
C
o
p
y
r
i
g
h
t
 
 
2
0
2
0
.
 
D
e
 
G
r
u
y
t
e
r
.
 
A
l
l
 
r
i
g
h
t
s
 
r
e
s
e
r
v
e
d
.
 
M
a
y
 
n
o
t
 
b
e
 
r
e
p
r
o
d
u
c
e
d
 
i
n
 
a
n
y
 
f
o
r
m
 
w
i
t
h
o
u
t
 
p
e
r
m
i
s
s
i
o
n
 
f
r
o
m
 
t
h
e
 
p
u
b
l
i
s
h
e
r
,
 

e
x
c
e
p
t
 
f
a
i
r
 
u
s
e
s
 
p
e
r
m
i
t
t
e
d
 
u
n
d
e
r
 
U
.
S
.
 
o
r
 
a
p
p
l
i
c
a
b
l
e
 
c
o
p
y
r
i
g
h
t
 
l
a
w
.
 

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/13/2023 7:54 PM via 
AN: 2483372 ; Igor Gaynitdinovich Kuleyev, Ivan Igorevich Kuleyev, Sergey 
Mikhailovich Bakharev, Vladimir Vasilyevich Ustinov.; Phonon Focusing and Phonon 
Transport : In Single-Crystal Nanostructures 
Account: ns335141



Igor G. Kuleyev, Ivan I. Kuleyev, Sergey M. Bakharev, Vladimir V. Ustinov
Phonon Focusing and Phonon Transport

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



Texts and Monographs in
Theoretical Physics

Edited by
Michael Efroimsky, Bethesda, Maryland, USA
Leonard Gamberg, Reading, Pennsylvania, USA

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



Igor G. Kuleyev, Ivan I. Kuleyev,
Sergey M. Bakharev, Vladimir V. Ustinov

Phonon Focusing
and Phonon
Transport
In Single-Crystal Nanostructures

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



Physics and Astronomy Classification 2010
65.80.-g; 62.23.Hj; 66.70.Df; 62.30.+d

Authors
Dr. Igor G. Kuleyev
Institute of Metal Physics
Ekaterinburg
Russian Federation
kuleev@imp.uran.ru

Dr. Ivan I. Kuleyev
Institute of Metal Physics
Ekaterinburg
Russian Federation
kuleyevII@imp.uran.ru

Dr. Sergey M. Bakharev
Institute of Metal Physics
Ekaterinburg
Russian Federation
bakharevsm@imp.uran.ru

Dr. Vladimir V. Ustinov
Institute of Metal Physics
Ekaterinburg
Russian Federation
ustinov@imp.uran.ru

ISBN 978-3-11-067039-4
e-ISBN (PDF) 978-3-11-067050-9
e-ISBN (EPUB) 978-3-11-067057-8
ISSN 2627-3934

Library of Congress Control Number: 2020931493

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2020 Walter de Gruyter GmbH, Berlin/Boston
Cover image: Filograph/iStock/Getty Images Plus
Typesetting: Integra Software Services Pvt. Ltd.
Printing and binding: CPI books GmbH, Leck

www.degruyter.com

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://dnb.dnb.de
http://www.degruyter.com


Contents

Abstract IX

Introduction 1

Chapter 1
Propagation of Elastic Waves and Phonon Focusing in Cubic Crystals 8
1.1 Dynamic Characteristics of Phonons in Cubic Crystals within the

Anisotropic Continuum Model 9
1.2 Approximation of the Spectrum of Thermal Phonons in Cubic

Crystals 25
1.3 Calculation of Heat capacity of Si and Ge Crystals Using the

Approximation Phonon Spectrum 33
1.4 Group Velocity and Peculiarities of the Phonon Propagation in

Cubic Crystals with Various Types of Elastic Energy
Anisotropy 36

1.5 The Influence of Focusing on the Density of Phonon States in
Cubic Crystals 39

1.6 Phonon Flux Enhancement Factor 58
1.6.1 Analytic Calculation of the Phonon Flux Enhancement Factor 59
1.6.2 Analysis of the Angular Dependencies of the Enhancement

Factor 64
1.7 Conclusion 73

Chapter 2
Phonon Relaxation Times during Diffuse Scattering at the Boundaries of
monocrystalline Finite-Length Samples 75
2.1 Phonon Relaxation at the Boundaries of Infinite-Length Samples

with Circular, Square-Shaped, and Rectangular Cross-
Section 76

2.2 Phonon Relaxation Times during Diffuse Scattering at the
Boundaries of Finite-Length Samples with Circular, Square-
Shaped, and Rectangular Cross-Sections 82

2.3 Anisotropy of Mean Free Paths of Phonons in Silicon Samples
with Circular and Square-Shaped Cross-Sections at Low
Temperatures 88

2.4 The Influence of Focusing on Phonon Transport in Silicon Crystals
with a Rectangular Cross-Section at Low Temperatures 94

2.5 Conclusion 98

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 3
Anisotropy and Temperature Dependencies of Thermal Conductivity of Bulk
Silicon Samples 99
3.1 Normal Phonon–Phonon Scattering Processes and Lattice

Thermal Conductivity of Cubic Crystals 100
3.2 Relaxation Mechanisms and Thermal Conductivity of Silicon

Crystals 103
3.3 Analysis of the Temperature Dependencies of Thermal

Conductivity for Square-Shaped and Rectangular Cross-Section
Si Samples 108

3.4 Change in Anisotropy of Thermal Conductivity in Silicon Crystals
with Temperature 115

3.5 Physical Interpretation of McCurdy Effects in Thermal
Conductivity of Cubic Crystals 118

3.6 Conclusion 123

Chapter 4
Thermal Conductivity of monocrystalline Nanostructures with Various Types
of Elastic Anisotropy Energy at Low Temperatures 125
4.1 Phonon Mean Free Paths in monocrystalline Nanostructures 126
4.2 The Influence of Geometric Parameters on Anisotropy of Phonon

Mean Free Paths in Films and Nanowires 129
4.2.1 Casimir Lengths in Elastically Anisotropic Nanostructures 130
4.2.2 Dependencies of Mean Free Paths of Phonons on Geometric

Parameters in Nanostructures with Different Type of Anisotropy
of Elastic Energy 134

4.2.3 Dependencies of Thermal Conductivity Anisotropy on the Lengths
of monocrystalline Films 137

4.3 The Influence of Focusing on the Density of Phonon States and
Phonon Mean Free Paths in Nanowires with Different Types of
Elastic Energy Anisotropy 140

4.4 Change in Thermal Conductivity Anisotropy When Transitioning
from Nanowires to Square-Shaped Films with Different Plane
Orientation 146

4.5 Conclusion 151

Chapter 5
Phonon Propagation and Phonon Transport in Films with Different Types
of Elastic Energy Anisotropy 153
5.1 Thermal Conductivity Anisotropy of Square-Shaped Films with

Different Plane Orientation 153

VI Contents

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.2 Peculiarities of Thermal Conductivity of Long Films with Different
Types of Elastic Energy Anisotropy 160

5.3 Influence of Focusing on the Propagation of Phonon Modes
in Square-Shaped Films with the {100} and {111}
Plane’s Orientations 163

5.4 Conclusion 170

Chapter 6
Anisotropy and Temperature Dependencies of Thermal Conductivity
of Silicon Films and Nanowires 172
6.1 Phonon Transport in Silicon Nanowires 173
6.1.1 Temperature Dependencies of Thermal Conductivity of Silicon

Nanowires 173
6.1.2 Anisotropy of the Thermal Conductivity of Silicon Nanowires 179
6.2 Phonon Transport in Silicon Films 182
6.2.1 Temperature Dependencies of Thermal Conductivity of Silicon

Films 182
6.2.2 Anisotropy of the Thermal Conductivity of Silicon Films 193
6.3 Conclusion 197

Chapter 7
Prospects for Further Research 198

Bibliography 203

Index 209

Contents VII

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



Abstract

The monograph is devoted to the investigation of physical processes that govern
phonon transport in bulk and nanoscale samples of cubic symmetry. A series of
works the authors have carried out over the past six years underlies the monograph.
The main attention has been paid to the study of phonon, focusing in cubic crystals
and its influence on boundary scattering and lattice thermal conductivity of bulk
materials and nanostructures. An analytical solution to the problem of the Knudsen
phonon gas flow in finite-length samples with circular, square-shaped, and rectan-
gular cross-sections is given. Phonon transport is described for nanostructures with
different types of elastic energy anisotropy at low temperatures when diffuse pho-
non scattering at the boundaries is the dominant relaxation mechanism. The influ-
ence of the phonon focusing on the dependencies of phonon mean free paths on
the geometric parameters of nanostructures for different directions of phonon heat
flux and film orientations relative to the axes of the crystals is accounted for. The
film orientations and directions of the heat flux, which provide maximum or mini-
mum heat removal from elements of semiconductor chips, are determined. The tem-
perature dependencies of the thermal conductivity of silicon nanowires and thin
films are calculated within the three-mode Callaway model.

The monograph is addressed to researchers in the field of condensed matter
physics, as well as teachers, graduate students, and students of physical and tech-
nical universities.

Translation by
Yu G. Gorelykh, PhD, Physical and Mathematical Sciences

https://doi.org/10.1515/9783110670509-203
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Introduction

The monograph is devoted to the study of physical processes that underlie phonon
transport in bulk and nanoscale monocrystalline samples of cubic symmetry. An
important aspect of this problem is to investigate the influence of focusing on the
propagation of phonon modes and the thermal conductivity of monocrystalline
films and nanowires. Moreover, close attention is required for research on disper-
sion and relaxation mechanisms of the phonon momentum, which govern the de-
pendencies of kinetic characteristics on temperature and geometric parameters for
different directions of heat flux in nanowires and the orientation of the film planes.

In light of the development of technology on manufacturing nanofilms and nano-
wires and of their widespread use in microelectronics, interest in the study of their
heat-conducting properties has recently grown dramatically [1–7]. Peculiarities of
phonon transport in such structures are due to the fact that the mean free paths of
phonons in a wide temperature range turn out to be greater than or comparable with
the characteristic sizes of samples in the nanometre scale. Therefore, phonon scatter-
ing at the boundaries plays an important role in the thermal resistance of nanoscale
materials in the temperature range from helium to room temperature. In this case,
the mean free path of phonons is determined by the nature of the phonon-surface
interaction. Such a situation, when diffuse phonon scattering at the boundaries is a
dominant relaxation mechanism, is commonly called the phonon-boundary scatter-
ing regime. According to [8, 9], the diffuse nature of phonon scattering occurs if the
geometric parameters of the roughness at the sample boundary are greater than or
comparable with the phonon wavelength. In bulk materials, the phonon-boundary
scattering regime takes place at rather low temperatures, when the phonon–phonon
relaxation mechanisms are frozen out. In this case, the propagation of heat flux
along a dielectric rod can be treated as the flow of a rarefied gas through a tube. In
the event of passing a rarefied molecular gas through a tube, collisions of the gas
molecules with each other can be neglected and the flow magnitude is assumed to
be controlled by the nature of the molecule–surface interaction (see, e.g., [10, 11]).
In 1909, M.H.C. Knudsen solved the problem of the flow of a rarefied gas through a
circular cross-section infinite-length tube and showed that, with diffuse scattering of
the gas molecules at the boundaries, the mean free path of the molecules is equal to
the diameter of the tube [12].

In 1938, H. Casimir was the first to pose the problem of thermal conductivity
of a thin dielectric infinite-length rod in the model of an isotropic medium [13]. He
analysed the case of diffuse phonon scattering at the sample boundaries. Casimir
suggested that, when impacted with the surface, all phonons are absorbed and then
re-emitted isotropically into half-space towards inside the sample, with the intensity
depending on the surface temperature and following the theory of black-body radia-
tion. He revealed that the mean free path of phonons in a cylindrical infinite-length

https://doi.org/10.1515/9783110670509-001
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rod is equal to its diameter. In this regard, the mean free paths of phonons in infi-
nite-length samples are referred to as the Casimir lengths. The findings obtained
coincide with the result of Knudsen [12] for the flow of a rarefied molecular gas
through a circular cross-section infinite tube. Therefore, the phonon-boundary
scattering regime is called the Knudsen phonon-gas flow regime. Later, Berman
and colleagues examined the influence of partially mirror reflection of phonons
from the surface of the sample, as well as the influence of finite length on con-
ductivity in the boundary scattering regime [14, 15]. It was shown that the thermal
conductivity of the finite-length sample diminishes by a magnitude of the order
of the ratio of the sample width to its length, compared to an infinite sample.
However, no analytical expressions for corrections to the thermal conductivity
due to the finite length of the sample were derived.

Anisotropy of the elastic properties of crystals poses a number of new effects in
phonon transport. Among them is phonon focusing. In [16–18], it has been shown that
due to the non-collinearity of the phase and group velocities, phonon flux emitted by
a point heat source focuses along certain directions in the crystal lattice. Experimental
studies carried out by McCurdy et al. [19] have proved that phonon focusing causes
two effects concerning the thermal conductivity of cubic crystals in the boundary scat-
tering regime. The former exhibits the kðTÞ dependence of the thermal conductivity on
the direction of the temperature gradient T relative to the crystallographic axes:
for square-shaped cross-section Si samples, the thermal conductivity in the [001]
direction at low temperatures turned out to be 40% and 50% higher than in the
[011] and [111] directions. For CaF2 crystals, the opposite is true: the thermal con-
ductivity in the [001] direction is 40% less than that in the [111] direction. The lat-
ter makes itself felt in the dependence of the thermal conductivity of rectangular
cross-section samples on the orientation of the side faces at low temperatures. For
two samples having the same geometric parameters and the [110] temperature gra-
dient direction, the thermal conductivity of the sample with {001} wide and nar-
row {110} faces appears to be 33% higher than that of a sample with {110} wide
and {001} narrow faces. At temperatures above the maximum of kðTÞ, the phonon
mean free path becomes less than the transverse dimensions of the sample, the
thermal conductivity of cubic crystals becomes isotropic, and it does not depend
on the direction of the heat flux in the crystal.

In [19], the Casimir theory has been generalized to the case of elastically aniso-
tropic crystals. It was assumed that the heat flux and temperature distribution are
uniform along the sample length, with a plane of mirror symmetry being perpendic-
ular to the direction of the heat flux. Under these assumptions, the mean free paths
of phonons in Si and CaF2 samples were calculated for symmetric directions at a
temperature of 3K. The resulting values were consistent with the experimental data
of [19] at T = 3K, with an error not exceeding 8%. As to finite-length samples, the
authors of [19] failed to deduce analytical expressions for the relaxation times of
phonons involving in diffuse boundary scattering within the Casimir theory [13]
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and to establish the temperature dependencies of thermal conductivity. Therefore,
over the 40 years since the publication of [19], none of the works devoted to study
the phonon focusing effect on the temperature dependencies of the thermal con-
ductivity of dielectric crystals has been done. Such a calculation was performed
in [20, 21]. This made it possible to find the relaxation times of phonons of various
polarizations during diffuse phonon-boundary scattering for finite-length samples
with circular, square-shaped, and rectangular cross-sections. For this purpose,
piecewise smooth functions for various angle intervals were utilized through the
relations between the group velocity components and the geometric parameters of
the samples.

To correctly explain the phenomena discovered in [19], two orientation parameters
that take into account the dependencies of the kinetic characteristics on the direction
of heat flux [I] and the orientation of the film plane { J} (or a wide face of the sample)
should be introduced for calculating the thermal conductivity of monocrystalline
samples. Bearing in mind phonon focusing, it was shown that the orientation parame-
ters {I} and { J} can be determined through the group velocity components parallel and
perpendicular to the heat flux direction [22]. This method and analytical solutions in
[20, 21] allowed one to adequately describe the experimental data on the thermal con-
ductivity of silicon crystals [19] over the entire temperature range for all directions of
the temperature gradient and all orientations of the side faces for rectangular cross-
section samples [22].

Until now, to analyse the temperature dependencies of thermal conductivity for
phonon relaxation rates at the boundaries and in anharmonic scattering processes,
fitting parameters have always been introduced to compensate for the flaws of the-
oretical models underlying their calculations. As to phonon-boundary scattering,
these parameters were earlier necessary to take into account the influence of geo-
metric parameters and orientations of the side faces of samples, as well as heat flux
directions on the thermal conductivity of semiconductor and dielectric crystals.
However, with a view to getting rid of them, the problem of the Knudsen phonon
gas flow was analytically solved. It has been shown that, in the temperature range
from 3 to 15 K, when phonon scattering dominates at the boundaries and by isotopic
disorder, our theory holds true. It quantitatively describes the temperature depen-
dencies of Si thermal conductivity for all heat flux directions in square-shaped
cross-section samples and the dependence on the orientation of the side faces for
rectangular cross-section samples, without using the fitting parameters. In calculat-
ing the relaxation characteristics of phonons and phonon transport in elastically
anisotropic crystals, the method of accounting for phonon focusing [20–22] was
used in [23, 24] to build the temperature dependencies of thermal conductivity of
silicon nanowires with diameters of 115 and 56 nm and films with thicknesses of
1.6, 0.83, 0.42, 0.1, and 0.02 μm. The three-mode Callaway model agrees well with
the experimental data of [4–7] for the thermal conductivity of films and nanowires
in the temperature range from 20K to 350K.

Introduction 3
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The method proposed is relevant, since a significant number of publications de-
voted to the study of phonon transport in films and nanowires ignore the effects
caused by phonon focusing. For example, in [25, 26], the Casimir theory [13] is used
for the boundary scattering in silicon- and diamond-based nanostructures. However,
it is valid only for the model of an isotropic medium. In turn, the isotropic medium
model is also applied for interpreting the experimental results in the reviews [1–3]:
the directions of the heat flux and the orientation of the film planes relative to the
crystallographic axes are omitted. In the works [23, 27], it is shown that, depending
on the temperature gradient direction, the thermal conductivity values for nanowires
can vary by 1.5–2 times and a change in the orientation of the film plane can lead to
an increase in the thermal conductivity by 2–2.5 times. Therefore, neglecting of orien-
tation data makes the results uninformative. Obviously, the isotropic medium model
utilized in interpreting experimental data on the thermal conductivity of nanostruc-
tures contributes to errors of up to 250%.

The papers [5–7, 28, 29] explore the phonon-boundary scattering in sufficiently
thin films (the film thickness is much smaller than its width) within the isotropic
medium model in the same way as was done in the works of Fuchs [30] and
Sondheimer [31] in analysing the conductivity of thin metal films. In doing so, the
mean free paths and phonon relaxation times in the films were assumed to depend
only on their thicknesses [5–7, 28–31]. This result is incorrect. According to [25, 32],
the thermal conductivity of the films and phonon mean free paths within the isotro-
pic medium model substantially depends on their geometric dimensions. Even more,
the Casimir lengths diverge logarithmically as the film width tends to infinity. As
noted in [24, 31], it is phonons that propagate almost parallel to the film plane bring
to this divergence. Previously, the issue of the influence of the finite width of films on
the divergence of the Casimir lengths has left aside. Also, many important problems
such as the influence of elastic anisotropy of cubic crystals on the dependencies of
thermal conductivity on the geometric parameters of nanostructures, as well as on
the heat flux directions and the film plane orientations relative to the crystal axes
have escaped the attention of researchers. A solution to these problems would help
determine the optimal orientations of the film planes and the directions of heat flux
to provide the maximum or minimum heat removal from the elements of microcir-
cuits. These challenging objectives are as relevant as ever not only for silicon films
widely used in microelectronics but also for other semiconductor microstructures to
manufacture [1–7, 28, 29]. Therefore, the discussion of these difficult tasks should be
dwelled on. The work [27] examines the influence of elastic anisotropy of cubic crys-
tals on the dependence of the thermal conductivity of films on their geometric param-
eters. It is shown that the divergence above specified can be eliminated through
making allowance for the finite length of the films.

Research of the dependence of the thermal conductivity of nanostructures on
geometric parameters is of great interest for technical applications of the theory
elaborated in this monograph. One of the important goals of the present work is to
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analyse the influence of focusing on the propagation of phonon modes and the an-
isotropy of the thermal conductivity of monocrystalline films and nanowires within
the framework of the Casimir-McCurdy phenomenological method [13, 19]. This
method offers to exploit a three-dimensional phonon spectrum. Therefore, there
arise natural restrictions on the diameters of nanowires and film thicknesses, under
which the influence of spatial confinement on the spectrum acoustic modes can be
neglected. An analysis performed in [4–7, 23, 24] showed that for nanowires with
diameters greater than 50 nm and films with thicknesses greater than 20 nm in the
temperature range from 20 to 50 K, the thermal conductivity repeats the depen-
dence kðTÞ⁓T3, as the heat capacity of bulk samples does it in the Debye theory.
Therefore, the restrictions afore-indicated give the right to ignore the influence of
spatial confinement on the spectrum of acoustic modes. Calculations of the tem-
perature dependencies of the thermal conductivity of silicon films and nanowires
in [23, 24] confirm this conclusion.

It should be noted that the numerical method such as the molecular dynamics
method ensures no sufficiently infallible results in calculating the temperature de-
pendencies of the thermal conductivity when accounting for phonon focusing. The
calculation of thermal conductivity in [33, 34] led to mutually opposite findings for
the thermal conductivity anisotropy in symmetrical directions. It was found in [34]
that the thermal conductivity of diamond nanowires in the [011] directions is much
larger than that in the [001] and [111] directions. This result contradicts the experi-
mental data of McCurdy et al. [19] and our analysis. According to [19–22], the thermal
conductivity maxima for Ge, Si crystals, and diamond in the low-temperature region
should be observed in the [001] directions. They are due to a slow transverse mode,
which focuses precisely in these directions. The results of [33] for the thermal con-
ductivity anisotropy are in qualitative agreement with the calculations of [20, 21]
and experimental data in [19].

However, the calculations in [33] claim that significant anisotropy of thermal
conductivity occurs at temperatures well above the temperature of maximum ther-
mal conductivity. This contradicts the data of [19]. The latter holds that at temper-
atures above the thermal conductivity maximum, a transition to bulk relaxation
mechanisms occurs, and the thermal conductivity anisotropy quickly disappears.

The first chapter analyses the Christoffel equation and calculates the dynamic
characteristics of phonons in cubic crystals within the anisotropic continuum model.
It has been shown that all cubic crystals can be divided into two types depending on
the value of the anisotropy parameter: crystals with positive and negative anisotropy
of second-order elastic moduli. A method is proposed for approximating the phonon
spectrum of cubic crystals, which is obtained from data on inelastic neutron scatter-
ing for symmetric directions over the entire Brillouin zone. A study of phonon focus-
ing in cubic crystals with various types of anisotropy of elastic energy has shown
that focusing directions in the first type crystals become defocusing directions in
the second type crystals and vice versa. The influence of focusing on the angular
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distribution of the density of phonon states (DPS) is analysed. It has been shown
that, in elastically anisotropic crystals, the maximum and minimum DPS values are
achieved in phonon focusing and defocusing regions, respectively. Therefore, the
DPS maxima directions in type-I crystals turn into the minima directions in type-II
crystals. Peculiarities of the propagation of phonon pulses in cubic crystals with vari-
ous types of anisotropy of elastic energy are investigated. An exact analytical expres-
sion for the enhancement factor of the phonon flux is derived. Also, the behaviour
features of the coefficient are analysed depending on the type of curvature of the iso-
energetic surface.

The second chapter presents an analytical solution to the problem of the
Knudsen phonon gas flow in circular, square-shaped, and rectangular cross-section
finite-length samples. The relaxation times for diffuse phonon scattering at the bound-
aries are represented in the form of piecewise-smooth functions for various intervals
of angles. The latter are determined by the relations between the group velocity com-
ponents and the geometric parameters of the samples. It has been shown that square-
shaped and circular cross-section samples produce the maximum phonon mean free
paths for each vibrational mode in the focusing directions, exceeding those of the
other vibrational modes in these directions. An analytical solution to the problem of
diffuse phonon scattering at the boundaries and determination of the phonon relaxa-
tion times make it possible to get rid of fitting parameters in calculating the thermal
conductivity of bulk single crystals and nanostructured samples.

The third chapter develops a method of accounting for phonon focusing to com-
pute the thermal conductivity of monocrystalline samples. The method proposed and
the phonon relaxation times calculated allow one to adequately describe the temper-
ature dependencies of the thermal conductivity of square-shaped and rectangular
cross-section silicon crystals to explain both effects discovered by McCurdy for ther-
mal conductivity. The theory [20–22] quantitatively sets forth the temperature depen-
dencies of the thermal conductivity of silicon crystals within the experimental error
for all samples and both effects discovered by McCurdy [19] without applying fitting
parameters. This is true for the temperature range from 3 to 15 K when scattering at
the boundaries and by isotopic disorder dominates.

The fourth chapter investigates phonon transport in nanostructures with
various types of anisotropy of elastic energy at low temperatures when diffuse
phonon scattering at the boundaries is a dominant relaxation mechanism. A cor-
relation between the angular dependences of the densities of phonon states (DPS)
and mean free paths of quasi-transverse modes is established. It has been shown
that, thanks to the focusing effect, in elastically anisotropic crystals there arise
regions of directions of the maximum mean free path and maximum DPS values.
The influence of phonon focusing on the dependencies of phonon mean free
paths on the geometric parameters of nanostructures for different directions of
heat flux and orientations of film planes relative to the crystal axes is explored.
The orientations of the film planes and the heat flux directions that provide the
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maximum or minimum heat removal from the elements of semiconductor micro-
circuits are identified.

The fifth chapter discusses the influence of anisotropy of elastic energy on pho-
non transport in monocrystalline films in the regime of the Knudsen phonon-gas
flow. The influence of focusing on the propagation of phonons and thermal conduc-
tivity of films with various types of anisotropy of elastic energy is explored. The phys-
ical causes leading to the anisotropy of thermal conductivity for heat flux in the
planes of films with various types of anisotropy of elastic energy and various ratios of
geometric parameters are found. It has been shown that the anisotropy of the thermal
conductivity of the films substantially depends on their orientation.

The sixth chapter deals with calculating the temperature dependencies of the
thermal conductivity of silicon nanowires and thin films in the framework of the
three-mode Callaway model. The method proposed and the phonon relaxation times
calculated make it possible to reconcile the results of calculating the temperature de-
pendencies of the thermal conductivity of larger than 50-nm-diameter silicon nano-
wires and larger than thickness 20-nm films with experimental data. It has been
shown that, both at low and at room temperatures, the {100} and {111} orientations of
Si films generate maximum and minimum thermal conductivity, respectively. The
role of boundary scattering at room temperature is investigated. The contribution of
boundary scattering to the heat resistance reaches 60% for nanowires with a diame-
ter of 56 nm and films with a thickness of 20 nm, respectively.

The seventh chapter discusses unresolved problems of the influence of phonon
focusing on phonon transport and thermoelectric effects due to electron-phonon drag
in elastically anisotropic crystals and nanostructures based on them.

Introduction 7
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Chapter 1
Propagation of Elastic Waves and Phonon Focusing
in Cubic Crystals

A significant number of publications devoted to analysing thermal conductivity,
both in bulk materials [9, 13, 35, 36] and nanostructures [5, 6, 7, 25, 37], have used
an isotropic medium model for the spectrum and phonon polarization vectors.
Through isotropic media, only purely longitudinal and purely transverse vibrational
modes propagate, with the latter being degenerate. This model is not adequate for
conducting the analysis of phonon transport and absorption ultrasound in elasti-
cally anisotropic crystals (see, for example [19, 27, 38–40]). In the long-wave approx-
imation, when the wave vector of a phonon is much smaller than the Debye wave
vector, the anisotropic continuum model is a suitable approximation. This model al-
lows one to calculate the elastic energy of a cubic crystal using three second-order
elastic moduli [41–43]. For most crystals, they are experimentally determined.

Anisotropy of elastic energy leads to a number of new effects in the dynamic
characteristics of elastic waves and phonon transport of cubic crystals. Firstly, quasi-
longitudinal or quasi-transverse vibrations can propagate in cubic crystals, whereas
pure modes [27, 40–43] propagate only in symmetrical directions, such as [100],
[110], and [111]. Secondly, the phonon spectrum becomes anisotropic, and the degen-
eracy of the transverse vibrational modes is removed. A detailed analysis of the dy-
namic characteristics of elastic waves in cubic crystals was carried out in [44] (see
also Section 1.1). It shows that the contribution of the transverse component to quasi-
longitudinal vibrations in cubic crystals is small and can be left aside. On the con-
trary, the contribution of the longitudinal components to quasi-transverse modes is
not small and, therefore, it needs to be accounted for calculating the relaxation
characteristics of phonon systems. Due to their elastic properties, cubic crystals
can be divided into two types: crystals with positive (type-I) and negative (type-II)
anisotropy of second-order elastic moduli [44]. The shape of the spectrum of vi-
brational branches for such crystals differs qualitatively compared to the phonon
spectra within one type of crystal where they differ quantitatively. Thirdly, the an-
isotropy of the elastic properties of cubic crystals leads to non-collinearity of the
group and phase velocities of phonons and, accordingly, to focusing or defocusing of
vibrational modes [16–18, 45]. Phonons mainly propagate in the focusing directions:
their density of states can be significantly larger than in the isotropic medium model.
Whereas in the directions close to the defocusing directions, the density of states of
vibrational modes can be much lower than in the isotropic medium model. We have
shown that apart from qualitative differences in not only the spectrum anisotropy
and the behavior of the polarization vectors for the first- and second-type crystals,
the effects of phonon focusing can also emerge in different ways. For crystals of one
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type, the directions of focusing and defocusing of the vibrational modes coincide. As
for crystals of various types, these directions are opposite: the focusing directions in
the first-type crystals turn into the directions of defocusing in the second-type crys-
tals. At low temperatures when the phonon mean free path exceeds the transverse
size of the sample, a qualitative difference in the anisotropy phonon transport in
cubic crystals of various types can appear.

Section 1.1 deals with the calculation of the dynamic characteristics of phonons
in cubic crystals within the anisotropic continuum model. Section 1.2 offers a method
that allows approximating the phonon spectrum found from inelastic neutron scat-
tering data for symmetric directions, over the entire Brillouin zone for cubic crystals.
Section 1.3 evaluates the heat capacity of Si and Ge crystals using the approximation
phonon spectrum. Section 1.4 analyses the influence of focusing on group velocities
and features of phonon propagation in cubic crystals with various types of anisot-
ropy of elastic energy. Section 1.5 covers the investigation of the influence of the elas-
tic energy anisotropy on the density of phonon states in cubic crystals with various
types of anisotropy of elastic energy. Section 1.6 discusses the enhancement factor of
phonon flux.

1.1 Dynamic Characteristics of Phonons in Cubic Crystals
within the Anisotropic Continuum Model

The phenomenological theory of elasticity regards a crystal in an undeformed equi-
librium state as a continuum with a constant density ρ. When exposed to an exter-
nal force, the crystal becomes deformed, and the relative positions of the particles
change. In this case, the state of the crystal is described by the vector displacement
field u r, tð Þ= u1, u2, u3ð Þ, which defines the displacement at time t of some point
having the coordinate r= x1, x2, x3ð Þ in equilibrium. Such a description is applicable
when the displacements of neighbouring atoms in a crystal are much smaller than
the distance between them. Consequently, they can be represented as a continu-
ously and slowly changing displacement field [41–43, 46, 47]. To characterize the
continuum deformation, a symmetric strain tensor ηik i, j= 1, 2, 3ð Þ should be entered
[41–43]:

ηik =
1
2

∂ui
∂xk

+ ∂uk
∂xi

+
X
j

∂uj
∂xi

∂uj
∂xk

 !
≡
1
2

ξ ik + ξki +
X
j

ξ jiξ jk

 !
, (1:1)

where ξ ij = ∂ui ∂xj
�

are the components of the distortion tensor. In the case of small
strains ðξ ij < < 1Þ, we neglect the terms of the second order of smallness. Then, the
strain tensor takes the form:
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ηik =
1
2

ξ ik + ξkið Þ. (1:2)

The theory of elasticity (stress) represents forces as surface ones that must be de-
scribed by a symmetric stress tensor σij [41–43]. The symmetry of σij arises from the
requirement of vanishing the force moments at equilibrium. In the case of small
stresses, the relationship between stresses and strains, according to Hooke’s law,
are linear and expressed through a fourth-rank tensor or an elastic modulus tensor
cikmn [41–43, 46, 47]:

σik =
X
m, n

cikmnεmn. (1:3)

The density of elastic energy U per unit volume of a non-deformable crystal has the
form [41–43, 46, 47]:

U = 1
2

X
i, k,m, n

ηikcikmnηmn. (1:4)

The tensor of elastic moduli is symmetric relative to both the permutation of the
indices inside the first or second pair and the permutations of the first pair and
the second one:

cikmn = ckimn = ciknm = cmnik. (1:5)

The first property follows from the symmetry of the strain and stress tensors,
the second property comes from the existence of an energy density in the form (1.4).
In most cases, instead of the fourth-rank tensor cikmn, a simpler second-rank tensor
cαβ α, β= 1, 2, ..., 6ð Þ is used. The latter was introduced by Voigt [48] according to the
scheme presented in Table 1.1. According to (1.5), the matrix cαβ is symmetric
ðcαβ = cβαÞ and contains 21 independent quantities.

Table 1.1: Determination of elastic constants by Voigt [48]
(relationship between cikmn and cαβ).

cik,mn      

 c11 c12 c13 c14 c15 c16

 c21 c22 c23 c24 c25 c26

 c31 c32 c33 c34 c35 c36

 c41 c42 c43 c44 c45 c46

 c51 c52 c53 c54 c55 c56

 c61 c62 c63 c64 c65 c66

10 Chapter 1 Propagation of Elastic Waves and Phonon Focusing in Cubic Crystals
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This table can be represented in a more compact form [41]:

Let us go over to Voigt’s notation to demonstrate the simplest examples of an iso-
tropic medium and a cubic crystal. An isotropic medium possesses the highest de-
gree of symmetry. For it, the tensor ciklm is invariant with respect to all rotations
and reflections in three-dimensional space. This condition is satisfied only by the
unit tensor (up to a scalar factor). Therefore, the components of the tensor ciklm
must be expressed through the combinations of the components of the unit tensor
δij with some coefficients. It is easy to make sure that taking into account the sym-
metry properties, we can write down the elastic modulus tensor ciklm for an isotro-
pic medium as follows [42]:

ciklm = cδijδlm + a δilδkm + δimδklð Þ. (1:6)

This expression has only two independent constants a and c. They can be written in
terms of the elastic moduli c11 and c12: c= c12, a= c11 − c12ð Þ 2= . We use Table 1.1 for
finding the Voigt matrix cαβ for an isotropic medium, corresponding to the tensor (1.6):

cαβ =

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c11 − c12ð Þ=2 0 0

0 0 0 0 c11 − c12ð Þ=2 0

0 0 0 0 0 c11 − c12ð Þ=2

0
BBBBBBBBB@

1
CCCCCCCCCA
. (1:7)

A cubic crystal is characterized by three mutually perpendicular axes of symmetry
of the second and fourth orders and the axis of symmetry of the third order, di-
rected along the spatial diagonal of the cube [42]. When the coordinate system ro-
tates, the quantities cikmn are modified according to the rules of transformation of
the tensor components. If Dik is an orthogonal matrix that describes the rotation of
the coordinate system ðr′=Dr;x′i =

P
l DilxlÞ, the altered system appears as:

c′ikmn =
X

i′, k′,m′, n′
Dii′,Dkk′,Dmm′,Dnn′ ci′k′m′n′. (1:8)

Let us look at the transformations of the components of the tensor cikmn during rota-
tion relative to the second-order axes. It follows from relations (1.8) that the invari-
ance of the elastic modulus tensor relative to such rotations results in non-vanishing
only components of the elastic modulus tensor cikmn, in which each index occurs

ik or mn      

α or β      

1.1 Dynamic Characteristics of Phonons in Cubic Crystals 11
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an even number of times [42]. Now, we employ the conditions (1.5) and Table 1.1
to obtain the elastic modulus tensor cαβ in terms of Voigt’s notation, with it being
invariant with respect to 180° rotations around the X, Y, and Z axes:

cαβ =

c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

0
BBBBBBBBB@

1
CCCCCCCCCA
. (1:9)

The invariance of the elastic modulus tensor with respect to rotations around the third-
order axis gives rise to the equivalence of all three coordinates x, y, z, which pass one
into another when turning around the spatial diagonal of the cube. Therefore, the ele-
ments of the matrix cikmn should not change for any permutation of indices 1, 2, and 3.

Hence, we arrive at the following relations [42]

c1111 = c2222 = c3333, c1122 = c2233 = c3311, c2323 = c3131 = c1212, (1:10)

or in Voigt’s notation:

c11 = c22 = c33, c12 = c13 = c23, c44 = c55 = c66. (1:11)

Finally, we can come up with the elastic modulus tensor cαβ in the form [41–43,
46, 47]:

cαβ =

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

0
BBBBBBBBB@

1
CCCCCCCCCA
. (1:12)

Exactly the same form of the tensor cαβ can be derived using the invariance of the
elastic modulus tensor cikmn with respect to rotations around the fourth-order X, Y,
and Z axes. So, the elastic properties of cubic crystals are governed by three elastic
moduli: c11, c12, and c44.

Applying expressions (1.4), (1.12) and reading Table 1.1 allow one to represent
the elastic energy density of cubic crystals through the strain tensor components in
the form:

U = 1
2
c11 η211 + η222 + η233
� �

+ c12 η11η22 + η22η33 + η33η11
� �

+ 2c44 η212 + η223 + η213
� �

. (1:13)
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As expected, the anisotropic continuum model offers the elastic energy of a cubic
crystal through three second-order moduli c11, c12, and c44. Expressing the strain
tensor components as components of the distortion tensor ξ ij, we can restrict our-
selves to the linear approximation (1.2) in the harmonic approximation. Then, the
elastic energy density (1.13) can be modified:

U = 1
2
c11 ξ 211 + ξ 222 + ξ 233
� �

+ c12 ξ 11ξ 22 + ξ 22ξ33 + ξ33ξ 11
� �

+ 1
2
c44 ξ 212 + ξ 223 + ξ 213
� �

. (1:14)

For going over to the model of an isotropic medium, the elastic energy density (1.14)
can be put as:

U = 1
2
c11

X
i

ξ ii

� �2
+ 1
2

c11 − c12 − 2c44ð Þ
X
i

ξ 2ii +
1
4
c44
X
i, k

ξ ik + ξkið Þ2. (1:15)

Equality

c11 − c12 − 2c44 =0 (1:16)

provides a transition to the isotropic medium model. Obviously, in this case, the
elastic energy density U ξ inð Þ is determined by two second-order elastic moduli.

To construct the equations of motion of the theory of elasticity, we use the varia-
tional principle. For this purpose, we write down the density of the Lagrangian as [41]:

L _ui, ξ inð Þ=T _uið Þ−U ξ inð Þ, T _uið Þ=
X
i

ρ
2
_u2i , (1:17)

where T _uið Þ is the kinetic energy density. The elastic energy density U ξ inð Þ is computed
from the expression (1.14) or (1.15). The variational principle claims that the integralÐ
L _ui, ξ inð Þdrdt must have an extremum for variations that disappear at the integration

boundaries. Consequently, we get the Euler equation for this problem [41]:

−
∂

∂t
∂L _ui, ξ inð Þ

∂ _ui
−
X
n

∂

∂xn

∂L _ui, ξ inð Þ
∂ξ in

=0. (1:18)

Plugging the expressions (1.17) and (1.14) into eq. (1.18) yields a set of equations of
motion for the components of the displacement vector u r, tð Þ in the form [42, 43, 47]:

p€u1 = c11
∂2u1
∂x21

+ ðc12 + c44Þ
�

∂2u2
∂x1∂x2

+ ∂2u3
∂x1∂x3

�
+ c44

�
∂2u1
∂x22

+ ∂2u1
∂x23

�
,

p€u2 = c11
∂2u2
∂x22

+ ðc12 + c44Þ
�

∂2u1
∂x1∂x2

+ ∂2u3
∂x2∂x3

�
+ c44

�
∂2u2
∂x21

+ ∂2u2
∂x23

�
,

p€u3 = c11
∂2u3
∂x23

+ ðc12 + c44Þ
�

∂2u1
∂x1∂x3

+ ∂2u2
∂x2∂x3

�
+ c44

�
∂2u3
∂x22

+ ∂2u3
∂x21

�
.

(1:19)
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Using the expression (1.15) allows one to simplify the set of eq. (1.19) [43]

ρ€ui = c11 − c12 − 2c44ð Þ ∂
2ui
∂x2i

+ c12 + c44ð Þ∇i ∇ ·uð Þ+ c44Δui, (1:20)

where ∇ is the gradient operator and Δ is the Laplace operator. When c11 − c12 − 2c44 =0,
the first term in the expression (1.19) vanishes. Then, for an elastically isotropic me-
dium, we obtain the known result [43, 46]

ρ€u= c11 − c44ð Þ∇ ∇ ·uð Þ+ c44Δu, (1:21)

This equation has an important property: it is invariant with respect to the rotation
of the axes because each term of the equation is an invariant. Thus, the relation
(1.16) involves a condition that the crystal is elastically isotropic. In such a crystal,
the phase velocities are isotropic and coincide in direction with the group veloci-
ties, the transverse modes are degenerate, and the longitudinal and transverse
wave velocities do not coincide [43, 46]. The monograph [43] defines the anisotropy
factor of cubic crystals by the following ratio:

A= 2c44
c11− c12

. (1:22)

For elastically isotropic materials, A = 1 and, accordingly, 2c44 = c11 − c12.
The solutions of the set of eq. (1.19) can be represented in the form of plane

monochromatic waves for which the displacement vector appears as:

u=Ae qð Þ exp i ωt −qrð Þ½ �, (1:23)

where q= q1, q2, q3ð Þ is the wave vector, e qð Þ is the polarization vector that indicates
the direction in which the particles of matter oscillate. If the vector e qð Þ is parallel
to the wave vector q, the wave is called longitudinal. If the vector e qð Þ is perpendic-
ular to the wave vector q, the wave is referred to as transverse. As we will see later,
in cubic crystal, elastic waves are neither purely longitudinal nor purely transverse
due to the anisotropy of elastic energy. A plane wave defined by the expression
(1.23) can be a solution to the equations of motion (1.19) conditional upon the exis-
tence of a definite relationship between the frequency ω and the wave number q,
which is called a dispersion ratio. An elastically anisotropic continuous medium
(anisotropic continuum models) suggests that the wave vector q of a phonon is
much smaller than the Debye wave vector qD, and the phonon spectrum with polar-
ization λ is given by

ωλ
q = S λ

0 θ,φð Þ q. (1:24)

Substituting the plane wave solution (1.23) into the equations of motion (1.19) gives
the Christofel set of equations [42, 47] for determining the polarization vectors e qð Þ
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and the phonon spectrum in cubic crystals. In the coordinate system along the
edges of the cube, the set of equations can be reduced to [44]:

X
j

ej ninj − εδij
� �

+ k− 1ð Þninj 1− δij
� �� �

=0, ε= S0 θ,φð Þ2ρ− c44
c11 − c44

. (1:25)

Here nj = qj=q are the projections of the unit phonon vector n= sin θ cosφ,ð
sin θ sinφ, cos θÞ on the corresponding coordinate axes, δij is the Kronecker sym-
bol. As can be seen from eq. (1.25), the dimensionless parameter k-1 is the only
one that characterizes the influence of elastic anisotropy on the dynamic charac-
teristics of elastic waves in cubic crystals:

k − 1= c12 + c44
c11 − c44

− 1= c12 + 2c44 − c11
c11 − c44

. (1:26)

The condition for the existence of a non-trivial solution to the set of homogeneous
eq. (1.25) delivers the cubic equation for the phonon spectrum:

ε3 − ε2 − k2 − 1
� �

εξ − 1− kð Þ2 2k + 1ð Þη=0, (1:27)

where ξ = n21n
2
2 + n21n

2
3 + n22n

2
3 and η= n21n

2
2n

2
3 are cubic harmonics.

Equation (1.27) has three solutions that correspond to three acoustic modes:
longitudinal (L) one and two transverse ones (t1, t2):

S λ
0 θ,φð Þ=

ffiffiffiffiffiffiffi
c44
ρ

r
1+ c11 − c44

c44
ε λ

� �1=2

, ελ = 1
3
+ z λ,

zL = 2
3
r cos

Q
3
, z t1 , t2 = 2

3
r cos

Q
3
∓
2π
3

� �
,

r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 3 k2 − 1ð Þξ

p
, cosQ= 1

r3
1+ 4.5 k2 − 1ð Þξ + 13.5η 1− 3k2 + 2k3ð Þð Þ.

(1:28)

The phonon polarization indices t1 and t2 correspond to the “fast” (upper) and “slow”
(lower) transverse vibrational modes. Further, it will be shown that the polarization
of transverse modes needs to be accounted for their classification and the dividing of
transverse modes into fast and slow ones in some cases is physically incorrect.

After plugging the solutions (1.28) into the set of eq. (1.25), we can arrive at the
polarization phonon vectors of various vibrational branches [44]:

eλ
j =

1
Aλ

nj
ψλ
j

( )
, Aλ = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

nj

ψλ
j


 �2
vuut , eλn

� �
= 1
Aλ

X
j

n2j
ψλ
j

, ψλ
j =ελ + k− 1ð Þn2j . (1:29)

It is easy to verify that the following relations are satisfied for the polarization vectors:

e λ, e λ′

 �

= δλ, λ′

1.1 Dynamic Characteristics of Phonons in Cubic Crystals 15

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



It should be noted that although the formulas (1.29) are simple; however, they are
difficult to use in calculating the phonon relaxation frequencies due to the 0/0 type
uncertainties arising for certain symmetric directions (see below). To evaluate the
values of ej in these directions, we have to return to the original set of eq. (1.25).

For an isotropic medium, the parameter k − 1=0. The spectrum anisotropy dis-
appears, and eq. (1.27) is simplified to:

ε2 ε− 1ð Þ=0. (1:30)

One of its solutions gives the phase velocity of longitudinal phonons SL =
ffiffiffiffiffiffiffiffiffiffiffiffi
c11 ρ.=

p
Two other solutions coincide and give the phase velocities of the transverse

phonons St1 = St2 =
ffiffiffiffiffiffiffiffiffiffiffiffi
c44 ρ.=

p
At the same time, for the polarization vectors, we have

eL =n and etnð Þ=0. Thus, in an isotropic medium, purely longitudinal and purely
transverse waves with fixed velocities travel. The latter are controlled by
two second-order elastic moduli c11 and c44, and the crystal density ρ. Unlike iso-
tropic media, in cubic crystals, quasi-longitudinal or quasi-transverse vibrations
propagate.

For each direction of the wave vector in the crystal, there are three indepen-
dent waves with their phase velocities S λ

0 θ,φð Þ and mutually perpendicular dis-
placements. In the general case, none of these displacements coincides either
with the normal to the wave front or with the perpendicular direction to the nor-
mal: i.e. the waves are neither purely longitudinal, nor purely transverse [42, 47].
However, in the symmetric directions, such as [100], [110], and [111], pure modes
propagate, and in directions of the [100] and [111] type, the transverse modes are
degenerate (see Figure 1.1). For elastically isotropic media, the parameter k is
equal to unity, and the transverse modes are degenerate for all the directions. As can
be seen from Figure 1.1, for cubic crystals, the speed of sound and, accordingly, the
phonon spectra differ significantly from those in isotropic media. It should be noted
that the spectrum anisotropy and the degeneracy points in the vibrational modes of
transverse phonons cause essential differences in the phonon relaxation frequencies
in anharmonic scattering processes in cubic crystals from those in isotropic media
[38, 49].

An important role in the anisotropy of the spectrum and angular dependencies of
the phonon polarization vectors is played by the absolute value and sign of the
parameter k − 1= c12 + 2c44 − c11ð Þ c11 − c44ð Þ.= The sign of the parameter k− 1 indicates
dividing all cubic crystals into crystals with positive k− 1>0ð Þ and negative
k− 1<0ð Þ anisotropy of the second-order elastic moduli (see Table 1.2). The first
type includes crystals such as Ge, Si, diamond, GaSb, etc. (see Table 1.2). For
them, the velocity of longitudinal phonons is minimum in the [100] directions and
that of transverse phonons is maximum, whereas the velocity of the longitudinal
phonons is maximum in the [111] directions and that of the transverse phonons is
minimum in the [110] directions (see Figure 1.1a, c):
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SL½100�=
ffiffiffiffiffiffi
c11
ρ

r
, SL½111�=SL½100�

�
1+ 2ΔC

3c11

�1=2
, SL½110�=SL½100�

�
1+ ΔC

2c11

�1=2
, Δ=ðc12+2c44−c11Þ,

St½100�=
ffiffiffiffiffiffiffi
c44
ρ

r
, St½111�=St½100�

�
1− ΔC

3c44

�1=2
, St1½110�=St½100�, St2½110�=St½100�

�
1− ΔC

2c44

�1=2

.
(1:31)

The second type of cubic crystals k − 1<0ð Þ includes crystals of KCl, NaCl, etc. (see
Table 1.2). As can be seen from a comparison of Figures 1.1a–d, the form of the spectra
of the vibrational branches for crystals of the first and second type is qualitatively

Figure 1.1: Angular dependencies of the sound velocity S λ
0 ðθ,φÞ in Si (a,c) and KCl (b,d) crystals for

wave vectors lying in the cube face plane (φ = 0), (a,b) or in the cube diagonal plane (φ = π/4),
(c,d). Solid curves 1 refer to quasi-longitudinal waves, solid curves 2 and 3 relate to t1 and t2
quasi-transverse modes, respectively. Dashed lines are the approximation (1.32).
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different, whereas the phonon spectra differ only quantitatively within one type of
crystals. For these crystals, in contrast crystals of the first type, the velocity of longitu-
dinal phonons is maximum in the [100] direction and minimum in the [111] direction,
the velocity of transverse phonons is maximum in the [110] direction and minimum in
the [100] direction (see Figure 1.1b, d). Although Ge, Si, and diamond falling into the
first group of cubic crystals are covalent, and KCl, NaCl, and CaF2 are ionic crystals,
dividing cubic crystals by their elastic properties into two types is not related to the
nature of their chemical bonding. It is worth emphasizing that the first group contains
semiconductor crystals of GaSb and InSb, as well as ionic compounds LiF and MgO.
Besides, metals of cubic symmetry also belong to both the first and second groups.

Table 1.2: Second-order elastic moduli (1012 dyne/cm2) and classification of cubic crystals in
accordance with the anisotropy parameter k − 1 (density ρ (g/cm3)). The data are taken from
[46, 50–59].

Type Crystal c11 c12 c44 ρ k− The degree of ionicity
of the bond

I Ge . . . . . 

Si . . . . . 

Diamond . . . . . 

GaAs . . . . . .
HgSe . . . . . .
GaN . . . . . .
GaSb . . . . . .
InSb . . . . . .
LiF . . . . . .
MgO . . . . . .
YAG . . . . .
Na . . . . . Metal
Li . . . . . ≫
K . . . . . ≫
Cu . . . . . ≫
Ag . . . . . ≫
Pb . . . . . ≫
Ni . . . . . ≫
Au . . . . . ≫
Al . . . . . ≫

II KCl . . . . −. .
NaCl . . . . −. .
PbS . . . . −. .
CaF . . . . −. .
SrF . . . . −. .
YIG . . . . −.
Mo . . . . −. Metal
W . . . . −. Metal
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Apparently, there is no other physical criterion except for the analysis of the above
Christofel equations that allows one to divide cubic crystals into two types (see also
[44]). The deviation of sound velocities in cubic crystals, such as Ge, against elasti-
cally isotropic media, is relatively small; it does not exceed 23%. This means that, ac-
cording to perturbation theory, the anisotropy of the spectrum can be taken into
account. Bearing the cubic anisotropy in mind, we can also simplify the analytical cal-
culations of the phonon relaxation frequencies. For this, the expressions for sound ve-
locities (1.28) can be linearly approximated in cubic harmonics ξ θ,φð Þ and η θ,φð Þ
with good accuracy. This is done in the following way:

S λ
0 θ,φð Þ= S λ

100½ � 1+ a λ
1 ξ θ,φð Þ+ a λ

2 η θ,φð Þ� �
. (1:32)

Coefficients a λ
1 and a λ

2 are found from the condition that, in all crystallographic di-
rections of the type [100], [110] and [111], the expressions (1.32) coincide with the
exact solution:

aL1 = 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ ΔC

2c11

s
− 1

" #
, aL2 = 27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2ΔC

3c11

s
+ 1
3
−
4
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ ΔC

2c11

s" #
,

at11 =0, at12 = 27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ΔC
3c44

s
− 1

" #
,

at21 = 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ΔC
2c44

s
− 1

" #
, at12 = 27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ΔC
3c44

s
+ 1
3
−
4
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ΔC
2c44

s" # (1:33)

The analysis performed has shown that the approximation defined by formulas (1.32)
and (1.33) (see Figure 1.1, dashed lines) reproduces well all the features of the vibra-
tional branches of phonons in cubic crystals for an arbitrary direction. Approximation
accuracy for wave vectors lying in the plane of the cube face amounts to about 1% for
Si and 2% for KCl, while the maximum error increases to 3% for Si and 7% for KCl for
the diagonal cross-section.

As for the phonon polarization vectors, quasi-longitudinal or quasi-transverse
vibrations propagate in cubic crystals in an arbitrary direction, which does not co-
incide with any of the symmetric directions. In this case, the contribution of the
transverse component to quasi-longitudinal vibrations in cubic crystals of the first
and second types is small, and it can be neglected. Estimates show (see Figure 1.2,
curves 1’ and 2’) that the quantity ðeLnÞ= 1− δL differs little from unity, with the pa-
rameter taking the following values: δL <0.02 for crystals of the type of Ge, Si, dia-
mond, GaSb, and δL <0.03 for KCl type crystals. The situation for the polarization
vectors of quasi-transverse oscillations is generally more complicated, and the lon-
gitudinal component for quasi-transverse modes may be significant. In the litera-
ture, this issue is at present far from being studied well enough.
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Therefore, we will further examine the angular dependencies of the polarization
vectors for the two most relevant cases, namely: (1) for wave vectors lying in the planes
of the faces of the cube, (2) for wave vectors lying in the diagonal planes. For the pho-
non wave vector located in the XZ-plane, we have the quantity n= sin θ,0, cos θð Þ,
functions ξ = n21n

2
2 = sin2θ cos2 θ, η=0, and the cubic equation can be written as:

ε ε2 − ε− k2 − 1
� �

ξ
� �

=0. (1:34)

Its solution for longitudinal and transverse modes has the form:

εt1 =0, εL, t2 = 1=2±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 + k2 − 1ð Þξ

p
,

St10 = St100½ �, SL, t20 = St100½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ c11 − c44

c44
εL, t2

r
.

(1:35)

Substituting these solutions into (1.25) (or using formulas (1.29)) yields an expres-
sion for the polarization vectors:

et1 θð Þ= 0, 1,0f g, et1n1
� �

=0, et2x = nxψz sign nzψz

� �
ψ2

,

et2y =0, ψx;z = εt2 k − 1ð Þn2x;z,

et2z = nzψxsign nzψz

� �
ψ2

= −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− et2x

 �2r

,

ψ2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εt2 14 k − 1ð Þξð Þ2k k− 1ð Þξ ,

p
et2n
� �

= δt2 = sign nzψz

� �
ψ2

εt2 + 2 k − 1ð Þξ� �
= cos θe − θð Þ,

(1:36)

(a) (b)

Figure 1.2: Angular dependencies of the quantities δL and δt2 , which characterize deviations of
polarization vectors from pure modes for wave vectors lying in the plane of a cube face (a) and in a
diagonal plane (b). Curves 1.1' mark Si crystals, curves 2.2' are for NaCl. Curves 1, 2 are intended
for quasi-transverse modes and curves 1', 2' refer to for quasi-longitudinal modes.
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where θe is the angle between the polarization vector et2 and the Z-axis. So, the mode
εt1 is purely transverse relative to the polarization vector directed perpendicular to the
XZ-plane at hand. It is a fast mode for cubic crystals with positive anisotropy of
the second-order elastic moduli k − 1>0ð Þ and a slow one for crystals with negative
anisotropy k − 1<0ð Þ. The mode εt2 is generally a mixed transverse-longitudinal
mode. For it, the polarization vector lies in the XZ-plane, with, in type-I crystals (Ge,
Si), it corresponds to the slow mode, and in type-II cubic crystals (KCl, NaCl), it being
a fast transverse mode (see Figure 1.1). The quantity δt2 is responsible for the deviation
of the polarization vector et2 from the pure mode. The maximum values of the longitu-
dinal components of this mode δt2 reach 15.5% for Ge crystals and 24% for KCl. The
absolute values of k − 1j j, which characterize the anisotropy of the elastic properties of
cubic crystals, decrease upon transition from crystals Ge to Si, diamond, and YAG
crystals. Therefore, the maximum values of δt2 diminish to 12.6% for Si crystals, 8.4%
for diamond, 9.1% for NaCl, and to vanishingly small values for YAG and YIG.

As can be seen from Figure 1.3a, the values of the x-components of the polariza-
tion vectors et2 of the quasi-transverse modes in Si and NaCl crystals (curves 1 and 2)
and the corresponding pure mode components et20 = cos θ,0, − sin θð Þ for which
ðet20 ,nÞ=0 for both types of crystals differ more significantly than that of δt2 . Let us
look at the ranges of angles 0< θ< π 4= and π 4< θ<π 2== for type-I crystals (Ge, Si)
(see Figures 1.2 and 1.3). The angle θe between the wave vector and the polarization
vector et2 exceeds the value of π 2= and δt2 <0 and is less than π 2= and δt2 >0, respec-
tively. For type-II crystals (KCl, NaCl), the situation is the opposite (see Figures 1.2
and 1.3, curves 2).

(a) (b)

Figure 1.3: Angular dependencies of the x-component of the polarization vectors et2 of quasi-
transverse modes in Si (curves 1) and NaCl (curves 2) crystals for phonon wave vectors lying in the
plane of a cube face (a) or in the diagonal plane (b). The dashed curves 3 mark the corresponding
pure-mode components.
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More interesting results come from analysing the spectrum and polarization
vectors for the diagonal cross-section: φ = π=4, n= sinθ

ffiffiffi
2

p
, sin θ

ffiffiffi
2

p
, cos θÞ,���

ξ = 2n2x 1− 3 2n2x
� �

, η= n4x 1− 2n2x
� ��

. In this case, the cubic eq. (1.27) can be factor-
ized for the function ψx = ε+ k− 1ð Þn2x:

ψx · ψ2
x −ψx 1+ 3 k − 1ð Þn2x

� �
+ 2k k − 1ð Þn2x 3n2x − 1

� �� 
=0. (1:37)

One of the solutions of this equation, ψt1
x =0, gives:

εt1 = −
1
2

k− 1ð Þsin2θ, St10 θ, π
4

� �
= St100½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ΔC
2c44

sin2θ

s
. (1:38)

The analysis showed that the polarization vector for this mode is perpendicular to
the diagonal plane, and this solution is unique:

et1 = − 1=
ffiffiffi
2

p
, 1=

ffiffiffi
2

p
,0


 �
, et1 ,n
� �

=0. (1:39)

Thus, this mode is purely transverse despite the fact that the phonon spectrum for
it is anisotropic (see Figure 1.1c, d). According to the concepts based on the model
of an isotropic medium, this finding may seem unexpected at first glance. This is
because the pure modes should correspond to the isotropic spectra of the vibra-
tional branches, and the anisotropy of the spectrum of the transverse vibrational
modes should lead to a deviation from the mutual perpendicularity of the phonon
wave vector and the polarization vector. However, the symmetry analysis of elas-
tic waves in crystals [42] indicates that for wave vectors lying in the plane of sym-
metry or in the plane perpendicular to the axis of symmetry of even order, one of
the three normal waves is purely transverse, with its displacement being perpen-
dicular to the plane at hand. The diagonal plane φ= π 4= Þð is just the plane of sym-
metry of the cubic crystal. Therefore, the result obtained above is consistent with
the analysis performed in [42]. Note that the mode εt1 is a fast one for type-I cubic
crystals and slow for type-II crystals in the ranges of angles − θ 111½ � < θ< θ 111½ � and
π − θ 111½ � < θ< π + θ 111½ �, where θ is the angle between the Z-axis and the [111] direc-
tion. In the angle range θ 111½ � < θ<π − θ 111½ � and π + θ 111½ � < θ< 2π − θ 111½ �, it is a slow
mode for type-I cubic crystals and fast for type-II crystals.

Two other solutions of eq. (1.37) correspond to the longitudinal and second
transverse modes:

ψL, t2
x = 1=2 1+ 3 k− 1ð Þn2x

� �
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 1+ 3 k − 1ð Þn2x

� �2 − 2k k− 1ð Þn2x 3n2x − 1
� �q

,

SL, t20 = St100½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ c11 − c44

c44
εL, t2

r
, εL, t2 =ψL, t2

x − k − 1ð Þn2x .
(1:40)

The εt2 mode is generally a mixed transverse-longitudinal mode. Note that it is a
slow one for type-I cubic crystals and fast for type-II crystals in the range of angles
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− θ 111½ � < θ< θ 111½ � and π − θ 111½ � < θ<π + θ 111½ �. In the range of angles θ 111½ � < θ< π − θ 111½ �
and π + θ 111½ � < θ< 2π − θ 111½ �, it is fast for type-I cubic crystals and slow for type-II
crystals (see Figure 1.1). Thus, the transverse modes intersect themselves in the [111]
direction instead of touching the upper and lower transverse branches. So, dividing
the transverse modes into fast and slow ones is not physically correct in this case.
Therefore, the polarization vectors must be taken into account to classify the trans-
verse modes. The vector polarization for the εt2 mode lies in the diagonal plane and
can be described by:

et2x = et2y
nxψzsign nzψz

� �
ψ2

, et2z = nzψxsign nzψz

� �
ψ2

= −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2 et2x


 �2r
,

ψx =ψy = εt2 + k − 1ð Þn2x, ψz = εt2 + k− 1ð Þn2z, ψ2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2xψ

2
z + n2zψ

2
x

q
,

et2nð Þ= δt2 = 2n2xψz + n2zψx

� �
ψ2

sign nzψz

� �
= cos θe − θð Þ .

(1:41)

The maximum value of the longitudinal component of the εt2 mode amounts to
16.5% for Ge crystals and reaches 27% for a KCl crystal (see Figure 1.2). Since the
anisotropy of the elastic properties of cubic crystals decreases during the transition
from Ge crystals to Si, diamond, and YAG crystals, the maximum values of δt2 drop
up to 13.8% for Si crystals, 9.3% for diamond, 10.4% for NaCl and 0.6% for YAG.

Figure 1.3b illustrates that the values of the x-components of the polarization vec-
tors et2 of the quasi-transverse modes in Ge and NaCl crystals (curves 1 and 2) and the
corresponding components for the pure mode et20 = cosθ=

ffiffiffi
2

p
, cos θ

ffiffiffi
2

p
, − sin θ

� ��
for

which ðet20 nÞ=0 for both types of crystals differ more significantly than those of δt2 .
The expressions (1.41) imply that the z-components of the polarization vectors et2

can be uniquely determined through the x-components. Therefore, we may omit
them. As can be seen from Figures 1.2 and 1.3 (curves 1), the angle θt2 is larger than
π 2= in the range of angles 0< θ< π 4= and δt2 <0 for type-I crystals (Ge, Si). At the
same time, the angle θt2 is less than π 2= in the range of angles π 4< θ<π 2== and
δt2 >0. For type-II crystals (KCl, NaCl), the situation with signs of the quantity δt2 is
the opposite (see Figures 1.2 and 1.3, curves 2). So, the difference in the behavior of
the polarization vectors for type-I and type-II crystals looks essential.

Having conducted the analysis, we can infer that both quasi-transverse modes
are mixed transverse-longitudinal ones with a point of degeneration in the direction
[001]. This holds true for the wave vectors lying in planes with the angles φ ≠ 0, π/4,
3π/4, 5π/4, and 7π/4. They can be classified as “fast” and “slow” modes, since
St1 θ,φð Þ≥ St2 θ,φð Þ. Their polarization vectors et1 and et2 are significantly different
from the polarization vectors of pure modes, et10 = − sinφ, cosφ,0ð Þ and et20 =
cos θ cosφ, cos θ sinφ, − sin θð Þ, respectively. The former is perpendicular to the
plane φ = const, the latter lies in the plane φ = const. As can be seen from Figure 1.4,
θ → 0, the polarization vector et1 of the fast quasi-transverse mode tends to the vector
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et10 , i.e. to the direction perpendicular to the plane φ = const. As the angle θ increases,
the vector et1 deviates from the vector et10 and tends to the vector et20 as θ → π/2, i.e. it
goes over into the plane φ = const (see Figure 1.4a). On the other hand, as θ → 0, the
polarization vector et2 of the slow mode tends to the vector et20 lying in the plane
φ = const, and when the angle θ increases, it leaves this plane and when θ → π/2
tends to the vector et10 , i.e to the direction perpendicular to the plane φ = const.

The closer the angle φ is to π/4, the more sharply the angular dependencies of
the components of the polarization vectors et1 and et2 change in the vicinity of the
angle θ= θ 111½ � (see Figure 1.4a). The maximum values of the longitudinal compo-
nents of the quasi-transverse modes δt1 and δt2 do not go beyond 17% for Ge crystals
and 27% for KCl. However, the values and angular dependencies of the components
of the polarization vectors et1 and et2 of the quasi-transverse modes and those of
et10 and et20 of the corresponding pure modes differ more significantly. It is worth
pointing out that the contribution of the transverse component to quasi-longitudinal
vibrations in this case is also small, and it can be ignored. Here, we can emphasize
one curious consequence of the outcomes obtained. Since the electron–phonon inter-
action through the deformation potential in metals and semiconductors is propor-
tional to the scalar product e λq

� �
, the electrons can “relax” their momentum due to

the longitudinal component of quasi-transverse vibrations. On the other hand,
quasi-transverse modes can transfer their momentum to electrons and enhance
the effect of electron–phonon drag in such semiconductor crystals as Ge, Si, GaSb,
HgSe, and InSb.

(a) (b)

Figure 1.4: Angular dependencies of the z-components of the polarization vectors et1 and et2

(a) and the quantities δt1 and δt2 for quasi-transverse modes (b) in Si crystals. Curves 1–3
represent the fast mode εt1 , curves 1'–3' refer to the slow mode εt2 . Pair curves (1,1'), (2,2'), and
(3,3') correspond to the angles φ = π/4; φ = π/16, and φ = π/6, respectively. Dashed curves relate
to purely transverse modes.

24 Chapter 1 Propagation of Elastic Waves and Phonon Focusing in Cubic Crystals

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



So, the main conclusions of the analysis of the dynamic characteristics of pho-
nons in cubic crystals in the anisotropic continuum model can be formulated as fol-
lows [44]:
– All cubic crystals can be divided into two types: crystals with positive and neg-

ative anisotropy of second-order elastic moduli. The shape of the spectrum and
the behavior of the polarization vectors of vibrational modes for crystals of the
first and second type are qualitatively different.

– The contribution of the transverse component to quasi-longitudinal vibrations
for the first- and second-type cubic crystals is small, and it can be neglected.

– Polarization of transverse modes needs to be accounted for their classifying.
Dividing of the transverse modes into fast and slow modes adopted in [46, 47]
is sometimes not physically correct.

– For wave vectors lying in the plane of a cube face or a diagonal plane, transverse
modes with polarization vectors perpendicular to these planes are pure modes,
and vibrational modes with polarization vectors lying in these planes are mixed
transverse-longitudinal ones. For quasi-transverse modes, the longitudinal com-
ponent is not small and cannot be left aside when analysing the absorption of
ultrasound and phonon transport in cubic crystals.

1.2 Approximation of the Spectrum of Thermal Phonons
in Cubic Crystals

To date, experimental research concerning the phonon spectrum in cubic crystals
has only focused on symmetric directions [60–62]. For analysing the temperature
dependencies of thermal conductivity, it is required to know the spectrum of pho-
nons over the entire Brillouin zone. The anisotropic continuum model allows one to
resolve this issue, but it is valid only for wave vectors that are much smaller than
the Debye wave vectorqD. Based on inelastic neutron scattering data of [60.61], we
approximate the phonon spectrum for Si and Ge crystals over the entire Brillouin
zone. For this purpose, we represent it through [39, 63]:

ωλ
q = S λ

0 θ,φð Þq 1− f λ x, θ,φð Þ� �
f λ x, θ,φð Þ=A λ θ,φð Þx2 −B λ θ,φð Þx4 +C λ θ,φð Þx6 − ...

(1:42)

Here, the function f λ x, θ,φð Þ describes the dispersion of thermal phonons, the coef-
ficients A λ θ,φð Þ, B λ θ,φð Þ, and C λ θ,φð Þ characterize the angular dependencies of
the phonon spectrum, x= q qmax= is the reduced wave vector, and qmax θ,φð Þ is a
wave vector at the boundary of the Brillouin zone. For symmetrical directions in a
face-centered cubic lattice (fcc), it appears as
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q 001½ �
max = 2π=a, q 101½ �

max = 2π=að Þ 3
ffiffiffi
2

p
=4


 �
, q 111½ �

max = 2π=að Þ
ffiffiffi
3

p
=2


 �
, (1:43)

where a is the lattice constant (for silicon a = 5.431 Å, for germanium a = 5.66 Å).
The quantity qmax θ,φð Þ can be given by the following relations:

q1 = θ,φð Þ= q 001½ �
max

n1j j , q2 = θ,φð Þ= q 001½ �
max

n2j j ,

q3 = θ,φð Þ= q 001½ �
max

n3j j , q4 = θ,φð Þ= 3=2q 001½ �
max

n1j j+ n2j j+ n3j j ,

qmax θ,φð Þ=min q1 θ,φð Þ,q2 θ,φð Þ,q3 θ,φð Þ,q4 θ,φð Þf g,

(1:44)

where n1, n2, n3 are components of the vector n. In the long-wavelength limit x ≪ 1,
we can set f λ x, θ,φð Þ=0. Then, approximation (1.42) turns into the anisotropic con-
tinuum model (1.28), in which the anisotropy of the spectrum is determined by the
phase velocity S λ

0 θ,φð Þ.
The experimental spectrum is approximated in two stages. The first stage in-

cludes the approximation for symmetric directions using the expansion in powers
of a reduced wave vector. In doing so, we fix the angles θ= θ I½ � and φ=φ I½ � that corre-
spond to symmetric directions, where [I] = [100], [110], or [111]. Further, we expand
the experimental spectrum in powers of the reduced wave vector x and find the coef-
ficients A λ

I½ �, B λ
I½ �, and C λ

I½ �, for each acoustic mode. The values of these coefficients are
listed in Table 1.3. As can be understood from Figure 1.5, the approximation of the
phonon spectrum in crystals in Si and Ge by a seventh-degree polynomial reproduces
rather well the experimental data for all vibrational modes in symmetric directions.
The average error of this approximation is 0.9% for longitudinal phonons and
amounts to 1.3% for transverse phonons. As can be evidenced from Table 1.3 below,
the influence of dispersion on the spectrum of longitudinal phonons is maximum in
the [110] direction and minimum in the [100] direction: the coefficient AL

101½ � that
specifies the role of dispersion when x � 1 in the [110] direction exceeds the coeffi-
cients AL

001½ � and AL
111½ � by 3.4 and 2.6 times, respectively. Note that the anisotropy- and

dispersion-related effects for longitudinal phonons in Si and Ge are much weaker
than for transverse ones. For transverse modes when 0.5≤ x≤ 1, there are plane sec-
tions, and the transverse mode t1 has a maximum for x = 0.9. These features provoke
the appearance of appropriate peaks in the density of phonon states [60, 61].

The second step involves the extrapolation of the phonon spectrum measured
for symmetric directions over the entire Brillouin zone. It can be done by using
the expansion in cubic harmonics similarly to how it was proposed in [39, 44].
According to [44], the expressions for sound velocities deduced within the aniso-
tropic continuum model can be approximated with good accuracy in the linear ap-
proximation in the cubic harmonics ξ θ,φð Þ and η θ,φð Þ. The all-direction averaged
error for Si is less than 1% (see [44], Figure 2). Similarly to [39, 44], we present the
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Table 1.3: Parameters determining the approximation of the phonon spectrum in Si and Ge. The
spectrum is obtained from data on inelastic neutron scattering over the entire Brillouin zone [39, 63].

Longitudinal mode Transverse modes

Si Ge Si Ge Si Ge Si Ge

AL
½001� . . aL1 . . At

½001� . . at11 −. −.

BL
½001� . . aL2 −. −. Bt

½001� . . at12 . .

CL
½001� . . bL

1 . . Ct
½001� . . bt1

1 −. −.

AL
½101� . . bL

2 −. −. At1
½101� . . bt1

2 . .

BL
½101� . . cL1 . . Bt1

½101� . . ct11 −. −.

CL
½101� . . cL2 −. −. Ct1

½101� . . ct12 . .

AL
½111� . . At2

½101� . . at21 −. −.

BL
½111� . . Bt2

½101� . . at22 . .

CL
½111� . . Ct2

½101� . . bt2
1 −. −.

At
½111� . . bt2

2 . .

Bt
½111� . . ct21 −. −.

Ct
½111� . . ct22 . .

(a)

TH
z

TH
z

(b)

Figure 1.5: Dependencies of the spectra in Si (a) and Ge (b) for longitudinal (curves 1, 2, 3) and
transverse phonons (curves 4, 5, 6, 7) on the reduced wave vector x = q/qmax in the approximation
of the experimental data [60, 61]. They are designated by symbols and a seventh-degree
polynomial for different symmetry directions: curves 1, 4 refer to the [001] direction; curves 2, 5,
and 6 denote the [110] direction, (5 is a fast transverse mode, 6 is a slow transverse mode); curves
3, 7 mark the [111] direction.
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coefficients A λ θ,φð Þ, B λ θ,φð Þ, and C λ θ,φð Þ for the entire Brillouin zone in the lin-
ear approximation in the cubic harmonics ξ θ,φð Þ and η θ,φð Þ in such a way:

A λ θ,φð Þ=A λ
001½ � 1+ a λ

1 ξ θ,φð Þ+ a λ
2 η θ,φð Þ� �

,

B λ θ,φð Þ=B λ
001½ � 1+ b λ

1 ξ θ,φð Þ+b λ
2 η θ,φð Þ� �

,

C λ θ,φð Þ=C λ
001½ � 1+ c λ

1 ξ θ,φð Þ+ c λ
2 η θ,φð Þ� �

,

(1:45)

Given that ξ 0,0ð Þ= η 0,0ð Þ for the [001] symmetric directions, ξ π 4,0= Þ=0.25,ð
η π 4,0= Þ=0ð , for the [101] directions, ξ θ 111½ �,π 4= Þ= 1 3, η θ 111½ �,π 4= Þ= 1 27=

���
for the

[111] directions, we find the coefficients a λ
i , b λ

i , and c λ
i :

a λ
1 = 4 A λ

110½ � −A λ
100½ �


 �.
A λ

100½ �, a λ
2 = 9 3A λ

111½ � − 4A λ
110½ � +A λ

100½ �

 �.

A λ
100½ �,

b λ
1 = 4 B λ

110½ � −B λ
100½ �


 �.
B λ

100½ �, b λ
2 = 9 3B λ

111½ � − 4B λ
110½ � +B λ

100½ �

 �.

B λ
100½ �,

c λ
1 = 4 C λ

110½ � −C λ
100½ �


 �.
C λ

100½ �, c λ
2 = 9 3C λ

111½ � − 4C λ
110½ � +C λ

100½ �

 �.

C λ
100½ � .

(1:46)

The values of these coefficients for Si and Ge crystals are given in Table 1.3. The
approximation above preserves the cubic anisotropy of the spectrum; it allows
one to analyse the change in the spectrum anisotropy during the transition from
the case of long-wavelength phonons x<< 1ð Þ to the case of short-wavelength ones
x⁓1ð Þ.

Comparison of the spectra calculated according to formulas (1.42)–(1.46) for
Si and Ge and experimental data in [60, 61] showed that the anisotropic con-
tinuum model describes well the spectrum for all acoustic modes for x≤ 2. When
x≈0.5, the aforesaid approximation makes allowance for all the features of
the spectrum of vibrational modes, with an error not exceeding 5%, but on ap-
proaching the boundary of the Brillouin zone, the approximation error rises (see
Figure 1.5, curves 5). At the boundary of the Brillouin zone in symmetrical direc-
tions, the approximation error is small, it is less than 1.5%. However, in direc-
tions other than symmetrical, the maximum deviation from experimental data
can reach 20%.

It should be noted that for Ge crystals, the dependencies of the phonon spec-
trum on the reduced wave vector in the [210]-type directions were measured in [60].
Therefore, the spectrum of acoustic modes can be refined for wave vectors in the
plane of a cube face. Let us approximate the spectrum with a seventh-degree poly-
nomial in the [210] direction as it was done earlier for symmetric directions.
Further, we calculate the coefficients A λ

210½ �, B λ
210½ �, and C λ

210½ � (see Table 1.4). Since
η = 0 in the plane of the face of the cube, we take ξ θ,φð Þð Þ2 as the third harmonics.
Thus, the expressions for the coefficients A λ θ,φð Þ, B λ θ,φð Þ, and C λ θ,φð Þ can be
modified:
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A λ θ,φð Þ=A λ
001½ � 1+ a λ

1 ξ θ,φð Þ+ a λ
2 η θ,φð Þ+ a λ

3 ξ
2 θ,φð Þ� �

,

B λ θ,φð Þ=B λ
001½ � 1+b λ

1 ξ θ,φð Þ+b λ
2 η θ,φð Þ+ b λ

3 ξ
2 θ,φð Þ� �

,

C λ θ,φð Þ=C λ
001½ � 1+ c λ

1 ξ θ,φð Þ+ c λ
2 η θ,φð Þ+ c λ

3 ξ θ,φð Þ� �
.

(1:47)

It should be drawn attention that ξðπ=2,φ 210½ �Þ= 4=25, ηðπ=2,φ 210½ �Þ=0 for the [210]
direction.

Then, we write down the coefficients a λ
i , b λ

i , and c λ
i that govern the phonon

spectrum as follows:

a λ
1 = − 369A λ

100½ � − 256A λ
110½ � + 625A λ

210½ �

 �.

− 36A λ
100½ �


 �
;

a λ
2 = − 117A λ

100½ � − 832A λ
110½ � + 324A λ

111½ � + 625A λ
210½ �


 �.
− 12A λ

100½ �

 �

;

a λ
3 = 25 9A λ

100½ � + 16A λ
110½ � − 25A λ

210½ �

 �.

− 9A λ
100½ �


 �
;

b λ
1 = − 369B λ

100½ � − 256B λ
110½ � + 625B λ

210½ �

 �.

− 36B λ
100½ �


 �
;

b λ
2 = − 117B λ

100½ � − 832B λ
110½ � + 324B λ

111½ � + 625B λ
210½ �


 �.
− 12B λ

100½ �

 �

;

b λ
3 = 25 9B λ

100½ � + 16A λ
B 110½ � − 25B λ

210½ �

 �.

− 9B λ
100½ �


 �
;

c λ
1 = − 369C λ

100½ � − 256C λ
110½ � + 625C λ

210½ �

 �.

− 36C λ
100½ �


 �
;

c λ
2 = − 117C λ

100½ � − 832C λ
110½ � + 324C λ

111½ � + 625C λ
210½ �


 �.
− 12C λ

100½ �

 �

;

c λ
3 = 25 9C λ

100½ � + 16C λ
110½ � − 25C λ

210½ �

 �.

− 9C λ
100½ �


 �
:

(1:48)

The values of these coefficients for Ge crystals are given in Table 1.4. The quadratic
term of cubic harmonics in (1.47) causes a change in the approximation spectrum of
phonon modes for wave vectors in the plane of the cube face. To illustrate the
change, we compare the dependencies depicted in Figures 1.6 and 1.7. The figures
display that, at the boundary of the Brillouin zone, the harmonics ξ θ,φð Þð Þ2 in-
volves significantly improving the agreement of the approximation results with the
experimental data. In this case, the spectrum of longitudinal phonons in the plane
of the face can be approximated with a maximum error of 4% instead of 17%. The
error is equal to 8% and decreases up to 5% for the fast and slow modes, respec-
tively. Thus, we have demonstrated that the error in approximating the spectrum
can be dramatically declined by including higher-order terms of the cubic harmon-
ics ξ θ,φð Þ and η θ,φð Þ into the expansion when collecting experimental data for
asymmetric cross-sections.

To avoid complicating the problem of calculating the thermal conductivity any
further, we restrict ourselves to the linear approximation of the spectrum in cubic
harmonics according to the expressions (1.45). As an example, we choose the change
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of the phase velocity of phonons in Si upon transition from long-wavelength phonons
to short-wavelength ones:

S λ x, θ,φð Þ= S λ
0 θ,φð Þ 1− f λ x, θ,φð Þ� �

. (1:49)

Figure 1.8 outlines that the anisotropy of the phase velocity of phonons changes
qualitatively when passing from the anisotropic continuum model ðx=0Þ
(Figure 1.8, curves 1) to phase velocities at the boundary Brillouin zones (Figure 1.8,
curves 5). The velocity of the longitudinal phonons is minimum in the [001] direc-
tions and is maximum in the [111] directions for x=0. However, for x= 1.0, it in-
creases significantly and remains unchanged in the [001] and [111] directions,
respectively. Nevertheless, in the first case, its value is 6% less than the maximum.
The minimum value is realized in the [101] directions (see Figure 1.8a).

The anisotropy of the phase velocities of the transverse phonons of both vibra-
tional branches also changes qualitatively (see Figures 1.8a, b). For example, for wave
vectors in the plane of a cube face, the fast mode t1 is isotropic when x=0.01, but be-
comes anisotropic when x= 1.0, with the velocity being maximum along the [101] direc-
tion. In contrast to this, the slow mode t2 that is anisotropic in the long-wavelength
limit x<< 1 becomes almost isotropic when x= 1.0. For the longitudinal phonons,

Table 1.4: Parameters that determine the approximation of the
phonon spectrum in Ge crystals over the entire Brillouin zone
taking into account the direction [210].

Longitudinal mode Mode t Mode t

A λ
½210� . . .

B λ
½210� . . .

C λ
½210� . . .

a λ
1 . −. −.

a λ
2 −. . .

a λ
3 −. −. .

b λ
1 . −. −.

b λ
2 . . .

b λ
3 −. −. −.

c λ
1

. −. −.

c λ
2 . . .

c λ
3 −. −. −.
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dispersion does not give rise to a qualitative change in the spectrum; whereas the dis-
persion has a stronger influence on the transverse phonons (see Figure 1.5). For all
symmetrical directions, plane sections of the spectrum in the short-wavelength region
0.5< x< 1 emerge; the group velocity has anomalously small values (see Figure 1.5). As

Figure 1.6: Phonon spectrum of Ge. Thermal phonon dispersion in the linear approximation in cubic
harmonics is taken into account for x = 0.2 (curve 1), x = 0.4 (curve 2), x = 0.6 (curve 3), x = 0.8
(curve 4), and x = 1 (curve 5) in the plane of a cube face (a,b,c) and in a diagonal plane (d,e,f). A
longitudinal mode is shown in the (a) and (d); (b) and (e) refer to t1; (c) and (f) are for t2. The
experimental data of [60, 61] are denoted by symbols.
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we will see later, a qualitative change in the anisotropy of the spectrum of thermal pho-
nons leads to a change in the directions in which the phonons of various vibrational
branches are focused.

(b)

Figure 1.7: Phonon spectrum of Ge. Thermal phonon dispersion in the quadratic approximation
in cubic harmonics is taken into account for x = 0.2 (curve 1), x = 0.4 (curve 2), x = 0.6 (curve 3),
x = 0.8 (curve 4), and x = 1 (curve 5) in the plane of a cube face (a,b,c) and in a diagonal plane
(d,e,f). A longitudinal mode is shown in the (a) and (d); (b) and (e) refer to t1; (c) and (f) are for t2.
The experimental data of [60, 61] are denoted by symbols.
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1.3 Calculation of Heat capacity of Si and Ge Crystals
Using the Approximation Phonon Spectrum

To start with, we calculate the heat capacity of Si and Ge crystals using the aniso-
tropic continuum model and the approximation spectrum of thermal phonons in ac-
cordance with formulas (1.28) and (1.42). Next, we compare the calculation results
with the experimental data of [64, 65]. Also, we demonstrate how much the pro-
posed approximation of the thermal phonon spectrum improves the agreement

Figure 1.8: Angular dependencies of the sound velocity S λðx,θ,0Þ normalized to 105cm=s on the
angle q in Si crystals for wave vectors lying in the plane of a cube face: (a) for longitudinal
phonons, (b), (c) for fast and slow transverse phonons, respectively, when the values of the
reduced wave vector are: x = 0(curves 1), x = 0.4(curves 2), x = 0.6(curves 3), x = 0.8(curves 4), and
x = 1(curves 5).
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between the calculations of the specific heat of Si and Ge crystals with the results of
[64, 65] compared to the anisotropic continuum model. The expression for molar
heat capacity, according to [9, 41, 66], has the form:

C λ
v =VMC λ

V =
kB ·VM

2πð Þ3
ð
dqz2λ

exp zλð Þ
exp zλð Þ− 1ð Þ2 , zλ =

�hωλ
q

kBT
, (1:50)

where kB is the Boltzmann constant, T is the temperature, ωλ
q is the phonon fre-

quency with polarization λ, C λ
v is the heat capacity at constant volume, VM is the

molar volume, which is equal to 12.10 and 13.64 cm3/mol, respectively, for Si and
Ge crystals. The upper limit of integration over q in the expression (1.50) is specified
by the Debye wave vector qD[66]:

qD = 6π2N=V
� �1=3 = 6π2NA=VM

� �1=3, (1:51)

where N is the number of unit cells, V is the crystal volume, NA ≈ 6.022 · 1023 cm3 mol
�

is the Avogadro number. The expression (1.50) implies that, at temperatures much
lower than the Debye temperature TD, the heat capacity obeys the Debye law and de-
pendence T3. In the case of high temperatures T >>TDð Þ, the well-known Dulong and
Petit law comes from the formula (1.50). It claims that the molar heat capacity of all
solids at high temperatures tends to the limit

CV = 3kBNA = 3R. (1:52)

The experiments in [64, 65] took measurements of the heat capacity under constant
pressure CP for Si and Ge crystals. It was shown in [65] that the CP −CV difference
for the crystals tested is small, amounts to of the order of 1− 23ð Þ · 10− 3J mol K= and
can be neglected. Consequently, we accept that CP ≈CV .

Let us compare the results of calculating the heat capacity with the experimen-
tal data. Figure 1.9 sketches that the long-wavelength phonons make the main con-
tribution to the heat capacity at temperatures below 6 and 10 K, respectively, for Ge
and Si crystals. Therefore, the dashed curves plotted within the anisotropic contin-
uum model are in good agreement with the data of [64, 65]. At higher temperatures,
the anisotropic continuum model gives overestimated values for the energy of pho-
non modes and, appropriately, underestimated values of the heat capacity for Ge
and Si crystals. Moreover, a maximum deviation from experiment takes place at
T = 15–30 K and at T = 25–55 K for Ge and Si crystals, respectively, and goes up to
55–65%. For these intervals, the specific heat capacity calculated within the aniso-
tropic continuum model is 2.7 times less than the experimental data of [64, 65] (see
Figure 1.9b, curve 1a). The deviation is mainly due to neglecting by the strong dis-
persion of the transverse phonons (see Figure 1.5). As can be seen from Figure 1.5,
for q> qD 2= , the spectrum of the slow mode reaches a plane section, which leads to
a significant increase in the contribution of this mode to the heat capacity.
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The best way to understand the difference between the calculated outcomes is
matching the curves 3 and 3a. The former represents the anisotropic-continuum-
model-based temperature dependencies. The latter makes allowance for the disper-
sion using the approximation spectrum. It is seen that in the indicated interval the
contribution to the heat capacity from the t2 mode 2.5 times increases. This signifi-
cantly reduces the discrepancy between the calculation results and the experimental
data. Moreover, the heat capacity values obtained using the approximation spectrum
of thermal phonons for Ge crystals at temperatures lower than 20 K, and less than
37 K for Si, are consistent with the experimental data with an error not exceeding 5%.
With increasing the temperature, the role of short-wavelength phonons rises and the
discrepancy between the calculation results and the findings observable enlarges. In
this range, the calculation results lie above the experimental data. This points to the
fact that the approximation designed somewhat overestimates the role of dispersion
for short-wavelength phonons in directions different from symmetric ones. A maxi-
mum deviation for Ge and Si crystals is achieved at T = 30–40 K and at T = 55–70 K,
respectively, and approaches 40–50% (see Figure 1.9). At T > 300 K, the molar heat
capacity for both models, as well the experimental data tends to 3 R, with the contri-
butions to the heat capacity from different branches of the phonon spectrum turning
out to be equal to each other (see Figure 1.9). The slow transverse mode (curves 3, 3a)
contributes dominantly to the heat capacity over the entire temperature range. For
example, for Si crystals at T = 3 K, its contribution is 53%, and at T = 40–50 is 61%.
The contribution of longitudinal phonons is much smaller than the contributions of
transverse phonons. It does not exceed 9% at T = 3 K and 4% at T = 40–50 K.

Figure 1.9: Temperature dependencies of the molar heat capacity of Ge (a) and Si (b) crystals in the
anisotropic continuum model (curves 1a, 2a, 3a, 4a) and for the model taking the dispersion of
thermal phonons into account (curves 1, 2, 3, 4). Curves 1 refer to the total heat capacity, curves 2
correspond to a fast transverse mode, curves 3 relate to a slow transverse mode, and curves 4 are
for a longitudinal mode. The straight line CV = 3R = 24.9J mol K= reflects the classic Dulong and Petit
law (1.52). The experimental data of [64, 65] are designated by symbols.
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So, we have proved that the proposed approximation of the spectrum of ther-
mal phonons satisfactorily describes the experimental data concerning the heat ca-
pacity of Ge and Si crystals and can be applied for calculating the lattice thermal
conductivity of cubic crystals.

1.4 Group Velocity and Peculiarities of the Phonon Propagation in
Cubic Crystals with Various Types of Elastic Energy Anisotropy

In elastically anisotropic crystals, due to non-collinearity of phase and group veloci-
ties, the phonon flux emitted by a point heat source is focused along certain directions
in the crystal lattice [16–18]. Figure 1.10 helps explain this effect by exemplifying three
cases of an isoenergetic surface or a surface of constant frequency. In an isotropic me-
dium, the directions of the group and phase velocities of phonons and the wave vector
coincide. There is no focusing effect: the density of states is isotropic; it is constant for
all directions (see Figure 1.10a). In cubic crystals, the anisotropy of the elastic proper-
ties poses the phonon focusing effect. That is to say, directions emerge for propagating
dominantly phonons of a given vibrational mode [16–18]. To illustrate this effect,
some cases are given in Figures 1.10b where the cross-section of the constant fre-
quency surface has the shape of a square with sides perpendicular to the [100] and
[101] directions. The group velocity being perpendicular to the constant frequency
surface, a significant part of phonons propagates in the [100] directions in the
first case and in the [101] directions in the second one. Obviously, the first case
shows that the phonons are focused in the [100] directions and defocused in the
[101] directions. The second case represents an opposite situation: the phonons
are focused in the [101] directions and defocused in the directions [100].

Figure 1.10: Scheme of cross-sections of isoenergy surfaces. It illustrate phonon focusing:
(a) in the case of an isotropic medium, (b) focusing in the [100] direction, and (c) focusing in the
[101] direction.
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Let us look at phonon focusing in cubic crystals with positive (LiF, GaAs, InSb
Ge, Si, MgO, diamond, YAG) and negative (CaF2, NaCl, YIG) anisotropy of second-order
elastic moduli within the anisotropic continuum model. Section 1.1 deals with the
angular dependencies of phase velocities for all acoustic modes in cubic crystals
of the same type. It is shown that they are qualitatively similar: the maximum and
minimum values of phase velocities for all crystals are achieved in the same direc-
tions. The latter differ only in greater or lesser anisotropy of the phase velocities
(see Figure 1.1a). The angular dependencies of the phase velocities for all acoustic
modes in cubic crystals of different types are qualitatively different: the maximum
values of phase velocities in type-I crystals correspond to the minimum values for
type-II crystals (see Section 1.1).

As an example of type-I and type-II crystals, we regard Si and Ge, and CaF2,
respectively. In elastically anisotropic crystals, the phonon transport and focusing
of phonons may be characterized by their group velocity. For an arbitrary direction
of the wave vector, it can be represented in the form [40]:

V λ
g ðθ,φÞ= S λðθ,φÞ~V λ

g ðθ,φÞ , ~V
λ
g ðθ,φÞ= n+ S λ

θeθ + S λ
φeφ ,

S λ
θ ðθ,φÞ=

1
S λ

� �
∂S λ

∂θ , S λ
φðθ,φÞ=

1
sin θ

1
S λ

� �
∂S λ

∂φ
. (1:53)

Here eθ = cosθ cosφ, cosθ sinφ, − sinθð Þ, eφ = − sinφ, cosφ,0ð Þ, and n is the unit
wave vector of a phonon. The n, eθ, and eφ vectors form a mutually orthogonal tri-
ple of unit vectors.

To examine the influence of phonon focusing on the propagation of phonon
modes in Si and CaF2 crystals, we resort to the simplest case when wave vectors lie in
the {100} plane of a cube face φ=0ð Þ. In this case, S λ

φ θ,0ð Þ=0, and only the angular
component S λ

θ is responsible for the deviation of the group velocity vector from the
wave vector direction. In the angular dependencies of the phase velocities S λ θ,0ð Þ,
we mark the directions of the angular component S λ

θ of the group velocity vector with
small arrows (see Figure 1.11a, b). The greater the anisotropy of the spectrum, the
greater the angular components S λ

θ and S λ
φ of the group velocity are, and the greater

the angle the group velocity vector deviates from the direction of the wave vector. It
should be emphasized that the group velocity vector deviates towards the maximum
values of the phase velocity. So, for example, St2θ <0 for a slow transverse mode in
the angle range of 0 ≤ θ ≤ π/4 for Si. The quantity St2θ becomes positive for the angles
π/4 ≤ θ ≤ π/2, therefore, the group velocity vector for the mode t2 deviates towards the
[001] and [010] directions (see Figure 1.10a, c). In these directions, the phonons of the
slow transverse mode are focused. For the longitudinal phonons, SLθ >0 in the range
of angles 0 ≤ θ ≤ π/4, but SLθ <0 when π/4 ≤ θ ≤ π/2. Therefore, the group velocity
vectors deviate from n to the [101] focusing direction (see Figure 1.11a, b). In
Figure 1.11a, these directions are marked with bold radial arrows. For the fast trans-
verse mode in Si in the {100} plane, the spectrum is isotropic and there is no focusing
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effect. Recall that S λ
θ = S λ

φ =0 in isotropic media, the directions of the group and
phase velocities coincide, and there is no focusing effect in them. For wave vectors in
the {100} planes, this equality holds for fast transverse modes in type-I crystals and
for slow transverse modes in type-II crystals, therefore, there is no focusing effect for
them. As can be reflected from Figures 1.11c, d (curves 2), the phonons of the fast
transverse mode in CaF2 crystals deviate from the [001] directions to the [101] focus-
ing directions. For longitudinal phonons, on the contrary: the group velocity vectors
deviate from the [101] directions to the focusing directions [001]. The focusing direc-
tions in Figure 1.11 are denoted by bold radial arrows. In one and the same crystal,
they are different for different modes.

For crystals of one type, the directions of focusing and defocusing for the vibra-
tional modes coincide, whereas the directions of focusing in type-I crystals turn
into the directions of defocusing in type-II crystals. For example, in Si crystals, lon-
gitudinal phonons are focused in the [101] directions, and defocused in the [001] di-
rections. In CaF2 crystals, longitudinal phonons are focused in the [001] directions,

(с) (d)

Figure 1.11: Angular dependencies of the sound velocities (a,b) and dimensionless group velocity
components S λ

θ ðθ,0Þ (c,d) in Si (a,c) and CaF2 (b,d) crystals for wave vectors lying in the plane of a
cube face. Curves 1 are longitudinal phonons, curves 2, 3 refer to fast and slow transverse
phonons, respectively. Focusing directions are designated by bold radial arrows.
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and defocused in the [111] directions. In Si, the slow mode with the polarization vec-
tor in the plane of a cube face is focused in the [001] directions and defocused in the
[101] directions, whereas the focusing and defocusing directions are opposite for the
fast transverse mode with the polarization vector in the plane of the face of the cube
in CaF2. Thus, there is a deep physical basis for classifying cubic crystals, as is pro-
posed in [44].

As is evident from the foregoing, a simple way of finding the phonon focus-
ing directions can be suggested avoiding complex group-velocity structures.
Figure 1.11 displays that the phonon-focusing directions coincide with the direc-
tions of reaching maxima of the phonon phase velocities. Consequently, the plotted
angular dependencies S λ

0 θ,φð Þ are sufficient to determine the focusing directions and
the maximums of the phase velocities.

So, we have shown that for type-I and type-II crystals, not only the spectrum
and polarization vectors but also the phonon focusing directions are qualitatively
different.

1.5 The Influence of Focusing on the Density of Phonon
States in Cubic Crystals

The method proposed above for analysing component directions of group velocities
allows determining only the direction of focusing and defocusing of phonons. In
order to quantitatively assess the influence of anisotropy of elastic energy on the
propagation of acoustic modes in cubic crystals, as well the influence of phonon
focusing on the density of phonon states, it is necessary to construct an isoenergetic
surface or a surface of constant frequency [67.68]

q=n ·ωλ=S λ θ,φð Þ. (1:54)

Then, the definition (1.54) implies that the phonon group velocity vector V λ
g is or-

thogonal to the isoenergetic surface. This means that the phonon wave vectors can
be unambiguously connected with the corresponding group velocity vectors for all
acoustic modes and the angles between the directions of the group and phase ve-
locities can be computed. The theory of elastic waves also uses other definitions
that are equivalent to the constant frequency surface: a surface of slowness [18], a
back surface [68] or a refraction surface [42]. These surfaces can be obtained from a
surface of constant frequency by dividing the expression (1.54) by the frequency ω
[18, 42, 68]. The surface of slowness is a geometric place of the ends of the vector
ξ λ, measuring from one point:

ξ λ =q=ωλ =n=S λ θ,φð Þ . (1:55)
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The monograph [42] defines this vector as a vector of refraction. In various literature,
we often encounter the terms of an isoenergetic surface or a constant frequency surface
[67]. Therefore, we will adhere to this terminology. With a view to quantifying the fea-
tures of the propagation of phonon modes in nanostructures with various types of an-
isotropy of elastic energy, we should make a graphic image of the isoenergetic surface.

Below, we resort to the findings of [69–71] to investigate the influence of focusing
on the propagation of phonons and the density of phonon states in elastically aniso-
tropic crystals. Figure 1.1 sketches the maximum anisotropy having the phase velocities
S λ θ,φð Þ for slow and fast transverse modes in the {100} and {110} planes. We illustrate
the phonon focusing by the example of the t1 and t2 modes in Si and CaF2 crystals for
wave vectors lying in the {100} and {110} planes. In doing so, we construct isoenergetic
surfaces for them (see Figure 1.12). The phonon group velocity determining the direction
of the energy transfer is perpendicular to this surface. As can be seen from Figure 1.12,
the phonon focusing is characterized by the following angles: θ1, θ2, θ3, and θ4.

The angle θ1 governs the direction of the wave vector for which the group veloc-
ity vector Vt2

g ðθgÞ is parallel to the focusing direction. For type-I crystals and the
wave vectors in the {100} plane, the group velocity vector is parallel to the [001]
direction, therefore,θgλ = nπ 2= , where n is an integer (see Figure 1.12). The lines of
zero curvature are distinguished peculiarities on the isoenergetic surface (slow-
ness surface). They reflect a transition from the convex to concave regions (see
Figure 1.12 (a)). In the three-dimensional case, many of these points form lines of
zero curvature. For the chosen section, the angles ± θ2 specify the directions of
the wave vectors towards the zero curvature points. The latter are counted from
the focusing directions (see Figure 1.12). The angles ± θ3 define the directions of
group velocities at points of zero curvature on the isoenergetic surface. At these
points, the phonon group velocity vectors have a maximum convergence to the
[100] direction. We denote this angle as θ3 = θgλ θ2ð Þ (see Figure 1.12). Obviously,
the size of the sector of the wave vectors corresponding to the focusing region is
determined by the group velocities Vt2

g ± θ4ð Þ that are collinear to the vectors Vt2
g at

the points of zero curvature, namely at − θ4 ≤ θ≤ θ4 (see Figure 1.12).
To find the characteristic angles θt2f100gi , we determine the direction of the

group velocity θgλ θ,φð Þ through the θ and φ angular coordinates of the wave vector.
The condition ðV λ

gqÞ=V λ
g qcos αλ θ,φð Þ� �

yields an angle between the group velocity
and the wave vector

α λðθ,φÞ= ± arccos 1+ S λ
θ

� �2 + �S λ
φ
�2
 �−0.5

. (1:56)

Consider the cases of wave vectors lying in the {100} and {110} planes for which the
angles are φ=0 and π/4, and the group velocity component is S λ

φ =0. Then

αλðθÞ= arctg S λ
θ ðθÞ. (1:57)

40 Chapter 1 Propagation of Elastic Waves and Phonon Focusing in Cubic Crystals

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



Fi
gu

re
1.
12
:S

ch
em

e
th
at

ill
us

tr
at
es

fo
cu

si
ng

of
sl
ow

an
d
fa
st

tr
an

sv
er
se

m
od

es
in

S
i(
a,
b)

an
d
C
aF

2
(c
,d

)c
ry
st
al
s
fo
r
cr
os

s-
se

ct
io
ns

of
an

is
oe

ne
rg
et
ic
su

rf
ac
e;

(a
,c

)T
he

pl
an

e
XZ

in
te
rs
ec
ts

th
e
is
oe

ne
rg
et
ic
su

rf
ac
e
(f
or

th
e
m
od

e
t 2
);
an

d
(b
,d

)A
di
ag

on
al

pl
an

e
in
te
rs
ec
ts

th
e
is
oe

ne
rg
et
ic
su

rf
ac
e
(f
or

th
e
t 1
an

d
t 2
m
od

es
).
A
rr
ow

s
st
an

d
fo
r
w
av
e
ve
ct
or
s
in
si
de

th
e

su
rf
ac
e
an

d
fo
r
th
e
co

rr
es

po
nd

in
g
gr
ou

p
ve
lo
ci
ti
es

of
ph

on
on

s
ou

ts
id
e
th
is

su
rf
ac
e.

1.5 The Influence of Focusing on the Density of Phonon States in Cubic Crystals 41

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



In the coordinate system along the edges of the cube, the angle between the Z-axis
and the group velocity direction is equal to:

θλ
g = θ+ αλ = θ+ arctg S λ

θ ðθÞ. (1:58)

It is readily apparent that the sign of the component of S λ
θ is responsible for in

which direction the group velocity vector deviates relative to the phonon wave vec-
tor. Since, in an isotropic medium, the directions of the phonon phase and group
velocities coincide with the direction of the phonon wave vector, the model of an
isotropic medium can be treated as a comparison system when analysing the influ-
ence of phonon focusing on the change in the density of phonon states in elastically
anisotropic crystals. Figure 1.13 shows a diagram for calculating the characteristic
angles θt2f100gi . The angles θt2f100gi come from the condition θλ

g =0:

θ1 + arctg S λ
θ ðθ1Þ=0. (1:59)

For searching the θ2 and θ3 angles, it is necessary to construct the function θt2g θ,0ð Þ
(curve 3):

θλ
g ðθÞ= θ+ arctg S λ

θ ðθÞ (1:60)

Figure 1.13: Diagram for calculating the characteristic angles θ1, θ2, θ3, and θ4 for the mode t2 in
silicon: the curve 1 is the function St2

θ ðθ,0Þ; the curve 2 is the function αt2 ðθ,0Þ; the curve 3 is the
function θt2

g ðθ,0Þ; the curve 4 is the function θt2
g = θ.
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and find its minimum. The position of the minimum dθt2g θ,0ð Þ=dθjθ= θ2 =0 deter-
mines the point of zero curvature with the θ2 angle, and the value of the function
gives the magnitude of the θ3 angle (see Figure 1.13).

θ3 = θ2 + arctg S λ
θ ðθ2Þ. (1:61)

After performing the above operations, we construct the vectors of the group veloci-
ties Vt2

g ð± θt22 Þ and determine the θ3 angles of “convergence” of the group velocities.
The 2θ3 angle assigns the region of phonon focusing. Obviously, the group veloci-
ties Vt2

g ð± θt24 Þ that are collinear to the directions of Vt2
g at the points of zero curva-

ture, namely at − θt24 ≤ θ≤ θt24 , ascertain the magnitude of the sector of the wave
vectors corresponding to the phonon focusing (see Figure 1.12).

An equation for calculating the θλ
4 angle has the form:

θλ
3 = θλ

g ðθλ
4 Þ= θλ

4 + arctg S λ
θ ðθλ

4 Þ. (1:62)

The θλ
4 angle can be graphically found by drawing a horizontal straight line at a height

of θ3 until it intersects the curve 3 (see Figure 1.13). The intersection point θλ
g ðθλ

4 Þ= θλ
3

gives us the desired angle θλ
4 that defines the focusing sector of − θλ

4 ≤ θ≤ θλ
4 in the

space of wave vectors. Thus, the diverging sector of − θλ
4 ≤ θ≤ θλ

4 of wave vectors in the
{100} plane for the mode t2 turns into the sector of − θλ

3 ≤ θg ≤ θλ
3 of group velocities,

which converge to the [001] direction.
In an isotropic medium, the directions of propagation of phonons and their wave

vectors coincide. Consequently, phonons travelling in an isotropic medium in the sec-
tor of − θλ

4 ≤ θ≤ θλ
4 will move in elastically anisotropic crystals in the substantially

smaller sector of − θλ
3 ≤ θg ≤ θλ

3 (see Figure 1.12). Thus, the density of states for this
mode in the focusing directions close to [100] significantly increases in comparison
with an isotropic medium. The method proposed allows one to quantitatively estimate
changes in angular density distributions of phonon states for slow quasi-transverse
modes in the crystals tested. For this purpose, we introduce the average density of
phonon states of the t2 mode for wave vectors in the {100} plane per unit angle for
the focusing regions of − θt23 ≤ θg ≤ θt23 Nt2f100g

F and an isotropic medium Niso. The
diverging sector of wave vectors for an isotropic medium in the {100} plane with
an 2θt2f100g4 angle (for example, for Ge and Si, the 2θ4 angles are equal to 62.9o and
57.3o, respectively) turning into a diverging sector of the phonon group velocity
vectors with an 2θt2f100g3 angle (for example, for Ge and Si, the 2θt2f100g3 angles
amount to 18.8o and 13.6o, respectively), the average density of states in the pho-
non focusing regions is greater than that in an isotropic medium. This can be ex-
pressed through the ratio:

nt2f100gFI =Nt2f100g
F =NIso = θt2f100g4 =θt2f100g3 . (1:63)
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For type-I crystals, the parameter nt2f100gFI = 1.98 is minimum for GaN and
nt2f100gFI = 4.98 is maximum for MgO (see Table 1.5). From the foregoing, it follows
that no direct correlation exists between the value of the k −1 anisotropy parameter
and the value of the nt2f100gFI coefficient. The inverse relationship appears to take
place: the larger the k −1 parameter, the smaller the nt2f100gFI coefficient. For GaN
crystals, the k-1 parameter is equal to 1.275 and the nt2f100gFI coefficient is minimum,
whereas, for MgO, the parameter k −1 = 0.69 has one of the minimum values in
Table 1.2, and the nt2f100gFI coefficient is maximum. The same situation occurs in
type-II crystals for the t1 mode (see Table 1.5). In SrF2 crystals, the parameter
k −1 = − 0.2. It has the minimum absolute value among those listed in the table, and
the value of nt1f100gFI = 52 is maximum. At the same time, the parameter k −1 = −0.466
has the maximum value in absolute magnitude for PbS, and the coefficient
nt1f100gFI = 2.51 is minimum for type-II crystals (see Table 1.5). For the defocusing re-
gion, the ratio

Table 1.5: Calculated values of the angles θλf100g
i and the average density of states for focusing and

defocusing regions in the {100} plane for the mode t2 in type-I crystals and for the mode t1 in type-II
crystals.

Type-I k- θt2f100g
1 θt2f100g

2 θt2f100g
3 θt2f100g

4 nt2f100gFI nt2f100gDI nt2f100gFD

GaN . .° .° .° .° . . .

GaAs . .° .° .° .° . . .

Ge . . . . . . . .

GaSb . .° .° .° .° . . .

InSb . .° .° .° .° . . .

LiF . .° .° .° .° . . .

MgO . .° .° .° .° . . .

Si . .° .° .° .° . . .

Type-II k- θt1f100g1 θt1f100g
2 θt1f100g

3 θt1f100g
4 nt1f100gFI nt1f100gDI nt1f100gFD

SrF −. .° .° .° .° . . .

CaF −. .° .° .° .° . . .

PbS −. .° .° .° .° . . .

NaCl −. . . . . . . .
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nλf100gDI =Nλf100g
D =NIso = π − 4θλf100g4


 �
= π − 4θλf100g3


 �
(1:64)

implies that the average density of states nλf100gDI for transverse modes is less
than Niso.

The expression (1.62) yields n
t2f100g
DI =0.38 and nt2f100gDI =0.43 for Ge and Si, re-

spectively. The ratios between the average density of states for focusing and defo-
cusing regions can be deduced from formulas (1.61) and (1.62):

nλf100gFD =Nλf100g
F =Nλf100g

D = θλf100g4 π − 4θλf100g3


 �
π − 4θλf100g4


 �
θλf100g3

h i.
(1:65)

These ratios characterize the anisotropy of density of states.
Estimates claim that the maximum and minimum anisotropy of density of pho-

non states for the t1 mode is observed for Si (nt2f100gFD = 9.9) and for Ge (nt2f100gFD = 8.7),
respectively. In this case, there is also no direct correlation between the value of the
anisotropy parameter k-1 and the value of nt2f100gFD .

However, as can be seen from the table, the maximum values of nt2f100gFD are due
to smallness of the θt2f100g3 angles that characterize the phonon focusing region.
This effect is inherent to type-II crystals (see Table 1.5). So, for example, for SrF2
crystals, the angle is minimum ðθt1f100g3 =0.17oÞ, and the nt1f100gFD coefficient is abnor-
mally large (nt1f100gFD = 64.7). It should be pointed out that the total number of states
concentrated in the focusing region ð2θt1f100g3 Þ for SrF2 is relatively not great com-
pared to other compounds. Therefore, as we will see later, this abnormal makes no
essential influence on the relaxation characteristics of phonons in the regime of the
Knudsen phonon gas flow. For the rest of type-II crystals, the n

t1ff100g
FD coefficient

varies from 8.9 for PbS to 10.5 for CaF2.
Diamond should be excluded from Table 1.5 because its anisotropy parameter

turns out to be too small to provide sections of negative curvature in the isoener-
getic surfaces for quasi-transverse acoustic modes. It is this case (the presence of
negative curvature sections in the isoenergetic surfaces of acoustic modes) that
meets certain difficulties in analysing the phonon focusing using the “enhancement
factor” (see, for example, [18, 72–75]). This is due to the fact that, firstly, the “en-
hancement factor” goes into infinity at points of zero curvature, and secondly, the
dependencies of group velocities on the direction of the wave vector become an am-
biguous function of angles in the negative curvature regions in the isoenergetic sur-
face (see Figure 1.12). Unlike this approach, we give below a simple and intuitive
method that allows one to estimate the average density of states for the phonon fo-
cusing and defocusing regions.

The situation concerning the focusing of transverse phonons, whose wave vec-
tors lie in the diagonal plane, is more complicated than in the plane of the cube
face. Indeed, in the case under consideration, the dividing of transverse modes into
fast and slow ones is physically incorrect (see [44], as well as Section 1.1). This can
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be explained by the fact that one of the transverse modes with a polarization vector
lying in the diagonal plane is a mixed transverse-longitudinal mode, and another
mode with a polarization vector perpendicular to this plane is pure. The former is a
slow mode in the angle range of θ½111� < θ<π − θ½111� and π + θ½111� < θ< 2π − θ½111� and a
fast mode in the angle region of − θ½111� < θ< θ½111� and π − θ½111� < θ<π + θ½111�. The iso-
energetic surface has appropriate negative curvature regions for both transverse
modes, as marked bold line in Figure 1.14.

However, for planes close to {110} when φ=π 4± δ= (where δ << 1), there occurs
separation of the fast and slow branches instead of their intersection, with the po-
larization vectors sharply changing in the vicinity of this transition (see Section 1.1,
Figure 1.4). For δ = ±0.1, it can be noticed that the degeneracy of the branches is
removed in the spectrum of transverse phonons for directions in the [111] neigh-
borhood and they are divided into fast and slow transverse modes. Since, in cal-
culating the kinetic characteristics of phonons, integration is carried out over all
directions of the phonon wave vectors, the singularity at an isolated point
θ½111� and φ=π 4= Þ�

makes no contributions to the relaxation characteristics of the
phonon gas. Therefore, we will further assume that the dividing of the transverse
modes into fast and slow ones for all cross-sections is valid.

In the plane in the isoenergetic surfaces of the slow transverse mode in the vicin-
ity of the [111] direction, there are regions with negative curvature for crystals of both
types. With increasing the parameter δ, the surface region with a negative curvature
first shrinks. Then, as the values of δ rises, the isoenergetic surface becomes
completely convex (see Figure 1.16). So, for example, a CaF2 type-II crystal demon-
strates a similar scenario for δ= 3π 16= . For δ=π 4= , we go over to the plane of the face
of the cube, with the spectrum of the slow transverse mode becoming isotropic (see
Figure 1.16). The same situation occurs for type-I crystals such as Si, MgO, GaN, etc.
(see Figure 1.14b, d). For them, the vicinity of the [111] direction has regions with nega-
tive curvature in the isoenergetic surface. This results in appearing local focusing
maxima in the vicinity of the [111] directions for the t2 mode (see Figure 1.14b, d).

In type-I crystals for wave vectors in the diagonal plane, the fast transverse
mode focuses in the [110] direction, and the slow transverse mode focuses in the
[100] and [111] directions (see Figure 1.14). Figure 1.14 makes clear that the focus-
ing of the phonons of the t1 mode in type-II crystals for wave vectors in the {110}
plane occurs differently than in type-I crystals. First, the minimum in the isoener-
getic surface and the focusing direction of the phonons of the t1 fast mode do not
coincide with the symmetric direction. Secondly, the negative curvature region in
the isoenergetic surface becomes asymmetric relative to the minimum point (see
Table 1.7 and Figure 1.14c). So, for example, for CaF2, the minimum point is lo-
cated at θF = 47.6o.

Let us calculate the average values of the density of states in type-I crystals for
the focusing and defocusing regions of the t2 mode. It should be paid attention that
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the t2 mode has two phonon focusing and defocusing regions in the diagonal plane,
against the plane of the cube face (see Figure 1.14b). The nt2f110gFI½100g coefficient can be
derived from the expression (1.63) for the first focusing region, and for the second
region, it is given by:

nt2f110gFI½111� = θt2f110g4½111�+ + θt2f110g4½111�−

 �

θt2f110g3½111�+ + θt2f110g3½111�−

 �

.
.

(1:66)

For Si crystals, according to the data from the Table 1.6, we have: (1) nt2f100gFIf100g = 6.33
and (2) nt2f110gFI½111� = 1.28. The defocusing regions D1 and D2 can be viewed from
Figures 1.14b: (1) θt2½100�3 < θg < θ½111� − θt2 111½ �

3− and (2) π − ðθ 111½ � + θt2 111½ �
3+ Þ< θg < θ½111� + θt2 111½ �

3+ .
Then, the average densities of states for both regions relative isotropic medium
are:

Figure 1.15: Angular dependencies of the phase velocities normalized to 105 cm/s (a) and
isoenergetic surfaces (b) in Si crystals for wave vectors lying near the diagonal plane: φ = π/4 + 0.1
is solid curves and φ = π/4 + 0.01 is dashed curves. Curves 1 and 2 are for quasi-transverse modes
t1 and t2, respectively.

Figure 1.16: Angular dependencies of isoenergetic
surfaces in CaF2 crystals for a slow transverse mode in
the planes φ= π=4+ δ: δ = 0.01 is for curve 1, δ = 0.1
is for curve 2, φ= π=16 is for curve 3, φ= 2π=16 is for
curve 4, φ= 3π=16 is for curve 5, and φ= π=4 is for
curve 6.
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nt2f110gDIð1Þ =Nt2f110g
DIð1Þ =NIso = θ½111� − θt2½111�4+ − θt2½100�4


 �
θ½111� − θt2½111�3− − θt2½100�3


 �
,

.
(1:67)

nf110gt2DIð2Þ =Nf110gt2
DIð2Þ =NIso = π − 2 θ½111� + θt2½111�4−


 �
 �
π − 2 θ½111� + θt2½111�3+


 �
 �
.

.
(1:68)

Let us look into Table 1.6 and find the values of the nt2f110gDIð1Þ coefficient for Si: (1)
nt2f110gDIð1Þ =0.40 and (2)nt2f110gDIð1Þ =0.66. As a result, the ratio between the average densi-
ties of states for the phonon focusing and defocusing regions yields: (1) nt2f110gFD 100½ � = 15.8
and (2) nt2f110gFD 111½ � = 1.9.

Here, it is worth giving the estimates of the average densities of states for the
focusing and defocusing regions for the t2 mode by the example of CaF2 (a type-II
crystal). The t2 mode has one focusing region in the vicinity of the [111] direction
and two phonon defocusing regions (see D1 and D2 regions in Figure 1.14d). The
relative density of states nt2f110gFI 111½ � in the focusing region for a CaF2 crystal can be eval-
uated through the formula (1.66). For the defocusing regions, it is easy to see that

nt2f110gDIð1Þ =Nt2f110g
DIð1Þ =NIso = θ½111� − θt2½111�4+


 �
= θ½111� − θt2½111�3−


 �
, (1:69)

nt2f110gDIð2Þ =Nt2f110g
DIð2Þ =NIso = π − 2 θ½111� + θt2½111�4−


 �
 �
= π − 2 θ½111� + θt2½111�3+


 �
 �
. (1:70)

Let us consult Table 1.7 and find for CaF2 the following values: nt2f110gDI 1ð Þ =0.77, and
nt2f110gDI 2ð Þ =0.39. As a result, the ratio between the average densities of states for the pho-
non focusing and defocusing regions yields: (1) nt2f110gFD 1ð Þ = 2.6 and (2)nt2f110gFD 2ð Þ = 5.1. Now,
we should examine the angular dependencies of the average density of states for the
fast transverse mode t2 in crystals of the second group for wave vectors in the diagonal
plane. In this plane, the t2 mode focuses in the directions close to [111] at θ= θF. It has
two defocusing regions: D1 in the range of angles − θF − θt13−


 �
< θg < θF − θt13− and D2

in the range of angles θF + θt13+ < θg <π − θF − θt13+ , as depicted in Figure 1.14c. For CaF2,
in the focusing region for the t2 mode, we have:

Table 1.7: Angles θλf110g
i that characterize the focusing of fast and slow transverse modes for wave

vectors lying in the diagonal plane for CaF2 crystal. n
λf110g
DIð1Þ, ð2Þ is the density of states in the [100] (1)

and [110] (2) directions.

Mode/
focusing
direction

θλf110g
1+ θλf110g

1− θλf110g
2+ θλf110g

2− θλf110g
3+ θλf110g

3− θλf110g
4+ θλf110g

4− nλf110gFI nλf110gDIð1Þ nλf110gDIð2Þ

t,
θF = .o

.° .° .° ° .° .° .° .° . . .

t, [] .° .° ° ° .° .° .° .° . . .
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nt1f110gFI = θt1f110g4+ + θt1f110g4−


 �
= θt1f110g3+ + θt1f110g3−


 �
= 4.67. (1:71)

For the defocusing regions, it is not hard to make sure that:

nt1f110gDIð1Þ =Nt1f110g
DIð1Þ =NIso = θF − θt1f110g4+


 �
= θF − θt1f110g3−


 �
, (1:72)

nt1f110gDIð2Þ =Nt1f110g
DIð2Þ =NIso = π − 2 θF + θt1f110g4−


 �
 �
= π − 2 θF + θt1f110g3+


 �
 �
. (1:73)

For CaF2 crystals, formulas (1.72) and (1.73) bring to nt1f110gDI 1ð Þ =0.55 and nt1f110gDI 2ð Þ =0.87.
As a result, for the ratio of the average densities of states in the phonon focusing
and defocusing regions we come up with: (1) nt1f110gFD 1ð Þ = 8.5 and (2) nt1f110gFD 2ð Þ = 5.4.

Tables 1.6 and 1.7 indicate that the following equality θt2 111½ �
3 ≡ θt2 111½ �

3− = θt2 111½ �
3+ is

fulfilled for the slow transverse mode in the [111] direction; it holds true for both
types of the crystals. This is not surprising since there occurs internal conical refrac-
tion of transverse phonons in the [111] direction (see [76–78]). It has been shown in
[76] that, in cubic crystals, phonons of a slow transverse mode propagate in a cone
with an opening angle of 2θt2 111½ �

3 in the vicinity of the [111] direction. According to
[76], the θt2 111½ �

3 angle can be expressed in terms of elastic second-order moduli as
follows:

θt2½111�3 = arctg
1ffiffiffi
2

p ðk − 1Þðc11 − c44Þ
c11 − c12 + c44ð Þ

����
����. (1:74)

For wave vectors lying in planes close to the diagonal plane φ= π 4± δ= (where
δ<< 1), the curvature of the isoenergetic surface, as well as the characteristic angles
θλ
i δð Þ are functions of the angle δ (see Figures 1.14−1.16). A scheme of determination
of the angles θt2f110gi for δ << 1 in the diagonal plane is shown in Figure 1.17, and
their values are presented in Table 1.8. In the case of asymmetric negative-curvature
regions, the relative density of states for the t1 and t2 modes in the phonon focusing
region is governed by the angles θλ

4± δð Þ and θλ
3± δð Þ and the expression:

nλf110gFI =Nλf110g
F =NIso = θλ

4+ ðδÞ+ θλ
4− ðδÞ


 �
= θλ

3+ ðδÞ+ θλ
3− ðδÞ


 �
. (1:75)

In order to estimate changes in the density of phonon states for the wave vectors in
the planes close to the diagonal plane, we establish the dependencies of the angles
θt2 111½ �
3± δð Þ and θt2 111½ �

3± δð Þ at small values of δ (see Table 1.8). Since the functions
θλ
g θ,π 4± δ= Þð are even functions of the parameter δ, the dependencies θt2 111½ �

3± δð Þ and
θt2 111½ �
4± δð Þ should be approximated by biquadratic functions of the type:

θt2½111�3± ðδÞ= a± ðδÞ4 +b± ðδÞ2 + c± . (1:76)

Let us compute the angles θt2 111½ �
3± δð Þ for the values of the parameters δ=0+ , 0.05, and

0.1 and find unknown coefficients a± , b± , and c± , for example, for CaF2:
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(b)

(a)

Figure 1.17: Diagrams for determining the angles θt2
1± ðδÞ, θt2

3± ðδÞ, and θt2
4± ðδÞ for a slow transverse

mode in planes close to the diagonal plane (φ= π=4± δ) in GaN(a) and CaF2 (b) crystals: curves 1
are the function θt2

g ðθ, π=4Þ, curves 1a are the function θt2
g ðθ, π=4±0.1Þ, curves 1b are the function

θt2
g ðθ, π=4±0.05Þ, and curves 1c are the function θt2

g ðθ, π=4±0.1Þ. Curves 2 are the function
θgðθÞ= θ (case of an isotropic medium).
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1) For the angel θt2 111½ �
3± : a+ = 2537, b+ = − 37.76, c+ =0.21;

2) For θt2 111½ �
3− : a+ = 116.4, b+ = − 3.08, c+ =0.21.

Next, we average the function θt2 111½ �
3 δð Þ over the angle δ in the interval 0,Δ½ � in the

following way:

θt2 111½ �
3 δð Þ

D E
= 1
Δ

ðΔ
0

dδθt2 111½ �
3 δð Þ. (1:77)

We take the averaging region Δ=0.1 rad 5.7oð Þ and obtain: hθt2 111½ �
3+ i= 7.7o and

hθt2 111½ �
3− i= 11.5o. Similarly, we carry out the averaging of the angles θt2 111½ �

4± . The aver-
age values of the angles hθt2 110½ �

i i are given in Table 1.9.
Let us further explore and compare the angular dependencies of the average

densities of phonon states in type-I (Ge, Si, GaN) and type-II (CaF2, PbS) crystals for
wave vectors in the plane of the cube face.

The regions of the maxima of the density of states for the type-I crystals (Ge, Si,
GaN) correspond to the minima of that for the type-II crystals (CaF2, PbS), as in
Figure 1.18a.

This can be explained by the fact that the focusing directions in the type-I crys-
tals correspond to the defocusing directions in the type-II crystals (see Figure 1.18a).
For the type-I crystals, the values of the density of states reach their maximum for Si
crystals, with latter demonstrating the minimum value of the anisotropy parameter
and the 2θt2 100f g

3 angle that is responsible for the phonon focusing region. The values
of the density of states reach their minimum for GaN crystals, which the maximum
value of the anisotropy parameter and the 2θt2 100f g

3 angle are inherent to.

Table 1.8: The angles θt2½111�
3± δð Þ and θt2½111�

4± δð Þ for the parameters δ = 0.05 and 0.1,
which characterize the focusing of slow transverse modes in the vicinity of the [111]
direction.

Crystal δ θt2½111�3+ δð Þ θt2½111�3− δð Þ θt2½111�4+ δð Þ θt2½111�4− δð Þ
GaN . .° .° .° .°

. .° .° .° .°

Si . .° .° .° .°

. .° .° .° .°

MgO . .° .° .° .°

. .° .° .° .°

CaF . .° .° .° .°

. .° .° .° .°
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The angular dependencies of the densities of phonon states for wave vectors in
the diagonal plane φ=π 4= Þð being too involved, we present them only for Si and
CaF2 crystals (see Figure 1.18b). For Si crystals, in the focusing region of the fast
transverse mode in the [110] direction, the angle θt13 is larger than the angle θt14 (see
Table 1.6). Therefore, the maximum density of states for this mode significantly ex-
ceeds the density of states in an isotropic medium ðnt1 119f g

FI = 18.2Þ and the maxima of
the density of states for the slow transverse mode that focuses in the [100] and [111]
directions (see Table 1.6 and Figure 1.18b, curves 1 and 1a). Moreover, the maximum
density of states for the t2 mode in the [001] direction exceeds that in the [111] direc-
tion by almost 5 times. In CaF2 crystals, phonons of the fast and slow transverse
mode are focused in the θ= θF = 47.6o and [111] directions, respectively. The maxi-
mum density of states for the mode t2 in the [111] direction turns out to be two times
higher than that corresponding to the fast transverse mode (see Figure 1.18b, curves 2
and 2a). Since the focusing regions of these modes overlap, it can be expected that
the mode-averaged free path may markedly increase in the vicinity of [111]. Thus, the
analysis of the anisotropy of the phonon-state densities confirms the justification of
the dividing of cubic crystals into two types in accordance with the sign of the anisot-
ropy parameter. As we will see later, the thermal conductivity and phonon mean free
paths of the crystals become affected by a sharp change in the density of phonon
states upon transition from the focusing to defocusing regions.

Figure 1.18: (a) Angular dependencies of the average densities of phonon states in the {100} plane
for the t2 mode in Si (1), Ge (2), GaN (3) crystals and the fast t1 mode in CaF2 (4) and PbS (5)
crystals. Curve 6 is the density of phonon states in the model of an isotropic medium. (b) Angular
dependencies of the average densities of phonon states in the {110} plane (φ= π=4) in Si (1.1a) and
CaF2 (2.2a) crystals for slow (curves 1 and 2) and fast (curves 1a and 2a) transverse phonons. Curve
3 is the density of phonon states for an isotropic medium model.
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For the t2 mode in Si and CaF2 crystals, let us compare the angular dependencies
of the average densities of phonon states in the diagonal plane φ=π 4= and phonon-
state densities averaged over wave vectors lying in planes close to the diagonal plane
φ=π 4± δ= (where δ ≤ 0.1). As can be understood from Figures 1.18b and 1.19a, for Si
crystals, the density states for the t2 mode in the [111] direction at φ≡π 4= is
nt2 110f g
FI 111½ � = 1.28. However, after averaging over planes close to the diagonal plane, it in-

creases 1.5 times: hnt2 110f g
FI 111½ � i= 1.97 (see Figure 1.19a). A weaker effect is observed for

type-II CaF2 crystals: n
t2 110f g
FI 111½ � = 1.95 at φ≡π 4= . After averaging over the angle δ, the

maximum density of states increases 1.2 times: hnt2 110f g
FI 111½ � i= 2.42 (see Figure 1.19b).

This effect can be explained as follows. With an increase in the deviation of δ from
the diagonal plane, the curvature of the concave section of the isoenergetic surface
in the vicinity of the [111] direction diminishes. As a result, it becomes flatter, with
the angles θt2½111�3± δð Þ that govern the phonon focusing regions decreasing. After aver-
aging, the angle hθt2 111½ �

3± δð Þi becomes less than θt2½111�3± π 4= Þð (see Figure 1.16 and
Tables 1.6–1.8). Since the angle θt2½111�3± δð Þ changes slightly with increasing δ, the av-
eraged values hnt2 110f g

FI 111½ � δð Þi of the density of states turn out to be greater than those
at φ≡π 4= . The averaged values hnt2 110f g

FI 111½ � i and hθt2 111½ �
3± i will be applied in Chapter 4

for analysing the anisotropy of the thermal conductivity and mean free paths in the
diagonal plane.

Figure 1.19: Angular dependencies of the phonon density of states of slow transverse phonons in Si
(a) and CaF2 (b) crystals for wave vectors in the diagonal plane. Curves 1 are the density of states of
slow transverse phonons for averaged angles θt2½111�

3±

D E
and θt2½111�

4±

D E
(see Table 1.9). Curves 2 are

the density of states of slow transverse phonons for angles θt2½111�
3± and θt2½111�

4± , determined at
φ= π 4= (see Tables 1.6 and 1.7). Curves 3 are the density of phonon states for an isotropic medium
model. The (D1) and (D2) phonon defocusing regions are indicated corresponding to Figure 1.14.
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As for the longitudinal phonons, in contrast to the quasi-transverse modes, the
slowness surfaces for all the cubic crystals examined contain no negative curvature
regions and are convex everywhere (see Figure 1.20). Their group velocity depen-
dencies on the directions of the phonon wave vector are an unambiguous function
of angles for crystals of both types. The focusing effect is less pronounced and oc-
curs less dramatically than that for the quasi-transverse modes (see Figure 1.20). As
can be seen from Figure 1.20, based on the construction of isoenergetic surfaces,
the analysis of the influence of focusing of longitudinal phonons on the group ve-
locity directions confirms the results of the qualitative analysis carried out in
Section 1.4. The focusing directions of longitudinal phonons for the type-I crystals
are converted to the defocusing directions for the type-II crystals and vice versa.

Figure 1.20: Focusing of longitudinal modes in Si and CaF2 crystals. Sections of the slowness
surface by (a) {100} and (b) {110} planes in Si crystals (curves 1) and CaF2 (curves 2) in an
anisotropic continuum model. The dashed arrows show the wave vectors and the solid arrows
show the corresponding phonon group velocities.
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1.6 Phonon Flux Enhancement Factor

The studies of the phonon pulse propagation in elastically anisotropic crystals have
shown high anisotropy of the spatial distribution of the energy flux of acoustic os-
cillations of various polarizations (see [16–18, 45, 75, 79]). The research in [16] re-
ports that the amplitudes of phonon pulses in LiF and KCl crystals strongly depend
on their polarizations and propagation directions. For LiF crystals in the [100] direc-
tion, the flux intensity of transverse phonons appears to be 100 times higher than
that for longitudinal phonons, whereas it is vice versa in KCl crystals: the pulse am-
plitude of transverse phonons is seven times lower than for longitudinal phonons.
On the other hand, for LiF crystals in the [110] direction, the flux intensity of a fast
transverse mode 10 and 20 times exceeds that for longitudinal and slow transverse
modes, respectively. To quantitatively describe these effects, Maris [17] used the isotro-
pic medium model as a reference system and introduced the notion of the phonon
flux enhancement factor Aλ, i.e., the “enhancement factor”, which is also known as
the “amplification factor [18, 73, 80].” According to [17], the coefficient Aλ is defined as
the ratio of the phonon flux of a given polarization λ for a chosen wave vector direc-
tion to the corresponding flux in an isotropic medium. At the first acquaintance with
[17, 18, 45, 73–75, 79], an impression arises that the “enhancement factor” has the
meaning of the enhancement factor of the phonon density of states for elastic aniso-
tropic crystals relative to the isotropic medium. However, as we will see later, the dif-
ferential nature of calculating the coefficient Aλ leads to a number of peculiarities that
make it difficult to interpret experimental data on phonon pulse propagation in elasti-
cally anisotropic crystals. Going the coefficient Aλ into infinity at zero-curvature points
on the isoenergetic surface prevents from making quantitative estimates of changes in
the density of phonon states in the crystals due to the effect of phonon focusing.

Despite a big number of papers dedicated to analysing the enhancement factor [17,
18, 45, 73–75, 80–82, 84], some problems are currently far from being solved. First and
foremost, an analytic expression for the coefficient Aλ in cubic crystals has not been
derived. To date, we have made out with the above issue: a new method of calculating
the enhancement factor and a simple analytic expression for it are proposed. This offers
an opportunity to qualitatively describe the differences between the enhancement fac-
tors Aλ for cubic crystals with a various type of anisotropy of elastic energy. Research
[44] of the influence of the elastic energy anisotropy on the spectrum and polarization
vectors of vibrational modes has shown that all cubic crystals may be divided into two
types depending on the sign of the parameter k-1 (k − 1= c12 + 2c44 − c11ð Þ c11 − c44ð Þ, cij

�
are elastic second-order moduli): crystals with positive k − 1>0 (Fe, Cu, MgO, InSb,
GaAs, GaN, Ge, Si, diamond, and LiF) and negative k − 1<0 (CaF2, SrF2, and PbS) an-
isotropy of elastic second-order moduli (see Table 1.2, as well as [44]). The goal of the
present work is to investigate the physical aspects of the influence of focusing on prop-
agation of phonon pulses and compute the enhancement factors for single-crystalline
samples with a various type of elastic energy anisotropy.
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1.6.1 Analytic Calculation of the Phonon Flux Enhancement Factor

To start with, we calculate the coefficient Aλ as it was done in [17]. Let a phonon
source (heater) be on one of the sample faces, and a phonon detector is on the op-
posite face. They are connected by a vector R. In an isotropic medium, waves leav-
ing the source will reach the detector if their wave vectors lie within the solid angle
δΩq = sinθdθdφ, where θ,φ are angular variables of the vector q in the vicinity of
the direction of R (see Figure 1.21a). In the case of an anisotropic medium, a wave
with the wave vector q and polarization λ reaches the detector center if the group
velocity directions are within the solid angle δΩV in the vicinity of the vector R, i.e.
(see Figure 1.21b): V λ

g Rk . As can be seen from Figures 1.22, the condition for the
transverse waves is fulfilled for at least two or three waves in the directions of wave
vectors corresponding to negative-curvature regions on the isoenergetic surface. In
[17], it has been shown that the enhancement factor A λ θ,φð Þ that characterizes the
difference between phonon fluxes in crystals in an isotropic medium can be deter-
mined as the ratio of solid angles for wave vectors and group velocities:

A λðθ,φÞ= δΩq=δΩ
λ
V . (1:78)

Since the distribution of wave vectors, in contrast to group velocities, is isotropic in
the crystal, the phonon flux density increases or decreases by the magnitude of
A λ θ,φð Þ with respect to the isotropic medium. Therefore, the problem is reduced to
calculating the ratio of the solid angle in the q-space to the solid angle in group veloc-
ity space. In the q-space, a parallelogram ABCD is observed from point O under the
angle δΩq (see Figure 1.21a). The vectors q= qn, δq1 = qn1, and δq2 = qn2 constitute a
triad of mutually orthogonal vectors [40]. Then, for an isotropic medium, we have

δΩq = δq=qð Þ2. (1:79)

(a) (b)

Figure 1.21: Schematic representation of solid angles: (a) δΩq in the q-space and
(b) δΩV in the group velocity space.
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The corresponding solid angle for the same variations of the δq1 and δq2 wave vec-
tors in the group velocity space δΩV is the angle under which the parallelogram
A'B'C'D' is seen (see Figure 1.21b):

δV λ
g1i =V λ

giðq+ δq1Þ−V λ
giðqÞ= ∂V λ

gi=∂q · δq1,
δV λ

g2i =V λ
giðq+ δq2Þ−V λ

giðqÞ= ∂V λ
gi=∂q · δq2,

(1:80)

where V λ
gi is the i-th group velocity component in the orthogonal coordinate system.

Then, the solid angle in the group velocity space acquires the form [17]:

δΩV = δS?V= V λ
g


 �2
= δV λ

g1 × δV λ
g2

h i
·V λ

g


 �
= V λ

g


 �3����
����. (1:81)

The enhancement factor A λ θ,φð Þ is presented as in [17]:

A λðθ,φÞ� �− 1 = δΩV

δΩq
= q2

V λ
g


 �3 n1 ·
∂V λ

g1

∂q

( )
× n2 ·

∂V λ
g2

∂q

( )" #
·V λ

g

 !�����
�����. (1:82)

We further show that the spherical coordinate system n1 = eθ, n2 = eϕ
� �

should be
used in calculating the factor A λ θ,φð Þ. This makes it possible to arrive at an analyti-
cal expression for it. The group velocity vectors and the δV λ

g1 derivative in the spher-
ical coordinate system can be found as follows:

V λ
g ðθ,φÞ= S λðθ,φÞ~V λ

g ðθ,φÞ, ~V
λ
g ðθ,φÞ= n+ S λ

θeθ + S λ
φeφ,

Sλθðθ,φÞ=
1
S λ

� �
∂S λ

∂θ
,

S λ
φðθ,φÞ=

1
sin θ

1
S λ

� �
∂S λ

∂φ
∂V λ

gi

∂q
=
∂V λ

gi

∂q
n+ 1

q

∂V λ
gi

∂θ
eθ +

1
q sin θ

∂V λ
gi

∂φ
eφ. (1:83)

Here, the phase velocity S λ θ,φð Þ in the anisotropic continuum model has been de-
termined in [44, 69], and the vectors n, eθ, and eφ form a mutually orthogonal triad
of unit vectors: n=q q= sinθ cosφ, sinθ sinφ, cosθð Þ= is the unit wave vector of a
phonon, eθ = cosθ cosφ, cosθ sinφ, − sinθð Þ, eφ = − sinφ, cosφ,0ð Þ. From formulas
(1.80)–(1.83) for the vectors δV λ

g1 and δV λ
g2, we get:

δV λ
g1i = ∂V λ

gi=∂q · δq1


 �
= eθ∂V

λ
gi=∂q


 �
· δq= δq=qð Þ · ∂V λ

gi∂θ

 �

,

δV λ
g2i = ∂V λ

gi=∂q · δq2


 �
= eφ∂V

λ
gi=∂q


 �
· δq= δq=q sin θð Þ · ∂V λ

gi=∂φ

 �

.
(1:84)

and the expression for the area δSV , δSV = ½δV λ
g1 × δV λ

g2�. Figure 1.21b shows that the
area δSV is not orthogonal to the group velocity vector V λ

g . Therefore, we project
it onto the surface perpendicular to the unit vector of the group velocity:
δS?V = ðδSV ·V λ

g Þ=V λ
g (see the shaded area in Figure 1.21b). Consequently, the

A λ θ,φð Þ factor can be written in the spherical coordinate system as:
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A λðθ,φÞ� �− 1 = δΩV

δΩq
= 1

V λ
g


 �3
sin θ

×
∂V λ

g

∂θ
×
∂V λ

g

∂φ

" #
·V λ

g

 !�����
�����. (1:85)

The use of the Cartesian coordinate system leads to the result:

A λðθ,φÞ� �− 1 = 1

V λ
g


 �3
sin θ

·
∂V λ

gy

∂θ
∂V λ

gz

∂φ
−
∂V λ

gz

∂θ
∂Vgy

∂φ

 !
V λ
gx

�����
+

∂V λ
gz

∂θ
∂V λ

gx

∂φ
−
∂V λ

gx

∂θ
∂V λ

gz

∂φ

 !
V λ
gy +

∂V λ
gx

∂θ
∂V λ

gy

∂φ
−
∂V λ

gy

∂θ
∂V λ

gx

∂φ

 !
V λ
gz

�����,
(1:86)

where V λ
gx θ,φð Þ, V λ

gy θ,φð Þ, and V λ
gz θ,φð Þ are the phonon group velocity components

with polarization λ in the Cartesian coordinate system:

V λ
gxðθ,φÞ= S λðθ,φÞ sin θ cosφ+ S λ

θ ðθ,φÞ cos θ cosφ− S λ
φðθ,φÞ sinφ

n o
,

V λ
gyðθ,φÞ= S λðθ,φÞ sin θ sinφ+ S λ

θ ðθ,φÞ cos θ sinφ+ S λ
φðθ,φÞ cosφ

n o
,

V λ
gzðθ,φÞ= S λðθ,φÞ cos θ− S λ

θ ðθ,φÞ sin θ
� �

.

(1:87)

When using the Cartesian coordinate system, the expression (1.86) for the enhance-
ment factor contains more than 300 terms and is too cumbersome for analysis.

The papers [81, 82] report on another method of calculating the enhancement
factor in terms of derivatives of the group velocity angles θλ

V and φλ
V . The latter are

responsible for the direction of the vector V λ
g . According to definition (1.78), the co-

efficient A λ θ,φð Þ can be presented in the following way:

A λðθ,φÞ� �− 1 = δΩ λ
V

δΩ λ
q

=
d cos θλ

V


 �
dφλ

V

d cos θð Þdφ . (1:88)

Here δΩq =d cosθð Þ dφ is the solid angle in q-space, under which the area
δSq
�� ��= δq1 × δq2j j formed by the vectors δq1 and δq2 is seen. δΩ λ

V =dðcosθλ
VÞ dφλ

V is
the corresponding solid angle in the group velocity space, under which the area
jδSV ·V λ

g =V
λ
g j formed by the vectors δV λ

g1 and δV λ
g2 is visible (see Figure 1.21). Hence,

the enhancement factor can be rewritten through the Jacobian of the transition
from the variables ðθλ

V ,φλ
VÞ to the variables θ,φð Þ[81, 82]:

A λðθ,φÞ� �− 1 =
∂ cos θλ

V


 �
=∂ cos θð Þ ∂ cos θλ

V


 �
=∂φ

∂φλ
V=∂ cos θð Þ ∂φλ

V=∂φ

������
������

= 1
sin θ

∂ cos θλ
V


 �
∂θ

∂φλ
V

∂φ
−
∂ cos θλ

V


 �
∂φ

∂φλ
V

∂θ

������
������.

(1:89)
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To establish the dependencies θλ
V θ,φð Þ and φλ

V θ,φð Þ, the papers [81, 82] have
again employed the expressions for the group velocity in the Cartesian coordinate
system:

V λ
g =V λ

g sin θλ
V cosφ

λ
V i+ sin θλ

V sinφ
λ
V j+ cos θλ

Vk

 �

. (1:90)

As a result, we have:

cos θλ
Vðθ,φÞ=

V λ
gz θ,φð Þ

V λ
g θ,φð Þ and φλ

Vðθ,φÞ= arctg
V λ
gy θ,φð Þ

V λ
gx θ,φð Þ . (1:91)

In spite of significantly simplifying the numerical analysis of the enhancement fac-
tor by using formulas (1.89)–(1.91) as compared with the expressions (1.86)–(1.87),
calculating the enhancement factor in the Cartesian coordinate system remains
rather cumbersome. Besides, formulas (1.89)–(1.91) do not yield an analytical ex-
pression for the A λ θ,φð Þ factor.

In contrast to this, our analysis showed that the spherical coordinate system for
group velocity vectors and their derivatives makes it possible to deduce an accurate
analytical solution for the A λ θ,φð Þ enhancement factor and comprehensively ana-
lyse its features. To this purpose, we resort to formulas (1.80)–(1.83) to calculate the
scalar product ð½∂V λ

g

�
∂θ× ∂V λ

g

�
∂φ� ·V λ

g Þ in the spherical coordinate system. Finally,
we come to the expression for A λ θ,φð Þ in terms of the group velocity angular-
components S λ

θ and S λ
φ and their derivatives [84]:

A λðθ,φÞ= ~V λ
g


 �3
1+ S λ

θ
� �2 + ∂S λ

θ
∂θ

� �
1+ S λ

θ
cos θ
sin θ

+ S λ
φ


 �2
+ 1
sin θ

∂S λ
φ

∂φ

 !�����
−

1
sin θ

∂S λ
θ

∂φ
+ S λ

φ S λ
θ −

cos θ
sin θ

� �� �2����
− 1

. (1:92)

It is obvious that the angular derivatives S λ
θ and S λ

φ for the isotropic medium model
are zero, and the enhancement factor is equal to unity. The further analysis of the
peculiarities of the phonon flux propagation in elastically anisotropic crystals re-
quires using the analytical expression (1.92).

The elastic wave spectrum and group velocities of real crystals have rather com-
plicated shapes. To visualize the solid angle δΩq in q-space and the corresponding
angle δΩV in group velocity space, Figure 1.22 should be looked at. It sketches
cross-sections of the isoenergetic and wave surfaces in group velocity space by the
cube face plane for a slow transverse mode in a Si crystal. The wave surface is a
geometric place of group velocity vector ends for every possible wave vector direc-
tions in the crystal [17]. According to [17] (see eq. (24.13)), it can be defined by the
expression
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n ·V λ
g


 �
=S λðθ,φÞ= 1. (1:93)

The wave surface can also be assigned parametrically, having taken the wave vec-
tor angles θ and φ as parameters. For the {010} cross-section, it is given by

V λ
gx =V λ

gx θ,0ð Þ,
V λ
gy =0,

V λ
gz =V λ

gz θ,0ð Þ.

8>><
>>: (1:94)

Here the group velocity components V λ
g θ,φð Þ are controlled by formulas (1.87). In

the vicinity of the [110] direction, the solid angle δΩ 1ð Þ
V corresponds to the angle

δΩ 1ð Þ
q (see Figure 1.22). In this case, the direct calculation yields the factors At2

110½ � < 1,
i.e., δΩ 1ð Þ

V > δΩ 1ð Þ
q and the slow transverse mode for this direction defocuses (see

Figures 1.22).
In the vicinity of the [100] direction, the solid angle δΩ 2ð Þ

V (see Figure 1.22b)
corresponds to three different values of the solid angle δΩ 2ð Þ

q (see Figure 1.22a).
Therefore, the total ratio δΩq/δΩV for the [100] direction is much more than unity,
which indicates a high flux phonon enhancement in the vicinity of the focusing
direction. Let us consider the isoenergetic surface for the t2 mode in more detail.
The work [71] declares that the function θt2g θð Þ<0 in the vicinity of the [100]
directions in the angular range − θ1 ≤ θ≤ θ1 but it has a local minimum at θ2 =0.21.

Figure 1.22: Cross-sections of the (a) isoenergetic and (b) wave surfaces in group velocity space by
the cube face plane for a slow transverse mode in a Si crystal. The values of the angles θt2

i for the
cube face plane are given in Table 1.6. The group velocity vectors Vt2

g1, V
t2
g2, and Vt2

g½110� in (a)
correspond to the vectors Vt2

g1, V
t2
g2, and Vt2

g½110� in (b).
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The angles ± θ2 define the directions of the group velocity vectors Vt2
g2 towards the

wrinkle boundaries in the wave surface in the group velocity space, as in
Figure 1.22b. The same angles define the wave vector directions towards zero-
curvature points in the isoenergetic surface [71]. The convex-to-concave transition
occurs at these points, and the curvature vanishes. The positions of the zero-
curvature points are indicated by circles in Figure 1.22. In the three-dimensional
case, these points are combined into zero-curvature lines in the isoenergetic sur-
face. The phonon flux being orthogonal to this surface and inversely proportional
to its curvature at the given point [17, 18, 45], the zero-curvature points mathemat-
ically match to infinite phonon flux emitted from a point heat source along an ap-
propriate group velocity direction.

1.6.2 Analysis of the Angular Dependencies of the Enhancement Factor

To examine the angular dependencies of the enhancement factor in silicon crystals,
we use eq. (1.92) (see Figure 1.23a). In the isotropic medium model, the coefficient is
A λ θ,0ð Þ= 1. Therefore, the angular ranges in which the inequality A λ θ,0ð Þ> 1 is sat-
isfied can be attributed to phonon focusing regions; the angular ranges in which
the reverse inequality is met can be attributed to phonon defocusing regions. It is
clear that the enhancement factor of the transverse mode t2 becomes infinite at
zero-curvature points ðθ= θt22 Þ in the isoenergetic surface (see Figure 1.23a, curve 4).
The coefficient A λ θ,0ð Þ reaches its minimum in the [110] defocusing direction:
At2

110½ � =0.23 for Si. Longitudinal phonons are focused and defocused in the [111] and
[100] directions, respectively. For these cases, AL

111½ � = 2.20 and AL
100½ � =0.27. In the

[110] direction, a local focusing maximum takes place for them, and AL
110½ � = 1.42. In

CaF2 type-II crystals, the enhancement factor of the fast transverse mode at zero-
curvature points (at θ= θt12 ) in the isoenergetic surface goes into infinity (see
Figure 1.23b, curve 3). Longitudinal phonons are focused in the [100] direction, and
the enhancement factor is AL

100½ � = 3.21; in the [110] direction, they are defocused,
and AL

100½ � =0.78.
The analysis of the enhancement factors for the fast transverse mode in type-I

crystals and the slow transverse mode in type-II crystals has revealed an interesting
feature. The fact is that the spectrum of both transverse modes in cubic crystals for
wave vectors in the cube face plane is isotropic (see Figure 1.1). Consequently, the
A λ θ,0ð Þ factor is expected to be equal to unity, as found within the isotropic me-
dium model. However, its magnitude turns out to be much more than unity for sili-
con crystals in directly calculating using the expressions (1.92) (see Figure 1.23a,
curve 3); it is appreciably less than unity for the type-II CaF2 crystal, (Figure 1.23c,
curve 4).
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Since this feature of the enhancement factor has been previously disregarded,
we should treat it for crystals with different types of elastic energy anisotropy as
thoroughly as possible. To this end, we expand the phase velocity of the fast trans-
verse mode from eq. (1.28) for type-I crystals, near the cube face plane at φ<< 1:

St1ðθ,φÞ≈
ffiffiffiffiffiffiffi
c44
ρ

r
1−

δ
2
φ2 · sin2θ

� �
, δ = c11 − c44

c44

� � ðk − 1Þð2k + 1Þ
ðk+ 1Þ . (1:95)

Equation (1.95) implies that St1 θ,0ð Þ is maximum for the type-I crystals. It follows from
expression (1.92) that in the case φ ! 0 the contribution to the enhancement factor of
the t1 mode is made only by the second derivative ∂St1 ∂φ2

�
of the phase velocity:

At1 θ,0ð Þ= 1+ 1

sin2θ
∂2St1

∂φ2

ffiffiffiffiffiffiffi
ρ
c44

r����
����
− 1

= 1
1− δ

����
����. (1:96)

(b)(a)

(с) (d)

Figure 1.23: Angular dependencies of the enhancement factors A λðθ,φÞ in Si (a, b) and CaF2 (c,d)
crystals for wave vectors in the cube face plane (a,c) and diagonal plane (b,d). Dashed lines (1)
correspond to the isotropic medium model; curves 2, 3, and 4 correspond to longitudinal phonons,
the fast transverse modet1, and the slow transverse mode t2, respectively.
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For most type-I semiconductor crystals, the values of the parameter δ fall into the
range 0≤ δ≤ 2 and the enhancement factor of a fast transverse mode can significantly
exceed unity. However, for the type-I Na, K, Li, and Cu metal crystals, the parameter
δ > 2, and the enhancement factor of the fast transverse mode appears to be smaller
than unity (see Table 1.10). As seen from Table 1.10, there is no correlation between
the At1 θ,0ð Þ factor and the anisotropy parameter (k–1). So, for example, the aniso-
tropy parameter for YAG crystals is small k − 1≈0.03ð Þ, and the enhancement factor
is close to unity: At1 θ,0ð Þ= 1.08. For HgSe crystals, the anisotropy parameter is 20
times higher; however, the enhancement factor is lower than that for YAG crystals.
For GaN crystals (At1 θ,0ð Þ= 1.02), the parameter k–1 is maximum. However, the en-
hancement factor is the same as for YAG crystals (see Table 1.10). Among the type-I
crystals mentioned, the enhancement factor reaches a maximum value for MgO
(At1 θ,0ð Þ= 16.11) whose anisotropy parameter (k–1 = 0.7) differs slightly from that of

Table 1.10: Parameters k–1, δ and the
At1 θ,0ð Þ enhancement actors for a fast
transverse mode in type-II cubic crystals.

Crystal k– δ At1

Fe . . .

Cu . . .

GaAs . . .

InSb . . .

MgO . . .

GaSb . . .

Ge . . .

GaN . . .

LiF . . .

Si . . .

HgSe . . .

Diamond . . .

YAG . . .

Na . . .

Li . . .

K . . .
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HgSe (see Table 1.10). The enhancement factor becomes minimum (At1 θ,0ð Þ=0.4) for
Na alkali metal whose anisotropy parameter of the elastic energy has a maximum
magnitude (k–1 = 45.1).

In the type-II crystals (k–1 < 0), the phase velocity of the slow transverse mode t2
takes minimum values for wave vectors in the cube face plane. The phonon spectrum
for it at φ<< 1 is defined by eq. (1.95), and the At2 θ,0ð Þ enhancement factor is identi-
cal to the expression (1.96). Since the parameter δ < 0 for all type-II crystals, their
enhancement factor appears to be less than unity (see Table 1.11 and Figure 1.23).

The data of Table 1.11 confirm that the enhancement factors for the type-II crystals
are inversely proportional to the anisotropy parameter.

The maximum enhancement factor ðAt2
100f g ≈0.86Þ is inherent to YIG crystals

whose anisotropy parameter minimum is k− 1= − 0.04. The minimum enhance-
ment factor ≈ 0.19 is characteristic of the most anisotropic KCl crystals with the an-
isotropy parameter k− 1= − 0.63. Thus, phonon defocusing effects dominate in the
enhancement factors of the slow transverse mode for all type-II crystals. Therefore,
they are less than unity for wave vectors in the cube face plane.

As can be noticed from Figure 1.23, the enhancement factor of the slow
transverse mode in the vicinity of the [100] direction as θ ! 0 suffers a finite dis-
continuity. In this case, for Si crystals, this factor is different at φ=0 and
φ=π 4= . At φ=0, it appears to be much greater than unity At2 0,0ð Þ≈ 4.4ð Þ; at
φ=π 4= , it is less than unity At2 0,0ð Þ≈0.72ð Þ. This result has remained physically
strange and not yet been explained. Figures 1.12 (see also [71]) indicate that the
slow transverse mode is focused in the [100] direction as well as in the cube face
plane φ=0ð Þ and in the diagonal plane φ=π 4= Þð . Therefore, the enhancement
factor in both cases should exceed unity. To explain this paradox, a detailed
analysis of the behaviour of the At2 θ,φð Þ factor at small angles θ is required. For
this purpose, formulas (1.92) need to be drawn attention to. The point is that, in
Section 1.5 (see also [71]), in analysing the phonon density of states and consid-
ering the isoenergetic surface cross-sections at φ=0 and φ= π 4= , we fixed the
angle φ and accounted for only the phase velocity derivatives over θ, whereas in
calculating the A λ θ,φð Þ factor, the derivatives over both angles were taken into

Table 1.11: Parameters k–1, δ and the At2 enhancement factors for type-II crystals
for a slow transverse mode and wave vectors lying in the cube face plane.

Crystal KCl NaCl PbS CaF SrF YIG

k- −. −. −. −. −. −.

δ −. −. −. −. −. −.

At2 . . . . . .
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account. The enhancement factor characterizes the isoenergetic surface and is in-
versely proportional to its Gaussian curvature, A~1=K [82]. Depending on its curva-
ture, various kinds of peculiarities are possible to take place: (a) “a saddle” and (b)
“a concave lobe” types [82]. The peculiarity type in the three-dimensional surface is
defined by the Gaussian curvature K [83]. The latter can be represented as the prod-
uct of the principal surface curvatures: K = K1K2. In [82], it has been shown that the
surface has a saddle-type feature when K < 0 (K1 and K2 are of opposite sign). If
both K1 and K2 are negative, the surface is concave (“a concave lobe”) and the sur-
face is convex if both K1 and K2 are positive.

To understand which kind of features arises in the vicinity of the [100] direc-
tions for various angles φ, we expand the expression for the phase velocity of the
slow mode t2 at θ<< 1. Then, we obtain [84]:

St2ðθ,φÞ≈
ffiffiffiffiffiffiffi
c44
ρ

r
1− θ2Δt2 φð Þ� �

,Δt2 φð Þ= c11 − c44
4c44

ðk− 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1+ 2kÞcos2 2φ+ k2

p
+ k + 1

h i
.

(1:97)

For type-I crystals, the phase velocity of slow transverse phonons in the [100]
direction has its absolute maximum. For the cube face plane, the second de-
rivatives over θ and φ appear with different signs ∂2St2 ∂θ2 <0, ∂2St2 ∂φ2 >0

� ���
.

Therefore, the saddle-point peculiarity emerges in the vicinity of the cube face
at θ<< 1 in Si crystals. For the diagonal plane, the second derivative ∂2St2 ∂θ2

�
remains negative but the second derivative ∂2St2 ∂φ2

�
becomes negative. Thus,

the surface turns into a concave one (“a concave lobe”) in the vicinity of the
diagonal plane.

In the limiting case at θ<< 1, it follows from the expression (1.92) that the depen-
dence of the enhancement factor of the slow transverse mode on the angle φ can be
presented at φ=0 and φ= π 4= as the product of two multipliers [84]:

At2ð0+ ,φÞ= 1
1− 2Δt2 φð Þj j ·

1

1− 2Δt2 φð Þ−Δ′′t2 φð Þ�� �� , (1:98)

where

Δ′′t2 φð Þ= d2Δt2 φð Þ
dφ2 = −

c11 − c44
4c44

ðk− 1Þð1+ 2kÞ 4 cos 4φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1+ 2kÞcos2 2φ+ k2
p

(

+ ð1+ 2kÞsin2 4φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1+ 2kÞcos2 2φ+ k2
p
 �3

)
.

For Si crystals at the angles φ=0 and φ=π 4= , we have:
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Δt2 0ð Þ= c11 − c44
2c44

ðk2 − 1Þ=0.96, 1− 2Δt2 0ð Þð Þ− 1 = − 1.09,

Δ′′t2 0ð Þ= −
c11 − c44

c44

ðk − 1Þð1+ 2kÞ
ðk + 1Þ = − 1.17, 1− 2Δt2 0ð Þ−Δ′′t2 0ð Þ� �− 1 = 4,

Δt2 π=4ð Þ= c11 − c44
4c44

ðk − 1Þð2k + 1Þ=0.78, 1− 2Δt2 π=4ð Þð Þ− 1 = − 1.79,

Δ′′t2 π=4ð Þ= c11 − c44
c44

ðk − 1Þð1+ 2kÞ
k

= 1.88, 1− 2Δt2 π=4ð Þ−Δ′′t2 π=4ð Þ� �− 1 = −0:41.

(1:99)

The values specified above yield the following enhancement factors: At2 0,0ð Þ= 4.36
and At2ð0, π=4Þ = 0.72. As seen from the estimates (1.99), the major role in the fulfill-
ment of inequalities At2 0,0ð Þ> 1 and At2 0,π 4= Þ< 1ð is played by their dependence on
the derivative ∂2St2 ∂φ2

�
. It is seen that the factors At2 0,0ð Þ and At2 0,π 4= Þð contain the

multipliers 1− 2Δt2 0ð Þ�� ��− Δ′′t2 0ð Þ�� ��� �− 1 = 4 and 1− 2Δt2 π=4ð Þ�� ��− Δ′′t2 π=4ð Þ�� ��� �− 1 = 0.41.
The latter differ from each other by an order of magnitude due to changing the parame-
ter Δ′′t2 φð Þ. In this case, the values of 1− 2Δt2 φð Þ�� �� change to a lesser extent during the
transition from the cube face plane to the diagonal plane. Using (1.98), we can arrive at
φ=0 and φ=π 4= at [84]:

Kt2
1 0,φð Þ= St½100�~K

t2
1 0,φð Þ , ~Kt2

1 0,φð Þ= 1− 2Δt2 φð Þ ,

Kt2
2 0,φð Þ= St½100�~K

t2
2 0,φð Þ , ~Kt2

2 0,φð Þ= 1− 2Δt2 φð Þ−Δ′′t2 φð Þ .
(1:100)

For type-I crystals with low elastic anisotropy (such as YAG), the isoenergetic
surface of the mode t2 is convex everywhere, and both principal surface curva-
tures К1 and К2 are positive (see Table 1.12). The conditions K1 > 0, K2 > 0 and
expressions (1.99) lead to the inequalities under which the isoenergetic surface
remains convex (see Figure 1.24):

1< c11
c44

< 1+ 2k
ðk− 1Þðk + 2Þð2k + 1Þ . (1:101)

Hence, we see that this region is bounded by curve 1:

c11=c44 = 1+ 2k= ðk − 1Þðk+ 2Þð2k + 1Þf g. (1:102)

It should be noted that K1 and K2 are positive for all the type-II crystals (k–1 ≤ 0).
Therefore, the constant-energy surfaces of transverse phonons are convex at θ<< 1
(see Table 1.12).With increasing the anisotropy parameter k–1, we cross the curve 1 and
enter the second region, for which the constant-energy surface of the slow transverse
phonons is convex in the vicinity of the cube face plane at θ<< 1 K1 >0 and K2 >0ð Þ. In
the vicinity of the diagonal plane, the saddle-point-type feature is implemented (K1 > 0,
K2 < 0, see Table 1.12). For the second region, the system of the inequalities K1(0, 0) > 0,
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K2(0, 0) > 0 at φ = 0 and K1(0, π/4) > 0, K2(0, π/4) < 0 at φ=π 4= gives the following
expression:

1+ 2k
ðk − 1Þðk + 2Þð2k+ 1Þ <

c11
c44

< 1+ 1
k2 − 1

. (1:103)

This region is bounded by curves 1 and 2; the latter is defined by the expression
c11 c44 = 1+ 1 k2 − 1ð Þ��

. Among the crystals considered, diamond arrives at this param-
eter range (see Figure 1.24). In the third region, principal curvatures are opposite in

Table 1.12: Values of the enhancement factors At2 0+ ,φð Þ and At1 0+ ,φð Þ and parameters that
characterize the isoenergetic surface curvatures for the first- and second-type crystals at θ<< 1.

Crystal c11
c44

1=~Kt2
1 0,0ð Þ 1=~Kt2

2 0,0ð Þ 1=~Kt2
1 0, π4
� �

1=~Kt2
2 0, π4
� �

At2ð0,0Þ At2 0, π4
� �

Fe . −. −. . −. . .

Cu . −. −. −. −. . .

GaAs . −. −. −. −. . .

InSb . −. −. −. −. . .

MgO . −. . −. −. . .

Ge . −.  −. −. . .

LiF . −. . −. −. . .

Na . −. −. −. −. . .

Li . −. −. −. −. . .

K . −. −. −. −. . .

GaN . −. −. −. −. . .

Si . −. . −. −. . .

Diamond . . . . −. . .

YaG . . . . . . .

Crystal c11
c44

1=~Kt1
1 0,0ð Þ 1=~Kt1

2 0,0ð Þ 1=~Kt1
1 0, π4
� �

1=~Kt1
2 0, π4
� �

At1ð0,0Þ At1 0, π4
� �

YIG . . . . . . .

SrF . . . . . . .

CaF . . . . . . .

PbS . . . . . . .

NaCl . . . . . . .

KCl . . . . . . .
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sign in both planes: K1 < 0, K2 > 0 in the cube face plane and K1 > 0, K2 < 0 in the
diagonal plane. Therefore, for both planes in the isoenergetic surface, the saddle
point-type features are formed. Such a region is located between curves 2 and 3 and
defined by the inequalities:

1+ 1
k2 − 1

< c11
c44

< 1+ 2
ðk − 1Þð2k + 1Þ . (1:104)

However, none of crystals set in Table 1.12 arrived at this region. A further increase in
the anisotropy parameter k–1 leads to arising the following features in the isoener-
getic surface at θ<< 1, but namely, the saddle-point feature appears in the vicinity of
the cube face plane for the mode t2 (K1(0, 0) < 0, K2(0, 0) > 0); the isoenergetic surface
becomes concave (K1(0, π/4) < 0, K2(0, π/4) < 0) in the vicinity of the diagonal
plane. The above inequalities create the fourth region bounded by curves 3 and 4
(see Figure 1.24):

1+ 2
ðk − 1Þð2k + 1Þ <

c11
c44

< 1+ k + 1
k2ðk− 1Þ . (1:105)

The fourth region includes such crystals as Si, MgO, Ge, and LiF (see Figure 1.24).
As the anisotropy parameter k–1 further increases, we cross curve 4 and reveal the
fifth region. Here, the constant-energy surface for the mode t2 at θ<< 1 becomes

Figure 1.24: Dependencies of c11=c44 on the parameter k – 1, defining five regions with different
curvatures of the isoenergetic surfaces for slow transverse phonons for type-I cubic crystals.
Regions I, II, III, IV, and V are bounded by curves 1, 2, 3, 4, and 5, for which equations are given by
the inequalities (1.101), (1.103), (1.104), (1.105), and (1.106), respectively. Solid curves are the
results of the above analysis, dashed curves are the results of calculations by Every [82]. Symbols
denote the parameters for type-I crystals.

1.6 Phonon Flux Enhancement Factor 71

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



concave for an arbitrary angle φ: both curvatures K1 and K2 become negative (see
Table 1.12). From the expressions (1.99) and the condition c11 > c12, we can deduce
the relations responsible for curves 4 and 5:

1+ k + 1
k2ðk − 1Þ <

c11
c44

< 1+ 2
k − 1

. (1:106)

The fifth region incorporate Fe, Cu, K, Li, Na, and GaN crystals with maximum elas-
tic energy anisotropy (see Figure 1.2).

In [82], Every A.G. run a numerical analysis of the isoenergetic surface curva-
ture for cubic crystals using formulas (1.89)–(1.91) in the coordinates c11 c44= and
c12 c44= without introducing the anisotropy parameter k–1. He derived relations for
elastic moduli to divide crystals with different isoenergetic surface types. As seen in
Figure 1.24, the results secured in the coordinates c11 c44= and k – 1 (solid curves)
are consistent with those of the analysis performed in [82] (dashed curves).

Against the findings of [82], the present Section (see also [84]) chiefly deals
with the examination of how the discontinuity magnitudes of the enhancement fac-
tors of transverse modes in the vicinity of the [100] direction affect varying the an-
isotropy parameter and isoenergetic surface curvatures. It is seen from Table 1.12
that the At2 0,φð Þ factors are different in the vicinity of the [100] directions at φ=0
and φ= π 4= for all crystals, i.e. they undergo finite discontinuities. As the above
analysis showed, these discontinuities are caused by different isoenergetic surface
curvatures for wave vectors in the cube face and diagonal planes. Therewith, for
the first-type crystals, when passing from the cube face plane to the diagonal
plane, not only the principal curvatures for slow transverse modes change but also
their sign (curvature type) (see Table 1.12). However, for the second-type crystals,
isoenergetic surfaces for fast transverse modes remain convex, only curvature val-
ues vary at φ=0 and φ=π 4= (see Table 1.12). The At2 0,φð Þ coefficients have maxi-
mum discontinuities for the first-type crystals entering the fourth region. So, for
example, for Ge as θ → 0, the factors At2 0,φð Þ ffi 38 and At2 0,π 4= Þ ffi 0.4ð differ by
two orders of magnitude. It should be pointed out that, for the type-I crystals, there
is no correlation between the anisotropy parameter k–1 and the discontinuity in the
enhancement factors. However, such correlation can be clearly traced for the type-
II crystals: the higher the absolute magnitude of the anisotropy parameter |k–1|, the
higher the relative discontinuities in the enhancement factors are in the [100]-type
directions (see Table 1.12). Since the enhancement factors for them are less than
unity, the absolute discontinuity magnitudes of At1 0,φð Þ are small.

To eliminate the ambiguousness of the At2 0,φð Þ coefficient in the vicinity of the
[100] direction at φ=0 and φ=π 4= , Maris H.J. averaged the phonon flux over a cir-
cular shape detector and came up with the average values of the enhancement fac-
tor [17]. In [73], Lax M., etc. averaged the At2 0,φð Þ coefficient for transverse
phonons over a rectangular shape detector for all symmetric direction in crystals. A
GaAs crystal served as an example to demonstrate the change in the enhancement
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factors of transverse phonons by several times depending on the size and shape of
a detector. Moreover, for the [100] and [111] degenerate directions, the resulting
data depends on the detector shape even of its infinitely small dimensions (see [73],
Tables 4,6). Since averaging was carried out over a small neighborhood of symmet-
ric directions, these methods [17, 73] could not solve the problem of divergence of
the enhancement factor at zero curvature points in the slowness surface. This prob-
lem was considered in [75]. The authors of [81] averaged the phonon flux density
over the ΔS area of the detector for an arbitrary direction in the crystal. As a result,
they succeeded in avoiding the enhancement factor divergence. Also, they com-
puted the phonon flux density in the {100} plane for a GaAs crystal using square
detectors ((4 × 4) × 10−6 and (15.6 × 15.6) × 10−6 mm2). The resulting findings turned
out to be in qualitative agreement with the data of [79].

Thus, a closed analytical expression is obtained for the enhancement factor of
the phonon flux in cubic crystals with various types of elastic energy anisotropy.
The features of the angular dependencies of the enhancement factor, as well as the
types of curvature of the isoenergetic surfaces of acoustic modes on the magnitude
and sign of the anisotropy parameters, are analyzed.

Summarizing the analysis of the influence of focusing on the propagation of
phonon modes in elastically anisotropic crystals, it can be argued that the enhance-
ment-factor-based approach [73–75, 79, 80–82, 84] allows making no quantitative
estimates for the densities of states of quasi-transverse modes. However, it is widely
used in analyzing ballistic phonon transport and constructing phonon images [73–
75, 79, 80–82, 84]. On the other hand, in [69, 71], a simple and intuitive method for
estimating the density of phonon states (DPS) for phonon focusing and defocusing
regions is proposed, with it also utilizing an isotropic medium as a reference sys-
tem. The above method gives a rather rough estimate of the influence of focusing
on the DPS, but it brings to naught the afore-specified enhancement factor disad-
vantages. A strong argument in favor of the method for estimating the DPS, which
is developed in [69, 71], is a good agreement between the DPS angular dependen-
cies and mean free paths: the sectors of maxima and minima for both quantities
correspond to the phonon focusing and defocusing regions, respectively. Therefore,
in the future, it would be reasonable to apply this method when analyzing the influ-
ence of focusing of transverse phonons on phonon transport.

1.7 Conclusion

The main results of the first chapter can be formulated as follows:
1. An analysis of the Christoffel equations for the dynamic characteristics of elas-

tic waves has shown that all cubic crystals, in accordance with the sign of the
anisotropy parameter k-1, can be divided into two types: crystals with positive
(type-I) and negative (type II) anisotropy of the second-order elastic moduli.
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For crystals of the same type, the directions of focusing and defocusing of the
vibrational modes coincide, whereas in crystals of various types they are oppo-
site: the focusing directions in type-I crystals turn into the defocusing direc-
tions in type-II crystals.

2. A method of approximating the phonon spectrum of cubic crystals over the en-
tire Brillouin zone has been developed, with the spectrum obtaining from data
on inelastic neutron scattering for symmetric directions.

3. An analysis of the influence of focusing on the angular distribution of the density
of phonon states has shown that the maximum and minimum DPS in elastically
anisotropic crystals are achieved in phonon focusing and defocusing regions, re-
spectively. Therefore, the directions of the DPS maxima in the first type crystals
become the directions of the minima in the crystals of the second type.

4. The features of the propagation of phonon pulses in cubic crystals with various
types of anisotropy of elastic energy have been examined. A closed analytical
expression has been derived for the enhancement factor of the phonon flux in
cubic crystals with various types of elastic energy anisotropy. Peculiarities of
the angular dependencies of the enhancement factor, as well as the types of
curvature of the isoenergetic surfaces of acoustic modes on the magnitude and
sign of the anisotropy parameters have been analyzed.
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Chapter 2
Phonon Relaxation Times during Diffuse Scattering
at the Boundaries of monocrystalline
Finite-Length Samples

The present chapter covers the influence of elastic energy anisotropy on the relaxa-
tion characteristics of a phonon gas during diffuse scattering at the boundaries of
monocrystalline samples. At sufficiently low temperatures, when the phonon mean
free path in at least one of the directions is greater than or comparable with the char-
acteristic size of the nanostructure, the thermal conductivity is determined by the na-
ture of the surface–phonon interaction. Such a situation, when diffuse boundary
scattering is a dominant mechanism of phonon relaxation, is customary to call the
boundary scattering regime or the Knudsen flow of the phonon gas. Later, we analyze
the influence of phonon focusing on the Knudsen phonon gas flow in monocrystal-
line silicon samples in the framework of the Casimir–McCurdy theory [13, 19]. Casimir
[13] calculated the thermal conductivity of a dielectric infinite-length rod within the
model of an isotropic medium. He suggested that all phonons, when collided with
the surface, are absorbed and then re-emitted isotropically into half-space towards
inside the sample with an intensity that depends on the surface temperature in accor-
dance with the theory of black-body radiation. Casimir’s theory [13] has been general-
ized in [19] to the case of elastically anisotropic crystals. To the assumption of
Casimir, the authors have added two more:
1. Heat flux and temperature distribution are uniform along the length of the

sample.
2. A plane of mirror symmetry perpendicular to the axis of the sample is assumed

to exist.

The last assumption about the existence of a plane of mirror symmetry is not criti-
cal. The fact is that the plane perpendicular to the [111] direction is not a plane of
mirror symmetry. However, the calculated values of the phonon mean free paths for
this direction are consistent with experimental data with the same error as for other
directions [19]. The authors of [19] have not succeeded in deriving analytical expres-
sions for the phonon relaxation times during diffuse scattering at the sample
boundaries and in analyzing the temperature dependencies of the thermal conduc-
tivity for monocrystalline silicon samples with different directions of the heat flux
relative to the crystallographic axes. Therefore, the present chapter explores the
Knudsen phonon gas flow in finite-length samples and calculates the phonon relax-
ation times, focusing within the Casimir–McCurdy theory [13, 19].

Section 2.1 deals with expressions deduced for the relaxation times and mean free
paths during diffuse phonon scattering at the boundaries of round, square-shaped,

https://doi.org/10.1515/9783110670509-003
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and rectangular cross-section infinite-length samples. Section 2.2 calculates the
phonon relaxation times at the boundaries and the mean free path of phonons in
finite-length samples. Section 2.3 analyzes the anisotropy of the phonon mean free
path in bulk silicon samples with circular and square-shaped cross-sections. It is
shown that the estimated data are in good agreement with the findings of [19].
Section 2.4 discusses the anisotropy of phonon mean free paths in silicon samples
with a rectangular cross-section at low temperatures and compares them with ex-
perimental results of [19].

2.1 Phonon Relaxation at the Boundaries of Infinite-Length
Samples with Circular, Square-Shaped, and Rectangular
Cross-Section

To begin with, we look at phonon transport in infinite-length samples with circu-
lar, square-shaped, and rectangular cross-sections in the framework of the
Casimir–McCurdy theory [13, 19] and determine the phonon relaxation times dur-
ing diffuse boundary scattering. We choose the direction of the temperature gradi-
ent along the axis of the sample and denote this direction by X3. A cross-section of
the sample should be drawn with a plane perpendicular to the axis X3 and passing
through point X3 =0 (see Figures 2.1 and 2.2). Consider a surface element dS in the
neighborhood of a point with the coordinates X1,X3ð Þ.

Figure 2.1: Temperature distribution in a sample of length L (solid line) and in an infinite sample
(dashed line). The figure is taken from [19].
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We designate a unit vector perpendicular to the surface of the sample and
pointing towards the inside of the sample by m X1ð Þ. Phonons with a wave vector q
and polarization λ leave this surface element. Then, the phonon flux is equal to
ðmðX1ÞVλ

gÞNð0Þ
qλ ðX3,qÞdS, where Vλ

g is the group velocity of phonons and Nð0Þ
qλ ðX3,qÞ=

ðexpð�hωλ
q=kBTðX3ÞÞ− 1Þ− 1 is the Planck distribution function corresponding to the

T X3ð Þ temperature of the element at hand. Phonons that leave the surface element
dS travel along the rod until they collide with the surface.

Let the vector Λλ X1,qð Þ control the direction and mean free path of a phonon
with the wave vector q and polarization λ. Assuming that the temperature and
heat flux distributions are uniform throughout the sample, the authors of [19]
calculated the heat flux passing through the plane X3 =0 from right to left and
vice versa. As a result, they came up with the following expression for the ther-
mal conductivity:

κ∞ðTÞ= 1
2Sc

X
λ, q

�hωqλ
dNð0Þ

qλ

dT

ð
X1

dX1 mðX1ÞVλ
g


 �
Λλ
3ðX1,qÞ

� �2 = X
λ, q

�hωqλ
dNð0Þ

qλ

dT
Iλ∞, (2:1)

Iλ∞ = 1
2 Sc

ð
X1

mðX1ÞVλ
g


 �
Λλ
3 X1, qð Þ� �2

dX1, (2:2)

where Sc is the area of the transverse cross-section of the sample and Λλ
3 X1, qð Þ is the

projection of the mean free path of a phonon with the moment q and polarization λ
on the temperature gradient direction.

Figure 2.3 illustrates a scheme for evaluating the integral over the contour X1

for cylinder-shaped infinite-length samples, where R is the radius of the cylinder.
The phonon leaves the surface element at the point X1 towards the group veloc-

ity vector Vλ
g. The group velocity components Vλ

g3 and Vλ
g? =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVλ

gÞ2 − ðVλ
g3Þ

2
q

are the pro-
jections of the group velocity vector on the cylinder axis and cross-section plane,
respectively. We denote the projection of the phonon mean free path on the cross-
section plane as Λλ

? X1,qð Þ. As can be seen from Figure 2.3, it is equal to the length

Figure 2.2: Schematic representation of a sample of length L with an arbitrary cross-section. The
figure is taken from [19].
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of the X1A segment. The Λλ
3 X1,qð Þ projection of the mean free path on the cylinder

axis is related to Λλ
? X1,qð Þ by the relation

Λλ
3ðX1,qÞ=

Vλ
g3

Vλ
g?

Λλ
?ðX1,qÞ , Vλ

g? =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vλ
g1


 �2
+ Vλ

g2


 �2r
. (2:3)

Next, we enter the γ1 angle between the Y-axis and the m X1ð Þ normal to the circum-
ference at the point X1 and as well the ϕ angle between the Vλ

g? component and the
Y-axis. The geometry of the picture brings to Λλ

? X1,qð Þ= 2R cos ϕ− γ1
� �

. Then, we
have

Λλ
3ðX1,qÞ=

Vλ
g3

Vλ
g?

2R cosðϕ− γ1Þ , mðX1ÞVλ
g


 �
=Vλ

g? cosðϕ− γ1Þ . (2:4)

For a circular cross-section sample, we set that dX1 =Rdγ1. The contribution to the
contour integral (A1) is given only by phonons reflected by the surface element in-
side the sample. Therefore, for a given angle φ, we integrate over the γ1 angles only
within the sector between the B1 and B2 points. (The sector is indicated by a bold
line in the figure.) So, from the physical analysis of the problem, it follows that the
contour integrals over dX1 are not calculated over the entire contour as is done in
[19] but must cover only half of the contour. Therefore, for an infinite-length sam-
ple, the integration area X1 and appropriate values of the γ1 angles are limited by
the range −π=2< γ1 −ϕ< π 2= (see Figure 2.3). For an infinite-length sample with a
circular cross- section, we easily find the relaxation function

Figure 2.3: Scheme that illustrates the calculation of the contour integral for cylindrical samples.
(The cross-section of the cylinder by a plane perpendicular to the cylinder axis is shown.) The bold
line marks the part of the contour X1 over which the integral is calculated.
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I∞λ = 4R3

2 Sc

Vλ
g3


 �2
Vλ
g?

ð
X1

cos3ðϕ− γ1Þdγ1 =
8R
3π

Vλ
g3


 �2
Vλ
g?

. (2:5)

Equation (2.5) coincides with that obtained in [19].
Now consider a rod of infinite length with a rectangular cross-section D×μD

(see Figure 2.4). Let Vλ
g3 be the projection of the group velocity on the direction of

the temperature gradient, with this direction and the axis of the rod coinciding, Vλ
g?

be the projection of the group velocity on the plane of the cross-section of the rod,
and Vλ

g1 and Vλ
g2 be the projections of the group velocity on the side faces of the sam-

ple. Figure 2.4 presents the case when tgϕ= jVλ
g2j=jVλ

g1j<μ. In evaluating the integral
over the contour X1, we select three regions A, B, and C (see Figure 2.4). The A re-
gion is the ODF triangle, the B region is outlined by the OFHG parallelogram, and
the C region involves the GH(μD) triangle. As in the case of circular cross-section
samples, the contour integrals over dX1 are not calculated over the entire rectangu-
lar contour but only for half.

The fact is that in the case of diffuse phonon-boundary scattering for a fixed angle ϕ,
we should perform the integration only over those sides of the sample cross-section
where the speed of the scattered phonon is directed inside the sample (bold lines in
Figure 2.4). We denote the projection of the phonon mean free path on the cross-
section plane as Λλ

? X1,qð Þ. The latter is equal to the segment length X1E in the B re-
gion. The Λλ

3 X1,qð Þ projection of the mean free path on the axis rod relates through
the relation (2.3). In the case of tgφ= Vg2 Vg1

� ��< μ
�� in the A region, we have

ðm X1ð ÞVλ
gÞ=Vλ

g? · sinϕ , Λλ
1ðX1,qÞ= D− x

cosϕ , Λλ
3ðX1,qÞ=Λλ

1ðX1,qÞ
Vλ
g3

Vλg?
. (2:6)

Figure 2.4: Schematic diagram that illustrates the calculation of the contour integral for a rod with
a rectangular cross-section. The cross-section of the rod by a plane perpendicular to the long axis
for tgϕ= jVλ

g2j=jVλ
g1j> 1=μ is shown. Bold lines indicate the part of the contour X1 over which the

integral is calculated.
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Given the expression (2.6), for the integral over the A region, we get the following:

Iλ∞ðAÞ=
1

2 Sc

ðD
0

Vλ
g? · sinϕ

D− x
cosϕ

·
Vλ
g3

Vλ
g?

( )2

dx= D3

2 Sc

Vλ
g3

Vλ
g1

 !2 Vλ
g2

��� ���
3

. (2:7)

Analogously, for the B and C regions, we find the following:

Iλ∞ðBÞ=
D3

2 Sc

Vλ
g3

Vλ
g1

 !2

μ Vλ
g1

��� ���− Vλ
g2

��� ���
 �
, Iλ∞ðCÞ= Iλ∞ðAÞ. (2:8)

Having summed up over all the regions when Vλ
g2

��� ���<μ Vλ
g1

��� ��� for the relaxation function
Iλ∞ θ,φð Þ, we arrive at the following:

Iλ∞ðθ,φÞ=
D
6μ

Vλ
g3

Vλ
g1

 !2

3μ Vλ
g1

��� ���− Vλ
g2

��� ���
 �2
4

3
5. (2:9)

The case of tgϕ= Vλ
g2

��� ��� Vλ
g1

��� ���>μ
.

is considered in the same way:

Iλ∞ðθ,φÞ=μ
D
6

Vλ
g3

Vλ
g2

 !2

3 Vλ
g2

��� ���−μ Vλ
g1

��� ���
 �2
4

3
5. (2:10)

Formulas (2.9) and (2.10) coincide with those deducted in [19]. To go over to square-
shaped cross-section samples, it is sufficient to set μ= 1 in formulas (2.9) and (2.10).
So, the method proposed here to calculate the relaxation functions Iλ∞ θ,φð Þ for cir-
cular, square-shaped, and rectangular cross-section infinite-length samples results
in the same data as in [19]. Next, we demonstrate that this method allows one to
solve the problem of the Knudsen phonon gas flow in finite-length samples.

After comparing formula (2.1) with the standard expression for thermal conduc-
tivity [9, 85] in the relaxation time approximation

κðTÞ= kB
X
q, λ

τ λðqÞðVλ
g3Þ

2 �hωλ
q

kBT

 !2

N0
qλðN0

qλ + 1Þ, (2:11)

we can compute the phonon relaxation time during diffuse scattering at the bound-
aries of infinite-length samples in the following way:

τλB∞ðθ,φÞ=
Iλ∞ðθ,φÞ
Vλ
g3ðθ,φÞ


 �2 . (2:12)
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From formulas (2.5), (2.9), and (2.10), we can derive the findings for circular and
rectangular cross-section samples:

τλB∞ðθ,φÞ=
8R
3π

· 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vλ
g


 �2
− Vλ

g3


 �2r , (2:13)

τB∞λðθ,φÞ=

D
6μ

3μ Vλ
g1

��� ���− Vλ
g2

��� ���
 �
Vλg1


 �2 , if Vg2
�� ��<μ Vg1

�� ��;

μ D
6

3 Vλ
g2

��� ���− μ Vλ
g1

��� ���
 �
Vλ
g2


 �2 , if Vg2
�� ��>μ Vg1

�� ��.

8>>>>>>>><
>>>>>>>>:

(2:14)

The expression (2.13) for the phonon-boundary relaxation time for the infinite-length
samples with a circular cross-section coincides with that inferred earlier in [86].

Now, we determine the average phonon mean free path Λ∞ for the infinite-
length samples in the regime of the Knudsen phonon gas flow. For this, the range of
temperatures far below the Debye temperature T <<TDð Þ should be looked into using
the anisotropic continuum model. We apply the known expression for the kinetic the-
ory of gases for thermal conductivity:

κ= 1
3
CV

�S Λ∞. (2:15)

We reduce formula (2.11) for thermal conductivity to the form of (2.15). In doing so, we
distinguish the heat capacity CV per unit volume and the average phonon velocity �S:

CV =
2π2 k4B
5�h3

T3 1
3

X
λ

Sλ
� �− 3
D E

, �S=
X
λ

Sλ
� �− 2
D E X

λ
Sλ
� �− 3D E� �− 1

, (2:16)

where hðSλÞ− 3i= ÐdΩqðSλÞ− 3
=4π and hðSλÞ− 2i= Ð dΩqðSλÞ− 2

=4π. Then, the expression
for the mean free path ΛB∞ can be represented in the form as follows:

Λ∞ = 3
4π

· 1P
λ1

Sλ1ð Þ− 2
D EX

λ

ð1
− 1

dx
ð2π
0

dφ
Iλ∞ðθ,φÞ

ðSλðθ,φÞÞ3
, x= cos θ . (2:17)

The values of the average phonon velocities and heat capacity of Si crystals are
listed in Table 2.1.

The expressions (2.15)–(2.17) imply that, in the Debye approximation, the ther-
mal conductivity is proportional to heat capacity and obeys the T3 dependence at
low temperature, which conforms to the Debye law. This outcome attracted the at-
tention of researchers to the Casimir theory [13]. It is worth stressing, however, that
the formula for the thermal conductivity in [13] contains a known error, but namely,
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the extra multiplier π 2= . The phonon mean free paths for each vibrational mode can
be determined analogously. For this purpose, we represent the thermal conductivity
as the additive sum of all vibrational modes:

κ∞ðTÞ=
X
λ

κλ∞ðTÞ=
X
λ

1
3
Cλ
V
�S λΛλ

∞. (2:18)

Consequently, the mean free path ΛB∞ for phonons of the λ branch appears as follows:

Λλ
∞ = 3

4π
· 1

Sλð Þ− 2
D E ð1

− 1

dx
ð2π
0

dφ
Iλ∞ðθ,φÞ

ðSλðθ,φÞÞ3
. (2:19)

The expressions (2.5), (2.9), and (2.10) should be taken as Iλ∞ for circular and rectan-
gular cross-section samples, respectively. So, the phonon mean free paths at low
temperatures during boundary scattering within the anisotropic continuum model
are calculated through a double angular integral.

2.2 Phonon Relaxation Times during Diffuse Scattering
at the Boundaries of Finite-Length Samples with Circular,
Square-Shaped, and Rectangular Cross-Sections

In this section, we discuss the Knudsen flow of a phonon gas in finite-length sam-
ples with circular, square-shaped, and rectangular cross-sections and determine
the relaxation times for diffuse phonon-boundary scattering in the framework of
the theory of McCurdy et al. [19]. The theory discussed earlier suggests that the con-
tribution to the thermal conductivity of finite-length samples is made only by those
phonons that collide with the surface of the sample limited by its length. Phonons
that will collide with the surface of the sample beyond its length are said to make
no contribution to the thermal conductivity. For them, the projection of the mean
free path on the X3-axis is determined by the inequality

Table 2.1: The values of the parameters that govern the mean free path of phonons
for silicon crystals at low temperatures.

Mode hðSλðθ,φÞÞ− 2i,
10−12 (s2 cm −2)

�Sλ, 105

(cm s−1)
Cλ
V=T

3,
erg cm–3 K–4

�S, 105

(см s−1)
CV=T

3,
erg cm–3 K–4

L . . .

. .T . . .

T . . .
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Λλ
3ðX1, qÞ

�� ��≥ L
2
. (2:20)

We designated the contribution of such phonons to the thermal conductivity by
Δκ Tð Þ. Then, the thermal conductivity of a rod with a length L is equal to that of an
infinite-length rod after subtracting Δκ Tð Þ:

κ ðTÞ= κ∞ðTÞ−ΔκðTÞ. (2:21)

In accordance with [19], the Δκ Tð Þ correction for the sample with a length L has the
following form:

ΔκðTÞ=
X
λ, q

*�hωλ
q

dNð0Þ
qλ

dT
· 1
2 Sc

ð
X1

dX1 mðX1ÞVλ
g


 �
Λλ
3ðX1,qÞ

�� ��− L
2

� �2

=
X
λ, q

*�hωλ
q

dNð0Þ
qλ

dT
ΔIλ,

(2:22)

ΔIλðθ,φÞ= 1
2 Sc

ð
X1

dX1 mðX1ÞVλ
g


 �
Λλ
3ðX1,qÞ

�� ��− L
2

� �2

. (2:23)

The asterisk next to the summation sign over the wave vectors in formula (2.22)
stands for the contribution of only those phonons to the Δκ Tð Þ correction, for which
the inequality (2.20) holds. When calculating the integral over the contour X1, we
should also take the inequality (2.20) into account. From the expressions (2.21)–
(2.23), it follows that the thermal conductivity of the finite-length samples can be
given by

κðTÞ=
X
λ, q

*�hωλ
q

dNð0Þ
qλ

dT
Iλðθ,φÞ , Iλðθ,φÞ= Iλ

∞
ðθ,φÞ−ΔIλ ðθ,φÞ. (2:24)

The inequality (2.20) imposes restrictions on the region of integration over wave
vectors in the expression for the correction to the thermal conductivity. Therefore,
the authors of [19] did not succeed in directly deriving analytical expressions for
the ΔIλ θ,φð Þ quantity and determining the relaxation times during diffuse phonon-
boundary scattering. The calculation of thermal conductivity for cubic crystals in
the boundary scattering regime was performed by the numerical method only for
symmetric directions at a temperature of 3 K.

To calculate the temperature dependencies of thermal conductivity using the
relaxation method, it is necessary first and foremost to determine the phonon relax-
ation times for all relevant scattering processes, including phonon scattering at the
sample boundaries and find the total relaxation time according to the Matthiessen
rule. This allows exploring the change in the contributions of various vibrational
modes to the thermal conductivity with increasing temperature, as well as analyz-
ing the dependencies of the relaxation characteristics on the orientations of the
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temperature gradient relative to the crystal axes without limiting oneself by the ani-
sotropic continuum model. Since boundary phonon scattering dominates in the en-
tire temperature range below the maximum of thermal conductivity, neglecting the
focusing effect may lead to a significant error in interpreting experimental data for
all elastically anisotropic crystals. Because of the absence of analytical calculations
of relaxation times, over the past 40 years since the publication of [19], none of the
research works have been conducted on the temperature dependencies of the ther-
mal conductivity of dielectric crystals accounting for the phonon focusing. In this
regard, we disclose some details of the calculation of the ΔIλ θ,φð Þrelaxation func-
tions during diffuse phonon scattering at the boundaries of circular and rectangular
cross-section finite-length samples (see [20, 21]).

For a cylindrical sample of a length L when calculating the contour integral

ΔIλ = 1
2 Sc

ð
X1

dX1 mðX1ÞVλ
g


 �
Λλ
3ðX1,qÞ

�� ��− L
2

� �2

(2:25)

we look at Figure 2.3 and determine the quantities, which the figure includes (see
formulas (2.4)):

Λλ
3ðX1,qÞ=

Vλ
g3

Vλ
g?

2R cosðϕ− γ1Þ , mðX1ÞVλ
g


 �
=Vλ

g? cosðϕ− γ1Þ (2:26)

Substitution of the expression (2.4) into the inequality Λλ
3 X1,qð Þ�� ��≥ L 2= leads to the

result:

Δλ = L
4R

Vλ
g?

Vλ
g3

��� ��� < 1. (2:27)

With condition (2.27), the integral (2.25) is evaluated similarly to the previously con-
sidered case of infinite-length samples (see Figure 2.3) and we can obtain

ΔIλðθ,φÞ= 3
2
Iλ
∞
ðθ,φÞ 1+ Δλ� �2
 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− Δλ� �2q
−
1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Δλ� �2q� �3

"

−Δλ arccosΔλ +Δλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Δλ� �2q� ��

. (2:28)

If the opposite inequality, Δλ θ,φð Þ> 1, is fulfilled, we have ΔIλ θ,φð Þ=0. Thus, for the
ΔIλ θ,φð Þ function, we arrive at [20]:
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Iλðθ;φÞ=

4R Vλ
g3


 �2
πVλ

g?

"
1− 1+ Δλ� �2
 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− Δλ� �2q
−
1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Δλ� �2q� �3

+Δλ arccosΔλ +Δλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Δλ� �2q� �#

, if Δλðθ,φÞ≤ 1;

Iλ∞ðθ,φÞ, if Δλðθ,φÞ > 1.

8>>>>>>>>><
>>>>>>>>>:

(2:29)

The earlier analysis argues that, in calculating analytically the ΔIλ θ,φð Þ and Iλ θ,φð Þ
quantities for circular cross-section finite-length samples, the restrictions imposed
by the condition (2.20) in (2.21) and (2.22) boil down to a system of inequalities be-
tween the geometric parameter κ0 = L 2D= and the ratios of phonon group velocity
components. Since these inequalities can be involved in the definition of the
ΔIλ θ,φð Þ and Iλ θ,φð Þ relaxation functions, we get the possibility of computing the
phonon relaxation times during diffuse boundary scattering. This can be done by
the expression:

τλBðθ,φÞ=
Iλðθ,φÞ
Vλ
g3ðθ,φÞ


 �2 . (2:30)

The phonon relaxation time at the boundaries of cylindrical samples, as follows
from expression (2.29), can be represented as piecewise-smooth functions as
follows:

τλBðθ,’Þ=

4R
πVλ

g?

"
1− 1+ Δλ� �2
 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− Δλ� �2q
−
1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Δλ� �2q� �3

+Δλ arccosΔλ +Δλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Δλ� �2q� �#

, if Δλðθ,’Þ≤ 1;

τλB∞ðθ,’Þ= 8R=3πð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vλ
g


 �2
− Vλ

g3


 �2r
, if Δλðθ,’Þ > 1:

8>>>>>>>>>><
>>>>>>>>>>:

(2:31)

For cylinder-shaped infinite-length samples, τλB θ,φð Þ comes from the expression
(2.13) if the inequality Δλ θ,φð Þ> 1 is met and ΔIλ θ,φð Þ=0.

Next, we address the Knudsen flow of a phonon gas in samples with a length L
and a rectangular cross-section D× μD. In this case, the calculation of the contour
integral

ΔIλ = 1
2 Sc

ð
X1

dX1 mðX1ÞVλ
g


 �
Λλ
3ðX1,qÞ

�� ��− L
2

� �2

for Λλ
3ðX1,qÞ

�� ��≥ L
2
. (2:32)
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is carried out, as in the case of infinite-length samples (see Figure 2.4). To integrate
over the X1 contour, we choose three regions A, B, and C. It should be pointed out
that the contour integrals over dX1 in formulas (2.25) and (2.32) are not evaluated for
the entire rectangular contour as done in [19] but only for half of rectangular con-
tour of infinite-length samples. For the A region (see Figure 2.4), the Λλ

3 X1,qð Þ�� ��≥ L 2=
inequalities yield the following restriction on the integration domain:

0≤ x≤ xmax , xmax =D− L
2
· V

λ
g? cosϕ
Vλ
g3

=D 1− k0 ·
Vλ
g1

Vλ
g3

� �
, k0 =

L
2D

. (2:33)

Given (2.32) and (2.33), we get the following for the integral over the A region:

ΔIλðAÞ=
1

2 Sc

ðxmax

0

Vλ
g? · sinϕ D− x

cosϕ
·
Vλ
g3

Vλ
g?

�����
�����− L=2

( )2

dx. (2:34)

The condition xmax >0 implies that, in the case at hand tgϕ= Vg2 Vg1
� ��<μÞ���

, the
Λλ
3 X1,qð Þ�� ��≥ L 2= inequality reduces to the following ratio between the group velocity

components and the geometric parameter κ0:

Vλ
g3=V

λ
g1

��� ���≥ k0. (2:35)

Directly calculating the ΔIλ Að Þ integral leads to the following result:

ΔIλðAÞ=
D
6μ

Vλ
g3


 �2
Vλ
?

�� �� · 1
cos2ϕ

− k0 · Vλ
g3

��� ��� · 1
3 cosϕ

+ k0ð Þ2
3

Vλ
?

�� ��− k0ð Þ3 · Vλ
?

� �2
Vλ
g3

��� ��� · cosϕ

8><
>:

9>=
>;.

(2:36)

It is not hard to make sure that in integrating over the B and C regions, the
Λλ
3 X1,qð Þ�� ��≥ L 2= inequality also boils down to the expression (2.35). Directly taking

the integrals over these domains gives the following:

ΔIλðBÞ=
D
2μ

Vλ
g3


 �2
Vλ
g?

��� ��� · 1
cosϕ

−2k0 · Vλ
g3

��� ���+k02 · Vλ
g?

��� ��� · cosϕ
8><
>:

9>=
>;ðμ− tgϕÞ , ΔIλðCÞ=ΔIλðAÞ .

(2:37)

Next, we sum up over all three domains and account for that tgϕ= jVλ
g2j=jVλ

g1j. Then,
if the inequalities jVλ

g2j< μjVλ
g1j and jVλ

g3=V
λ
g1j≥ κ0 are fulfilled, we find the relaxation

function
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Iλðθ,φÞ= Iλ
∞
ðθ,φÞ−ΔIλðθ,φÞ=Dk0 Vλ

g3

��� ��� 1−
k0
2 μ

Vλ
g2

��� ���+μ Vλ
g1

��� ���
 �
Vλ
g3


 � + k0ð Þ2
3μ

Vλ
g1

��� ��� Vλ
g2

��� ���
Vλ
g3


 �2
8><
>:

9>=
>;.

(2:38)

If the inequalities jVλ
g3=V

λ
g2j< κ0= μ and jVλ

g2j<μjVλ
g1j are fulfilled, the expression for

Iλðθ,φÞ exactly coincides with (2.38). If jVλ
g3j=jVλ

g1j< κ0 or jVλ
g3=V

λ
g2j< κ0=μ and

jVλ
g2j>μjVλ

g1j, then ΔIλðθ,φÞ=0 and the functions Iλ θ,φð Þ are controlled by eqs. (2.9)
and (2.10) derived earlier for infinite-length samples [19]. If we set that μ= 1, it will be
true for square-shaped samples.

From the analysis performed earlier (see formula (2.38)), it can be inferred that
in analytical calculating the restrictions imposed by the condition (2.20) can be also
included in the definition of the functions ΔIλ θ,φð Þ and Iλ θ,φð Þ for finite-length
samples with rectangular cross-sections. Consequently, we get the possibility of de-
termining the relaxation times of phonons of different polarizations during diffuse
boundary scattering in terms of piecewise-smooth functions for various ranges of
the θ and φ angles. Expressions for them have the following form:

τλBðθ,φÞ=

D

Vλg3

��� ��� k0 1− k0
2

Vλ
g2

��� ���+μ Vλ
g1

��� ���
 �
μ Vλg3

��� ��� + k0ð Þ2
3

Vλ
g1

��� ��� Vλ
g2

��� ���
μ Vλg3


 �2
8><
>:

9>=
>;,
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Vλg3
Vλg1

����
����≥ k0 andμ Vλ

g1

��� ���> Vλ
g2

��� ��� or Vλ
g3

Vλ
g2

����
����≥ k0

μ andμ Vλ
g1

��� ���< Vλ
g2

��� ���;
τλB∞, if

Vλg3
Vλg1

����
����< k0 andμ Vλ

g1

��� ���> Vλ
g2

��� ��� or Vλg3
Vλg2

����
����< k0

μ and μ Vλ
g1

��� ���< Vλ
g2

��� ���.

8>>>>>>>>>>><
>>>>>>>>>>>:

(2:39)

For square-shaped cross-section samples, it is sufficient to set μ= 1 in formula
(2.39). Thus, during diffuse scattering at the boundaries of circular and rectangular
cross-section finite-length samples, the phonon relaxation times are determined by
piecewise-smooth functions for various intervals of the angles. The latter depend
on the ratios between the group velocity components and the geometric parameters
of the samples.

Expressions for the mean free paths Λand corresponding magnitudes of Λλ for
each branch of the phonon spectrum for finite-length samples can be deduced anal-
ogously to the case of infinite-length samples (see section 2.1). Finally, we arrive at
the following:

Λ = 3
4π

· 1P
λ1

Sλ1ð Þ− 2
D EX

λ

ð1
− 1

dx
ð2π
0

dφ
Iλðθ,φÞ

ðSλðθ,φÞÞ3
, (2:40)
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Λλ = 3
4π

· 1

Sλð Þ− 2
D E ð1

− 1

dx
ð2π
0

dφ
Iλðθ,φÞ

ðSλðθ,φÞÞ3
, x= cos θ, (2:41)

where the Iλ θ,φð Þ relaxation functions for circular, square-shaped, and rectangu-
lar cross-section samples with a length L come from formulas (2.5), (2.9), (2.10),
and (2.38). As in the case of infinite-length samples, these functions are given by
a double angular integral within the anisotropic continuum model for boundary
scattering.

From formulas (2.39) and (2.40), it follows that the thermal conductivity coeffi-
cients ~κ Tð Þ= κ Tð Þ D= and, accordingly, the mean free paths ~Λ=Λ L,W,Dð Þ D= normal-
ized to the film thickness D depend only on two ratios, the parameters μ=W D= and
κ0 = L 2D=

κðT, L,W,DÞ=D~κðT, k0, μÞ , ΛðL,W,DÞ=D · ~Λðk0, μÞ (2:42)

rather than on three sample geometric parameters such as D, W, and L.
It is obvious that the phonon mean free paths normalized to the cross-section

side D depend only on the κ0 parameter

ΛðL,D,DÞ=D · ~Λðk0Þ. (2:43)

Formulas (2.42) and (2.43) are of interest for experimental validity of applicability of
the theory described earlier to explore phonon transport in elastically anisotropic
crystals.

2.3 Anisotropy of Mean Free Paths of Phonons in Silicon
Samples with Circular and Square-Shaped Cross-Sections
at Low Temperatures

Let us consider phonon transport in bulk silicon samples at temperatures much
lower than the Debye temperature (T ≪ TD), when phonon scattering at the bound-
aries dominates. We compare the calculation results obtained within the anisotropic
continuum model with the experimental data of [19] for symmetric directions. The
gas-kinetic formula for thermal conductivity, κ= 1 3CV

�SΛ
�

, reads that the anisotropy
of thermal conductivity is determined by the phonon mean free path Λ, since the spe-
cific heat CV and the average phonon velocity S are independent of the direction of
heat flux. We first analyze the phonon mean free paths in the model of an isotropic
medium and make sure that formulas (2.5), (2.9), and (2.10) give the well-known re-
sults for the Casimir lengths ΛC =Λ∞ in the limiting cases of infinite-length samples.

In isotropic media, the phonon phase velocities Sλ do not depend on the angles
θ and φ, and the directions of the phase and group velocities coincide, Vλ

gi = Sλni,
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where n=q q= sinθcosφ, sinθsinφ, cosθf g= is the unit wave vector. Therefore, for-
mulas (2.40)–(2.41) imply that the mean free paths of phonons of different polariza-
tions are equal to each other and average mean free path:

ΛL =Λt =Λ =D
3
4π

·
ð
dΩq

~Iðθ,φÞ , ~Iðθ,φÞ= Iλðθ,φÞ
DSλ

, ~Λ= Λ=D. (2:44)

For circular cross-section samples with a diameter D= 2R and a length L, the ~I θ,φð Þ
relaxation functions are converted to the form:

~IðθÞ= 4
3π

cos2θ
sin θ

, forΔ≥ 1 , Δ= L
4R tgθ , (2:45)

~IðθÞ= 4
3π

cos2 θ
sin θ

1−
3
2

1+Δ2� � ffiffiffiffiffiffiffiffiffiffiffiffi
1−Δ2

p
−
1
3

ffiffiffiffiffiffiffiffiffiffiffiffi
1−Δ2

p
 �3
−Δ arccosΔ+Δ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−Δ2

p
 �� �� �
,

forΔ< 1. (2:46)

For infinite-length rods with a circular cross-section, the ~I θ,φð Þ relaxation function
is defined by the expression (2.45). Substitution of the formula (2.45) in the expres-
sion (2.44) yields the following:

ΛC =Λ∞ = 2R · 3
4π

· 2π
ð1
− 1

dðcos θÞ 4
3π

cos2 θ
sin θ

= 2R. (2:47)

Thus, for a dielectric infinite-length rod with a circular cross-section, we have ar-
rived at the result of Casimir [13]: the mean free path of phonons is equal to the
diameter of the rod.

For samples with a square-shaped cross-section with side D and length L, the
relaxation functions (2.9), (2.10), and (2.38) are transformed to the form:

~Iðθ,φÞ= n3=n1
� �2 3 n1j j− n2j jð Þ=6, if n1j j > n2j j and n3=n1

�� ��< k0,

n3=n2
� �2 3 n2j j− n1j jð Þ=6, if n1j j< n2j j and n3=n2

�� ��< k0;
,

8<
: (2:48)

~Iðθ,φÞ= k0 n3
�� �� 1−

k0
2

n2
�� ��+ n1

�� ��
n3
�� �� + k0ð Þ2

3
n1
�� �� n2�� ��
n3
� �2

( )
, if

n1j j > n2j j and n3=n1
�� ��≥ k0

� �
or

n1j j< n2j j and n3=n2
�� ��≥ k0

� �
.

(

(2:49)

Plugging the formula (2.48) into the expression (2.44) for the Casimir length in samples
with a square-shaped cross-section provides the known result (see, for example, [9]):

ΛC =
D
π

ðπ
0

cos2θdθ
ðπ=4
0

dφ
3

cosϕ
−

sinφ
cos2φ

� �
= D

2
3 ln

ffiffiffi
2

p
+ 1


 �
−

ffiffiffi
2

p
+ 1

h i
ffi 1.115D.

(2:50)
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From the expressions (2.44)–(2.50) it is known that the phonon mean free paths in
isotropic media do not depend on elastic moduli but are determined completely
by geometric dimensions of samples. However, in elastically anisotropic crystals,
the mean free paths are different for phonons of different polarizations and de-
pend not only on geometric parameters of samples but also on the directions of
heat flux in crystals. Therefore, the findings obtained for isotropic media can be
utilized as a convenient comparison system to predict the angular dependencies
of mean free paths of phonons of various vibrational modes in elastically aniso-
tropic crystals.

Let us examine the angular dependencies of mean free paths of phonons during
scattering at the boundaries of Si samples with circular and square-shaped cross-
sections at low temperatures. The spectrum and group velocities of the phonons
should be determined in the edge-cube coordinate system. We consider the rotation
of heat flux (an axis of the sample) in two planes:
– in the plane of the YZ-cube face;
– in the diagonal plane.

Let the angle ψ assign the deviation of heat flux from the Z-axis pointing along the
cube edge. Next, we set a coordinate system with the 3-axis along the heat flux
direction.

∇rT = ∇xT,0,∇zT
� �

= ∇rT
�� �� 0, − sinψ, cosψf g ,Vλ

g3 = −Vλ
gy sinψ+Vλ

gz cosψ , (2:51)

∇rT = ∇xT,∇yT,∇zT
n o

= ∇rT
�� �� − sinψ=

ffiffiffi
2

p
, sinψ=

ffiffiffi
2

p
, cosψ

n o
,

Vλ
g3 = −Vλ

gx +Vλ
gy


 �
sinψ=

ffiffiffi
2

p
+Vλ

gz cosψ. (2:52)

The ΛB ψð Þ dependencies on the ψ angle are governed by the dependencies of the
group velocity components Vλ

g1, Vλ
g2, and Vλ

g3, which enter the relaxation func-
tions Iλ θ,φð Þ. For cylindrical samples, it is sufficient to prescribe the phonon
group velocity component parallel to the heat flux. For the cases of rotation of
the temperature gradient in the cube face plane or the diagonal plane, we have
the following:

ð1Þ Vλ
g3 = −Vλ

gy sinψ+Vλ
gz cosψ , Vλ

g? =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vλ
g


 �2
− Vλ

g3


 �2r
,

ð2Þ Vλ
g3 = −Vλ

gx +Vλ
gy


 �
sinψ=

ffiffiffi
2

p
+Vλ

gz cosψ.
(2:53)

The phonon group velocity components in a Cartesian coordinate system take the
form

90 Chapter 2 Phonon Relaxation Times during Diffuse Scattering at the Boundaries

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



Vλ
gxðθ,φÞ= Sλðθ,φÞ sin θ cosφ+ Sλθ cos θ cosφ− Sλφ sinφ

n o
,

Vλ
gyðθ,φÞ= Sλðθ,φÞ sin θ sinφ+ Sλθ cos θ sinφ+ Sλφ cosφ

n o
,

Vλ
gzðθ,φÞ= Sλðθ,φÞ cos θ− Sλθ sin θ

� �
.

(2:54)

For samples with a square-shaped cross-section, the value of thermal conductivity
also depends on the orientation of the side faces. To analyze the angular dependen-
cies, we choose the orientation of the faces as follows. In the case of rotation of the
temperature gradient in the YZ cube face plane, the X-axis remains stationary.
Therefore, we put one of the side faces to be perpendicular to the X-axis: Vλ

g1 =Vλ
gx.

Further, we take the direction of Vλ
g2 as the axis lying in the YZ-plane and perpen-

dicular to the temperature gradient

Vλ
g2 =Vλ

gy cosψ+Vλ
gz sinψ. (2:55)

In the case of rotation of the temperature gradient in the diagonal plane, the [110]
direction perpendicular to this plane is a stationary axis. Therefore, we choose it as
the direction of Vλ

g1

Vλ
g1 = Vλ

gx +Vλ
gy


 �
=
ffiffiffi
2

p
. (2:56)

As the direction of Vλ
g2, we mark the axis lying in the diagonal plane and perpendic-

ular to the temperature gradient

Vλ
g2 = −Vλ

gx +Vλ
gy


 �
cosψ=

ffiffiffi
2

p
−Vλ

gz sinψ. (2:57)

Let us look at the angular dependencies of the Casimir lengths for circular and
square-shaped cross-section samples, calculated using formulas (2.17) and (2.19).
With the equality of the areas of the circular and square-shaped cross-sections
D2 =πR2ð Þ, we normalize the ΛC Casimir lengths to the side D for the square-shaped
cross-section sample ~ΛC ψð Þ=ΛC ψð Þ D= Þ�

and to
ffiffiffi
π

p
R for the sample of a circular

cross-section with a radius R ~ΛC ψð Þ=ΛC ψð Þ ffiffiffi
π

p
R

� ��
. In this case, the ~ΛC ψð Þ angular

dependencies of the mean free paths for the samples specified above differ by 1%.
The maximum difference of the phonon mean free path values does not exceed
1.6% for a fast transverse mode. On the scale of Figure 2.5, these curves are indis-
cernible. Therefore, Figure 2.5 refers virtually to infinite-length samples with both
circular and square-shaped cross-sections.

As can be seen from Figure 2.5a, in the vicinity of the [100] directions at the
angles ψ= ±0.06+ nπ=2 (n is an integer) for the slow transverse mode, the Casimir
lengths reach their maximum values. The latter are two times larger than those of
Λt1
C for the fast transverse mode and three times larger than ΛL

C for longitudinal
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phonons. When going over to the [110] directions, the situation changes: the
Casimir lengths of the slow transverse mode become three times less and take
their minimum values. Along the [110] directions, the Casimir lengths for the fast
transverse mode reach their maximum values. They are 2.8 and 1.6 times larger
than slow transverse and longitudinal phonons, respectively. In the [111] direc-
tions, the Casimir lengths are observed maximal in the event of longitudinal pho-
nons, but namely, they are 1.8 and 1.1 times larger than fast and slow transverse
phonons, respectively (see Figure 2.5b). For symmetric directions, the ratio of the
average Casimir lengths amounts to Λ 100½ �

C :Λ 110½ �
C :Λ 111½ �

C = 1.74 : 1.2 : 1. From compari-
son of the results obtained for Si crystals and the isotropic medium model, it is
seen that the Casimir lengths for all modes turn out to be larger in the focusing
directions and less in the defocusing directions than those within the isotropic
medium model (see Figure 2.5).

The expressions derived earlier for the phonon mean free paths in the bound-
ary scattering regime make it possible to describe the experimental data on the
thermal conductivity anisotropy of square-shaped cross-section samples at low
temperatures [19]. Figure 2.6 outlines the angular dependencies of the phonon
mean free paths in Si crystals with a length of L= 2.9 cm and square-shaped cross-
section of D=0.293 cm, calculated by formulas (2.40) and (2.41). For all symmetric
directions, the calculation results agree well with the experimental data of [19].
Figures 2.6 show that the phonon mean free paths reach their maximum values
for each vibrational mode along the focusing directions, exceeding both the mean

Figure 2.5: The angular dependencies of the reduced Casimir lengths ~ΛλC ψð Þ=ΛλC ψð Þ=D (curves 1–3)
for square-shaped cross-section samples in cases when the temperature gradient rotates in the
plane of the cube face (a) and diagonal plane (b): 1 is for a fast transverse mode, 2 is for a slow
transverse mode, 3 is for longitudinal modes, 4 is the average Casimir length, and 5 is the Casimir
length in the model of an isotropic medium.
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free paths of other vibrational modes and the mean free paths within the isotropic
medium model.

In the defocusing directions, they become minimal and turn out to be less than
those within the isotropic medium model. So, for example, phonons of a slow trans-
verse mode are focused in the [100] direction. Their mean free path exceeds 1.6 and
2.4 times the mean free path of fast and longitudinal modes, respectively, and 1.3
times the average phonon mean free path. Phonons of a fast transverse mode are fo-
cused in the [110] directions. Their mean free path has a maximum value, which is 1.5
and 1.2 times greater than that of the slow transverse and longitudinal modes, respec-
tively, and is 1.2 times greater than the average mean free path. In this direction, the
phonon mean free paths of the slow and fast transverse modes diminish 1.8 and 1.5
times as much regarding the [100] direction, respectively, whereas ΛL for the longitu-
dinal mode rises by 1.5 times. Thus, the mean free path of the longitudinal phonons
appears to be 1.6 and 1.2 times larger than that of the fast and slow transverse
modes. In this direction, it exceeds 1.3 times the average phonon mean free path. For
symmetric directions, the ratio of the average mean free paths amounts to Λ 001½ � :
Λ 101½ � :Λ 111½ � = 1.50 : 1.08 : 1. Thus, the thermal conductivity of Si samples has maximum
and minimum values for the [100] and [111] directions, respectively, with the maxi-
mum being provided by a slow transverse mode. When transitioning from the infi-
nite-length to finite-length samples, the anisotropy of the phonon mean free paths
and, accordingly, the thermal conductivity decreases considerably.

Figure 2.6: Angular dependencies of reduced mean free paths ~ΛλðψÞ=ΛλðψÞ=D (curves 1–3) and
average mean free paths ~ΛðψÞ= ΛðψÞ=D(curve 4) for samples with a length of L = 2.9 cm with a
square-shaped cross-section of D = 0.293 cm in cases when the temperature gradient lies in the
plane of the cube face (a) and in the diagonal plane (b) for: 1 – a fast transverse mode, 2 – a slow
transverse mode, 3 – a longitudinal mode, 4 – an average mean free path, and 5 – a mean free
path in the model of an isotropic medium. Symbols are experimental data of [19].
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It should be stressed that the calculated values of thermal conductivity of Si
κcalc T0ð Þð Þ and the average phonon mean free paths exceed the experimental data
κexp T0ð Þ� �

at T0 = 3K by 4% for the [100] direction and by 8% for the [110] and [111]
directions (see Figure 2.6). To explain such divergence, the concept of a defective
surface layer, proposed in [32, 87, 88], was used in the works [20, 63]. The point is
that the surface of the sample was processed with sandpaper before measuring to
provide phonon diffuse scattering. Such processing forms a heat-isolative layer di-
rectly beneath the sample surface. It contains microcracks with appropriate defor-
mation fields and a network of dislocations [88]. Accounting for this layer and,
accordingly, the effective thickness of the sample achieves the predicted and exper-
imental findings at a temperature of 3 K. However, this approach left aside the pho-
non scattering by isotopic disorder. As will be shown in Section 3.3, the mechanism
described above aligns the theoretical outcomes concerning the thermal conductiv-
ity with the experiment in the temperature range from 3 K to 15 K within the experi-
mental error. Therefore, in the case at hand, the role of the defective surface layer
turned out to be small and its influence can be ignored.

2.4 The Influence of Focusing on Phonon Transport in Silicon
Crystals with a Rectangular Cross-Section
at Low Temperatures

Let us discuss phonon transport in finite-length silicon samples with a rectangular
cross-section at temperatures much lower than the Debye temperature. To begin with,
we calculate the angular dependencies of the phonon mean free path in the Knudsen
flow regime when phonon scattering at the boundaries is dominant. Next, we compare
the obtained findings with the experimental data of [19] for silicon samples with a
rectangular cross-section of W × D ðD=0.185 cm, W =μD=0.638 cm, μ= 3.45Þ and a
length of L = 3.5 cm. We normalize the phonon mean free paths to the thickness of the
sample:

Λ̂ðψÞ=ΛðψÞ=D. (2:58)

We define a coordinate system associated with the sample as follows: the axis “3”
should be directed along the axis of the sample and the direction of heat flux; the
axis “1” marks the axis of rotation (see Figure 2.7). The axes “1” and “2” are perpen-
dicular to the sample side faces. Consider the rotation of the temperature gradient
in the plane of the cube face for two cases:

(A) The axis of rotation is perpendicular to the narrow face of the sample.

Vλ
g3 =Vλ

gx sinψ+Vλ
gz cosψ , Vλ

g1 =Vλ
gy , Vλ

g2 =Vλ
gx cosψ−Vλ

gz sinψ . (2:59)
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(B) The axis of rotation is perpendicular to the wide face of the sample.

Vλ
g3 = −Vλ

gy sinψ+Vλ
gz cosψ , Vλ

g2 =Vλ
gy cosψ+Vλ

gz sinψ , Vλ
g1 =Vλ

gx . (2:60)

Here Vλ
g3, Vλ

g2, and Vλ
g1 are the projections of the group velocity on the temperature

gradient direction and the side faces of the sample, respectively. The angle ψ defines
the deviation of the heat flux from the Z-axis.

The maximum values of the average phonon mean free paths for the cases (A)
and (B) coincide and are achieved in the [001] directions. Their minimum values
are observed in the [101] directions and they are different for the cases (A) and (B)
(see Figure 2.8a). Therefore, the angular dependencies of the average mean free
paths of phonons and, accordingly, the thermal conductivities significantly distin-
guish between each other due to the phonon focusing effect. It holds true for the
cases of rotation of the narrow and wide sample faces. Besides, the angular depen-
dencies mentioned above differ from those predicted for the square-shaped cross-
section samples (see Figure 2.8, curves 1b, 1a, and 1). With rotation of the heat flux
in the wide face of the {100} rectangle, the ratio of the mean free paths amounts to
1.21 Λ 100f g

100½ � Λ 100f g
110½ � = 1.21

. �

and is less than that for the square-shaped cross-section

samples Λ 100f g
100½ � Λ 100f g

110½ � ffi 1.4
. �


. However, when the heat flux rotates in the narrow face
of the rectangle, the anisotropy of thermal conductivity increases. In this case, it
turns out to be larger for the square-shaped cross-section samples Λ 100f g

100½ � =Λ
100f g
110½ � ffi 1.57


 �

(A) (B)

Figure 2.7: Scheme that illustrates the rotation of a temperature gradient in the plane of a cube
face for the cases: (A) Axis of rotation is perpendicular to the narrow face of the sample. (B) Axis of
rotation is perpendicular to the wide face of the sample.
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(Figure 2.8a, curve 1a). Figure 2.8a shows that the average phonon mean free paths
calculated in [21] for rectangular cross-section samples in the [101] direction match
well the experimental data of [19]. Here, it should be emphasized that we have come
up with an interesting experimental result: for rectangular cross-section samples, the
thermal conductivity (and mean free paths) depend not only on the direction of the
temperature gradient but also on the orientation of the wide faces of the sample [19].
From comparison of the thermal conductivities of two identical samples in the [110]
temperature gradient direction, it becomes understandable that, at low temperatures,
the thermal conductivity of the sample with the {001} wide and {110} narrow faces
appears to be 33% higher than that of the sample with the {110} wide and {001} nar-
row faces [19]. For this, the calculation in [21] using formulas (2.38) and (2.40) gives
the ratio: Λ 100f g

110½ � :Λ 110f g
110½ � = 1.30, which is in good agreement with the data of [19].

Let us explore how this ratio changes as the width of the sample increases. In
doing so, we fix the sample thickness of D = 0.185 cm and the ratio of length and
width as L = 5.49 and W = 5.49 μD. Then, we examine the thermal conductivity and
phonon mean free paths for μ = 10 and μ = 100. As can be seen from Figure 2.8b,
the angular dependencies of the average mean free paths for the two cases under
consideration change qualitatively (see Figure 2.8b). When the heat flux rotates in a
wide face of the rectangle, an increase in the μ parameter leads to isotropization of
the Λ 100f g ψð Þ dependence, and it becomes almost isotropic for μ = 100.

Figure 2.8: Angular dependencies of the average mean free paths ~ΛðψÞ in Si crystals in the case
when heat flux rotates in the {100} cube face plane. (a) curve 1 is for samples of [19] with a square
cross-section (D = 0.293 cm and L = 2.9 cm); curves 1a and 1b refer to samples of [19] with a
rectangular cross-section (L = 3.5 cm and D = 0.185 cm, μD = 0.638 cm); curve 1a is rotation in the
narrow face of the sample; curve 1b is rotation in the wide face of the sample. The experimental
data of [19] are denoted by symbols; (b) for samples with a thickness of D = 0.185 cm and length of
L = 5.5 μD: μ = 10 (curves 1a and 1b), μ = 100 (curves 2a and 2b). The rotation of the temperature
gradient in the narrow (curves 1a and 2a) and wide (curves 1b and 2b) faces of the sample {100}.
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In contrast, the rotation of the heat flux in a narrow face of the rectangle leads to
an increase in the anisotropy of thermal conductivity (see Figure 2.8b). The ratio
Λ 100f g

100½ � ψð Þ :Λ 100f g
110½ � ψð Þ rises to 1.9 and 3.0 for μ = 10 and μ = 100, respectively. In the

[100] directions, the mean free paths coincide for both cases of rotation of the heat
flux. However, in the [110] direction, the ratio of the thermal conductivities of two
identical samples with the orientations of the {001} and {110} wide faces for μ = 10
and μ = 100 amounts to 1.7 and 2.8, respectively. Since the Λ 100f g ψð Þ dependence be-
comes almost isotropic for large values of μ during rotation in a wide face of the sam-
ple, these ratios differ little from Λ 100f g

100½ � ψð Þ :Λ 100f g
110½ � ψð Þ.

The angular dependencies of the thermal conductivity and, accordingly, the
phonon mean free paths look like interesting enough (see Figure 2.9), compared to
square-shaped cross-section samples, in the event of coinciding the rotation axis
and temperature gradient with the Z-axis when the rotation occurs in the XY-plane.
In this case, the phonon group velocity components parallel and perpendicular to
the heat flux are determined by the expressions:

Vλ
g3 =Vλ

gz , Vλ
g1 =Vλ

gχ cosψ+Vλ
gy sinψ , Vλ

g2 = − Vλ
gχ sinψ+Vλ

gy cosψ, (2:61)

where ψ is the angle between the X-axis and the side face. In this situation, the phonon
mean free paths for square-shaped cross-section samples are isotropic to an accuracy
of 1.3% (see Figure 2.9a, curve 1). However, an increase in the plate width causes an
increase in the mean free paths and their anisotropy. Figure 2.9a illustrates that the

Figure 2.9: Angular dependencies of the mean free paths ~ΛðψÞ and ~Λ
λðψÞ for samples having a

rotation axis and a temperature gradient in the [100] direction. The length of the samples is
L = 5.49 μD, the width is W = μD, and the thickness is D = 0.185 cm. (a) ~Λ ψð Þ for μ = 1 (curve 1),
μ = 10 (curve 2), and μ = 100 (curve 3); (b) ~Λλ ψð Þ for a longitudinal mode (curves 2a and 3a), for fast
(curves 2b and 3b) and slow (curves 2c and 3c) transverse modes. Curves 2a, 2b, and 2c are for
μ = 10 and curves 3a, 3b, and 3c are for μ = 100.
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mean free paths reach their maximum values in the [100] directions. With an increase
in the μ parameter from 1 to 100, the maximum values of thermal conductivity and
average mean free path of phonons become greater by an order of magnitude (see
Figure 2.9a, curves 1 and 3). In the [101] directions, a local maximum takes place, and
the minimum value is reached at the angles ψ = (π/2) n ± π/6, where n is an integer. In
this case, the Λ 100f g

100½ � ψð Þ=Λ 100f g
110½ � ψð Þ ratio of the phonon mean free paths in the symmet-

ric directions rises from 1.2 for μ = 10 to 1.9 for μ = 100. As shown in Figure 2.9b, in the
[100] directions, the mean free path of a fast transverse mode reaches its maximum
values and ensures maximum thermal conductivity. An increase in the μ parameter
from 10 to 100 leads to an increase in Λt1 100f g

100½ � μð Þ by four times. The mean free path of a
slow transverse mode reaches maximum values in the [101] directions and provides a
local maximum of thermal conductivity in this direction.

Thus, the conducted analysis showed that the anisotropy of thermal conductiv-
ity (average mean free path of phonons) for rectangular cross-section samples can
dramatically differ from that of square-shaped cross-section samples. In contrast to
square-shaped cross-section samples, the values of thermal conductivity and pho-
non mean free paths at low temperatures for fairly wide samples with a rectangular
cross-section are largely determined by the orientation of the wide face of the sam-
ple relative to the crystal axes. The phonon mean free paths of the fast and slow
transverse modes change most significantly.

2.5 Conclusion

The main results of Chapter 2 can be formulated as follows:
1. An analytical solution has been given to the Knudsen phonon gas flow problem

for finite-length samples with circular, square-shaped, and rectangular cross-
sections. Relaxation times in the form of piecewise-smooth functions for vari-
ous intervals of angles controlled by the relations between the group velocity
components and the geometric parameters of the samples have been deter-
mined for diffuse phonon-boundary scattering regime.

2. As to circular and square-shaped cross-section samples, the mean free paths of
phonons have been shown to reach their maximum values for each vibrational
mode at low temperature in focusing directions, exceeding those of other vibra-
tional modes in these directions. The phonon mean free paths calculated for
symmetric directions align experimental data.

3. As to square-shaped cross-section samples, the values of thermal conductivity
and phonon mean free paths at low temperatures are determined mainly by the
direction of heat flux, and their dependence on the orientation of the side faces
is weak. However, for rectangular cross-section samples, they largely depend on
the orientation of the wide face of the sample relative to the axis of the crystal.
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Chapter 3
Anisotropy and Temperature Dependencies
of Thermal Conductivity of Bulk Silicon Samples

The experimental studies of [19] showed that, at low temperatures, when the mean
free path of phonons is greater than the transverse size of a sample, phonon focus-
ing leads to two effects in the thermal conductivity of Si crystals. The former is the
dependence of the thermal conductivity of square-shaped cross-section samples on
the direction of the temperature gradient relative to the crystallographic axes. The
latter involves the dependence of the thermal conductivity of Si rectangular cross-
section samples on the orientation of wide faces. In [19], two rectangular cross-
section samples having identical geometric parameters were explored in the [110]
gradient temperature direction. It turned out that, at low temperatures, the thermal
conductivity of the sample with the {001} wide and {110} narrow faces 33% higher
than that of the sample with {110} and narrow {001} faces.

In [19], as in a row of other monographs, thermal conductivity was measured by
the method of stationary longitudinal heat flux [35, 89]. Before measuring, Si bulk
samples were preliminarily processed with sandpaper to provide diffuse phonon scat-
tering at the boundaries [19]. A typical experiment (e.g. [87]) suggests gluing a heater
directly to the butt of the sample, with the opposite end secured at the cold sink.
Thermometers are mounted at a distance L from each other, and the reading differ-
ence ΔT is recorded (see Figure 3.1). Once a steady state of temperature distribution
is established, the thermal conductivity coefficient κ is determined as the division of
ΔQ heat power liberated inside the heater by the area Scof the transverse cross-
section of the sample and by the temperature gradient ΔT L= T2 − T1ð Þ L= Þ=ð :

κ=ΔQL= T2 −T1ð ÞScf g.
If the ΔT difference is not too large, the value of thermal conductivity corresponds to
the average temperature between the thermometers. The method of stationary longi-
tudinal heat flux can be used if the heat radiation through the side faces is small and
can be neglected. Then all the heat received from the heater will reach the cold sink.

It was shown in [22] that correctly accounting for the phonon focusing effects to
calculate the phonon relaxation rates at the boundaries of monocrystalline samples
requires introduction of two orientation parameters. These parameters take into ac-
count the dependencies of relaxation characteristics on the direction of the heat
flux [I] and the orientation of the sample wide-face {J} relative to the crystallo-
graphic axes. Therefore, unlike an isotropic medium, in computing the kinetic char-
acteristics of monocrystalline samples, we should bear in mind their dependence
on the orientation parameters
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κðTÞ ) κfJg½IðψÞ�ðTÞ and Λ ) ΛfJg
½IðψÞ�.

Further, it will be shown that orientation parameters such as the direction of the heat
flux I ψð Þ½ � and the plane {J}, in which the angle ψ varies, can be defined through the
group velocity components parallel and perpendicular to the heat flux direction. The
proposed method of accounting for phonon focusing is relevant because a significant
number of publications devoted to the study of phonon transport, both in bulk single
crystals and nanostructures [5–7, 25, 26, 37, 90], completely do not taken into account
for these effects.

Section 3.1 deals with the influence of normal phonon–phonon scattering pro-
cesses on the lattice thermal conductivity of cubic crystals within the three-mode
Callaway model taking into account the anisotropy of elastic energy. Section 3.2 de-
velops a method of accounting for phonon focusing in calculating the temperature
dependencies of the thermal conductivity of monocrystalline samples. Section 3.3
demonstrates that the phonon relaxation times at the boundaries [20, 21], calcu-
lated on the pages of the monograph, help adequately describe experimental data
on the thermal conductivity of silicon crystals for various directions of the tempera-
ture gradient and orientations of their side faces. Section 3.4 analyses the change in
thermal conductivity anisotropy with temperature. Section 3.5 presents a physical
interpretation of the McCurdy effects in the thermal conductivity of cubic crystals.

3.1 Normal Phonon–Phonon Scattering Processes and Lattice
Thermal Conductivity of Cubic Crystals

Consider the influence of normal phonon–phonon scattering processes on the lat-
tice thermal conductivity of cubic crystals, taking into account the focusing of pho-
nons. A set of kinetic equations for non-equilibrium phonon distribution functions
Nλ
q in three-mode Callaway model has the form [91–94]:

Vλ
gðqÞ ·∇rNλ

q = − ðNλ
q −Nð0Þ

qλ ÞνRλ − Nλ
q −N q,uλð Þ


 �
νλN . (3:1)

Figure 3.1: Scheme for measuring thermal conductivity by the method of stationary longitudinal heat flux.
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Here νλN qð Þ and νRλ qð Þ are the phonon relaxation rates in normal (N-processes) and
resistive scattering processes. Resistive scattering processes cause the momentum
of the phonon system to relax. Among them are phonon–phonon scattering in the
Umklapp processes νUλ qð Þ� �

, scattering by defects νisoλ qð Þ� �
, and sample-boundary

scattering νλ Jf g
B I ψð Þ½ �


 �
. Therefore, we have νλ Jf g

R I ψð Þ½ � = νλ Jf g
B I ψð Þ½ � + νλiso qð Þ+ νλU qð Þ. The role of

N-processes in phonon–phonon scattering has been studied quite well within the
theory of lattice thermal conductivity [9, 36, 91–96]. In these processes, the momen-
tum of phonons participating in the collisions is conserved. Therefore, N-processes
do not directly contribute to the phonon momentum relaxation and, accordingly, to
the thermal resistance. However, they re-distribute the energy and momentum be-
tween various phonon modes and tend to establish a drift locally non-equilibrium
distribution. The latter is described by the shifted Planck function [91–94]:

N q,uλð Þ= exp
�hωqλ − �hquλ

kBT

� �
− 1

� �− 1

ffi N0
qλ +

�hquλ

kBT
N0
qλðN0

qλ + 1Þ, (3:2)

where N0
qλ is the Planck function. In this case, the non-equilibrium phonon system

is described by nine parameters such as relaxation rates of normal and resistive
scattering processes, as well as average drift velocities uλ for each branch of the
phonon spectrum. Accounting for a special role of N-processes is necessary under
conditions when the νλN qð Þ phonon relaxation frequency is greater or comparable to
the relaxation frequency in resistive scattering processes [91–94]. In the opposite
case, they can be taken into account additively with resistive scattering processes,
as is done in [97].

Let us represent the phonon distribution function as a sum of the Planck func-
tion and a non-equilibrium addition gλ qð Þ. Then, eq. (3.1) implies that

gλðqÞ= −
N0
qλðN0

qλ + 1Þ
νλphðqÞ

�hωλ
q

kBT2 ðVλ
g∇rTÞ+ �hquλ

kBT
N0
qλðN0

qλ + 1Þ ν
λ
NðqÞ
νλðqÞ = gdifλ ðqÞ+ gdrλ ðqÞ. (3:3)

The first term in the expression (3.3) is governed by the diffuse motion of phonons
exposed to the temperature gradient. The second term is responsible for the drift
motion of phonons and associated with normal phonon–phonon scattering pro-
cesses. To find the drift velocities ul, the set of kinetic eq. (3.1) should be added by a
phonon momentum balance equation. The latter comes from the multiplication of
eq. (3.1) by the phonon momentum vector �hq and summation over all q vectors.

1
V

X
q, λ

�hqνλNðqÞ
N0
qλðN0

qλ + 1Þ
kBTνλðqÞ

�hωλ
q

T
ðVλ

g∇rTÞ+ �h quλð ÞνλRðqÞ
" #

=0. (3:4)

It was shown in [94] that the solution of eq. (3.4) can be sought for two limiting
cases. The first one is that if relaxation processes involving momentum re-
distribution between phonons of different polarization dominate in N-processes, they
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tend to establish the same drift velocity for all phonons. In this case, the drift velocity
u λð Þ =u 1ð Þ should be equal for all polarizations. The second one includes independent
relaxation of phonons of each mode conditional upon the phonon re-distribution
that occurs only inside each vibrational branch. We, thus, virtually return to the orig-
inal single-mode Callaway model [91]. This relaxation event was considered in [95]
and was called the generalized Callaway model. In this case, the drift velocities are
different for phonons of different polarizations: u 2ð Þ

L ≠u 2ð Þ
t . The first type of N-processes

comprises Herring [38] and Landau-Rumer [98] relaxation mechanisms, as well as
a number of other processes. The Herring mechanism [38] merges a longitudinal
phonon and a slow transverse phonon (ST) followed by creation of a fast phonon
(FT), L1 + ST2 ! FT3ð Þ:

νLN ffi BLTTT3ω2
L (3:5)

According to [9, 36, 94–97], the main relaxation mechanism for transverse phonons in
N-scattering processes is the Landau-Rumer mechanism [98], in which the merging of
transverse and longitudinal phonons generates a longitudinal phonon T1 + L2 ! L3ð Þ

νtN ffi BTLLT4ωt. (3:6)

This phonon relaxation mechanism in N-scattering processes and its role in thermal
conductivity were analysed in [94]. For the second type of N-processes, Simons [99]
showed that N-processes of the second type (L1 + L2 → L3, T1 + T2 → T3) can happen
in isotropic media only when allowance for phonon state attenuation is made, with
only collinear phonons taking part in them. However, it was shown in [100] that
accounting for cubic anisotropy leads to the fulfillment of the energy conservation
law in relaxation mechanisms involving transverse phonons (TTT). In the long-
wave approximation, these mechanisms contribute chiefly to the relaxation of
transverse phonons as compared to the Landau-Rumer mechanism. For the TTT
mechanism, the expression (3.6) that carries the coefficient BN

TTT instead of BN
TLL

yields the νtN relaxation rate. So, the first version of N-processes contains an inde-
pendent drift velocity; the second one holds the momentum conservation law for
each branch of the phonon spectrum.

It is worth emphasizing that the directions of group and phase velocities coin-
cide within the model of an isotropic medium. Therefore, the diffuse and drift sum-
mands of the gλ qð Þ function can be combined, and the effective frequency of
phonon relaxation can be introduced [94]:

gλðqÞ= −
N0
qλðN0

qλ + 1Þ
~ν λ

phðqÞ
�hωqλ

kBT2 ðvλq∇TÞ, ~ν λð1, 2Þ
ph ðqÞ= ν λ

phðqÞ 1+ νλN ðqÞ
ðSλðθ,’ÞÞ2

Bð1, 2ÞðTÞ
� �− 1

.

(3:7)
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When taking the anisotropy of the phonon spectrum into account, these directions
do not coincide. Bearing in mind the phonon focusing [23], directly calculating the
u 1, 2ð Þ drift velocities and gλ qð Þ for both versions results in:

gð1, 2Þλ ðqÞ =− kB
N0
qλðN0

qλ + 1Þ
kBTνλðqÞ

�hωλ
q

kBT

 !
ðVλ

g∇rTÞ+ q
q

� �
∇rT

� �
νλNðqÞ

ðSλðθ,ϕÞÞ B
ð1, 2ÞðTÞ

� �
= gdifλ ðqÞ+ gdrλ ðqÞ,

uð1, 2Þ = − kB∇rTB
ð1, 2ÞðTÞ=kBT.

(3:8)

When taking the dispersion of thermal phonons into account, the B 1, 2ð Þ Tð Þ coeffi-
cients appear as [23]:

Bð1ÞðTÞ=
X
λ

Ψλ
N

X
λ

�
Ψλ

NR,Bð2ÞðTÞ=Ψλ
N Ψλ

NR

.
,

Ψλ
N = 3

ð1
− 1

cos θdðcos θÞ
ð2π
0

d’ yð Þ4
ð1
0

Vλ
gzz

λx3

shðzλ=2Þð Þ2
νλN
νλ

dx,

Ψλ
NR =

ð1
− 1

dðcos θÞ
ð2π
0

d’ yð Þ5
ð1
0

x4

shðzλ=2Þð Þ2
νλNν

λ
R

νλ
dx, x= q

qmaxðθ,’Þ
,

yðT, θ,’Þ= qmaxðθ,’Þ
qT

, qT =
kBT
�h

, Zλðx, θ,’Þ= �hωλ
qðx, θ,’Þ
kBT

.

(3:9)

The maximum wave vector qmax θ,’ð Þ is defined by the expression (1.44). Thus, the
non-equilibrium phonon distribution functions can be represented within the three-
mode Callaway model as an additive sum of the diffuse and drift motion of phonons.

3.2 Relaxation Mechanisms and Thermal Conductivity
of Silicon Crystals

In contrast to studies conducted earlier on thermal conductivity of bulk materials
within the model of an isotropic medium [9, 36, 91–96] when analysing phonon
transport in monocrystalline Si samples, the present section takes into account the
phonon focusing and resulting dependence of the thermal conductivity on the di-
rection of heat flux [I (ψ)] and orientation {J} of a wide face of the sample relative to
the axis of the crystal. The three-mode Callaway model represents it as an additive
sum of the diffuse and drift contributions [23]:

κfJgdif ½IðψÞ�ðTÞ=
kBq3T
4ð2πÞ3

X
λ

ð1
− 1

dðcosθÞ
ð2π
0

d’y3
ð1
0

Vλ
g3


 �2
z2λx

2

νλfJg½IðψÞ� shðzλ=2Þð Þ2
dx , (3:10)
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κfJgdr½IðψÞ�ðTÞ=
kBq3T

12ð2πÞ3
X
λ

BfJg
½IðψÞ�ðTÞΨλfJg

N½IðψÞ�ðTÞ , BfJg
½IðψÞ�ðTÞ=

P
λ
ΨλfJg

N½IðψÞ�=
P
λ
ΨλfJg

NR½IðψÞ� ,

(3:11)

ΨλfJg
N½IðψÞ� = 3

ð1
− 1

cos θdðcos θÞ
ð2π
0

d’y4
ð1
0

Vλ
gzx

3zλ

shðzλ=2Þð Þ2
νλN

νλfJg½IðψÞ�
dx ,

ΨλfJg
NR½IðψÞ� =

ð1
− 1

dðcos θÞ
ð2π
0

d’y5
ð1
0

x4

shðzλ=2Þð Þ2
νλNν

λfJg
R½IðψÞ�

νλfJg½IðψÞ�
dx .

Here, zλ = �hωλ
q=kBT, x= q

qmax θ,’ð Þ , y T, θ,’ð Þ= qmax θ,’ð Þ
qT

, qmax θ,’ð Þ is a maximum wave
vector (see formula (1.44)), the θ,’ð Þ angles define the direction of the wave vector of a
phonon, Vλ

g3 and Vλ
gz are the projections of the group velocity on the temperature gradi-

ent direction and Z-axis, respectively, ωλ
q is the frequency of a phonon with polariza-

tion accounting for the dispersion of thermal phonons, νλ If g
J ψð Þ½ � = νλ If g

J ψð Þ½ �R qð Þ+ νλN qð Þ is the
total phonon relaxation rate. Phonon relaxation rates in resistive νλ Jf g

I ψð Þ½ �R

 �

and normal
νλN qð Þ� �

scattering processes are computed in Section 3.1. Normal phonon–phonon and
resistive scattering processes are responsible for drift and diffuse contributions
to thermal conductivity, respectively. For calculating the temperature dependen-
cies of the thermal conductivity of bulk Si samples, the approximation spectrum
of phonons is used [63] (see Section 1.2). In this case, the phonon spectrum for
symmetric directions, extracted from data on inelastic neutron scattering [61,
62], is approximated by a seventh-degree polynomial in the reduced wave pho-
non vector x. When extrapolated over the entire Brillouin zone, the spectrum is
expanded in cubic harmonics (see Section 1.2). The approximation above saves
the cubic symmetry and allows analysing the change in the phonon focusing
when transitioning from the long-wave x<< 1ð Þ to short-wave x⁓1ð Þ limits. In the
long-wave limit, it is examined within the anisotropic continuum model that
specifies the anisotropy through the Sλ0 θ,’ð Þ phase velocity (see (1.28).

Let L, D, and W =μD be the length, thickness, and width of rectangular cross-
section samples, respectively. For square-shaped cross-section samples, we have
μ= 1. To make allowance for the influence of the phonon focusing on the thermal
conductivity anisotropy of monocrystalline samples, it is sufficient to express the
orientation parameters through group velocity components. These parameters are
the heat flux direction I ψð Þ½ � and the orientation Jf g of the plane in which the ψ
angle is measured from the Z-axis.

For this purpose, we explore the rotation of heat flux in two symmetric planes:
(1) A wide face of the sample and the YZ-plane of the cube face coincide, Jf g= 100f g;
(2) A wide face of the sample and the diagonal plane coincide, Jf g= 110f g

(see Figure 3.2).
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Next, we define a coordinate system related to the sample as follows. Let the
axis 3 be directed along the sample axis being in line with the heat flux direction.
Axis 1 (the axis of rotation) should be turned perpendicularly to the wide face or
one of the faces of the square-shaped cross-section sample. Axis 1 assigns the plane
orientation {J}. Axis 2 is perpendicular to the narrow face of the sample. Further, we
take into consideration that the phonon spectrum is found in the cube-edge coordi-
nate system. Then, the phonon group-velocity components in the accepted coordi-
nate system can be represented in the form:

ð1Þ Vλ
g3 = −Vλ

gy sinψ+Vλ
gz cosψ , Vλ

g2 =Vλ
gy cosψ+Vλ

gz sinψ , Vλ
g1 =Vλ

gx , (3:12а)

ð2Þ Vλ
g3 = Vλ

gx +Vλ
gy


 �
sinψ=

ffiffiffi
2

p
+Vλ

gz cosψ , Vλ
g2 = Vλ

gx +Vλ
gy


 �
cosψ=

ffiffiffi
2

p
−Vλ

gz sinψ

Vλ
g1 = Vλ

gx −Vλ
gy


 �
=
ffiffiffi
2

p
, (3.12b)

From Figure 3.2 it is seen that, for the cross-section {J} of cubic crystals, the depen-
dence of the heat flux direction on the ψ angle is controlled by the Vλ

g3 group veloc-
ity component. Because of the projection of the Vλ

g1 component is the rotation axis,
it does not depend on the ψ angle. It identifies the {J} plane or the wide face. The
Vλ
g2 component is ψ-angle-dependent and orientates two other sample faces. For

rectangular cross-section samples investigated in [19], the first case, when the wide
face coincides with {100}, the narrow face coincides with {110}, and the temperature

Figure 3.2: Diagram that illustrates the change in the angle ψ during rotation of the temperature
gradient: (a) in the ZY {J} = {100} plane of the face of the cube and (b) in the {J} = {110} diagonal
plane.Vλ

g1, Vλ
g2, and Vλ

g3 are the group velocity components.
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gradient is pointed along [110], is described by the expression (3.12a) with the angle
ψ=π 4= (see Figure 3.2a). Then, for the Vλ

gi components, we have:

Vλ
g3 = ð−Vλ

gy +Vλ
gzÞ=

ffiffiffi
2

p
, Vλ

g2 = Vλ
gy +Vλ

gz


 �
=
ffiffiffi
2

p
, Vλ

g1 =Vλ
gx . (3:13а)

The second case, when the wide face coincides with {110}, the narrow one merges
with {100}, and the temperature gradient is set along [110], corresponds to the ex-
pression (3.12b) with the angle ψ=π 2= . Then, for the Vλ

gi components, we get:

Vλ
g3 = Vλ

gx +Vλ
gy


 �
=
ffiffiffi
2

p
, Vλ

g2 = −Vλ
gz , Vλ

g1 = Vλ
gx −Vλ

gy


 �
=
ffiffiffi
2

p
. (3:13b)

So, we have demonstrated that the I ψð Þ½ � and Jf g orientation parameters can be
evaluated through the group velocity components parallel and perpendicular to the
heat flux. This holds for an arbitrary direction of the heat flux relative to the crystal
axes. In the Cartesian coordinate system, the phonon group-velocity components
required for calculating the temperature dependencies of the thermal conductivity
have the form:

Vλ
gxðx, θ,’Þ= Sλ0ðθ,’Þ Vλ

nðx, θ,’Þ sin θ cos’+ Sλθðx, θ,’Þ cos θ cos’− Sλ’ðx, θ,’Þ sin’
n o

,

Vλ
gyðx, θ,’Þ= Sλ0ðθ,’Þ Vλ

nðx, θ,’Þ sin θ sin’+ Sλθðx, θ,’Þ cos θ sin’+ Sλ’ðx, θ,’Þ cos’
n o

,

Vλ
gzðx, θ,’Þ= Sλ0ðθ,’Þ Vλ

nðx, θ,’Þ cos θ− Sλθðx, θ,’Þ sin θ
� �

.
(3:14)

The Vλ
n x, θ,’ð Þ, Sλθ x, θ,’ð Þ, and Sλ’ðx, θ, ’Þ functions normalized to the phase plane are

the phonon group-velocity components in a spherical coordinate system [63].
Accounting for the dispersion of phonons leads to the conclusion that the group veloc-
ity, as well as the relaxation rates, depend neither on the angles ψ, θ, and ’ nor the
reduced wave vector x. In other words, Vλ

g =Vλ
g x,ψ, θ,’ð Þ and νλ Jf g

B I ψð Þ½ � = νλB I ψð Þ½ � x, θ,’ð Þ.
Focusing affects thermal conductivity via phonon-boundary scattering. In this

mechanism, phonon relaxation rates can be regarded as piecewise-smooth func-
tions for various angle ranges governed by the ratios between group velocity com-
ponents and the geometric parameters k0 = L 2D= and μ=W D= . For the heat flux in
the direction of I ψð Þ½ �, where the ψ angle is measured from the Z-axis in the plane
{J}, the phonon relaxation rate can be expressed as:

νλfJgB½IðψÞ�ðx, θ,’Þ=
Vλ
g3

��� ���
k0D

1−
k0
2

Vλ
g2

��� ���+μ Vλ
g1

��� ���
 �
μ Vλ

g3

��� ��� + k0ð Þ2
3

Vλ
g1

��� ��� Vλ
g2

��� ���
μ Vλ

g3


 �2
8><
>:

9>=
>;

− 1

, k0 = L
2D

(3:15)
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if the inequalities μjVλ
g1j> jVλ

g2j and jVλ
g3=V

λ
g1j≥ k0 or μjVλ

g1j< jVλ
g2j and jVλ

g3=V
λ
g2j≥ k0=μ

are realized. Conditional upon the opposite inequalities are fulfilled, we arrive at:

νλfJgB½I� ðx;θ; ’Þ ¼ νλfJgB∞½I�ðx;θ; ’Þ ¼

6μ
D

Vλg1


 �2
3μ Vλ

g1

��� ���� Vλ
g2

��� ���
 � ; if Vg2
�� ��<μ Vg1

�� ��and Vλ
g3

.
Vλ
g1

��� ���<k0;

6
μD

Vλg2


 �2
3 Vλg2

��� ����μ Vλg1

��� ���
 � ; if Vg2
�� �� > μ Vg1

�� ��and Vλ
g3

.
Vλ
g2

��� ���< k0
μ :

8>>>>>>>><
>>>>>>>>:

(3:16)

The dependencies of thermal conductivity on the temperature gradient direction
I yð Þ½ � and orientation {J} of side faces of the sample relative to the crystal axes are
determined by the magnitudes of the phonon group-velocity components. They di-
rectly enter the thermal conductivity and relaxation rates νλ Jf g

B I ψð Þ½ �.
According to [101–104], the expression for the relaxation rate of phonons by iso-

topic disorder in cubic crystals has the form:

νisoðq1, λ1Þ=
π
6
gV0ω2

q1λ1
D ωq1λ1


 �
, D ωq1λ1


 �
= 1

V

X
q2λ2

δ ωq1λ1 −ωq2λ2

� �
. (3:17)

Here, V0 is the volume per atom, g is the factor of isotopic disorder, g =P
i CiðΔMi= �MÞ2,where ΔM =Mi − �M, Mi is the mass of i-th isotope, �M =

P
i CiMi is

the average mass of the isotopic composition, Ci is the concentration of i-th isotope,
D ωð Þ is the density of phonon states, V is the normalizing volume. The anisotropic
continuum model offers the expression (3.17) as [104]:

νλiso ffi Aiso T · zλ
� �4, Aλ

iso =
gV0
12π kB=�hð Þ4 Sλ0

� �− 3
D E

, Sλ0
� �− 3
D E

= 1
4π

ð
dΩ Sλ0 θ,’ð Þ� �− 3,

(3:18)

Aiso =

AL
iso +At1

iso +At2
iso =0.46,

AL
iso +At1

iso =0.21,
AL
iso =0.04,

0,

if

if

if

if

ω≤ωt2
max;

ωt2
max <ω≤ωt1

max;
ωt1

max <ω≤ωL
max;

ω>ωL
max:

8>>>><
>>>>:

The magnitude of the isotopic disorder parameter for Sinat with the natural isotope
composition is g = 2.01 · 10− 4. By accounting for the dispersion of phonons, the den-
sity of phonon states, D ωð Þ, can be obtained from the appearance of the approxima-
tion spectrum (see Section 1.2).

According to [9, 36, 38, 91, 94–97], the expression for the phonon relaxation
rate in the Umklapp processes has the form:
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νλU =Aλ
U · z2λ ·T3 · exp −

Cλ
U

T

� �
. (3:19)

The parameters of anharmonic scattering, Aλ
U and Cλ

U , for the phonon relaxation rate in
the Umklapp processes are fitting parameters. The latter can be found from matching
calculation data for the temperature dependencies of thermal conductivity and experi-
mental outcomes. In accordance with generally accepted beliefs [9, 36, 97], the Herring
relaxation mechanism for longitudinal phonons [38] and the Landau-Rumer mecha-
nism [98] for transverse phonons are the major ones of N-scattering processes in Si
crystals (see formulas (3.5) and (3.6)). These processes re-distribute the momentum of
phonons between various vibrational branches. Therefore, we should utilize the first
version of N-scattering processes to calculate the drift rates (see formulas (3.8)).
Comparison of the predicted data on the temperature dependencies of thermal conduc-
tivity with the experimental findings of [19] yields parameters that control the phonon
relaxation rates in anharmonic phonon–phonon scattering processes (Table 3.1).

The fitting parameters from Table 3.1 testify that the relaxation frequency for trans-
verse phonons in N-processes is two orders of magnitude less than that for longitu-
dinal phonons. It is not difficult to verify that the inequality νtN qð Þ< νtR qð Þ is met for
transverse phonons over the entire temperature range. Their contribution to the
thermal conductivity is due to the diffuse motion. For longitudinal phonons, the
ratio between the relaxation rates is νLN νLR < 1

�
; in the temperature inter-

val 1<T < 12K, it is less than unity. However, it turns out to be greater than unity at
higher temperatures. Therefore, the contribution of the drift motion of phonons to
the thermal conductivity is mandatory to estimate analogously to as done in [94].

3.3 Analysis of the Temperature Dependencies of Thermal
Conductivity for Square-Shaped and Rectangular
Cross-Section Si Samples

Further, we show the results calculated in [22] for thermal conductivity k Tð Þof finite-
length Si samples with square-shaped and rectangular cross-sections using formulas
(3.10)–(3.19). For boundary scattering, fitting parameters were not applied. Fitting of

Table 3.1: Parameters that determine phonon relaxation rates in the anharmonic processes of
phonon–phonon scattering for Si crystals, Aiso =0.46K−4sec− 1.

AL
N , K− 5 sec− 1 At

N , K− 5sec− 1 AL
u, K− 3sec− 1 At

u, K− 3sec− 1 CL
u , κ Ct

u, κ

. .·− .· .·  
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the calculation results was carried out by varying the parameters of the anharmonic
scattering processes in order to achieve the best agreement between the predicted and
the experimental data in the region of the κ (T) maximum. The calculated parameters
derived using the data of [85, 91, 94–97] are listed in Table 3.1. First and foremost, we
explore the influence of various relaxation mechanisms on the temperature dependen-
cies of thermal conductivity of Si crystals for the fitting parameters from Table 3.1. For
this, we take a square-shaped cross-section sample [19] D=0.293cm, L= 2.9cmð Þ; the
temperature gradient is set along the [100] direction. Taking into consideration bound-
ary scattering νλ = νλB

� �
, the thermal conductivity follows the κ Tð Þ⁓T3 dependence at

the lowest temperature (see Figure 3.3, curve 2).

In the low-temperature range T = 3Kð Þ, the calculated values of the thermal con-
ductivity appear to be 4%–8% higher than those in the experiment. To explain
this divergence, the papers [2, 23] exploited the concept of a defective surface
layer, proposed in [32, 87, 88]. However, the papers [20, 63] disregarded isotopic
scattering whose contribution amounts to 5% at T = 3 K. As can be understood
from Figure 3.3 (curve 2), accounting for isotopic and boundary scattering
νλ = νλB + νλiso
� �

aligns the predicted and experimental data on the temperature

Figure 3.3: Temperature dependencies of thermal conductivity of square-shaped cross-section Si
crystals (L = 2.9 cm, D = 0.293 cm) for the [100] direction, taking into account the following phonon
relaxation mechanisms: curve 1 refers to boundary scattering, curve 2 is for boundary scattering
and isotopic scattering disorder, curve 3 reflects boundary scattering, scattering by isotopic
disorder and normal phonon–phonon scattering processes, curve 4 refers to boundary scattering,
scattering by isotopic disorder, and the Umklapp phonon–phonon processes, curve 5 is for all
mechanisms p relaxation of phonons. Symbols are the experimental data of [19].
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dependencies of thermal conductivity in the temperature range from 3 K to 15 K
within the experimental error, without resorting to fitting parameters. At temper-
atures higher than 15 K, the normal phonon–phonon scattering and Umklapp pro-
cesses become noticeable (see Figure 3.3, curves 3 and 4).

A total allowance for all scattering processes using the fitting parameters from
Table 3.1, allows reconciling the findings of the calculation and experiment of [19]
over the measuring temperature range up to 40 K (see Figure 3.3, curve 1). It should
be stressed that the major role in the bending-down of the plotted temperature de-
pendence of thermal conductivity is played by the Umklapp processes (compare
curves 3 and 5 in Figure 3.3). Figure 3.4 sketches the temperature dependencies of
thermal conductivity for three identical Si samples with a square-shaped cross-
section in symmetric directions of heat flux. This graph is built based on the pho-
non relaxation times calculated for diffuse boundary scattering.

As can be observed in Figure 3.4, the theory developed above properly de-
scribes the anisotropy and temperature dependencies of thermal conductivity for
square-shaped cross-section Si crystals, or otherwise speaking, the first of the dis-
covered effects in [19]. Moreover, for samples located in different directions of heat
flux relative to the crystallographic axes, the calculated results are in good agree-
ment with the experiment in the temperature range from 3 K to 15 K, without apply-
ing fitting parameters (see Figure 3.4). The maximum thermal conductivity is
attained for the samples when the heat flux direction coincides with [100]. At low
temperatures, it exceeds the thermal conductivity of samples with the axis pointing
along [110] and [111] by 36% and 50%, respectively.

These estimates match well the values of the experimental anisotropy of ther-
mal conductivity [19]. Formulas (3.10), (3.11), as well as (3.13)–(3.16), for phonon-
boundary scattering, give the possibility of satisfactorily describing the second
McCurdy effect [19]. The latter consists in the dependence of the thermal conductiv-
ity magnitudes on the orientation of sample wide faces. Figure 3.5 shows that the
temperature dependencies of thermal conductivity agree quite well with the experi-
mental outcomes [19] (see Figure 3.5). This is true for two rectangular cross-section
samples having the same area of the cross-section and the same temperature gradi-
ent direction. At T = 3 K, for the sample with {100} wide and {110} narrow faces, the
thermal conductivity appears to be 31% higher than that of the {110} wide and {100}
narrow faces of the sample.

Within the experiment error, this result finds good agreement with the experi-
mental value of 33%. It should be underscored that, for both rectangular and
square-shaped cross-section samples, the difference between the predicted and the
experimental values [19] of k Tð Þ is not above the experiment error in the tempera-
ture range 3K<T < 15K. Thus, the newly developed theory quantitatively describes,
without using fitting parameters, both effects revealed by McCurdy in thermal con-
ductivity of Si crystals in the temperature range where scattering at the boundaries
and by isotopic disorder dominates. These findings testify that the analytic solutions
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for the phonon relaxation rates during diffuse boundary scattering are quite adequate
to be suitable for interpreting the features of phonon transport in different semicon-
ductive and dielectric materials.

Figure 3.4: Temperature dependencies of thermal conductivity of square-shaped cross-section Si
crystals (L = 2.9 cm, D = 0.293 cm) for symmetric directions of the temperature gradient: curve 1 is
for the [100] direction, curve 2 is for the [110] direction and curve 3 is for the [111] direction.
Symbols are the experimental values of [19].

Figure 3.5: Temperature dependencies of thermal conductivity for rectangular cross-section
samples (L = 3.5 cm, D1 = 0.185 cm, D2 = μD1 = 0.638 cm, μ = 3.45) and the orientation of the
temperature gradient in the [110] direction. Curve 1 refers to samples with the {100} wide face,
curve 2 refers to samples with the {110} wide face. Symbols are the experimental values of [19].
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The experimental data of [19] show that the anisotropy of thermal conductivity
quickly decays as the temperature rises when going over from the boundary scattering
regime to the bulk relaxation mechanisms (above the maximum) (see Figures 3.4 and
3.5). The deviation of the experimental values of k Tð Þ for symmetric directions in the
vicinity of the maximum does not exceed 6%. At T = 40 K, these values are equal to or
within the experiment error, that is to say, the phonon focusing effect does not make
itself felt in the thermal conductivity magnitudes. The maximum difference between
the predicted and experimental data of [19] takes place near the maximum of the ther-
mal conductivity. So, for example, at Tmax = 25K, the thermal conductivity values are
5% higher than the experimental outcomes and 4% and 6% lower than the latter in
the [101] and [111] directions, respectively. Although the deviation from the experimen-
tal results in the vicinity of the maximum is not great; however, the calculated data
yield the maximum value of the anisotropy of 19%, which is noticeably larger than that
of the experiment. At higher temperatures, the anisotropy of the thermal conductivity
quickly diminishes. According to the calculation above, it becomes equal to the experi-
ment error (4%) at T = 60K. As is mentioned earlier, the Matthiessen rule appears to be
the possible reason for the divergence with the experiment in the region of the maxi-
mum when transitioning from boundary to bulk scattering. This approximation gives a
too slow decrease in the anisotropy of the thermal conductivity and, apparently, is not
a precise enough procedure in this case. This is explained by focusing.

Analysing the role of low-energetic phonons in thermal conductivity and ther-
mopower of monocrystalline semiconductors, Herring brought to light the weak-
ness of the Matthiessen rule at temperatures near the maximum of k Tð Þ. This is
because boundary scattering occurs near the surface of the samples, whereas bulk
processes come about uniformly throughout the entire volume. Therefore, they can-
not be additively summed up as it follows from the Matthiessen rule. Obviously,
when phonon relaxation rates in bulk mechanisms and boundary scattering be-
come equal, the maximum deviation from the Matthiessen rule can be observed. To
correctly make allowance for combined action of boundary and bulk-mechanism
scattering of phonons, the kinetic Boltzmann equation needs to be solved for the
case of a non-uniform distribution of heat flux throughout the transverse cross-
section of the sample. With accounting for phonon focusing, this problem is too in-
volved and requires separate consideration.

Let us compare the role of boundary and bulk-mechanism scattering of phonons
in the thermal conductivity of Si crystals (see Figure 3.6). In doing so, we calculate
the temperature dependencies of thermal conductivity, k Tð Þ, in the phonon-
boundary scattering regime, νλ2ð Þ qð Þ= νλB qð Þ (curve 2). In this case, we take into ac-
count only bulk phonon relaxation mechanisms, νλ5ð Þ qð Þ= νλiso qð Þ+ νλU qð Þ+ νλN qð Þ
(curve 5) (see Figure 3.6). At temperatures below the thermal conductivity maximum,
scattering at the boundaries and by isotopic disorder dominantly contributes to ther-
mal resistance. Moreover, at T = 3K, the boundary scattering provides 95% of the ther-
mal resistance, but the isotopic scattering is responsible for only 5%. With rising
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temperature, the relative contribution of the boundary scattering diminishes and the
contribution of the bulk relaxation mechanisms increases. At the temperature
TBV = 18.5K for Sinat crystals with the natural isotopic composition, curves 2 and 5 in-
tersect. This stands for equalizing the contributions of the bulk relaxation mecha-
nisms and boundary scattering to thermal resistance. At T =TBV , there takes place a
transition from the boundary scattering regime to the dominant role of the bulk relax-
ation mechanisms (see Figure 3.6).

If one assumes that phonon relaxation rates in anharmonic scattering processes
such as the Umklapp and normal scattering processes remain unchanged when transi-
tioning to isotopically pure Si28 crystals, the isotopic effect in thermal conductivity of
Si28 can be estimated, and the TBV transition temperature can be predicted. In this
case, curves 2 and 4 intersect at a higher temperature, TBV = 22.4K. It should be under-
scored that curve 4 refers to anharmonic scattering processes, νλ4ð Þ qð Þ= νλU qð Þ+ νλN qð Þ.
In this case, the maximum temperature of the thermal conductivity drops from 25 K for
Sinat to 20 K for isotopically pure Si28. Maximum values of the thermal conductiv-
ity increase 3.5 times when transitioning from Sinat crystals to isotopically pure
Si28 crystals. This means that, at T =Tmax, the contribution of isotopic scattering to
the thermal resistance turns out to be 3.5 times more than the total contribution of
the rest of the phonon relaxation mechanisms. The estimation of the isotopic ef-
fect in the thermal conductivity of Si crystals can be regarded as crude enough
because it leaves aside a possible violation of the Matthiessen rule for boundary

Figure 3.6: Temperature dependencies of full total thermal conductivity for the [100] direction (curve 1)
and its dependencies for different phonon relaxation mechanisms: curve 2 is for thermal conductivity
in the boundary scattering regime, curve 3 is for a monoisotopic Si28 sample, curve 4 corresponds to
anharmonic scattering processes, curve 5 corresponds to for bulk scattering mechanisms.
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and bulk relaxation mechanisms, as well as interference of isotopic and anhar-
monic scattering processes.

Let us look into the influence of thermal phonons on the temperature-
dependence of thermal conductivity, k Tð Þ, for Si crystals. Figure 3.7 displays that
the role of dispersion is small for the [100] direction at temperatures below 20 K.
This is traced from the fact that the difference in curves plotted accounting for dis-
persion (solid lines) and using the anisotropic continuum model (dashed lines)
does not exceed the experiment error. As the temperatures become higher, the dif-
ference grows. At the temperatures of 25 K and 40 K, it amounts to 5% and 14%,
respectively. Dispersion is the most powerful factor that affects the contribution of
a slow transverse mode to the thermal conductivity: the latter lowers by 15% com-
pared to that computed within the anisotropic continuum model. Noticeably less
influence of the dispersion can be observed on longitudinal phonons and a fast
transverse mode (see Figure 3.7). An analysis of the drift motion of longitudinal
phonons showed that its contribution to the total thermal conductivity in the tem-
perature range of 3K< T < 40K is small and can be neglected.

Figure 3.7: Dependencies of κ (T) (curves 1, 1a) and the contributions of slow (curves 2, 2a), fast
(curves 3, 3a), transverse and longitudinal (curves 4, 4a, 4b) phonons for square-shaped
cross-section samples placed in the [001] direction. Curves 1, 2, 3, 4 are calculated taking phonon
dispersion into account, curves 1a, 2a, 3a, 4a are calculated within the anisotropic continuum
model. Curve 4b is the contribution of longitudinal phonons with allowance for their drift motion.
Symbols are the experimental values of [19].
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This contribution reaches its upper limit of 18% in the region of the maximum of
κL001½ � Tð Þ at TL

max = 17K. As to the total thermal conductivity, the contribution of longi-
tudinal phonons figures up to only 7.6%, whereas the contribution of their drift
motion does not exceed 1.5%. Thus, for Si crystals with the natural isotopic compo-
sition, the drift motion of longitudinal phonons in the above temperature range can
be disregarded.

3.4 Change in Anisotropy of Thermal Conductivity in Silicon
Crystals with Temperature

Let us calculate the angular dependencies of thermal conductivity of square-shaped
cross-section Si samples investigated in [19]; heat flux rotates in the {100} and {110}
planes. We use formulas (3.10)–(3.19) to analyse the change in the thermal conducti-
vity anisotropy with temperature. In Figure 3.7, the solid curves are meant for illustrat-
ing the calculated angular dependencies of thermal conductivity and the contributions
of all branches of the phonon spectrum. All relevant phonon-relaxation mechanisms
(3.10)–(3.19) occurring at the temperature of 3 K and 25 K are taken into consideration.
The dashed lines in Figure 3.8a, b represent the angular dependencies of thermal con-
ductivity at T = 3K in the phonon boundary scattering regime when diffuse boundary
scattering is the only phonon relaxation mechanism. In this case, the calculated find-
ings turn out to be 4%–8% greater than the experiment values. Accounting for isotopic
scattering whose contribution is 5%, at T = 3K, aligns the predicted and experimental
data of [19] (see Figure 3.8a, b). As previously stated in Section 3.3, the deduced pho-
non relaxation times and making allowance for isotopic and boundary scattering en-
sure good agreement between the estimated and experimental data for all symmetric
directions within the experiment error without fitting in the temperature range from
3 K to 15 K. The abovementioned conclusion is confirmed by evaluating the angular
dependencies of the thermal conductivity of square-shaped cross-section Si samples
(see Figure 3.8a, b).

Figure 3.8 claim that the thermal conductivity anisotropy is chiefly due to the
contribution of slow transverse phonons that provide the maximum thermal con-
ductivity when focused in the [001] directions.

The anisotropy of the thermal conductivity goes up to its maximum at T = 3K;
the ratio of the thermal conductivity values in symmetric directions has the form:
κ½001�:κ½110�:κ½111� ≈ 1.5:1.1:1. For the {110} plane in the [111] and [110] directions, the an-
gular dependencies of thermal conductivity have local maxima caused by focus-
ing of fast transverse and longitudinal modes, respectively (see Figure 3.8b). As
the temperature rises, the thermal conductivity anisotropy diminishes. In the tem-
perature range of 3 K–15 K, our calculations are in agreement with the data of [19]
within the experiment error on both thermal conductivity magnitude and anisot-
ropy. However, on approaching the maximum of the thermal conductivity, a
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divergence of the predicted and experimental data increases (see Figure 3.8). At
T = 25K, they become 6% larger and 5%–6% lesser than outcomes of [19] in the
[001], [110], and [111] directions, respectively. Although the deviation of the theo-
retical dependencies from the experimental ones of [19] in the vicinity of the maxi-
mum is small (5%–6%), however, the calculation yields κ 001½ �:κ 111½ � ≈ 1.19 instead of
1.06 as in the experiment. As already emphasized, the Matthiessen rule used for

Figure 3.8: The angular dependencies of full thermal conductivity κ (ψ) (Wcm−1 K−1) (curves 1) and
the contributions to it from each of the branches of the phonon spectrum at temperatures of 3 K
(a,b), 25 K (c,d) for square-shaped cross-section samples (L = 2.9 cm, D = 0.293 cm): curves 2 are
for a fast transverse mode, curves 3 are for a slow transverse mode, curves 4 are for a longitudinal
mode; for cases: (a,c) – the axis of the sample (and the temperature gradient) rotates in the plane
of the face of the cube, (b,d) – the axis of the sample rotates in the diagonal plane. The dashed
lines in Figures (a, b) show the predicted thermal conductivity values in the regime of boundary
phonon scattering. Symbols are the experimental values of [19].
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the phonon relaxation rates near the transition from boundary to bulk scattering
is, probably, the very reason for this divergence.

For square-shaped cross-section samples placed in a fixed direction of the tem-
perature gradient, the dependence of thermal conductivity on the orientation of the
side faces is weak. For the [001] heat flux direction and {100} orientation of the side
faces, the thermal conductivity magnitudes are only 1.3% greater than those for
{110} orientation. For rectangular cross-section samples set in the [110] temperature
gradient direction, the orientation of the side faces more essentially affects the ther-
mal conductivity. At T = 3K, the thermal conductivity of the sample with the {100}
wide face is 30% more in the [110] temperature gradient direction than that of the
sample with the {110} wide face. As seen in Figure 3.9, this result meets the experi-
ment [19]. An analysis showed that rectangular cross-section samples of the same
geometric dimensions as in [19], placed in the [100] heat flux direction, produce
thermal conductivity anisotropy significantly less: for the {100} wide face of the
sample, it is 5% less than that for the {110} wide face.

It is worth stressing that, in the temperature range for observations ð3K<T < 40KÞ,
the dominant contribution to the thermal conductivity is governed by transverse
phonons (see Table 3.2). Slow transverse phonons are focused in the [100] direction;
their contribution is maximal. At T = 3K, it reaches 61% of the full thermal conduc-
tivity and the contribution of the fast transverse mode almost two times less and

Figure 3.9: Angular dependencies of the full thermal conductivity κ (ψ) (Wcm−1 K−1) (curves 1) and the
contributions to it from each of the branches of the phonon spectrum at a temperature of 3 K for
rectangular cross-section samples (L = 3.5 cm, D = 0.185 cm, and μ = 3.45). (a) The axis of the
sample (and a temperature gradient) rotates in the plane of the cube face, (b) The axis of the sample
rotates in the diagonal plane: curves 2 are for a fast transverse mode, curves 3 are for a slow
transverse mode, curves 4 are for a longitudinal mode. Symbols are the experimental values of [19].
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comes up to 31% (see Figure 3.7). With increasing the temperature to 40 K, the con-
tribution of the slow transverse mode falls to 54% in the [001] direction, whereas
the contribution of the fast transverse mode goes up to 43% (see Figure 3.7).

For longitudinal phonons, the [001] direction corresponds to the defocusing direction,
therefore, their contribution is minimal; at T = 3K, it amounts to 8%. Longitudinal pho-
nons are focused in the [111] directions and their contribution is maximal; it reaches
19% of the full thermal conductivity (see Table 3.2). With increasing the temperature
from 3 K to 40 K, the total contribution of transverse phonons grows from 92% at
T = 3K up to 97% at T = 40K. At T = 40K, the contribution of longitudinal phonons
gradually drops from 8% to 3% in the [100] direction. In the [111] direction, it dramati-
cally diminishes from 19% at T = 3K to 4% at T = 40K (see Table 3.2). Such a behaviour
of the contributions of longitudinal and transverse phonons to the thermal conductiv-
ity of Si can be explained by different influence of anharmonic scattering mechanisms.

For longitudinal phonons in the vicinity of the thermal conductivity maximum,
the main role is played by normal scattering processes, whereas by the Umklapp pro-
cesses for transverse phonons. Therefore, the maximum temperature for transverse
phonons is 8 K higher than that for longitudinal phonons. It should be pointed out
that the transition from boundary to bulk relaxation mechanisms for longitudinal
phonons occurs at TB ≈ 14K, whereas for transverse phonons it happens at TB ≈ 18K.

3.5 Physical Interpretation of McCurdy Effects in Thermal
Conductivity of Cubic Crystals [116]

Let us analyse the influence of focusing on the propagation of phonons in mono-
crystalline square-shaped cross-section samples and pictorially explain the physical
meaning of the anisotropy of thermal conductivity or the first McCurdy effect.
The phonon focusing affects the thermal conductivity of elastically anisotropic

Table 3.2: Relative contributions of various branches of the phonon spectrum to the full thermal
conductivity, ~κλI½ � Tð Þ= κλI½ � Tð Þ κ I½ � Tð Þ

.
, for square-shaped cross-section samples for symmetric

directions [I] at the temperatures of 3 K, 25 K, and 40 K.

~κλ½I�ðTÞ [] [] []

 K  K  K  K  K  K  K  K  K

~κt1½I� . . . . . . . . .

~κt2½I� . . . . . . . . .

~κL½I� . . . . . . . . .
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crystals through a difference in wave vector and group velocity directions. It is
worth recalling that the group velocity is responsible for the phonon propagation
(see Figure 3.10). As an example, a t2 mode can serve to illustrate the phonon focus-
ing in Si crystals for wave vectors in the {100} plane (see Figure 3.10a). For this pur-
pose, the isoenergetic surface needs to be constructed for this mode and the
directions of the phonon group velocities should be identified. Characteristic angles
θ1, θ2, θ3, and θ4 are determined in Section 1.5. In an isotropic medium, the direc-
tions of the propagation of a phonon and its wave vector coincide. Phonons with
wave vectors in sector − θ4 ≤ θ≤ θ4 propagate in the same sector. However, as seen
in Figure 3.10, the directions of wave vectors and group velocities differ for Si.
Phonons of the slow transverse mode travel inside a significantly smaller sector,
− θ3 ≤ θ≤ θ3. The latter is controlled by the directions of group velocities at zero cur-
vature points in the isoenergetic surface (see details in [69, 71]). Let heat flux be
pointing along the [100] direction in square-shaped cross-section Si crystals. Then,
phonons with wave vectors in sector − θ4 ≤ θ≤ θ4 (for Si θ4 = 28.6o) will deviate from
the side faces towards the axis of the rod and move in sector − θ3 ≤ θ≤ θ3, where
θ3 = 6.8o for Si (see Figure 3.10). As a result, for the focusing sector− θ3 ≤ θ≤ θ3, the
average density of states of the t2 mode in the ratio θ4 θ3 ≈ 4.2= is larger than that in
an isotropic medium. In contrast, for the defocusing sector π 2− θ3 ≤ θ≤ θ3= , it is 2.3
times less than that in an isotropic medium. In this case, the average density of
states of the t2 mode for the focusing sector is 9.9 times greater than that for the
defocusing sector (see Section 1.5).

Further, we explore in more detail the influence of focusing on the propagation
of the phonon modes in square-shaped cross-section Si samples. This theme is

(b)(a)

Figure 3.10: Schematic diagrams that illustrate (a) focusing of slow transverse modes in Si crystals
for cutting the constant-energy surface by the {100} plane (arrows show wave vectors inside the
surface and the corresponding phonon group velocities beyond it) and (b) the influence of focusing
on the phonon propagation in Si samples with a length L and square cross-section D × D for wave
vectors lying in the {100} plane with the angles θt2

1 = 23.6�, θt2
2 = 11.9�, θt2

3 =6.8�, θt2
4 = 28.6�; the

temperature gradient is set along the [100] axis.
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expected to be useful for technical applications to design silicon electronic devices.
Special attention should be drawn towards some peculiarities caused by affecting
the focusing on traveling of phonons of the t2 mode in the {100} plane. Firstly, pho-
nons with wave vectors q1(for Si θ1 = 23.6o) will propagate in the [100] direction of
heat flux (see Figure 3.10). In this case, the phonon mean free path limited by either
bulk relaxation mechanisms or length of the sample. Secondly, since phonons of
the t2 mode with wave vectors in sector − θ4 ≤ θ≤ θ4 deviate from the side faces to-
wards the axis of the rod and move at lesser angles (sector− θ3 ≤ θ≤ θ3), their mean
free path can be substantially increased. It is worth emphasizing that, in diffuse scat-
tering regime, the mean free path of a phonon with the wave vector q is determined by
a distance traveled by the phonon until it collides with the sample surface. So, pho-
nons with the wave vector ± q4 and at the angle θt24 = 28.6o propagate at a far much
lesser angle (θ3 = 6.8o). As a consequence, their mean free paths increase (see
Figure 3.10). For the longitudinal mode, the [001] direction is a defocusing direc-
tion. Therefore, longitudinal phonons deviate from the sample axis towards the
side face. Their mean free path is less than that offered by the model of an isotropic
medium (see Figure 3.10). For wave vectors in the {100} plane, the fast transverse
mode is isotropic; there is no focusing effect. Its mean free path coincides with the
predicted one within the model of an isotropic medium (see Figure 3.10). Thus, the
schemes depicted in Figure 3.10 show that the maximum thermal conductivity for
type-I crystals is due to the contribution of slow transverse phonons.

Consider the propagation of phonon modes in the {100} axial cross-section of
the sample when the temperature gradient lies along [110] direction. The latter
matches the defocusing of the slow transverse mode t2. Therefore, phonons of this
mode deviate towards a sample face; their mean free path is less compared to that
within the model of an isotropic medium (see Figure 3.11).

For wave vectors in the {100} plane, the fast transverse mode is isotropic; there ex-
ists no focusing effect. Its mean free path is equal to that calculated within the

Figure 3.11: Scheme that illustrates the effect of phonon focusing in rectangular cross-section
Si samples for wave vectors in the {100} plane and a temperature gradient along [110].
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model of an isotropic medium (see Figure 3.11). Longitudinal phonons in this plane
have a local focusing in the [110] direction. They deviate towards the sample axis
and their mean free path is greater than within the model of an isotropic medium. It
should be stressed that the role of longitudinal phonons in phonon transport for Si
is small. This is because their thermal conductivity is an order of magnitude less
than the total thermal conductivity of transverse phonons. Besides, the contribution
of the longitudinal phonons to the thermal conductivity in the [001] and [110] direc-
tions amounts to 8% and 15%, respectively.

Let us examine the propagation of phonons for their wave vectors in the {110}
plane when the temperature gradient is set along [110] direction. In the {110} plane,
the fast transverse mode is focused in the [110] direction (see Figure 1.12b). Its pho-
nons will move towards the sample axis, and their mean free path exceeds that
computed within the model of an isotropic medium. However, the focusing effect,
in this case, is not so evident as compared to the slow transverse mode in the [001]
direction (see Figure 2.6). Therefore, the average, over modes, phonon mean free
path, and, accordingly, the thermal conductivity in the [110] direction turns out to
be 40% lesser than that in the [001] direction. Longitudinal phonons are focused in
the [111] direction; their mean free path doubles compared with that in the [001] de-
focusing direction and takes a maximum value (see Figure 2.6). Here, the fast trans-
verse mode defocuses, and its mean free path is shorter than within the model of an
isotropic medium. Phonons of the slow transverse mode in this direction have a
local maximum of the focusing; their mean free paths slightly exceed their value for
the model of an isotropic medium (see Figure 2.6). Since the thermal conductivity of
the longitudinal phonons have no significant magnitude, the full thermal conduc-
tivity and average phonon mean free path are minimal in the [111] direction.

Directly calculating the mean free paths confirms the qualitative speculations
given above (see Figure 2.6). In the paper [20], the mean free paths of each vibra-
tional mode are shown to reach their maximum values in focusing directions, ex-
ceeding the mean free paths of other vibrational modes. Their minimum values are
recorded in defocusing directions and less than those predicted within the model of
an isotropic medium. So, for example, in Si crystals, the mean free path of the slow
transverse mode t2 in the focusing direction exceeds by 1.6 and 2.4 times that of fast
transverse and longitudinal modes, respectively.

Since the average density of states of the mode t2 also increases due to the fo-
cusing effect, the contribution of slow transverse phonons, as a result of these two
effects, to the thermal conductivity reaches 61% of the total thermal conductivity
for the [100] direction at the temperature of T = 3K and is twice the contribution of
the fast transverse mode. Thus, the first McCurdy effect in Si samples is produced
by the slow transverse mode, which focuses in the [001] direction and ensures max-
imum thermal conductivity in this direction.

Let us analyse the influence of focusing on the propagation of phonons in
monocrystalline samples with a rectangular cross section and give a physical
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explanation of the second McCurdy effect. To start with, we consider samples with
the {001} wide and {110} narrow faces. The main contribution to the boundary pho-
non scattering is made by scattering by wide faces of the sample (planes of films).
Therefore, we dwell on the focusing and defocusing of phonons of different polar-
izations in the {110} plane perpendicular to the wide face of the sample and their
deviation from the [110] temperature gradient direction (see Figure 3.12).

Phonons of the fast transverse mode are focused in the [110] direction; there-
fore, they will deviate from the wide face of the sample towards the temperature
gradient direction (see Figure 3.12). Their mean free path is longer than that pre-
dicted within the model of an isotropic medium. Figure 3.12 outlines that, as heat
flux moves along the [110] direction, the phonons of the t1 mode with wave vectors
in sector − θ4 ≤ θ≤ θ4 (θ4 = 15.7o for the t1 mode in the {110} plane) deviate from the
side faces towards the axis of the rod and travel in sector− θ3 ≤ θ≤ θ3, θ

t1
3 =0.86o for

Si. In the end, the density of states for the t1 mode becomes much higher for the
[110] direction and much lower for the defocusing direction than that for an isotro-
pic medium (see Section 1.5). In this case, the phonons of the t1 mode in the {110}
plane and with the q1 wave vector and θ1 angle (θt11 = 13.4o for Si) propagate along
the [110] heat flux direction (see Figure 3.12). At the same time, the phonons with
the q2 wave vector and θ2 angle (θt12 = 7.5o for the t1 mode) will propagate at the − θ3
angle ðθt13 =0.86oÞ (see Figure 3.12). The [110] direction is a defocusing direction of
the slow transverse mode, and its mean free path is shorter than in an isotropic me-
dium (see Figure 3.12). Longitudinal phonons are focused in the [111] direction, and
the [110] direction meets the defocusing direction for wave vectors in the {110}
plane. Therefore, they deviate from the temperature gradient direction towards the
wide face of the sample; their mean free path is less than in the model of an isotro-
pic medium. As already noted earlier, the role of longitudinal phonons in phonon
transport is small due to the low heat capacity.

Figure 3.12: Schemes illustrating the effect of focusing on the phonon propagation in rectangular
cross-section Si samples in the {110} plane and a temperature gradient along [110]. Phonons with
wave vectors directed at the angles θt1

1 = 13.4�, θt1
2 = 7.5�, θt1

3 =0.86�, and θt1
4 = 15.7� are considered.
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Another situation arises for samples with the {110} wide and {001} narrow faces.
Similar to the previous case, we should investigate the phonon focusing in the plane
perpendicular to a wide face, that is in the {001} plane. In it, the fast transverse mode
is isotropic, there is no focusing effect, and its mean free path coincides with that ob-
tained within the model of an isotropic medium. In this plane, as well as in the {110}
plane, the slow transverse mode t2 is defocused in the [110] direction. Therefore, the
phonons of this mode deviate from the temperature gradient direction towards a wide
face, and their mean free path, as in the previous case, is shorter than that in the
model of an isotropic medium (see Figure 3.12). Longitudinal phonons in this plane
have local focusing in the [110] direction and they deviate from the wide face of the
sample to the temperature gradient direction. However, as noted above, their role in
thermal conductivity is small. Obviously, in the case under consideration, the phonon
mean free path and thermal conductivity for samples with the {001} wide face are
greater than those for samples with the {110} wide face. The direct calculation yields an
effect magnitude of 31%. The authors of [19] succeeded in choosing the [110] direction
as a correct direction to set heat flux, since, in this direction, the slow transverse mode
is defocused in both the {001} and {110} planes. In contrast, in the [110] direction, the
fast transverse mode is focused in the {110} plane, and there is no focusing effect in the
{001} plane. If one takes a rectangular cross-section Si sample of the same geometric
parameters as in [19] but cuts it out with an axis coinciding with the [100] direction,
the thermal conductivity of the sample with the wide {100} face is only 5% higher than
that of the sample with the {110} wide face. So, from the above analysis, it follows that
the second McCurdy effect [19] is generated by focusing of the fast transverse mode in
the [110] direction for wave vectors in the diagonal plane.

3.6 Conclusion

The main results of the third chapter can be formulated in the following way:
1. A method of accounting for phonon focusing in calculating the thermal conduc-

tivity of monocrystalline samples has been proposed.
2. It has been shown that the phonon relaxation times calculated in this section for

diffuse scattering at the boundaries of finite-length samples with square-shaped
and rectangular cross-sections allow one to adequately describe the experimental
data on the thermal conductivity of silicon crystals for different directions of the
temperature gradient and orientations of the side faces of the samples over the
entire temperature range studied. To date, when analysing the temperature de-
pendencies of thermal conductivity for the relaxation rates of phonons at the
boundaries, fitting parameters have been always introduced to take into account
the influence of geometric parameters and orientations of the side faces of the
samples, as well as the directions of heat flux on the thermal conductivity of
monocrystalline samples. An analytical solution to the problem of the Knudsen
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phonon gas flow in finite-length samples allows getting rid of fitting for boundary
phonon scattering. It is shown that, in the temperature range from 3 K to 15 K,
when scattering at the boundaries and by isotopic disorder dominates, the newly
developed theory quantitatively describes, within the experimental error and with-
out fitting parameters, the following aspects:
– The temperature dependencies of the thermal conductivity of silicon crys-

tals for all directions of heat flux in square-shaped cross-section samples;
– The dependence on the orientation of the side faces for rectangular cross-

section samples.
3. Anisotropy of the thermal conductivity of square-shaped cross-section silicon

samples is shown to be mainly due to the contribution of slow transverse pho-
nons, which are focused in the [001] directions and provide maximum thermal
conductivity in this direction.

4. A physical interpretation of McCurdy effects in the thermal conductivity of
cubic crystals has been given. An analysis of the degree to which focusing af-
fects the phonon propagation in silicon single crystals shows that the first
McCurdy effect in square-shaped cross-section samples is caused by focusing of
a slow transverse mode, and the second McCurdy effect in rectangular cross-
section samples is due to focusing of a fast transverse mode.
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Chapter 4
Thermal Conductivity of monocrystalline
Nanostructures with Various Types of Elastic
Anisotropy Energy at Low Temperatures

As we have already seen in the previous chapter, the anisotropy of elastic properties
in bulk silicon samples leads to the dependence of the thermal conductivity and
phonon mean free paths on the direction of heat flux and the orientation of the side
faces of the samples [20, 21]. Therefore, it is of great interest to study the influences
of focusing on phonon transport in films and nanowires with various types of an-
isotropy of elastic energy. The present section deals with the case of low tempera-
tures, when the thermal resistance of nanostructures is due to diffuse phonon
scattering at the boundaries. An analysis performed in [4–7, 23, 24] shows that the
thermal conductivity follows the κ Tð Þ⁓T3 dependence for nanowires with diame-
ters greater than 50 nm and films with thicknesses greater than 20 nm in the tem-
perature range from 20 K to 50 K. An analogous situation can be observed for heat
capacity of bulk samples in the Debye theory. Therefore, under the indicated restric-
tions, the influence of spatial confinement on the spectrum of acoustic modes can
be neglected and the anisotropic continuum model can be utilized to analyse pho-
non transport in such nanostructures.

This chapter discusses phonon transport in monocrystalline films and nano-
wires based on cubic crystals with various types of anisotropy of elastic energy. Let
us look into nanostructures based on cubic crystals with positive (k − 1>0) (GaN,
GaAs, LiF Ge, MgO, Si, diamond, and YAG) and negative (k − 1<0) (NaCl, CaF2,
SrF2, and YIG) anisotropy of the second-order elastic moduli (see Table 1.2). At the
beginning, the change in thermal conductivity magnitudes with decreasing param-
eter k − 1j j should be investigated for nanostructures of type-I crystals: from GaN
(k − 1= 1.275) to YAG (k − 1=0.03), as well as for type-II nanostructures: from NaCl
(k − 1= −0.48) to YIG (k − 1= −0.04) (see Table 1.2). Further, we compare these data
with those calculated within the model of an isotropic medium for which k − 1=0
and demonstrate that the phonon mean free paths tend to the values offered by the
model of an isotropic medium as the k − 1j j parameter decreases [27].

There are many important problems to be solved for the technical use of nano-
structures in microelectronics. Among these are investigation of the dependencies
of thermal conductivity and phonon mean free paths on the geometric parameters
of nanostructures, directions of heat flux, and orientation of the film planes relative
to the crystal axes. An analysis of the influence of the elastic energy anisotropy on
the propagation of phonons in films and nanowires makes it possible to determine
optimal orientations of the film planes and directions of heat flux, ensuring maxi-
mum and minimum thermal conductivity of the nanostructures.

https://doi.org/10.1515/9783110670509-005
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The main objective of this section is to examine the anisotropy of thermal
conductivity in the regime of the Knudsen phonon gas flow and its dependencies
on the geometric parameters and directions of heat flux in elastically anisotropic
nanostructures. Note that, in exploring the thermal conductivity in nanostruc-
tures, the papers [1–3] do not cover important issues such as the influence of
elastic anisotropy of cubic crystals on the dependencies of phonon mean free
paths on the geometric parameters of films, as well as on the heat flux directions
and the orientation of the film planes relative to the axes. The solution of these
problems is expected to identify the orientations of the film planes and the heat
flux directions providing the maximum or minimum heat removal from the ele-
ments of semiconductor microcircuits. These challenges are relevant for semi-
conductor films widely used in microelectronics [1–3, 5–7] and are the subject of
study in this section.

Section 4.1 presents equations for mean free paths of phonons in monocrys-
talline nanostructures. Section 4.2 analyses the dependencies of the phonon mean
free paths on the geometric parameters in nanostructures with different types of an-
isotropy of elastic energy. Section 4.3 investigates the influence of focusing on the
density of states and the phonon mean free paths in nanowires with various types
of the elastic energy anisotropy. Section 4.4 discusses the change in the thermal
conductivity anisotropy upon transition from nanowires to square-shaped films
with different plane orientations. The content of this chapter is based on the papers
[27, 71, 70,109, 117].

4.1 Phonon Mean Free Paths in monocrystalline Nanostructures

In the pages of this section, we will analyse phonon transport in rectangular cross-
section films. Let L, D, andW =μD be the length, thickness, and width, respectively.
For square-shaped cross-section nanowires, the μ parameter is equal to unity
(μ= 1). We study the thermal conductivity of nanostructures in the regime of bound-
ary scattering when the thermal resistance is due to diffuse scattering of phonons
at the boundaries. As a preliminary, we take a temperature range much lower than
Debye temperature (T � TD) when the anisotropic continuum model is applicable.
The expression κ Jf g

I ψð Þ½ � Tð Þ= ð1 3= ÞCV Tð Þ �SΛ Jf g
I ψð Þ½ � for thermal conductivity implies that

the anisotropy of thermal conductivity is governed by the mean free path of pho-
nons. This is because the specific heat capacity CV and the average phonon velocity
�S are independent on the direction of heat flux. With diffuse phonon boundary scat-
tering, the average phonon mean free paths Λ, as well as the mean free paths Λλ of
phonons with polarization λ in films, are found in [27]. Bearing in mind the phonon
focusing for the heat flux direction I ψð Þ½ � and orientation Jf g of a wide face of the
film relative to the crystal axes, we can represent them in the form:
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g2j and jVλ

g3=V
λ
g2j< k0 μ= are satisfied,

the relaxation functions Iλ Jf g
I ψð Þ½ � θ,’ð Þ can be computed through the expressions for

infinite-length samples:
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Here, Vλ
g3 θ,’ð Þ, Vλ

g1 θ,’ð Þ, and Vλ
g2 θ,’ð Þ are the projections of the group velocity on

the temperature gradient direction and directions perpendicular to it in a coordinate
system related to the film. In this coordinate system, we set axis 3 along the heat flux
direction I ψð Þ½ �. Next, we put axis 1 (the axis of rotation) to be perpendicular to film
plane; it is responsible for the { J} orientation of the plane. Axis 2 should be pointing
perpendicular to two narrow side film faces. The ψ angle is measured from the Z-axis
coinciding with the cube edge. To account for the influence of phonon focusing on
the thermal conductivity anisotropy of monocrystalline films, the orientation parame-
ters should be expressed through the group velocity components.

Unlike Chapter 3, the present chapter deals with the dependencies of phonon
mean free paths on geometric and the orientation parameters when heat flux ro-
tates in the film plane. The subject of the investigation is three cases listed below:
1. The film plane coincides with the Jf g= 100f g plane of the YZ cube face;
2. The film plane coincides with the Jf g= 110f g diagonal plane;
3. The film plane is perpendicular to the Jf g= 111f g cube diagonal line.
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The latter issue measures the ψ angle from the 11�2½ � direction. For the cases in ques-
tion, the phonon group velocity components Vλ

g3 θ,’ð Þ, Vλ
g1 θ,’ð Þ, and Vλ

g2 θ,’ð Þ can
be represented as follows [27]:
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The dependence of the heat flux direction on the ψ angle is governed by the Vλ
g3 θ,’ð Þ

group velocity component. The Vλ
g1 θ,’ð Þ projection of the group velocity is indepen-

dent on the ψ angle because it is the axis of rotation. This projection identifies the {J}
film plane. So, it can be inferred that formulas (4.1)–(4.4) elucidate the features of
phonon transport in square-shaped cross-section nanofilms and nanowires at low
temperatures. The applicability of the anisotropic continuum model is the necessary
condition of legitimacy for such an approach to explore phonon transport in nano-
structures. As already noted, for 50 nm diameter nanowires and 20 nm thick films,
the influence of the spatial confinement on the spectrum of acoustic modes in nano-
structures can be neglected. In this case, to study phonon transport, the anisotropic
continuum model is utilized. Calculations of the temperature dependencies of ther-
mal conductivity of Si films and nanowires confirm the conclusion above.

In isotropic media, the phonon phase velocities Sλ are independent on the an-
gles θ and ’. Therefore, from formulas (4.1)–(4.4), it follows that the mean free
paths of phonons of different polarization are equal to each other and average
mean free path:
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Here, n1, n2, and n3 are the components of a unit wave vector n. Expressions (4.5)
imply that the phonon mean free paths in isotropic media do not depend on elastic
moduli but are completely given by geometric parameters of samples. However, for
elastically anisotropic crystals, they are different for phonons of different polariza-
tion and dependent on the direction of heat flux in the crystals. Expression (4.5)
yields Smoluchowski’s result [107] for the mean free path of molecules during the
flow of a very rarefied gas through an infinite rectangular cross-section (a×b) tube:
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From formula (4.6) for the flow of the Knudsen phonon gas throughout an infinite
rectangular cross-section rod, we can obtain the outcome of McCurdy et al. [19] for
the Casimir length:
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For the thermal conductivity of a cylinder-shaped infinite-length rod with a diameter d
in the model of an isotropic medium, the result of Casimir follows [13]: ΛC =d, which is
consistent with that of Knudsen [12] for a rarefied molecule gas flowing throughout an
infinite-length circular cross-section tube. The lack of divergence of the data is not acci-
dental. In his monograph [8], J.M. Ziman has stressed: “This argument (and, indeed,
the whole theory of boundary scattering) is clearly the same as the discussion of the
flow of a very rarefied gas in a tube (Knudsen 1909, Smoluchowski, 1910)”. Therefore,
the boundary scattering regime is called the Knudsen phonon gas flow [8, 9, 35], and
the phonon mean free path of infinite-length samples is the Casimir length.

4.2 The Influence of Geometric Parameters on Anisotropy of
Phonon Mean Free Paths in Films and Nanowires

Let us consider the features of phonon transport in single-crystal films in the regime of
the Knudsen phonon gas flow. Earlier, to estimate the thermal conductivity and mean
free paths of phonons in monocrystalline films of cubic symmetry for diffuse boundary
scattering, the model of an isotropic medium and Casimir theory were, as a rule, used
[see, for example, 25, 26, 108]. Other papers (see, e.g. [5–7, 28, 29]) apply the model of
an isotropic medium to account for boundary phonon scattering in sufficiently thin
films (D ≪ L, W) in the same way as it was done in the works of Fuchs [30] and
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Sondheimer [31] in analysing the conductivity of thin metal films. It was assumed that
the mean free paths and relaxation times of phonons in the films depend only on its
thickness [5–7, 28, 29]. This conclusion based on Casimir’s results and choice of
dimensions, as well as the attempt to determine the phonon mean free paths in nano-
films and nanowires at low temperatures, as was done in [108] are incorrect. The au-
thors of [108] suggested that the phonon mean free path in a film depends only on its
thickness, and a cylindrical rod explored by Casimir is a one-dimensional system.
Since the Casimir length for a cylindrical rod is ΛC = 1 ·D (where D is the rod diameter),
and a film is a two-dimensional structure, the authors of [108] postulated that the
Casimir length is twice the thickness, ΛC = 2 ·D (where D is the film thickness) for heat
flux flowing along the film. In other words, it depends neither on the width nor length
of the film. These results underlie the analysis of the temperature dependencies of ther-
mal conductivity in silicon nanofilms and nanowires in [108], relying on the additivity
of the contributions of boundary and bulk scattering mechanisms.

When examining the thermal conductivity of thin infinite-length films within
the isotropic continuum model, H. J. Maris and S. Tamura have pointed out the fal-
lacy of this result [25]. It was shown that the Casimir length values significantly de-
pend not only on the film width but, moreover, diverge logarithmically as it tends
to infinity. Earlier, this data divergence for films exploring in the model of an isotro-
pic medium was mentioned in the article [32]. In fact, the finding of [25, 32] is eli-
cited from formula (4.6):

~ΛC μð Þ=ΛC μð Þ=D ffi A+B ln μ , μ � 1, A≈0.895 , B=0.75 , (4:8)

where ΛC μð Þ is the Casimir length for films with a thickness D and width μD. As was
underscored in [25, 32], the logarithmic divergence is due to phonons travelling al-
most parallel to the film plane. The papers [25, 32] leave aside the issue about the
influence of a finite length of the film on the logarithmic divergence of the Casimir
lengths, as well as other important challenges such as the influence of elastic an-
isotropy of cubic crystals on the phonon free path dependencies on geometric pa-
rameters of films and directions of heat flux. These problems are still relevant to
manufacture semiconductive films for microelectronics [1–3].

4.2.1 Casimir Lengths in Elastically Anisotropic Nanostructures

A numerical analysis of thermal conductivity using expressions (4.1)–(4.3) showed that
the Casimir lengths for monocrystalline films also diverge logarithmically when the
film width tends to infinity [27]. However, their values for phonons of different polar-
izations, in contrast to an isotropic medium, differ significantly (see Figure 4.1). In this
figure, curve 5 corresponds to the result of Maris and Tamura [25] for the model of an
isotropic medium.
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As can be seen in Figure 4.1a, the divergence of the mean free path values for both
isotropic and monocrystalline films can be eliminated through accounting for their fi-
nite length. For a fixed length of L = 100 D and a film thickness of D = 50 nm, the inter-
val of an intensive increase in the phonon mean free paths with increasing the film
width W = μD is limited by its length. For the values of W > 10L, the dependencies of
the mean free paths ~Λ Jf g

I ψð Þ½ � μð Þ reach saturation (see Figure 4.1). From Figure 4.1b it is
understood that, for monocrystalline films with the Jf g= 100f g orientation and
I½ �= 100½ � temperature gradient direction, made of type-I crystals and type-II crystals,
the Casimir lengths in the entire range of the μ parameters are greater and lesser, re-
spectively, than those calculated within the model of an isotropic medium.

For square-shaped cross-section nanowires, the Casimir lengths are chiefly con-
trolled by the phonon focusing effect and weakly depend on the orientation of the
side faces. Table 4.1 illustrates that they reach their maximum values in focusing
directions, exceeding the Casimir lengths of other vibrational modes, as well as the
value of ~ΛCiso ffi 1.115 for an isotropic medium. So, for example, for Ge: ~ΛL

C 111½ � = 1.48,
~Λt1
C 110½ � = 1.85, and ~Λt2

C 100½ � = 2.49. The Casimir lengths become minimal in defocusing
directions and turn out to be less than those for isotropic media. For example, for
Ge: ~ΛL

C 100½ � =0.81, ~Λt1
C 111½ � =0.7, and ~Λt2

C 110½ � =0.89.

10

(a) (b)

Figure 4.1: (a) The dependencies of the reduced phonon mean free paths ~Λf100g½100� ðμÞ= Λf100g½100� ðμÞ=D
(curves 1 and 1a), as well as mean free paths ~Λλf100g½100� ðμÞ of phonons of different polarizations on the
reduced width in germanium films [27]. Solid curves (1, 2, 3, 4, and 5) refer to the Casimir lengths in
nanostructure with parametersW = μD, D = 50 nm. Dashed curves (1a, 2a, 3a, 4a, and 5a) refer to the
mean free path of phonons in nanostructure with parameters L = 100 D, D = 50 nm. Curves 2 and 2a
are ~Λt1f100g½100� ðμÞ, curves 3 and 3a are ~Λt2f100g½100� ðμÞ, curves 4 and 4a are ~ΛLf100g½100� ðμÞ. Curves 5 and 5a refer to
the model of an isotropic medium; curve 5 is Maris’ and Tamura’s results [25] for the Casimir length.
(b) The dependencies of the Casimir lengths ~Λf100gC½100�ðμÞ on the reduced width in nanostructures with
parametersW = μD, D = 50 nm. Curves: 1 –MgO, 2 – Si, 3 – Ge, 4 – GaAs, 5 – GaN, 6 – diamond,
7 – YAG, 8 – YIG, 9 – NaCl, 10 – CaF2, 11 – SrF2, and 12 is for the model of an isotropic medium [25].
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Table 4.1: The reduced Casimir lengths ~Λλc ½IðψÞ� and ~Λc½IðψÞ� in square-shaped cross-section rods for
[I(ψ)] symmetrical directions [27].

Compound k- [I(ψ)] ~ΛLC½IðψÞ� ~Λt1C½IðψÞ� ~Λt2C½IðψÞ� ~Λc½IðψÞ� ~Λc½IðψÞ�[19]

GaN . [] . . . . –

[] . . . . –

[] . . . . –

GaAs . [] . . . . –

[] . . . . –

[] . . . . –

Ge . [] . . . . –

[] . . . . –

[] . . . . –

LiF . [] . . . . .

[] . . . . .

[] . . . . .

MgO . [] . . . . –

[] . . . . –

[] . . . . –

Si . [] . . . . .

[] . . . . .

[] . . . . .

Diamond . [] . . . . .

[] . . . . .

[] . . . . .

YAG . [] . . . . –

[] . . . . –

[] . . . . –

YIG –. [] . . . . –

[] . . . . –

[] . . . . –
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When going over to nanowires from type-II crystals, the directions of focusing
and defocusing of phonons and, accordingly, the minimum and maximum values of
the Casimir lengths change places. For example, for NaCl, the minimum values of
~ΛL
C 111½ � =0.86, ~Λt1

C 100½ � =0.81, and ~Λt2
C 100½ � =0.94 take place for those directions where

the maximum values are for Ge and vice versa (see Table 4.1). It should be noted
that, for type-I and type-II crystals, the t1 and t2 transverse modes are mutually per-
muted as well [44]. It is worth stressing that, for nanowires with significant anisot-
ropy of elastic energy (GaAs, Ge, LiF, and Si), the minimum and maximum values of
the Casimir lengths differ significantly from the value of ~ΛCiso. However, for YAG and
YIG crystals with weak anisotropy of elastic energy ( k− 1j j< 1), they are close to the
values of ~ΛCiso (see Table 4.1). Moreover, for each mode, depending on the direction,
they can have values both larger and smaller than that of ~ΛCiso. As can be seen from
Table 4.1, our results for the Casimir lengths in symmetrical directions are consistent
with those obtained in [19] within the error of 1%–4%. For isotropic media, the mean
free paths in the boundary scattering regime are completely determined by the geo-
metric parameters of nanostructures. Therefore, they can be used as a convenient
comparison system for the Casimir lengths in elastically anisotropic crystals with
changing the directions of heat flux or for collating the Casimir lengths in nanostruc-
tures fabricated from various materials (see Figures 4.1 and 4.2).

The conducted analysis showed that the Casimir lengths for monocrystalline
films are dictated not only by their geometric parameters but markedly depend on
the directions of heat flux and orientation of the film plane, that is to say,
~ΛC μð Þ ) ~Λ Jf g

C I½ � μð Þ. In the limiting case μ � 1, the Casimir lengths ~Λ Jf g
C I½ � μð Þ can be rep-

resented in the form (4.7). In doing so, the A and B coefficients turn into the depen-
dent ones on the orientation parameters I ψð Þ½ � and Jf g.

Table 4.1 (continued)

Compound k- [I(ψ)] ~ΛLC½IðψÞ� ~Λt1C½IðψÞ� ~Λt2C½IðψÞ� ~Λc½IðψÞ� ~Λc½IðψÞ�[19]

SrF –. [] . . . . –

[] . . . . –

[] . . . . –

CaF −. [] . . . . .

[] . . . . .

[] . . . . .

NaCl −. [] . . . . .

[] . . . . .

[] . . . . .
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4.2.2 Dependencies of Mean Free Paths of Phonons on Geometric Parameters in
Nanostructures with Different Type of Anisotropy of Elastic Energy

Let us examine the dependencies of thermal conductivity and mean free paths of
phonons in films made of type-I and type-II crystals on the geometric parameters for
various values of the k − 1 anisotropy coefficient and orientations {J} of the planes.
For this purpose, we set a certain direction of the temperature gradient and plot the
thermal conductivity dependencies on a reduced width of the film, μ=W D= and
L D= 100= k0 = 50ð Þ, for various orientations of the film planes {J}. Estimates showed
that for square-shaped cross-section nanowires μ= 1ð Þ, the average mean free paths
for the Jf g= 100f g and Jf g= 110f g orientations of the side faces differ from each
other less than 1.3%. Therefore, their dependencies on thermal conductivity are weak
and can be neglected. However, for sufficiently wide monocrystalline films, the pho-
non mean free path values are chiefly governed by the film orientations. For all the
materials, the mean free paths in monocrystalline films increase with increasing
their width. As seen in Figure 4.2a, for the fJg= f100g orientation and ½I�= ½100� tem-
perature gradient direction, the mean free paths in films made of the type-I and type-
II crystals are larger and lesser, respectively, than those for isotropic media. In this
case, we have the possibility of tracing how the phonon mean free paths change de-
pending on the values of the k− 1 anisotropy parameter.

It should be emphasized that the dependence of the phonon mean free paths on
the k − 1 anisotropy parameter is not monotonically increasing, except for small val-
ues of this parameter. So, for example, when transitioning from an isotropic medium
k− 1=0ð Þ to YAG crystals k − 1=0.03ð Þ and diamond k − 1=0.4ð Þ, the mean free path

10

Figure 4.2: The dependencies of the average mean free paths ~Λf100g½100� ðμÞ of films with a length of
L = 100 D, D = 50 nm on the μ parameter: (a) – for the {100} orientation of the film plane and the [100]
direction of the temperature gradient; (b) – for the {111} orientation of the film plane and the ½11�2�
direction of the temperature gradient Curves: 1 –MgO, 2 – Si, 3 – Ge, 4 – GaAs, 5 – GaN, 6 – diamond,
7 – YAG, 8 – YIG, 9 – NaCl, 10 – CaF2, and 11 – SrF2, 12 is for the model of an isotropic medium.
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values rise, as the film width remains unchanged (see Figure 4.2a). It would seem
that the mean free paths for films made of Si k − 1=0.67ð Þ and MgO k− 1=0.69ð Þ crys-
tals should further follow. However, in fact, the next line is occupied by the mean
free path values for films made of GaN crystals k − 1= 1.275ð Þ with a dramatically
larger anisotropy parameter. They are the maximum ones among the materials in
question. Beneath them, the mean free path values for Ge k − 1=0.87ð Þ and GaAs
k− 1=0.9ð Þ are stationed, whose anisotropy parameters are noticeably greater than
those for Si (Figure 4.2a). Thus, such a hierarchy of the mean free paths in the films
is caused by the influence of phonon focusing on the density of states and mean free
paths of quasi-transverse modes, with latter mainly contributing to the thermal con-
ductivity of the films and, accordingly, to the average mean free paths.

The lack of negative curvature regions in the isoenergetic surfaces for trans-
verse modes is inherent in crystals with small elastic energy anisotropy, diamond,
YAG crystals, YIG crystals, and isotropic media. Therefore, changes in the phonon
densities of states relatively are scarce and can be described using the enhancement
factor (see Section 1.6). For the rest of the type-I crystals with large values of the
k − 1 parameter, negative curvature regions form on the isoenergetic surfaces. In
this case, the sector of phonon focusing is assigned by the 2θ3 angles; it collects all
states with wave vectors inside the sector 2θ4 (see Section 1.5). The lesser the 2θ3
angle, the more the density of states makes itself felt in the phonon focusing region
(see Figure 1.18). The smallest values of the θ3 angles and the utmost changes in the
density of states are observed for Si and MgO with a relatively small value of the
k − 1 parameter (see Table 1.6). For these crystals, the values of the θ3 angles respon-
sible for the region of phonon focusing increase, and the magnitudes of the density
of states diminish as the k − 1 parameter grows. This results in decreasing the contri-
bution of the mode at hand to the thermal conductivity of the film, and, accord-
ingly, decreasing the mean free path values when going over from Ge k − 1=0.87ð Þ
to GaN k− 1= 1.275ð Þ crystals (see Figure 4.2a). For the type-II crystals, curves of the
dependencies of mean free paths on the film width are located beneath the curve that
refers to the model of an isotropic medium. For YIG-based films with k − 1= −0.48, the
dependencies of mean free paths are close to those for the model of an isotropic me-
dium and NaCl-based films k − 1= −0.48ð Þ. For films made of CaF2 crystals and SrF2,
curves 10 and 11 are almost indistinguishable and situated noticeably beneath the
curve for the model of an isotropic medium.

From Figure 4.2b, it becomes clear that, for the Jf g= 111f g orientation of the
film plane and I½ �= 11�2½ � temperature gradient direction, the scenario concerning
the mean free paths in type-I and type-II crystals is profoundly different compared
to the case of the {100} orientation of the film plane. For type-II and type-I crystals,
they appear to be larger and lesser, respectively, than those in isotropic media. The
mean free path values reach their maximum for films made of CaF2 with the {111}
orientation and 11�2½ � heat flux direction and become minimum for films fabricated
from GaN with the maximum anisotropy parameter among the type-I crystals at
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hand. Moreover, the given case demonstrates the curve sequence reverse to their
values of the k − 1 anisotropy parameter. The uppermost curve 7 adjacent to the de-
pendence for the model of an isotropic medium pertains to YAG-films; the lower-
most curve 5 refers to GaN films.

Let us look into the dependencies of phonon mean free paths in films with the
{100} and {111} orientations on the reduced length k0 = L 2D= and compare them for
nanowires μ= 1ð Þ and sufficiently wide films μ= 100ð Þ. As seen in Figure 4.3a, with
increasing the nanostructures’ length, the magnitudes of the thermal conductivity
and phonon mean free paths in films with the {100} orientation and [100] heat flux
direction rise faster the larger the value of the μparameter is (see Figure 4.3). For
the film lengths exceeding their width by two orders of magnitude, the dependen-
cies of the phonon mean free paths attain saturation. It should be underscored that,
for YAG and YIG crystals with weak elastic energy anisotropy k− 1j j � 1ð Þ, the de-
pendencies of the mean free paths ~Λ Jf g

I½ � k0, μð Þ on k0 differ a little from each other
and the model of an isotropic medium (see Figure 4.3).

It is worth drawing attention to the fact that, as for the {100} and {111] orientations of
the films and nanowires, the k0- dependencies of ~Λ

Jf g
I½ � k0, μð Þ are qualitatively different

from each other. For both nanofilms and nanowires with the {100} orientation plane
and [100] temperature gradient direction, the mean free path values for type-I crystals
(GaN, GaAs, Ge, MgO, diamond, YAG) and type-II crystals (NaCl, CaF2, SrF2, YIG) turn
out to be larger and lesser, respectively, than those for isotropic media (see Figure 4.3).

10

Figure 4.3: The dependencies of the reduced mean free paths on the parameter k0= L/2 D for
nanostructures with a thickness of D = 50 nm, based on crystals MgO – (1,1a), Si – (2,2a),
Ge – (3,3a), GaAs – (4,4a), GaN – (5,5a), diamond – (6,6a), YAG – (7,7a), YIG – (8,8a), NaCl – (9,9a),
CaF2 – (10,10a), SrF2 – (11,11a), an isotropic medium – (12,12a). Curves 1–12 refer to nanowires
(μ = 1), curves 1a−12a refer to nanofilms (μ = 100) for cases: (a) the {100} orientation of the film
plane and the temperature gradient is pointing along the [100] direction; (b) the {111} orientation of
the film plane and the temperature gradient is pointing along the ½11�2� direction.
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Moreover, the sequence of curves (the dependencies of the mean free paths on the re-
duced film length) depicted in Figure 4.3a coincides with the sequence of curves (the
dependencies of the mean free paths on the reduced film width) in Figure 4.2a. Among
the materials in question, both dependencies demonstrate the maximum values of the
mean free paths for films made of type-I Si and MgO crystals, whereas the minimum
values refer to films made of type-II CaF2 crystals.

Figure 4.3b clarifies that, for the films with the Jf g= 111f g plane orientations
and 11�2½ � temperature gradient direction, the sequence of the mean free paths be-
comes considerably reverse relative to the films with the {100} orientations: for
type-II and type-I crystals, they are larger and lesser, respectively, than those for
isotropic media. Analogously to the above dependencies of mean free paths on the
film width (see Figure 4.2b), the maximum values of the mean free paths on the
reduced length for the films with the {111} and 11�2½ � heat flux direction are character-
istic of type-I CaF2 crystals, whereas GaN films exhibit the minimum values. The se-
quence of curves pictured in Figures 4.3b on the reduced film length coincides with
the sequence of curves pictured in Figure 4.2b for the dependencies of mean free
paths on the reduced film width.

4.2.3 Dependencies of Thermal Conductivity Anisotropy on the Lengths
of monocrystalline Films

Let us analyse the change in anisotropy of phonon transport in the film plane, depend-
ing on its length for various compounds. For this, we set the film width as W = 100 D
(μ = 100, D = 50 nm) and plot the dependencies of the phonon mean free paths on the
reduced length k0 = L 2D= for the directions of heat flux to provide focusing and defo-
cusing of the acoustic modes. It was shown in Section 2.3 (see also [20]) that the mean
free paths in bulk materials reach their maximum and minimum values in the phonon
focusing and defocusing directions, respectively. Therefore, if the mean free paths cal-
culated for films with a specific ratio of geometric parameters coincide for these direc-
tions, their dependencies are expected to be isotropic in the film plane for this region
of parameters. If they differ, the mean free paths in the film plane will be accordingly
anisotropic. It should be stressed that in films made of type-I crystals and with the
{100} orientation, the slow transverse mode is focused and defocused in the [100] and
[110] directions; on the contrary, for films fabricated from type-II crystals, the fast trans-
verse mode is defocused and focused in these directions.

For the fast and slow transverse modes in films with the {111} plane orientation,
local maxima and minima of focusing are realized in the 11�2½ � and [110] directions.
Therefore, the dependencies of the mean free paths on the reduced length,
~Λλ Jf g

I ψð Þ½ � k0ð Þ=Λλ Jf g
I ψð Þ½ � k0ð Þ=D, normalized to the film thickness, should be computed for

these directions (see [70]). Figure 4.4 show that the mean free path dependencies
for different vibrational modes in films with the {100} and {111} orientations for all

4.2 The Influence of Geometric Parameters on Anisotropy of Phonon Mean Free Paths 137

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



materials are increasing functions of the sample length. With an increase in the
film length of L> 100W, they attain saturation. For short films with the {100} and
{111} orientations, the length of which is less than or equal to its width L≤Wð Þ, the
dependencies of the mean free paths in the directions of focusing and defocusing
of phonons for all acoustic modes differ insignificantly. In any case, when
k0 = 50 L=Wð Þ, these dependencies intersect, and it should be expected that the an-
gular dependencies of the thermal conductivity are isotropic for square-shaped
films with the {100} and {111} orientations. As to short films with L<W, their angu-
lar dependencies of the mean free paths and thermal conductivity are expected to
be almost isotropic.

However, an increase in the length of films with the {100} and {111} orienta-
tions when L>W k0 > 50ð Þ leads to the fact that the mean free paths in focusing
directions become noticeably larger than those in phonon defocusing directions.
In this case, the anisotropy of the mean free paths lengths increases, and when
L> 102W it reaches its maximum values (see Figure 4.4). So, for example, the

Figure 4.4: The dependencies of the reduced mean free paths ~Λf100g½I� ðk0Þ (curves 1 and 1a), as well as
the mean free paths ~Λλf100g½I� ðk0Þof phonons of different polarizations in the Si (a, c) and CaF2 (b, d)
films with the {100} (a, b) and {111} (c, d) orientation of the film plane on the reduced length k0 [30].
Curves (2, 2a) refer to a fast transverse mode, curves (3, 3a) refer to the t2 mode, curves (4, 4a) are for
longitudinal phonons, and curve 5 are for the model of an isotropic medium.
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mean free paths of the slow transverse mode for Ge, Si films with the {100} orien-
tation, as well as of the fast transverse mode for CaF2 films turn out to be 1.65,
1.62, and 1.34 times larger in the focusing direction than those in the defocusing
direction, respectively. As to type-I crystals, the anisotropy of the mean free paths
of fast transverse modes in films with the {100} orientation when L> 100W is
small: it ranges about 2%–3% for Ge and GaAs crystals and rises to 9% for InSb
(see Table 4.3). An exception is MgO films: the mean free paths of the t1 mode in
the [100] directions are 1.33 times smaller than those in the [110] direction (see
Table 4.2). For the t1 mode travelling in CaF2 and NaCl films, the situation with anisot-
ropy of the mean free paths Λt1 100f g

I½ � is similar to one with MgO films: the mean free
paths in the [110] direction turn out to be 1.34 and 1.30 times longer than those in
the [100] direction (see Table 4.2). When going over to the films with the {111} plane,
the anisotropy of the full thermal conductivity drops, not exceeding 10%. This result
is caused by focusing and defocusing of the slow and fast transverse modes. The lat-
ter make a dominant contribution to the full thermal conductivity and average mean
free path. The fact of the matter is that the fast transverse mode is focused and defo-
cused in the [110] direction. In the 11�2½ � direction, it has a local maximum of focusing.
Therefore, due to the mutual compensation of these contributions, the resulting an-
isotropy of the full thermal conductivity is small. For GaAs-, InSb-, LiF-, diamond-,
CaF2-, and NaCl-based films, the dependencies of the phonon mean free paths on
geometric parameters are similar to those calculated for Si and CaF2 films (see
Table 4.2). When L≤W, these dependencies for each vibrational mode in the direc-
tions of focusing and defocusing of phonons almost coincide. When L> 100W, they
become anisotropic. The anisotropy parameters of the mean free paths for the studied
films are given in Table 4.2.

Table 4.2: Anisotropy of mean free paths in films with the parameters L= 100W ,W = 100D, and
D= 50nm.

ΛλfJg½I1 � =Λ
λfJg
½I2 � GaAs Ge InSb GaN LiF MgO Si diamond CaF NaCl

ΛLf100g½110� =ΛLf100g½100� . . . . . . . . . .

ΛLf111g½110� =ΛLf111g½11�2� . . . . . . . . . .

. . . . . . . . . .

Λt1f111g½110� =Λt1f111g½11�2� . . . . . . . . . .

Λt2f100g½100� =Λt2f100g½110� . . . . . . . . . .

Λt2f111g½11�2� =Λt2f111g½110� . . . . . . . . . .

Λf100g½100� =Λ
f100g
½110� . . . . . . . . . .

Λf111g½110� =Λ
f111g
½11�2� . . . . . . . . . .
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4.3 The Influence of Focusing on the Density of Phonon States
and Phonon Mean Free Paths in Nanowires with Different
Types of Elastic Energy Anisotropy

Let us consider phonon transport in monocrystalline nanowires at low tempera-
tures when the thermal resistance is due to diffuse phonon scattering at the bound-
aries. Since the anisotropy of the mean free paths and density of phonon states are
governed by focusing of phonons, we examine the correlation of these quantities
for transverse modes in nanowires with different types of anisotropy of elastic en-
ergy. For this, we calculate the angular dependencies of the phonon mean free
paths for cases when heat flux rotates in the YZ {J} = {100} plane of the cube face or
in the {J} = {110} diagonal plane. The next step is to compare the predicted angular
dependencies with the angular dependencies of the densities of phonon states for
transverse modes [71, 109]. As can be seen in Figure 4.5, the angular dependencies of
the mean free paths and densities of phonon states for fast and slow transverse
modes in the {100} and {110} planes correlate well with each other: the regions of
maximum and minimum values of both quantities for all crystals are determined by
phonon focusing and defocusing sectors, respectively (see Section 1.5). Moreover,
their maximum values are limited by the ± θλ Jf g

3 angles relative to the focusing di-
rection. These angles are responsible for the directions of group velocities at zero
curvature points in the isoenergetic surface. For thermal conductivity anisotropy
and phonon mean free paths of Ge-, Si-, GaSb-, LiF-, GaAs-, and GaN-based (type-I
crystals) nanowires, we have obtained close results. The phonon mean free paths
take the maximum and minimum values in the phonon focusing and defocusing
sectors, respectively. Moreover, their values for each vibrational mode in the focus-
ing regions exceed those both of other vibrational modes and of deduced within the
model of an isotropic medium (see dotted curves 5 in Figure 4.5). At the same time,
in the defocusing sectors, their values turn out to be less than those for the model
of an isotropic medium. In all nanowires made of crystals of the first type, the maxi-
mum values of the thermal conductivity are achieved in or close to the [100] direc-
tions and provided by a slow transverse mode. So, for example, for wave vectors in
the cube face plane, the slow transverse mode is focused in the [100] directions,
and its mean free path for Ge and GaAs is 3.0 and 2.8 times longer than that for
longitudinal phonons and 2.2 and 2.0 times larger than that in the model of an iso-
tropic medium. For nanostructures with large anisotropy parameter values (GaN,
Ge, GaSb, LiF, and GaAs), the mean free paths, as well as the density of phonon
states (DPS) of the quasi-transverse mode t2, reach their maxima at the angles
ψ= nπ 2± θ= . The latter regulate the directions of group velocities at zero curvature
points. In the [100] focusing directions, the mean free paths have a local minimum.
This minimum is most clearly manifested for GaN nanowires with a maximum
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value of the k− 1 anisotropy parameter: the mean free path of the t2 mode at the
minimum is 11% shorter than at the ± θ3 angles (see Figure 4.5). Against the afore-
mentioned crystals, in diamond-based nanowires with a smaller value of the anisot-
ropy parameter, the mean free paths for the slow mode reach a sharp maximum
exactly in the [100] directions (see Figure 4.5). For diamond, the mean free path
turns out to be 1.8 times longer than that for an isotropic medium and 1.7 and 2.2
times longer than that for the fast transverse mode and longitudinal phonons, re-
spectively. Thus, for all crystals having regions of negative curvature in the isoener-
getic surfaces, the angular dependencies of the DPS and mean free paths in
nanowires for fast and slow transverse modes in the {100} and {110} planes correlate
with each other: their maximum and minimum values are observed in ones and the
same angle intervals. These angle ranges are assigned by the directions of group
velocities at zero curvature points (see Figure 4.5).

The maximum anisotropy of the lattice thermal conductivity (71%) takes place
for Si, and the minimum one (31%) is for diamond nanowires (see Table 4.3). For
nanowires made of Ge, GaAs, GaS, LiF crystals, the maximum thermal conductivity
is 60% higher than the minimum one in the [111] directions. However, for the most
anisotropic material such as GaN, the anisotropy of thermal conductivity is notice-
ably less; it is 47%. The thermal conductivity maxima for all the materials are fur-
nished by the slow quasi-transverse mode. Although the maximum and minimum
values of the k − 1 anisotropy parameter (among crystals with a region of negative
curvature on the isoenergetic surface) are attributed to GaN and Si crystals, respec-
tively, the maximum anisotropy of thermal conductivity, however, is observed for
Si crystals. In Si, the isoenergetic surface for the t2 mode has a minimum concavity
and, accordingly, minimum values of the θt2 100f g

3 angle (see Table 1.5). Therefore, the
t2 mode has the largest values of the ratios of the density of phonon states for the
regions of phonon focusing and defocusing in the {100} plane, among the above-
specified type-I crystals (see Table 1.5).

It should be stressed that the predominant contribution to the thermal con-
ductivity of the nanostructures considered is provided by quasi-transverse modes
(see Table 4.4).

For nanowires made of type-I crystals, the contribution of the quasi-transverse
modes in the [100] heat flux direction amounts to 93%–94% of the full thermal con-
ductivity, except for diamond nanowires – it diminishes to 88%. In this case, the
contribution of the t2 mode to the thermal conductivity of nanowires fabricated
from type-I crystals with a region of negative curvature on the isoenergetic surface
in the [100] focusing direction is 68% for Si and decreases to 64% in GaN. For nano-
wires made of diamond, this contribution goes down to 58% (see Table 4.4). As can
be noticed from Table 4.4, the t1 mode makes the dominant contribution to the ther-
mal conductivity in the [110] directions, whereas the t2 mode makes the dominant
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contribution to the thermal conductivity in the [001] directions. The contribution of
this mode in the [111] directions exceeds 50%. The contribution of longitudinal pho-
nons is small: for nanowires made of anisotropic crystals in the [100] direction of
defocusing is 6%–7%, and in the [111] direction of focusing, it increases by 3 times
and makes up 19%–20%. For diamond, it increases to 21%.

For nanowires made of type-II crystals, the ratios of mean free paths in symmet-
rical directions are given in Table 4.5. The thermal conductivity values reach their
maximum in the [111] directions due to the slow quasi-transverse mode. The mini-
mum values are ensured in the [100] direction. As can be seen in Figure 4.5d, the
dependencies of the DPS and the mean free paths of the slow mode correlate well
with each other.

The maximum anisotropy of the lattice thermal conductivity of nanowires amounts to
49% for CaF2, and the minimum is 39% for PbS (see Table 4.5). The fast transverse
mode focusing itself in the [110] directions plays a smaller role in the thermal conduc-
tivity of nanostructures made of type-II crystals. The maximum values of the DPS and
mean free paths in the angle intervals ½nπ=4− θt1 100f g

3 , nπ=4+ θt1 100f g
3 � owe to this mode

(see Figure 4.5). Its mean free path in nanowires made of CaF2 and SrF2 crystals is 1.8
and 1.9 times longer than that for longitudinal phonons and 1.7 and 1.8 times longer
than that computed within the model of an isotropic medium.

For type-II crystals, the slow transverse mode makes the dominant contribution
to thermal conductivity. In the [111] focusing direction, its contribution exceeds
60% for nanowires extracted from CaF2 and SrF2 crystals, and it decreases to 59%
for PbS (see Table 4.6). In the [110] direction, the fast transverse mode makes the
dominant contribution to the thermal conductivity.

Its contribution comes up to 58% for nanowires fabricated from SrF2 crystals
and decreases to 49% for PbS nanowires (see Table 4.6). In nanowires made of
type-II crystals, longitudinal phonons are focused and defocused in the [100] and
[111] directions, respectively. Their contribution to thermal conductivity in the [100]
directions varies from 17% to 24%, and it declines to 8%–9% in the [111] directions

Table 4.5: Ratios of mean free paths in symmetrical directions for nanowires made of type-
II square-shaped cross-section crystals with a length of L = 100 D and D = 50 nm [71].

Ratios of mean free paths SrF CaF PbS

Λf110g½111� :Λ
f110g
½110� :Λ

f110g
½100� .:.: .:.: .:.:

Λt2f110g½111� :Λt2f110g½100� :Λt2f110g½110� .:.: .:.: .:.:

Λt1f110g½110� :Λt1f110g½111� :Λt1f110g½100� .:.: .:.: .:.:

ΛLf110g½100� :ΛLf110g½110� :ΛLf110g½111� .:.: .:.: .:.:
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(see Table 4.6). Thus, a correlation has been established between the angular de-
pendencies of the densities of phonon states (DPS) and the mean free paths of
quasi-transverse modes. It has been shown that for all the nanowires, the regions of
maxima of the mean free paths and DPS for fast and slow transverse modes in the
{100} and {110} planes coincide and caused by the phonon focusing.

4.4 Change in Thermal Conductivity Anisotropy When
Transitioning from Nanowires to Square-Shaped Films with
Different Plane Orientation

The present section deals with the angular dependencies of thermal conductivity
k Jf g
I ψð Þ½ � Tð Þ and average mean free paths ~Λ Jf g

I ψð Þ½ � μð Þ of phonons in nanostructure as the
temperature gradient rotates along the planes with different orientations. With a
temperature fixed, the angular dependencies of the thermal conductivity and mean
free paths of phonons differ only in a constant multiplier (see Section 4.1).
Therefore, we first compare the changes in anisotropy of the average phonon mean
free paths for square-shaped cross-section nanowires and sufficiently wide films.
The subsequent step is to analyse the changes in anisotropy of the mean free paths
for various orientations of the film planes and directions of heat flux and to match
with the outcomes derived within the model of an isotropic medium. We also spec-
ify the orientations of the planes of monocrystalline films and heat flux directions,
which provide the maximum and minimum values of the phonon mean free paths
and, accordingly, the thermal conductivities.

Figures 4.6–4.8 indicate that the angular dependencies of the phonon mean
free paths in monocrystalline nanostructures as the heat flux rotates along the
{100}, {110}, and {111} planes differ dramatically both from each other and from
those predicted by the model of an isotropic medium. For crystals of the same type,
the angular dependencies of the mean free paths for all directions of the heat flux
and the above orientations are qualitatively similar, distinguishing themselves only

Table 4.6: Contributions of vibrational modes to thermal conductivity of SrF2, CaF2, and PbS
square-shaped cross-section rods with a length of L/D = 100 in symmetrical directions, (%).

Temperature SrF CaF PbS
gradient direction

L t t L t t L t t

[]         

[]         

[]         
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by a higher or lesser degree of anisotropy. Therefore, it would be reasonable to plot
the angular dependencies only for two type-I crystals (Ge and diamond) and a type-
II crystal (CaF2) (see Figures 4.6–4.8) [27].

Let us discuss anisotropy of phonon transport in nanowires when rotating the
heat flux along the {100}, {110}, and {111} planes and compare with the results ob-
tained for films. As already noted in the previous section, for type-I crystals (LiF,
GaAs, Ge, Si, diamond, and YAG), the values of the nanowires’ thermal conductivity
reach their maximum in the [001] directions owing to a slow transverse mode t2

Figure 4.6: The angular dependencies of mean free paths normalized to the film thickness of
D = 50 nm for nanostructures with a length of L = 100 D, based on Ge crystals for cases where the
temperature gradient rotates along the film plane: (a) – {100}, (b) – {110}, and (c) – {111}. The
curves (1.1a), (2.2a), and (3.3a) are plotted for the parameter values μ = 1, 10, and 100,
respectively. The curves (1,2,3) illustrate the anisotropic continuum model, the dashed curves
(1a,2a,3a) are for the model of an isotropic medium (see [27]).
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(see Figures 4.5 and 4.6). In the [110] and [111] directions, the angular dependencies
of the thermal conductivity and average mean free paths have local maxima caused
by focusing of fast transverse and longitudinal modes, respectively (see Figure 4.6b).

As the heat flux rotates along the {100} plane, the phonon mean free paths
~Λ 100f g

I ψð Þ½ � 1ð Þ in nanowires made of type-I crystals for all directions are longer than
~Λiso 1ð Þ for the model of an isotropic medium. However, in the {110} plane, the mean
free paths ~Λ 100f g

I ψð Þ½ � 1ð Þ exceed the values of ~Λiso 1ð Þ only in the directions close to [100]
and [110]. When the heat flux rotates in the {111} plane, the phonon mean free paths
~Λ 111f g

I ψð Þ½ � 1ð Þ in a wide interval of the angles ψ turn out to be less than in an isotropic
medium (see Figures 4.6c and 4.7c). Only in the directions close to [110], these val-
ues become larger than those for isotropic media.

Figure 4.7: The same as in Figure 4.6 but for diamond nanostructures [27].
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In contrast to the above, for nanowires made of type-II crystals (CaF2, NaCl, and
YIG), the maximum thermal conductivity values are attained in the [111] direction and
provided by a slow transverse mode that is focused in this direction (see Figures 4.5
and 4.6). In the [110] and [100] directions, the angular dependencies and mean free
paths ~Λ Jf g

I ψð Þ½ � 1ð Þ have local maxima produced by focusing of fast transverse and longitu-
dinal modes, respectively. With the heat flux rotating along the {100} plane, the pho-
non mean free paths ~Λ 100f g

I ψð Þ½ � 1ð Þ for nanowires made of type-II crystals are less than
~Λiso 1ð Þ for isotropic media, except the directions close to [110] (see Figure 4.6). The {111}
plane contributes to an increase in the mean free paths ~Λ 111f g

I ψð Þ½ � 1ð Þ inside a wide-angle
range compared to those in isotropic media, except the directions close to [110].

As is seen in Figures 4.6–4.8, rising the film width causes an increase in the
mean free paths and qualitatively changing in their angular dependencies,

Figure 4.8: The same as in Figure 4.6 but for CaF2-based nanostructures [27].
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~Λ Jf g
I ψð Þ½ � μð Þ, compared with nanowires. For both types of crystals, they become al-

most isotropic in the {100} and {111} planes when μ= 10, although small anisot-
ropy takes place (see Figures 4.6a, 4.6c, 4.7a, 4.8c). Moreover, for films oriented
along the {100} plane, made of type-I crystals, the mean free paths ~Λ 100f g

I ψð Þ½ � 100ð Þ
are larger than those for isotropic media. However, for the {111} orientation, the
situation alters: for all directions, the mean free paths ~Λ 100f g

I ψð Þ½ � 100ð Þ are less than
those for isotropic media. For films made of type-II crystals, the angular depen-
dencies of the mean free paths ~Λ Jf g

I ψð Þ½ � μð Þ are qualitatively different. For them, the
reverse inequalities hold: for the {100} orientation when μ= 100, the mean free
paths ~Λ 100f g

I ψð Þ½ � 100ð Þ in the entire ψ-angle range are less and their magnitudes for
the {111} orientation ~Λ 100f g

I ψð Þ½ � 100ð Þ are larger compared with isotropic media. For
sufficient wide films oriented along the {110} plane, the angular dependencies
~Λ Jf g

I ψð Þ½ � μð Þ take an ellipsoidal shape. For type-I crystals, the long axis of the ellip-
soid lies along the [100] direction. For type-II crystals, it is observed along the
[100] direction (see Figures 4.6b–4.8b). For LiF, GaAs, Ge, Si, diamond, and YAG
type-I crystals when μ= 100, the ratios of the mean free paths, ~Λ 110f g

100½ � μð Þ=~Λ 110f g
110½ � μð Þ,

in films with the {110} plane are 1.45, 1.39, 1.42, 1.50, 1.44, and 1.03, respectively.
Their mean free paths in the {110} plane turn out to be less than those in the

{100} plane at all ψ angles. However, in the directions close to [100], diamond films
demonstrate larger values of the mean free paths ~Λ 100f g

I ψð Þ½ � 100ð Þ than ~Λ 100f g
I ψð Þ½ � 100ð Þ while

the situation is reversed for the direction close to [110]. Moreover, as to diamond
films with the {J} = {100} orientation, the mean free paths ~Λ 100f g

I ψð Þ½ � 100ð Þ are larger
than those for isotropic media at all angles ψ (see Figure 4.7b). By contrast to this,
the inequality ~Λ 100f g

I ψð Þ½ � 100ð Þ> ~Λiso 100ð Þ holds for LiF, GaAs, Ge, and Si crystals in the
angle range of − π=3ð Þ<ψ< π=3ð Þ, whereas the inequality ~Λ 110f g

I ψð Þ½ � 100ð Þ< ~Λiso 100ð Þ is
fulfilled beyond the above interval. It should be underscored that the thermal con-
ductivity values for LiF, GaAs, Ge, Si, and YAG (crystals of the first type) reach their
maximum when the film is oriented along the {100} plane and μ= 100. The minima
values can be found along the {111} orientation (see Figure 4.6b). As to films made
of CaF2, NaCl, and YIG (crystals of the second type), the mean free paths have mini-
mum values along the {100} plane. The maximum values of the thermal conductiv-
ity can be revealed when the film is set along the {110} plane and [110] heat flux
direction, and when μ= 100. In the process, the ratios of the mean free paths,
~Λ 110f g

100½ � 100ð Þ=~Λ 110f g
110½ � 100ð Þ, amount to 0.69, 0.77, and 0.94, respectively.

So, we have shown: firstly, not only the spectrum and polarization vectors [44],
but also anisotropy of mean free paths of phonons in nanostructures made of crys-
tals with positive (k − 1>0) and negative (k − 1<0) anisotropy of second-order elas-
tic moduli are qualitatively different. Secondly, the angular dependencies of the
thermal conductivity and phonon mean free path for crystals of both types change
qualitatively upon transition from nanowires to sufficiently wide films. Thirdly, the
maximum values of the thermal conductivity of LiF-, GaAs-, Ge-, Si-, and YAG-
based films with parameters L = W = 100 D and D = 50 nm are realized in the {100}

150 Chapter 4 Thermal Conductivity of monocrystalline Nanostructures

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



orientation and the minimum ones are implemented in the {111} orientation. The
thermal conductivity of diamond films when μ = 100 reaches its maximum along
the {110} plane and in the [100] direction, and the minimum values can be observed
along the {111} plane. The maximum values of thermal conductivity in films with
parameters L = W = 100 D and D = 50 nm, made of type-II CaF2, NaCl, and YIG crys-
tals when μ = 100, can be recorded for the {110} plane orientation and the [110] heat
flux direction, while the minimum values are fixed for the {100} plane orientation.

4.5 Conclusion

The influence of various types of elastic energy anisotropy on phonon transport in
monocrystalline nanostructures has been considered. The dependencies of the lattice
thermal conductivity on the nanostructures’ geometric parameters at low tempera-
tures, when diffuse phonon scattering at the boundaries dominates, are analysed.
The main results on the influence of phonon focusing on phonon transport in mono-
crystalline films made of type-I (GaN, GaAs, Ge, MgO, Si, diamond, and YAG) and
type-II (NaCl, CaF2, SrF2, and YIG) crystals can be formulated as follows:
1. For isotropic media, the mean free paths of phonons of different polarizations are

the same and equal to the average mean free path. They do not depend on elastic
moduli but are completely determined by geometric parameters. Therefore, they
are a convenient comparison system for elastically anisotropic nanostructures.

2. In elastically anisotropic nanostructures, the mean free paths of phonons of dif-
ferent polarizations are different and depend substantially not only on their geo-
metric parameters but also on the directions of heat flux and the orientation of
the side faces of the nanostructures. For square-shaped cross-section nanowires,
the values of thermal conductivity and phonon mean free paths are mainly deter-
mined by the heat flux direction, and their dependence on the orientation of the
side faces is weak. However, for sufficiently wide films, the thermal conductivity
magnitudes are largely controlled by the film plane orientation.

3. Accounting for finite length of the films eliminates the logarithmic divergence
of the Casimir lengths when the film width tends to infinity in both isotropic
media and elastically anisotropic materials. The length of the films limits the
interval of an intensive increase in phonon mean free paths with rising film
width. When the width of the films is 10 times greater than their length, the
dependencies of the phonon mean free paths come to saturation.

4. For both nanofilms and nanowires made of type-I and type-II crystals, the an-
isotropy of the thermal conductivity and mean free paths of phonons differs
qualitatively. For crystals of the same type, the angular dependencies of the
mean free paths for all directions of heat flux and orientations of the film
planes are qualitatively similar, distinguishing themselves only by a greater or
lesser degree of anisotropy.
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5. A correlation has been established between the angular dependencies of the
densities of phonon states and the mean free paths of quasi-transverse modes.
It has been shown that, for all nanowires, the maximum regions of DPS and
mean free paths for fast and slow transverse modes in the {100} and {110}
planes coincide and are due to phonon focusing.

6. The analysis of the dependencies of the mean free paths of phonons in films
with the {100} orientation and [I] = [100] temperature gradient direction on the
geometric parameters has shown that their values for films fabricated from
type-I and type-II crystals turn out to be larger and smaller, respectively, than
those for isotropic media. In films with the {J} = {111} plane orientations and
11�2½ � temperature gradient direction, the sequence of the dependencies of the
mean free paths in materials with different types of elastic energy anisotropy
becomes inverse with respect to films with the {100} orientation. Their values in
films made of type-I and type-II are larger and smaller, respectively, than those
calculated for isotropic media.

7. The orientations of the planes of monocrystalline films and the directions of heat
flux, which provide the maximum or minimum heat removal from the elements of
semiconductor microcircuits, have been identified. For square-shaped films based
on type-I crystals (GaN, GaAs, MgO, LiF, GaAs, Ge, Si, and YAG), the thermal con-
ductivity values reach their maximum in the {100} plane orientation, while their
minimum is observed for the {111} orientations. For square-shaped films based on
type-II crystals (CaF2, NaCl, and YIG), the minimum thermal conductivity values
can be revealed for the {111} plane orientations, while the maximum values are typ-
ical of the {110} plane orientation and [110] heat flux direction.
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Chapter 5
Phonon Propagation and Phonon Transport in Films
with Different Types of Elastic Energy Anisotropy

The present section covers the influence of focusing on phonon propagation and
phonon transport in monocrystalline films with various types of anisotropy of elas-
tic energy. As a first step, we calculate the angular dependencies of thermal con-
ductivity and mean free paths (~ΛfJgλ

½IðψÞ�) of phonons of different polarizations upon
rotation of the temperature gradient in the plane of the films. For this, we address
square-shaped films (L=W) oriented in various planes. The subsequent step is to
analyse the physical reasons for changing in the anisotropy of the phonon mean
free paths for long films (L � W). After that, we compare the angular dependencies
of the mean free paths ~ΛfJgλ

½IðψÞ� in elastically anisotropic nanostructures with the re-
sults derived within the model of an isotropic medium. As noted earlier, in the iso-
tropic media, the mean free paths of phonons of different polarizations are equal
and completely controlled by geometric parameters. This is a convenient system to
match the mean free paths in elastically anisotropic nanostructures when varying
the film plane’s orientations or the directions of heat flux. The construction of this
chapter is based on the papers [70, 109, 117].

5.1 Thermal Conductivity Anisotropy of Square-Shaped
Films with Different Plane Orientation

Let us look into the features of phonon transport in square-shaped films with differ-
ent types of anisotropy of elastic energy. As an example, we may take GaAs and
CaF2 crystals. When comparing the angular dependencies of the mean free paths of
phonons in the films with different orientations of planes, the following features
attract attention (see Figure 5.1). Firstly, the thermal conductivity and average pho-
non mean free paths in square-shaped films (L=W) in films oriented along the
{100} and {111} planes are isotropic for crystals of both types. However, for type-I
and type-II crystalline films with the {110} orientation, the aforementioned depen-
dencies have an ellipsoidal shape, with the long axes of the ellipsoids pointing
along the [100] and [110] directions, respectively. Secondly, for all films with the
orientations { J} = {001} and fabricated from type-I and type-II crystals, the average
phonon mean free paths are longer and shorter, respectively, than those offered by
the model of an isotropic medium, (see Table 5.1). For example, for GaAs and CaF2
films with { J} = {100}, the average mean free paths turn out to be 1.95 times larger
and by 10% less, respectively, than those predicted by the model of an isotropic
medium. Thirdly, the opposite is true for films with the {111} plane’s orientations:

https://doi.org/10.1515/9783110670509-006
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Figure 5.1: Angular dependences of the reduced mean free paths of phonons, ~ΛλfJg½IðψÞ� = ΛλfJg½IðψÞ�=D and
~ΛfJg½IðψÞ� =ΛfJg½IðψÞ�=D, for square-shaped films with parameters L =W = 100 D and D = 50 nm and

orientations of {100} (a,d), {110} (b,e), and {111} (c,f), for GaAs (a,b,c) and CaF2 (d,e,f) crystals. Curves
1 – a fast transverse mode, 2 – a slow transverse mode, 3 – a longitudinal mode, 4 – the average
mean free path, 5 – the mean free paths calculated within the model of an isotropic medium.
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type-I and type-II crystals demonstrate shorter and longer average mean free paths,
respectively, than the model of an isotropic medium (see Table 5.1). For example,
for GaAs films with { J} = {111}, the average mean free paths turn out to be 12% less
than those for the model of an isotropic medium; for CaF2 films these values are
19% larger compared to the aforementioned model. For other materials, see
Table 5.1. Next, we disclose the physical causes that are responsible for the depen-
dencies of the thermal conductivity and phonon mean free paths on the film plane’s
orientations.

As noted already, the Casimir–McCurdy theory [13, 19] suggests that all pho-
nons are absorbed by the surface when collided with it and then re-emitted isotropi-
cally into half-space towards the sample.

Therefore, phonons of different polarizations are diffusely scattered at each point
of the surface regardless of the latter’s orientation. Consequently, it would seem that
the thermal conductivity should be independent on the orientation of the planes.
However, we will show that these dependencies are caused by the influence of elastic
anisotropy on the propagation of acoustic modes throughout the films having differ-
ent orientation.

To understand how focusing affects the phonon propagation in films, it is man-
datory to analyse the distribution of the phonon mean free paths both over the an-
gles Φðθ,φÞ in the films with various orientation planes and over the angles Θ θ, φð Þ
of the transverse cross-sections, along which heat flux moves. For this purpose,
we define a coordinate system related to the film as follows. The axis Z is set per-
pendicular to the film plane. Then, the Φ and Θ angles assign the distribution of
the heat flux along the film plane and in the transverse cross-section of the film,

Table 5.1: Ratios of mean free paths in symmetrical directions for square-shaped films with the
parameters L = W = 100 D and D = 50 nm.

Compound Λt1f100g½IðψÞ� :Λt2f100g½IðψÞ� :ΛLf100g½IðψÞ� :Λiso Λt1f111g½IðψÞ� :Λt2f111g½IðψÞ� :ΛLf111g½IðψÞ� :Λiso Λf100g½100� :Λ
f110g
½100� :Λ

f110g
½110� :Λ

f111g
½111� :Λiso

GaAs .:.:.: .:.:.: .:.:.:.:

Ge .:.:.: .: .:.: .:.:.:.:

InSb .:.:.: .:.:.: .:.:.:.:

LiF .:.:.: .:.:.: .:.:.:.:

MgO .:.:.: .:.:.: .:.:.:.:

Si .:.:.: .:.:.: .:.:.:.:

diamond .:.:.: .:.:.: .:.:.:.:

CaF .:.:.: .:.:.: .:.:.:.:

NaCl .:.:.: .:.:.: .:.:.:.:
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respectively. For films with { J} = {100}, we have Φ=φ and Θ= θ. In the new coordi-
nate system, the distribution of the phonon mean free paths over the angles Φ and
Θ can be represented as [70]:

ΛλfJg
½I� ðΘÞ= 1

2π

ð2π
0

dΦΛλfJg
½IðψÞ�ðΘ, ΦÞ, ΛλfJg

½I� ðΦÞ= 1
2

ð1
− 1

d cosΘð ÞΛλfJg
½IðψÞ�ðΘ, ΦÞ. (5:1)

Let us find the relevant interval of angles, which mainly contributes to averaging
the mean free paths over the Φ angles in the planes of films with different orienta-
tions. For this, we perform the averaging over the transverse cross-section of the
film in formula (5.1) and construct the dependencies of the mean free paths

Λλ Jf g
½IðψÞ�ðΦÞ on the Φ angle. The analysis shows that, for square-shaped films with

the {100} and {111} planes, this interval of angles is about equal to ΔΦ ffi π=2 but
exceeds this value for some modes.

For films with the {100} plane orientation, the slow quasi-transverse modes t2
are focused and defocused in the [100] and [110] directions. Longitudinal phonons
are defocused in the [100] direction, having a local maximum of focusing in the
[110] direction. The angle between these directions amounts to Δφ=π=4. For films
oriented along the {111} plane, the angle between the [110] focusing and ½11�2� defo-
cusing directions for the t2 mode is equal to Δφ= π=6. From this, it follows that with
an arbitrary direction of the heat flux, the averaging simultaneously captures the
phonon focusing and defocusing directions when it comes to films with the {100}
and {111} orientations and made of crystals of both types. It is not surprising there-
fore that the mean free paths become isotropic after the averaging over the Φ an-
gles (see Figure 5.1). In this case, for type-I crystalline films, the ratios of the
phonon mean free paths vary from 1.3 for diamond to 2.5 for Si. For type-II crystal-
line films, these ratios are less than unity (see Table 5.2). Thus, the anisotropy of
thermal conductivity and phonon mean free paths in square-shaped films with
the {100} and {111} planes in the boundary scattering regime is chiefly determined
by the film plane’s orientation.

Let us elucidate the physical reasons for emerging an ellipsoidal shape of the
dependencies of mean free paths (thermal conductivity) in square-shaped films
with the { J} = {110} plane orientation. As is clear from Figure 5.1, these dependen-
cies are due to the slow transverse mode t2 and fast transverse mode t1 for type-I
and type-II crystals, respectively. In these films, the previously mentioned modes
are focused and defocused in the [100] and [110] directions, the angle between
which is ΔΦ= 90�. It turns out to be too large to fully blur the focusing effect when
averaging over the Φ angle. For an arbitrary direction of the temperature gradient,
the averaging over angles in the {110} film plane cannot simultaneously cover both
directions. Consequently, the angular dependencies of the phonon mean free paths
remain anisotropic. Therefore, the anisotropy of the contributions of the phonon
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modes to the thermal conductivity is not averaged, and the latter in the { J} = {110}
plane is described by ellipsoid (see Figure 5.1). In type-I crystals, the long axis of
the ellipsoid is pointing along the [100] direction, in which the mode t2 focuses. In
this direction, its mean free path Λiso in GaAs crystals exceeds Λiso more than 1.8
times (see Table 5.1). The short ellipsoid axis corresponds to the [110] defocusing
direction, in which the mean free path turns out to be 17% less than Λiso. For longitu-
dinal phonons, we have the reversed situation: the focusing and defocusing direc-
tions swap around compared to the slow transverse mode, t2. The angle between
these directions is equal to ΔΦ= 90�. The angular dependence of the mean free
paths also has an ellipsoidal shape, but the long and short axes of the ellipsoid coin-
cide with the [110] and [100] directions, respectively. The mean free paths of longitu-
dinal phonons in Ge and Si films in the [110] direction turn out to be 1.5 and 1.4 times
longer and 13% and 12% less in the [100] direction, respectively than those within the
model of an isotropic medium (see Table 5.2). However, the heat capacity of the lon-
gitudinal phonons is small in comparison with the transverse phonons. Therefore,
the contribution of the former is insufficient to drastically change the shape of full
thermal conductivity of the materials at hand (see Figure 5.1). Thus, in films with the
{110} orientation and made of crystals of the first type, the maximum and minimum
values of the thermal conductivity are reached in the [001] and [110] directions, re-
spectively. Figure 5.1 shows that, in films fabricated from crystals of the second type,
the ellipsoidal shape of the thermal conductivity dependence is due to the fast trans-
verse mode t1. The latter is focused and defocused in the directions [110] and [001],
respectively. Therefore, the long axis of the ellipsoid lies along [110], and the short
axis resides in the [100] defocusing direction. In type-II crystal-based films, the mean
free paths of longitudinal phonons have maximum and minimum values in the [001]
and [110] directions, respectively.

For CaF2 films, their ratio is 1.7. However, their heat capacity values are small
as compared with those of transverse phonons (see Table 5.3). Therefore, the con-
tribution of the longitudinal phonons is insufficient to change the form of full
thermal conductivity of the materials under consideration (see Figure 5.1). In this
regard, in films with the { J} = {110} orientation and made of type-I crystals, the
maximum and minimum values of the thermal conductivity are observed in the
[110] and [100] directions, respectively. For CaF2 films, their ratio is equal to 1.46
(see Table 5.2). Thus, the main contribution to the thermal conductivity of films
with the {100} orientations and made of type-I crystals such as GaAs, InSb, and
GaN is made by the slow transverse mode, while the fast transverse mode domi-
nantly contributes to the thermal conductivity of Ge, LiF, MgO, Si, and diamond
crystals. The fast transverse mode also makes the main contribution to the ther-
mal conductivity of films with the {111} plane and made of crystals of both types
(see Table 5.3).
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Table 5.3: Contributions of vibrational modes to thermal conductivity of square-
shaped films with the parameters L = W = 100 D and D = 50 nm, based on crystals
of the first and second groups for different directions of heat flux (%).

{ J}
[I]

{} {}
[]

{}
[]

{}

GaAs L    

t    

t    

Ge L    

t    

t    

InSb L    

t    

t    

GaN L    

t    

t    

LiF L    

t    

t    

MgO L    

t    

t    

Si L    

t    

t    

diamond L    

t    

t    

CaF L    

t    

t    
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5.2 Peculiarities of Thermal Conductivity of Long Films
with Different Types of Elastic Energy Anisotropy

The analysis performed using formula (5.1) shows that the intervals of angles bring-
ing the main contribution when averaging the mean free paths are strongly nar-
rowed as the length of films oriented in the {100} and {111} planes increases.
Therefore, for long films ðL � WÞ, averaging over the Φ angles in the planes of
these films is already insufficient to fully blur the effect of phonon focusing. As a
result, the mean free paths in films with the {100} and {111} planes and made of
crystals of both types, become anisotropic (see Figure 5.2). As Figure 5.2 indicates,
the main contribution to the anisotropy of thermal conductivity and average pho-
non mean free paths in films produced from type-I crystals is made by the slow
transverse mode, which is focused in the [100] directions.

However, in these directions, the mean free paths Λt2f100g
½100� for films with suffi-

ciently large anisotropy parameters (GaN, GaAs, LiF, and Ge) have local minima,
For example, for GaAs films, their values are 18% smaller than those at angles

ψ = nπ=2± θ3 (see Figure 5.2a). In the [100] directions, the mean free path Λt2f100g
½100� of

the slow mode in GaAs films is 53% longer than that in the [110] directions.

Anisotropy of the thermal conductivity and average mean free paths in GaAs
films with L ≫ W is noticeably less due to the contribution of the fast transverse
mode: In long GaAs films, the average phonon mean free paths are longer and
shorter for the {100} and {111} orientations, respectively, than those predicted by
the model of an isotropic medium.

It should be stressed that the regions of maxima of the phonon mean free
paths for films with the {100} and {111} orientations are limited by angles defining
the phonon focusing regions ± θt13 and ± θt23 . When L ≫ W, the main contribution
to the anisotropy of thermal conductivity of films with the {100} plane and fabri-
cated from type-II crystals is made by the fast transverse mode, which is focused
in the [110] direction (see Figure 5.2). So, for example, for CaF2 films, the mean

Table 5.3 (continued)

{ J}
[I]

{} {}
[]

{}
[]

{}

NaCl L    

t    

t    
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Figure 5.2: Angular dependencies of the reduced mean free paths of phonons ~ΛλfJg½IðψÞ� =ΛλfJg½IðψÞ�=D and
~ΛfJg½IðψÞ� =ΛfJg½IðψÞ�=D for films with the parameters L = 2000 W, W = 100 D, and D = 50 nm and
orientations of {100} (a,d), {110} (b,e), and {111} planes (c,f), based on GaAs (a,b,c) and CaF2 (d,e)
crystals. Curves 1 – a fast transverse mode, 2 – a slow transverse mode, 3 – a longitudinal mode,
4 – the average mean free path, 5 – the mean free path in the model of an isotropic medium.
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free path Λt1f100g
½I� in the [110] direction is larger by 35% than that in the [001] direc-

tion. However, the anisotropy of the full thermal conductivity of CaF2 films with
the {100} orientation declines to 13%.

For films with the { J} = {111} orientation and made of crystals of both types, the
thermal conductivity anisotropy is produced by the fast transverse mode focused in
the [110] direction. In this direction, this mode ensures the maximum values of the
average mean free path (see Figure 5.2). For long GaAs and CaF2 films, these values
are larger by 24% and 16% than those in the ½11�2� directions. The contribution of the
slow transverse mode to thermal conductivity is small, and its mean free path in
films made of crystals of both types is shorter than that in the model of an isotropic
medium. Let us compare the angular dependencies of the mean free paths in elasti-
cally anisotropic films when L ≫ W with those constructed within the model of an
isotropic medium. As can be understood from Figure 5.2, we get the same results as
for square-shaped films. For type-I and type-II crystals, the mean free paths in films
with the {100} orientations turn out to be longer and shorter, respectively, than
those offered by the model of an isotropic medium. For GaAs and CaF2 films,

their ratios can be written in the following way:Λf100g
½100� :Λ

f100g
½110� :Λiso = 2.29:1.98:1 and

Λf100g
½100� :Λ

f100g
½100� :Λiso ffi 0.87:0.98:1, respectively. For films with the {111} plane, the sit-

uation is the opposite: the average mean free paths in the films made of type-I
and type-II crystals are less and larger, respectively, than those in the model of
an isotropic medium. For GaAs and CaF2, their ratios can be represented as:

Λf100g
½100� :Λ

f100g
½110� :Λiso =0.92 :0.85 : 1 and Λf100g

½100� :Λ
f100g
½110� :Λiso = 1.23 : 1.16 : 1, respectively.

Thus, for long films with the {100} and {111} orientations and fabricated from crys-
tals of the first type, the main contribution to the thermal conductivity anisotropy is
made by the slow and fast transverse modes, respectively.

For films with the {100} plane and made of crystals of the second type, the
thermal conductivity anisotropy is mainly caused by the fast transverse mode.
When going over to long films with the { J} = {110} orientation, an ellipsoidal
shape of the angular dependencies and the characteristic features of the mean
free paths of phonons of different polarizations are preserved (see Figure 5.2).
For type-I crystalline films, the average mean phonon free path of the slow
transverse mode takes the maximum and minimum values in the [100] focusing
and [110] defocusing directions, respectively. However, for films made of type-I
crystals, the long axis of the ellipsoid lies along the [110] focusing direction of
the fast transverse mode. The short axis is along its defocusing direction [100].
Additional features such as the form of local maxima in the dependence of the
mean free path in CaF2 films are due to focusing of the transverse modes (see
Figure 5.2).

162 Chapter 5 Phonon Propagation and Phonon Transport in Films

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.3 Influence of Focusing on the Propagation of Phonon Modes
in Square-Shaped Films with the {100} and {111}
Plane’s Orientations

To begin with, we demonstrate how focusing affects the propagation of phonon
modes in both-type crystalline square-shaped films (L = W) and how much the val-
ues of the latter’s thermal conductivity and, accordingly, average mean free paths
are distinguished depending on their orientation. It will be shown that type-I crys-
tal-based films with the {100} orientation have larger and type-II crystal-based films
with the { J} = {100} orientation have smaller values of the thermal conductivity
than films with the {111} plane. It is well known that the main contribution to ther-
mal resistance is made by phonon scattering at the planes of films, while the pre-
dominant contribution to thermal conductivity is made by phonons propagating
almost parallel to the plane of the film (see, for example, [24, 25, 31, 32]). Therefore,
the object of the present section is to explore the distribution of the phonon flux
throughout the transverse cross-section of the films, as well as the influence of pho-
non focusing on this flux. For this purpose, we average the phonon mean free paths
over the Φ angles resting in the film planes, using formula (5.1). Further, we plot
their dependencies on the Θ angles lying in the transverse cross-section, through
which the heat flux flows (see Figure 5.3).

As can be inferred from Figure 5.3, the phonons of the slow mode in type-I
crystalline films with the {100} orientation are focused and defocused in the [100]
and [110] directions, respectively. As for films made of type-II crystals, the focus-
ing and defocusing directions change places in this plane (see Figure 5.3). In films
with the {110} orientation and made of type-I crystals, the slow and fast transverse
modes are focused in the [100] and [110] directions, respectively.

In type-II crystal-based films with the {J} = {110} orientation, the fast mode is
focused at the angle (n is an integer). As can be seen in Figure 5.4, transverse pho-
nons in films oriented along the {100} plane and made of crystals of the first type
are dominantly focused; the mean free paths and averaged over the Φ angle, are
larger than for all angles Θ (see Figure 5.4a). At the same time, the situation is
opposite for longitudinal phonons: their mean free paths turn out to be less than.
In contrast to the above, transverse phonons in type-II crystalline films with the
{100} orientation are chiefly defocused. Their mean free paths Λt1f100g

½001� Θð Þ and
Λt1f100g
½001� Θð Þ, averaged over the Φ angle, become shorter than Λiso Θð Þ, for all angles Θ

(see Figure 5.4b). However, the mean free paths for longitudinal phonons in films
produced from crystals of the second type are longer than Λiso Θð Þ, at all angles. As
was noted before, the contribution of longitudinal phonons to the thermal conductiv-
ity and average mean free paths is small compared with that of transverse phonons
(see Table 5.3). Thus, the thermal conductivity and mean phonon mean free paths for
square-shaped films with the {100} plane and made of crystals of the first type and
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are larger than those for films fabricated from crystals of the second type. This may
be explained by the prevalence of the phonon focusing and defocusing effect for the
former and the latter, respectively.

It should be emphasized that the distribution of the mean free paths over the
transverse cross-section of the film, depicted in Figures 5.4, is built in space of
wave vectors. For the slow transverse mode in films made of type-I crystals, the
side peaks of Λt2 100f g

½IðψÞ� Θð Þ correspond to the wave vectors close to the ± θt21 angles in
the coordinate space (or space of group velocities) (see Section 1.5, Table 1.5). Due
to the focusing effect, the phonons of this mode propagate in the [100] direction
(see Figure 5.3); their mean free paths may be limited by either the length of the
sample or bulk relaxation mechanisms. Thus, the side maxima are shifted to the
central peak that corresponds to the temperature gradient direction (see Figures 5.3
and 5.4). The side maxima in the curve of ~Λt1 110f g

½100� Θð Þ for the fast transverse mode
focused in the [110] direction for the wave vector lying in the {110} plane can be in-
terpreted in the analogous way. As becomes clear from Figure 5.3, the main contri-
bution to the mean free paths of transverse modes in the coordinate presentation is
made by regions of the angles limited by the values of π=2± θt23 and π=2± θt13 for
slow and fast transverse modes, respectively. Thus, the distribution of mean free
paths in films made of type-I crystals for these modes in the coordinate space has

Figure 5.3: Scheme that illustrates focusing of slow and fast transverse modes in GaAs (a,b) and
CaF2 (c,d) crystals for cross-sections of the isoenergetic surface by the XZ plane for the t2 mode
(a,c) and by the diagonal plane for the t1 and t2 modes (b,d). The arrows show the wave vectors
inside the surface and the corresponding group velocities of phonons beyond it.
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a single-peaked shape (as in an isotropic medium) with the characteristic widths
2θt13 and 2θt23 , respectively.

For square-shaped films with {111} plane, the dependencies of the mean free
paths for all acoustic modes qualitatively change as compared with the dependen-
cies for films with the {100} orientation (see Figure 5.4). The central maximum is
preserved only for the model of an isotropic medium (Λiso θð Þ). At the same time, the
mean free paths Λλ 111f g

½IðψÞ� Θð Þ of all acoustic modes in films fabricated from both types
of crystals have smooth minima in the vicinity of the heat flux direction (the axis of
the films) (see Figure 5.4). In contrast to films with the { J} = {100} plane orientation,
this stands for the prevalence of the defocusing effect for all modes in the directions
of wave vectors, close to the heat flux direction.

Figure 5.4: Distribution of the mean free paths ~ΛλfJg½IðψÞ�ðΘÞ over the transverse cross-section for films
made of GaAs (a,b) and (с,d) CaF2 crystals and oriented along the {100} and {111} planes with the
parameters L = W = 100 D, D = 50 nm: curves 1 – for the t1 mode, curves 2 – for the t2, mode,
curves 3 – for longitudinal phonons, and curves 4 – for the model of an isotropic medium.
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Moreover, the mean free paths Λt2 111f g
½I� Θð Þ are shorter than Λiso Θð Þ within an almost

entire interval of the Θangles except the narrow ranges such as 84� <Θ< 87� and
93� <Θ< 96� for type-I GaAs crystals and 69� <Θ< 85� and 95� <Θ< 111� for type-II
CaF2 crystals where they have local maxima.

In square-shaped films with the {111} orientation and made of crystals of
the second type, the defocusing effects also prevail for slow transverse and longi-
tudinal phonons. Their mean free paths in the region of the central peak have a
smooth minimum. Nevertheless, they can exceed Λiso Θð Þ but only in narrow inter-
vals of angles, where they have local maxima (see Figure 5.4). However, the
mean free path Λt1 111f g

½IðψÞ� Θð Þ of the fast transverse mode has two side maxima where
Λt1 111f g
½IðψÞ� Θð Þ>Λiso Θð Þ. Since these maxima are significantly higher than the value of

Λiso Θð Þ, the average value for the fast transverse mode exceeds Λiso Θð Þ (see
Figure 5.2(f), curve 1). Finally, the mean free paths for films with the {111} plane
and fabricated from crystals of the second type turn out to be longer than both
Λiso Θð Þ and those for films made of crystals of the first type (see Figure 5.2). For
example, for CaF2 films with the {111} plane, the average mean free paths are 1.3
times longer than those for GaAs films.

The papers of Fuchs and Sondheimer [30, 31] state that, at sufficiently low
temperatures, the thermal resistance of films is mainly determined by phonon
scattering at the film planes. Some research works utilize the term ‘scattering
power’ of the planes of films having different orientations to characterize the lat-
ter’s thermal conductivity during diffuse phonon scattering at the film boundaries
(see, for example, [28]). It should be underscored that the term used for character-
izing the influence of phonon focusing on the thermal conductivity of films is
physically incorrect. The fact is that the Casimir theory suggests that every point
of the surface, regardless of its orientation, diffusely scatters phonons of all polar-
izations. When collided with the surface, the phonons are absorbed and then re-
emitted isotropically into half-space towards inside the sample. Thus, the scatter-
ing power or scattering intensity of films with different plane orientations is the
same. The influence of phonon focusing on the thermal conductivity of films is
associated with the difference in directions of the wave vector and propagation of
phonons. Besides, it is caused by the elastic anisotropy of the crystals. If the heat
flux is pointing along the axis of the film and parallel to the focusing direction of
one of the modes, the directions of phonon propagation of this mode deviate from
the film planes to its axis. In addition, the mean free path of these phonons in-
creases, as is the case for slow transverse phonons in films oriented along the
{100} plane and when the heat flux flows in the [100] direction (see Figure 5.5).
Moreover, phonons of the t2 mode with the q1 wave vector and moving at the
angle θ= ± θ1 will propagate in the [100] direction (see Figure 5.5). Phonons with
the q2 wave vector and travelling at the angle θ = − θt22 will propagate at the angle
θ= ± θt23 (see Figures 5.3a and 5.5). Since, for GaAs crystals, we have these angles
equal to θt23 = 12.0� and θt22 = 13.8�, the mean free path Λt2 100f g

½100� ðθt23 Þ is shorter than
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Λiso θ2ð Þ within the model of an isotropic medium (see Figure 5.5). With diffuse
boundary scattering, the mean free path of a phonon with the q wave vector is
determined by the distance travelled by the phonon until it collides with the
sample surface. Figures 5.5 outline the length of the group velocity vector as the
phonon mean free path for each direction. This vector is directed from the point of
emission and ends at the point of the collision with the surface. For a fast trans-
verse mode in the plane of the cube face, the phonon spectrum is isotropic and
there is no focusing effect. Therefore, the directions of the q2 wave vector and
group velocity V t1

g q2ð Þ coincide. Consequently, the mean free path is equal to
Λt1f100g
½100� θ2ð Þ=Λiso θ2ð Þ (see Figure 5.5). If the heat flux is pointing along the axis of

the film and parallel to the defocusing direction of one of the modes, the direc-
tions of the phonon propagation of this mode deviate from the axis of the film to
its planes. In this case, the mean free path of these phonons diminishes. This
takes place for longitudinal phonons with the q1 wave vector, with the propaga-
tion angle determined by the group velocity direction becoming larger than the
θ1 angle. Then, the mean free path ΛLf100g

½100� θ1ð Þ turns out to be shorter than Λiso θ1ð Þ
(see Figure 5.5a).

Thus, in the heat flux flowing along [100], the phonons of the slow transverse
mode, having wave vectors in the sector − θ4 ≤ θ≤ θ4, will deviate from the planes

(b)

Figure 5.5: Scheme that illustrates the influence of focusing on the phonon propagation in the axial
cross-section of a GaAs film with the {100} plane orientation for the temperature gradient in the
directions [100] (a) and [110] (b) and wave vectors at angles θt2

1 = 28.6, θt2
2 = 13.8�, θt2

3 = 12.0�,
and θt2

4 = 34.4� to the direction [100]. L is the length of the film, D is its thickness.
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of the film with {100} plane to its axis. The value of their mean free path can dra-
matically exceed that for an isotropic medium. However, the [110] heat flux direc-
tion for films with the {100} orientation corresponds to the direction of the
defocusing of slow transverse modes. Therefore, the latter’s mean free path is
shorter than Λiso θ1ð Þ (see Figure 5.5).

The phonons of the fast transverse mode with wave vectors in the {110} plane
are focused in the [110] direction. Therefore, they will deviate from the planes of the
film toward the [110] temperature gradient direction. The value of their mean free
path can significantly exceed the value for an isotropic medium (see Figure 5.6).
Figure 5.6 shows that in GaAs films with the { J} = {110} plane orientation, the pho-
nons of the t1 mode with wave vectors in the sector − θ4 ≤ θ≤ θ4 (the angle is
θt14 = 25.4� for the mode t1) will deviate from the side faces to the axis of the rod and
propagate in the sector − θ3 ≤ θ≤ θ3 (the angle is θt13 = 3.6� for GaAs). Thus, the den-
sity of states for the t1 mode is significantly higher in the [110] direction and much
lower for the defocusing directions than that in the model of an isotropic medium
(see Section 1.5).

In this case, phonons of the t1 mode in the {110} plane with the q1 wave vector and
θ1 angle (the angle is θt11 = 21.4� for GaAs) will propagate in the [110] heat flux direc-
tion (see Figure 5.6), while phonons with the wave vector q2 and θ2 angle (the angle
is equal to θt12 = 11.4� for the t1 mode) will propagate at the angle − θ3ðθt13 = 3.6�Þ (see
Figure 5.6). The [110] direction is the direction of defocusing of the slow transverse
mode, and its mean free path is shorter than that in an isotropic medium (see
Figure 5.6). Longitudinal phonons are focused in the [111] direction, and the [110]
direction corresponds to the defocusing direction for wave vectors in the {110}
plane. Therefore, they will deviate from the temperature gradient direction towards
the wide face of the sample. Their mean free path is shorter than that for an isotro-
pic medium. As noted earlier, the role of longitudinal phonons in phonon transport
is small due to their low heat capacity.

Figure 5.6: Diagram that illustrates the influence of focusing on the propagation of phonons in the
cross-section of a GaAs film with the {110} orientation for wave vectors at the angles
θt1
1 = 21.4�, θt1

2 = 11.4�, θt1
3 = 3.6�, and θt1

4 = 25.4� to the [110] temperature gradient direction.
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Let us consider the propagation of phonons in films with the {100} orientation
and made of crystals of the second type. In the process, we use CaF2 crystals as an
example. Suppose the temperature gradient is set along the [001] direction. For a
slow transverse mode in the plane of the cube face, the phonon spectrum is isotro-
pic and there is no focusing effect. Therefore, as can be clear from Figure 5.7, the
direction of the q2 wave vector coincides with the direction of the group velocity
V t1

g q2ð Þ. Consequently, the mean free path is equal to Λt2 100f g
½100� θ2ð Þ=Λiso θ2ð Þ. For wave

vectors in the {100} plane, the phonons of the fast transverse mode are defocused in
the [001] direction. Therefore, they will deviate from the [001] temperature gradient
direction to the planes of the film. Their mean free path is far much shorter than that
for an isotropic medium (see Figure 5.7a). Longitudinal phonons are focused in the
[001] direction and their mean free paths in films made of type-II crystals are larger
than Λiso.

The opposite situation develops for films with the {100} orientation and made of
type-II crystals for the [011] temperature gradient direction. Phonons of the fast
transverse mode are focused in this direction. Therefore, they will deviate from the
planes of the film to the direction of the heat flux. Their mean free path can be sig-
nificantly longer than Λiso (see Figure 5.7a, b). Figure 5.7b shows that, in CaF2 films

b

Figure 5.7: Scheme that illustrates the influence of focusing on the propagation of phonons in the
cross-section of a CaF2 film with the {100} orientation: (a) for [100] the temperature gradient
direction and (b) for wave vectors at the angles θt1

1 = 25.9�, θt1
2 = 13.4�, θt1

3 = 7.8�, and θt1
4 = 31.0� to

the [110] temperature gradient direction.
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with the {100} plane, phonons of the t1 mode with wave vectors in the sector
− θ4 ≤ θ≤ θ4 (the angle is θt14 = 31� for the t1 mode) will deviate from the side faces to
the axis of the film and propagate in the sector − θ3 ≤ θ≤ θ3 (the angle is θt13 = 7.8�
for GaAs). Thus, the density of states for the t1 mode is significantly higher in the
[110] direction and much lower for the defocusing directions than that in the
model of an isotropic medium (see Section 1.5). In this case, phonons of the t1
mode in the {110} plane with the q1 wave vector and θ1 angle (the angle is
θt11 = 25.9� for GaAs) will propagate in the [110] heat flux direction; their mean free
path are limited by either the length of the film or bulk relaxation mechanisms of
phonon relaxation (see Figure 5.7). Phonons with the q2 wave vector and θ2 angle
(the angle is θt12 = 13.4�for the t1 mode) will propagate at the angle − θ3ðθt13 = 7.8�Þ (see
Figure 5.7b).

For a slow transverse mode in the plane of the cube face, the phonon spectrum
is isotropic and there is no focusing effect for CaF2 films. Therefore, the direction of
the group velocity V t1

g q2ð Þ coincides with the direction of the q2 wave vector.
Consequently, the mean free path is equal to Λt2 100f g

½100� θ2ð Þ=Λiso θ2ð Þ (see Figure 5.7b).
Longitudinal phonons are defocused in the [011] direction. Therefore, the propaga-
tion angle determined by the direction of the group velocity Vt1

g q2ð Þ becomes larger
than the θ2 angle and, accordingly, the mean free path ΛL 110f g

½100� θ2ð Þ becomes less
than Λiso θ1ð Þ (see Figure 5.7b).

5.4 Conclusion

The fifth chapter explores the influence of anisotropy of elastic energy on phonon
transport in monocrystalline films in the Knudsen phonon gas flow regime. The in-
fluence of phonon focusing on the propagation of phonon modes and phonon
transport in monocrystalline films with different types of elastic energy anisotropy
has been analysed. The main results of studies of phonon transport in films made
of type-I (GaN, GaAs, Ge, MgO, Si, diamond, and YAG) and type-II crystals (NaCl,
CaF2, SrF2, and YIG) can be formulated as follows:
1. The analysis of the distribution of phonon mean free paths over angles in the

planes of the films makes it possible to determine physical causes leading to the
isotropic dependence of thermal conductivity for square-shaped films with the
{100} and {111} orientations. It is shown that, for an arbitrary direction of the
heat flux, the region of averaging the mean free paths over angles in the film
plane simultaneously captures the phonon focusing and defocusing directions.
Therefore, the thermal conductivity, as well as the mean free paths of phonons
of different polarizations for crystals of both types, become isotropic. The anisot-
ropy of their thermal conductivity in the boundary scattering regime is fully de-
pendent on the film plane’s orientation. In films oriented along the {100} plane,
the average mean free paths turn out to be longer and shorter for type-I and
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type-II crystals, respectively, than those within the model of an isotropic me-
dium. However, the opposite situation is realized in films with the {111} orienta-
tions: the average mean free paths in films made of type-I and type-II crystals
are less and larger, respectively, than those calculated within the model of an
isotropic medium.

2. In square-shaped films with the {110} orientation, the angle between the focusing
and defocusing directions doubles as compared with the {100} and {111} orienta-
tions. Therefore, for an arbitrary direction of the heat flux, averaging the mean
free paths over angles in the film plane cannot simultaneously cover both direc-
tions. In this regard, the thermal conductivity in the {110} film plane becomes
anisotropic, and so do the contributions of acoustic modes. The values of the
thermal conductivity for type-I crystalline films reach their maximum in the [001]
directions, whereas the minimum values are observed in the [110] directions. For
films made of crystals of the second type, the situation is quite the opposite.

3. With an increase in the length of the films, the intervals of angles that make the
main contribution when averaging the mean free paths in the plane of the films
with {100} and {111} are significantly narrowed. Therefore, in the limiting case of
long films (L≫W), the averaging over the angles is already insufficient to blur the
phonon focusing effect. In this case, the mean free paths in films with the {100}
and {111} orientations and made of crystals of both types become anisotropic.

4. The analysis of the influence of focusing on the propagation of phonon modes
in films of crystals of the first type shows that the focusing effect prevails for
fast and slow transverse phonons in square-shaped films with the {100} orienta-
tion. At the same time, in films oriented along the {111} plane, the defocusing
effect dominates for the slow transverse mode. Therefore, the thermal conduc-
tivity and average mean free paths in films with the {100} orientation and made
of type-I crystals turn out to be 2–2.4 times greater than those in films with the
{111} planes.

5. The analysis of the distribution of mean free paths in the transverse cross-
section of square-shaped films with the {100} orientation shows that the defo-
cusing effect predominates for transverse phonons travelling in films made of
type-II crystals. Therefore, the average phonon mean free paths in films ori-
ented along the {100} plane and fabricated from type-II and type-I crystals turn
out to be shorter and longer, respectively, than those predicted by the model of
an isotropic medium. The situation is opposite for films with the {111} orienta-
tion: the focusing effect is dominant for the fast transverse mode in type-II crys-
talline films, while the defocusing effect is prevalent for transverse phonons in
films produced from crystals of the first type. Thus, the average mean free
paths in films with the {111} plane orientation and fabricated from crystals of
the second and first types turn out to be longer and shorter, respectively than
those within the model of an isotropic medium.
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Chapter 6
Anisotropy and Temperature Dependencies
of Thermal Conductivity of Silicon Films
and Nanowires

As far as the temperature dependencies of thermal conductivity of monocrystalline
silicon nanowires and films are concerned, the research works [4–7] took the meas-
urements at temperatures ranged from 20 K to 300 K and from 17 K to 350 K, respec-
tively. The former’s diameter varied from 22 nm to 115 nm, whereas the latter’s
thicknesses changed from 0.02 μm to 1.6 μm. The findings secured were interpreted,
as a rule, within the model of an isotropic medium [4–7, 25, 110]. In the process,
either the Casimir theory [13] or the theory of Fuchs and Sondheimer [30, 31] was
used. The effects due to focusing of phonons were excluded. The Fuchs and
Sondheimer theory [30, 31] suggests that the thermal conductivity of the films de-
pends on only one parameter, namely, their thickness. This approximation is incor-
rect. It was shown in [24, 27, 106] (see also Chapter 4) that the mean free paths in
silicon films substantially depend on their geometric parameters. Moreover, the
Casimir lengths logarithmically diverge as the film width tends to infinity. Earlier,
the papers [25, 32] have noted this divergence for the thermal conductivity of films
within the model of an isotropic medium. An analysis of the thermal conductivity
of monocrystalline films, carried out in [27, 106], shows that the Casimir lengths for
them also diverge logarithmically when the film width tends to infinity. For pho-
nons of different polarizations, their values differ significantly as compared to an
isotropic medium. As was demonstrated in the previous chapter, the thermal con-
ductivity of the films largely depends on the orientation of their plane. It should be
emphasized that the reviews [1–3], as well as the papers [4–7], ignore the directions
of heat flux and planes’ orientation relative to crystallographic axes.

In contrast to the preceding papers, the present chapter accounts for focusing
of phonons and the phonon relaxation rates at the sample boundaries, calculated
in [20, 21], to describe the temperature dependencies of the thermal conductivity of
silicon films and nanowires (see also formulas (3.15) and (3.16)). Bearing in mind
the phonon focusing, we will show that a change in the orientation of the silicon
film can lead to a change in the thermal conductivity by more than 2 times.

The lack of information about the film plane’s orientation raises certain difficul-
ties in interpreting the experimental results [5–7] (see Section 6.2). Section 6.1 evalu-
ates the temperature dependencies of the thermal conductivity of silicon nanowires
for various directions of heat flux relative to crystallographic axes. Section 6.2 analy-
ses the anisotropy and temperature dependencies of the thermal conductivity of sili-
con films having different plane orientations. The content of chapter VI is based on
the papers [23, 24, 113].

https://doi.org/10.1515/9783110670509-007
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6.1 Phonon Transport in Silicon Nanowires

The paper [4] were measured the temperature dependencies of the thermal conductiv-
ity of monocrystalline silicon nanowires with diameters from 22 nm to 115 nm in the
temperature range from 20 K to 300 K. The axis of the grown-up nanowires lies in the
[111] direction. It was shown that, for nanowires with diameters of 56 nm and 115 nm in
the temperature range from 20 K to 60 K, the thermal conductivity follows the depen-
dence κ Tð Þ⁓T3, and so does the specific heat of bulk samples within the Debye theory.
Therefore, the phonon spectrum for bulk Si crystals in calculating the thermal conduc-
tivity of these nanowires may be utilized. Obviously, analysing the thermal conductiv-
ity of nanoscale samples in the temperature range of 20 K–300 K requires accounting
for the dispersion of the spectrum. For this purpose, as in Chapter 3, an approximation
spectrum of thermal phonons in Si is used (see Section 1.2). This approximation pre-
serves cubic symmetry and makes it possible to explore a change in the phonon focus-
ing when going over from the long-wavelength ðx<< 1Þ to short-wavelength limit
ðx≈ 1Þ. In the limit of long waves ðx<< 1Þ, this approximation is applied within the ani-
sotropic continuum model [63].

6.1.1 Temperature Dependencies of Thermal Conductivity of Silicon Nanowires

For analysing the lattice thermal conductivity of silicon nanowires, as well as bulk
silicon crystals, the three-mode Callaway model is used. In doing so, the contribu-
tions of the diffusion and drift motion of phonons should be extracted (see
Section 3.1). According to (3.10) and (3.11), this model offers the total thermal con-
ductivity as an additive sum of these contributions:

κdif ½IðψÞ� =
kBq3T
4ð2πÞ3

X
λ

ð1
− 1

dðcos θÞ
ð2π
0

d’y3
ð1
0
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vλ½IðψÞ� shðZλ=2Þð Þ2 dx,

κð1Þdr½IðψÞ� =
kBq3T

12ð2πÞ3
X
λ

Bð1Þ
½IðψÞ�ðTÞΨλ

N½IðψÞ�.

(6:1)

The designations are given in Section 3.1. Against square-shaped and rectangular
cross-section samples, circular cross-section nanowires exhibit the thermal conductiv-
ity as dependent on only one orientation parameter, namely, the direction of heat flux
relative to the crystal axes, ½IðψÞ�, with the ψ angle controlling the heat flux direction.
The total phonon relaxation rate includes the contributions of resistive ðvλ½IðψÞ�RÞ and
normal ðvλNðqÞÞ processes of phonon relaxation. Normal processes are responsible for
the drift contribution to the thermal conductivity (see Section 3.1). Phonon scattering
by isotopic disorder vλiso qð Þ� �

and at the sample’s boundaries ðvλ½IðψÞ�BÞ, and the
Umklapp processes vλU qð Þ� �

are regarded as resistive scattering processes. The phonon
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relaxation rates vλiso qð Þ, vλU qð Þ, and vλN qð Þ in bulk relaxation mechanisms are defined
by formulas (3.5), (3.6), and (3.17)–(3.19).

The phonon relaxation rate during diffuse boundary scattering in cylinder-
shaped samples is calculated using piecewise-smooth functions for various inter-
vals of angles. The borderline between the angles is governed by the parameter
Δλðψ, x, θ,φÞ= ðL=4RÞVλ

g?=jVλ
g3j. The latter’s magnitude depends on the ratio be-

tween the group velocity components parallel ðVλ
g3Þ and perpendicular ðVλ

g?Þ to the
temperature gradient and the geometric parameter kO = L=2D and D= 2R. If the con-
dition Δλðψ, x, θ,φÞ≤ 1 holds, the relaxation rate has the form (see Section 2.2):

vλB½IðψÞ�ðx, θ,φÞ=
3πVλ
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(6:2)

If the opposite inequality is fulfilled, we have:

vλB½IðψÞ�ðx, θ,φÞ= 3πVλ
g?


 �
=4D, Vλ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVλ

gÞ2 − ðVλ
g3Þ

2
q

. (6:3)

A further analysis of the thermal conductivity of nanowires implies the choice of
the cube edges as a coordinate system to determine the spectrum and group veloci-
ties of phonons. Consider the rotation of the heat flux (the axis of the sample) along
the diagonal plane. This plane captures all symmetric directions, including the [111]
direction of the nanowire’s axis. It is worth recalling that this direction was in-
volved in exploring phonon transport in [4]. Let the ψ angle set a deviation of the
heat flux in the diagonal plane from Z-axis pointing along the cube edge. Then, the
group velocity component Vλ

g3 parallel to the temperature gradient can be expressed
through:

∇rT = ∇xT,∇yT,∇zT
� �

= j∇rTj − sinψ=
ffiffiffi
2

p
, sinψ=

ffiffiffi
2

p
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n o
,

Vλ
g3 = −Vλ

gx +Vλ
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sinψ=

ffiffiffi
2

p
+Vλ

gz cosψ.
(6:4)

Accounting for the dispersion of phonons gives rise to the dependence of the group
velocity, Δλðψ, x, θ,φÞ parameter, and relaxation rates vλB½IðψÞ�ðx, θ,φÞ in formulas
(6.2) and (6.3) on not only the angles ψ,θ, and φ but the reduced phonon wave vec-
tor x (see Section 3.2). As is clear from formulas (6.1)–(6.3), the ½IðψÞ�-dependencies
of the thermal conductivity on the temperature gradient direction relative to the
crystal axes are determined by the magnitudes of the phonon group velocities com-
ponents Vλ

g3ðψÞ and Vλ
g?, which are directly contained in the expressions for the

thermal conductivity and relaxation rate vλB½IðψÞ�ðx, θ,φÞ.
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It should be noted that when measuring the temperature dependencies of ther-
mal conductivity [19], the bulk Si samples were preliminarily processed with sandpa-
per to furnish diffuse phonon-boundary scattering. The diffuse nature of scattering is
realized if the geometric parameters of the sample’s boundary roughness are larger
or comparable with the wavelength of a phonon [8, 9, 14, 15]. Such a procedure is
impossible to create in practice. Therefore, a partial specularity of the reflection of
phonons from the nanowire’s boundaries needs to be taken into account. Its account-
ing is carried out in the usual way [8, 9, 14, 15, 35]:

~vλB½IðψÞ�ðθ,φÞ=
ð1− PÞ
ð1+ PÞ v

λ
B½IðψÞ�ðθ,φÞ. (6:5)

Figure 6.1 illustrates the influence of various relaxation mechanisms on the tempera-
ture dependencies of the thermal conductivity of silicon nanowires in different tem-
perature ranges. The calculated data on the thermal conductivity when switching
various phonon scattering mechanisms are given. In the low temperature region,
when phonon scattering at the boundaries dominates, the thermal conductivity fol-
lows the dependence κ Tð Þ~T3. However, fully diffuse boundary scattering of phonons
corresponds to a theoretical curve (curve 6) that goes 26% below the experimental
data. Accounting for the specularity of the reflection (P = 0.15) allows one to reconcile
the predicted values of the thermal conductivity with the experimental data. For nano-
wires with diameters of 115 nm and 56 nm, accounting for boundary and isotopic

Figure 6.1: The temperature dependencies of thermal conductivity of silicon nanowires (D = 115 nm,
L = 3 μm, P = 0.15) for the [111] temperature gradient direction and various phonon scattering
mechanisms: curve 1 – the boundary scattering regime (v = ~vλB½111�); curve 2 – v = ~vλB½111� + viso; curve
3 – v = ~vλB½111� + viso + vU; curve 4 – the diffusion contribution (κdif ½111�ðT Þ); curve 5 – the total thermal
conductivity; curve 6 – the boundary scattering regime when P =0ðv = vλB½111�Þ. Symbols ■ are the
experimental data of [4].
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scattering makes it possible to match the calculated and experimental data in the tem-
perature range from 20 K to 60 K with an accuracy of 4% without resorting to ad-
ditional fitting parameters (see Figure 6.1, curve 2). The parameter P = 0.15 is
further used for all calculations shown in Figure 6.1. As can be understood from
Figure 6.1, at temperatures above 60 K, anharmonic scattering processes play a
significant role in heat resistance. In calculating the temperature dependencies of
the thermal conductivity of nanowires, the parameters of anharmonic scattering
processes, found earlier in [22] for bulk Si crystals, should be accepted as the
basis (see also Table 6.1). These parameters give the possibility of reconciling the
computed temperature dependencies of the thermal conductivity of bulk Si rect-
angular and square-shaped cross-section crystals with the experimental data in
[19] for various directions of the temperature gradient and side faces of the sam-
ples in the temperature range of 3 K–40 K. It should be underscored that this in-
terval actually covers only the region of maximum thermal conductivity in bulk Si
crystals. It is too narrow to evaluate the anharmonic scattering parameters.
Therefore, analysing the thermal conductivity of silicon nanowires in the range of
20 K–300 K requires the specification of the anharmonicity parameters. To better
agree with the calculated results of [4], the At1

U parameter that characterizes the
phonon relaxation frequency for the fast transverse mode in the Umklapp pro-
cesses should be increased (see Tables 3.1 and 6.1).

It should be noted that the values of thermal conductivity of nanoscale samples in
the temperature range of 20 K–300 K are much weaker depending on the anharmo-
nicity parameters because of the more significant (than in bulk materials) role of
boundary scattering (see below).

Let us examine the contribution of the drift motion of phonons to the thermal
conductivity of silicon nanowires in the temperature range from 20 K to 300 K.
The performed analysis shows that, over the entire temperature range, the drift
contribution of transverse phonons is small compared to the diffusion one and it
can be neglected (see Figure 6.2). At T < 60 K, the drift contribution of longitudinal
phonons to the thermal conductivity, κð1ÞL½111�drðTÞ, is much smaller than the diffusion
one. However, at higher temperatures of 100K< T < 300K, normal phonon-phonon
scattering processes become dominant, and the drift contribution is vastly supe-
rior to the contribution of diffusion motion (see Figure 6.2). As for nanowires with
diameters of 115 nm and 56 nm, the κð1ÞL½111�drðTÞ contribution at T = 100 K is 13% and 9%

Table 6.1: Parameters of anharmonic phonon–phonon scattering and isotopic disorder scattering
for Sinat crystals.

Al
N ,K− 5sec− 1 Al

N ,K− 5sec− 1 Al
U ,K− 3sec− 1 At1

N ,K− 3sec− 1 At2
U ,K− 3sec− 1 Cl

N ,K C
tl
U ,K

. 2.0 · 10− 3 2.0 · 103 1.80 · 103 0.70 · 103
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of the total thermal conductivity, respectively. At T = 300 K, it reaches 35%. Figure 6.2
indicates that the accounting for the drift motion of longitudinal phonons allows one
to match the calculated results with the experimental data of [4] over the entire tem-
perature range studied.

To estimate the thermal conductivity anisotropy of silicon nanowires, we should
plot the temperature dependencies κ½IðψÞ�ðTÞ for the [111] and [100] temperature

Figure 6.2: The temperature dependencies of thermal conductivity of silicon nanowires with a
diameter of (a) D = 115 nm and (b) D = 56 nm in the [111] temperature gradient direction: curves
1 – for the total thermal conductivity; curves 1a – for the contributions of the diffusion motion; curves
2, 3, and 4 – for the contributions of fast, slow transverse and longitudinal phonons, respectively;
curves 5, 6 – for the diffusion and drift contributions of longitudinal phonons; curve 7 refers to the
total thermal conductivity in the [100] direction. Symbols ■ are the experimental data of [4].

6.1 Phonon Transport in Silicon Nanowires 177

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



gradient directions (see Figure 6.2a, curves 1 and 7). As can be inferred from the cal-
culation, the ratio of thermal conductivities κ½100�=κ½111� is 1.7 for 115 and 56 nm diame-
ter nanowires at T = 20 K, while at T = 300 K it declines to 1.2. It can be stressed that,
for bulk Si rods investigated at T = 3 K, this ratio is equal to 1.50 and tends to unite
above the maximum temperature (see Chapter 3).

The role of various branches of the phonon spectrum in the thermal conductivity
of nanowires varies significantly with increasing temperature. These changes are
due to both the dispersion of thermal phonons and the drift motion of longitudinal
phonons. Figure 6.2 shows that, at low temperatures T < 30 K, the slow transverse
mode κt2ðTÞ dominantly contributes to the thermal conductivity. At T = 20 K, its con-
tribution is 49% and twice the contribution of the fast transverse mode. However, as
the temperature grows, the contribution of the fast transverse mode κt1ðTÞ increases
much faster than the contribution of the slow transverse mode κt2ðTÞ. At T > 30 K,
the values of κt1ðTÞ become larger than those of κt2ðTÞ (see Figure 6.2). Therefore, in
the entire temperature range from 30 K to 300 K, the fast transverse mode makes the
dominant contribution to the thermal conductivity. The growth slowdown in the
contribution of the slow transverse mode κt2ðTÞ with increasing temperature is asso-
ciated with a strong dispersion of the t2 mode.

When qmax=2< q< qmax (see Figure 1.5), the long flat segments in the short-
wavelength spectrum of the slow transverse mode provoke abnormally low values
of the group velocity and, accordingly, a drastic decline in the contribution of
κt2ðTÞ with increasing the temperature. At T = 20 K, the contribution of longitudinal
phonons to the thermal conductivity is much less than that of transverse phonons
and amounts to 19%. However, with increasing the temperature, this contribution
rapidly increases due to drift motion and, at T > 65 K, the contribution of longitudi-
nal phonons becomes larger than that of the slow transverse mode. At T = 190 K,
the contribution of κLðTÞ reaches a maximum and amounts to 36% of the total ther-
mal conductivity.

Figure 6.3 displays the temperature dependencies of the total thermal conduc-
tivity in the regime of the boundary ðv= vBÞ and bulk ðv= viso + vU + vNÞ phonon re-
laxation mechanisms.

The points of intersection of these curves give the transition temperatures ðTBVÞ
from the boundary scattering to the bulk relaxation mechanisms. At these temper-
atures, the mean free paths for the boundary scattering and for bulk mechanisms
turn out to be equal, ΛB½IðψÞ� =ΛV , and the boundary scattering provides 50% of the
total heat resistance. A numerical analysis shows that for 115 nm and 56 nm diame-
ter Si nanowires, the transition temperatures TBV are 265 K and 353 K, respectively.
As can be concluded from Figure 6.3, the transition temperatures TBV for bulk mate-
rials are an order of magnitude lower. At room temperature, for nanowires with di-
ameters of 56 nm and 115 nm, the contribution of boundary scattering to the
thermal resistance is 60% and 42%, respectively.
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6.1.2 Anisotropy of the Thermal Conductivity of Silicon Nanowires

Let us look into the change in the anisotropy of the total thermal conductivity and
the contributions to it from various branches of the phonon spectrum with increas-
ing temperature. To do this, we analyse the change in the angular dependencies of
the thermal conductivity of silicon nanowires when the temperature gradient (the
sample’s axis) rotates in the diagonal plane and temperature is altered. The group
velocity components Vλ

g3 and Vλ
g? necessary for this analysis are determined by

Figure 6.3: The temperature dependencies of thermal conductivity (a) of bulk samples and (b)
nanowires in the [111] direction: curves 1 – for bulk phonon relaxation mechanisms, curves 2 and
3 – for the phonon-boundary scattering regime in nanowires with diameters D = 115 nm and
D = 56 nm, respectively.
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expression (6.4), with the ψ angle defining the deviation of the heat flux from the
Z-axis pointing along the cube edge.

The calculated findings of the angular dependencies of thermal conductivity
of silicon nanowires are shown in Figure 6.4. As can be seen from the figures, at
T = 20 K, the slow transverse phonons make the dominant contribution to the
thermal conductivity (49%). At this temperature, phonon boundary scattering
provides 94% of the total heat resistance; therefore, its anisotropy is maximal.
Maximum values of the thermal conductivity are realized in the [001] directions

Figure 6.4: The κ (ψ) angular dependencies of the total thermal conductivity, W ∙m−1 ∙ K−1, (curve 1)
and contributions of different branches of the phonon spectrum to it for nanowires with D = 115 nm
in the case of rotation of the nanowire axis in the diagonal plane for temperatures: (a) 20 K,
(b) 100 K, (c) 300 K. Curves 2, 3, and 4 are the contributions of fast, slow transverse modes, and
longitudinal phonons, respectively. Symbols ■ refer to the experimental data of [4].
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due to focusing of slow transverse phonons and minimum ones are reached at
ψmin ≈ 68� (see Figure 6.4a). At this temperature, the ratio κ½001�=κmin ffi 1.8 specifies
the maximum anisotropy of the thermal conductivity. In the [011] and [111] direc-
tions, local maximums of the thermal conductivity are seen. They are due to focus-
ing of fast transverse and longitudinal phonons, respectively (see Figure 6.4a).

In the symmetric directions for nanowires with D = 115 nm, the ratio of thermal
conductivity magnitudes is κ½001�:κ½011�:κ½111� = 1.69:1.12:1 For nanowires with D = 56 nm,
the anisotropy is slightly higher: κ½001�:κ½011�:κ½111� = 1.74:1.13:1.

As is clear from Figure 6.4, the thermal conductivity anisotropy of silicon nano-
wires is mainly provided by the slow transverse mode, for which the ratio κt2½100�=κ

t2
½110�

is equal to 2.7, 2.3, and 1.85 at temperatures of 20 K, 100 K, and 300 K, respectively.
This stands for the fact that the decrease in the thermal conductivity anisotropy
with increasing temperature is mainly due to the decrease in the contribution of the
slow mode (see Figure 6.4). At T = 20 K, the contribution of the fast transverse
mode κt1½100� in the [001] direction is 2.7 times less than the contribution of κt2½100� .
However, in the [011] direction, it exceeds the contribution of the slow mode by 1.3
times and provides a local maximum of the thermal conductivity at T = 20 K. With
increasing the temperature, the κt2½111� contribution of slow transverse phonons drops
from 49% at T = 20 K to 21% at T = 100 K. On the other hand, the contributions of fast
transverse and longitudinal phonons to the thermal conductivity in this direction in-
crease, reaching 49% and 30% at T = 100 K, respectively. At T = 100 K, these contribu-
tions become almost isotropic. Therefore, the anisotropy of the total thermal
conductivity decreases to 26% (see Figure 6.4b). At T = 100 K, the ratio of magnitudes
of the thermal conductivities for symmetrical directions is κ½001�:κ½111�:κ½011� = 1.3:1:1. The
minimum values of the thermal conductivity are achieved at ψmin ≈ 74�; they are 3%
lower than the values of κ½011�. A further increase in temperature up to T = 300 K in-
creases the contribution of longitudinal phonons to the thermal conductivity in the
[111] directions to 36%. This occurs due to the drift motion of phonons. At the same
time, the contributions of fast and slow transverse phonons to the thermal conductiv-
ity go down to 43% and 21%, respectively. The anisotropy of the total thermal con-
ductivity diminishes. In the symmetric directions, for 115 nm diameter nanowires, the
ratio of the thermal conductivity magnitudes is κ½001�:κ½111�:κ½011� = 1.2:1:1 at T = 300 K.
In spite of dominating at T = 300 K, the bulk relaxation mechanisms ðTBV = 265KÞ
and boundary scattering ðTBV = 353KÞ in 115 nm and 56 nm diameter nanowires,
respectively, have a weak influence on the thermal conductivity anisotropy. At
T = 300 K, the ratio of thermal conductivities of 56 nm diameter nanowires for
symmetrical directions does not increase significantly: κ½001�:κ½111�:κ½011� = 1.2:1:1.

Thus, the conducted analysis shows that the anisotropy of thermal conductiv-
ity in silicon nanowires is chiefly provided by the slow transverse mode, which is
focused in the [100] direction and provides maximum thermal conductivity in this
direction. The decrease in the anisotropy of thermal conductivity from 70% at
T = 20 K to 20% at T = 300 K is mainly explained by a decrease in the contribution
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of the slow transverse mode to the thermal conductivity with rising temperature
and dispersion of thermal phonons.

6.2 Phonon Transport in Silicon Films

The present section deals with phonon transport in rectangular cross-section films
with a thickness D, width W = μD, and length L. Let us compare the predicted re-
sults with the data of experimental studies [5–7], in which the thermal conductivity
of silicon films with thicknesses of D = 1.6, 0.83, 0.42, 0.10, and 0.02 μm was ex-
plored in the temperature range from 17 K to 350 K. In the range from 17 K to 40 K,
the thermal conductivity of these films follows the κ Tð Þ⁓T3 dependence [6, 7] and
so does the heat capacity of bulk samples within the Debye theory. Therefore, in
calculating the thermal conductivity of the films, a three-dimensional phonon spec-
trum was used. To take into account the dispersion of thermal phonons, the approx-
imation spectrum was used [39, 63] (see also Section 1.2).

6.2.1 Temperature Dependencies of Thermal Conductivity of Silicon Films

To analyse the thermal conductivity of nanostructures such as films and nanowires,
we resort to the three-mode Callaway model [91, 92, 94]. The latter offers the lattice
thermal conductivity as the additive sum of the diffuse ðκfJg

dif ½IðψÞ� Þ and drift ðκfJg
dr½IðψÞ� Þ

contributions. Against circular cross-section nanowires, films demonstrate the ther-
mal conductivity as dependent on not only the direction ½IðψÞ� of heat flux but on
the film plane’s orientation {J} (see Section 3.1):

κfJgdif ½IðψÞ� =
kBq3T
4ð2πÞ3

X
λ

ð1
− 1

dðcos θÞ
ð2π
0

dφy3
ð1
0

Vλ
g3


 �2
Z2
λx

2

vfJgλ½IðψÞ� shðZλ=2Þð Þ2
dx,

κfJgð1Þdr½IðψÞ� =
kBq3T

12ð2πÞ3
X
λ

BfJgð1Þ
½IðψÞ� ðTÞΨfJgλ

N½IðψÞ�.

(6:6)

The total phonon relaxation rate vfJgλ½IðψÞ� consists of the contributions of resistive
ðvfJgλR½IðψÞ�Þ and normal ðvλNðqÞÞ relaxation processes. The latter involve the drift contri-
bution to the thermal conductivity (see Section 3.1). As resistive scattering processes,
phonon scattering by isotopic disorder ðvλisoðqÞÞ, at the boundaries of the samples
ðvλfJgB½IðψÞ�Þ, and the Umklapp processes ðvλUðqÞÞ are considered. The phonon relaxation
rates vλisoðqÞ, vλUðqÞ, and vλNðqÞ are given by formulas (3.5), (3.6), (3.17)–(3.19). The pho-
non relaxation rates vλfJgB½IðψÞ�ðqÞ at the boundaries of the films are defined by the same
functions as for bulk materials with rectangular cross-section. If the inequalities
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g3=V

λ
g1j ≥ k0 or μjVλ

g1j < jVλ
g2j and jVλ

g3=V
λ
g2j ≥ k0=μ are satisfied,

they have the form (see Section 3.2):

vλfJgB½IðψÞ�ðx, θ,φÞ=
jVλ

g3j
k0D
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 �2
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When the opposite inequalities hold, we arrive at:

vλfJgB½IðψÞ�ðx, θ,φÞ=
6
D

μ Vλ
g1


 �2
3μjVλ

g1j − jVλ
g2j


 � , if μjVλ
g1j > jVλ

g2j and jVλ
g3=V

λ
g1j < k0,

vλfJgB½IðψÞ�ðx, θ,φÞ=
6
μD

Vλ
g2


 �2
3jVλ

g2j − μjVλ
g1j


 � , if μjVλ
g1j > jVλ

g2j and jVλ
g3=V

λ
g2j < k0=μ.

(6:8)

It should be stressed that accounting for the dispersion brings in dependence both
the relaxation rates in formulas (6.7) and (6.8) and the group velocity components
Vλ
g1, V

λ
g2, and Vλ

g3 on not only the angles ψ, θ and φ but the reduced phonon wave
vector x. The case when μ= 1 corresponds to square-shaped transverse cross-section
nanowires. This section is aimed at calculating the temperature dependencies of the
thermal conductivity of films of different orientations {J}. The next step is to analyse
the κfJg½IðψÞ�ðTÞ angular dependencies of thermal conductivity at fixed temperatures
when heat flux rotates along the {100}, {110}, and {111} film plane’s orientations. This
will allow one to study the change in the anisotropy of thermal conductivity with
temperature, as well as to determine the film plane’s orientations and the directions
of the heat flux, which provide the maximum or minimum values of the thermal con-
ductivity of monocrystalline silicon films.

As in Section 4.1, the group velocity components Vλ
g1, V

λ
g2, and Vλ

g3 for various
film plane’s orientations {J} are found in a coordinate system related to the films (see
formulas (4.4)). Let the coordinate system be assigned as follows. Axis 1 (the axis of
rotation of heat flux) defines the plane orientation {J] and is perpendicular to the lat-
ter. Axis 3 is pointing along the heat flux ½IðψÞ�. The ψ angle that controls the heat
flux direction in the plane {J} is measured from Z-axis set along the cube edge.

In contrast to bulk crystals, for thin films and nanowires, the diffuse nature of
phonon boundary scattering cannot be fully implemented in practice. Therefore,
partial specular reflection of phonons from the film boundaries is given by the stan-
dard way [8, 9, 14, 15, 35]:

~vλfJgB½IðψÞ�ðP, x, θ,φÞ=
ð1−PÞ
ð1+PÞ v

λfJg
B½IðψÞ�ðx, θ,φÞ, (6:9)
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where P is the specularity factor that can be derived from the matching between the
predicted and experimental data. As for Si circular cross-section nanowires, account-
ing for the specularity factor equal to P=0.15 aids in well agreeing the calculated out-
comes with the experimental data of [4] in the entire temperature range.
Unfortunately, the papers [5–7] indicate no directions of heat flux and film plane’s
orientations relative to the crystallographic axes when interpreting the experi-
mental data. The SOI technology (silicon on insulator) is usually used for films
with the {100} or {111} orientations (see, for example [111]) to cut. The present sec-
tion states that the thermal conductivity in the plane of sufficiently wide films
ðL>>D andW>>D, L⁓WÞ with the above orientations almost does not depend
on the direction of heat flux (see Section 6.2.2). However, the dependence of their
thermal conductivity on the film plane’s orientation is essential: when going over
from the {111} to {100} orientation, the thermal conductivity may increase more
than two times. Since the papers [5–7] leave aside information about the orientation
of the film planes, we have calculated the temperature dependencies of thermal con-
ductivity for films with three orientations such as fJg= f100g, {110}, and {111}.
Besides, we have matched the predicted and experimental data using the specularity
factor P as a fitting parameter. The results of such adjusting are shown in Figure 6.5.

Figure 6.5: The temperature dependencies of thermal conductivity of silicon films with various
thicknesses D, specularity parameters P, and film lengths L: curves 1, 2, 3 – D = 1.6 μm, P = 0.48,
L = 8 μm; curve 4 – D = 0.83 μm, P = 0.29, L = 8 μm; curves 5, 6, 7– D = 0.42 μm, P = 0.29,
L = 8 μm; curve 8- D = 0.10 μm, P = 0.14, L = 100 D; curve 9 – D = 0.02 μm, P = 0, L = 100 D.
Curves 1, 4, 5, 8, 9 are for the {100} film orientations; curves 2, 6 – for the {110} orientation, curves
3, 7- for the {111} orientation. The width of films is W = 100 D. Symbols correspond to the
experimental data of [5–7]: ■ – for D = 1.6 μm, ►- for D = 0.83 μm, ∙ – for D = 0.42 μm, ▲- for
D = 0.10 μm, and ♦ – for D = 0.02 μm.
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For films with the {100} orientation and D = 1.6 μm, the values of the thermal conduc-
tivity are in good agreement with the experimental data of [6, 7] when Pf100g =0.48. It
is worth noting that when P =0.48 and T = 20 K, they turn out to be 7% and 21%
less for films with the {110} and {111} orientations, respectively, than those for films
with the {100} orientation. The ratios of the thermal conductivity values are
κf100g½100� :κ

f110g
½100� :κ

f111g
½110� = 1.2:1.1:1. When Pf110g =0.51 Pf111g =0.56, the thermal conductivity val-

ues of κf110g½100� ðTÞ and κf111g½110� ðTÞ are also in good agreement with the experimental data
and close to the values of κf100g½100� ðTÞ when Pf100g =0.48. For films with the {100} orien-
tation and D = 0.83 and 0.42 μm, the calculated findings are matched with the ex-
perimental data when Pf100g =0.29. However, for these films with the {110} and
{111} orientations, the agreement is observed when Pf110g =0.37 and Pf111g =0.50
(see Figure 6.5). The ratios of the thermal conductivity values for films with differ-
ent plane orientations and D = 0.42 μm appear as κf100g½100� :κ

f110g
½100� :κ

f111g
½110� = 1.2:1.1:1 when

Pf100g =0.29 and T = 20 K. As Figure 6.5 displays, the predicted values of thermal
conductivity for nanofilms with the {100} plane orientation and D = 100 and
20 nm are also in satisfactory accordance with the results obtained in [5]. The de-
crease in the film thickness leads to the weighty role of boundary scattering and,
accordingly, an increase in the anisotropy of the thermal conductivity. The ratios
of the thermal conductivity values for films with different plane orientations and
D = 100 nm amount to κf100g½100� :κ

f110g
½100� :κ

f111g
½110� = 2.2:1.5:1 when Pf100g =0.14 and T = 20 K

(see Figure 6.6). For 20 nm thickness films, the specular parameter P appears to be

Figure 6.6: The temperature dependencies of thermal conductivity of silicon films with a thickness
of D = 100 nm, a width of W = 100 D, and a length of L = W for various orientations {J} and heat flux
directions [I (ψ)]: curves 1 – {100} [100]; 2 – {110} [100]; 3 – {111} [112]. The specularity parameter is
P = 0.14. Symbols are the experimental data of [5].
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close to zero because the temperature dependence of thermal conductivity is satis-
factorily described when P =0. Furthermore, as Figure 6.6 implies, the role of the bulk
scattering processes goes up with increasing the temperature, and the thermal conduc-
tivity anisotropy diminishes.

In this case, the dependence of the thermal conductivity on the film plane’s ori-
entation weakens as well. When μ= 100 and T = 20 K, the ratio of the thermal con-
ductivity values for films with the {100} and {111} orientations is equal to 2.2.
However, it drops to 1.2 at T = 320 K. Thus, with diffuse scattering of phonons, films
with the {100} orientation exhibit maximum thermal conductivity, whereas mini-
mum thermal conductivity is inherent in films with the {111} orientation.

The analysis of the dependence of thermal conductivity of films on the geomet-
ric parameters shows that, for unchanged magnitudes of D and L, an increase in the
film width initiates an increase in the thermal conductivity (see Figure 6.7). Then,
the region of its intensive growth is limited by the values of μ< 20 ðL=DÞ or W < 20L.
When μ> 20 ðL=DÞ, the dependencies of the thermal conductivity reach saturation
(see Figure 6.7). When μ= 20 ðL=DÞ (e.g. for films with D = 1.6 μm and μ= 100), the
thermal conductivity value is 0.5% less than the limited value.

As for the dependence of thermal conductivity on the film length, the region of its
intensive growth is limited by the values of L<μD when D and W are fixed. When
L> 20 μD, it reaches saturation. It should be emphasized that a huge number of

Figure 6.7: Dependencies of thermal conductivity of silicon films on the parameter μ when L = 8 μm
and film thickness D: curves 1, 2, 3 correspond to D = 1.6 μm, curves 4, 5, 6 are for D = 0.42 μm;
and film plane’s orientations {J}: curves 1, 4 refer to {J} = {100}, curves 2, 5 are for {J} = {110}, curves
3, 6 are for {J} = {111}.
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publications (see, e.g. [5–7, 28, 29]) take into account phonon boundary scattering
in sufficiently thin films ðD<< L andD<<WÞ in an analogous way as it was done in
the works of Fuchs [30] and Sondheimer [31] when analysing the conductivity of
thin metallic films.

In [5–7, 28, 29], mean free paths and phonon relaxation times in the films are
assumed to depend only on their thickness. The papers [5–7, 25, 110] claim that the
model of an isotropic medium regards boundary scattering as not leading to the an-
isotropy of thermal conductivity A direct generalization of the results of [30, 31] to
elastically anisotropic crystals gives an expression for the boundary relaxation rate,
with the latter depending only on the thickness D and the group velocity compo-
nent Vλ

g1 perpendicular to the film plane [28]:

vλBðθ,φÞ=
ð1−PÞ
ð1+PÞ

Vλ
g1

D
. (6:10)

The method of determining the specularity factor P and its relation to surface
roughness does not change the essence of the problem [8, 14, 28, 29, 30, 31, 112].
Accounting for boundary scattering in the form of (6.10) results in incorrectly treat-
ing the dependence of thermal conductivity on the geometric parameters and orien-
tations of the film planes. According to the analysis performed in [27, 106], the
thermal conductivity of films and phonon mean free paths substantially depends
not only on the film width but also on the other geometric dimensions. Moreover,
the papers [25, 27, 32, 106] show that the Casimir lengths in the model of an isotro-
pic medium not only significantly depend on the film width but also logarithmically
diverge when its width tends to infinity. As noted in [25, 32], this divergence is due
to phonons propagating almost parallel to the film plane. As demonstrated in [27,
106] (see also Section 4.2.1), taking the finite length of films into account eliminates
this divergence.

According to expression (6.10), when calculating the temperature dependencies,
the thermal conductivity of silicon films in [28] reaches its maximum and minimum
values for the {110} and {100} orientations, respectively (see [28], Figure 4a). The au-
thors conclude that in the case of phonon diffuse scattering at the film boundaries,
the plane with the {110} orientation possesses the least scattering power (and the
maximum thermal conductivity), whereas the plane with the {100} orientation has
the maximum scattering power (and the minimum thermal conductivity). These re-
sults contradict the experimental data of [19] and the outcomes of [27, 106]. As
shown in [19], two identical rectangular cross-section Si samples set in the [110]
temperature gradient direction exhibit different thermal conductivity values for
the {100} and {110} wide faces. In the first case (for the {100} wide faces), it turned
out to be 33% higher than for the {110} wide faces. This result is the opposite of the
conclusion made in [28]. It should be underscored that the predicted values of the
thermal conductivity of bulk Si samples using expressions (6.7) and (6.8) are in
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good agreement with experimental data of [19]. They quantitatively describe the
dependencies of the thermal conductivity of Si, both on the heat flux direction and
on the orientation of the side faces of the samples (see [22]).

In this regard, we have recalculated the temperature dependencies of the ther-
mal conductivity of a silicon film with a thickness of D = 100 nm and a specularity
parameter Pf100g =0.14 using formula (6.10) for three orientations of its plane (see
dashed lines 1a, 2a, and 3a in Figure 6.8) and compared with our results (solid lines
1, 2, and 3 in Figures 6.7 and 6.8).

As can be seen in the figure, the results obtained (curves 1a, 2a, and 3a) are in quali-
tative agreement with our results. That is to say, the planes with the {100} and {111}
orientations have maximum and minimum values of the thermal conductivity, re-
spectively. Obviously, the authors of [28] made a number of numerical errors in
calculating the temperature dependencies of the thermal conductivity of silicon
films for various orientations. However, the temperature dependencies computed
by using expressions (6.7) and (6.8) for the phonon-boundary relaxation rates
quantitatively differ significantly from the results deduced using formula (6.10)
(see Figure 6.8). At a temperature of T = 20 K, the above expressions for the relax-
ation rate of phonons at the film boundaries for various orientations of the film
plane yield the ratio κf100g½100� :κ

f110g
½100� :κ

f111g
½110� = 2.2:1.5:1. At the same time, using formula

Figure 6.8: Temperature dependencies of thermal conductivity in silicon films with a thickness of
D = 100 nm, width of W = 100 D, and length of L = W for various orientations of the film plane and
temperature gradient: curves 1, 1a are for {100}, [100]; curves 2, 2a refer to {110}, [100]; curves 3,
3a are for {111}, [112]. Curves 1, 2, 3 relate to the calculation using expressions (6.7) and (6.8) for
relaxation time, curves 1a, 2a, 3a are for the calculation of the relaxation times (6.10). The
specularity parameter is P = 0.14. Symbols are the experiment of [5].
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(6.10), we have:κf100g½100� :κ
f110g
½100� :κ

f111g
½110� = 3.4:1.6:1. Thus, with diffuse scattering at the

boundaries, the maximum thermal conductivity is typical of Si films with the
{100} orientation, while films with the {111} orientation possess the minimum ther-
mal conductivity. The detailed discussion of the orientation dependence of ther-
mal conductivity, presented here, speaks volumes about how important this
problem is for silicon microelectronics.

As noted earlier, the use of the term “scattering power” of planes of films with
different orientations for characterizing the influence of phonon focusing on their
thermal conductivity is physically incorrect. Casimir’s theory assumes that all pho-
nons upon collision with the surface are absorbed and then re-emitted isotropically
into half-space towards inside the sample. Therefore, whatever the orientation is,
the surface in each point diffusely scatters all phonons of all polarizations. Hence,
the scattering intensity of films with different plane’s orientations is the same. The
analysis carried out in Chapter 5 shows that the anisotropy of the film thermal con-
ductivity is due to the influence of focusing on the propagation of phonon modes in
the films. The geometric constructions presented in Chapter 4 show (see Figures 4.4
and 4.5) that, when the directions of focusing and temperature gradient coincide,
the phonon flux from the heater to the cold sink deviates towards the film axis.
Consequently, the mean free paths for these phonons become longer than those in
an isotropic medium.

To illustrate the influence of various relaxation mechanisms on the temperature
dependencies of the thermal conductivity of silicon films in different temperature
ranges, Figure 6.9 sketches the calculated outcomes for the films with D = 0.42 μm.
In the low-temperature region, boundary and isotopic scattering are the main pho-
non relaxation mechanisms for films with D = 1.6 and 0.42 μm. In the temperature
range from 17 to 40 K, accounting for these mechanisms makes it possible to agree
the computed results with the experimental data of [6, 7]. The contributions of iso-
topic scattering at T = 20 K are 33% and 21% for films with D = 1.6 and 0.42 μm,
respectively. It is worth stressing that in the case of diffuse phonon scattering at the
boundaries, the theoretical curves for films oriented along the {100} planes are 57%
and 36% below the experimental curves for films with D = 1.6 and 0.42 μm, respec-
tively (see Figure 6.9, curve 6).

Further, when analysing the temperature dependencies of the thermal conduc-
tivity of films with D = 1.6 and 0.42 μm, we set the film plane’s orientation as
{J} = {100} and the specularity parameters equal to Pf100g =0.48 and Pf100g =0.29,
respectively. As can be seen in Figure 6.9, at temperatures above 50 K, anharmonic
scattering processes play a significant role in heat resistance. When analysing the
thermal conductivity of silicon films, we use the same parameters of the anharmonic
scattering processes as it does for nanowires (see Table 6.1). With increasing temper-
ature, the role of various branches of the phonon spectrum in the thermal conductiv-
ity of films changes essentially. These changes are mainly due to the dispersion of
thermal phonons, as well as the drift motion of longitudinal phonons. As is clear
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from Figure 6.9, at T < 54 K, the slow transverse mode makes the dominant contri-
bution to thermal conductivity (see Figure 6.9, curve 8). At T = 20 K, its contribu-
tion is 48%, and the contribution of the fast mode is 42%. Long flat segments in
the spectrum of the slow transverse mode t2 when qmax=2< q< qmax (see Section 1.2,
Figure 1.5) are responsible for abnormally low values of the group velocity and, ac-
cordingly, for a great decrease in its contribution to thermal conductivity with ris-
ing temperature. In contrast, the contribution of the fast transverse mode t1 grows
faster with increasing temperature and at T > 54 K it becomes larger than that of
the t2 mode (see Figure 6.9, curve 8). Therefore, in the entire temperature range
from 54 K to 350 K, the fast transverse mode t1 makes the dominant contribution to
thermal conductivity. For transverse phonons, the diffusion contribution to ther-
mal conductivity over the entire temperature range significantly exceeds the con-
tribution of the drift motion.

At T = 20 K, the contribution of longitudinal phonons to thermal conductivity is
small; it is 10%. However, with rising temperature, this contribution increases rap-
idly mainly due to the drift motion and, at T > 200 K, it becomes comparable to the
contribution of the slow transverse mode (see Figure 6.9, curve 11). At T < 60 K, the
drift contribution to the thermal conductivity is much less than the diffusion contribu-
tion. However, in the temperature range from 100 K to 300 K, normal phonon-phonon

Figure 6.9: The temperature dependencies of thermal conductivity of silicon films with
D = 0.42 μm, L = 8 μm, and P = 0.29 for the [100] temperature gradient direction and {100} film
orientation for different phonon scattering mechanisms: (1) – boundary scattering regime,
v = ~vλf100gB½100� ; (2) – v = ~vλf100gB½100� + viso; (3) – v = ~vλf100gB½100� + viso + vU; (4) – diffusion contribution; (5) – total
thermal conductivity; (6) – boundary scattering regime for P = 0; (7) contribution of the fast
transverse mode; (8) contribution of the slow transverse mode; (9) total contribution of
longitudinal phonons; (10) diffusion contribution from the longitudinal mode; (11) contribution of
longitudinal phonon drift. Symbols ■ correspond to experimental data [6, 7].
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scattering processes dominate for longitudinal phonons, and the drift contribution to
the thermal conductivity significantly exceeds the diffusion one (see Figure 6.9, curves
10, 11). The contributions of the drift motion of phonons to the total thermal conductiv-
ity of films with D = 1.6 and 0.42 μm at T = 100 K are 15%. At T = 300 K, they reach
26% and 28%, respectively. With decreasing film thickness, the relative contribution of
longitudinal phonons to the thermal conductivity increases. However, for films with
D = 1.6 and 0.42 μm, it remains smaller than the contribution of the slow transverse
mode. As can be understood from Figure 6.9, accounting for the drift motion of longitu-
dinal phonons allows agreeing the predicted thermal conductivity values of the films
with the experimental data of [6, 7].

Figure 6.10 displays the temperature dependencies of the thermal conductivity
for films of different thicknesses in the regime of boundary phonon scattering
(v= vB, curves 2–6) and in the regime of bulk phonon relaxation mechanisms
(vV = viso + vU + vN, curve 1). The point of intersection of these curves stands for the
temperatures of transition from the boundary scattering to the bulk relaxation
mechanisms, TBV . At these temperatures, the boundary scattering provides 50% of
the total heat resistance. A numerical analysis shows that, for silicon films with
D = 1.6 and 0.42 μm, the TBV transition temperatures are 61 and 89 K, respectively.
A decrease in the film thickness and specularity parameter gives rise to an increase
in the role of the boundary scattering and to a rather rapid increase in the TBV tran-
sition temperature.

So, for example, a decline in the film thickness (with other fixed parameters) to
values of D = 0.1 and 0.05 μm when P =0.14 gives TBV = 143 and 196 K, respectively.
For films with D = 0.02 μm when P = 0, the TBV transition temperature is TBV = 345K.
As the figure indicates, for bulk materials, the TBV transition temperatures are far
below. At room temperatures, the contributions of the boundary scattering for films
with D = 1.6 nm, 0.42 nm, 0.1 nm, 0.05 nm, and 0.02 μm are 2%, 6%, 17%, 29%, and
58%, respectively. Thus, at room temperature, the phonon boundary scattering plays
an essential role in the thermal conductivity of sufficiently thin films.

Let us compare the temperature dependencies of the thermal conductivity of
silicon nanowires with circular and square-shaped cross-sections. As noted in
Section 2.3, the mean free paths of phonons for circular and square-shaped cross-
section infinite-length samples differ by less than 1% provided the equality of
areas of their transverse cross-sections. Therefore, it is of interest to calculate the
temperature dependencies of the thermal conductivity of square-shaped cross-
section nanowires at temperatures varied from 20 K to 300 K. Then, it is necessary
to compare them with the experimental data of [4] and the results obtained in [23,
113] for 56 nm and 115 nm diameter nanowires. Suppose the square’s side D and
radius R of the nanowires are defined by the condition D=

ffiffiffiffiffiffiffi
π R

p
, and their lengths

coincide (see Figure 6.11). The reflection specularity parameter for nanowires is
taken equal to P = 0.15. As can be inferred from Figure 6.11, the calculated results
of [23, 113] for nanowires with square-shaped and circular cross-sections are in
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good agreement with each other and with the experimental data of [4]. At T = 20 K,
the difference between the two calculations is 3.7%, while at T = 300 K it amounts
to 0.6 %. This means that the above values are significantly less than the experi-
mental error. Moreover, not only the full thermal conductivity values are well con-
sistent, but also the contributions of all vibrational modes, as well as the drift and
diffusion motion of phonons (see Figure 6.11).

Figure 6.10: The temperature dependencies of thermal conductivity: (a) – for bulk samples [19],
(b) – for films with the {100} orientation for bulk relaxation mechanisms (curve 1), and boundary
scattering in films with the parameters: D = 1.6 μm, L = 8 μm, and P = 0.48 (curve 2); D = 0.42 μm,
L = 8 μm, and P = 0.29 (curve 3); D = 0.10 μm, L = 100 D, and P = 0.14 (curve 4), D = 0.05 μm,
L = 100 D, and P = 0.14 (curve 5) and D = 0.02 μm, L = 100 D, and P = 0 (curve 6).
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These results indicate that, with diffuse boundary scattering, the analytical sol-
utions for the phonon relaxation rates deduced in Chapter 2 are quite adequate to
the real situation and can be used for interpreting the features of phonon transport
in nanoscale samples of various geometries.

6.2.2 Anisotropy of the Thermal Conductivity of Silicon Films

Let us explore the change in the anisotropy of thermal conductivity of films of various
widths (μ = 1, 10, and 100) with increasing temperature. Suppose the reflection spec-
ularity parameter is P = 0.14, the film length is fixed as L = 100 D, and the thickness
is D = 0.1 μm. Further, we identify the orientations of the film planes and directions
of heat flux, which provide maximum or minimum thermal conductivity in the film
plane. For this, we consider three cases of changing the κfJg½IðψÞ�ðTÞ angular dependen-
cies of thermal conductivity when the heat flux rotates in the film plane:
(1) { J} = {100},
(2) { J} = {110},
(3) { J} = {111}.

Figure 6.11: The temperature dependencies of thermal conductivity of silicon nanowires with
circular (solid curves 1, 3) and square-shaped (dashed curves 2 and 4) cross-sections of the equal
areas for 2R1 = 115 nm (1,2) and 2R2 = 56 nm (3,4), and the contributions of fast transverse
phonons (curves 5, 6), slow transverse phonons (curves 7,8), diffusion motion of longitudinal
phonon (curves 9, 10), and drift motion of longitudinal phonons (curves 11, 12) to the thermal
conductivity of nanowires with 2R2 = 56 nm. Symbols correspond to the experimental data of [4].
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For these cases, the phonon group-velocity components Vλ
g1, V

λ
g2, and Vλ

g3 in a coor-
dinate system related to the film can be extracted from formulas (4.4).

For μ = 1 or W = D, we have a nanowire with a square-shaped cross-section.
Therefore, the analytical theory developed here gives a unique opportunity to investi-
gate the change in the anisotropy of thermal conductivity during the transition from
nanowires (μ = 1) to sufficiently wide films (μ = 100) at a fixed temperature. Figure 6.12
shows such dependencies for temperatures of 20 K and 320 K and three film plane’s
orientations {J} = {100}, {110}, and {111}. Let us dwell on the peculiarities of phonon
transport in silicon square-shaped cross-section nanowires.

Unlike circular cross-section nanowires, square-shaped cross-section nanowires
exhibit thermal conductivity as depending on the orientation of the side faces.
However, this dependence is weak. An analysis of cases when the nanowire’s axis
coincides with the axis of rotation and [111] and [100] heat flux directions shows
that the anisotropy of the thermal conductivity due to a change in the orientation of
the side faces of the nanowire is less than 1%. In contrast, the heat flux changing
its direction relative to the axis of the crystal causes strong anisotropy of the ther-
mal conductivity of nanowires. In this case, the results of calculating the thermal
conductivity of square-shaped and circular cross-section nanowires are in good
agreement with each other provided the equality of their cross-sectional areas (see
Figure 6.11). A detailed analysis of the angular dependencies of thermal conductiv-
ity of silicon nanowires, given in Section 6.1.2, shows that the anisotropy of thermal
conductivity is caused by focusing and defocusing of phonons.

Against nanowires, the thermal conductivity anisotropy of sufficiently wide
films is mainly due to their orientation dependence. As can be seen in Figures 6.12,
the angular dependencies of thermal conductivity of silicon films as the tempera-
ture gradient rotates in the {100}, {110}, and {111} planes significantly differ from
both each other and those calculated for nanowires. With an increase in the film
width, the values of thermal conductivity dramatically increment in comparison
with those for nanowires. For example, at T = 20 K and a change in the μ parameter
from 1 to 100, a rise of the values of the κf100g½IðψÞ� thermal conductivity of films oriented
along the {100} plane is 3.53 and 5.35 times in the [100] and [110] directions, respec-
tively. For the {110} plane, the values of the κf110g½IðψÞ� thermal conductivity in the
I = [100] and [110] directions rise by 2.50 and 2.51 times, respectively. An increase in
the film width leads to a qualitative change in the angular dependencies of the ther-
mal conductivity as compared with nanowires: the dependence of thermal conduc-
tivity on the heat flux direction weakens. For films with the {100} and {111} planes
for μ = 100 (L = 100 D), it becomes isotropic although small anisotropy still remains
for μ = 10 (see Figure 6.12a, b). At T = 20 K, for nanostructures with μ = 1, 10, and
100, the ratios κf100g½100� ðμÞ=κf100g½110� ðμÞ turn out to be equal to 1.52, 1.19, and 1.00, respec-
tively (see Table 6.2).

It should be pointed out that the maximum values of the thermal conductivity
are achieved for the {100} orientation, whereas the minimum ones are observed for
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Figure 6.12: The κ(ψ) angular dependencies of thermal conductivities, (W/mK), of silicon films with
D = 0.10 μm, L = 100 D, and P = 0.14 for temperatures of 20 K (a,c,e) and 320 K (b,d,f) for the film
plane’s orientations {J} = {100} (a,b), {110} (c,d), and {111} (e,f), calculated for μ = 1 (curves 1),
μ = 10 (curves 2), and μ = 100 (curves 3). Symbols ■ correspond to the experimental data of [5].
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the {111} orientation (see Figure 6.12a, c). At T = 20 K and P = 0.14, the ratio of thermal
conductivities of sufficiently wide Si films (μ = 100) oriented along the above orienta-
tions is 2.2 (see Table 6.2). With an increase in temperature, the role of bulk scattering
mechanisms grows, and the anisotropy of the thermal conductivity drops. For exam-
ple, at T = 320 K, for nanostructures with μ = 1 and 10, the ratio declines to 1.16 and
1.01, respectively (see Table 6.2). With increasing temperature, the anisotropy associ-
ated with the dependence of thermal conductivity on the film plane’s orientation also
falls off: the ratio of thermal conductivities for the orientations {100} and {111} is 2.2
at T = 20 K and μ = 100, while at T = 320 K it diminishes to 1.20 (see Table 6.2). In this
case, at room temperature, the contribution of boundary scattering to the thermal re-
sistance of nanofilms with D = 0.1 μm amounts to 17%. For the {110} plane, the
κf110g½IðψÞ�ðμÞ angular dependencies in sufficiently wide films acquire an ellipsoidal
form, with the long axis coinciding with the [100] direction. For this orientation,
at T = 20 K and μ = 1, 10, 100, the ratios of thermal conductivity values are equal
to κf110g½100� ðμÞ=κf110g½110� ðμÞ= 1.50, 1.60, and 1.50, while at T = 320 K it decreases to values
of 1.17, 1.16, and 1.15, respectively (see Table 5.2).

Thus, it has been shown that the angular dependencies of the thermal conduc-
tivity qualitatively change when going over from square-shaped cross-section nano-
wires to sufficiently wide films. Secondly, when diffuse scattering at the boundaries
of Si films takes place, maximum thermal conductivity is typical of films with the
{100} orientation, whereas films with the {111} orientation possess minimum thermal
conductivity.

Table 6.2: The thermal conductivity ratios for silicon nanofilms
and square-shaped nanowires in symmetrical directions for
D = 0.10 μm at temperatures of 20 K and 320 K.

T, K μ κf100g½100� =κ
f100g
½110� κf110g½100� =κ

f110g
½110� κf110g½100� =κ

f110g
½111� κf110g½100� =κ

f111g
½110�

  . . . .

 . . . .

 . . . .

  . . . .

 . . . .

 . . . .
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6.3 Conclusion

The main results of the sixth chapter can be formulated as follows:
1. The use of the phonon-boundary relaxation times calculated in the mono-

graph and the three-mode Callaway model allowed to adequately describe the
temperature dependences of the thermal conductivity of silicon nanowires with
a diameter of more than 50 nm and films with a thickness of more than 20 nm.

2. The optimal film plane’s orientations and directions of the heat flux have been
found, which ensure the maximum or minimum heat removal from the ele-
ments of silicon microcircuits at both low and room temperatures. It has been
shown that, with diffuse phonon-boundary scattering, Si films oriented along
the {100} and {111} planes possess the highest and lowest thermal conductivity,
respectively.

3. It has been shown that the dispersion of thermal phonons has a significant in-
fluence on the thermal conductivity of silicon nanowires and thin films. Long
flat segments in the spectrum of slow transverse short-wave phonons cause
abnormally low group-velocity values and, accordingly, a significant decrease
in their contribution to the thermal conductivity with rising temperature.

4. Research on the role of boundary scattering shows that, at room temperature,
the contribution of boundary scattering to the thermal resistance reaches 60%
both for nanowires with a diameter of 56 nm and for films with a thickness of
20 nm.
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Chapter 7
Prospects for Further Research

Currently, the theory of phonon transport in bulk and nanoscale monocrystalline
samples is still far from being completed, and a number of important problems
have not yet been solved. One of these challenges is the influence of anisotropy of
elastic energy on the propagation of phonons, their focusing, and thermal conduc-
tivity of monocrystalline samples. The main drawback of existing theories for de-
scribing the temperature dependencies of the thermal conductivity is the need to
introduce a significant number of fitting parameters for phonon boundary scatter-
ing, normal phonon–phonon scattering processes and the Umklapp processes
(see, for example, [9, 35, 36, 85]). One of the achievements of the above theory is
finding the analytical solution to the problem of diffuse phonon scattering at the
boundaries of finite-length samples with circular, square-shaped, and rectangular
cross-sections and determination of the corresponding phonon relaxation times.
This makes it possible to get rid of fitting parameters of the phonon-boundary
scattering, accounting for different directions of the heat flux or geometric param-
eters of the samples. We have shown that the method developed in [22] for taking
into account phonon focusing and analytical solutions for phonon relaxation
times at the boundaries of finite-length samples with circular, square-shaped, and
rectangular cross-sections allows one to adequately describe the temperature de-
pendencies of the thermal conductivity of silicon crystals [19] for all side face’s
orientations of the samples and directions of the temperature gradient. Moreover,
in the range from 3 to 15 K, when scattering at the boundaries and by isotopic disor-
der dominates, the theory of [20–22] quantitatively describes the above temperature
dependencies without resorting to fitting parameters. With increasing temperature,
the contribution of anharmonic scattering processes increases and the discrepancy
between the predicted and experimental data grows. A maximum difference between
the calculated and experimental values of [19] takes place in the vicinity of the maxi-
mum thermal conductivity when the contributions of boundary scattering and bulk
relaxation mechanisms to the thermal resistance become equal. Although the devia-
tion from the experimental data in the vicinity of the maximum is not large, the cal-
culated values for the [001] directions turn out to be 5% higher than the measured
ones and below the experimental values by 6% for the [111] direction. However, the
calculated values of the anisotropy are three times bigger than those from the experi-
ment. At higher temperatures, the thermal conductivity anisotropy drops more slowly
than in the experiment. As already noted, the Matthiessen rule is a possible reason
for this discrepancy when going over from boundary scattering to bulk one. This can
be explained by the fact that phonon boundary scattering occurs near the surface
of the sample, whereas bulk processes are distributed uniformly throughout the
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volume. Therefore, the relaxation rates in these scattering mechanisms cannot be
summed up additively, as the Matthiessen rule claims. Obviously, the maximum devi-
ation from the Matthiessen rule can be revealed provided the equality of the phonon
relaxation rates in bulk and boundary scattering mechanisms. Analysing the role of
low-energy phonons in the thermal conductivity and thermoelectric power of mono-
crystalline semiconductors, Herring [38, 105] also pointed out the weakness of the
Matthiessen rule at temperatures near the maximum thermal conductivity. To cor-
rectly account for the combined action of the boundary and bulk phonon scattering
mechanisms, the Boltzmann kinetic equation (BKE) with allowance for the inhomoge-
neous distribution of the heat flux over the transverse cross-section of the sample
needs to be solved. With taking phonon focusing into account, this problem is rele-
vant but rather complicated. It requires separate consideration.

Therefore, one of the promising trends for further analysis of phonon transport
in elastically anisotropic films and nanowires is to study the influence of phonon
focusing on competition between the boundary and bulk phonon relaxation mecha-
nisms using the BKE. The results obtained by the BKE method for thermal conduc-
tivity of bulk materials and nanostructures must be compared with the outcomes of
[20–24, 27, 69–71, 106] found within the phenomenological Casimir–McCurdy method
[13, 19]. This allows one to:
1) Circumscribe the limits of applicability of the phenomenological method for an-

alysing phonon transport in nanostructures of different geometry.
2) Verify the justification of utilizing the Matthiessen rule for boundary and bulk

scattering mechanisms when studying phonon transport in nanostructures
both far from and in the vicinity of the temperature of the transition from
boundary scattering to bulk relaxation mechanisms.

3) Analyse the dependencies of the thermal conductivity of nanostructures on the
geometric parameters, directions of the heat flux, and film plane’s orientations rel-
ative to the crystal axes.

4) Make clear the role of interference of the boundary and bulk scattering mecha-
nisms for phonon transport in nanostructures.

5) Apply the developed theory to analysing the thermal conductivity in isotopi-
cally highly enriched crystals of Ge, Si, and diamond.

It should be emphasized that research on the influence of phonon focusing covers
not only phonon transport in dielectric crystals. It is relevant in investigating ki-
netic phenomena in metals and semiconductors, which are due to the drag of elec-
trons by phonons and their mutual drag. At sufficiently low temperatures, when
the electron–phonon interaction is a dominant electron relaxation mechanism (it
must also dominate for the mutual phonon drag), kinetic coefficients such as the
electrical conductivity and drag thermoelectric power become dependent on the
phonon momentum relaxation mechanism [67, 114]. In this interval of tempera-
tures, diffuse scattering at the sample boundaries is the main mechanism of
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phonon relaxation [67, 114]. Certainly, the phonon focusing that gives rise to the
anisotropy of thermal conductivity in the regime of the Knudsen phonon gas flow
must also cause anisotropy of the drag thermoelectric power. Earlier, when exploring
the drag thermoelectric power in semiconductors, the model of an isotropic medium
has been used for phonons, as a rule (see, e.g., [67, 114]). Therefore, the effects due to
the influence of anisotropy of elastic energy on the electron-phonon drag could not be
considered. It is well known [67, 114] that the model of an isotropic medium offers the
interaction of electrons only with longitudinal phonons through the deformation po-
tential. However, quasi-longitudinal and quasi-transverse phonons can propagate in
elastically anisotropic crystals. Moreover, quasi-transverse phonons have a non-zero
longitudinal component and can also interact with electrons through the deformation
potential. An analysis of elastic waves in cubic crystals has shown that the contribu-
tion of the transverse component to quasi-longitudinal vibrations in cubic crystals is
small and can be neglected [44]. The contribution of the longitudinal components
to quasi-transverse modes is not small. Its maximum values for the slow transverse
mode amount to 13, 14, and 16.5% for HgSe: Fe, Si, and Ge crystals, respectively.
For InSb, GaAs, and KCl crystals, it reaches 16, 17, and 27%, respectively [44].
Therefore, to calculate and analyse the contributions of quasi-longitudinal and
quasi-transverse phonons to electron-phonon drag and thermoelectric effects in
semiconductor crystals and nanostructures based on them is of great interest.
Moreover, the contribution of the transverse modes to the thermal conductivity of
Si and Ge at low temperatures in the [100] directions exceeds 90%. This is due to
both the higher density of phonon states and the influence of focusing of phonons on
their mean free paths. Therefore, one of the tasks for theory and technical applica-
tions is to study the influence of elastic energy anisotropy on electron-phonon drag
and thermoelectric phenomena in semiconductor crystals and nanostructures based
on them at low temperatures.

The first step in this end has been done in [115], where the influence of the an-
isotropy of elastic properties on the electron–phonon drag and thermoelectric phe-
nomena in a gapless HgSe: Fe semiconductor with degenerate carrier statistics have
been studied, and a method of their calculating has been developed, as well. The
influence of phonon focusing on the dependencies of the thermopower on the geo-
metric parameters and directions of the heat flux relative to the crystal axes is ana-
lysed. The crystallographic directions that provide the maximum and minimum
values of the thermopower are determined. The role of quasi-longitudinal and
quasi-transverse phonons in the drag thermoelectric power in HgSe:Fe crystals at
low temperatures is explained. It is shown that the contribution of longitudinal
phonons to the drag thermoelectric power and their mean free paths become maxi-
mal in the [111] focusing direction, whereas their minimum values are observed in
the [001] defocusing direction. The contribution of the slow quasi-transverse mode
reaches a maximum in the [001] focusing direction and, for long enough samples,
can exceed the contribution of quasi-longitudinal phonons. Therefore, analysing
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the drag thermoelectric power in elastically anisotropic crystals requires accounting
for both contributions.

In light of the findings secured in Ref. [115], it seems interesting to examine the
influence of phonon focusing on electron–phonon drag in monocrystalline nanowires,
films, and heterostructures.

Chapter 7 Prospects for Further Research 201

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography

[1] D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin
and S.R. Phillpot, Nanoscale thermal transport, Journal of Applied Physics. 93 (2003),
pp. 793–818.

[2] A. D. McConnell and K. E. Goodson, Nanoscale thermal transport, Annual Review on Heat
Transfer. 14 (2005), pp. 129–168.

[3] D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King,
G. D. Mahan, A. Majumdar, H.J. Maris, S. R. Phillpot, E. Pop and L. Shi, Nanoscale thermal
transport. II. 2003–2012, Applied Physics Reviews. 1 (2014), p. 011305.

[4] D. Li, Y. Wu, P. Kim, L. Shi, P. Yang and A. Majumdar, Thermal conductivity of individual
silicon nanowires , Applied Physics Letters. 83 (2003), pp. 2934–2936.

[5] W. Liu and M. Asheghi, Phonon–boundary scattering in ultrathin single-crystal silicon layers,
Applied Physics Letters. 84 (2004), pp. 3819–3821.

[6] M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung and S. S. Wong, Temperature-
dependent thermal conductivity of single-crystal silicon layers in SOI substrates, Journal
of Heat Transfer. 120 (1998), pp. 30–36.

[7] M. Asheghi, Y. K. Leung, S. S. Wong and K. E. Goodson, Phonon-boundary scattering in thin
silicon layers, Applied Physics Letters. 71 (1997), pp. 1798–1800.

[8] J.M. Ziman, Electrons and Phonons. The Theory of Transport Phenomena in Solids, Oxford
University Press, New York (1960), 554 pp.

[9] B. M. Mogilevsky and A. F. Chudnovsky, Thermal Conductivity of Semiconductors, Nauka,
Moscow (1972), 536 pp. (in Russian)

[10] V.P. Silin, Introduction to the Kinetic Theory of Gases, Nauka, Moscow (1971), 332 pp.
(in Russian)

[11] M. Devien, The Flow and Heat Transfer of Rarefied Gases. Trans. from English M.: Publishing
house of foreign literature (1962), 188 pp. (in Russian)

[12] M. Knudsen, Die Gesetze der Molekularströmung und der inneren Reibungsströmung der
Gase durch Röhren, Annalen der Physik 333 (1909), pp. 75–130.

[13] H. B. G. Casimir, Note on the conduction of heat in crystals, Physica 5 (1938) pp. 495–500.
[14] R. Berman, F. E. Simon and J. M. Ziman, The thermal conductivity of diamond at low

temperatures, Proceedings of Royal Society of London A. 220 (1953), pp. 171–183.
[15] R. Berman, E. L. Foster and J. M. Ziman, Thermal conduction in artificial sapphire crystals

at low temperatures. I. nearly perfect crystals, Proceedings of Royal Society of London A. 231
(1955), pp. 130–144.

[16] B. Taylor, H.J. Maris and C. Elbaum, Phonon focusing in solids, Physical Review Letter.
23 (1969), pp. 416–419.

[17] H. J. Maris, Enhancement of heat pulses in crystals due to elastic anisotropy, Journal of
Acoustics Soceity of Am. 50 (1971), pp. 812–818.

[18] J. P. Wolfe, Imaging Phonons: Acoustic Wave Propagation in Solids, Cambridge University
Press, New York. (1998), 411 p.

[19] A. K. McCurdy, H. J. Maris and C. Elbaum, Anisotropic heat conduction in cubic crystals
in the boundary scattering regime, Physical Review B. 2 (1970), pp. 4077–4083.

[20] I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev and A. V. Inyushkin, Relaxation times and mean
free paths of phonons in the boundary scattering regime for silicon single crystals, Physics
of the Solid State. 55 (2013), pp. 31–44.

[21] I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev and A. V. Inyushkin, Features of phonon transport
in silicon rods and thin plates in the boundary scattering regime. The effect of phonon
focusing at low temperatures, Physica B. 416 (2013), pp. 81–87.

https://doi.org/10.1515/9783110670509-009

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110670509-009


[22] I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev and A. V. Inyushkin, Effect of phonon focusing on
the temperature dependence of thermal conductivity of silicon, Physica Status Solidi B. 251
(2014), pp. 991–1000.

[23] I. G. Kuleyev, I. I. Kuleyev and S. M. Bakharev, Phonon focusing and temperature
dependences of the thermal conductivity of silicon nanowires, Journal of Experimental
And Theoretical Physics. 118 (2014), pp. 253–265.

[24] I. I. Kuleyev, S.M. Bakharev, I. G. Kuleyev and V. V. Ustinov, Phonon focusing and
temperature dependences of thermal conductivity of silicon nanofilms, Journal of
Experimental And Theoretical Physics. 120 (2015), pp. 638–650.

[25] H. J. Maris and S. Tamura, Heat flow in nanostructures in the Casimir regime, Physical Review
B. 85 (2012), p. 054304.

[26] N. Mingo, Calculation of Si nanowire thermal conductivity using complete phonon dispersion
relations, Physical Review B. 68 (2003), p. 113308.

[27] I.I. Kuleyev, I.G. Kuleyev and S.M. Bakharev, Low temperature anisotropy of the thermal
conductivity of single crystal nanofilms and nanowires, Journal Of Experimental And
Theoretical Physics. 119 (2014), pp. 460–472.

[28] Z. Aksamija and I. Knezevic, Anisotropy and boundary scattering in the lattice thermal
conductivity of silicon nanomembranes, Physical Review B. 82 (2010), p. 045319.

[29] J. E. Turney, A. J. H. McGaughey and C. H. Amon, In-plane phonon transport in thin films,
Journal of Applied Physics. 107 (2010), p. 024317.

[30] K. Fuchs, The Conductivity of Thin Metallic Films According to the Electron Theory of Metals,
Mathematical Proceedings of the Cambridge Philosophical Society. 34 (1938), pp. 100–108.

[31] E.H. Sondheimer, The mean free path of electrons in metals, Advances in Physics. 1 (1952),
pp. 1–42.

[32] M. P. Zaitlin, Boundary scattering of phonons in noncrystalline materials, Physical Review
B. 12 (1975), pp. 4487–4492.

[33] W. Li, N. Mingo, L. Lindsay, D. A. Broido, D. A. Stewart and N. A. Katcho, Thermal conductivity
of diamond nanowires from first principles, Physical Review B. 85 (2012), p. 195436.

[34] J. Guo, B. Wen, R. Melnik, S. Yao and T. Li, Geometry and temperature dependent thermal
conductivity of diamond nanowires : A non-equilibrium molecular dynamics study, Physica
E: Low-dimensional Systems and Nanostructures. 43 (2010), pp. 155–160.

[35] R. Berman, Thermal Conduction in Solids, Published Oxford: Clarendon Press. (1976),
193 p.

[36] V.L. Gurevich, Transport in phonon systems, Elsevier Science Ltd. (1988), 434 p.
[37] M. Asheghi, K. Kurabayashi, R. Kasnavi and K. Goodson, Thermal conduction in doped

single-crystal silicon films, Journal of Applied Physics. 91 (2002), pp. 5079–5088.
[38] C. Herring, Role of low-energy phonons in thermal conduction, Physical Review. 95 (1954),

pp. 954–965.
[39] I. G. Kuleyev, I. I. Kuleyev and S. M. Bakharev, Effect of dispersion and damping of thermal

phonon states on the longitudinal ultrasonic absorption in germanium crystals, Physics
of the Solid State. 53(8) (2011), pp. 1644–1657.

[40] I. G. Kuleyev, I. I. Kuleyev and I. Yu. Arapova, Interaction of collinear and noncollinear
phonons in anharmonic scattering processes and their role in ultrasound absorption of fast
quasi-transverse modes in cubic crystals , Journal of Physics: Condensed Matter. 22(9)
(2010), p. 095403.

[41] G. Leibfried, Gittertheorie der Mechanischen und Thermischen Eigenschaften der Kristalle,
Berlin: Springer-Verlag (1955), pp. 104–324.

[42] F. I. Fedorov, Theory of Elastic Waves in Crystals, Springer Science & Business Media (2013),
375 pp.

204 Bibliography

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



[43] C. Kittel, Introduction to Solid State Physics, Wiley (2004), 704 pp.
[44] I.G. Kuleev, I. I. Kuleev, Elastic waves in cubic crystals with positive or negative anisotropy

of second-order elastic moduli, Physics of the Solid State. 49 (2007), pp. 437–444.
[45] B. Taylor, Focusing of phonons in crystalline solids due to elastic, Physical Review B. 3

(1971), pp. 1462–1472.
[46] R. Truell, C. Elbaum, B. B. Chick, Ultrasonic Methods in Solid State Physics, New York

and London: Academic Press (1969), 464 p.
[47] J. W. Tucker and V. W. Rampton, Microwave Ultrasonics in Solid State Physics, Elsevier

Science Publishing Co Inc.,U.S. (1972), 428 p.
[48] W. Voigt, Lehrbuch der Kristalphysik, Springer-Verlag (2014), 979 p.
[49] S. Simons, The Absorption of Very High Frequency Sound in Dielectric Solids, Mathematical

Proceedings of the Cambridge Philosophical Society. 53(7) (1957), pp. 702–716.
[50] Y. K. Yogurtcu, A. J. Miller and G.A. Saunders, Elastic behaviour of YAG under pressure,

Journal of Physics C: Solid State Physics. 13 (36) (1980), pp. 6585.
[51] W.C. Overton and R. T. Swim, The adiabatic elastic constants of rock salt, Physical Review.

84 (1951), pp. 758–762.
[52] H. J. McSkimin and W. L. Bond, Elastic moduli of diamond, Physical Review. 105 (1957),

pp. 116–121.
[53] H. J. McSkimin and P. Andreatch, Elastic moduli of silicon vs hydrostatic pressure at 25.0 C

and 195.8 C, Journal of Applied Physics. 35(7) (1964), pp. 2161–2165.
[54] D. R. Huffman, M. H. Norwood, Specific heat and elastic constants of calcium fluoride at low

temperatures, Physical Review. 117 (1960), pp. 709–711.
[55] J. K. Galt, Mechanical properties of NaCl, KBr, KCl, Physical Review. 73 (1948),

pp. 1460–1462.
[56] J.R. Drabble and A.J. Brammer, Third order elastic constants of gallium arsenide, Solid State

Communications. 4(9) (1966), pp. 467–468.
[57] C. V. Briscoe and C. F. Squire, Elastic constants of LiF from 4.2 K to 300 K by ultrasonic

methods, Physical Review. 106 (1957), pp. 1175–1177.
[58] A. F. Wright, Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN, Journal

of Applied Physics. 82(6) (1997), pp. 2833–2839.
[59] A. Lehoczky, D. A. Nelson and C. R. Whitsett, Elastic constants of mercury selenide, Physical

Review. 188 (1969), pp. 1069–1073.
[60] G. Nilsson and G. Nelin, Phonon dispersion relations in Ge at 80 K, Physical Review B. 3(2)

(1971), pp. 364.
[61] G. Nilsson and G. Nelin. Study of the homology between silicon and germanium by thermal-

neutron spectrometry, Physical Review B. 6 (1972), pp. 3777–3786.
[62] H. Bilz, W. Kress, Phonon Dispersion Relations in Insulators, New York: Springer Ser.

in Solid-State Sci.10, Springer-Verlag Berlin-Heidelberg (1979), 241 p.
[63] I.I. Kuleyev, I.G. Kuleyev, S.M. Bakharev and A.V. Inyushkin, Effect of dispersion

on the phonon focusing and anisotropy of thermal conductivity of silicon single crystals
in the boundary scattering regime, Physics of the Solid State. 55 (2013), pp. 1545–1556.

[64] G.G. Devyatykh, A. V. Gusev, A.M. Gibin and O.V. Timofeev, Heat capacity of high-purity
silicon, Inorganic Materials. 33(12) (1997), pp. 1206–1209.

[65] P. Flubacher, A. J. Leadbetter and J. A. Morrison, The heat capacity of pure silicon and
germanium and properties of their vibrational frequency spectra, Philosophical Magazine. 4,
39 (1959), pp. 273–294.

[66] J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, Oxford:
Oxford University Press (1962), 554 p.

Bibliography 205

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



[67] A. I. Anselm, Introduction To Semiconductor Theory, Mir Publishers, Moscow (1981),
646 p.

[68] G. F. Miller and M. J. P. Musgrave, On the propagation of elastic waves in aeolotropic media.
III. Media of cubic symmetry, Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences. 236 (1206), (1956), pp. 352–383; M. J. P. Musgrave, Proc.
Roy. Soc. А 226(1206)(1954), pp. 339–356.

[69] I. I. Kuleev, S.M. Bakharev, I.G. Kuleev and V. V. Ustinov, Effect of phonon focusing on
Knudsen flow of phonon gas in single-crystal nanowires made of spintronics materials,
Physics of Metals and Metallography. 118 (2017), pp. 10–20.

[70] I. I. Kuleyev, S. M. Bakharev, I. G. Kuleyev and V.V. Ustinov, Influence of phonon focusing
on the Knudsen flow of phonon gas in single-crystal nanofilms of spintronic materials,
Physics of Metals and Metallography. 118 (2017), pp. 316–327.

[71] I.I. Kuleyev, S.M. Bakharev, I.G. Kuleyev and V.V. Ustinov, The influence of phonon focusing
on density of states and the Knudsen phonon gas flow in nanowires with different types of
anisotropy of elastic energy, Physical status solidi C. 14(3-4) (2017), p. 1600263.

[72] A. G. Every, Formation of phonon-focusing caustics in crystals, Physical Review B. 34(4)
(1986), p. 2852.

[73] M. Lax and V. Narayanamurti, Phonon magnification and the Gaussian curvature
of the slowness surface in anisotropic media: detector shape effects with application
to GaAs, Physical Review B. 22(10) (1980), pp. 4876–4897.

[74] J.A. Shields, J.P. Wolfe and S.I. Tamura, Channeling of acoustic phonons in silicon:
the polarization dependence in elastic scattering, Zeitschrift fur Physik B. 76 (1989),
pp. 295–301.

[75] Cz. Jasiukiewicz, T. Paszkiewicz and D. Lehmann, Phonon focussing patterns: Calculation
of response of finite area detectors to pulsed ballistic beams of dispersive and
dispersionless phonons, Zeitschrift fur Physik B. 96 (1994), pp. 213–222.

[76] J. de Klerk and M. J. P. Musgrave, Internal conical refraction of transverse elastic waves
in cubic crystal, Proceedings of the Physical Society. Section B. 68 (1955), p. 81.

[77] P. C. Waterman, Orientation dependence of elastic waves in single crystals, Physical Review.
113 (1959), pp. 1240–1253.

[78] K.B. Vlasov and A.B. Rinkevich, Internal conical refraction of elastic waves, Acoustical Journal
41 (1)(1995) pp. 67–71. (in Russian)

[79] E. Held, W. Klein and R.P. Huebener, Characterization of single-crystalline GaAs by imaging
with ballistic phonons, Zeitschrift fur Physik B: Condensed Matter. 75 (1989), pp. 17–29.

[80] G.A. Northrop and J. P. Wolfe, Ballistic phonon imaging in germanium, Physical Review B. 22
(12) (1980), p. 6196.

[81] J. Philip and K. S. Viswanathan, Phonon magnification in cubic crystals , Physical Review
B. 17(12) (1978), p. 4969.

[82] A. G. Every, Ballistic phonons and the shape of the ray surface in cubic crystals , Physical
Review B. 24(6) (1981), p. 3456.

[83] A.V. Pogorelov, Differential Geometry, Noordhoff, Groningen (1960), 172 p.
[84] I. G. Kuleev and S. M. Bakharev, Phonon Flux Enhancement Factors in Crystals with Different

Elastic Energy Anisotropy Types, Physics of the Solid State 60(7) (2018), pp. 1263–1272.
[85] P. Carruthers, Theory of thermal conductivity of solids at low temperatures, Reviews

of Modern Physics. 33 (1961), pp. 92–138.
[86] Y. P. Joshi, Effect of phonon focussing on thermal conductivity of silicon, Pramana. 18 (1982),

pp. 461–472.
[87] J. P. Harrison and J. P. Pendrys, Thermal conductivity of cerium magnesium nitrate, Physical

Review B. 7(8) (1973), p. 3902.

206 Bibliography

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



[88] H. Lundt, M. Kerstan, A. Huber and P. O. Hahn, Subsurface damage of abraded silicon
wafers, Semiconductor Silicon/1994, Proceedings of the 7th International Symposium on
Silicon Materials Science and Technology. – The Electrochemical Society (1994),
pp. 218–224.

[89] J.R. Drabble and H.J. Goldsmid, Thermal Conduction in Semiconductors, Pergamon press,
Oxford, London, New York, Paris (1961), p. 235.

[90] S. Uma, A. McConnell, M. Asheghi, K. Kurabayashi and K. Goodson, Temperature-dependent
thermal conductivity of undoped polycrystalline silicon layers, International Journal of
Thermophysics. 22 (2001), pp. 605–616.

[91] J. Callaway, Model for lattice thermal conductivity at low temperatures, Physical Review.
113(4) (1959), p. 1046.

[92] J. A. Krumhansl, Thermal conductivity of insulating crystals in the presence of normal
processes, Proceedings of the Physical Society. 85(5) (1965), p. 921.

[93] B. H. Armstrong, N-processes, the relaxation-time approximation, and lattice thermal
conductivity , Physical Review B. 32(6) (1985), pp. 3381–3390.

[94] I.G. Kuleev and I.I Kuleev, Normal phonon-phonon scattering processes and the thermal
conductivity of germanium crystals with isotope disorder, Journal of Experimental and
Theoretical Physics. 93(3) (2001), pp. 568–578; The effect of normal phonon-phonon
scattering processes on the maximum thermal conductivity of isotopically pure silicon
crystals, Journal of Experimental and Theoretical Physics. 95(3) (2002), pp. 480–490

[95] M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. P. Zhernov, A. V. Inyushkin,
A. N. Taldenkov, V. I. Ozhogin, K. M. Itoh and E. E. Haller, Thermal conductivity of germanium
crystals with different isotopic compositions, Physical review B. 56 (15) (1997), p. 9431.

[96] A. P. Zhernov and A. V. Inyushkin, Effect of isotopic composition on phonon modes. Static
atomic displacements in crystals, Physics-Uspekhi. 44 (2001), pp. 785–811; Kinetic
coefficients in isotopically disordered crystals, Phys. Usp. 45 (2002), pp. 527–552.

[97] M. G. Holland, Analysis of lattice thermal conductivity , Physical Review. 132(6) (1963),
p. 2461.

[98] L. Landau and G. Rumer, Absorption of sound in solids, Physikalishce Zeitschrift
Sowjetunion. 11 (1937), pp. 18–25.

[99] S. Simons, On the mutual interaction of parallel phonons, Proceedings of the Physical
Society. 82(3) (1963), p. 401.

[100] I. G. Kuleyev, I. I. Kuleyev and I. Yu. Arapova, Anharmonic processes of scattering and
absorption of slow quasi-transverse modes in cubic crystals with positive and negative
anisotropies of second-order elastic moduli , Journal of Physics: Condensed Matter. 20
(2008), p. 465201; Interaction of collinear and noncollinear phonons in anharmonic
scattering processes and their role in ultrasound absorption of fast quasi-transverse modes
in cubic crystals, Journal of Physics: Condensed Matter. 22 (2010), p. 0945403.

[101] P. G. Klemens, The scattering of low-frequency lattice waves by static imperfections,
Proceedings of the Physical Society. Section A. 68(12) (1955), p. 1113.

[102] S. I. Tamura, Isotope scattering of dispersive phonons in Ge, Physical Review B. 27(2) (1983),
pp. 858–866.

[103] A.P. Zhernov and A.V. Inyushkin, Isotopic Effects in Solids, Russian Research Center,
Kurchatovski Institut, Moscow (2001). (in Russian)

[104] I. G. Kuleyev, I. I. Kuleyev and I. Y. Arapova, Quasi-transverse ultrasound absorption due
to point defects and anharmonic scattering processes in cubic crystals with positive and
negative anisotropies of the second-order elastic moduli , Journal of Physics: Condensed
Matter. 19(40), (2007), p. 406216.

Bibliography 207

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



[105] C. Herring, Theory of the thermoelectric power of semiconductors, Physical Review.
96 (1954), pp. 1163–1187.

[106] I.I. Kuleyev, I.G. Kuleyev and S.M. Bakharev, Phonon focusing and features of phonon
transport in the silicon nanofilms and nanowires at low temperatures, Physical Status Solidi
B. 252 (2015), pp. 323–332.

[107] M. Smoluchowski, Zur kinetischen Theorie der Transpiration und Diffusion verdünnter Gase,
Annalen der Physik. 338(16) (1910), pp. 1559–1570.

[108] Y. F. Zhu, J. S. Lian and Q. Jiang, Re-examination of Casimir limit for phonon traveling in
semiconductor nanostructures , Applied of Physical Letter. 92 (2008), p. 113101.

[109] I. I. Kuleev, Anisotropy of the mean free paths of phonons in single-crystal films of
germanium, silicon, and diamond at low temperatures, Physics of the Solid State. 59 (2017),
pp. 682–693.

[110] Y. Kruglyak, Landauer-Datta-Lundstrom generalized transport model for nanoelectronics,
Journal of Nanoscience. 3 (2014), 02NAESF01(4pp).

[111] W. O’Mara, R. B. Herring and L. P. Hunt, Handbook of Semiconductor Silicon Technology.
1 edition. William Andrew (1990), 795 p.

[112] S. B. Soffer, Statistical model for the size effect in electrical conduction, Journal of Applied
Physics. 38(4) (1967), pp. 1710–1715.

[113] I. G. Kuleyev, I. I. Kuleyev and S. M. Bakharev, Anisotropy and temperature dependences
of thermal conductivity for silicon nanowires , Bulletin of the Russian Academy of Sciences:
Physics. 78 (2014), pp. 905–907.

[114] V.M. Askerov, Electron Transport Phenomena in Semiconductors, World Scientific (1994),
394 p.

[115] I. G. Kuleyev, I. I. Kuleyev, S. M. Bakharev and V. V. Ustinov, Phonon focusing and
electron–phonon drag in semiconductor crystals with degenerate charge-carrier statistics,
Journal of Experimental And Theoretical Physics. 123 (2016), pp. 489–495.

[116] I. G. Kuleyev, I. I. Kuleyev, and S. M. Bakharev, McCurdy’s Effects in the Thermal
Conductivity of Elastically Anisotropic Crystals in the Mode of Knudsen Phonon-Gas Flow,
Semiconductors 52(13) (2018), pp. 1643–1652.

[117] I. I. Kuleev, Influence of focusing on phonon propagation and thermal conductivity in single
crystal films with different types of anisotropy of elastic energy, Physics of the Solid State.
60(5) (2018), pp. 870–876.

208 Bibliography

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



Index

amplification factor 58
anharmonic scattering processes 3, 16, 109,

113, 176, 189, 198
anisotropic continuum model 5, 8, 9, 13, 25,

26, 28, 30, 33, 34, 35, 37, 60, 81, 82, 84,
88, 104, 107, 114, 125, 126, 128, 147, 173

Brillouin zone 5, 9, 25, 26, 27, 28, 29, 30,
74, 104

Callaway model IX, 3, 7, 100, 102, 103, 173, 182
Casimir lengths 2, 4, 88, 91, 92, 130, 131, 132,

133, 151, 172, 187
Casimir theory 2, 4, 81, 129, 166, 172
Casimir-McCurdy phenomenological method 5
Christoffel equation 5
constant-energy surface 69, 71, 119
cubic crystals IX, 2, 4, 5, 8, 9, 12, 14, 15, 16, 17,

18, 19, 21, 22, 23, 25, 36, 37, 39, 51, 55, 57,
58, 64, 66, 71, 72, 73, 74, 83, 100, 105,
107, 124, 125, 126, 130, 200

Debye theory 5, 125, 173, 182
Debye wave vector 8, 14, 25, 34
defocusing directions 5, 8, 39, 53, 57, 74, 92,

93, 121, 131, 137, 138, 156, 158, 162, 163,
168, 170, 171

densities of phonon states 6, 53, 55, 56, 139,
146, 152

diffuse phonon scattering IX, 1, 6, 75, 84, 99,
125, 139, 151, 166, 189, 198

dispersion of thermal phonons 25, 35, 103,
104, 178, 182, 189, 197

drift motion of phonons 101, 103, 108, 173, 176,
181, 191

dynamic characteristics of phonons 5, 9, 25

elastic energy anisotropy IX, 9, 58, 65, 72, 73,
74, 75, 125, 126, 135, 136, 151, 152, 170, 200

elastic moduli 5, 8, 10, 11, 12, 13, 16, 18, 21, 25,
37, 72, 73, 90, 125, 129, 150, 151

electron-phonon drag 7, 24, 200
electron–phonon drag 201

fast transverse mode 21, 27, 35, 37, 39, 46, 50,
55, 58, 64, 65, 66, 91, 92, 93, 98, 114, 116,

117, 120, 121, 122, 123, 124, 137, 138, 139,
141, 142, 145, 154, 156, 158, 160, 161, 162,
164, 166, 167, 168, 169, 171, 176, 178,
181, 190

focusing direction 37, 40, 46, 49, 50,
63, 121, 138, 140, 142, 145, 162,
166, 200

focusing effect 3, 6, 36, 38, 57, 84, 95, 112,
120, 121, 123, 131, 156, 164, 167, 169,
170, 171

Gaussian curvature 68

heat capacity 5, 9, 33, 34, 35, 36, 81, 122, 125,
126, 158, 168, 182

Herring mechanism 102

isotopic disorder 3, 6, 94, 107, 109, 110, 112,
124, 173, 176, 182, 198

isotropic medium model 4, 8, 13, 55, 56, 58,
62, 64, 92, 93

kinetic energy 13
Knudsen phonon gas flow IX, 3, 6, 45, 75, 80,

81, 98, 124, 126, 129, 170, 200

Landau-Rumer mechanism 102, 108

Matthiessen rule 83, 112, 113, 116, 198, 199
McCurdy effect 110, 118, 121, 122, 123, 124

nanostructures IX, 4, 6, 7, 8, 40, 100, 125, 126,
128, 131, 133, 136, 140, 142, 145, 146, 147,
148, 149, 150, 151, 153, 182, 194, 196,
199, 200

nanowires IX, 1, 3, 4, 5, 7, 125, 126, 128, 130,
131, 133, 134, 136, 139, 140, 142, 143, 144,
145, 146, 147, 148, 149, 150, 151, 152, 172,
173, 174, 175, 176, 177, 178, 179, 180, 181,
182, 183, 184, 189, 191, 193, 194, 196, 197,
199, 201

normal phonon-phonon scattering
processes 100, 101, 109, 176, 191, 198

normal phonon–phonon scattering
processes 100

https://doi.org/10.1515/9783110670509-010

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110670509-010


phonon boundary scattering 115, 126, 180, 183,
187, 191, 198

phonon focusing IX, 2, 3, 4, 5, 6, 7, 8, 36, 37,
39, 40, 42, 43, 45, 48, 50, 51, 53, 56, 58,
64, 73, 74, 75, 84, 95, 99, 100, 103, 104,
112, 118, 120, 123, 126, 127, 131, 135, 137,
140, 142, 146, 151, 152, 156, 160, 163, 164,
166, 170, 171, 172, 173, 189, 198, 199,
200, 201

phonon group velocity 39, 40, 43, 61, 85, 90,
97, 128

phonon mean free paths IX, 4, 6, 55, 75, 76,
82, 88, 90, 92, 93, 94, 95, 96, 97, 98, 125,
126, 127, 129, 130, 131, 134, 136, 137, 139,
140, 141, 146, 148, 149, 151, 153, 155, 156,
160, 163, 170, 171, 187

phonon relaxation rates 3, 99, 101, 106, 108,
111, 112, 113, 117, 172, 174, 182, 193, 199

phonon spectrum 5, 8, 9, 14, 15, 22, 25, 26, 27,
28, 29, 30, 33, 35, 67, 74, 87, 101, 102,
103, 104, 105, 115, 116, 117, 118, 167, 169,
170, 173, 178, 179, 180, 182, 189

phonon transport IX, 1, 2, 3, 4, 6, 7, 8, 25, 37,
73, 76, 88, 94, 100, 103, 111, 121, 122, 125,
126, 128, 129, 137, 140, 147, 151, 153, 168,
170, 174, 182, 193, 194, 198, 199

phonons of different polarizations 87, 89, 90,
102, 122, 130, 131, 139, 151, 153, 155, 162,
170, 172

piecewise-smooth functions 6, 87, 98, 106, 174
Planck function 101
polarization vectors 8, 14, 15, 16, 19, 20, 21,

22, 23, 24, 25, 39, 46, 58, 150

quasi-longitudinal vibrations 8, 19, 24, 25, 200

quasi-transverse modes 6, 8, 17, 19, 20, 21, 23,
24, 25, 43, 48, 57, 73, 135, 142, 146, 152,
156, 200

relaxation times 2, 4, 6, 7, 75, 76, 82, 83, 85, 87,
100, 110, 115, 123, 130, 187, 188, 197, 198

resistive scattering processes 101, 104, 173, 182

saddle-point peculiarity 68
second-order elastic moduli 5
specularity parameter 185, 188, 191, 193
surface of slowness 39

thermal conductivity IX, 1, 2, 3, 4, 5, 6, 7, 8, 25,
29, 36, 55, 56, 75, 77, 80, 81, 82, 83, 88,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 120, 121,
123, 124, 125, 126, 127, 128, 129, 130, 134,
135, 136, 138, 140, 142, 144, 145, 146, 147,
149, 150, 151, 152, 153, 155, 156, 158, 159,
160, 162, 163, 166, 170, 171, 172, 173, 174,
175, 176, 177, 178, 179, 180, 181, 182, 183,
184, 185, 186, 187, 188, 189, 190, 191, 192,
193, 194, 196, 197, 198, 199, 200

thermal resistance 1, 101, 112, 113, 125, 126,
139, 163, 166, 178, 196, 197, 198

Umklapp processes 101, 107, 108, 110, 118,
173, 176, 182, 198

vector displacement field 9

zero-curvature points 58, 64

210 Index

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



Also of interest
Coherent Quantum Physics.
A Reinterpretation of the Tradition
Arnold Neumaier, 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

Transport of Infrared Atmospheric Radiation.
Fundamentals of the Greenhouse Phenomenon
Smirnov, Boris M., 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

Metrology and Theory of Measurement.
Slaev, Valery A. / Chunovkina, Anna G. / Mironovsky, Leonid A., 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

Quantum Systems, Channels, Information.
A Mathematical Introduction
Alexander S. Holevo, 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

Phase-Field Crystals.
Fast Interface Dynamics
Galenko, Peter / Ankudinov, Vladimir / Starodumov, Ilya, 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

Wilson Lines in Quantum Field Theory
Cherednikov, Igor Olegovich / Mertens, Tom / Van der Veken,
Frederik, 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 7:54 PM via . All use subject to https://www.ebsco.com/terms-of-use


	Contents
	Abstract
	Introduction
	Chapter 1. Propagation of Elastic Waves and Phonon Focusing in Cubic Crystals
	Chapter 2. Phonon Relaxation Times during Diffuse Scattering at the Boundaries of monocrystalline Finite-Length Samples
	Chapter 3. Anisotropy and Temperature Dependencies of Thermal Conductivity of Bulk Silicon Samples
	Chapter 4. Thermal Conductivity of monocrystalline Nanostructures with Various Types of Elastic Anisotropy Energy at Low Temperatures
	Chapter 5. Phonon Propagation and Phonon Transport in Films with Different Types of Elastic Energy Anisotropy
	Chapter 6. Anisotropy and Temperature Dependencies of Thermal Conductivity of Silicon Films and Nanowires
	Chapter 7. Prospects for Further Research
	Bibliography
	Index

