeType.Rounded);
var r = dictionary.Make<Rectangle>(ShapeType.Sharp);
var s = dictionary.Make<Square>(ShapeType.Sharp);

In this example, we are adding several shapes (a circle, ellipsis, rectangle, and square) to
the restricted dictionary. The key type is ShapeType and the value type is Shape. The
Make() method takes an argument of the ShapeType type and returns a reference
to a shape object. Each type must be derived from Shape and have a public default
constructor. Otherwise, the code would produce an error.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

196 Generics

Summary
In this chapter, we learned about generics in C#. Generics allow us to create parameterized
types in C#. Generics enhance code reusability and ensure type safety. We explored
how to create generic classes and generic structs. We also implemented inheritance in
a generic class.

We learned how to implement constraints on the type parameters of a generic type or
method. Constraints allow us to limit the data types that can be used as a type parameter.
We also learned about creating generic methods and generic interfaces.

You can use generics primarily for creating collections and wrappers. In the next chapter,
we will explore the most important collections available in .NET.

Test what you learned
1. What are generics and what benefits do they provide?

2. What are type parameters?

3. How do you define a generic class? What about generic methods?

4. Can a class be derived from a generic type? What about structures?

5. What is a constructed type?

6. What is a covariant type parameter of a generic interface?

7. What is a contravariant type parameter of a generic interface?

8. What are type parameter constraints and how are they specified?

9. What does the new() type parameter constraint do?

10. What type parameter constraint was introduced in C# 8 and what does it do?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Collections

In the previous chapter, we learned about generic programming in C#. One of the most
important applications of generics is creating generic collections. A collection is a group
of objects. We learned how to use arrays in Chapter 2, Data Types and Operators. However,
arrays are sequences of a fixed size and in most cases, we need to work with sequences of
variable size.

The .NET frameworks provide generic classes that represent various types of collections,
such as list, queue, set, map, and others. Using these classes, we can easily perform
operations such as insert, update, delete, sort, and search on a collection of objects.

You will learn about the following generic collections in this chapter:

• The List<T> collection

• The Stack<T> collection

• The Queue<T> collection

• The LinkedList<T> collection

• The Dictionary<TKey, TValue> collection

• The HashSet<T> collection

By the end of this chapter, you will have a good understanding of the most important
collections in .NET, what data structures they model, what the differences are between
them, and when you should use them.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

198 Collections

All the collections mentioned previously are not thread-safe. This means they cannot
be used in multi-threaded scenarios when a thread might be reading while another
might be writing to the same collection, without using external synchronization
mechanisms. However, .NET also provides several thread-safe collections in the System.
Collections.Concurrent namespace that use efficient locking or lock-free
synchronization mechanisms, and, in many scenarios, provide better performance than the
generic collections with external locks. In this chapter, we will also provide a walkthrough
of these collections and learn about the scenarios when it's suitable to use them.

Let's start with an overview of the generic collection library by looking at the System.
Collections.Generic namespace, which is where all the generic collections
are located.

Introducing the System.Collections.Generic
namespace
The generic collection classes that we will present in this chapter are a part of the .NET
Base Class Library (BCL) and are all available under the System.Collections.
Generic namespace. This namespace contains interfaces and classes that define generic
collections and operations. All the generic collections implement a series of generic
interfaces, which are also defined in this namespace. These can be broadly grouped into
two categories:

• Mutable, which support operations for changing the content of the collection such
as adding new, or removing existing elements.

• Read-only collections, which do not provide methods for changing the content of
the collection.

The interfaces that represent mutable collections are as follows:

• IEnumerable<T>: This is the base interface for all the other interfaces and
exposes an enumerator that supports iterating through the elements of a collection
of T type.

• ICollection<T>: This defines methods for manipulating generic
collections—Add(), Clear(), Contains(), CopyTo(), and Remove()—as
well as properties, such as Count. These members should be self-explanatory.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing the System.Collections.Generic namespace 199

• IList<T>: This represents a generic collection whose elements can be accessed
by an index. It defines three methods: IndexOf(), which retrieves the index
of an element, Insert(), which inserts an element at the specified index, and
RemoveAt(), which removes the element at the specified index, in addition, it also
provides an indexer for direct element access for direct element access.

• ISet<T>: This is the base interface that abstracts set collections. It defines
methods such as Add(), ExceptWith(), IntersetWith(), UnionWith(),
IsSubsetOf(), and IsSupersetOf().

• IDictionary<TKey, TValue>: This is the base interface that abstracts a
collection of key-value pairs. It defines the Add(), ContainsKey(), Remove(),
and TryGetValue() methods, as well as an indexer and the Keys and Values
properties, which return the collection of keys and values, respectively.

The relationship between these interfaces is shown in the following diagram:

Figure 7.1 – The hierarchy of generic collection interfaces in the System.Collections.Generic namespace.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

200 Collections

The interfaces that represent read-only collections are as follows:

• IReadOnlyCollection<T>: This represents a read-only generic collection of
elements. It only defines one member: the Count property.

• IReadOnlyList<T>: This represents a read-only generic collection of elements
that can be accessed by an index. It only defines one member: a read-only indexer.

• IReadOnlyDictionary<TKey, TValue>: This represents a read-only generic
collection of key-value pairs. This interface defines the ContainsKey() and
TryGetValue() methods, as well as the Keys and Values properties and a
read-only indexer.

Again, the relationship of these interfaces is shown in the following diagram:

Figure 7.2 – The hierarchy of interfaces for read-only generic collections.

Each generic collection implements several of these interfaces. For instance,
List<T> implements IList<T>, ICollection<T>, IEnumerable<T>,
IReadOnlyCollection<T>, and IReadOnlyList<T>. The following diagram
shows all the interfaces being implemented by the generic collections that we will learn
about in this chapter:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing the System.Collections.Generic namespace 201

Figure 7.3 – A class diagram showing the most important generic collections
and the interfaces they implement.

The inheritance hierarchy shown in these diagrams is actually a simplification of the
actual one. All the generic collections have a non-generic equivalent. For instance,
IEnumerable<T> is the generic equivalent of IEnumerable, ICollection<T> is
the generic equivalent of ICollection, IList<T> is the generic equivalent of Ilist,
and so on. These are legacy interfaces that are implemented by legacy collections such
as ArrayList, Queue, Stack, DictionaryBase, Hashtable, and so on, all of
which are available in the System.Collections namespace. These non-generic legacy
collections are not strongly typed. Using generic collections is preferred for
several reasons:

• They offer the benefit of type safety. There is no need to derive from a base
collection and implement type-specific members.

• They have better performance for value types because there is no boxing and
unboxing of elements, a process that is necessary with a non-generic collection.

• Some of the generic collections provide functionalities that are not available in
the non-generic ones, such as methods that accept delegates that can be used for
searching or performing an action of each element.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

202 Collections

When you need to pass collections as arguments to functions or return collections from
functions, you should avoid using concrete implementations and prefer using interfaces.
IEnumerable<T> is suitable when you only want to iterate through the elements, but if
you need to do that multiple times, you could use IReadOnlyCollection<T>. Read-
only collections should be preferred in two cases:

• When a method does not modify the collection passed as an argument

• When you return a collection if the collection is already in memory and the caller is
not supposed to modify it

Ultimately, the most suitable interface varies from case to case.

In the following sections, we will introduce each of the most widely used type-safe generic
collections. The non-generic collections are of little interest outside legacy code.

The List<T> collection
The List<T> generic class represents a collection of elements that can be accessed by
their index. List<T> is very similar to arrays, except that the size of the collection is not
fixed but variable, and it can grow or decrease as elements are added or removed. In fact,
the implementation of List<T> uses an array to store the elements. When the number
of elements exceeds the size of the array, a new and larger array is allocated, and the
content of the previous array is copied to the new one. This means that List<T> stores
the elements in contiguous memory locations. However, for value types, these locations
contain the values, but for reference types, they contain references to the actual objects.
Multiple references to the same object can be added to a list.

The List<T> class implements a series of generic and non-generic interfaces, as shown
in the following declaration of the class:

public class List<T> : ICollection<T>, ICollection
 IEnumerable<T>, IEnumerable,
 IList<T>, IList,
 IReadOnlyCollection<T>, IReadOnlyList<T>
{}

A list can be created in several ways:

• Using the default constructor, which results in an empty list with a default capacity.

• By specifying a particular capacity but no initial elements, which again leaves the
list empty.

• From a collection of elements.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The List<T> collection 203

In the following example, numbers is an empty list of integers and words is an empty list
of strings:

var numbers = new List<int>();
var words = new List<string>();

On the other hand, the following sample initializes the list with some elements. The first
list will contain six integers and the second list will contain two strings:

var numbers = new List<int> { 1, 2, 3, 5, 7, 11 };
var words = new List<string> { "one", "two" };

This class supports all the typical operations that you would expect from such a
collection—adding, removing, and searching elements. There are several ways to add
elements to the list:

• Add() adds an element to the end of the list.

• AddRange() adds a collection of elements (in the form of an IEnumerable<T>)
to the end of the list.

• Insert() inserts an element at the specified position. The position
must be a valid index, within the bounds of the list; otherwise, an
ArgumentOutOfRangeException exception is thrown.

• InsertRange()inserts a range of elements (in the form of an
IEnumerable<T>) at the specified index, which must be within the bounds
of the list.

All these operations may require the reallocation of the internal array that stores elements
if its capacity is exceeded. Add() is an O(1) operation if no allocation is needed and O(n)
when allocation is necessary.

AddRange() is O(n) if no allocation is necessary and O(n+k) if allocations are needed.
Insert() is always an O(n) operation, and InsertRange() is O(n) if no allocation
is needed and O(n+k) if an allocation is necessary. In this notation, n is the number of
elements in the list and k is the number of elements to add. We can see an example of
these operations in the following sample:

var numbers = new List<int> {1, 2, 3}; // 1 2 3
numbers.Add(5); // 1 2 3 5
numbers.AddRange(new int[] { 7, 11 }); // 1 2 3 5 7 11
numbers.Insert(5, 1); // 1 2 3 5 7 1 11

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

204 Collections

numbers.Insert(5, 1); // 1 2 3 5 7 1 1 11
numbers.InsertRange(// 1 13 17 19 2 3 5..
 1, new int[] {13, 17, 19}); // ..7 1 1 11

Removing the elements is also possible in several ways using different methods:

• Remove() removes the specified element from the list.

• RemoveAt() removes the element at the specified index, which must be within the
bounds of the list.

• RemoveRange() removes the specified number of elements, starting with the
given index.

• RemoveAll() removes all the elements in the list that meet the requirements of
the supplied predicate.

• Clear() removes all the elements in the list.

All these operations are performed in O(n), where n is the number of elements in the
list. The exception is RemoveAt(), where n is Count - index. The reason for this is
that the elements must be moved within the internal array after one has been removed.
Examples of using these functions are shown in the following snippet:

numbers.Remove(1); // 13 17 19 2 3 5 7 1
 // 1 11
numbers.RemoveRange(2, 3); // 13 17 5 7 1 1 11
numbers.RemoveAll(e => e < 10); // 13 17 11
numbers.RemoveAt(1); // 13 11
numbers.Clear(); // empty

It is possible to search for elements in the list by specifying a predicate.

Information box
A predicate is a delegate that returns a bool. They are typically used when you
filter elements, such as when you search through a collection.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The List<T> collection 205

There are several methods that can be used to search elements:

• Find() returns the first element that matches the predicate or the default value of
T if none is found.

• FindLast() returns the last element that matches the predicate or the default
value of T if none is found.

• FindAll() returns a List<T> with all the elements that match the predicate or
an empty list if none is found.

All these methods are performed in O(n), as shown in the following code snippet:

var numbers = new List<int> { 1, 2, 3, 5, 7, 11 };

var a = numbers.Find(e => e < 10); // 1
var b = numbers.FindLast(e => e < 10); // 7
var c = numbers.FindAll(e => e < 10); // 1 2 3 5 7

It is possible to search for the zero-based index of an element as well. There are several
methods that allow us to do that:

• IndexOf() returns the index of the first element that is equal to the
supplied argument.

• LastIndexOf() returns the last index of the searched element.

• FindIndex() returns the index of the first element that satisfies the
supplied predicate.

• FindLastIndex() returns the index of the last element that satisfies the
supplied predicate.

• BinarySearch() returns the index of the first element that satisfies the supplied
element or a comparer using binary search. This function assumes that the list is
already sorted; otherwise, the result is incorrect.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

206 Collections

BinarySearch() is performed in O(log n), while all the others are performed in O(n).
This is because they use linear search. They all return -1 if no element that satisfies the
search criteria is found. Examples are shown in the following listing:

var numbers = new List<int> { 1, 1, 2, 3, 5, 8, 11 };

var a = numbers.FindIndex(e => e < 10); // 0
var b = numbers.FindLastIndex(e => e < 10); // 5
var c = numbers.IndexOf(5); // 4
var d = numbers.LastIndexOf(1); // 1
var e = numbers.BinarySearch(8); // 5

There are methods that allow us to modify the content of the list, such as by sorting the
elements or reverting them:

• Sort() sorts the list according to a default or specified criteria. There are
several overloads that allow us to specify either a comparison delegate or an
IComparer<T> object, or even a sub-range of the list to sort. This operation is
performed in O(n log n) in most cases but O (n2) in the worst-case scenario.

• Reverse() reverses the elements in the list. There is an overload that allows you to
specify a sub-range to revert. This operation is performed in O(n).

Examples of using these functions are shown as follows:

var numbers = new List<int> { 1, 5, 3, 11, 8, 1, 2 };

numbers.Sort(); // 1 1 2 3 5 8 11
numbers.Reverse(); // 11 8 5 3 2 1 1

There are more methods in the List<T> class than those shown here. However, going
through all of them is beyond the scope of this book. You should look up the official
documentation of the class online for a complete reference to all the members of this class.

The Stack<T> collection
A stack is a linear data structure that allows us to insert and delete items in a particular
order. New items are added at the top of the stack. If we want to remove an item from the
stack, we can only remove the top item. Since insertion and deletion is allowed from only
one end, the item to be inserted last will be the item to be deleted first. Therefore, the stack
is called a Last in, First Out (LIFO) collection.

The following diagram depicts a stack, where push represents adding an item to the stack
and pop represents deleting an item from the stack:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Stack<T> collection 207

Figure 7.4 – The conceptual representation of a stack.

.NET provides the generic Stack<T> class for working with stacks. This class contains
several constructors that allow us to create either an empty stack or a stack initialized with
a collection of elements. Take a look at the following code snippet, where we are creating
a stack of strings with three initial elements and an empty stack of integers:

var arr = new string[] { "Ankit", "Marius", "Raffaele" };
Stack<string> names = new Stack<string>(arr);
Stack<int> numbers = new Stack<int>();

The primary operations that are supported by the stack are as follows:

• Push(): Inserts an item at the top of the stack. This is an O(1) operation if no
reallocation is necessary and O(n) otherwise.

• Pop(): Removes and returns the item from the top of the stack. This is an
O(1) operation.

• Peek(): Returns an item from the top of the stack without removing it. This is an
O(1) operation.

• Clear(): Removes all the elements from the stack. This is an O(n) operation.

Let's understand how these work with the help of the following example where, on the left,
you can see the contents of the stack after each operation:

var numbers = new Stack<int>(new int[]{ 1, 2, 3 });// 3 2 1
numbers.Push(5); // 5 3 2 1
numbers.Push(7); // 7 5 3 2 1
numbers.Pop(); // 5 3 2 1
var n = numbers.Peek(); // 5 3 2 1
numbers.Push(11); // 11 5 3 2 1
numbers.Clear(); // empty

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

208 Collections

The Pop() and Peek() methods throw an InvalidOperationException
exception if the stack is empty. In .NET Core, since version 2.0, two alternative
non-throwing methods are available—TryPop() and TryPeek(). These methods
return a Boolean value indicating whether a top element was found and if so, it is returned
as an out argument.

The Queue<T> collection
A queue is a linear data structure where insertion and deletion of elements is performed
from two different ends. A new item is added from the rear end of the queue and deletion
of existing items occurs from the front. Therefore, the item to be inserted first will be the
item to be deleted first. Because of this, the queue is called a First in, First Out (FIFO)
collection. The following diagram depicts a queue, where Enqueue represents adding an
item to the queue and Dequeue represents deleting an item from the queue:

Figure 7.5 – The conceptual representation of a queue.

In .NET, the class that implements a generic queue is Queue<T>. Similarly, with
Stack<T>, there are overloaded constructors that allow us to create an empty queue
or a queue initialized with elements from an IEnumerable<T> collection. Take a look
at the following code snippet, where we are creating a queue of strings with three initial
elements and an empty queue of integers:

var arr = new string[] { "Ankit", "Marius", "Raffaele" };
Queue<string> names = new Queue<string>(arr);

Queue<int> numbers = new Queue<int>();

The primary operations that are supported for the queue are as follows:

• Enqueue(): Inserts an item at the end of the queue. This operation is O(1)
 unless the internal array needs to be reallocated, in which case it becomes
an O(n) operation.

• Dequeue(): Removes and returns an item from the front of the queue. This is an
O(1) operation.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The LinkedList<T> collection 209

• Peek(): Returns an item from the front of the queue without removing it. This is
an O(1) operation.

• Clear(): Removes all the elements from the queue. This is an O(n) operation.

To understand how these methods work, let's look at the following example:

var numbers = new Queue<int>(new int[] { 1, 2, 3 });// 1 2 3
numbers.Enqueue(5); // 1 2 3 5
numbers.Enqueue(7); // 1 2 3 5 7
numbers.Dequeue(); // 2 3 5 7
var n = numbers.Peek(); // 2 3 5 7
numbers.Enqueue(11); // 2 3 5 7 11
numbers.Clear(); // empty

The Dequeue() and Peek() methods throw an InvalidOperationException
exception if the queue is empty. In .NET Core, since version 2.0, two alternatives
non-throwing methods are available—TryDequeue() and TryPeek(). These
methods return a Boolean value indicating whether a top element was found and if
so, it is returned as an out argument.

As you can see from these examples, Stack<T> and Queue<T> have very similar
implementations, although the semantics are different. Their public members are almost
the same, with the difference being that the stack operations are called Push() and
Pop() and the queue operations are called Enqueue() and Dequeue().

The LinkedList<T> collection
A linked list is a linear data structure that consists of a group of nodes where each node
contains data as well as the address of one or more nodes. There are four types of linked
list, as described here:

• Singly Linked List: This contains nodes that store a value and a reference to the
next node in the sequence of nodes. The reference to the next node of the last node
will point to null.

• Doubly Linked List: Here, each node contains two links – the first link points to
the previous node and the next link points to the next node in the sequence. The
reference to the previous node of the first node and the reference to the next node of
the last node will point to null.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

210 Collections

• Circular Singly Linked List: The reference to the next node of the last node will
point to the first node, thus forming a circular chain.

• Doubly Circular Linked List: In this type of linked list, the reference to the next
node of the last node will point to the first node and the reference to the previous
node of the first node will point to the last node.

A conceptual representation of the doubly linked list is as follows:

Figure 7.6 – A conceptual representation of a doubly linked-list.

Here, each node contains a value and two pointers. The Next pointer contains a reference
to the next node in the sequence and allows easy navigation in the forward direction of
the linked list. The Prev pointer contains a reference to the previous node in the sequence
and allows us to move backward in the linked list.

.NET provides the LinkedList<T> class, which represents a doubly linked list. This
class contains items of the LinkedListNode<T> type. Insertion and removal operations
are performed in O(1) and searching is performed in O(n). Nodes can be removed and
reinserted either in the same linked list object or another. The list maintains an internal
count, so retrieving the size of the list using the Count property is also an O(1) operation.
The linked list does not support cycles, splitting, chaining, or anything else that can leave
the list in an inconsistent state.

The LinkedListNode<T> class has the following four properties:

• List: This property will return the reference to the LinkedList<T> object to
which LinkedListNode<T> belongs.

• Next: Represents the reference to the next node in the LinkedList<T> object or
null if the current node is the last node.

• Previous: Represents the reference to the previous node in the LinkedList<T>
object or null if the current node is the first node.

• Value: This property is of type T and represents the value contained in the node.

For value types, LinkedListNode<T> contains the actual value, whereas for reference
types, it contains a reference to the object.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The LinkedList<T> collection 211

The class has overloaded constructors that enable us to create an empty linked list or one
initialized with a sequence of elements, in the form of an IEnumerable<T>. Take a look
at the following sample to see some examples:

var arr = new string[] { "Ankit", "Marius", "Raffaele" };
var words = new LinkedList<string>(arr);
var numbers = new LinkedList<int>();

Adding new elements to the linked list is possible in several ways using the
following methods:

• AddFirst() adds a new node or value at the beginning of the list.

• AddLast() adds a new node or value at the end of the list.

• AddAfter() adds a new node or value in the list after the specified node.

• AddBefore() adds a new node or value in the list before the specified node.

We can see examples of the overload that adds a new value for each of these methods
in the following sample:

var numbers = new LinkedList<int>();
var n2 = numbers.AddFirst(2); // 2
var n1 = numbers.AddFirst(1); // 1 2
var n7 = numbers.AddLast(7); // 1 2 7
var n11 = numbers.AddLast(11); // 1 2 7 11
var n3 = numbers.AddAfter(n2, 3); // 1 2 3 7 11
var n5 = numbers.AddBefore(n7, 5); // 1 2 3 5 7 11

Searching for elements in a linked list can be performed using one of the
following methods:

• Contains(): This checks whether a specified value is found in the list and returns
a Boolean value to indicate success or failure.

• Find(): This finds and returns the first node that contains the specified value.

• FindLast(): This finds and returns the last node that contains the specified value.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

212 Collections

Examples of using these functions are shown here:

var fn1 = numbers.Find(5);
var fn2 = numbers.FindLast(5);
Console.WriteLine(fn1 == fn2); // True

Console.WriteLine(numbers.Contains(3)); // True
Console.WriteLine(numbers.Contains(13)); // False

Removing elements from the list can be done in several ways using the following methods:

• RemoveFirst() removes the first node in the list.

• RemoveLast() removes the last node in the list.

• Remove() removes the specified node or the first occurrence of the specified value
from the list.

• Clear() removes all the elements from the list.

You can see all these methods at work in the following listing:

numbers.RemoveFirst(); // 2 3 5 7 11
numbers.RemoveLast(); // 2 3 5 7
numbers.Remove(3); // 2 5 7
numbers.Remove(n5); // 2 7
numbers.Clear(); // empty

The linked list class also has several properties, including Count, which returns the
number of elements in the list, First, which returns the first node, and Last, which
returns the last node. If the list is empty, then Count is 0 and First and Last are both
set to null.

The Dictionary<TKey, TValue> collection
A dictionary is a collection of key-value pairs that allows fast lookup based on a key.
Adding, searching, and deleting an item are very fast operations and are performed in
O(1). The exception here is adding a new value if the capacity must be increased, in which
case it becomes O(n).

In .NET, the generic Dictionary<TKey,TValue> class implements a dictionary.
TKey represents the type of the key and TValue represents the type of the value. The
elements of the dictionary are KeyValuePair<TKey,TValue> objects.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Dictionary<TKey, TValue> collection 213

Dictionary<TKey, TValue> has several overloaded constructors that allow us
to create an empty dictionary or a dictionary filled with some initial values. The default
constructor of this class will create an empty dictionary. Take a look at the following
code snippet:

var languages = new Dictionary<int, string>();

Here, we are creating an empty dictionary called languages that has a key of the int
type and a value of the string type. We can also initialize a dictionary at the time of
declaration. Consider the following code snippet:

var languages = new Dictionary<int, string>()
{
 {1, "C#"},
 {2, "Java"},
 {3, "Python"},
 {4, "C++"}
};

Here, we are creating a dictionary that is initialized with four values that have the keys 1,
2, 3, and 4. This is semantically equivalent to the following initialization:

var languages = new Dictionary<int, string>()
{
 [1] = "C#",
 [2] = "Java",
 [3] = "Python",
 [4] = "C++"
};

A dictionary must contain unique keys; however, the value can be duplicated. Similarly, a
key cannot be null, but a value (if it is of a reference type) can be null. To add, remove,
or search for dictionary values, we can use the following methods:

• Add(): This adds a new value with the specified key to the dictionary. If the key is
null or the key already exists in the dictionary, an exception is thrown.

• Remove(): This removes the value with the specified key.

• Clear(): This removes all the values from the dictionary.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

214 Collections

• ContainsKey(): This checks if the dictionary contains the specified key and
returns a Boolean value to indicate that.

• ContainsValue(): This checks if the dictionary contains the specified value
and returns a Boolean value to indicate that. The method performs a linear search;
therefore, it is an O(n) operation.

• TryGetValue(): This checks whether the dictionary contains the specified key
and if so, it returns the associated value as an out argument. The method returns
true if the value was successful fetched or false otherwise. If the key is not
present, the output parameter is set to the default value of the TValue type (that is,
0 for numerical types, false for bool, and null for reference types).

In .NET Core 2.0 and newer, there is one additional method called TryAdd() that
attempts to add a new value to the dictionary. The method succeeds only if the key is not
already present. It returns a Boolean value to indicate success or failure.

The class also contains a set of properties, the most important of them being the following:

• Count: This returns the number of key-value pairs in the dictionary.

• Keys: This returns a collection (of the Dictionary<TKey,TValue>.
KeyCollection type) containing all the keys in the dictionary. The order of the
keys in this collection is not specified.

• Values: This returns a collection (of the Dictionary<TKey,TValue>.
ValueCollection type) containing all the values in the dictionary. The order
of the values in this collection is not specified but it is guaranteed to be in the same
order as their associated keys in the Keys collection.

• Item[]: This is an indexer that gets or sets the value associated with the
specified key. The indexer can be used to add values to the dictionary. If the
key does not exist, a new key-value pair is added. If the key already exists, the
value is overwritten.

Take a look at the following sample, where we are creating a dictionary and then adding
key-value pairs in several ways:

var languages = new Dictionary<int, string>()
{
 {1, "C#"},
 {2, "Java"},
 {3, "Python"},
 {4, "C++"}
};
languages.Add(5, "JavaScript");

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The HashSet<T> collection 215

languages.TryAdd(5, "JavaScript");
languages[6] = "F#";
languages[5] = "TypeScript";

Initially, the dictionary contained the pairs [1, C#] [2, Java] [3, Python] [4, C++] and then
we added [5, JavaScript] twice. However, because the second time TryAdd() is used, the
operation will occur without any exception being thrown. We then used the indexer to
add another pair, [6, F#], and also changed the value of the existing key, that is, 5, from
JavaScript to TypeScript.

We can search through the dictionary with the methods mentioned earlier:

Console.WriteLine($"Has 5: {languages.ContainsKey(5)}");
Console.WriteLine($"Has C#: {languages.ContainsValue("C#")}");

if (languages.TryGetValue(1, out string lang))
 Console.WriteLine(lang);
else
 Console.WriteLine("Not found!");

We can also iterate through the elements of a dictionary using an enumerator, in which
case the key-value pairs are retrieved as KeyValuePair<TKey, TValue> objects:

foreach(var kvp in languages)
{
 Console.WriteLine($"[{kvp.Key}] = {kvp.Value}");
}

To remove elements, we can use either Remove() or Clear(), with the latter for
removing all the key-value pairs from the dictionary:

languages.Remove(5);
languages.Clear();

Another hash-based collection, which only maintains a collection of keys or unique
values, is HashSet<T>. We will look at it in the following section.

The HashSet<T> collection
A set is a collection that contains only distinct items that can be in any order. .NET
provides the HashSet<T> class for working with sets. This class contains methods to
handle the elements of the set but also methods to model mathematical set operations
such as union or intersection.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

216 Collections

Like all the other collections, HashSet<T> contains several overloaded constructors that
allow us to create either an empty set or a set filled with initial values. To declare an empty
set, we use the default constructor (which is the constructor without parameters):

HashSet<int> numbers = new HashSet<int>();

But we can also initialize the set with some values, as shown in the following example:

HashSet<int> numbers = new HashSet<int>()
{
 1, 1, 2, 3, 5, 8, 11
};

To work with a set, we can use the following methods:

• Add() adds a new element to the set if the element is not already present. The
function returns a Boolean value to indicate success or failure.

• Remove() removes the specified element from the set.

• RemoveWhere() removes all the elements that match the supplied predicate from
the set.

• Clear() removes all the elements from the set.

• Contains() checks whether the specified element is present in the set.

We can see these methods in action in the following sample:

HashSet<int> numbers = new HashSet<int>() { 11, 3, 8 };
numbers.Add(1); // 11 3 8 1
numbers.Add(1); // 11 3 8 1
numbers.Add(2); // 11 3 8 1 2
numbers.Add(5); // 11 3 8 1 2 5

Console.WriteLine(numbers.Contains(1));
Console.WriteLine(numbers.Contains(7));

numbers.Remove(1); // 11 3 8 2 5
numbers.RemoveWhere(n => n % 2 == 0); // 11 3 5
numbers.Clear(); // empty

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The HashSet<T> collection 217

As mentioned previously, the HashSet<T> class provides the following methods for
mathematical set operations:

• UnionWith(): This performs the union of two sets. The current set object is
modified by adding all the elements from the supplied set that are not present
in the set.

• IntersectWith(): This performs the intersection of two sets. The current set
object is modified so that it contains only the elements that are also present in the
supplied set.

• ExceptWith(): This performs set subtraction. The current set object is modified
by removing all the elements that are also present in the supplied set.

• SymmetricExceptWith(): This performs set symmetric difference. The current
set object is modified to contain only elements that are present either in the set or in
the supplied set but not in both.

Examples of using these methods are shown in the following listing:

HashSet<int> a = new HashSet<int>() { 1, 2, 5, 6, 9};
HashSet<int> b = new HashSet<int>() { 1, 2, 3, 4};

var s1 = new HashSet<int>(a);
s1.IntersectWith(b); // 1 2

var s2 = new HashSet<int>(a);
s2.UnionWith(b); // 1 2 5 6 9 3 4

var s3 = new HashSet<int>(a);
s3.ExceptWith(b); // 5 6 9

var s4 = new HashSet<int>(a);
s4.SymmetricExceptWith(b); // 4 3 5 6 9

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

218 Collections

In addition to these mathematical set operations, the class also provides methods for
determining set equality, overlapping, or whether a set is a subset or superset of another.
Some of these methods are listed here:

• Overlaps() determines whether the current set and the supplied set contain any
common elements. The method returns true if at least one common element exists
or false otherwise.

• IsSubsetOf() determines if the current set is a subset of another set, which
means that all its elements are also present in the other set. An empty set is a subset
of any set.

• IsSupersetOf() determines if the current set is a superset of another set, which
means that the current set contains all the elements of the other set.

Examples of using these methods are shown in the following snippet:

HashSet<int> a = new HashSet<int>() { 1, 2, 5, 6, 9 };
HashSet<int> b = new HashSet<int>() { 1, 2, 3, 4 };
HashSet<int> c = new HashSet<int>() { 2, 5 };

Console.WriteLine(a.Overlaps(b)); // True
Console.WriteLine(a.IsSupersetOf(c)); // True
Console.WriteLine(c.IsSubsetOf(a)); // True

The HashSet<T> class contains other methods and properties. You should check the
online documentation for a complete reference of the class members.

Choosing the right collection type
So far, we have looked at the most widely used generic collection types, although the base
class library provides several more. The key question that arises after looking at each of
them individually is when these collections should be used. In this section, we will provide
some guidelines for choosing the right collection. Let's take a look:

• List<T> is the default collection to use when you need to store elements
contiguously and access them directly and you don't have other specific constraints.
Elements of the list can be accessed directly by their index. Adding and removing
elements at the end is very efficient, but doing so at the beginning or middle is
costly because it involves moving at least some of the elements.

• Stack<T> is the typical choice when you need a sequential list with the elements
typically discarded after being retrieved in a LIFO manner. Elements are added and
removed from the top of the stack, both operations requiring constant time.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The HashSet<T> collection 219

• Queue<T> is a good choice when you need a sequential list with the elements also
discarded after being retrieved but in a FIFO manner. Elements are added at the end
and removed from the top of the queue. Both operations are very fast.

• LinkedList<T> is useful when you need to add and remove many elements from
the middle of the list and do it quickly. However, this comes at the expense of the
ability to randomly access the elements of the list (by their index). The linked list
does not store its elements contiguously and you must traverse the list from one end
in order to find an element.

• Dictionary<TKey, TValue> should be used when you need to store values
associated with a key. Inserts, deletes, and lookups are very fast – they require
constant time, regardless of the size of the dictionary. The implementation uses a
hash table, which means the keys are hashed and therefore the type of the key must
implement GetHashCode() and Equals(). Alternatively, you need to provide
an IEqualityComparer implementation upon the construction of the dictionary
object. The elements of a dictionary are stored unordered, which prevents you from
traversing the values in the dictionary in a particular order.

• HashSet<T> is the collection you can use when you need a list of unique values.
Inserts, deletes, and lookups are very efficient. The elements are stored unordered
but contiguously. A hash set is logically similar to a dictionary, where the values
are also the keys, although it is a non-associative container. For this reason, the
type of its elements must implement GetHashCode() and Equals(), or,
alternatively, you must provide an IEqualityComparer implementation upon
the construction of the hash set.

The following table summarizes the information from the previous list:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

220 Collections

If performance is key for your application, then, regardless of the choice you make based
on guidelines and best practices, it is important to measure to see if the chosen collection
type fits your requirements. Also, keep in mind that there are more collections in the base
class library than the ones discussed in this chapter. SortedList<TKey, TValue>,
SortedDictionary<TKey, TValue>, and SortedSet<T> could also be valuable
in some particular scenarios.

Using thread-safe collections
The generic collections we have seen so far are not thread-safe. This means that when
they're used in multithreading scenarios, you need to protect access to these collections
with external locks, which in many cases can degrade performance. .NET offers
several thread-safe collections that use efficient locking and lock-free synchronization
mechanisms to achieve thread-safety. These collections are provided in the System.
Collections.Concurrent namespace and should be used in scenarios where more
than one thread is accessing a collection concurrently. However, the actual benefit may
be smaller or greater than a standard collection being protected with an external lock. A
discussion about this is provided later in this section.

Information box
The topic of multithreading and asynchronous programming will be addressed
in Chapter 12, Multithreading and Async Programming, where you will learn
about threads and tasks, synchronization mechanisms, the await/async model,
and others.

Although the collections from the System.Collections.
Concurrent namespace are thread-safe, it is not guaranteed that
access to their elements through extension methods or explicit interface
implementations is also thread-safe and they may require additional explicit
synchronization by the caller.

The thread-safe generic collections are available and are discussed in the
following subsections.

IProducerConsumerCollection<T>
This is not an actual collection, but an interface that defines methods to manipulate
thread-safe collections. It provides two methods called TryAdd() and TryTake()
that enable adding and removing elements to a collection in a thread-safe way and also
support cancellation with a CancellationToken object.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using thread-safe collections 221

In addition, it has a ToArray() method, which copies the element from the underlying
collection to a new array, and overloads for CopyTo(), which copies elements of the
collection to an array starting at a specified index. All implementations must make
sure that all the methods of this interface are thread-safe. This interface is implemented
by ConcurrentBag<T>, ConcurrentStack<T>, ConcurrentQueue<T>, and
BlockingCollection<T>. You can also provide your own implementation if the
standard ones do not meet your needs.

BlockingCollection<T>
This is a class that implements the producer-consumer pattern defined by the
IProducerConsumerCollection<T> interface. It is actually a simple wrapper over
the IProducerConsumerCollection<T> interface and does not have an internal
underlying storage; instead, it must be provided with one (a collection that implements
the IProducerConsumerCollection<T> interface). If no implementation is
provided, it uses the ConcurrentQueue<T> class by default.

The BlockingCollection<T> class supports bounding and blocking. Bounding
means that you can set the capacity of the collection. That means when the collection
reaches its maximum capacity, any producer (a thread that adds elements to the
collection) will block until a consumer (a thread that removes elements from the
collection) removes an element.

On the other hand, any consumer that wants to remove an element blocks when
the collection is empty until a producer adds an element to the collection. Adding
and removing can be done with either Add() and Take() or the TryAdd() and
TryTake() versions, which, unlike the former, support cancellation. There is also a
CompleteAdding() method that marks the collection as complete, in which case
further adding is no longer possible, and attempts to remove elements will no longer block
when the collection is empty.

Let's take a look at an example to understand how this works. In the following sample
code, we have a task that is producing elements to a BlockingCollection<int> and
two tasks that are consuming from it. The collection is created as follows:

using var bc = new BlockingCollection<int>();

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

222 Collections

This uses the default constructor of the class, which will instantiate it using the
ConcurrentQueue<int> class as the underlying storage for the collection. The
producer task is using the blocking collection to add numbers, which in this particular
case are the first 12 elements of the Fibonacci sequence. Notice that, at the end, we are
calling CompleteAdding() to mark the collection as complete. Further attempts to
add would fail:

using var producer = Task.Run(() => {
 int a = 1, b = 1;
 bc.Add(a);
 bc.Add(b);
 for(int i = 0; i < 10; ++i)
 {
 int c = a + b;
 bc.Add(c);
 a = b;
 b = c;
 }
 bc.CompleteAdding();
});

The first consumer is a task that iterates indefinitely through the collection, taking one
element at a time. The call to Take() blocks the calling thread if the collection is empty.
However, if the collection is empty and it has been marked as complete, the operation will
throw InvalidOperationException:

using var consumer1 = Task.Run(() => {
 try
 {
 while (true)
 Console.WriteLine($"[1] {bc.Take()}");
 }
 catch (InvalidOperationException)
 {
 Console.WriteLine("[1] collection completed");
 }
 Console.WriteLine("[1] work done");
});

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using thread-safe collections 223

The second consumer is a task that does very similar work. However, instead
of using an infinite loop, it uses a foreach statement. This is possible because
BlockingCollection<T> has a method called GetConsumingEnumerable()
that retrieves IEnumerable<T> that makes it possible to remove items from the
collection with a foreach loop or Parallel.ForEach.

Unlike the infinite loop, the enumerator provides items until the collection is marked as
completed. If the collection is empty but not marked as completed, then the operation
blocks until one item becomes available. The retrieving operation can also be canceled by
using a CancellationToken object when calling GetConsumingEnumerable():

using var consumer2 = Task.Run(() => {
 foreach(var n in bc.GetConsumingEnumerable())
 Console.WriteLine($"[2] {n}");
 Console.WriteLine("[2] work done");
});

Having these three tasks, we should wait for them all to complete:

await Task.WhenAll(producer, consumer1, consumer2);

A possible output from executing this sample is as follows:

Figure 7.7 – A possible output from the execution of the preceding snippet.

Notice that the output will vary for different runs (meaning that the order of processing
the elements will not be the same and from the same task).

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

224 Collections

ConcurrentQueue<T>
This is a thread-safe implementation of a queue (which is a FIFO collection). It
provides three methods: Enqueue(), to add elements to the end of the collection,
TryPeek(), to try to return the element at the beginning of the queue without
removing it, and TryDequeue(), to try to remove and return the element at the
beginning of the collection. It also provides an explicit implementation for the
IProducerConsumerCollection<T> interface.

ConcurrentStack<T>
This class implements a thread-safe stack (which is a LIFO collection). It provides four
methods: Push(), to add an element at the top of the stack, TryPeek(), to try to return
the element at the top without removing it, TryPop(), to try to remove and return the
element at the top, and TryPopRange(), to try to remove and return multiple objects
from the top of the stack. In addition, it also provides an explicit implementation for the
IProducerConsumerCollection<T> interface.

ConcurrentBag<T>
This class represents a thread-safe unordered collection of objects. This can be useful
when you want to store objects, including duplicates, and their order is not important.
The implementation is optimized for scenarios where the same thread is both the
producer and consumer of the elements in the bag. Adding is done with Add()
and removing is done with TryPeek() and TryTake(). You can also remove
all the elements of the bag with a call to Clear(). Like the concurrent stack and
queue implementation, this class also provides an explicit implementation for the
IProducerConsumerCollection<T> interface.

ConcurrentDictionary<TKey, TValue>
This represents a thread-safe collection of key-value pairs. It provides methods such
as TryAdd(), to try to add a new key-value pair, TryUpdate(), to try to update
an existing item, AddOrUpdate(), to either add a new or update an existing item,
and GetOrAdd(), to either retrieve an existing item or add a new one if the key is
not found.

These operations are atomic and thread-safe with the exception of their overloads, which
take delegates. These are executed outside the locks, and therefore their code is not part
of the atomicity of the operation. In addition, TryGetValue() attempts to get the value
of a specified key, and TryRemove() attempts to remove and return the value associated
with the specified key.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using thread-safe collections 225

Choosing the right concurrent collection type
Now that we have seen what the concurrent collections are, the important question is
when these should be used, especially in relation to the non-thread-safe collections. In
general, you can use them as follows:

• BlockingCollection<T> for when bounding and blocking scenarios
are necessary.

• ConcurrentQueue<T> should be preferred over Queue<T> with an
external lock when the processing time is at least 500 floating-point operations
(FLOPS). Otherwise, the performance benefit can be modest or it could actually
perform even worse. When the processing time per element is very small,
ConcurrentQueue<T> performs best if one thread enqueues and another
is dequeuing.

• ConcurrentStack<T> should be preferred over Stack<T> with an external
lock if the same thread can either add or remove elements, in which case it is faster
for both small and large processing times. However, if one thread adds and another
thread removes elements, then ConcurrentStack<T> and Stack<T> with an
external lock will perform relatively the same. But when the number of threads
increases, Stack<T> might actually perform better.

• ConcurrentDictionary<TKey, TValue> performs better than
Dictionary<TKey, TValue> in all scenarios where adding and updating
is done concurrently from multiple threads, although if the updates are frequent
but the reads are rare, the benefits are very small. If both reads and updates are
frequent, then ConcurrentDictionary<TKey, TValue> is significantly
faster. Dictionary<TKey, TValue> is only suitable for scenarios where all the
threads perform only reads and no updates.

• ConcurrentBag<T> is suitable for scenarios where the same thread is both
adding and consuming elements. However, in scenarios where a thread only either
adds or removes, then it is slower than all the other concurrent collections.

Keep in mind that the preceding list represents only guidelines and general behavior and it
might not apply in all cases. In general, when you deal with concurrency and parallelism,
you need to account for the particular aspects of your scenarios. Whatever algorithms
and data structures you are using, you must profile their execution to see how it performs,
both in relation to a sequential implementation or other concurrent alternatives.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

226 Collections

Summary
In this chapter, we learned about generic collections in .NET, the data structures they
model, and the interfaces they implement. We looked at the most important collections
in the System.Collections.Generic namespaces, List<T>, Stack<T>,
Queue<T>, LinkedList<T>, Dictionary<TKey, TValue>, and HashSet<T>,
and learned how to use them and perform operations such as adding, removing, or
searching elements. In the last part of this chapter, we also looked at the System.
Collection.Concurrent namespace and the thread-safe collections it provides.
Then, we learned about the particularities of each collection and the typical scenarios
where they are suitable to be used.

In the next chapter, we will explore some advanced topics such as delegates and events,
tuples, regular expressions, pattern matching, and extension methods.

Test what you learned
1. Under which namespace are the generic collections present?

2. What is the base interface for all the other interfaces that define functionalities for
generic collections?

3. What is the benefit of using generic collections instead of non-generic collections?

4. What is List<T> and how do you add and remove elements to or from it?

5. What is Stack<T> and how do you add and remove elements to or from it?

6. What is Queue<T>? What is the difference between its Dequeue() and
Peek() methods?

7. What is LinkedList<T>? What methods can you use to add elements to
the collection?

8. What is Dictionary<K, V> and what type are its elements?

9. What is HashSet<T> and how does it differ from Dictionary<K, V>?

10. What is BlockingCollection<T>? What concurrent scenarios is it suitable for?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

8
Advanced Topics

In the previous chapters, we learned about the language syntax, data types, working with
classes and structures, generics, collections, and other topics that have equipped you with
the knowledge necessary to write at least simple C# programs. However, there's more to
the language than that and in this chapter, we will explore more advanced concepts. This
will include delegates, which are key for functional and asynchronous programming that
we cover later in this book, as well as various forms of pattern matching including regular
expressions for texts.

The topics that we will discuss are as follows:

• Delegates and events

• Anonymous types

• Tuples

• Pattern matching

• Regular expressions

• Extension methods

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

228 Advanced Topics

After completing this chapter, you will understand how to use delegates to respond to
events that occur in your application, how to use tuples to handle multiple values without
introducing new types, how to perform pattern matching in code with is and switch
expressions as well as search and replace texts using regular expressions. Last, but not
least, you will learn how to extend types without modifying their actual source code with
the help of extension methods.

Let's begin this chapter by learning about delegates and events.

Delegates and events
A callback is a function (or more generally, any executable code) that is passed as a
parameter to another function in order to be called immediately (synchronous callbacks)
or at a later time (asynchronous callbacks). Operating systems (such as Windows) use
callbacks extensively to allow applications to respond to events such as mouse events or
key presses. Another typical example for callbacks is general purpose algorithms that use
callbacks for processing elements from a collection, such as comparing them in order to
sort them or filter them out.

In languages such as C and C++, a callback is simply a function pointer (that is, the address
of a function). However, in .NET, callbacks are strongly-typed objects that hold not only
the reference to one or more methods but also the information about their parameters and
return type. In .NET and C#, callbacks are represented by delegates.

Delegates
A delegate is defined using the delegate keyword. The declaration looks like a function
signature, but the compiler actually introduces a class that can hold references to methods
whose signatures match the signature of the delegate. A delegate can hold references to
either static or instance methods.

To better understand the way delegates are defined and used, we will consider the
following example.

We have a class that represents an engine. There can be different things the engine can
do but we will focus on starting and stopping this engine. When these events happen, we
want to let the clients using the engine to know about this and give them the chance to do
something. For simplicity, the client will only log the event to the console. In this simple
model, the engine can be in any of these two states: started or stopped. We will start by
declaring the delegate type called StatusChange:

public enum Status { Started, Stopped }
public delegate void StatusChange(Status status);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Delegates and events 229

StatusChange is not a function but a type. We will use this for declaring a variable in
the engine that will hold a reference to a callback method. The class that represents the
engine is as follows:

public class Engine
{
 private StatusChange statusChangeHandler;

 public void RegisterStatusChangeHandler(StatusChange
handler)
 {
 statusChangeHandler = handler;
 }

 public void Start()
 {
 // start the engine
 if (statusChangeHandler != null)
 statusChangeHandler(Status.Started);
 }

 public void Stop()
 {
 // stop the engine
 if (statusChangeHandler != null)
 statusChangeHandler(Status.Stopped);
 }
}

There are several things to notice here:

• First, the RegisterStatusChangeHandler() method takes an
argument of the delegate type (StatusChange) and assigns it to the
statusChangeHandler member field.

• Second, the Start() and Stop() methods do not actually do much (for
simplicity only), but you can imagine they are performing a start and a stop of the
engine. However, after this, they invoke the callback, just like a regular function,
passing all the necessary arguments.

• In this example, the delegate does not return any value, but a delegate can return
anything. However, before invoking the callback method, a null check is performed.
If the delegate was not assigned a reference to a method, invoking the delegate
results in NullReferenceException.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

230 Advanced Topics

The client code creates an instance of the Engine class, registers a handler for status
changes, and then starts and stops its. The code is as follows:

class Program
{
 static void Main(string[] args)
 {
 Engine engine = new Engine();
 engine.RegisterStatusChangeHandler
 (OnEngineStatusChanged);

 engine.Start();
 engine.Stop();
 }

 private static void OnEngineStatusChanged(Status status)
 {
 Console.WriteLine($"Engine is now {status}");
 }
}

The static method, OnEngineStatusChanged(), is used as a callback for the engine
start and stop events. Its signature matches the type of the delegate. Executing this
program results in the following output:

Engine is now Started
Engine is now Stopped

An important aspect of .NET delegates is that they support multicasting. This means that
you can actually set references to as many methods you want to be called; the delegate
will then invoke them in the order they are added. Multicast delegates are represented
by the System.MulticastDelegate class. This class has, internally, a linked list of
delegates that is called an invocation list. This list can have any number of elements. When
the multicast delegate is invoked, all of the delegates in the invocation list are called in the
order they appear in the list (which is the order in which they were added). This operation
is synchronous and if any error appears during the execution of the invocation list, an
exception is thrown.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Delegates and events 231

On the other hand, you can remove a reference to a method from the delegate when you
no longer want it to be called. Both of these aspects will be exemplified in the following
example where we change the Engine class to allow multiple callbacks to be not only
registered but also unregistered:

public class Engine
{
 private StatusChange statusChangeHandler;

 public void RegisterStatusChangeHandler(StatusChange
handler)
 {
 statusChangeHandler += handler;
 }

 public void UnregisterStatusChangeHandler(StatusChange
handler)
 {
 statusChangeHandler -= handler;
 }

 public void Start()
 {
 statusChangeHandler?.Invoke(Status.Started);
 }

 public void Stop()
 {
 statusChangeHandler?.Invoke(Status.Stopped);
 }
}

Again, there are two things to notice here:

• First, the RegisterStatusChangeHandler() method no longer simply
assigns its argument to the statusChangeHandler field, but actually uses the
+= operator to add a new reference to the list the delegate is holding internally.
Consequently, the UnregisterStatusChangeHandler() method is using the
-= operator to remove a reference from the delegate. The += and -= operators are
overloaded for the delegate types.

• Second, the code in Start() and Stop() has slightly changed. The null-
conditional operator (?.) is used to call the Invoke() method only if the object is
not null.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

232 Advanced Topics

On the other hand, the changes in the main program are as follows:

class Program
{
 static void Main(string[] args)
 {
 Engine engine = new Engine();
 engine.RegisterStatusChangeHandler
 (OnEngineStatusChanged);
 engine.RegisterStatusChangeHandler
 (OnEngineStatusChanged2);

 engine.Start();
 engine.Stop();

 engine.UnregisterStatusChangeHandler
 (OnEngineStatusChanged2);

 engine.Start();
 }

 private static void OnEngineStatusChanged(Status status)
 {
 Console.WriteLine($"Engine is now {status}");
 }

 private static void OnEngineStatusChanged2(Status status)
 {
 File.AppendAllText(@"c:\temp\engine.log",
 $"Engine is now {status}\n");
 }
}

This time, we register two callbacks:

• One that records the event on the console.

• One that records to a file.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Delegates and events 233

We start and stop the engine and then we unregister the callback that logs to the file on
disk. Last, we start the engine again. As a result, the output on the console will be the
following:

Engine is now Started
Engine is now Stopped
Engine is now Started

However, only the first two lines also appear on the file on disk, because the second
callback was removed before restarting the engine.

In this second example, we used the Invoke() method to call the methods referred by
the delegate. Where did the Invoke() method come from? Behind the scenes, when
you declare a delegate type, the compiler generates a sealed class derived from System.
MulticastDelegate that in turn is derived from System.Delegate. These are
system types that you are not allowed to derive explicitly from. However, they provide all
of the functionalities we have seen so far, such as the ability to add and remove methods
from the delegate's invocation list.

The class created by the compiler contains three methods—Invoke() (used to invoke
the callbacks in a synchronous manner), BeginInvoke(), and EndInvoke() (used
to invoke the callbacks in an asynchronous manner). For examples of asynchronous
delegates, consult additional references. You can actually check the compiler-generated
code by opening the assembly in a disassembler such as ildasm.exe or ILSpy.

Events
The code we have written so far is a little too explicit. We had to create methods for
registering and unregistering references to callback methods. That was because the
delegate that held those references was private in the class. We could make it public, but
then we break encapsulation and risk allowing the clients to erroneously overwrite the
delegate's invocation list. To help with these aspects, .NET and C# offer events, which
are simply syntactic sugar for the explicit code we wrote earlier for registering and
unregistering callbacks. Events are introduced with the event keyword.

The last implementation of the engine will change to the following:

public class Engine
{
 public event StatusChange StatusChanged;

 public void Start()
 {
 StatusChanged?.Invoke(Status.Started);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

234 Advanced Topics

 }

 public void Stop()
 {
 StatusChanged?.Invoke(Status.Stopped);
 }
}

Notice that we no longer have the methods for registering and unregistering callbacks,
only an event object called StatusChanged. These are done in the client code on the
event object, using the += (to add a reference to a method) and -= (to remove a reference
to a method) operators. We can see the client code in the following code.

In this example, we create an Engine object and register to callbacks for the
StatusChanged event—one is a reference to the OnEngineStatusChanged()
method (that logs the event to a file) and the other one is a lambda expression (that logs
the event to the console):

class Program
{
 static void Main(string[] args)
 {
 Engine engine = new Engine();
 engine.StatusChanged += OnEngineStatusChanged;
 engine.StatusChanged +=
 status => Console.WriteLine(
 $"Engine is now {status}");

 engine.Start();
 engine.Stop();

 engine.StatusChanged -= OnEngineStatusChanged;

 engine.Start();
 }

 private static void OnEngineStatusChanged(Status status)
 {
 File.AppendAllText(@"c:\temp\engine.log",
 $"Engine is now {status}\n");
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Delegates and events 235

After starting and stopping the engine, we unregister the reference to
OnEngineStatusChanged() and then restart the engine. The result of executing this
program is identical to the previous one.

In all of the examples so far, the delegate type had a single argument that was the status of
the engine. However, proper implementation of the event's pattern (used throughout the
entire .NET Framework) is to have two arguments:

• The first argument is System.Object, which holds a reference to the object that
generated the event. It is up to the client being called to use this reference or not.

• The second argument is of a type derived from System.EventArgs, which holds
all of the event-related information.

To comply with this pattern, our implementation of Engine will change to the following:

public class EngineEventArgs : EventArgs
{
 public Status Status { get; private set; }

 public EngineEventArgs(Status s)
 {
 Status = s;
 }
}

public delegate void StatusChange(
 object sender, EngineEventArgs args);

public class Engine
{
 public event StatusChange StatusChanged;

 public void Start()
 {
 StatusChanged?.Invoke(this,
 new EngineEventArgs(Status. Started));
 }

 public void Stop()
 {
 StatusChanged?.Invoke(this,
 new EngineEventArgs(Status.Stopped));
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

236 Advanced Topics

We will leave it as an exercise to the reader to make the necessary changes to the main
program to use the new implementation of the Engine class.

The key takeaways about delegates and events are the following:

• Delegates allow methods to be passed as arguments to be called later, either
synchronously or asynchronously.

• Delegates support multicasting, that is, the invocation of multiple callback methods.

• Static methods, instance methods, anonymous methods, and lambda expressions
can be used as callbacks with delegates.

• Delegates can be generic.

• Events are syntactic sugar that help with registration and removal of callbacks.

The next topic to discuss in this chapter are anonymous types.

Anonymous types
It is sometimes necessary to construct temporary objects that hold some values, usually
a subset of some larger object. To avoid creating a specific type for this purpose only, the
language provides so-called anonymous types. These are a sort of use-and-forget types
typically used in query expressions with Language Integrated Query (LINQ). This topic
will be discussed in Chapter 10, Lambdas, LINQ, and Functional Programming.

These types are called anonymous because you do not specify a name in the source code.
The name is assigned by the compiler. They consist of read-only properties only; any other
member type is not allowed. The type of the read-only properties cannot be explicitly
specified and is inferred by the compiler.

An anonymous type is introduced with the new keyword followed by a list of properties in
angle-brackets (an object initializer). The following code snippet shows an example:

var o = new { Name = "M270 Turbo", Capacity = 1600,
Power = 75.0 };
Console.WriteLine($"{o.Name} {o.Capacity / 1000.0}l
{o.Power}kW");

Here, we have defined an anonymous type with three properties: Name, Capacity, and
Power. The types of these properties are inferred by the compiler from their initialization
value. In this case, they are string for Name, int for Capacity, and double for
Power.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Anonymous types 237

It is mandatory to specify a name for a property when it is initialized from an expression.
However, if it is initialized from a field or property of another object, the name is optional.
In this case, the compiler uses the same name as that of the member used to initialize it.
To show an example, let's consider the following type:

class Engine
{
 public string Name { get; }
 public int Capacity { get; }
 public double Power { get; }

 public Engine(string name, int capacity, double power)
 {
 Name = name;
 Capacity = capacity;
 Power = power;
 }
}

Having this, we can write the following:

var e = new Engine("M270 Turbo", 1600, 75.0);
var o = new { e.Name, e.Power };
Console.WriteLine($"{o.Name} {o.Power}kW");

We have created an instance of the Engine class. From this instance, we have created
another object of an anonymous type that has two properties, which the compiler calls
Name and Power because they are initialized from the Name and Power properties of the
Engine class.

Anonymous types have the following properties:

• They are implemented as sealed classes and are, therefore, reference types. The CLI
does not make any difference between anonymous types and other reference types.

• They are directly derived from System.Object and can only be cast to
System.Object.

• They can only contain read-only properties. No other members are allowed.

• They cannot be used as the type of a field, property, event, the return type of
a method, or the type of a parameter of a method, constructor, or indexer.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

238 Advanced Topics

• You can specify names for the read-only properties of an anonymous type. This is
mandatory when initializing from an expression, but optional when initializing
from a field or property. In this case, the compiler uses the name of the member for
the property's name.

• The expression used to initialize a property cannot be null, an anonymous function,
or a pointer type.

• The scope of an anonymous type is the method in which it is defined.

• When you declare a variable of an anonymous type, you must use var as a
placeholder for the type name.

A similar concept of ad hoc types but with different semantics is presented by tuples,
which is the topic of the next section.

Tuples
Tuples are simple types with a lightweight syntax that can typically be used when you
want to return multiple values from a function without defining an explicit type or
without using out or ref parameters or when you want to pass multiple values to a
method as a single object.

This aspect represents the key difference between anonymous types and tuples. The
former is meant for use within the scope of a single method and cannot be passed as an
argument or returned from a method. The latter are intended for this exact purpose.

In C#, there are two kinds of tuples:

• Reference tuples, represented by the System.Tuple class

• Value tuples, represented by the System.ValueTuple structure

In the next subsection, we will look at both of these types.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tuples 239

The Tuple class
Reference tuples were introduced in .NET Framework 4.0. The generic class, System.
Tuple, can hold up to eight values of different types. Should you need tuples with more
than eight values, you will have to create nested tuples. Tuples can be instantiated in either
of two ways:

• By using the constructor of Tuple<T>

• By using the helper method, Tuple.Create()

The following two lines are equivalent:

var engine = new Tuple<string, int, double>("M270 Turbo", 1600,
75);
var engine = Tuple.Create("M270 Turbo", 1600, 75);

The second line here is preferred because it is simpler as you do not have to specify the
type of each value. This is because it is inferred by the compiler from the arguments.

The elements of the tuple are accessible through properties called Item1, Item2, Item3,
Item4, Item5, Item6, Item7, and Rest. In the following example, we use the Item1,
Item2, and Item3 properties to print the engine name, capacity, and power to the
console:

Console.WriteLine(
 $"{engine.Item1} {engine.Item2/1000.0}l {engine.Item3}kW");

Nested tuples can be used when you need more than eight elements. In this case, it makes
sense to put the nested tuple as the last element. The following example creates a tuple
with 10 values, the last three of them (representing various engine powers in kW) being
grouped in a second, nested tuple:

var engine = Tuple.Create(
 "M270 DE16 LA R", 1595, 83, 73.7, 180, "gasoline", 2015,
 Tuple.Create(75, 90, 115));
Console.WriteLine($"{engine.Item1} powers: {engine.Rest.
Item1}");

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

240 Advanced Topics

Notice here that we used Rest.Item1 and not simply Rest. The output of this program
is as follows:

M270 DE16 LA R powers: (75, 90, 115)

The reason for this is that the inferred type for the variable engine is Tuple<string,
int, int, double, int, string, int, Tuple<Tuple<int, int,
int>>>. Consequently, Rest represents a tuple that holds a single value that is also a
tuple that holds three int values. To access the elements of the nested tuple, you must
use, for this case, Rest.Item1.Item1, Rest.Item1.Item2, and Rest.Item1.
Item3.

To create a tuple of the type, Tuple<string, int, int, double, int,
string, int, Tuple<int, int, int>>, you must use the explicit syntax using
constructors:

var engine = new Tuple<string, int, int, double, int, string,
int, Tuple<int, int, int>>
 ("M270 DE16 LA R", 1595, 83, 73.7, 180, "gasoline", 2015,
 new Tuple<int, int, int>(75, 90, 115));
Console.WriteLine($"{engine.Item1} powers: {engine.Rest}");

System.Tuple is a reference type and therefore objects of this type are allocated on the
heap. If many allocations of small objects occur during the execution of a program, it can
impact performance.

This adds to the limitations we have seen earlier—the number of elements and the
unnamed properties. To overcome these problems, C# 7.0, .NET Framework 4.7, and
.NET Standard 2.0 have introduced value type tuples, which we will explore in the
following section.

Value tuples
These are represented by the System.ValueTuple structure. If your project does not
target .NET Framework 4.7 or higher or .NET Standard 2.0 or higher, you can still use
ValueTuple by installing it as a NuGet package.

Various value tuple features have been added in the several 7.x releases of the languages.
The functionalities described here are aligned with C# 8.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tuples 241

Apart from the value semantics, value tuples differ from the reference tuples in several
important ways:

• They can hold a sequence of any number of elements, but at least two are required.

• They may have compile-time named fields.

• They have a simpler, yet richer syntax for creating, assigning, deconstructing, and
comparing values.

Creating a value tuple is done using parentheses syntax with values specified in between.
The following three declarations are equivalent:

ValueTuple<string, int, double> engine = ("M270 Turbo", 1600,
75.0);
(string, int, double) engine = ("M270 Turbo", 1600, 75.0);
var engine = ("M270 Turbo", 1600, 75.0);

In all these cases, the type of the variable engine is ValueTuple<string, int,
double> and the tuple is said to be unnamed. In this case, its values are available in the
public fields—Item1, Item2, and Item3, which are implicit names assigned by the
compiler:

Console.WriteLine(
 $"{engine.Item1} {engine.Item2/1000.0}l {engine.Item3}kW");

However, when creating a value tuple, you can choose to give names to the values and
therefore create synonyms for the fields, Item1, Item2, and so on. Such value tuples
are called named tuples. You can see an example of a named tuple in the following
code snippet:

var engine = (Name: "M270 Turbo", Capacity: 1600, Power: 75.0);
Console.WriteLine(
 $"{engine.name} {engine.capacity / 1000.0}l {engine.power}
kW");

These synonyms are only available at compile time because IDEs leverage the Roslyn APIs
to make them available for you from the source code, but in the compiler intermediate
language code, they are not available, only the unnamed fields—Item1, Item2, and
so on.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

242 Advanced Topics

The name of a field can appear on either side of the assignment; moreover, they can appear
on both sides, in which case the left name will take precedence and the right name will be
ignored. The following two declarations will produce a named value tuple identical to the
one seen in the preceding code:

(string Name, int Capacity, double Power) engine =
 ("M270 Turbo", 1600, 75.0);
(string Name, int Capacity, double Power) engine =
 (name: "M270 Turbo", cap: 1600, pow: 75.0);

The names for the fields can also be inferred from variables used to initialize the value
tuple (as for C# 7.1). In the following example, the value tuple will have fields called name,
capacity (lowercase), and Item3 because the last value is a literal without an explicitly
specified name:

var name = "M270 Turbo";
var capacity = 1600;
var engine = (name, capacity, 75);

Console.WriteLine(
 $"{engine.name} {engine.capacity / 1000.0}l {engine.Item3}
kW");

Returning value tuples from a method is very simple. In the following example, the
GetEngine() function returns an unnamed value type:

(string, int, double) GetEngine()
{
 return ("M270 Turbo", 1600, 75.0);
}

However, you can choose to return a named value type, in which case, you need to specify
the names of the fields, as shown here:

(string Name, int Capacity, double Power) GetEngine2()
{
 return ("M270 Turbo", 1600, 75.0);
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tuples 243

Beginning with C# 7.3, value tuples can be tested for equality and inequality using the ==
and != operators. These operators work by comparing, in order, each element from the
left side with each element on the right side. The comparison stops when the first pair is
not equal. However, this only happens when the shape of the tuples is the same, that is,
the number of fields and their type. The names do not participate in the test of equality or
inequality. The next example does a comparison of two value tuples:

var e1 = ("M270 Turbo", 1600, 75.0);
var e2 = (Name: "M270 Turbo", Capacity: 1600, Power: 75.0);
Console.WriteLine(e1 == e2);

Tuple equality performs a lifted conversion if one tuple is a nullable tuple, as well as
implicit conversions on each member of both tuples. The latter include lifted conversions,
widening conversions, or other implicit conversions. As an example, the following
tuples are equal:

(int, long) t1 = (1, 2);
(long, int) t2 = (1, 2);
Console.WriteLine(t1 == t2);

It is possible to deconstruct the value of a tuple. You can do so either by explicitly
specifying the type of the variables or using var. The following declarations are all
equivalent. In the following and last example, the use of var is combined with explicit
type names:

(string name, int capacity, double power) = GetEngine();
(var name, var capacity, var power) = GetEngine();
var (name, capacity, power) = GetEngine();
(var name, var capacity, double power) = GetEngine();

If there are values that you are not interested in, you can ignore them by using
the _ placeholder like so:

(var name, _, _) = GetEngine();

It is possible to deconstruct any .NET type provided that a method called Deconstruct
with out parameters for every value that you want to retrieve is available.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

244 Advanced Topics

In the following example, the Engine class has three properties: Name, Capacity, and
Power. The Deconstruct() public method takes three out arguments matching these
properties. This makes it possible for objects of this type to be deconstructed using tuple
syntax. The following listing shows an implementation of the Engine class that provides
tuple deconstruction:

class Engine
{
 public string Name { get; }
 public int Capacity { get; }
 public double Power { get; }

 public Engine(string name, int capacity, double power)
 {
 Name = name;
 Capacity = capacity;
 Power = power;
 }

 public void Deconstruct(out string name, out int capacity,
 out double power)
 {
 name = Name;
 capacity = Capacity;
 power = Power;
 }
}

var engine = new Engine("M270 Turbo", 1600, 75.0);
var (Name, Capacity, Power) = engine;

The Deconstruct method can be made available as an extension method, enabling you
to provide deconstruction semantics even for types you did not author, provided that you
only need to deconstruct values accessible through the public interface of the type. Such
an example is shown here:

class Engine
{
 public string Name { get; }
 public int Capacity { get; }
 public double Power { get; }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tuples 245

 public Engine(string name, int capacity, double power)
 {
 Name = name;
 Capacity = capacity;
 Power = power;
 }
}

static class EngineExtension
{
 public static void Deconstruct(this Engine engine,
 out string name,
 out int capacity,
 out double power)
 {
 name = engine.Name;
 capacity = engine.Capacity;
 power = engine.Power;
 }
}

If you have a hierarchy of classes and you provide Deconstruct() methods, then
you must make sure you do not introduce ambiguities, such as in cases where different
overloads have the same number of arguments. It should be noted that deconstruction
operators do not participate in testing equality. Therefore, the following sample will
generate a compiler error:

var engine = new Engine("M270 Turbo", 1600, 75.0);
Console.WriteLine(engine == ("M270 Turbo", 1600, 75.0));

Summarizing on this topic, the support for value tuples in C# 7 makes it much easier to
work with tuples in key scenarios such as holding temporary values or records from a
database. This can be done without introducing new types or returning multiple values
from a method without the use of out or ref parameters. With the performance benefit
of value semantics and the improvements on element access based on names, as well as
other key features, named values are an important improvement on the reference type
tuples that we saw at the beginning of this section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

246 Advanced Topics

Pattern matching
Pattern matching is the process of checking whether a value has a particular shape as
well as extracting information out of the value when the matching is successful. To some
extent, that is what we regularly do with the if and switch statements when we check
whether an object has some value and then proceed to extract information from it.
However, this is a rudimentary form of pattern matching.

In C# 7, new capabilities are added to is and switch statements to enable pattern
matching capabilities that drive a better separation of data and code and lead to more
concise and readable code. The pattern matching capabilities are extended with new
features in C# 8. You will learn about these in Chapter 15, New Features of C# 8.

The is expression
At runtime, the is operator checks that an object is compatible with a given type (the
general form, expr is type). However, in C# 7, this was extended to include several
forms of pattern matching:

• Type pattern, in the expr is type varname form, checks whether an
expression can be converted to the specified type and, if so, casts it to a variable of
that specified type.

• Constant pattern, in the expr is constant form, checks whether the
expression evaluates to a specified constant. A particular constant is null, for
which the pattern is expr is null.

• The var pattern is a special form of type pattern, in the expr is var varname
form, that always succeeds and binds the value to a new local variable. A key
difference from the type pattern is that null is always matched and the new
variable is assigned null.

To understand how these work, we will use several classes representing vehicles:

class Airplane
{
 public void Fly() { }
}

class Bike
{
 public void Ride() { }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Pattern matching 247

class Car
{
 public bool HasAutoDrive { get; }
 public void Drive() { }
 public void AutoDrive() { }
}

These vehicle classes are not a part of a hierarchy of classes, but they have public methods
that set the vehicle in motion, according to its type. For example, the airplane flies, the
bike rides, and the car drives. The next code listing shows a function that uses several
forms of pattern matching:

void SetInMotion(object vehicle)
{
 if (vehicle is null)
 throw new ArgumentNullException(
 message: "Vehicle must not be null",
 paramName: nameof(vehicle));
 else if (vehicle is Airplane a)
 a.Fly();
 else if (vehicle is Bike b)
 b.Ride();
 else if (vehicle is Car c)
 {
 if (c.HasAutoDrive) c.AutoDrive();
 else c.Drive();
 }
 else
 throw new ArgumentException(
 message: "Unexpected vehicle type",
 paramName: nameof(vehicle));
}

This function sets the vehicle in motion according to its specific way of doing so. A
statement like if(vehicle is Airplane a) tests whether the variable vehicle
can be converted to the Airplane type, and if that is true, then it assigns it to a new
variable of the Airplane type (in this example, a). This works with both value types and
reference types.

The variables seen here—a, b, and c—have a local scope to the if or else statement.
However, these variables are in scope and definitely assigned only when the match was
successful. This prevents you from accessing the result of a pattern-matching expression
when the pattern was not matched.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

248 Advanced Topics

As well as the type pattern, a constant pattern is also used here. The if (vehicle is
null) statement is a test to see whether the reference is actually set to the instance of
an object or not; if not, an exception is thrown. However, as already mentioned, constant
pattern matching can be used with anything that is a constant—a literal value, a variable
declared with the const specifier, or an enumeration value. The way constant expressions
are evaluated is as follows:

• If both expr and constant are of integral types, it basically evaluates the expr ==
constant expression.

• Otherwise, it invokes the static method, Object.Equals(expr, constant).

The following function shows more examples of constant pattern matching. The
IsTrue() function converts the supplied argument to a Boolean value. The Boolean
value (true), the integral value (1), the string ("1"), and the string ("true") are
converted to true; everything else including null is converted to false:

bool IsTrue(object value)
{
 if (value is null) return false;
 else if (value is 1) return true;
 else if (value is true) return true;
 else if (value is "true") return true;
 else if (value is "1") return true;
 return false;
}

Console.WriteLine(IsTrue(null)); // False
Console.WriteLine(IsTrue(0)); // False
Console.WriteLine(IsTrue(1)); // True
Console.WriteLine(IsTrue(true)); // True
Console.WriteLine(IsTrue("true")); // True
Console.WriteLine(IsTrue("1")); // True
Console.WriteLine(IsTrue("demo")); // False

The switch expression
The more patterns you need to check, the more cumbersome it is to write these sorts of
if-else statements. Naturally, you would want to replace them with a switch. Pattern
matching of the same nature is supported for switch statements with a similar syntax.

Until C# 7.0, the switch statement supported constant pattern matching with integral
types and strings. Since C# 7.0, the type pattern seen earlier is also supported in a switch
statement.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Pattern matching 249

The SetInMotion() function shown in the previous section can be modified as follows
using a switch statement:

void SetInMotion(object vehicle)
{
 switch (vehicle)
 {
 case Airplane a:
 a.Fly();
 break;
 case Bike b:
 b.Ride();
 break;
 case Car c:
 if (c.HasAutoDrive) c.AutoDrive();
 else c.Drive();
 break;
 case null:
 throw new ArgumentNullException(
 message: "Vehicle must not be null",
 paramName: nameof(vehicle));
 default:
 throw new ArgumentException(
 message: "Unexpected vehicle type",
 paramName: nameof(vehicle));
 }
}

The switch statements that use constant pattern matching can only have one case label
that matches the value of the switch expressions. Moreover, switch sections must not
fall through the next section but must end with break, return, or goto. However, they
can be arranged in any order without affecting the behavior of the program semantics and
execution.

With type pattern matching, the rules change. The switch section can fall through the
next and goto is no longer supported as a jump mechanism. The case label expressions
are evaluated in the order they appear in the text and the default case is only executed
if none of the case labels match the pattern. The default case can appear anywhere in
switch but it is always evaluated last.

If a default case is missing and none of the existing case labels match the pattern, the
execution continues after the switch statement without any code in any case label
executing.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

250 Advanced Topics

Another feature of type pattern matching with the switch expression is the support for
when clauses. The following example shows another version of the SetInMotion()
method that uses two case labels to match the Car type, but one of them with a
condition—that the HasAutoDrive property of the Car object is set to true:

void SetInMotion(object vehicle)
{
 switch (vehicle)
 {
 case Airplane a:
 a.Fly();
 break;
 case Bike b:
 b.Ride();
 break;
 case Car c when c.HasAutoDrive:
 c.AutoDrive();
 break;
 case Car c:
 c.Drive();
 break;
 case null:
 throw new ArgumentNullException(
 message: "Vehicle must not be null",
 paramName: nameof(vehicle));
 default:
 throw new ArgumentException(
 message: "Unexpected vehicle type",
 paramName: nameof(vehicle));
 }
}

It is important to note that matching a type pattern guarantees a non-null value, so
there is no need for further tests for null. There are special rules for matching null
in the language. A null value does not match a type pattern, regardless of the type of
the variable. A case label with a pattern matching for null can be added in a switch
expression with a type pattern matching to specifically handle null values. Such an
example is seen in the preceding implementation.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Pattern matching 251

A special form of type pattern matching is using var. The rules are similar to is
expressions—the type is inferred from the static type of the switch expression and a null
value always matches. Therefore, when using the var pattern, you must add an explicit
null check because the value may actually be null. A var declaration may match the
same condition as the default case; in this situation, a default case, even if present, would
never execute.

Let's look at the following function that executes a command received as a string
argument:

void ExecuteCommand(string command)
{
 switch(command)
 {
 case "add": /* add */ break;
 case "del": /* delete */ break;
 case "exit": /* exit */ break;
 case var o when (o?.Trim().Length ?? 0) == 0:
 /* do nothing */
 break;
 default:
 /* invalid command */
 break;
 }
}

This function tries to match the add, del, and exit commands and execute them
appropriately. However, if the argument is null or empty or has only white spaces, it
will do nothing. But this is a different case than an actual command that is either not
supported or not recognized. The var pattern match helps to differentiate between the
two in a simple and elegant manner.

The following are the key takeaways for you for this topic:

• Pattern matching functionalities added in C# 7.0 are an incremental update of
already existing simple pattern matching capabilities.

• The new supported patterns are the constant pattern, the type pattern, and the
var pattern.

• Pattern matching works with is expressions and case blocks in switch statements.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

252 Advanced Topics

• The switch expression pattern matching supports where clauses.

• The var pattern always matches any value including null and, therefore, a test for
null is necessary.

C# 8.0 has introduced even more capabilities to the switch expression pattern matching:
property patterns, tuple patterns, and positional patterns. You can learn about these in
Chapter 15, New Features on C# 8.

Regular expressions
Another form of pattern matching is represented by regular expressions. A regular
expression is a pattern that can be matched against a text. Although not supported
directly at the language level, regular expressions are made available to .NET developers
through the Regex class from the System.Text.RegularExpressions namespace.
In the following pages, we will look at how you can use this class to match an input text,
find parts of it, or replace portions of the text.

Regular expressions are composed of constants (that represent sets of strings) and
operator symbols (that represent operations on these sets). The actual language for
building regular expressions is more complex than what can be described in the
scope of this chapter. If you are not familiar with regular expressions, we recommend
using additional resources for learning them. You can also build and test your regular
expressions using online tools such as https://regex101.com/ or https://
regexr.com/.

Overview
Regular expressions in .NET are built based on the Perl 5 regular expressions. As such,
most of Perl 5 regular expressions are compatible with .NET regular expressions. On the
other hand, the framework supports another flavor of expressions, called ECMAScript,
which is basically another name for JavaScript (ECMAScript is actually an ECMA
standard for scripting-languages, and JavaScript is its best-known implementation).
However, when using regular expressions, you must explicitly specify this flavor instead.
The implementation of the .NET regular expressions has remained the same since .NET
2.0 and is the same in .NET Core.

The following are some of the features supported by this implementation:

• Case-insensitive matching

• Right-to-left searching (for languages such as Arabic, Hebrew, or Persian that have a
right-to-left writing system)

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://regex101.com/
https://regex101.com/
https://regexr.com/

Regular expressions 253

• Multi-line or single-line searching modes that change the meaning of some
symbols, such as ˆ, $ or . (dot)

• The possibility to compile a regular expression to an assembly and to increase
performance when a pattern is used to search a large number of strings

• Infinite-width look-behind that enables us to step back to any length and check in
the string whether the text inside the look-behind can be matched there

• Character class subtraction that allows you to specify one character class to subtract
from another character class

• Balancing groups that allow you to ensure that a subexpression is matched to an
equal number of types as another one

Some of these functionalities are enabled with a flag provided as an argument to the
constructor of the Regex class. The RegexOptions enumeration provides the following
flags, which can be combined:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

254 Advanced Topics

Before we move to the next section to look at how to actually use regular expressions in
C#, there are two more important things to mention:

• First, regular expressions have a set of special characters. One of them is \
(backslash). In combination with another literal character, this creates a new token
with a special meaning. For instance, \d matches any single digit from 0 to 9. Since
the backslash is also a special character in C# used for introducing character escape
sequences, when you write a regular expression in a string, you need to use double
backslashes, such as "(\\d+)". However, you can use verbatim strings to avoid
this and keep the regular expression in its natural form. The previous example can
be written as @"(\d+)".

• The other important thing to notice is that the Regex class implicitly assumes
UTF-8 encoding of the string to match. That means the \w, \d, and \s tokens
match any UTF-8 codepoint that is a valid character, digit, or whitespace character
in any language. As an example, if you use \d+ to match any positive number of
digits, you might be surprised to discover that it will match not just 0-9 but also the
following characters:

If you want to restrict matching to English digits for \d, English digits and letters
and underscore for \w, and standard whitespace characters for \s, then you need
to use the RegexOptions.ECMAScript option.

Let's now see how to define regular expressions and use them to figure out whether some
text matches an expression.

Matching input text
The simplest functionality that regular expressions provide is checking whether an input
string has a required format. This is useful for performing validation such as checking
whether a string is a valid email address, IP address, date, and so on.

To understand how this works, we will validate whether an input text is a valid ISO 8061
date. For simplicity, we will only consider the form YYYY-MM-DD, but as an exercise,
you can extend this to support other formats. The regular expression we will use for this
is (\d{4})-(1[0-2]|0[1-9]|[0-9]{1})-(3[01]|[12][0-9]|0[1-
9]|[1-9]{1}).

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regular expressions 255

Broken down into parts, the sub-expressions are as follows:

The following two examples are equivalent. The Regex class has both static and non-static
overloads for IsMatch(), and you can use any of the two with the same results. This
is also the case for other methods, which we will see in the following sections, such as
Match(), Matches(), Replace(), and Split():

var pattern = @"(\d{4})-(1[0-2]|0[1-9]|[1-9]{1})-(3[01]|[12][0-
9]|0[1-9]|[1-9]{1})";
var success = Regex.IsMatch("2019-12-25", pattern);

// or

var regex = new Regex(pattern);
var success = regex.IsMatch("2019-12-25");

If you need to match a pattern only once or a few times, then you could use the static
methods as they are simpler. However, if you match the same pattern tens of thousands
of times or more, using an instance of the class and calling the non-static members is
potentially faster. For most common usage, this is not the case. In the following examples,
we will only use the static methods.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

256 Advanced Topics

The IsMatch() method has overloads that enable us to specify options for the regular
expression and a timeout interval. This is useful when the regular expression is too
complicated, or the input text is too long, and the parsing takes more than the desired
amount of time. Take a look at the following example:

var success = Regex.IsMatch("2019-12-25",
 pattern,
 RegexOptions.ECMAScript,
 TimeSpan.FromMilliseconds(1));

Here, we enable ECMAScript-compliant behavior of the regular expression and set a
timeout value of one millisecond.

Now that we've seen how to match text, let's learn how you can search for substrings and
multiple occurrences of a pattern.

Finding substrings
In the examples so far, we only checked whether the input text was of a specific pattern.
But it is also possible to get information about the result. This includes, for instance, the
text matched in each caption group, the entire matched value, the position in the input
text, and so on. To do this, another set of overloads must be used.

The Match() methods check an input string for substrings that match a regular
expression and return the first match. The Matches() methods do the same search but
return all of the matches. The return type is System.Text.RegularExpressions.
Match (that represents a single match) for the former and System.Text.
RegularExpressions.MatchCollection (that represents a collection of matches)
for the latter. Let's consider the following example:

var pattern =
 @"(\d{4})-(1[0-2]|0[1-9]|[1-9]{1})-(3[01]|[12][0-9]|0[1-
9]|[1-9]{1})";
var match = Regex.Match("2019-12-25", pattern);
Console.WriteLine(match.Value);
Console.WriteLine(
 $"{match.Groups[1]}.{match.Groups[2]}.{match.Groups[3]}");

The first value printed to the console is 2019-12-25 because that is the value of the
entire match. The second is a value composed of the individual values of each capture
group, but with a dot (.) as the separator. Consequently, the output text is 2019.12.25.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regular expressions 257

Capture groups may have names; the form is (?<name>...). In the following example,
we call the three capture groups of the regular expression, year, month, and day:

var pattern =
 @"(?<year>\d{4})-(?<month>1[0-2]|0[1-9]|[1-9]{1})-
(?<day>3[01]|[12][0-9]|0[1-9]|[1-9]{1})";
var match = Regex.Match("2019-12-25", pattern);
Console.WriteLine(
 $"{match.Groups["year"]}-{match.Groups["month"]}-{match.
Groups["day"]}");

Should the input text have multiple substrings that match the pattern, we can get all of
them using the Matches() function. In the following example, dates are provided one
per line, but the last two are not valid (2019-13-21 and 2019-1-32); therefore, these
are not found in the results. To parse the string, we use the multiline option, so that ^ and
$ refer to the beginning and the end of each line and not to the entire string, as shown in
the following example:

var text = "2019-05-01\n2019-5-9\n2019-12-25\n2019-13-21\n2019-
1-32";
var pattern =
 @"^(\d{4})-(1[0-2]|0[1-9]|[1-9]{1})-(3[01]|[12][0-9]|0[1-
9]|[1-9]{1})$";
var matches = Regex.Matches(
 text, pattern, RegexOptions. Multiline);
foreach(Match match in matches)
{
 Console.WriteLine(
 $"[{match.Index}..{match.Length}]={match. Value}");
}

The output of the program is as follows:

[0..10]=2019-05-01
[11..8]=2019-5-9
[20..10]=2019-12-25

Sometimes, we don't just want to find substrings of an input text; we also want to replace
them with something else. This topic is discussed in the following section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

258 Advanced Topics

Replacing parts of a text
Regular expressions can also be used to replace parts of a string that match the regular
expression with another string. The Replace() method has a set of overloads, and you
can specify either a string or a so-called match evaluator, which is basically a function
that takes a Match argument and returns a string. In the following example, we will use
this to change the format of date from YYYY-MM-DD to MM/DD/YYYY:

var text = "2019-12-25";
var pattern = @"(\d{4})-(1[0-2]|0[1-9]|[1-9]{1})-(3[01]|[12]
 [0-9]|0[1-9]|[1-9]{1})";
var result = Regex.Replace(
 text, pattern,
 m => $"{m.Groups[2]}/{m.Groups[3]}/{m.Groups[1]}");

As a further exercise, you can write a program that converts an input date of the form
2019-12-25 to the form Dec 25, 2019.

As a conclusion to this section, regular expressions offer rich pattern matching
capabilities. .NET provides the Regex class that represents a regular expression engine
with plenty of functionalities. In this section, we have seen how to match, search, and
replace texts based on a pattern. These are common operations that you will encounter in
a large variety of applications. You can choose between static and instance overloads of
these methods and customize the way they work with various options.

Extension methods
It is sometimes useful to add functionality to a type without changing the implementation,
creating a derived type, or recompiling code in general. We can do that by creating
methods in helper classes. Let's say we want to have a function that reverses the content
of a string because System.String does not have one. Such a function can be
implemented as follows:

static class StringExtensions
{
 public static string Reverse(string s)
 {
 var charArray = s.ToCharArray();
 Array.Reverse(charArray);
 return new string(charArray);
 }
}

This can be invoked as follows:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Extension methods 259

var text = "demo";
var rev = StringExtensions.Reverse(text);

The C# language allows us to define this function in a way that enables us to call it as
if it was an actual member of System.String. Such functions are called extension
methods. There are few changes to do to the Reverse() method to make it an extension
method. The new implementation is shown in the following code:

static class StringExtensions
{
 public static string Reverse(this string s)
 {
 var charArray = s.ToCharArray();
 Array.Reverse(charArray);
 return new string(charArray);
 }
}

Notice that the only change to the implementation is the this keyword in front of the
function parameter. With these changes, the function can be invoked as if it was part of
the string class:

var text = "demo";
var rev = text.Reverse();

The following rules apply to the definition and the behavior of extension methods:

• They can extend classes, structures, and enumerations.

• They must be declared as a static method of a static, non-nested, non-generic class.

• Their first parameter is the type they add functionality to. This parameter is
preceded by the this keyword.

• They can only invoke public members of the type they extend.

• They are only available when the namespace in which they are declared is brought
into the current scope with a using directive.

• If an extension method (that is available in the current scope) has the same
signature as an instance method of the class, the compiler will always prefer the
instance member and the extension method will never be called.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

260 Advanced Topics

The following example shows an extension method called AllMessages() that extends
the functionality of the System.Exception type. This represents an exception and
has a message but can also contain an inner exception. This extension method returns a
string composed by concatenating all of the messages of all of the nested exceptions. The
Boolean argument indicates whether the messages should be concatenated from the main
exception to the most inner one or in reverse order:

static class ExceptionExtensions
{
 public static string AllMessages(this Exception exception,
 bool reverse = false)
 {
 var messages = new List<string>();
 var ex = exception;
 while(ex != null)
 {
 messages.Add(ex.Message);
 ex = ex.InnerException;
 }

 if (reverse) messages.Reverse();

 return string.Join(Environment.NewLine, messages);
 }
}

The extension method can be then invoked as follows:

var exception =
 new InvalidOperationException(
 "An invalid operation occurred",
 new NotSupportedException(
 "The operation is not supported",
 new InvalidCastException(
 "Cannot apply cast!")));

Console.WriteLine(exception.AllMessages());
Console.WriteLine(exception.AllMessages(true));

The most common extension methods from .NET are the LINQ standard operators that
extend the IEnumerable and IEnumerable<T> types. We will explore LINQ in
Chapter 10, Lambdas, LINQ, and Functional Programming. If you implement extension
methods to extend a type you cannot change, you must keep in mind that future changes
to the type may break the extension method.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 261

Summary
In this chapter, we addressed a series of advanced language features. We started with
delegates and events that implement callbacks in a strongly-typed manner. We continued
anonymous types and with tuples, which are lightweight types that can hold any value and
help us to avoid defining new explicit types. We then looked at pattern matching, which
is the process of checking whether a value has a particular shape as well as extracting
information about it. We continued with regular expressions, which are patterns with
a well-defined grammar that can be matched against a text. Lastly, we learned about
extension methods that make it possible to add functionality to types without changing
their implementation, such as when we don't own the source code.

In the next chapter, we will discuss garbage collection and resource management.

Test what you learned
1. What are callbacks and how are these related to delegates?

2. How do you define delegates? What about events?

3. How many types of tuples exist? What are the key differences between them?

4. What are named tuples and how do you create them?

5. What is pattern matching and what statements can it be used with?

6. What are the rules for pattern matching null?

7. What class implements regular expressions and what encoding does it use
by default?

8. What is the difference between the Match() and Matches() methods of
this class?

9. What are extension methods and why are they helpful?

10. How do you define an extension method?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

9
Resource

Management
In previous chapters, we discussed and worked with value types and reference types and
have also seen how they differ. We also briefly talked about how the runtime is managing
the allocated memory.

In this chapter, we will get into more details of this topic and look at the language features
and best practices for managing memory and resources.

The topics that will be discussed in this chapter are as follows:

• Garbage collection

• Finalizers

• The IDisposable interface

• The using statement

• Platform invoke

• Unsafe code

By the end of this chapter, you will have learned how to implement disposable types and
how to dispose of objects when they are no longer needed. You will have also learned how
to call native APIs and write unsafe code.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

264 Resource Management

Garbage collection
The Common Language Runtime (CLR) is responsible for managing the lifetime of
objects and freeing memory when it's no longer used so that new objects can be allocated
within the process. It does so through a component called the garbage collector (GC),
which allocates objects on the managed heap in an efficient manner and clears memory
by reclaiming objects that are no longer used. The garbage collector makes developing
applications easier because you do not have to worry about manually freeing memory.
This is what makes applications written for .NET to be known as managed.

Before we discuss how all this happens, you need to understand the difference between
stack and heap, as well as the differences between types, objects, and references.

A type (whether introduced with the class or struct keyword in C#) is a blueprint for
constructing objects. It is described in the source code using language features. An object
is an instantiation of a type and lives in memory. A reference is a sort of handle (basically,
a storage location) that points to an object.

Now, let's discuss memory. The stack is a relatively small segment of memory allocated
by the compiler that keeps track of the memory necessary for running the application.
The stack has Last In First Out (LIFO) semantics and grows and shrinks as the program
execution is invoking functions or returning from functions. The heap, on the other hand,
is a large segment of memory that the program may use to allocate memory at runtime,
and which, in .NET, is managed by the CLR.

Objects of value types may be stored in multiple locations. They are typically stored on
the stack, but they can also be stored on CPU registers. Value types that are a part of
a reference type are stored on the heap as part of the enclosing object. Objects of reference
types are always stored on the heap, but references to objects are stored on the stack or
CPU registers.

To understand this better, let's consider the following short program, where Point2D is a
value type and Engine is a reference type:

class Program
{
 static void Main(string[] args)
 {
 var i = 42;
 var pt = new Point2D(1, 2); // value type
 var engine = new Engine(); // reference type
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Garbage collection 265

Conceptually (because this is a very simplistic representation), the stack and heap will
contain the following values:

Figure 9.1 – The conceptual representation of the stack and heap content during the execution
of the preceding program

The stack is managed by the compiler and, for the rest of this chapter, we will discuss the
heap and how the runtime manages it. The .NET runtime divides objects into two groups:

• Large: These objects are those objects that are larger than 85 KB; multidimensional
objects are also included in this category.

• Small: These objects are all other objects.

The heap is composed of several memory segments called generations. There are three
generations of memory – 0, 1, and 2:

• Generation 0 contains small, and usually short-lived, objects, such as local variables
or objects instantiated for the lifetime of a function call.

• Generation 1 contains small objects that have survived a garbage collection of
memory from generation 0.

• Generation 2 contains long-lived small objects that have survived a garbage
collection of memory from generation 1 and large objects (which are always
allocated on this segment).

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

266 Resource Management

When the runtime needs to allocate objects on the managed heap and there is not enough
memory, it triggers a garbage collection. A garbage collection has three phases:

• First, the garbage collector builds a graph of all live objects in order to figure out
what is still used and what may be deleted.

• Second, references to objects that will be compacted are updated.

• Third, the dead objects are removed, and the surviving objects are compacted.
Typically, the large object heap containing large objects is not compacted because
moving large chunks of data incurs performance costs.

When the garbage collection starts, all the managed threads are suspended, with the
exception of the thread that started the collection. The threads are resumed when the
garbage collection ends. The garbage collection's first phase starts from the so-called
application roots, which are storage locations that contain references to objects on the
heap. Application roots include references to global objects, static objects, fields, local
objects, objects passed as function arguments, objects waiting to be finalized, and CPU
registers that contain references to objects on the heap.

The CLR builds a graph of reachable heap objects; everything that is not reachable will
be deleted. If all generation 0 objects have been evaluated, but the freed memory is not
enough, the garbage collection proceeds to evaluate generation 1. If more memory is
required after this, the garbage collection proceeds to evaluate generation 2.

Objects that survived the garbage collection of generation 0 are assigned to generation 1,
and objects that survived from generation 1 are assigned to generation 2. However, objects
that survive the garbage collection of generation 2 remain in generation 2. If the garbage
collection process is finished and there is not enough memory on the large object heap
(that's always part of generation 2) to allocate as requested, the CLR throws an exception
of the OutOfMemoryException type. This does not necessarily mean there is no more
memory, but that the uncompacted memory on this segment does not contain a chunk
large enough for the new object.

The base class library contains a class called System.GC that enables us to interact with
the garbage collector. However, this is seldom the case, apart from implementing the
disposable pattern that we will see later in this chapter, in the The IDisposable interface
section. Here are several members of this class:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Garbage collection 267

The following program uses the System.GC class to show the current generation of the
Engine object, as well as the estimated size of the managed heap, at the time of the call:

class Program
{
 static void Main(string[] args)
 {
 var engine = new Engine("M270 Turbo", 1600, 75.0);
 Console.WriteLine(
 $"Generation of engine:
 {GC.GetGeneration(engine)}");
 Console.WriteLine(
 $"Estimated heap size: {GC.
 GetTotalMemory(false)}");
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

268 Resource Management

The output of the program is as follows:

Figure 9.2 – A console screenshot showing the output of the preceding program

We'll learn about finalizers in the next section.

Finalizers
The garbage collector provides the automatic disposal of managed resources. However,
there are cases when you have to work with unmanaged resources such as raw file handles,
windows, or other operating system resources retrieved with Platform Invocation
Services (P/Invoke) calls, as well as COM object references in some advanced scenarios.
These resources need to be explicitly released before the object is destroyed by the garbage
collector; otherwise, resource leaks occur.

Every object has a special method called the finalizer. The System.Object class has a
virtual and protected member called Finalize(), with an empty implementation. This
is shown in the following code:

class Object
{
 protected virtual void Finalize() {}
}

Although this is a virtual method, you cannot actually override it directly. Instead, the C#
language offers a syntax identical to the one for destructors in C++ to create a finalizer
and override the System.Object method. However, this is only possible to implement
for reference types; value types cannot have finalizers since they are not garbage collected.
This is shown in the following code:

class ResourceWrapper
{
 // constructor
 ResourceWrapper()
 {
 // construct the object
 }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finalizers 269

 // finalizer
 ~ResourceWrapper()
 {
 // release unmanaged resources
 }
}

The reason you cannot explicitly override the Finalize() method is that the C#
compiler will add additional code to ensure that the base class implementation is actually
called during finalization (this means the Finalize() method is called on all instances
in the inheritance chain). Therefore, the code shown earlier for the finalizer is replaced by
the compiler with the following:

class ResourceWrapper
{
 protected override void Finalize()
 {
 try
 {
 // release unmanaged resources
 }
 finally
 {
 base.Finalize();
 }
 }
}

Although a class may have multiple constructors, it can only have one finalizer. Finalizers
cannot, therefore, be overloaded or have modifiers and parameters; they also cannot be
inherited. Finalizers are not called directly, but are invoked by the garbage collector.

The way the garbage collector invokes the finalizers is as follows. When an object that has
a finalizer is created, the garbage collector adds a reference to it to an internal structure
called the finalization queue. When proceeding with collecting objects, the garbage
collector calls the finalizers on all the objects on the finalization queue, unless they have
been exempted from finalization with a call to GC.SupressFinalize(). This is also
done when the application domain is being unloaded, but only for .NET Framework; for
.NET Core, this is not the case. The invocation of the finalizers is still non-deterministic.
The exact moment of the call is undefined as well as the thread on which the invocation
occurs. Also, the finalizers of two objects, even when referring to one another, is not
guaranteed to happen in any particular order.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

270 Resource Management

Information box
Because finalizers incur a performance loss, make sure that you do not create
empty finalizers. Implement a finalizer if, and only if, your object must dispose
of an unmanaged resource.

The HandleWrapper class shown in the following code is a wrapper for a native handler.
An actual implementation may be more complex; this is shown for teaching purposes
only. The raw handle may be created in native code and passed to a managed application.
This class takes ownership of the handle and therefore needs to release it when the object
is no longer needed. This is done with a call to the CloseHandle() system API using P/
Invoke. The class defines a finalizer to do so. Let's take a look at the following code:

public class HandleWrapper
{
 [DllImport("kernel32.dll", SetLastError=true)]
 static extern bool CloseHandle(IntPtr hHandle);

 public IntPtr Handle { get; private set; }

 public HandleWrapper(IntPtr ptr)
 {
 Handle = ptr;
 }

 ~HandleWrapper()
 {
 if(Handle != default)
 CloseHandle(Handle);
 }
}

It is seldom the case when you actually need to create a finalizer. For scenarios such as the
one mentioned previously, there are system wrappers available for handling unmanaged
resources. You should use one of the following safe handles:

• SafeFileHandle: A wrapper for a file handle

• SafeMemoryMappedFileHandle, a wrapper for memory-mapped file handles

• SafeMemoryMappedViewHandle, a wrapper for a pointer to a block of
unmanaged memory

• SafeNCryptKeyHandle, SafeNCryptProviderHandle, and
SafeNCryptSecretHandle, wrappers for cryptographic handles

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The IDisposable interface 271

• SafePipeHandle, a wrapper for pipe handles

• SafeRegistryHandle, a wrapper for a handle to a registry key

• SafeWaitHandle, a wrapper for a wait handle

As already mentioned, finalizers are still non-deterministic. To ensure the deterministic
release of resources, either managed or unmanaged, a type should provide a Close()
method or implement the IDisposable interface. In this case, the finalizer could
be used only to free unmanaged resources in the event the Dispose() method was
not called.

We'll learn about the IDisposable interface in the next section.

The IDisposable interface
Deterministic disposal of resources can be done by implementing the System.
IDisposable interface. This interface has a single method called Dispose() that
can be explicitly called by users when an object is no longer used and its resources can
be disposed of. However, you should only implement this interface in the following
circumstances:

• The class has ownership of unmanaged resources

• The class has ownership of managed resources that are themselves disposable

The way this interface should be implemented depends on whether the class has
ownership of unmanaged resources. The general pattern, when you have both
managed and unmanaged resources, is as follows:

public class MyResource : IDisposable
{
 private bool disposed = false;

 protected virtual void Dispose(bool disposing)
 {
 if (!disposed)
 {
 if (disposing)
 {
 // dispose managed objects
 }

 // free unmanaged resources
 // set large fields to null.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

272 Resource Management

 disposed = true;
 }
 }

 ~MyResource()
 {
 Dispose(false);
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }
}

From the Dispose() method of the IDisposable interface, we call a protected
virtual method with the same name (although it can have any name) and a parameter
specifying that the object is being destroyed. To ensure that the disposal of resources is
done only once, a Boolean field (called disposed here) is used. The Boolean parameter
to the overloaded Dispose() method indicates whether the method is being called in
a deterministic manner by the user or in a non-deterministic manner by the garbage
collector when the object is finalized.

In the former case, both managed and unmanaged resources should be
disposed of and the finalization of the object should be suppressed with a call to
GC.SupressFinalize(). In the latter case, only unmanaged resources must be
disposed of, because the disposal was not invoked by the user, but by the garbage collector.
The reason this function is virtual and protected is that it should be possible for derived
classes to override it, but it should not be possible to call it directly from outside the class.

Let's see how to implement this for different scenarios. For starters, we will consider the
case where the class has only disposable managed resources. In the following example,
the Engine class implements IDisposable. What it does exactly, what resources it
manages, and how it disposes of them is not important. However, the Car class has an
owning reference to an Engine object, which should be destroyed as soon as the Car
object is destroyed. Moreover, this should be done in a deterministic manner, when the
Car is no longer needed. In this case, the IDisposable interface must be implemented
as follows in the Car class:

public class Engine : IDisposable {}

public class Car : IDisposable
{

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The IDisposable interface 273

 private Engine engine;

 public Car(Engine e)
 {
 engine = e;
 }

 #region IDisposable Support

 private bool disposed = false;

 protected virtual void Dispose(bool disposing)
 {
 if (!disposed)
 {
 if (disposing)
 {
 engine?.Dispose();
 }

 disposed = true;
 }
 }

 public void Dispose()
 {
 Dispose(true);
 }

 #endregion
}

Since this class does not have a finalizer, the overloaded Dispose() method is of little
use here, and the code can be further simplified. However, a derived class can override it
and dispose of further resources.

In the previous section, we implemented a class called HandleWrapper that had a
finalizer to close the system handle that it owned. In the following listing, you can see a
modified version of this class that implements the IDisposable interface:

public class HandleWrapper : IDisposable
{
 [DllImport("kernel32.dll", SetLastError = true)]
 static extern bool CloseHandle(IntPtr hHandle);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

274 Resource Management

 public IntPtr Handle { get; private set; }

 public HandleWrapper(IntPtr ptr)
 {
 Handle = ptr;
 }

 private bool disposed = false; // To detect redundant calls

 protected virtual void Dispose(bool disposing)
 {
 if (!disposed)
 {
 if (disposing)
 {
 // nothing to dispose
 }

 if (Handle != default)
 CloseHandle(Handle);

 disposed = true;
 }
 }

 ~HandleWrapper()
 {
 Dispose(false);
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }
}

This class has both a Dispose() method (that can be called by the user) and a finalizer
(called by the garbage collector in case the user did not call the Dispose() method).
There are no managed resources to release in this example, so the Boolean parameter of
the overloaded Dispose() method is basically unused.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The using statement 275

The language provides us with a way to automatically dispose of objects that implement
the IDisposable interface when they are no longer needed. We will learn about this in
the following section.

The using statement
Before we introduce the using statement, let's see how explicit resource management is
done in a proper manner. This will help you to better understand the need and workings
of the using statements.

The Car class we looked at in the previous section can be used as follows:

Car car = null;
try
{
 car = new Car(new Engine());
 // use the car here
}
finally
{
 car?.Dispose();
}

A try-catch-finally block (although catch is not explicitly shown here) should
be used in order to ensure proper disposal of the object when it is no longer needed.
However, the C# language provides a convenient syntax for ensuring the correct disposal
of an object with the using statement. This has the following form:

using (ResourceType resource = expression) statement

The compiler transforms this into the following code:

{
 ResourceType resource = expression;
 try {
 statement;
 }
 finally {
 resource.Dispose();
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

276 Resource Management

The using statement introduces a scope for the variable defined in the statement and
ensures that the object is properly disposed of before the scope is exited. The actual
disposal depends on whether the resource is a value type, a nullable value type, a reference
type, or a dynamic type. The call to resource.Dispose() earlier is actually one of
the following:

// value types
((IDisposable)resource).Dispose();

// nullable value types or reference types
if (resource != null)
 ((IDisposable)resource).Dispose();

// dynamic
if (((IDisposable)resource) != null)
 ((IDisposable)resource).Dispose();

For the car example, we can use it as follows:

using (Car car = new Car(new Engine()))
{
 // use the car here
}

Multiple objects can be instantiated into the same using statement, as shown in the
following example:

using (Car car1 = new Car(new Engine()),
 car2 = new Car(new Engine()))
{
 // use car1 and car2 here
}

On the other hand, multiple using statements can be chained together, as shown here,
which is equivalent to the previous code:

using (var car1 = new Car(new Engine()))
using (var car2 = new Car(new Engine()))
{
 // use car1 and car2 here
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Platform invoke 277

In C# 8, the using statement can be written as follows:

using Car car = new Car(new Engine());
// use the car here

For more information about this, refer to Chapter 15, New Features of C# 8.

Platform invoke
Earlier in this chapter, we implemented a handle wrapper class that used a Windows API
function, CloseHandle(), to delete system handles when the object was disposed of.
The way a C# program can invoke Windows APIs, but also any function exported from
a native dynamic-linked library (DLL), is done through Platform Invocation Services,
also known as Platform Invoke or P/Invoke.

P/Invoke locates and invokes an exported function and marshals the arguments between
the managed and unmanaged boundaries. In order to be able to call a function using P/
Invoke, you must know the name and signature of the function, as well as the name of
the DLL from where it is exported. Then, you must create a managed definition of the
unmanaged function. To understand how this works, we will look at an example
of the MessageBox() function, available in user32.dll. The function signature
is as follows:

int MessageBox(HWND hWnd, LPCTSTR lpText,
 LPCTSTR lpCaption, UINT uType);

We can create the following manage definition for the function:

static class WindowsAPI
{
 [DllImport("user32.dll")]
 public static extern int MessageBox(IntPtr hWnd,
 string lpText,
 string lpCaption,
 uint uType);
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

278 Resource Management

There are several things to notice here:

• The signature of the managed definition must match the native one, using the
equivalent managed types for the parameters.

• The function must be defined as static and extern.

• The function must be decorated with DllImportAttribute. This attribute
defines the necessary information for the runtime to call the native function.

DllImportAttribute requires at least the name of the DLL from which the native
function is exported. You can omit the name of the entry point in the DLL, in which case
the name of the managed function is used to identify it. However, you can also specify it
explicitly using the EntryPoint property of the attribute. The other properties you can
specify are as follows:

• BestFitMapping: A Boolean flag that indicates whether best-fit mapping is
enabled. This is used when converting from Unicode to ANSI characters. Best-fit
mapping enables the interop marshaler to use close-matching characters when an
exact match does not exist (for instance, the copyright character is replaced with c).

• CallingConvention: The calling convention for an entry point. The default
value is Winapi, which defaults to StdCall.

• CharSet: Specifies the marshaling behavior for string parameters. It is also used to
specify the entry point name to invoke. For instance, for the message box example,
Windows has two functions actually—MessageBoxA() and MessageBoxW().
The value of the CharSet parameter enables the runtime to choose between one or
the other; more precisely, the name ending in A for CharSet.Ansi (which is the
default for C#) and the name ending in W for CharSet.Unicode.

• EntryPoint: The entry point name or ordinal.

• ExactSpelling: Indicates whether the CharSet field determines the CLR
to search the unmanaged DLL for entry-point names other than the one that has
been specified.

• PreserveSig: A Boolean flag that indicates whether the HRESULT or retval
values are translated directly (if true) or automatically converted into exceptions
(if false). The default value is true.

• SetLastError: Indicates, if true, that the callee calls SetLastError() before
returning. In this case, the CLR calls GetLastError() and caches the value to
prevent it from being overwritten, and therefore lost, by other Windows API calls.
To retrieve the value, you can call Marshal.GetLastWin32Error().

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Platform invoke 279

• ThrowOnUnmappableChar: Indicates (when true) whether the marshaler
should throw an error when converting a Unicode character into ANSI '?'. The
default value is false.

The following table shows the data types in the Windows API and C-style functions, as
well as their corresponding C# or .NET Framework types:

Important note
[1] Decorate with CharSet.Ansi or use the
[MarshalAs(UnmanagedType.LPStr)] attribute on the
string parameter.

[2] Decorate with CharSet.Unicode or use the
[MarshalAs(UnmanagedType.LPWStr)] attribute on the
string parameter.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

280 Resource Management

To be able to properly call the MessageBox() function we defined earlier, we should
also define constants for the possible arguments and return values. A snippet is
shown here:

static class WindowsAPI
{
 public static class MessageButtons
 {
 public const int MB_OK = 0;
 public const int MB_OKCANCEL = 1;
 public const int MB_YESNOCANCEL = 3;
 public const int MB_YESNO = 4;
 }

 public static class MessageIcons
 {
 public const int MB_ICONERROR = 0x10;
 public const int MB_ICONQUESTION = 0x20;
 public const int MB_ICONWARNING = 0x30;
 public const int MB_ICONINFORMATION = 0x40;
 }

 public static class MessageResult
 {
 public const int IDOK = 1;
 public const int IDYES = 6;
 public const int IDNO = 7;
 }
}

With this all set, we can call the MessageBox() function, as follows:

class Program
{
 static void Main(string[] args)
 {
 var result = WindowsAPI.MessageBox(
 IntPtr.Zero,
 "Is this book helpful?",
 "Question",
 WindowsAPI.MessageButtons.MB_YESNO |
 WindowsAPI.MessageIcons.MB_ICONQUESTION);

 if(result == WindowsAPI.MessageResult.IDYES)
 {

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Platform invoke 281

 // time to learn more
 }
 }
}

Many Windows APIs require a buffer to be used to return data. For instance, the
GetUserName() function from advapi32.dll returns the name of the user
associated with the current thread of execution. The function signature is as follows:

BOOL GetUserName(LPSTR lpBuffer, LPDWORD pcbBuffer);

The first argument is a pointer to an array of characters, which is used to receive the
name of the user, while the second is a pointer to an unsigned integer, which is used to
specify the size of the buffer. The buffer needs to be large enough to receive the username.
Otherwise, the function returns false, sets the required size in the pcbBuffer
argument, and sets the last error to ERROR_INSUFFICIENT_BUFFER.

Although you could allocate a buffer large enough to hold the result (some functions
impose limits on the size of the return value), you cannot always be sure. Therefore,
typically, you call such a function twice:

• First, with an empty buffer to get back the actual size required for the buffer

• Then, after allocating the necessary memory, a second time with a buffer large
enough to receive the result

To see how this works, we will P/Invoke the GetUserName() function, whose managed
definition looks like this:

[DllImport("advapi32.dll", SetLastError = true,
 CharSet = CharSet.Unicode)]
public static extern bool GetUserName(StringBuilder lpBuffer,
 ref uint nSize);

Notice that we use StringBuilder for the buffer parameter. Although this can grow
to any capacity, we will need to know what size to specify. Instead of specifying a random
large size, we call the function twice, as shown here:

uint size = 0;
var result = WindowsAPI.GetUserName(null, ref size);
if(!result &&
 Marshal.GetLastWin32Error() ==
 WindowsAPI.ErrorCodes.ERROR_INSUFFICIENT_BUFFER)
{
 Console.WriteLine($"Requires buffer size: {size}");

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

282 Resource Management

 StringBuilder buffer = new StringBuilder((int)size);
 result = WindowsAPI.GetUserName(buffer, ref size);
 if(result)
 {
 Console.WriteLine($"User name: {buffer.ToString()}");
 }
}

In this example, the StringBuffer object is created with an initial capacity, although
this is not really necessary. You don't have to specify its capacity; it will grow to the
required one and receive the correct result.

Let's summarize Platform Invocation Services using the following points:

• Allows calling functions exported from native DLLs.

• You must create a managed definition for a function, with the same signature and
the equivalent managed types for the native ones.

• You must specify at least the function entry point and the name of the exporting
DLL when defining the managed function.

There are some drawbacks when you use P/Invoke, so you should keep the following
in mind:

• If you use P/Invoke to call functions from the Windows API, then your application
will only work on Windows. This is not a problem if you don't intend to make it
cross-platform. Otherwise, you have to avoid that altogether.

• If you need to call functions from a C++ library, you must specify the decorated
names in your import declarations, which can be troublesome. If you are also
authoring the C++ library, you can export functions with the extern "C" linkage
to prevent the linker from decorating the names.

• There is a slight overhead for marshaling between the managed and
unmanaged types.

• This may not be very intuitive at times; for instance, what types to use for pointers
and handles.

In the last section of this chapter, we will discuss unsafe code and pointer types, which is
the third category of types in C#.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Unsafe code 283

Unsafe code
When we discuss the types of .NET Framework and C# language support, we refer to
value types (structures) and reference types (classes). However, there is yet another type
that is supported, and that is pointer types. If you are not familiar with the C or C++
programming languages and pointers in particular, then you should know pointers
are like references—they are storage locations that contain the addresses of objects. A
reference is basically a safe pointer that is managed by the CLR.

To work with pointer types, you must establish a so-called unsafe context. In CLR terms,
this is called unverifiable code because the CLR cannot verify its safety. Unsafe code is
not necessarily dangerous, but it's your entire responsibility to ensure that you do not
introduce pointer errors or security risks.

In truth, there are very rare cases where you actually have to work with pointers in unsafe
contexts in C#. There are two common scenarios when this could be the case:

• Calling functions exported from a native DLL or COM server that require
pointer types as parameters. However, in most cases, you still can do this with
a safe code using System.IntPtr and members of the System.Runtime.
InteropServices.Marshal type.

• Optimizing particular algorithms where performance is critical.

You can define an unsafe context using the unsafe keyword. This can be applied to
the following:

• Types (class, struct, interface, delegate), in which case the entire textual context of
the type is considered unsafe:

unsafe struct Node
{
 public int value;
 public Node* left;
 public Node* right;
}

• Methods, fields, properties, events, indexers, operators, instance and static
constructors, and destructors, in which case the entire textual context of the
member is considered unsafe:

struct Node
{
 public int Value;
 public unsafe Node* Left;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

284 Resource Management

 public unsafe Node* Right;
}

unsafe void Increment(int* value)
{
 *value += 1;
}

• A statement (block), in which case the entire textual context of the block is
considered unsafe:

static void Main(string[] args)
{
 int value = 42;
 unsafe
 {
 int* p = &value;
 *p += 1;
 }
 Console.WriteLine(value); // prints 43
 }

However, in order to be able to compile code that uses unsafe contexts, you must explicitly
use the /unsafe compiler switch. In Visual Studio, you can check the Allow unsafe
code option from Project properties | Build, under the General section, as shown in the
following screenshot:

Figure 9.3 – Visual Studio's Project Properties page that allows enabling the Allow unsafe code option

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Unsafe code 285

Unsafe code can only be executed from another unsafe context. For instance, if you have
a method that is declared as unsafe, you may only call it from an unsafe context. This is
shown in the following example, where the unsafe Increment() method (introduced
previously) is called from an unsafe context. An attempt to do this from a safe context
results in a compiler error:

static void Main(string[] args)
{
 int value = 42;
 Increment(&value); // error

 unsafe
 {
 Increment(&value); // OK
 }
 }

If you are familiar with C or C++, you know that the pointer symbol (*) can be put either
next to the type, the variable, or in between. The following are all equivalent in C/C++:

int* a;
int * a;
int *a;
int* a, *b; // define two variables of type pointer to int

However, in C#, you always put * next to the type, as in the following example:

int* a, b; // define two variables of type pointer to int

Variables can be of two types—fixed and movable. Movable variables reside in storage
locations that are controlled by the garbage collector and therefore can be moved or
collected. Fixed variables reside in storage locations that are unaffected by the operations
of the garbage collector.

In unsafe code, you can take the address of a fixed variable using the & operator without
restrictions. However, you can only do so with movable variables using a fixed statement.
A fixed statement is introduced with the fixed keyword and is, in many aspects, similar
to a using statement.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

286 Resource Management

The following is an example of using a fixed statement:

class Color
{
 public byte Alpha;
 public byte Red;
 public byte Green;
 public byte Blue;

 public Color(byte a, byte r, byte g, byte b)
 {
 Alpha = a;
 Red = r;
 Green = g;
 Blue = b;
 }
}

static void SetTransparency(Color color, double value)
{
 unsafe
 {
 fixed (byte* alpha = &color.Alpha)
 {
 *alpha = (byte)(value * 255);
 }
 }
}

The SetTransparency() function changes the alpha value of a Color object using
a pointer to the Alpha field. Although this is of the byte type, which is a value type, it
resides on the managed heap because it is part of a reference type. The garbage collector
may move or collect the Color object before the Alpha field is accessed. Therefore, the
only possible way to retrieve its address is to use the fixed statement. This basically pins
the managed object so that the garbage collector will not move or collect it.

Apart from usafe and fixed, there are two more keywords that can be used in
unsafe contexts:

• stackalloc, which is used to declare a variable that allocates memory on the call
stack (similar to _alloca() in C):

static unsafe void AllocArrayExample(int size)
{
 int* arr = stackalloc int[size];

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 287

 for (int i = 1; i <= size; ++i)
 arr[i] = i;
}

• sizeof, which is used to obtain the size in bytes of a value type. For primitive
types and enum types, the sizeof operator can actually be called in safe
contexts too:

static void SizeOfExample()
{
 unsafe
 {
 Console.WriteLine(
 $"Pointer size: {sizeof(int*)}");
 }
}

Let's summarize the unsafe code by taking a look at the following key points:

• It can only be executed in unsafe contexts, introduced with the unsafe keyword
when compiling with the /unsafe switch.

• Types, members, and code blocks can be unsafe contexts.

• It introduces security and stability risks that you are solely responsible for.

• There are very rare cases where you have to use it.

Summary
This chapter focused on the way the runtime (through the garbage collector) manages the
lifetime of objects and resources. We learned how the garbage collector works and how to
write finalizers to dispose of native resources. We have seen how to properly implement
patterns for the deterministic release of objects with the IDisposable interface and
using statements. We also looked at Platform Invocation Services, which enable us to
make native calls from managed code, as well as writing unsafe code—which is code that
the CLR cannot verify for safety.

In the next chapter of this book, we will look at a different programming paradigm,
functional programming, and see what its key concepts are in C# and what they enable us
to do.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

288 Resource Management

Test what you learned
1. What are the stack and the heap? What is allocated on each?

2. What are the memory segments of the heap and what is allocated on each?

3. How does garbage collection work?

4. What are finalizers? What is the difference between disposing and finalizing?

5. What does the GC.SupressFinalize() method do?

6. What is IDisposable and when should it be used?

7. What is the using statement?

8. How do you invoke a function from a native DLL in C#?

9. What is unsafe code and what are the typical scenarios where it could be used?

10. What program elements can you declare as unsafe?

Further reading
• Garbage Collection: Automatic Memory Management in the Microsoft .NET

Framework, Jeffrey Richter – MSDN Magazine: https://docs.microsoft.
com/en-us/archive/msdn-magazine/2000/november/garbage-
collection-automatic-memory-management-in-the-microsoft-
net-framework

• Garbage Collection: Part 2: Automatic Memory Management in the Microsoft .NET
Framework, Jeffrey Richter – MSDN Magazine: https://docs.microsoft.
com/en-us/archive/msdn-magazine/2000/december/garbage-
collection-part-2-automatic-memory-management-in-the-
microsoft-net-framework

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/archive/msdn-magazine/2000/november/garbage-collection-automatic-memory-management-in-the-microsoft-net-framework
https://docs.microsoft.com/en-us/archive/msdn-magazine/2000/november/garbage-collection-automatic-memory-management-in-the-microsoft-net-framework
https://docs.microsoft.com/en-us/archive/msdn-magazine/2000/november/garbage-collection-automatic-memory-management-in-the-microsoft-net-framework
https://docs.microsoft.com/en-us/archive/msdn-magazine/2000/november/garbage-collection-automatic-memory-management-in-the-microsoft-net-framework
https://docs.microsoft.com/en-us/archive/msdn-magazine/2000/december/garbage-collection-part-2-automatic-memory-management-in-the-microsoft-net-framework
https://docs.microsoft.com/en-us/archive/msdn-magazine/2000/december/garbage-collection-part-2-automatic-memory-management-in-the-microsoft-net-framework
https://docs.microsoft.com/en-us/archive/msdn-magazine/2000/december/garbage-collection-part-2-automatic-memory-management-in-the-microsoft-net-framework
https://docs.microsoft.com/en-us/archive/msdn-magazine/2000/december/garbage-collection-part-2-automatic-memory-management-in-the-microsoft-net-framework

10
Lambdas, LINQ,
and Functional

Programming
Although C# is an object-oriented programming language at its core, it is actually
a multi-paradigm language. So far in this book, we have discussed imperative
programming, object-oriented programming, and generic programming. However, C#
also supports functional programming features. Throughout Chapter 7, Collections, and
Chapter 8, Advanced Topics, we have already used some of these, such as lambdas and
Language-Integrated Query (LINQ).

In this chapter, we'll look at these in detail from the perspective of functional
programming. Learning functional programming techniques will help you to write
code in a declarative manner that is often simpler and easier to understand than the
equivalent imperative code.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

290 Lambdas, LINQ, and Functional Programming

The topics that will be covered in this chapter are as follows:

• Functional programming

• Functions as first-class citizens

• Lambda expressions

• LINQ

• More functional programming concepts

By the end of this chapter, you will be able to understand lambda expressions in detail
and will be able to use them together with LINQ to query data from a variety of sources.
Moreover, you will be familiarized with functional programming concepts and techniques,
such as higher-order functions, closures, monads, and monoids.

Let's start this chapter with an overview of functional programming and its
core principles.

Functional programming
C# is a general-purpose and multi-paradigm programming language. Yet, so far in
this book, we have only covered the imperative programming paradigm, which uses
statements to change the program state and is focused on describing how a program
operates. In imperative programming, functions may have side effects, thus changing the
program state when they execute. Alternatively, the execution of a function may depend
on the program state.

The opposite paradigm is functional programming, which is concerned with describing
what a program does and not how it does it. Functional programming treats computation
as the evaluation of functions; it uses immutable data and avoids changing states.
Functional programming is a declarative programming paradigm where expressions
are used instead of statements. Functions no longer have side effects but are idempotent.
This means that calling a function with the same arguments produces the same results
every time.

Functional programming provides several advantages, including the following:

• The code is easier to understand and maintain because functions don't change states
and only depend on the arguments they receive.

• The code is easier to test for the same reason.

• It is simpler and more efficient to implement concurrency because data is
immutable and functions don't have side effects, which avoids data races.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional programming 291

Immutability (objects have states that do not change) and side-effect free functions
(functions do not modify values – or states, outside their local scope) are at the core of
functional programming. To understand this better, let's look at the following example.
We have a struct called Rectangle (this could also be a class) that represents a rectangle:

struct Rectangle
{
 public int Left;
 public int Right;
 public int Top;
 public int Bottom;

 public int Width { get { return Right - Left; } }
 public int Height { get { return Bottom - Top; } }

 public Rectangle(int l, int t, int r, int b)
 {
 Left = l;
 Top = t;
 Right = r;
 Bottom = b;
 }
}

We can instantiate this type and alter its properties. For instance, if we want to inflate the
width of the rectangle with 10 units, equally in each direction, we can do the following:

var r = new Rectangle(10, 10, 30, 20);
r.Left -= 5;
r.Right += 5;
r.Top -= 5;
r.Bottom += 5;

We can also write a function that we could invoke. This could be a member function,
as follows:

public void Inflate(int l, int t, int r, int b)
{
 Left -= l;
 Right += r;
 Top -= t;
 Bottom += b;
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

292 Lambdas, LINQ, and Functional Programming

// invoked as
r.Inflate(5, 0, 5, 0);

This can also be a non-member function, as shown in the following code. The difference
between the two is only a matter of design. Writing it as an extension method is the only
choice if we cannot modify the source code:

static void Inflate(ref Rectangle rect,
 int l, int t, int r, int b)
{
 rect.Left -= l;
 rect.Right += r;
 rect.Top -= t;
 rect.Bottom += b;
}

// invoked as
Inflate(ref r, 5, 0, 5, 0);

The Rectangle data type is mutable because its state can be changed. The Inflate()
method has side effects because it changes the state of a rectangle. In functional
programming, Rectangle should be immutable. A possible implementation is
shown here:

struct Rectangle
{
 public readonly int Left;
 public readonly int Right;
 public readonly int Top;
 public readonly int Bottom;

 public int Width { get { return Right - Left; } }
 public int Height { get { return Bottom - Top; } }

 public Rectangle(int l, int t, int r, int b)
 {
 Left = l;
 Top = t;
 Right = r;
 Bottom = b;
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions as first-class citizens 293

The pure function version of the Inflate() method would not have side effects. Its
behavior would depend solely on the arguments and the result would be the same, no
matter how many times it is called with the same arguments. An example of such an
implementation is as follows:

static Rectangle Inflate(Rectangle rect,
 int l, int t, int r, int b)
{
 return new Rectangle(rect.Left - l, rect.Top - t,
 rect.Right + r, rect.Bottom + b);
}

These can now be used as in the following example:

var r = new Rectangle(10, 10, 30, 20);
r = Inflate(r, 5, 0, 5, 0);

Functional programming stems from lambda calculus (developed by Alonzo Church),
which is a framework, or mathematical system, for expressing computations based on
function abstractions and applications using variable binding and substitution. Some
programming languages, such as Haskell, are purely functional. Others, such as C#,
support multiple paradigms and are not purely functional.

The preceding example showed a variable, r, that was initialized to a value and then
changed. In pure functional programming, this is not possible. A variable, once initialized,
cannot change value; instead, a new variable must be assigned. This enables expressions to
be replaced with their values, a property known as referential transparency.

C# enables us to write code using functional programming concepts and idioms. At the
core of all these are lambda expressions, which we will look at in depth shortly. Before
that, we need to explore another functional programming pillar, and that is treating
functions as first-class citizens.

Functions as first-class citizens
In Chapter 8, Advanced Topics, we learned about delegates and events. A delegate looks
like a function but is a type that holds references to functions whose signatures match
the definition of the delegate. Delegate instances can be passed as objects for function
arguments. Let's look at an example where we have a delegate that takes two int
parameters and returns an int value:

public delegate int Combine(int a, int b);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

294 Lambdas, LINQ, and Functional Programming

We then have different functions, such as Add(), which adds two integers and returns the
sum, Sub(), which subtracts two integers and returns their difference, or Mul(), which
multiplies two integers and returns their product. Their signature matches the delegate,
so an instance of the Combine delegate can hold references to all these functions. These
functions are shown as follows:

class Math
{
 public static int Add(int a, int b) { return a + b; }
 public static int Sub(int a, int b) { return a - b; }
 public static int Mul(int a, int b) { return a * b; }
}

We can write a general function that can apply one of these functions to two arguments.
Such a function may look like this:

int Apply(int a, int b, Combine f)
{
 return f(a, b);
}

Invoking it is simple—we pass the arguments and a reference to the actual function that
we want to invoke:

var s = Apply(2, 3, Math.Add);
var d = Apply(2, 3, Math.Sub);
var p = Apply(2, 3, Math.Mul);

For convenience, .NET defines a set of generic delegates called Func to avoid defining
your own delegates all the time. These are defined in the System namespace and look
like this:

public delegate TResult Func<out TResult>();
public delegate TResult Func<in T,out TResult>(T arg);
public delegate TResult Func<in T1,in T2,out TResult>(T1 arg1,
T2 arg2);
...
public delegate TResult Func<in T1,in T2,in T3,in T4,in T5,in
T6,in T7,in T8,in T9,in T10,in T11,in T12,in T13,in T14,in
T15,in T16,out TResult>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5
arg5, T6 arg6, T7 arg7, T8 arg8, T9 arg9, T10 arg10, T11 arg11,
T12 arg12, T13 arg13, T14 arg14, T15 arg15, T16 arg16);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functions as first-class citizens 295

This is a set of 17 overloads that take either 0, 1, or up to 16 arguments (of potentially
different types) and return a value. Using these system delegates, we can rewrite the
Apply function as follows:

T Apply<T>(T a, T b, Func<T, T, T> f)
{
 return f(a, b);
}

This version of the function is generic so that it can be invoked with other types of
arguments, not just integers. The way the function is invoked in the preceding examples
does not change.

These delegates return a value, so they cannot be used for functions that don't have
a return value. There is a similar set of overloads in the System namespace called
Action that is defined as follows:

public delegate void Action();
public delegate void Action<in T>(T obj);
public delegate void Action<in T1,in T2>(T1 arg1, T2 arg2);
...
public delegate void Action<in T1,in T2,in T3,in T4,in T5,in
T6,in T7,in T8,in T9,in T10,in T11,in T12,in T13,in T14,in
T15,in T16>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6
arg6, T7 arg7, T8 arg8, T9 arg9, T10 arg10, T11 arg11, T12
arg12, T13 arg13, T14 arg14, T15 arg15, T16 arg16);

These delegates are very similar to the Func delegates we saw earlier. The only difference
is that they do not return a value. There are still 17 overloads that take 0, 1, or up to 16
input arguments.

In the following example, the Apply function is overloaded so that it also takes a
parameter of the Action<string> type, which is a function that has a single parameter
of the string type and returns nothing. After applying the function, but before returning
the result, this action is invoked with a string that describes the actual operation:

T Apply<T>(T a, T b, Func<T, T, T> f, Action<string> log)
{
 var r = f(a, b);
 log?.Invoke($"{f.Method.Name}({a},{b}) = {r}");
 return r;
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

296 Lambdas, LINQ, and Functional Programming

We can invoke this new overload by passing Console.WriteLine for the last
argument, which results in the operations being logged to the console:

var s = Apply(2, 3, Math.Add, Console.WriteLine);
var p = Apply(2, 3, Math.Mul, Console.WriteLine);

The Apply function is called a higher-order function. A higher-order function is
a function that takes one or more functions as arguments, returns a function, or both.
All the other functions are called first-order functions.

There are many higher-order functions that you might be using without any realization.
For instance, List<T>.Sort (Comparison<T> comparison) is such a function.
Most query predicates from LINQ (which we will explore later in this chapter in the LINQ
section) are higher-order functions.

An example of a higher-order function is a function that returns another function, as
shown in the following snippet. ApplyReverse() takes a function as argument and
returns another function that invokes the argument function with two arguments, but
in reverse order:

Func<T, T, T> ApplyReverse<T>(Func<T, T, T> f)
{
 return delegate(T a, T b) { return f(b, a); };
}

This function is invoked as follows:

var s = ApplyReverse<int>(Math.Add)(2, 3);
var d = ApplyReverse<int>(Math.Sub)(2, 3);

What we have seen so far is the possibility in C# to pass functions as arguments, return
functions from functions, assign functions to variables, store them in data structures, or
define anonymous functions (that is, functions without a name). It's also possible to nest
functions and test references to functions for equality. A programming language that does
these things is said to treat functions as first-class citizens and its functions are first-class.
C# is, therefore, such a language.

Getting back to the previous examples, an alternative and simpler way of invoking the
Apply() method is as follows:

var s = Apply(2, 3, (a, b) => a + b);
var d = Apply(2, 3, (a, b) => a - b);
var p = Apply(2, 3, (a, b) => a * b);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Lambda expressions 297

Here, the methods from the Math class have been replaced with lambda expressions
such as (a, b) => a + b. We can even define the Apply() function as a lambda
expression and invoke it accordingly:

Func<int, int, Func<int, int, int>, int> apply =
 (a, b, f) => f(a, b);

var s = apply(2, 3, (a, b) => a + b);
var d = apply(2, 3, (a, b) => a - b);
var p = apply(2, 3, (a, b) => a * b);

We'll look at lambda expressions in depth in the next section.

Lambda expressions
Lambda expressions are a convenient way to write anonymous functions. They are a block
of code, either an expression or one or more statements, that behaves like a function
and can be assigned to a delegate. As a result, a lambda expression can be passed as an
argument to a function or returned from a function. They are a convenient way to write
LINQ queries, pass functions to higher-order functions (including code that should be
executed asynchronously by Task.Run()), and create expression trees.

An expression tree is a way to represent code in a tree-like data structure, with nodes as
expressions (such as method calls or binary operations). These expression trees can be
compiled and executed, which enables dynamic changes to be performed on executable
code. Expression trees are used to implement LINQ providers for various data sources and
in the DLR to provide interoperability between .NET Framework and a dynamic language.

Let's start with a simple example where we have a list of integers and we want to remove
all the odd numbers from it. It can be written as follows (notice that the IsOdd()
function can be either a class method or a local function):

bool IsOdd(int n) { return n % 2 == 1; }
var list = new List<int>() { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
list.RemoveAll(IsOdd);

This code can actually be simplified with anonymous methods that allow us to pass code
to a delegate without defining the separate IsOdd() function:

var list = new List<int>() { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
list.RemoveAll(delegate (int n) { return n % 2 == 1; });

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

298 Lambdas, LINQ, and Functional Programming

Lambda expressions allow us to simplify the code even further with a simpler syntax that
the compiler transforms into something similar to the preceding code:

var list = new List<int>() { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
list.RemoveAll(n => n % 2 == 1);

The lambda expression that we can see here (n => n % 2 == 1) has two parts
separated by =>, which is the lambda declaration operator:

• The left part of the expression is the list of parameters (separated by a comma and
enclosed in parentheses if there is more than one).

• The right part of the expression is either an expression or a statement. If the right
part is an expression (such as in the preceding example), the lambda is called
an expression lambda. If the right part is a statement, the lambda is called
a statement lambda.

Statements are always enclosed in curly braces {}. Any expression lambda can actually be
written as a statement lambda. Expression lambdas are a simplified version of statement
lambdas. The previous example with an expression lambda can be written as follows using
a statement lambda:

var list = new List<int>() { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
list.RemoveAll(n => { return n % 2 == 1; });

There are several examples of lambda expressions:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Lambda expressions 299

A lambda does not have a type of its own. Instead, its type is either the type of delegate
that it is assigned to or the System.Expression type when lambdas are used to build
expression trees. A lambda that does not return a value corresponds to a System.
Action delegate (and can be assigned to one). A lambda that does return a value
corresponds to a System.Func delegate.

When you write a lambda expression, you do not need to write the type of the parameters
as these are inferred by the compiler. The rules for type inference are as follows:

• The lambda must have the same number of parameters as the delegate it is
assigned to.

• Each parameter of a lambda must be implicitly converted to the corresponding
parameter of the delegate it is assigned to.

• If the lambda has a return value, its type must be implicitly converted to the return
type of the delegate it is assigned to.

Lambda expressions can be asynchronous. Such a lambda is preceded by the async
keyword and must contain at least an await expression. The following example shows
an asynchronous handler for the Click event for a button on a Windows Forms form:

public partial class MyForm : Form
{
 public MyForm()
 {
 InitializeComponent();

 myButton.Click += async (sender, e) =>
 {
 await ExampleMethodAsync();
 };
 }

 private async Task ExampleMethodAsync()
 {
 // a time-consuming action
 await Task.Delay(1000);
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

300 Lambdas, LINQ, and Functional Programming

In this example, MyForm is a form class and, in its constructor, we register a handler for
the Click event. This is done using a lambda expression, but the lambda is asynchronous
(it calls an asynchronous function) and therefore needs to be preceded with async.

Lambdas may use variables that are in the scope of the method or the type that contains
the lambda expression. When a variable is used in a lambda, it is captured so that it can be
used even if it goes out of scope. These variables must be definitely assigned before they
are used in the lambda. In the following example, the lambda expression is capturing two
variables—the value function parameter and the Data class member:

class Foo
{
 public int Data { get; private set; }

 public Foo(int value)
 {
 Data = value;
 }

 public void Scramble(int value, int iterations)
 {
 Func<int, int> apply = (i) => Data ^ i + value;
 for(int i = 0; i < iterations; ++i)
 Data = apply(i);
 }
}

Here are the rules that apply to the scope of variables in lambda expressions:

• The variables that are introduced in a lambda expression are not visible outside the
lambda (for instance, in the enclosing method).

• A lambda cannot capture in, ref, or out parameters from the enclosing method.

• Variables that are captured by a lambda expression are not garbage collected, even if
they would otherwise go out of scope until the delegate that the lambda is assigned
to is garbage collected.

• A return statement of a lambda expression refers solely to the anonymous method
that the lambda represents and does not cause the enclosing method to return.

The most common use case for lambda expressions is writing LINQ query expressions.
We will look at this in the following section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

LINQ 301

LINQ
LINQ is a set of technologies that enable developers to query a multitude of data sources
in a consistent manner. Typically, you would use different languages and technologies to
query different types of data, such as SQL for relational databases, and XPath for XML.
SQL queries are written as strings, which makes them impossible to verify at compile time
and increase the chances of having runtime errors.

LINQ defines a set of operators and a built-in language syntax for querying data. LINQ
queries are strongly typed and therefore verified at compile time. LINQ also provides
a framework for building your own LINQ providers, which are components that
transform a query into APIs that are specific to a particular data source. The framework
provides built-in support for querying objects (anything that is a collection in .NET),
relational databases, and XML. Third parties have written LINQ providers for many data
sources, such as web services.

LINQ enables developers to focus on what to do and be less concerned with how to do
things. To better understand how this works, let's look at an example where we have an
array of integers and we want to find the sum of all the odd numbers. Typically, you'd
write something like the following:

int[] arr = { 1, 1, 3, 5, 8, 13, 21, 34};
int sum = 0;
for(int i = 0; i < arr.Length; ++i)
{
 if (arr[i] % 2 == 1)
 sum += arr[i];
}

With LINQ, it is possible to reduce all this verbose code to the following line:

int sum = arr.Where(x => x % 2 == 1).Sum();

Here, we are using the LINQ standard query operators, which are extension methods
that operate on sequences and provide query capabilities, including filtering, projection,
aggregation, sorting, and more. Many of these query operators, however, have direct
support in the LINQ query syntax, which is a query language very similar to SQL.
Using the query language, the solution to the problem can be written as follows:

int sum = (from x in arr
 where x % 2 == 1
 select x).Sum();

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

302 Lambdas, LINQ, and Functional Programming

As you can see in this example, not every query operator has an equivalent in query
syntax. Sum() and all the other aggregation operators do not have an equivalent. In the
following sections, we will look at these two flavors of LINQ in more detail.

Standard query operators
The LINQ standard query operators are a set of extension methods that operate on
sequences that implement either IEnumerable<T> or IQueryable<T>. The former
exports an enumerator that enables iteration over a sequence. The latter is a LINQ-specific
interface that inherits from IEnumerable<T> and provides us with the functionality to
evaluate queries against a specific data source. The standard query operators are defined
as extension methods to either the Enumerable or the Queryable class, depending on
the type of sequence they operate on. Being extension methods, they can be called either
using static method syntax or instance method syntax.

Most of the query operators may return more than one value. These methods return
IEnumerable<T> or IQueryable<T>, which makes it possible to chain them
together. The actual query on the data source is deferred until the enumerable object they
return is iterated on. On the other hand, standard query operators that return a single
value (such as Sum() or Count()) do not defer execution and execute immediately.

The following table contains the names of all the LINQ standard query operators:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

LINQ 303

There is a large number of standard query operators. Discussing every one of them is
beyond the scope of this book. You should read the official documentation or additional
resources to get familiar with all of them.

To familiarize ourselves more with LINQ, we will look at several examples. In the first
example, we want to count the number of words in a sentence. We consider dot (.),
comma (,), and space as delimiters. We split the string into parts, and then filter all those
that are not empty and count them. With LINQ, this is as simple as doing the following:

var text = "Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua.";

var count = text.Split(new char[] { ' ', ',', '.' })
 .Where(w => !string.IsNullOrEmpty(w))
 .Count();

However, if we want to group all the words based on their length and print them to the
console, the problem becomes a little bit more complicated. We need to create groups
with the word length as the key and the word itself as the element, filter out the groups
that have the length zero, and order the remaining in ascending order based on the
word length:

var groups = text.Split(new char[] { ' ', ',', '.' })
 .GroupBy(w => w.Length, w => w.ToLower())
 .Select(g => new { Length =g.Key, Words = g })
 .Where(g => g.Length > 0)
 .OrderBy(g => g.Length);

foreach (var group in groups)
{
 Console.WriteLine($"Length={group.Length}");
 foreach (var word in group.Words)
 {
 Console.WriteLine($" {word}");
 }
}

While the previous query was executed when Count() was called, the execution of this
query is deferred until we actually iterate over it.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

304 Lambdas, LINQ, and Functional Programming

The examples we've looked at so far haven't been too complicated. Using LINQ, however,
you can build queries of higher complexity. To illustrate this, let's consider a system that
deals with orders for customers. The system works with entities such as Customer,
Article, OrderLine, and Order, which, in a very simplistic form, are shown here:

class Customer
{
 public long Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
}

class Article
{
 public long Id { get; set; }
 public string EAN13 { get; set; }
 public string Name { get; set; }
 public double Price { get; set; }
}

class OrderLine
{
 public long Id { get; set; }
 public long OrderId { get; set; }
 public long ArticleId { get; set; }
 public double Quantity { get; set; }
 public double Discount { get; set; }
}

class Order
{
 public long Id { get; set; }
 public DateTime Date { get; set; }
 public long CustomerId { get; set; }
 public double Discount { get; set; }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

LINQ 305

Let's also consider that we have sequences of these types, as follows (for simplicity, only
a couple of records are shown for each type, but you can find the full example in the
source code that accompanies this book):

var articles = new List<Article>()
{
 new Article(){ Id = 1, EAN13 = "5901234123457",
 Name = "paper", Price = 100.0},
 new Article(){ Id = 2, EAN13 = "5901234123466",
 Name = "pen", Price = 200.0},
 /* more */
};

var customers = new List<Customer>()
{
 new Customer() { Id = 101, FirstName = "John",
 LastName = "Doe", Email = "john.doe@email.com"},
 new Customer() { Id = 102, FirstName = "Jane",
 LastName = "Doe", Email = "jane.doe@email.com"},
 /* more */
};

var orders = new List<Order>()
{
 new Order() { Id = 1001, Date = new DateTime(2020, 3, 12),
 CustomerId = customers[0].Id },
 new Order() { Id = 1002, Date = new DateTime(2020, 4, 23),
 CustomerId = customers[1].Id },
 /* more */
};

var orderlines = new List<OrderLine>()
{
 new OrderLine(){ Id = 1, OrderId=orders[0].Id,
 ArticleId = articles[0].Id, Quantity=2},
 new OrderLine(){ Id = 2, OrderId=orders[0].Id,
 ArticleId = articles[1].Id, Quantity=1},
 /* more */
};

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

306 Lambdas, LINQ, and Functional Programming

The question we want to find the answer to is, what are the names of all the articles that
a particular customer has bought since a given day? It can be cumbersome to write this
using an imperative approach, but using LINQ, this can be expressed as follows:

var query =
 orders.Join(orderlines,
 o => o.Id,
 ol => ol.OrderId,
 (o, ol) => new { Order = o, Line = ol })
 .Join(customers,
 o => o.Order.CustomerId,
 c => c.Id,
 (o, c) => new { o.Order, o.Line, Customer = c})
 .Join(articles,
 o => o.Line.ArticleId,
 a => a.Id,
 (o, a) => new { o.Order, o.Line,
 o.Customer, Article = a})
 .Where(o => o.Order.Date >= new DateTime(2020, 4, 1) &&
 o.Customer.FirstName == "John")
 .OrderBy(o => o.Article.Name)
 .Select(o => o.Article.Name);

In this example, we joined the orders with order lines and customers and the order lines
with articles and kept only the orders made after April 1, 2020 for the customer whose first
name was John. Then, we ordered them lexicographically by the article name and selected
only the article name to project.

There are several Join() operations and the syntax may look harder to understand.
Let's explain it using the following example:

orders.Join(orderlines,
 o => o.Id,
 ol => ol.OrderId,
 (o, ol) => new { Order = o, Line = ol })

Here, orders is called the outer sequence, and orderlines is called the inner sequence.
The second argument of Join(), which is o => o.Id, is called the key selector for the
outer sequence. We use this to select the orders. The third argument of Join(), which is
ol => ol.OrderId, is called the key selector of the inner sequence. We use this to select
order lines.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

LINQ 307

Basically, these two lambda expressions help matching order lines that have OrderId
equal to an order ID. The last argument, (o, ol) => new { Order = o, Line
= ol }, is the projection of the join operation. We are creating a new object with two
properties called Order and Line.

Some standard query operators are simpler to use, while others are more complicated and
may require a bit of practice to comprehend well. However, for many of them, a simpler
alternative exists—the LINQ query syntax, which we will explore in the next section.

Query syntax
LINQ query syntax is basically syntactic sugar (that is, a simplified syntax designed
to make things easier to write and understand) for the standard query operators. The
compiler transforms queries written in query syntax into queries using the standard query
operators. Query syntax is simpler and easier to read than the standard query operators,
but they are semantically equivalent. However, as mentioned previously, not all the
standard query operators have an equivalent in query syntax.

To see how the method syntax of the standard query operators and the query syntax
compare, let's rewrite the examples from the previous section using query syntax.

First, let's look at the problem where we counted the words in a piece of text. With query
syntax, the query changes to the following. Notice that Count() does not have an
equivalent in query syntax:

var count = (from w in text.Split(new char[] { ' ', ',', '.' })
 where !string.IsNullOrEmpty(w)
 select w).Count();

The second problem, on the other hand, can be entirely written using query syntax, as
shown here:

var groups = from w in text.Split(new char[] { ' ', ',', '.' })
 group w.ToLower() by w.Length into g
 where g.Key > 0
 orderby g.Key
 select new { Length = g.Key, Words = g };

foreach (var group in groups)
{
 Console.Write($"Length={group.Length}: ");
 Console.WriteLine(string.Join(',', group.Words));
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

308 Lambdas, LINQ, and Functional Programming

Printing the text is a little bit different. Words are displayed on a single line, separated by
a comma. To compose the text of comma-separated words, we used the string.Join()
static method, which takes a separator and a sequence of values and joins them into
a single string. The output of this program is as follows:

Length=2: do,ut,et
Length=3: sit,sed
Length=4: amet,elit
Length=5: lorem,ipsum,dolor,magna
Length=6: tempor,labore,dolore,aliqua
Length=7: eiusmod
Length=10: adipiscing,incididunt
Length=11: consectetur

The last problem that we will rewrite is the example with the customer orders. This query
can be expressed very succinctly, as shown in the following code. This code resembles SQL
and the join operations are definitely simpler to write, read, and understand:

var query = from o in orders
 join ol in orderlines on o.Id equals ol.OrderId
 join c in customers on o.CustomerId equals c.Id
 join a in articles on ol.ArticleId equals a.Id
 where o.Date >= new DateTime(2019, 4, 1) &&
 c.FirstName == "John"
 orderby a.Name
 select a.Name;

As you can see from these examples, LINQ helps build queries in a much simpler way
than using traditional imperative programming. Data sources of different natures can
be queried in a consistent way with a language that looks like SQL. Queries are strongly
typed and are verified at compile time, which helps to solve many potential bugs.

Now, let's take a look at some more functional programming concepts: partial function
application, currying, closures, monoids, and monads.

More functional programming concepts
At the beginning of this chapter, we looked at general functional programming concepts,
mainly higher-order functions and immutability. In this section, we will explore several
more functional programming concepts and techniques—partial function application,
currying, closures, monoids, and monads.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

More functional programming concepts 309

Partial function application
Partial function application is the process of taking a function with N parameters and one
argument and returning another function with N-1 parameters after fixing the argument
into one of the function's parameters. It is, of course, possible that the invocation is done
with more than just one argument, say, M, in which case the returned function will have
N-M parameters.

To understand how this works, let's start with a function that has several parameters and
is returning a string (containing the value of the arguments):

string AsString(int a, double b, string c)
{
 return $"a={a}, b={b}, c={c}";
}

If we invoke this function as AsString(42, 43.5, "44"), the result is the string
"a=42, b=43.5, c=44". However, if we had a function (let's call it Apply()) that
would bind an argument to the first parameter of this function, then we could invoke it
as follows with the same result:

var f1 = Apply<int, double, string, string>(AsString, 42);
var result = f1(43.5, "44");

The implementation of such an Apply() function is as follows:

Func<T2, T3, TResult>
Apply<T1, T2, T3, TResult>(Func<T1, T2, T3, TResult> f, T1 arg)
{
 return (b, c) => f(arg, b, c);
}

This higher-order function takes another function and a value as parameters and returns
another higher function with one parameter less. This function resolves to invoke the f
argument function with the arg argument value and additional parameters.

It is also possible that we continue this process of reducing functions to another function
with one less parameter until we have a function with no parameters, as follows:

var f1 = Apply<int, double, string, string>(AsString, 42);
var f2 = Apply(f1, 43.5);
var f3 = Apply(f2, "44");
string result = f3();

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

310 Lambdas, LINQ, and Functional Programming

However, to make this possible, we need additional overloads of the Apply() function,
with the appropriate number of arguments. For the case shown here, we need the
following (in practice, if you have functions with more than three arguments, you
need more overloads to account for all possible numbers of arguments):

Func<T2, TResult> Apply<T1, T2, TResult>(Func<T1, T2, TResult>
f, T1 arg)
{
 return b => f(arg, b);
}

Func<TResult> Apply<T1, TResult>(Func<T1, TResult> f, T1 arg)
{
 return () => f(arg);
}

In this example, it is important to note that the actual invocation of the AsString()
function only happens when all the arguments are supplied; that is, the moment we
invoke f3().

You may be wondering when partial function application is useful. The typical case is
when you invoke a function several (or many) times and some arguments are the same.
In this case, there are several alternatives, including the following:

• Provide defaults for the function parameters, when you define it. However, this
might not be possible for different reasons. Perhaps the defaults only make sense
in some context, or maybe you do not actually own the code, so you cannot
provide them.

• In the class where you invoke the function multiple times, you can write a helper
function with fewer arguments that invoke the function with the right defaults.

Partial function application may be (in many of these cases) the simpler solution to use.

Currying
Currying is the process of taking a function with N arguments and decomposing it into N
functions that take one argument. This technique takes its name from the mathematician
and logician Haskell Curry, after whom the functional programming language Haskell is
also named.

Currying enables working with functions that have multiple arguments in contexts
where only functions with one argument could be used. An example of this is analytical
techniques in mathematics that can only be applied to functions with a single argument.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

More functional programming concepts 311

Considering the AsString() function from the previous section, currying this function
would do the following:

• Return a function, f1.

• When invoked with an argument, a, it would return a function, f2.

• When invoked with an argument, b, it would return a function, f3.

• When invoked with an argument, c, it would invoke AsString(a, b, c).

These, when put in code, would look as follows:

var f1 = Curry<int, double, string, string>(AsString);
var f2 = f1(42);
var f3 = f2(43.5);
string result = f3("44");

The generic Curry() function seen here is similar to the Apply() function from the
previous section. However, instead of returning a function with N-1 arguments, it returns
a function with a single argument:

Func<T1, Func<T2, Func<T3, TResult>>>
Curry<T1, T2, T3, TResult>(Func<T1, T2, T3, TResult> f)
{
 return a => b => c => f(a, b, c);
}

This function can be used to curry functions with exactly three parameters. Should you
need to do that with functions that have another number of parameters, then you need
appropriate overloads for it (just as in the case of Apply()).

You should note that you do not necessarily need to decompose the AsString()
function three different times, as seen earlier with f1, f2, and f3. You can skip
intermediate functions and achieve the same result by invoking the function appropriately,
as shown in the following code:

var f = Curry<int, double, string, string>(AsString);
string result = f(42)(43.5)("44");

Another important concept in function programming is closures. We'll learn about
closures in the next section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

312 Lambdas, LINQ, and Functional Programming

Closures
Closures are defined as a technique to implement lexically scoped name-binding in
a language with first-class functions. Lexical or static scoping is the setting of the scope
of a variable to the block in which it was defined, so it may only be referred to by its name
from within that scope.

Information box
Scopes in C# are called static or lexical and can be viewed at compile time.
The opposite is dynamic scopes, which are only resolved at runtime, but these
are not supported in C#.

As we saw earlier in this chapter, C# is a language that has first-class functions because
you can assign functions to variables, pass them around, and invoke them. However, this
definition of a closure is probably harder to comprehend, so we will explain it step by step
using an example.

Let's consider the following example:

class Program
{
 static Func<int, int> Increment()
 {
 int step = 1;
 return x => x + step;
 }

 static void Main(string[] args)
 {
 var inc = Increment();
 Console.WriteLine(inc(42));
 }
}

Here, we have a function called Increment() that is returning another function
that increments its argument with a value. However, that value is neither passed as
an argument to the lambda nor defined as a local variable in the lambda. Instead, it is
captured from the outer scope. For this reason, the step variable is called a free variable.
When the compiler sees it in the lambda expression, it looks for the definition of the step
variable in the scope of the lambda; if it's not found, it looks to the enclosing scope, which,
in this case, is the Increment() function. If it wasn't there either, it would have looked
further in the class scope, and so on.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

More functional programming concepts 313

What happens next is that we assign the value returned from the Increment()
function, which is another function, to the inc variable and then invoke it with
the value 42. The result is that the value 43 is printed to the console.

The question is, how does this work? The step variable is actually a local function variable
and should go out of scope as soon as Increment() is called. Yet, its value is known
at the time of invoking the function returned from Increment(). This is because the
lambda expression, x => x + step, is said to close over the free variable, step, thus
defining a closure. Both the lambda expression and step are passed together (as part of
the closure) so that the variable that would normally go out of scope still lives at the time
the closure is invoked.

Closures are used all the time without us even realizing it. Consider the following
example, where we have a list of engines and we want to search for an engine with
minimum power and capacity. You would typically write something as follows using
a lambda expression:

var list = new List<Engine>();
var minp = 75.0;
var minc = 1600;
var engine = list.Find(e => e.Power >= minp &&
 e.Capacity >= minc);

But this is actually creating a closure because the lambda closes over the minp and minc
free variables. Without support for closure in the language, it would be cumbersome to
write code that does the same. You would basically have to write a class that is capturing
the value of these variables and has a method that takes an Engine object and compares
its properties to these values. In this case, the code could look as follows:

sealed class EngineFinder
{
 public EngineFinder(double minPower, int minCapacity)
 {
 this.minPower = minPower;
 this.minCapacity = minCapacity;
 }

 public double minPower;
 public int minCapacity;

 public bool IsMatch(Engine engine)
 {
 return engine.Power >= minPower &&
 engine.Capacity >= minCapacity;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

314 Lambdas, LINQ, and Functional Programming

 }
}

var engine = list.Find(new EngineFinder(minp, minc).IsMatch);

This is quite similar to what the compiler does when encountering a closure, but it's the
kind of detail you do not have to concern yourself with.

You should also notice that the free variables that are captured by a lambda in a closure
can change value. We exemplify this with the following sample where the GetNextId()
function defines a closure that increments the value of the captured free variable, id, with
each call:

Func<int> GetNextId()
{
 int id = 1;
 return () => id++;
}

var nextId = GetNextId();
Console.WriteLine(nextId()); // prints 1
Console.WriteLine(nextId()); // prints 2
Console.WriteLine(nextId()); // prints 3

We'll learn about monoids in the next section.

Monoids
A monoid is an algebraic structure with a single associative binary operation and an
identity element. Any C# type that has those two elements is a monoid. Monoids are
useful for defining concepts and reusing code. They help us build complex behavior out
of simple components without the need to introduce new concepts in our code. Let's
look at how we can create and use monoids in C#.

We could define a generic interface in C# to represent a monoid as follows:

interface IMonoid<T>
{
 T Combine(T a, T b);
 T Identity { get; }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

More functional programming concepts 315

The monoid ensures associativity and left and right identity so that for any values, a, b,
and c, we have the following:

• Combine((Combine(a, b), c) == Combine(a, Combine(b, c))

• Combine(Identify, a) == a

• Combine(a, Identity) == a

Concatenating strings or a list is an example of an associative binary operation. A type
that provides that function, together with an identity element (an empty string or an
empty list in these cases), is a monoid. So, we can actually implement these in C#
as follows:

struct ConcatList<T> : IMonoid<List<T>>
{
 public List<T> Identity => new List<T> { };

 public List<T> Combine(List<T> a, List<T> b)
 {
 var l = new List<T>(a);
 l.AddRange(b);
 return l;
 }
}

struct ConcatString : IMonoid<string>
{
 public string Identity => string.Empty;

 public string Combine(string a, string b)
 {
 return a + b;
 }
}

Both ConcatList and ConcatString are examples of monoids. The latter could be
used as follows:

var m = new ConcatString();
var text = m.Combine("Learning", m.Combine(" ", "C# 8"));
Console.WriteLine(text);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

316 Lambdas, LINQ, and Functional Programming

This would print Learning C# 8 to the console. However, this code is a little bit
cumbersome to use. We can simplify it by creating a helper class with a static method
called Concat() that takes a monoid and a sequence of elements and combines them
together using the monoids binary operation and its identity for the initial value:

static class Monoid
{
 public static T Concat<MT, T>(IEnumerable<T> seq)
 where MT : struct, IMonoid<T>
 {
 var result = default(MT).Identity;
 foreach (var e in seq)
 result = default(MT).Combine(result, e);
 return result;
 }
}

Having this helper class available, we can write the following simplified code:

var text = Monoid.Concat<ConcatString, string>(
 new[] { "Learning", " ", "C# 8"});
Console.WriteLine(text);

var list = Monoid.Concat<ConcatList<int>, List<int>>(
 new[] { new List<int>{ 1,2,3},
 new List<int> { 4, 5 },
 new List<int> { } });
Console.WriteLine(string.Join(",", list));

In the first part of this example, we concatenated a list of strings into a single string and
printed it to the console. In the second part, we concatenated a list of lists of integers into
a single list of integers, which are later also printed to the console.

In the next section, we'll take a look at monads.

Monads
This is a concept that is usually harder to explain and, perhaps, also harder to understand,
although a lot of literature has been written about it. In this book, we will try to explain it
in simple terms, but we recommend that you read additional resources.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

More functional programming concepts 317

In a few words, a monad is a container that encapsulates some functionality on top of the
value that it wraps. We often work with monads in C# without realizing it. Nullable<T>
is a monad that defines a special functionality that is nullability, which means a value may
be present or not. Task<T> with await is a monad that defines a special functionality
that is asynchronicity, which means a value can be used before it's actually computed.
IEnumerable<T> with the LINQ query SelectMany() operator is also a monad.

A monad has two operations:

• One that transforms a value, v, into a container that wraps it (v -> C(v)).
In functional programming, this function is called return.

• One that flattens two containers into a single container (C(C(v)) -> C(v)).
In functional programming, this is called bind.

Let's look at the following example:

var numbers = new int[][]{ new[]{ 1, 2, 3},
 new[]{ 4, 5 },
 new[]{ 6, 7} };

IEnumerable<int> odds = numbers.SelectMany(
 n => n.Where(x => x % 2 == 1));

Here, numbers is an array of arrays of integers. SelectMany() is used to
select subsequences of odd numbers. However, this flattens the result into
IEnumerable<int> instead of IEnumerable<IEnumerable<int>>.
As we mentioned earlier, IEnumerable<T> with SelectMany() is a monad.

But how can you implement a monad in C#? The simplest form is as follows:

class Monad<T>
{
 public Monad(T value) => Value = value;

 public T Value { get; }

 public Monad<U> Bind<U>(Func<T, Monad<U>> f) => f(Value);
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

318 Lambdas, LINQ, and Functional Programming

This is actually called the Identity monad. It lets you construct a container that wraps
a value and, if you put a monad into a monad and bind it with the identity x => x,
you will get the initial monad back:

var m = new Monad<int>(42);
var mm = new Monad<Monad<int>>(m);
var r = mm.Bind(x => x); // r equals m

Another example of how this monad can be used is shown in the following code:

var m = new Monad<int>(21);

var r = m.Bind(x => new Monad<int>(x * 2))
 .Bind(x => new Monad<string>($"x={x}"));

Console.WriteLine(r.Value); // prints x=42

In this example, m is a monad that wraps the integer value 21. We bind with a function
that returns a new monad that has a value that is double the initial one. We can again
bind on this monad with a function that transforms the integer into a string.

From this example, you can see that those binding operations can be chained together.
This is what fluent interfaces provide—a mechanism to write code that looks like written
prose by chaining methods. This can be further exemplified using the following example—
given a system where a business has customers, customers place orders, and an order can
contain one or more articles, you are required to find all the distinct articles bought by all
the customers of a particular business.

For simplicity, let's consider the following classes:

class Business
{
 public IEnumerable<Customer> GetCustomers() {
 return /* … */; }
}

class Customer
{
 public IEnumerable<Order> GetOrders() { return /* … */; }
}

class Order
{
 public IEnumerable<Article> GetArticles() { return /* … */;
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

More functional programming concepts 319

}

class Article { }

In a typical imperative style, you could implement the solution as follows:

IEnumerable<Article> GetArticlesSoldBy(Business business)
{
 var articles = new HashSet<Article>();

 foreach (var customer in business.GetCustomers())
 {
 foreach (var order in customer.GetOrders())
 {
 foreach (var article in order.GetArticles())
 {
 articles.Add(article);
 }
 }
 }

 return articles;
}

However, this can be simplified more by using LINQ and the IEnumerable<T> and
SelectMany() monad. The functional programming style implementation could look
as follows:

IEnumerable<Article> GetArticlesSoldBy(Business business)
{
 return business.GetCustomers()
 .SelectMany(c => c.GetOrders())
 .SelectMany(o => o.GetArticles())
 .Distinct()
 .ToList();
}

This uses the fluent interface pattern and the result is more concise code that is also
simpler to understand.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

320 Lambdas, LINQ, and Functional Programming

Summary
This chapter was a departure from the imperative programming traits of C# since we
explored functional programming concepts and techniques built into the language. We
looked at higher-order functions, lambda expressions, partial function applications,
currying, closures, monoids, and monads. We also had an introduction to LINQ with its
two flavors: the method syntax and the query syntax. Most of these topics are complex and
more advanced than the proposed scope of this book. Therefore, we recommend that you
use other resources in order to master them.

In the next chapter, we will look at the reflection services that are available with .NET and
the dynamic programming capabilities of C#.

Test what you learned
1. What are the main characteristics of functional programming? What advantages

does it provide?

2. What is a higher-order function?

3. What makes functions first-class citizens in the C# language?

4. What is a lambda expression? What is the syntax for writing lambda expressions?

5. What are the rules that apply to variables' scope in lambda expressions?

6. What is LINQ? What are the standard query operators and what is the
query syntax?

7. What is the difference between Select() and SelectMany()?

8. What is a partial function application and how does it differ from currying?

9. What is a monoid?

10. What is a monad?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
Reflection

and Dynamic
Programming

In the previous chapter, we looked at functional programming, lambda expressions, and
the features they enable, such as Language Integrated Query (LINQ). This chapter is
focused on reflection services and dynamic programming. You will learn what reflection
is and how you can get information about types at runtime, as well as how code and
resources are stored in assemblies and how these can be loaded dynamically at runtime
both for reflection and code execution.

This is key for building applications that support extension in the form of add-ons or
plugins. We will see what attributes are and what role they play in reflection. Another
important topic that we will address in this chapter is dynamic programming and the
Dynamic Language Runtime that enables dynamic languages to run on the Common
Language Runtime (CLR) and to add dynamic features to statically typed languages.

The topics we will address in this chapter are the following:

• Understanding reflection

• Dynamically loading assemblies

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

322 Reflection and Dynamic Programming

• Understanding late binding

• Using the dynamic type

• Attributes

By the end of this chapter, you will have a good understanding of reflection, attributes,
and their use in reflection, as well as assembly loading and code execution. On the other
hand, you will also learn about the dynamic type and be able to interoperate with
dynamic languages.

Understanding reflection
The unit of deployment in .NET is the assembly. An assembly is a file (either an executable
or a dynamic-linked library) that contains Microsoft Intermediary Language (MSIL)
code, as well as metadata about the content of the assembly and, optionally, resources.
Tools such as ildasm.exe (IL Disassembler), distributed with Visual Studio; ilspy.
exe (an open-source project); or others allow you to view the content of the assembly.
The following is a screenshot of ildasm.exe that shows the chapter_11_01.dll
assembly, available with the source code of this book:

Figure 11.1 – Disassembled source code for chapter_11_01 assembly

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding reflection 323

Reflection is the process of runtime type discovery and the ability to make changes to
them. This means that we can retrieve information about types, their members, and
attributes at runtime. This brings several important benefits:

• The ability to load assemblies dynamically during runtime (late binding), inspect
types, and execute code makes it easy to build extensible applications. An
application can define functionalities through interfaces and base classes, which
would then be implemented or extended in separate modules (plugins or add-ons)
that could be loaded and executed at runtime based on various conditions.

• Attributes, which we will later see in this chapter, make it possible to provide
meta-information about types, methods, properties, and others in a declarative
way. By being able to read these attributes at runtime, a system can change their
behavior. Tools, for instance, could warn that a method is used differently than
intended (such as in the case of obsolete methods) or execute them in a particular
way. Testing frameworks (we will look at some in the final chapter) use this
functionality extensively.

• It provides the ability to execute types and members that are private or have other
access levels that make them inaccessible otherwise. This is, again, very handy for
testing frameworks.

• It allows modifying existing types or creating entirely new types at runtime and
executing code using them.

Reflection also has some drawbacks:

• It incurs an overhead that can degrade performance. Loading, discovering, and
executing code at runtime is slower and may prevent optimizations.

• It exposes the internals of types because it allows introspection on all types and
members regardless of their access level.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

324 Reflection and Dynamic Programming

The .NET reflection services allow you to discover, using APIs from the System.
Reflection namespace, the same information that you can see with the tools
mentioned earlier. The key to this process is the type called System.Type, which
contains members that expose all of a type's metadata. This is done with the help of
other types from the System.Reflection namespace, some of which are listed in the
following table:

Some of the most important members of the System.Type class are listed in the
following table:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding reflection 325

There are several ways to retrieve an instance of System.Type to access type metadata at
runtime; here are a few:

• Using the GetType() method of the System.Object type. Since this is the base
class for all value and reference types, you can call with an instance of any type:

var engine = new Engine();
var type = engine.GetType();

• Using the GetType() static method from System.Type. There are many
overloads that allow you to specify the name and various parameters:

var type = Type.GetType("Engine");

• Using the C# typeof operator:

var type = typeof(Engine);

Let's see how we can use reflection by looking at an actual example. We will consider
the following Engine type, which has several properties, a constructor, and a couple of
methods that change the status of the engine (started or stopped):

public enum EngineStatus { Stopped, Started }

public class Engine
{
 public string Name { get; }
 public int Capacity { get; }
 public double Power { get; }
 public EngineStatus Status { get; private set; }

 public Engine(string name, int capacity, double power)
 {
 Name = name;
 Capacity = capacity;
 Power = power;
 Status = EngineStatus.Stopped;
 }

 public void Start()
 {
 Status = EngineStatus.Started;
 }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

326 Reflection and Dynamic Programming

 public void Stop()
 {
 Status = EngineStatus.Stopped;
 }
}

We will build a small program that will read metadata about the Engine type at runtime
and print the following to the console:

• The name of the type

• The name of all properties as well as the name of their type

• The name of all declared methods (excluding the inherited methods)

• The name of their return type

• The name and type of each parameter

Here is the program to read and print metadata about the Engine type at runtime:

static void Main(string[] args)
{
 var type = typeof(Engine);

 Console.WriteLine(type.Name);

 var properties = type.GetProperties();
 foreach(var p in properties)
 {
 Console.WriteLine($"{p.Name} ({p.PropertyType.Name})");
 }

 var methods = type.GetMethods(BindingFlags.Public |
 BindingFlags.Instance |
 BindingFlags.DeclaredOnly);
 foreach(var m in methods)
 {
 var parameters = string.Join(
 ',',
 m.GetParameters()
 .Select(p => $"{p.ParameterType.Name} {p.Name}"));

 Console.WriteLine(
 $"{m.ReturnType.Name} {m.Name} ({parameters})");
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dynamically loading assemblies 327

In this example, we used the typeof operator to retrieve an instance of the System.
Type type to discover the metadata for the Engine type. To retrieve properties, we
used the overload of GetProperties() with no parameters, which returns all of the
public properties of the current type. For methods, however, we used an overload of the
GetMethod() method, which takes as argument a bitmask comprised of one or more
BindingFlags values.

The BindingFlags type is an enum with flags that control the binding and the way
searching for types and methods is performed during reflection. In our example, we used
Public, Instance, and DeclareOnly to specify public, non-static methods declared
in this type only, and exclude inherited ones. The output of this program is as follows:

Engine
Name (String)
Capacity (Int32)
Power (Double)
Status (EngineStatus)
String get_Name ()
Int32 get_Capacity ()
Double get_Power ()
EngineStatus get_Status ()
Void Start ()
Void Stop ()

The Engine type is located in the assembly where the reflection code was executed.
However, you can also reflect on types from other assemblies too, whether they are
referred from the executing assembly or loaded at runtime, which is what we will look at
in the next section.

Dynamically loading assemblies
The reflection services allow you to load an assembly at runtime. This is done using
the System.Reflection.Assembly type, which provides various methods for
loading assemblies.

Assemblies can be either public (also called shared) or private. A shared assembly is
intended to be used by several applications and is usually located under the Global
Assembly Cache (GAC), a system repository for assemblies. A private assembly is
intended to be used by a single application and is stored in the application directory or
one of its sub-directories. Shared assemblies must be strongly named and enforce version
constraints; these requirements are not necessary for private assemblies.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

328 Reflection and Dynamic Programming

An assembly can be loaded in one of three contexts or without any:

• The load context, which contains assemblies loaded from the GAC, the application
directory (ApplicationBase of the app domain), or its sub-directories of private
assemblies (PrivateBinPath of the app domain)

• The load-from context, which contains assemblies loaded from paths other than the
aforementioned ones that are probed by the assembly loader

• The reflection-only context, which contains assemblies loaded for reflection purposes
only and which cannot be used to execute code

• No context, which is used in some particular cases such as assemblies loaded from
an array of bytes

The most important methods used to load assemblies are listed in the following table:

We will look at several examples of loading assemblies dynamically.

In the first example, we use Assembly.Load() to load an assembly called EngineLib
from the applications directory:

var assembly = Assembly.Load("EngineLib");

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dynamically loading assemblies 329

Here, we only specified the name of the assembly, but we could alternatively specify the
display name, which is comprised not only of the name but also the version, culture, and
the public key token used to sign the assembly. For assemblies that do not have a strong
name, this is null. The following line, where we use the display name, is equivalent to the
one used previously:

var assembly = Assembly.Load(@"EngineLib, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=null");

It is possible to create the display name in a type-safe way by using the AssemblyName
class. This class has various properties and methods that allow you to build the display
name. This can be done as shown here:

var assemblyName = new AssemblyName()
{
 Name = "EngineLib",
 Version = new Version(1,0,0,0),
 CultureInfo = null,
};

var assembly = Assembly.Load(assemblyName);

Public (or shared) assemblies must have a strong name. This helps to uniquely identify the
assembly and therefore avoid possible conflicts. Signing is done using a public-private key;
the private key is used for signing and the public key is distributed with the assembly and
used to verify the signature.

Such a cryptographic pair can be generated with the sn.exe tool, distributed with Visual
Studio; this tool can also be used for verifying a signature. For strong-name assemblies,
PublicKeyToken must be specified or loading would fail. The following example shows
how to load WindowsBase.dll from the GAC:

var assembly = Assembly.Load(@"WindowsBase, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35");

The alternative to using the assembly name for loading an assembly is to use its actual
path. However, in this case, you must use one of the LoadFrom() overloads. This is
useful for cases where you must load an assembly that is neither in the GAC nor under
the application's folder. An example can be an extensible system that can load plugins that
may be installed in some custom directory:

var assembly = Assembly.LoadFrom(@"c:\learningc#8\
chapter_11_02\bin\Debug\netcoreapp2.1\EngineLib.dll");

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

330 Reflection and Dynamic Programming

The Assembly class has members that provide information about the assembly itself, as
well as members that provide information about the types it contains. Some of the most
important members are listed here:

In the following example, after loading an assembly using one of the methods shown
previously, we list the assembly name and the files in the assembly manifest, as well as the
names of the referenced assemblies. After that, we search for the EngineLib.Engine
type and print the name and the type of all of its properties:

if (assembly != null)
{
 Console.WriteLine(
$@"Name: {assembly.GetName().FullName}
Files: {string.Join(',',
 assembly.GetFiles().Select(
 s=>Path.GetFileName(s.Name)))}
Refs: {string.Join(',',
 assembly.GetReferencedAssemblies().Select(
 n=>n.Name))}");

 var type = assembly.GetType("EngineLib.Engine");

 if (type != null)
 {
 var properties = type.GetProperties();
 foreach (var p in properties)
 {

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding late binding 331

 Console.WriteLine(
 $"{p.Name} ({p.PropertyType.Name})");
 }
 }
}

Apart from querying for information about an assembly and its content, it is also possible
to execute code from it at runtime. This is what we will look at in the next section.

Understanding late binding
When you reference an assembly at compile time, the compiler has full access to the
types available in that assembly. This is called early binding. However, if an assembly is
only loaded at runtime, the compiler has no access to the content of that assembly. This
is called late binding and is key to building extensible applications. Using late binding,
you can not only load and query assemblies but also execute code. We will see that in the
following examples.

Let's imagine the Engine class, shown earlier, is available in an assembly called
EngineLib. This can be loaded with either Assembly.Load() or Assembly.
LoadFrom(). Once loaded, we can get information about the Engine type using
Assembly.GetType() and the class methods of Type. However, using Assembly.
CreateInstance(), we can instantiate an object of the class:

var assembly = Assembly.LoadFrom("EngineLib.dll");
if (assembly != null)
{
 var type = assembly.GetType("EngineLib.Engine");

 object engine = assembly.CreateInstance(
 "EngineLib.Engine",
 true,
 BindingFlags.CreateInstance,
 null,
 new object[] { "M270 Turbo", 1600, 75.0 },
 null,
 null);

 var pi = type.GetProperty("Status");
 if (pi != null)
 Console.WriteLine(pi.GetValue(engine));

 var mi = type.GetMethod("Start");

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

332 Reflection and Dynamic Programming

 if (mi != null)
 mi.Invoke(engine, null);

 if (pi != null)
 Console.WriteLine(pi.GetValue(engine));
}

The Assembly.CreateInstance() method has many parameters, but three of them
are of the most importance:

• The first parameter, string typeName, representing the name of the assembly.

• The third parameter, BindingFlags bindingAttr, representing binding flags.

• The fifth parameter, object[] args, representing an array with the parameters
used to invoke the constructor; for a default constructor, this object can be null.

After creating an instance of a type, we can invoke its members using instances of
PropertyInfo, MethodInfo, and so on. For instance, in the previous example, we
first retrieve an instance of PropertyInfo for the property called Status and then the
value of the property by calling GetValue() and passing the engine object.

Similarly, we use GetMethod() to retrieve an instance of MethodInfo with
information about the method called Start() and then invoke it by calling Invoke().
This method takes a reference to the object and an array of objects representing the
arguments; since the Start() method has no parameters, null is used here.

The Assembly.CreateInstance() method has a lot of parameters and can be
cumbersome to use. Alternatively, a simpler way to create instances of types at runtime is
provided by the System.Activator class. It has an overloaded CreateInstance()
method. This is actually used under the hood by Assembly.CreateInstance().
In its simplest form, it only takes Type and an array of objects representing constructor
arguments and instantiates an object of that type. An example is shown here:

object engine = Activator.CreateInstance(
 type,
 new object[] { "M270 Turbo", 1600, 75.0 });

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding late binding 333

Activator.CreateInstance() is not only simpler to use but can provide benefits
in some scenarios. For instance, it can create objects in other app domains or on another
server using Remoting. On the other hand, Assembly.CreateIntance() will not
attempt to load the assembly if it is not already loaded, while System.Activator will
load the assembly into the current app domain.

Using late binding and invoking code in the manner shown earlier is not necessarily
practical. In practice, when building an extensible system, you will probably have one or
more assemblies with interfaces and common types that add-ons (or plugins, depending
on how you want to call them) rely upon. You will early-bind to these base assemblies and
then use late binding with the plugins.

To better understand this, we will demonstrate it with the following example.
EngineLibBase is an assembly that defines an interface called IEngine and the
EngineStatus enumeration:

namespace EngineLibBase
{
 public enum EngineStatus { Stopped, Started }

 public interface IEngine
 {
 EngineStatus Status { get; }
 void Start();
 void Stop();
 }
}

This assembly is directly referenced in the EngineLib assembly, which provides the
Engine class that implements the IEngine interface. This is shown in the example here:

using EngineLibBase;

namespace EngineLib
{
 public class Engine : IEngine
 {
 public string Name { get; }
 public int Capacity { get; }
 public double Power { get; }
 public EngineStatus Status { get; private set; }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

334 Reflection and Dynamic Programming

 public Engine(string name, int capacity, double power)
 {
 Name = name;
 Capacity = capacity;
 Power = power;
 Status = EngineStatus.Stopped;
 }

 public void Start()
 {
 Status = EngineStatus.Started;
 }

 public void Stop()
 {
 Status = EngineStatus.Stopped;
 }
 }
}

In our application, where we instantiated the Engine class, we again reference the
EngineLibBase assembly so that we can use the IEngine interface. After loading the
EngineLib assembly at runtime, we instantiate an object of the Engine class and cast it
to the IEngine interface, which makes it possible to access the members of the interface
at compile time, even though the actual instance is not known until at runtime. This is
shown in the code here:

var assembly = Assembly.LoadFrom("EngineLib.dll");
if (assembly != null)
{
 var type = assembly.GetType("EngineLib.Engine");
 var engine = (IEngine)Activator.CreateInstance(
 type,
 new object[] { "M270 Turbo", 1600, 75.0 });

 Console.WriteLine(engine.Status);
 engine.Start();
 Console.WriteLine(engine.Status);
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using the dynamic type 335

As we will see further on in this chapter, this is not the only way to use late binding and
execute code dynamically at runtime. The other possibility is using the DLR and the
dynamic type. We will look at this in the following section.

Using the dynamic type
Throughout this book, we have talked about the CLR. .NET Framework, however,
contains another component called the Dynamic Language Runtime (DLR). This is
another runtime environment that adds a set of services on top of the CLR to enable
dynamic languages to run on the CLR and to add dynamic features to statically-typed
languages. C# and Visual Basic are statically-typed languages. By contrast, languages such
as JavaScript, Python, Ruby, PHP, Smalltalk, Lua, and others are dynamic languages. The
key characteristic of these languages is that they identify the type of an object at runtime
and not at compile time as in the case of the statically-typed languages.

The DLR provides C# (and Visual Basic) with dynamic features that enable them to
interoperate with dynamic languages in a simple manner. As mentioned before, the DLR
adds a set of services to the CLR. These services are as follows:

• Expression trees are used to present language semantics. These are the same
expression trees used with LINQ but extended to include control-flow, assignments,
and others.

• Call site caching is a service that caches information about operations and objects
(such as the type of an object) so that when the same operation is performed again,
it can be quickly dispatched.

• Dynamic object interoperability is a set of APIs intended for language
implementers to model dynamic objects and operations on them. These include the
following types—IDynamicMetaObjectProvider, DynamicMetaObject,
DynamicObject, and ExpandoObject.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

336 Reflection and Dynamic Programming

The DLR provides the infrastructure for the dynamic type, introduced in C# 4. This is a
static type, meaning variables of this type are assigned the dynamic type at compile time.
However, they bypass static type checking. This means that the actual type of the object is
only known at runtime and the compiler cannot know and cannot enforce any checks on
operations performed on objects of this type. You can actually invoke any methods with
any parameters and the compiler will not check and complain; however, if the operation is
not valid, an exception will be thrown at runtime.

The following code shows several examples of variables of the dynamic type. Notice
that s is a string and l is List<int>. Calling l.Add() is a valid operation because
List<T> contains such a method. However, calling s.Add() is invalid because
the string type does not have such a method. Therefore, an exception of the
RuntimeBinderException type is thrown at runtime for this call:

dynamic i = 42;
dynamic s = "42";
dynamic d = 42.0;
dynamic l = new List<int> { 42 };

l.Add(43); // OK

try
{
 s.Add(44); /* RuntimeBinderException:
 'string' does not contain a definition for 'Add' */
}
catch (Exception ex)
{
 Console.WriteLine(ex.Message);
}

The dynamic type makes it easy to consume objects whose type you do not know
anything about at compile time. Consider the first example from the previous paragraph,
where we loaded an assembly using reflection, instantiated an object of the Engine type
and called its methods and properties. That example can be rewritten in a simpler way, as
follows, using the dynamic type:

var assembly = Assembly.LoadFrom("EngineLib.dll");
if (assembly != null)
{
 var type = assembly.GetType("EngineLib.Engine");

 dynamic engine = Activator.CreateInstance(
 type,

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using the dynamic type 337

 new object[] { "M270 Turbo", 1600, 75.0 });

 Console.WriteLine(engine.Status);
 engine.Start();
 Console.WriteLine(engine.Status);
}

An object of the dynamic type behaves in many cases as if it had the object type
(except there is no compile-time checking). However, the actual source of the object's
value is irrelevant. It could be a .NET object, a COM object, an HTML DOM object, an
object created through reflection, such as in the previous example, and so on.

The type of the result of a dynamic operation is also dynamic with the exception of
conversions from dynamic to another type and constructor calls that include arguments
of the dynamic type. Implicit conversions from a static type to dynamic and the other
way around are performed. This is shown in the code block here:

dynamic d = "42";
string s = d;

For static types, the compiler performs overload resolution to figure out what is the best
match for a function call. Because there is no information about the dynamic type at
compile time, the same cannot be done for methods that have at least one argument of the
dynamic type. Instead, the overload resolution is performed at runtime.

The dynamic type is often used to simplify the consumption of COM objects when
an interop assembly is not available. The following is an example that creates an Excel
document with some dummy data:

dynamic excel = Activator.CreateInstance(
 Type.GetTypeFromProgID("Excel.Application.16"));
if (excel != null)
{
 excel.Visible = true;

 dynamic workBook = excel.Workbooks.Add();
 dynamic workSheet = excel.ActiveWorkbook.ActiveSheet;

 workSheet.Cells[1, 1] = "ID";
 workSheet.Cells[1, 2] = "Name";
 workSheet.Cells[2, 1] = "1";
 workSheet.Cells[2, 2] = "One";
 workSheet.Cells[3, 1] = "2";
 workSheet.Cells[3, 2] = "Two";

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

338 Reflection and Dynamic Programming

 workBook.SaveAs("d:\\demo.xls",
 Excel.XlFileFormat.xlWorkbookNormal,
 AccessMode : Excel.XlSaveAsAccessMode.xlExclusive);

 workBook.Close(true);
 excel.Quit();
}

What this code does is as follows:

• It retrieves System.Type for the COM object identified by the programmatic
identifier, Excel.Application.16, and creates an instance of it.

• It sets the Visible property of the Excel application to true so that you can see
the window.

• It creates a workbook and adds some data to its active worksheet.

• It saves the document on a file called demo.xls.

• It closes the workbook and quits the Excel application.

In the last section of this chapter, we will look at how to use attributes with
reflection services.

Attributes
Attributes provide meta-information about assemblies, types, and members. This meta-
information is consumed by the compiler, the CLR, or tools that use reflection services
to read them. Attributes are actually types that derive from the System.Attribute
abstract class. The .NET frameworks provide a large number of attributes, but users can
define their own.

Attributes are specified in square brackets, such as in [SerializableAttribute].
The naming convention for attributes is that the type names are always suffixed with the
word Attribute. The C# language provides a syntactic shortcut that allows specifying
the name of the attribute without the suffix, Attribute, such as in [Serializable].
However, this is only possible as long as the type name is properly suffixed according to
this convention.

We will first look at some widely used system attributes in the next section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Attributes 339

System attributes
.NET Framework provides hundreds of attributes in different assemblies and namespaces.
Enumerating them would be not only practically impossible but would also make little
sense. However, the following table lists several attributes that you will often work with;
some of them we have already seen in this book:

On the other hand, it is often necessary or useful to create your own attribute classes. In
the next section, we will look at user-defined attributes.

User-defined attributes
You can create your attributes to mark program elements. What you have to do is derive
from System.Attribute and follow the naming convention of suffixing the type with
the word Attribute. The following is an attribute called Description that contains a
single property, called Text:

class DescriptionAttribute : Attribute
{
 public string Text { get; private set; }

 public DescriptionAttribute(string description)
 {
 Text = description;
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

340 Reflection and Dynamic Programming

This attribute can be used to decorate any program element. In the following example, we
can see this attribute used on a class, properties, and method parameters:

[Description("Main component of the car")]
class Engine
{
 public string Name { get; }

 [Description("cm³")]
 public int Capacity { get; }

 [Description("kW")]
 public double Power { get; }

 public Engine([Description("The name")] string name,
 [Description("The capacity")] int capacity,
 [Description("The power")] double power)
 {
 Name = name;
 Capacity = capacity;
 Power = power;
 }
}

Attributes can have positional and named parameters:

• Positional parameters are defined by the arguments of public instance constructors.
The arguments of each such constructor define a set of named parameters.

• On the other hand, every non-static public field and property that is read-write
defines a named parameter.

The following sample shows the Description attribute introduced earlier, modified so
that a public property called Required is available:

class DescriptionAttribute : Attribute
{
 public string Text { get; private set; }
 public bool Required { get; set; }
 public DescriptionAttribute(string description)
 {
 Text = description;
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Attributes 341

This property can be used as a named parameter in the declaration of an attribute on a
program element. This is shown in the following example:

[Description("Main component of the car", Required = true)]
class Engine
{
}

Let's learn how to use attributes in the next section.

How to use attributes?
A program element can be marked with multiple attributes. This can be done in two
equivalent ways:

• The first method (which is the most widely used because it is the most descriptive
and clear) is to declare each attribute separately, inside a pair of square brackets. The
following example shows how this is done:

[Serializable]
[Description("Main component of the car")]
[ComVisible(false)]
class Engine
{
}

• The alternative method is to declare multiple attributes inside the same pair of
square brackets, separated by a comma. The following code is equivalent to the
earlier one:

[Serializable,
 Description("Main component of the car"),
 ComVisible(false)]
class Engine
{
}

Let's see how to specify an attribute's target in the next section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

342 Reflection and Dynamic Programming

Attribute targets
By default, an attribute is applied to any program element that it precedes. However, it is
possible to specify the target, such as a type, a method, and so on. This is done by marking
the attribute type with another attribute called AttributeUsage. Apart from specifying
the target, this attribute allows specifying whether the newly defined attribute can be
applied multiple times and whether it can be inherited.

The following modified version of DescriptionAttribute indicates that it can only
be used on classes, structs, methods, properties, and fields. In addition, it specifies that
the attribute is inherited by derived classes and that it can be used multiple times on the
same element:

[AttributeUsage(AttributeTargets.Class|
 AttributeTargets.Struct|
 AttributeTargets.Method|
 AttributeTargets.Property|
 AttributeTargets.Field,
 AllowMultiple = true,
 Inherited = true)]
class DescriptionAttribute : Attribute
{
 public string Text { get; private set; }
 public bool Required { get; set; }

 public DescriptionAttribute(string description)
 {
 Text = description;
 }
}

As a result of these changes, this attribute can no longer be used for method parameters,
as shown in an earlier example. That would result in a compiler error.

The attributes we've used so far target program elements, such as types and methods. But
assembly-level attributes are also possible. We look at these in the next section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Attributes 343

Assembly attributes
There are attributes that can target an assembly and specify information about the
assembly. This information can be the identity (that is, the name, version, and culture)
of the assembly, manifest information, the strong name, or others. These attributes are
specified using the syntax [assembly : attribute]. These attributes are usually
found in the AssemblyInfo.cs file generated for every .NET Framework project. The
following is an example of such attributes:

[assembly: AssemblyTitle("project_name")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("project_name")]
[assembly: AssemblyCopyright("Copyright © 2019")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

Attributes are intended for reflection services. Now that we've seen how to create and use
attributes, let's see how to use them in reflection.

Attributes in reflection
Attributes have little value by themselves until somebody reflects on them and performs
specific actions based on the meaning of the attributes and their values. The System.
Type type as well as other types from the System.Reflection namespace have an
overloaded method called GetCustomAttributes() that retrieves the attributes a
particular program element is marked with. One overload takes the type of the attribute so
that it only returns instances of that type; the other does not and returns all the attributes.

The following example retrieves all of the instances of the Description attribute, first
from the Engine type and then from all of the properties of the type, and displays the
description text in the console:

var e = new Engine("M270 Turbo", 1600, 75.0);
var type = e.GetType();

var attributes = type.
GetCustomAttributes(typeof(DescriptionAttribute),
 true);
if (attributes != null)
{

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

344 Reflection and Dynamic Programming

 foreach (DescriptionAttribute attr in attributes)
 {
 Console.WriteLine(attr.Text);
 }
}

var properties = type.GetProperties();
foreach (var property in properties)
{
 var pattributes =
 property.GetCustomAttributes(
 typeof(DescriptionAttribute), false);
 if (attributes != null)
 {
 foreach (DescriptionAttribute attr in pattributes)
 {
 Console.WriteLine(
 $"{property.Name} [{attr.Text}]");
 }
 }
}

The output of this program is as follows:

Main component of the car
Capacity [cm3]
Power [kW]

Summary
In this chapter, we looked at reflection services, how to load assemblies at runtime, and
querying meta-information about types. We also learned how to execute code dynamically
using both system reflection on one hand and the DLR and the dynamic type on the
other hand. The DLR provides dynamic features to C# and enables interoperability with
dynamic languages in a simple manner. The last topic we covered in this chapter was
attributes. We learned what the common system attributes are and how to create your own
types as well as how to use them in reflection.

In the next chapter, we will focus on concurrency and parallelism.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Test what you learned 345

Test what you learned
1. What is the unit of deployment in .NET and what does it contain?

2. What is reflection? What benefits does it provide?

3. What .NET type exposes metadata about types? How can you create an instance of
this type?

4. What is the difference between public and private assemblies?

5. In .NET Framework, in what context can an assembly be loaded?

6. What is early binding? What about late binding? What benefits does the
latter provide?

7. What is the Dynamic Language Runtime?

8. What is the dynamic type and what are the typical scenarios where it is used?

9. What are attributes and how do you specify them in code?

10. How do you create user-defined attributes?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

12
Multithreading

and Asynchronous
Programming

Since the very first personal computer, we have benefitted from the constant increase
of CPU power—a phenomenon that heavily influenced developers' choices of tools,
languages, and application design, while historically not putting much effort into
programming to take advantage of multithreading.

On the hardware side, the prediction made by Moore's law that the density of the
transistors in processors should double every 2 years, thus providing more computing
power, worked for some decades, but we can already observe it slowing down. Even if the
CPU manufacturers started producing multi-core CPUs roughly 20 years ago, the ability
to execute code concurrently was primarily used by the operating systems (OSes) to
make executing multiple processes smoother.

This doesn't mean that code was unable to leverage the power of concurrency, but just
that only a small quantity of applications fully embraced the multithreading paradigm.
The primary reason for this is because all the code we write is executed sequentially from
a single thread provided by the OS infrastructure unless we explicitly request the creation
of other threads and orchestrate their execution.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

348 Multithreading and Asynchronous Programming

This trend is mostly due to the fact that many programming languages do not provide
constructs to automatically generate multithreading code. This is because it is extremely
difficult to provide the semantics that fit any use case and efficiently take advantage of the
concurrent processing capabilities offered by modern CPUs.

On the other hand, there are times where we don't really need to execute the application
code concurrently, but we can't continue the execution because it is necessary to wait for
some outstanding I/O operation. At the same time, blocking the code execution is also
not acceptable and therefore a different strategy is required. This domain of problems is
categorized under asynchronous programming and requires slightly different tools.

In this chapter, we will learn the basics of multithreading and asynchronous programming
and look specifically at the following:

• What is a thread?

• Creating threads in .NET

• Understanding synchronization primitives

• The task paradigm

By the end of this chapter, you will be familiar with multithreading techniques, using
primitives to synchronize code execution, tasks, continuations, and cancellation tokens.
You will also understand what the potentially dangerous operations are and the basic
patterns to use to avoid problems when sharing resources among multiple threads.

We will now begin familiarizing ourselves with the basic concepts needed to operate with
multithreading and asynchronous programming.

What is a thread?
Every OS provides abstractions to allow multiple programs to share the same hardware
resources, such as CPU, memory, and input and output devices. The process is one of
those abstractions, providing a reserved virtual address space that its running code cannot
escape from. This basic sandbox avoids the process code interfering with other processes,
establishing the basis for a balanced ecosystem. The process has nothing to do with code
execution, but primarily with memory.

The abstraction that takes care of code execution is the thread. Every process has at least
one thread, but any process code may request the creation of more threads that will all
share the same virtual address space, delimited by the owning process. Running multiple
threads in a single process is roughly equivalent to a group of woodworking friends
working on the same project –they need to be coordinated, paying attention to each
other's progress, and taking care not to block each other's activity.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

What is a thread? 349

All modern OSes offer the preemptive multitasking strategy as opposed to cooperative
multitasking. This means that a special component of the OS schedules the amount of
time each thread can run, without needing any cooperation from the running code.

Tip
Earlier version of Windows, such as Windows 3.x and Windows 9x, used
cooperative multitasking, meaning that any application could hang the entire
operating system with a simple infinite loop. This was mostly because of CPU
power and capabilities limitations. All the later operating systems, such as
Windows versions starting from the very first NT 3.1 Advanced Server and all
the Unix-like OSes, have always used preemptive multitasking, making the OS
more robust and providing a better user experience.

You can see the number of threads used in each running process with either the Task
Manager, Process Explorer, or Process Hacker tools. You will immediately notice that
many applications, including all the .NET ones, use more than one single thread. This
information doesn't tell us much about how the application is designed because modern
runtimes such as the .NET CLR use background threads for internal processing, such as
the garbage collector, the finalization queue, and so on.

Tip
In order to see the number of threads used by the running processes, open
the Task Manager (Ctrl + Shift + Esc), click on the Details tab, and add the
Threads column. Columns can be added by right-clicking one of the grid
headers, selecting the Select Columns menu item, and finally checking the
Threads voice.

The following screenshot shows a C++ console application where the user's code uses a
single thread and the other three threads are created by the C++ runtime:

Figure 12.1 – The Task Manager showing NativeConsole.exe process with four threads

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

350 Multithreading and Asynchronous Programming

The namespace containing the primitives dealing with threads is System.Threading
but later in this chapter, we will also introduce Tasks, which are a part of the System.
Threading.Tasks namespace.

When a .NET application starts, the .NET runtime prepares our process, allocating
memory and creating some threads, including the one that will spin the execution of our
code, starting from the Main entry point.

The following console application accesses the current thread and prints the current
thread Id on the screen:

static void Main(string[] args)
{
 Console.WriteLine($"Current Thread Id: {Thread.
CurrentThread.ManagedThreadId}");
 Console.ReadKey();
}

The ManagedThreadId property is important when diagnosing multithreading code
because it correlates the execution of some code with a specific thread.

This Id can only be used within the running process and is different from the OS
thread identifier. Should you ever require access to the native identifier, you need to
use interoperability, as demonstrated in the following Windows-only snippet:

[DllImport("Kernel32.dll")]
private static extern int GetCurrentThreadId();
static void Main(string[] args)
{
 Console.WriteLine($"Current Thread Id: {Thread.
CurrentThread.ManagedThreadId}");
 Console.WriteLine($"Current Native Thread Id:
{GetCurrentThreadId()}");
 Console.ReadKey();
}

The native Id is the one that you can see in Process Explorer and the Process Hacker
tools and is the one needed to interop with other native APIs. In the following screenshot,
you can see the results printed in the console on the left, and the Process Hacker threads
window on the right:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

What is a thread? 351

Figure 12.2 – The console application side by side with Process Hacker
showing the same native thread Id

Threads can also be created from either the OS, the .NET runtime, or some library
without our code explicitly requesting it. For example, the following class shows
a FileSystemWatcher class in action and prints the ManagedThreadId property for
each filesystem operation: the Run method prints the ID associated with the main thread,
while the Wacher_Deleted and Watcher_Created methods are executed from
a thread created by the OS or the infrastructure:

public class FileWatcher
{
 private FileSystemWatcher _watcher;
 public void Run()
 {
 var path = Path.GetFullPath(".");
 Console.WriteLine($"Observing changes in path:
{path}");
 _watcher = new FileSystemWatcher(path, "*.txt");
 _watcher.Created += Watcher_Created;
 _watcher.Deleted += Watcher_Deleted;
 Console.WriteLine($"TID: {Thread.CurrentThread.
ManagedThreadId}");
 _watcher.EnableRaisingEvents = true;
 }

 private void Watcher_Deleted(object sender,
FileSystemEventArgs e)
 {
 Console.WriteLine($"Deleted occurred in TID: {Thread.
CurrentThread.ManagedThreadId}");
 }

 private void Watcher_Created(object sender,

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

352 Multithreading and Asynchronous Programming

FileSystemEventArgs e)
 {
 Console.WriteLine($"Created occurred in TID: {Thread.
CurrentThread.ManagedThreadId}");
 }
}

You can experiment with this code by creating a console application and adding the
following code to the Main method:

var fw = new FileWatcher();
fw.Run();
Console.ReadKey();

Now, if you start creating and deleting some .txt files in the console folder, you will see
something like this:

Observing changes in path: C:\projects\Watch\bin\Debug\
netcoreapp3.1
TID: 1
Created occurred in TID: 5
Created occurred in TID: 7
Deleted occurred in TID: 5
Deleted occurred in TID: 5

The TID numbers you see will likely change every time you rerun the application: they are
neither predictable nor used in the same order.

We will now see how we can create a new thread, execute some code concurrently, and
examine the main characteristics of a thread.

Creating threads in .NET
Creating a raw thread is something that mostly makes sense only when you have a long-
running operation that depends on the CPU alone. As an example, let's say we want to
compute prime numbers, without really caring about the possible optimizations:

public class Primes : IEnumerable<long>
{
 public Primes(long Max = long.MaxValue)
 {
 this.Max = Max;
 }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating threads in .NET 353

 public long Max { get; private set; }
 IEnumerator IEnumerable.GetEnumerator() =>
((IEnumerable<long>)this).GetEnumerator();

 public IEnumerator<long> GetEnumerator()
 {
 yield return 1;
 bool bFlag;
 long start = 2;
 while (start < Max)
 {
 bFlag = false;
 var number = start;
 for (int i = 2; i < number; i++)
 {
 if (number % i == 0)
 {
 bFlag = true;
 break;
 }
 }

 if (!bFlag)
 {
 yield return number;
 }
 start++;
 }
 }
}

The Primes class implements IEnumerable<long> so that we can easily enumerate
the prime numbers in a foreach statement. The Max argument is used to limit the
resulting sequence, which is otherwise restricted by long.MaxValue.

Calling the preceding code is very easy to do but, as the calculation can take a very long
time, it totally blocks the executing thread:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.InteropServices;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

354 Multithreading and Asynchronous Programming

using System.Text;
using System.Threading;
// namespace and class declaration omitted for clarity
Console.WriteLine("Start primes");
foreach (var n in new Primes(1000000)) { /* ... */ }
Console.WriteLine("End primes"); // the wait is too long!

What happens here is that the main thread is busy calculating the prime numbers. Thanks
to preemptive multitasking, this thread will be interrupted by the OS scheduler to give
other process' threads the opportunity to run their code. However, since our application
has no other threads executing application code, we can only wait.

In any desktop application, be it a console or a GUI, the user experience is frustrating as
any interaction with the mouse and keyboard is blocked. Even worse, the GUIs cannot
even redraw the content of the screen as the only thread was stolen by the prime number's
computation.

The very first step is to move the blocking code into a separate method so that we can
execute it in a new and separate thread:

private void Worker(object param)
{
 PrintThreadInfo(Thread.CurrentThread);
 foreach (var n in new Primes(1000000))
 {
 Thread.Sleep(100);
 }
 Console.WriteLine("Computation ended!");
}

The Thread.Sleep method is used only to make some observations on the CPU usage.
Then, Sleep tells the OS to suspend the current thread execution for the given amount
of time, expressed in milliseconds. Generally, calling Sleep is not recommended in
production code because it prevents that thread from being reused. Later in this chapter,
we will discover better ways to insert delays in our code.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating threads in .NET 355

The Worker method has nothing special and it may optionally get an object parameter
that can be used to initialize the local variables. Instead of invoking it directly, we just ask
the infrastructure to invoke it in the context of a new thread:

Console.WriteLine("Start primes");
PrintThreadInfo(Thread.CurrentThread);
var t1 = new Thread(Worker);
//t1.IsBackground = true; // try with/without this line
t1.Start();
Console.WriteLine("Primes calculation is happening in
background");

As you can see from the preceding code, the Thread object is created but the thread is
not started yet. We have to explicitly call the Start method to make it happen. This is
important because the Thread class has other important properties that can be set only
before the thread is started.

Finally, the main thread's details are printed by using the PrintThreadInfo method.
Please note that some properties are not always available. For this reason, we have to check
whether the thread is running before printing Priority or IsBackground. Since the
ThreadState enumeration has the Flags attribute and the Running state is zero, the
official documentation (https://docs.microsoft.com/en-us/dotnet/api/
system.threading.threadstate?view=netframework-4.8#remarks)
reminds us to check if the Stopped and Unstarted bits are not set:

private void PrintThreadInfo(Thread t)
{
 var sb = new StringBuilder();
 var state = t.ThreadState;
 sb.Append($"Id:{t.ManagedThreadId} Name:{t.Name}
State:{state} ");
 if ((state & (ThreadState.Stopped | ThreadState.Unstarted))
== 0)
 {
 sb.Append($"Priority:{t.Priority} IsBackground:{t.
IsBackground}");
 }

 Console.WriteLine(sb.ToString());
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

356 Multithreading and Asynchronous Programming

The result of the executing the preceding code is as follows:

Start primes
Id:1 Name: State:Running Priority:Normal IsBackground:False
Primes calculation is happening in background
Id:5 Name: State:Running Priority:Normal IsBackground:False

Even if this is a trivial example, we must observe a few things:

• The first is that we have no guarantees about the output order regarding the Primes
calculation … and Id:5 … lines. They may appear in reversed order. In order
to obtain a deterministic behavior, you need to apply a synchronization technique
that we will discuss later in the Understanding synchronization primitives section.

• Another important consideration is the CPU usage. If you open Task Manager,
under the Performance tab, you can set the view to show a separate graph for each
logical CPU. In the following screenshot, you can see a four-core CPU that has
eight logical cores (thanks to the Intel Hyper-Threading technology!). You may also
want to show kernel times (shown in a darker color) because the kernel mode only
executes code for the OS and drivers, while the user mode (shown in a lighter color)
just executes the code we write. This distinction will allow you to immediately see
which application code is being executed:

Figure 12.3 – The Task Manager showing all the logical processors

If we now execute our code without the Sleep call, we will see that one of the CPUs will
show a higher amount of CPU usage as one thread keeps consuming the full amount of
execution time granted by the OS. This single thread impacts the total (100%) amount of
CPU time by 100% / 8 CPUs = 12.5%. In fact, during the computation, the Details tab of
Task Manager will show your process consuming roughly 12% of the CPU:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating threads in .NET 357

Figure 12.4 – The Task Manager showing the execution time distributed across
all the available logical CPUs

The thread computation is distributed across multiple logical CPUs. Every time the OS
interrupts the thread, schedules some other work of another process, and then gets back
to our thread, the thread may be executed on any other logical CPU.

Just as an experiment, you can force the execution to take place on a specific logical CPU
by adding the following code at the very beginning of the Worker method:

var threads = System.Diagnostics.Process.GetCurrentProcess().
Threads;
var processThread = threads
 .OfType<System.Diagnostics.ProcessThread>()
 .Where(pt => pt.Id == GetCurrentThreadId())
 .Single();
processThread.ProcessorAffinity = (IntPtr)2; // CPU 2

This code requires the following declaration inside the class:

[DllImport("Kernel32.dll")]
private static extern int GetCurrentThreadId();

Those new lines of code retrieve a list of all the ProcessThread objects for our process
and then filter the ProcessThread object whose native ID matches the one that is
doing the execution.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

358 Multithreading and Asynchronous Programming

After setting ProcessorAffinity, the new execution fully loads the logical CPU 2
with our computation, as shown in the following screenshot (the light blue section of
CPU 2 entirely fills the rectangle):

Figure 12.5 – The Task Manager showing CPU 2 fully loaded with the execution of the sample code

Immediately before starting the thread, we have the possibility to shape the thread
characteristics by setting one or more of these properties:

• The Priority property is used from the OS scheduler to decide the slot of time
the thread can run. Giving it a high priority will reduce the amount of time the
thread stays suspended.

• The Name property is useful when debugging because you can see it in the Visual
Studio Thread window.

• We briefly discussed the ThreadState property, which can assume many different
values. One of them—WaitSleepJoin—represents a thread that is inside a Wait
method or sleeping.

• The CurrentCulture and CurrentUICulture properties are read by certain
APIs that are region-dependent. For example, when you convert a number or a date
into a string (using the ToString method) or the Parse static method for the
opposite conversion, the current culture settings are used.

• The IsBackground property specifies whether the thread should prevent the
process from terminating when it is still active. When true, the process will not wait
for the thread to finish its work. In our example, if you set it to true, then you can
end the process by pressing any key.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating threads in .NET 359

You may have noticed the Thread class has the Abort method. It should never
be used because it may corrupt the state of the memory or prevent the correct disposal
of managed resources.

The correct way to terminate a thread is to exit normally from the method it initially
started. In our case, this is the Worker method. A simple return statement is all
you need.

We have seen how to create a thread manually, but there is a more convenient way to run
some code in a separate thread—the ThreadPool class.

Using the ThreadPool class
We spent some time investigating the characteristics of threads and this was indeed very
useful because the thread is the fundamental code-execution building block. Manually
creating a thread is correct as long as it is executing CPU-dependent and long-running
code. Anyway, since the cost of the thread is dependent on the OS, it is wiser to create
an adequate amount of threads and reuse them. Their number is very dependent on the
available logical CPUs and other factors, and this is the reason why it is far better to use
the ThreadPool abstraction.

The static ThreadPool class provides a pool of threads that can be used to run some
concurrent computation. As soon as the code terminates, the thread comes back
to the pool, becoming available for a future operation without needing to be destroyed
and recreated.

Tip
Be warned not to modify any property of the thread picked from
ThreadPool. For example, if you modify ProcessorAffinity,
this setting will continue to be valid, even if the thread is reused for different
purposes. If you need to modify the thread's properties, then manual creation
is still the best choice.

Running our Worker using the ThreadPool class is straightforward:

Console.WriteLine("Start primes");
PrintThreadInfo(Thread.CurrentThread);
ThreadPool.QueueUserWorkItem(Worker);
Console.WriteLine("Primes calculation is happening in
background");

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

360 Multithreading and Asynchronous Programming

Please note that the delegate parameter accepted by the Thread class constructor
and QueueUserWorkItem are different, but the one taking an object parameter is
compatible with both.

We have seen how to start a parallel computation, but we are still not able to orchestrate
their execution. Should an algorithm be run on a different thread, we need to be aware of
its termination and how to access the result.

Tip
ThreadPool is used from many popular libraries, including the base
class library shipped with the .NET runtime. Whenever you need to access
a resource requiring an I/O operation that may take a while to succeed or fail,
most of the time, ThreadPool comes into play. Those resources include,
among others, databases, filesystem objects, or anything that can be accessed
through the network.

Every time you need to access a resource concurrently, be it a resource retrieved by means
of an I/O operation or an instance of an object in memory, you may need to synchronize
its access. In the next section, we will see how to synchronize thread execution.

Understanding synchronization primitives
Every time you write single-threaded code, any method execution occurs sequentially
and requires no special action from the developer. On the other hand, when some code
is executed on a separate thread, synchronization is needed to ensure that we avoid two
dangerous concurrency conditions—race and deadlock. These categories of problems
must be carefully avoided during design because their detection is difficult and they may
occur occasionally.

A race condition is a situation where two or more threads access an unprotected shared
resource or when the threads' executions behave differently, depending on the timing and
the underlying process architecture.

A deadlock condition happens when two or more threads have a circular dependency on
each other to access a resource.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding synchronization primitives 361

The general recommendations when writing some code that may be executed from
multiple threads are as follows:

• Avoid shared resources as much as possible. Their access must be synchronized with
a lock that will affect the execution performance.

• The stack is your friend. Every time you call a method, the local stack is private,
ensuring the local variables will not be shared with other callers and threads.

• Every time you need to share a resource among multiple threads, use the
documentation to verify whether it is thread-safe or not. Whenever it is not thread-
safe, a lock must protect the resource or the code sequence.

• Even when the shared resource is thread-safe, you must consider whether a number
of statements need to be executed atomically to guarantee their reliability.

The thread library has many primitives available to protect the resources, but we will focus
more on those that are more likely to be used in the asynchronous context, which is the
most important topic that will be covered in this chapter.

There are two sets of synchronization primitives:

• The ones implemented in kernel mode by the OS

• The ones in user mode provided by the .NET class library

The distinction is very important because every time you transition to the kernel mode
with a system call, the OS has to save the local call and stack, which will be restored
right after, impacting the performance of the operation. The advantage of kernel mode
primitives is the ability to give them a name and make them shared across processes,
providing a powerful machine-wide synchronization mechanism.

The following example shows two threads from ThreadPool printing Ping
and Pong. Each thread synchronizes with the other by waiting for the matching
ManualResetEventSlim:

public void PingPong()
{
 bool quit = false;
 var ping = new ManualResetEventSlim(false);
 var pong = new ManualResetEventSlim(false);
 ThreadPool.QueueUserWorkItem(_ =>
 {
 Console.WriteLine($"Ping thread: {Thread.CurrentThread.
ManagedThreadId}");
 while (!quit)

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

362 Multithreading and Asynchronous Programming

 {
 pong.Wait();
 pong.Reset();
 Console.WriteLine("Ping");
 Thread.Sleep(1000);
 ping.Set();
 }
 });
 ThreadPool.QueueUserWorkItem(_ =>
 {
 Console.WriteLine($"Pong thread: {Thread.CurrentThread.
ManagedThreadId}");
 while (!quit)
 {
 ping.Wait();
 ping.Reset();
 Console.WriteLine("Pong");
 Thread.Sleep(1000);
 pong.Set();
 }
 });
 pong.Set();
 Console.ReadKey();
 quit = true;
}

After having created the two events, the two threads are run and print the ID of the thread
they are running on. Inside those threads, each execution is suspended in the Wait
method, which avoids the thread consuming any CPU power. At the end of the listing,
the pong.Set method starts the game and unblocks the first thread. Since the events are
manual, they must be reset to the unsignaled state for the next hit. At this point, a message
is printed, a delay simulates some hard work and, finally, the other event is signaled, which
will cause the second thread to unblock.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding synchronization primitives 363

Alternatively, we can use the ManualResetEvent kernel event, whose usage is very
similar. For example, in place of Wait, it has the WaitOne method. But were we to use
these events in a high-performance synchronization algorithm, there would be a huge
difference. The following table shows a comparison of the two synchronization primitives
measured with the popular Benchmark.NET micro-benchmark library. Both tests simply
call Set(), followed by the Reset() method:

Method	Mean	Error	StdDev
KernelModeEvent	1,892.11 ns	24.463 ns	22.883 ns
UserModeEvent	25.67 ns	0.320 ns	0.283 ns

There is a difference of roughly two orders of magnitude, which is not negligible at all.

Beyond the ability to use kernel events to synchronize code running in different processes,
they can be used in conjunction with the powerful WaitHandle.WaitAny and
WaitAll methods, as shown in the following example:

public void WaitMultiple()
{
 var one = new ManualResetEvent(false);
 var two = new ManualResetEvent(false);

 ThreadPool.QueueUserWorkItem(_ =>
 {
 Thread.Sleep(3000);
 one.Set();
 });
 ThreadPool.QueueUserWorkItem(_ =>
 {
 Thread.Sleep(2000);
 two.Set();
 });

 int signaled = WaitHandle.WaitAny(
 new WaitHandle[] { one, two }, 500);
 switch(signaled)
 {
 case 0:
 Console.WriteLine("One was set");
 break;
 case 1:
 Console.WriteLine("Two was set");
 break;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

364 Multithreading and Asynchronous Programming

 case WaitHandle.WaitTimeout:
 Console.WriteLine("Time expired");
 break;
 }
}

You can play with the three timeouts expressed in milliseconds to see the different results.
The main idea is to exit the wait as soon as any of the events or the timeout expires,
whichever comes first.

Tip
The kernel objects of the Windows OS can be all used inside the wait
primitives. For example, if you want to wait for multiple processes to exit, you
can just use the WaitHandle primitives, shown in the preceding code block,
with the process handles.

We've only just scratched the surface, but the official documentation has many samples
showing various synchronization objects in action. Instead, we will continue to focus
on those that are more relevant for this book, such as accessing a shared resource from
multiple threads.

In the following example, we have a shared variable called _shared, a
ManualResetEvent object that is used to start all the threads together, and a simple
object. The Shared property makes use of Thread.Sleep, causing an explicit thread
context switch on the setter. The switch is what normally happens when the OS scheduler
preemptively gives control to another thread in the system. It's not a trick; it just increases
the probability that the getter and the setter are not executed consecutively by each thread:

int _shared;
int Shared
{
 get => _shared;
 set { Thread.Sleep(1); _shared = value; }
}
ManualResetEvent evt = new ManualResetEvent(false);
object sync = new object();

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding synchronization primitives 365

The following method initializes the shared variable to 0 and creates 10 threads, all
executing the same code in the lambda:

public void SharedResource()
{
 Shared = 0;
 var loop = 100;
 var threads = new List<Thread>();
 for (int i = 0; i < loop; i++)
 {
 var t = new Thread(() =>
 {
 evt.WaitOne();
 //lock (sync)
 {
 Shared++;
 }
 });
 t.Start();
 threads.Add(t);
 }

 evt.Set(); // make all threads start together
 foreach (var t in threads)
 t.Join(); // wait for the thread to finish
 Console.WriteLine($"actual:{Shared}, expected:{loop}");
}

All the threads start immediately and block the execution in the WaitOne event that is
unblocked by the Set method. This gives more chances for many threads to execute the
code in the lambda with the same timing. Finally, we call Join to wait for the end of the
execution of each thread and print the results.

The synchronization problem of this code exists because the threads will read a value,
increment the number in a CPU register, and write back the result in the variable. Since
many threads will read the same value, the value written back to the variable is old and its
real current value gets lost.

By uncommenting the lock statement, we instruct the compiler to surround
the statements in the curly braces with a Critical Section, the fastest user mode
synchronization object available. This results in serializing the access to that code, which
has a very significant impact on the performance that is necessary and unavoidable.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

366 Multithreading and Asynchronous Programming

The empty object instance we created at the beginning should not change; otherwise,
different threads would wait for different critical sections. Please note that the lock
argument can be any reference type. For example, should you need to protect a collection,
you can lock it directly without the help of an external object. Anyway, in our example,
Shared is a value type and must be protected with the help of a separate reference type.

If you replace the Shared property with a simple field, the problem will be less likely to
occur. Also, the compiler configuration (debug versus release) will make a great difference
because inlining and other optimizations make it even more likely that a thread context
switch can't happen when accessing a field or a simple property. The physical hardware
configuration and the CPU architecture are other variables that may greatly influence the
outcome of these tests.

Tip
Unit testing is not appropriate to ensure the absence of issues such as race
conditions or deadlocks. Also, be aware that virtual machines are the worst
environment to test concurrent code in because the scheduler is more
predictable than an OS running on the physical hardware.

We have seen how we can ensure that a number of statements are executed atomically,
with no interference. But if it was just for ensuring an atomic increment of the underlying
_shared field, there is a more convenient tool—the Interlocked class.

Interlocked is a static class that exposes a few useful methods to ensure the
atomicity of certain operations. For example, instead of the lock statement, we could
use the following code, which is much faster, even if limited to the operations exposed
by Interlocked. The following code shows how to atomically increment
the _shared variable:

Interlocked.Increment(ref _shared);

Among other things, we can use it for writing a variable and getting back the old value
atomically (the Exchange method) or reading variables whose size is larger than the
available native registers (the Read method).

We have seen why synchronization is needed and what the main tools are that we can use
to protect against these concurrent access problems. But now, it is time to introduce an
abstraction that will make every developer's life easier—the task paradigm.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The task paradigm 367

The task paradigm
Concurrency is primarily about designing algorithms with very loosely coupled units of
work, which is often not possible or extends the complexity beyond any possible benefit.

Asynchronous programming is, instead, related to the asynchronous nature of the OS
and the devices, whether because they fire events or because it takes time to fulfill the
requested operation. Every time the user moves the mouse, types keys on the keyboard,
or retrieves some data from the internet, the OS presents data to our process in a separate
thread and our code must be ready to consume it.

One of the simplest possible examples is loading a text file from disk and computing the
string length, which can be different from the file length, depending on the encoding:

public int ReadLength(string filename)
{
 string content = File.ReadAllText(filename);
 return content.Length;
}

As soon as you invoke this method, the calling thread gets blocked until the OS and the
library completes reading it. The operation may be lightning-fast or very slow, depending
on its size and technology. The text file may be on Network-Attached Storage (NAS), a
local disk, a corrupted USB key, or on a remote server accessed through a Virtual Private
Network (VPN).

In the context of a desktop application, any blocking thread will cause an unpleasant user
experience because the main thread is already responsible for redrawing the user interface
and responding to the events coming from the input devices.

Server applications are no different because any blocking thread is a resource that cannot
be used efficiently with other requests, preventing the application from scaling and
serving other users.

For decades, the solution to this problem was to execute the long-lasting code by manually
creating a separate thread, but more recently, the .NET runtimes introduced the task
paradigm and the C# language introduced the async and await keywords. Since then,
the whole .NET library has been revised to embrace this paradigm, providing methods
that return task-based operations.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

368 Multithreading and Asynchronous Programming

The Task Library, available in the System.Threading.Tasks namespace, and the
language integration provide an abstraction that dramatically simplifies the management
of asynchronous operations. A task represents a unit of work that performs a well-defined
job. No matter whether you deal with concurrency or asynchronous events, a task defines
a given job and its life cycle, going from its creation to its completion, the options for
which include success, failure, or cancellation.

Tasks can be composed by defining what other tasks should be executed right after a given
operation. The chained task is called continuation and is automatically scheduled from
the libraries by means of the Task Scheduler.

By default, the Task Library provides a default implementation (the TaskScheduler.
Default static property), which most developers will never need to dig into. The default
implementation orchestrates the task's execution using ThreadPool and uses the
work-stealing technique to redistribute the task queue over multiple threads to provide
load balancing and to prevent tasks from being stalled for too long. Be aware that this
default implementation is smart enough to eventually make the decision to schedule the
execution of tasks directly on the main thread instead of picking one from the pool. The
bravest can experiment with the creation of custom schedulers to change the scheduling
strategy, but it is something not many developers really need to do.

Later, in the Synchronization context section, we will talk about synchronization context,
which allows continuations to be executed in the calling thread and avoids the need to use
the synchronization primitives described in the previous section.

Let's begin investigating tasks with the asynchronous version of reading a text file:

Task<string> content = File.ReadAllTextAsync(filename);

This new version of the method immediately completes and, instead of returning the
content of the file, returns an object representing the ongoing operation.

Since we just initiated the operation that didn't complete yet, the steps required to manage
the completion are as follows:

1. Refactor out the code following the asynchronous operation (getting the string
length) in a separate method. This method is equivalent to the old-style callback
that mustn't be called before the asynchronous operation has completed.

2. Monitor the ongoing task and provide a notification when it has completed
or failed.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The task paradigm 369

3. Once completed, retrieve the result and synchronize the execution (by means
of synchronization context) on the main thread, or throw an exception if
something has gone wrong. This step is crucial if we don't want to mess with
potential race conditions.

4. Invoke the callback that we refactored out at the first point.

Of course, we don't have to manually manage all this machinery. The first interesting
advantage of the Task Library is its support for continuations, which allow the developer
to specify the code to be executed as soon as the task completes successfully:

public Task<int> ReadLengthAsync(string filename)
{
 Task<int> lengthTask = File.ReadAllTextAsync(filename)
 .ContinueWith(t => t.Result.Length);
 return lengthTask;
}

This new version is better than creating threads and manually writing the synchronization
code, even if it can be further improved. The ContinueWith method contains the
code that determines the other code to be executed as soon as the file has been
successfully read.

The t variable contains the task, which is either failed or completed successfully. If it was
successful, t.Result contains the string content obtained from the
ReadAllTextAsync method.

Anyway, we still don't have the length; we just expressed how to retrieve the length in the
future once the result of ReadAllTextAsync has been retrieved. This is the reason why
the lengthTask variable is a Task<int>, that is, the promise of an integer.

Tasks and continuations are the building blocks that I strongly recommend experimenting
with because there are times they need to be managed directly.

But the C# language also introduced two precious keywords that further simplify the code
we need to write. The await keyword is used to indicate that the result of the operation
and everything that comes after it is part of a continuation.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

370 Multithreading and Asynchronous Programming

Thanks to the await keyword, the compiler refactors and generates new Intermediate
Language (IL) code to provide the appropriate management of asynchronous operations
and the continuation. The final code to asynchronously load the content of the file and
return the string length is as follows:

public async Task<int> ReadLengthAsync(string filename)
{
 string content = await File.ReadAllTextAsync(filename);
 return content.Length;
}

The highlighted portions of code are refactored by the compiler with more than just
a continuation. The compiler generates a class to take care of the state machine responsible
for monitoring the task progress, and a method for calling the appropriate code or
throwing an exception, as soon as the state of the task changes.

Tip
If you want to dig into more details on the generated code, you can use
the ILSpy tool (https://github.com/icsharpcode/ILSpy/
releases) and see the generated IL code.

Apparently, the compiler could get rid of the promise and let us work on the returned
content, right? Not really – this code is refactored and the code we wrote is an artifact
expressing our expectations rather than what normally and sequentially happens
in a method.

In fact, the preceding code looks contradictory, as the content.Length integer will
only be available in the future, but we return it directly from a method with the return
type of Task<int>.

This is where the async keyword comes into play:

• The async keyword is a modifier that must be specified every time we want to use
await inside a method.

• The async keyword informs us that the return statement specifies a future
object or value. In our case, we return int but async informs us that it is really a
Task<int>.

• Should an async method return void, the return type becomes the
non-generic Task.

We now have a method that is processing the file asynchronously, but we had to change
the signature from int to Task<int>.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The task paradigm 371

When you write a lambda using the await keyword in its body, the async keyword is
required as well. For example, let's look at the following code:

Func<int, int, Task<int>> adder =
 async (a, b) => await AddAsync(a, b);

Using async on a method implies that all the callers must embrace the task paradigm as
well because otherwise, they could not know when the operation completes.

Synchronous implementations of asynchronous
methods
We have seen how the task paradigm impacts the method signature and we know how
important a method signature is. When it appears on a public API or in interfaces, it is
a contract that, in most cases, we can't change. From a design perspective, it can be very
valuable for anticipating the possibility of a given method being implemented with tasks,
but there are cases where asynchronicity is not needed.

For those cases, the Task class exposes a static method allowing us to directly build
a completed task with or without results. In the following example, the asynchronous
method synchronously returns a completed task:

public Task WriteEmptyJsonObjectAsync(string filename)
{
 File.WriteAllText(filename, "{}");
 return Task.CompletedTask;
}

The CompletedTask property is created only once for the entire application
domain; therefore, it is extremely lightweight and should not be any cause for concern
regarding performance.

If, instead, we need to return a value, we can use the static FromResult method, which
internally creates a new completed Task every time it is invoked:

public Task<int> AddAsync(int a, int b)
{
 return Task.FromResult(a + b);
}

Creating an object every time we add two numbers is definitely a performance concern
because it directly impacts the amount of work the garbage collector has to do. For this
reason, more recently, Microsoft introduced the ValueTask classes.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

372 Multithreading and Asynchronous Programming

Occasionally asynchronous methods
The ValueTask immutable struct is a convenient wrapper around either a synchronous
result or Task. This further abstraction is meant to simplify those cases where the
method is required to have an asynchronous signature, but its implementation is just
occasionally asynchronous.

The AddAsync method we defined with tasks in the previous section can easily be
converted to use the ValueTask struct instead:

public ValueTask<int> AddAsync(int a, int b)
{
 return new ValueTask<int>(a + b);
}

The overhead of using Task is clear for a trivial sum; therefore, whenever such a method
should be called in a hot path (some performance-critical code), it would certainly be
a performance concern.

Anyway, there are cases where you may need to convert ValueTask into Task in order
to benefit from all the utilities we will continue to discuss in the rest of this chapter. The
conversion is available with the AsTask method, which returns the wrapped task, if any,
or creates a fresh new Task if not.

Breaking the task chain – blocking the thread
Given a task, if you call the Wait method or access the Result getter property, they will
block the thread execution until the task is either completed or canceled. The rationale
behind the task paradigm is to avoid blocking threads so that they can be reused for other
purposes. But blocking may also provoke very bad side effects.

Since the default source for threads in asynchronous programming is ThreadPool
(should it exhaust its threads), any further request will be automatically blocked. This
phenomenon is known as thread starvation.

The general advice is to avoid waiting and use the await keyword or the continuations to
complete some work.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The task paradigm 373

Manually creating a task
There are times when a library does not offer an asynchronous behavior but you don't
want to keep the current thread busy for that long. In this case, you can use the Task.
Run method, which schedules the execution of the lambda, which will most probably
occur in a separate thread. The following example shows how to read the length of
a file if the asynchronous ReadAllTextAsync method that we used previously were
not available:

public Task<int> ReadLengthAsync(string filename)
{
 return Task.Run<int>(() =>
 {
 var content = File.ReadAllText(filename);
 return content.Length;
 });
}

You should always prefer the provided asynchronous version instead of using the Run
method because the thread where this task is scheduled will block until the end of the
synchronous execution.

We will now look at what the best course of action is whenever there is a very large
amount of work to be done inside a task.

Long-running tasks
Even if you don't block the thread, there is still the risk of starvation whenever
the asynchronous stack never awaits and becomes a long-running job, keeping the
thread busy.

These cases can be treated with two different strategies:

• The first is manually creating a thread, which we already discussed at the beginning
of this chapter. This is the best strategy when you need more control or need to
modify the thread properties.

• The second possibility is informing the task scheduler that the task is going to
run for a long time. This way, the scheduler will take a different strategy and
avoid the ThreadPool altogether. The following code shows how to run
a long-running task:

var t = new Task(() => Thread.Sleep(30000),
 TaskCreationOptions.LongRunning);
t.Start();

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

374 Multithreading and Asynchronous Programming

The essential recommendation is to try splitting the long jobs into smaller units of work
that can be easily transformed into tasks.

Breaking the task chain – fire and forget
We have seen that embracing the task paradigm requires modifying the entire chain of
callers. But there are times when this is not possible and also not desirable. For example,
in the context of a desktop WPF application, you may have to write to a file inside a
button-click event handler:

void Button_Click(object sender, RoutedEventArgs e) { ... }

We can't change its signature to return a Task; moreover, this would not make sense for
two reasons:

• The calling library has been designed before the tasks and it would not be able to
manage the task progress.

• This is one of the events designed as a Fire-and-Forget operation, meaning that you
don't really care how long they will take or which result they are going to compute.

For these cases, you can embrace the async/await keywords while not using the
returning Task at all:

async void Button_Click(object sender, RoutedEventArgs e)
{
 await File.WriteAllTextAsync("log.txt", "something");
 // ... other code
}

But remember, when you break the task chain, you lose the possibility to know whether
the operation will ever complete or fail.

Information box
Every time you see async void in your code, you should wonder whether
it could be a potential bug, or just that you really don't want to know what
will happen to that task in the end. Over the years, the habit to use async
void instead of async Task has been the primary source of bugs in
asynchronous code.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The task paradigm 375

Similarly, if you just invoke an asynchronous method without awaiting it (or using one of
the ContinueWith methods), you will lose control of the invocation obtaining the same
fire-and-forget behavior, because asynchronous methods return immediately after starting
the asynchronous operation. Also, all the code following a not-awaited asynchronous
operation will be executed concurrently, incurring the risk of race conditions or accessing
data that is not yet available:

void Button_Click(object sender, RoutedEventArgs e)
{
 File.WriteAllTextAsync("log.txt", "something");
}

We have seen how simple it is to manage an asynchronous operation when everything
completes successfully, but the code can throw exceptions and we need to catch
them appropriately.

Task and exceptions
There are two kinds of exceptions that can happen when something goes wrong. The first
is before any asynchronous method gets called, while the second is related to exceptions
happening in the asynchronous code.

The following example shows these two cases:

public Task<int> CrashBeforeAsync()
{
 throw new Exception("Boom");
}
public Task<int> CrashAfterAsync()
{
 return Task.FromResult(0)
 .ContinueWith<int>(t => throw new Exception("Boom"));
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

376 Multithreading and Asynchronous Programming

In the first case, we are telling the caller that we will return a Task<int> but that
no asynchronous operation has begun yet. This situation is exactly what happens in
synchronous methods and can be caught accordingly:

public Task<int> HandleCrashBeforeAsync()
{
 Task<int> resultTask;
 try
 {
 resultTask = CrashBeforeAsync();
 }
 catch (Exception) { throw; }
 return resultTask;
}

On the other hand, if the exception occurs in the continuation, the exception will not
happen immediately; it will only happen as soon as the task is consumed:

public async Task<int> HandleCrashAfterAsync()
{
 Task<int> resultTask = CrashAfterAsync();
 int result;
 try
 {
 result = await resultTask;
 }
 catch (Exception) { throw; }
 return result;
}

As soon as resultTask has completed as faulted, the exception has already happened
but the compiler-generated code caught it and assigned it to the Task.Exception
property. Since there may be multiple exceptions happening at the same time inside
Task, the generated code encapsulates all the captured exceptions inside a single
AggregateException. The InnerException and InnerExceptions properties
in AggregateException contain the original exception.

Whenever you want to handle the exceptions and resolve them immediately, you may
want to use the continuations instead of the await keyword:

public Task<int> HandleCrashAfter2Async()
{
 Task<int> resultTask = CrashAfterAsync();
 try

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The task paradigm 377

 {
 return resultTask.ContinueWith<int>(t =>
 {
 if (t.IsCompletedSuccessfully) return t.Result;
 if(t.Exception.InnerException is OverflowException)
 return -1;
 throw t.Exception.InnerException;
 });
 }
 catch (Exception) { throw; }
}

As we mentioned previously, the exception in a faulted task is thrown as soon as the result
gets consumed, which we previously mentioned in the context of using await. However,
this can also occur in the case where the t.Result property is accessed.

Tip
The Task class exposes the GetAwaiter method, which returns the inner
struct representing the asynchronous operation. You can get the result of the
asynchronous operation with task.GetAwaiter().GetResult(), as
well as task.Result, but there is a small difference. In fact, in the case of
an exception, the former returns the original exception, while the latter returns
an AggregateException containing the original exception.

Finally, it is worth mentioning that we can rewrite the CrashAfterAsync method with
the static Task.FromException<T> method instead:

public Task<int> CrashAfterAsync() =>
 Task.FromException<int>(new Exception("Boom"));

Similar to what we saw with FromResult<T>, a new Task is created, but this time, its
state is initialized to faulted and it contains the desired exception.

The preceding example is quite abstract but succinct enough to give you an idea of how
to properly handle exceptions, depending on when they are thrown. There are many
scenarios where this regularly happens. A real example of this duality would be an
serialization exception occurring when preparing the JSON parameters or during the
HTTP rest call as a result of a network failure.

In addition to transitioning to the faulted state, tasks can also be canceled, thanks to
a built-in standard mechanism provided by the task paradigm.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

378 Multithreading and Asynchronous Programming

Canceling a task
Unlike faults, cancellation is requested from the callers to interrupt the execution of one
or more tasks. Cancellation can be imperative, or simply a timeout, which is very useful
when a given task should not take more than a given amount of time.

From the caller's perspective, the cancellation pattern originates from the
CancellationTokenSource class, which provides three different constructors:

• The default constructor is used when you are willing to cancel tasks by imperatively
calling the Cancel method.

• The other constructors take either an int or a TimeSpan, which determine the
maximum amount of time before a cancellation gets triggered, unless the tasks
complete beforehand.

In the following example, we will experiment with canceling one of the three worker
methods using a CancellationToken that has been obtained from a timed
CancellationTokenSource:

public async Task CancellingTask()
{
 CancellationTokenSource cts2 = new
 CancellationTokenSource(TimeSpan.FromSeconds(2));
 var tok2 = cts2.Token;
 try
 {
 await WorkForever1Async(tok2);
 //await WorkForever2Async(tok2);
 //await WorkForever3Async(tok2);
 Console.WriteLine("let's continue");
 }
 catch (TaskCanceledException err)
 {
 Console.WriteLine(err.Message);
 }
}

The Token property returns a read-only struct that can be used by multiple consumers
without impacting on the garbage collector or even being copied, as it is immutable.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The task paradigm 379

The first consumer being examined here takes CancellationToken and correctly
propagates it to any other method that accepts cancellations. In our example, there is just
Task.Delay, a very convenient method used to instruct the infrastructure to trigger the
continuation after 5 seconds:

public async Task WorkForever1Async(
 CancellationToken ct = default(CancellationToken))
{
 while (true)
 {
 await Task.Delay(5000, ct);
 }
}

The result of the preceding code's execution is the cancellation of the task, which
is transformed into a TaskCanceledException by the code generated from the
await keyword:

A task was canceled.

Another possibility is when a worker is executing only synchronous code and still needs to
be canceled:

public Task WorkForever2Async(
 CancellationToken ct = default(CancellationToken))
{
 while (true)
 {
 Thread.Sleep(5000);
 if (ct.IsCancellationRequested)
 return Task.FromCanceled(ct);
 }
}

Please note the use of Thread.Sleep instead of the Delay method, which was
necessary because we wanted a synchronous implementation.

The Thread.Sleep method is very different because it blocks the thread entirely
and prevents the thread from being reused anywhere else, while Task.Delay spawns
a request to call the following code as a continuation as soon as the specified amount of
time has expired.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

380 Multithreading and Asynchronous Programming

The more interesting part is testing the IsCancellationRequested Boolean property
to allow a collaborative cancellation of the task. Being collaborative by explicitly checking
that property is necessary because you may not need to interrupt the execution before
having disposed of some resource, be it written on a database or anywhere else.

Once again, the result of executing the preceding method will be as follows:

A task was canceled.

The third and final case is when you don't want to throw any exception, but just to return
from the execution:

public async Task WorkForever3Async(
 CancellationToken ct = default(CancellationToken))
{
 while (true)
 {
 await Task.Delay(5000);
 if (ct.IsCancellationRequested) return;
 }
}

In this case, we carefully avoided propagating CancellationToken to the underlying
calls, because, by using await, it would have triggered the exception.

The execution of this final WorkForever3Async method does not raise any exceptions
and lets the execution continue normally:

let's continue

The downside of this implementation is that the cancellation may not happen
immediately. Task.Delay will need to complete regardless of the cancellation, which, in
the worst case, can't happen before 5 seconds.

We have seen how the task paradigm makes running asynchronous operations
dramatically easier, but how can we run multiple asynchronous requests at the same time?
They can potentially be run in parallel to avoid useless waits.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The task paradigm 381

Monitoring the progress of a task
After the user starts a long-running operation, providing feedback is very important to
avoid the user becoming frustrated. This is possible when you are in control of what is
happening, such as with some a time-expensive algorithm. Instead, when the
long-running operation depends on a call to an external library, monitoring the
progress is not possible.

The Task Library does not have specific support for monitoring progress, but the .NET
library provides IProgress<T>, which can easily be used for this goal. This interface
just provides a single member—void Report(T value)—which leaves total
freedom on the implementation details. In the simplest cases, T would be an integer value
representing the progress as a percentage.

For example, a load operation could be implemented as follows:

public async Task Load(IProgress<int> progress = null)
{
 var steps = 30;
 for (int i = 0; i < steps; i++)
 {
 await Task.Delay(300);
 progress?.Report((i + 1) * 100 / steps);
 }
}

The method, which in our case simulates an asynchronous operation by just calling
Task.Delay, must have a prediction of the total number of steps that relates to 100% of
the progress. After each step, the Report method is called to inform us about the current
percentage, but ensure the code is protected from the progress being null, as the consumer
may not be interested in receiving such feedback.

On the consumer side, the first thing to do is create the progress provider, which is simply
a class implementing IProgress<int>:

public class ConsoleProgress : IProgress<int>
{
 void IProgress<int>.Report(int value) =>
 Console.Write($"{value}% ");
}

Finally, the caller should just pass the provider instance to the Load method:

await test.Load(new ConsoleProgress());

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

382 Multithreading and Asynchronous Programming

As you may expect, the output is as follows:

3% 6% 10% 13% 16% 20% 23% 26% 30% 33% 36% 40% 43%
46% 50% 53% 56% 60% 63% 66% 70% 73% 76% 80% 83% 86%
90% 93% 96% 100%

The generic argument of IProgress<T> can potentially be used to pause the execution
or trigger more complex logic such as pausing/resuming behavior.

Parallelizing tasks
A common programming task is retrieving some resources from the internet. For
example, the essential code to download a resource via HTTP is as follows:

public async Task<byte[]> GetResourceAsync(string uri)
{
 using var client = new HttpClient();
 using var response = await client.GetAsync(uri);
 response.EnsureSuccessStatusCode();
 return await response.Content.ReadAsByteArrayAsync();
}

Thanks to EnsureSuccessStatusCode, any failure will trigger an exception, leaving
the responsibility of catching it to the caller. Also, we didn't even set any header, but it's
enough for our purposes.

We already know how to invoke this asynchronous method to download an image, but
now the challenge is choosing the right strategy to download many of them:

• The first question is: how can we download multiple images in parallel? If we need to
download 10 images, we don't want to sum the times needed to download each of
them. Anyway, we will not enter into the discussion of how much we can scale if,
let's say, you need to download millions of images. This would be out of the scope
of a discussion about asynchronous machinery.

• The second question is: do we need them all at the same time? In this case, we can
use the Task.WhenAll helper method, which takes an array of tasks and returns
a single task representing the overall operation.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The task paradigm 383

For these samples, we are going to use the online free service called Lorem PicSum
(https://picsum.photos/). Every time you make a request to the URI you see in
the code, a new and different image sized 200 x 200 will be retrieved. You can, of course,
use any URI of your choice:

public async Task NeedAll()
{
 var uri = "https://picsum.photos/200";
 Task<byte[]>[] tasks = Enumerable.Range(0, 10)
 .Select(_ => GetResourceAsync(uri))
 .ToArray();

 Task allTask = Task.WhenAll(tasks);
 try
 {
 await allTask;
 }
 catch (Exception)
 {
 Console.WriteLine("One or more downloads failed");
 }

 foreach (var completedTask in tasks)
 Console.WriteLine(
 $"New image: {completedTask.Result.Length}");
}

The use of Enumerable.Range is a nice way to repeat an action for the given number
of times. We don't really care about the generated numbers; in fact, we use the discard
(_) token instead of a variable in the Select method.

The Select lambda just initiates the download operations returning the corresponding
tasks that we don't await yet. Instead, we ask the WhenAll method to create a new Task
that will be signaled as soon as all the tasks are completed successfully. Should any task
fail, the code generated from the await keyword will cause an exception to be thrown.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://picsum.photos/

384 Multithreading and Asynchronous Programming

The task obtained from the WhenAll method cannot be used to retrieve the results, but
it guarantees that we can access the Result properties for all the tasks. Therefore, after
awaiting allTask, we iterate the tasks array retrieving the byte[] array for all the
downloaded images. Here is the output obtained by awaiting all the downloads at the
same time:

New image: 6909
New image: 3846
New image: 8413
New image: 9000
New image: 7057
New image: 8565
New image: 6617
New image: 8720
New image: 4107
New image: 6763

In many cases, this is a good strategy because we may need all the resources before
continuing. An alternative is to wait for the first download so that we can start processing
it, but we still want to download them all concurrently to save time.

This alternative strategy can be pursued with the help of the WaitAny method. In the
following example, starting the downloads is no different. We just add a Stopwatch class
to show the time taken in milliseconds at the end of the downloads:

public async Task NeedAny()
{
 var sw = new Stopwatch();
 sw.Start();
 var uri = "https://picsum.photos/200";
 Task<byte[]>[] tasks = Enumerable.Range(0, 10)
 .Select(_ => GetResourceAsync(uri))
 .ToArray();

 while (tasks.Length > 0)
 {
 await Task.WhenAny(tasks);
 var elapsed = sw.ElapsedMilliseconds;
 var completed = tasks.Where(t => t.IsCompleted).
ToArray();
 foreach (var completedTask in completed)
 Console.WriteLine($"{elapsed} New image:
{completedTask.Result.Length}");
 tasks = tasks.Where(t => !t.IsCompletedSuccessfully).

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The task paradigm 385

ToArray();
 }
}

The while loop is used to process all the unfinished tasks. Initially, the tasks array
contains all of them, but every time WhenAny completes, it means that at least one task
has completed. The completed ones are immediately printed on screen, together with the
milliseconds elapsed since the beginning of the operation. The other ones are reassigned
to the tasks variable so that we can loop back and process the completed tasks until the
very last one. The output of this new method is as follows:

368 New image: 9915
368 New image: 6032
419 New image: 6486
452 New image: 9810
471 New image: 7030
514 New image: 10009
514 New image: 10660
593 New image: 6871
658 New image: 2738
12850 New image: 6072
The last image took a lot of time to download, probably because
the online service throttles the requests. Using WhenAll, we
would have to wait about 13 seconds before getting them all.
Instead, we could start processing as soon as each image was
available.

Of course, you can combine these two methods together. For example, if you want to get
as many downloaded images as possible in no more than 100 milliseconds, just replace the
WhenAny line with the following one:

await Task.WhenAll(Task.Delay(100), Task.WhenAny(tasks));

In other words, we are asking to wait for any task (at least one) but not before 100
milliseconds. The while loop will repeat the operation, as we did previously, by
consuming all the remaining tasks:

345 New image: 8416
345 New image: 7315
345 New image: 8237
345 New image: 6391
345 New image: 5477
457 New image: 9592
457 New image: 3922

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

386 Multithreading and Asynchronous Programming

457 New image: 8870
563 New image: 3695

When you test these code snippets, be sure to run them in a loop because the first run can
be heavily influenced by the Just-in-Time compiler.

We have seen how the Task class provides a very powerful building block to consume
asynchronous operations, but this requires libraries providing asynchronous behavior. In
the next section, we will see how we can expose a manual task and trigger its completion.

Signaling tasks with the TaskCompletionSource object
Going back to the file watcher sample in the What is a thread? section at the beginning
of this chapter, you may remember FileSystemWatcher exposing events and not
embracing the task paradigm. You may wonder whether we write some sort of adapter to
leverage the power of all the nice tools offered by the Task Library, and the answer is yes.

The TaskCompletionSource object provides an important building block that we
can use to expose asynchronous behavior. It is created and used on the producer side to
signal the completion of an operation, be it a success or a failure. It provides, via the Task
property, the task object that must be used from the client to await the notification.

The following class uses FileSystemWatcher to monitor the filesystem in the current
folder. The Deleted event stops the notifications and notifies the completion source
about the successful deletion of a file. Similarly, the Error event sets the exception that
will be eventually triggered on the consumer side of the await statement:

public class DeletionNotifier : IDisposable
{
 private TaskCompletionSource<FileSystemEventArgs> _tcs;
 private FileSystemWatcher _watcher;

 public DeletionNotifier()
 {
 var path = Path.GetFullPath(".");
 Console.WriteLine($"Observing changes in path: {path}");
 _watcher = new FileSystemWatcher(path, "*.txt");
 _watcher.Deleted += (s, e) =>
 {
 _watcher.EnableRaisingEvents = false;
 _tcs.SetResult(e);
 };
 _watcher.Error += (s, e) =>
 {

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The task paradigm 387

 _watcher.EnableRaisingEvents = false;
 _tcs.SetException(e.GetException());
 };
 }
 public Task<FileSystemEventArgs> WhenDeleted()
 {
 _tcs = new TaskCompletionSource<FileSystemEventArgs>();
 _watcher.EnableRaisingEvents = true;
 return _tcs.Task;
 }
 public void Dispose() => _watcher.Dispose();
}

Every time the WhenDeleted method is called, a new completion source is created,
the file watcher is started, and the Task responsible for the notification is returned
to the client.

From the consumer perspective, this solution is awesome because it removes
any complexity:

var dn = new DeletionNotifier();
var deleted = await dn.WhenDeleted();
Console.WriteLine($"Deleted: {deleted.Name}");

The downside of this solution is that only a single deletion can be detected at one time.

Also, since the code inside the Deleted event turns off the notifications, calling the
WhenDeleted method inside a loop could cause missing deletions.

But we can fix that problem! The slightly more complex solution is to buffer the events in
a thread-safe queue and change the WhenDeleted method strategy by dequeuing the
available event, if any.

The following is the revised code:

public class DeletionNotifier : IDisposable
{
 private TaskCompletionSource<FileSystemEventArgs> _tcs;
 private FileSystemWatcher _watcher;
 private ConcurrentQueue<FileSystemEventArgs> _queue;
 private Exception _error;

 public DeletionNotifier()
 {
 var path = Path.GetFullPath(".");

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

388 Multithreading and Asynchronous Programming

 Console.WriteLine($"Observing changes in path: {path}");
 _queue = new ConcurrentQueue<FileSystemEventArgs>();
 _watcher = new FileSystemWatcher(path, "*.txt");
 _watcher.Deleted += (s, e) =>
 {
 _queue.Enqueue(e);
 _tcs.TrySetResult(e);
 };
 _watcher.Error += (s, e) =>
 {
 _watcher.EnableRaisingEvents = false;
 _error = e.GetException();
 _tcs.TrySetException(_error);
 };
 _watcher.EnableRaisingEvents = true;
 }
 public Task<FileSystemEventArgs> WhenDeleted()
 {
 if (_queue.TryDequeue(out FileSystemEventArgs fsea))
 return Task.FromResult(fsea);
 if (_error != null)
 return Task.FromException<FileSystemEventArgs>(_error);

 _tcs = new TaskCompletionSource<FileSystemEventArgs>();
 return _tcs.Task;
 }

 public void Dispose() => _watcher.Dispose();
}

Once again, we could solve the problem with just the Task Library tools. Depending on
the use case, this strategy requires recreating a new TaskCompletionSource<T>
every time and since it is a reference type, it may affect the performance being subject to
garbage collection. Should we need to reuse the same notification object, we can do so by
creating a custom notification object.

In fact, the await keyword just needs an object implementing a method called
GetAwaiter, returning an object that implements the INotifyCompletion interface.
This object, in turn, must implement an IsCompleted property and all the required
machinery miming the TaskCompletionSource behavior.

In the Further reading section, you will find an interesting article called await anything
from the Microsoft official blog that deep dives into this topic.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The task paradigm 389

Synchronization context
Depending on the application we are writing, not all threads are created equal. Desktop
applications have a main thread that is the only one allowed to draw on screen and deal
with graphics controls. The GUI libraries work around the concept of a queue of messages
where every request is posted. The main thread is responsible for dequeueing those
messages and dispatching them into the user-defined handlers that implement the desired
behavior.

Every time something happens on a thread different than the UI one, a marshaling
operation must occur, which will cause a message to be posted in the queue managed
by the main thread. Two popular examples of marshalling messages in the UI thread are
Control.Invoke in the context of Windows Forms applications and Dispatcher.
Invoke for Window Presentation Foundation.

Information box
The very first prerelease version of WPF was multithreaded. But the code
complexity required users to deal with multithreading, and the consequent
possible bugs in the user's code were raising the bar too much. Even many C++
libraries, like DirectX and OpenGL, are mostly single-threaded to cut down the
complexity.

On the server side, ASP.NET applications also have the context of the main thread, but
there isn't just one—in fact, each user's request has its own main thread.

SynchronizationContext is the base class for an abstraction that defines a standard
way to provide the execution of some code in the context of the special thread. This is
no magic; in fact, the code that is being executed is defined in a lambda and posted in
a queue. On the main thread, some code provided by the infrastructure dequeues the
lambda and executes it in its context.

This automatic marshaling is fundamental because, after executing any asynchronous
method, such as downloading an image from the internet, you want to avoid calling
the Invoke method needed to marshal the result back into the main thread, which is
required in order to update the user interface with the returned data.

Every time you await some asynchronous operation, the generated code takes care to
capture the current SynchronizationContext and make sure that the continuation
is executed on that specific thread. Basically, you don't need to do anything because the
infrastructure already does it for you.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

390 Multithreading and Asynchronous Programming

Are we done? Not really, because there are times where this does not happen. From what
we said, the three IDs in the following example should all be the same:

public async Task AsyncTest1()
{
 Console.WriteLine($"Id: {Thread.CurrentThread.
ManagedThreadId}");
 await Task.Delay(100);
 Console.WriteLine($"Id: {Thread.CurrentThread.
ManagedThreadId}");
 await Task.Delay(100);
 Console.WriteLine($"Id: {Thread.CurrentThread.
ManagedThreadId}");
}

This is not the case because it is a console application that doesn't set, by default, any
synchronization context. The reason for this is in the Microsoft documentation for the
Console class. You will see the Thread Safety section, at the end of the documentation
page, stating This type is thread safe. In other words, there is no reason to go back to the
original thread.

If you instead create a new Windows Forms application and call that code in
a button-click handler, you will see that the ID is always the same, thanks to
SynchronizationContext.

It is always important to understand what happens, in terms of threading, to your
asynchronous code because there are times where marshalling the result back to the main
one is not desirable because marshalling has a performance impact. For example, library
developers must be very careful when writing asynchronous code because they can't know
if their code will be executed in the presence or absence of a synchronization context.

A clear example is when the library developer is processing chunks of data coming from
the network. Every chunk is retrieved by means of an asynchronous HTTP request and
the number of chunks can be very high, as in the following example:

public async Task AsyncLoop()
{
 Console.WriteLine($"Id: {Thread.CurrentThread.
ManagedThreadId}");
 byte[] data;
 while((data = await GetNextAsync()).Length > 0)
 {
 Console.WriteLine($"Id: {Thread.CurrentThread.
ManagedThreadId}");

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

The task paradigm 391

 // process data
 }
}

Unless the processing code is going to interact with the UI (or anything related to the
main thread), disabling the synchronization context is definitely a performance gain and
very easy to do:

public async Task AsyncLoop()
{
 Console.WriteLine($"Id: {Thread.CurrentThread.
ManagedThreadId}");
 byte[] data;
 while((data = await GetNextAsync().ConfigureAwait(false)).
Length > 0)
 {
 Console.WriteLine($"Id: {Thread.CurrentThread.
ManagedThreadId}");
 // process data
 }
}

By applying the ConfigureAwait method to the asynchronous method, the result of
the operation will not be posted back to the main thread, and the generated continuation
will be executed on the secondary thread (whenever the asynchronous operation is
scheduled on a different thread).

This modified behavior has two consequences:

• Posting the message in the main thread queue has a performance impact. For
example, library developers may want to set ConfigureAwait to false when
doing some internal work to improve the performance.

• Whenever you should decide to execute an asynchronous method synchronously
using the Wait method or the Result property, you may incur a deadlock. This
can happen because the synchronization context posts back the execution to the
main thread, which is busy. While this situation should be avoided by never using
Wait and Result, an alternative approach is to make the call finish its execution
on the secondary thread by setting ConfigureAwait to false.

Please note that if you really want to continue the execution on the secondary thread,
ensure that you apply ConfigureAwait to all the following calls. In fact, the first
asynchronous call executed without ConfigureAwait will cause the execution to return
to the main thread.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

392 Multithreading and Asynchronous Programming

Since the code following ConfigureAwait is executed on a secondary thread,
remember to manually marshal back to the main thread to avoid race conditions.
For example, to update the UI, you must call the relevant Windows Forms or
WPF Invoke method.

The task paradigm is a revolution in programming languages that could not exist without
the help of the new language keyword and the compiler generation magic. This new
feature had a great resonance in other languages as well. For example, ECMAScript 2017
adopted these concepts by providing both promises and async/await keyword support.

Throughout this long chapter, we learned the importance of asynchronous programming
and how the Task Library makes asynchronous code intuitive and easy to write, while
still not forcing us to bother too much about the implicit complexity. Beyond acquiring a
general understanding of these tools, it is now important to experiment and dig into each
aspect to master those techniques.

Summary
In this chapter, we discussed the most important tools that any developer can use to take
advantage of the multithreading and asynchronous programming techniques.

The building blocks are the fundamental abstractions that allow code to run in a different
execution context, regardless of the OS they are currently running on. Those primitives
must be used with wisdom, but that doesn't limit the developer's possibilities in any way
compared to native languages and libraries.

In addition to this, the task paradigm offers a natural approach when it comes to
interacting with all those events whose nature is asynchronous. The System.
Threading.Tasks namespace provides all the required abstractions to interact with
asynchronous phenomena.

The library has been widely restructured and widened to support the task paradigm. And
most importantly, the language offers the async and await keywords to break down the
complexity and make the asynchronous world flow as if it was procedural code.

In the next chapter, we will learn about the concepts of files, file streams, and serialization.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Test what you learned 393

Test what you learned
1. If you have a very CPU-intensive, long-lasting algorithm to run, which strategy

out of manual thread creation, using the task library, or using the thread pool
would you adopt?

2. Name a performant synchronization technique that can be used to write a file and
increase an integer value in memory.

3. What method should you use to pause the execution for 100 milliseconds, and why?

4. What should you do to wait for the results produced by multiple
asynchronous operations?

5. How can you create a task to await a CLR event?

6. What should you return from a method that has Task in the signature but does
not use any asynchronous method?

7. How can you create a long-running task?

8. A button-click handler is making asynchronous access to the internet to load some
data. Should you use Control.Invoke to update the results on screen? Why?

9. What are the reasons for evaluating the use of the ConfigureAwait method
on a Task?

10. Can you update the UI directly after having used ConfigureAwait(false)?

Further reading
• A very powerful library that can be used to measure the performance of some

code is Benchmark.NET (https://benchmarkdotnet.org/articles/
overview.html), which is also used internally by Microsoft to make
optimizations on the runtime and the core libraries.

• If you want to build your own awaitable object, you cannot miss this article from the
Microsoft team, describing how the underlying infrastructure works: https://
devblogs.microsoft.com/pfxteam/await-anything/.

• To dig into more details about the synchronization context and ConfigureAwait,
you can read the following article: https://devblogs.microsoft.com/
dotnet/configureawait-faq/.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://benchmarkdotnet.org/articles/overview.html
https://benchmarkdotnet.org/articles/overview.html
https://devblogs.microsoft.com/pfxteam/await-anything/
https://devblogs.microsoft.com/pfxteam/await-anything/
https://devblogs.microsoft.com/dotnet/configureawait-faq/
https://devblogs.microsoft.com/dotnet/configureawait-faq/

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

13
Files, Streams, and

Serialization
Programming is all about processing data that could come from various sources, such
as local memory, disk files, or from a remote server over the network. Most data has to
be persisted for either a long time or indefinitely. It has to be available between different
application restarts or shared between multiple applications. Whether the storage is plain
text files or various types of databases, whether they are local, from the network, or a
cloud, whether the physical location is hard disk drives, solid state drives, or USB sticks,
all data is preserved in a filesystem. Different platforms have different types of filesystems,
but they all work with the same abstractions: paths, files, and directories.

In this chapter, we look at the functionalities that .NET provides for working with
filesystems. The main topics that will be covered in this chapter are as follows:

• Overview of the System.IO namespace

• Working with paths

• Working with files and directories

• Working with streams

• Serializing and deserializing XML

• Serializing and deserializing JSON

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

396 Files, Streams, and Serialization

By the end of this chapter, you will have learned how to create, modify, and delete files and
directories. You will have also learned how to read from and write to files with different
kinds of data (including binary and text). Lastly, you will have learned how to serialize
objects to XML and JSON.

Let's begin by exploring the System.IO namespace.

Overview of the System.IO namespace
The .NET frameworks provide classes as well as other helper types such as enumerations,
interfaces, and delegates that help us work with the filesystem objects as well as streams.
These are grouped under the System.IO namespace in the Base Class Library. The
complete list of types is rather long, but the following tables show the most important of
these grouped into several categories.

The most important classes for working with filesystem objects are as follows:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Overview of the System.IO namespace 397

The most important classes for working with streams are as follows:

As you can see in the previous table, the concrete classes in this list come in pairs: a reader
and a writer. Typically, these are used as follows:

• BinaryReader and BinaryWriter are used to explicitly serialize and
deserialize primitive data types to or from binary files.

• StreamReader and StreamWriter are used for handling character-based data,
with different encodings, from text files.

• StringReader and StringWriter have similar interfaces and purposes as the
previous pair, although they work on strings and string buffers and not streams.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

398 Files, Streams, and Serialization

The relationship between the classes in the previous table is shown in the following
simplified class diagram:

Figure 13.1 – A class diagram of stream classes as well as reader and writer classes mentioned previously

From this diagram, you can see that only FileStream and MemoryStream are actually
stream classes. BinaryReader and StreamReader are adapters that read data from
a stream, while BinaryWriter and StreamWriter write data to a stream. All these
classes require a stream to create an instance (the stream is passed as an argument to the
constructor). On the other hand, StringReader and StringWriter don't work on
streams at all; instead, they read and write from a string or string buffer.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with paths 399

Most operations with the filesystem objects or streams throw exceptions when errors
occur. The most important of these exceptions are listed here:

In the following sections of this chapter, we will look at some of these classes in detail. For
now, we will start with the Path class.

Working with paths
System.IO.Path is a static class that performs operations on strings, representing the
path of a filesystem object (a file or a directory). None of the class methods verify whether
the string represents the path of a valid file or directory. However, members that accept
an input path verify that the path is well formed; otherwise, they throw an exception. This
class can handle paths for different platforms. The format of a path such as the presence
of a root element or the path separator is platform-dependent and is determined by the
platform that the application is running on.

A path can be relative or absolute. An absolute path is one that fully specifies the location.
On the other hand, a relative path is a partial location determined by the current location,
which can be retrieved with a call to the Directory.GetCurrentDirector()
method.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

400 Files, Streams, and Serialization

All the members of the Path class are static. The most important ones are listed in the
following table:

To see how this works, we can consider the following example, where we're using various
methods of the Path class to print information about the c:\Windows\System32\
mmc.exe path:

var path = @"c:\Windows\System32\mmc.exe";

Console.WriteLine(Path.HasExtension(path));
Console.WriteLine(Path.IsPathFullyQualified(path));
Console.WriteLine(Path.IsPathRooted(path));

Console.WriteLine(Path.GetPathRoot(path));
Console.WriteLine(Path.GetDirectoryName(path));
Console.WriteLine(Path.GetFileName(path));
Console.WriteLine(Path.GetFileNameWithoutExtension(path));
Console.WriteLine(Path.GetExtension(path));

Console.WriteLine(Path.ChangeExtension(path, ".dll"));

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with paths 401

The output of this program is shown in the following screenshot:

Figure 13.2 – A screenshot of executing the previous sample that prints information about a path

The Path class contains a method called Combine() and it is recommended to use it for
composing a new path from two or more paths. There are four overloads of this method;
these overloads take two, three, four paths, or an array of paths as input arguments.
To understand how this works, we will look at the following examples, where we are
concatenating two paths:

var path1 = Path.Combine(@"c:\temp", @"sub\data.txt");
Console.WriteLine(path1); // c:\temp\sub\data.txt

var path2 = Path.Combine(@"c:\temp\sub", @"..\", "log.txt");
Console.WriteLine(path2); // c:\temp\sub\..\log.txt

In the first example, the result of the concatenation is c:\temp\sub\data.txt, which
properly includes a path separator between temp and sub, which was not present in any
of the two input paths. In the second example, the result of the concatenation of the three
paths is c:\temp\sub\..\log.txt. Notice that the path is properly composed, but
not resolved to the actual path, that is, c:\temp\log.txt.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

402 Files, Streams, and Serialization

In addition to the methods listed earlier, there are several other static methods in the
Path class, a few of them intended for working with temporary files. These are listed here:

Let's look at an example of working with temporary paths:

var temp = Path.GetTempPath();
var name = Path.GetRandomFileName();
var path1 = Path.Combine(temp, name);
Console.WriteLine(path1);

var path2 = Path.GetTempFileName();
Console.WriteLine(path2);
File.Delete(path2);

As shown in the following screenshot, path1 will contain a path such as C:\Users\
Marius\AppData\Local\Temp\w22fbbqw.y34, although the file name (including
extension) will change with each execution. Also, this path is not created on disk, unlike
the second example, where the C:\Users\Marius\AppData\Local\Temp\
tmp8D5A.tmp path is actually representing a newly created file:

Figure 13.3 – Screenshot of the sample demonstrating the use of the GetRandomFileName()
and GetTempFileName() methods

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with files and directories 403

There are two important differences between these two temporary paths—the first one
uses a cryptographically strong method for generating the name, while the second uses a
much simpler algorithm. On the other hand, GetRandomFileName() returns a name
with a random extension, while GetTempFileName() always returns a path with a
filename with the .TMP extension.

To verify whether a path exists and perform operations such as creating, moving, deleting,
or opening a directory or file, we must use other classes from the System.IO namespace.
We'll look at these classes in the following section.

Working with files and directories
The System.IO namespace contains two classes for working with directories
(Directory and DirectoryInfo), and two for working with files (File and
FileInfo). Directory and File are static classes but contain mostly the same
functionality provided by the instance classes—DirectoryInfo and FileInfo.

The latter two are derived from the FileSystemInfo base abstract class, which
provides members that are common for manipulating both files and directories. The most
important of these members are the properties listed in the following table:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

404 Files, Streams, and Serialization

The most important members of the DirectoryInfo class, excluding the ones inherited
from the base class, which were listed in the preceding table, are as follows:

Similarly, the most important members of the FileInfo class, excluding the ones
inherited from the base class, are as follows:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with files and directories 405

Now that we have looked at the classes available for handling filesystem objects and their
most important members, let's look at some examples of using them.

In the first example, we will use an instance of DirectoryInfo to print information
about a directory (in this example, C:\Program Files (x86)\Microsoft SDKs\
Windows\), such as name, parent, root, creation time, and attributes, as well as the names
of all its subdirectories:

var dir = new DirectoryInfo(@"C:\Program Files (x86)\Microsoft
SDKs\Windows\");

Console.WriteLine($"Full name : {dir.FullName}");
Console.WriteLine($"Name : {dir.Name}");
Console.WriteLine($"Parent : {dir.Parent}");
Console.WriteLine($"Root : {dir.Root}");
Console.WriteLine($"Created : {dir.CreationTime}");
Console.WriteLine($"Attribute : {dir.Attributes}");

foreach(var subdir in dir.EnumerateDirectories())
{
 Console.WriteLine(subdir.Name);
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

406 Files, Streams, and Serialization

The output from executing this code is as follows (notice this will differ on each machine
that executes the code):

Figure 13.4 – Screenshot of the previous sample displaying directory information

DirectoryInfo also allows us to create and delete directories, which is what we will
do in the next example. First, we create the C:\Temp\Dir\Sub directory. Second, we
create the subdirectory hierarchy, sub1\sub2\sub3, relative to the previously directory.
Lastly, we delete the most inner directory, sub3, from the C:\Temp\Dir\Sub\sub1\
sub2 directory:

var dir = new DirectoryInfo(@"C:\Temp\Dir\Sub");
Console.WriteLine($"Exists: {dir.Exists}");
dir.Create();

var sub = dir.CreateSubdirectory(@"sub1\sub2\sub3");
Console.WriteLine(sub.FullName);

sub.Delete();

Notice that the CreateSubdirectory() method returns a DirectoryInfo instance
that represents the most inner subdirectory created, which, in this case, is C:\Temp\
Dir\Sub\sub1\sub2\sub3. Therefore, when invoking Delete() on this instance,
only the sub3 subdirectory is deleted.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with files and directories 407

We can write the same functionality using the Directory static class and its
CreateDirectory() and Delete() methods, as shown in the following code:

var path = @"C:\Temp\Dir\Sub";
Console.WriteLine($"Exists: {Directory.Exists(path)}");
Directory.CreateDirectory(path);

var sub = Path.Combine(path, @"sub1\sub2\sub3");
Directory.CreateDirectory(sub);

Directory.Delete(sub);
Directory.Delete(path, true);

The first call to Delete() will delete the C:\Temp\Dir\Sub\sub1\sub2\sub3
subdirectory, but only if it is empty. The second call will delete the C:\Temp\Dir\Sub
subdirectory and all its content (files and subdirectories) in a recursive manner.

In the next example, we will list all the executable files that start with the letter T from
a given directory (in this case, C:\Program Files (x86)\Microsoft SDKs\
Windows\v10.0A\bin\NETFX 4.8 Tools\). For this, we'll use the GetFiles()
method providing the proper filter. This method returns an array of FileInfo objects
and we print information about the file using different properties of this class:

var dir = new DirectoryInfo(@"C:\Program Files (x86)\Microsoft
SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\");
foreach(var file in dir.GetFiles("t*.exe"))
{
 Console.WriteLine(
 $"{file.Name} [{file.Length}]
 [{file.Attributes}]");}

The output from executing this code sample could be as follows:

Figure 13.5 – A screenshot of the program listing executables that start with the letter T from
a given directory

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

408 Files, Streams, and Serialization

To print the information about the file, we used the FileInfo class, as mentioned
previously. Name, Length, and Attributes are only some of the properties this class
provides. Others include the extension and file times. An example of using them is shown
in the following code snippet:

var file = new FileInfo(@"C:\Windows\explorer.exe");

Console.WriteLine($"Name: {file.Name}");
Console.WriteLine($"Extension: {file.Extension}");
Console.WriteLine($"Full name: {file.FullName}");
Console.WriteLine($"Length: {file.Length}");
Console.WriteLine($"Attributes: {file.Attributes}");
Console.WriteLine($"Creation: {file.CreationTime}");
Console.WriteLine($"Last access:{file.LastAccessTime}");
Console.WriteLine($"Last write: {file.LastWriteTime}");

Although the output will vary on each machine, it should look as follows:

Figure 13.6 – Detailed file information displayed with the help of the FileInfo class

We can use what we have learned so far to create a function that writes the content of
a directory recursively to the console and while doing so, also indents the names of the
files and directories as it navigates deeper in the directory hierarchy. Such a function
could look as follows:

void PrintContent(string path, string indent = null)
{
 try
 {
 foreach(var file in Directory.EnumerateFiles(path))
 {
 var fi = new FileInfo(file);
 Console.WriteLine($"{indent}{fi.Name}");
 }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with files and directories 409

 foreach(var dir in Directory.EnumerateDirectories(path))
 {
 var di = new DirectoryInfo(dir);
 Console.WriteLine($"{indent}[{di.Name}]");
 PrintContent(dir, indent + " ");
 }
 }
 catch(Exception ex)
 {
 Console.Error.WriteLine(ex.Message);
 }
}

When executed with the path of the project directory as input, it prints the following
output to the console (the following screenshot is a snippet of the complete output):

Figure 13.7 – Partial output of the program that prints, recursively, the content of a specified directory

As you may have noticed, we used both GetFiles() and EnumerateFile(), as well
as EnumerateDirectories(). These two sets of methods, the ones prefixed with Get
and the ones prefixed with Enumerate, are similar in the sense that they return
a collection of files or directories.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

410 Files, Streams, and Serialization

However, they differ in one key aspect—the Get methods return an array of objects,
while the Enumerate methods return an IEnumerable<T> that allows clients to start
iterating before all the filesystem objects are retrieved and also consume only what they
want. These methods could, therefore, be a better alternative in many cases.

Most of the examples so far were focused on getting file and directory information,
although we did create and delete directories. We can use the File and FileInfo
classes to create and delete files. For instance, we can use File.Create() to create
a new file or open and overwrite an existing file, as shown in the following example:

using (var file = new StreamWriter(
 File.Create(@"C:\Temp\Dir\demo.txt")))
{
 file.Write("This is a demo");
}

File.Create() returns a FileStream that, in this example, is then used to create
a StreamWriter that allows us to write the text This is a demo to the file. The
stream is then disposed and the file handle is properly closed.

If you are interested only in writing text or binary data, you can use static
members of the File class, such as WriteAllText(), WriteAllLines(), or
WriteAllBytes(). These have multiple overloads, allowing you, for instance, to specify
text encoding. There are also asynchronous counterparts, WriteAllTextAsync(),
WriteAllLinesAsync(), and WriteAllBytesAsync(). All these
methods overwrite the current content of the file if it already exists. If you are
interested in preserving the content and appending to its end, then you can use the
AppendAllText() and AppendAllLines() methods and their asynchronous
counterparts, AppendAllTextAsync() and AppendAllLinesAsync().

The following example shows how to write and append text to an existing file using some
of the methods mentioned here:

var path = @"C:\Temp\Dir\demo.txt";
File.WriteAllText(path, "This is a demo");
File.AppendAllText(path, "1st line");
File.AppendAllLines(path, new string[]{
 "2nd line", "3rd line"});

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with streams 411

The first call, WriteAllText(), will write This is a demo to the file, overwriting
any content. The second call, AppendAllText(), will append 1st line without
adding any new lines. The third call, AppendAllLines(), will write each string to the
file, adding a new line after each. Therefore, after executing this code, the content of the
file will be as follows:

This is a demo1st line2nd line
3rd line

Similar to writing content to a file, reading is also possible using the File class and its
ReadAllText(), ReadAllLines(), and ReadAllBytes() methods. As with
the write methods, there are also asynchronous versions, ReadAllTextAsync(),
ReadAllLinesAsync(), and ReadAllBytesAsync(). An example of using some of
these methods is shown in the following code:

var path = @"C:\Temp\Dir\demo.txt";
string text = File.ReadAllText(path);
string[] lines = File.ReadAllLines(path);

After executing this code, the text variable will contain the entire text read from the file.
On the other hand, lines will be an array with two elements, the first being This is a
demo1st line2nd line and the second being 3rd line.

Plain text is not the only kind of data we would usually write to a file, and files are not the
only storage systems for data. Sometimes, we might be interested in reading and writing
from and to pipes, networks, local memory, or others. To handle all of this, .NET provides
streams, which is the topic of the next section.

Working with streams
A stream is a sequence of bytes that can be stored locally in memory, in a file, a pipe,
remotely on the network, or other conceivable sources. .NET abstracts this concept with
a class called Stream, which provides support for reading from and writing to a stream.
On the other hand, the streams are conceptually grouped into three categories:

• Backing store: These are streams that represent the source or the destination
of a sequence of bytes. They are an endpoint for input or output data such as a file
or network. Backing store streams work at the byte level. .NET provides classes
such as FileStream, MemoryStream, and NetworkStream to implement
backing stores.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

412 Files, Streams, and Serialization

• Decorators: These are streams that read or write data from or to another
stream, transforming it in some way. Like backing stores, they work with bytes.
Decorators can be chained together. .NET provides decorator streams such as
BufferedStream, CryptoStream, DeflateStream, and GZipStream.

• Adapters: They are not actually streams but wrappers that help us work with
sources of data at a higher level than bytes. They allow us to read/write primitive
types (bool, int, double, etc.), text, XML data, and so on. Adaptors provided
by .NET include BinaryReader and BinaryWriter, StreamReader and
StreamWriter, and XmlReader and XmlWriter.

The following diagram shows, conceptually, the stream architecture:

Figure 13.8 – A conceptual diagram of the stream's architecture

Discussing all the stream classes pictured in the preceding diagram is beyond the
scope of this book. However, in this section, we will focus on the BinaryReader/
BinaryWriter and StreamReader/StreamWriter adapters, as well as the
FileStream and MemoryStream backing store streams.

Overview of the stream classes
As I mentioned earlier, the base class for all stream classes is the System.IO.Stream
class. This is an abstract class that provides methods and properties for reading and
writing from and to a stream. Many of these are abstract and are implemented in derived
classes. The following are the most important methods of the class:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with streams 413

Some of the operations listed have asynchronous companions, which are suffixed with
the word Async (such as ReadAsync() or WriteAsync()). The read and write
operations advance the pointer that indicates the position in the current stream with the
number of bytes read or written.

The Stream class also provides several useful properties that are listed in the
following table:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

414 Files, Streams, and Serialization

The class that represents a backing store stream for a file is called FileStream. This
class is derived from the abstract Stream class and implements the abstract members. It
supports both synchronous and asynchronous operations and can be used for opening,
reading, writing, and closing not only disk files but other operating system objects, such
as pipes and the standard input and output. The asynchronous methods are useful for
performing time-consuming operations without blocking the main thread.

The FileStream class supports random access to a file. The Seek() method allows us
to move the position of the current pointer for reading/writing within the stream. When
changing the position, you must specify a byte offset and a seek origin. The byte offset is
relative to the seek origin, which can be the beginning, the current position, or the end of
the stream.

The class provides many constructors for creating an instance of the class. You can supply
a file handle (either as an IntPtr or a SafeFileHandle) or a file path, as well as a file
mode (which determines how the file should be opened), file access (which determines
how the file should be accessed – for reading, writing, or both), and file share (which
determines how other file streams can access the same file) in various combinations.
Listing all these constructors is impractical here but we will see several examples
throughout this chapter.

The class that represents a backing store for memory is called MemoryStream and is
also derived from Stream. Most of the members of this class are implementations of the
abstract members of the base class. However, the class features several constructors that
allow us to create either a resizable stream (initially empty or with a specified capacity) or
a non-resizable stream from an array of bytes. Memory streams created from an array of
bytes cannot be expanded or shrunk and can be writeable or read-only.

Working with file streams
The FileStream class allows us to read and write a sequence of bytes from/to a file.
It operates with raw data such as byte[], Span<byte>, or Memory<byte>. We
can obtain a FileStream object using static methods of the File class or non-static
methods of the FileInfo class:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with streams 415

We can see how this works using the following example, where we write four bytes to the
file located at C:\Temp\data.raw and then we read the entire content of the file and
print it to the console:

var path = @"C:\Temp\data.raw";
var data = new byte[] { 0xBA, 0xAD, 0xF0, 0x0D};
using(FileStream wr = File.Create(path))
{
 wr.Write(data, 0, data.Length);
}

using(FileStream rd = File.OpenRead(path))
{
 var buffer = new byte[rd.Length];
 rd.Read(buffer, 0, buffer.Length);

 Console.WriteLine(
 string.Join(" ", buffer.Select(
 e => $"{e:X02}")));
}

In the first part, we use File.Create() to open a file for writing. If the file does
not exist, then it is created. If the file exists, then its content will be overwritten. The
FileStream.Write() method is used to write the content of the byte array to the
file. The stream will be flushed to the file and the file handle will be closed when the
FileStream object is disposed of at the end of the using statement.

In the second part, we use File.OpenRead() to open the file that was previously
written, but this time for reading. We allocate an array large enough to receive the entire
content of the file and use FileStream.Read() to read its content. The output of this
code is as follows:

Figure 13.9 – The content of created binary file displayed to the console

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

416 Files, Streams, and Serialization

Handling raw data can be cumbersome. For this reason, .NET provides stream adapters
that allow us to handle higher-level data. The first pair of adapters is BinaryReader
and BinaryWriter, which provide support for reading and writing primitive types and
strings in binary format. An example of using these two is shown here:

var path = @"C:\Temp\data.bin";
using (var wr = new BinaryWriter(File.Create(path)))
{
 wr.Write(true);
 wr.Write('x');
 wr.Write(42);
 wr.Write(19.99);
 wr.Write(49.99M);
 wr.Write("text");
}

using(var rd = new BinaryReader(File.OpenRead(path)))
{
 Console.WriteLine(rd.ReadBoolean()); // True
 Console.WriteLine(rd.ReadChar()); // x
 Console.WriteLine(rd.ReadInt32()); // 42
 Console.WriteLine(rd.ReadDouble()); // 19.99
 Console.WriteLine(rd.ReadDecimal()); // 49.99
 Console.WriteLine(rd.ReadString()); // text
}

We first open a file with File.Create() that returns FileStream. This stream is
used as an argument for the constructor of the BinaryWriter stream adapter. The
Write() method is overloaded for all the primitive types (char, bool, sbyte, byte,
short, ushort, int, uint, long, ulong, float, double, and decimal), as well as
for byte[], char[], and string.

Secondly, we reopen the same file, but for reading using File.OpenRead(). The
FileStream object returned by this method is used as an argument to the constructor
of the BinaryReader stream adapter. This class has a set of reading methods, one
for each primitive type, such as ReadBoolean(), ReadChar(), ReadInt16(),
ReadInt32(), ReadDouble(), and ReadDecimal(), as well as methods for reading
a byte[] – ReadBytes(), a char[] - ReadChars(), and strings—ReadString().
You can see some of these methods used in the previous example.

By default, both BinaryReader and BinaryWriter handle strings using the UTF-8
encoding. However, they both have overloaded constructors that allow us to specify
another encoding using the System.Text.Encoding class.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with streams 417

Although these two adapters can be used for processing strings, using them for reading
and writing text files can be cumbersome because of a lack of support for features such as
line handling. To handle text files, the StreamReader and StreamWriter adapters
should be used. By default, they process text as UTF-8 encoded, but their constructors
allow us to specify a different encoding. In the following example, we write text to a file
and then read it back and print it to the console:

var path = @"C:\Temp\data.txt";
using(StreamWriter wr = File.CreateText(path))
{
 wr.WriteLine("1st line");
 wr.WriteLine("2nd line");
}

using(StreamReader rd = File.OpenText(path))
{
 while(!rd.EndOfStream)
 Console.WriteLine(rd.ReadLine());
}

The File.CreateText() method opens a file for writing (either creating or
overwriting it) and returns an instance of the StreamWriter class that uses UTF-8
encoding. The WriteLine() method writes a string to the file and then adds a new line.
There are overloaded versions of WriteLine() but also overloaded Write() methods
that can write a char, char[], or string without adding a new line after.

In the second part, we use the File.OpenText() method to open the previously
written text file for reading. This returns a StreamReader object that reads UTF-8 text.
The ReadLine() method is used to read the content line by line in a loop until the end
of the stream. The EndOfStream property is used to check whether the current stream
position reached the end of the stream.

Instead of using the File.OpenText() method, we could use File.Open(), which
allows us to specify the opening mode, file access, and sharing. We could rewrite the
reading part shown earlier as follows:

using(var rd = new StreamReader(
 File.Open(path, FileMode.Open,
 FileAccess.Read,
 FileShare.Read)))
{
 while (!rd.EndOfStream)
 Console.WriteLine(rd.ReadLine());
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

418 Files, Streams, and Serialization

Sometimes, we need a stream to handle temporary data. Using files can be cumbersome
and also adds unnecessary overhead to the I/O operations. For this purpose, memory
streams are the most suitable.

Working with memory streams
A memory stream is a backing store for local memory. Such a stream is useful for
operations when we need temporary storage for transforming data. Examples can include
XML serialization or data compression and decompression. We will look at these two
operations in the upcoming code.

The static Serializer<T> class shown in the following code contains two
methods—Serialize() and Deserialize(). The former takes a T object, uses
XmlSerializer to generate an XML representation of it, and returns the XML data as a
string. The latter takes a string containing XML data and uses XmlSerializer to read it
and create a new object of type T from it. Here is the code:

public static class Serializer<T>
{
 static readonly XmlSerializer _serializer =
 new XmlSerializer(typeof(T));
 static readonly Encoding _encoding = Encoding.UTF8;

 public static string Serialize(T value)
 {
 using (var ms = new MemoryStream())
 {
 _serializer.Serialize(ms, value);
 return _encoding.GetString(ms.ToArray());
 }
 }

 public static T Deserialize(string value)
 {
 using (var ms = new MemoryStream(
 _encoding.GetBytes(value)))
 {
 return (T)_serializer.Deserialize(ms);
 }
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with streams 419

The memory stream created in the Serialize() method is resizable. It is initially
empty and grows as needed. However, the one created in the Deserialize() method is
non-resizable because it is initialized from an array of bytes. This stream is used for read-
only purposes.

The MemoryStream class implements the IDisposable interface because it derives
from Stream, which implements IDisposable. However, MemoryStream has no
resources to dispose of and, therefore, the Dispose() method does nothing. Calling
it explicitly has no effect on the stream. Therefore, it is not necessary to wrap a memory
stream variable in a using statement, as we did in the previous example.

Let's consider the following implementation of an Employee class:

public class Employee
{
 public int EmployeeId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public override string ToString() =>
 $"[{EmployeeId}] {LastName}, {FirstName}";
}

We can serialize and deserialize instances of this class as follows:

var employee = new Employee
{
 EmployeeId = 42,
 FirstName = "John",
 LastName = "Doe"
};

var text = Serializer<Employee>.Serialize(employee);
var result = Serializer<Employee>.Deserialize(text);

Console.WriteLine(employee);
Console.WriteLine(text);
Console.WriteLine(result);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

420 Files, Streams, and Serialization

The result of executing this code is shown in the following screenshot:

Figure 13.10 – An XML-serialized Employee object displayed to the console

The other example we mentioned when a memory stream is handy is in the
compression and decompression of data. The GZipStream class from the System.
IO.Compression namespace is a stream decorator that supports compression and
decompression of streams using the GZip data format specification. A MemoryStream
object is used as a backing store for the GZipStream decorator. The static
Compression class shown here provides two methods that compress and decompress
an array of bytes:

public static class Compression
{
 public static byte[] Compress(byte[] data)
 {
 if (data == null) return null;
 if (data.Length == 0) return new byte[] { };

 using var ms = new MemoryStream();
 using var gzips =
 new GZipStream(ms,
 CompressionMode.Compress);
 gzips.Write(data, 0, data.Length);
 gzips.Close();
 return ms.ToArray();
 }

 public static byte[] Decompress(byte[] data)
 {
 if (data == null) return null;
 if (data.Length == 0) return new byte[] { };

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with streams 421

 using var source = new MemoryStream(data);
 using var gzips =
 new GZipStream(source,
 CompressionMode.Decompress);
 using var target = new MemoryStream(data.Length * 2);
 gzips.CopyTo(target);
 return target.ToArray();
 }
}

We can use this helper class to compress a string to an array of bytes and then decompress
it back to a string. Such an example is shown in the following code:

var text = "Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua.";
var data = Encoding.UTF8.GetBytes(text);
var compressed = Compression.Compress(data);
var decompressed = Compression.Decompress(compressed);
var result = Encoding.UTF8.GetString(decompressed);

Console.WriteLine($"Text size: {text.Length}");
Console.WriteLine($"Compressed: {compressed.Length}");
Console.WriteLine($"Decompressed: {decompressed.Length}");
Console.WriteLine(result);
if (text == result)
 Console.WriteLine("Decompression successful!");

The output from executing this sample code is shown in the following screenshot:

Figure 13.11 – A screenshot with the result of compressing and decompressing a text

In this section, we have seen how to simply serialize and deserialize XML. We will
elaborate on this topic in the next section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

422 Files, Streams, and Serialization

Serializing and deserializing XML
In the previous section, we have seen how we can use the XmlSerializer class, from
the System.Xml.Serialization namespace, to serialize and deserialize data. This
class is handy for serializing objects to XML and deserializing XML to objects. Although,
in the previous example, we used a memory stream to serialize, it actually works with any
stream; moreover, it also works with the TextWriter and XmlWriter adapters.

The following sample shows a modified Serializer<T> class, where we specify the
path of a file where the XML document is to be written to or read from:

public static class Serializer<T>
{
 static readonly XmlSerializer _serializer =
 new XmlSerializer(typeof(T));

 public static void Serialize(T value, string path)
 {
 using var ms = File.CreateText(path);
 _serializer.Serialize(ms, value);
 }

 public static T Deserialize(string path)
 {
 using var ms = File.OpenText(path);
 return (T)_serializer.Deserialize(ms);
 }
}

We can use this new implementation as follows:

var employee = new Employee
{
 EmployeeId = 42,
 FirstName = "John",
 LastName = "Doe"
};

var path = Path.Combine(Path.GetTempPath(), "employee1.xml");
Serializer<Employee>.Serialize(employee, path);
var result = Serializer<Employee>.Deserialize(path);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Serializing and deserializing XML 423

The result of XML serialization using this code is a document with the following content:

<?xml version="1.0" encoding="utf-8"?>
<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <EmployeeId>42</EmployeeId>
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
</Employee>

XmlSerializer works by serializing all the public properties and fields of a type to
XML. It uses some default settings such as types becoming nodes and properties and fields
becoming elements. The name of a type, property, or field becomes the name of the node
or element and the value of a field or property its text. It also adds default namespaces
(which you can see in the preceding code). However, it is possible to control the way
serialization is performed using attributes on types and members. Such an example is
shown in the following code:

[XmlType("employee")]
public class Employee
{
 [XmlAttribute("id")]
 public int EmployeeId { get; set; }

 [XmlElement(ElementName = "firstName")]
 public string FirstName { get; set; }

 [XmlElement(ElementName = "lastName")]
 public string LastName { get; set; }

 public override string ToString() =>
 $"[{EmployeeId}] {LastName}, {FirstName}";
}

Serializing an instance of this Employee class implementation would produce an XML
document such as the following:

<?xml version="1.0" encoding="utf-8"?>
<employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" id="42">
 <firstName>John</firstName>
 <lastName>Doe</lastName>
</employee>

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

424 Files, Streams, and Serialization

We have used several attributes here, XmlType, XmlAttribute, and XmlElement, but
the list is long. The following table lists the most important XML attributes and what they
do. These attributes are available in the System.Xml.Serialization namespace:

The way the XmlSerializer class works is that, at runtime, it generates serialization
code for each type in a temporary serialization assembly every time the application runs.
In some cases, this can be a performance issue that can be avoided by generating these
assemblies in advance. The XML Serializer Generator Tool (Sgen.exe) can be used
to generate these assemblies. If your assembly that contains serialization code is called
MyAssembly.dll, the generated serializing assembly will be called MyAssembly.
XmlSerializer.dll. This tool is deployed as part of the Windows SDK.

You can also generate an XML schema (an XSD document) from classes or classes from
an existing XML schema using the XML Schema Definition Tool (xsd.exe). This tool is
distributed as part of the Windows SDK or with Visual Studio.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Serializing and deserializing XML 425

A possible issue with XmlSerializer is that it serializes a single .NET object to an
XML document (of course, the object can be complex and contain other objects and
arrays of objects). If you have two separate objects that you want to write to the same
document, it does not work properly. Let's imagine that we also have the following class,
representing a department in a company:

public class Department
{
 [XmlAttribute]
 public int Id { get; set; }

 public string Name { get; set; }
}

We might want to write an XML document containing an employee and a department.
Using XmlSerializer will not work properly. This is shown in the following example:

public static class Serializer<T>
{
 static readonly XmlSerializer _serializer =
 new XmlSerializer(typeof(T));

 public static void Serialize(T value, StreamWriter stream)
 {
 _serializer.Serialize(stream, value);
 }

 public static T Deserialize(StreamReader stream)
 {
 return (T)_serializer.Deserialize(stream);
 }
}

We could try to use the following code for serializing an employee and a department to
the same XML document:

var employee = new Employee
{
 EmployeeId = 42,
 FirstName = "John",
 LastName = "Doe"
};

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

426 Files, Streams, and Serialization

var department = new Department
{
 Id = 102,
 Name = "IT"
};

var path = Path.Combine(Path.GetTempPath(), "employee.xml");
using (var wr = File.CreateText(path))
{
 Serializer<Employee>.Serialize(employee, wr);
 wr.WriteLine();
 Serializer<Department>.Serialize(department, wr);
}

The XML document that is generated to the disk file will have the content shown in the
following code. This is not valid XML because it has multiple document declarations and
does not have a single root element:

<?xml version="1.0" encoding="utf-8"?>
<employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" id="42">
 <firstName>John</firstName>
 <lastName>Doe</lastName>
</employee>
<?xml version="1.0" encoding="utf-8"?>
<Department xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
Id="102">
 <Name>IT</Name>
</Department>

To make it work, we'd have to create an additional type that would contain an employee
and a department, and we would have to serialize an instance of this type. This extra
object will be serialized as the root element of the XML document. We will demonstrate
this with the following example (notice that we have an extra property called
Version here):

public class Data
{
 [XmlAttribute]
 public int Version { get; set; }
 public Employee Employee { get; set; }
 public Department Department { get; set; }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Serializing and deserializing XML 427

var data = new Data()
{
 Version = 1,
 Employee = new Employee {
 EmployeeId = 42,
 FirstName = "John",
 LastName = "Doe"
 },
 Department = new Department {
 Id = 102,
 Name = "IT"
 }
};

var path = Path.Combine(Path.GetTempPath(), "employee.xml");
using (var wr = File.CreateText(path))
{
 Serializer<Data>.Serialize(data, wr);
}

This time, the output is a well-formed XML document that is listed in the following code:

<?xml version="1.0" encoding="utf-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" Version="1">
 <Employee id="42">
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 </Employee>
 <Department Id="102">
 <Name>IT</Name>
 </Department>
</Data>

To allow further control for reading and writing XML, the .NET base class library contains
two classes called XmlReader and XmlWriter that provide a fast, non-cached, forward-
only way to read or generate XML data from or to a stream or file.

The XmlWriter class can be used to write XML data to a stream, file, text reader, or
string. It provides features such as the following:

• Validating characters and XML names

• Verifying that an XML document is well-formed

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

428 Files, Streams, and Serialization

• Support for CLR types so that you don't need to manually convert everything
to a string

• Base64 and BaseHex encoding for binary data to be written in the XML document

The XmlWriter class contains many methods; some of these methods are listed in
the following table. Although this list only includes the synchronous method, all of
them have asynchronous companions such as WriteElementStringAsync() for
WriteElementString():

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Serializing and deserializing XML 429

While using XmlWriter, it is possible to specify various settings such as encoding,
indentation, how attributes should be written (on a new or the same line), omitting
the XML declaration, and others. These settings are controlled using an instance of the
XmlWriterSettings class.

The following listing shows an example of using XmlWriter to create an XML document
that contains an employee and a department as a part of a root element called Data.
In fact, the result is the same as from the previous example, except that no namespaces
are created:

var employee = new Employee
{
 EmployeeId = 42,
 FirstName = "John",
 LastName = "Doe"
};

var department = new Department
{
 Id = 102,
 Name = "IT"
};

var path = Path.Combine(Path.GetTempPath(), "employee.xml");

var settings = new XmlWriterSettings
{
 Encoding = Encoding.UTF8,
 Indent = true
};

var namespaces = new XmlSerializerNamespaces();
namespaces.Add(string.Empty, string.Empty);

using (var wr = XmlWriter.Create(path, settings))
{
 wr.WriteStartDocument();
 wr.WriteStartElement("Data");
 wr.WriteStartAttribute("Version");
 wr.WriteValue(1);
 wr.WriteEndAttribute();

 var employeeSerializer =
 new XmlSerializer(typeof(Employee));

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

430 Files, Streams, and Serialization

 employeeSerializer.Serialize(wr, employee, namespaces);

 var depSerializer = new XmlSerializer(typeof(Department));
 depSerializer.Serialize(wr, department, namespaces);

 wr.WriteEndElement();
 wr.WriteEndDocument();
}

In this example, we have used the following components:

• An instance of XmlWriterSettings to set encoding to UTF-8 and enable
indentation of the output.

• XmlWriter.Create() to create an instance of an implementation of the
XmlWriter class.

• Various methods of the XmlWriter class to write XML data.

• An instance of XmlSerializerNamespaces to control the generated
namespaces. In this example, we added an empty scheme and namespace, which
results in no namespaces written to the XML document.

• Instances of the XmlSerializer class to simplify the serialization of the
Employee and Department objects to the XML document. This is possible
because the Serialize() method can take an XmlWriter as a destination for
the XML document it generates.

The companion class for XmlWriter is XmlReader. This class allows us to move
through XML data and read its content but in a forward-only manner, which means
you cannot go back from a given point. The XmlReader class is an abstract one, just
like XmlWriter, and there are concrete implementations such as XmlTextReader,
XmlNodeReader, or XmlValidatingReader.

However, for most scenarios, you should use XmlReadern. To create an instance of
it, use the static XmlReader.Create() method. The class contains a long list of
methods and properties, a few of them listed in the following table. Just like in the case of
XmlWriter, XmlReader has both synchronous and asynchronous methods. Only some
from the first category are listed here:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Serializing and deserializing XML 431

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

432 Files, Streams, and Serialization

When creating an instance of XmlReader, you can specify a set of features that you want
to enable, such as schemas that should be used to perform validation, ignoring comments
or white spaces, validation of type assignment, and others. The XmlReaderSettings
class is used for this purpose.

In the following example, we use XmlReader to read the content of the XML document
written earlier and display a representation of its content to the console:

var rdsettings = new XmlReaderSettings()
{
 IgnoreComments = true,
 IgnoreWhitespace = true
};

using (var rd = XmlReader.Create(path, rdsettings))
{
 string indent = string.Empty;
 while(rd.Read())
 {
 switch(rd.NodeType)
 {
 case XmlNodeType.Element:
 Console.Write(
 $"{indent}{{ {rd.Name} : ");
 indent = indent + " ";

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Serializing and deserializing XML 433

 while (rd.MoveToNextAttribute())
 {
 Console.WriteLine();
 Console.WriteLine($"{indent}{{{rd.
Name}:{rd.Value}}}");
 }
 break;
 case XmlNodeType.Text:
 Console.Write(rd.Value);
 break;
 case XmlNodeType.EndElement:
 indent = indent.Remove(0, 2);
 Console.WriteLine($"{indent}}}");
 break;
 default:
 Console.WriteLine($"[{rd.Name} {rd.Value}]");
 break;
 }
 }
}

The output of executing this code is as follows:

Figure 13.12 – A screenshot with the content of the XML document read from disk and
displayed on the console

Here are several key points from this sample:

• We created an instance of XmlReaderSettings to tell XmlReader to ignore
comments and white spaces.

• We used XmlReader.Create() to create a new instance of an implementation of
XmlReader that reads XML data from a file with the specified path..

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

434 Files, Streams, and Serialization

• The Read() method is used in a loop to read the XML document node by node.

• We use properties such as NodeType, Name, and Value to check the type of each
node, its name, and its value.

There are many details concerning handling XML data with XmlReader and
XmlWriter, as well as serialization using XmlSerializer. Discussing all these here
would take too much time. We recommend that you use additional resources, such as the
official documentation, to learn more about these classes.

Now that we have seen how to handle XML data, let's look at JSON.

Serializing and deserializing JSON
In recent times, JavaScript Object Notation (JSON) has become the de facto standard for
data serialization, not only for web and mobile but also for desktop. .NET did not provide
a proper library for serializing and deserializing JSON; therefore, developers have resorted
to third-party libraries. One of these libraries is Json.NET (also known as Newtonsoft.
Json, after its creator, Newton-King). This has become the preferred library for most .NET
developers and a dependency of ASP.NET Core. However, with the release of .NET Core
3.0, Microsoft is providing its own JSON serializer, known as System.Text.Json, after the
namespace where it is available. In this last part of this chapter, we will look at these two
libraries and see some of their capabilities and how they compare to each other.

Using Json.NET
Json.NET is currently the most widely used .NET library for JSON serialization and
deserialization. It's a high-performance, easy-to-use, open source library, available as
a NuGet package called Newtonsoft.Json. This is, in fact, by far, the most downloaded
package on NuGet. Some of the features it provides are listed here:

• Simple APIs for most common serialization and deserialization scenarios with
JsonConvert, which is a wrapper over JsonSerializer.

• More fine-grained control over the serialization/deserialization process with
JsonSerializer. This class can write text to or read text from a stream, directly
via JsonTextWriter and JsonTextReader.

• The possibility to create, modify, parse, and query JSON using JObject, JArray,
and JValue.

• The possibility to convert between XML and JSON.

• The possibility to query JSON with JSON Path, an XPath-like query language.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Serializing and deserializing JSON 435

• Validation of JSON with JSON Schema.

• Support for Binary JSON (BSON) via BsonReader and BsonWriter. This is a
binary-encoded serialization of JSON-like documents.

In this section, we will explore several common serialization and deserialization scenarios
using Json.NET. For this purpose, we will use the following implementation of an
Employee class:

public enum EmployeeStatus { Active, Inactive }

public class Employee
{
 public int EmployeeId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime? HireDate { get; set; }
 public List<string> Telephones { get; set; }
 public bool IsOnLeave { get; set; }

 [JsonConverter(typeof(StringEnumConverter))]
 public EmployeeStatus Status { get; set; }

 [JsonIgnore]
 public DateTime LastModified { get; set; }

 public override string ToString() =>
 $"[{EmployeeId}] {LastName}, {FirstName}";
}

Although the library is rich in functionalities, covering them all here is beyond the scope
of this book. We recommend reading the online documentation for Json.NET that's
available at https://www.newtonsoft.com/json.

Getting a string that contains the JSON serialization of an Employee object is
straightforward, as shown in the following example:

var employee = new Employee
{
 EmployeeId = 42,
 FirstName = "John",
 LastName = "Doe"
};

var text = JsonConvert.SerializeObject(employee);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.newtonsoft.com/json
https://www.newtonsoft.com/json

436 Files, Streams, and Serialization

By default, JsonConvert.SerializeObject() will produce minified JSON, which
does not contain indentation and white spaces. The result of the preceding code is the
following JSON:

{"EmployeeId":42,"FirstName":"John","LastName":"Doe",
"HireDate":null,"Telephones":null,"IsOnLeave":false,
"Status":"Active"}

Although this is suitable for transferring data over a network, such as when
communicating with a web service, because the size is smaller, it's harder to read by a
human. If you want the JSON document to be readable, you should use indentation.
This can be specified by providing formatting options, available with the Formatting
enumeration. An example of this is shown here:

var text = JsonConvert.SerializeObject(
 employee, Formatting.Indented);

This time, the result is the following:

{
 "EmployeeId": 42,
 "FirstName": "John",
 "LastName": "Doe",
 "HireDate": null,
 "Telephones": null,
 "IsOnLeave": false,
 "Status": "Active"
}

Indentation is not the only serialization option we can specify. In fact, there are many
options you can set using the JsonSerializerSettings class, which can be provided
as an argument to the SerializeObject() method. For instance, we might want to
skip serializing properties or fields of reference, or nullable types that are set to null.
Examples include HireDate and Telephones, which are of the DateTime? and
List<string> types, respectively. This can be done as follows:

var text = JsonConvert.SerializeObject(
 employee,
 Formatting.Indented,
 new JsonSerializerSettings()
 {
 NullValueHandling = NullValueHandling.Ignore,
 });

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Serializing and deserializing JSON 437

The result of serializing the employee object we used in the previous examples is shown
in the following listing. You will notice that HireDate and Telephones are no longer
present in the resulting JSON:

{
 "EmployeeId": 42,
 "FirstName": "John",
 "LastName": "Doe",
 "IsOnLeave": false,
 "Status": "Active"
}

Another option that can be specified for serialization controls how default values are
handled. DefaultValueHandling is an enumeration that specifies how members
with default values should be serialized or deserialized. By specifying Ignore, you
enable the serializer to skip from the output the members whose value is the same as their
type's default value (0 for numeric types, false for bool, and null for reference and
nullable types). The default value that is ignored can actually be changed with the use of
an attribute, called DefaultValueAttribute, being specified on the member. Let's
consider the following example:

var text = JsonConvert.SerializeObject(
 employee,
 Formatting.Indented,
 new JsonSerializerSettings()
 {
 NullValueHandling = NullValueHandling.Ignore,
 DefaultValueHandling = DefaultValueHandling.Ignore
 });

This time, the resulting JSON is even simpler, as shown in the following listing. This is
because the IsOnLeave and Status properties are set to their default value, which is
false and EmployeeStatus.Active, respectively:

{
 "EmployeeId": 42,
 "FirstName": "John",
 "LastName": "Doe"
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

438 Files, Streams, and Serialization

We mentioned earlier the attribute called DefaultValueAttribute. You
may have noticed a couple of other attributes, JsonIgnoreAttribute and
JsonConverterAttribute, being used in the declaration of the Employee
class. The serialization can be controlled with attributes, and the library supports
both standard .NET serialization attributes (such as SerializableAttribute,
DataContractAttribute, DataMemberAttribute, and
NonSerializedAttributes) and built-in Json.NET attributes. When both are
present, the built-in Json.NET attributes take precedence over the others. The built-in
Json.NET attributes are shown in the following table:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Serializing and deserializing JSON 439

Of these attributes, we have used JsonIgnoreAttribute to indicate that the
LastModified property of the Employee class should not be serialized and
JsonConverterAttribute to indicate that the Status property should be serialized
using the StringEnumConverter class. The result is that this property will be
serialized as a string (with the values Active or Inactive) and not as a number (with
the values 0 or 1).

The JsonConvert.SerializeObject() method returns a string. It is possible
to serialize and deserialize using streams, such as a file or a memory stream. To do so,
however, we must use the JsonSerializer class. This class has overloaded methods
called Serialize() and Deserialize(), as well as a series of properties that allow
us to customize the serialization. The following example shows how we can use the class to
serialize the employee object we used so far to a text file on disk:

var path = Path.Combine(Path.GetTempPath() + "employee.json");
var serializer = new JsonSerializer()
{
 Formatting = Formatting.Indented,
 NullValueHandling = NullValueHandling.Ignore,
 DefaultValueHandling = DefaultValueHandling.Ignore
};

using (var sw = File.CreateText(path))
using (var jw = new JsonTextWriter(sw))
{
 serializer.Serialize(jw, employee);
}

We specified that we want to use indentation and skip the members that are null or
have a value that is the type's default value. The result of serialization is a text file with the
following content:

{
 "EmployeeId": 42,
 "FirstName": "John",
 "LastName": "Doe"
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

440 Files, Streams, and Serialization

The opposite process of deserialization is also straightforward. Using JsonSerializer,
we can read from the text file we created earlier. For this purpose, we use
JsonTextReader, which is a companion class for JsonTextWriter:

using (var sr = File.OpenText(path))
using (var jr = new JsonTextReader(sr))
{
 var result = serializer.Deserialize<Employee>(jr);

 Console.WriteLine(result);
}

Deserialization from a string is also possible and straightforward using the
JsonConvert class. The overloaded DeserializeObject() method is used for this
purpose, as shown here:

var json = @"{
 ""EmployeeId"": 42,
 ""FirstName"": ""John"",
 ""LastName"": ""Doe""
}";

var result = JsonConvert.DeserializeObject<Employee>(json);

Although widely used, the Json.NET library has some drawbacks:

• The .NET string type uses UTF-16 encoding, yet most network protocols,
including HTTP, use UTF-8. Json.NET converts between these two, which affects
performance.

• As a third-party library, and not a component of the Base Class Library (or the
Foundation Class Library), you may have projects with dependencies on different
versions. ASP.NET Core used Json.NET as a dependency, which sometimes leads to
version conflicts.

• It does not leverage new .NET types such as Span<T>, which are designed to
increase performance in some scenarios, such as when parsing text.

To overcome these issues, Microsoft has provided its own implementation of a JSON
serializer, which we will look at in the following section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Serializing and deserializing JSON 441

Using System.Text.Json
This is the new JSON serializer shipped with .NET Core. It replaces Json.NET in ASP.
NET Core, for which an integration package is now available. If you are targeting .NET
Framework or .NET Standard, you can still use System.Text.Json, which is available as a
NuGet package, also called System.Text.Json.

The new serializer performs better than Json.NET mainly for two reasons: it uses
Span<T> and UTF-8 natively (therefore avoiding transcoding between UTF-8 and
UTF-16). According to Microsoft, this serializer offers speed-ups of 1.3x to 5x over Json.
NET, depending on the scenario.

However, the APIs were inspired by Json.NET and the transition from Json.NET is
seamless for simple scenarios, like the ones we saw in the previous section of this chapter.
The following example shows how we can serialize an Employee object into a string:

var employee = new Employee
{
 EmployeeId = 42,
 FirstName = "John",
 LastName = "Doe"
};

var text = JsonSerializer.Serialize(employee);

This looks very similar to Json.NET and it also produces minified JSON, which you can
see in the following code:

{"EmployeeId":42,"FirstName":"John","LastName":"Doe",
"HireDate":null,"Telephones":null,"IsOnLeave":false,
"Status":"Active"}

However, serialization can be customized by providing various options, such as
indentation, handling of null values, naming policy, trailing commas, ignoring read-only
properties, and others. Such options are provided with the JsonSerializerOptions
class. An example with indentation and skipping null values is shown here:

var text = JsonSerializer.Serialize(
 employee,
 new JsonSerializerOptions()
 {
 WriteIndented = true,
 IgnoreNullValues = true
 });

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

442 Files, Streams, and Serialization

The output, in this case, is as follows:

{
 "EmployeeId": 42,
 "FirstName": "John",
 "LastName": "Doe",
 "IsOnLeave": false,
 "Status": "Active"
}

The implementation of the Employee class used in these examples is almost identical to
the one from the previous section. Let's take a look at the following code and try to spot
the difference:

public class Employee
{
 public int EmployeeId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime? HireDate { get; set; }
 public List<string> Telephones { get; set; }
 public bool IsOnLeave { get; set; }

 [JsonConverter(typeof(JsonStringEnumConverter))]
 public EmployeeStatus Status { get; set; }

 [JsonIgnore]
 public DateTime LastModified { get; set; }

 public override string ToString() =>
 $"[{EmployeeId}] {LastName}, {FirstName}";
}

We again used the JsonIgnoreAttribute and JsonConverterAttribute
attributes to specify that the LastModified property should be skipped and that the
Status property should be serialized as a string and not a number. The only difference is
the type of converter that we used here, which is called JsonStringEnumConverter
(while with Json.NET it was called StringEnumConverter). However, these are not
the Json.NET attributes, but attributes of System.Text.Json that are available, along with
others, in the System.Text.Json.Serialization namespace. These attributes are
listed in the following table:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Serializing and deserializing JSON 443

From this table, we can see that the System.Text.Json serializer does not support
serializing and deserializing fields, which is something Json.NET does. If this is something
that you need, you must either change the field to a property, provide a property for the
field, or resort to a serializer that supports fields.

If you want more control over what is written or read, you can use the Utf8JsonWriter
and Utf8JsonReader classes. These provide high-performance APIs for forward-only,
no-cached, writing, or read-only reading of UTF-8 encoded JSON text. In the following
example, we will use Utf8JsonWriter to write a JSON document to a file on disk
containing an employee:

var path = Path.Combine(Path.GetTempPath() + "employee.json");
var options = new JsonWriterOptions()
{
 Indented = true
};

using (var sw = File.CreateText(path))
using (var jw = new Utf8JsonWriter(sw.BaseStream, options))
{
 jw.WriteStartObject();
 jw.WriteNumber("EmployeeId", 42);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

444 Files, Streams, and Serialization

 jw.WriteString("FirstName", "John");
 jw.WriteString("LastName", "Doe");
 jw.WriteBoolean("IsOnLeave", false);
 jw.WriteString("Status", EmployeeStatus.Active.ToString());
 jw.WriteEndObject();
}

The result of executing this code is a text file with the following content:

{
 "EmployeeId": 42,
 "FirstName": "John",
 "LastName": "Doe",
 "IsOnLeave": false,
 "Status": "Active"
}

To read the JSON document generated here, we can use Utf8JsonReader. However,
this reader does not work with streams but with views of raw data in the form of
ReadOnlySpan<byte> or ReadOnlySequence<byte>. This reader allows us to
read the data token by token and process it accordingly. An example is shown in the
following snippet:

byte[] data = Encoding.UTF8.GetBytes(text);
Utf8JsonReader reader = new Utf8JsonReader(data, true,
 default);

while (reader.Read())
{
 switch (reader.TokenType)
 {
 case JsonTokenType.PropertyName:
 Console.Write($@"""{reader.GetString()}"" : ");
 break;
 case JsonTokenType.String:
 Console.WriteLine($"{reader.GetString()},");
 break;
 case JsonTokenType.Number:
 Console.WriteLine($"{reader.GetInt32()},");
 break;
 case JsonTokenType.False:
 case JsonTokenType.True:
 Console.WriteLine($"{reader.GetBoolean()},");
 break;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 445

 }
}

The output of executing this code is as follows:

"EmployeeId" : 42,
"FirstName" : John,
"LastName" : Doe,
"IsOnLeave" : False,
"Status" : Active,

The System.Text.Json serializer is more complex than what the examples here may show.
We recommend that you read the online documentation to better familiarize yourself with
its APIs.

Json.NET and System.Text.Json are not the only JSON serializers for .NET, nor the most
performant. If JSON performance is key for your application, you might want to use either
Utf8Json (available at https://github.com/neuecc/Utf8Json) or Jil (available at
https://github.com/kevin-montrose/Jil), which outperform both serializers
that we looked at in this chapter.

Summary
We started this chapter with an overview of the System.IO namespace and looked at the
capabilities it provides for working with the filesystem. We then learned about handling
paths and filesystem objects. We saw how we can create, edit, move, delete, or enumerate
files and directories.

We have also seen how to read and write data from and to disk files with the help of
streams. We looked at different kinds of streams and learned about writing and reading to
and from file and memory streams using different stream adapters.

In the last part of this chapter, we looked at data serialization and learned how to serialize
and deserialize XML and JSON. For the latter, we explored the Json.NET serializer, which
is the most popular .NET library for JSON, and System.Text.Json, the new .NET
library for JSON.

In the next chapter, we will address a different topic called error handling. You will learn
about error codes and exceptions and what best practices for handling errors are.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/neuecc/Utf8Json
https://github.com/kevin-montrose/Jil
https://github.com/kevin-montrose/Jil

446 Files, Streams, and Serialization

Test what you learned
1. What are the most important classes in the System.IO namespace for working

with filesystem objects?

2. What is the recommended method for concatenating paths?

3. How can you retrieve the path for the temporary folder of the current user?

4. What is the difference between the File and FileInfo classes? What about the
difference between Directory and DirectoryInfo?

5. What methods can you use to create directories? What about
enumerating directories?

6. What are the three categories of streams in .NET?

7. What is the base class for the stream classes in .NET and what functionalities
does it provide?

8. What encoding do BinaryReader and BinaryWriter assume by default for
strings? How can this be changed?

9. How do you serialize objects of the T type to XML?

10. What is the JSON serializer shipped with .NET Core and how do you use it to
serialize objects of a T type?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

14
Error Handling

Historically, managing runtime errors has always been a hard problem to solve
because of their complex and different natures, spanning from hardware failures
to business logic errors.

Some of these errors, such as division by zero and null dereferencing, are generated by
the CPU itself as an exception, while others are generated at the software level and
propagated either as an exception or as an error code, depending on the runtime and
programming language.

The .NET platform has been designed to manage an error condition through an exception
strategy, which has the big advantage of dramatically simplifying the handling code. This
means that any property or method may throw an exception and communicate the error
condition through exception objects.

Throwing exceptions raises an important question—is the exception part of the contract
between the library implementor and its consumer, or is it, rather, an implementation detail?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

448 Error Handling

In this chapter, we will start analyzing the language syntax needed to participate in the
exception model either from a producer or consumer perspective. However, we will also
need to go beyond the syntax, analyzing the implications for the developer seeking to
debug the causes and the design problems related to both the error-throwing and
error-handling sides. The following three sections of this chapter will cover these topics:

• Errors

• Exceptions

• Debugging and monitoring exceptions

At the end of this chapter, you will be able to catch exceptions from existing libraries,
understand whether a method should return a failure code or throw an exception, and
create custom exception types whenever it makes sense to.

Errors
In software development, the two strategies used to manage errors are error codes and
exception handling. The error code model relies exclusively on returning a number
whose value represents either success or any possible error. Historically, there has never
been a convergence in the way error codes are structured. For example, the Win32
subsystem error codes and the Component Object Model (COM) define two different
sets of error codes in the winerror.h file, even if they are both parts of the Windows
operating system. In other words, error codes are not part of a standard and they need to
be translated when the call traverses a boundary, such as a different operating system or
runtime environment.

Another important aspect of error codes is that they are part of the method declaration.
For example, it feels very natural defining the division method as follows:

double Div(double a, double b) { ... }

But if the denominator is 0, we should communicate the invalid parameter error to the
caller. Adopting error codes has a direct impact on the method signature, which in this
case would be the following:

int Div(double a, double b, out double result) { ... }

This last signature (which returns an error code of type integer) is not as neat as any
library user would expect. Also, the calling code has the responsibility of determining
whether the operation was successful or not, which opens up multiple issues.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Errors 449

The first problem is the complexity of the code checking for the error code, as in
this example:

var api = new SomeApi();
if (api.Begin() == 0)
{
 if (api.DoWork() == 0)
 {
 api.End();
 }
}

Assuming that 0 is the success code, the code inside each block must be indented, creating
an annoying and confusing triangle as large as the number of called methods. Even by
reversing the logic and checking the failure condition, the situation does not improve
because of the number of if statements that must be in place to avoid nasty bugs.

The preceding code also shows a common situation where the api.End() method
returns an apparently useless error code as it ends the sequence of calls while it could
be required to handle it. This problem arises because the error codes leave the caller the
responsibility to decide on the importance of the error severity. One of the advantages of
the exceptions model is that it instead gives this power to the called method, which can
enforce the severity of the error. This definitely makes more sense, as the severity is likely
to be implementation-specific.

The preceding code also hides a potential performance issue due to the characteristic of
modern CPUs providing a feature known as branch prediction, which is a sort of guess
made by the CPU when pre-loading the instructions following a jump. Depending on
many factors, the CPU may pre-load one path, making the others run slower because their
code was not prefetched.

Finally, as far as the type member properties are designed in all modern languages, they
don't fit with the error codes because there is no syntax allowing the caller to be made
aware of the error and so using an exception is the only way to communicate the problem.

For all these reasons, when the .NET runtime was initially designed, the team decided
to embrace the exception paradigm, which treats any error condition as out-of-band
information and not a part of the method signature.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

450 Error Handling

Exceptions
Exceptions are a mechanism provided by the runtime to make the execution suddenly
interrupt and jump to the code handling the error. Since the handler may have been
declared by any caller in the calling path, the runtime takes care of restoring the stack
and any other outstanding finally block, which we will examine in the The finally
block section of this chapter.

The calling code may want to handle the exception and if it does, it may decide to
resume normal execution or just let the exception continue to the other handlers (if any).
Whenever no handling code is provided by the application, the runtime catches the error
condition and does the only reasonable thing—it terminates the application.

This brings us back to the original question that we asked in the introduction—is the
exception part of the contract between the library implementor and its consumer, or is it
rather an implementation detail?

Since the implementor communicates an anomaly to its callers through exceptions, it
looks like the exception is a part of the contract. At least this has been the conclusion of
other languages' implementors, including Java and C++, which gave the ability to specify
the list of possible exceptions generated in the method. Anyway, the most recent C++
standards deprecated and later removed the exception specification in the declaration,
leaving just the ability to specify whether a method may throw an exception or not.

The .NET platform decided not to tie exceptions to the method signature because it is
considered an implementation detail. In fact, multiple implementations of the same
interface or base class may use different technologies throwing different exceptions.
For example, when you create a proxy to an object, you may require different types
of exceptions to be thrown in addition to the ones declared in the proxied object.

Since exceptions are not a part of the signature, the .NET platform defines a base class
called System.Exception for all the possible exceptions. This type is effectively part of
the contract bounding the consumers (the callers) to the producers (the called methods).

The .NET runtime is, of course, the subject hooking the exception and taking care of
executing the matching handler. For this reason, the exceptions are only valid in the
.NET context and every time you cross the boundary, either with a Platform Invocation
Services (P/Invoke) call, COM interoperability, or a call to a web service, the exception
object must be appropriately converted because it would not make any sense outside
the .NET runtime. In order to ease the errors that cross the boundaries with Win32 and
COM, the .NET base class library defines Win32Exception and COMException,
derived from Exception.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exceptions 451

Apparently, the exception model is the universal panacea for managing errors, but there's
still a very important aspect to consider—the performance aspect.

The whole process of capturing the exception, unwinding the stack, calling the relevant
finally block, and the execution of other necessary infrastructural code takes time.
From this perspective, there is no doubt the error codes are far more performant, but this
is payback for all the advantages we already mentioned.

When we talk about performance, it must be measured, which in turn depends on
whether the given performance-impacting code is run often or not. In other words, if the
use of exceptions is exceptional, it will not affect the overall performance. For example, the
System.IO.File.Exists method returns a Boolean telling us whether the file exists
on the filesystem. However, this does not throw an exception because not finding a file is
not an exceptional case and throwing an exception could severely hit performance when
called repeatedly.

Let's now get our hands on the code by examining the statements needed to handle
exceptions. As you go through the following sections, you will notice that we briefly
introduced some of these concepts in Chapter 3, Control Statements and Exceptions,
when we talked about exception handling. In this chapter, we will cover these topics
in more depth.

Catching exceptions
As a general rule, it is always better to avoid errors before an exception gets thrown. For
example, validating input parameters from the presentation layer is your best chance.

Before trying to open and read a file, you may want to check for its existence:

if (!File.Exists(filename)) return null;
var content = File.ReadAllText(filename);

But this check does not protect the code from other possible errors because the filename
may contain a forward slash (/), which is forbidden in both Windows and Linux
operating systems. It would not make sense to try sanitizing the filename because
other errors may happen while accessing the filesystem, such as a wrong path or
damaged media.

Whenever the error occurs and cannot be easily prevented, the code must be protected
with the proposition offered by the C# language: the try and catch block statements.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

452 Error Handling

The following snippet demonstrates how to protect File.ReadAllText from any
possible error:

try
{
 var content = File.ReadAllText(filename);
 return content.Length;
}
catch (Exception) { /* ... */ }

return 0;

The try block surrounds the code we want to protect. Therefore, any exception thrown
by File.ReadAllText would cause the execution to immediately stop (content.
Length would not be executed) and jump to the matching catch handler.

The catch block must immediately follow a try block and specify the code that must
be executed only in case the exception being thrown matches the type specified inside the
round brackets.

The preceding example is able to catch any error in the catch block since Exception is
the base class for the hierarchy of all the exceptions. But this is not necessarily a good thing
because you may want to recover from specific exceptions while leaving the responsibility
for other failures to the caller.

Information box
Most of the problems related to the filename can be avoided by adding a check
with File.Exists, but we omitted it on purpose in order to have a wider
choice of possible exceptions in our sample.

The preceding snippet may fail with providing different values for the filename. For
example, if filename is null, ArgumentNullException is thrown from the File.
ReadAllText method. If instead filename is /, then it gets interpreted as an access
to the root drive, which requires administrative privileges and so the exception would be
System.UnauthorizedAccessException. When the value is //, then System.
IO.IOException is thrown because the path is invalid.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exceptions 453

Since it can be useful for making different decisions depending on the exception
types, the C# syntax provides the ability to specify multiple catch blocks, as in the
following example:

try
{
 if (validateExistence && !File.Exists(filename)) return 0;
 var content = File.ReadAllText(filename);
 return content.Length;
}
catch (ArgumentNullException) { /* ... */ }
catch (IOException) { /* ... */ }
catch (UnauthorizedAccessException) { /* ... */ }
catch (Exception) { /* ... */ }

The official .NET class library documentation contains an Exceptions section for any
member that can throw an exception. If you use Visual Studio and hover over an API with
your mouse cursor, you will see a tooltip showing a list of all the possible exceptions. The
following screenshot shows the tooltip for the File.ReadAllText method:

Figure 14.1 – A tooltip showing the exceptions for the File.ReadAllText method

Let's now imagine that filename specifies a nonexistent file: what is going to
happen in this code? According to the tooltip exception list, we can easily guess
that a FileNotFoundException exception will be thrown. The class hierarchy
for this exception is IOException, SystemException, and of course Exception,
respectively.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

454 Error Handling

There are two catch blocks satisfying the match—IOException and Exception—but
the first wins because the catch block order is very important. If you try to reverse the
order of those blocks, you will get a compilation error and get feedback in the editor
because this would result in unreachable catch blocks. The following example shows
the red squiggle generated by the Visual Studio editor when a catch(Exception) is
specified as the first one:

Figure 14.2 – The editor complains when catch (Exception) is the first exception used

The error emitted by the compiler is CS0160:

error CS0160: A previous catch clause already catches all
exceptions of this or of a super type ('Exception')

The examples we have seen show how to catch an exception in the same method. But the
power of the exception model is its ability to walk back through the call chain to find the
most appropriate handler.

In the following example, we have two different methods where we appropriately handled
ArgumentNullException:

public string ReadTextFile(string filename)
{
 try
 {
 var content = File.ReadAllText(filename);
 return content;
 }
 catch (ArgumentNullException) { /* ... */ }
 return null;
}
public void WriteTextFile(string filename, string content)
{
 try
 {

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exceptions 455

 File.WriteAllText(filename, content);
 }
 catch (ArgumentNullException) { /* ... */ }
}

Even if the try..catch blocks are already declared in these two methods, whenever
IOException occurs, those handlers are not invoked. The runtime instead starts
looking for a compatible handler in the caller chain. This process, entirely managed
by the .NET runtime, is called stack unwinding and consists of jumping away from the
call to the first compatible handler in the callers, whose return address is retrieved from
the stack.

In the following example, the try..catch blocks intercept IOException, which could
be thrown by the ReadAllText or WriteAllText APIs used by the ReadTextFile
and WriteTextFile methods:

public void CopyReversedTextFile(string source, string target)
{
 try
 {
 var content = ReadTextFile(source);
 content = content.Replace("\r\n", "\r");
 WriteTextFile(target, content);
 }
 catch (IOException) { /*...*/ }
}

Regardless of how deep the call stack is, the try..catch blocks will protect this code
from any case of IOException.

Through all the preceding examples, we have learned how to distinguish the
exception type, but the catch block receives an object of that type providing
contextual information about the nature of the exception. Let's now take a look
at the exception objects.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

456 Error Handling

The exception objects
In addition to the exception type, the catch block syntax may specify the name of the
variable, referencing the caught exception. The following example shows a method for
computing the length of the content string for all the specified files:

int[] GetFileLengths(params string[] filenames)
{
 try
 {
 var sizes = new int[filenames.Length];
 int i = 0;
 foreach(var filename in filenames)
 {
 var content = File.ReadAllText(filename);
 sizes[i++] = content.Length; // may differ from
file size
 }
 return sizes;
 }
 catch (FileNotFoundException err)
 {
 Debug.WriteLine($"Cannot find {err.FileName}");
 return null;
 }
}

Every time we open a file without previously using File.Exists to avoid the
exception, we may receive FileNotFoundException. This object is a specialization of
IOException and exposes a Filename property, providing the filename that can't be
found. I cannot even remember the number of times I wished to get such feedback from
faulty applications!

Information box
We will see in more detail the base exception members in the Debugging and
monitoring section, but you can already start investigating the properties
exposed by the multitude of exceptions thrown in the base class library.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exceptions 457

The following code shows another interesting example while catching
ArgumentException—an exception occurring when the argument fails the validation
from the method that is using it:

private void CopyFrom(string source)
{
 try
 {
 var target = CreateFilename(source);
 File.Copy(source, target);
 }
 catch (ArgumentException err)
 {
 Debug.WriteLine($"The parameter {err.ParamName} is
invalid");
 return;
 }
}

The catch block intercepts the fault for both the source and target parameters. Any
error related to the source parameter validation should bounce back to the caller, while
the target parameter is computed locally.

How can we just catch the ones we are interested in? The answer lies in a language feature
that was introduced in C# 6.

Conditional catch
The catch block may optionally specify a when clause to restrict the scope of
the handler.

The following example is very similar to the previous one, but it restricts the catch block
to just hook ArgumentException, whose ParamName is "destFileName", which is
the name of the second parameter of the File.Copy method:

private void CopyFrom(string source)
{
 try
 {
 var target = CreateFilename(source);
 File.Copy(source, target);
 }
 catch (ArgumentException err) when (err.ParamName ==
"destFileName")

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

458 Error Handling

 {
 Debug.WriteLine($"The parameter {err.ParamName} is
invalid");
 return;
 }
}

The when clause accepts any valid Boolean expression and should not necessarily use the
exception object specified in the catch block.

Please note that in this example, we have used the "destFileName" string to specify
the second argument of File.Copy. If you use Visual Studio, you can see the argument
names by positioning the caret over the desired parameter and using the shortcut Ctrl +
Shift + spacebar, which shows the following suggestion window:

Figure 14.3 – The suggestion window shown by the editor

It is now time to jump to the producer side to see how we can throw an exception.

Throwing exceptions
When we use an API that already provides the required parameter's validation, you may
decide not to validate the parameter and eventually throw an exception. In the following
example, we open a log file, giving its name specified by logName:

private string ReadLog(string logName)
{
 return File.ReadAllText(logName);
}

The decision to validate logName for a null or empty string does not provide any value
because the called method already provides a validation that takes into consideration
more cases, such as invalid paths or nonexistent files.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exceptions 459

But the logName parameter may express different semantics, specifying the name of the
log rather than the filename to write on disk (if any). The solution for reconciling the two
possible meanings is to add the ".log" extension if it is not already there:

private string ReadLog(string logName)
{
 var filename = "App-" + (logName.EndsWith(".log") ? logName
: logName + ".log");
 return File.ReadAllText(filename);
}

This makes more sense, but logName can be null, causing a
NullReferenceException exception on the highlighted code, which would make
troubleshooting harder.

To overcome this problem, we can add the null parameter validation:

private string ReadLog(string logName)
{
 if(logName == null) throw new
ArgumentNullException(nameof(logName));
 var filename = "App-" + (logName.EndsWith(".log") ? logName
: logName + ".log");
 return File.ReadAllText(filename);
}

The throw statement accepts any object derived from an exception and immediately
interrupts the execution of the method. The runtime hooks the exception and dispatches it
to the appropriate handler, as we have already investigated in the previous sections.

Tip
Please note the use of nameof(logName) to specify the name of the
offending argument. We used this parameter in the previous section while
catching the exceptions from the File.Copy method. Make sure to never
specify the name of the argument as a literal. Using nameof() guarantees
that the name is always valid and avoids problems during refactoring.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

460 Error Handling

The throw statement is very simple but please remember to use it only for exceptional
cases; otherwise, you may incur performance problems. In the following example, we
compare two loops using the popular Benchmark.NET micro-benchmark library. The
one in the LoopNop method executes code that never throws while the other one inside
LoopEx throws at each iteration:

public int Loop { get; } = 1000;

[Benchmark]
public void LoopNop()
{
 for (var i = 0; i < Loop; i++)
 {
 try { Nop(i); }
 catch (Exception) { }
 }
}
[MethodImpl(MethodImplOptions.NoOptimization |
MethodImplOptions.NoInlining)]
private void Nop(int i) { }

The LoopNop method just loops over the Nop empty method 1,000 times. The Nop
method is marked as NoInlining to avoid any compiler optimization in removing
the call.

The second method performs the same loop 1,000 times, but calls the Crash method,
which just throws at each iteration:

[Benchmark]
public void LoopEx()
{
 for (var i = 0; i < Loop; i++)
 {
 try { Crash(i); }
 catch (Exception) { }
 }
}

[MethodImpl(MethodImplOptions.NoOptimization |
MethodImplOptions.NoInlining)]
private void Crash(int i) =>
 throw new InvalidOperationException();

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exceptions 461

The Crash method creates a new exception every time, which is a realistic usage of the
exception object. But even when reusing the same object every time, the performance hit
of the exception model is huge.

The outcome of the benchmark is to get an idea about the orders of magnitude affecting
the use of exceptions, which in our example is four orders.

The following output shows the outcome of the benchmark:

Method	Mean	Error	Allocated
LoopNop	2.284 us	0.0444 us	-
LoopEx	25,365.467 us	486.2660 us	320000 B

This benchmark just demonstrated that throwing exceptions must be only used for
exceptional cases and should not raise any doubts on the validity of the exception model.

We have seen some of the exception types provided in the base class library. Now, we will
take a look at the most common exceptions and when to use them.

Common exception types
The exceptions available in the base class library express the semantics for the most
popular categories of faults. Among all the exceptions provided in the base class
library, it is worth mentioning the ones that are most often used by developers.
Throughout this chapter, we have already seen other popular exceptions, such as
NullReferenceException, but they are generally only thrown by the runtime:

• ArgumentNullException: This is generally used at the beginning of a method
when validating the method parameters. Since reference types may assume the
null value, it is used to inform the caller that null is not an acceptable value for
the method.

• ArgumentException: This is another exception used at the beginning of
a method. Its meaning is wider and is thrown when the parameter value is not valid.

• InvalidOperationException: This is commonly used to reject the method
invocation every time the state of the object is not valid for the action requested.

• FormatException: This is used by the class library to signal a badly formatted
string. It can also be used in user code that is parsing text for any other purpose.

• IndexOutOfRangeException: This is used every time a parameter points
outside of the expected range of a container, such as an array or a collection.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

462 Error Handling

• NotImplementedException: This is used to inform the caller that no
implementation is available for the called method. For example, when you ask
Visual Studio to implement an interface inside the class body, the code generator
generates the properties and methods throwing this exception.

• TypeLoadException: You may rarely need to throw this exception. It usually
occurs when a type cannot be loaded in memory. It is common whenever an
exception occurs inside a static constructor and, unless you happen to remember
this note, you may have a hard time diagnosing it.

An exhaustive list of all the exceptions of the base class library can be found in the
Exception class documentation (https://docs.microsoft.com/en-us/
dotnet/api/system.exception?view=netcore-3.1).

When deciding to throw an exception, it is very important to use one that fully expresses
the semantics of the error. Every time you cannot find an appropriate class in .NET, it is
more appropriate to define a custom exception type.

Creating a custom exception type
Defining an exception type is as easy as writing a simple class; the only requirement is
inheriting from an exception type such as Exception.

The following code declares a custom exception used to express a failure in the data layer
of the application:

public class DataLayerException : Exception
{
 public DataLayerException(string queryKeyword = null)
 : base()
 {
 this.QueryKeyword = queryKeyword;
 }

 public DataLayerException(string message, string
queryKeyword = null)
 : base(message)
 {
 this.QueryKeyword = queryKeyword;
 }

 public DataLayerException(string message, Exception
innerException, string queryKeyword = null)
 : base(message, innerException)

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netcore-3.1

Exceptions 463

 {
 this.QueryKeyword = queryKeyword;
 }

 public string QueryKeyword { get; private set; }
}

The preceding custom exception class defines three constructors because they are meant
to provide a homogeneous experience when the developer constructs them:

• The default constructor might exist whenever you don't need to build an exception
with additional parameters. In our case, we allow the building of the exception
object with a null QueryKeyword by default.

• The constructor taking the message parameter is important in expressing any
human information that may simplify the diagnostics. The message should provide
diagnostic information only and is never intended to be shown to the end user.

• The constructor taking the inner exception is valuable in providing additional
information about the underlying exception, if any, that caused the current
error situation.

Once the new custom exception is defined, it can be used in conjunction with the throw
statement. In the following example, we see some hypothetical code making a query to
a repository and converting the underlying error condition into our custom exception:

public IList<string> GetCustomerNames(string queryKeyword)
{
 var repository = new Repository();
 try
 {
 return repository.GetCustomerNames(queryKeyword);
 }
 catch (Exception err)
 {
 throw new DataLayerException($"Error on repository
{repository.RepositoryName}", err, queryKeyword);
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

464 Error Handling

The exception being caught is passed to the constructor as an argument in order to
preserve the original cause of the error, while still throwing the custom exception that
better represents the nature of the error.

Throwing inside the catch block brings to light an architectural issue on the semantics of
the error. In the previous example, we can't recover the error, but we still want to catch it
because the repository being queried may be very different depending on the installation
of our application. For example, if the repository is a database, the inner exception would
be related to SQL Server, while if it was the filesystem, it would be IOException.

If we want the higher levels of the application to be able to treat the error appropriately
and give them a chance to recover the error, we need to abstract the underlying error and
provide a business-logic exception such as the DataLayerException that we defined.

Information box
.NET Framework originally defined ApplicationException as the
base class for all the custom exceptions. Since there was no enforcing, the base
class library itself never adopted this best practice widely. For this reason, the
current best practice is deriving all the custom exceptions from Exception,
as you can read in the official documentation:

https://docs.microsoft.com/en-us/dotnet/api/
system.applicationexception?view=netcore-3.1

The ability to throw from inside the catch block is not limited to custom exceptions.

Rethrowing an exception
We have just seen how to throw a new exception within a catch block, but there is an
important shortcut that rethrows the same exception.

The catch block is typically used to try to recover the error or just to log it. In both
cases, we may want to let the exception continue as if it were not caught at all. The C#
language provides a simple use of the throw statement for this case, as we can see in
the following example:

public string ReadAllText(string filename)
{
 try
 {
 return File.ReadAllText(filename);
 }
 catch (Exception err)

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/dotnet/api/system.applicationexception?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.applicationexception?view=netcore-3.1

Exceptions 465

 {
 Log(err.ToString());
 throw;
 }
}

The throw statement is not followed by any parameter, but it is the equivalent of
specifying the same exception received in the catch block:

 catch (Exception err)
 {
 Log(err.ToString());
 throw err;
 }
}

Unless the err reference is changed to point to a different object, the two statements are
equivalent and have the big advantage of preserving the original stack that caused the
error. Anyway, we are still able to add more information to that exception object (the
HelpLink property is a typical example).

If we throw a different exception object, the original stack is not a part of the exception
being thrown, and this is the reason why innerException exists.

In certain cases, you may want to save the exception captured by the catch block and
rethrow it later. By simply throwing the captured exception, the captured stack would be
different and less useful. If you need to preserve the stack where the exception was initially
captured, you can use the ExceptionDispatchInfo class, which provides two simple
methods. The Capture static method takes an exception and returns an instance of
ExceptionDispatchInfo that includes all the stack information at the moment
of the Capture call. You can save this object and later throw the exception along with
the original stack information using its Throw method. This pattern is shown in the
following sample:

public void Foo()
{
 ExceptionDispatchInfo exceptionDispatchInfo = null;
 try
 {
 ExecuteFunctionThatThrows();
 }
 catch(Exception ex)
 {
 exceptionDispatchInfo = ExceptionDispatchInfo.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

466 Error Handling

Capture(ex);
 }

 // do something you cannot do in the catch block

 // rethrow
 if (exceptionDispatchInfo != null)
 exceptionDispatchInfo.Throw();
}

Here, we are calling a method that throws an exception, which is then caught in the
catch clause. We store a reference to this exception captured with a call to the static
ExceptionDispatchInfo.Capture method, which helps preserve the call stack.
At the end of the method, we rethrow the exception with a call to the Throw method of
ExceptionDispatchInfo.

The finally block
The finally block is the last C# statement related to exception management. It is
extremely important because it allows expression of the portion of code that must be
invoked after the try block, regardless of whether an exception has occurred or not.

Over the previous sections, we have seen how the execution of code behaves depending
on whether an exception occurs or not. The execution of the code inside a try block may
be interrupted by an outstanding exception skipping portions of that code. As soon as an
error occurs, we have the guarantee that a matching catch block will be executed, giving
it the opportunity to write the problem to the log and maybe execute some recovery logic.

The finally block can be specified even without any catch block, meaning that
any exception will be bounced back to the call chain, but the code specified inside the
finally block will be executed in any case right after the try block.

The following example shows three methods whose calls are nested. The first method, M1,
calls M2, which calls M3, which calls Crash, which finally throws an exception, as shown
in the following code:

private void M1()
{
 try { M2(); }
 catch (Exception) { Debug.WriteLine("catch in M1"); }
 finally { Debug.WriteLine("finally in M1"); }
}
private void M2()
{

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exceptions 467

 try { M3(); }
 catch (Exception) { Debug.WriteLine("catch in M2"); }
 finally { Debug.WriteLine("finally in M2"); }
}
private void M3()
{
 try { Crash(); }
 finally { Debug.WriteLine("finally in M3"); }
}
private void Crash() => throw new Exception("Boom");

When we invoke M1 and the call chain reaches Crash, there is no catch block in M3 to
handle the exception, but its finally block is invoked before leaving the method. At this
point, the runtime bounces back to the M2 caller, which catches the exception but also
invokes its finally code. Lastly, as the exception has been handled, M2 naturally returns
the control to M1 and its finally code is executed as well, as in the following output:

finally in M3
catch in M2
finally in M2
finally in M1

You can repeat this experiment by adding extra-verbose logging to the try blocks if you
wish, but the point here is that the finally block is always executed right before leaving
the method.

Another common use for the try..finally combo is to ensure that a resource has
been correctly disposed, and C# has made of this pattern a keyword, which is the using
statement. The following example shows two equivalent snippets. The IL code generated
by the C# compiler is substantially the same, as you can test for yourself using the ILSpy
tool by decompiling in IL language:

void FinallyBlock()
{
 Resource res = new Resource();
 try
 {
 Console.WriteLine();
 }
 finally
 {
 res?.Dispose();
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

468 Error Handling

void UsingStatement()
{
 using(var res = new Resource())
 {
 Console.WriteLine();
 }
}

Of course, the using statement limits its usage to objects implementing the
IDisposable interface, but it generates the same pattern. This is a topic that we looked
at in depth in Chapter 9, Resource Management.

Now that we have seen all the aspects of exceptions, both from a consumer and producer
perspective, we will discuss the diagnostic investigation of problems related to exceptions.

Debugging and monitoring exceptions
Debugging exceptions is a bit different compared to debugging normal code because the
natural flow gets interrupted and handled by the runtime. Unless you put a breakpoint on
the code that handles the exception, there is a risk of not understanding where exactly the
problem started. This can happen when an exception is caught and not re-thrown or if the
method does not re-throw within the catch block.

This may seem like an important downside of the exception model, but the .NET runtime
provides all the necessary support to overcome this issue. In fact, the runtime has built-in
support for the debuggers, providing valuable hooks to the debugger willing to intercept
the exceptions.

From a debugger perspective, you have two possibilities, or chances, to intercept any
exception being thrown:

• First-chance exceptions represent the exceptions at a very early stage, as soon
as they are thrown and before jumping to their handlers, if any. The advantage of
intercepting an exception (in a first-chance state) is that we can identify precisely
which code has caused an exception. Conversely, the intercepted exception may
be legitimate and handled correctly. In other words, the debugger will stop any
exception occurring, even those that are not causing any trouble. By default, the
debugger never stops when a first-chance exception occurs, but it prints a trace
in the debugger output window.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Debugging and monitoring exceptions 469

• Second-chance or unhandled exceptions are the fatal ones. These mean that the
.NET runtime did not find any suitable handler to manage them and calls the
debugger before forcibly closing the application that is crashing. The debugger
always stops when a second-chance exception occurs, which always represents
a bug condition. Second-chance exceptions are printed in the output window and
presented in the exception dialog as unhandled exceptions.

With the default settings, the Visual Studio debugger will break, showing the last line
of code that could run before crashing the application. This code is not necessarily
responsible for crashing the application; therefore, you may need to modify those
settings to get a better understanding of the cause.

Debugging second-chance exceptions
When the exception being thrown is available in our source code, the default settings
of the debugger are sufficient to understand the cause of the problem, as the following
example shows:

public void TestMethod1() => Crash1();
private void Crash1() => throw new Exception("This will make
the app crash");

The Visual Studio debugger will stop at the highlighted code showing the infamous
exception dialog:

Figure 14.4 – The dialog showing the exception type, message, and links to get more information

Additional information is also provided in the output window:

Exception thrown: 'System.Exception' in ExceptionDiagnostics.
dll
An unhandled exception of type 'System.Exception' occurred in
ExceptionDiagnostics.dll
This will make the app crash

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

470 Error Handling

The Visual Studio debugger keeps improving the diagnostic output version after version.
In many cases, it is able to print a message that fully represents the origin of the problem.
In the following example code, the exception is caused by a null reference:

public void TestMethod2() => Crash2(null);
private void Crash2(string str) => Console.WriteLine(str.
Length);

The dialog shows an str was null message, which tells us precisely what happened:

Figure 14.5 – The exception dialog showing the details seen before the variable is null

Similarly, the output window shows a similar message:

str was null.

Now that we have seen the default behavior of the debugger, let's take into consideration
a scenario that's a bit more complex.

Debugging first-chance exceptions
In this chapter, we have underlined the value of trying to recover from an exception or
rethrowing a different exception in order to give the calling code better semantics. There
are cases where this adds some difficulty in debugging, as in the following code:

public void TestMethod3()
{
 try
 {
 Crash1();
 }
 catch (Exception) { }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Debugging and monitoring exceptions 471

Since the catch block does not rethrow, the exception is simply swallowed and so the
debugger will not break at all. But this situation may reveal the real cause of the issue. How
can we ask the debugger to stop at this exception?

The answer lies in the exception window of Visual Studio (or other debuggers exposing
the same feature). From the Debug | Window | Exception Settings menu, Visual Studio
will show the following window:

Figure 14.6 – The Exception Settings window

The relevant exceptions for the .NET runtime are those under the Common Language
Runtime Exceptions item:

Figure 14.7 – A portion of the Exception Settings window showing the selectable exceptions

Most of those exceptions are unchecked, meaning that, as we already said, the debugger
will not stop at a first-chance exception unless that checkbox is selected.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

472 Error Handling

For example, if we want to break on the throw statement of the last example, we just
select System.Exception from the list.

Tip
Please note that every exception in this list only includes the exact type and not
the hierarchy of the derived types. In other words, System.Exception
will not hook the whole hierarchy.

By scrolling through the list, you may notice that System.
NullReferenceException and others are checked by default as those exceptions are
reasonably considered bugs that should always be avoided by validating the arguments in
the code.

Since the list of exceptions is very long, the Common Language Runtime Exceptions
root item is a three-state toggle that selects either all items, none, or resets to the
default settings.

AppDomain exception events
The first- and second-chance exceptions can also be monitored, but not intercepted,
thanks to two events provided by the AppDomain object. You can subscribe to those
events by using the following code in your application:

AppDomain.CurrentDomain.FirstChanceException += CurrentDomain_
FirstChanceException;
AppDomain.CurrentDomain.UnhandledException += CurrentDomain_
UnhandledException;
// ...
private static void CurrentDomain_FirstChanceException(object
sender, System.Runtime.ExceptionServices.
FirstChanceExceptionEventArgs e)
{
 Console.WriteLine($"First-Chance. {e.Exception.Message}");
}

private static void CurrentDomain_UnhandledException(object
sender, UnhandledExceptionEventArgs e)
{
 var ex = (Exception)e.ExceptionObject;
 Console.WriteLine($"Unhandled Exception. IsTerminating:
{e.IsTerminating} - {ex.Message}");
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Debugging and monitoring exceptions 473

Most of the time, you will not want to monitor the first-chance exceptions as they may not
cause any trouble to the application. Anyway, it can be useful to get rid of them any time
you believe they might cause performance issues due to legitimately handled exceptions.

The second-chance (unhandled) exceptions are useful for providing a log for any
exceptions that could not be caught or that were unexpected. Beyond that, in
a desktop-application context, the typical use case is showing a custom crash dialog box.

Tip
Please be aware that .NET Core always has a single app domain while
.NET Framework may have more than one, which is often true in ASP.NET
applications when Internet Information Services (IIS) recycles the host
process.

We have seen how we can get detailed information about the exception to happen during
a debugging session and what the best options are to log them. We will now see the kind
of debugging information provided in the exception object that can be used after the
application has crashed.

Logging exceptions
After creating the exception object, the runtime enriches its state in order to provide the
most detailed diagnostic information that can be used to identify the fault. Regardless
of the way you get access to the exception object, either from the catch block or the
AppDomain events, there is additional information that you can access.

We already discussed the InnerException property, which recursively provides access
to all the inner exceptions of the chain. The following example shows how to iterate the
whole chain:

private static void Dump(Exception err)
{
 var current = err;
 while (current != null)
 {
 Console.WriteLine(current.InnerException?.Message);
 current = current.InnerException;
 }
}

Accessing the inner exceptions to create a dump is not really needed when creating a log
because the ToString method of the exception object provides the dump of the whole
chain even if it is very verbose.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

474 Error Handling

The ToString method prints the StackTrace string property provided by the runtime
to capture the whole method chain where the exception happened.

Since StackTrace is a string assembled from the runtime, the exception object also
provides the TargetSite property of the MethodBase type, which is the reflection
object representing the faulting method. This object exposes, among others, the Name
property with the method name.

Finally, the GetBaseException method returns the first exception that originally
generated the fault, provided that any re-throw statement preserves the inner exception
or specifies no argument, as we have already discussed in the Rethrowing an exception
section. If you instead need to know whether there has been an exception that has been
swallowed by some handler, you will need to hook the first-chance exceptions event.

There are more advanced debugging techniques that you may want to investigate using the
links provided in the Further reading section. They include the creation of a dump, which
is a binary file containing the memory of the application process at the moment of the
crash. The dump can be investigated with the debugging tools at a later moment. Another
powerful and very advanced tool is the Son Of Strike (SOS) plugin that is available either
from the WinDbg debugger (Windows only) or the dotnet-dump analyze .NET
Core tool.

These are low-level tools, typically used in so-called post-mortem debugging. They allow
us to create a snapshot of the memory used by the faulty application and later examine its
state. The power of SOS and dotnet-dump is to provide .NET-specific information in
addition to the standard elements offered by the native debuggers.

For example, with these tools, you may get information on the current stack state for
each thread, the most recent exception data, how each object in memory is referenced or
references other objects, the memory used by each object, and other information related
to the application metadata and the .NET runtime.

Summary
In this chapter, we first understood why .NET embraced the exception model, in contrast
to the error codes used by many other technologies.

The exception model has demonstrated that it is very powerful, providing an efficient
and clean way to report errors to the call chain. It avoids polluting the code with
additional parameters and error-checking conditionals, which may cause a loss of
efficiency in certain cases. We also verified with a benchmark that the exception model
must only be used for exceptional cases because otherwise, it may severely affect the
application's performance.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Test what you learned 475

We have also seen in detail the syntax of the try, catch, and finally statements that
allow us to intercept and handle the exceptions and provide a deterministic disposal of
any outstanding resource.

Finally, we examined the diagnostics and logging options, which are extremely useful in
providing all the necessary information to fix the bugs.

In the next chapter, we will be learning about the new features of C# 8, which
enhance the language by giving us more expressivity and power in terms of
performance and robustness.

Test what you learned
1. Which block statement can be used to surround some code that may potentially

throw an exception?

2. What is the typical task inside any catch block?

3. When specifying multiple catch blocks, what order should be respected and why?

4. Should we specify the exception variable name in the catch statement? Why?

5. You just caught an exception in a catch block. Why should you want to rethrow it?

6. What is the role of the finally block?

7. Can you specify a finally block without a catch block?

8. What are first-chance exceptions?

9. How can you break the Visual Studio debugger into a first-chance exception?

10. When would you want to hook the UnhandledException event of the
AppDomain?

Further reading
• The dotnet-dump tool (only for .NET Core): https://docs.microsoft.

com/en-us/dotnet/core/diagnostics/dotnet-dump

• The WinDbg debugger: https://docs.microsoft.com/en-us/windows-
hardware/drivers/debugger/debugger-download-tools

• Using the SOS debugging extension in WinDbg (only for .NET Framework):
https://docs.microsoft.com/en-us/windows-hardware/drivers/
debugger/debugging-managed-code

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-managed-code
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-managed-code

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

15
New Features

of C# 8
C# is a mature programming language, but it is still evolving to satisfy new requirements
coming from emergent software architectures. The main focus of most of the four
language versions of C# 7 is on providing the tools for impressive performance when
using value types.

With the latest version, C# 8 introduces many new important features focusing on four
main areas: making code more compact and easier to read, along with performance,
robustness, and expressivity. The fundamental change in C# 8 is that it is the first release
of the language without official support in .NET Framework because some of its features
require the .NET Core runtime enhancements.

In this chapter, we will go through the following new language features:

• Nullable reference types

• Default implementation of interface members

• Ranges and indices

• Pattern matching

• The using declaration

• Asynchronous Dispose

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

478 New Features of C# 8

• Disposable patterns in structs and ref structs

• Asynchronous streams

• Read-only struct members

• Null coalescing assignment

• Static local functions

• Better interpolated verbatim strings

• Using stackalloc in nested expressions

• Unmanaged constructed types

By the end of this chapter, you will understand the use cases for using each of these
features and be able to progressively adopt them in your listings. As always, the more you
put these features into practice, the sooner you will master them.

We will now start with a language feature that has the great ambition of
reducing one of the primary causes of crashes in .NET-based applications—
NullReferenceException.

Nullable reference types
In the previous chapter, we learned that the type system in C# is split into reference types
and value types. Value types are allocated on the stack and subject to memory copies
every time they are assigned to a new variable. On the other hand, reference types are
allocated on the heap, which is managed by the garbage collector. Every time we allocate a
new reference type, we receive a reference acting as a key to identify the allocated memory
back from the garbage collector.

The reference is essentially a pointer that can assume the special null value, which is the
simplest, and therefore most popular, way to indicate the absence of a value. Remember,
instead of using the null value, another solution is to adopt the special case architectural
pattern, which, in its simplest form, is an instance of that object with a Boolean field
indicating whether the object is valid, which is how Nullable<T> works. In many other
cases, developers don't really need to use null values, the validation of which requires a
remarkable amount of code that will affect runtime performance as well.

The problem with the null reference is that the compiler can't argue about potential
problems because it is syntactically correct, but dereferencing it at runtime will lead to
a NullReferenceException, which is the first cause for application crashes in the
.NET world.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Nullable reference types 479

Let's consider for a moment a simple class with two constructors, where only the second
one initializes the _name field:

public class SomeClass
{
 private string _name;
 public SomeClass() { }
 public SomeClass(string name) { _name = name; }
 public int NameLength
 {
 get { return _name.Length; }
 }
}

When the first constructor is used, the NameLength property will cause
a NullReferenceException.

In terms of tests, this is the code that highlights the following two cases:

Assert.ThrowsException<NullReferenceException>(() => new
SomeClass().NameLength);
Assert.IsTrue(new SomeClass("Raf").NameLength >= 0);

The fundamental problem is that our code behavior depends on the values assumed at
runtime, and obviously, the compiler cannot know if we will ever initialize the _name
field after calling the default constructor.

Information box
The null reference is a concept invented by Sir Tony Hoare in 1965. However,
in 2009, he regretted his invention, calling it my billion-dollar mistake
(https://en.wikipedia.org/wiki/Tony_Hoare). As nulls
cannot be easily removed from a framework, nullable reference types aim to
resolve the problem using a code analysis approach.

This concept is widespread in most programming languages, including all the ones in
the .NET ecosystem. This means that any effort to remove the null concept from the
framework would be a huge breaking change, potentially destroying current applications.
What can the compiler do to resolve this problem? The answer is to undertake static code
analysis, a technique used to understand the runtime behavior of the source code without
running it.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare

480 New Features of C# 8

Information box
In 2011, Microsoft started working on a revolutionary project called Roslyn,
which became the official and current C# compiler in all the .NET SDKs a few
years later. The innovation of the Roslyn compiler (whose NuGet package is
officially named Microsoft.CodeAnalysis) is the ability to expose the
APIs for all the processing normally done by the compilers.

Traditionally, compilers are black boxes, but Roslyn makes it possible to
programmatically parse the source code, get the syntax and semantic trees, use
visitors to retrieve or rewrite specific nodes, and analyze the semantics of the
source code.

You may have already seen static code analysis at work in Visual Studio when the yellow
light bulb or the squiggles underneath some code suggest some refactoring or a potential
issue in the editor. These abilities can be further extended by writing custom analyzers,
distributed as Visual Studio extensions or in NuGet packages.

Since static code analysis can't know the value assumed by a reference at runtime, it just
examines all the possible usage paths and tries to tell if one of those may dereference
(using the dot or the square brackets) a null reference. But the analysis can suggest two
different strategies, depending on whether it is desirable or not for the reference to assume
the null value:

• We may want to prevent a reference from ever assuming the null value. In this case,
the analyzer would suggest initializing at declaration or construction time and on
any other following assignments.

• We may need the reference to assume the null value. In this other case, the analyzer
will verify that there is adequate null-checking code (an if statement or similar) to
avoid any possible path that could dereference a null.

The choice between these two strategies is the developer's choice, who is called to provide
additional information so that the compiler knows which feedback it should provide.

The C# 8 nullable reference types feature ships the advanced static code analysis feature
supporting both strategies, thanks to the ability to annotate the references to inform the
compiler about the intended reference usage. For this purpose, the C# syntax has been
extended to provide the ability to decorate the reference types as potentially nullable.
Under this new rule, the string field declared in the previous sample class assumes that the
reference cannot be null and must be initialized at construction time:

private string _name; // must be initialized at construction
time

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Nullable reference types 481

When developers wants to give a hint to the compiler on the _name reference to
potentially be null, they must declare it with a question mark decoration:

private string? _name;

Using the question mark character as a decorator is not new; it was introduced in C# 2 to
shorten the Nullable<T> declaration to T? and consisted of wrapping a value type into
a structure using a Boolean field to know whether a value type is set to null.

The question mark decoration for reference types is new in C# 8 and its meaning is
similar, but no wrapper is involved. Instead, this decoration is just a way to inform the
code analysis about the intended use of the reference.

By default, the code analysis is turned off because the existing applications always assumed
that any reference could be null, and enabling it by default on the existing code would
result in a large number of squiggles and compiler messages all over the code.

Note
When a reference is decorated with the question mark and the nullable
reference types feature is not yet enabled, Visual Studio will squiggle the
question mark in green, advising that the question mark functionality isn't in
effect, as the feature is not active.

In addition to the question mark, C# adds the forgiving operator, represented by an
exclamation mark, which is used to inform the code analysis to forgive a statement for that
specific case. Using the forgiving operator is rare because it means the analysis has failed
to recognize a case where the developer themselves knows the reference cannot be null.
A realistic example of its usage is when some unsafe/native code changes the memory
values pointed by a reference without any evidence in the managed code. In other very
edge cases, the pure managed code can be so complex that the compiler fails to recognize
it. I would personally opt to simplify the code instead of using the forgiving operator.

Remember that the question mark is used while declaring the reference, while the
exclamation mark is used when dereferencing it. The following example shows a statement
that will not be analyzed from the static code analysis and will not provide any feedback
because the developer is making a strong promise that the reference will never be null:

var len = _name!.Length;

It is worth repeating that it should be used only in extremely rare cases.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

482 New Features of C# 8

Enabling the nullable reference type feature
There are multiple options to enable this feature; the reason to do so is to be able to
progressively adapt the feature on existing code without being blocked or receiving a huge
amount of messages. Every time you start with a new project, you may want to fully enable
this feature to avoid excessive annoyance by opening the Visual Studio solution explorer,
double-clicking the project node, and editing the .csproj file. Alternatively, you can
right-click the project node and select Edit Project File from the context menu.

By adding the nullable XML tag, the feature will be enabled for the entire project, which is
the best option when starting a new project:

<PropertyGroup>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 <Nullable>enable</Nullable>
</PropertyGroup>

You can do the same on an existing project, but the amount of feedback provided by the
compiler may be excessive, distracting the developer. For this reason, the C# compiler
provides four new pragma directives, making it possible to enable and disable the feature
for selected portions of the code. Interestingly, the restore pragma restores the previously
defined setting to allow nesting of the pragma directives:

#nullable enable
public class SomeClass
{
 private string? _name;
 public SomeClass() { }
 public SomeClass(string name) { _name = name; }
 public int NameLength
 {
 // you should see a green squiggle below _name
 get { return _name.Length; }
 }
}
#nullable restore

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Nullable reference types 483

The range of possible settings for this feature enables some other nuances,
depending on whether you want to be able to use the decorations (question and
exclamation marks) and/or get the warnings on code that may potentially cause
a NullReferenceException:

• Enabling both the warnings and annotations: This is done by just enabling the
feature, as we mentioned previously. Under this rule, the code can be annotated
with the question mark to hint to the compiler about the intended usage of the
references. The code editor will show any potential problem and the compiler will
generate warnings for those issues:

Csproj: <Nullable>enable</Nullable>
Code: #nullable enable

• Disabling both the warnings and annotations: This is the default setting, but can
be used to explicitly disable the Nullable feature either on the whole project or
on selected portions of the code:

Csproj: <Nullable>disable</Nullable>
Code: #nullable disable

• Enabling only the annotations but not the compiler warnings: When you are
adopting this feature in existing projects, it can be very useful to start annotating the
code without receiving any warning in the IDE or in the compiler output. It's worth
remembering that many companies enforce gated check-ins, rejecting any code
producing warnings. In this case, it can be useful to enable the annotations project-
wide, and enable the warnings file by file, to progressively migrate the code:

Csproj: <Nullable>annotations</Nullable>
Code: #nullable enable annotations

• Enabling only the warnings but not the annotations in the editor: When the
warnings are enabled, the IDE will start generating green squiggles on potentially
dangerous dereferencing code and on question mark decorators, as the annotations
are not enabled. This setting is useful when you adopt this feature on existing
projects and are not willing to enable decorators (for example, because the code is
required to be compiled with older compilers). In this situation, you get very useful
suggestions in the IDE and in the compiler output about the code that could cause
the NullReferenceException:

Csproj: <Nullable>warnings</Nullable>
Code: #nullable enable warnings

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

484 New Features of C# 8

• Restoring the previous settings in the code (only in code files): When using
pragmas, it is always better to mark the end of a given region using a restore
pragma, instead of an enable/disable, to make nested regions behave correctly:

#nullable restore annotations
#nullable restore warnings

• Selectively disabling the settings (only in code files): The final setting is the one
used to selectively disable either the annotations or the warnings in a given region
of code. It is useful when you want to apply inverse logic, that is, enabling the
feature for the whole project and disabling only selected portions of code:

#nullable disable annotations
#nullable disable warnings

This fine-grained ability to control the nullable reference types feature is very important
when adopting this feature in existing projects. Outside that, you may find it simpler to
just enable it project-wide.

Working with nullable reference types
Once enabled, the code analysis provides feedback in the code editor, which differs
depending on whether the reference has been decorated with the question mark. The
developer may choose not to decorate the variable, implying that the reference should
never assume the null value. In this case, the declaration looks very familiar:

private string _name;

Here, the code analysis will squiggle the constructor code that is responsible for not
initializing the string that, in the absence of the question mark, cannot be null. The
remedies, in this case, are straightforward: you can either initialize the _name variable
to an empty string or remove the default constructor, forcing all the callers to provide
a non-nullable string at the creation of the object.

The other strategy is to declare the _name variable as nullable:

private string? _name;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Nullable reference types 485

The code analysis will show the green squiggle when dereferencing the Length property.
In this case, the solution is to explicitly check for _name being null and return
an appropriate value (or throw an exception). This is a possible implementation
for the property:

public int NameLength2
{
 get
 {
 if (_name == null) return 0; else return _name.Length;
 }
}

The following is an alternative and more elegant implementation of the same code:

public int NameLength2 => _name?.Length ?? 0;

Annotating code is simple as it resembles the strategy already used with the nullable types,
but with the arrays, the decoration is slightly more complex since there are two possible
reference types in the game: the array itself and the items held in the array.

An array of strings can be declared as follows:

private string[]? _names; // array can be null
private string?[] _names; // items in the array can be null
private string?[]? _names; // both the array and its items can
 // be null
private string[] _names; // neither of the two can be null

But remember, the more question marks we use, the more checks for null we need to do.
Let's consider this simple class:

public class OtherClass
{
 private string?[]? _names;
 public OtherClass() { }
 public int Count => _names?.Length ?? 0;
 public string GetItemLength(int index)
 {
 if (_names == null) return string.Empty;
 var name = _names[index];
 if (name == null) return string.Empty;
 return name;
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

486 New Features of C# 8

The Count property is short only because we used a modern compact syntax, but it still
contains a null check. GetItemLength returns the length of the nth item held in
the array, and since both the arrays and the items could be null, two different null
checks are required.

If you are thinking to just return string? as the return type of the GetItemLength
method, this solution will make the implementation code a bit shorter but all the callers
will be forced to check for nulls, requiring even more code changes.

Migrating existing code to nullable reference types
Every project has its own characteristics, but from my personal experience, I've
managed to identify a couple of best practices when migrating existing projects to
this powerful feature.

The first suggestion is to start enabling this feature from the project at the bottom of the
dependency tree. In the project context, you may want to enable the analysis using pragma
directives, starting from the most frequently used code files, such as helpers, extension
methods, and so on.

The second suggestion is to try avoiding the question mark: every time you decorate the
reference with the question mark, the code analysis will require you to write some code
to provide proof that a null dereferencing cannot occur, incrementing the amount of
boilerplate code, which can affect the performance of the hot paths.

Lastly, when you compile a library using this feature, the compiler will apply two hidden
attributes to leave a track in the metadata about the nullability of the references used
publicly in your code. Every time some code referencing your library is compiled, the
compiler will know whether the library methods accept nullable references or not,
assuming a not-nullable reference parameter only if the attribute specifically advertises
that. It is therefore a best practice to use this feature on public libraries so that others can
benefit from this metadata.

The nullable reference types are very useful to decrease the amount of
NullReferenceException exceptions at runtime, which is the primary
cause for an application to crash.

While this feature is optional, it is very convenient to use pragma directives to
progressively apply the small changes required for the code to be null-proof. This is
a typical task that any team should add to its technical debts to improve code quality.
In addition to that, library authors embracing this feature automatically provide the
nullability metadata in their libraries, making the whole chain of references more stable.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Default implementation of interface members 487

Default implementation of interface members
We have already learned that interfaces are used to define a contract that every
implementing type must fulfill. Every interface member defines a portion of the contract
by specifying a name and its signature (input and output parameters). The implementation
(or body) of the defined members are then provided by the concrete types implementing
the interface.

With the default implementation of interface members, C# 8 widens the interface type
syntax to include the following features:

• Interfaces can now define bodies for methods, properties, indexers, and events.

• Interfaces may declare static members, including static constructors and nested types.

• They may explicitly specify visibility modifiers, such as private, protected, internal,
and public (which continues to be the default).

• They may also specify other modifiers, such as virtual, abstract, sealed, extern,
and partial.

The syntax for this new feature is straightforward, as it is as simple as adding an
implementation to a member:

public interface ICalc
{
 int Add(int x, int y) => x + y;
 int Mul(int x, int y) => x * y;
}

At first sight, adding implementations to the member of the interface looks contradictory.
In fact, the preceding example demonstrates the syntax well, but it is certainly not a good
design strategy. You may wonder what could be a good use case for defining a default
implementation on interface members. The first reason is interface versioning, which has
been traditionally very hard to manage.

Interface versioning
As an example, let's start from a classic interface, IWelcome, declaring two simple
properties and a Person class to implement it:

public interface IWelcome
{
 string FirstName { get; }
 string LastName { get; }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

488 New Features of C# 8

public class Person : IWelcome
{
 public Person(string firstName, string lastName)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 }
 public string FirstName { get; }
 public string LastName { get; }
}

It is now possible to add a new method with a default implementation:

public interface IWelcome
{
 string FirstName { get; }
 string LastName { get; }
 string Greet() => $"Welcome {FirstName}";
}

The implementing class does not need to be updated. It can even reside in a different
assembly without having any impact on the interface change.

Since the implementation is provided by the interface and the class does not provide an
implementation for the Greet method, it is still not accessible from a Person reference.
In other words, the following declaration is not legal:

var p = new Person("John", "Doe");
p.Greet(); // Wrong, Greet() is not available in Person

In order to invoke the default implementation, we need an IWelcome reference:

IWelcome p = new Person("John", "Doe");
Assert.AreEqual("Welcome John", p.Greet()); // valid code

The impact of this feature on a long-established interface is extremely important: for
example, the List<T> class exposes the AddRange method, which is unfortunately not
available in the IList<T> interface. After almost 20 years of applications relying on that
interface, any change would be a huge breaking change.

What are the changes that could make sense on an interface? Removal of a member can be
avoided by discouraging its usage via ObsoleteAttribute and maybe, a few versions
later, it will start throwing NotImplementedException, without ever needing to
remove that member from the interface.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Default implementation of interface members 489

Changing a member is always a bad practice because interfaces are contracts; usually, the
need for a change can be modeled by a new member with a different name and signature.

Adding a new member is, therefore, the only true challenge because it breaks binary
compatibility and forces a requirement change to every interface implementer. If the
interface is very popular, for example, IList<T>, it is nearly impossible to add new
members as it would break everybody's code.

Traditionally, the interface versioning problem has been solved by creating a new interface
that extends the previous one, but this solution isn't that practical, since the adoption of
the new interface requires the implementers to replace the old interface with the new one
in their object inheritance declaration and, of course, implement the new members.

The default implementation in C# 8 does not behave the same way as a normal class
implementation, as it defines the baseline implementation for that hierarchy. Let's suppose
you have a hierarchy of interfaces and a class defined as follows:

public interface IDog // defined in Assembly1
{
 string Name { get; }
 string Noise => "barks";
}
public interface ILabrador : IDog // defined in Assembly1
{
 int RetrieverAbility { get; }
}
public class Labrador : ILabrador // defined in Assembly2
{
 public Labrador(string name)
 {
 this.Name = name;
 }
 public string Name { get; }
 public int RetrieverAbility { get; set; }
}

In the current situation, the following assert is true:

IDog archie = new Labrador("Archie");
Assert.AreEqual("barks", archie.Noise);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

490 New Features of C# 8

Now, fix the ILabrador default implementation and modify the interface, as follows:

public interface ILabrador : IDog
{
 int RetrieverAbility { get; }
 string IDog.Noise => "woofs"; // Version 2
}

It is worth noting that the Noise method must be redefined by specifying the full path:
IDog.Noise. The reason for this is because .NET allows multiple inheritances with
interfaces; therefore, in a more complex inheritance structure, there could be more than a
single path leading to the Noise method.

The syntax, therefore, requires specifying the full path to overcome this potential
ambiguity. If the compiler finds any ambiguity that cannot be resolved by just specifying
the full path, it will generate an explicit error.

The default implementation of ILabrador redefines the baseline implementation of
Noise in IDog. This means that, even if we are using an IDog reference, the change in
ILabrador will affect the result, as follows:

IDog archie = new Labrador("Archie");
Assert.AreEqual("woofs", archie.Noise);

Furthermore, you may have noticed in the comments of the preceding sample that the
interfaces and the class lie in two different assemblies. If the first assembly containing
ILabrador is recompiled with the new member and the second assembly is instead
untouched, you will still see Noise being updated to woofs. This means that patching
the first assembly will cause all the applications to benefit from the update, even without
recompiling the whole code.

Interface reabstraction
The ability to redefine the default implementation from a derived interface is fundamental
to understanding reabstraction. The principle is the same, but the deriving interface may
decide to erase the default interface implementation, marking the member as abstract.

Going on with the previous example, we could define the following interface:

public interface IYellowLabrador : ILabrador
{
 abstract string IDog.Noise { get; }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Default implementation of interface members 491

But this time, the implementers of the new interface are required to implement the Noise
method as well:

public class YellowLabrador : IYellowLabrador
{
 public YellowLabrador(string name)
 {
 this.Name = name;
 }
 public string Name { get; }
 public int RetrieverAbility { get; set; }
 public string Noise { get; set; }
}

This capability is useful because the default implementation was written to provide
the best possible implementation that can be commonly used by all the types in the
hierarchy. But there is a possibility that a branch of those types does not fit well with that
implementation and you want to erase it at the interface level to avoid any misbehavior.

Interfaces as traits
Treating the concept of trait composition in detail would require an entire chapter, but it
is worth noting that C# 8 has only just opened the door to traits, leaving future versions
of the language with the opportunity to fill the gaps, as you can read in the design notes of
the C# language public repository.

Trait composition is a concept that's well known in other languages such as C++. It
involves the ability to define a set of members for determining a well-known behavior. The
goal is defining different types (traits) with the goal to give any class the ability to compose
its own behavior by just inheriting the traits.

Before this release of the language, we used to create static helper classes to define a set of
reusable behaviors. In C# 8, we can define those members inside the interfaces so that they
can be reused by just inheriting the interfaces. The choice of interfaces is very convenient
because .NET supports multiple inheritances only on interfaces, allowing multiple traits to
be inherited in a new class.

If you are going to experiment with traits, try to model them without thinking about the
classical interface usage; rather, look at them for their intrinsic ability to open to multiple
inheritances and thus compose a set of methods.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

492 New Features of C# 8

Traits are usually very useful when the availability of the behaviors you need to compose
is very dependent on each class that you are going to define. In terms of design, this would
translate into either a very long list of interfaces, each one defining a single behavior,
or a single interface with many objects implementing part of its methods by throwing
NotImplementedException.

Let's try to look at a very simple example where you want to expose an alphabet
transliteration service to your application. There are multiple ways to achieve this:
either with the Windows native APIs, a NuGet library, or a cloud service. We could be
tempted to define a single interface with a long list of methods supporting all the possible
permutations from one alphabet to another, but it would not be very practical because
each of those libraries or services supports only a part of all the possible transliterations.
This would result in many implementations throwing NotImplementedException.

Another approach would be to define one interface for each possible transliteration,
but the class implementing these interfaces would need to redirect the member
implementation to some external helper class that calls the appropriate library.

The traits solution looks a bit simpler because it just models what we can do. For example,
here, there are two possible transliteration interfaces:

public interface ICyrillicToLatin
{
 public string Convert(string input)
 {
 return Transliteration.CyrillicToLatin(input, Language.
Russian);
 }
}
public interface ILatinToCyrillic
{
 public string Convert(string input)
 {
 return Transliteration.LatinToCyrillic(input, Language.
Russian);
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Default implementation of interface members 493

They are still interfaces, but the class that needs the common implementation can add the
interface to the inheritance list, without anything else:

class CompositeTransliterator : ICyrillicToLatin,
ILatinToCyrillic
{
 // ...
}

Finally, in order to make the consumer's life easier, the class could expose a switch
expression using pattern matching to invoke the try transliteration to/from a given
alphabet and return the computed result:

public string TransliterateCyrillic(string input)
{
 string result;
 return this switch
 {
 ICyrillicToLatin c when (result = c.Convert(input)) !=
input => result,
 ILatinToCyrillic l when (result = l.Convert(input)) !=
input => result,
 _ => throw new NotImplementedException("N/A"),
 };
}

This code tries to transliterate the text with all the available services, and if one of them is
implemented by the class, a conversion is tried. As soon as the phrase can be converted
(that is, the conversion result is different from the input), it is returned to the caller.

Default interface implementations in interfaces are a valuable feature for all pragmatists.
Java and Swift are examples of programming languages that already support this feature.
If you are a library developer needing to port your code across multiple languages, it
will make your life easier and avoiding re-architecting portions of code to overcome its
absence in previous versions of the language.

As always, the recommendation is to use the default implementation with wisdom. It
would not be useful if the use case already fit well with the previous tools and patterns.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

494 New Features of C# 8

A fun edge case of the default implementation is that you can now define the entry point
of your application with the following code:

interface IProgram
{
 static void Main() => Console.WriteLine("Hello, world");
}

The default interface members are a controversial feature leveraging the intrinsic
capability of the .NET interfaces to support multiple inheritance. The pragmatist should
appreciate the practical use cases justifying this little revolution, while the others can just
continue using the interfaces as they always did before.

We can now move on to the next feature, which should help in avoiding some headaches
and IndexOutOfRangeException exceptions when slicing arrays and lists.

Ranges and indices
Another convenient functionality introduced in C# 8 is the new syntax to identify single
elements or ranges inside a sequence. The language already offers the ability to get or set
elements in an array using the square brackets and a numeric index, but this concept has
been extended by adding two operators to identify an item from the end of a sequence and
to extract a range between two indices.

In addition to the aforementioned operators, the base class library now offers two new
system types, System.Index and System.Range, which we will immediately see in
action. Let's consider an array of strings containing six country names:

var countries = new[] { "Italy", "Romania", "Switzerland",
"Germany", "France", "England" };
var length = countries.Length;

We already know how to use the numeric indexer to get a reference to the first item:

Assert.IsTrue(countries[0] == "Italy");

The new System.Index type is just a convenient wrapper for the numeric index that
can be directly used on the arrays:

var italyIndex = new Index(0);
Assert.IsTrue(countries[0] == countries[italyIndex]);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Ranges and indices 495

The interesting part is when we need to address the item starting from the end
of the sequence:

// first item from the end is length - 1
Assert.IsTrue(countries[length - 1] == "England");
var englandIndex = new Index(1, true);
Assert.IsTrue(countries[length - 1] ==
countries[englandIndex]);

The new ^ operator provides us with a succinct and effective way to get the last item:

Assert.IsTrue(countries[^1] == countries[englandIndex]);

It is very important to note that, while zero is the first index when counting from the
beginning, it points to one item beyond the total length when counting from the end. This
means that the [^0] expression will always throw IndexOutOfRangeException:

Assert.ThrowsException<IndexOutOfRangeException>(() =>
countries[^0]);

When it comes to ranges, the value of the new syntax is more evident, since it is a brand
new concept that never existed before in the language or in the base class library. The
new.. operator delimits two indices that are used to identify a range. The delimiters
on the left and the right of the operator can be also omitted whenever the items at the
boundaries should be skipped.

The following example shows three ways to specify all the items in an array:

var countries = new[] { "Italy", "Romania", "Switzerland",
"Germany", "France", "England" };
var expected = countries.ToArray();
var all1 = countries[..];
var all2 = countries[0..^0];
var allRange = new Range(0, new Index(0, true));
var all3 = countries[allRange];
Assert.IsTrue(expected.SequenceEqual(all1));
Assert.IsTrue(expected.SequenceEqual(all2));
Assert.IsTrue(expected.SequenceEqual(all3));

The expected variable just gets a clone of the countries array and the convenient
SequenceEqual Linq extension method returns true when the items in the two
sequences are identical and are ordered the same. The previous example is not very useful,
but highlights the semantics at the boundaries: the left boundary is always inclusive, while
the right boundary is always exclusive.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

496 New Features of C# 8

The following example is more realistic and shows three different ways to specify a range
that just skips the first item of the sequence:

var countries = new[] { "Italy", "Romania", "Switzerland",
"Germany", "France", "England" };
var expected = new[] { "Romania", "Switzerland", "Germany",
"France", "England" };
var skipFirst1 = countries[1..];
var skipFirst2 = countries[1..^0];
var skipFirstRange = new Range(1, new Index(0, true));
var skipFirst3 = countries[skipFirstRange];
Assert.IsTrue(expected.SequenceEqual(skipFirst1));
Assert.IsTrue(expected.SequenceEqual(skipFirst2));
Assert.IsTrue(expected.SequenceEqual(skipFirst3));

Similarly, the following example shows how to skip the last item in the sequence:

var countries = new[] { "Italy", "Romania", "Switzerland",
"Germany", "France", "England" };
var expected = new[] { "Italy", "Romania", "Switzerland",
"Germany", "France" };
var skipLast1 = countries[..^1];
var skipLast2 = countries[0..^1];
var skipLastRange = new Range(0, new Index(1, true));
var skipLast3 = countries[skipLastRange];
Assert.IsTrue(expected.SequenceEqual(skipLast1));
Assert.IsTrue(expected.SequenceEqual(skipLast2));
Assert.IsTrue(expected.SequenceEqual(skipLast3));

Putting everything together is straightforward, and the following example shows how to
skip both the first and the last element of the sequence:

var countries = new[] { "Italy", "Romania", "Switzerland",
"Germany", "France", "England" };
var expected = new[] { "Romania", "Switzerland", "Germany",
"France" };
var skipFirstAndLast1 = countries[1..^1];
var skipFirstAndLastRange = new Range(1, new Index(1, true));
var skipFirstAndLast2 = countries[skipFirstAndLastRange];
Assert.IsTrue(expected.SequenceEqual(skipFirstAndLast1));
Assert.IsTrue(expected.SequenceEqual(skipFirstAndLast2));

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Ranges and indices 497

The range syntax to specify the starting and the ending indices can start counting from the
start or the end. In the following example, the sliced array will return just the second and
the third element, both counted from the beginning:

var countries = new[] { "Italy", "Romania", "Switzerland",
"Germany", "France", "England" };
var expected = new[] { "Romania", "Switzerland" };
var skipSecondAndThird1 = countries[1..3];
var skipSecondAndThirdRange = new Range(1, 3);
var skipSecondAndThird2 = countries[skipSecondAndThirdRange];
Assert.IsTrue(expected.SequenceEqual(skipSecondAndThird1));
Assert.IsTrue(expected.SequenceEqual(skipSecondAndThird2));

Of course, the same is valid when counting from the end, which is the goal of the
following example:

var countries = new[] { "Italy", "Romania", "Switzerland",
"Germany", "France", "England" };
var expected = new[] { "Germany", "France" };
var fromEnd1 = countries[^3..^1];
var fromEndRange = new Range(new Index(3, true), new Index(1,
true));
var fromEnd2 = countries[fromEndRange];
Assert.IsTrue(expected.SequenceEqual(fromEnd1));
Assert.IsTrue(expected.SequenceEqual(fromEnd2));

This syntax is very simple, but you may have noticed that we only made use of arrays,
which, as well as strings, are treated as special by C#. In fact, if we try to use this same
syntax with a List<T>, it won't work, since there are no members that know what
Index and Range are:

var countries = new MyList<string>(new[] { "Italy", "Romania",
"Switzerland", "Germany", "France", "England" });
var expected = new[] { "Romania", "Switzerland", "Germany",
"France" };
MyList<string> sliced = countries[1..^1];
Assert.IsTrue(expected.SequenceEqual(sliced));

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

498 New Features of C# 8

The question now is, how can we make the following test pass? There are three different
ways to make it compile and work. The first one is straightforward and consists of
providing an indexer that takes a System.Range as a parameter:

public class MyList<T> : List<T>
{
 public MyList() { }
 public MyList(IEnumerable<T> items) : base(items) { }
 public MyList<T> this[Range range]
 {
 get
 {
 (var from, var count) = range.GetOffsetAndLength(this.
Count);
 return new MyList<T>(this.GetRange(from, count));
 }
 }
}

The List<T> base class provides the indexer taking an integer, while MyList<T> adds
an overload taking a Range type, which is used from C# 8 as an alias of the .. syntax.
In the new indexer, we use Range.GetOffsetAndLength, a very convenient method
that returns a tuple with the initial index and the length of the sequence to slice. Finally,
the List<T>.GetRange base method provides the sliced sequence used to create the
new MyList<T> collection.

Another possible solution to make the previous test pass is to take advantage of the special
Slice method with which the C# 8 compiler searches by pattern. In the absence of the
indexer that we wrote before, if the compiler finds a method called Slice that takes
two integers, it remaps the range syntax to a call to the Slice method. As a result, the
following code is neater and simpler to read:

public class MyList<T> : List<T>
{
 public MyList() { }
 public MyList(IEnumerable<T> items) : base(items) { }
 public MyList<T> Slice(int offset, int count)
 {
 return new MyList<T>(this.GetRange(offset, count));
 }
}

Please note that any call with a range syntax such as countries[1..^1] will invoke
the Slice method.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Pattern matching 499

This solution is nice but can't solve the problem of the popular List<T> class, a class
that can be found almost everywhere in the code, especially because the Linq extension
method known as ToList() returns an IList<T>. Writing a Slice extension method
will not work because the compiler looks for Slice among the instance methods, while
extension methods are static.

The solution is to write an extension method taking a Range, as shown in the
following example. This time, the countries reference is any collection inheriting
ICollection<T> and supports slicing with the nice syntax of countries.
Slice(1..^1):

public static class CollectionExtensions
{
 public static IEnumerable<T> Slice<T>(this ICollection<T>
items, Range range)
 {
 (var offset, var count) = range.
GetOffsetAndLength(items.Count);
 return items.Skip(offset).Take(count);
 }
}

In all the previous examples, we explicitly created Index and Range using their
constructors, but I would recommend taking some time to explore the convenient
static factories provided by the Index and Range classes, such as Range.All()
or Index.FromEnd().

Ranges and indices provide powerful and expressive operators and types to simplify the
selection of single or multiple items in a sequence. The main purpose is to make the code
more readable and less prone to errors without impacting the performance.

The most important advice on ranges to remember is that boundaries are inclusive only
on the left side of the range.

Pattern matching
Pattern matching was introduced in C# 7, but version 8 of the language specification
widens its usage by smoothing the syntax and making it more compact and readable. This
chapter will avoid repeating the features already seen in the previous versions and just
focus on the new concepts.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

500 New Features of C# 8

The popular switch statement has evolved in C# to become an expression with
a very fluent syntax. For example, suppose you are reading the console keys in an
application using the Console.ReadKey method to get the colors matching the
R, G, and B characters:

public Color ToColor(ConsoleKey key)
{
 return key switch
 {
 ConsoleKey.R => Color.Red,
 ConsoleKey.G => Color.Green,
 ConsoleKey.B => Color.Blue,
 _ => throw new ArgumentException($"Invalid
{nameof(key)}"),
 };
}

Or, if you prefer an even more compact version, we could write this as follows:

public Color ToColor(ConsoleKey key) => key switch
 {
 ConsoleKey.R => Color.Red,
 ConsoleKey.G => Color.Green,
 ConsoleKey.B => Color.Blue,
 _ => throw new ArgumentException($"Invalid
{nameof(key)}"),
 };

The switch expression is not semantically changed from the previous innovations of
C# 7 pattern matching; rather, it has become simpler and more compact with some
important things to highlight:

• As an expression, the switch statement must return a value (the Color
enumeration in our sample).

• The discard character (_) replaces the default keyword in the classical
switch statement.

• The subexpressions mapping the keys to the colors are evaluated in order, where the
first match wins and exits.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Pattern matching 501

Things can get even more interesting when using the switch expression to match types, as
shown in the following example:

string GetString(object o) => o switch
 {
 string s => $"string '{s}'",
 int i => $"integer {i:d4}",
 double d => $"double {d:n}",
 Derived d => $"Derived: {d.Other}",
 Base b => $"Base: {b.Name}",
 null => "null",
 _ => $"Fallback: {o}",
 };

This method takes an unknown object as input and returns a string that is formatted
differently depending on its runtime type, which must match with the exact type. For
example, GetString((Int16)1) will not match nor return the string Fallback: 1.
Another failed matching is GetString(10.6m) because the literal is a decimal and the
returned string will be Fallback: 10.6.

Before C# 7, testing the type identity on value or reference types was pretty cumbersome
because it required a second step to either cast the value type to the desired type or a
null-check conditional operation for the reference types. Thanks to C# 7, we learned to
use is pattern matching, which is perfect when checking a single type.

With the new C# 8 syntax, the resulting code is more succinct and less error-prone, with a
number of advantages:

• Not having to care about null references in every case, which has the positive
effect of being a better candidate for the method to be inlined by the Just-in-time
Compiler (JIT), resulting in better performance.

• The evaluation respects the order, which is very useful when testing type
hierarchies. In our example, it is fundamental to evaluate the Derived class before
Base, because otherwise the switch expression would always match Base.

• Explicitly capturing the nulls in null case captures avoids any conditional expression.

The switch expression is very powerful, but the improvements to pattern matching are
not over yet.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

502 New Features of C# 8

Recursive pattern matching
Pattern matching has been extended to allow drilling down into object properties and
tuples. The syntax at the base of this improvement consists of the ability to specify an
expression between curly braces after a pattern:

var weekDays = Enum.GetNames(typeof(DayOfWeek));
var expected = new[] { "Sunday", "Monday", "Friday", };
var six = weekDays
 .Where(w => w is string { Length: 6 })
 .ToArray();
Assert.IsTrue(six.SequenceEqual(expected));

The expression inside the curly braces can only specify properties and must make use
of constant literals. This allows us to match the type and, at the same time, evaluate its
properties possibly recurring over subexpressions.

The true power comes into play when we need to evaluate objects structured in a graph,
like in the following two Plain Old CLR Objects (POCO) classes that are referenced
through the Customer property of the Order class:

public class Order
{
 public Guid Id { get; set; }
 public bool IsMadeOnWeb { get; set; }
 public Customer Customer { get; set; }
 public decimal Quantity { get; set; }
}

public class Customer
{
 public Guid Id { get; set; }
 public string Name { get; set; }
 public string Country { get; set; }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Pattern matching 503

Now, let's suppose we're working on an e-commerce application where the discount
depends on the order properties:

public decimal GetDiscount(Order order) => order switch
{
 var o when o.Quantity > 100 => 7.5m,
 { IsMadeOnWeb: true } => 5.0m,
 { Customer: { Country: "Italy" } } => 2.0m,
 _ => 0,
};

Here, the first subexpression reassigns the reference to the o variable whose Quantity
property, thanks to the when clause, is then evaluated. If o.Quantity > 100 is
satisfied, a 7.5% discount is returned.

In the second case, when Order.IsMadeOnWeb is true, a good 5% discount is returned.
The third case evaluates the property obtained by navigating Order.Customer.
Country, returning a 2% discount just because the order originates from Italy. Finally,
the discard character represents the fallback to zero discount.

The syntax with the properties is great, but things get a bit more complicated when it
comes to tuples because you may want to match a single tuple item, as well as multiple
ones, and their position is also fundamental.

Let's consider, for example, a simple Point struct with, not surprisingly, two integer
properties of X and Y:

struct Point
{
 public Point(int x, int y)
 {
 X = x;
 Y = y;
 }
 public int X { get; set; }
 public int Y { get; set; }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

504 New Features of C# 8

How can we write a method that returns whether the point lies on the horizontal or
vertical axis? The condition is satisfied if either X or Y is zero; therefore, a possible
approach is doing the following:

bool IsOnAxis(Point p) => (p.X, p.Y) switch
{
 (0, _) => true,
 (_, 0) => true,
 (_, _) => false,
};

Traditionally, we would write this method with one if using an or operator, but the more
the parameters come into play, the more unreadable the code becomes. An interesting
point of the previous example is that we built a tuple on the fly and evaluated it inside
the switch expression, matching the parameters by their position and discarding (with
the _ character) the ones that were not relevant to the evaluation.

Things get even more interesting when writing the special Deconstruct method in the
Point structure, as it simplifies the tuple's creation:

public struct Point
{
 public Point(int x, int y)
 {
 X = x;
 Y = y;
 }
 public int X { get; set; }
 public int Y { get; set; }
 public void Deconstruct(out int x, out int y)
 {
 x = X;
 y = Y;
 }
}

public bool IsOnAnyAxis(Point p) => p switch
{
 (0, _) => true,
 (_, 0) => true,
 _ => false,
};

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Pattern matching 505

When using tuples in a switch expression, there is space for getting more power by
evaluating its values using the when clause.

In the following example, we use the when clause to identify the diagonal positions in
addition to the axis. For this purpose, we define the SpecialPosition enumerator
and use the switch expression together with the when clause to match the diagonals:

enum SpecialPosition
{
 None,
 Origin,
 XAxis,
 YAxis,
 MainDiagonal,
 AntiDiagonal,
}

SpecialPosition GetSpecialPosition(Point p) => p switch
{
 (0, 0) => SpecialPosition.Origin,
 (0, _) => SpecialPosition.YAxis,
 (_, 0) => SpecialPosition.XAxis,
 var (x, y) when x == y => SpecialPosition.MainDiagonal,
 var (x, y) when x == -y => SpecialPosition.AntiDiagonal,
 _ => SpecialPosition.None,
};

Pattern matching gained a lot of power over the last two versions of the language and now
allows the developer to focus on the important parts of the code without being distracted
by the boilerplate code required by the previous language rules.

The switch expression is specifically suited for all those expressions whose outcome can
be derived from multiple choices, should the evaluation need to dig into an object graph
or evaluate tuples. The powerful discard character allows partial evaluations, avoiding
code that is often complex and prone to errors.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

506 New Features of C# 8

The using declaration
The using declaration is a very convenient syntax equivalent to the try/finally
block and provides a deterministic call to the Dispose method. This declaration can be
used on all the objects implementing the IDisposable interface:

class DisposableClass : IDisposable
{
 public void Dispose() => Console.WriteLine("Dispose!");
}

We already know that the using declaration deterministically invokes the Dispose
method as soon as its closing curly brace is encountered:

void SomeMethod()
{
 using (var x = new DisposableClass())
 {
 //...

 } // Dispose is called
}

Every time multiple disposable objects need to be used in the same scope, the nested
using declarations are nested, causing an annoying triangle-shaped code alignment:

using (var x = new Disposable1())
{
 using (var y = new Disposable2())
 {
 using (var z = new Disposable3())
 {
 //...
 }
 }
}

This annoyance can be finally removed if it is fine for the Dispose method to be called
at the end of the current block (the closed curly brace), no matter whether the block is a
statement (such as a for/if/…) or the current method.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Asynchronous Dispose 507

The new syntax in C# 8 allows us to entirely remove the curly braces from the using
declarations, transforming the previous example into the following:

void SomeMethod()
{
 using (var x = new Disposable1());
 using (var y = new Disposable2());
 using (var z = new Disposable3());
 //...
} // Dispose methods are called

The first curly brace closing the current block will automatically trigger the three
Dispose methods in the inverse order of declaration. But there is more to cover about
Dispose; in fact, this compact syntax is also valid for the async using declaration,
which will be covered in the next section.

Asynchronous Dispose
After the advent of Tasks in .NET, most of the libraries managing I/O operations
progressively moved to an asynchronous behavior. For example, the System.Net.
Websocket class members embrace the Task-based programming strategy, providing
a better developer experience and more efficient behavior.

Every time a developer needs to write a C# client to access some service based on the
WebSocket protocol, they typically write a wrapper class exposing specialized send
methods and implementing the dispose pattern to invoke the Websocket.CloseAsync
method. We also know that any asynchronous method should return a Task, but the
Dispose method has been defined as void far before the Task era, and therefore doesn't fit
well in the Task chain.

The Websocket example is very realistic as I had this exact problem some time ago, where
blocking the current thread to wait for the CloseAsync to finish inside the Dispose caused
a deadlock.

Starting from C# 8 and .NET Core 3.0, we now have two important tools:

• The IAsyncDisposable interface defined in .NET Core 3, returning a
lightweight ValueTask type

• The await using construct leveraging the new AsyncDisposable interface

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

508 New Features of C# 8

Let's see how to use those in code:

public class AsyncDisposableClass : IAsyncDisposable
{
 public ValueTask DisposeAsync()
 {
 Console.WriteLine("Dispose called");
 return new ValueTask();
 }
}

private async Task SomeMethodAsync()
{
 await using (var x = new AsyncDisposableClass())
 {
 // ...
 }
}

It is worth remembering that the await using declaration benefits from succinct,
single-line syntax, as we discussed previously:

private async Task SomeMethodAsync()
{
 await using (var x = new AsyncDisposableClass());
}

If you are a library author exposing a disposable type, you can implement either one of the
two, or even both the IDisposable and IAsyncDisposable interfaces.

Disposable patterns in structs and ref structs
Over time, C# introduced some pattern-based constructs to resolve issues deriving from
rules that could not be applied in every circumstance. This happens, for example, with
the foreach statement not requiring an object to implement the IEnumerable<>
interface, instead just relying on the presence of the GetEnumerator method,
and similarly the object returned by GetEnumerator not needing to implement
IEnumerator but just exposing the required members instead.

This change was driven by the recent introduction of the ref structs, which are
important for diminishing the pressure on the garbage collector as they are guaranteed to
live only on the stack but do not allow the implementation of interfaces.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Disposable patterns in structs and ref structs 509

The pattern-based approach has now been extended to the Dispose and
DisposeAsync methods under certain conditions that we are going to discuss now.

Starting from C# 8, developers can define Dispose or DisposeAsync without
implementing IDisposable or IAsyncDisposable. Implementing the Dispose
method by pattern has been limited to ref struct types because extending it to any
other type could eventually cause a breaking change for types already defining a Dispose
method without declaring IDisposable in the inheritance list.

The following definition is a valid implementation of the Dispose and
DisposeAsync methods:

ref struct MyRefStruct
{
 public void Dispose() => Debug.WriteLine("Dispose");
 public ValueTask DisposeAsync()
 {
 Debug.WriteLine("DisposeAsync");
 return default(ValueTask);
 }
}

The Dispose method can be used as usual:

public void TestMethod1()
{
 using var s1 = new MyRefStruct();
}

But this other declaration is not allowed because we cannot use ref inside an
asynchronous method:

public async Task TestMethod2()
{
 //await using var s2 = new MyRefStruct(); // Error!
}

The workaround is to expand the await using declaration with a full try/finally:

public Task TestMethod3()
{
 var s2 = new MyRefStruct();
 Task result;
 try { /*...*/ }
 finally

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

510 New Features of C# 8

 {
 result = s2.DisposeAsync().AsTask();
 }
 return result;
}

This code is certainly not very nice to read, but we should consider that declaring the
asynchronous version of Dispose (in a type whose life cycle is limited to the stack) is
probably not a great idea.

While the Dispose by pattern has been precautionarily limited to ref structs,
the DisposeAsync by pattern has no restrictions, so it is perfectly legal to declare
DisposeAsync in an old-fashioned class and use it with the await using statement.

Asynchronous streams
Asynchronous streams are the final missing piece in the task story that began several
years ago when the Task class, async, and await were first introduced. An example of
an unresolved use case is the processing of data chunks coming from the internet while
they are being downloaded. The basic point here is that we don't want to await the entire
stream of data, but instead take a single chunk at a time, processing it and then awaiting
the next one. This processing can therefore happen while the other pieces of data are
still downloading and the unused thread time can be spent to serve other users as well,
incrementing the total scalability of the application.

Before digging into the new C# feature, let's rapidly review how an enumerable is made
in the synchronous world. The following examples show an enumerable sequence that
can be used inside a foreach statement; you may notice that the enumerated type is an
integer instead of the hypothetical byte array composing the chunks downloaded from the
internet, but this is not really relevant.

The simplest possible implementation leverages the C# iterator, which is implemented
through the yield keyword:

static IEnumerable<int> SyncIterator()
{
 foreach (var item in Enumerable.Range(0, 10))
 {
 Thread.Sleep(500);
 yield return item;
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Asynchronous streams 511

Its main consumer is, of course, a foreach statement:

foreach (var item in SyncIterator())
{
 // ...
}

Under the hood, the compiler generates the code, exposing an IEnumerable<T> whose
responsibility is to provide the enumerator, a class made of the Current, Reset, and
MoveNext members unrolling the sequence. The relevant part of this code is Thread.
Sleep inside the MoveNext method, which simulates a slow iteration.

The following code is equivalent, but implements the IEnumerable and IEnumerator
interfaces manually:

public class SyncSequence : IEnumerable<int>
{
 private int[] _data = Enumerable.Range(0, 10).ToArray();
 public IEnumerator<int> GetEnumerator() => new
SyncSequenceEnumerator<int>(_data);
 IEnumerator IEnumerable.GetEnumerator() => new
SyncSequenceEnumerator<int>(_data);
 private class SyncSequenceEnumerator<T> : IEnumerator<T>,
IEnumerator, IDisposable
 {
 private T[] _sequence;
 private int _index;
 public SyncSequenceEnumerator(T[] sequence)
 {
 _sequence = sequence;
 _index = -1;
 }
 object IEnumerator.Current => _sequence[_index];
 public T Current => _sequence[_index];
 public void Dispose() { }
 public void Reset() => _index = -1;
 public bool MoveNext()
 {
 Thread.Sleep(500);
 _index++;
 if (_sequence.Length <= _index) return false;
 return true;
 }
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

512 New Features of C# 8

Once again, the foreach statement can easily consume the sequence, sharing the
problem of the blocked thread caused by Thread.Sleep, which in real life would be an
ongoing I/O operation inside the network stack of the operating system:

foreach (var item in new SyncSequence())
{
 // ...
}

In order to resolve this problem, C# 8 introduced the very convenient await foreach,
which is used to iterate an asynchronous enumeration, which in turn requires two new
interfaces: IAsyncEnumerable<T> and IAsyncEnumerator<T>.

The simplest possible producer and consumer for the new asynchronous streams are very
similar to the previous ones:

async IAsyncEnumerable<int> AsyncIterator()
{
 foreach (var item in Enumerable.Range(0, 10))
 {
 await Task.Delay(500);
 yield return item;
 }
}

await foreach (var item in AsyncIterator())
{
 // ...
}

Should we need to implement those two interfaces (manually), it would not be much
different than the synchronous implementation where, not surprisingly, we have to
implement the asynchronous version of MoveNext called MoveNextAsync:

public class AsyncSequence : IAsyncEnumerable<int>
{
 private int[] _data = Enumerable.Range(0, 10).ToArray();
 public IAsyncEnumerator<int>
GetAsyncEnumerator(CancellationToken cancellationToken =
default)
 {
 return new MyAsyncEnumerator<int>(_data);
 }

 private class MyAsyncEnumerator<T> : IAsyncEnumerator<T>

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Asynchronous streams 513

 {
 private T[] _sequence;
 private int _index;
 public MyAsyncEnumerator(T[] sequence)
 {
 _sequence = sequence;
 _index = -1;
 }
 public T Current => _sequence[_index];
 public ValueTask DisposeAsync() => default(ValueTask);
 public async ValueTask<bool> MoveNextAsync()
 {
 await Task.Delay(500);
 _index++;
 if (_sequence.Length <= _index) return false;
 return true;
 }
 }
}

In the same way that IEnumerator<T> derives from IDisposable<T>, the
IAsyncEnumerator<T> interface derives from IAsyncDisposable<T>, which we
already discussed.

MoveNextAsync and Current are the only other members required by the
IAsyncEnumerator<T> interface, whose methods return the lightweight ValueTask
type already seen in DisposeAsync.

Note
At the time of writing, the only class in the base class library implementing
IAsyncEnumerable<T> is System.Threading.Channel, so
in order to fully leverage the power of the asynchronous streams, you should
adopt an external library or implement those two interfaces by yourself, which
is pretty straightforward.

The code consuming the new asynchronous sequence is structurally the same:

await foreach (var item in new AsyncSequence())
{
 // ...
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

514 New Features of C# 8

For the sake of completeness, the consuming code is equivalent to the following:

var sequence = new AsyncSequence();
IAsyncEnumerator<int> enumerator = sequence.
GetAsyncEnumerator();

try
{
 while (await enumerator.MoveNextAsync())
 {
 // some code using enumerator.Current
 }
}
finally { await enumerator.DisposeAsync(); }

The static TaskAsyncEnumerableExtensions class contains some extension
methods that allow the configuration of IAsyncEnumerable objects, as you would
expect from any other Task object.

The first extension method is ConfigureAwait, which we already examined in Chapter
12, Multithreading and Asynchronous Programming. The other is WithCancellation,
which takes a CancellationToken value that can be used to cancel the ongoing task.

Asynchronous streams are very powerful as they simplify the developer code while
making it more powerful. On the producer side, implementing the required interfaces
(IAsyncEnumerable and IAsyncEnumerator) is very simple, and on the
consumer side, it is easy to enumerate the sequence asynchronously thanks to the new
async foreach.

One drawback is that the current library ecosystem is not compatible with the new
interfaces. For this reason, the community already wrote a new set of Linq-style extension
methods providing the same look and feel of the ones baked into the base class library.

It is also important to use the right tool for every use case. In other words, there is no
need to transform everything into something asynchronous just because the language has
been extended. This is just an important tool that every developer can use whenever it
makes sense.

Readonly struct members
Following the introduction of the readonly struct in C# 7, it is now possible to specify
the readonly modifier singularly on its members. This feature has been added for all
those cases where the struct type cannot be entirely marked as read-only, but when only
one or more members can guarantee not to modify the state of the instance.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Readonly struct members 515

The main reason why I love this feature is because expressing the intents explicitly is a best
practice in terms of maintenance and usability.

It is also important from a performance perspective because the readonly struct
provides a sort of hint to the compiler, which can apply better optimizations. The modifier
can be applied on fields, properties, and methods to guarantee it does not mutate the
struct instance, but does not give any guarantee on the referenced objects.

When dealing with properties, the modifier can be applied on the property or on just one
of the accessors:

public readonly int Num0
{
 get => _i;
 set { } // not useful but valid
}

public readonly int Num1
{
 get => _i;
 //set => _i = value; // not valid
}

public int Num2
{
 readonly get => _i;
 set => _i = value; // ok
}

public int Num3
{
 get => ++_i; // strongly discouraged but it works
 readonly set { } // does not make sense but it works
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

516 New Features of C# 8

For example, let's define a Vector struct exposing two methods returning the vector
length where only one of the two is marked as readonly:

public struct Vector
{
 public float x;
 public float y;
 private readonly float SquaredRo => (x * x) + (y * y);
 public readonly float GetLengthRo() => MathF.
Sqrt(SquaredRo);
 public float GetLength() => MathF.Sqrt(SquaredRo);
}

Since value types such as Vector are subject to be copied when they are passed as
parameters, a common solution is to apply the in modifier (which means a readonly
ref), as in the following example:

public static float SomeMethod(in Vector vector)
{
 // a local copy is done because GetLength is not readonly
 return vector.GetLength();
}

Unfortunately, the in modifier cannot give any guarantees about the immutability of
the other data addressed by the reference. Therefore, as soon as the compiler sees the
GetLength method being invoked, it has to assume a potential change to the vector
instance, causing a defensive hidden local copy of Vector, regardless of the fact that it
has been passed by the reference.

If instead we replace the call to GetLength with the read-only GetLengthRo method,
the compiler understands there is no risk in modifying the Vector content and can avoid
generating the local copy, providing better performance to the application:

public static float ReadonlyBehavior(in Vector vector)
{
 // no local copy is done because GetLengthRo is readonly
 return vector.GetLengthRo();
}

It is worth saying that the compiler is smart enough to provide some automatic
optimizations. For example, automatically generated property getters are already marked
as read-only, but remember to apply the readonly modifier to all the other members not
mutating the instance state, providing an important hint to the compiler and obtaining the
best possible optimizations in change.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Readonly struct members 517

Note
Version after version, the compiler improves its capability to detect potential
side effects such as local copies. You can verify the generated IL code by
yourself using a decompiler such as ildasm or the ILSpy tools, but be
warned that these optimizations are subject to changes over time.

If you mark a method as read-only, even if it is modifying the state of its instance, the
compiler will generate either an error or a warning, depending on the situation:

• The compiler will complain with a CS1604 error if the readonly method tries to
modify any field of the struct.

• The compiler will generate a CS8656 warning every time the code accesses
a not read-only property getter to advise about the generation of the code
needed to create a defensive hidden local copy of the struct, as stated in the
message description.

In the CS8656 warning message, the compiler advises that it is going to generate a copy of
'this' to avoid mutating the current instance:

"Call to a non readonly member '...' from a 'readonly' member
results in an implicit copy of 'this'".

There is one important side effect regarding the ability of the compiler to recognize
undesired situations. It cannot detect any attempt to modify the changes to a referenced
object, as demonstrated by the following code:

struct Undetected
{
 private IDictionary<string, object> _bag;
 public Undetected(IDictionary<string, object> bag)
 {
 _bag = bag;
 }
 public readonly string Description
 {
 get => (string)_bag["Description"];
 set => _bag["Description"] = value;
 }
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

518 New Features of C# 8

While we apparently don't see any drawbacks in not applying the readonly modifier on
struct members that are not modifying the state of the value type, be very careful, because
it can make a big difference to the performance of hot paths.

Null coalescing assignment
The null coalescing operator, ??, has been extended in C# 8 to support assignment.
A popular usage for the null coalescing operator involves the parameter checks at the
beginning of a method, like in the following example:

class Person
{
 public Person(string firstName, string lastName, int age)
 {
 this.FirstName = firstName ?? throw new
ArgumentNullException(nameof(firstName));
 this.LastName = lastName ?? throw new
ArgumentNullException(nameof(lastName));
 this.Age = age;
 }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int Age { get; set; }
}

The new assignment allows us to reassign the reference whenever it is null, as
demonstrated by the following example:

void Accumulate(ref List<string> list, params string[] words)
{
 list ??= new List<string>();
 list.AddRange(words);
}

The parameter list can initially be null and in this case, it will be reassigned to a new
instance, but the following times, the assignment will not occur anymore:

List<string> x = null;
Accumulate(ref x, "one", "two");
Accumulate(ref x, "three");
Assert.IsTrue(x.Count == 3);

The null coalescing assignment doesn't look very important, but its ability to execute the
rightmost expression is a big value that you should not underestimate.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Static local functions 519

Static local functions
Local functions have been introduced to make the code more readable by constraining the
visibility of a certain piece of code to a single method:

void PrintName(Person person)
{
 var p = person ?? throw new
ArgumentNullException(nameof(person));
 Console.WriteLine(Obfuscated());
 string Obfuscated()
 {
 if (p.Age < 18) return $"{p.FirstName[0]}.
{p.LastName[0]}.";
 return $"{p.FirstName} {p.LastName}";
 }
}

In this example, the Obfuscated method can only be used by PrintName and has
the advantage of being able to ignore any parameter check, because the context where
the p captured parameter is used does not allow its value to be null. This can deliver
performance advantages in complex scenarios, but its ability to capture the local variables
(including this) can be confusing.

With C# 8, it is now possible to avoid any capturing by marking the local function
as static:

private void PrintName(Person person)
{
 var p = person ?? throw new
ArgumentNullException(nameof(person));
 Console.WriteLine(Obfuscated(p));
 static string Obfuscated(Person p)
 {
 if (p.Age < 18) return $"{p.FirstName[0]}.
{p.LastName[0]}.";
 return $"{p.FirstName} {p.LastName}";
 }
}

This new version of the method enforces its ability to self-describe while still having the
advantage of ignoring any parameter-checking due to the known context. It is worth
noting that capturing is usually not an issue in terms of performance, but can severely
impact readability because C# allows automatic capturing by default, in contrast to other
languages such as C++ lambdas.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

520 New Features of C# 8

Better interpolated verbatim strings
We have already learned that string literals supports some variants to avoid
escaping characters:

string s1 = "c:\\temp";
string s2 = @"c:\temp";
Assert.AreEqual(s1, s2);

They can also be used to improve formatting, thanks to interpolation:

var s3 = $"The path for {folder} is c:\\{folder}";

Since the introduction of interpolated strings, we have always been able to mix the two
formatting styles:

var s4 = $@"The path for {folder} is c:\{folder}";
Assert.AreEqual(s3, s4);

But inverting the $ and @ characters was not possible before C# 8:

var s5 = @$"The path for {folder} is c:\{folder}";
Assert.AreEqual(s3, s5);

With this small improvement, you don't have to bother about the order of the prefixes.

Using stackalloc in nested expressions
With C# 7, we started using Span<T>, ReadOnlySpan<T>, and Memory<T> because
they are ref struct instances that are guaranteed to be allocated on the stack, and
therefore won't affect the garbage collector. Thanks to Span, it was also possible to
avoid declaring the stackalloc statements that are directly assigned to Span or
ReadOnlySpan as unsafe:

Span<int> nums = stackalloc int[10];

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Unmanaged constructed types 521

Starting from C# 8, the compiler widens the use of stackalloc to any expression
expecting Span or ReadOnlySpan. In the following example, the test trims the
input string from three special characters, obtaining the string specified in the
expected variable:

string input = " this string can be trimmed \r\n";
var expected = "this string can be trimmed";
ReadOnlySpan<char> trimmedSpan = input.AsSpan()
 .Trim(stackalloc[] { ' ', '\r', '\n' });
string result = trimmedSpan.ToString();
Assert.AreEqual(expected, result);

The operations performed by the preceding example are as follows:

• The AsSpan extension method converts the string into ReadOnlySpan<char>.

• The Trim extension method narrows the boundaries of ReadOnlySpan<char>
to the characters specified with the stackalloc array. This Trim method does
not require any allocation.

• Finally, the ToString method is called to create a new string from
ReadOnlySpan<char>.

The advantage of this code is that, beyond the new int[] expression, which is used to
verify the test, and the ToString method, which is used to create the result, no other
heap allocations are performed.

Unmanaged constructed types
Before digging into this new C# feature, it is necessary to understand the subject by
analyzing the definitions of unmanaged and constructed types cited by the language
specifications:

• A type is called constructed if it is generic and the type parameter is already
defined. For example, List<string> is a constructed type while List<T> is not.

• A type is called unmanaged when it can be used in an unsafe context. This is true
for many built-in basic types. The official documentation includes the list of these
types: sbyte, byte, short, ushort, int, uint, long, ulong, char, float,
double, decimal, bool, enums, pointers, and struct.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

522 New Features of C# 8

An example of an unmanaged constructed type that it was not possible to declare before
C# 8 is as follows:

struct Header<T>
{
 T Word1;
 T Word2;
 T Word3;
}

The two main advantages of allowing generic structs to be unmanaged are as follows:

• They can be allocated on the stack using stackalloc.

• We can use those types with pointers and unsafe code to interoperate with native
code. This is useful when dealing with native chunks whose fields could, for
example, be either 32 or 64 bits:

Span<Header<int>> records1 = stackalloc Header<int>[10];
Span<Header<long>> records2 = stackalloc Header<long>[10];

With this feature, the language specifications are going in the direction of easing the native
interoperability without incurring the performance hits that, in the past, required the use
of the C or C++ languages.

Summary
There is no doubt that the new C# 8 features mark an important milestone in terms of
code robustness and clarity. It is not unusual for a language to become (version after
version) more complex and difficult to read, but C# introduced features such as pattern
matching and ranges that allow any developer to express their intent with more concise
and unambiguous code.

While it is controversial, the default interface members introduced the Traits paradigm
to the .NET world and addressed problems such as interface versioning, which caused
developers to struggle for years.

We learned about a key feature, that is, built-in nullable reference static code analysis,
which allows us to progressively review the code and dramatically cut down the number
of errors due to dereferencing null references.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Test what you learned 523

This was not the end of tuning the language for productivity, as we continued through
the C#7 performance journey with asynchronous streams, read-only struct members,
and the updates to stackalloc and unmanaged constructed types, all of which
combine to make C# a compelling competitor among the native languages while still
enforcing code safety.

Other smaller features such as the succinct using declaration, asynchronous Dispose,
the disposable pattern, static local functions, the fix on the interpolated string, and
null-coalescing assignment are very simple to remember and deliver practical advantages.

New language features are not just additional tools in the developer's Swiss Army knife,
but a big opportunity to improve the code base. If we go back in time and think of generic
types introduced in C# 2.0, they boosted the productivity and performance by orders
of magnitude. Later on, the language introduced LINQ queries, lambda expressions,
and extension methods, thereby bringing more expressivity and opening up new design
strategies that were much harder before then. The entire history of programming
languages, not only C#, is characterized by improvements targeting the requirements of
modern development. Nowadays, application development is clearly oriented toward
shorter development life cycles by adopting the Continuous Integration/Continuous
Delivery (CI/CD) pipeline, which brings with it strong requirements regarding code
quality and productivity. By considering this broader view, there is no doubt that staying
up to date on the latest language features is mandatory for any developer.

In the next chapter, we will learn how .NET Core 3 can transform language formalism
into running code, both on Windows and on Linux. We will go through creating a library
that can be consumed from any .NET runtime flavor; consuming packages, which is the
real richness of this ecosystem; and finally, publishing the application, turning all of our
work into great value for the end user.

Test what you learned
1. How can you minimize the amount of NullReferenceException exceptions

in your code?

2. What is the best syntax to use to read the last item in an array?

3. When using switch expressions, what keyword is equivalent to using the
discard character (_)?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

524 New Features of C# 8

4. How can you await an asynchronous call closing a file in the Dispose method?

5. When assigning the orders variable in the following statement, is the method call
invoked on every execution?

var orders ??= GetOrders();

6. Is defining a sequence as IAsyncEnumerable mandatory for it to be iterated with
the new async foreach statement?

Further reading
If you want to follow the evolution of C#, you can examine the proposals and
the conversations around the next release of the language on GitHub at
https://github.com/dotnet/csharplang.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/dotnet/csharplang
https://github.com/dotnet/csharplang

16
C# in Action with

.NET Core 3
The C# programming language is the medium that we use to turn ideas into runnable
code. At compile time, the whole set of rules, grammar, constraints, and semantics get
transformed into the Intermediate Language—a high-level assembly language used to
instruct the Common Language Runtime (CLR), which in turn provides the necessary
services to run the code.

In order to execute some code, native languages such as C, C++, and Rust require
a thin runtime library to interact with the operating system (OS) and execute
abstractions such as program loading, constructors, and deconstructors. On the other
hand, higher-level languages such as C# and Java need a more complex runtime engine
to provide other fundamental services such as garbage collection, just-in-time compilation,
and exception management.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

526 C# in Action with .NET Core 3

When .NET Framework was first created, the CLR was designed to run exclusively on
Windows, but later, many other runtimes (implementing the same ECMA specifications)
emerged, playing an important role in the market. For example, the Mono runtime was
the first community-driven project to run on the Linux platform, and the Microsoft
Silverlight project had brief success running inside the browsers of all the major platforms.
Other runtimes, such as .NET Micro Framework for running on microcontrollers, .NET
Compact Framework for targeting the embedded Windows CE OS, and other more recent
flavors of the runtime running on Windows Phone and the Universal Windows Platform
are good examples of the variety of the .NET implementations that have the ability to run
the same set of instructions we still use today.

Each of those runtimes was built upon a number of requirements dictated by the historical
context of the time, with no exceptions. At its birth, about 20 years ago, .NET Framework
was designed to satisfy the growing Windows-based personal computer ecosystem, whose
power grew over time in terms of CPU power, memory, and storage. Over the years, most
of those runtimes successfully shifted toward more constrained hardware specifications,
still offering roughly the same set of features. For example, even if modern mobile phones
have very powerful microprocessors, code efficiency is still vital to preserve the battery
life of those devices, a requirement that was not relevant when .NET Framework was
initially designed.

Although the .NET specifications used by those runtimes are still the same, there are
differences that make every developer's life hard when trying to design an application
that is able to run on multiple runtimes, especially when a requirement is for it to be able
to run cross-platform and/or cross-device.

The .NET Core 3 runtime was born to resolve those issues, by offering a new runtime that
satisfies all the modern requirements. In this chapter, we are going to examine the factors
related to the runtime when developing a C# application:

• Using the .NET command-line interface (CLI)

• Developing on Linux distributions

• What .NET Standard is and how can it help the application design

• Consuming NuGet packages

• Migrating an application designed with .NET Framework

• Publishing an application

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using the .NET command-line interface (CLI) 527

By the end of this chapter, you will be more familiar with the .NET Core tools that allow
you to compile and publish your application so that you can design a library to share the
code with other applications running on .NET Core or other runtime flavors. Also, where
you already have an application based on .NET Framework, you will learn the main steps
to migrate it to fully leverage the .NET Core runtime.

Using the .NET command-line interface (CLI)
The command-line interface (CLI) is a new but strategic tool in the .NET ecosystem,
enabling a modern developmental approach that can be used the same way across all
platforms. At first sight, defining a tool based on the old console as "modern" might look
strange, but in the world of modern development, the ability to script the build process to
embrace the Continuous Integration and Continuous Delivery/Deployment (CI/CD)
strategy is fundamental to provide faster and higher quality development life cycles.

After installing the .NET Core SDK (see https://dotnet.microsoft.com/),
the .NET CLI is available through the Linux Terminal or Windows Command Prompt.
A good alternative on Windows is the new Windows Terminal application, which can
be downloaded through the Windows Store and provides a great replacement for the
traditional Command Prompt, as well as the PowerShell terminal.

The .NET CLI has a rich list of commands, enabling a complete set of operations for
the entire development life cycle. Detailed and contextual help for every command is
obtained by adding the ––help string as the last argument. The most relevant
commands are as follows:

• dotnet new: The new command creates a folder for a new application project
or solution, based on a long list of predefined templates that can be easily installed
in addition to the default ones. Typing this command alone will just list all the
available templates.

• dotnet restore: The restore command restores the referenced libraries from
the NuGet server (outside the default nuget.org internet packages repository,
the user can create a nuget.config file to specify other locations such as GitHub,
or even a local folder).

• dotnet run: The run command builds, restores, and runs the project in
a single shot.

• dotnet test: The test command runs the test for the specified project.

• dotnet publish: The publish command creates the deployable binaries, as
we will discuss in the Publishing an application section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://dotnet.microsoft.com/

528 C# in Action with .NET Core 3

In addition to these commands, the .NET CLI can be used to invoke other tools. Some of
them are preinstalled. For example, dotnet dev-certs is a tool that's used to manage
the HTTPS certificates on the local machine. Another example of the preinstalled tools on
offer is dotnet watch, which observes the changes made to the source files in a project
and automatically reruns the application every time any change occurs.

The dotnet tool command is the gateway to extend the CLI capability because it
allows us to download and install additional tools through the configured NuGet servers.
At the time of writing, there is still no way to filter the packages containing .NET tools
on https://nuget.org; therefore, your best option is reading the suggestions from
articles or other users.

When creating a new project (using the CLI), you may want to decide the runtime version
first. The dotnet ––info command returns a list of all the installed runtimes and
SDKs. By default, the CLI uses the more recently installed SDK, but you may change the
version for a specific directory tree by creating a special file called global.json. The
settings in this file will affect all the operations done by the .NET CLI (which is also used
by Visual Studio) for all the folders under the one containing the file:

C:\Projects>dotnet new globaljson
The template "global.json file" was created successfully.

Now, you can edit the file with your favorite editor and change the SDK version to one of
the values listed previously:

{
 "sdk": {
 "version": "3.0.100"
 }
}

Be careful to choose the SDK version, and not the runtime version, when picking the
number from the list obtained with the info parameter.

This process is useful to keep an application tied to a specific SDK instead of automatically
inheriting the latest one installed. That being said, it is now time to create a new empty
solution, which is a codeless container for one or more projects. Creating a solution is
optional, but is very useful when you need to create multiple cross-referenced projects:

C:\Projects>dotnet new sln -o HelloSolution
The template "Solution File" was created successfully.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://nuget.org

Using the .NET command-line interface (CLI) 529

It's now time to create a new console project under the solution folder. The solution
name can be omitted from the sln add command since there is only one solution
in the folder:

cd HelloSolution
dotnet new console -o Hello
dotnet sln add Hello

Finally, we can build and run the project:

cd Hello
C:\Projects\HelloSolution\Hello>dotnet run
Hello World!

Alternatively, we can use the watch command to rerun the project every time any file
is changed:

C:\Projects\HelloSolution\Hello>dotnet watch run
watch : Started
Hello World!
watch : Exited
watch : Waiting for a file to change before restarting
dotnet...
watch : Started
Hello Raf!
watch : Exited
watch : Waiting for a file to change before restarting
dotnet...

As soon as the first Waiting for a file to change before restarting
dotnet... message was printed on the console, I modified and saved the Program.
cs file using the Visual Studio Code editor. The changes on that file triggered the build
process automatically, and the binary files were created as usual in the bin folder, whose
tree structure has been slightly changed from .NET Framework.

There is still the Debug or Release folder, which in turn contains a new subfolder with
the name of the framework; in this case, netcoreapp3.0. The new project system is
multi-target capable and can generate different binaries depending on the framework,
runtime, and bitness specified in the project file. The contents of that folder are as follows:

• Hello.dll. This is the assembly containing the IL code that was generated by the
compiler.

• Hello.exe: The .exe file is a host application that bootstraps your application.
Later, we will talk about publishing/deploying an application with more options.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

530 C# in Action with .NET Core 3

• Hello.pdb: The .pdb file contains the symbols that allow the debugger to
cross-reference the IL code to the source files, and the symbol (that is, variable,
method, or class) names to the actual code.

• Hello.deps.json: This file contains the full dependency tree in JSON format. It
is used to retrieve the libraries needed during compilation and it is a very effective
way to discover undesired dependencies or problems when mixing different
versions of the same assembly.

• Hello.runtimeconfig.json and Hello.runtimeconfig.dev.json:
These are used by the runtime to know which shared runtime should be used to run
the application. The .dev file contains configurations that are used in addition to
the base file when the environment specifies that the application should be run in
a development environment.

We just created a very basic application, but those steps are all that is required to create
a complex application made of several libraries and using other, more complex templates.
An interesting fact is that the same steps can be executed on the Linux Terminal to obtain
the same results.

Developing on Linux distributions
The requirements revolution felt by developers did not stop with the mobile market and is
still ongoing today. For example, the need to run across multiple OSes is more important
than ever since the cloud era began. Many applications started moving from on-premises
to cloud architectures, from virtual machines to containers, and from service-oriented
architectures to microservices. This shift is so big that even the Microsoft CEO proudly
celebrated the prevalence of Linux OSes on Azure, which is a clear sign of the importance
of being able to create cross-platform applications.

There is no doubt that the ability of .NET Core to run on different OSes, devices, and CPU
architectures is vital, but it comes with an awesome level of abstraction that minimizes the
efforts of the developers, hiding most of the differences. For example, the Linux panorama
offers a multitude of distributions, but you don't need to worry, as the abstraction doesn't
affect the application's performance.

The lesson learned from the IT industry is that the technologies currently driving
the growth of the cloud are not the final destination, but just a transition. At the time
of writing, a technology called Web Assembly System Interface (WASI) is being
standardized as a powerful abstraction to sandbox small units of code, providing
a security isolation that can be used to run not only web applications (already
available in every browser through WebAssembly) but also cloud or even classic
standalone applications.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Developing on Linux distributions 531

We still don't know if WASI will be successful, but there is no doubt that a modern
runtime must be ready to ride the wave, and this implies embracing the agility to
rapidly evolve and mutate as soon as new requirements knock at the door.

Preparing the development box
There are multiple options when it comes to creating a development environment on
Linux. The first is to install Linux on the physical machine itself, which gives benefits
in terms of performance throughout the whole development life cycle. The choice of
the primary OS is very subjective and, while Windows and macOS currently offer
a better desktop experience, the choice mostly depends on the application ecosystem
that you need.

Another well-tested scenario is developing inside a virtual machine. In this case, you can
use Windows Hyper-V or Parallels Desktop on Mac. If you don't have a distribution of
choice, I strongly suggest you start installing Ubuntu desktop.

On Windows, you will find it very useful to use the integrated Linux support called
Windows Subsystem for Linux (WSL), which can be installed as an additional Windows
10 component. The current mature release, at the time of writing, is WSL 1, which runs
a Linux distribution over the Windows kernel. In this solution, the Linux system calls are
automatically remapped to the Windows kernel mode implementations.

While the distribution installed in this configuration is a fully genuine Linux distribution,
some of its system calls cannot be translated and others, such as filesystem operations,
are slower because their translation is not trivial. With WSL 1, most of the .NET Core
code will run flawlessly; therefore, it is a good option for quickly switching between the
Windows desktop and a true Linux environment.

The future of WSL is already available in the latest Windows preview and will soon be
released in full. In this configuration, the full Linux kernel is installed on Windows and
coexists with the Windows kernel, removing any of the previous limitations and providing
near-native speed. As soon as it becomes fully available, I strongly recommend this
development environment.

Once you prepare the Linux machine, you have three options:

• Install the .NET Core SDK because you want to manage the developer life cycle
from within Linux.

• Install the .NET Core runtime because you just want to run the application and/or
its tests on Linux to verify the cross-platform development is working as expected.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

532 C# in Action with .NET Core 3

• Don't install either of the two, because you want to test the application as
a self-contained deployment. We will investigate this option later in the
Publishing an application section.

The prerequisites and packages needed for the SDK or the runtimes are continuously
subject to change; therefore, it is better to refer to the official download page at
https://dot.net. Once installed, the SDK should be able to run dotnet
––info from a Terminal and show the following information:

The runtime and sdk versions listed by this command may be
different from the ones on Windows. You should consider the
opportunity to create a global.json outside the sources
repository in order to avoid mismatches when cloning a
repository on different operating systems.

If you decided to use the virtual machine or WSL, you should now install the SSH
daemon so that you can communicate from the host machine to Linux. You should refer
to the Linux distribution-specific instructions, but generally, the openssh package is the
most popular choice:

sudo apt-get install openssh-server
(eventually configure the configuration file /etc/ssh/sshd_
config)
systemctl start ssh

Now, the Linux machine can be contacted either via the hostname (if it is automatically
registered to your DNS) or the IP address. You can obtain these two pieces of information
by typing the following:

• ip address

• hostname

There is a variety of free SSH and SCP clients on Windows, such as PuTTY, WinSCP, or
Bitvise SSH Client, that support both protocols. The first option is used to obtain a remote
terminal on Windows while the second option is used to transfer files between the two
machines. You can also verify the connection by just using the ssh command-line tool
in Windows:

ssh username@machinenameORipaddress

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://dot.net

Developing on Linux distributions 533

If it doesn't work because of a configuration problem, the typical troubleshooting path is
to restore the default permissions on the configuration file:

Install-Module -Force OpenSSHUtils -Scope AllUsers
Repair-UserSshConfigPermission ~/.ssh/config
Get-ChildItem ~\.ssh* -Include "id_rsa","id_dsa" -ErrorAction
SilentlyContinue | % {
 Repair-UserKeyPermission -FilePath $_.FullName @
psBoundParameters
}

There are, of course, many optional tools for Linux, but it is worth mentioning a few of
them here:

• Net-tools: This is a package containing many network-related tools to diagnose
the network protocols such as arp, hostname, netstat, and route. Some distributions
already include them; otherwise, you can install by using your favorite package
manager, such as apt-get on Ubuntu.

• LLDB: This is a Linux-native debugger. Microsoft provides the SOS extension for
LLDB containing the same set of commands as the more popular SOS for WinDbg.
This extension provides a lot of .NET-specific commands to diagnose leaks, walk the
objects graph, investigate exceptions, and they can also be used on crash dumps.

• Build-essential: This is a package containing many developer tools, including the
C/C++ compiler and related libraries to develop native code. This is useful if you
wish to create native code to be invoked using PInvoke calls from .NET.

• Editor and Visual Studio Code: This is probably the best choice on Linux and
macOS. Its capabilities can be expanded with the Extensions published in the Visual
Studio Code marketplace (https://marketplace.visualstudio.com/
vscode). Two interesting Visual Studio Code extensions using the ssh tool under
the hood are Remote – SSH and Remote – WSL. The SSH extension allows us to
develop on the remote Linux machine via SSH, whereas the WSL one allows us to
develop on the local WSL subsystem.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://marketplace.visualstudio.com/vscode
https://marketplace.visualstudio.com/vscode

534 C# in Action with .NET Core 3

You can just follow the most updated extension's instructions to configure the remote
machine (exhaustive documentation can be found at the installation link in the Further
reading section at the end of this chapter). Once installed, by hitting F1, you can access the
Visual Studio Code commands. Then, type Remote-SSH, click Add New SSH Host, and
finally repeat and pick Connect to Host:

Figure 16.1 – Connecting to a remote host via SSH from Visual Studio Code

This first connection will remotely install the required tools on Linux to enable the
Remote Development scenario, which is where all the compilation and run tasks are
done remotely, instead of on the machine where you type the code.

Even if you can just deploy the binaries and run them remotely, this configuration is very
useful to test code that is demonstrating anomalies when running on Linux. In Visual
Studio Code, you can open the Terminal window using the View | Terminal menu. The
integrated Terminal window can be used to create the solution and projects and watch the
sources to rerun the application automatically in the same way we previously did.

Writing cross-platform aware code
The abstractions provided by .NET Core let you forget many of the peculiarities that
exist and work differently from one OS to another, but there are still things that must be
considered carefully when developing the code. Most of these apparently insignificant
details should become a best practice of the developer in order to avoid problems when
running the application on different systems.

Filesystem casing
The most common mistake is not to consider the filesystem casing. On Linux, the files
and folder names are case-sensitive; therefore, it is not unusual to discover problems due
to a path containing the wrong casing for a file or a folder name.

Home directory
The structure of the user profiles is different in Windows and Linux, and even more
importantly, the home directory when running the application with sudo (admin)
privileges is different than the current logged-in user.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Developing on Linux distributions 535

Path separators
We all know that Linux and Windows use the forward slash and the backslash characters
to separate the files and folders, respectively. This is why the System.IO.Path class
exposes the available separators through a few properties. Even better, avoid using the
separators at all. For example, to compose a folder, the following statement should
be preferred:

Path.Combine("..", "..", "..", "..", "Test",
 "bin", "Debug", "netcoreapp3.0", "test.exe");

Finally, to transform a relative into a full path, use the Path.GetFullPath method.

End-of-line separators
When dealing with text files, the end-of-line separator in Windows is \r\n (0x0D,
0x0A), while on Linux, we just use \r (0x0D). As for the Path class, the separator can be
retrieved at runtime with Environment.NewLine, but most of the time, you can forget
the difference by letting the System.IO.TextReader.ReadLine and System.
IO.TextWriter.WriteLine abstractions take care of that.

Digital certificates
While Windows has a standard central repository for digital certificates, Linux does not,
and it is up to the developer to decide whether to rely only on the certificate file or a
distribution-specific solution. When you need to store a certificate, including the private
key, it must be protected, because the private key is a secret that must never be disclosed.
Providing the appropriate restrictions to defend those certificates is up to the developer.

Platform-specific APIs
Every platform-specific API such as the Windows Registry should, of course, be avoided,
even if the API is available as a part of the .NET Standard contract, because it is likely
to fail at runtime with a NotImplementedException. On Windows, the registry has
historically been used to store per-user or even global settings related to the application.
Linux has no equivalent; therefore, in modern development, it is better to get rid of the
registry entirely. Another popular API is Windows Management Instrumentation
(WMI), which is only available on Windows and has no equivalent on Linux.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

536 C# in Action with .NET Core 3

Security
Everything related to Windows accounts is, again, only available on Windows. The easiest
way to modify the filesystem security flags on Linux is to spawn a new process running
the standard chmod command-line tool with the appropriate arguments.

Environment variables
A very powerful and common denominator among all the platforms is the availability
of the environment variables. Windows developers generally don't use them very often,
while they are quite popular on Linux. For example, ASP.NET Core uses them to switch
configurations between development, staging, and production, but can also be used to
retrieve the standard variables, such as HOME on Linux and HOMEPATH on Windows, both
of which represent the root folder for the current user's profile.

Gaps you may discover only at runtime
There are times where you may need to detect at runtime the OS or the CPU
architecture that the code is running on. For this purpose, the System.Runtime.
InteropServices.RuntimeInformation class provides a lot of interesting
information:

• The OSDescription property returns a string describing the OS the application
is running on.

• The OSArchitecture property returns a string with the OS architecture. For
example, the X64 value stands for the Intel 64-bit architecture.

• The FrameworkDescription property returns a string describing the current
framework, such as .NET Core 3.0.1. The short string 3.0.1 is instead available
through the Environment.Version property.

• The ProcessArchitecture property returns the processor architecture. This
distinction exists because Windows can create 32-bit processes on its 64-bit flavor.

• The GetRuntimeDirectory method returns the full path, pointing to the
runtime used by the application.

• Finally, the RuntimeInformation.IsOSPlatform method returns a Boolean
that can be used to execute platform-specific code:

if (RuntimeInformation.IsOSPlatform(OSPlatform.Linux))
 Console.WriteLine("Linux!");
else if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
 Console.WriteLine("Windows!");
else if (RuntimeInformation.IsOSPlatform(OSPlatform.OSX))

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

What .NET Standard is and how can it help the application design 537

 Console.WriteLine("MacOS!");
else if (RuntimeInformation.IsOSPlatform(OSPlatform.FreeBSD))
 Console.WriteLine("FreeBSD!");
else
 Console.WriteLine("Unknown :(");

You should always evaluate whether to use this technique to adopt platform-specific
decisions, or to create a NuGet package containing one DLL for each platform. This latter
solution is more maintainable but is not discussed in this book.

What .NET Standard is and how can it help the
application design
While .NET Core is the best candidate for running your code almost everywhere, it
is also true that we currently may need to run our code on different runtimes, such as
.NET Framework for existing Windows applications, Xamarin for developing mobile
applications, and Blazor for running code in the WebAssembly sandbox or on other
older runtimes.

The first attempt to share compiled libraries across multiple runtimes was done with the
portable class library, where the developer could only use the APIs that were available in
all the selected runtimes. The resulting intersection was impractical because restricting the
number of available APIs to just the common APIs was way too limiting. .NET Standard
initiative was born to resolve this issue by creating versioned sets of API definitions for a
number of well-known APIs. In order to be .NET Standard-compliant, any runtime must
guarantee to implement that complete set of APIs. Think of .NET Standard as a sort of
giant interface holding all the included APIs. Furthermore, every new version of .NET
Standard adds new APIs to the previous ones.

Tip
Even if an API is a part of a .NET Standard contract, it can be implemented
on certain platforms by throwing NotImplementedException. This
solution was allowed to ease the migration of old applications to .NET Standard
and must be taken into consideration when using a .NET Standard library.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

538 C# in Action with .NET Core 3

.NET Standard version 1.0 defined a very small set of APIs to satisfy almost all the
available runtimes of the past, such as Silverlight and Windows Phone 8. Version after
version, the number of defined APIs has grown larger, excluding older runtimes but
also offering more APIs overall to developers. For example, version 1.5 offered a good
compromise in terms of the number of APIs because it supported the very popular .NET
Framework 4.6.2. In the .NET Standard repository on GitHub (https://github.
com/dotnet/standard/tree/master/docs/versions), you can find the
complete list of the versions and supported API sets.

At the time of writing, you should care about the .NET Standard versions only as a library
author. If you look at the very popular Newtonsoft.Json package on NuGet, you will
see that it complies to .NET Standard 1.0. This makes very sense because it allows the
library to be used by almost the entire .NET ecosystem. The simple rule is that library
developers should support the lowest possible version.

From the application developer's perspective, the problem is different because you may
want to use the highest possible number in order to have the largest number of APIs
available. If your target is to develop applications just for .NET Framework and .NET
Core (which is very common when migrating to a new runtime), your choice will be
version 2.0 because this is the last version of the .NET Standard contract supported
from .NET Framework.

At the time of writing, the most recent version of .NET Standard is 2.1, which includes
APIs such as Span<T>, and many new method overloads that take Span<T> instead
of arrays, thereby providing better performance results.

Creating a .NET Standard library
Creating a .NET Standard library is straightforward. In Visual Studio, there is
a specific template, whereas from the command line, the following command creates
a .NET Standard library whose version is 2.0 by default. You can list the other choices
by appending --help onto the end of the following command, or you can stay with
netstandard2.0 and create the library project:

C:\Projects\HelloSolution>dotnet new classlib -o MyLibrary

Once created, the library can be added to the previous solution with this command:

dotnet sln add MyLibrary

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions

Consuming NuGet packages 539

Finally, you can add the MyLibrary reference to the Hello project with this
other command:

C:\Projects\HelloSolution>dotnet add Hello reference MyLibrary
Reference `..\MyLibrary\MyLibrary.csproj` added to the project.

The generated assembly is a class library that can be referenced from all the projects
targeting the runtimes and supporting that .NET Standard version.

Deciding between the .NET Standard and .NET Core libraries
Every time you need to share some code across multiple runtimes, the best option is to try
to fit it, whenever possible, into a .NET Standard library.

We already said that library authors should target the lowest possible version number, but
of course, if you are the only library consumer, you may decide to adopt .NET Standard
2.0 to share codes, for example, between .NET Framework, .NET Core Mono 5.4, and
Unity 2018.1.

Every time your library is going to be exclusively consumed by a .NET Core application,
you may want to create a .NET Core class library instead as it does not limit the API set
that you can use in your application:

C:\Projects\HelloSolution>dotnet new classlib -f netcoreapp3.0
-o NetCoreLibrary
C:\Projects\HelloSolution>dotnet add Hello reference
NetCoreLibrary

In the previous example, a new .NET Core class library (NetCoreLibrary) has been
created and added to the reference of the Hello project.

Consuming NuGet packages
Packages play a very important role in modern application development because they
define a self-contained unit of code that can be used as a brick to build larger applications.

This same definition was used in the past for libraries composed by a single .dll file,
but modern development often requires more files to make a unit of code that's properly
self-contained. The simplest example is when a package contains the library as well as its
dependencies, but another, more complex, example is writing a library needing platform
invocation calls to native APIs.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

540 C# in Action with .NET Core 3

Native interoperability can also be written in a single library by using the aforementioned
RuntimeInformation class, but it is generally better for both performance and
maintenance to split the code into one library for each OS and CPU architecture. The
advantage of packaging the platform-dependent libraries is that it lets the .NET Core
build tools copy the relevant library in the output folder at publishing time. Beyond
the interoperability with native code, there are other cases, such as providing different
implementations depending on the runtime (for example, .NET Core, .NET Framework,
Mono, and so on).

Adding packages to a project
There are multiple ways to add a package reference to a project; it mostly depends on your
IDE of choice. Visual Studio offers full visual support by opening the Solution Explorer
(this is the window showing the solution and projects hierarchy), expanding a project tree,
right-clicking the Dependencies node, and picking the Manage NuGet Packages menu
item. The following is a typical NuGet window, listing the packages available from nuget.
org that can be added to your project:

Figure 16.2 – The NuGet Package Manager Window

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Consuming NuGet packages 541

The NuGet window allows you to add, remove, or update to a different version of the
project packages:

• On the right, the Package source combo box shows the list of websites or local
folders providing packages. The list can be configured by clicking on the nearby
gear icon.

• On the left, the Browse tab shows all the packages available from the selected
source. You can decide to search the list and filter for not-yet-stable packages
(previews) by clicking the Include prerelease checkbox. Search filtering can be
improved using special prefixes such as id, packageid, version, title, tags, author,
description, summary, and owner. For example, the Microsoft packages are listed
by searching for author:microsoft.

• The Installed tab only shows the packages that are already installed in the project.

• The Updates tab shows the installed packages for which a new version is available
from the selected source.

• Once you've selected a package on the right-hand side of the tab, you select the
desired version and it will proceed to install, uninstall, or update, depending on the
tab you started from.

When a solution is composed of multiple projects, it is important to be consistent
in the version packages. For this reason, Visual Studio offers the ability to Manage
NuGet Packages for Solution, a menu item available by right-clicking the Solution
node. This window is similar, but has an additional tab called Consolidate, showing
the packages that are installed with different versions in multiple projects. Ideally,
this tab shouldn't show any packages:

Figure 16.3 – The NuGet Package Manager for the Solution, Consolidate tab

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

542 C# in Action with .NET Core 3

An alternative way to search for packages is going straight to the source. In the following
screenshot, you can see the http://nuget.org website, which is the primary
repository of .NET packages:

Figure 16.4 – Searching on the NuGet gallery website

 This web page shows important details for each package you select:

• On the right, the Source repository link jumps to the source repository whenever
it is available.

• The Dependencies section can be expanded to show which other packages it
relies on.

• The GitHub Usage section acts as a sort of reputation for the package, showing how
many open source projects took a dependency from it. The more a package is used
by the community, the higher the chance that it is supported and reliable.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://nuget.org/

Consuming NuGet packages 543

In the upper part of the page, the package section shows different ways to add the package
to your project:

• Package Manager shows the manual command you can execute from the window
with the same name in Visual Studio.

• .NET CLI shows the .NET CLI command.

• PackageReference shows the XML tag to copy the package into the
.csproj directly.

• Paket CLI is an alternative CLI tool to the .NET CLI.

Adding a package via the CLI is straightforward because nuget.org already provides
us with the exact command string to type into the console Terminal. Remember to enter
the project folder first, and then type the command. For example, the following is the
command to add a reference to the Newtonsoft.Json package from the command line:

dotnet add package Newtonsoft.Json --version 12.0.3

Regardless of the OS, if you are using Visual Studio Code, it provides the handy Terminal
window from which you can type any .NET CLI command.

Another frequently used method to add a package reference is to directly edit the
.csproj file. With .NET Core, the project file structure was drastically simplified, getting
rid of all the past tags and also offering the ability, within Visual Studio, to edit and update
the file without closing or unloading the project.

The following is the relevant portion of a .csproj file where you can add the
PackageReference tag by hand:

<Project Sdk="Microsoft.NET.Sdk">
 …
 <ItemGroup>
 …
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Newtonsoft.Json"
Version="12.0.3" />
 </ItemGroup>
</Project>

As you can see, the ItemGroup element can be repeated multiple times and each of them
may contain multiple PackageReference tags.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

544 C# in Action with .NET Core 3

Migrating from .NET Framework to .NET Core
I believe the most important new feature of the .NET Core runtime is its ability to be
deployed side by side with any other .NET Core version, guaranteeing that any future
release will not affect older runtimes or libraries and, consequently, applications.
The primary reason that prevented Microsoft from modernizing and improving
the performance of .NET Framework was the shared nature of the .NET runtime and
base class libraries. Because of that, the smallest change to those libraries could
potentially cause unacceptable breaking changes to the hundreds of millions of
installations already deployed.

The obvious consequence of the new side-by-side deployment strategy in .NET Core
is the total absence of the Global Assembly Cache (GAC), which provided a central
repository to which a system or user library could be deployed. The runtime is now
completely isolated from the rest of the system, a decision that enabled the ability to
deploy the application in a so-called self-contained deployment where all the required
code, including the runtime and the system library, together with the application code, are
copied into a single folder. We will dig into the deployment options later in the Publishing
an application section.

Among all the available runtimes, .NET Framework has always been the touchstone and,
at the time of writing, is still a valid ecosystem that will be supported for a very long time
by Microsoft since it is redistributed with the Windows client and server OSes. Though,
as wise developers, we can't ignore the fact that with the release of .NET Core 3, Microsoft
made two important statements:

• .NET Framework 4.8 will be the last version of this runtime and libraries.

• .NET 5 will be the new short name for .NET Core to be released at the end of 2020.

There is no doubt that .NET Core 3 demarcates a turning point in the history of the
.NET runtime as it provides all the workloads that were previously supported by .NET
Framework. Starting from .NET Core 3, you can now create server and Windows desktop
applications, leverage the power of machine learning, or develop cloud applications. This
is also a strong piece of advice for all relevant developers who are invited to create all-new
applications using .NET Core, because it offers the latest state-of-the-art technology in
terms of runtime, libraries, compilers, and tools.

Analyzing your architecture
Before starting any migration step, it is important to verify whether the technologies,
frameworks, and third-party libraries are available on .NET Core.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Migrating from .NET Framework to .NET Core 545

The old .NET Framework base class library has been ported entirely, as have the great
majority of the most popular NuGet packages authored by Microsoft and other third
parties, giving all of us a very high chance of finding updated versions compatible with
.NET Core. If those dependencies are available as .NET Standard 2.0 or a lower version
(remember that .NET Standard 2.1 is not supported by .NET Framework), then they
are good to go. But as we have seen previously, the NuGet package can contain multiple
libraries targeting different runtimes, so it is important to verify the compatibility of the
library on the vendor's page.

If your projects rely heavily on Windows because they need Windows APIs, you may want
to take a look at the Windows Compatibility Pack NuGet package, which contains about
20,000 APIs.

Information box
Even if a library is only .NET Framework-compatible, in most cases, it can be
referenced by .NET Core thanks to a shim mechanism that makes this possible.
In this case, Visual Studio shows a yellow triangle indicating a warning in the
build log. The potential incompatibilities should be tested carefully to verify the
correctness of the application.

Although .NET Core supports the vast majority of the past workloads, some of them are
not available and others have been rewritten, making the migration process a bit harder,
but giving other advantages in return.

Migrating ASP.NET Web Forms applications
This technology is very old and considered obsolete, because the web of today has evolved
with very different paradigms in comparison to the web technologies of the past. The best
route to migrate this code is using the Blazor template, which allows us to run C# code
inside the browser thanks to the WebAssembly support, which is now available in any
modern browser. While this solution is not a real port, but a rewrite, it allows us to stay on
C# for both the server and most of the client code.

Windows Communication Foundation (WCF)
On .NET Core, support for the Windows Communication Foundation (WCF) is
available only for the client side, which means just consuming the WCF services.
Nowadays, there are more performant and simpler technologies available, such as gRPC
(requiring HTTP2) and REST (Web API). For those who still need to create SOAP-based
web services, a community-driven open source project called CoreWCF is available on
GitHub. Before you start migrating your old code using this library, you should verify that
all of the WCF options used in your projects are also available on CoreWCF.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

546 C# in Action with .NET Core 3

At the time of writing, neither .NET Core nor CoreWCF support the WS-* standards
at all.

Windows Workflow Foundation
Workflow Foundation has not been ported, but another open source project called
CoreWF is available on GitHub. As we mentioned previously for WCF, you should
verify the full availability of the features used in your projects first.

Entity Framework
Entity Framework 6 (EF6) is also available on .NET Core and you should not have
any issue in migrating this project, but it is worth mentioning that this technology
is considered feature complete by Microsoft, which is now only developing Entity
Framework Core (EF Core). Depending on how your repository access is structured,
including the model graph and the providers used in your project, you may want to
consider migrating your access code to EF Core. In this case, be aware that, in .NET Core
3, many-to-many relationships are supported but require the intermediate entity class to
be described in the model. The APIs in EF Core are very different but, on the other hand,
they offer a lot of new functionalities. The roadmap for .NET 5 (which is the new name for
.NET Core) includes a lot of new features that you may want to consider.

For all the aforementioned reasons, you may find it easier to first migrate using EF6 and
only later migrate to EF Core. This decision is very project dependent.

ASP.NET MVC
The ASP.NET MVC framework has been entirely rewritten on ASP.NET Core, but it
still offers the same key functionalities. Unless you deeply customize and extend the
infrastructure, the migration is definitely straightforward, but still requires some small
rewriting of code because of the namespace and type changes.

Code Access Security APIs
All of the Code Access Security (CAS) APIs have been removed from .NET Core because
the only trustable boundary is the one offered natively by the process hosting the code. If
you are still using CAS, it is highly recommended to get rid of it, regardless of your .NET
Core migration.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Migrating from .NET Framework to .NET Core 547

AppDomains and Remoting APIs
With .NET Core, there is always a single AppDomain per process. For this reason,
you will see that most of the AppDomain APIs are gone and not available. If you
have used AppDomains to isolate and unload certain assemblies, you should look at
AssemblyLoadContext, a new API in .NET Core 3 that allows you to address this
problem in a powerful way without requiring remoting communication, which has been
removed from .NET Core as well.

Preparing the migration process
A common step to pursue when starting the migration process from .NET Framework
to .NET Core is updating .NET Framework to at least version 4.7.2.

Version 4.7.2 is a special version, as it was the first release to fully support the .NET
Standard binary contract, avoiding the requirement of external NuGet packages needed
to fill the gaps. This step shouldn't cause any issues and you can continue to deploy the
current projects with this latest version of .NET Framework with no fear. Depending on
the complexity of the solution, you may want to work on the migration while still running
production code on .NET Framework until everything is fully tested.

At this point, the analysis should focus on external dependencies such as NuGet packages
from third parties that you don't have control over. Once you have identified the newer
packages, update them so that your .NET Framework solution can run on the newer
versions. You still have a deployable solution that starts off with a few pieces that are
compatible with .NET Core, even if you didn't change any lines of code.

The Portability Analyzer Tool
The API Port tool is available on GitHub at https://github.com/microsoft/
dotnet-apiport and provides us with the ability to create a detailed report of a
.NET application that lists all the APIs used and whether they are available on other
platforms. The tool is available both as a Visual Studio extension or via the CLI so that
you can automate the process as desired. The ultimate report provided by the tool is an
Excel spreadsheet containing a cross-reference of all the APIs that allows you to plan the
migration without getting any undesirable surprises during the process.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/microsoft/dotnet-apiport
https://github.com/microsoft/dotnet-apiport

548 C# in Action with .NET Core 3

Migrating the libraries
We can finally start updating the library projects in the solution. It is important to have
a clear view of the dependency tree of the entire solution and packages. If the project
is very large, you may want to leverage the power of external tools such as the popular
NDepend. On the dependency tree, you should identify the libraries at the bottom of
the tree that have no other dependencies on external packages—they are the best
starting point.

In most cases, migrating a library with no dependencies (or a library depends on
a package that can run on both frameworks) is straightforward. There is no automated
support, so you should create a new .NET Standard 2.0 project.

Tip
At the time of writing, the https://github.com/dotnet/try-
convert/releases repository contains the preview of a tool that is able
to convert projects into .NET Core. As the name try-convert suggests, it
cannot handle all types of project, but can still be used as a starting point for
the migration.

Migrating to the new .csproj project structure can be done in one of two ways:

• Creating a new project and moving the source files over it

• Modifying the .csproj file of the old project

The first strategy is simpler, but it has the downside of changing the project name, which
also implies changing the default for the namespace name and the assembly name. These
can be renamed by making the following changes to the .csproj file:

<PropertyGroup>
 ...
 <AssemblyName>MyLibrary2</AssemblyName>
 <RootNamespace>MyLibrary2</RootNamespace>
</PropertyGroup>

Remember that creating a new project also implies fixing the references of all the
dependent projects.

The second strategy consists of replacing the contents of the .csproj file, which requires
you to have tested the changes prior to this on a separate project. When migrating the
package references, be advised that new .NET Core projects ignore the packages.
config file and require all the references to be specified in the PackageReference
tags, as mentioned earlier in the Consuming NuGet packages section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/dotnet/try-convert/releases
https://github.com/dotnet/try-convert/releases

Migrating from .NET Framework to .NET Core 549

Finding the missing APIs
During the migration, you might discover some missing APIs. For this specific case,
Microsoft created the https://apisof.net/ website, which has classified more than
700,000 APIs among those available through the base class library and NuGet. Thanks to
its search capability, you can search for any class, method, property, or event and discover
its usage and which platform and version supports it.

Migrating the tests
Once you've migrated the lower-level dependent libraries, it is a good idea to create the
test projects so that any migrated code gets tested on both frameworks. The test projects
themselves shouldn't really be migrated, as you may want to test the code on both
frameworks. For this reason, you may want to share the test code in a Shared Project
(a template available from the following screen in Visual Studio), which is a special
project that doesn't produce any binary:

Figure 16.5 – The Add a new project Visual Studio dialog box

All the projects referencing a Shared Project inherit its source code, as it was included
directly. All the major test frameworks (xUnit, NUnit, and MSTest) have been ported to
.NET Core, but there may be a few differences in the supported test APIs; therefore, any
infrastructural code using the test API should be verified first.

Lastly, if the test code uses AppDomains to unload certain assemblies, remember to
rewrite it using the more powerful AssemblyLoadContext API. The migration
should now continue by iterating over the porting libraries and their tests until all the
infrastructure has been migrated and is working on both frameworks.

Migrating the desktop projects
The WPF and Windows Forms workloads are available on .NET Core 3 and their
migration should be straightforward. At the time of writing, the Windows Forms designer
is available as a preview, but you can still share the designer code in the Shared Project
mentioned previously to continue using the .NET Framework designer.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://apisof.net/

550 C# in Action with .NET Core 3

On .NET Core 3.1, some of the Windows Forms controls have been removed, but they
can be replaced with newer ones exhibiting the same functionalities:

Another missing feature is ClickOnce, a deployment system that is widely used inside
many companies. Microsoft's suggestion is to migrate the deployment package to the
newer MSIX technology.

Migrating ASP.NET projects
Migrating ASP.NET MVC projects is the only workload that requires more manual work
and code changes, but also brings many clear advantages from the newly rewritten ASP.
NET Core framework in terms of performance and simplification, such as the unified
Controller hierarchy of the MVC and WebAPI worlds.

Tip
Before starting, I strongly suggest being familiar with the ASP.NET Core
MVC framework, with particular focus on dependency injection, identity,
authorization, configuration, and logging, the details of which go far beyond
the scope of this book.

To migrate a ASP.NET web project, it is always better to start from a new ASP.NET Core
MVC template instead of tweaking the old .csproj, since the code won't run as-is and
will always require some changes.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Migrating from .NET Framework to .NET Core 551

Any code related to the ASP.NET infrastructure is the first you may want to migrate. For
example, Global.asax generally contains the initialization code, while HTTP Modules
and Handlers are infrastructural code meant to intercept the requests and responses. The
general rules for migrating this code are as follows:

• Static structures or global helpers should be converted into a Dependency Injection
(DI) singleton service.

• Any code that is meant to intercept, read, or modify the HTTP requests and
responses should become middleware and be configured in the Startup class.

• Identify any code outside of the Controller logic, determine its life cycle, and
make it available through DI. Every time you need to explicitly request an instance
of these services out of your Controller constructor, consider creating
a factory instead and provide the factory through DI to the Controller.

With the old MVC framework, most of the infrastructure customization was needed
to provide external services to the controller. This is not required anymore because DI
allows controllers to require any service at any time.

A second key step is determining the identity framework infrastructure requirement.
The new template provides a lot of enhancements, as well as basic support for legal GDPR
requirements. In most cases, it is better to start from the new infrastructure and migrate
the database, instead of just porting the old code. On NuGet, you will find support for
many providers, starting from OAuth generic ones to social identity providers, OpenID
specification providers, and many others. It is also possible to leverage the popular
open source project Identity Server, an identity provider that is now part of the
.NET Foundation.

The authorization framework has changed as well and brings two important key features.
The first is being claim-based. This presents a lot of advantages in comparison to the old
role-based security (which has several limitations). Claims can also be used as roles
whenever your checks are just Booleans, but they allow more complex logic structured
as Policies inside ASP.NET Core, which is definitely worth adopting.

Once all the infrastructure has been ported or converted, the application logic can finally
be moved to the new controllers. As we mentioned previously, there is now a single
Controller base class that is used for both MVC and Web API controllers. Matching
a controller from a request is done via the routing mechanism. In ASP.NET Core, the
routing is configured through attributes in your Controller class.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

552 C# in Action with .NET Core 3

Every controller may expose one or more Actions that can be tagged with the attributes
defining the HTTP verbs they are restricted to, such as HttpGet and HttpPost. Actions
related to the HTTP GET verb do not take any input parameters, while other verbs such
as POST and PUT can benefit from the model-binding feature, which automatically maps
the values passed by the requests to the input parameters. You can find more information
about model binding in the official documentation at https://docs.microsoft.
com/en-us/aspnet/core/mvc/models/model-binding.

The response of the HTTP roundtrip depends, of course, on its HTTP verb. The typical
return types for actions are as follows:

• An object representing the response value to return to the HTTP client. It will be
serialized by the infrastructure according to the types specified by the client in the
accept header.

• A Task<T>, where T is the response value specified in the preceding. Tasks
should be used whenever the content retrieval requires some "slow" access, such
as accessing the filesystem or a database.

• An object implementing IActionResult, such as OkResult and
NotFoundResult created by the homonymous method name in the
ControllerBase class, which is the base class for any Controller. They are
used to give full control over the status code and the response headers. The full
list of ready-to-use IActionResult types is defined in the Microsoft.
AspNetCore.MVC namespace. Some of these objects have a constructor that take
the object to return, such as OkObjectResult, which returns an object as content
and sets the HTTP status code to 200.

• An object implementing Task<IActionResult>, which is the asynchronous
version of the previous case.

• The last case is returning void, which lets the infrastructure return the default
response with no content at all.

Once the code has been migrated, you have to consider the hosting environment. The
web server for ASP.NET Core applications is called Kestrel, so every setting previously
written in the web.config file should be revised either in the new appsettings.
json configuration file or directly in the code for Kestrel configurations in the
Program.cs file.

Be advised that using IIS is still possible, but this can only be used as a reverse proxy and
requires the use of the official ASP.NET Core IIS Module, which forwards all the HTTP
traffic to and from the Kestrel web server.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding

Migrating from .NET Framework to .NET Core 553

This solution brings an excellent, improved, and cross-platform solution to ASP.NET
Core, but if you still want to host the project on IIS, it is definitely possible by installing
the official ASP.NET Core IIS Module on the hosting server. The module will forward all
the HTTP requests and responses to the Kestrel web server, so most of the settings in IIS
can be safely ignored.

Summing up the migration steps
Planning a migration is certainly not always easy, but there is a clear path that can be
applied to any group of projects. Some of the following steps may be harder or easier,
depending on the technology they were implemented on, while some others are pretty
straightforward and only require practicing in advance, but the number of available APIs
make the process far easier starting from .NET Core version 3. The rough steps to migrate
an application are as follows:

1. Ensure you are using the technologies available in .NET Core. You may want to
consider a replacement when they are not but analyze the implications on the
application architecture carefully.

2. Once you've decided to start the migration, upgrade all of your projects to the latest
.NET Framework as a very first step.

3. Ensure all the third-party dependencies are available as .NET Standard and migrate
your current .NET Framework projects to use them.

4. Analyze your projects using the Portability Analyzer Tool or verify the availability of
the APIs at https://apisof.net/.

5. Every time you migrate a single .NET Framework library project to .NET Standard,
the application can be potentially merged back on the main branch and be deployed
in production.

6. Migrate the projects by navigating the dependency tree from the ones with no
dependencies, going all the way up to the applications referencing the ones that have
already been migrated.

At first glance, migration can look a bit scary, but there are many advantages that you
will appreciate as soon as the application starts running on.NET Core. Among them, the
deployment offers new, exciting, and powerful features, which we are going to discuss in
the next section.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

554 C# in Action with .NET Core 3

Publishing an application
The last essential step for making an application usable outside the developer
machine is publishing. There are two kinds of deployment: framework-dependent
and self-contained.

Framework-dependent deployment (FDD) creates a folder with all the required binaries
needed to run the application on any computer with the same OS and the .NET runtime
installed. FDD deployment has several advantages:

• It lowers the size of the deployment folder.

• It makes the security updates easy to install by an IT manager instead of the need to
redeploy them.

• When deploying in Docker containers, you can start from pre-built images already
containing the .NET runtime for the version you need.

The other publishing option is self-contained deployment (SCD), which creates/copies
all the required files to run the application, including the runtime and all the base class
libraries. The main advantage of SCD is that it gets rid of any requirements on the hosting
target, enabling scenarios where you can run the application just by copying the folder.

Tip
On Linux, some basic libraries may be needed on certain distributions that
are very constrained. On the https://dot.net, you can find updated
information about those requirements.

On the other hand, the self-contained deployment scenario also has some drawbacks:

• The application must be published for a specific OS and CPU architecture.

• You should promptly respond to security bulletins every time the .NET Core
runtime gets any security update. In this case, after applying the updates to the
developer machine, you will have to rebuild and redeploy the application.

• The total deployment size is much larger.

Starting from .NET Core 2.2, the FDD produces automatically executable files instead
of just .dll files for the main projects, while in the past, FDD applications needed to
be run through the dotnet run command. Now, they are created as executables and
also known as Framework Dependent Executables (FDE), which is the default when
publishing an application using the .NET Core 3 SDK.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://dot.net/

Publishing an application 555

Publishing as an FDD
If you want to keep the deployment size compact, just make sure your version of choice
for the .NET Core runtime is installed on the target machine and that you publish the
application as an FDD. Publishing an application as an FDD from the command line is
straightforward; first, you enter the project folder and then type the following command:

C:\Projects\HelloSolution\Hello>dotnet publish -c Release

The CLI will build and publish the project, also printing the path of the publishing folder
on the screen:

 Hello -> C:\Projects\HelloSolution\Hello\bin\Release\
netcoreapp3.0\publish\

The target folder can be changed by appending the -o argument to the previous
command:

C:\Projects\HelloSolution\Hello>dotnet publish -c Release -o
myfolder

In this case, the output folder will be as follows:

 Hello -> C:\Projects\HelloSolution\Hello\myfolder\

The publishing command can also specify the requested runtime accepting a Runtime
Identifier (RID) (https://docs.microsoft.com/en-us/dotnet/core/
rid-catalog). For example, publishing the application for Linux on the 64-bit
architecture is done with the following command:

dotnet publish -c Release -r linux-x64 --no-self-contained

Unless you also specify the output folder, this will reflect the specified RID:

 Hello -> C:\Projects\HelloSolution\Hello\bin\Release\
netcoreapp3.0\linux-x64\publish\

The --no-self-contained argument is needed because, by default, the application
is published as self-contained if a runtime identifier is specified.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog

556 C# in Action with .NET Core 3

Publishing as an SCD
Using SCD means getting rid of any installed runtime dependencies. For this reason,
when you decide to publish as an SCD, you also have to specify the runtime identifier
(the target OS and CPU architecture) so that all the required runtime dependencies are
published together with the application.

Publishing as an SCD just requires adding the --self-contained and -r option
followed by the runtime identifier. The shorter version is just specifying the -r option
as, by default, this turns on the self-contained options as well. For example, publishing
a self-contained application for the 64-bit version of Windows is done with the
following command:

dotnet publish -c Release -r win-x64

The output folder, in this case, will be as follows, as specified by the output messages of the
command line:

 Hello -> C:\Projects\HelloSolution\Hello\bin\Release\
netcoreapp3.0\win-x64\publish\

Whether you'll depend on the runtime installation or not is just one of the options when
publishing. Now, we will examine other interesting possibilities.

Understanding other publishing options
Starting from .NET Core 3, it is possible to specify a number of interesting options
when publishing. These options can be either specified on the command line or even
forced inside the .csproj file, making them the default for the project inside the
PropertyGroup tag.

Single-file publishing
Publishing as a single file is a very convenient feature that creates a single file for all of the
project files. Having a single executable enables the possibility of moving the application
easily through a USB key or as a download. The only files that cannot be embedded in the
executable are the configuration files and the web static files (for example, HTML).

The following is the command line that's used to publish the application as a single file.
Single-file publishing is compatible with FDD; in this case, you can append –-no-self-
contained to the command line:

dotnet publish -r win-x64 -o folder -p:PublishSingleFile=true

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Publishing an application 557

Alternatively, you can turn on the single-file publishing option in the .csproj file:

<PublishSingleFile>true</PublishSingleFile>
<RuntimeIdentifier>win-x64</RuntimeIdentifier>

You will immediately notice the size of the binary as particularly large because it contains
all the dependent code, even the portions of the assemblies that you didn't need. What if
we can get rid of all the unused methods, properties, or classes from inside our references?
The solution comes from IL trimming.

IL trimming
Trimming is the ability to remove all the unused code from the deployment binary. This
feature comes from the Mono IL Linker code base. This setting requires the deployment
to be self-contained, which, in turn, requires the runtime identifier to be specified.

The PublishTrimmed factory can be turned on when publishing on the command line:

dotnet publish -c Release -r win-x64 -p:PublishTrimmed=true

Otherwise, it can be specified in the csproj file:

<PublishTrimmed>true</PublishTrimmed>

When heavily using reflection, the trimmer loses the ability to understand which libraries
and members are needed. For example, if you dynamically compose the member name,
the trimmer can't know the members to keep or discard. In this case, there are other two
options, TrimmerRootAssembly and TrimmerRootDescription, that can be used
to specify the code that should not be trimmed away.

Ahead-of-Time (AOT) compilation
AOT compilation allows us to precompile the application by generating almost all the
native CPU assembly code on the developer machine. If you have never heard of the ngen
tool in .NET Framework, it was used to generate the native assembly code on the target
machine, making the application bootstrap performance much faster, as the Just-in-Time
(JIT) compiler was no longer needed. The AOT compiler has the same goal but uses
a different strategy: in fact, the compilation is done on the developer machine and because
of this, the quality of the generated code is lower. This is because the compiler cannot
make assumptions on the CPU that will run the code.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

558 C# in Action with .NET Core 3

In order to balance the lower-quality code, .NET Core 3 enables TieredCompilation by
default. Whenever an application method is called more than 30 times, it is considered
"hot" and scheduled on a remote thread to be recompiled from the JIT compiler, thereby
providing better performance.

The AOT compilation can be enabled when publishing from the command line, as follows:

dotnet publish -c Release -r win-x64 -p:PublishReadyToRun=true

Alternatively, you can modify the .csproj file to make this setting persistent:

<PublishReadyToRun>true</PublishReadyToRun>

The AOT compilation provides a better startup, but also requires specifying the runtime
identifier, which means compiling for a specific OS and CPU architecture. This setting
wipes out the advantage of IL code being deployed on multiple platforms.

Quick JIT
Every time you are worried about the need to pre-generate the native compilation but
still need to provide a fast application bootstrap, you can enable QuickJIT, a faster JIT
compiler that has the downside of producing less performant code. Once again, the tiered
compilation balances the code-quality disadvantages and recompiles the code as soon it
qualifies as a hot path.

Enabling Quick JIT from the command line is no different than the other options:

dotnet publish -c Release -p:TieredCompilationQuickJit=true

Enabling Quick JIT in the csproj file is similar as well:

<TieredCompilationQuickJit>false</TieredCompilationQuickJit>

It is important to observe that the calls to external libraries cannot be compiled in
native code by the AOT compiler as the libraries may be replaced with newer versions
in the target machine, invalidating the generated code. Every time some code cannot be
compiled as native, it will be compiled with the JIT on the target machine. For this reason,
it totally makes sense to enable AOT and QuickJIT together.

Tip
The ngen compiler of .NET Framework is able to generate the assembly code for
all the IL in the assemblies, but as soon as any dependent assembly is replaced,
all the native code is invalidated, requiring the JIT to compile all the code.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 559

Whether your application needs to be self-contained, single-file, or precompiled, there is
a multitude of deployment options that .NET Core offers to make your application shine
in every scenario, and you can now pick the one you prefer.

Summary
In this chapter, we went through all the fundamental steps to follow in order to build a
new application using the .NET Core runtime, which is accompanied by an increased
number of APIs. We started by looking at the new powerful command line that offers all
the commands that can be used to control the development life cycle of the application.
The command-line extensibility removes any limitations, allowing anyone to add local and
global tools to the ecosystem.

We have also seen how the command-line commands are exactly the same when
developing on Linux OSes, which can be used as a developer box directly or through
Windows, as you please. In fact, the Visual Studio Code remote extensions let you develop
and debug the code on a Linux machine from Windows.

But we also saw that .NET Core 3 is not a one-way trip, because .NET Standard libraries
allow us to share code with all the recent runtimes, making it easier to reuse the code. In
addition to that, the very rich ecosystem of NuGet packages makes consuming libraries
straightforward.

Adopting the new runtime is not that hard: some applications can be migrated by just
converting the project file, while others require more coding, but the resulting application
will benefit from the new ecosystem.

In the last section, we examined the complete set of possibilities when publishing an
application, which is the culmination of the application development process. At this
point, you are able to transform ideas and algorithms into a running application, possibly
running on the most popular OSes.

In the next chapter, we will talk about unit testing, a practice that is extremely important
for guaranteeing code quality across time and providing proof that future development
iterations will not introduce breaking changes or regressions.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

560 C# in Action with .NET Core 3

Test what you learned
1. After installing five different SDKs, how can you tell the CLI to use a specific version

for an entire solution?

2. How can you concatenate some paths so that they work correctly on both Windows
and Linux?

3. How can you share some code among three different applications based on .NET
Framework, .NET Core 3, and Xamarin?

4. What is the fastest method for a new library project to add the exact same references
to an existing one?

5. When migrating a complex solution, where should we start?

6. What deployment options guarantee faster application startup time?

Further reading
The Visual Studio Code extensions to compile and debug a project on a remote Linux or
WSL session, can be found at the following links:

• https://marketplace.visualstudio.com/items?itemName=ms-
vscode-remote.remote-ssh

• https://marketplace.visualstudio.com/items?itemName=ms-
vscode-remote.remote-wsl

The ability to create NuGet packages containing multiple binaries, each of them
targeting a different CPU architecture or framework version is described at the following
link: https://docs.microsoft.com/en-us/nuget/create-packages/
supporting-multiple-target-frameworks.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://docs.microsoft.com/en-us/nuget/create-packages/supporting-multiple-target-frameworks
https://docs.microsoft.com/en-us/nuget/create-packages/supporting-multiple-target-frameworks

17
Unit Testing

Throughout this book, you have learned all you need to know to be able to program using
the C# language—from statements to classes, from generics to functional programming,
from reflection to concurrency, and many others. We also covered many topics related
to .NET Framework and .NET Core, including collections, regular expressions, files and
streams, resource management, and Language Integrated Query (LINQ).

However, a key aspect of programming is making sure that code behaves as intended.
Code that is not properly tested is prone to unexpected bugs. There are various types and
levels of testing, but the one typically performed by developers while developing is unit
testing. This is the topic covered in this final chapter of this book. In this chapter, you will
learn what unit testing is and what are the built-in tools available to write unit tests for C#.
Then, we will look in detail at how we can leverage these tools to unit test our C# code.

In this chapter, we will focus on the following topics:

• What is unit testing?

• What are Microsoft tools for unit testing?

• Creating a C# unit testing project

• Writing unit tests

• Writing data-driven unit tests

Let's start with an overview of unit testing.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

562 Unit Testing

What is unit testing?
Unit testing is a type of software testing where individual units of code are tested to
validate whether they are working as they were designed. Unit testing is the first level
of software testing, the others being integration testing, system testing, and acceptance
testing. A discussion of these types of testing is beyond the scope of this book. Unit testing
is typically performed by software developers.

Performing unit testing has important benefits:

• It helps to identify and fix bugs earlier in the development cycle, thereby helping to
save time and money.

• It helps developers to better understand the code and allows them to make quick
changes to the code base.

• It helps with code reuse by requiring it to be more modular to test it better.

• It can act as project documentation.

• It helps to speed up development because the effort of identifying bugs using
various methods of manual testing done by developers is greater than the time spent
writing unit tests.

• It simplifies debugging because when tests fail, only the latest changes need to be
looked at and debugged.

The unit of testing may differ. It can be a function (as it typically is in imperative
programming) or a class (in object-oriented programming). Units are tested individually
and in isolation from other units. This requires that units are designed to be loosely
coupled but also employs the use of substitutes such as stubs, mocks, and fakes. Although
the definition of these concepts may vary, stubs are functions that stand in as replacements
for other functions, simulating their behavior. Examples could include stubs for functions
that retrieve data from a web service or temporary substitutes for functionalities that will
be added at a later time. Mocks are objects that simulate the behavior of other objects,
usually complex, that are impractical to use for a unit test. The term fake may refer either
to a stub or a mock and is used to indicate an entity that is not real.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

What are Microsoft tools for unit testing? 563

Apart from using substitutes, unit testing often requires the use of test harnesses. A
test harness is an automated testing framework that allows testing to be automated by
supporting the creation of tests, executing the tests, and generating reports.

The measure of how much of the code base is covered by unit tests is called code
coverage. Code coverage offers an indication of the degree a code base has been tested
by providing a quantitative measure. Code coverage helps us to identify the parts of
a program that are not well covered by test cases and allows us to create more tests to
increase coverage.

What are Microsoft tools for unit testing?
If you are working with Visual Studio, several tools help you to write unit tests for your
C# code. These tools include the following:

• Test Explorer: This is a component of the IDE that allows you to view the unit tests,
run them, and see their results. The Test Explorer does not work solely with MSTest
(Microsoft's testing unit framework). It has an extensible API that allows developing
adapters for third-party frameworks. Some of the frameworks that provide adapters
for Test Explorer are NUnit and xUnit.

• Microsoft unit test framework for managed code or MSTest: This is installed with
Visual Studio but is also available as a NuGet package. There is also a unit testing
framework for native code with similar functionalities.

• Code coverage tools: They allow you to determine the amount of code that unit
tests are covering.

• Microsoft Fakes isolation framework: This allows you to create substitutes for
classes and methods. Currently, this only works for .NET Framework and with
Visual Studio Enterprise. At this time, .NET standard projects are not supported.

The experience of working with the Microsoft testing framework for .NET Framework
and .NET Core is a bit different at the time of writing this book because there are no
unit testing templates for .NET Core test projects. This means that you need to manually
create test classes and methods and decorate them with the proper attributes, as we will
see shortly.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

564 Unit Testing

Creating a C# unit testing project
In this section, we will look together at how you can create a unit testing project in Visual
Studio 2019. When you open the File | New Project menu, you can choose between
various testing projects:

Figure 17.1 - Visual Studio 2019 unit testing project templates

If you need to test a .NET Framework project, then you select Unit Test Project
(.NET Framework).

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a C# unit testing project 565

A project is created for you with a single unit testing file with the
following content:

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace UnitTestDemo
{
 [TestClass]
 public class UnitTest1
 {
 [TestMethod]
 public void TestMethod1()
 {
 }
 }
}

Here, UnitTest1 is a class containing test methods. This class is marked with the
TestClassAttribute attribute. Another attribute, TestMethodAttribute, is
used to mark the TestMethod1() method. These attributes are used by the testing
framework to identify classes and methods that contain tests. These are then shown in
Test Explorer, where you can run or debug them and view their results, as you can see in
the following screenshot:

Figure 17.2 - Test Explorer in Visual Studio showing the result of executing the empty unit test created
from the selected template

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

566 Unit Testing

You can add more unit testing classes either by hand or by using the test templates
available in Visual Studio, as shown in the following screenshot:

Figure 17.3 - The Add New Item dialog in Visual Studio with a selection of unit test items

If you are testing a .NET Core project, then you should select the template called MSTest
Test Project (.NET Core) when creating the test project (refer to the screenshot at the
beginning of this section). The result is a project with a single file and the same content
shown earlier. However, adding more unit testing items is not possible using the wizards,
and you must create everything manually. At this point, there are no item templates
available for MSTest for .NET Core.

For the rest of this chapter, we will focus on testing .NET Core projects.

Writing unit tests
In this section, we will look at how you can write unit tests for your C# code. To do so, we
will consider the following implementation of a rectangle:

public struct Rectangle
{
 public readonly int Left;
 public readonly int Top;
 public readonly int Right;
 public readonly int Bottom;

 public int Width => Right - Left;
 public int Height => Bottom - Top;
 public int Area => Width * Height;

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing unit tests 567

 public Rectangle(int left, int top, int right, int bottom)
 {
 Left = left;
 Top = top;
 Right = right;
 Bottom = bottom;
 }

 public static Rectangle Empty => new Rectangle(0, 0, 0, 0);
}

This implementation should be straightforward and not require further explanations.
This is a simple class that does not offer too many functionalities concerning rectangles.
We can provide more in the form of extension methods. The following listing shows
extensions for increasing and decreasing the size of a rectangle, as well as checking
whether two rectangles intersect, and determining the resulting rectangle of
their intersection:

public static class RectangleExtensions
{
 public static Rectangle Inflate(this Rectangle r,
 int left, int top,
 int right, int bottom) =>
 new Rectangle(r.Left + left, r.Top + top,
 r.Right + right, r.Bottom + bottom);

 public static Rectangle Deflate(this Rectangle r,
 int left, int top,
 int right, int bottom) =>
 new Rectangle(r.Left - left, r.Top - top,
 r.Right - right, r.Bottom - bottom);

 public static Rectangle Interset(
 this Rectangle a, Rectangle b)
 {
 int l = Math.Max(a.Left, b.Left);
 int r = Math.Min(a.Right, b.Right);
 int t = Math.Max(a.Top, b.Top);
 int bt = Math.Min(a.Bottom, b.Bottom);

 if (r >= l && bt >= t)
 return new Rectangle(l, t, r, bt);

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

568 Unit Testing

 return Rectangle.Empty;
 }

 public static bool IntersectsWith(
 this Rectangle a, Rectangle b) =>
 ((b.Left < a.Right) && (a.Left < b.Right)) &&
 ((b.Top < a.Bottom) && (a.Top < b.Bottom));
}

We will start by testing the Rectangle structure and to do so, we will have to create a
unit testing project as described in the previous section. After the project is created, we
can edit the generated stub with the following code:

[TestClass]
public class RectangleTests
{
 [TestMethod]
 public void TestEmpty()
 {
 var rectangle = Rectangle.Empty;
 Assert.AreEqual(0, rectangle.Left);
 Assert.AreEqual(0, rectangle.Top);
 Assert.AreEqual(0, rectangle.Right);
 Assert.AreEqual(0, rectangle.Bottom);
 }

 [TestMethod]
 public void TestConstructor()
 {
 var rectangle = new Rectangle(1, 2, 3, 4);
 Assert.AreEqual(1, rectangle.Left);
 Assert.AreEqual(2, rectangle.Top);
 Assert.AreEqual(3, rectangle.Right);
 Assert.AreEqual(4, rectangle.Bottom);
 }

 [TestMethod]
 public void TestProperties()
 {
 var rectangle = new Rectangle(1, 2, 3, 4);
 Assert.AreEqual(2, rectangle.Width, "With must be 2");
 Assert.AreEqual(2, rectangle.Height, "Height must be 2");
 Assert.AreEqual(4, rectangle.Area, "Area must be 4");
 }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing unit tests 569

 [TestMethod]
 public void TestPropertiesMore()
 {
 var rectangle = new Rectangle(1, 2, -3, -4);
 Assert.IsTrue(rectangle.Width < 0,
 "Width should be negative");
 Assert.IsFalse(rectangle.Height > 0,
 "Height should be negative");
 }
}

In this listing, we have a test class, called RectangleTests, that contains several testing
methods:

• TestEmpty()

• TestConstructor()

• TestProperties()

• TestPropertiesMore()

Each of these methods tests some part of the Rectangle class. To do so, we are using the
Assert class from Microsoft.VisualStudio.TestTools.UnitTesting. This
class contains a collection of static methods that help us to perform tests. When a test fails,
an exception is thrown and the execution of the test method stops and continues with the
next testing method.

In the following screenshot, we can see the results of executing the test methods we wrote
earlier. You can see that all of the tests have executed successfully:

Figure 17.4 - Test Explorer showing successful execution of the test methods written earlier

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

570 Unit Testing

When a test fails, it will be shown with a red bullet and you can check in the Test
Explorer window the reason for the failure. For instance, suppose we change the
TestProperties() method to have the following incorrect test:

Assert.AreEqual(6, rectangle.Area, "Area must be 6");

This will make the TestProperties() test method fail, as you can see in the following
screenshot:

Figure 17.5 - Test Explorer showing the execution of test methods with the TestProperties()
method having failed

The reason for the failure is detailed in the Test Detail Summary pane, as shown in the
following screenshot. This pane is displayed when you click on a failed test:

Figure 17.6 - Test Detail Summary pane of Test Explorer showing details regarding the failed test

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing unit tests 571

From the report in this pane, we can see that Assert.AreEqual() at line 30 in
RectangleTests.cs failed because the expected result was 6, but the actual value
was 4. We also got the message that we supplied to the Assert.AreEqual() method.
The entire text message from the previous screenshot is as follows:

TestProperties
 Source: RectangleTests.cs line 30
 Duration: 29 ms

 Message:
 Assert.AreEqual failed. Expected:<6>. Actual:<4>. Area must
be 6
 Stack Trace:
 RectangleTests.TestProperties() line 35

In the test code written so far, we have used several asserting methods—AreEqual(),
IsTrue(), and IsFalse(). These, however, are not the only assertion methods
available; there is a long list of them. Some of the most frequently used assertion methods
are shown in the following table:

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

572 Unit Testing

All of the methods listed in this table are actually overloaded methods. You can get the
complete reference by checking the documentation available online.

Analyzing code coverage
When we created the Rectangle class, we also created several extension methods for it,
so we should be writing more unit tests to cover these two. We could put these tests into
another test class. Although the source code accompanying this book contains more unit
tests, for brevity, we only list some of them here:

[TestClass]
public class RectangleExtensionsTests
{
 [TestMethod]
 public void TestInflate()
 {
 var rectangle1 = Rectangle.Empty.Inflate(1, 2, 3, 4);
 Assert.AreEqual(1, rectangle1.Left);
 Assert.AreEqual(2, rectangle1.Top);
 Assert.AreEqual(3, rectangle1.Right);
 Assert.AreEqual(4, rectangle1.Bottom);
 }

 [TestMethod]
 public void TestDeflate()
 {
 var rectangle1 = Rectangle.Empty.Deflate(1, 2, 3, 4);
 Assert.AreEqual(-1, rectangle1.Left);
 Assert.AreEqual(-2, rectangle1.Top);
 Assert.AreEqual(-3, rectangle1.Right);
 Assert.AreEqual(-4, rectangle1.Bottom);
 }

 [TestMethod]
 public void TestIntersectsWith()
 {
 var rectangle = new Rectangle(1, 2, 10, 12);
 var rectangle1 = new Rectangle(3, 4, 5, 6);
 var rectangle2 = new Rectangle(5, 10, 20, 13);
 var rectangle3 = new Rectangle(11, 13, 15, 16);
 Assert.IsTrue(rectangle.IntersectsWith(rectangle1));
 Assert.IsTrue(rectangle.IntersectsWith(rectangle2));
 Assert.IsFalse(rectangle.IntersectsWith(rectangle3));
 }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing unit tests 573

 [TestMethod]
 public void TestIntersect()
 {
 var rectangle = new Rectangle(1, 2, 10, 12);
 var rectangle1 = new Rectangle(3, 4, 5, 6);
 var rectangle3 = new Rectangle(11, 13, 15, 16);
 var intersection1 = rectangle.Intersect(rectangle1);
 var intersection3 = rectangle.Intersect(rectangle3);

 Assert.AreEqual(3, intersection1.Left);
 Assert.AreEqual(4, intersection1.Top);
 Assert.AreEqual(5, intersection1.Right);
 Assert.AreEqual(6, intersection1.Bottom);

 Assert.AreEqual(0, intersection3.Left);
 Assert.AreEqual(0, intersection3.Top);
 Assert.AreEqual(0, intersection3.Right);
 Assert.AreEqual(0, intersection3.Bottom);
 }
}

After compiling the unit testing project, the new unit test class and methods will appear
in Test Explorer, so you can run or debug them. The following screenshot shows the
successful execution of all of the test methods:

Figure 17.7 - The Test Explorer window showing the successful execution of all the unit tests, including
the ones written for the Rectangle extension methods

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

574 Unit Testing

We can also get code coverage for your code based on the unit tests you have written. You
can trigger the code coverage either from Test Explorer or from the Test top-level menu.
Based on the unit test we have seen so far, we get the following coverage:

Figure 17.8 - The Code Coverage Results pane in Visual Studio showing the code coverage of our unit
tests

Here, we can see that the Rectangle class is completely covered by unit tests. However,
the static class containing extensions is only covered 96% because the extension method,
IntersectsWith(), has one block out of eight that is not covered by the unit tests we
have written. We can use this report to identify the parts of the code that are not covered
by tests so that you can write more.

The anatomy of a test
In the tests we have written so far, we have seen test classes and test methods. However,
there are other methods that a test class may have that are executed at different stages.
A complete example is shown in the following code:

[TestClass]
public class YourUnitTests
{
 [AssemblyInitialize]
 public static void AssemblyInit(TestContext context) { }

 [AssemblyCleanup]
 public static void AssemblyCleanup() { }

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing unit tests 575

 [ClassInitialize]
 public static void TestFixtureSetup(TestContext context) { }

 [ClassCleanup]
 public static void TestFixtureTearDown() { }

 [TestInitialize]
 public void Setup() { }

 [TestCleanup]
 public void TearDown() { }

 [TestMethod]
 public void TestMethod1() { }

 TestMethod]
 public void TestMethod2() { }
}

The names of these methods are irrelevant. What is important here are the attributes used
to mark them. These are reflected by the testing framework and determine the order in
which the methods are invoked. For this particular example, this order is as follows:

AssemblyInit() // once per assembly
 TestFixtureSetup() // once per test class
 Setup() // before each test of the class
 TestMethod1()
 TearDown() // after each test of the class
 Setup()
 TestMethod2()
 TearDown()
 TestFixtureTearDown() // once per test class
AssemblyCleanup() // once per assembly

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

576 Unit Testing

The attributes used to mark these methods are listed in the following table:

When you want to do multiple tests for the same function with different sets of data, you
can resort to retrieving them from a data source. The unit testing framework for managed
code makes this possible in the ways we will see in the following section.

Writing data-driven unit tests
If you take a second look at the previous tests, such as the TestIntersectsWith()
test method, you will see that we tried testing various cases, such as the intersection of one
rectangle with several others, some that intersect, and some that don't. This was a simple
example, and in practice, there should be many more rectangles that we should test with
to cover all of the possible cases of rectangle intersection.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing data-driven unit tests 577

In general, as code evolves, so do the tests and you often have to add more to the testing
datasets. Rather than writing explicitly the data in the test method, as in our previous
example, you can fetch it from a data source. The test method is then executed once for
each row in the data source. The unit testing framework for managed code supports three
different scenarios.

Data from attributes
The first option is to provide the data in code but through an attribute called
DataRowAttribute. This attribute has a constructor that allows us to specify any
number of arguments. These arguments are then forwarded, in the same order, to the
parameters of the test method it is used on. Let's look at an example:

[DataTestMethod]
[DataRow(true, 3, 4, 5, 6)]
[DataRow(true, 5, 10, 20, 13)]
[DataRow(false, 11, 13, 15, 16)]
public void TestIntersectsWith_DataRows(
 bool result,
 int left, int top, int right, int bottom)
{
 var rectangle = new Rectangle(1, 2, 10, 12);

 Assert.AreEqual(
 result,
 rectangle.IntersectsWith(
 new Rectangle(left, top, right, bottom)));
}

There are several things to notice in this example. First, the attribute used to indicate
that this is a data-driven test method is DataTestMethodAttribute. However, for
compatibility of legacy code, TestMethodAttribute is also supported, although not
encouraged. The second thing to notice is the use of DataRowAttribute. We used it
to provide the data for several rectangles as well as the expected result of the intersection
with the reference rectangle from the test method. As mentioned before, the method is
executed for each row in the data source, which, in this case, is each occurrence of the
DataRow attribute.

The following listing shows the output of executing the test method:

Test has multiple result outcomes
 4 Passed

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

578 Unit Testing

Results
 1) TestIntersectsWith_DataRows
 Duration: 8 ms

 2) TestIntersectsWith_DataRows (True,3,4,5,6)
 Duration: < 1 ms

 3) TestIntersectsWith_DataRows (True,5,10,20,13)
 Duration: < 1 ms

 4) TestIntersectsWith_DataRows (False,11,13,15,16)
 Duration: < 1 ms

If a row in the data source makes the test fail, it is reported as such, but the execution of
the method is repeated for the next row in the data source.

Dynamic data
The use of the DataRow attribute is an improvement, since it makes the testing code
simpler, but it is not the best alternative. A slightly better option is fetching data,
dynamically, from a method or property of the class. This is possible using another
attribute called DynamicDataAttribute. You must specify the name and the type of
the source of data (method or property). An example is shown in the following code:

public static IEnumerable<object[]> GetData()
{
 yield return new object[] { true, 3, 4, 5, 6 };
 yield return new object[] { true, 5, 10, 20, 13 };
 yield return new object[] { false, 11, 13, 15, 16 };
}

[DataTestMethod]
[DynamicData(nameof(GetData), DynamicDataSourceType.Method)]
public void TestIntersectsWith_DynamicData(
 bool result,
 int left, int top, int right, int bottom)
{
 var rectangle = new Rectangle(1, 2, 10, 12);

 Assert.AreEqual(
 result,
 rectangle.IntersectsWith(
 new Rectangle(left, top, right, bottom)));
}

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing data-driven unit tests 579

In this example, we defined a method called GetData() that returns an enumerable
sequence of arrays of objects. We fill these arrays with the rectangle bounds and the result
of the intersection with the reference rectangle. Then, on the test method, we use the
DynamicData attribute and provide it with the name of the method that supplies the
data and the type of data source (DynamicDataSourceType.Method). The actual test
code is no different than the one from the previous example.

However, this alternative also relies on hardcoded data. The most desirable solution is to
read it from an external data source.

Data from external sources
Test data can be fetched from an external source, such as a SQL Server database, a CSV
file, an Excel document, or XML. For this purpose, we must use another attribute, called
DataSourceAttribute. This attribute has several constructors that allow you to
specify the connection string to the source and other necessary parameters.

Note
At the time of writing this book, this solution and this attribute are only
available for .NET Framework and are not yet supported for .NET Core.

To write a test method that gets data from an external source, you need to be able to access
information about this data source. This is possible with the help of a TestContext
object that the framework is passing as an argument to the methods marked with either
the AssemblyInitialize or ClassInitialize attributes. A simpler solution
to get a reference to that object is to provide in the test class a public property called
TestContext with the TestContext type as shown in the following code. The
framework will automatically set it with a reference to the test context object:

public TestContext TestContext { get; set; }

We can then use the context to access data source information. In the example that
follows, we rewrite the test method to fetch data from a CSV file called TestData.csv
that resides in the same folder as the test application. The content of this file
is as follows:

expected,left,top,right,bottom
true,3,4,5,6
true,5,10,20,13
false,11,13,15,16

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

580 Unit Testing

The first column is the expected result of the intersection with the reference rectangle,
and the other values on each line are the bounds of the rectangle. The test method that
executes with data fetched from this CSV file is listed in the following code:

[DataTestMethod]
[DataSource("Microsoft.VisualStudio.TestTools.DataSource.CSV",
 "TestData.csv",
 "TestData#csv",
 DataAccessMethod.Sequential)]
public void TestIntersectsWith_CsvData()
{
 var rectangle = new Rectangle(1, 2, 10, 12);

 bool result = Convert.ToBoolean(
 TestContext.DataRow["Expected"]);
 int left = Convert.ToInt32(TestContext.DataRow["left"]);
 int top = Convert.ToInt32(TestContext.DataRow["top"]);
 int right = Convert.ToInt32(TestContext.DataRow["right"]);
 int bottom = Convert.ToInt32(
 TestContext.DataRow["bottom"]);

 Assert.AreEqual(
 result,
 rectangle.IntersectsWith(
 new Rectangle(left, top, right, bottom)));
}

You can see that this method, unlike the previous ones, has no parameters. Data is
available through the DataRow property of the TestContext object and this method is
invoked once for each row in the CSV file.

If you do not want data source information, such as the connection string, to be specified
in the source code, you can use the application configuration file to provide it. To do so,
you must add a custom section and then define a connection string (with name, string,
and provider name) and data source (with name, connection string name, table name, and
data access method). For the CSV file we used in the previous example, the App.config
file would look as follows:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="microsoft.visualstudio.testtools"
 type="Microsoft.VisualStudio.TestTools.
UnitTesting.TestConfigurationSection, Microsoft.VisualStudio.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 581

TestPlatform.TestFramework.Extensions"/>
 </configSections>
 <connectionStrings>
 <add name="MyCSVConn"
 connectionString="TestData.csv"
 providerName="Microsoft.VisualStudio.TestTools.
DataSource.CSV" />
 </connectionStrings>
 <microsoft.visualstudio.testtools>
 <dataSources>
 <add name="MyCSVDataSource"
 connectionString="MyCSVConn"
 dataTableName="TestData#csv"
 dataAccessMethod="Sequential"/>
 </dataSources>
 </microsoft.visualstudio.testtools>
</configuration>

With this defined, the only change we have to make to the test method is to change the
DataSource attribute, specifying the name of the data source from the .config file
(MyCSVDataSource in our example). This is shown in the following code.

[DataTestMethod]
[DataSource("MyCSVDataSource")]
public void TestIntersectsWith_CsvData()
{
 /* ... */
}

To get more information about how to provide connection strings for various types of
data sources, you should read the online documentation.

Summary
This last chapter of this book was dedicated to unit testing, which is essential for writing
quality code. We started with a basic introduction to unit testing and learned about the
Microsoft tools for writing unit tests, including the unit testing framework for managed
code. We have seen how to create unit testing projects using this framework, both for
.NET Framework and .NET Core. We then looked at the most important features of the
unit testing framework and learned how to write unit tests. In the last section, we learned
about data-driven tests and saw how to write tests with data from various data sources.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

582 Unit Testing

As this book concludes here, we, the authors, would like to thank you for taking the time
to read it. By writing this book, we tried to provide you with everything that was essential
for you to become proficient in the C# language. We hope this book proves a valuable
resource for you in learning and mastering the C# language.

Test what you learned
1. What is unit testing and what are its most important benefits?

2. What tools does Visual Studio offer to help writing unit tests?

3. What functionalities does Test Explorer in Visual Studio provide?

4. How do you specify that a class in a unit testing project contains unit tests?

5. What class and methods can you use to perform assertions?

6. How do you check the code coverage of your unit tests?

7. How do you write test fixtures that execute once per test class? What about test
fixtures for each method?

8. What is data-driven unit testing?

9. What does DynamicDataAttribute do? And what about
DataSourceAttribute?

10. What are the supported external sources for test data?

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assessments

Chapter 1
1. The first version of the C# language, 1.0, was released in 2002, bundled with .NET

Framework 1.0 and Visual Studio .NET 2002. The current version of the language,
at the time of writing this book, is C# 8.

2. The CLI is a specification that describes how a runtime environment can be used
on different computer platforms without being rewritten for specific architectures.
The CLI describes four major components: The Common Type System (CTS), the
Common Language Specification (CLS), the Virtual Execution System (VES),
and the metadata of a program's structure and content.

3. The CIL is a platform-neutral intermediate language that represents the
intermediate language binary instruction set defined by the CLI. When you compile
your program's source code, the compiler translates it into the CIL bytecode and
produces a CLI assembly. When the CLI assembly is executed, the bytecode is
passed through the Just-In-Time compiler to generate native code, which is then
executed by the computer's processor.

4. To view the content of an assembly you must use a disassembler. Examples of
disassemblers are ildasm.exe, distributed with .NET Framework, or ILSpy, an open
source .NET assembly browser and decompiler.

5. The Common Language Runtime is. NET Framework's implementation of the
VES. The CLR provides services such as memory management, type safety, garbage
collection, exception handling, thread management, and others.

6. The BCL is a component of the standard libraries that provides types to represent
the CLI built-in types, simple file access, custom attributes, string handling,
formatting, collections, streams, and others.

7. The current major .NET frameworks are .NET Framework, .NET Core, and
Xamarin. Because Microsoft plans to make .NET Core the one framework to use for
building applications for desktop, server, web, cloud, and mobile; .NET Framework
is put on maintenance mode and will only include security updates.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

584 Assessments

8. Assemblies are the basic unit for deployment, versioning, and security. They come
in two forms: executables (.exe) and dynamic-link libraries (.dll). An assembly
is a collection of types, resources, and meta-information that forms a logical unit of
functionality. The identity of an assembly is composed of the name, version, culture,
and a public key token.

9. The GAC is a machine-wide code cache that enables the sharing of assemblies
between applications. Its default location is %windir%\Microsoft.NET\
assembly. The Runtime Package Store is the equivalent for .NET Core
applications. It enables faster deployment and lower disk space requirements.
Typically, this store is available at /usr/local/share/dotnet/store on
macOS and Linux and C:/Program Files/dotnet/store on Windows.

10. The minimum a C# program must contain in order to compile and execute is a class
that contains a static method called Main().

Chapter 2
1. The built-in integral types in C# are byte, sbyte, ushort, short, uint, int,

ulong, and long.

2. The float and double types represent numbers using the inverse powers of 2 for
the fractional part. Therefore, they cannot represent exactly numbers such as 1.23
or 19.99, but only an approximation of them. Although double has 15 digits of
precision, compared to float, which has only 7; precision loss accumulates when
performing repeated calculations. The decimal type uses a decimal representation
of real numbers, which is much slower to compute, but provides better precision.
The decimal type has 28 digits of precision and is suitable for categories of
applications, such as financial applications, where this is key.

3. Strings can be concatenated using the + operator. Apart from concatenation, you
can compose strings using the String.Format() static method, or with string
interpolation, which is a syntactic shortcut for this method.

4. Some characters have a special meaning within a string. These are called escape
sequences and are prefixed with a backlash (\). Examples include single quotes
(\'), double quotes (\"), newline characters (\n), and backslashes (\\). Verbatim
strings are strings that are prefixed with the @ token. For verbatim strings, the
compiler does not interpret escape sequences. This makes it easier to write multi-
line texts or file paths, for instance.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2 585

5. Implicitly typed variables are declared using the var keyword instead of an actual
type and must be initialized during declaration. The compiler infers the actual type
from the value or expression used for their initialization.

6. Value types and reference types are the two main categories of types in C# and
.NET. A variable of a value type stores the value directly. A variable of a reference
type stores a reference to (the address of) a memory location containing the actual
object. Value types have value semantics (in simple terms, when you copy an
object, its value is copied), and reference types have value semantics (when you
copy an object, its reference is copied). Typically, value types are stored on a stack
and reference types on the heap, but this is an implementation detail and not a
characteristic of the types.

7. Boxing is the process of storing a value type inside an object, and unboxing is the
opposite operation of converting the value of an object to a value type.

8. A nullable type is an instance of System.Nullable<T>, a generic value type that
can represent the values of an underlying T type that can only be a value type, as
well as an additional null value. A nullable integer variable can be declared either as
Nullable<int> or int?.

9. There are three types of arrays in C#. The first type is one-dimensional arrays, which
are arrays of a single dimension. An example is int[6], which is an array of 6
integers. The second type is multi-dimensional arrays, which are arrays of two or
more dimensions, up to a maximum of 32. An example is int[2,3], which is an
array of integers with 2 lines and 3 columns. The third type is jagged arrays, which
are arrays of arrays. A jagged array is a one-dimensional array whose elements are
other arrays, and each can be of another dimension.

10. The system-defined type conversions are implicit conversion (such as from int
to double), and explicit conversion (such as from double to int). Explicit type
conversions are also called casts and are necessary when conversion between two
types bears the risk of losing information. User-defined conversions are possible by
defining implicit or explicit operators for a certain type or with helper classes.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

586 Assessments

Chapter 3
1. The selection statements in the C# language are if and switch.

2. The default case of a switch statement can appear anywhere on the list. It is
always evaluated last after all the case labels have been evaluated.

3. A for loop allows us to execute a block of code as long as a Boolean expression
evaluates to true. A foreach loop allows us to iterate through the elements of
a collection that implements the IEnumerable interface.

4. The while loop is an entry controlled loop. That means it executes a block
of statements as long as a specified Boolean expression evaluates to true. The
expression is checked before the block is executed. The do-while loop is an exit-
controlled loop. This means the Boolean expression will be checked at the end of the
loop. This ensures that the do-while loop will always be executed at least once,
even if the condition evaluates to false in the first iteration.

5. To return from a function, you can use return, yield, or throw. The first
two denote a normal return. The throw statement represents a return due to an
erroneous situation in the execution flow.

6. A break statement can be used to exit from a switch case or to terminate the
execution of a loop. It works for all loops: for, while, do-while, and foreach.

7. It indicates that the method, operator, or get accessor where it appears preceding
a return or break statement is an iterator. The sequence returned from an
iterator method can be consumed using a foreach statement. The yield
statement makes it possible to return values as they are produced and consume
them as they are available, which is especially useful in an asynchronous context.

8. You can catch all the exceptions from a function call either with
catch(Exception), in which case you have access to information about the
exception, or with a simple catch statement (without specifying an exception
type), in which case you do not get any information about the exception.

9. The finally block contains code that will execute after the try section. This
happens regardless of whether the execution resumed normally or the control left
the try block because of a break, continue, goto, or return statement.

10. The base class for all the exception types in .NET is the System.Exception class.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4 587

Chapter 4
1. A class is a template or a blueprint that specifies the form of an object. It contains

both data and code that operates on that data. An object is an instance of a class.
A class is introduced with the class keyword and defines a reference type. A
structure is introduced with the struct keyword and defines a value type. Unlike
classes, structures do not support inheritance and cannot have an explicit default
constructor, and fields cannot be initialized during declaration unless they are
declared const or static.

2. A read-only field is a field defined with the readonly specifier. Such a field can
only be initialized in a constructor and its value cannot be changed later.

3. Expression body definitions are an alternative syntax, typically for methods and
properties, that simply consist of evaluating an expression and perhaps returning
the result of the evaluation. These have the form member => expression. They
are supported for all class members, not just methods, but also fields, properties,
indexers, constructors, and finalizers. The type of the result value of the expression
evaluation must match the return type of the method.

4. A default constructor is a constructor of a class that does not have any parameters.
On the other hand, a static constructor is a constructor defined with the static
keyword that has no parameters or access modifiers and cannot be called by the
user. A static constructor is called by the CLR automatically in a static class when
the first static member of the class is accessed for the first time, or in a non-static
class when the class is instantiated for the first time. Static constructors are useful
for initializing static fields.

5. Auto-implemented properties are properties for which the compiler will provide
a private field and the implementation of the get and set accessors.

6. An indexer is a class member that allows an object to be indexed like an array. An
indexer defines a get and set accessor like properties do. An indexer does not
have an explicit name. It is created by using the this keyword. An indexer has one
or more parameters that can be of any type.

7. A static class is a class declared with the static keyword. It can only contain
static members and cannot be instantiated. Static class members are accessed using
the class name and not through an object. A static class is basically the same as a
non-static class with a private constructor and all members are declared as static.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

588 Assessments

8. The available parameter specifiers are ref, out, and in. The ref specifier modifies
a parameter so that it becomes an alias for an argument, which must be a variable.
It allows us to create a call-by-reference mechanism, rather than the implicit call-
by-value one. The in specifier is similar in that it causes the argument to be passed
by reference, but it does not allow the function to modify it. It is basically identical
to readonly ref. The out keyword also defines a call-by-reference mechanism,
but it requires a function to initialize a parameter before the function returns. It
guarantees that a variable is assigned a value during the specified function call.

9. A method with a variable number of arguments must have a parameter that is a
single-dimensional array preceded by the params keyword. This does not have to
be the only parameter of the function, but it must be the last.

10. An enumeration is a set of named integral constants. You must use the enum
keyword to declare an enumeration. An enumeration is a value type. Enumerations
are useful when we want to use a limited number of integral values for some
particular purpose.

Chapter 5
1. Object-oriented programming is a paradigm that allows us to write a program

around objects. Its core principles are abstraction, encapsulation, inheritance, and
polymorphism.

2. Encapsulation allows us to hide the data inside a class from the outside world.
Encapsulation is important because it reduces the dependencies between different
components by defining minimal public interfaces for them. It also increases code
reusability and security and makes code easier to unit test.

3. Inheritance is a mechanism through which a class can inherit the properties
and functionalities of another class. C# supports single inheritance but only for
reference types.

4. A virtual method is a method that has an implementation in a base class but
can be overridden in derived classes, which is helpful for changing or extending
implementation details. The implementation in the base class is defined with the
virtual keyword. The implementation in a derived class is called an overridden
method and is defined with the override keyword.

5. You can prevent a virtual member from being overridden in a derived class by
declaring it with the sealed keyword.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5 589

6. An abstract class cannot be instantiated, which means we cannot create the object of
an abstract class. An abstract class is declared using the abstract keyword. They
can have both abstract and non-abstract members. An abstract member cannot
be private and cannot have an implementation. An abstract class must provide an
implementation for all the members of all the interfaces it implements (if any).

7. An interface defines a contract that is supported by all the types that implement
the interface. An interface is a type introduced with the interface keyword
and contains a set of members that must be implemented by any class or struct
that implements the interface. Typically, an interface contains only declarations of
members, but not implementations. Beginning with C# 8, interfaces can contain
default methods.

8. There are two types of polymorphism: compile-time polymorphism, represented
by method overloading, and runtime polymorphism. Runtime polymorphism
has two aspects. On one hand, objects of derived classes can be seamlessly used as
objects of base classes in arrays or other types of collections, method parameters,
and other places. On the other hand, classes can define virtual methods that can be
overridden in derived classes. At runtime, the CLR will invoke the implementation
of the virtual member corresponding to the runtime type of the object. An object's
declared type and its runtime type differ when objects of derived classes are used in
places of objects of base classes.

9. Overloaded methods are methods with the same name but with parameters of
different types or different numbers of parameters. The return type is not considered
for method overloading. Operators can also be overloaded. A type can provide a
custom implementation for an overloadable operator when one or both operands
are of that type. The operator keyword is used to declare an operator. Such
methods must be public and static.

10. The SOLID principles are the following: Single responsibility principle (S), Open-
close principle (O), Liskov substitution principle (L), Interface segregation
principle (I), and Dependency injection principle (D).

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

590 Assessments

Chapter 6
1. Generics are types parametrized with other types. Generics provide reusability,

promote type safety, and can provide better performance (by avoiding the need
for boxing and unboxing for value types).

2. A type used for parameterizing a generic type or method is called a type parameter.

3. Generic classes are defined in the same way as non-generic classes except for a list of
one or more type parameters, specified within angle brackets (such as <T>) after the
class name. The same is true for generic methods; the type parameters are specified
after the class name.

4. Classes can be derived from generic types. Structures do not support explicit
inheritance, but they can implement any number of generic interfaces.

5. A constructed type is a type that is constructed from a generic type by replacing the
type parameters with actual types. For instance, for a Shape<T> generic type, the
Shape<int> is a constructed type.

6. A covariant type parameter is a type parameter declared with the out keyword.
Such a type parameter allows an interface method to have a return type that is more
derived than the specified type parameter.

7. A contravariant type parameter is a type parameter declared with the in keyword.
Such a type parameter allows an interface method to have a parameter that is less
derived than the specified type parameter.

8. Type parameter constraints are restrictions specified for type parameters that
inform the compiler about what kind of capabilities the type parameters must have.
Applying a constraint limits the types that can be used for constructing a type from
a generic one.

9. The new() type constraint specifies that a type must provide a public default
constructor.

10. The type parameter constraint introduced in C# 8 is notnull. It can only be used
in a nullable context, otherwise the compiler generates a warning. It specifies that
the type parameter must be a non-nullable type. It can be a non-nullable reference
type (in C#8) or a non-nullable value type.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7 591

Chapter 7
1. The BCL namespace containing the generic collections is

System.Collections.Generic.

2. The base interface for all the other interfaces that define functionalities for generic
collections is IEnumerable<T>.

3. Generic collections are preferred over non-generic ones because they offer the
benefit of type safety, have better performance for value types (because they avoid
boxing and unboxing), and, in some cases, they provide functionalities not available
in the non-generic collections.

4. The List<T> generic class represents a collection of elements that can be accessed
by their index. List<T> is very similar to arrays, except that the size of the
collection is not fixed but is variable and it can grow or decrease as elements are
added or removed. You add elements with Add(), AddRange(), Insert(),
and InsertRange(). You can remove elements with Remove(), RemoveAt(),
RemoveRange(), RemoveAll(), and Clear().

5. The Stack<T> generic class represents a collection with last-in, first-out semantics.
Elements are added to the top with the Push() method and removed from the top
with the Pop() method.

6. The Queue<T> generic class represents a collection with first-in, first-out
semantics. The Dequeue() method removes and returns the item from the front
of the queue. The Peek() method returns the item from the front of the queue
without removing it.

7. The LinkedList<T> generic class represents a double linked list. Its elements are
of the LinkedListNode<T> type. To add elements to the linked list you can use
the AddFirst(), AddLast(), AddAfter(), and AddBefore() methods.

8. The Dictionary<TKey, TValue> generic class represents a collection
of key-value pairs that allows fast lookup based on a key. The elements of this
dictionary class are of the KeyValuePair<TKey, TValue> type.

9. The HashSet<T> generic class represents a set of distinct items that can be in
any order but are stored contiguously. A hash set is logically similar to a dictionary
where the values are also the keys. However, unlike Dictionary<TKey,
TValue>, HashSet<T> is a non-associative container.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

592 Assessments

10. BlockingCollection<T> is a class that implements the producer-consumer
pattern defined by the IProducerConsumerCollection<T> interface. It is
actually a simple wrapper over the IProducerConsumerCollection<T>
interface and does not have internal underlying storage but must be provided with
one (a collection that implements the IProducerConsumerCollection<T>
interface). If no implementation is provided, it uses the ConcurrentQueue<T>
class by default. It is suitable for scenarios when bounding and blocking
are necessary.

Chapter 8
1. A callback is a function (or more generally, any executable code) that is passed as

a parameter to another function in order to be called immediately (synchronous
callbacks) or at a later time (asynchronous callbacks). A delegate is a strongly
typed callback.

2. A delegate is defined using the delegate keyword. The declaration looks like
a function signature, but the compiler actually introduces a class that can hold
references to methods whose signatures match the signature of the delegate. Events
are variables of a delegate type declared with the event keyword.

3. There are two kinds of tuples in C#: reference tuples, represented by the System.
Tuple class, and value tuples, represented by the System.ValueTuple
structure. The reference tuples can only hold up to eight elements, while the latter
can hold a sequence of any number of elements, although at least two are required.
Value tuples may have compile-type named fields, and have a simpler but richer
syntax for creating, assigning, deconstructing, and comparing values.

4. Named tuples are value tuples that have names for their fields. These names are
synonyms for the fields Item1, Item2, and so on, but are only available at source-
code level.

5. Pattern matching is the process of checking whether a value has a particular shape
as well as extracting information out of the value when the matching is successful. It
can be used with is and switch expressions.

6. A null value does not match a type pattern, regardless of the type of the variable.
A switch case label with a pattern matching for null can be added in a switch
expression with type pattern matching to specifically handle null values. When
using the var pattern, a null value always matches. Therefore, when using the var
pattern, you must add an explicit null check because the value may be null.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9 593

7. The .NET class that provides support for working with regular expressions is the
Regex class from the System.Text.RegularExpressions namespace. By
default, it uses the UTF-8 encoding for the string to match.

8. The Match() method checks an input string for substrings that match a regular
expression and returns the first match. The Matches() method does the same
search but returns all the matches.

9. Extension methods are methods that extend the functionalities of a type without
changing its source code. They are useful because they allow extensions without
changing the implementation, creating a derived type, or recompiling the code, in
general.

10. Extension methods are defined as static methods of a static, non-nested,
non-generic class and their first parameter is of the type they extend, preceded by
the this keyword.

Chapter 9
1. The stack is a relatively small segment of memory allocated by the compiler that

keeps track of the memory necessary for running the application. The stack has
LIFO semantics and grows and shrinks as the program execution is invoking
functions or returning from functions. The heap, on the other hand, is a large
segment of memory that the program may use to allocate memory at runtime,
and which, in .NET, is managed by the CLR. Objects of value types are, typically,
allocated on the stack, and objects of reference types are allocated on the heap.

2. The managed heap has three memory segments called generations. They are named
generation 0, 1, and 2. Generation 0 contains small, and usually short-lived, objects
such as local variables or objects instantiated for the lifetime of a function call.
Generation 1 contains small objects that have survived a garbage collection of
memory from generation 0. Generation 2 contains long-lived small objects that
have survived a garbage collection of memory from generation 1 and large objects
(which are always allocated on this segment).

3. Garbage collection has three phases. First, the garbage collector builds a graph of
all live objects in order to figure out what is still in use and what may be deleted.
Second, references to objects that will be compacted are updated. Third, the dead
objects are removed, and the surviving objects are compacted. Typically, the large
object heap containing large objects is not compacted because moving large chunks
of data incurs performance costs.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

594 Assessments

4. A finalizer is a special method of a class (has the same name as the class but
prefixed with ~) that should dispose of unmanaged resources that the class has
ownership of. This method is called by the garbage collector when the object is
collected. This process is non-deterministic, which is the key difference between
finalization and disposal. The latter is a deterministic process that occurs during
the explicit invocation of the Dispose() method (for classes that implement the
IDisposable interface).

5. The GC.SuppressFinalize() method requests the CRL not to invoke the
finalizer of the specified object. This is typically called when implementing the
IDisposable interface, so that unmanaged resources are not disposed of twice.

6. IDisposable is an interface with a single method called Dispose() that defines
a pattern for the deterministic disposal of objects.

7. The using statement represents short-hand syntax for the deterministic disposal of
objects of types that implement the IDisposable interface. The using statement
introduces a scope for the variable defined in the statement and ensures the object
is properly disposed of before the scope is exited. The actual disposal details depend
on whether the resource is a value type, a nullable value type, a reference type, or a
dynamic type.

8. A function from a native DLL can be invoked in C# using Platform Invocation
Services, or P/Invoke. To do so, you must define a static extern method that
matches the signature of the native function (using equivalent managed types for
its parameters). This managed function must be decorated with the DllImport
attribute, which defines the necessary information for the runtime to call the native
function.

9. Unsafe code is code for which the CLR cannot verify its safety. Unsafe code enables
the use of pointer types and supports pointer arithmetic. Unsafe code is not
necessarily dangerous, but it is your entire responsibility to ensure that you do not
introduce pointer errors or security risks. The typical scenarios for using unsafe
code are calling functions exported from a native DLL or COM server that require
pointer types as parameters, and optimizing some algorithms where performance is
critical.

10. Unsafe code is defined with the unsafe keyword, which can be applied to
types (classes, structures, interfaces, and delegates), type members (methods,
fields, properties, events, indexers, operators, instance constructors, and static
constructors), and statement blocks.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10 595

Chapter 10
1. The main characteristics of functional programming are immutability (objects have

states that do not change) and side-effect free functions (functions do not modify
values or states outside their local scope). Advantages of functional programming
include the following: first, the code is easier to understand and maintain because
functions do not change states and only depend on the arguments they receive.
Second, the code is easier to test for the same reason. Third, it is simpler and more
efficient to implement concurrency because data is immutable and functions don't
have side effects, which avoids data races.

2. A higher-order function is a function that takes one or more functions as
arguments, returns a function, or both.

3. C# provides the ability to pass functions as arguments, return functions from
functions, assign functions to variables, store them in data structures, define
anonymous functions, nest functions, and test references to functions for equality.
All these characteristics make C# a language that is said to treat functions as first-
class citizens.

4. Lambda expressions are a convenient way to write anonymous functions. This is
a block of code, either an expression or one or more statements that behave like
a function and can be assigned to a delegate. As a result, a lambda expression can
be passed as an argument to a function or returned from a function. They are a
convenient way to write LINQ queries, pass functions to higher-order functions
(including code that should be executed asynchronously by Task.Run()), and
create expression trees. A lambda expression has two parts separated by the lambda
declaration operator, =>. The left part is the list of parameters, and the right part is
an expression or a statement. An example of a lambda expression is n => n%2==1.

5. The rules that apply to variable scope in lambda expressions are as follows: first,
the variables that are introduced in a lambda expression are not visible outside the
lambda. Second, a lambda cannot capture in, ref, or out parameters from the
enclosing method. Third, variables that are captured by a lambda are not garbage
collected until the delegate that the lambda is assigned to is garbage collected,
even if they would otherwise go out of scope. Fourth, and last, a return statement
of a lambda expression refers solely to the anonymous method that the lambda
represents and does not cause the enclosing method to return.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

596 Assessments

6. LINQ is a set of technologies that enable developers to query a multitude of
data sources in a consistent manner. The LINQ standard query operators are
a set of extension methods that operate on sequences that implement either
IEnumerable<T> or IQueryable<T>. LINQ query syntax is basically syntactic
sugar for the standard query operators. The compiler transforms queries written
in query syntax into queries using the standard query operators. Query syntax
is simpler and easier to read than the standard query operators, but they are
semantically equivalent. However, not all the standard query operators have an
equivalent in query syntax.

7. The Select() method projects each element of a sequence into a new form. This
requires a selector, which is a transformation function, to produce a new value for
each element of the collection. However, when the elements of the collection are
themselves collections, it is often necessary to flatten them to a single collection.
This is what the SelectMany() method is doing.

8. Partial function application is the process of taking a function with N parameters
and one argument and returning another function with N-1 parameters after fixing
the argument into one of the function's parameters. This technique is the opposite
of currying, which is the process of taking a function with N arguments and
decomposing it into N functions that take one argument.

9. A monoid is an algebraic structure with a single associative binary operation and an
identity element. Any C# type that has those two elements is a monoid.

10. A monad is a container that encapsulates some functionality on top of the value
that it wraps. A monad has two operations: the first one that transforms a value,
v, into a container that wraps it (v -> C(v)). In functional programming, this
function is called a return. The second one that flattens two containers into a single
container (C(C(v)) -> C(v)). In functional programming, this is called a bind.
An example of a monad is IEnumerable<T> with the LINQ query operator
SelectMany().

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11 597

Chapter 11
1. The unit of deployment in .NET is the assembly. An assembly is a file (either an

executable or a dynamic-link library) that contains the MSIL code, as well as
metadata about the content of the assembly, and, optionally, resources.

2. Reflection is the process of runtime type discovery and the ability to make changes
to them. This means that we can retrieve information about types, their members,
and their attributes at runtime. Reflection makes it possible to easily build extensible
applications; to execute types and members that are private or have other access
levels that makes them inaccessible otherwise, which is useful for testing; to modify
existing types or creating entirely new types at runtime and execute code using
them; and, in general, to change a system behavior at runtime, usually with the
use of attributes.

3. The type that provides meta-information about types is System.Type. An
instance of this type can be created with the GetType() method, the Type.
GetType() static method, or with the C# typeof operator.

4. A shared assembly is intended to be used by several applications and is usually
located under the Global Assembly Cache (GAC), a system repository for
assemblies. A private assembly is intended to be used by a single application and is
stored in the application directory or one of its sub-directories. Shared assemblies
must be strongly named and enforce version constraints; these requirements are not
necessary for private assemblies.

5. In .NET, an assembly can be loaded in one of the following contexts: the load
context (which contains assemblies loaded from the GAC, the app directory, or
its subdirectories), the load-from context (which contains assemblies loaded from
other paths than the previously mentioned), the reflection-only context (which
contains assemblies loaded for reflection purposes only), or no context at all (such
as when an assembly is loaded from an array of bytes).

6. Early binding is the process of creating an assembly dependency (reference)
during compile time. This offers the compiler full access to the types available in
the assembly. Late binding is the process of loading assemblies at runtime, in which
case the compiler has no access to the content of the assembly. However, this is
important for building extensible applications.

7. The Dynamic Language Runtime is a component of the .NET platform that defines
a runtime environment that adds a set of services on top of the CLR in order to
enable dynamic languages to run on the CLR and to add dynamic features to
statically typed languages.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

598 Assessments

8. The dynamic type is a static type, meaning variables of this type are assigned the
dynamic type at compile time. However, they bypass static type checking. That
means the actual type of the object is only known at runtime and the compiler
cannot know and cannot enforce any checks on operations performed on objects of
this type. You can invoke any methods with any parameters and the compiler will
not check and complain; however, if the operation is not valid, an exception will be
thrown at runtime. The dynamic type is often used to simplify the consumption of
COM objects when an interop assembly is not available.

9. Attributes are types that derive from the System.Attribute abstract class
and provide meta-information about assemblies, types, and members. This meta-
information is consumed by the compiler, the CLR, or tools that use reflection
services to read them. Attributes are specified in square brackets, such as in
[SerializableAttribute]. The naming convention for attributes is that
the type names are always suffixed with the word Attribute. The C# language
provides a syntactic shortcut that allows specifying the name of the attribute
without the suffix Attribute, such as in [Serializable].

10. To create user-defined attributes you must derive from the System.Attribute
type and follow the naming convention of suffixing the type with the word
Attribute.

Chapter 12
1. When you need to execute some long-running, CPU-intensive code, manually

creating a dedicated thread is the preferred choice. Another option is to create
a Task with TaskCreationOptions.LongRunning or, in most advanced
scenarios, to write a custom task scheduler.

2. The most performant synchronization techniques are those not using kernel objects
but user-mode objects. In order to atomically write both a file and some value in
memory, the Critical Section is the most appropriate technique and is available
through the lock keyword of the C# language.

3. The Task.Delay API is the most appropriate delay because it schedules the code
in the continuation after the specified number of milliseconds, letting the thread be
reused in the meantime. Conversely, the operating system Sleep API is exposed
in .NET as Thread.Sleep, which suspends the thread execution for the given
number of milliseconds, but it makes the thread unavailable from being reused.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12 599

4. The Task library offers the WaitHandle.WaitAny and WaitHandle.WaitAll
methods, which respectively call the continuation code as soon as any or all of the
operations have completed. The task results can be accessed as soon as the returned
tasks have completed.

5. The TaskCompletionSource is a class used to create and control the Task.
It can be used to transform any asynchronous behavior, such as a CLR event, in
a Task-based operation. The client code, instead of subscribing to the event, can
therefore await the task obtained from the TaskCompletionSource.

6. The Task library provides the pre-built Task.CompletedTask to return an
empty Task, and the methods Task.FromResult, Task.FromCanceled
and Task.FromException to create tasks that either return a result, report
a cancellation, or throw an exception.

7. Long-running tasks may be created by specifying TaskCreationOptions.
LongRunning in the Task constructor.

8. The need to use Control.Invoke (or Dispatcher.Invoke in WPF) can be
verified with Control.InvokeRequired (or Dispatcher.CheckAccess()
in WPF) and depends on whether the library used to access the resource already
marshaled the result in the main thread. If the library already embraced the tasks
and the library author did not call Task.ConfigureAwait(false), you can
consume the result directly because the continuation executed after the await
keyword is invoked in the main thread thanks to the synchronization context
provided by the UI framework.

9. The ConfigureAwait method is useful to avoid useless marshaling operations
that would occur when a synchronization context is in use in the process. This
is normally created by UI frameworks and ASP.NET applications. The primary
users of ConfigureAwait are library developers who don't need to access the
application objects that can only be used from the main thread.

10. You have to verify whether the asynchronous operation has completed in the
main thread first (for example, by using Control.InvokeRequired in
Windows Forms or Dispatcher.CheckAccess() in WPF). If it completed in
a different thread, you need to access the UI by means of Control.Invoke or
Dispatcher.Invoke.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

600 Assessments

Chapter 13
1. The most important classes in the System.IO namespace for working with system

objects are Path for paths, File and FileInfo for files, and Directory and
DirectoryInfo for directories.

2. The preferred way of concatenating paths is by using the Path.Combine() static
method.

3. The path of the temporary folder of the current user can be retrieved with the
Path.GetTempPath() static method.

4. The File and FileInfo classes provide similar functionalities but File is
a static class and FileInfo is a non-static class. Likewise, Directory is a static
class and DirectoryInfo is a non-static class, although their functionalities
are similar.

5. To create directories, you can use the Create() and CreateSubdirectory()
methods. The former creates a directory when its direct parent exists. The latter
creates a subdirectory and all the other subdirectories in a hierarchy up to the root,
if necessary. To enumerate directories, use the EnumerateDirectories()
method, which retrieves an enumerable collection of directories that can be
enumerated before the whole collection is returned. There are multiple overloads for
the various search options.

6. The three categories of streams in .NET are backing stores (streams that represent
a source or destination of a sequence of bytes), decorators (streams that read or
write data from or to another stream, transforming it in some way), and adapters
(not actually streams, but wrappers that help us work with sources of data at a
higher level than bytes).

7. The base class for streams in .NET is the System.IO.Stream class. This is an
abstract class that provides methods and properties for reading from and writing to
a stream. Many of these are abstract and are implemented in derived classes.

8. By default, both BinaryReader and BinaryWriter handle strings using the
UTF-8 encoding. However, they both have overloaded constructors that allow the
specifying of another encoding using the System.Text.Encoding class.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 14 601

9. The XmlSerializer class, from the System.Xml.Serialization
namespace, can be used to serialize and deserialize data. XmlSerializer works
by serializing to XML all the public properties and fields of a type. It uses some
default settings, such as types becoming nodes, and properties and fields becoming
elements. The name of a type, property, or field becomes the name of the node or
element and the value of a field, or property, its text.

10. The JSON serializer shipped with .NET Core is called System.Text.Json. For
.NET Framework and .NET Standard projects, it is available as a NuGet package,
with the same name. You can use the JsonSerializer.Serialize() static
method to serialize data and the JsonSerializer.Deserialize<T>()
static method to deserialize data. You can use specific attributes to control the
serialization process. On the other hand, if you want more control over what is
written or read, you can use the Utf8JsonWriter and Utf8JsonReader
classes.

Chapter 14
1. The code that may potentially throw an exception must be put inside a try block.

2. Inside the catch block, you may primarily want to try to recover the error. The
recovery strategy may be very different and may vary from reporting a friendly
error to the user to repeating the operation with different parameters. Logging
is another typical operation done in the catch block.

3. The exception type specified in the catch block captures exceptions matching
the same type or any derived types. For this reason, the ones lower in the hierarchy
must be specified last. In any case, the C# compiler will generate an error whenever
the order is not correct.

4. By specifying the variable name in the catch statement, you get access to the
exception object. It provides important information such as the message and other
information that is very precious when logging an error. The exception object can
also be used as the inner exception parameter when creating a new, more specific
exception.

5. After examining the exception object, you may realize that you can't do anything
to recover the operation. In this case, it is more appropriate to let the exception
continue bouncing to the callers. This can be done with the use of the parameterless
throw statement, or by creating and throwing a new exception by passing the
exception object in the constructor.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

602 Assessments

6. The finally block is used to declare a block of code that must be executed
regardless of whether the code specified in the try block failed or completed
successfully.

7. You can specify a finally block without catch whenever you don't need to be
notified about the failure of the code inside the try block. The finally code will
be executed in any case.

8. First-chance exceptions represent the exceptions at a very early stage, as soon as
they are thrown and before jumping to their handlers, if any. The debugger may stop
at them, giving a more accurate indication about a potential bug.

9. The Visual Studio debugger allows us to select the first-chance exceptions we want
to stop at. This can be done using the Exception Settings window.

10. The UnhandledException event is fired right before the application is going
to crash. This event can be used to provide better advice to the user, to log the error,
or even to automatically restart the application.

Chapter 15
1. By enabling the C# 8 nullable reference types feature and decorating the

reference types in your code, you will dramatically reduce the occurrence of
NullReferenceException exceptions in your code.

2. The new succinct syntax to access the last item in an array is [^1], which makes
use of the System.Index type.

3. In a switch expression, the discard (_) character is equivalent to default, which
is typically used in the switch statement.

4. C# 8 introduced the asynchronous dispose feature to provide an asynchronous
behavior when disposing resources. This way, we can await the asynchronous
closing operation from the DisposeAsync method and avoid the danger of using
the Task.Wait method inside Dispose.

5. The null coalescing assignment ??= is used to avoid the execution of the code on
the right side (in our example, the GetOrders() method) of the assignment when
the left side (orders) is not null.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 16 603

6. In order to be iterated with async foreach, a sequence must exhibit
an asynchronous behavior that cannot be done using the IEnumerable
and IEnumerator interfaces and their generic counterparts. The new
IAsyncEnumerable<T> and IAsyncEnumerator<T> interfaces were
specifically designed to support the asynchronous behavior that is used by the
async foreach statement.

Chapter 16
1. The global.json file is used to determine which SDK will be used in a given

directory tree. You can create this file in the solution root folder (or any parent
folders) by using the dotnet new globaljson command and editing
it manually to match one of the versions returned by the dotnet --info
command.

2. The Path.Combine method is the best way to concatenate paths on both
Windows and Linux, both of which use different path separators. This method
is also very convenient to avoid mistakes when concatenating relative paths and
doubling or omitting the separators.

3. Libraries conforming to the .NET Standard specification are binary compatible
with any framework supporting it. When you need to share code among different
frameworks, verify which is the most recent version of .NET Standard supported
by them and create a library that uses it. If the APIs you need to use are not
supported by the required version of .NET Standard, you can change strategy and
create separate libraries and package them together in a single NuGet package. The
package manifest will need to associate each assembly to the specific framework,
platform, or architecture the library can run on.

4. Thanks to the new project file format, it is now possible to copy the desired
PackageReference tags from one project to another. This can also be done
in Visual Studio when the solution is opened and, as soon as the file is saved, the
NuGet packages will be restored automatically.

5. After analyzing the architectural implications, the very first step is upgrading the
current solution to the latest version of .NET Framework, at least version 4.7.2.

6. To minimize the startup time, .NET Core 3 offers two new publishing options.
The first is AOT compilation, which immediately generates the assembly code,
dramatically reducing the need for the JIT compiler. The second is enabling the
Quick JIT compiler, which is used at runtime and is faster than the traditional JIT
compiler, but generates less-optimized code.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

604 Assessments

Chapter 17
1. Unit testing is a type of software testing where individual units of code are tested

in order to validate whether they are working as they were designed to work. Unit
testing helps to identify and fix bugs early in the development cycle, therefore
helping to save time and money. It helps developers to better understand the code
and allows them to make changes easier. It helps with code reuse by requiring
the code to be more modular in order to test it better. It can act as project
documentation. It also helps with debugging because when tests fail, only the latest
changes need to be checked and debugged.

2. Visual Studio tools for unit testing are the Test Explorer (where you can view,
run, debug, and analyze tests), the Microsoft unit testing framework for managed
code, code coverage tools (which determine the amount of code that unit tests are
covering), and the Microsoft Fakes isolation framework (which allows you to create
substitutes for classes and methods).

3. The Test Explorer in Visual Studio allows you to view available unit tests, grouped
by different levels (projects, classes, and so on). You can run and debug the unit tests
from the Test Explorer, and you can view the results from their execution.

4. To specify that a class contains unit tests, you must decorate it with the
TestClass attribute. Methods containing unit tests must be decorated with the
TestMethod attribute.

5. The class to use for performing assertions is called Assert and is available in
the Microsoft.VisualStudio.TestTools.UnitTesting namespace.
It contains many static methods, such as AreEqual(), AreNotEqual(),
IsTrue(), IsFalse(), AreSame(), AreNotSame(), IsNull(), and
IsNotNull().

6. Code coverage can be determined based on the available unit tests from the Test
Explorer or from the Test top-level menu. The results are available in the Code
Coverage Results pane.

7. You can provide fixtures that execute once per class by providing methods
decorated with the ClassInitialize and the ClassCleanup attributes.
The former executes once per class before all the tests are executed, and the latter
once after all the tests are executed. For fixtures that execute before and after each
unit test, you must provide methods decorated with the TestInitialize and
TestCleanup attributes.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 17 605

8. Data-driven unit testing means writing unit tests that fetch testing data from
an external source (such as a file or a database). The test method is then executed
once for each row in the data source.

9. The DynamicData attribute allows you to specify a method or property of the
unit testing class as the source of data. The DataSource attribute allows you to
specify an external source of data.

10. The external sources of data supported by the Microsoft unit testing framework
for data-driven tests are SQL databases, CSV files, Excel documents, and XML
documents.

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Microservices with C# 8 and .NET Core 3 - Third Edition

Gaurav Aroraa, Ed Price

ISBN: 978-1-78961-794-8

• Package, deploy, and manage microservices and containers with Azure
Service Fabric

• Use REST APIs to integrate services using a synchronous approach

• Protect public APIs using Azure Active Directory and OAuth 2.0

• Understand the operation and scaling of microservices using Docker
and Kubernetes

• Implement reactive microservices with Reactive Extensions

• Discover design patterns and best practices for building enterprise-ready apps

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/web-development/hands-on-microservices-with-c-8-and-net-core-3-0-third-edition

608 Other Books You May Enjoy

Hands-On Software Architecture with C# 8 and .NET Core 3

Francesco Abbruzzese, Gabriel Baptista

ISBN: 978-1-78980-093-7

• Overcome real-world architectural challenges and solve design consideration issues

• Apply architectural approaches like Layered Architecture, service-oriented
architecture (SOA), and microservices

• Learn to use tools like containers, Docker, and Kubernetes to manage microservices

• Get up to speed with Azure Cosmos DB for delivering multi-continental solutions

• Learn how to program and maintain Azure Functions using C#

• Understand when to use test-driven development (TDD) as an approach for
software development

• Write automated functional test cases for your projects

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/programming/hands-on-software-architecture-with-c-8

Leave a review - let other readers know what you think 609

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book’s Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

Symbols
.NET

assemblies 33
thread, creating 352-357
URL 532

.NET Base Class Library (BCL) 198

.NET CLI 543

.NET CLI, commands
dotnet new 527
dotnet publish 527
dotnet restore 527
dotnet run 527
dotnet test 527

.NET command-line interface (CLI)
using 527-530

.NET Core
about 32
.NET Framework, migrating to 544

.NET Core 3 SDK 554

.NET Core architecture
analyzing 544

.NET Core SDK
reference link 527

.NET framework
about 27, 28
libraries, migrating 548

migrating, to .NET Core 544
migration process, preparing 547

.NET Framework Class Library (FCL) 31

.NET Standard
about 535, 537
reference link 538

.NET Standard 2.0 548

.NET Standard library
creating 538
versus .NET Core library 539

.NET tools
reference link 528

_shared 364

A
Abort method 359
abstract 156
abstract class

about 157, 158
features 158

abstraction 148
abstract members 157, 158
abstract method

characteristics 158
abstract property

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

612 Index

characteristics 158
access modifier 131
access modifier, types

internal 131
private internal 131
private protected 131
protected 131
protected internal 131
public 131

accessors 111
ActionUnit class 168
Activator.CreateInstance() 333
AddAsync method 372
Ahead-of-Time (AOT) compilation 557
anonymous types

about 236
properties 238

API Port tool 547
App.config file 580
AppDomain 547
AppDomain exception events 472, 473
application

publishing 554
application roots 266
apt-get 533
arithmetic operators

about 68, 70, 73
assignment operators 72
bitwise operator 71
decrement operator 69
forms, postfix and prefix 69
increment operator 69
logical operators 71
null-coalescing assignment

operator 76, 77
null-coalescing operator 75, 77
null-conditional operators 74
relational operators 70

shift operator 71
ternary conditional operator 73, 74

arrays 58
ASP.NET Core IIS Module 553
ASP.NET Core MVC framework 550
ASP.NET MVC framework 546
ASP.NET projects

migrating 550-552
ASP.NET Web Forms applications

migrating 545
assemblies

culture 33
in .NET 33
name 33
public key token 33
version 33

assembly attributes 343
Assembly class 330
Assembly.CreateInstance() method

about 331, 332
parameters 332

Assembly.GetType() 331
AssemblyInitialize attribute 579
Assembly.Load() 328, 331
Assembly.LoadFrom() 331
assembly, sign

reference link 34
assignment operators 72, 73
asynchronous callbacks 228
Asynchronous Dispose 507, 508
asynchronous method

about 372
synchronous, implementing 371

asynchronous programming 348
asynchronous streams 510-514
async keyword 370
async Task 374
async void 374

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 613

attributes
about 338
in reflection 343
using 341

attributes target 342
AttributeUsage attribute 342
auto-implemented properties 113
await keyword 372

B
base class 151
Base Class Library (BCL) 31
base class members

hiding 160, 161
Binary JSON (BSON) 435
binary operator

overloading 169-171
bitwise operator 71, 72
Blazor template 545
BlockingCollection<T> 221-223
bool type 44
boxing 22, 48, 56, 57
branch prediction 449
break statement 93
build-essential 533

C
C#

arrays 58
history 18
jagged arrays 61
multi-dimensional arrays 60
one-dimensional arrays 59

C# 1.0 18
callback 228
CancellationToken 378

CancellationTokenSource class 378
cancel method 378
cast 64
character type 43, 44
child class 151
chmod command-line tool 536
circular singly linked list 210
class 562
classes 104, 105
ClassInitialize attribute 579
class keyword 104
ClickOnce feature 550
closed constructed type 182
closed types 182
closures 312, 313
CLS-compliant 23
Code Access Security (CAS) APIs 546
code coverage

about 563
analyzing 572-574

code reusability 151
collection 197
collection type

selecting 218, 219
command-line interface (CLI) 527
Common Intermediate Language

(CIL) 23, 24, 26
Common Language Infrastructure (CLI)

about 20, 21
Common Intermediate

Language (CIL) 23-26
Common Language Specification

(CLS) 22, 23
Common Type System (CTS) 22
reference link 21
Virtual Execution System (VES) 26

Common Language Runtime
(CLR) 31, 99, 166, 264, 335

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

614 Index

Common Language Specification
(CLS) 21-23

Common Type System (CTS)
about 21, 22
characteristics and functions 22

comparison operators 70
Component Object Model (COM) 448
ConcurrentBag<T> 224
concurrent collection type

selecting 225
ConcurrentDictionary<TKey,

TValue> 224
ConcurrentQueue<T> 224
ConcurrentStack<T> 224
conditional ref expression operator 74
Console App (.NET Core) 35
constant pattern 246
constants 53, 106
constructor 109-111
continuation 368
continue statement 94
Continuous Delivery/Deployment

(CD/CD) 527
Continuous Integration (CI) 527
contravariant type parameter 185
control statements

about 80
iteration statements 85
jump statements 93
selection statements 80

copy semantics 53
CoreCLR 32
CoreFX 32
CoreWCF 545
CoreWF 546
covariant type parameter 185
C# program

basic structure 35, 36

Critical Section 365
cross-platform aware code

digital certificates 535
end-of-line separators 535
environment variables 536
filesystem casing 534
gaps, detecting 536
home directory 534
path separators 535
platform-specific API 535
security 536
writing 534

csproj file 557
curiously recurring template pattern 138
CurrentCulture property 358
CurrentUICulture property 358
currying 310, 311
custom exception type

creating 462-464
C# version

features 18

D
data-driven unit tests

data, from attributes 577
data, from external sources 579, 581
dynamic data 578
writing 576

data hiding 149, 151
data modeling 148
DataRowAttribute 577
DataRow property 580
DataSourceAttribute 579
DataTestMethodAttribute 577
data types

about 40, 41
bool type 44

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 615

character type 43
decimal type 43
floating-point type 42
integral type 41
object type 47
reference type 53, 54
string type 44
value type 53

deadlock condition 360
decimal type 43
default constructor 109
delegate 228-233
Dependency Injection (DI) 551
dependency inversion principle 175
Dequeue 208
derived class 151
DescriptionAttribute 339, 342
desktop projects

migrating 549
dictionary 212
Dictionary<TKey, TValue>

collection 212, 214, 215
digital certificates 535
disposable patterns

in ref structs 508-510
in structs 508-510

DLR, services
call site caching 335
dynamic object interoperability 335
expression trees 335

dotnet dev-certs 528
dotnet --info command 528
dotnet tool command 528
dotnet watch 528
doubly circular linked list 210
doubly linked list 209
do-while loop 89, 90
dynamically loading assemblies

327, 329, 330
DynamicDataAttribute 578
Dynamic Language Runtime

(DLR) 321, 335
dynamic-linked library (DLL) 33, 277
DynamicMetaObject 336
DynamicObject 336
dynamic type

about 322, 335
using 335, 336, 338

E
early binding 331
ECMAScript 252
edit and continue (EnC) 29
Editor 533
Elliptic Curve Digital Signature

Algorithm (ECDSA) 30
encapsulation 149-151
end-of-line separators 535
Engine class 331
EngineLib 328, 331
EngineLibBase 333
EngineLib.Engine type 330
EngineStatus 333
Engine type 326, 331
Enqueue 208
Entity Framework 546
Entity Framework 6 (EF6) 546
Entity Framework Core (EF Core) 546
enumeration 140-142
environment variables 536
error codes 448
errors 448, 449
escaped sequences 46, 47
events 233, 234, 236
exception handling 98-100, 102, 448

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

616 Index

exception objects 456, 457
exceptions

about 375-377, 450, 451
catching 451-455
conditional catch 457, 458
debugging 468
logging 473, 474
monitoring 468
rethrowing 464-466
throwing 458-461
types 461, 462

executable file (.exe) 33
ExpandoObject 336
explicit type conversion 64, 65
expression body definitions 108
expression lambda 298
Extended Numerics Library 31
extension methods 258-260

F
Factory Method 161
fake 562
faulted task 377
FDD deployment

advantages 554
feature, nullable reference types

annotations, enabling 483
settings, disabling 484
settings, restoring 484
warnings and annotations, disabling 483
warnings and annotations, enabling 483
warnings, enabling in editor 483

fields 106, 107
files and directories

FileInfo class, members 404, 405

properties 403
working with 403, 406-411

file streams
working with 414-418

filesystem casing 534
finalization queue 349
finalizers 268-270
finally block 466, 467, 468
fire-and-forget operation 374
first-chance exceptions

debugging 470-472
First in First Out (FIFO) 208
first-order functions 296
fixed variables 285
floating-point operations (FLOPS) 225
floating-point type 42
foreach loop 90-92
foreach statement 353
forgiving operator 481
for loop 85, 87, 88
framework-dependent deployment (FDD)

about 554
publishing 555

Framework Dependent
Executables (FDE) 554

free variable 312
function 562
functional programming

about 290, 292
advantages 290
closures 312, 313
concepts 308
currying 310, 311
monads 316-318
monoids 314, 316
partial function application 309, 310

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 617

functions
as first-class citizens 293, 295, 296

G
Gaps 536
garbage collector (GC) 31, 264-266, 349
generations 265
generic classes

about 179, 180
inheritance 181, 182

generic collections
about 200
benefits 201

generic interfaces 183
generic methods 190
generics

about 178
advantages 178

generic structures 189
generic types 178
GetData() 579
GetMethod() 332
GetType() method 325
Global Assembly Cache

(GAC) 33, 327, 544
global.json 528
goto statement 95, 96
gRPC 545

H
Handlers 551
HashSet<T> collection 215, 216, 218
hierarchical inheritance 152
higher-order function 296
home directory 534

HTTP Modules 551

I
Identity monad 318
IDisposable interface 271-274
IDynamicMetaObjectProvider 336
IEngine 333
if statement 80, 82
ildasm.exe 233
IL Disassembler 322
ILSpy tool

about 233, 370
reference link 370

IL Trimming 557
Implicity typed variables 50, 51
implicit type conversion 63, 64
indexer 115-117
indices 494, 495, 497-499
info parameter 528
inheritance

about 148, 151-154
abstract class 157, 158
abstract members 157, 158
base class members, hiding 160, 161
hierarchical inheritance 152
interface 162-165
multilevel inheritance 152
sealed class 159
sealed members 159
single inheritance 151
virtual members 155, 156
with generic classes 181, 182

in keyword 125
in parameters

about 122
limitations 128

instance classes 403

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

618 Index

instance fields 106
integral type 41
interface

about 162-165
mutable collections, representing 198
read-only collections, representing 200

interface members
implementations 487

interface reabstraction 490
interfaces as traits 491-493
interface segregation principle 175
interface versioning 487-490
Interlocked class 366
Intermediate Language (IL) 370
Internet Information Services (IIS) 473
interpolated verbatim strings 520
intersection 215
invocation list 230
IProducerConsumerCollection<T> 220
IsBackground property 358
is expression 246, 247, 248
iteration statements

about 85
do-while loop 89, 90
for each loop 90-92
for loop 85, 87, 88
while loop 88, 89

J
jagged arrays 61, 62
JavaScript Object Notation (JSON)

deserializing 434
serializing 434

Json.NET
about 434
attributes 438, 439
using 434, 435, 437, 438, 440

jump statements
about 93
break statement 93
continue statement 94
goto statement 95, 96
return statement 94, 95
yield statement 96, 98

Just-In-Time compiler (JIT) 23,
386, 501, 557, 558

K
Kestrel 552

L
lambda declaration operator 298
lambda expressions

about 297, 298
examples 298, 299
rules, for applying variables scope 300

Language Integrated Query
(LINQ) 236, 321, 561

Last In First Out (LIFO) 206, 264
late binding 331, 333, 334
linked list

about 209
circular singly linked list 210
doubly circular linked list 210
doubly linked list 209
singly linked list 209

LinkedList<T> collection 209-211
LINQ

about 301
query syntax 307, 308
standard query operators 302-304, 306

Linux distribution
cross-platform aware code, writing 534

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 619

developing 530
development box, preparing 531-534

liskov substitution principle 174
List<T> collection 202-204, 206
load context 328
LoadFrom() 329
load-from context 328
logical operators 71
long-running tasks 373
Lorem PicSum

URL 383

M
ManualResetEvent object 364
match evaluator 258
memory streams

about 418
working with 418-421

method overloading 167, 168
methods 107, 108
Microsoft Fakes isolation framework 563
Microsoft Intermediate

Language or MSIL) 23
Microsoft tools

for unit testing 563
Microsoft unit test framework

for managed code 563
migration

planning 553
missing APIs

finding 549
mock 562
model binding

reference link 552
monads

about 316-318
operations 317

Mono 32
monoids 314, 316
Mono IL Linker code 557
movable variables 285
MoveTo() method 167
MSIX technology 550
MSTest 563
MSTest Test Project (.NET Core) 566
multicasting 230
multi-dimensional arrays 60, 61
multilevel inheritance 152
multiple forms 166
multithreading paradigm 347
MVC framework 550

N
named arguments 129, 130
named parameters 340
Name property 358
namespaces

about 143-145
defining 143
purposes 143

native interoperability 540
NDepend 548
nested expressions

stackalloc, using 520, 521
Net-tools 533
Network-Attached Storage (NAS) 367
Network Library 31
new operator 104
Newtonsoft.Json package 434, 538
ngen compiler 558
ngen tool 557
no context 328
non-deterministic process 31
NT 3.1 Advanced Server 349

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

620 Index

NuGet
URL 542

nuget.config file 527
nuget.org 527
NuGet packages

adding 540-543
consuming 539

null 104
nullable reference types

about 478-481
existing code, migrating to 486
feature, enabling 482, 483
working with 484, 486

nullable type
about 57
characteristics 58

null-coalescing assignment
operator 76, 518

null-coalescing operator 75
null-conditional operator (Elvis

operator) 74, 75
NUnit 563

O
object initializer 110
object-oriented programming

(OOP) 103, 148
objects 104, 105
object type 47, 48
obj variable 105
one-dimensional arrays 59, 60
open-close principle 174
openssh package 532
open types 182
operating systems (OSes) 347
operator overloading

about 169

binary operator, overloading 169-171
implementing 169
unary operator, overloading 172, 173

operators
about 67
arithmetic operators 68
left-associativity 68
right-associativity 68

optional arguments 129
out keyword 126
out parameters 122

limitations 127, 128
Overloaded methods 109
overload resolution 168

P
Package Manager 543
PackageReference 543
Paket CLI 543
Parallel Library 31
Parallels Desktop 531
parent class 151
Parse static method 358
partial class 133, 134
partial function application 309, 310
Path class

members 400
static methods 402
working with 399-401, 403

path separators 535
pattern matching 246, 499-501
placeholders 178
Plain Old CLR Objects (POCO) 502
Platform Invocation Services

(PInvoke) 268, 277, 450
Platform Invoke (P/Invoke) 277-282, 533
platform-specific API 535

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 621

pointer types 283
polymorphism

about 166
method overloading 167, 168
operator overloading 169

polymorphism, types
compile-time polymorphism 166
run-time polymorphism 166

Portability Analyzer Tool
about 547
reference link 547

portable class library 537
positional arguments 129
positional parameters 340
post-mortem debugging 474
PowerShell terminal 527
predicate 204
Priority property 358
private assembly 327
properties 111, 112, 114, 115
Prototype pattern 161
public assembly 327
PublicKeyToken 329
publishing 554
publishing options

about 556
Ahead-of-Time (AOT) compilation 557
JIT compiler 558
single file publishing 556, 557

PublishTrimmed factory 557

Q
queue 208
Queue<T> collection 208, 209
QuickJIT 558

R
race condition 360
ranges 494-499
ReadAllTextAsync method 373
readonly struct members 514, 516, 517
Rectangle structure 568
RectangleTests

about 569
testing methods 569

rectangular array 60
recursive pattern matching 502-505
reference tuples 238, 240
reference type 54, 55
referential transparency 293
ref keyword 122, 124, 125
reflection

about 322-327
benefits 323
drawbacks 323

Reflection Library 31
reflection-only context 328
ref local variable 124
ref parameters

about 122
limitations 128

ref return value 124
ref structs

disposable patterns 508-510
Regex class 252
regular expressions

about 252
input text, matching 254, 255
overview 252, 253
parts of text, replacing 258
substrings, finding 256, 257

relational operators 70
Remoting APIs 547

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

622 Index

REST 545
return statement 94, 95, 359
rules for accessibility

class and struct accessibility 131
class and struct member

accessibility 132
other types and members 132

runtime constants 107
Runtime Identifier (RID) 555
Runtime Infrastructure Library 31
runtime package store

about 32, 34
reference link 34

S
SCP clients 532
SDK version 528
sealed class 159
sealed members 159
second-chance exceptions

debugging 469, 470
security 536
selection statements

about 80
if statement 80, 82
switch statement 83-85

self-contained deployment (SCD)
about 544, 554
publishing 556

set 215
shared assembly 327
Shared property 364
shift operator 71, 72
shim mechanism 545
signature 108
signature, methods

access modifier 108

modifier 108
name 108
parameters 108
return type 108

Silverlight 538
single file publishing 556, 557
single inheritance 151
single responsibility principle 174
singly linked list 209
sln add command 529
sn.exe tool 329
SOLID principles 174, 175
Son Of Strike (SOS) 474
SSH clients 532
SSH daemon 532
stack 206
Stack<T> collection 206-208
stackalloc

using, in nested expressions 520, 521
stack unwinding 455
statement lambda 298
static class 120, 403
static code analysis 479
static constructor 121, 122
static keyword

about 119
static class 120
static constructor 121, 122
static member 119

static local functions 519
static member 119
stream

about 411
adapters 412
architecture 412
backing store category 411
decorators 412
working with 411

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 623

stream classes
overview 412-414

strings
about 44
composing, ways 46
declaring 44
modifying, methods 45

string type 45
strong-name assembly 34
Strong Name tool (sn.exe) 34
structs

disposable patterns 508-510
structures 134-139
stub 562
substrings

finding 256, 257
Swap method 123
switch expression 248, 249, 251
switch statement 83, 84
synchronization context 368, 369, 389-392
synchronization primitives

about 360-366
kernel mode 361
user mode 361

synchronous callbacks 228
system attributes 339
System.Collections.Generic

namespace 198
System.IO namespace

exceptions 399
overview 396-398

System.Object type 325
System.Reflection namespace

type 324
System.Text.Json

about 434, 441
attributes 442
using 441-445

System.Type class
about 325
member 324

T
task

about 375-377
canceling 378-380
creating 373
parallelizing 382-385
signaling, with TaskCompletionSource

object 386-388
task chain

breaking 374, 375
TaskCompletionSource object

task, signaling with 386-388
task paradigm 367-370
task progress

monitoring 381, 382
Task.Run method 373
tasks 350
Task Scheduler 368
ternary conditional operator 73, 74
TestContext object 579, 580
TestData.csv 579
Test Explorer 563
TestIntersectsWith() test method 576
TestMethodAttribute 577
test projects

migrating 549
Text attribute 339
this keyword 118
thread

about 348-352
creating, in .NET 352-357

Thread class 359
thread execution

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

624 Index

blocking 372
ThreadPool class

about 372, 359
using 359, 360

thread-safe collections
using 220

Thread.Sleep method 364, 354
thread starvation 372
ThreadState property 358
TieredCompilation 558
Token property 378
ToString method 358
trait composition 491
Tuple class 239, 240
tuple equality 243
tuples 238
type constraints 183
type conversion

about 63
explicit type conversion 64, 65
implicit type conversion 63, 64
user-defined type conversion 66, 67
with helper classes 67

type parameters
about 178
constraints 191, 193-195

type pattern 246
types, Common Type System (CTS)

reference type 22
value type 22

U
unary operator

overloading 172, 173
unboxing 22, 48, 56, 57
union 215
unit testing

about 561, 562
benefits 562

unit testing project
creating, in Visual Studio 2019 564-566

unit tests
anatomy 574, 576
code coverage, analyzing 572-574
writing 566, 567, 569-571

unmanaged constructed types 521
unsafe code 283-287
user-defined attributes 339-341
user-defined type conversions 66, 67
using declaration 506
using statement 275, 276
Utf8Json

reference link 445

V
ValueTask classes 371
ValueTask immutable struct 372
value tuples 238, 240, 243-245
value type 53, 54, 134, 478
variable number of arguments

methods 128
variables

about 48, 49
array elements 48
class fields 48
implicitly-typed variables 50
lifetime 51, 52
local variables 48
method parameters 48
naming convention 49, 50
scope 51, 52

variant generic interfaces 185,
187, 188, 189

var pattern 246

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 625

verbatim identifiers 49
Virtual Execution System (VES) 26
virtual invocation 160
virtual members 155, 156
Virtual Private Network (VPN) 367
Visual Studio 2019

unit testing project, creating 564-566
Visual Studio Code 533

reference link 533

W
WebAPI 550
WebAssembly 530
Web Assembly System Interface

(WASI) 530
while loop 88, 89
WindowsBase.dll 329
Windows Communication

Foundation (WCF) 545
Windows Compatibility Pack

NuGet package 545
Windows Hyper-V 531
Windows Management

Instrumentation (WMI) 535

Windows Phone 8 538
Windows Presentation

Foundation (WPF) 29
Windows Registry 535
Windows Subsystem for Linux (WSL) 531
Windows Terminal application 527
Windows Workflow Foundation 546
Worker method 354, 359
WSL 1 531

X
Xamarin 32
XML

deserializing 422, 424-430, 432-434
serializing 422-427, 429, 430, 432-434

XML Schema Definition Tool 424
XML Serializer Generator tool 424
xUnit 563

Y
yield statement 96, 98

 EBSCOhost - printed on 2/9/2023 10:04 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title page
	Copyright and Credits
	Dedication
	About Packt
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Starting with the Building Blocks of C#
	The history of C#
	Understanding the CLI
	Common Type System (CTS)
	Common Language Specification (CLS)
	Common Intermediate Language (CIL)
	Virtual Execution System (VES)

	The .NET family of frameworks
	.NET Framework
	.NET Core
	Xamarin

	Assemblies in .NET
	Global Assembly Cache (GAC)
	Runtime package store

	Understanding the basic structure of
a C# program
	Summary
	Test what you learned

	Chapter 2: Data Types and Operators
	Basic data types
	The integral types
	The floating-point types
	The decimal type
	The char type
	The bool type
	The string type
	The object type

	Variables
	Naming convention
	Implicity-typed variables
	Understanding the scope and lifetime of variables

	Understanding constants
	Reference types and value types
	Value types
	Reference types
	Boxing and unboxing

	Nullable types
	Arrays
	One-dimensional arrays
	Multi-dimensional arrays
	Jagged arrays

	Type conversion
	Implicit type conversion
	Explicit type conversion
	User-defined type conversions
	Conversions with helper classes

	Operators
	Arithmetic operators
	Relational operators
	Logical operators
	Bitwise and shift operators
	Assignment operators
	Other operators

	Summary
	Test what you learned

	Chapter 3: Control Statements and Exceptions
	Understanding control statements
	Selection statements
	Iteration statements
	The jump statements

	Exception handling
	Summary
	Test what you learned

	Chapter 4: Understanding
the Various
User-Defined Types
	Classes and objects
	Fields
	Methods
	Constructors
	Properties
	Indexers
	The this keyword
	The static keyword
	The ref, in, and out parameters
	Methods with a variable number of arguments
	Named and optional arguments
	Access modifiers
	Partial classes

	Structures
	Enumerations
	Namespaces
	Summary
	Test what you learned

	Chapter 5: Object-Oriented Programming in C#
	Understanding OOP
	Abstraction
	Encapsulation
	Inheritance
	Virtual members
	Abstract classes and members
	Sealed classes and members
	Hiding base class members
	Interfaces

	Polymorphism
	Method overloading
	Operator overloading

	SOLID principles
	Summary
	Test what you learned
	Further Reading

	Chapter 6: Generics
	Understanding generics
	Generic types
	Generic classes
	Inheritance with generic classes
	Generic interfaces
	Variant generic interfaces
	Generic structures

	Generic methods
	Type parameter constraints
	Summary
	Test what you learned

	Chapter 7: Collections
	Introducing the System.Collections.Generic namespace
	The List<T> collection
	The Stack<T> collection
	The Queue<T> collection
	The LinkedList<T> collection
	The Dictionary<TKey, TValue> collection
	The HashSet<T> collection
	Choosing the right collection type

	Using thread-safe collections
	IProducerConsumerCollection<T>
	BlockingCollection<T>
	ConcurrentQueue<T>
	ConcurrentStack<T>
	ConcurrentBag<T>
	ConcurrentDictionary<TKey, TValue>
	Choosing the right concurrent collection type

	Summary
	Test what you learned

	Chapter 8: Advanced Topics
	Delegates and events
	Delegates
	Events

	Anonymous types
	Tuples
	The Tuple class
	Value tuples

	Pattern matching
	The is expression
	The switch expression

	Regular expressions
	Overview
	Matching input text
	Finding substrings
	Replacing parts of a text

	Extension methods
	Summary
	Test what you learned

	Chapter 9: Resource Management
	Garbage collection
	Finalizers
	The IDisposable interface
	The using statement
	Platform invoke
	Unsafe code
	Summary
	Test what you learned
	Further reading

	Chapter 10: Lambdas, LINQ, and Functional Programming
	Functional programming
	Functions as first-class citizens
	Lambda expressions
	LINQ
	Standard query operators
	Query syntax

	More functional programming concepts
	Partial function application
	Currying
	Closures
	Monoids
	Monads

	Summary
	Test what you learned

	Chapter 11: Reflection and Dynamic Programming
	Understanding reflection
	Dynamically loading assemblies
	Understanding late binding
	Using the dynamic type
	Attributes
	System attributes
	User-defined attributes
	How to use attributes?
	Attribute targets
	Assembly attributes
	Attributes in reflection

	Summary
	Test what you learned

	Chapter 12: Multithreading and Asynchronous Programming
	What is a thread?
	Creating threads in .NET
	Using the ThreadPool class

	Understanding synchronization primitives
	The task paradigm
	Synchronous implementations of asynchronous methods
	Occasionally asynchronous methods
	Breaking the task chain – blocking the thread
	Manually creating a task
	Long-running tasks
	Breaking the task chain – fire and forget
	Task and exceptions
	Canceling a task
	Monitoring the progress of a task
	Parallelizing tasks
	Signaling tasks with the TaskCompletionSource object
	Synchronization context

	Summary
	Test what you learned
	Further reading

	Chapter 13: Files, Streams, and Serialization
	Overview of the System.IO namespace
	Working with paths
	Working with files and directories
	Working with streams
	Overview of the stream classes
	Working with file streams
	Working with memory streams

	Serializing and deserializing XML
	Serializing and deserializing JSON
	Using Json.NET
	Using System.Text.Json

	Summary
	Test what you learned

	Chapter 14: Error Handling
	Errors
	Exceptions
	Catching exceptions
	The exception objects
	Conditional catch
	Throwing exceptions
	Creating a custom exception type
	Rethrowing an exception
	The finally block

	Debugging and monitoring exceptions
	Debugging second-chance exceptions
	Debugging first-chance exceptions
	AppDomain exception events
	Logging exceptions

	Summary
	Test what you learned
	Further reading

	Chapter 15: New Features
of C# 8
	Nullable reference types
	Enabling the nullable reference type feature
	Working with nullable reference types
	Migrating existing code to nullable reference types

	Default implementation of interface members
	Interface versioning
	Interface reabstraction
	Interfaces as traits

	Ranges and indices
	Pattern matching
	Recursive pattern matching

	The using declaration
	Asynchronous Dispose
	Disposable patterns in structs and ref structs
	Asynchronous streams
	Readonly struct members
	Null coalescing assignment
	Static local functions
	Better interpolated verbatim strings
	Using stackalloc in nested expressions
	Unmanaged constructed types
	Summary
	Test what you learned
	Further reading

	Chapter 16: C# in Action with .NET Core 3
	Using the .NET command-line interface (CLI)
	Developing on Linux distributions
	Preparing the development box
	Writing cross-platform aware code

	What .NET Standard is and how can it help the application design
	Creating a .NET Standard library

	Consuming NuGet packages
	Adding packages to a project

	Migrating from .NET Framework to .NET Core
	Analyzing your architecture
	Preparing the migration process
	Migrating the libraries
	Migrating the tests
	Migrating the desktop projects
	Migrating ASP.NET projects
	Summing up the migration steps

	Publishing an application
	Publishing as an FDD
	Publishing as an SCD
	Understanding other publishing options

	Summary
	Test what you learned
	Further reading

	Chapter 17: Unit Testing
	What is unit testing?
	What are Microsoft tools for unit testing?
	Creating a C# unit testing project
	Writing unit tests
	Analyzing code coverage
	The anatomy of a test

	Writing data-driven unit tests
	Data from attributes
	Dynamic data
	Data from external sources

	Summary
	Test what you learned

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Index

