
C
o
p
y
r
i
g
h
t

2
0
2
0
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 1:59 PM via
AN: 2497387 ; Andrew Block, Austin Dewey.; Learn Helm : Improve Productivity, Reduce Complexity, and Speed up Cloud-native Adoption with Helm for Kubernetes
Account: ns335141

Learn Helm

Improve productivity, reduce complexity, and speed
up cloud-native adoption with Helm for Kubernetes

Andrew Block

Austin Dewey

BIRMINGHAM—MUMBAI

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://epic.packtpub.com/index.php?module=Contacts&action=DetailView&record=59ebb723-c144-cdf3-4a0f-5dc6f9f81771

Learn Helm
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Senior Editor: Rahul Dsouza
Content Development Editor: Alokita Amanna
Technical Editor: Dinesh Pawar
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Joshua Misquitta

First published: June 2020

Production reference: 1090620

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83921-429-5

www.packt.com

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=d9d34cde-294b-1556-65ec-5966059a6b85
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=3d4b488a-d7bd-4df3-ff57-53db7b1c31f4

To my mother, whose guidance, work ethic, and attention to detail have
made me a better person in almost every facet of my life.

– Andrew Block

To Lindsey, whose love and support I cannot do without.

– Austin Dewey

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Contributors

About the authors
Andrew Block is a senior principal consultant at Red Hat who guides organizations on
adopting container solutions and microservice architectures using automation principles
across an array of deployment targets. As the author of Application Release Strategies with
OpenShift, he preaches the importance of CI/CD methodologies with an emphasis on
security to develop and deploy software faster. Andrew also serves as a manager of the
Container Community of Practice within Red Hat, which aims to foster awareness around
the container ecosystem.

Austin Dewey is a senior consultant at Red Hat, focused on enabling customers in
cloud and container technologies. He has helped drive success at many different Fortune
500 companies through his expertise in CI/CD and deployment patterns on Red Hat's
Kubernetes-based PaaS, OpenShift Container Platform. Delivering projects centered
around DevOps and automation, Austin has guided many different customers to
production by building pipelines that ensure fast, stable, and secure deliveries. When
Austin is not working with his customers or engaging in the Kubernetes community,
he can be found playing guitar and spending time outdoors.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Matthew Fisher is a software engineer at Microsoft and one of the core maintainers of
the Helm project. Born and raised on Vancouver Island, he studied computer systems
at the British Columbia Institute of Technology. Outside of work, he has an extensive
list of hobbies, which is forever growing. On any given day, he is a musician, a luthier,
a woodworker, a blacksmith, a cook, a photographer, and an artist. When he's not
practicing with his guitar or rushing to and from the workshop, you'll find him out
on another adventure with his wife, Brandy. He goes by the name @bacongobbler on
GitHub and Twitter.

To my wife, Brandy: Thank you for your love and support, and for
always being there for me. I am so thrilled I get to spend the rest of

my life with you.

To my friends: Thank you for the birthdays, the inside jokes,
the laughs, the food, and all the board game nights we've shared

together since we were kids.

To my fellow Helm maintainers: Each and every one of you made
Helm the successful project it is today. Thank you.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

Section 1:
Introduction and Setup

1
Understanding Kubernetes and Helm

From monoliths to modern
microservices 4
What is Kubernetes? 7
Container Orchestration 7
High availability 9
Scalability 9
Active community 9

Deploying a Kubernetes
application 10
Deployment 10
Services 12
PersistentVolumeClaim 13

Approaches in resource
management 14
Imperative and declarative configuration 14

Resource configuration
challenges 18
The many types of Kubernetes resources 18
Keeping the live and local states in sync 19
Application life cycles are hard to
manage 19
Resource files are static 20

Helm to the rescue! 21
Understanding package managers 22
The Kubernetes package manager 23

Summary 27
Further reading 28
Questions 28

Table of Contents

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

2
Preparing a Kubernetes and Helm Environment

Technical requirements 32
Preparing a local Kubernetes
environment with Minikube 32
Installing Minikube 32
Installing VirtualBox 35
Configuring VirtualBox as the
designated hypervisor 35
Configuring Minikube resource allocation 36
Exploring the basic usage 37

Setting up Kubectl 38
Installing Kubectl 38

Setting up Helm 42

Installing Helm 42

Configuring Helm 43
Adding upstream repositories 44
Adding plugins 45
Environment variables 46
Tab completion 48
Authentication 48
Authorization/RBAC 50

Summary 51
Further reading 52
Questions 52

3
Installing your First Helm Chart

Technical requirements 54
Understanding the WordPress
application 54
Finding a WordPress chart 55
Searching for WordPress charts from
the
command line 56
Viewing the WordPress chart in a
browser 58
Showing the WordPress chart
information from the command line 61

Creating a Kubernetes
environment 63
Installing the WordPress chart 64
Creating a values file for configuration 64
Running the installation 67
Inspecting your release 69

Additional installation notes 74
The -n flag 74
The HELM_NAMESPACE environment
variable 74
Choosing between --set and --values 75

Accessing the WordPress
application 76
Upgrading the WordPress
release 80
Modifying the Helm values 80
Running the upgrade 82
Reusing and resetting values during an
upgrade 83

Rolling back the WordPress
release 85
Inspecting the WordPress history 85

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Further reading 91 Questions 91

Section 2:
Helm Chart Development

4
Understanding Helm Charts

Technical requirements 96
Understanding the YAML format 96
Defining key-value pairs 96
Value types 97

Understanding chart templates 101
Go templating 102

Understanding chart definitions 116
Required fields 117
Optional metadata 119
Managing chart dependencies 120
Downloading dependencies 122
Conditional dependencies 124
Overriding and referencing values
from a child chart 126
Importing values with import-values 126

Life cycle management 128
The basics of a Helm hook 128
Hook execution 130
Advanced hook concepts 131

Documenting a Helm chart 133
The README.md File 134
The LICENSE file 134

The templates/NOTES.txt file 135

Packaging a Helm chart 136
Summary 137
Further reading 137
Questions 138

Running the rollback 87

Uninstalling the WordPress release 89
Cleaning up your environment 90
Summary 90

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Guestbook
application 140
Setting up the environment 142
Creating a Guestbook Helm
chart 142
Scaffolding the initial file structure 142
Evaluating the chart definition 144
Adding a Redis chart dependency 145
Modifying the values.yaml file 148
Installing the Guestbook chart 155

Improving the Guestbook Helm
chart 157
Creating pre-upgrade and pre-rollback

life cycle hooks 157
Adding input validation 166

Publishing the Guestbook chart
to a
chart repository 170
Creating a chart repository 170
Publishing the Guestbook Helm chart 172
Adding your chart repository 174

Cleaning up 174
Summary 175
Further reading 175
Questions 175

6
Testing Helm Charts

Technical requirements 177
Setting up your environment 178
Verifying Helm templating 179
Validating template generation locally
with
helm template 179
Linting Helm charts and templates 190

Testing in a live cluster 194
Creating the chart tests 196
Running the chart tests 197

Improving chart tests with the
chart testing project 199
Introducing the chart testing project 201
Installing the chart testing tools 204

Cleaning up 210
Summary 211
Further reading 211
Questions 212

5
Building Your First Helm Chart

Technical requirements 140

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Automating Helm Processes Using CI/CD and GitOps

Technical requirements 218
Understanding CI/CD and
GitOps 219
CI/CD 219
Taking CI/CD to the next level using
GitOps 220

Setting up our environment 221
Creating a CI pipeline to build
Helm charts 224
Designing the pipeline 224
Understanding Jenkins 225
Installing Jenkins 226

Understanding the pipeline 230
Running the pipeline 235

Creating a CD pipeline to deploy
applications with Helm 243
Designing the pipeline 243
Updating the environments 243
Understanding the pipeline 245
Running the pipeline 252

Cleaning up 256
Summary 256
Further reading 256
Questions 257

8
Using Helm with the Operator Framework

Technical requirements 260
Understanding Kubernetes
Operators 260
Creating a Helm operator 262
Setting up the environment 263
Scaffolding the operator file structure 268
Building the operator and pushing it to
Quay 270
Deploying the Guestbook Operator 271
Deploying the Guestbook application 275

Using Helm to manage
Operators and CRs 278
Cleaning up your Kubernetes

environment 279
Summary 280
Further reading 280
Questions 281

Section 3:
Adanced Deployment Patterns

7

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Data provenance and integrity 284
Creating a GPG keypair 285
Verifying Helm downloads 287

Signing and verifying Helm
charts 291
Developing secure Helm charts 294
Using secure images 295
Setting resource limits 297

Handling secrets in Helm charts 299

Configuring RBAC rules 301
Accessing secure chart
repositories 305
Summary 307
Further reading 307
Questions 307

ASSESSMENTS

Chapter 1: Understanding
Kubernetes
and Helm 309
Chapter 2: Preparing a
Kubernetes and
Helm Environment 310
Chapter 3: Installing Your First
Helm Chart 310
Chapter 4: Understanding Helm
Charts 311
Chapter 5: Building Your First
Helm Chart 312
Chapter 6: Testing Helm Charts 312
Chapter 7: Automating Helm
Processes Using CI/CD and
GitOps 313
Chapter 8: Using Helm with the
Operator Framework 314
Chapter 9: Helm Security
Considerations 315

9
Helm Security Considerations

Technical requirements 283

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
Presently, containerization is said to be the best way to implement DevOps. While Docker
introduced containers and changed the DevOps era, Google developed an extensive
container orchestration system, Kubernetes, which is now considered the frontrunner
in container orchestration. The main goal of this book is to learn about the efficiency
of managing applications running on Kubernetes using Helm. This book will start with
a short introduction to Helm and how it can benefit the entire container environment.
You will then dive into the architectural aspects, along with learning about Helm charts
and its use cases. You’ll learn how to write Helm charts in order to automate application
deployment on Kubernetes. Focused on providing enterprise-ready patterns around Helm
and automation, the book covers best practices around application development, delivery,
and life cycle management with Helm. By the end of this book, you will know how to
leverage Helm to develop an enterprise pattern with a view to application delivery.

Who this book is for
This book targets Kubernetes developers or administrators interested in learning Helm to
provide automation around application development on Kubernetes. Basic knowledge of
Kubernetes application development would be useful, but prior knowledge of
Helm is not required. Basic knowledge of business use cases that automation provides
is recommended.

What this book covers
Chapter 1, Understanding Kubernetes and Helm, provides an introduction to Kubernetes
and Helm. You will be introduced to the challenges that users face when deploying
applications to Kubernetes and how Helm can help simplify deployments and
increase productivity.

Chapter 2, Preparing a Kubernetes and Helm Environment, covers the tools required to
deploy applications with Helm on a local Kubernetes cluster. In addition, you will also
learn about basic Helm configurations that occur post-installation.

Chapter 3, Installing Your First Helm Chart, explains how to deploy an application to
Kubernetes by installing a Helm chart and covers the different life cycle phases of an
application deployed with Helm.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

viii Preface

Chapter 4, Understanding Helm Charts, dives deep into the building blocks of a
Helm chart and prepares you with the knowledge required to build your own
Helm chart.

Chapter 5, Building Your First Helm Chart, provides an end-to-end walkthrough of
building a Helm chart. The chapter begins with the fundamental concepts of building a
Helm chart that leverages basic Helm constructs and progresses to modifying the baseline
configurations to incorporate more advanced Helm constructs. Finally, you will learn how
to deploy a chart to a basic chart repository

Chapter 6, Testing Helm Charts, discusses different methodologies around linting and
testing Helm charts.

Chapter 7, Automating Helm Processes Using CI/CD and GitOps, explores an advanced use
case in terms of leveraging CI/CD and GitOps models to automate Helm tasks. Namely,
developing a process around testing, packaging, and releasing Helm charts. In addition,
the management of Helm chart installations across multiple different environments is
also introduced.

Chapter 8, Using Helm with the Operator Framework, discusses the fundamental concepts
of operators on Kubernetes with a view to building a Helm operator out of an existing
Helm chart using the operator-sdk tool provided by the operator framework.

Chapter 9, Helm Security Considerations, dives into some of the security considerations
and precautions around using Helm, from the moment the tool is installed to the second it
is used to install a Helm chart on a Kubernetes cluster.

To get the most out of this book
While not mandatory, as basic concepts are explained throughout the book, some
familiarity with Kubernetes and container technology is recommended.

For the tools used throughout this book, chapters 2-9 will focus on the following key
technologies:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface ix

The installation of these tools is discussed in detail in Chapter 2, Preparing a Kubernetes
and Helm Environment. Additional tools that are used throughout the book are chapter-
specific, and their installations are described in the chapters in which they are used.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to copy/pasting of code.

Download the example code files
You can download the example code files for this book from your account at www.
packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

• WinRAR/7-Zip for Windows

• Zipeg/iZip/UnRarX for Mac

• 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/-Learn-Helm. In case there’s an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in action
Code in action videos for this book can be viewed at https://bit.ly/2AEAGvm.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://packt.com
http://packt.com
https://www.packtpub.com/support
https://www.packtpub.com/support
http://packt.com
https://github.com/PacktPublishing/-Learn-Helm
https://github.com/PacktPublishing/-Learn-Helm

x Preface

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781839214295_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: “Mount the downloaded WebStorm-10*.dmg disk image file as
another disk in your system.”

A block of code is set as follows:

html, body, #map {

 height: 100%;

 margin: 0;

 padding: 0

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

[default]

exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$ mkdir css

$ cd css

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com/sites/default/files/downloads/9781839214295_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781839214295_ColorImages.pdf

Preface xi

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
“Select System info from the Administration panel.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://authors.packtpub.com/
http://packt.com

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Section 1:
Introduction and

Setup

This section will present the problem statement that Helm addresses, as well as the
solution that it provides, by walking you through real-world examples.

This section comprises the following chapters:

Chapter 1, Understanding Kubernetes and Helm

Chapter 2, Preparing a Kubernetes and Helm Environment

Chapter 3, Installing Your First Helm Chart

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

1
Understanding

Kubernetes and
Helm

Thank you for choosing this book, Learn Helm. If you are interested in this book, you are
probably aware of the challenges that modern applications bring. Teams face tremendous
pressure to ensure that applications are lightweight and scalable. Applications must also
be highly available and able to withstand varying loads. Historically, applications have
most commonly been deployed as monoliths, or large, single-tiered applications served
on a single system. As time has progressed, the industry has shifted toward a microservice
approach, or toward small, multi-tiered applications served on multiple systems. Often
deployed using container technology, the industry has started leveraging tools such as
Kubernetes to orchestrate and scale their containerized microservices.

Kubernetes, however, comes with its own set of challenges. While it is an effective
container orchestration tool, it presents a steep learning curve that can be difficult for
teams to overcome. One tool that helps simplify the challenges of running workloads on
Kubernetes is Helm. Helm allows users to more simply deploy and manage the life cycle
of Kubernetes applications. It abstracts many of the complexities behind configuring
Kubernetes applications and allows teams to be more productive on the platform.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

4 Understanding Kubernetes and Helm

In this book, you will explore each of the benefits offered by Helm and discover how Helm
makes application deployments much simpler on Kubernetes. You will first assume the
role of an end user, consuming Helm charts written by the community and learning the
best practices behind leveraging Helm as a package manager. As this book progresses,
you will assume the role of a Helm chart developer and learn how to package Kubernetes
applications in ways that are easily consumable and efficient. Toward the end of this
book, you'll learn about advanced patterns around application management and security
with Helm.

Let's begin by first understanding microservices, containers, Kubernetes, and the
challenges that these bring with regards to application deployment. Then, we will
discuss the key features and benefits of Helm. In this chapter, we will cover the
following main topics:

• Monoliths, microservices, and containers

• An overview of Kubernetes

• How Kubernetes applications are deployed

• Challenges in configuring Kubernetes resources

• Benefits that Helm provides to simplify life application deployments on Kubernetes

From monoliths to modern microservices
Software applications are a foundational component of most modern technology. Whether
they take the form of a word processor, web browser, or media player, they enable user
interaction to complete one or more tasks. Applications have a long and storied history,
from the days of ENIAC—the first general-purpose computer—to taking man to the
moon in the Apollo space missions, to the rise of the World Wide Web, social media,
and online retail.

These applications can operate on a wide range of platforms and system. We said in
most cases they run on virtual or physical resources, but aren't these technically the
only options? Depending on their purpose and resource requirements, entire machines
may be dedicated to serving the compute and/or storage needs of an application.
Fortunately, thanks in part to the realization of Moore's law, the power and performance
of microprocessors initially increased with each passing year, along with the overall cost
associated with the physical resources. This trend has subsided in recent years, but the
advent of this trend and its persistence for the first 30 years of the existence of processors
was instrumental to the advances in technology.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

From monoliths to modern microservices 5

Software developers took full advantage of this opportunity and bundled more features
and components in their applications. As a result, a single application could consist of
several smaller components, each of which, on their own, could be written as their own
individual services. Initially, bundling components together yielded several benefits,
including a simplified deployment process. However, as industry trends began to change
and businesses focused more on the ability to deliver features more rapidly, the design of
a single deployable application brought with it a number of challenges. Whenever a
change was required, the entire application and all of its underlying components needed
to be validated once again to ensure the change had no adverse features. This process
potentially required coordination from multiple teams, which slowed the overall delivery
of the feature.

Delivering features more rapidly, especially across traditional divisions within
organizations, was also something that organizations wanted. This concept of rapid
delivery is fundamental to a practice called DevOps, whose rise in popularity occurred
around the year 2010. DevOps encouraged more iterative changes to applications over
time, instead of extensive planning prior to development. In order to be sustainable in
this new model, architectures evolved from being a single large application to instead
favoring several smaller applications that can be delivered faster. Because of this change
in thinking, the more traditional application design was labeled as monolithic. This new
approach of breaking components down into separate applications coined the name
for these components as microservices. The traits that were inherent in microservice
applications brought with them several desirable features, including the ability to develop
and deploy services concurrently from one another as well as to scale (increase the
number of instances) them independently.

The change in software architecture from monolithic to microservices also resulted in
re-evaluating how applications are packaged and deployed at runtime. Traditionally, entire
machines were dedicated to either one or two applications. Now, as microservices resulted
in the overall reduction of resources required for a single application, dedicating an entire
machine to one or two microservices was no longer viable.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

6 Understanding Kubernetes and Helm

Fortunately, a technology called containers was introduced and gained popularity for
filling in the gaps for many missing features needed to create a microservices runtime
environment. Red Hat defines a container as 'a set of one or more processes that
are isolated from the rest of the system and includes all of the files necessary to run'
(https://www.redhat.com/en/topics/containers/whats-a-linux-
container). Containerized technology has a long history in computing, dating back to
the 1970s. Many of the foundational container technologies, including chroot (the ability
to change the root directory of a process and any of its children to a new location on the
filesystem) and jails, are still in use today.

The combination of a simple and portable packaging model, along with the ability to
create many isolated sandboxes on each physical or virtual machine, led to the rapid
adoption of containers in the microservices space. This rise in container popularity in
the mid-2010s can also be attributed to Docker, which brought containers to the masses
through simplified packaging and a runtime that could be utilized on Linux, macOS,
and Windows. The ability to distribute container images with ease led to the increase
in popularity of container technologies. This was because first-time users did not need
to know how to create images but instead could make use of existing images that were
created by others.

Containers and microservices became a match made in heaven. Applications had a
packaging and distribution mechanism, along with the ability to share the same compute
footprint while taking advantage of being isolated from one another. However, as more
and more containerized microservices were deployed, the overall management became
a concern. How do you ensure the health of each running container? What do you do
if a container fails? What happens if your 0my underlying machine does not have
the compute capacity required? Enter Kubernetes, which helped answer this need for
container orchestration.

In the next section, we will discuss how Kubernetes works and provides value to
an enterprise.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

What is Kubernetes? 7

What is Kubernetes?
Kubernetes, often abbreviated as k8s (pronounced as kaytes), is an open source container
orchestration platform. Originating from Google's proprietary orchestration tool, Borg,
the project was open sourced in 2015 and was renamed Kubernetes. Following the v1.0
release on July 21, 2015, Google and the Linux Foundation partnered to form the Cloud
Native Computing Foundation (CNCF), which acts as the current maintainer of the
Kubernetes project.

The word Kubernetes is a Greek word meaning 'helmsman' or 'pilot'. A helmsman is the
person who is in charge of steering a ship and works closely with the ship's officer to
ensure a safe and steady course, along with the overall safety of the crew. Kubernetes has
similar responsibilities with regards to containers and microservices. Kubernetes is
in charge of the orchestration and scheduling of containers. It is in charge of 'steering'
those containers to proper worker nodes that can handle their workloads. Kubernetes
will also help ensure the safety of those microservices by providing high availability and
health checks.

Let's review some of the ways Kubernetes helps simplify the management of
containerized workloads.

Container Orchestration
The most prominent feature of Kubernetes is container orchestration. This is a fairly
loaded term, so we'll break it down into different pieces.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

8 Understanding Kubernetes and Helm

Container orchestration is about placing containers on certain machines from a pool
of compute resources based on their requirements. The simplest use case for container
orchestration is for deploying containers on machines that can handle their resource
requirements. In the following diagram, there is an application that requests 2 Gi of
memory (Kubernetes resource requests typically use their 'power of two' values, which in
this case is roughly equivalent to 2 GB) and one CPU core. This means that the container
will be allocated 2 Gi of memory and 1 CPU core from the underlying machine that it is
scheduled on. It is up to Kubernetes to track which machines, which in this case are called
nodes, have the required resources available and to place an incoming container on that
machine. If a node does not have enough resources to satisfy the request, the container
will not be scheduled on that node. If all of the nodes in a cluster do not have enough
resources to run the workload, the container will not be deployed. Once a node has
enough resources free, the container will be deployed on the node with
sufficient resources:

Figure 1.1 - Kubernetes orchestration and scheduling

Container orchestration relieves you of putting in the effort to track the available
resources on machines at all times. Kubernetes and other monitoring tools provide insight
into these metrics. So, a day-to-day developer does not need to worry about available
resources. A developer can simply declare the amount of resources they expect a container
to use and Kubernetes will take care of the rest on the backend.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

What is Kubernetes? 9

High availability
Another benefit of Kubernetes is that it provides features that help take care of
redundancy and high availability. High availability is a characteristic that prevents
application downtime. It's performed by a load balancer, which splits incoming traffic
across multiple instances of an application. The premise of high availability is that if one
instance of an application goes down, other instances are still available to accept incoming
traffic. In this regard, downtime is avoided and the end user, whether a human or
another microservice, remains completely unaware that there was a failed instance of the
application. Kubernetes provides a networking mechanism, called a Service, that allows
applications to be load balanced. We will talk about Services in greater detail later on in
the Deploying a Kubernetes application section of this chapter.

Scalability
Given the lightweight nature of containers and microservices, developers can use
Kubernetes to rapidly scale their workloads, both horizontally and vertically.

Horizontal scaling is the act of deploying more container instances. If a team running
their workloads on Kubernetes were expecting increased load, they could simply tell
Kubernetes to deploy more instances of their application. Since Kubernetes is a container
orchestrator, developers would not need to worry about the physical infrastructure that
those applications would be deployed on. It would simply locate a node within the cluster
with the available resources and deploy the additional instances there. Each extra instance
would be added to a load-balancing pool, which would allow the application to continue
to be highly available.

Vertical scaling is the act of allocating additional memory and CPU to an application.
Developers can modify the resource requirements of their applications while they are
running. This will prompt Kubernetes to redeploy the running instances and reschedule
them on nodes that can support the new resource requirements. Depending on how this is
configured, Kubernetes can redeploy each instance in a way that prevents downtime while
the new instances are being deployed.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

10 Understanding Kubernetes and Helm

Active community
The Kubernetes community is an incredibly active open source community. As a result,
Kubernetes frequently receives patches and new features. The community has also made
many contributions to documentation, both to the official Kubernetes documentation
as well as to professional or hobbyist blog websites. In addition to documentation, the
community is highly involved in planning and attending meetups and conferences around
the world, which helps increase education and innovation of the platform.

Another benefit of Kubernetes's large community is the number of different tools built
to augment the abilities that are provided. Helm is one of those tools. As we'll see later in
this chapter and throughout this book, Helm—a tool built by members of the Kubernetes
community—vastly improves a developer's experience by simplifying application
deployments and life cycle management.

With an understanding of the benefits Kubernetes brings to managing containerized
workloads, let's now discuss how an application can be deployed in Kubernetes.

Deploying a Kubernetes application
Deploying an application on Kubernetes is fundamentally similar to deploying an
application outside of Kubernetes. All applications, whether containerized or not, must
have configuration details around topics that include the following:

• Networking

• Persistent storage and file mounts

• Availability and redundancy

• Application configuration

• Security

Configuring these details on Kubernetes is done by interacting with the Kubernetes
application programming interface (API).

The Kubernetes API serves as a set of endpoints that can be interacted with to view,
modify, or delete different Kubernetes resources, many of which are used to configure
different details of an application.

Let's discuss some of the basic API endpoints users can interact with to deploy and
configure an application on Kubernetes.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Deploying a Kubernetes application 11

Deployment
The first Kubernetes resource we will explore is called a Deployment. Deployments
determine the basic details required to deploy an application on Kubernetes. One of these
basic details consists of the container image that Kubernetes should deploy. Container
images can be built on local workstations using tools such as docker, and jib but
images can also be built right on Kubernetes using kaniko. Because Kubernetes does
not expose a native API endpoint for building container images, we will not go into
detail about how a container image is built prior to configuring a
Deployment resource.

In addition to specifying the container image, Deployments also specify the number
of replicas, or instances, of an application to deploy. When a Deployment is created, it
spawns an intermediate resource, called a ReplicaSet. The ReplicaSet deploys as many
instances of the application as determined by the replicas field on the Deployment.
The application is deployed inside a container, which itself is deployed inside a construct
called a Pod. A Pod is the smallest unit in Kubernetes and encapsulates at least
one container.

Deployments can additionally define an application's resource limits, health checks,
and volume mounts. When a Deployment is created, Kubernetes creates the
following architecture:

Figure 1.2 - A Deployment creates a set of Pods

Another basic API endpoint in Kubernetes is used to create Service resources, which we
will discuss next.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

12 Understanding Kubernetes and Helm

Services
While Deployments are used to deploy an application to Kubernetes, they do not
configure the networking components that allow an application to be communicated with
Kubernetes exposes a separate API endpoint used to define the networking layer, called
a Service. Services allow users and other applications to talk to each other by allocating
a static IP address to a Service endpoint. The Service endpoint can then be configured to
route traffic to one or more application instances. This kind of configuration provides load
balancing and high availability.

An example architecture using a Service is described in the following diagram. Notice that
the Service sits in between the client and the Pods to provide load balancing and
high availability:

Figure 1.3 - A Service load balancing an incoming request

As a final example, we will discuss the PersistentVolumeClaim API endpoint.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Deploying a Kubernetes application 13

PersistentVolumeClaim
Microservice-style applications embrace being self-sufficient by maintaining their state
in an ephemeral manner. However, there are numerous use cases where data must live
beyond the life span of a single container. Kubernetes addresses this issue by providing
a subsystem for abstracting the underlying details of how storage is provided and how
it is consumed. To allocate persistent storage for their application, users can create
a PersistentVolumeClaim endpoint, which specifies the type and amount of
storage that is desired. Kubernetes administrators are responsible for either statically
allocating storage, expressed as PersistentVolume, or dynamically provisioning
storage using StorageClass, which allocates PersistentVolume in response
to a PersistentVolumeClaim endpoint. PersistentVolume captures all of
the necessary storage details, including the type (such as network file system [NFS],
internet small computer systems interface [iSCSI], or from a cloud provider), along
with the size of the storage. From a user's perspective, regardless of which method of
the PersistentVolume allocation method or storage backend that is used within
the cluster, they do not need to manage the underlying details of managing storage. The
ability to leverage persistent storage within Kubernetes increases the number of potential
applications that can be deployed on the platform.

An example of persistent storage being provisioned is depicted in the following diagram.
The diagram assumes that an administrator has configured dynamic provisioning
via StorageClass:

Figure 1.4 - A Pod mounting PersistentVolume created by PersistentVolumeClaim

There are many more resources in Kubernetes, but by now, you have probably got the
picture. The question now is how are these resources actually created?

We will explore this question further in the next section.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

14 Understanding Kubernetes and Helm

Approaches in resource management
In order to deploy an application on Kubernetes, we need to interact with the Kubernetes
API to create resources. kubectl is the tool we use to talk to the Kubernetes API.
kubectl is a command-line interface (CLI) tool used to abstract the complexity of the
Kubernetes API from end users, allowing them to more efficiently work on the platform.

Let's discuss how kubectl can be used to manage Kubernetes resources.

Imperative and declarative configuration
The kubectl tool provides a series of subcommands to create and modify resources in
an imperative fashion. The following is a small list of these commands:

• create

• describe

• edit

• delete

The kubectl commands follow a common format:

kubectl <verb> <noun> <arguments>

The verb refers to one of the kubectl subcommands and the noun refers to a
particular Kubernetes resource. For example, the following command can be run to
create a Deployment:

kubectl create deployment my-deployment --image=busybox

This would instruct kubectl to talk to the Deployment API and create a new
Deployment called my-deployment, using the busybox image from Docker Hub.

You could use kubectl to get more information on the Deployment that was created by
using the describe subcommand:

kubectl describe deployment my-deployment

This command would retrieve information about the Deployment and format the result
in a readable format that allows developers to inspect the live my-deployment
Deployment on Kubernetes.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Approaches in resource management 15

If a change to the Deployment was desired, a developer could use the edit subcommand
to modify it in place:

kubectl edit deployment my-deployment

This command would open a text editor, allowing you to modify the Deployment.

When it comes to deleting the resource, the user can run the delete subcommand:

kubectl delete deployment my-deployment

This would instruct the API to delete the Deployment called my-deployment.

Kubernetes resources, once created, exist in the cluster as JSON resource files, which can
be exported as YAML files for greater human readability. An example resource in YAML
format can be seen here:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: busybox

spec:

 replicas: 1

 selector:

 matchLabels:

 app: busybox

 template:

 metadata:

 labels:

 app: busybox

 spec:

 containers:

 - name: main

 image: busybox

 args:

 - sleep

 - infinity

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

16 Understanding Kubernetes and Helm

The preceding YAML format presents a very basic use case. It deploys the busybox image
from Docker Hub and runs the sleep command indefinitely to keep the Pod running.

While it may be easier to create resources imperatively using the kubectl subcommands
we have just described, Kubernetes allows you to directly manage the YAML resources
in a declarative fashion to gain more control over resource creation. The kubectl
subcommands do not always let you configure all the possible resource options, but
creating the YAML files directly allows you to more flexibly create resources and fill in the
gaps that the kubectl subcommands may contain.

When creating resources declaratively, users first write out the resource they want to
create in YAML format. Next, they use the kubectl tool to apply the resource against
the Kubernetes API. While in imperative configuration developers use kubectl
subcommands to manage resources, declarative configuration relies primarily on only one
subcommand—apply.

Declarative configuration often takes the following form:

kubectl apply -f my-deployment.yaml

This command gives Kubernetes a YAML resource that contains a resource specification,
although the JSON format can be used as well. Kubernetes infers the action to perform on
resources (create or modify) based on whether or not they exist.

An application may be configured declaratively by following these steps:

1. First, the user can create a file called deployment.yaml and provide a YAML-
formatted specification for the deployment. We will use the same example as before:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: busybox

spec:

 replicas: 1

 selector:

 matchLabels:

 app: busybox

 template:

 metadata:

 labels:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Approaches in resource management 17

 app: busybox

 spec:

 containers:

 - name: main

 image: busybox

 args:

 - sleep

 - infinity

2. The Deployment can then be created with the following command:

kubectl apply -f deployment.yaml

Upon running this command, Kubernetes will attempt to create the Deployment in
the way you specified.

3. If you wanted to make a change to the Deployment, say by changing the number of
replicas to 2, you would first modify the deployment.yaml file:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: busybox

spec:

 replicas: 2

 selector:

 matchLabels:

 app: busybox

 template:

 metadata:

 labels:

 app: busybox

 spec:

 containers:

 - name: main

 image: busybox

 args:

 - sleep

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

18 Understanding Kubernetes and Helm

 - infinity

4. You would then apply the change with kubectl apply:

kubectl apply -f deployment.yaml

After running that command, Kubernetes would apply the provided Deployment
declaration over the previously applied deployment. At this point, the application
would scale up from a replica value of 1 to 2.

5. When it comes to deleting an application, the Kubernetes documentation actually
recommends doing so in an imperative manner; that is, using the delete
subcommand instead of apply:

kubectl delete -f deployment.yaml

6. The delete subcommand can be made more declarative by passing in the -f
flag and a filename. This gives kubectl the name of the resource to delete that
is declared in a specific file and it allows the developers to continue managing
resources with declarative YAML files.

With an understanding of how Kubernetes resources are created, let's now discuss some of
the challenges involved in resource configuration.

Resource configuration challenges
In the previous section, we covered how Kubernetes has two different configuration
methods—imperative and declarative. One question to consider is what challenges do
users need to be aware of when creating Kubernetes resources with imperative and
declarative methodologies?

Let's discuss some of the most common challenges.

The many types of Kubernetes resources
First of all, there are many, many different resources in Kubernetes. Here's a short list of
resources a developer should be aware of:

• Deployment

• StatefulSet

• Service

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Resource configuration challenges 19

• Ingress

• ConfigMap

• Secret

• StorageClass

• PersistentVolumeClaim

• ServiceAccount

• Role

• RoleBinding

• Namespace

Out of the box, deploying an application on Kubernetes is not as simple as pushing a big
red button marked Deploy. Developers need to be able to determine which resources
are required to deploy their application and they need to understand those resources at
a deep enough level to be able to configure them appropriately. This requires a lot of
knowledge of and training on the platform. While understanding and creating resources
may already sound like a large hurdle, this is actually just the beginning of many different
operational challenges.

Keeping the live and local states in sync
A method of configuring Kubernetes resources that we would encourage is to maintain
their configuration in source control for teams to edit and share, which also allows the
source control repository to become the source of truth. The configuration defined in
source control (referred to as the 'local state') is then created by applying them to the
Kubernetes environment and the resources become 'live' or enter what can be called the
'live state.' This sounds simple enough, but what happens when developers need to make
changes to their resources? The proper answer would be to modify the local files and
apply the changes to synchronize the local state to the live state in an effort to update
the source of truth. However, this isn't what usually ends up happening. It is often
simpler, in the short term, to modify the live resource in place with kubectl patch
or kubectl edit and completely skip over modifying the local files. This results in a
state inconsistency between local and live states and is an act that makes scaling on
Kubernetes difficult.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

20 Understanding Kubernetes and Helm

Application life cycles are hard to manage
Life cycle management is a loaded term, but in this context, we'll refer to it as the concept
of installing, upgrading, and rolling back applications. In the Kubernetes world, an
installation would create resources to deploy and configure an application. The initial
installation would create what we refer to here as version 1 of an application.

An upgrade, then, can be thought of as an edit or modification to one or many of those
Kubernetes resources. Each batch of edits can be thought of as a single upgrade. A
developer could modify a single Service resource, which would bump the version number
to version 2. The developer could then modify a Deployment, a ConfigMap, and a
Service, bumping the version count to version 3.

As newer versions of an application continue to be rolled out onto Kubernetes, it becomes
more difficult to keep track of the changes that have occurred. Kubernetes, in most cases,
does not have an inherent way of keeping a history of changes. While this makes upgrades
harder to keep track of, it also makes restoring a prior version of an application much
more difficult. Say a developer previously made an incorrect edit on a particular resource.
How would a team know where to roll back to? The n-1 case is particularly easy to work
out, as that is the most recent version. What happens, however, if the latest stable release
was five versions ago? Teams often end up scrambling to resolve issues because they
cannot quickly identify the latest stable configuration that worked previously.

Resource files are static
This is a challenge that primarily affects the declarative configuration style of applying
YAML resources. Part of the difficulty in following a declarative approach is that
Kubernetes resource files are not natively designed to be parameterized. Resource files
are largely designed to be written out in full before being applied and the contents remain
the source of truth until the file is modified. When dealing with Kubernetes, this can
be a frustrating reality. Some API resources can be lengthy, containing many different
customizable fields, and it can be quite cumbersome to write and configure YAML
resources in full.

Static files lend themselves to becoming boilerplate. Boilerplate represents text or code
that remains largely consistent in different but similar contexts. This becomes an issue if
developers manage multiple different applications, where they could potentially manage
multiple different Deployment resources, multiple different Services, and so on. In
comparing the different applications' resource files, you may find large numbers of similar
YAML configuration between them.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Helm to the rescue! 21

The following figure depicts an example of two resources with significant boilerplate
configuration between them. The blue text denotes lines that are boilerplate, while the red
text denotes lines that are unique:

Figure 1.5 - An example of two resources with boilerplate

Notice, in this example, that each file is almost exactly the same. When managing files
that are as similar as this, boilerplate becomes a major headache for teams managing their
applications in a declarative fashion.

Helm to the rescue!
Over time, the Kubernetes community discovered that creating and maintaining
Kubernetes resources to deploy applications is difficult. This prompted the development
of a simple yet powerful tool that would allow teams to overcome the challenges posed by
deploying applications on Kubernetes. The tool that was created is called Helm. Helm is an
open source tool used for packaging and deploying applications on Kubernetes. It is often
referred to as the Kubernetes Package Manager because of its similarities to any other
package manager you would find on your favorite OS. Helm is widely used throughout the
Kubernetes community and is a CNCF graduated project.

Given Helm's similarities to traditional package managers, let's begin exploring Helm by
first reviewing how a package manager works.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

22 Understanding Kubernetes and Helm

Understanding package managers
Package managers are used to simplify the process of installing, upgrading, reverting, and
removing a system's applications. These applications are defined in units, called packages,
which contain metadata around target software and its dependencies.

The process behind package managers is simple. First, the user passes the name of a
software package as an argument. The package manager then performs a lookup against a
package repository to see whether that package exists. If it is found, the package manager
installs the application defined by the package and its dependencies to the specified
locations on the system.

Package managers make managing software very easy. As an example, let's imagine you
wanted to install htop, a Linux system monitor, to a Fedora machine. Installing this
would be as simple as typing a single command:

dnf install htop --assumeyes

This instructs dnf, the Fedora package manager since 2015, to find htop in the Fedora
package repository and install it. dnf also takes care of installing the htop package's
dependencies, so you would not have to worry about installing its requirements
beforehand. After dnf finds the htop package from the upstream repository, it asks you
whether you're sure you want to proceed. The --assumeyes flag automatically answers
yes to this question and any other prompts that dnf may potentially ask.

Over time, newer versions of htop may appear in the upstream repository. dnf and other
package managers allow users to efficiently upgrade to new versions of the software. The
subcommand that allows users to upgrade using dnf is upgrade:

dnf upgrade htop --assumeyes

This instructs dnf to upgrade htop to its latest version. It also upgrades its dependencies
to the versions specified in the package's metadata.

While moving forward is often better, package managers also allow users to move
backward and revert an application back to a prior version if necessary. dnf does this with
the downgrade subcommand:

dnf downgrade htop --assumeyes

This is a powerful process because the package manager allows users to quickly roll back if
a critical bug or vulnerability is reported.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Helm to the rescue! 23

If you want to remove an application completely, a package manager can take care of that
as well. dnf provides the remove subcommand for this purpose:

dnf remove htop --assumeyes

In this section, we reviewed how the dnf package manager on Fedora can be used to
manage a software package. Helm, as the Kubernetes package manager, is similar to
dnf, both in its purpose and functionality. While dnf is used to manage applications
on Fedora, Helm is used to manage applications on Kubernetes. We will explore this in
greater detail next.

The Kubernetes package manager
Given that Helm was designed to provide an experience similar to that of package
managers, experienced users of dnf or similar tools will immediately understand Helm's
basic concepts. Things become more complicated, however, when talking about the
specific implementation details. dnf operates on RPM packages that provide executables,
dependency information, and metadata. Helm, on the other hand, works with charts. A
Helm chart can be thought of as a Kubernetes package. Charts contain the declarative
Kubernetes resource files required to deploy an application. Similar to an RPM, it can also
declare one or more dependencies that the application needs in order to run.

Helm relies on repositories to provide widespread access to charts. Chart developers create
declarative YAML files, package them into charts, and publish them to chart repositories.
End users then use Helm to search for existing charts to deploy onto Kubernetes, similar
to how end users of dnf will search for RPM packages to deploy to Fedora.

Let's go through a basic example. Helm could be used to deploy Redis, an in-memory
cache, to Kubernetes by using a chart published to an upstream repository. This could be
performed using Helm's install command:

helm install redis bitnami/redis --namespace=redis

This would install the redis chart from the bitnami chart repository to a Kubernetes
namespace called redis. This installation would be referred to as the initial revision, or
the initial deployment of a Helm chart.

If a new version of the redis chart becomes available, users can upgrade to a new version
using the upgrade command:

helm upgrade redis bitnami/redis --namespace=redis

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

24 Understanding Kubernetes and Helm

This would upgrade Redis to meet the specification defined by the newer
redis-ha chart.

With operating systems, users should be concerned about rollbacks if a bug or
vulnerability is found. The same concern exists with applications on Kubernetes, and
Helm provides the rollback command to handle this use case:

helm rollback redis 1 --namespace=redis

This command would roll Redis back to its first revision.

Finally, Helm provides the ability to remove Redis altogether with the
uninstall command:

helm uninstall redis --namespace=redis

Compare dnf, Helm's subcommands, and the functions they serve in the following table.
Notice that dnf and Helm offer similar commands that provide a similar user experience:

With an understanding of how Helm functions as a package manager, let's discuss in
greater detail the benefits that Helm brings to Kubernetes.The benefits of Helm

Earlier in this chapter, we reviewed how Kubernetes applications are created by managing
Kubernetes resources, and we discussed some of the challenges involved. Here are few
ways that Helm can overcome these challenges.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Helm to the rescue! 25

The abstracted complexity of Kubernetes resources
Let's assume that a developer has been given the task of deploying a MySQL database
onto Kubernetes. The developer would need to create the resources required to configure
its containers, network, and storage. The amount of Kubernetes knowledge required to
configure such an application from scratch is high and is a big hurdle for new and even
intermediate Kubernetes users to clear.

With Helm, a developer tasked with deploying a MySQL database could simply search
for MySQL charts in upstream chart repositories. These charts would have already been
written by chart developers in the community and would already contain the declarative
configuration required to deploy a MySQL database. In this regard, developers with this
kind of task would act as simple end users that use Helm in a similar way to any other
package manager.

The ongoing history of revisions
Helm has a concept called release history. When a Helm chart is installed for the first time,
Helm adds that initial revision to the history. The history is further modified as revisions
increase via upgrades, keeping various snapshots of how the application was configured at
varying revisions.

The following diagram depicts an ongoing history of revisions. The squares in blue
illustrate resources that have been modified from their previous versions:

Figure 1.6 - An example of a revision history

The process of tracking each revision provides opportunities for rollback. Rollbacks in
Helm are very simple. Users simply point Helm to a previous revision and Helm reverts
the live state to that of the selected revision. With Helm, gone are the days of the n-1
backup. Helm allows users to roll back their applications as far back as they desire, even
back to the very first installation.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

26 Understanding Kubernetes and Helm

Dynamically configured declarative resources
One of the biggest hassles with creating resources declaratively is that Kubernetes
resources are static and cannot be parameterized. As you may recall from earlier, this
results in resources becoming boilerplate across applications and similar configurations,
making it more difficult for teams to configure their applications as code. Helm alleviates
these issues by introducing values and templates.

Values are simply what Helm calls parameters for charts. Templates are dynamically
generated files based on a given set of values. These two constructs provide chart
developers the ability to write Kubernetes resources that are automatically generated based
on values that end users provide. By doing so, applications managed by Helm become
more flexible, less boilerplate, and easier to maintain.

Values and templates allow users to do things such as the following:

• Parameterize common fields, such as the image name in a Deployment and the
ports in a Service

• Generate long pieces of YAML configuration based on user input, such as volume
mounts in a Deployment or the data in a ConfigMap

• Include or exclude resources based on user input

The ability to dynamically generate declarative resource files makes it simpler to create
YAML-based resources while still ensuring that applications are created in an easily
reproducible fashion.

Consistency between the local and live states
Package managers prevent users from having to manage an application and its
dependencies manually. All management can be done through the package manager
itself. The same idea holds true with Helm. Because a Helm chart contains a flexible
configuration of Kubernetes resources, users shouldn't have to make modifications
directly to live Kubernetes resources. Users that want to modify their applications can do
so by providing new values to a Helm chart or by upgrading their application to a more
recent version of the associated chart. This allows the local state (represented by the Helm
chart configuration) and the live state to remain consistent across modifications, giving
users the ability to provide a source of truth for their Kubernetes resource configurations.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 27

Intelligent Deployments
Helm simplifies application deployments by determining the order that Kubernetes
resources need to be created. Helm analyzes each of a chart's resources and orders them
based on their types. This pre-deterministic order exists to ensure that resources that
commonly have resources dependent on them are created first. For example, Secrets
and ConfigMaps should be created before Deployments, since a Deployment would
likely consume those resources as volumes. Helm performs this ordering without any
interaction from the user, so this complexity is abstracted and prevents users from
needing to worry about the order that these resources are applied.

Automated life cycle hooks
Similar to other package managers, Helm provides the ability to define life cycle hooks.
Life cycle hooks are actions that take place automatically at different stages of an
application's life cycle. They can be used to do things such as the following:

• Perform a data backup on an upgrade.

• Restore data on a rollback.

• Validate a Kubernetes environment prior to installation.

Life cycle hooks are valuable because they abstract complexities around tasks that may
not be Kubernetes-specific. For example, a Kubernetes user may not be familiar with the
best practices behind backing up a database or may not know when such a task should
be performed. Life cycle hooks allow experts to write automation that performs those
best practices when recommended so that users can continue to be productive without
needing to worry about those details.

Summary
In this chapter, we began by exploring the change in architectural trends of adopting
microservice-based architectures to decompose applications into several smaller
applications instead of deploying one large monolith. The creation of applications that are
more lightweight and easier to manage has led to utilizing containers as a packaging and
runtime format to produce releases more frequently. By adopting containers, additional
operational challenges were introduced and solved by using Kubernetes as a container
orchestration platform to manage the container life cycle.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

28 Understanding Kubernetes and Helm

Our discussion turned to the various ways that Kubernetes applications can be configured,
including Deployments, Services, and PersistentVolumeClaims. These resources can
be expressed using two distinct styles of application configuration: imperative and
declarative. Each of these configuration styles contributes to a set of challenges involved
in deploying Kubernetes applications, including the amount of knowledge required to
understand how Kubernetes resources work and the challenge of managing application
life cycles.

To better manage each of the assets that comprise an application, Helm was introduced
as the package manager for Kubernetes. Through its rich feature set, the full life cycle of
applications from install, upgrade, rollback, and removal can be managed with ease.

In the next chapter, we'll walk through the process of configuring a Helm environment.
We will also install the tooling required for consuming the Helm ecosystem and following
along with the examples provided in this book.

Further reading
For more information about the Kubernetes resources that make up an application, please
see the Understanding Kubernetes Objects page from the Kubernetes documentation
at https://kubernetes.io/docs/concepts/overview/working-with-
objects/kubernetes-objects/.

To reinforce some of the benefits of Helm discussed in this chapter, please refer to the
Using Helm page of the Helm documentation at https://helm.sh/docs/intro/
using_helm/. (This page also dives into some basic usage around Helm, which will be
discussed throughout this book in greater detail.)

Questions
1. What is the difference between a monolithic and a microservices application?

2. What is Kubernetes? What problems was it designed to solve?

3. What are some of the kubectl commands commonly used when deploying
applications to Kubernetes?

4. What challenges are often involved in deploying applications to Kubernetes?

5. How does Helm function as a package manager for Kubernetes? How does it
address the challenges posed by Kubernetes?

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://helm.sh/docs/intro/using_helm/

Questions 29

6. Imagine you want to roll back an application deployed on Kubernetes. What Helm
command allows you to perform this action? How does Helm keep track of your
changes to make this rollback possible?

7. What are the four primary Helm commands that allow Helm to function as a
package manager?

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

2
Preparing a

Kubernetes and
Helm Environment

Helm is a tool that provides a variety of benefits that help users deploy and manage
Kubernetes applications more easily. Before users can start experiencing these benefits,
however, they must satisfy several prerequisites. First, a user must have access to a
Kubernetes cluster. Next, a user should have the command-line tools for both Kubernetes
and Helm. Finally, a user should be aware of Helm's basic configuration options in order
to be productive with as little friction as possible.

In this chapter, we will outline the tools and concepts that are required in order to begin
working with Helm. The following topics will be covered in this chapter:

• Preparing a local Kubernetes environment with Minikube

• Setting up kubectl

• Setting up Helm

• Configuring Helm

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

32 Preparing a Kubernetes and Helm Environment

Technical requirements
In this chapter, you will install the following technologies to your local workstation:

• Minikube

• VirtualBox

• Helm

These tools can be installed with a package manager or by downloading them directly
from a download link. We will provide instructions for using the Chocolatey package
manager on Windows, the Homebrew package manager on macOS, the apt-get
package manager for Debian-based Linux distributions, and the dnf package manager for
RPM-based Linux distributions.

Preparing a local Kubernetes environment
with Minikube
Helm won't be able to deploy applications without access to a Kubernetes cluster. For this
reason, let's discuss one option that users can follow to run their own cluster on their
machine—Minikube.

Minikube is a community-driven tool that allows users to easily deploy a small, single-
node Kubernetes cluster to their local machine. A cluster created with Minikube is created
inside a virtual machine (VM), so it can be created and later discarded in a way that is
isolated from the host operating system that the VM is running on. Minikube presents an
excellent way to experiment with Kubernetes and it can also be used to learn how to use
Helm alongside the examples provided throughout this book.

In the next few sections, we'll cover how Minikube can be installed and configured so
that you have a Kubernetes cluster available while learning how to use Helm. For more
comprehensive instructions, please refer to the Getting Started page from the official
Minikube website at https://minikube.sigs.k8s.io/docs/start/.

Installing Minikube
Minikube, like the other tools that will be installed within this chapter, has binaries
compiled for the Windows, macOS, and Linux operating systems. The easiest way to
install the latest version of Minikube on Windows and macOS is via a package manager,
such as Chocolatey for Windows and Homebrew for macOS.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://minikube.sigs.k8s.io/docs/start/

Preparing a local Kubernetes environment with Minikube 33

Linux users will find it easier to install the latest minikube binary by downloading it
from Minikube's GitHub releases page, though this method can also be used on Windows
and macOS as well.

The following steps describe how you can install Minikube based on your machine and
installation preference. Please note that Minikube version v1.5.2 was used during the
writing and development of the examples used throughout this book.

To install it via a package manager (on Windows and macOS), do the following:

• Use the following command for Windows:

> choco install minikube

• Use the following command for macOS:

$ brew install minikube

The following steps show you how to install it via a download link (on Windows, macOS,
and Linux).

The Minikube binary can be downloaded directly from its releases page on GitHub at
https://github.com/kubernetes/minikube/releases/:

1. At the bottom of the releases page, there is a section called Assets, which consists of
the Minikube binaries available for the various supported platforms:

Figure 2.1: The minikube binaries from the GitHub releases page

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/kubernetes/minikube/releases/tag/v1.5.2
https://github.com/kubernetes/minikube/releases/tag/v1.5.2

34 Preparing a Kubernetes and Helm Environment

2. Under the Assets section, the binary that corresponds to the target platform should
be downloaded. Once downloaded, you should rename the binary to minikube.
If you are downloading the Linux binary, for example, you would run the
following command:

$ mv minikube-linux-amd64 minikube

3. In order to execute minikube, Linux and macOS users may need to add the
executable bit by running the chmod command:

$ chmod u+x

4. minikube should then be moved to a location managed by the PATH variable so
that it can be executed from any location in your command line. The locations that
the PATH variable contains vary depending on your operating system. For macOS
and Linux users, these locations can be determined by running the following
command in the Terminal:

$ echo $PATH

5. Windows users can determine the PATH variable's locations by running the
following command in Command Prompt or PowerShell:

> $env:PATH

6. You can then move the minikube binary to a new location by using the mv
command. The following example moves minikube to a common PATH location
on Linux:

$ mv minikube /usr/local/bin/

7. You can verify your Minikube installation by running minikube version
and ensuring that the displayed version corresponds with the version that
was downloaded:

$ minikube version

minikube version: v1.5.2

commit: 792dbf92a1de583fcee76f8791cff12e0c9440ad-dirty

Although you have downloaded Minikube, you will also need a hypervisor to be able to
run your local Kubernetes cluster. This can be done by installing VirtualBox, which we
will describe in the next section.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preparing a local Kubernetes environment with Minikube 35

Installing VirtualBox
Minikube depends on the existence of hypervisors in order to install a single-node
Kubernetes cluster on a VM. For this book, we have chosen to discuss VirtualBox as the
hypervisor option, since it is the most flexible and is available on the Windows, macOS,
and Linux operating systems. Additional hypervisor options for each operating system
can be found in the official Minikube documentation at https://minikube.sigs.
k8s.io/docs/start/.

Like Minikube, VirtualBox is easily installed via Chocolatey or Homebrew, but can also
be easily installed using apt-get for Debian-based Linux and dnf for RPM/RHEL-
based Linux:

• Use the following code to install VirtualBox on Windows:

> choco install virtualbox

• Use the following code to install VirtualBox on macOS:

$ brew cask install virtualbox

• Use the following code to install VirtualBox on Debian-based Linux:

$ apt-get install virtualbox

• Use the following code to install VirtualBox on RHEL-based Linux:

$ dnf install VirtualBox

Alternative methods of installing VirtualBox can be found at its official download page at
https://www.virtualbox.org/wiki/Downloads.

With VirtualBox installed, Minikube must be configured to leverage VirtualBox as its
default hypervisor. This configuration will be made in the next section.

Configuring VirtualBox as the designated hypervisor
VirtualBox can be made the default hypervisor by setting the vm-driver option of
minikube to virtualbox:

$ minikube config set vm-driver virtualbox

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://minikube.sigs.k8s.io/docs/start/
https://minikube.sigs.k8s.io/docs/start/
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

36 Preparing a Kubernetes and Helm Environment

Note that this command may produce the following warning:

These changes will take effect upon a minikube delete and then
a minikube start

This message can be safely ignored if there are no active Minikube clusters on the
workstation. This command states that any existing Kubernetes clusters will not make use
of VirtualBox as the hypervisor until the cluster is deleted and then recreated.

The change to VirtualBox can be confirmed by assessing the value of the vm-driver
configuration option:

$ minikube config get vm-driver

If all is well, the output will be as follows:

Virtualbox

In addition to configuring the default hypervisor, you can also configure the resources that
are allocated to a Minikube cluster, discussed in the next section.

Configuring Minikube resource allocation
By default, Minikube will allocate two CPUs and 2 GB of RAM to its VM. These resources
are sufficient for each of the examples in this book except for those in Chapter 7, which are
more resource intensive. If your machine has the available resources, you should increase
the default memory allocation to 4 GB (the CPU allocation can remain the same).

Run the following command to increase the default memory allocation of new Minikube
VMs to 4 GB (4000 MB).

$ minikube config set memory 4000

This change can be verified by running the minikube config get memory
command, similar to the way the vm-driver change was verified previously.

Let's continue exploring Minikube by discussing its basic usage.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preparing a local Kubernetes environment with Minikube 37

Exploring the basic usage
Throughout this book, it will be handy to understand the key commands used in a typical
Minikube operation. They will also be essential to understand during the execution of the
examples provided throughout the course of this book. Fortunately, Minikube is an easy
tool to get started with.

Minikube has three key subcommands:

• start

• stop

• delete

The start subcommand is used to create a single-node Kubernetes cluster. It will create
a VM and bootstrap the cluster within it. The command will terminate once the cluster
is ready:

$ minikube start

 minikube v1.5.2 on Fedora 30

 Creating virtualbox VM (CPUs=2, Memory=4000MB, Disk=20000MB)
...

 Preparing Kubernetes v1.16.2 on Docker '18.09.9' ...

 Pulling images ...

 Launching Kubernetes ...

 Waiting for: apiserver

 Done! kubectl is now configured to use 'minikube'

The stop subcommand is used to shut down the cluster and the VM. The state of the
cluster and VM are saved to the disk, allowing users to run the start subcommand again
to quickly begin working, rather than having to build a new VM from scratch. You should
try to get into the habit of running minikube stop when you have finished working
with a cluster that you would like to return to later:

$ minikube stop

 Stopping 'minikube' in virtualbox ...

 'minikube' stopped.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

38 Preparing a Kubernetes and Helm Environment

The delete subcommand is used to delete a cluster and the VM. This command erases
the state of the cluster and VM, freeing up the space on the disk that was previously
allocated. The next time minikube start is executed, a fresh cluster and VM will be
created. You should run the delete subcommand when you would like to remove all of
the allocated resources and work on a fresh Kubernetes cluster on your next invocation of
minikube start:

$ minikube delete

 Deleting 'minikube' in virtualbox ...

 The 'minikube' cluster has been deleted.

 Successfully deleted profile 'minikube'

There are more Minikube subcommands available, but these are the main ones that you
should be aware of.

With Minikube installed and configured on a local machine, you can now install
kubectl, the Kubernetes command-line tool, and satisfy the remaining prerequisites
for working with Helm.

Setting up Kubectl
As mentioned in Chapter 1, Understanding Kubernetes and Helm, Kubernetes is a system
that exposes different API endpoints. These API endpoints are used to perform various
actions on a cluster, such as creating, viewing, or deleting resources. To provide simpler
user experience, developers need a way of interacting with Kubernetes without having to
manage the underlying API layer.

While you will predominantly use the Helm command-line tool throughout the
course of this book to install and manage applications, kubectl is an essential tool for
common tasks.

Read on to learn how to install kubectl on a local workstation. Note that the kubectl
version used at the time of writing is v1.16.2.

Installing Kubectl
Kubectl can be installed using Minikube or it can be obtained via a package
manager or through direct download. We will first describe how to obtain kubectl
using Minikube.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Setting up Kubectl 39

Installing Kubectl via Minikube
The installation of kubectl is straightforward with Minikube. Minikube provides
a subcommand called kubectl, which will download the Kubectl binary. Begin by
running minikube kubectl:

$ minikube kubectl version

 Downloading kubectl v1.16.2

This command will install kubectl to the $HOME/.kube/cache/v1.16.2 directory.
Note that the version of Kubectl included in the path will depend on the version of
Minikube that you are using. To access kubectl, you can use the following syntax:

 minikube kubectl -- <subcommand> <flags>

Here's an example command:

$ minikube kubectl -- version –client

Client Version: version.Info{Major:'1',
Minor:'16', GitVersion:'v1.16.2',
GitCommit:'c97fe5036ef3df2967d086711e6c0c405941e14b',
GitTreeState:'clean', BuildDate:'2019-10-15T19:18:23Z',
GoVersion:'go1.12.10', Compiler:'gc', Platform:'linux/amd64'}

While invoking kubectl with minikube kubectl will suffice, the syntax is more
unwieldy than that of invoking kubectl directly. This can be overcome by copying the
kubectl executable from the local Minikube cache into a location managed by the PATH
variable. Performing this action is similar on each operating system, but the following is
an example of how it can be achieved on a Linux machine:

$ sudo cp ~/.kube/cache/v1.16.2/kubectl /usr/local/bin/

Once complete, kubectl can be invoked as a standalone binary, as illustrated:

$ kubectl version –client

Client Version: version.Info{Major:'1',
Minor:'16', GitVersion:'v1.16.2',
GitCommit:'c97fe5036ef3df2967d086711e6c0c405941e14b',
GitTreeState:'clean', BuildDate:'2019-10-15T19:18:23Z',
GoVersion:'go1.12.10', Compiler:'gc', Platform:'linux/amd64'}

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

40 Preparing a Kubernetes and Helm Environment

Installing Kubectl without Minikube
Kubectl can also be installed without Minikube. The Kubernetes upstream documentation
provides several different mechanisms to do so for a variety of target operating systems at
https://kubernetes.io/docs/tasks/tools/install-kubectl/.

Using a package manager
One way that kubectl can be installed without Minikube is with native package
management. The following list demonstrates how this can be done on different
operating systems:

• Use the following command to install kubectl on Windows:

> choco install kubernetes-cli

• Use the following command to install kubectl on macOS:

$ brew install kubernetes-cli

• Use the following command to install kubectl on Debian-based Linux:

$ sudo apt-get update && sudo apt-get install -y
apt-transport-https gnupg2

$ curl -s https://packages.cloud.google.com/apt/doc/
apt-key.gpg | sudo apt-key add -

$ echo 'deb https://apt.kubernetes.io/ kubernetes-xenial
main' | sudo tee -a /etc/apt/sources.list.d/kubernetes.
list

$ sudo apt-get update

$ sudo apt-get install -y kubectl

• Use the following command to install kubectl RPM-based Linux:

$ cat <<EOF > /etc/yum.repos.d/kubernetes.repo

[kubernetes]

name=Kubernetes

baseurl=https://packages.cloud.google.com/yum/repos/
kubernetes-el7-x86_64

enabled=1

gpgcheck=1

repo_gpgcheck=1

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://packages.cloud.google.com/apt/doc/apt-key.gpg
https://packages.cloud.google.com/apt/doc/apt-key.gpg
https://apt.kubernetes.io/
https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64

Setting up Kubectl 41

gpgkey=https://packages.cloud.google.com/yum/doc/
yum-key.gpg https://packages.cloud.google.com/yum/doc/
rpm-package-key.gpg

EOF

$ yum install -y kubectl

We will discuss the final Kubectl installation method next.

Downloading directly from a link
Kubectl can also be downloaded directly from a download link. The download link
will contain the version of Kubectl that will be downloaded. You can determine the
latest version of Kubectl by going to https://storage.googleapis.com/
kubernetes-release/release/stable.txt in your browser.

The following example instructions display how version v1.16.2 can be downloaded,
which is the version of Kubectl that is used throughout this book:

• Download Kubectl for Windows from https://storage.googleapis.
com/kubernetes-release/release/v1.16.2/bin/windows/amd64/
kubectl.exe.

• Download Kubectl for macOS from https://storage.googleapis.
com/kubernetes-release/release/v1.16.2/bin/darwin/amd64/
kubectl.

• Download Kubectl for Linux from https://storage.googleapis.com/
kubernetes-release/release/v1.16.2/bin/linux/amd64/kubectl.

The Kubectl binary can then be moved to somewhere managed by the PATH variable. On
the macOS and Linux operating systems, be sure to grant the executable permission:

$ chmod u+x kubectl

The Kubectl installation can be verified by running the following command.

$ kubectl version –client

Client Version: version.Info{Major:'1',
Minor:'16', GitVersion:'v1.16.2',
GitCommit:'c97fe5036ef3df2967d086711e6c0c405941e14b',
GitTreeState:'clean', BuildDate:'2019-10-15T19:18:23Z',
GoVersion:'go1.12.10', Compiler:'gc', Platform:'linux/amd64'}

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://packages.cloud.google.com/yum/doc/yum-key.gpg
https://packages.cloud.google.com/yum/doc/yum-key.gpg
https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/v1.16.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.16.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.16.2/bin/darwin/amd64/kubectl
https://storage.googleapis.com/kubernetes-release/release/v1.16.2/bin/darwin/amd64/kubectl
https://storage.googleapis.com/kubernetes-release/release/v1.16.2/bin/darwin/amd64/kubectl
https://storage.googleapis.com/kubernetes-release/release/v1.16.2/bin/linux/amd64/kubectl
https://storage.googleapis.com/kubernetes-release/release/v1.16.2/bin/linux/amd64/kubectl

42 Preparing a Kubernetes and Helm Environment

Now that we've covered how to set up kubectl, we're ready to get into the key
technology of this book—Helm.

Setting up Helm
Once Minikube and kubectl are installed, the next logical tool to configure is Helm.
Note that the version of Helm used when writing this book was v3.0.0, but you are
encouraged to use the latest version available of the Helm v3 release to receive the latest
vulnerability and bug fixes.

Installing Helm
Helm packages exist for Chocolatey and Homebrew to allow easy installation on Windows
or macOS. On these systems, the following commands can be run to install Helm with a
package manager:

• Install Helm on Windows using the following command:

> choco install kubernetes-helm

• Install Helm on macOS using the following command:

$ brew install helm

Linux users, or users who would rather install Helm from a direct downloadable link, can
download an archive from Helm's GitHub releases page by following these steps:

1. Find the section called Installation on Helm's GitHub releases page at https://
github.com/helm/helm/releases:

Figure 2.2: The Installation section on the Helm GitHub releases page

2. Download the archive file associated with the operating system you are using for the
desired version.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/helm/helm/releases
https://github.com/helm/helm/releases
https://github.com/helm/helm/releases

Configuring Helm 43

3. Once downloaded, the file will need to be unarchived. One way that this can be
achieved is by using the Expand-Archive cmdlet function on PowerShell or
by using the tar utility on Bash:

• For Windows/PowerShell, use the following example :

> Expand-Archive -Path helm-v3.0.0-windows-amd64.zip
-DestinationPath $DEST

• For Linux and Mac, use the following example :

$ tar -zxvf helm-v3.0.0-linux.amd64.tgz

Be sure to specify the version that corresponds to the version downloaded. The helm
binary can be found in the unarchived folder. It should be moved to a location managed
by the PATH variable.

The following example shows you how to move the helm binary to the /usr/local/
bin folder on a Linux system:

$ mv ~/Downloads/linux-amd64/helm /usr/local/bin

Regardless of the way that Helm was installed, verification can be performed by running
the helm version command. If the resulting output is similar to that of the following
output, then Helm has been successfully installed:

$ helm version

version.BuildInfo{Version:'v3.0.0',
GitCommit:'e29ce2a54e96cd02ccfce88bee4f58bb6e2a28b6',
GitTreeState:'clean', GoVersion:'go1.13.4'}

With Helm installed on your machine, proceed to the next section to learn about the basic
Helm configuration topics.

Configuring Helm
Helm is a tool with sensible defaults that allow users to be productive without needing
to perform a large number of tasks post-installation. With that being said, there are
several different options users can change or enable to modify Helm's behavior. We will
cover these options in the following sections, beginning with the configuration of
upstream repositories.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

44 Preparing a Kubernetes and Helm Environment

Adding upstream repositories
One way that users can begin to modify their Helm installation is by adding upstream
chart repositories. In Chapter 1, Understanding Kubernetes and Helm, we described
how chart repositories contain Helm charts, which are used to package Kubernetes
resource files. Helm, being the Kubernetes package manager, can connect to various chart
repositories to install Kubernetes applications.

Helm provides the repo subcommand to allow users to manage configured chart
repositories. This subcommand contains additional subcommands that can be used to
perform actions against specified repositories.

Here are the five repo subcommands:

• add: To add a chart repository

• list: To list chart repositories

• remove: To remove a chart repository

• update: To update information on available charts locally from chart repositories

• index: To generate an index file given a directory containing packaged charts

Using the preceding list as a guide, adding a chart repository can be accomplished using
the repo add subcommand, as shown:

$ helm repo add $REPO_NAME $REPO_URL

Adding chart repositories is required in order to install the charts managed within them.
Chart installation will be discussed in detail throughout this book.

You can confirm whether a repository has been successfully added by leveraging the
repo list subcommand:

$ helm repo list

NAME URL

bitnami https://charts.bitnami.com

Repositories that have been added to the Helm client will appear in this output. The
preceding example shows that the bitnami repository was added, so it appears in the list
of repositories known by the Helm client. If additional repositories are added, they will
also appear in this output.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://charts.bitnami.com

Configuring Helm 45

Over time, updates to charts will be published and released to these repositories.
Repository metadata is cached locally. As a result, Helm is not automatically aware when a
chart is updated. You can instruct Helm to check for updates from each added repository
by running the repo update subcommand. Once this command is executed, you will
be able to install the latest charts from each repository:

$ helm repo update

Hang tight while we grab the latest from your chart
repositories...

...Successfully got an update from the 'bitnami' chart
repository

Update Complete. Happy Helming!

You may also need to remove repositories that have been added previously. This can be
accomplished by using the repo remove subcommand:

$ helm repo remove bitnami

'bitnami' has been removed from your repositories

The last remaining repo subcommand form is index. This subcommand is used by
repository and chart maintainers to publish new or updated charts. This task will be
covered more extensively in Chapter 5, Building your First Helm Chart.

Next, we will discuss Helm plugin configurations.

Adding plugins
Plugins are add-on capabilities that can be used to provide additional features to Helm.
Most users will not need to worry about plugins and plugin management with Helm.
Helm is a powerful tool on its own and is complete with the features it promises out of the
box. With that being said, the Helm community maintains a variety of different plugins
that can be used to enhance Helm's capabilities. A list of these plugins can be found at
https://helm.sh/docs/community/related/.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://helm.sh/docs/community/related/
https://helm.sh/docs/community/related/

46 Preparing a Kubernetes and Helm Environment

Helm provides a plugin subcommand for managing plugins, which contain further
subcommands, described in the following table:

Plugins can provide a variety of different productivity enhancements.

The following are several examples of the upstream plugins:

• helm diff: Performs a diff between a deployed release and a proposed
Helm upgrade

• helm secrets: Used to help conceal secrets from Helm charts

• helm monitor: Used to monitor a release and perform a rollback if certain
events occur

• helm unittest: Used to perform unit testing on a Helm chart

We will continue discussing Helm configuration options by reviewing the different
environment variables that can be set to change various aspects of Helm's behavior.

Environment variables
Helm relies on the existence of externalized variables to configure low-level options. The
Helm documentation lists six primary environment variables used to configure Helm:

• XDG_CACHE_HOME: Sets an alternative location for storing cached files

• XDG_CONFIG_HOME: Sets an alternative location for storing
Helm configuration

• XDG_DATA_HOME: Sets an alternative location for storing Helm data

• HELM_DRIVER: Sets the backend storage driver

• HELM_NO_PLUGINS: Disables plugins

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Configuring Helm 47

• KUBECONFIG: Sets an alternative Kubernetes configuration file

Helm adheres to The XDG Base Directory Specification, which is designed to provide
a standardized way of defining where different files are located on an operating system's
filesystem. Based on the XDG specification, Helm automatically creates three different
default directories on each operating system as required:

Helm uses the cache path for charts that are downloaded from upstream chart
repositories. Installed charts are cached to the local machine to enable faster installation
of the chart the next time it is referenced. To update the cache, a user can run the helm
repo update command, which will refresh the repository metadata with the most
recent information available, as well as save the chart to the local cache.

The configuration path is used to save repository information that was added by running
the helm repo add command. When a chart that has not been cached is installed,
Helm uses the configuration path to look up the URL of the chart repository. Helm uses
that URL to understand where the chart resides for it to be downloaded.

The data path is used to store plugins. When a plugin is installed using the helm
plugin install command, the plugin data is stored in this location.

Regarding the remaining environment variables we previously detailed, HELM_DRIVER
is used to determine how the release state is stored in Kubernetes. The default value is
secret, which is also the recommended value. Secret will Base64-encode the state in
a Kubernetes Secret. Other options are configmap, which will store state in a plaintext
Kubernetes ConfigMap and memory, which will store the state in the local process's
memory. The use of local memory is intended for testing purposes and is not suitable for
general purpose or production environments.

The HELM_NO_PLUGINS environment variable is used to disable plugins. If unset, the
default value that keeps plugins enabled is 0. To disable plugins, the variable should be
set to 1.

The KUBECONFIG environment variable is used to set the file used for authentication to
the Kubernetes cluster. If unset, the default value will be ~/.kube/config. In most
cases, users will not need to modify this value.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

48 Preparing a Kubernetes and Helm Environment

Another component of Helm that can be configured is tab completion, discussed next.

Tab completion
Bash and Z shell users can enable tab completion to simplify Helm usage. Tab completion
allows Helm commands to be auto-completed when the Tab key is pressed, allowing users
to perform tasks faster and helping prevent input mistakes.

This is similar to how most modern terminal emulators behave by default. When the Tab
key is pressed, terminals try to guess what the next argument needs to be by observing
the state of the command and the environment. For example, the cd /usr/local/b
input can be tab-completed to cd /usr/local/bin in a Bash shell. Similarly, an
input such as helm upgrade hello- can be tab-completed to read helm upgrade
hello-world.

Tab completion can be enabled by running the following command:

$ source <(helm completion $SHELL)

The $SHELL variable must be either bash or zsh. Note that auto-completion will only
exist in terminal windows that run the preceding command, so other windows will need
to run this command as well to experience the auto-completion feature.

Authentication
Helm needs to be able to authenticate with a Kubernetes cluster in order to deploy and
manage applications. It authenticates by referencing a kubeconfig file, which specifies
different Kubernetes clusters and how to authenticate against them.

Those of you who are using Minikube when following this book will not need to configure
authentication, as Minikube automatically configures a kubeconfig file each time a
new cluster is created. Those of you who aren't running Minikube, however, will likely
need to create a kubeconfig file or have one provided, depending on the Kubernetes
distribution you are using.

A kubeconfig file can be created by leveraging three different kubectl commands:

• The first command is set-cluster:

kubectl config set-cluster

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Configuring Helm 49

The set-cluster command will define a cluster entry in the kubeconfig
file. It determines the Kubernetes cluster's hostname or IP address, along with its
certificate authority.

• The next command is set-credentials:

kubectl config set-credentials

The set-credentials command will define the name of a user along with
its authentication method and details. This command can configure a username
and password pair, client certificate, bearer token, or authentication provider to
allow users and administrators the ability to specify varying different methods
of authentication.

• Then, we have the set-context command:

kubectl config set-context

The set-context command is used to associate a credential to a
cluster. Once an association between a credential and a cluster is established,
the user will be able to authenticate to the specified cluster using the credential's
authentication method.

The kubectl config view command can be used to view the kubeconfig file.
Notice how the clusters, contexts, and user stanzas of kubeconfig correspond
to the previously described commands, as shown:

$ kubectl config view

apiVersion: v1

clusters:

- cluster:

 certificate-authority: /home/helm-user/.minikube/ca.crt

 server: https://192.168.99.102:8443

 name: minikube

contexts:

- context:

 cluster: minikube

 user: minikube

 name: minikube

current-context: minikube

kind: Config

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://192.168.99.102:8443

50 Preparing a Kubernetes and Helm Environment

preferences: {}

users:

- name: minikube

 user:

 client-certificate: /home/helm-user/.minikube/client.crt

 client-key: /home/helm-user/.minikube/client.key

Once a valid kubeconfig file is present, Kubectl and Helm will be able to interact with a
Kubernetes cluster.

In the next section, we will discuss how authorization is handled against a
Kubernetes cluster.

Authorization/RBAC
While authentication is a means of confirming identity, authorization defines the actions
that an authenticated user is allowed to perform. Kubernetes uses role-based access
control (RBAC) to perform authorization on Kubernetes. RBAC is a system of designing
roles and privileges that can be assigned to a given user or group of users. The actions
a user is permitted to perform on Kubernetes depends on the roles that the user has
been assigned.

Kubernetes provides many different roles on the platform. Three common roles are
listed here:

• cluster-admin: Allows a user to perform any action against any resource
throughout the cluster

• edit: Allows a user to read and write to most resources within a namespace or a
logical grouping of Kubernetes resources

• view: Prevents a user from modifying existing resources, and only allows users to
read resources within a namespace

Since Helm authenticates to Kubernetes using the credentials defined in the kubeconfig
file, Helm is given the same level of access as the users defined in the file. If edit access
is enabled, Helm can be assumed to have sufficient permission to install applications, in
most cases. For only view access, Helm will not be able to install applications, as this level
of access is read-only.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 51

Users that run Minikube are given cluster-admin by default after cluster creation.
While this would not be best practice in a production environment, it is acceptable for
learning and experimenting. Those of you running Minikube will not have to worry about
configuring authorization in order to follow along with both the concepts and examples
provided in this book. Those of you using other Kubernetes clusters that aren't Minikube
will need to make sure they are given at least the edit role to be able to deploy most
applications with Helm. This can be done by asking an administrator to run the
following command:

$ kubectl create clusterrolebinding $USER-edit
--clusterrole=edit --user=$USER

Best practices around RBAC will be discussed in Chapter 9, Helm Security Considerations
when we discuss, in greater detail, the concepts related to security, including how to
appropriately apply roles to prevent mistakes or malicious intent in the cluster.

Summary
There are a variety of different components you will need to have available in order to
start using Helm. In this chapter, you learned how to install Minikube to provide a local
Kubernetes cluster that can be used throughout this book. You also learned how to install
Kubectl, which is the official tool for interacting with the Kubernetes API. Finally, you
learned how to install the Helm client and explored the various ways that Helm can be
configured, which includes adding repositories and plugins, modifying environment
variables, enabling tab completion, and configuring authentication and authorization
against a Kubernetes cluster.

Now that you have the prerequisite tooling installed, you can begin to learn how to deploy
your first application with Helm. In the next chapter, you will install a Helm chart from an
upstream chart repository, as well as learn about life cycle management and application
configuration. After finishing the chapter, you will have an understanding of how Helm
acts as the package manager for Kubernetes.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

52 Preparing a Kubernetes and Helm Environment

Further reading
Check out the following links to learn more about the installation options available for
Minikube, Kubectl, and Helm:

• Minikube: https://kubernetes.io/docs/tasks/tools/install-
minikube/

• Kubectl: https://kubernetes.io/docs/tasks/tools/install-
kubectl/

• Helm: https://helm.sh/docs/intro/install/

We covered various different ways of configuring Helm post-installation. Check out the
following links to learn more about the following topics:

• Repository management: https://helm.sh/docs/intro/
quickstart/#initialize-a-helm-chart-repository

• Plugin management: https://helm.sh/docs/topics/plugins/

• Environment variables and the helm help output: https://helm.sh/docs/
helm/helm/

• Tab completion: https://helm.sh/docs/helm/helm_completion/

• Authentication and authorization via the kubeconfig file: https://
kubernetes.io/docs/tasks/access-application-cluster/
configure-access-multiple-clusters/

Questions
1. Can you list the various methods you can use to install the Helm client?

2. How does Helm authenticate to a Kubernetes cluster?

3. What mechanism is in place to provide authorization to the Helm client? How can
an administrator manage these privileges?

4. What is the purpose of the helm repo add command?

5. What are the three XDG environment variables used by Helm? What purpose do
they serve?

6. Why is Minikube a good choice for learning how to use Kubernetes and Helm?
What does Minikube automatically configure for users to allow them to get started
more rapidly?

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/quickstart/#initialize-a-helm-chart-repository
https://helm.sh/docs/intro/quickstart/#initialize-a-helm-chart-repository
https://helm.sh/docs/topics/plugins/
https://helm.sh/docs/helm/helm/
https://helm.sh/docs/helm/helm/
https://helm.sh/docs/helm/helm_completion/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

3
Installing your First

Helm Chart
Earlier in this book, we referred to Helm as the "Kubernetes package manager" and
compared it to an operating system's package manager. A package manager allows
users to quickly and easily install applications of varying complexities and manages any
dependencies that an application might have. Helm works in a similar fashion.

Users simply determine the application they want to deploy on Kubernetes and Helm
does the rest of the work for them. A Helm chart—a packaging of Kubernetes resources—
contains the logic and components required to install an application, allowing users to
perform installations without needing to know the specific resources required. Users can
also pass in parameters, called values, to a Helm chart to configure different aspects of the
application without needing to know the specific details about the Kubernetes resources
that are being configured. You will explore these features in this chapter by leveraging
Helm as a package manager to deploy a WordPress instance onto Kubernetes.

We will cover the following main topics in this chapter:

• Finding a WordPress chart on Helm Hub

• Creating the Kubernetes environment

• Additional installation notes

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

54 Installing your First Helm Chart

• Installing a WordPress chart

• Accessing a WordPress application

• Upgrading a WordPress release

• Rolling back a WordPress release

• Uninstalling a WordPress release

Technical requirements
This chapter will use the following software technologies:

• minikube

• kubectl

• helm

We will assume that these components have already been installed on your system. For
additional information on each of these tools, including installation and configuration,
please refer to Chapter 2, Preparing a Kubernetes and Helm Environment.

Understanding the WordPress application
In this chapter, you will use Helm to deploy WordPress on Kubernetes. WordPress is an
open source Content Management System (CMS) used to create websites and blogs. Two
different variants are available—WordPress.com and WordPress.org. WordPress.
com is a Software-As-A-Service (SaaS) version of the CMS, meaning the WordPress
application and its components are already hosted and managed by WordPress. In this
case, users do not need to worry about installing their own WordPress instance as they
can simply access instances that are already available. WordPress.org, on the other
hand, is the self-hosted option. It requires users to deploy their own WordPress instances
and requires expertise to maintain.

Since WordPress.com is easier to start with, it may sound like the more desirable
option. This SaaS version of WordPress, however, has many disadvantages over the self-
hosted WordPress.org:

• It does not provide as many features as WordPress.org.

• It does not give users full control over their website.

• It requires users to pay for premium features.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://WordPress.com
http://WordPress.org
http://WordPress.com
http://WordPress.com
http://WordPress.org
http://WordPress.com
http://WordPress.org:
http://WordPress.org

Understanding the WordPress application 55

• It does not provide the ability to modify the backend code of a website.

The self-hosted WordPress.org variation, on the other hand, gives users complete
control over their website and WordPress instances. It provides the full WordPress feature
set, from installing plugins to modifying backend code.

A self-hosted WordPress instance requires users to deploy a few different components.
First, WordPress needs a database to save the website and administrative data.
WordPress.org states that the database must be either MySQL or MariaDB, which
serves as both the website's location and the administrative portal. In Kubernetes,
deploying these components means creating a variety of different resources:

• secrets for database and admin console authentication

• A ConfigMap for externalized database configuration

• services for networking

• A PersistentVolumeClaim for database storage

• A StatefulSet for deploying the database in a stateful fashion

• A Deployment for deploying the frontend

Creating these Kubernetes resources requires both WordPress and Kubernetes expertise.
It requires WordPress expertise because the user needs to know the physical components
that are required as well as how to configure them. Kubernetes expertise is required
because users need to know how to express the WordPress requirements as Kubernetes
resources. Given the complexity and number of resources that are required, deploying
WordPress on Kubernetes can be a daunting task.

The challenge presented by this task is a perfect use case for Helm. Rather than focus on
creating and configuring each of the Kubernetes resources we have described, users can
leverage Helm as a package manager to deploy and configure WordPress on Kubernetes
without expertise. To begin, we'll explore a platform called Helm Hub to first find a
WordPress Helm chart. After that, we'll deploy WordPress to your Kubernetes cluster
using Helm and explore basic Helm features along the way.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://WordPress.org
http://WordPress.org

56 Installing your First Helm Chart

Finding a WordPress chart
Helm Charts can be made available for consumption by being published to a chart
repository. A chart repository is a location where packaged charts can be stored and
shared. A repository is simply hosted as an HTTP server and can take the form of various
implementations, including GitHub pages, an Amazon S3 bucket, or a simple web server
such as Apache HTTPD.

To be able to use existing charts that are stored in a repository, Helm needs to first be
configured to a repository that it can use. This is accomplished by adding repositories
using helm repo add. One challenge involved with adding repositories is that there
are numerous different chart repositories available for consumption; it may be difficult
to locate the particular repository that fits your use case. To make it easier to find chart
repositories, the Helm community created a platform called Helm Hub.

Helm Hub is a centralized location for upstream chart repositories. Powered by a
community project called Monocular, Helm Hub is designed to aggregate all known
public chart repositories and provide a search functionality. In this chapter, we
will use the Helm Hub platform to search for WordPress Helm charts. Once an
appropriate chart is found, we will add the repository that this chart belongs so that it
can be installed, afterward.

To begin, interaction with Helm Hub can be accomplished either from the command
line or from a web browser. When using the command line to search for Helm charts, the
results that are returned provide a URL to Helm Hub, which can be used to find additional
information on the chart and instructions on how to add its chart repository.

Let's follow this workflow to add a chart repository containing a WordPress chart.

Searching for WordPress charts from the
command line
In general, Helm contains two different search commands to assist us in finding
Helm charts:

• To search for charts in Helm Hub or an instance of Monocular, use the following
command:

helm search hub

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Finding a WordPress chart 57

• To search repositories for a keyword in Charts, use the following command:

helm search repo

If repositories have not been added previously, users should run the helm search
hub command to locate Helm charts available across all public chart repositories.
After repositories are added, users can run helm search repo to search across
these repositories.

Let's search Helm Hub for any existing WordPress charts. Each chart in Helm Hub has a
set of keywords that can be searched against. Execute the following command to locate
charts containing the wordpress keyword:

$ helm search hub wordpress

Upon running this command, an output similar to the following should be displayed:

Figure 3.1 – The output from running helm search hub wordpress

Each line of the output returned by this command is a chart from Helm Hub. The output
will display the URL to each chart's Helm Hub page. It will also display the chart version,
which is the latest version of the Helm chart, and the app version, which is the version
of the application that the chart is defaulted to deploy. This command will also print a
description of each chart, which will often state the application that the chart deploys.

As you may have noticed, some of the values returned are truncated. This is due to the
fact that the default output of helm search hub is a table, causing the results to be
returned in a table format. By default, columns wider than 50 characters are truncated.
This truncation can be avoided by specifying the --max-col-width=0 flag.

Try running the following command by including the --max-col-width flag to view
the untruncated results in table format:

$ helm search hub wordpress --max-col-width=0

The result, in table format, will display each field in full, including the URLs
and descriptions.

The URLs are as follows:

• https://hub.helm.sh/charts/bitnami/wordpress

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://hub.helm.sh/charts/bitnami/wordpress

58 Installing your First Helm Chart

• https://hub.helm.sh/charts/presslabs/wordpress-site

• https://hub.helm.sh/charts/presslabs/wordpress-operator

The descriptions are as follows:

• Web publishing platform for building blogs and websites.

• A Helm chart for deploying a WordPress site on
Presslabs Stack

• Presslabs WordPress Operator Helm Chart

Alternatively, users can pass the --output flag and specify either a yaml or json
output, which will print the search results in full.

Try running the previous command again with the --output yaml flag:

$ helm search hub wordpress --output yaml

The result will be in YAML format, similar to the output shown here:

Figure 3.2 – The output for helm search hub wordpress--output yaml

For this example, we will choose to install the first chart that was returned in the
preceding sample output. To learn more about this chart and how it is installed, we can
go to https://hub.helm.sh/charts/bitnami/wordpress, which will help
us view the chart from Helm Hub.

The resulting content will be explored in the next section.

Viewing the WordPress chart in a browser
Using helm search hub is the fastest way of searching for charts on Helm Hub.
However, it does not provide all of the details needed for the installation. Namely, users
need to know a chart's repository URL in order to add its repository and install the chart.
A chart's Helm Hub page can provide this URL, along with other installation details.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://hub.helm.sh/charts/presslabs/wordpress-site
https://hub.helm.sh/charts/presslabs/wordpress-operator
https://hub.helm.sh/charts/bitnami/wordpress
https://hub.helm.sh/charts/bitnami/wordpress

Finding a WordPress chart 59

Once you have pasted the WordPress chart's URL into a browser window, a page similar
to the following should be displayed:

Figure 3.3 – A WordPress Helm chart from Helm Hub

The WordPress chart's page from Helm Hub provides many details, including the
maintainer of the chart (Bitnami, which is a company that provides software packages
that are deployable to different environments) and a brief introduction on the chart
(stating that this chart will deploy a WordPress instance to Kubernetes along with a
Bitnami MariaDB chart as a dependency). The web page also provides installation details,
including the chart's supported values, used to configure the installation, along with
Bitnami's chart repository URL. These installation details give users the ability to add this
repository and install the WordPress chart.

On the right-hand side of the page, you should see a section labeled Add bitnami
repository. This section contains the command that can be used to add the Bitnami chart
repository. Let's look at how to use it:

1. Run the following command in your command line:

$ helm repo add bitnami https://charts.bitnami.com

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://charts.bitnami.com/

60 Installing your First Helm Chart

2. Verify that the chart has been added by running helm repo list:

$ helm repo list

NAME URL

bitnami https://charts.bitnami.com

We can do a little more now that we have added the repository.

3. Run the following command to view charts from locally configured repositories that
contain the bitnami keyword:

$ helm search repo bitnami --output yaml

A shortened list of the results returned is shown in the following output:

Figure 3.4 – The output for helm search repo bitnami --output yaml

Similar to the helm search hub command, the helm search repo command
takes a keyword as an argument. Using bitnami as a keyword will return all the charts
under the bitnami repository, as well as charts outside of that repository that may also
contain the bitnami keyword.

To ensure that you now have access to the WordPress chart, run the following helm
search repo command with the wordpress argument:

$ helm search repo wordpress

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://charts.bitnami.com

Finding a WordPress chart 61

The output will display the WordPress chart that you found on Helm Hub and observed in
your browser:

Figure 3.5 – The output for helm search repo wordpress

The value in the NAME field before the slash (/) indicates the name of the repository
containing the Helm chart that was returned. The latest version of the WordPress chart
from the bitnami repository, as of the time of writing, is version 8.1.0. This is the
version that will be used for the installation. Previous versions can be observed by passing
the --versions flag to the search command:

$ helm search repo wordpress --versions

You should then see a new line for each version of the available WordPress charts:

Figure 3.6 – The version lists for WordPress charts on the bitnami repository

Now that a WordPress chart has been identified and the chart's repository has been added,
we will explore how you can use the command line to find out more about the chart to
prepare for installation in the next section.

Showing the WordPress chart information from the
command line
You can find a lot of important details about a Helm chart on its Helm Hub page. Once
a chart's repository is added locally, this information (and more) can also be viewed
from the command line with the four helm show subcommands described in the
following list:

• This command shows the chart's metadata (or chart definition):

helm show chart

• This command shows the chart's README file:

helm show readme

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

62 Installing your First Helm Chart

• This command shows the chart's values:

helm show values

• This command shows the chart's definition, README files, and values:

helm show all

Let's use these commands with the Bitnami WordPress chart. In each of these commands,
the chart should be referenced as bitnami/wordpress. Note that we will be passing
the --version flag to retrieve information about version 8.1.0 of this chart. If this flag
is omitted, information from the latest version of the chart will be returned.

Run the helm show chart command to retrieve the metadata for the chart:

$ helm show chart bitnami/wordpress --version 8.1.0

The result of this command will be the chart definition of the WordPress chart. A chart
definition describes information such as the chart's version, its dependencies, keywords,
and maintainers:

Figure 3.7 – The WordPress chart definition

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Kubernetes environment 63

Run the helm show readme command to view the chart's README file from the
command line:

$ helm show readme bitnami/wordpress --version 8.1.0

The results of this command may look familiar, as a chart's README file is also displayed
on its Helm Hub page. Leveraging this option from the command line provides a quick
way to view the README file without having to open a browser:

Figure 3.8 – The WordPress chart's README file shown in the command line

We use helm show values to inspect a chart's values. Values serve as parameters that
users can provide in order to customize a chart installation. We will run this command
later on in this chapter in the Creating a values file for configuration section when we
install the chart.

Finally, helm show all aggregates all of the information from the previous three
commands together. Use this command if you want to inspect all of a chart's details
at once.

Now that we have found and inspected a WordPress chart, let's set up a Kubernetes
environment that we can later install this chart to.

Creating a Kubernetes environment
To create a Kubernetes environment in this chapter, we will use Minikube. We learned
how to install Minikube in Chapter 2, Preparing a Kubernetes and Helm Environment.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

64 Installing your First Helm Chart

Let's follow these steps to set up Kubernetes:

1. Start your Kubernetes cluster by running the following command:

$ minikube start

2. After a short amount of time, you should see a line in the output that resembles
the following:

 Done! kubectl is now configured to use 'minikube'

3. Once the Minikube cluster is up and running, create a dedicated namespace for
this chapter's exercise. Run the following command to create a namespace
called chapter3:

$ kubectl create namespace chapter3

Now that the cluster setup is complete, let's begin the process of installing the WordPress
chart to your Kubernetes cluster.

Installing the WordPress chart
Installing a Helm chart is a simple process that can begin with the inspection of a chart's
values. In the next section, we will inspect the values that are available on the WordPress
chart and describe how to create a file that allows customizing the installation. Finally, we
will install the chart and access the WordPress application.

Creating a values file for configuration
You can override the values defined in charts by providing a YAML-formatted values
file. In order to properly create a values file, you need to inspect the supported
values that the chart provides. This can be done by running the helm show values
command, as explained earlier.

Run the following command to inspect the WordPress chart's values:

$ helm show values bitnami/wordpress --version 8.1.0

The result of this command should be a long list of possible values that you can set, many
of which already have default values set:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Installing the WordPress chart 65

Figure 3.9 – A list of values generated by running helm show values

The preceding output shows the beginning of the WordPress chart's values. Many of
these properties already have defaults set, meaning these values will represent how
the chart is configured if they are not overridden. For example, if the image value is
not overridden in a values file, the image used by the WordPress chart will use the
bitnami/wordpress container image from the docker.io registry against the
5.3.2-debian-9-r0 tag.

Lines in the chart's values that begin with a hash sign (#) are comments. Comments can
be used to explain a value or a block of values, or they can be used to comment values in
order to unset them. An example of unsetting values by commenting them is shown in
the global YAML stanza at the top of the preceding output. Each of these values will be
unset by default unless set explicitly by the user.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://docker.io

66 Installing your First Helm Chart

If we explore the helm show values output further, we can find values that pertain to
configuring the WordPress blog's metadata:

Figure 3.10 – The values returned by running the helm show values command

These values appear to be important for configuring a WordPress blog. Let's override
them by creating a values file. Create a new file on your machine called wordpress-
values.yaml. In that file, enter the following content:

wordpressUsername: helm-user

wordpressPassword: my-pass

wordpressEmail: helm-user@example.com

wordpressFirstName: Helm_is

wordpressLastName: Fun

wordpressBlogName: Learn Helm!

Feel free to get more creative with these values if you'd like. Continuing down the list of
values from helm show values, there is one more important value that should be
added to the values file before starting the installation, as shown:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

mailto:helm-user@example.com
mailto:helm-user@example.com

Installing the WordPress chart 67

Figure 3.11 – The LoadBalancer value returned after running helm show values

As described in the comments, this value states that if we are working with Minikube,
we'll need to change the default LoadBalancer type to NodePort. A LoadBalancer
service type in Kubernetes is used to provision a load balancer from a public cloud
provider. While this value can be supported by leveraging the minikube tunnel
command, setting this value to NodePort will instead allow you to directly access
the WordPress application against a local port, instead of having to make use of the
minikube tunnel command.

Add this value to your wordpress-values.yaml file:

service:

 type: NodePort

Once this value is added to your values file, your complete values file should look
as follows:

wordpressUsername: helm-user

wordpressPassword: my-pass

wordpressEmail: helm-user@example.com

wordpressFirstName: Helm_is

wordpressLastName: Fun

wordpressBlogName: Learn Helm!

service:

 type: NodePort

Now that the values file is complete, let's run the installation.

Running the installation
We use helm install to install a Helm chart. The standard syntax is as follows:

helm install [NAME] [CHART] [flags]

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

mailto:helm-user@example.com

68 Installing your First Helm Chart

The NAME parameter is the name you would like to give your Helm release. A release
captures the Kubernetes resources that were installed with a chart and tracks an
application's life cycle. We will explore how releases work throughout this chapter.

The CHART parameter is the name of the Helm chart that is installed. Charts from a
repository can be installed by following the <repo name>/<chart name> form.

The flags option in helm install allows you to further customize the installation.
flags allow users to define and override values, specify the namespace to work against,
and more. The list of flags can be viewed by running helm install --help. We can
pass --help to other commands as well to view their usage and supported options.

Now, with a proper understanding of the helm install usage, run the
following command:

$ helm install wordpress bitnami/wordpress --values=wordpress-
values.yaml --namespace chapter3 --version 8.1.0

This command will install a new release called wordpress using the bitnami/
wordpress Helm chart. It will use the values defined in the wordpress-values.
yaml file to customize the installation, and the chart will be installed in the chapter3
namespace. It will also deploy the 8.1.0 version, as defined by the --version flag.
Helm will install the latest version of the Helm chart without this flag.

If the chart installation is successful, you should see the following output:

Figure 3.12 – The output of a successful WordPress chart installation

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Installing the WordPress chart 69

This output displays information about the installation, including the name of the release,
the time it was deployed, the namespace it was installed to, the status of the deployment
(which is deployed), and the revision number (which is set to 1 since this was the initial
installation of the release).

The output also displays a list of notes related to the installation. Notes are used to
provide users with additional information about their installation. In the case of the
WordPress chart, these notes provide information about how to access and authenticate
the WordPress application. While these notes appear directly after installation, they can
be retrieved at any time with the helm get notes command, as explained in the
next section.

With your first Helm installation complete, let's inspect the release to observe the
resources and configurations that were applied.

Inspecting your release
One of the easiest ways to inspect a release and verify its installation is to list all the Helm
releases in a given namespace. For this, Helm provides the list subcommand.

Run the following command to view the list of releases in the chapter3 namespace:

$ helm list --namespace chapter3

You should see only one release in this namespace, as shown:

Figure 3.13 – The output from the helm list command that lists the Helm releases

The list subcommand provides the following information:

• The release name

• The release namespace

• The latest revision number of the release

• A timestamp of the latest revision

• The release status

• The chart name

• The application version

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

70 Installing your First Helm Chart

Note that the status, chart name, and application version are truncated from the
preceding output.

While the list subcommand is useful for providing high-level release information,
there are additional items that users might want to know about a particular release.
Helm provides the get subcommand to provide more information about a release.
The following list describes the commands that can be used to provide a set of detailed
release information:

• To get all the hooks for a named release, run the following command:

helm get hooks

• To get the manifest for a named release, run the following command:

helm get manifest

• To get the notes for a named release, run the following command:

helm get notes

• To get the values for a named release, run the following command:

helm get values

• To get all the information about a named release, run the following command:

helm get all

The first command from the preceding list, helm get hooks, is used to display the
hooks for a given release. Hooks will be explored in more detail in Chapter 5, Building
Your First Helm Chart and Chapter 6, Testing Helm Charts, when you learn about building
and testing Helm charts. For now, hooks can be thought of as the actions that Helm
performs during certain phases of an application's life cycle.

Run the following command to view the hooks that are included in this release:

$ helm get hooks wordpress --namespace chapter3

In the output, you will find two Kubernetes Pod manifests with the following annotation:

'helm.sh/hook': test-success

This annotation denotes a hook that is run during the execution of the test
subcommand, which we will explore in greater detail in Chapter 6, Testing Helm Charts.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://helm.sh/hook'

Installing the WordPress chart 71

These test hooks provide a mechanism for chart developers to confirm that a chart is
functioning as designed and can be safely ignored by end users.

Since both of the hooks included in this chart are for testing purposes, let's move on to the
next command from the preceding list to continue with the release inspection.

The helm get manifest command can be used to get a list of the Kubernetes
resources that were created as part of the installation. Run this command as shown in the
following example:

$ helm get manifest wordpress --namespace chapter3

After you run this command, you'll see the following Kubernetes manifests:

• Two secrets manifests.

• Two ConfigMaps manifests (the first is used to configure the WordPress
application, while the second is used for testing, which is performed by chart
developers and so can be ignored).

• One PersistentVolumeClaim manifest.

• Two services manifests.

• One Deployment manifest.

• One StatefulSet manifest.

From this output, you can observe where your values had an effect when configuring the
Kubernetes resources. One example to note is within the WordPress service whose type
has been set to NodePort:

Figure 3.14 – Setting type to NodePort

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

72 Installing your First Helm Chart

You can also observe the other values that we set for the WordPress user. These values are
defined as environment variables in the WordPress deployment, as shown:

Figure 3.15 – Values set as environment variables

Most of the default values provided by the chart were left untouched. Those defaults have
been applied to the Kubernetes resources and can be observed through the helm get
manifest command. If these values had been changed, the Kubernetes resources would
be configured differently.

Let's move on to the next get command. The helm get notes command is used to
display the notes from a Helm release. As you may recall, the release notes were displayed
when the WordPress chart was installed. These notes provide important information
about accessing the application and they can be displayed again by running the
following command:

$ helm get notes wordpress --namespace chapter3

The helm get values command is useful for recalling the values that were used for
a given release. Run the following command to view the values that were provided in the
wordpress release:

$ helm get values wordpress --namespace chapter3

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Installing the WordPress chart 73

The results of this command should look familiar as they should match the values
specified in the wordpress-values.yaml file:

Figure 3.16 –User-supplied values in the wordpress release

While recalling the user-supplied values is useful, it may be necessary in some cases to
return all of the values used by a release, including the defaults. This can be accomplished
by passing in an additional --all flag, as shown:

$ helm get values wordpress --all --namespace chapter3

For this chart, the output will be lengthy. The first few values are shown in the
following output:

Figure 3.17 – A subset of all the values for the wordpress release

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

74 Installing your First Helm Chart

Finally, Helm provides a helm get all command, which can be used to aggregate all
of the information from the various helm get commands:

$ helm get all wordpress --namespace chapter3

Aside from the commands provided by Helm, the kubectl CLI can also be used to
inspect an installation more closely. For example, instead of getting all of the Kubernetes
resources created by the installation, kubectl can be used to narrow the scope down
to just one type of resource, such as a deployment. To ensure that the resources returned
belong to the Helm release, a label defined on the deployment can be provided to the
kubectl command that denotes the name of the release. Helm charts often add an app
label to their Kubernetes resources. Use the kubectl CLI to retrieve the deployments
that contain this label by running the following command:

$ kubectl get all -l app=wordpress --namespace chapter3

You'll find that the following deployment exists in the chapter3 namespace:

Figure 3.18 – The wordpress deployment in the chapter3 namespace

Additional installation notes
Soon, we will explore the WordPress application that we just installed. First, there are
several areas of consideration that should be mentioned before leaving behind the topic of
installation.

The -n flag
The -n flag can be used instead of the --namespace flag to reduce the typing effort
when entering commands. This holds true for the upgrade and rollback commands,
which we will describe later in this chapter. From here on, we will use the -n flag when we
denote the namespace that Helm should interact with.

The HELM_NAMESPACE environment variable
You can also set an environment variable to denote the namespace that Helm should
interact with.

Let's look at how we can set this environment variable on various operating systems:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Additional installation notes 75

• You can set the variable on macOS and Linux as follows:

$ export HELM_NAMESPACE=chapter3

• Windows users can set this environment variable by running this command in
PowerShell:

> $env:HELM_NAMESPACE = 'chapter3'

This variable's value can be verified by running the helm env command:

$ helm env

You should see the HELM_NAMESPACE variable in the resulting output. By default, the
variable is set to default.

In this book, we will not rely on the HELM_NAMESPACE variable but will instead pass in
the -n flag alongside each command so that it is clearer which namespace we intend to
work with. Providing the -n flag is also the best way that the namespace for Helm can
be specified, as it ensures that we are targetting the namespace that we expect.

Choosing between --set and --values
For the install, upgrade, and rollback commands, you can choose one of two
ways to pass values to your chart:

• To pass a value in from the command line, use the following command:

--set

• To specify values in a YAML file or URL, use the following command:

--values

In this book, we will treat the --values flag as the preferred method of configuring
chart values. The reason for this is that it is easier to configure multiple values in this
fashion. Maintaining a values file will also allow us to save these assets in a Source
Code Management (SCM) system, such as git, which allows installations to be more
easily reproducible. Take note that sensitive values, such as passwords, should never be
stored in a source-control repository. We will cover the topic of security in Chapter 9,
Helm Security Considerations. For the time being, it is important to remember not to push
secrets into a source control repository. When secrets need to be provided in a chart,
the recommended approach is to use the --set flag explicitly.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

76 Installing your First Helm Chart

The --set flag is used to pass values directly from the command line. This is an
acceptable method for values that are simple, as well as for when there are few values
that need to be configured. Once again, using the --set flag is not the preferred
approach as it limits the ability to make the installation more reproducible. It is also
much more difficult to configure complex values in this fashion, such as values in the
form of lists or complex maps. There are other related flags, such as --set-file and
--set-string; the --set-file flag is used to pass along a file that has configured
values in a key1=val1 and key2=val2 format, while the --set-string flag is used
to set all the values provided in a key1=val1 and key2=val2 format as strings.

With this explanation out of the way, let's explore the WordPress application that we
just installed.

Accessing the WordPress application
The WordPress chart's release notes provide four commands that you can run to access
your WordPress application. Run the four commands listed here:

• For macOS or Linux, run the following:

$ export NODE_PORT=$(kubectl get --namespace chapter3 -o
jsonpath="{.spec.ports[0].nodePort}" services wordpress)

$ export NODE_IP=$(kubectl get nodes --namespace chapter3
-o jsonpath="{.items[0].status.addresses[0].address}")

$ echo "WordPress URL: http://$NODE_IP:$NODE_PORT/"

$ echo "WordPress Admin URL: http://$NODE_IP:$NODE_PORT/
admin"

• For Windows PowerShell, run the following:

> $NODE_PORT = kubectl get --namespace chapter3 -o
jsonpath="{.spec.ports[0].nodePort}" services wordpress |
Out-String

> $NODE_IP = kubectl get nodes --namespace chapter3 -o
jsonpath="{.items[0].status.addresses[0].address}" |
Out-String

> echo "WordPress URL: http://$NODE_IP:$NODE_PORT/"

> echo "WordPress Admin URL: http://$NODE_IP:$NODE_PORT/
admin"

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

Accessing the WordPress application 77

After defining the two environment variables based on a series of kubectl queries, the
resulting echo commands will reveal the URLs to access WordPress. The first URL is
to view the home page and is where visitors would access your site. The second URL is
to reach the admin console, which is used by website administrators to configure and
manage the site content.

Paste the first URL into a browser and you should be presented with a page that appears
similar to the content displayed here:

Figure 3.19 – The WordPress blog page

Several portions of this page may look familiar to you. First, notice that at the top-left
corner of the screen the title of the blog is called Learn Helm! Not only does this
bear a resemblance to the title of this book, but it is also the string you gave the
wordpressBlogName value previously during installation. You can also see this
value included in the copyright statement at the bottom of the page, © 2020 Learn Helm!.

Another value that affected the customization of the home page is
wordpressUsername. Notice that the author of the Hello world! post that
is included is helm-user. This is the name of the user that was provided to the
wordpressUsername value and would appear differently if an alternative
username was provided.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

78 Installing your First Helm Chart

The other link provided in the previous set of commands is for the admin console. Paste
the link from the second echo command into a browser and you should be presented
with the following screen:

Figure 3.20: The WordPress admin console login page

To log in to the admin console, enter the wordpressUsername and
wordpressPassword values that you provided during the installation. These values
can be seen by reviewing your local wordpress-values.yaml file. They can also be
retrieved by running the following commands instructed by the WordPress chart's notes:

$ echo Username: helm-user

$ echo Password: $(kubectl get secret --namespace chapter3
wordpress -o jsonpath='{.data.wordpress-password}' | base64
--decode)

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Accessing the WordPress application 79

Once authenticated, the admin console dashboard is displayed, as shown:

Figure 3.21 – The WordPress admin console page

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

80 Installing your First Helm Chart

If you're in charge of managing this WordPress site, this is where you can configure your
site, write posts, and manage plugins. If you click on the top-right link that says Howdy,
helm-user, you will be directed to the helm-user profile page. From there, you can see
several of the other values that you provided during the installation, as shown:

Figure 3.22 – The WordPress profile page

The First Name, Last Name, and Email fields refer to their corresponding
wordpressFirstname, wordpressLastname, and wordpressEmail
Helm values.

Feel free to continue exploring your WordPress instance. Once complete, continue to
the next section to learn how to perform an upgrade on a Helm release.

Upgrading the WordPress release
Upgrading a release refers to the process of modifying the values that a release was
installed with or upgrading to a newer version of the chart. In this section, we will
upgrade the WordPress release by configuring additional values around the WordPress
replica and resource requirements.

Modifying the Helm values
It is common for Helm charts to expose values to configure the number of instances of
an application and their related set of resources. The following screenshots illustrate
several portions of the helm show values command that relate to the values used
for this purpose.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Upgrading the WordPress release 81

The first value, replicaCount, is straightforward to set. Since replica is a Kubernetes
term that describes the number of Pods needed to deploy an application, it's implied that
replicaCount is used to specify the number of application instances that are deployed
as part of a release:

Figure 3.23 – replicaCount in the helm show values command

Add the following line to your wordpress-values.yaml file to increase the number
of replicas from 1 to 2:

replicaCount: 2

The second value that we need to define refers to a set of values under the
resources YAML stanza:

Figure 3.24 – The values under the resources stanza

Values can be indented, as in the resources stanza, to provide a logical grouping.
Under the resources stanza is a requests stanza, which is used to configure the
memory and cpu values that Kubernetes will allocate to the WordPress application. Let's
modify these values during the upgrade by decreasing the memory request to 256Mi (256
mebibytes) and the cpu request to 100m (100 millicores). Add these modifications to the
wordpress-values.yaml file, as shown:

resources:

 requests:

 memory: 256Mi

 cpu: 100m

After defining these two new values, your entire wordpress-values.yaml file will
appear as follows:

wordpressUsername: helm-user

wordpressPassword: my-pass

wordpressEmail: helm-user@example.com

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

mailto:helm-user@example.com

82 Installing your First Helm Chart

wordpressFirstName: Helm

wordpressLastName: User

wordpressBlogName: Learn Helm!

service:

 type: NodePort

replicaCount: 2

resources:

 requests:

 memory: 256Mi

 cpu: 100m

Once the values file has been updated with these new values, you can run the helm
upgrade command to upgrade the release, as we will discuss in the next section.

Running the upgrade
The helm upgrade command is almost identical to helm install in basic syntax, as
you can see in the following example:

helm upgrade [RELEASE] [CHART] [flags]

While helm install expects you to provide a name for a new release, helm upgrade
expects you to provide the name of an already-existing release that should be upgraded.

Values defined in a values file can be provided using the --values flag, identical
to that of the helm install command. Run the following command to upgrade the
WordPress release with a new set of values:

$ helm upgrade wordpress bitnami/wordpress --values wordpress-
values.yaml -n chapter3 --version 8.1.0

Once the command is executed, you should see an output similar to that of helm
install depicted in an earlier section:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Upgrading the WordPress release 83

Figure 3.25 – The output for helm upgrade

You should also see the wordpress Pods restarting with by running the
following command:

$ kubectl get pods -n chapter3

In Kubernetes, new Pods are created when a deployment is modified. The same behavior
can be observed in Helm. The values that were added during the upgrade introduced
a configuration change of the WordPress deployment and new WordPress Pods were
created, as a result, with the updated configuration. These changes can be observed using
the same helm get manifest and kubectl get deployment commands that were
used earlier after the installation.

In the next section, we'll perform a couple more upgrades to demonstrate how values can
sometimes behave differently during an upgrade.

Reusing and resetting values during an upgrade
The helm upgrade command includes two additional flags that are used to manipulate
values that are not present in the helm install command.

Let's look at these flags now:

• --reuse-values: When upgrading, reuse the last release's values.

• --reset-values: When upgrading, reset the values to the chart defaults.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

84 Installing your First Helm Chart

If an upgrade is performed without providing values with the --set or --values
flags, the --reuse-values flag is added by default. In other words, the same values
that were used by the previous release will be used again during the upgrade if no values
are provided:

1. Run another upgrade command without specifying any values:

$ helm upgrade wordpress bitnami/wordpress -n chapter3
--version 8.1.0

2. Run the helm get values command to inspect the values used in the upgrade:

$ helm get values wordpress -n chapter3

Notice that the values displayed are identical to the previous upgrade:

Figure 3.26 – The output of the helm get values
Different behavior can be observed when values are provided from the command
line during an upgrade. If values are passed via the --set or --values flags, all
of the chart's values that are not provided are reset to default.

3. Run another upgrade by providing a single value with --set:

$ helm upgrade wordpress bitnami/wordpress --set
replicaCount=1 -n chapter3 --version 8.1.0

4. After the upgrade, run the helm get values command:

$ helm get values wordpress -n chapter3

The output will declare that the only user-supplied value was the value
for replicaCount:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling back the WordPress release 85

Figure 3.27 – The output for replicaCount

When at least one value is provided during an upgrade, Helm automatically applies the
--reset-values flag. This causes all of the values to be set back to their default values,
except for the individual properties provided with the --set or --values flags.

Users can manually provide the --reset-values or --reuse-values flags to
explicitly determine the behavior of values during an upgrade. Use the --reset-
values flag if you would like the next upgrade to reset each value to its default before
overriding it from the command line. Provide the --reuse-values flag if you would
like to reuse each of the values from a previous revision while setting different values from
the command line. To help simplify the management of values during an upgrade, try to
keep your values in a file that can be used to declaratively set values for each upgrade.

If you have been following along with each of the commands provided in this chapter,
you should now have four revisions of the WordPress release. This fourth revision is
not quite in the way we want the application to be configured, as it only specifies the
replicaCount value because most of the values were set back to their defaults. In the
next section, we will explore how the WordPress release can be rolled back to the stable
version that contains the set of desired values.

Rolling back the WordPress release
While moving forward is preferred, there are some occasions where it makes more sense
to return to a previous version of the application. The helm rollback command exists
to satisfy this use case. Let's roll back the WordPress release to a previous state.

Inspecting the WordPress history
Every Helm release has a history of revisions. A revision is used to track the values,
Kubernetes resources, and chart version that were used in a particular release version. A
new revision is created when a chart is installed, upgraded, or rolled back. Revision data
is saved in Kubernetes secrets by default (other options are ConfigMap or local memory,
determined by the HELM_DRIVER environment variable). This allows your Helm release
to be managed and interacted with by different users on the Kubernetes cluster, provided
they have the Role-Based Access Control (RBAC) that allows them to view or modify
resources in your namespace.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

86 Installing your First Helm Chart

The revision secrets can be observed by using kubectl to get the secrets from the
chapter3 namespace:

$ kubectl get secrets -n chapter3

This will return all of the secrets, but you should see these four in the output:

sh.helm.release.v1.wordpress.v1

Sh.helm.release.v1.wordpress.v2

sh.helm.release.v1.wordpress.v3

sh.helm.release.v1.wordpress.v4

Each of these secrets corresponds with an entry of the release's revision history, which can
be viewed by running the helm history command:

$ helm history wordpress -n chapter3

This command will display a table of each revision, similar to the following (some
columns have been omitted for readability):

REVISION ... STATUS ... DESCRIPTION

1 superseded Install complete

2 superseded Upgrade complete

3 superseded Upgrade complete

4 deployed Upgrade complete

In this output, each revision has a number, along with the time it was updated, the status,
the chart, the app version of the upgrade, and the description of the upgrade. Revisions
that have a status of superseded were upgraded. The revision that says deployed
is the currently-deployed revision. Other statuses include pending and pending_
upgrade, which means the installation or upgrade is currently in progress. failed
refers to a particular revision that has failed to install or be upgraded and unknown
corresponds to a revision that had an unknown state. It's unlikely you will ever encounter
a release with a state of unknown.

The helm get commands described previously can be used against a revision number
by specifying the --revision flag. For this rollback, let's determine the release that
had the full set of desired values. As you may recall, the current revision, revision 4,
only contains the replicaCount value, but revision 3 should contain the desired
values. This can be verified by running the helm get values command with the
--revision flag:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Rolling back the WordPress release 87

$ helm get values wordpress --revision 3 -n chapter3

The full list of values is presented by inspecting this revision:

Figure 3.28 – The output of checking a specific revision

It is possible to run the other helm get commands against a revision number to
perform a further inspection. If necessary, the helm get manifest command can
also be executed against revision 3 to check the state of the Kubernetes resources that
would be restored.

In the next section, we will execute the rollback.

Running the rollback
The helm rollback command has the following syntax:

helm rollback <RELEASE> [REVISION] [flags]

Users provide the name of the release and the desired revision number to roll a Helm
release back to a previous point in time. Run the following command to execute the
rollback of WordPress to revision 3:

$ helm rollback wordpress 3 -n chapter3

The rollback subcommand provides a simple output, printing the following message:

Rollback was a success! Happy Helming!

This rollback can be observed in the release history by running the helm
history command:

$ helm history wordpress -n chapter3

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

88 Installing your First Helm Chart

In the release history, you will notice that a fifth revision was added with a status of
deployed and a description of Rollback to 3. When an application is rolled back, it
adds a new revision to the release history. This is not to be confused with an upgrade. The
highest revision number simply denotes the currently deployed release. Be sure to check a
revision's description to determine whether it was created by an upgrade or a rollback.

You can get this release's values to ensure that the rollback now uses the desired values by
running helm get values again:

$ helm get values wordpress -n chapter3

The output will show the values from the latest stable release:

Figure 3.29 – The values from the latest stable release

You may notice that we did not explicitly set the chart version or the release's values in the
rollback subcommand. This is because the rollback subcommand is not designed to
accept these inputs; it is designed to roll back a chart to a previous revision and leverage
that revision's chart version and values. Note that the rollback subcommand should
not be part of everyday Helm practices and that it should be reserved only for emergencies
where the current state of an application is unstable and must be reverted to a previously
stable point.

If you have successfully rolled back the WordPress release, you are nearing the end of
this chapter's exercise. The final step is to remove the WordPress application from the
Kubernetes cluster by leveraging the uninstall subcommand, which we will describe
in the next section.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Uninstalling the WordPress release 89

Uninstalling the WordPress release
Uninstalling a Helm release means deleting the Kubernetes resources that it manages.
In addition, the uninstall command deletes the release's history. While this is often
what we want, specifying the --keep-history flag will instruct Helm to retain the
release history.

The syntax for the uninstall command is very simple:

helm uninstall RELEASE_NAME [...] [flags]

Uninstall the WordPress release by running the helm uninstall command:

$ helm uninstall wordpress -n chapter3

Once uninstalled, you will see the following message:

release 'wordpress' uninstalled

You will also notice that the wordpress release no longer exists in the
chapter3 namespace:

$ helm list -n chapter3

The output will be an empty table. You can also confirm that the release is no longer
present by attempting to use kubectl to get the WordPress deployments:

$ kubectl get deployments -l app=wordpress -n chapter3

No resources found in chapter3 namespace.

As expected, there are no more WordPress deployments available.

$ kubectl get pvc -n chapter3

You will, however, notice that there is still a PersistentVolumeClaim command
available in the namespace:

Figure 3.30 – Output showing PersistentVolumeClaim

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

90 Installing your First Helm Chart

This PersistentVolumeClaim resources was not deleted because it was created in
the background by a StatefulSet. In Kubernetes, the PersistentVolumeClaim
resources that are created by a StatefulSet are not automatically removed if the
StatefulSet is deleted. During the helm uninstall process, the StatefulSet
was deleted but the associated PersistentVolumeClaim was not. This is what we
would expect. The PersistentVolumeClaim resource can be deleted manually with
the following command:

$ kubectl delete pvc -l release=wordpress -n chapter3

Now that we've installed and uninstalled Wordpress, let's clean up your Kubernetes
environment so that we have a clean setup for the exercises we will carry out in later
chapters of this book.

Cleaning up your environment
To clean up your Kubernetes environment, you can remove this chapter's namespace by
running the following command:

$ kubectl delete namespace chapter3

After the chapter3 namespace is deleted, you can also stop the Minikube VM:

$ minikube stop

This will shut down the VM but will retain its state so that you can quickly begin working
again in the next exercise.

Summary
In this chapter, you learned how to install a Helm chart and manage its life cycle. We
began by searching Helm Hub for a WordPress chart to install. After locating a chart, the
repository containing the chart was added by following the instructions from its Helm
Hub page. We then proceeded to inspect the WordPress chart to create a set of values
that overrides their defaults. These values were saved to a values file, which was then
provided during the installation.

After the chart was installed, we used helm upgrade to upgrade the release by
providing additional values. We performed a rollback after this with helm rollback to
restore the chart to a previous state. Finally, we removed the WordPress release at the end
of the exercise with helm uninstall.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Further reading 91

This chapter taught you how to leverage Helm as an end user and chart consumer. You
used Helm as a package manager to install a Kubernetes application to your cluster. You
also managed the life cycle of the application by performing upgrades and a rollback.
Understanding this workflow is essential to managing installations with Helm.

In the next chapter, we will explore the concept and structure of a Helm chart in greater
detail to begin learning how charts can be created.

Further reading
To learn more about adding repositories locally, inspecting charts, and using the four life
cycle commands used throughout this chapter (install, upgrade, rollback, and
uninstall), go to https://helm.sh/docs/intro/using_helm/.

Questions
1. What is Helm Hub? How can a user interact with it to find charts and

chart repositories?

2. What is the difference between the helm get and helm show sets of commands?
When would you use one set of commands over the other?

3. What is the difference between the --set and --values flags in the helm
install and helm upgrade commands? What are the benefits of using one
over the other?

4. What command can be used to provide the list of revisions for a release?

5. What happens by default when you upgrade a release without providing any values?
How does this behavior differ to when you do provide values for an upgrade?

6. Imagine you have five revisions of a release. What would the helm history
command show after you roll back the release to revision 3?

7. Imagine you want to view all of the releases deployed to a Kubernetes namespace.
What command should you run?

8. Imagine you run helm repo add to add a chart repository. What command can
you run to list all of the charts under that repository?

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://helm.sh/docs/intro/using_helm/

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Section 2:
Helm Chart

Development

In this section, you will learn how a Helm chart is structured. You will learn how to
build a Helm chart from scratch and will learn techniques for debugging and testing
your charts.

This section comprises the following chapters:

Chapter 4, Understanding Helm Charts

Chapter 5, Building Your First Helm Chart

Chapter 6, Testing Helm Charts

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

4
Understanding

Helm Charts
In the previous chapter, you learned how to use Helm from an end user perspective,
leveraging it as a package manager to install applications to Kubernetes. Using Helm in
this fashion did not require any Kubernetes expertise or any deep understanding of the
application since all of the resources and logic were included as part of a Helm chart. The
only concept you needed to be familiar with were the values that the chart provided in
order to customize your installation.

We will now shift gears from using Helm charts to understanding how they work and
are created.

To do so, we will cover the following topics:

• Understanding the YAML format

• Understanding chart templates

• Understanding chart definitions

• Life cycle management

• Documenting a Helm chart

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

96 Understanding Helm Charts

Technical requirements
This section requires the helm binary to be installed on your local machine. The
installation and configuration of this tool are covered in Chapter 2, Preparing a
Kubernetes and Helm Environment.

Understanding the YAML format
YAML Ain't Markup Language (YAML) is a file format used to create human-readable
configuration. It is the file format most commonly used to configure Kubernetes resources
and is also the format used for many of the files in Helm charts.

YAML files follow a key-value format to declare configuration. Let's explore the YAML
key-value construct.

Defining key-value pairs
One of the most basic examples of a YAML key-value pair is shown here:

name: LearnHelm

In the preceding example, the name key is given a LearnHelm value. In YAML, keys and
values are separated by a colon (:). Characters written to the left of the colon represent the
key, while characters written to the right of the colon represent the value.

Spacing matters in YAML format. The following line does not constitute a key-value pair:

name:LearnHelm

Notice that a space is missing between the colon and the LearnHelm string. This
would result in a parsing error. A space must exist between the colon and the value.

While the preceding example represents a simple key-value pair, YAML allows users to
configure more complex pairings with nested elements or blocks. An example is
shown here:

resources:

 limits:

 cpu: 100m

 memory: 512Mi

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the YAML format 97

The preceding example demonstrates a resources object containing a map of two
key-value pairs:

Keys are determined by following the indentation under a YAML block. Each indentation
adds a dot (.) separator to the name of the key. The value of the key has been reached
when there are no longer any indentations remaining in the YAML block. By common
practice, indentations in YAML should use two spaces, but users can provide as many
spaces as they desire as long as the spacing is consistent throughout the document.

Important note:
Tabs are not supported by YAML and their use will result in a parsing error.

With an understanding of YAML key-value pairs, let's now explore some of the common
types that values can be defined as.

Value types
Values in a YAML file can be of different types. The most common type is a string, which
is a text value. Strings can be declared by wrapping a value in quotations, but this is not
always required. If a value contains at least one alphabetical letter or special character, the
value is considered a string, with or without quotation marks. Multi-line strings can be set
by using the pipe (|) symbol, as shown:

configuration: |

 server.port=8443

 logging.file.path=/var/log

Values can also be integers. A value is an integer when it is a numeric character that is not
wrapped in quotations. The following YAML declares an integer value:

replicas: 1

Compare this to the following YAML, which assigns replicas to a string value:

replicas: '1'

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

98 Understanding Helm Charts

Boolean values are often used as well, which can be declared with either true or false:

ingress:

 enable: true

This YAML sets ingress.enable to the true Boolean value. Other acceptable
Boolean values are yes, no, on, off, y, n, Y, and N.

Values can also be set to more complex types, such as lists. Items in a list in YAML are
identified by the dash (-) symbol.

The following demonstrates a YAML list:

servicePorts:

 - 8080

 - 8443

This YAML sets servicePorts to the list of integers (such as 8080 and 8443). This
syntax can also be used to describe a list of objects:

deployment:

 env:

 - name: MY_VAR

 value: MY_VALUE

 - name: SERVICE_NAME

 value: MY_SERVICE

In this case, env is set to a list of objects containing the name and value fields. Lists
are often used in both Kubernetes and Helm configuration and understanding them is
valuable to using Helm to its fullest potential.

While YAML is more commonly used in the worlds of Kubernetes and Helm for its ease
of readability, the JavaScript Object Notation (JSON) format can be used as well. Let's
briefly describe this format.

The JSON format
YAML is a superset of another widely used format—JSON. JSON is a string of key-value
pairs, similar to YAML. The key difference is that while YAML relies on spacing and
indentation to properly configure key-value pairs, JSON relies on braces and brackets.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the YAML format 99

The following example converts the previous YAML example into JSON format:

{

 'deployment': {

 'env': [

 {

 'name': 'MY_VAR',

 'value': 'MY_VALUE'

 },

 {

 'name': 'SERVICE_NAME',

 'value': 'MY_SERVICE'

 }

]

 }

All of the keys in JSON are wrapped in quotation marks and positioned before a colon:

• Curly braces ({) denote a block in a similar way to how indentations denote a
block in YAML.

• Square brackets ([) denote a list in a similar way to how dashes denote a list
in YAML.

There are many more constructs to the YAML and JSON formats, but this introduction
provides more than enough information to understand how they can be used in
Helm charts.

In the next section, we will discuss the Helm chart file structure, which you may notice
contains several YAML and JSON files.

The Helm chart structure
As you will recall from previous chapters, a Helm chart is a packaging of Kubernetes
resources, allowing users to deploy applications of varying complexities to Kubernetes. In
order to be considered a Helm chart, however, a certain file structure must be followed:

my-chart/

 # chart files and directories

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

100 Understanding Helm Charts

It is best practice to name the top-level directory as the name of the Helm chart. This is
not a technical requirement, but it makes identifying the name of a Helm chart much
simpler. For the preceding example file structure, the Helm chart's name is likely to be
my-chart.

Under the top-level directory are the files and directories that comprise the Helm chart.
The following table shows each of these possible files and directories:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding chart templates 101

Throughout this chapter, we will explore each of these files to understand how a Helm
chart is created. We'll first begin by understanding how chart templates work to allow
Kubernetes resources to be dynamically generated.

Understanding chart templates
The primary purpose of a Helm chart is to create and manage the Kubernetes resources
that make up an application. This is accomplished through chart templates, with values
serving as parameters to customize those templates. In this section, we will discuss how
Helm templates and values function.

Helm charts must contain a templates/ directory that defines the Kubernetes resources
to be deployed (although this directory is not strictly required if the chart declares
dependencies). The contents under the templates/ directory are YAML files that are
made up of Kubernetes resources. The contents of a templates/ directory may appear
similar to the following:

templates/

 configmap.yaml

 deployment.yaml

 service.yaml

The configmap.yaml resource may then look as follows:

apiVersion: v1

kind: ConfigMap

metadata:

 name: {{ .Release.Name }}

data:

 configuration.txt: |-

 {{ .Values.configurationData }}

You may question whether the prior example is a valid YAML syntax. It is because the
configmap.yaml file is actually a Helm template that will modify the configuration
of this resource based on a certain set of values to produce a valid YAML resource. The
opening and closing curly braces represent input text for a Golang (Go) template that will
be removed during an installation or upgrade.

Let's learn more about Go templates and how they can be used to generate Kubernetes
resource files.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

102 Understanding Helm Charts

Go templating
Go is a programming language that was developed by Google in 2009. It is the
programming language used by Kubernetes, Helm, and many other tools in the
Kubernetes and container community. A core component of the Go programming
language is templates, which can be leveraged to generate files of different formats. In the
case of Helm, Go templates are used to generate Kubernetes YAML resources under a
Helm chart's templates/ directory.

Go template controls structures and processing begin with two opening curly braces ({{)
and ends with two ending curly braces (}}). While these punctuation marks may appear
in a local file under the templates/ directory, they are removed during the processing
that takes place during an installation or upgrade.

We will dive deeper into Go templating in Chapter 5, Building Your First Helm Chart,
where you will build your own Helm chart. In this chapter, we will discuss common
capabilities of Go templating as an introduction to this feature before getting some
hands-on practice. We'll start our discussion with a list of capabilities that Go templating
provides, beginning with parameterization.

Parameterizing fields with values and built-in objects
Helm charts contain a values.yaml file in their chart directories. This file declares all of
a chart's default values, which are referenced by Go templates and processed by Helm to
dynamically generate Kubernetes resources.

A chart's values.yaml file may have values defined as follows:

chapterNumber lists the current chapter number

chapterNumber: 4

chapterName gives a description of the current chapter

chapterName: Understanding Helm Charts

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding chart templates 103

Lines that begin with the pound symbol (#) are comments (which are ignored during
execution) and should provide details about the values they describe so that the user
understands how they should be applied. Comments can also include the name of the
value to allow comments to appear when a value is searched upon. Other lines in the
file represent key-value pairs. An introduction to the YAML format is described at the
beginning of this chapter.

Go templates beginning with .Values will reference values defined in a values.yaml
file or passed in using the --set or --values flags during an installation or upgrade.

The following example represents a template before it is processed:

env:

 - name: CHAPTER_NUMBER

 value: {{ .Values.chapterNumber }}

 - name: CHAPTER_NAME

 values: {{ .Values.chapterName }}

After the template is processed, a snippet of a YAML resource is rendered as in
the following:

env:

 - name: CHAPTER_NUMBER

 value: 4

 - name: CHAPTER_NAME

 values: Understanding Helm Charts

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

104 Understanding Helm Charts

The .Values construct used to refer to a chart's values is a built-in object that can
be used for parameterization. A full list of built-in objects can be found in the Helm
documentation (https://helm.sh/docs/chart_template_guide/builtin_
objects/), but the most common objects are described in the following table:

The dot (.) prefixed to each object represents the object scope. A dot followed by an
object name limits the scope to that object. For example, the .Values scope only makes
a chart's values visible; the .Release scope only makes fields under the Release object
visible; and the . scope represents global scope, making all of these objects visible, plus
the common objects defined in the preceding table.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://helm.sh/docs/chart_template_guide/builtin_objects/

Understanding chart templates 105

The values.schema.json file
While on the topic of values and parameterization, let's take a moment to discuss the
values.schema.json file, which is one of the files that may be included in a chart's
directory. The values.schema.json file is used to enforce a particular schema
in a values file. This schema can be used to validate the provided values during an
installation or an upgrade.

The following snippet shows what the values.schema.json file looks like:

{

 '$schema': 'https://json-schema.org/draft-07/schema#',

 'properties': {

 'replicas': {

 'description': 'number of application instances to
deploy',

 'minimum': 0

 'type' 'integer'

 },

 . . .

 'title': 'values',

 'type': 'object'

}

With this schema file in place, the replicas value should be set to 0 as a minimum.
Additional values added to this file place additional restrictions on the values that can
be provided. This file is a good way of ensuring users only provide the values that are
supported as parameters in the chart's templates.

While Go templates allow chart developers to parameterize Helm charts, they also allow
developers to provide conditional logic into a YAML file. We will explore this feature next.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://json-schema.org/draft-07/schema#'

106 Understanding Helm Charts

Fine-grained template processing with flow control
While parameterization allows chart developers to substitute fields with certain values,
Go templating also provides developers with the ability to control the flow and structure
of their templates. This can be accomplished using the following keywords (referred to as
actions in Go):

There are some occasions during chart templating where it may be necessary to include or
exclude certain Kubernetes resources or certain parts of a resource. The if…else actions
can be used for this purpose. The following snippet from a deployment template includes
a conditional block:

readinessProbe:

{{- if .Values.probeType.httpGet }}

 httpGet:

 path: /healthz

 port: 8080

 scheme: HTTP

{{- else }}

 tcpSocket:

 port: 8080

{{- end }}

 initialDelaySeconds: 30

 periodSeconds: 10

The if block is used to conditionally set the readinessProbe stanza. If the
probeType.httpGet value evaluates to true or is non-null, the httpGet
readinessProbe will be templated. Otherwise, the readinessProbe that is created
will be a tcpSocket readinessProbe type. The dashes used in the curly braces are
used to indicate that whitespace should be removed after processing. Dashes used after the
opening braces remove whitespace before the braces and dashes used immediately before
the closing braces remove whitespace after the braces.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding chart templates 107

Chart developers can also use the with action to modify the scope of the values. This
action is useful when a block of values that are referenced are deeply nested. It can
simplify the readability and maintainability of a template file by reducing the amount of
characters required to reference a deeply nested value.

The following code describes a values file, which includes deeply nested values:

application:

 resources:

 limits:

 cpu: 100m

 memory: 512Mi

Without the with action, these values would be referenced in a template file,
as follows:

cpu: {{ .Values.application.resources.limits.cpu }}

memory: {{ .Values.application.resources.limits.memory }}

The with action allows a developer to modify the scope of these values and reference
them with a shortened syntax:

{{- with .Values.application.resources.limits }}

cpu: {{ .cpu }}

memory: {{ .memory }}

{{- end }}

Finally, developers can perform repetitive actions using the range action. This
action allows developers to loop over a list of values. Imagine that a chart has the
following values:

servicePorts:

 - name: http

 port: 8080

 - name: https

 port: 8443

 - name: jolokia

 port: 8778

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

108 Understanding Helm Charts

The preceding code provides a list of servicePorts, which can be looped over, shown
in the following example:

spec:

 ports:

{{- range .Values.servicePorts }}

 - name: {{ - name }}

 port: {{ .port }}

{{- end }}

The with and range actions limit the scope to the object that is provided. In the range
example, the range acts on the .Values.servicePorts object, limiting the scope
of the dot (.) symbol to values defined under this object. To enact a global scope under
range where all the values and built-in objects are referenced, developers should prefix
references with the dollar sign ($) symbol, as shown:

{{- range .Values.servicePorts }}

 - name: {{ $.Release.Name }}-{{ .name }}

 port: {{ .port }}

{{- end }}

In addition to a chart's values, developers can also create variables to help render
resources. We will explore this in the next section.

Template variables
Although they are not as commonly used as other templating features, chart developers
can create variables in their chart templates to provide additional processing options. A
common use for this approach is flow control, but template variables can serve other use
cases as well.

A variable in a chart template is defined as follows:

{{ $myvar := 'Hello World!' }}

This sets the myvar variable to the Hello World! string. Variables can be assigned to
objects as well, such as a chart's values:

{{ $myvar := .Values.greeting }}

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding chart templates 109

A variable that is set is then referenced later in the template in the following way:

data:

 greeting.txt: |

 {{ $myvar }}

One of the best cases for using variables is in a range block, where variables are set to
capture the index and value of list iterations:

data:

 greetings.txt: |

{{- range $index, $value := .Values.greetings }}

 Greeting {{ $index }}: {{ $value }}

{{- end }}

The result can be rendered as follows:

data:

 greetings.txt: |

 Greeting 0: Hello

 Greeting 1: Hola

 Greeting 2: Hallo

Variables can also simplify the processing of map iterations, as shown:

data:

 greetings.txt: |

{{- range $key, $val := .Values.greetings }}

 Greeting in {{ $key }}: {{ $val }}

{{- end }}

A possible result may be as follows:

data:

 greetings.txt: |

 Greeting in English: Hello

 Greeting in Spanish: Hola

 Greeting in German: Hallo

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

110 Understanding Helm Charts

Finally, variables can be used to refer to a value outside of the current scope.

Consider the following with block:

{{- with .Values.application.configuration }}

My application is called {{ .Release.Name }}

{{- end }}

A template such as this one would fail to process since .Release.Name is not under the
scope of .Values.application.configuration. One way this can be remedied is
by setting a variable to .Release.Name above the with block:

{{ $appName := .Release.Name }}

{{- with .Values.application.configuration }}

My application is called {{ $appName }}

{{- end }}

While this is a possible solution to this problem, the approach of using a dollar sign to
refer to the global scope is preferred as it requires less lines to configure and is easier to
read as chart complexity increases.

Flow control and variables are powerful concepts that allow resources to be dynamically
generated. In addition to flow control, chart developers can also leverage functions and
pipelines to assist in resource rendering and formatting.

Complex processing with functions and pipelines
Go provides the concepts of functions and pipelines to enable complex processing of data
within a template.

A Go template function is similar to other functions you may have encountered in other
languages and constructs. Functions contain logic designed to consume certain inputs and
provide an output based on the inputs that were provided.

For Go templates, functions are called by using the following syntax:

functionName arg1 arg2 . . .

One Go function that is commonly used is the indent function. This function is used to
indent a string of a specified number of characters to ensure strings are properly formatted
since YAML is a whitespace-sensitive markup language. The indent function takes the
number of spaces to indent as input, as well as the string that should be indented.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding chart templates 111

The following template illustrates this:

data:

 application-config: |-

{{ indent 4 .Values.config }}

This example indents the string contained in the config value by 4 spaces to ensure the
string is properly indented under the application-config YAML key.

The other construct Helm provides is pipelines. A pipeline is a concept borrowed from
UNIX where the output of one command is fed as input to a different command:

cat file.txt | grep helm

The preceding example displays a UNIX pipeline. On the left side of the pipe (|) is the
first command and on the right side is the second command. The first command, cat
file.txt, prints the contents of a file named file.txt and passes it as input to the
grep helm command, which filters the first command's output for the word helm.

Go pipelines work in a similar way. This can again be demonstrated with the
indent function:

data:

 application-config: |-

{{ .Values.config | indent 4 }}

This will also indent the config value by 4 spaces. Pipelines are best used to chain
multiple commands together. A third command can be added to the pipeline, called
quote, which quotation quote marks around the final templated product:

data:

 application-config: |-

{{ .Values.config | indent 4 | quote }}

Because this is written as a pipeline, it is easy and natural to read.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

112 Understanding Helm Charts

There are many different Go template functions that can be used in a Helm chart. These
functions can be found in the Go documentation at https://golang.org/pkg/
text/template/#hdr-Functions and in the Sprig template library at http://
masterminds.github.io/sprig/. Some common Go template functions that you
may use during chart development are as follows:

• date: To format a date

• default: Set a default value

• fail: To fail template rendering

• include: To execute a Go template and return the results

• nindent: Similar to indent, except prepends a new line before indenting

• indent: To indent text by a set number of spaces

• now: To display the current date/time

• quote: To wrap a string in quotation marks

• required: To require user input

• splitList: To split a string into a list of strings

• toYaml: To convert a string into YAML format

The Go template language also consists of the following Boolean operators that can be
used in if actions to further control the generation of YAML resources:

• and

• or

• not

• eq (short for equal)

• ne (short for not equal)

• lt (short for less than)

• le (short for less than or equal to)

• gt (short for greater than)

• ge (short for greater than or equal to)

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://masterminds.github.io/sprig/
http://masterminds.github.io/sprig/

Understanding chart templates 113

In addition to generating Kubernetes resources, Go templates can also be used to create
functions that can be reused in YAML resources that have repetitive templating. This can
be accomplished by creating named templates, described in the next section.

Enabling code reuse with named templates
When creating template files, there may be boilerplate or repetitive blocks of YAML in a
Kubernetes resource.

One example of this is the labels of a resource, which can be specified as follows:

labels:

 'app.kubernetes.io/instance': {{ .Release.Name }}

 'app.kubernetes.io/managed-by': {{ .Release.Service }}

For consistency, each of these labels can be added to each resource in a Helm chart. If the
chart contains many different Kubernetes resources, it can be cumbersome to include the
desired labels in each file, especially if a label needs to be modified or if a new label needs
to be added to each resource in the future.

Helm provides a construct called named templates that allows chart developers to create
reusable templates that can be applied to reduce boilerplate. Named templates are defined
under the templates/ directory and are files that begin with underscores and end with
the .tpl file extension. Many charts are created with a file called _helpers.tpl that
contains the named templates, although the file does not need to be called helpers.

To create a named template in the tpl file, developers can leverage the define action.
The following example creates a named template that can be used to encapsulate
resource labels:

{{- define 'mychart.labels' }}

labels:

 'app.kubernetes.io/instance': {{ .Release.Name }}

 'app.kubernetes.io/managed-by': {{ .Release.Service }}

{{- end }}

The define action takes a template name as an argument. In the preceding example,
the template name is called mychart.labels. The common convention for naming a
template is $CHART_NAME.$TEMPLATE_NAME, where $CHART_NAME is the name of
the Helm chart and $TEMPLATE_NAME is a short, descriptive name that describes the
purpose of the template.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

114 Understanding Helm Charts

The mychart.labels name implies that the template is native to the mychart Helm
chart and will generate labels to resources that it is applied to.

To use a named template in a Kubernetes YAML template, you can use the include
function, which has the following usage:

include [TEMPLATE_NAME] [SCOPE]

The TEMPLATE_NAME parameter is the name of the named template that should be
processed. The SCOPE parameter is the scope of values and built-in objects that should
be processed. Most of the time, this parameter is a dot (.) to denote the current top-level
scope, but the dollar sign ($) symbol should be used if the named template references
values outside of the current scope.

The following example demonstrates how the include function is used to process a
named template:

metadata:

 name: {{ .Release.Name }}

{{- include 'mychart.labels' . | indent 2 }}

This example begins by setting the name of the resource to the name of the release. It then
uses the include function to process the labels and indents each line by two spaces, as
declared by the pipeline. When processing is finished, a resource within a release called
template-demonstration may appear as follows:

metadata:

 name: template-demonstration

 labels:

 'app.kubernetes.io/instance': template-demonstration

 'app.kubernetes.io/managed-by': Helm

Helm also provides a template action that can also expand named templates. This
action has the same usage as include, but with one major limitation—it cannot be used
in a pipeline to provide additional formatting and processing. The template action is
used to simply display data inline. Because of this limitation, chart developers should use
the include function over the template action since include has feature parity with
template but also provides the additional benefit of pipeline processing.

In the next section, we will learn how named templates can be used to reduce boilerplate
across multiple different charts.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding chart templates 115

Library charts
Helm charts have a type field defined in the Chart.yaml file that is set to either
application or library. Application charts are used to deploy full applications to
Kubernetes. This is the most common type of chart and is the default setting. However,
charts can also be defined as library charts. This type of chart is not used to deploy
applications but instead to provide named templates that may be used across multiple
different charts. An example of this use case is the labels example defined in the
previous section. Developers can maintain multiple different charts whose resources
have the same labels. Rather than defining the same named templates in each chart's
_helpers.tpl file, developers can declare a library chart that provides the named
template for generating resource labels as a dependency.

While Helm is most commonly used to create traditional Kubernetes resources, it can also
create Custom Resources (CRs), which we will explain in the next section.

Templating CRs
CRs are used to create resources that are not native to the Kubernetes API. You may want
to use this functionality to augment the abilities that Kubernetes provides. CRs can be
created using Helm templates such as native Kubernetes resources, but there must first
be a Custom Resource Definition (CRD) that defines the CR. If the CRD is not present
before the CR is created, the installation will fail.

Helm charts can include a crds/ folder, which consists of the CRDs that must be
presented before templates are installed. An example crds/ folder is shown here:

crds/

 my-custom-resource-crd.yaml

The file my-custom-resource-crd.yaml may have the following contents:

apiVersion: apiextensions.k8s.io/v1

kind: CustomResourceDefinition

metadata:

 name: my-custom-resources.learnhelm.io

spec:

 group: learnhelm.io

 names:

 kind: MyCustomResource

 listKind: MyCustomResourceList

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

116 Understanding Helm Charts

 plural: MyCustomResources

 singular: MyCustomResource

 scope: Namespaced

 version: v1

The templates/ directory can then contain an instance of the
MyCustomResource resource.

templates/

 my-custom-resource.yaml

A file structure such as this will ensure that the MyCustomResource CRD is installed
before the CR defined under the templates/ directory.

Important note:

This capability requires the user to be a cluster administrator as creating CRDs
requires escalated privileges. If you are not a cluster administrator, it may
be better to ask an admin to create your CRDs beforehand. If you do so, the
crds/ folder would not need to be included in your chart because the CRDs
would already be present in the cluster.

By now, we have covered Helm templates in a large amount of detail. To summarize,
Helm templates are the 'brains' of your Helm chart and are used to generate Kubernetes
resources. We will get hands-on experience with writing Helm templates, along with
other topics discussed in this chapter, in Chapter 5, Building Your First Helm Chart.

For now, let's continue our discussion on Helm chart fundamentals with a topic of equal
importance to chart templates—the Chart.yaml file.

Understanding chart definitions
The Chart.yaml file, also known as the chart definition, is a resource that declares
different metadata about a Helm chart. This file is required and if it is not included in a
chart's file structure, you'll receive the following error:

Error: validation: chart.metadata is required

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding chart definitions 117

In Chapter 3, Installing Your First Helm Chart, we explored the chart definition of
Bitnami's WordPress chart by running the helm show chart command. Recall this
chart definition by running this command again. We will assume that the Bitnami chart
repository has already been added since this task was performed in Chapter 3, Installing
Your First Helm Chart:

$ helm show chart bitnami/wordpress --version 8.1.0

Below lists the chart definition of the wordpress chart.

Figure 4.1 – The chart definition of the wordpress chart.

The chart definition, or the Chart.yaml file, can contain many different fields. Some of
the fields are required while most of the other fields are optional and can be provided only
if necessary.

Now that we have a basic understanding of the Chart.yaml file, we will explore the file's
required fields in the next section.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

118 Understanding Helm Charts

Required fields
A chart definition must contain the following fields that contain crucial chart metadata:

Let's explore each of these required fields in more detail:

• The apiVersion field can be set to one of two different values:

v1

v2

• If the apiVersion field is set to v1, this means that the chart follows a legacy
chart structure. This is the apiVersion value that was used before the release of
Helm 3, where an additional requirement.yaml file was supported in the chart
structure and the type field in the chart definition was not supported. Helm 3 is
backward-compatible with the apiVersion value v1, but new charts should be
set to the apiVersion value v2 to avoid deprecated features being used.

• The name field is used to define the name of the Helm chart. This value should
be equal to the name of the top-level directory containing the Helm chart's
files. The name of the Helm chart appears in the search results from the helm
search command, as well as the helm list command, to return the name
of the chart used for a release. The value of this field should be concise yet
descriptive, describing the application installed by the chart in a short name such
as wordpress or redis-cluster. Kebab case, or separating words with
dashes, is the common convention when distinguishing different words in a name.
Sometimes, names will be written as one word, such as rediscluster.

• The version field is used to determine the version of the Helm chart. Versions
must follow the Semantic Versioning (SemVer) 2.0.0 format to be a valid chart
version. SemVer describes a version based on a Major.Minor.Patch format,
where the Major version should increase when a breaking change is introduced,
the Minor version should increase when a backward-compatible feature is released,
and the Patch version should increase when a bug is fixed. When the Minor
version is increased, the Patch version is set back to 0. When the Major version
is increased, both the Minor and Patch versions are reset to 0. Chart developers
should take special care when incrementing chart versions as they are used to
indicate when breaking changes, new features, and bug fixes are released.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding chart definitions 119

While these three fields are the only fields required in the Chart.yaml file, there are
many more optional fields that can be included to add additional metadata to the chart.

Let's take a look at the other possible Chart.yaml fields.

Optional metadata
In addition to the required fields, there are many optional fields that can be used to
provide additional details about a chart, described in the following table:

Some of these fields provide simple metadata to display information to a user about the
Helm chart. Other fields, however, are used to modify the behavior of the Helm chart.
The first of these fields is the type field, which can be set to either application or
library. If set to application, the chart deploys Kubernetes resources. If set to
library, the chart provides functions to other charts through the form of
helper templates.

The second field that can modify the behavior of the Helm chart is the dependencies
field, which is discussed in the next section.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

120 Understanding Helm Charts

Managing chart dependencies
Chart dependencies are used to install other charts' resources that a Helm chart may
depend on. An example of this is the wordpress chart, which declared the mariaDB
chart as a dependency to save backend data. By using the mariadb dependency, the
WordPress chart did not need to define its resources from scratch.

Dependencies are declared in the Chart.yaml file by populating the dependencies
field. The following is the relevant snippet from the wordpress chart's definition:

Figure 4.2 – The mariadb dependency declared in the wordpress Helm chart.

While this example displays a single dependency, mariadb, the dependencies block can
define a list of multiple dependencies.

A dependencies block contains many different fields that can be applied to modify
the behavior of a chart's dependency management. These fields are defined in the
following table:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding chart definitions 121

The minimum required fields under the dependencies blocks are the name,
repository, and version fields. As shown in the preceding wordpress dependency
snippet, the name of the dependency is mariadb and the repository can be found at
https://kubernetes-charts.storage.googleapis.com/. This searches
the provided repository for a Helm chart whose name field in the Chart.yaml file is
mariadb. The version field of a dependencies block specifies the version of the
chart that should be included. This can be pinned to a specific version, such as 7.0.0,
or it can specify a wildcard version. The dependency listed in the preceding example
provides a wildcard version, 7.x.x, which instructs Helm to download the latest version
of the chart that matches the wildcard.

Now, with an understanding of the required dependencies fields, let's learn how the
declared dependencies can be downloaded.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes-charts.storage.googleapis.com/
https://kubernetes-charts.storage.googleapis.com/

122 Understanding Helm Charts

Downloading dependencies
Dependencies can be downloaded using the helm dependency subcommand listed in
the following table:

To download dependencies for the first time, you can run the helm dependency
update command, which downloads each dependency into the charts/ directory of
the given Helm chart:

$ helm dependency update $CHART_PATH

The helm dependency update command downloads dependencies from repositories
in the form of GZip archives with the .tgz file extension. This command also generates
a file called Chart.lock. The Chart.lock file is similar to the Chart.yaml file.
However, while the Chart.yaml file contains the desired state of the chart dependencies,
the Chart.lock file defines the actual state of the dependencies that were applied.

An example of a Chart.lock file can be seen here:

Figure 4.3 – A Chart.lock file

Compare this to a simple corresponding Chart.yaml file:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding chart definitions 123

Figure 4.4 – A corresponding Chart.yaml file

In the Chart.yaml file, you can see that the version of the specified mariadb
dependency was version 7.x.x, but the version in the Chart.lock file is version
7.3.1. This is because the Chart.yaml file instructed Helm to download the
latest version of the 7.x.x release, and the actual version that was downloaded
was version 7.3.1.

With the Chart.lock file in place, Helm is able to redownload the exact dependencies
that were originally downloaded in the event that the charts/ directory is removed
or needs to be rebuilt. This can be done by running the helm dependency build
command against a chart:

$ helm dependency build $CHART_PATH

Because you can download dependencies using the helm dependency build
command, it is possible to omit the charts/ directory from source control to reduce the
size of repositories.

Over time, newer versions under the 7.x.x release will be available. The helm
dependency update command can be run again to reconcile this dependency,
meaning the latest available version will be downloaded and the Chart.lock file will
regenerate. If in the future you want to download from the 8.x.x release or would like to
pin the dependency to a specific release, such as 7.0.0, you can set this in the Chart.
yaml file and run helm dependency update.

The helm dependency list command can be used to view the downloaded
dependencies of a Helm chart saved to your local machine:

$ helm dependency list $CHART_NAME

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

124 Understanding Helm Charts

You'll see an output similar to the following:

Figure 4.5 – "helm dependency list" output

The STATUS column determines whether the dependency has been successfully
downloaded to the charts/ directory. It has been downloaded if the status reads ok.
If the status reads as missing, the dependency has not been downloaded yet.

By default, every declared dependency in the Chart.yaml file will be downloaded, but
this can be modified by providing the condition or tags fields of the dependencies
block, which we will discuss in the next section.

Conditional dependencies
The condition and flags fields can be leveraged to conditionally include
dependencies during an installation or upgrade. Consider an example dependencies
block in the Chart.yaml file:

dependencies:

 - name: dependency1

 repository: https://example.com

 version: 1.x.x

 condition: dependency1.enabled

 tags:

 - monitoring

 - name: dependency2

 repository: https://example.com

 version: 2.x.x

 condition: dependency2.enabled

 tags:

 - monitoring

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding chart definitions 125

Notice the inclusion of the condition and tags fields. The condition field lists a
value that should be provided by the user or set in the chart's values.yaml file. If it
evaluates to true, the condition field causes the chart to be included as a dependency.
If false, the dependency will not be included. Multiple conditions can be defined by
separating each condition with a comma, as follows:

condition: dependency1.enabled, global.dependency1.enabled

The best practice around setting a condition is to follow a chartname.enabled
value format, where each dependency has a unique condition set depending on the
dependency's chart name. This allows users to enable or disable individual charts by
following an intuitive value schema. If the condition values are not included in the chart's
values.yaml file or are not provided by the user, this field is ignored.

While the condition field is used to enable or disable individual dependencies,
the tags field is used to enable or disable groups of dependencies. In the preceding
dependencies block, both dependencies list a tag called monitoring. This
means that if the monitoring tag is enabled, both dependencies are included. If the
monitoring tag is set to false, the dependency is omitted. Tags are enabled or
disabled by setting them under a tags YAML object in the parent chart's values.yaml
file, as follows:

tags:

 monitoring: true

A dependency can define multiple tags in the Chart.yaml file by following the
YAML syntax for lists. Only one tag needs to be evaluated to true for the dependency
to be included.

Important note:
If all of a dependency's tags are ignored, the dependency will be included by
default.

In this section, we discussed how dependencies can be declared conditionally. Next, we
will discuss how values from a dependency can be overridden and referenced.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

126 Understanding Helm Charts

Overriding and referencing values from a child chart
By default, the values belonging to a dependency chart (also referred to as a child chart)
can be overridden or referenced by wrapping them in a map with a name set to the same
as the child chart. Imagine a child chart called my-dep that supports the following values:

replicas: 1

servicePorts:

 - 8080

 - 8443

When this chart is installed as a dependency, these values can be overridden by setting
them in a my-dep YAML object of the parent chart, as shown:

my-dep:

 replicas: 3

 servicePorts:

 - 8080

 - 8443

 - 8778

The preceding example overrides the replicas and servicePorts values defined
in my-dep to set 3 for replicas and add 8778 to servicePorts. These values can
be referenced in the parent chart's templates by following dot notation—for example,
my-dep.replicas. In addition to overriding and referencing values, you can directly
import dependency values by defining the import-values field, explained in the
next section.

Importing values with import-values
The dependencies block of the Chart.yaml file supports an import-values field
that can be used to import a child chart's default values. This field works in a couple of
ways. The first way is to provide a list of keys to import from the child chart. In order
for this to work, the child chart must have values declared under an exports block,
as follows:

exports:

 image:

 registry: 'my-registry.io'

 name: learnhelm/my-image

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding chart definitions 127

 tag: latest

The parent chart can then define the import-values field in the Chart.yaml file:

dependencies:

 - name: mariadb

 repository: https://charts.bitnami.com

 version: 7.x.x

 import-values:

 - image

This allows default values under exports.image in the child chart to be referenced as
follows in the parent chart:

registry: 'my-registry.io'

name: learnhelm/my-image

tag: latest

Notice that this has removed the image map and left only the key-value pairs that were
underneath it. If you don't want this to happen, the import-values field can retain the
image map by following what is referred to as the child-parent format. This allows
chart developers to specify the values that should be imported from the child chart and
provides the name that they should be referred to as in the parent chart. The child-
parent format allows this to be done without the need for values in an exports block
in the child chart. The following dependencies block demonstrates an example of this:

dependencies:

 - name: mariadb

 repository: https://charts.bitnami.com

 version: 7.x.x

 import-values:

 - child: image

 parent: image

This example takes each value under the image block in the child chart and imports it
under an image block in the parent chart.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

128 Understanding Helm Charts

Important note:
The values imported using the import-values field cannot be overridden
in the parent chart. If you need to override values in the child chart, you should
not use the import-values field and should instead override the desired
values by prefixing each one with the name of the child chart.

In this section, we covered how dependencies can be managed in the Chart.yaml file.
Now, let's learn about how life cycle management hooks can be defined in a Helm chart.

Life cycle management
One of the primary benefits of Helm charts and their associated releases is the ability to
manage complex applications on Kubernetes. A release undergoes multiple phases during
its life span. To provide additional management capabilities around the life cycle of a
release, Helm features a hooks mechanism so that actions can be undertaken at different
points in time within a release cycle. In this section, we will explore the different phases
of a release's life span and introduce how hooks can be used to provide capabilities for
interacting not only with the release but also the entire Kubernetes environment.

In Chapter 3, Installing Your First Helm Chart, we encountered several phases that
encompass the overall life span of a Helm release, including its installation, upgrade,
removal, and rollback. Given that Helm charts can be complex, as they manage one or
more applications that will be deployed to Kubernetes, there is often the need to perform
additional actions besides just deploying resources. These can include the following:

• Completing prerequisites that are needed by the application, such as managing
certificates and secrets

• Database management as part of a chart upgrade to either perform a backup or
restoration

• Cleaning up assets before the removal of a chart

The list of potential options can be long and it is important to first understand the
basics of Helm hooks as well as when they can be executed, which we will describe in
the next section.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Life cycle management 129

The basics of a Helm hook
A hook executes as a one-time action at a designated point in time during the life span
of a release. A hook, as with the majority of the features within Helm, is implemented
as yet another Kubernetes resource and, more specifically, within a container. While the
majority of workloads within Kubernetes are designed to long-living processes, such as an
application serving API requests, workloads can also be made up of a single task or set of
tasks executed using a script that indicates either success or failure once completed.

Two options that are typically used in a Kubernetes environment to create short-lived
tasks are to make use of either a bare pod or a job. A bare pod is a pod that runs until
completion and then terminates, but will not be rescheduled if the underlying node fails.
For this reason, it may be preferred to run life cycle hooks as jobs, which reschedules the
hook if the node fails or becomes unavailable.

Since hooks are simply defined as Kubernetes resources, they are also placed in the
templates/ folder and annotated with the helm.sh/hook annotation. The
designation of this annotation ensures they are not rendered with the rest of the
resources that are applied to a Kubernetes environment during standard processing.
Instead, they are rendered and applied based on the value specified within the helm.sh/
hook annotation, which determines when it should be executed within Kubernetes as
part of the Helm release life cycle.

Here's an example of how a hook can be defined as a job:

apiVersion: batch/v1

kind: Job

metadata:

 name: helm-auditing

 annotations:

 'helm.sh/hook': pre-install,post-install

spec:

 template:

 metadata:

 name: helm-auditing

 spec:

 restartPolicy: Never

 containers:

 - name: helm-auditing

 command: ["/bin/sh", "-c", "echo Hook Executed at

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

130 Understanding Helm Charts

$(date)"]

 image: alpine

This trivial example prints out the current date and time in the container before sleeping
for 10 seconds. Helm executes this hook before and after installing the chart, as noted by
the value of the 'helm.sh/hook' annotation. A use case for this type of hook is to tie into an
auditing system that tracks the installation of applications to a Kubernetes environment. A
similar hook can be added after the installation completes to track the total time it took to
complete the chart installation process.

Now that we have explained the basics of Helm hooks, let's discuss how hooks can be
defined in a Helm chart.

Hook execution
As you saw in the job hook in the previous section, the value of the helm.sh/hook
annotation was pre-install. pre-install is one of the points during the life span
of a Helm chart where a hook can be executed.

The following table denotes the available options for the helm.sh/hook annotation,
indicating when the hook is executed. The descriptions for each hook references the
official Helm documentation, which can be found at https://helm.sh/docs/
topics/charts_hooks/#the-available-hooks:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Life cycle management 131

The helm.sh/hook annotation can contain multiple values indicating that the same
resource is executed at different points in time within a chart's release cycle. For example,
for a hook to be executed before and after a chart installation, the following annotation
can be defined on either the pod or job:

annotations:

 'helm.sh/hook': pre-install,post-install

It is useful to understand how and when hooks are executed in order to determine the
desired phase in a charts' life cycle that needs to be selected. As described in the previous
example, when a hook is denoted to run in the pre-install and post-install
portions of an execution of the helm install command, the following actions
take place:

1. The user installs a Helm chart (by running, for example, helm install
bitnami/wordpress --version 8.1.0).

2. The Helm API is invoked.

3. CRDs in the crds/ folder are loaded to the Kubernetes environment.

4. Verification of the chart templates is performed and the resources are rendered.

5. The pre-install hooks are ordered by weight, then are rendered and loaded
to Kubernetes.

6. Helm waits until the hooks are ready.

7. Template resources are rendered and applied to the Kubernetes environment.

8. The post-install hooks are executed.

9. Helm waits until the post-install hooks are complete.

10. The results of the helm install command are returned.

With an understanding of the basics of Helm hook execution, let's cover some of the more
advanced topics around Helm hooks.

Advanced hook concepts
While minimal effort is needed to transform a standard Helm template resource into a
hook, there are additional options that aid in chart execution and resource removal.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

132 Understanding Helm Charts

There is no limit to the number of hooks that can be executed during the life span of a
Helm chart and there may be cases where multiple hooks are configured for the same life
cycle phase. When this scenario arises, hooks, by default, are ordered alphabetically by
name. However, you can define the order by specifying the weight of each hook using the
helm.sh/weight annotation. Weights are sorted in ascending order, but if multiple
hooks contain the same weight value, the default logic of sorting alphabetically by name
is used.

While hooks present a useful mechanism for life cycle management, you should keep in
mind that hooks, unlike regular template resources, are not removed with the rest of the
chart during an invocation of the helm uninstall command as they are not tracked
or managed by Helm. Instead, a couple of strategies can be employed to remove hooks
during a release's life cycle, such as configuring a deletion policy and setting a TTL on
a job.

First, the helm.sh/hook-delete-policy annotation can be specified on the pod
or job associated with the hook. This annotation determines when Helm should act
on removing the resource from Kubernetes. The following options are available (the
descriptions reference the Helm documentation, which can be found at https://helm.
sh/docs/topics/charts_hooks/#hook-deletion-policies):

Additionally, Kubernetes provides the option of defining a Time-To-Live (TTL)
mechanism to limit the amount of time a resource is retained for after completion using
the ttlSecondsAfterFinished property of the job, as shown:

apiVersion: batch/v1

kind: Job

metadata:

 name: ttl-job

 annotations:

 'helm.sh/hook': post-install

spec:

 ttlSecondsAfterFinished: 60

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Documenting a Helm chart 133

In this example, the resources are removed in 60 seconds upon completion or failure.

The final stage of a release's life cycle is its deletion, and although standard chart templates
are removed during the invocation of the helm uninstall command you may want
certain resources to be retained so that Helm doesn't take action on them. A common
use case for this is when a new persistent volume via a PersistentVolumeClaim
command is created at the beginning of a release's life cycle but should not be removed
alongside other resources at the end so that the volume's data is retained. This option is
enabled through the use of the helm.sh/resource-policy annotation, as shown:

'helm.sh/resource-policy': keep

Helm will no longer consider removing this resource during the execution of the
helm uninstall command. It is important to note that when a resource is no longer
managed, it becomes orphaned once the remainder of the resources is removed. This
can cause challenges if the helm install command is used as it may cause resource-
naming conflicts with the existing resource that was not previously removed. The
orphaned resource can be deleted manually by using the kubectl delete command.

This section discussed how you can write hooks and automation to manage a chart's life
cycle. In the next section, we will discuss how you can properly document a Helm chart to
ensure its users have a smooth experience.

Documenting a Helm chart
As with any other software that users interact with, a Helm chart should be properly
documented so that users know how to interact with it. The Helm chart structure supports
a README.md file for documenting usage, a LICENSE file for covering usage and
distribution rights, and a templates/NOTES.txt file for generating usage instructions
during chart installation.

The README.md File
README is a file commonly used in software development to describe the installation,
usage, and other details of a product. A Helm chart's README file often contains the
following details:

• Prerequisites: A common example of a prerequisite is creating a secret or a
set of secrets to the Kubernetes cluster before a chart is installed. for the purpose
of mounting to a Kubernetes deployment. Users can be made aware of this
requirement by referencing the README file.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

134 Understanding Helm Charts

• Values: Charts often consist of many different values, each of which should be
described in a table in the README file. The table should specify the name of the
value, its description or function, and its default value. You may also find it helpful
to denote whether or not the value needs to be provided during an installation or
upgrade.

• Application-specific information: Once an application is installed using the Helm
chart, you may need additional information on the application itself, such as how it
can be accessed or how the application functions. These details can be provided in
the README file as well.

Helm READMEs are written using the Markdown formatting language. Markdown
is commonly used in GitHub projects and open source software and is a way of
easily codifying text that can be displayed in an elegant format. Markdown can be
explored further on the Markdown Guide website, located at https://www.
markdownguide.org/.

The LICENSE file
Apart from the technical instructions contained in a README file, chart maintainers may
find it necessary to include a license that indicates the permissions users have around
chart usage and distribution. These details can be composed in a file called LICENSE
under the chart directory.

The LICENSE file is a plaintext file containing a software license. The license may be
custom-written or it can be a copy of a license commonly used in open source software,
such as the Apache License 2.0 or the MIT License. Understanding the differences
between licenses as well as the legality in using and distributing software is beyond the
scope of this book, but you can begin exploring these details at the Choose a License
website (https://choosealicense.com/), which will assist you in selecting an
appropriate license for your Helm chart.

The templates/NOTES.txt file
Similar to the README.md file, the templates/NOTES.txt file is used to provide
usage instructions for the application once installed using Helm. The difference is that
while the README.md file is static, the NOTES.txt file can be dynamically generated
using Go templating.

Imagine that a Helm chart has the following value configured in its values.yaml file:

serviceType can be set to NodePort or LoadBalancer

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.markdownguide.org/
https://www.markdownguide.org/
https://choosealicense.com/
https://choosealicense.com/

Documenting a Helm chart 135

serviceType: NodePort

Depending on the type of service that is set, the instructions to access the application
will differ. If the service is a NodePort service, access will be gained by using a certain
port number set on each Kubernetes node. If the service is set to LoadBalancer, the
application will be accessed using the URL of a load balancer provisioned automatically
on the creation of the service. Understanding how to access the application based on
the type of service being used may be difficult for less experienced Kubernetes users, so
the maintainer of this chart should provide a NOTES.txt file under the templates/
directory that provides instructions on how the application can be accessed.

The following example illustrates how a templates/NOTES.txt file can be used for
this purpose:

Follow these instructions to access your application.

{{- if eq .Values.serviceType 'NodePort' }}

export NODE_PORT=$(kubectl get --namespace {{ .Release.
Namespace }} -o jsonpath='{.spec.ports[0].nodePort}' services
{{.Release.Name }})

export NODE_IP=$(kubectl get nodes --namespace {{ .Release.
Namespace }} -o jsonpath='{.items[0].status.addresses[0].
address}')

echo "URL: http://$NODE_IP:$NODE_PORT"

{{- else }}

export SERVICE_IP=$(kubectl get svc --namespace {{ .Release.
Name }} wordpress --template '{{ range (index .status.
loadBalancer.ingress 0) }}{{.}}{{ end }}')

echo "URL: http://$SERVICE_IP"

{{- end }}

This file will be generated and displayed during the application's install, upgrade, and
rollback phases and can be recalled by running the helm get notes command. By
providing this file, users will get a better understanding of how to use the application.

We have described the majority of the assets that comprise a Helm chart so far in this
chapter, except for the actual packaging, which allows a chart to be easily distributable.
This concept will be described in the next section.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

136 Understanding Helm Charts

Packaging a Helm chart
While Helm charts follow a common file structure, they should be packaged in order to
be easily distributed. Charts are packaged in tgz archives. While this archives can be
manually created by using the tar bash utility or an archive manager, Helm provides
the helm package command to simplify this task. The syntax of the helm package
command is shown here:

$ helm package [CHART_NAME] [...] [flags]

The helm package command is run against a local chart directory. If this command is
successful, it will generate a tgz archive with the following file format:

$CHART_NAME-$CHART_VERSION.tgz

The archive can then be distributed by pushing to a chart repository, which is a task that is
explored further in Chapter 5, Building Your First Helm Chart.

The helm package command includes every file under a chart directory. While this is
often the preferred behavior, it may not always be desired if the directory contains files
that are not essential to Helm. One example of a directory where this commonly occurs
is the .git/ directory, which is present in projects managed by Git SCM. If this file is
packaged into the chart's tgz archive, it will not serve any purpose and will only increase
the size of the archive. Helm supports a file called .helmignore that can be used to
omit certain files and folders from the Helm archive. The following describes an example
.helmignore file:

Ignore git directories and files

.git/

.gitignore

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 137

The preceding file indicates that if the .git/ directory or the .gitignore files appear
in a chart's directory, they will be ignored by the helm package command, meaning
they will not be present in the resulting tgz archive. Lines that begin with the pound
symbol (#) in this file serve as comments. Be sure to include a .helmignore file in your
Helm charts if your chart's directory contains files and folders that are not necessary to the
overall function of the chart.

Summary
A Helm chart is a set of files, written primarily in the YAML format, that follows a
certain file structure. The Chart.yaml file is used to set chart metadata and declare
dependencies. The templates/ directory is used to contain Kubernetes YAML
resources that are Go-templated, allowing them to be dynamically generated. Kubernetes
resources defined under the templates/ directory can also contain certain hooks to
configure stages in an application's life cycle. To provide documentation to users, charts
can contain the README.md and templates/NOTES.txt files and can also contain
the LICENSE file to declare chart usage and distribution rights. Finally, charts can
contain a .helmignore file, which is used to omit declared files from the final packaged
product.

In this chapter, you learned about the structure of a Helm chart and how to configure key
chart components. With the knowledge from this chapter under your belt, you now have
an understanding of the basic concepts of how to write your first Helm chart from scratch,
which we will do in Chapter 5, Building Your First Helm Chart.

Further reading
To learn more about the basics behind creating Helm charts, consult the Chart Template
Guide page on the Helm documentation at https://helm.sh/docs/chart_
template_guide/. The Charts section at https://helm.sh/docs/topics/
charts/ also describes many of the topics discussed throughout this chapter, including
chart file structure, dependencies, and the Chart.yaml file.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/topics/charts/a

138 Understanding Helm Charts

Questions
1. What is the file format that is most commonly used in Kubernetes and Helm?

2. What are the three required fields in the Chart.yaml file?

3. How can the values from a chart dependency be referenced or overridden?

4. Imagine you want to take a data snapshot of a database deployed with Helm. What
can you do to ensure that a data snapshot is taken before upgrading the database
to a newer version?

5. What files can you, as a chart developer, create to provide documentation and
simplify the chart installation process for the end user?

6. What Helm templating construct can you take advantage of to generate repeating
YAML portions?

7. How does the Chart.yaml file differ from the Chart.lock file?

8. What is the name of the annotation that defines a resource as a hook?

9. What is the purpose of functions and pipelines in chart templates? What are some
common functions that can be used?

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

5
Building Your First

Helm Chart
In the previous chapter, you learned about the various aspects that comprise a Helm chart.
Now, it is time to put this knowledge to the test by building a Helm chart. Learning to
build a Helm chart will allow you to package a complex Kubernetes application in a way
that makes it simple to deploy.

In this chapter, you will learn how to build a Helm chart that deploys the guestbook
application, a common quickstart application used throughout the Kubernetes
community. This chart will be built by following best practices around Kubernetes
and Helm chart development, to provide a well-written and easily maintainable piece
of automation. Throughout the process of developing this chart, you will learn many
different skills that you can apply toward building your own Helm charts. At the end
of the chapter, you will learn how to package your Helm chart and deploy it to a chart
repository, where it can be easily accessible to end users.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

140 Building Your First Helm Chart

Here are the main topics covered in this chapter:

• Understanding the Guestbook application

• Creating a Guestbook Helm chart

• Improving the Guestbook Helm chart

• Publishing the Guestbook chart to a chart repository

Technical requirements
This chapter requires the following technologies:

• minikube

• kubectl

• helm

In addition to the preceding tooling, you will find the GitHub repository for this book
located at https://github.com/PacktPublishing/-Learn-Helm. We will
reference the helm-charts/charts/guestbook folder contained in this chapter.

It is recommended that you have your own GitHub account in order to complete the final
section of this chapter, Creating a chart repository. Instructions on how to create your own
account will be provided in that section.

Understanding the Guestbook application
In this chapter, you will create a Helm chart to deploy the Guestbook tutorial application
provided by the Kubernetes community. This application is introduced in the
Kubernetes documentation at the following page: https://kubernetes.io/docs/
tutorials/stateless-application/guestbook/

The Guestbook application is a simple PHP: Hypertext Preprocessor (PHP) frontend
designed to persist messages to a Redis backend. The frontend consists of a dialog box
and a Submit button, as illustrated in the following screenshot:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm
https://kubernetes.io/docs/tutorials/stateless-application/guestbook/
https://kubernetes.io/docs/tutorials/stateless-application/guestbook/

Understanding the Guestbook application 141

Figure 5.1: The Guestbook PHP frontend

To interact with this application, users can follow these next steps:

1. Type a message in the Messages dialog box.

2. Click the Submit button.

3. When the Submit button is clicked, the message will be saved to a Redis database.

Redis is an in-memory, key-value data store that, in this chapter, will be clustered for data
replication. The cluster will consist of one master node that the Guestbook frontend will
write to. Once written to, the master node will replicate the data across multiple slave
nodes, from which the Guestbook frontend will read.

The following diagram describes how the Guestbook frontend interacts with the
Redis backend:

Figure 5.2: Guestbook frontend and Redis interaction

With a basic understanding of how the Guestbook frontend and Redis backend interact,
let's set up a Kubernetes environment to begin developing a Helm chart. Before we begin,
let's first start minikube and create a dedicated namespace for this chapter.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

142 Building Your First Helm Chart

Setting up the environment
In order to see your chart in action, you'll need to create your minikube environment by
following these steps:

1. Start minikube by running the minikube start command, as follows:

$ minikube start

2. Create a new namespace called chapter5, like this:

$ kubectl create namespace chapter5

We'll use this namespace when the Guestbook chart is deployed. Now that the
environment is prepared, let's begin writing the chart.

Creating a Guestbook Helm chart
In this section, we will create a Helm chart to deploy the Guestbook application. The final
chart has been published under the helm-charts/charts/guestbook folder of the
Packt repository. Feel free to reference this location as you follow along with the examples.

We will begin development by first scaffolding the Guestbook Helm chart to create the
chart's initial file structure.

Scaffolding the initial file structure
As you may recall from Chapter 4, Understanding Helm Charts, Helm charts must follow a
particular file structure in order to be considered valid. Namely, a chart must contain the
following required files:

• Chart.yaml: Used to define chart metadata

• values.yaml: Used to define default chart values

• templates/: Used to define chart templates and Kubernetes resources to be
created

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Guestbook Helm chart 143

We provided a list of each of the possible files a chart can contain in Chapter 4,
Understanding Helm Charts, but the three preceding files are the files that are necessary in
order to begin developing a new chart. While these three files can be created from scratch,
Helm provides a helm create command that can be used to more quickly scaffold a
new chart. In addition to creating the files listed previously, the helm create command
will also generate many different boilerplate templates that can be leveraged to more
quickly write your Helm chart. Let's use this command to scaffold out a new Helm chart
called guestbook.

The helm create command takes the name of the Helm chart (guestbook) as an
argument. Run the following command on your local command line to scaffold this chart:

$ helm create guestbook

Upon running this command, you will see a new directory on your machine called
guestbook/. This is the directory that contains your Helm chart. Inside the direc-
tory, you will see the following four files:

• charts/

• Chart.yaml

• templates/

• values.yaml

As you can see, the helm create command created a charts/ directory, in addition
to the required Chart.yaml, values.yaml, and templates/ files. The charts/
directory is currently blank, but will later become automatically populated when we
declare a chart dependency. You may also notice that the other mentioned files have been
automatically populated with default settings. We will leverage many of these defaults
throughout this chapter while developing the guestbook chart.

If you explore the contents underneath the templates/ directory, you will find that
many different template resources have been included by default. These resources will
save time that would have otherwise been spent creating these from scratch. While many
useful templates were generated, we will remove the templates/tests/ folder. This
folder is used to contain the tests for your Helm chart, but we will focus on writing your
own tests in Chapter 6, Testing Helm Charts. Run the following command to remove the
templates/tests/ folder:

$ rm -rf guestbook/templates/tests

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

144 Building Your First Helm Chart

Now that the guestbook chart has been scaffolded, let's proceed by evaluating the
Chart.yaml file that has been generated.

Evaluating the chart definition
The chart definition, or Chart.yaml file, is used to contain the metadata of a Helm
chart. We discussed each of the possible options of a Chart.yaml file in Chapter 4,
Understanding Helm Charts, but let's recap on some of the primary settings contained
within a typical chart definition, as follows:

• apiVersion: Set to either the v1 or v2 (v2 is the preferred option for Helm 3)

• version: The version of the Helm chart. This should be a version that adheres to
Semantic Versioning specifications (SemVer).

• appVersion: The version of the application being deployed by the Helm chart

• name: The name of the Helm chart

• description: A brief description of the Helm chart and what it is designed
to deploy

• type: Set to either application or library. Application charts are
used to deploy a specific application. Library charts contain a set of helper
functions (also called 'named templates') that can be used across other charts
to reduce boilerplate.

• dependencies: A list of charts that the Helm chart depends on

If you observe your scaffolded Chart.yaml file, you will notice that each of these
fields (except for dependencies) has already been set. This file can be seen in the
following screenshot:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Guestbook Helm chart 145

Figure 5.3: The scaffolded Chart.yaml file

We will leave each of the settings contained within this file at their defaults for now
(though feel free to write a more creative description if you would like). We'll update a
couple of these default values when they become relevant, later on in the chapter.

An additional setting that is not included in the default chart definition, but should be
considered, is dependencies. We will discuss this in greater detail in the next section,
where a Redis dependency will be added to simplify the development effort.

Adding a Redis chart dependency
As mentioned in the Understanding the Guestbook application section, this Helm
chart must be able to deploy a Redis database that will be used to save the state of the
application. If you were creating this chart completely from scratch, you would need to
have a proper understanding of how Redis works and how it can be properly deployed to
Kubernetes. You would also need to create the corresponding chart templates required to
deploy Redis.

Alternatively, by including a Redis dependency that already contains the logic and
required chart templates, you can greatly reduce the amount of effort involved in creating
the guestbook Helm chart. Let's modify the scaffolded Chart.yaml file by adding a
Redis dependency to simplify chart development.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

146 Building Your First Helm Chart

The process to add a Redis chart dependency can be performed by following these steps:

1. Search the Helm Hub repository for Redis charts by running the
following command:

$ helm search hub redis

2. One of the charts that will be displayed is Bitnami's Redis chart. This is the chart
we will use as the dependency. If you have not already added the bitnami chart
repository in Chapter 3, Installing Your First Helm Chart, add this chart repository
now by using the helm add repo command. Note that the repository Uniform
Resource Locator (URL) was retrieved from the Redis chart's page in the Helm
Hub repository. The code can be seen in the following snippet:

$ helm add repo bitnami https://charts.bitnami.com

3. Determine the version of the Redis chart you would like to use. A list of version
numbers can be found by running the following command:

$ helm search repo redis --versions

NAME CHART VERSION APP
VERSION

bitnami/redis 10.5.14 5.0.8

bitnami/redis 10.5.13 5.0.8

bitnami/redis 10.5.12 5.0.8

bitnami/redis 10.5.11 5.0.8

The version that you must select is a chart version, not an app version. The app
version only describes the Redis version, while the chart version describes the
version of the actual Helm chart.

Dependencies allow you to choose a particular chart version, or a wildcard such
as 10.5.x. Using a wildcard allows you to easily keep your chart updated with
the latest Redis version matching that wildcard (which, in this case, is version
10.5.14). In this example, we will use version 10.5.x.

4. Add the dependencies field to the Chart.yaml file. For the guestbook chart,
we will configure this field with the following minimum required fields (additional
fields are discussed in Chapter 4, Understanding Helm Charts):

name: The name of the dependency chart

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Guestbook Helm chart 147

version : The version of the dependency chart

repository: The repository URL of the dependency chart

Add the following YAML Ain't Markup Language (YAML) code to the end of your
Chart.yaml file, providing the information you have gathered about the Redis
chart to configure the dependency's settings:

dependencies:

 - name: redis

 version: 10.5.x

 repository: https://charts.bitnami.com

Once you have added your dependency, your full Chart.yaml file should appear as
follows (comments and empty lines have been removed for brevity):

apiVersion: v2

name: guestbook

description: A Helm chart for Kubernetes

type: application

version: 0.1.0

appVersion: 1.16.0

dependencies:

 - name: redis

 version: 10.5.x

 repository: https://charts.bitnami.com

This file can also be reviewed in the Packt repository at https://github.com/
PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/
guestbook/Chart.yaml (be aware that the version and appVersion fields may
differ, as we will modify these later in the chapter).

Now that your dependency has been added to the chart definition, let's download this
dependency to ensure that it has been configured properly.

Downloading the Redis chart dependency
When downloading a dependency for the first time, you should use the helm
dependency update command. This command will download your dependency to
the charts/ directory and will generate the Chart.lock file, which specifies metadata
about the chart that was downloaded.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/Chart.yaml
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/Chart.yaml
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/Chart.yaml

148 Building Your First Helm Chart

Run the helm dependency update command to download your Redis dependency.
The command takes as an argument the location of your Helm chart, and can be seen in
the following snippet:

$ helm dependency update guestbook

Hang tight while we grab the latest from your chart
repositories...

...Successfully got an update from the 'bitnami' chart
repository

Update Complete. Happy Helming!

Saving 1 charts

Downloading redis from repo https://charts.bitnami.com

Deleting outdated charts

You can validate the fact that the download was successful by ensuring that the Redis
chart appears under the charts/ folder, as illustrated here:

$ ls guestbook/charts

redis-10.5.14.tgz

Now that the Redis dependency has been included, let's proceed by modifying the
values.yaml file. Here, we will override values specific to configuring Redis, as well as
the Guestbook frontend application.

Modifying the values.yaml file
A Helm chart's values.yaml file is used to provide a set of default parameters that are
referenced throughout the chart's templates. When users interact with the Helm chart,
they can override these defaults if necessary, using the --set or --values flags. In
addition to providing a set of default parameters, a well-written Helm chart should be
self-documenting, containing intuitive names for each value and comments that explain
difficult values to implement. Writing a self-documenting value.yaml file allows
users and maintainers alike to simply refer to this file if they need to understand the
chart's values.

The helm create command generates a values file that contains many boilerplate
values commonly used throughout Helm chart development. Let's finish configuring the
Redis dependency by adding a few additional values at the end of this file. Afterward,
we'll focus on modifying some of the boilerplate values to configure the Guestbook
frontend resources.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Guestbook Helm chart 149

Adding values to configure the Redis chart
Although adding a dependency prevents you from needing to create its chart templates,
you may still need to override some of its values in order to configure it. In this case, it
will be necessary to override a few of the Redis chart's values to allow it to work seamlessly
with the rest of the guestbook chart.

Let's begin by first learning about the Redis chart's values. This can be done by running
the helm show values command against the downloaded Redis chart, as follows:

$ helm show values charts/redis-10.5.14.tgz

Be sure to modify the command to match the Redis chart version that you downloaded.
With a list of values displayed, let's identify those that will need to be overridden,
as follows:

1. The first value that will need to be overridden in the Redis chart is
fullnameOverride. This value appears in the helm show values output, as
follows:

String to fully override redis.fullname template

##

fullnameOverride:

Charts often use this value in a named template called $CHART_NAME.fullname
to easily generate their Kubernetes resource names. When fullnameOverride
is set, the named template will evaluate to this value. Otherwise, the result of this
template will be based on the .Release.Name object, or the name of the Helm
release provided at installation.

The Redis dependency uses the redis.fullname template to help set the Redis
master and Redis slave service names.

The following snippet shows an example of how the Redis master service name is
generated in the Redis chart:

name: {{ template 'redis.fullname' . }}-master

The Guestbook application requires the Redis services to be named redis-
master and redis-slave. As a result, the fullnameOverride value should
be set to redis.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

150 Building Your First Helm Chart

If you are interested in learning more about how the redis.fullname template
works and how it is applied throughout the Redis chart, you can unarchive the
Redis dependency under the charts/ folder. In that folder, you will find the
redis.fullname template in the templates/_helpers.tpl file and note
its invocations throughout each YAML template. (It turns out that your generated
guestbook chart also contains a similar template in the _helpers.tpl file, but
in general, it's safer to refer to the dependency's resources in case their maintainer
customized the template.)

If you are interested in learning more about how the Guestbook application works,
the source code can be found on GitHub. The following file defines the required
Redis service names:

https://github.com/kubernetes/examples/blob/master/
guestbook/php-redis/guestbook.php

2. The next value that needs to be overridden from the Redis chart is usePassword.
The following code snippet shows what this value looks like in the helm show
values output:

Use password authentication

usePassword: true

The Guestbook application has been written for unauthenticated access to the Redis
database, so we will want to set this value to false.

3. The final value that we need to override is configmap. Here is how this value
appears in the helm show values output:

Redis config file

ref: https://redis.io/topics/config

##

configmap: |-

 # Enable AOF https://redis.io/topics/
persistence#append-only-file

 appendonly yes

 # Disable RDB persistence, AOF persistence already
enabled.

 save ''

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Guestbook Helm chart 151

The default configmap value will enable both types of persistence that Redis can employ,
Append Only File (AOF) and Redis Database File (RDF) persistence. AOF persistence
in Redis works by adding new data entries to a changelog-style file to provide a history
of changes. RDF persistence works by copying data to a file on certain intervals, so as to
create data snapshots.

Later in this chapter, we will create simple life cycle hooks that allow users to back up and
restore the Redis database to a previous snapshot. Because only RDB persistence works
with snapshot files, we will overwrite the configmap value to read appendonly no,
which will disable AOF persistence.

With each Redis value identified, add these values to the end of your chart's values.
yaml file, as shown in the following code block:

redis:

 # Override the redis.fullname template

 fullnameOverride: redis

 # Enable unauthenticated access to Redis

 usePassword: false

 # Disable AOF persistence

 configmap: |-

 appendonly no

Remember from Chapter 4, Understanding Helm Charts, that values overridden from a
chart dependency must be scoped underneath that chart name. That is why each of these
values will be added underneath a redis: stanza.

You can check that you have configured your Redis values properly by referencing the
values.yaml file located at https://github.com/PacktPublishing/-
Learn-Helm/blob/master/helm-charts/charts/guestbook/values.
yaml in the Packt repository.

Important note
Some values unrelated to Redis may differ from your values.yaml file, as
we will be modifying these in the next section.

With the Redis dependency's values configured, let's proceed to modify the default values
generated by helm create to deploy the Guestbook frontend.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/values.yaml
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/values.yaml

152 Building Your First Helm Chart

Modifying values to deploy the Guestbook frontend
When you ran the helm create command at the beginning of the chapter, some of the
items that it created were default templates under the templates/ directory and default
values in the values.yaml file.

Here is a list of the default templates that were created:

• deployment.yaml: Used to deploy the Guestbook application to Kubernetes.

• ingress.yaml: Provides one option to access the Guestbook application from
outside the Kubernetes cluster.

• serviceaccount.yaml: Used to create a dedicated serviceaccount for the
Guestbook application.

• service.yaml: Used to load-balance between multiple instances of the
Guestbook application. Can also provide an option to access the Guestbook
application from outside the Kubernetes cluster.

• _helpers.tp: Provides a set of common templates used throughout the
Helm chart.

• NOTES.txt: Provides a set of instructions used to access the application after it
is installed.

Each of these templates is configured by the chart's values. While the helm create
command gave a great starting point toward deploying the Guestbook application, it
did not provide each of the default values needed. In order to replace the defaults with
their required values, we can observe the generated chart templates and modify their
parameters accordingly.

Let's walk through the template locations that indicate where modifications need to
be made.

The first location is in the deployment.yaml chart template. Within that file, there is
a line that indicates the container image to deploy, as illustrated here:

image: '{{ .Values.image.repository }}:{{ .Chart.AppVersion }}'

As you can see, the image is determined by the image.repository value and the
AppVersion chart setting. If you look in your values.yaml file, you can see that
the image.repository value is currently configured to deploy the nginx image by
default, as illustrated here:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Guestbook Helm chart 153

image:

 repository: nginx

Similarly, if you look in the Chart.yaml file, you can see that the AppVersion is
currently set to 1.16.0, as illustrated here:

appVersion: 1.16.0

Since the Guestbook application originated as a Kubernetes tutorial, you can find
the specific image that needs to be deployed in the Kubernetes documentation at
https://kubernetes.io/docs/tutorials/stateless-application/
guestbook/#creating-the-guestbook-frontend-deployment. In the
documentation, you can see that the image must be specified as follows:

image: gcr.io/google-samples/gb-frontend:v4

As a result, in order for the image field to be properly generated, the image.
repository value must be set to gcr.io/google-samples/gb-frontend, and
the AppVersion chart setting must be set to v4.

The second location where a modification must be made is in the service.yaml chart
template. In this file, there is a line that determines the service type, as illustrated here:

type: {{ .Values.service.type }}

According to the service.type value, this service will default to having a ClusterIP
service type, shown in the values.yaml file as follows:

service:

 type: ClusterIP

For the guestbook chart, we will modify this value to instead create a NodePort
service. This will allow the application to be accessed easier in a minikube environment by
exposing a port on the minikube virtual machine (VM). Once connected to the port, we
can access the Guestbook frontend.

Note that while helm create generated an ingress.yaml template that would also
allow access, NodePort services are more commonly recommended when working in
minikube environments because add-ons or enhancements are not required. Luckily, the
generated chart disables the ingress resource creation by default, so no action is required
to disable this feature.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

154 Building Your First Helm Chart

Now that we have determined the default settings that need to be changed, let's proceed by
first updating the values.yaml file, as follows:

1. Replace the image.repository value so that it is set to gcr.io/google-
samples/gb-frontend. The entire image: stanza should now read as follows:

image:

 repository: gcr.io/google-samples/gb-frontend

 pullPolicy: IfNotPresent

2. Replace the service.type value so that it is set to NodePort. The entire
service: stanza should now read as follows:

service:

 type: NodePort

 port: 80

3. You can verify that your values.yaml file has been modified correctly
by referring to the file in the Packt repository at https://github.com/
PacktPublishing/-Learn-Helm/blob/master/helm-charts/
charts/guestbook/values.yaml.

Next, let's update the Chart.yaml file so that the correct Guestbook application version
is deployed, as follows:

1. Replace the appVersion field so that it is set to v4. The appVersion field
should now read as follows:

appVersion: v4

2. You can verify that your Chart.yaml file has been modified correctly by
referring to the file in the Packt repository at https://github.com/
PacktPublishing/-Learn-Helm/blob/master/helm-charts/
charts/guestbook/Chart.yaml.

Now that the chart has been updated with the proper values and settings, let's see this
chart in action by deploying it to the minikube environment.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/values.yaml
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/values.yaml
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/Chart.yaml
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/Chart.yaml

Creating a Guestbook Helm chart 155

Installing the Guestbook chart
To install your guestbook chart, run the following command outside of your
guestbook/ directory:

$ helm install my-guestbook guestbook -n chapter5

The following message will be displayed if the installation was successful:

NAME: my-guestbook

LAST DEPLOYED: Sun Apr 26 09:57:52 2020

NAMESPACE: chapter5

STATUS: deployed

REVISION: 1

NOTES:

1. Get the application URL by running these commands:

 export NODE_PORT=$(kubectl get --namespace chapter5 -o
jsonpath='{.spec.ports[0].nodePort}' services my-guestbook)

 export NODE_IP=$(kubectl get nodes --namespace chapter5 -o
jsonpath='{.items[0].status.addresses[0].address}')

 echo http://$NODE_IP:$NODE_PORT

While the installation was successful, you may find that the Guestbook and Redis pods are
not immediately in the Ready state. When a Pod is not ready, it cannot be accessed yet.

You can also force Helm to wait until these pods become ready by passing in the --wait
flag. The --wait flag can be accompanied by the --timeout flag to increase the
amount of time in seconds that Helm will wait for pods to become ready. The default is set
to 5 minutes, which would be more than enough time for this application.

You can ensure that all pods are ready without the --wait flag by checking each Pod's
status, as follows:

$ kubectl get pods -n chapter5

When each Pod is ready, you will be able to observe that each Pod reports 1/1 under the
READY column, as illustrated here:

Figure 5.4: Output of kubectl get pods –n chapter5 when each Pod is ready

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

156 Building Your First Helm Chart

Once the pods are ready, you can run the commands that were displayed by the release
notes. If necessary, they can be displayed again by running the following code:

$ helm get notes my-guestbook -n chapter5

NOTES:

1. Get the application URL by running these commands:

 export NODE_PORT=$(kubectl get --namespace chapter5 -o
jsonpath='{.spec.ports[0].nodePort}' services my-guestbook)

 export NODE_IP=$(kubectl get nodes --namespace chapter5 -o
jsonpath='{.items[0].status.addresses[0].address}')

 echo http://$NODE_IP:$NODE_PORT

Copy and paste the Guestbook URL (output from the echo command) into your
browser, and the Guestbook user interface (UI) should be displayed, as illustrated in
the following screenshot:

Figure 5.5: The Guestbook frontend

Try to type a message in the dialog box and click Submit. The Guestbook frontend will
display the message under the Submit button, which indicates that the message has been
saved to the Redis database, as illustrated in the following screenshot:

Figure 5.6: The Guestbook frontend displaying a previously sent message

If you are able to write a message and see it displayed on your screen, then you have
successfully built and deployed your first Helm chart! If you are not able to see your
messages, your Redis dependency may not have been set up correctly. In that case,
make sure that your Redis values have been configured properly and that your Redis
dependency has been properly declared in the Chart.yaml file.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Improving the Guestbook Helm chart 157

When you are ready, uninstall this chart with the helm uninstall command, like this:

$ helm uninstall my-guestbook -n chapter5

You will also need to manually remove the Redis PersistentVolumeClaims (PVCs), since
the Redis dependency made the database persistent by using StatefulSet (which does
not automatically remove PVCs when deleted).

Run the following command to remove the Redis PVCs:

$ kubectl delete pvc -l app=redis -n chapter5

In the next section, we will explore ways in which the guestbook chart can be improved.

Improving the Guestbook Helm chart
The chart created in the previous section was able to successfully deploy the Guestbook
application. However, as is the case with any type of software, the Helm chart can always
be improved. In this section, we will focus on the following two features that will improve
the guestbook chart:

• Life cycle hooks to back up and restore the Redis database

• Input validation to ensure only valid values are provided

Let's focus first on adding life cycle hooks.

Creating pre-upgrade and pre-rollback life cycle hooks
In this section, we will create two life cycle hooks, as follows:

1. The first hook will occur in the pre-upgrade life cycle phase. This phase takes
place immediately after the helm upgrade command is run, but before any
Kubernetes resources become modified. This hook will be used to take a data
snapshot of the Redis database before performing the upgrade, ensuring that the
database is backed up in case the upgrade is errant.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

158 Building Your First Helm Chart

2. The second hook will occur in the pre-rollback life cycle phase. This phase
takes place immediately after the helm rollback command is run but before
any Kubernetes resources are reverted. This hook will restore the Redis database
to a previously taken data snapshot and will ensure that the Kubernetes resource
configuration is reverted to match the way it was at the point the snapshot
was taken.

By the end of this section, you will become more familiar with life cycle hooks and some
of the powerful capabilities that can be performed with them. Be sure to keep in mind
that the hooks created in this section are very simple and are only there for exploring the
basic capabilities of Helm hooks. It is not advised to try to use these hooks verbatim in a
production environment.

Let's walk through how the pre-upgrade life cycle hook can be created.

Creating the pre-upgrade hook to take a data snapshot
In Redis, data snapshots are contained inside a dump.rdb file. We can back this
file up by creating a hook that first creates a new PVC in the Kubernetes namespace.
The hook can then create a job resource that copies the dump.rdb file to the new
PersistentVolumeClaim.

While the helm create command generates some powerful resource templates that
allow the initial guestbook chart to be created quickly, it does not scaffold out any
hooks that can be used for this task. As a result, you can create the pre-upgrade hook
from scratch by following these steps:

1. First, you should create a new folder to contain the hook templates. While this
is not a technical requirement, it does help keep your hook templates separate from
the regular chart templates. It also allows you to group the hook templates
 by function.

Create a new folder called templates/backup in your guestbook file
structure, as follows:

$ mkdir guestbook/templates/backup

2. Next, you should scaffold the two templates required to perform the backup. The
first template required is a PersistentVolumeClaim template that will be used
to contain the copied dump.rdb file. The second template will be a job template
that will be used to perform the copy.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Improving the Guestbook Helm chart 159

Create two empty template files to serve as placeholders, as follows:

$ touch guestbook/templates/backup/persistentvolumeclaim.
yaml

$ touch guestbook/templates/backup/job.yaml

3. You can double-check your work by referencing the Packt repository. Your file
structure should appear identical to the structure found at https://github.
com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/
charts/guestbook/templates/backup.

4. Next, let's create the persistentvolumeclaim.yaml template. Copy the
contents of the file below to your backup/persistentvolumeclaim.yaml
file (this file can also be copied from the Packt repository at https://github.
com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/
charts/guestbook/templates/backup/persistentvolumeclaim.
yaml. Keep in mind that whitespace consists of spaces, not tabs, as per valid
YAML syntax. The contents of the file can be seen here:

Figure 5.7: The backup/persistentvolumeclaim.yaml template
Before proceeding, let's walk through part of the persistentvolumeclaim.
yaml file to help understand how it was created.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook/templates/backup
https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook/templates/backup

160 Building Your First Helm Chart

Lines 1 and 17 of this file consist of an if action. Since the action encapsulates
the whole file, it indicates that this resource will only be included if the redis.
master.persistence.enabled value is set to true. This value defaults to
true in the Redis dependency chart and can be observed using the helm show
values command.

Line 5 determines the name of the new PVC backup. Its name is based on the name
given to the Redis master PVC created by the Redis dependency chart, which is
redis-data-redis-master-0, so that it is obvious which PVC this is
designed to be a backup of. Its name is also based on the revision number. Because
this hook is run as a pre-upgrade hook, it will try to use the revision number being
upgraded to. The sub function is used to subtract 1 from this revision number, so it
is obvious that this PVC contains the data snapshot of the previous revision.

Line 9 creates an annotation to declare this resource as a pre-upgrade hook.
Line 10 creates a helm.sh/hook-weight annotation to determine the order
in which this resource should be created compared to other pre-upgrade hooks.
Weights are run in ascending order, so this resource will be created before other
pre-upgrade resources.

5. After the persistentvolumeclaim.yaml file is created, we will create the final
pre-upgrade template, job.yaml. Copy the following content to your backup/
job.yaml file (this file can also be copied from the Packt repository at https://
github.com/PacktPublishing/-Learn-Helm/blob/master/helm-
charts/charts/guestbook/templates/backup/job.yaml):

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/templates/backup/job.yaml
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/templates/backup/job.yaml
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/templates/backup/job.yaml

Improving the Guestbook Helm chart 161

Figure 5.8: The backup/job.yaml template

Let's walk through part of this job.yaml template to understand how it was created.

Line 9 once again defines this template to be a pre-upgrade hook. Line 11 sets the hook
weight to 1, indicating that this resource will be created after the other pre-upgrade
PersistentVolumeClaim.

Line 10 sets a new annotation to determine when this job should be deleted. By default,
Helm does not manage hooks beyond their initial creation, meaning that they will not
be deleted when the helm uninstall command is run. The helm.sh/hook-
delete-policy annotation is used to determine the conditions in which a resource
should be deleted. This job contains the before-hook-creation delete policy, which
indicates it will be removed during a helm upgrade command if it already exists in
the namespace, allowing a fresh job to be created in its place. This job will also have the
hook-succeeded delete policy, which will result in its deletion if it is run successfully.

Line 19 performs the backup of the dump.rdb file. It connects to the Redis master, saves
the state of the database, and copies the file to the backup PVC.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

162 Building Your First Helm Chart

Lines 29 and 32 define the Redis master PVC and backup PVC, respectively. These PVCs
are mounted by the job in order to copy the dump.rdb file.

If you have followed along with each of the preceding steps, then you have created your
pre-upgrade hooks for your Helm chart. Let's continue to the next section to create the
pre-rollback hook. Afterward, we will redeploy the guestbook chart to see these hooks
in action.

Creating the pre-rollback hook to restore the database
Whereas the pre-upgrade hook was written to copy the dump.rdb file from the Redis
master PVC to the backup PVC, the pre-rollback hook can be written to perform the
reverse action to restore the database to a previous snapshot.

Follow these steps to create the pre-rollback hook:

1. Create the templates/restore folder, which will be used to contain the
pre-rollback hook, as follows:

$ mkdir guestbook/templates/restore

2. Next, scaffold an empty job.yaml template, which will be used to restore the
database, as follows:

$ touch guestbook/templates/restore/job.yaml

3. You can check that you have created the correct structure by referencing the Packt
repository at https://github.com/PacktPublishing/-Learn-Helm/
tree/master/helm-charts/charts/guestbook/templates/restore.

4. Next, let's add content to the job.yaml file. Copy the following content to your
restore/job.yaml file (this file can also be copied from the Packt repository
at https://github.com/PacktPublishing/-Learn-Helm/blob/
master/helm-charts/charts/guestbook/templates/restore/job.
yaml):

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook/templates/restore
https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook/templates/restore
https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook/templates/restore
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/templates/restore/job.yaml
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/templates/restore/job.yaml
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/templates/restore/job.yaml

Improving the Guestbook Helm chart 163

Figure 5.9: The rollback/job.yaml template

Line 7 of this template declares this resource as a pre-rollback hook.

The actual data restore is performed on lines 18 and 19. Line 18 copies the dump.rdb file
from the backup PVC to the Redis master PVC. Once copied, line 19 restarts the database
so that the snapshot can be reloaded. The command used to restart the Redis database
will return a failed exit code because the connection to the database will be terminated
unexpectedly, but this can be resolved by appending || true to the command, which
will negate the exit code.

Line 29 defines the Redis master volume, and line 32 defines the desired backup volume,
which is determined by the revision that it is being rolled back to.

With the pre-upgrade and pre-rollback life cycle hooks created, let's see them in action by
running them in the minikube environment.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

164 Building Your First Helm Chart

Executing the life cycle hooks
In order to run the life cycle hooks you created, you must first install your chart again by
running the helm install command, as follows:

$ helm install my-guestbook guestbook -n chapter5

When each Pod reports the 1/1 Ready state, access your Guestbook application by
following the displayed release notes. Note that the port to access the application will be
different than it was previously.

Write a message once you access the Guestbook frontend. An example message can be
seen in the following screenshot:

Figure 5.10: The Guestbook frontend upon installing the Guestbook chart and entering a message

Once a message has been written and its text is displayed under the Submit button, run
the helm upgrade command to trigger the pre-upgrade hook. The helm upgrade
command will hang briefly until the backup has finished, and can be seen here:

$ helm upgrade my-guestbook guestbook -n chapter5

When the command returns, you should find the Redis master PVC along with a new
PVC created, called redis-data-redis-master-0-backup-1, which can be
seen here:

$ kubectl get pvc -n chapter5

NAME STATUS

redis-data-redis-master-0 Bound

redis-data-redis-master-0-backup-1 Bound

This PVC contains a data snapshot that can be used to restore the database during the
pre-rollback life cycle phase.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Improving the Guestbook Helm chart 165

Let's now proceed to add an additional message to the Guestbook frontend. You should
have two messages appear under the Submit button, as illustrated in the following
screenshot:

Figure 5.11: Guestbook messages before running the rollback

Now, run the helm rollback command to revert back to the first revision. This
command will hang briefly until the restore process is finished, and can be seen here:

$ helm rollback my-guestbook 1 -n chapter5

When this command returns, refresh your Guestbook frontend in the browser. You will
see the message you added after the upgrade disappear because it did not exist before the
data backup was taken, as illustrated in the following screenshot:

Figure 5.12: The Guestbook frontend after the pre-rollback life cycle phase is complete

While this backup-and-restore scenario served as a simple use case, it demonstrates one of
many possibilities that adding Helm life cycle hooks to your charts can provide.

Important note
Hooks can be skipped by adding the --no-hooks flag to the corresponding
life cycle command (helm install, helm upgrade, helm
rollback, or helm uninstall). The command to which this command
is applied will skip the hooks for that life cycle.

We will now focus on user input validation and how the Guestbook chart can be further
improved upon to help prevent improper values from being provided.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

166 Building Your First Helm Chart

Adding input validation
When working with Kubernetes and Helm, input validation is automatically performed by
the Kubernetes application programming interface (API) server when a new resource
is created. This means that if an invalid resource is created by Helm, an error message
will be returned by the API server, resulting in a failed installation. Although Kubernetes
performs native input validation, there may still be cases in which chart developers will
want to perform validation before the resources reach the API server.

Let's begin exploring how input validation can be performed by using the fail function
in the guestbook Helm chart.

Using the fail function
The fail function is used to immediately fail template rendering. This function can be
used in cases where users have provided a value that is invalid. In this section, we will
implement an example use case to restrict user input.

Your guestbook chart's values.yaml file contains a value called service.type,
which is used for determining the type of service that should be created for the frontend.
This value can be seen here:

service:

 type: NodePort

We set this value to default to NodePort, but technically, other service types can be used.
Imagine you wanted to restrict the service type to only NodePort and ClusterIP
services. This action can be performed by using the fail function.

Follow these steps to restrict the service type in your guestbook chart:

1. Locate the templates/service.yaml service template. This file contains a
line that sets the service type depending on the service.type value, as
illustrated here:

type: {{ .Values.service.type }}

We should check that the service.type value first equals ClusterIP or NodePort
before setting the service type. This can be done by setting a variable to the list of proper
settings. Then, a check can be performed to ascertain that the service.type value is
included in the list of valid settings. If it is, then proceed to set the service type. Otherwise,
chart rendering should be halted and an error message should be returned to the user,
notifying them of the valid service.type inputs.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Improving the Guestbook Helm chart 167

2. Copy the service.yaml file illustrated next to implement the logic described
in Step 1. This file can also be copied from the Packt repository at https://
github.com/PacktPublishing/-Learn-Helm/blob/master/helm-
charts/charts/guestbook/templates/service.yaml:

Figure 5.13: The service.type validation implemented in the service.yaml template

Lines 8 through 13 represent the input validation. Line 8 creates a variable called
serviceTypes that equals a list of proper service types. Lines 9 through 13 represent
an if action. The has function in line 9 will check whether the service.type value
is included in serviceTypes. If it is, then rendering will proceed to line 10 to set
the service's type. Otherwise, rendering will proceed to line 12. Line 12 uses the fail
function to halt template rendering and displays a message to the user about the valid
service types.

Attempt to upgrade your my-guestbook release by providing an invalid service type
(if you have uninstalled your release, an installation will suffice as well). To do so, run the
following command:

$ helm upgrade my-guestbook . -n chapter5 --set service.
type=LoadBalancer

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

168 Building Your First Helm Chart

If your changes in the preceding Step 2 were successful, you should see a message similar
to the following:

Error: UPGRADE FAILED: template: guestbook/templates/service.
yaml:12:6: executing 'guestbook/templates/service.yaml' at
<fail 'value 'service.type' must be either 'ClusterIP' or
'NodePort''>: error calling fail: value 'service.type' must be
either 'ClusterIP' or 'NodePort'

While validating a user's input with fail is a good way to ensure that provided values fit
within a certain set of constraints, there are also occasions where you need to ensure that
users have even provided certain values in the first place. This can be accomplished by
using the required function, explained in the next section.

Using the required function
The required function, like fail, is also used to halt template rendering. The
difference is that, unlike fail, the required function is used to ensure that a value is
not left blank when the chart's templates are rendered.

Recall that your chart contains a value called image.repository, as illustrated here:

image:

 repository: gcr.io/google-samples/gb-frontend

This value is used to determine the image that will be deployed. Given this value's
importance to the Helm chart, we can back it with the required function to ensure that
it always has a value when the chart is installed. Although we provide a default in this
chart currently, adding the required function would allow you to remove this default if
you wanted to ensure that users always provided their own container image.

Follow these steps to implement the required function against the image.
repository value:

1. Locate the templates/deployment.yaml chart template. The file contains a
line that sets the container image based on the image.repository value (the
appName chart setting also helps to set the container image, but for this example,
we will focus only on image.repository), as illustrated here:

image: '{{ .Values.image.repository }}:{{ .Chart.
AppVersion }}'

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Improving the Guestbook Helm chart 169

2. The required function takes the following two arguments:

• An error message to display whether the value is provided
The value that must be provided

Given these two arguments, modify the deployment.yaml file so that the image.
repository value is required.

To add this validation, you can copy from the following code snippet or reference the
Packt repository at https://github.com/PacktPublishing/-Learn-Helm/
blob/master/helm-charts/charts/guestbook/templates/deployment.
yaml:

Figure 5.14: The deployment.yaml snippet that uses the required function on line 28

3. Attempt to upgrade your my-guestbook release by providing an empty image.
repository value, as follows:

$ helm upgrade my-guestbook . -n chapter5 --set image.
repository=''

If your changes were successful, you should see an error message similar to the following:

Error: UPGRADE FAILED: execution error at (guestbook/
templates/deployment.yaml:28:21): value 'image.
repository' is required

At this point, you have successfully written your first Helm chart, complete with life cycle
hooks and input validation!

In the next section, you will learn how to create a simple chart repository using GitHub
Pages, which can be used to make your guestbook chart available to the world.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/templates/deployment.yaml
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/templates/deployment.yaml
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/templates/deployment.yaml

170 Building Your First Helm Chart

Publishing the Guestbook chart to a
chart repository
Now that you have completed the development of the Guestbook chart, the chart can be
published to a repository so that it is easily accessible for other users. Let's begin by first
creating the chart repository.

Creating a chart repository
Chart repositories are servers containing two different components, as follows:

• Helm charts, packaged as tgz archives

• An index.yaml file, containing metadata about the charts contained in
the repository

Basic chart repositories require maintainers to generate their own index.yaml files,
while more complex solutions such as the Helm community's ChartMuseum tool
dynamically generate the index.yaml file when new charts are pushed to the repository.
In this example, we will create a simple chart repository using GitHub Pages. GitHub
Pages allows maintainers to create a simple static hosting site out of a GitHub repository,
which can be used to create a basic chart repository to serve Helm charts.

You will need to have a GitHub account to create a GitHub Pages chart repository. If you
already have a GitHub account, you can log in at https://github.com/login.
Otherwise, you can create a new account at https://github.com/join.

Once you have logged in to GitHub, follow these steps to create your chart repository:

1. Follow the https://github.com/new link to access the Create a new
repository page.

2. Provide a name for your chart repository. We suggest the name Learn-Helm-
Chart-Repository.

3. Select the checkbox next to Initialize this repository with a README. This is
required because GitHub does not allow you to create a static site if it does not
contain any content.

4. You can leave the rest of the settings at their default values. Note that in order to
leverage GitHub Pages, you must leave the privacy setting set to Public unless you
have a paid GitHub Pro account.

5. Click the Create Repository button to finish the repository creation process.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/login
https://github.com/login
https://github.com/join
https://github.com/join
https://github.com/new

Publishing the Guestbook chart to a chart repository 171

6. Although your repository has been created, it is not ready to serve Helm charts until
GitHub Pages is enabled. Click the Settings tab within your repository to access
your repository settings.

7. Locate the GitHub Pages section of the Settings page (and Options tab). It appears
toward the bottom of the page.

8. Under Source, select the option in the drop-down list called master branch.
This will allow GitHub to create a static site that serves the contents of your
master branch.

9. If you have successfully configured GitHub Pages, you will receive a message at the
top of the screen that says GitHub Pages source saved. You will also be able to see
the URL to your static site, as displayed in the following example screenshot:

Figure 5.15: The GitHub Pages settings and example URL

Once you have configured your GitHub repository, you should clone it to your local
machine. Follow these steps to clone your repository:

1. Navigate to the root of your repository by selecting the Code tab at the top of
the page.

2. Select the green Clone or download button. This will reveal the URL to your
GitHub repository. Note that this URL is not the same as your GitHub Pages
static site.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

172 Building Your First Helm Chart

You can use the following example screenshot as a reference to find your GitHub
repository URL, if necessary:

Figure 5.16: Your GitHub repository URL can be found by clicking the Clone or download button

3. Once you have acquired your repository's git reference, clone the repository to
your local machine. Make sure you are not inside your guestbook directory when
running the following command, as we want this repository to be separate from the
guestbook chart:

$ git clone $REPOSITORY_URL

Once you have cloned the repository, continue to the next section to publish your
guestbook chart to your chart repository.

Publishing the Guestbook Helm chart
Helm provides a couple of different commands to make publishing a Helm chart a simple
task. However, before running these commands, you may find it necessary to increment
your chart's version field in the Chart.yaml file. Versioning your charts is an
important part of the release process, as is the case in other types of software.

Modify the version field in your chart's Chart.yaml file to 1.0.0, as follows:

version: 1.0.0

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Publishing the Guestbook chart to a chart repository 173

Once your guestbook chart's version has been incremented, you can proceed by
packaging your chart into a tgz archive. This can be accomplished using the helm
package command. Run this command from one level above your local guestbook
directory, as follows:

$ helm package guestbook

If successful, this will create a file called guestbook-1.0.0.tgz.

Important note
When working with charts that contain dependencies, the helm package
command requires those dependencies to be downloaded to the charts/
directory in order to successfully package the chart. If your helm package
command failed, check that your Redis dependency has been downloaded to
the charts/ directory. If it has not, you can add the --dependency-
update flag to helm package, which will download the dependency and
package your Helm chart in the same command.

Once your chart is packaged, the resulting tgz file should be copied to the clone of your
GitHub chart repository by running the following command:

$ cp guestbook-1.0.0.tgz $GITHUB_CHART_REPO_CLONE

When this file is copied, you can use the helm repo index command to generate the
index.yaml file for your Helm repository. This command takes as an argument the
location of your chart repository clone. Run the following command to generate your
index.yaml file:

$ helm repo index $GITHUB_CHART_REPO_CLONE

This command will succeed quietly, but you will see the new index.yaml file inside
the Learn-Helm-Chart-Repository folder. The contents of this file provide the
guestbook chart metadata. If there were other charts contained in this repository, their
metadata would appear in this file as well.

Your Helm chart repository should now contain the tgz archive and the index.yaml
file. Push these files to GitHub by using the following git commands:

$ git add --all

$ git commit -m 'feat: adding the guestbook helm chart'

$ git push origin master

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

174 Building Your First Helm Chart

You may be prompted to enter your GitHub credentials. Once provided, your local
contents will be pushed to the remote repository, and your guestbook Helm chart will
be served from the GitHub Pages static site.

Next, let's add your chart repository to your local Helm client.

Adding your chart repository
Similar to the process for other chart repositories, you must first know the URL to your
GitHub Pages chart repository in order to add it locally. This URL was displayed in the
Settings tab, as described in the Creating a chart repository section.

Once you know your chart repository's URL, you can add this repository locally with the
helm repo add command, as follows:

$ helm repo add learnhelm $GITHUB_PAGES_URL

This command will allow your local Helm client to interact with your repository with
the name learnhelm. You can verify that your chart was published by searching for the
guestbook chart against your locally configured repos. This can be done by running the
following command:

$ helm search repo guestbook

You should find the learnhelm/guestbook chart returned in the search output.

With your guestbook chart successfully published, let's finish by cleaning up your
minikube environment.

Cleaning up
You can clean up your environment by deleting the chapter5 namespace, as follows:

$ kubectl delete namespace chapter5

If you have finished working, you can also stop your minikube cluster with the minikube
stop command.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 175

Summary
In this chapter, you learned how to build a Helm chart from scratch by writing a chart
to deploy the Guestbook application. You began by creating a chart that deployed the
Guestbook frontend and a Redis dependency chart, and you later improved upon
this chart by writing life cycle hooks and adding input validation. You concluded this
chapter by building your own chart repository with GitHub Pages and publishing your
guestbook chart to this location.

In the next chapter, you will learn strategies around testing and debugging a Helm chart,
to enable you to further strengthen your chart development skills.

Further reading
For additional information on the Guestbook application, please refer to the Deploying
PHP Guestbook application with Redis tutorial from the Kubernetes documentation, at
https://kubernetes.io/docs/tutorials/stateless-application/
guestbook/.

To learn more about developing Helm chart templates, please refer to the following links:

• Chart Development Guide from the Helm documentation: https://helm.sh/
docs/chart_template_guide/getting_started/

• List of best practices from the Helm documentation: https://helm.sh/docs/
topics/chart_best_practices/conventions/

• Additional information on chart hooks: https://helm.sh/docs/topics/
charts_hooks/

• Information on chart repositories: https://helm.sh/docs/topics/chart_
repository/

Questions
1. Which command can be used to scaffold a new Helm chart?

2. Which key advantages did declaring a Redis chart dependency provide when
developing the guestbook chart?

3. What annotation can be used to set the execution order of hooks for a given life
cycle phase?

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/tutorials/stateless-application/guestbook/
https://kubernetes.io/docs/tutorials/stateless-application/guestbook/
https://helm.sh/docs/chart_template_guide/getting_started/
https://helm.sh/docs/chart_template_guide/getting_started/
https://helm.sh/docs/topics/chart_best_practices/conventions/
https://helm.sh/docs/topics/chart_best_practices/conventions/
https://helm.sh/docs/topics/charts_hooks/
https://helm.sh/docs/topics/charts_hooks/
https://helm.sh/docs/topics/chart_repository/
https://helm.sh/docs/topics/chart_repository/
https://helm.sh/docs/topics/chart_repository/

4. What are the common use cases for using the fail function? What about the
required function?

5. Which Helm commands are involved in order to publish a Helm chart to a GitHub
Pages chart repository?

6. What is the purpose of the index.yaml file in a chart repository?

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

6
Testing Helm Charts

Testing is a common task that engineers must perform during software development.
Testing is performed to validate the functionality of a product as well as to prevent
regressions as a product evolves over time. Well-tested software is easier to maintain over
time and allows developers to more confidently provide new releases to end users.

A Helm chart should be properly tested in order to ensure that it delivers its features to the
level of quality expected. In this chapter, we will discuss the ways that robust Helm chart
testing can be achieved, including the following topics:

• Setting up your environment

• Verifying Helm templating

• Testing in a live cluster

• Improving chart tests with the chart testing project

• Cleaning up

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

178 Testing Helm Charts

Technical requirements
This chapter will use the following technologies:

• minikube

• kubectl

• helm

• git

• yamllint

• yamale

• chart-testing (ct)

In addition to these tools, you can follow along with the samples in the Packt GitHub
repository located at https://github.com/PacktPublishing/-Learn-Helm,
which will be referenced throughout this chapter. In many of the example commands used
throughout this chapter, we will reference the Packt repository, so you may find it helpful
to clone this repository by running the git clone command:

$ git clone https://github.com/PacktPublishing/-Learn-Helm
Learn-Helm

Now, let's proceed with setting up your local minikube environment.

Setting up your environment
In this chapter, we will create and run a series of tests for the Guestbook chart created
in the previous chapter. Run the following steps to set up your minikube environment,
where we will test the Guestbook chart:

1. Start minikube by running the minikube start command:

minikube start

2. Then, create a new namespace called chapter6:

kubectl create namespace chapter6

With your minikube environment ready, let's begin by discussing how Helm charts can
be tested. We will begin the discussion by outlining the methods you can use to verify
your Helm templates.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm
https://github.com/PacktPublishing/-Learn-Helm

Verifying Helm templating 179

Verifying Helm templating
In the previous chapter, we built a Helm chart from scratch. The final product was quite
complex, containing parameterization, conditional templating, and life cycle hooks.
Since one of the primary purposes of Helm is to create Kubernetes resources, you should
ensure that your resource templates are generated properly before they are applied to a
Kubernetes cluster. This can be done in a variety of ways, which we will discuss in the
following section.

Validating template generation locally with
helm template
The first way to validate your chart's templating is to use the helm template command,
which can be used to render a chart template locally and display its fully rendered
contents in the standard output.

The helm template command has the following syntax:

$ helm template [NAME] [CHART] [flags]

This command renders a template locally, using the NAME argument to satisfy the
.Release built-in object and the CHART argument for the chart that contains the
Kubernetes templates. The helm-charts/charts/guestbook folder in the Packt
repository can be used to demonstrate the functionality of the helm template
command. This folder contains the chart that was developed in the previous section as
well as additional resources that will be used later in this chapter.

Render the guestbook chart locally by running the following command:

$ helm template my-guestbook Learn-Helm/helm-charts/charts/
guestbook

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

180 Testing Helm Charts

The result of this command will display each of the Kubernetes resources that would be
created if they were applied to the cluster, as shown:

Figure 6.1 – "helm template" output

The preceding screenshot displays the beginning portion of the output from the helm
template command as executed against the Guestbook chart created in the previous
chapter. As you can see, a fully rendered ConfigMap is shown along with the beginning
of another ConfigMap that was created with the release. Rendering these resources
locally provides you with an idea of the exact resources and specifications that would be
created if the release was installed against a Kubernetes cluster.

During chart development, you may want to use the helm template command
regularly to validate that your Kubernetes resources are being generated properly.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Verifying Helm templating 181

Some common aspects of chart development that you would want to validate include
the following:

• That parameterized fields are successfully replaced by default or overridden values

• That control actions such as if, range, and with successfully generates YAML
files based on the provided values

• That resources contain proper spacing and indentation

• That functions and pipelines are used correctly to properly format and
manipulate the YAML file

• That functions such as required and fail properly validate values based on
user input

With an understanding of how chart templates can be rendered locally, let's now dive
into some of the specific aspects that you can test and validate by leveraging the helm
template command.

Testing template parameterization
It is important to check that your template's parameters are successfully populated with
values. This is important because your charts will likely consist of multiple different
values. You can ensure that your charts are properly parameterized by making sure each
value has a sensible default value or has validation that fails chart rendering if a value is
not provided.

Imagine the following deployment:

apiVersion: apps/v1

kind: Deployment

<skipping>

 replicas: {{ .Values.replicas }}

<skipping>

 ports:

 - containerPort: {{ .Values.port }}

Sensible defaults for the replicas and port values should be defined in the chart's
values.yaml file, as follows:

replicas: 1

port: 8080

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

182 Testing Helm Charts

Running the helm template command against this template resource renders the
following deployment, replacing the replicas and port values with their defaults:

apiVersion: apps/v1

kind: Deployment

<skipping>

 replicas: 1

<skipping>

 ports:

 - containerPort: 8080

The output from helm template allows you to verify that your parameters are
properly replaced by their default values. You can also verify that the provided values
are overridden successfully by passing the --values or --set arguments to the helm
template command:

$ helm template my-chart $CHART_DIRECTORY --set replicas=2

The resulting template reflects your provided values:

apiVersion: apps/v1

kind: Deployment

<skipping>

 replicas: 2

<skipping>

 ports:

 - containerPort: 8080

While values with the default settings defined are often simple to test with helm
template, it is more important to test values that require validation as invalid values
can prevent your chart from installing properly.

You should use helm template to ensure that values with restrictions, such as those
that only allow particular inputs, are successfully validated with the required and
fail functions.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Verifying Helm templating 183

Imagine the following deployment template:

apiVersion: apps/v1

kind: Deployment

<skipping>

 replicas: {{ .Values.replicas }}

<skipping>

 containers:

 - name: main

 image: {{ .Values.imageRegistry }}/{{ .Values.
imageName }}

 ports:

 - containerPort: {{ .Values.port }}

If this deployment belongs to a chart with the same values file defined in the previous
code block and you expected users to provide the imageRegistry and imageName
values to install the chart, if you then use the helm template command without
providing these values, then the result is less than desirable, as you can see in the
following output:

apiVersion: apps/v1

kind: Deployment

<skipping>

 replicas: 1

<skipping>

 containers:

 - name: main

 image: /

 ports:

 - containerPort: 8080

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

184 Testing Helm Charts

Since there was no gating in place, the rendered result is a deployment with an invalid
image, /. Because we tested this with helm template, we know that we need to handle
the case where these values are not defined. This can be done by using the required
function to provide validation that these values are specified:

apiVersion: apps/v1

kind: Deployment

<skipping>

 replicas: {{ .Values.replicas }}

<skipping>

 containers:

 - name: main

 image: {{ required 'value 'imageRegistry' is
required' .Values.imageRegistry }}/{{ required 'value
'imageName' is required' .Values.imageName }}

 ports:

 - containerPort: {{ .Values.port }}

When the helm template command is applied to a chart with the updated deployment
template, the result displays a message that instructs the user to provide the first missing
value that is encountered by the templating engine:

$ helm template my-chart $CHART_DIRECTORY

Error: execution error at (test-chart/templates/deployment.
yaml:17:20): value 'imageRegistry' is required

You can further test this validation by providing the valid values files alongside the helm
template command. For this example, we will assume the following values are provided
in a user-managed values file:

imageRegistry: my-registry.example.com

imageName: learnhelm/my-image

This file can then be provided when executing the following command:

$ helm template my-chart $CHART_DIRECTORY --values my-values.
yaml

Source: test-chart/templates/deployment.yaml

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Verifying Helm templating 185

apiVersion: apps/v1

kind: Deployment

<skipping>

 replicas: 1

<skipping>

 containers:

 - name: main

 image: my-registry.example.com/learnhelm/my-image

 ports:

 - containerPort: 8080

As a general rule of thumb for parameterization, make sure you keep track of your values
and ensure that each value is used in your chart. Set sensible defaults in the values.
yaml file and use the required function in cases where defaults cannot be set. Use the
helm template function to ensure that values are properly rendered and produce the
desired Kubernetes resource configuration.

As an aside, you may also want to consider including the required values in your
values.yaml file as empty fields with a comment noting that they are required.
This allows users to view your values.yaml file and see all the values that your
chart supports, including the values that they are required to provide for themselves.
Consider the following values file after the imageRegistry and imageName
values are added to it:

replicas: 1

port: 8080

REQUIRED

imageRegistry:

REQUIRED

imageName:

Although these values are written in your chart's values.yaml file, these values still
evaluate to null when the helm template command runs, providing the same behavior
as they would if they were not defined as in prior executions. The difference is that you
can now explicitly see that these values are required, so you won't be taken by surprise
when you attempt to install the chart for the first time.

Next, we will discuss how generating your chart templates locally can help you test your
chart's control actions.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

186 Testing Helm Charts

Testing the control actions
Besides basic parameterization, you should also consider using the helm template
command to verify that control actions (specifically if and range) are handled properly
to produce the desired results.

Consider the following deployment template:

apiVersion: apps/v1

kind: Deployment

<skipping>

{{- range .Values.env }}

 env:

 - name: {{ .name }}

 value: {{ .value }}

{{- end }}

{{- if .Values.enableLiveness }}

 livenessProbe:

 httpGet:

 path: /

 port: {{ .Values.port }}

 initialDelaySeconds: 5

 periodSeconds: 10

{{- end }}

 ports:

 containerPort: 8080

If the env and enableLiveness values are both null, you could test whether this
rendering will still be successful by running the helm template command:

$ helm template my-chart $CHART_DIRECTORY --values my-values.
yaml

Source: test-chart/templates/deployment.yaml

apiVersion: apps/v1

kind: Deployment

<skipping>

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Verifying Helm templating 187

 ports:

 - containerPort: 8080

You will notice that both the range and if actions are not generated. Null or empty
values do not have any entries acted on them by the range clause and these values are
also evaluated as false when provided to the if action. You can verify that you have
written your template to properly generate YAML using these actions by providing the
env and enableLiveness values to helm template.

You can add these values to a values file, as shown:

env:

 - name: BOOK

 value: Learn Helm

enableLiveness: true

With these changes made, verify the desired results of the helm template command to
demonstrate that the template is written properly to consume these values:

Source: test-chart/templates/deployment.yaml

apiVersion: apps/v1

kind: Deployment

<skipping>

 env:

 - name: BOOK

 value: Learn Helm

 livenessProbe:

 httpGet:

 path: /

 port: 8080

 initialDelaySeconds: 5

 periodSeconds: 10

 ports:

 - containerPort: 8080

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

188 Testing Helm Charts

You should make sure you are in the habit of regularly rendering your templates with
helm template when you add additional control structures to your charts as they can
quickly make the chart development process more difficult, especially if control structures
are numerous or complex.

Aside from checking that the control structures are properly generated, you should also
check whether your functions and pipelines are working as designed, which we will
discuss next.

Testing functions and pipelines
The helm template command is also useful for validating the rendering produced by
functions and pipelines, which are often used to produce formatted YAML.

Take the following template as an example:

apiVersion: apps/v1

kind: Deployment

<skipping>

 resources:

{{ .Values.resources | toYaml | indent 12 }}

This template contains a pipeline that parameterizes and formats the resources value
to specify the container's resource requirements. It would be wise to include a sensible
default in your chart's values.yaml file to make sure the application has an appropriate
limit to prevent over-utilization of cluster resources.

An example of the resources value for this template is shown here:

resources:

 limits:

 cpu: 200m

 memory: 256Mi

You need to run the helm template command to ensure that this value is properly
converted into a valid YAML format and that the output is properly indented to produce
a valid deployment resource.

Running the helm template command against this template results in the
following output:

apiVersion: apps/v1

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Verifying Helm templating 189

kind: Deployment

<skipping>

 resources:

 limits:

 cpu: 200m

 memory: 256Mi

Next, we will discuss how server-side validation can be enabled when rendering your
resources with helm template.

Adding server-side validation to chart rendering

While the helm template command is important to the chart development process
and should be used frequently to verify your chart rendering, it does have a key
limitation. The main purpose of the helm template command is to provide client-
side rendering, meaning it does not communicate with the Kubernetes API server to
provide resource validation. If you would like to ensure that your resources are valid after
they are generated, you can use the --validate flag to instruct helm template to
communicate with the Kubernetes API server after the resources are generated:

$ helm template my-chart $CHART_DIRECTORY --validate

Any generated template that does not produce a valid Kubernetes resource provides
an error message. Imagine, for example, a deployment template was used where
the apiVersion value was set to apiVersion: v1. In order to produce a valid
deployment, you must set the apiVersion value to apps/v1 as that is the correct name
of the API that serves the deployment resource. Simply setting this to v1 will generate
what appears to be a valid resource by the client-side rendering of helm template
without the --validation flag, but with the --validation flag you would expect to
see the following error:

Error: unable to build kubernetes objects from release
manifest: unable to recognize '': no matches for kind
'Deployment' in version 'v1'

The --validate flag is designed to catch errors in your generated resources. You should
use this flag if you have access to a Kubernetes cluster and if you want to determine
whether or not your chart is generating valid Kubernetes resources. Alternatively, you can
use the --dry-run flag against the install, upgrade, rollback, and uninstall
commands to perform validation.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

190 Testing Helm Charts

An example of using this flag with the install command is shown here:

$ helm install my-chart $CHART --dry-run

This flag will generate the chart's templates and perform validation, similar to running
the helm template command with the --validate flag. Using --dry-run will
print each generated resource to the command line and will not create the resources in
the Kubernetes environment. It is primarily used by end users to perform a sanity check
before running an installation to ensure that they have provided the correct values and
that the installation will produce the desired results. Chart developers can choose to use
the --dry-run flag in this fashion to test chart rendering and validation, or they can
choose to use helm template to generate your chart's resources locally and provide
--validate to add additional server-side validation.

While it is necessary to verify that your templates are generated the way you intend, it
is also necessary to ensure that your templates are generated in a way that follows best
practices to simplify development and maintenance. Helm provides a command called
helm lint that can be used for this purpose, which we will learn more about next.

Linting Helm charts and templates
Linting your charts is important to prevent errors in your chart's formatting or the chart's
definition file and provide guidance on best practices when working with Helm charts.
The helm lint command has the following syntax:

$ helm lint PATH [flags]

The helm lint command is designed to be run against a chart directory to ensure that
the chart is valid and properly formatted.

Important note:
The helm lint command does not validate the rendered API schemas or
perform linting on your YAML style, but simply checks that the chart consists
of the appropriate files and settings that a valid Helm chart should have.

You can run the helm lint command against the Guestbook chart that you created in
Chapter 5, Building Your First Helm Chart, or against the chart under the helm-charts/
charts/guestbook folder in the Packt GitHub repository at https://github.
com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/
charts/guestbook:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook
https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook
https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook

Verifying Helm templating 191

$ helm lint $GUESTBOOK_CHART_PATH

==> Linting guestbook/

[INFO] Chart.yaml: icon is recommended

1 chart(s) linted, 0 chart(s) failed

This output declares that the chart is valid, which is noted by the 1 chart(s)
linted, 0 chart(s) failed message. The [INFO] message recommends the
chart include an icon field in the Chart.yaml file, but this is not required. Other
types of messages include [WARNING], which indicates that the chart breaks the chart
conventions, and [ERROR], which indicates that the chart will fail at installation.

Let's run through a few examples. Consider a chart with the following file structure:

guestbook/

 templates/

 values.yaml

Notice that there are issues with this chart structure. This chart is missing the Chart.
yaml file that defines the chart's metadata. The linter run against a chart with this
structure would produce the following error:

==> Linting .

Error unable to check Chart.yaml file in chart: stat Chart.
yaml: no such file or directory

Error: 1 chart(s) linted, 1 chart(s) failed

This error indicates that Helm cannot find the Chart.yaml file. If an empty Chart.
yaml file is added to the chart to provide the correct file structure, an error will still ensue
as the Chart.yaml file contains invalid contents:

guestbook/

 Chart.yaml # Empty

 templates/

 values.yaml

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

192 Testing Helm Charts

Running the linter against this chart would produce the following errors:

==> Linting .

[ERROR] Chart.yaml: name is required

[ERROR] Chart.yaml: apiVersion is required. The value must be
either 'v1' or 'v2'

[ERROR] Chart.yaml: version is required

[INFO] Chart.yaml: icon is recommended

[ERROR] templates/: validation: chart.metadata.name is required

Error: 1 chart(s) linted, 1 chart(s) failed

This output lists the required fields that are missing from the Chart.yaml file. It
indicates that the file must contain the name, apiVersion, and version fields, so
these fields should be added to the Chart.yaml file to produce a valid Helm chart. The
linter provides additional feedback on the apiVersion and version settings, checking
that the apiVersion value is set to either v1 or v2 and that the version setting is a
proper SemVer version.

The linter will also check for the existence of other required or recommended files, such
as the values.yaml file and the templates directory. It will also make sure that files
under the templates directory have a .yaml, .yml, .tpl, or .txt file extension. The
helm lint command is great for checking whether your chart contains the appropriate
contents, but it does not carry out extensive linting on your chart's YAML style.

To perform this linting, you can use another tool, called yamllint, which can be
found at https://github.com/adrienverge/yamllint. This tool can be
installed using the pip package manager, across a range of operating systems, using
the following command:

pip install yamllint --user

It can also be installed with your operating system's package manager, as described in the
yamllint quick-start instructions at https://yamllint.readthedocs.io/en/
stable/quickstart.html.

In order to use yamllint on your chart's YAML resources, you must use it in
combination with the helm template command to remove the Go templating and
generate your YAML resources.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/adrienverge/yamllint
https://yamllint.readthedocs.io/en/stable/quickstart.html
https://yamllint.readthedocs.io/en/stable/quickstart.html

Verifying Helm templating 193

The following is an example of running this command against the guestbook chart from
the Packt GitHub repository:

$ helm template my-guestbook Learn-Helm/helm-charts/charts/
guestbook | yamllint -

This command will generate the resources under the templates/ folder and pipe the
output to yamllint.

The result is shown here:

Figure 6.2 – An example yamllint output

The line numbers provided reflect the entirety of the helm template output, which can
make it difficult to determine which line from the yamllint output corresponds with
which line from your YAML resources.

You can simplify this by redirecting the helm template output to determine its line
numbers using the following command against the guestbook chart:

$ cat -n <(helm template my-guestbook Learn-Helm/helm-charts/
charts/guestbook)

yamllint will lint against many different rules, including the following:

• Indentation

• Line length

• Training spaces

• Empty lines

• Comment format

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

194 Testing Helm Charts

You can override the default rules by specifying your own by creating one of the
following files:

• .yamllint, .yamllint.yaml, and .yamllint.yml in the current working
directory

• $XDB_CONFIG_HOME/yamllint/config

• ~/.config/yamllint/config

To override the indentation rule that is reported against the guestbook chart, you
can create a .yamllint.yaml file in your current working directory with the
following contents:

rules:

 indentation:

 # Allow myList

 # - item1

 # - item2

 # Or

 # myList

 # - item1

 # - item2

 indent-sequences: whatever

This configuration overrides yamllint so that it doesn't enforce one particular method
of indentation when adding list entries. It is configured by the indent-sequences:
whatever line. Creating this file and running the linter again against the guestbook will
eliminate the indentation errors, that were seen previously seen previously:

$ helm template my-guestbook guestbook | yamllint -

In this section, we discussed how you can validate the local rendering of your Helm charts
by using the helm template and helm lint commands. This, however, does not
actually test your chart's functionality or the application's ability to function with the
resources that your chart creates.

In the next section, we will learn how to create tests in a live Kubernetes environment to
test your Helm chart.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Testing in a live cluster 195

Testing in a live cluster
Creating chart tests is an important part of developing and maintaining your Helm
charts. Chart tests help verify that your chart is functioning as intended and they can help
prevent regressions as features and fixes to your chart are added.

Testing consists of two different steps. First, you need to create pod templates under your
chart's templates/ directory that contain the helm.sh/hook: test annotation.
These pods will run commands that test the functionality of your chart and application.
Next, you need to run the helm test command, which initiates a test hook and
creates resources with the aforementioned annotation.

In this section, we will learn how to test in a live cluster by adding tests to the Guestbook
chart, continuing the development of the chart you created in the previous chapter. As a
reference, the tests that you will create can be viewed in the Guestbook chart in the Packt
repository, located at https://github.com/PacktPublishing/-Learn-Helm/
tree/master/helm-charts/charts/guestbook.

Begin by adding the test/frontend-connection.yaml and test/redis-
connection.yaml files under the templates/ directory of your Guestbook chart. Be
aware that chart tests do not have to be located under a test subdirectory, but keeping
them there is a good way of keeping your tests organized and separated from the main
chart templates:

$ mkdir $GUESTBOOK_CHART_DIR/templates/test

$ touch $GUESTBOOK_CHART_DIR/templates/test/frontend-
connection.yaml

$ touch $GUESTBOOK_CHART_DIR/templates/test/backend-connection.
yaml

In this section, we will populate these files with logic to validate their associated
application components.

Let's begin writing the tests now that their placeholders have been added.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook
https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook

196 Testing Helm Charts

Creating the chart tests
As you recall, the Guestbook chart consists of a Redis backend and a PHP frontend. Users
enter messages in a dialog box in the frontend, and the messages are persisted to the
backend. Let’s write a couple tests that ensure both the frontend and backend resources
are available after an installation. We will begin with a test that checks the availability
of the Redis backend. Add the following contents to the chart’s templates/test/backend-
connection.yaml file (this file can also be viewed in the Packt repository at https://
github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/
templates/test/backend-connection.yaml):

Figure 6.3 - The backend connection test for the Guestbook Helm chart

This template defines a Pod that will be created during the test lifecycle hook. Also defined
in this template is a hook delete policy that indicates when previous test pods should be
removed. You could also add hook weights if the tests we will create needed to be run in
any order.

The args field underneath the containers object displays the command that the test will
be based on. It will use the redis-cli tool to connect to the Redis master and run the
command MGET messages. The Guestbook frontend is designed to add messages entered
by the user to a database key called messages. This simple test is designed to check that a
connection to the Redis database can be made, and it will return the messages that a user
has entered by querying the messages key.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Testing in a live cluster 197

The PHP frontend should also be tested for availability as well, as it is the user-facing
component of the application. Add the following contents to the templates/test/frontend-
connection.yaml file (these contents can also be seen in the Packt repository at https://
github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/charts/guestbook/
templates/test/frontend-connection.yaml).

Figure 6.4 - The frontend connection test for the Guestbook Helm chart

This is a very simple test that runs an HTTP request to the Guestbook Service. Traffic
sent to the Service will load-balance between Guestbook frontend instances. This test
will check that the load balancing is being successfully performed and that the frontend
is available.

Now, we have finished the templates needed for chart tests. Be advised that these templates
can also be rendered locally by the helm template command and linted using helm lint
and yamllint as described in earlier sections within this chapter. When developing your
own Helm charts, you may find this to be useful for more advanced test cases.

Now that the tests are written, we will continue by running them in the
Minikube environment.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

198 Testing Helm Charts

Running the chart tests
In order to run a chart's tests, the chart must first be installed on a Kubernetes
environment using the helm install command. Because the tests that are written
are designed to run after the installation is complete, the --wait flag can be used when
installing the chart so that it is easier to determine when pods are ready. Run the following
command to install the Guestbook chart:

$ helm install my-guestbook $GUESTBOOK_CHART_DIR -n chapter6
--wait

Once the chart is installed, you can use the helm test command to execute the test
life cycle hook and create the test resources. The syntax for the helm test command is
shown here:

helm test [RELEASE] [flags]

Run the helm test command against the my-guestbook release:

$ helm test my-guestbook -n chapter6

If your test is successful, you will see the following results in the output:

TEST SUITE: my-guestbook-test-frontend-connection

Last Started: Tue Jan 28 18:50:23 2020

Last Completed: Tue Jan 28 18:50:25 2020

Phase: Succeeded

TEST SUITE: my-guestbook-test-backend-connection

Last Started: Tue Jan 28 18:50:25 2020

Last Completed: Tue Jan 28 18:50:26 2020

Phase: Succeeded

When running your tests, you can also use the --logs flag to print your logs to the
command line from the execution of the tests.

Run the tests again using this flag:

$ helm test my-guestbook -n chapter6 --logs

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Testing in a live cluster 199

You will see the same test summary as before, in addition to each test's associated
container logs. The following is the first portion of the frontend connection test
log output:

POD LOGS: my-guestbook-test-frontend-connection

 % Total % Received % Xferd Average Speed Time Time
Time Current

 Dload Upload Total
Spent Left Speed

<html ng-app='redis'>

 <head>

 <title>Guestbook</title>

The following is the backend connection test log output:

POD LOGS: my-guestbook-test-backend-connection

The logs for this test will appear empty because you haven't yet entered any messages
in the Guestbook frontend. You can run the test again after adding a message from
the frontend to ensure the messages persist. Instructions to determine the URL of the
Guestbook frontend are printed when you run both the installation and the test suites.

These instructions are again displayed here:

export IP=$(kubectl get nodes -o jsonpath='{.items[0].status.
addresses[0].address}')

export PORT=$(kubectl get svc my-guestbook -n chapter6 -o
jsonpath='{.spec.ports[0].nodePort}')

echo http://$IP:$PORT

Add a message from the Guestbook application once you have accessed the frontend from
a browser.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

200 Testing Helm Charts

An example is shown in the following screenshot:

Figure 6.4-1 – The Guestbook application's frontend

Run the test suite again once a message is added, providing the --logs flag to display
the logs from the tests. You should be able to verify that this message was added by
observing the backend connection test log output:

$ helm test my-guestbook -n chapter6 --logs

The following is a snippet displaying the backend connection test log output. You can
verify that the message was persisted to the Redis database:

POD LOGS: my-guestbook-test-backend-connection

,Writing Helm charts is fun!

In this section, we wrote simple tests that, as a whole, performed a smoke test on the
installation of a chart. With these tests in place, we will feel more confident with making
changes and adding features to this chart, provided that the chart tests run after each
modification to ensure functionality is retained.

In the next section, we will discuss how the testing process can be improved by leveraging
a tool called ct.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Improving chart tests with the chart testing project 201

Improving chart tests with the chart testing
project
The tests written in the previous section are sufficient enough to test whether the
Guestbook application can be successfully installed. However, there are some key
limitations that are inherent to the standard Helm testing process that need to be
called out.

The first limitation to consider is the difficulty of testing the different permutations that
can occur within a chart's values. Because the helm test command does not provide
the ability to modify your release's values beyond those set at the time of an installation
or upgrade, the following workflow must be followed when running helm test against
different values settings:

1. Install your chart with an initial set of values.

2. Run helm test against your release.

3. Delete your release.

4. Install your chart with a different set of values.

5. Repeat steps 2 through 4 until a significant amount of value possibilities are tested.

In addition to testing different value permutations, you should also make sure
regressions do not occur when making modifications to your charts. The best way to
prevent regressions while also testing the newer version of your chart is to use the
following workflow:

1. Install a previous chart version.

2. Upgrade your release to the newer chart version.

3. Delete the release.

4. Install the newer chart version.

This workflow should be repeated against each set of value permutations to ensure that
there are no regressions or intended breaking changes.

These processes sound tedious but imagine the additional strain and maintenance on
chart developers when maintaining multiple different Helm charts where careful testing
should take place. When maintaining multiple Helm charts, chart developers tend to favor
a git monorepo design. A repository is considered monorepo when multiple different
artifacts or modules are contained in the same repository.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

202 Testing Helm Charts

In the case of Helm charts, a monorepo could have the following file structure:

helm-charts/

 guestbook/

 Chart.yaml

 templates/

 README.md

 values.yaml

 redis/ # Contains the same file structure as
'guestbook'

 wordpress/ # Contains the same file structure as
'guestbook'

 README.md

Helm charts in a well-maintained monorepo should be tested when they are modified
to ensure that intended breaking changes did not occur. When a chart is modified, its
version field in its Chart.yaml file should also be increased according to the correct
SemVer versioning to denote the type of change that was made. SemVer versions follow
a MAJOR.MINOR.PATCH version numbering format.

Use the following list as guideline for how to increase a SemVer version:

• Increment the MAJOR version if you are making a breaking change to your chart.
A breaking change is a change that is not backward-compatible with the previous
chart version.

• Increment the MINOR version if you are adding a feature but you are not making a
breaking change. You should increment this version if the change you are making is
backward-compatible with the previous chart version.

• Increment the PATCH version if you are making a patch to a bug or a security
vulnerability that will not result in a breaking change. This version should be
incremented if the change is backward-compatible with the previous chart version.

Without well-written automation, it can become increasingly difficult to make sure
charts are tested when modified and that their versions are incremented, especially if
maintaining a monorepo with multiple Helm charts. This challenge prompted the Helm
community to create a tool called ct to provide structure and automation around chart
tests and maintenance. We will discuss this tool next.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Improving chart tests with the chart testing project 203

Introducing the chart testing project
The chart testing project, which can be found at https://github.com/helm/
chart-testing, is designed to be used against charts in a git monorepo to perform
automated linting, validation, and testing. The automated testing is achieved by using git
to detect charts that are changed against a target branch. Charts that are changed should
undergo a testing process, while charts that are unchanged do not need to be tested.

The project's CLI, ct, provides four primary commands:

• lint: Lints and validates charts that have been modified

• install: Installs and tests charts that have been modified

• lint-and-install: Lints, installs, and tests charts that have been modified

• list-changed: Lists charts that have been modified

The list-changed command does not perform any validation or testing, while the
lint-and-install command combines the lint and install commands to
lint, install, and test modified charts. It also checks whether you have increased
the modified charts' version fields in each of the charts' Chart.yaml files and fails
testing for charts whose versions have not been increased but whose contents have been
modified. This validation helps maintainers remain strict toward increasing their chart
versions depending on the type of change made.

In addition to checking the chart versions, chart testing provides the ability to specify
multiple values files per chart for testing purposes. During the invocation of the lint,
install, and lint-and-install commands, chart testing loops through each test
values file to override the chart's default values and to perform validation and testing
based on the different values permutations provided. Test values files are written under
a folder called ci/ to keep these values separate from your chart's default values.yaml
file, as in the following example file structure:

guestbook/

 Chart.yaml

 ci/

 nodeport-service-values.yaml

 ingress-values.yaml

 templates/

 values.yaml

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/helm/chart-testing
https://github.com/helm/chart-testing
https://github.com/helm/chart-testing

204 Testing Helm Charts

Chart testing applies each values file under the ci/ folder, regardless of the name used
for the file. You may find it helpful to name each values file based on the values that are
overridden so that the maintainers and contributors can understand the file contents.

The most common ct command you are likely to use is the lint-and-install
command. The following lists the steps that this command uses to lint, install, and test
charts that are modified in a git monorepo:

1. Detect the charts that have been modified.

2. Update the local Helm cache with the helm repo update command.

3. Download each modified chart's dependencies with the helm dependency
build command.

4. Check whether each modified chart's version has been incremented.

5. For each chart that evaluates to true in step 4, lint the chart and each values file
under the ci/ folder.

6. For each chart that evaluates to true in step 4, perform the following
additional steps:

Install the chart in an automatically created namespace.

Run tests by executing helm test.

Delete the namespace.

Repeat for each values file under the ci/ folder.
As you can see, this command performs a variety of different steps to ensure that your
charts are properly linted and tested by installing and testing each modified chart in a
separate namespace, repeating the process for each values file defined under the ci/
folder. However, by default, the lint-and-install command does not check for
backward compatibility by performing an upgrade from an older version of the chart.
This feature can be enabled by adding the --upgrade flag:

If a breaking change is not indicated, the --upgrade flag modifies step 6 of the previous
set of steps by running the following steps:

1. Install the older version of the chart in an automatically created namespace.

2. Run tests by executing helm test.

3. Upgrade the release to the modified version of the chart and run the tests again.

4. Delete the namespace.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Improving chart tests with the chart testing project 205

5. Install the modified version of the chart in a new, automatically created namespace.

6. Run tests by executing helm test.

7. Upgrade the release again using the same chart version and rerun the tests.

8. Delete the namespace.

9. Repeat for each values file under the ci/ folder.

It is recommended that you add the --upgrade flag to perform additional testing on
Helm upgrades and to prevent possible regressions.

Important note:

The --upgrade flag will not take effect if you have incremented the MAJOR
version of your Helm chart as this indicates that you made a breaking change
and that an in-place upgrade on this version would not be successful.

Let's install the chart testing CLI and its dependencies locally so that we can later see this
process in action.

Installing the chart testing tools
In order to use the chart testing CLI, you must have the following tools installed on your
local machine:

• helm

• git (version 2.17.0 or later)

• yamllint

• yamale

• kubectl

Chart testing uses each of these tools in the testing process. helm and kubectl were
installed in Chapter 2, Preparing a Kubernetes and Helm Environment, Git was installed
in Chapter 5, Building Your First Helm Chart, and yamllint was installed at the beginning
of this chapter. If you have followed along with this book so far, the only prerequisite tool
you should need to install now is Yamale, which is a tool that chart testing uses to validate
your charts' Chart.yaml files against a Chart.yaml schema file.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

206 Testing Helm Charts

Yamale can be installed with the pip package manager, as shown:

$ pip install yamale --user

You can also install Yamale manually by downloading an archive from
https://github.com/23andMe/Yamale/archive/master.zip.

Once downloaded, unzip the archive and run the setup script:

$ python setup.py install

Note that if you install the tool using a downloaded archive, you may need to run the
setup.py script with elevated permissions, such as an administrator or as root on
macOS and Linux.

Once you have the required tooling installed, you should download the chart testing tool
from the project's GitHub releases page at https://github.com/helm/chart-
testing/releases. Each release contains an Assets section with a list of archives.

Download the archive that corresponds with the platform type of your local machine.
Version v3.0.0-beta.1 was the version used for this book:

Figure 6.5 – The chart testing releases page on GitHub

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/23andMe/Yamale/archive/master.zip
https://github.com/23andMe/Yamale/archive/master.zip
https://github.com/helm/chart-testing/releases
https://github.com/helm/chart-testing/releases
https://github.com/helm/chart-testing/releases
https://github.com/helm/chart-testing/releases

Improving chart tests with the chart testing project 207

Unarchive the chart testing release once you have downloaded the appropriate file from
the GitHub releases page. Once unarchived, you will see the following contents:

LICENSE

README.md

etc/chart_schema.yaml

etc/lintconf.yaml

ct

You can remove the LICENSE and README.md files as they are not needed.

The etc/chart_schema.yaml and etc/lintconf.yaml files should be moved to
either the $HOME/.ct/ or the /etc/ct/ location on your local machine. The ct file
should be moved to somewhere that is managed by your system's PATH variable:

$ mkdir $HOME/.ct

$ mv $HOME/Downloads/etc/* $HOME/.ct/

$ mv $HOME/Downloads/ct /usr/local/bin/

Now, all of the required tooling is installed. For this example, we will make a change
locally to the Packt repository and use chart testing to lint and install the modified charts.

If you have not yet cloned the repository to your local machine, you should do so now:

$ git clone https://github.com/PacktPublishing/-Learn-Helm
Learn-Helm

Once cloned, you may notice that this repository has a file in the top level called ct.yaml
with the following contents:

chart-dirs:

 - helm-charts/charts

chart-repos:

 - bitnami=https://charts.bitnami.com

The chart-dirs field of this file indicates to ct that the helm-charts/charts
directory relative to the ct.yaml file is the root of the chart's monorepo. The chart-
repos field provides a list of repositories that chart testing should run helm repo add
against to ensure it is able to download dependencies.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm
https://charts.bitnami.com

208 Testing Helm Charts

There are a variety of other configurations that can be added to this file, which will
not be discussed at this time but can be reviewed in the chart testing documentation
at https://github.com/helm/chart-testing. Each invocation of the ct
command references the ct.yaml file.

Now that the tooling is installed and the Packt repository has been cloned, let's test the ct
tool out by executing the lint-and-install command.

Running the chart testing lint-and-install command
The lint-and-install command is used against the three Helm charts included
under Learn-Helm/helm-charts/charts:

• guestbook: This is the Guestbook chart that you wrote in the previous chapter.

• nginx: This is an additional Helm chart that we have included for demonstration
purposes. This chart, created by running the helm create command, is used to
deploy the nginx reverse proxy.

To run the tests, first, navigate to the top level of the Learn-Helm repository:

$ cd $LEARN_HELM_LOCATION

$ ls

ct.yaml guestbook-operator helm-
charts jenkins LICENSE nginx-cd README.md

The ct.yaml file displays the location of the chart's monorepo via the chart-dirs
field, so you can simply run the ct lint-and-install command from the top level:

$ ct lint-and-install

After running this command, you'll see the following message displayed at the end of
the output:

Figure 6.6 – The chart testing lint-and-install output when charts are not modified

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/helm/chart-testing
https://github.com/helm/chart-testing

Improving chart tests with the chart testing project 209

Since none of the charts in this repository were modified, ct did not perform any actions
on your charts. We should modify at least one of these charts to see the lint-and-
install process take place. Modifications should take place in branches other than
master, so a new branch called chart-testing-example should be created by
executing the following command:

$ git checkout -b chart-testing-example

The modifications can be large or small; for this example, we will simply modify each
chart's Chart.yaml file. Modify the description field of the Learn-Helm/helm-
charts/charts/guestbook/Chart.yaml file to read as follows:

description: Used to deploy the Guestbook application

Previously, this value was A Helm chart for Kubernetes.

Modify the description field of the Learn-Helm/helm-charts/charts/
nginx/Chart.yaml file to read as follows:

description: Deploys an NGINX instance to Kubernetes

Previously, this value was A Helm chart for Kubernetes. Verify that both charts
have been modified from their last git commit by running the git status command:

Figure 6.7 – The git status output after both charts have been modified

You should see a change in both the guestbook and nginx charts. With these charts
modified, try running the lint-and-install command again:

$ ct lint-and-install

This time, ct determines whether changes have occurred to two of the charts in this
monorepo, as in the following output:

Figure 6.8 – Messages denoting changes to the guestbook and nginx charts

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

210 Testing Helm Charts

This process, however, will later fail because neither of the charts' versions were modified:

Figure 6.9 – The output when no chart changes have been made

This can be fixed by incrementing the guestbook and nginx chart versions. Since this
change does not introduce new features, we will increment the PATCH version. Modify
both chart versions to version 1.0.1 in their respective Chart.yaml files:

version: 1.1.0

Ensure that this change has been made to each chart by running the git diff
command. If you see each version modification in the output, continue to run the lint-
and-install command again:

$ ct lint-and-install

Now that the chart versions have been incremented, the lint-and-install command
will follow the full chart testing workflow. You will see that each modified chart is linted
and deployed to an automatically created namespace. Once the deployed application's
pods are reported as ready, ct will automatically run the test cases of each chart as
denoted by resources with the helm.sh/hook: test annotation. Chart testing will
also print the logs of each test pod, as well as the namespace events.

You may notice, in the lint-and-install output, that the nginx chart is deployed
twice, while the guestbook chart was only deployed and tested once. This is because
the nginx chart has a ci/ folder, located at Learn-Helm/helm-charts/charts/
nginx/ci/, that contains two different values files. The values files in the ci/
folder are iterated on by chart testing, which installs the chart as many times as there
are values files to ensure that each combination of values results in a successful
installation. The guestbook chart does not include a ci/ folder, so this chart was
only installed once.

This can be observed in the following lines of the lint-and-install output:

Linting chart with values file 'nginx/ci/clusterip-values.
yaml'...

Linting chart with values file 'nginx/ci/nodeport-values.
yaml'...

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cleaning up 211

Installing chart with values file 'nginx/ci/clusterip-values.
yaml'...

Installing chart with values file 'nginx/ci/nodeport-values.
yaml'...

While the command was useful for testing the functionality of both charts, it did not
validate whether upgrades to the newer version will be successful.

To do this, we need to provide the --upgrade flag to the lint-and-install
command. Try, once again, to run this command, but this time with the --upgrade flag:

$ ct lint-and-install --upgrade

This time, an in-place upgrade will occur for each values file under ci/. This can be
seen in the output as follows:

Testing upgrades of chart 'guestbook => (version: '1.0.1',
path: 'guestbook')' relative to previous revision 'guestbook
=> (version: '1.0.0', path: 'ct_previous_revision216728160/
guestbook')'...

Recall that an in-place upgrade will only be tested if the MAJOR version between versions
is the same. If you use the --upgrade flag but did change the MAJOR version, you will
see a message similar to the following :

Skipping upgrade test of 'guestbook => (version: '2.0.0', path:
'helm-charts/charts/guestbook')' because: 1 error occurred:

 * 2.0.0 does not have same major version as 1.0.0

Now, with an understanding of how to perform robust testing on your Helm charts with
chart testing, we will conclude by cleaning up your minikube environment.

Cleaning up
If you are finished with the examples described in this chapter, you can remove the
chapter6 namespace from your minikube cluster:

$ kubectl delete ns chapter6

Finally, shut down your minikube cluster by running minikube stop.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

212 Testing Helm Charts

Summary
In this chapter, you learned about the different methods you can apply to test your Helm
charts. The most basic way of testing a chart is to run the helm template command
against a local chart directory to determine whether its resources are properly generated.
You can also use the helm lint command to ensure that your chart follows the
correct format and you can use the yamllint command to lint the YAML style
used in your chart.

Apart from local templating and linting, you can also perform live tests on a Kubernetes
environment with the helm test command and the ct tool. In addition to performing
chart tests, chart testing also provides capabilities that make it easier for chart developers
to maintain Helm charts in a monorepo.

In the next chapter, you will learn how Helm can be used in a Continuous Integration/
Continuous Delivery (CI/CD) and GitOps setting, from both the perspective of a chart
developer that is building and testing Helm charts and from the perspective of an end user
using Helm to deploy an application to Kubernetes.

Further reading
For additional information on the helm template and helm lint commands, please
refer to the following resources:

• helm template: https://helm.sh/docs/helm/helm_template/

• helm lint: https://helm.sh/docs/helm/helm_lint/

The following pages from the Helm documentation discuss chart tests and the helm
test command:

• Chart tests: https://helm.sh/docs/topics/chart_tests/

• The helm test command: https://helm.sh/docs/helm/helm_test/

• Finally, see the chart testing GitHub repository for more information about the ct
CLI: https://github.com/helm/chart-testing.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://helm.sh/docs/helm/helm_template/
https://helm.sh/docs/helm/helm_template/
https://helm.sh/docs/helm/helm_template/
https://helm.sh/docs/helm/helm_lint/
https://helm.sh/docs/topics/chart_tests/
https://helm.sh/docs/topics/chart_tests/
https://helm.sh/docs/topics/chart_tests/
https://helm.sh/docs/helm/helm_test/
https://github.com/helm/chart-testing
https://github.com/helm/chart-testing

Questions 213

Questions
1. What is the purpose of the helm template command? How does it differ from

the helm lint command?

2. What can you do to validate your chart templates before installing them in
Kubernetes?

3. What tool can be leveraged to lint the style of your YAML resources?

4. How is a chart test created? How is a chart test executed?

5. What additional value does the ct tool bring to Helm's built-in testing capabilities?

6. What is the purpose of the ci/ folder when used with the ct tool?

7. How does the --upgrade flag change the behavior of the ct lint-and-
install command?

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Section 3:
Adanced

Deployment
Patterns

This section will build upon the basic concepts explained thus far and will teach you about
more advanced concepts and possibilities around application management with Helm.

This section comprises the following chapters:

Chapter 7, Automating Helm Processes Using CI/CD and GitOps

Chapter 8, Using Helm with the Operator Framework

Chapter 9, Helm Security Considerations

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

7
Automating Helm

Processes Using CI/
CD and GitOps

In this book, we have so far discussed two high-level processes. First, we explored using
Helm as an end user, leveraging Helm as a package manager to deploy applications of
varying complexities to Kubernetes. Second, we explored developing and testing Helm
charts as a chart developer, which involved encapsulating Kubernetes complexities in
Helm charts and performing tests on charts to ensure that the required features were
delivered to end users successfully.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

218 Automating Helm Processes Using CI/CD and GitOps

Both of these processes involve invoking various different Helm CLI commands. These
Helm CLI commands, while effective in carrying out their respective tasks, require
manual invocation from the command line. Manual invocation can serve as a pain point
when managing multiple different charts or applications and can make it difficult for
larger enterprises to scale. As a result, we should explore alternative options that provide
additional automation on top of what Helm already provides. In this chapter, we will
investigate concepts relating to Continuous Integration and Continuous Delivery (CI/
CD) and GitOps, which are methodologies that can automatically invoke the Helm
CLI along with other commands in order to perform automated workflows against
the contents of a Git repository. These workflows can be used to automatically deploy
applications using Helm and to build, test, and package Helm charts during the chart
development life cycle.

In this chapter, we will cover the following topics:

• Understanding CI/CD and GitOps

• Setting up our environment

• Creating a CI pipeline to build Helm charts

• Creating a CD pipeline to deploy applications with Helm

• Cleaning up

Technical requirements
This chapter requires you to have the following technologies installed on your
local machine:

• Minikube

• Helm

• kubectl

• Git

In addition to these tools, you should find the Packt repository containing resources
associated with the examples used in this chapter on GitHub at https://github.
com/PacktPublishing/-Learn-Helm. This repository will be referenced
throughout this chapter.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm
https://github.com/PacktPublishing/-Learn-Helm

Understanding CI/CD and GitOps 219

Understanding CI/CD and GitOps
So far, we have addressed many of the key concepts that are inherent to Helm
development—building, testing, and deploying. However, our exploration has been
limited to manual configurations and invocations of the Helm CLI. While this is okay
when getting started with Helm, as you look to move a chart into a production-like
environment, there are several questions that you need to consider, including
the following:

• How can I be sure that the best practices for chart development and deployment are
enforced?

• What are the implications of collaborators participating in the development and
deployment processes?

These points are applicable to any software project, not just to Helm chart development.
While we have covered a lot of best practices so far, when taking on new collaborators,
they may not have the same understanding of these topics or the discipline to perform
these crucial steps. Through the use of automation and repeatable processes, concepts
such as CI/CD have been established to address some of these challenges.

CI/CD
The need for an automated software development process that can be adhered to each
time a software change occurs led to the creation of CI. CI not only ensures that best
practices are adhered to, but it also helps eliminate the common challenges faced by
many developers, as embodied in the phrase 'it works on my machine.' One factor that we
discussed previously is the use of version control systems, such as git, to store source
code. Often, each user would have their own independent copy of source code, which
made maintaining the code base challenging to manage as additional contributors were
brought on.

CI is properly enabled through the use of an automation tool, where source code is
retrieved and undergoes a predetermined set of steps whenever changes occur. The need
for a proper automation tool led to the rise of software specifically designed for this
purpose. Several examples of CI tools include Jenkins, TeamCity, and Bamboo, along with
a variety of Software-as-a-Service (SaaS)-based solutions. By offloading the responsibility
of tasks onto a third-party component, developers are more likely to commit code
frequently and project managers can feel confident in the skill of their teams and the
robustness of their products.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

220 Automating Helm Processes Using CI/CD and GitOps

One key feature that is found in most of these tools is the ability to provide timely
notifications on the current state of a project. Instead of discovering a breaking change
later in the software development cycle, through the use of CI, as soon as changes
are incorporated, processes are executed and notifications to interested parties are
transmitted. By making use of rapid notifications, it provides the user who introduced
the change with the opportunity to resolve the issue while the area of interest is at the
front of the mind, instead of later on in the delivery process when they may be occupied
elsewhere.

The ability to apply many of CI's concepts throughout an entire software delivery life cycle
as an application moves its way toward production led to the creation of CD. CD is a set
of defined steps written to progress software through a release process (more commonly
referred to as a pipeline). CI and CD are typically paired together as many of the same
execution engines that perform CI can also implement CD. CD has gained acceptance
and popularity among many organizations where proper change control is enforced and
approvals are required in order for the software release process to progress to the next
stage. As many of the concepts around CI/CD are automated in a repeatable fashion,
teams can look to fully eliminate the need for the manual approval steps once they feel
confident that they have a reliable framework in place.

The process of implementing a fully automated build, test, deployment, and release
process without any human intervention is known as continuous deployment. While
many software projects never fully achieve continuous deployment, by just implementing
the concepts emphasized by CI/CD, teams are able to produce real business value faster. In
the next section, we will introduce GitOps as a mechanism to improve the management of
applications and their configuration.

Taking CI/CD to the next level using GitOps
Kubernetes is a platform that embraces the use of declarative configuration. In the same
way that an application written in any programming language, such as Python, Golang,
or Java traverses its way through a CI/CD pipeline, Kubernetes manifests can implement
many of the same patterns. Manifests should also be stored in a source code repository,
such as Git, and can undergo the same type of build, test, and deployment practices. The
rise in popularity of managing the life cycle of Kubernetes cluster configuration within Git
repositories and then applying these resources in an automated fashion led to the concept
of GitOps. First introduced by the software company WeaveWorks in 2017, GitOps has
increased in popularity ever since as a way to manage Kubernetes configurations. While
GitOps is best known in the context of Kubernetes, its principles can be applied to any
cloud-native environment.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Setting up our environment 221

Similar to CI/CD, tools have been developed to manage the GitOps process. These include
ArgoCD from Intuit and Flux by WeaveWorks, the organization responsible for coining
the term GitOps. You do not need to use a tool that is specifically designed for GitOps as
any automation tool, particularly one designed for managing the CI/CD process, can be
utilized. The key differentiator between a traditional CI/CD tool and a tool designed for
GitOps is the ability for the GitOps tool to constantly observe the state of the Kubernetes
cluster and apply the desired configurations whenever the current state does not match
the desired state, as defined in the manifests stored in Git. These tools make use of the
controller pattern that is fundamental to Kubernetes itself.

Since Helm charts are ultimately rendered as Kubernetes resources, they, too, can be
used to participate in the GitOps process and many of the aforementioned GitOps tools
natively support Helm. We will see how to make use of Helm charts using CI/CD and
GitOps throughout the remainder of this chapter, leveraging Jenkins as the tool of choice
for both CI and CD.

Setting up our environment
In this chapter, we will develop two different pipelines to demonstrate how different
processes around Helm can be automated.

Take the following steps to begin setting up your local environment:

1. First, given the increased memory requirements of this chapter, you should delete
your minikube cluster and recreate it with 4g of memory if it was not inititalized
with 4g of memory in Chapter 2, Preparing a Kubernetes and Helm Environment.
This can be done by running the following commands:

$ minikube delete

$ minikube start --memory=4g

2. Once Minikube starts, create a new namespace called chapter7:

$ kubectl create namespace chapter7

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

222 Automating Helm Processes Using CI/CD and GitOps

You should, additionally, fork the Packt repository, which will allow you to make
modifications against the repository based on the steps described in these exercises:

1. Create a fork of the Packt repository by clicking the Fork button on the Git repo:

Figure 7.1 – Select the Fork button to fork the Packt repository
You must have a GitHub account to fork a repository. The process of creating a new
account is described in Chapter 5, Building Your First Helm Chart.

2. After you create a fork of the Packt repository, clone this fork to your local machine
by running the following command:

$ git clone https://github.com/$GITHUB_USERNAME/-Learn-
Helm.git Learn-Helm

In addition to creating a fork of the Packt repository, you may want to remove the
guestbook chart from your Helm repository, served from your GitHub Pages repository,
which we created in Chapter 5, Building Your First Helm Chart. While it is not strictly
necessary, the examples in this chapter will assume a clean slate.

Use the following steps to remove this chart from your chart repository:

1. Navigate to the local clone of your Helm chart repository. As you will recall, the
name we recommended for your chart repository was Learn-Helm-Chart-
Repository, so we will use this name throughout this chapter to refer to your
GitHub Pages-based chart repository:

$ cd $LEARN_HELM_CHART_REPOSITORY_DIR

$ ls

guestbook-1.0.0.tgz index.yaml README.md

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/$GITHUB_USERNAME/-Learn-Helm.git
https://github.com/$GITHUB_USERNAME/-Learn-Helm.git

Setting up our environment 223

2. Remove the guestbook-1.0.0.tgz and index.yaml files from your chart
repository:

$ rm guestbook-1.0.0.tgz index.yaml

$ ls

README.md

3. Push these changes to your remote repository:

$ git add --all

$ git commit -m 'Preparing for chapter 7'

$ git push origin master

4. You should be able to confirm in GitHub that your chart and index files have been
removed, leaving only the README.md file:

Figure 7.2 – The only file you should see in your chart repository is the README.md file

Now that you have started Minikube, created a fork of the Packt repository, and removed
the Guestbook chart from Learn-Helm-Chart-Repository, let's begin learning how
a CI pipeline can be created to release Helm charts.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

224 Automating Helm Processes Using CI/CD and GitOps

Creating a CI pipeline to build Helm charts
The concept of CI can be applied to the perspective of a chart developer who builds, tests,
packages, and releases Helm charts to a chart repository. In this section, we will describe
what using an end-to-end CI pipeline to streamline this process may look like, as well
as walk you through how to build an example pipeline. The first step is to design the
components required for the example pipeline.

Designing the pipeline
In the previous chapters, developing Helm charts was largely a manual process. While
Helm provides automation for creating test hooks in a Kubernetes cluster, the
invocation of the helm lint, helm test, or ct lint-and-install commands is
manually executed after a change in code to ensure tests still pass. Once linting and testing
continue to pass after a code change, the chart can be packaged by running the helm
package command. If the chart is served using a GitHub Pages repository (such as the
one created in Chapter 5, Building Your First Helm chart), the index.yaml file is created
by running helm repo index, and the index.yaml file, along with the packaged
chart, is pushed to the GitHub repository.

While invoking each command manually is certainly feasible, this workflow can become
increasingly difficult to sustain as you develop additional Helm charts or add additional
contributors. With a manual workflow, it is easy to allow untested changes to be made
to your charts and it is difficult to ensure that contributors are adhering to testing and
contributing guidelines. Luckily, these issues can be avoided by creating a CI pipeline that
automates your release process.

The following steps outline an example CI workflow using the commands and tooling
discussed throughout this book so far. It will assume that the resulting charts are saved in
a GitHub Pages repository:

1. A chart developer makes a code change to a chart or a set of charts in a
git monorepo.

2. The developer pushes the change(s) to the remote repository.

3. The charts that have been modified are automatically linted and tested in a
Kubernetes namespace by running the ct lint and ct install commands.

4. If linting and testing is successful, the charts are automatically packaged with the
helm package command.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a CI pipeline to build Helm charts 225

5. The index.yaml file is automatically generated with the helm repo
index command.

6. The packaged charts and the updated index.yaml file are automatically pushed to
the repository. They are pushed to either stable or staging, depending on the
branch that the job was run against.

In the next section, we will perform this process using Jenkins. Let's begin by
understanding what Jenkins is and how it works.

Understanding Jenkins
Jenkins is an open source server used to perform automated tasks and workflows. It is
commonly used to create CI/CD pipelines via Jenkins's pipeline as code feature, written
in a file called a Jenkinsfile that defines a Jenkins pipeline.

A Jenkins pipeline is written using the Groovy Domain-Specific Language (DSL).
Groovy is a language similar to Java but, unlike Java, it can be used as an object-oriented
scripting language, lending itself to writing easy-to-read automation. Throughout this
chapter, we will walk you through two existing Jenkinsfile files that have already
been prepared for you. You do not need to have any prior experience with writing a
Jenkinsfile file from scratch, as a deep dive into Jenkins is beyond the scope of this
book. With that said, by the end of this chapter, you should be able to take the concepts
learned and apply them to an automation tool of your choice. While Jenkins is featured in
this chapter, its concepts can be applied to any other automation tool.

When a Jenkinsfile file is created, the defined set of steps of the workflow is executed
on the Jenkins server itself or in a separate agent delegated to run the job, instead.
Additional capabilities can be integrated with Kubernetes by automatically scheduling
Jenkins agents as separate Pods whenever a build is kicked off, simplifying the creation
and management of agents. After an agent completes, it can be configured to automatically
terminate so that the next build can run in a fresh, clean Pod. In this chapter, we will run
the example pipelines using Jenkins agents.

Jenkins also lends itself well to the concept of GitOps by providing the ability to scan
a source control repository for the presence of a Jenkinsfile file. For each branch
that contains a Jenkinsfile file, a new job is automatically configured that will begin
by cloning the repository against the desired branch. This makes it simple to test new
features and fixes as new jobs can be automatically created alongside their
corresponding branches.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

226 Automating Helm Processes Using CI/CD and GitOps

With a basic understanding of Jenkins, let's now install Jenkins on our
Minikube environment.

Installing Jenkins
As with many applications that are commonly deployed on Kubernetes, Jenkins can be
deployed with one of many different community Helm charts from Helm Hub. In this
chapter, we will use the Jenkins Helm chart from the Codecentric software development
company. Add the codecentric chart repository to begin installing the Codecentric
Jenkins Helm chart:

$ helm repo add codecentric https://codecentric.github.io/
helm-charts

Among the expected Kubernetes-related values, such as configuring the resource limits
and the service type, the codecentric Jenkins Helm chart contains other Jenkins-
related values used to automatically configure different Jenkins components.

Since configuring these values requires a deeper understanding of Jenkins that is beyond
the scope of this book, a values file is provided for you that will automatically prepare
the following Jenkins configurations:

• Add relevant Jenkins plugins that are not included in the base image.

• Configure the credentials required to authenticate with GitHub.

• Configure a Jenkins agent specifically designed for testing and installing Helm
charts.

• Configure Jenkins to automatically create a new job based on the presence of the
Jenkinsfile file.

• Skip manual prompts that normally occur on the startup of a new installation.

• Disable authentication to simplify Jenkins access for this chapter.

The values file will also configure the following Kubernetes-related details:

• Set resource limits against the Jenkins server.

• Set the Jenkins service type to NodePort.

• Create the ServiceAccounts and RBAC rules required for Jenkins and Jenkins agents
to run jobs and deploy Helm charts in the Kubernetes environment.

• Set the Jenkins PersistentVolumeClaim size to 2Gi.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://codecentric.github.io/helm-charts
https://codecentric.github.io/helm-charts

Creating a CI pipeline to build Helm charts 227

This values file is available at https://github.com/PacktPublishing/-Learn-
Helm/blob/master/jenkins/values.yaml. When browsing the content of these
values, you may notice that the configuration defined under fileContent contains Go
templating. The beginning of this value can be seen here:

Figure 7.3 – The values.yaml file for the Jenkins Helm chart contains Go templating

While Go templating is not normally valid in a values.yaml file, the Codecentric
Jenkins Helm chart supplies the fileContent configuration to a template function
called tpl. A simplified view of what this looks like on the template side is as follows:

{{- tpl .Values.fileContent }}

The tpl command will parse the fileContent value as a Go template, allowing it to
contain Go templating even though it is defined in a values.yaml file.

For this chapter, the Go templating defined in the fileContent configuration helps
ensure that Jenkins is installed in a way that corresponds with this chapter's requirements.
Namely, the templating will require the following additional values to be provided
during installation:

• githubUsername: The GitHub username

• githubPassword: The GitHub password

• githubForkUrl: The URL of your Packt repository fork, which was taken in the
Technical requirements section of this chapter

• githubPagesRepoUrl: The URL of your GitHub Pages Helm repository, which
was created at the end of Chapter 5, Building Your First Helm Chart

Note that this is not the URL to your static site, but the URL to the GitHub repository
itself—for example, https://github.com/$GITHUB_USERNAME/Learn-Helm-
Chart-Repository.git.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/blob/master/jenkins/values.yaml
https://github.com/PacktPublishing/-Learn-Helm/blob/master/jenkins/values.yaml
https://github.com/$GITHUB_USERNAME/Learn-Helm-Chart-Repository.git
https://github.com/$GITHUB_USERNAME/Learn-Helm-Chart-Repository.git

228 Automating Helm Processes Using CI/CD and GitOps

The four values described in the preceding list can be provided using the --set flag, or
they can be provided from an additional values file using the --values flag. If you
choose to create a separate values file, ensure that you do not commit and push that file
to source control as it contains sensitive information. The example in this chapter favors
the --set flag for these four values. In addition to the values described, the values.
yaml file included in the Packt repository should also be provided using the --
values flag.

Install your Jenkins instance with the helm install command, using the following
example as a reference:

$ helm install jenkins codecentric/jenkins \

 -n chapter7 --version 1.5.1 \

 --values Learn-Helm/jenkins/values.yaml \

 --set githubUsername=$GITHUB_USERNAME \

 --set githubPassword=$GITHUB_PASSWORD \

 --set githubForkUrl=https://github.com/$GITHUB_USERNAME/-
Learn-Helm.git \

 --set githubPagesRepoUrl=https://github.com/$GITHUB_
USERNAME/Learn-Helm-Chart-Repository.git

You can monitor the installation by running a watch against the Pods in the
chapter7 namespace:

$ kubectl get Pods -n chapter7 -w

Note that in very rare cases, your Pod may become stuck at the Init:0/1 stage. This
can occur if availability issues to external dependencies, such as if the Jenkins plugin site
and its mirrors were experiencing downtime. If this occurs, try deleting your release and
reinstalling it after several minutes.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/$GITHUB_USERNAME/-Learn-Helm.git
https://github.com/$GITHUB_USERNAME/Learn-Helm-Chart-Repository.git
https://github.com/$GITHUB_USERNAME/Learn-Helm-Chart-Repository.git

Creating a CI pipeline to build Helm charts 229

Once your Jenkins Pod reports 1/1 under the READY column, your Jenkins instance
is ready to be accessed. Copy and paste the following contents of the displayed post-
installation notes to reveal the Jenkins URL:

$ export NODE_PORT=$(kubectl get service --namespace chapter7
-o jsonpath='{.spec.ports[0].nodePort}' jenkins-master)

$ export NODE_IP=$(kubectl get nodes --namespace chapter7 -o
jsonpath='{.items[0].status.addresses[0].address}')

echo "http://$NODE_IP:$NODE_PORT"

When you access Jenkins, your front page should look similar to the following screenshot:

Figure 7.4 – The Jenkins home page after running the Helm installation

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

230 Automating Helm Processes Using CI/CD and GitOps

If the chart were installed properly, you'll notice that a new job called Test and Release
Helm Charts is created. At the bottom left-hand corner of the page, you'll notice the
Build Executor Status panel, which is used to provide an overview of the active jobs that
are currently running. A job is automatically triggered for the first time when it is created,
which is why you will see it running when you log in to your Jenkins instance.

Now that Jenkins is installed and its frontend has been validated, let's walk through
the example Jenkinsfile file from the Packt repository to understand how the CI
pipeline works. Note that we will not display the full contents of the Jenkinsfile
file in this chapter as we want to simply highlight the key areas of interest. The full
contents of the file can be viewed in the Packt repository at https://github.
com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/
Jenkinsfile.

Understanding the pipeline
The first thing that occurs when the Test and Deploy Helm Charts job is
triggered is that a new Jenkins agent is created. By leveraging the values provided in
Learn-Helm/jenkins/values.yaml, the Jenkins chart installation automatically
configures a Jenkins agent called chart-testing-agent. The following line
designates that agent as the agent for this Jenkinsfile file:

agent { label 'chart-testing-agent' }

This agent is configured by the Jenkins chart values to run using the chart testing image
provided by the Helm community. The chart testing image, located at quay.io/
helmpack/chart-testing, contains many of the tools that were discussed in Chapter
6, Testing Helm Charts. Specifically, this image contains the following tools:

• helm

• ct

• yamllint

• yamale

• git

• Kubectl

Since this image contains all of the tools required to test the Helm charts, it can be used as
the primary image to perform CI for our Helm charts.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/Jenkinsfile
https://github.com/PacktPublishing/-Learn-Helm/blob/master/helm-charts/Jenkinsfile

Creating a CI pipeline to build Helm charts 231

When a Jenkins agent is run, it clones your GitHub fork, specified by the
githubForkUrl value, using githubUsername and githubPassword for
authentication. This is performed implicitly by Jenkins, so no code needs to be specified
within the Jenkinsfile file to perform this action.

After the Jenkins agent clones your repository, it begins executing the stages defined in the
Jenkinsfile file. Stages are logical groupings within a pipeline that can help visualize
the high-level steps. The first stage that will be performed is the lint stage, which contains
the following command:

sh 'ct lint'

The sh portion in the preceding command is a command used to run a bash shell
or script and invokes the lint subcommand of the ct tool. As you will recall, this
command lints the Chart.yaml and values.yaml files on all charts that have been
modified against the master branch, which we covered in Chapter 6, Testing Helm Charts.

If the linting is successful, the pipeline will continue on to the test stage and will run the
following command:

sh 'ct install --upgrade'

This command should look familiar, also. It installs each modified chart from its version
on the master branch and performs the defined test suites. It also ensures any upgrades
from the previous version are successful, which aids in helping to prevent regressions.

Note that the two previous stages could have been combined by running a single ct
lint-and-install --upgrade command. This would still have resulted in a
valid pipeline, but this example, which is broken up into separate stages, allows better
visualization of the actions that are performed.

If the test stage is successful, the pipeline proceeds to the package charts stage, which
executes the following command:

sh 'helm package --dependency-update helm-charts/charts/*'

The command at this stage will simply package each chart contained under the helm-
charts/charts folder. It will also update and download each dependency that
is declared.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

232 Automating Helm Processes Using CI/CD and GitOps

If the packaging is successful, the pipeline proceeds to the final stage, called push
charts to repo. This is the most complex stage, so we will break it up into smaller
steps. The first step can be seen here:

// Clone GitHub Pages repository to a folder called 'chart-
repo'

sh "git clone ${env.GITHUB_PAGES_REPO_URL} chart-repo"

// Determine if these charts should be pushed to 'stable' or
'staging' based on the branch

def repoType

if (env.BRANCH_NAME == 'master') {

 repoType = 'stable'

} else {

 repoType = 'staging'

}

// Create the corresponding 'stable' or 'staging' folder if it
does not exist

def files = sh(script: 'ls chart-repo', returnStdout: true)

if (!files.contains(repoType)) {

 sh "mkdir chart-repo/${repoType}"

}

Since the Helm chart repository that we are pushing to is a separate GitHub Pages
repository, we must clone the repository so that we can add the new charts and push the
changes. Once the GitHub Pages repository is cloned, a variable called repoType is set,
depending on the branch that the CI/CD pipeline runs against. This variable is used to
determine whether the charts packaged in the previous stage should be pushed to the
stable or staging chart repository.

For this pipeline, stable implies that the charts have been tested, validated, and merged
into the master branch. staging implies that the chart is under development and has not
yet been merged into the master branch nor been officially released. You can, alternatively,
release charts under the stable repository when you cut to a release branch, but for this
example, we will take the former approach of assuming every merge into master is a
new release.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a CI pipeline to build Helm charts 233

stable and staging are served as two separate chart repositories; this can be done
by creating two separate directories at the top level of the GitHub Pages repository:

Learn-Helm-Repository/

 stable/

 staging/

The stable and staging folders then contain their own index.yaml files to differentiate
them as separate chart repositories.

For convenience, the final snippet of the preceding pipeline excerpt creates the stable
or staging folders automatically if the pipeline execution based on the branch relies
on its existence.

Now that the type of repository that the charts should be pushed to has been determined,
we proceed to the next stage of the pipeline, as follows:

// Move charts from the packaged-charts folder to the
corresponding 'stable' or 'staging' folder

sh "mv packaged-charts/*.tgz chart-repo/${repoType}"

// Generate the updated index.yaml

sh "helm repo index chart-repo/${repoType}"

// Update git config details

sh "git config --global user.email 'chartrepo-robot@example.
com'"

sh "git config --global user.name 'chartrepo-robot'"

The first command copies each of the packaged charts from the previous stage to the
stable or staging folders. Next, the stable or staging index.yaml file is
updated using the helm repo index command to reflect the changed or added charts.

One point to keep in mind is that if we use a different chart repository solution, such as
ChartMuseum (a chart repository solution maintained by the Helm community), the
helm repo index command is not needed since the index.yaml file is automatically
updated when ChartMuseum receives a new packaged Helm chart. For implementations
that do not automatically calculate the index.yaml file, such as GitHub Pages, the helm
repo index command is necessary, as we can see in this pipeline.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

mailto:chartrepo-robot@example.com
mailto:chartrepo-robot@example.com

234 Automating Helm Processes Using CI/CD and GitOps

The final two commands from the preceding snippet set the git username and email,
which are required to push contents to a git repository. For this example, we will set
the username to chartrepo-robot to indicate that a CI/CD process facilitated the
git interactions and we will set the email to chartrepo-robot@example.com as
an example value. You probably want the email to represent the organization in charge of
maintaining the chart repository.

The final step is to push the changes. This action is captured in the final pipeline snippet,
shown here:

// Add and commit the changes

sh 'git add --all'

sh "git commit -m 'pushing charts from branch ${env.BRANCH_
NAME}'"

withCredentials([usernameColonPassword(credentialsId: 'github-
auth', variable: 'USERPASS')]) {

 script {

 // Inject GitHub auth and push to the master branch, where
the charts are being served

 def authRepo = env.GITHUB_PAGES_REPO_URL.replace('://',
"://${USERPASS}@")

 sh "git push ${authRepo} master"

 }

}

The packaged charts are first added and committed using the git add and git
commit commands. Next, a push to the repository is performed with the git push
command, using a credential called github-auth. This credential was created during
installation from the githubUsername and githubPassword values. The github-
auth credential allows you to securely refer to these secrets without printing them in
plaintext in your pipeline code.

Note that the Helm community has published a tool called Chart Releaser
(https://github.com/helm/chart-releaser) that can be used as an
alternative to generating the index.yaml file with the helm repo index command
and uploading it to GitHub with git push. The Chart Releaser tool is designed to
abstract some of this additional complexity by managing the Helm charts contained in
GitHub Pages.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

mailto:chartrepo-robot@example.com
mailto:chartrepo-robot@example.com
https://github.com/helm/chart-releaser
https://github.com/helm/chart-releaser

Creating a CI pipeline to build Helm charts 235

We have decided not to implement the pipeline using this tool in this chapter, however,
because Chart Releaser does not support Helm 3 (at the time
of writing).

Now that we have provided an overview of the CI pipeline, let's run through an
example execution.

Running the pipeline
As we discussed earlier, the first run of this pipeline was actually triggered automatically
when we installed Jenkins. The job was run against the master branch and can be seen
by clicking the Test and Release Helm Charts link on the Jenkins landing page. You will
observe that one successful job ran against the master branch:

Figure 7.5 – The first runthrough of the pipeline

Every pipeline build in Jenkins has an associated log that contains the output of the
execution. You can access the log for this build by selecting the #1 link next to the blue
circle on the left-hand side and then selecting Console Output on the next screen. The
logs for this build reveal that the first stage, Lint, succeeded by displaying this message:

All charts linted successfully

No chart changes detected.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

236 Automating Helm Processes Using CI/CD and GitOps

This is what we would expect because no charts were changed from the perspective of the
master branch. A similar output can be seen under the install stage as well:

All charts installed successfully

No chart changes detected.

Because both the Lint and Install stages completed without error, the pipeline continued
to the Package Charts stage. Here, you can view the output::

+ helm package --dependency-update helm-charts/charts/guestbook
helm-charts/charts/nginx

Successfully packaged chart and saved it to: /home/jenkins/
agent/workspace/t_and_Release_Helm_Charts_master/guestbook-
1.0.0.tgz

Successfully packaged chart and saved it to: /home/jenkins/
agent/workspace/t_and_Release_Helm_Charts_master/nginx-
1.0.0.tgz

Finally, the pipeline concludes by cloning your GitHub Pages repository, creating a
stable folder within it, copying the packaged charts over to the stable folder,
committing the changes to the GitHub Pages repository locally, and pushing the changes
to GitHub. We can observe that each file that was added to our repository is outputted in
the following lines:

+ git commit -m 'pushing charts from branch master'

[master 9769f5a] pushing charts from branch master

 3 files changed, 32 insertions(+)

 create mode 100644 stable/guestbook-1.0.0.tgz

 create mode 100644 stable/index.yaml

 create mode 100644 stable/nginx-1.0.0.tgz

You may be curious to know what your GitHub Pages repository looks like after the
automatic push. Your repository should look as follows, with a new stable folder
containing the Helm charts:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a CI pipeline to build Helm charts 237

Figure 7.6 – The state of the repository after the CI pipeline completes

In the stable folder, you should be able to see three different files, two separate charts,
and one index.yaml file:

Figure 7.7 – The contents of the stable folder

This first pipeline build successfully created the initial set of stable charts, but it did
not demonstrate how new charts can be linted and tested before being deemed stable and
ready for end users to consume. To demonstrate this, we need to cut a feature branch off
the master branch to modify one or more charts, push the changes to the feature branch,
and then start a new build in Jenkins.

To begin, create a new branch called chapter7 off of the master branch:

$ cd $PACKT_FORK_DIR

$ git checkout master

$ git checkout -b chapter7

On this branch, we will simply modify the version of the ngnix chart to trigger the
chart's linting and testing. NGINX is a web server and a reverse proxy. It is much more
lightweight than the Guestbook application we have been working with in this book, so
for that reason, we will use the ngnix chart from the Packt repository for this example to
avoid any resource constraints that might occur with Jenkins also running in your
Minikube environment.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

238 Automating Helm Processes Using CI/CD and GitOps

In the helm-charts/charts/nginx/Chart.yaml file, change the version of the
chart from 1.0.0 to 1.0.1:

version: 1.0.1

Run git status to confirm that a change was detected:

$ git status

On branch chapter7

Changes not staged for commit:

 (use 'git add <file>...' to update what will be committed)

 (use 'git checkout -- <file>...' to discard changes in
working directory)

 modified: helm-charts/charts/nginx/Chart.yaml

no changes added to commit (use 'git add' and/or 'git commit
-a')

Notice that the ngnix Chart.yaml file has been modified. Add the file and then
commit the changes. Finally, you can proceed with pushing the change to your fork:

$ git add helm-charts

$ git commit -m 'bumping NGINX chart version to demonstrate
chart testing pipeline'

$ git push origin chapter7

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a CI pipeline to build Helm charts 239

Within Jenkins, we need to trigger a repository scan so that Jenkins can detect and start a
new build against this branch. Navigate to the Test and Release Helm Charts page. You
can easily do so by clicking on the Test and Release Helm Charts tab on the top bar:

Figure 7.8 – The Test and Release Helm Charts page

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

240 Automating Helm Processes Using CI/CD and GitOps

Once selected, click the Scan Multibranch Pipeline Now button in the left-hand side
menu. This allows Jenkins to detect your new branch and to automatically start a new
build. The scan should complete within approximately 10 seconds. Refresh the page and
the new chapter7 branch should appear on the page as follows:

Figure 7.9 – The Test and Deploy Helm Charts page after scanning for the new chapter7 branch

The chapter7 job will run for a longer period of time than the master job since the
chapter7 job contains a modified Helm chart that is tested with the chart testing tool.
You can observe this pipeline in action by navigating to the console output for chapter7.
From the Test and Release Helm Charts overview page, select the chapter 7 branch
and then the #1 link at the bottom left-hand side. Finally, select the Console Output link.
If you navigate to this page while the pipeline is still running, you will receive the log
updates as they occur in real time. Wait until the end of the pipeline, where the following
message should be displayed:

Finished: SUCCESS

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a CI pipeline to build Helm charts 241

Toward the beginning of the console output logs, notice how the ct lint and ct
install commands were run against the ngnix chart as this was the only chart where a
change occurred:

Charts to be processed:

 nginx => (version: '1.0.1', path: 'helm-charts/charts/nginx')

The additional output for each command should already be familiar as it is the same as the
output that was described in Chapter 6, Testing Helm Charts.

In your GitHub Pages repository, you should see the new version of the ngnix chart in
the staging folder as it was not built against the master branch:

Figure 7.10 – The contents of the staging folder

To release the nginx-1.0.1.tgz chart, you need to merge the chapter7 branch into
the master branch, which will cause this chart to be pushed to the stable repository. On
the command line, merge your chapter7 branch into the master branch and push it to
the remote repository:

$ git checkout master

$ git merge chapter7

$ git push origin master

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

242 Automating Helm Processes Using CI/CD and GitOps

Within Jenkins, navigate to the master pipeline job by returning to the Test and Release
Helm Charts page and clicking on the master job. Your screen should appear as follows:

Figure 7.11 – The master job for the Test and Release Helm charts project

Once on this page, click on the Build Now link on the left-hand side. Once again, notice
in the logs that chart tests were skipped because the chart testing tool compared the clone
against the master branch. Since the content is the same, the tool determines that there is
no testing to be done. When the build finishes, navigate to your GitHub Pages repository
to confirm the new nginx-1.0.1.tgz chart is under the stable repository:

Figure 7.12 – The state of the repository after the new nginx chart has been added

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a CI pipeline to build Helm charts 243

You can verify that these charts are deployed properly to the GitHub Pages stable
repository by adding the repository locally using helm repo add. In Chapter 5,
Building Your First Helm Chart, you added the root location of the GitHub Pages
repository. However, we modified the file structure to contain the stable and
staging folders. If it is still configured, you can remove this repository by running
the following command:

$ helm repo remove learnhelm

The repository can be added again with the updated location of the stable repository:

$ helm repo add learnhelm $GITHUB_PAGES_SITE_URL/stable

Note that the value of $GITHUB_PAGES_SITE_URL references the static site that
GitHub serves and not your actual git repository. Your GitHub Pages site URL should
have a format similar to https://$GITHUB_USERNAME.github.io/Learn-
Helm-Repository/stable. The exact link can be found in the Settings tab of your
GitHub Pages repository.

After adding the stable repository, run the following command to view each of the
charts that have been built and pushed over the course of the two master builds:

$ helm search repo learnhelm --versions

You should see three results, two of which contain both versions of the nginx chart that
was built and pushed:

Figure 7.13 – Results from the helm search repo command

In this section, we discussed how the life cycle of Helm charts can be managed through
a CI pipeline. By following an automated workflow using the example provided, you can
easily perform routine linting and testing before releasing charts to end users.

While this section focused primarily on the CI of Helm charts, CD and GitOps can also be
implemented to deploy Helm charts to different environments. We will explore how a CD
pipeline can be built in the next section.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

about:blank
about:blank

244 Automating Helm Processes Using CI/CD and GitOps

Creating a CD pipeline to deploy applications
with Helm
A CD pipeline is a set of repeatable steps that can deploy to one or more different
environments in an automated fashion. In this section, we will create a CD pipeline to
deploy the nginx chart that we tested and pushed to our GitHub Pages repository in the
previous section. GitOps will also be leveraged by referencing the values files saved to a
git repository.

Let's design the high-level steps that need to be included in this pipeline.

Designing the pipeline
In previous chapters, deploying to a Kubernetes environment with Helm was a
manual process. This CD pipeline, however, is designed to deploy to multiple different
environments while abstracting the use of Helm.

The following steps describe the CD workflow that we will cover in this section:

1. Add the stable GitHub Pages repository containing the nginx chart release.

2. Deploy the nginx chart to the development environment.

3. Deploy the nginx chart to the Quality Assurance (QA) environment.

4. Wait for the user to approve the pipeline to proceed to the production deployment.

5. Deploy the nginx chart to the production environment.

The CD workflow is contained in a separate Jenkinsfile file to the file created
previously for the CI pipeline. Before we create the Jenkinsfile file, let's update the
Minikube and Jenkins environments so that we can perform the CD process.

Updating the environments
The development, QA, and production environments will be modeled by different
namespaces within your local Minikube cluster. While we would usually discourage you
from allowing non-production (development and QA) and production environments
to coexist within the same cluster, we will co-locate these three environments just to
demonstrate our example CD process.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a CD pipeline to deploy applications with Helm 245

Create the dev, qa, and prod namespaces to represent each of these environments:

$ kubectl create ns dev

$ kubectl create ns qa

$ kubectl create ns prod

You should also delete the chapter7 branch that you created in the previous section.
This branch should be deleted because when the new CD pipeline is created, Jenkins will
attempt to run it against each of your repository's branches. For simplicity and to avoid
resource constraints, we recommend advancing with only the master branch.

Remove the chapter7 branch from your repository with the following commands:

$ git push -d origin chapter7

$ git branch -D chapter7

Finally, you will need to upgrade your Jenkins instance to set an environment variable
called GITHUB_PAGES_SITE_URL. This is the location of your chart repository in
GitHub Pages that has a https://$GITHUB_USERNAME.github.io/Learn-
Helm-Chart-Repository/stable format. The environment variable is referenced
in the CD pipeline to add the stable GitHub Pages chart repository with helm
repo add. To add this variable, you can reuse the values that were previously applied
by using the --reuse-values flag, while also specifying an additional value called
githubPagesSiteUrl by using --set.

Execute the following command to upgrade your Jenkins instance:

$ helm upgrade jenkins codecentric/jenkins \

 -n chapter7 --version 1.5.1 \

 --reuse-values --set githubPagesSiteUrl=$GITHUB_PAGES_SITE_
URL

This upgrade will cause your Jenkins instance to restart. You can wait for the Jenkins Pod
to be ready by running a watch against the chapter7 namespace's Pods:

$ kubectl get Pods -n chapter7 -w

The Jenkins Pod is available when it indicates that 1/1 containers are ready.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

about:blank
about:blank

246 Automating Helm Processes Using CI/CD and GitOps

Once Jenkins is ready, access the Jenkins instance by using the same URL from the
previous section. You should find another job, called Deploy NGINX Chart, which
represents the CD pipeline:

Figure 7.14 – The Jenkins front page after upgrading the Jenkins release

This job is configured in the values.yaml file to be created when GITHUB_PAGES_
SITE_URL is set (to help improve the flow of this chapter).

Note that as with the CI pipeline, the CD pipeline also starts automatically since it is
detected for the first time. Before we review this pipeline's logs, let's examine the process
that makes up the CD pipeline.

Understanding the pipeline
In this section, we will just review the key areas of the pipeline, but the full CD pipeline
has been written up and is located at https://github.com/PacktPublishing/-
Learn-Helm/blob/master/nginx-cd/Jenkinsfile.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/blob/master/nginx-cd/Jenkinsfile
https://github.com/PacktPublishing/-Learn-Helm/blob/master/nginx-cd/Jenkinsfile

Creating a CD pipeline to deploy applications with Helm 247

As with the previous CI pipeline, to test and release Helm charts, the CD pipeline begins
by dynamically creating a new Jenkins agent as a Kubernetes Pod running the chart
testing image:

agent { label 'chart-testing-agent' }

Although we are not using the ct tool in this pipeline, the chart testing image contains
the Helm CLI that is required to perform the nginx deployments, so the image suffices
for this example CD pipeline. However, it would also be acceptable to create a smaller
image that removes the tools that are not utilized.

Once an agent is created, Jenkins implicitly clones your fork, as it did previously in the
CI pipeline.

The first explicitly defined stage of the pipeline is called Setup, which adds your stable
chart repository hosted in GitHub Pages to the local Helm client on the Jenkins agent:

sh "helm repo add learnhelm ${env.GITHUB_PAGES_SITE_URL}"

Once the repository is added, the pipeline can begin deploying NGINX to the different
environments. The next stage, called Deploy to Dev, deploys the NGINX chart to your
dev namespace:

dir('nginx-cd') {

 sh "helm upgrade --install nginx-${env.BRANCH_NAME}
learnhelm/nginx --values common-values.yaml --values dev/
values.yaml -n dev --wait"

}

The first detail you might notice about this stage is the dir('nginx-cd') closure. This
is the Jenkinsfile syntax to set the working directory of the commands contained
within it. We will explain the nginx-cd folder in greater detail soon.

You can also see that this stage runs the helm upgrade command with the provided
--install flag. helm upgrade is normally performed against an already-existing
release and fails if attempted against a release that doesn't exist. The --install flag,
however, installs the chart if a release does not already exist. If a release does already exist,
the helm upgrade command upgrades the release. The --install flag is convenient
for use for automated processes, such as the CD pipeline described in this section, because
it prevents you from needing to perform a check to determine the existence of a release.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

248 Automating Helm Processes Using CI/CD and GitOps

Another interesting detail about this helm upgrade command is that it uses the
--values flag twice—once against a file called common-values.yaml and once
against a file called dev/values.yaml. Both of these files are located in the nginx-cd
folder. The following contents are found in the nginx-cd folder:

nginx-cd/

 dev/

 values.yaml

 qa/

 values.yaml

 prod/

 values.yaml

 common-values.yaml

 Jenkinsfile

When deploying an application to different environments, you may need to slightly
modify the application's configuration to allow it to integrate with other services in the
environment. Each of the values files under the dev, qa, and prod folders contain
an environment variable that is set on the NGINX deployment, depending on the
environment that it is deployed to. For example, the dev/values.yaml file contents
are shown here:

env:

 - name: ENVIRONMENT

 value: dev

Similarly, the qa/values.yaml file contents are shown here:

env:

 - name: ENVIRONMENT

 value: qa

The prod/values.yaml file contents are as follows:

env:

 - name: ENVIRONMENT

 value: prod

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a CD pipeline to deploy applications with Helm 249

While the NGINX chart that is deployed in this example is straightforward and does
not strictly require these values to be specified, you will find it helpful to separate
environment-specific configurations in separate values files using the method shown
here for complex and real-world use cases. The corresponding values file can then be
applied to the installation by passing it to the helm upgrade --install command
with --values ${env}/values.yaml, where ${env} represents either dev, qa,
or prod.

The common-values.yaml file, as its name implies, is used for values that are common
across all the deployment environments. The common-values.yaml file for this
example is written as follows:

service:

 type: NodePort

This file indicates that each NGINX service created during the installation of the chart
should have a NodePort type. All the other default values set in the NGINX chart's
values.yaml file are also applied to each environment since they have not been
overridden in the common-values.yaml file or the individual values.yaml
environment files.

One important point to note is that your application should be deployed as identically
as possible across each of your deployment environments. Any value that changes
the physical properties of your running Pods or containers should be specified in the
common-values.yaml file. These configurations include, but are not limited to,
the following:

• The replica count

• The resource requests and limits

• The service type

• The image name

• The image tag

• ImagePullPolicy

• The volume mounts

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

250 Automating Helm Processes Using CI/CD and GitOps

Values that change the configuration to integrate with environment-specific services
can be modified in the individual environment values files. These configurations may
include the following:

• The location of metrics or monitoring services

• The location of a database or backend service

• The application/ingress URL

• The notification services

Circling back to the Helm command used in the Deploy to Dev stage of the CD
pipeline, a combination of the --values common-values.yaml and --values
dev/values.yaml flags merges both of these values files to install the nginx chart
in dev. This command also uses the -n dev flag to indicate that the deployment should
be performed in the dev namespace. In addition, the --wait flag is used to pause the
nginx Pod until it is reported as ready.

Continuing with the pipeline, the next stage after deploying to dev is a smoke test. This
stage runs the following command:

sh 'helm test nginx -n dev'

The NGINX chart contains a test hook that checks the connection of the NGINX Pod.
If the test hook is able to verify that a connection to the Pod can be made, the test
is returned as successful. While the helm test command is often reserved for chart
testing, it can also be used as a good way of performing a basic smoke test during the
CD process. A smoke test is a test performed to ensure that the critical functions of
an application work as designed after a deployment. Since the NGINX chart test does
not interfere in any way with the running application or the rest of the deployment
environment, the helm test command is an appropriate method of making sure that
the NGINX chart is deployed successfully.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a CD pipeline to deploy applications with Helm 251

After the smoke test, the example CD pipeline runs the next stage, called Deploy to
QA. This stage contains a conditional that assesses whether the current branch the pipeline
is executing against is the master branch, as shown:

when {

 expression {

 return env.BRANCH_NAME == 'master'

 }

}

This conditional allows you to use feature branches to test the deployment code contained
in the values.yaml files without promoting it to higher environments. It implies that
only Helm values contained in the master branch should be production-ready, although
this is not the only strategy you can take when you release an application in a CD pipeline.
Another common strategy is to allow higher-level promotions to take place on release
branches that begin with the release/ prefix.

The Helm command used in the Deploy to QA stage is displayed as follows:

dir('nginx-cd') {

 sh "helm upgrade --install nginx-${env.BRANCH_NAME}
learnhelm/nginx --values common-values.yaml --values qa/values.
yaml -n qa --wait"

}

Given your knowledge of the Deploy to Dev stage and the separation of common and
environment-specific values, the code for Deploy to QA is predictable. It references
the qa/values.yaml file for QA-specific values and passes the -n qa flag to deploy
to the qa namespace.

After deploying to qa, or a similar testing environment, you can run the smoke test
described earlier again to ensure that the basic functions of the qa deployment work
properly. You can also include any other automated tests, at this stage, that would be
necessary to verify the function of your application before their deployment to prod.
These details have been omitted from this example pipeline.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

252 Automating Helm Processes Using CI/CD and GitOps

The next stage of the pipeline is called Wait for Input:

stage('Wait for Input') {

 when {

 expression {

 return env.BRANCH_NAME == 'master'

 }

 }

 steps {

 container('chart-testing') {

 input 'Deploy to Prod?'

 }

 }

}

This input step pauses the Jenkins pipeline and prompts the user with a Deploy to
Prod? question. The user is given two choices—Proceed and Abort—in the console
log of the running job. While the production deployment can be executed automatically
without this manual step, many developers and companies prefer to have a human gate
between the non-prod and prod deployments. This input command provides an
opportunity for the user to make a decision about whether to continue the deployment or
to abort the pipeline after the qa stage.

If the user decides to proceed, the final stage is executed, called Deploy to Prod:

dir('nginx-cd') {

 sh "helm upgrade --install nginx-${env.BRANCH_NAME}
learnhelm/nginx --values common-values.yaml --values prod/
values.yaml -n prod --wait"

}

This stage is almost identical to the Deploy to Dev and Deploy to QA stages, with
the exception of the production-specific values file and the prod namespace defined as
part of the helm upgrade --install command.

Now that the example CD pipeline has been outlined, let's observe the pipeline run that
started when you upgraded your Jenkins instance.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a CD pipeline to deploy applications with Helm 253

Running the pipeline
To see this CD pipeline in action, navigate to the master branch of the Deploy NGINX
Chart job. On the Jenkins front page, click on Deploy NGINX Chart and master. Your
screen should appear as follows:

Figure 7.15 – The master branch of the Deploy NGINX Chart CD pipeline
Once you have navigated to this page, click on the #1 link and navigate to the console logs:

Figure 7.16 – The Console Output page for the Deploy NGINX Chart CD pipeline

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

254 Automating Helm Processes Using CI/CD and GitOps

When you navigate to the logs, you should see a prompt that says Deploy to Prod?.
We will address this soon. First, let's look back at the beginning of the log to review the
pipeline's execution up to this point.

The first deployment you can see is the dev deployment:

+ helm upgrade --install nginx-master learnhelm/nginx --values
common-values.yaml --values dev/values.yaml -n dev --wait

Release 'nginx-master' does not exist. Installing it now.

NAME: nginx-master

LAST DEPLOYED: Thu Apr 30 02:07:55 2020

NAMESPACE: dev

STATUS: deployed

REVISION: 1

NOTES:

1. Get the application URL by running these commands:

 export NODE_PORT=$(kubectl get --namespace dev -o
jsonpath='{.spec.ports[0].nodePort}' services nginx-master)

 export NODE_IP=$(kubectl get nodes --namespace dev -o
jsonpath='{.items[0].status.addresses[0].address}')

 echo http://$NODE_IP:$NODE_PORT

Then, you should see the smoke test, which was run by the helm test command:

+ helm test nginx-master -n dev

Pod nginx-master-test-connection pending

Pod nginx-master-test-connection pending

Pod nginx-master-test-connection succeeded

NAME: nginx-master

LAST DEPLOYED: Thu Apr 30 02:07:55 2020

NAMESPACE: dev

STATUS: deployed

REVISION: 1

TEST SUITE: nginx-master-test-connection

Last Started: Thu Apr 30 02:08:03 2020

Last Completed: Thu Apr 30 02:08:05 2020

Phase: Succeeded

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

about:blank
about:blank

Creating a CD pipeline to deploy applications with Helm 255

After the smoke test came the qa deployment:

+ helm upgrade --install nginx-master learnhelm/nginx --values
common-values.yaml --values qa/values.yaml -n qa --wait

Release 'nginx-master' does not exist. Installing it now.

NAME: nginx-master

LAST DEPLOYED: Thu Apr 30 02:08:09 2020

NAMESPACE: qa

STATUS: deployed

REVISION: 1

This brings us to the input stage, which we saw when we first opened the logs:

Figure 7.17 – The input step before deploying to prod

Click the Proceed link to continue the pipeline execution, as clicking Abort will fail the
pipeline and prevent the production deployment from occurring. You will then see the
prod deployment occur:

+ helm upgrade --install nginx-master learnhelm/nginx --values
common-values.yaml --values prod/values.yaml -n prod --wait

Release 'nginx-master' does not exist. Installing it now.

NAME: nginx-master

LAST DEPLOYED: Thu Apr 30 03:46:22 2020

NAMESPACE: prod

STATUS: deployed

REVISION: 1

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

256 Automating Helm Processes Using CI/CD and GitOps

Finally, if the production deployment is successful, you will see the following message at
the end of the pipeline:

[Pipeline] End of Pipeline

Finished: SUCCESS

You can manually verify that the deployments were successful from your command line.
Run the helm list command to find the nginx-master releases:

$ helm list -n dev

$ helm list -n qa

$ helm list -n prod

Each command should list the nginx release in each namespace:

NAME NAMESPACE REVISION

nginx-master dev 1

You can also use kubectl to list the Pods in each namespace and verify that NGINX
was deployed:

$ kubectl get Pods -n dev

$ kubectl get Pods -n qa

$ kubectl get Pods -n prod

The result for each namespace will be similar to the following (dev will also have a
completed test Pod that was performed in the smoke test stage):

NAME READY STATUS RESTARTS AGE

nginx-fcb5d6b64-rmc2j 1/1 Running 0 46m

In this section, we discussed how Helm can be used in a CD pipeline to deploy an
application across multiple environments in Kubernetes. The pipeline relied on the
GitOps practice of storing configuration (the values.yaml files) in source control and
referenced these files to properly configure NGINX. With an understanding of how Helm
can be used in a CD environment, you can now clean up your Minikube cluster.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cleaning up 257

Cleaning up
To clean up your Minikube cluster of this chapter's exercises, delete the chapter7, dev,
qa, and prod namespaces:

$ kubectl delete ns chapter7

$ kubectl delete ns dev

$ kubectl delete ns qa

$ kubectl delete ns prod

You can also shut down your Minikube VM:

$ minikube stop

Summary
Invoking the Helm CLI in CI and CD pipelines is an efficient way of further abstracting
the capabilities that Helm provides. Chart developers can automate the end-to-end chart
development process by writing a CI pipeline that lints, tests, packages, and releases charts
to a chart repository. End users can write a CD pipeline that uses Helm to deploy a chart
across multiple different environments, leveraging GitOps to ensure applications can be
deployed and configured as code. Writing pipelines helps developers and companies scale
applications faster and more easily by abstracting and automating processes that could
otherwise become tedious and introduce human error.

In the next chapter, we will introduce another option for abstracting the Helm CLI—
writing a Helm operator.

Further reading
To learn more about the chart testing container image, go to https://helm.sh/
blog/chart-testing-intro/.

To learn more about Jenkins and Jenkins pipelines, check out the Jenkins project
documentation (https://jenkins.io/doc/), the Jenkins pipeline documentation
(https://jenkins.io/doc/book/pipeline/) and the Multibranch
Pipeline plugin documentation (https://plugins.jenkins.io/workflow-
multibranch/).

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://helm.sh/blog/chart-testing-intro/
https://helm.sh/blog/chart-testing-intro/
https://helm.sh/blog/chart-testing-intro/
https://jenkins.io/doc/
https://jenkins.io/doc/book/pipeline/
https://plugins.jenkins.io/workflow-multibranch/
https://plugins.jenkins.io/workflow-multibranch/

Questions
1. What is the difference between CI and CD?

2. What is the difference between CI/CD and GitOps?

3. What high-level steps are included in a CI/CD pipeline for creating and releasing
Helm charts?

4. What advantages does CI bring to chart developers?

5. What high-level steps are included in a CD pipeline for deploying Helm charts?

6. What advantages does a CD pipeline bring to a chart's end users?

7. How can you maintain an application's configuration as code for multiple
environments? What can you do to reduce boilerplate across the values files?

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

8
Using Helm with

the Operator
Framework

One of the advantages of using Helm is the ability to synchronize the local and the live
states. With Helm, the local state is managed with values files that, when provided using
the install or upgrade command, apply the values to synchronize the live state in a
Kubernetes cluster. In previous chapters, this was performed by invoking these commands
when a change to the application was desired.

Another way these changes can be synchronized is to create an application inside the
cluster that checks periodically that the desired state matches the current configurations
within an environment. If the state does not match, the application can automatically
modify the environment to match the desired state. This application is referred to as a
Kubernetes operator. In this chapter, we will create a Helm-based operator that helps
ensure the locally defined state always matches the live state of the cluster. If it does not,
the operator will execute the appropriate Helm commands to update the environment.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

260 Using Helm with the Operator Framework

We will cover the following topics in this chapter:

• Understanding Kubernetes Operators

• Creating a Helm Operator

• Using Helm to manage Operators and Custom Resources (CRs)

• Cleaning up your Kubernetes environment

Technical requirements
For this chapter, you will need to have the following technologies installed on your
local machine:

• minikube

• helm

• kubectl

In addition to these tools, you should find the Packt repository containing
resources associated with the examples on GitHub at https://github.com/
PacktPublishing/-Learn-Helm. This repository will be referenced throughout
this chapter.

Understanding Kubernetes Operators
Automation is at the core of the Kubernetes platform. As covered in Chapter 1,
Understanding Kubernetes and Helm, Kubernetes resources can be managed either
implicitly by running kubectl commands or declaratively by applying YAML-formatted
representations. Once the resources are applied using the Kubernetes Command-Line
Interface (CLI), one of the fundamental principles of Kubernetes is to match the current
state of resources within the cluster to the desired state, a process known as the control
loop. This ongoing, non-terminating pattern of monitoring the state of the cluster is
implemented through the use of controllers. Kubernetes includes numerous controllers
that are native to the platform, with examples ranging from admission controllers that
intercept requests to the Kubernetes Application Programming Interface (API) to
replication controllers that manage the number of Pod replicas that are running.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm
https://github.com/PacktPublishing/-Learn-Helm

Understanding Kubernetes Operators 261

As interest in Kubernetes began to grow, the combination of providing users the ability to
extend the capabilities of the base platform, as well as a way to provide more intelligence
around managing the life cycle of applications, led to the creation of several important
concepts that have defined the second wave of Kubernetes development. First, the
introduction of the Custom Resource Definitions (CRDs) enabled users the ability to
extend the default Kubernetes API, the mechanism for interacting with the Kubernetes
platform, in order to create and register new types of resources. Registering a new
CRD creates a new Representational State Transfer (RESTful) resource path on the
Kubernetes API server. So, similar to how you can use the Kubernetes CLI to execute
kubectl get pods to retrieve all Pod objects, registering a new CRD for an object
type called Guestbook, for example, allows for the capability of invoking kubectl get
guestbook to view all Guestbook objects that have been previously created. With this
new capability realized, developers could now create controllers of their own to monitor
these types of CRs to manage the lifecycle of applications that can be described through
the use of CRDs.

The second major trend was the advances in the types of applications that were being
deployed onto Kubernetes. Instead of small and simple applications, more complex and
stateful applications were being deployed more frequently. These types of advanced
applications typically require a higher level of management and maintenance, such as
handling the deployment of multiple components, as well as considerations around 'day
2' activities, such as backup and restorations. These tasks extend beyond the typical types
of controllers found in Kubernetes, as deep knowledge related to the application they are
managing must be embedded within. This pattern of using a CR to manage applications
and their components is known as an Operator pattern. First coined by the software
company CoreOS in 2016, Operators aim to capture the knowledge that a human operator
would have for managing the lifecycle of an application. Operators are packaged as
normal containerized applications—deployed within pods—that react on changes to the
API against CRs.

Operators are commonly written using a toolkit called the Operator Framework, and are
based on one of the following three different technologies:

• Go

• Ansible

• Helm

Go-based Operators leverage the Go programming language to implement control loop
logic. Ansible-based Operators leverage the Ansible CLI tool and Ansible playbooks.
Ansible is an automation tool whose logic is written in YAML files called playbooks.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

262 Using Helm with the Operator Framework

In this chapter, we will focus on Helm-based Operators. Helm Operators base their
control loop logic on Helm charts and a subset of the features provided by the Helm CLI.
As a result, they represent an easy way for Helm users to implement their Operators.

With an understanding of Operators, let's create an operator of our own, using Helm.

Creating a Helm operator
In this section, we will write a Helm-based operator that will be used to install the
Guestbook Helm chart created in Chapter 5, Building Your First Helm Chart. This chart
can be seen under the guestbook/ folder of the Packt repository (https://github.
com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/
charts/guestbook).

An operator is built as a container image that contains the control loop logic to maintain
an application. The following diagram demonstrates how the Guestbook Operator will
function once it is deployed:

Figure 8.1 – Guestbook Operator workflow

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook
https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook
https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook

Creating a Helm operator 263

The Guestbook Operator will constantly watch for changes to Guestbook CRs. When a
Guestbook CR is created, the Guestbook Operator will install the Guestbook chart you
created in Chapter 5, Building Your First Helm Chart. Conversely, if the Guestbook CR is
deleted, the Guestbook Operator will remove the Guestbook Helm chart.

With an understanding of how the Guestbook Operator will function, let's set up an
environment in which the operator can be built and deployed.

Setting up the environment
First, since the operator will be deployed to Kubernetes, you should start your Minikube
environment by running the following command:

$ minikube start

After starting Minikube, create a namespace called chapter8, as follows:

$ kubectl create ns chapter8

Since the Guestbook Operator is built as a container image, you will need to create an
image repository that can store it so it can later be referenced. To store this image, we
will create a new repository in Quay (quay.io), a public container registry (though
if you have an account elsewhere, that will suffice as well). We will also prepare a local
development environment with the necessary tooling required to build the operator
image.

Let's begin by creating a new image repository in Quay.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

264 Using Helm with the Operator Framework

Creating a Quay repository
Creating a new repository in Quay requires you to have a Quay account. Follow these
steps to create a Quay account:

1. Navigate to https://quay.io/signin/ in your browser. You will be prompted
by a screen to enter your Quay credentials, as illustrated in the following screenshot:

Figure 8.2 – Red Hat Quay sign-in page

2. At the bottom of the page, click the Create Account link. You will be prompted with
a set of dialog boxes to create a new Quay account, as illustrated in the following
screenshot:

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://quay.io/signin/
https://quay.io/signin/

Creating a Helm operator 265

Figure 8.3 – Red Hat Quay Create new account page

3. Enter your desired credentials, and then select Create Free Account.

4. You will soon be sent an email confirmation. Click the link on the confirmation
email to verify your account and continue using Quay with your new account.

Once you have created a new Quay account, you can continue to create a new image
repository for the operator image.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

266 Using Helm with the Operator Framework

To create a new image repository, select the + plus icon at the top-right corner of the
Quay page and select New Repository, as illustrated in the following screenshot:

Figure 8.4 – Selecting 'New Repository' to create a new image repository

5. You will then be taken to the Create New Repository page, where you should enter
the following details:

For Repository Name, enter guestbook-operator.

Select the Public radio button, indicating unauthenticated access to the repository.
This change will simplify how Kubernetes will be able to access the image.

The remainder of the options can be kept at the default values. Once complete,
the Create New Repository page should appear, as illustrated in the
following screenshot:

Figure 8.5 – The 'Create New Repository' page in Quay

6. Select the Create Public Repository button to create the Quay repository.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Helm operator 267

Now that a repository has been created to store the Guestbook Operator image, let's
prepare an environment with the tooling required to build a Helm operator.

Preparing a local development environment
In order to create a Helm operator, you will need the following CLI tools at a minimum:

• operator-sdk

• docker, podman, or buildah

The operator-sdk CLI is a toolkit used to help develop Kubernetes Operators. It
contains inherent logic to simplify the operator development process. Under the hood,
operator-sdk requires a container management tool that it can use to build the
operator image. The operator-sdk CLI supports docker, podman, and buildah as
the underlying container management tools.

To install the operator-sdk CLI, you can simply download a release from their GitHub
repository at https://github.com/operator-framework/operator-sdk/
releases. However, the process used to install docker, podman, or buildah may
vary greatly, depending on your operating system; not to mention, that Windows users
will not be able to use the operator-sdk toolkit natively.

Fortunately, the Minikube Virtual Machine (VM) can be leveraged as a working
environment for developers of many different operating systems since it is a Linux VM
and also contains the Docker CLI. In this section, we will install operator-sdk to the
Minikube VM and will use this environment to create the operator. Note that while the
steps provided are designed to run in the VM, most of these steps will also apply to all
Linux and Mac machines.

Follow these steps to install operator-sdk on the Minikube VM:

1. Gain access to the VM by running the minikube ssh command, as follows:

$ minikube ssh

2. Once inside the VM, you need to download the operator-sdk CLI. This can be
accomplished using the curl command. Note that the operator-sdk version
used at the time of writing was version 0.15.2.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/operator-framework/operator-sdk/releases
https://github.com/operator-framework/operator-sdk/releases

268 Using Helm with the Operator Framework

To download this version of the operator-sdk CLI, run the following command:
$ curl -o operator-sdk -L https://github.com/operator-
framework/operator-sdk/releases/download/v0.15.2/
operator-sdk-v0.15.2-x86_64-linux-gnu

3. Once downloaded, you will need to change the permission of the operator-sdk
binary to be user-executable. Run the chmod command to make this modification,
as follows:

$ chmod u+x operator-sdk

4. Next, move the operator-sdk binary to a location managed by the VM's PATH
variable, such as /usr/bin. Because this operation requires a root privilege, you
will need to run the mv command using sudo, as follows:

$ sudo mv operator-sdk /usr/bin

5. Finally, verify your operator-sdk installation by running the operator-sdk
version command, like this:

$ operator-sdk version

operator-sdk version: 'v0.15.2', commit:
'ffaf278993c8fcb00c6f527c9f20091eb8dd3352', go version:
'go1.13.3 linux/amd64'

If this command executes without error, you have successfully installed the
operator-sdk CLI.

6. As an additional step, you should also clone the Packt repository in your Minikube
VM since we will later leverage the guestbook Helm chart to build a Helm
operator. Run the following command in your VM to clone the repository:

$ git clone https://github.com/PacktPublishing/-Learn-
Helm.git Learn-Helm

Now that you have a Quay image repository and a local development environment created
from the Minikube VM, let's begin writing the Guestbook Operator. Note that an example
of the operator code is located in the Packt repository at https://github.com/
PacktPublishing/-Learn-Helm/tree/master/guestbook-operator.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/operator-framework/operator-sdk/releases/download/v0.15.2/operator-sdk-v0.15.2-x86_64-linux-gnu
https://github.com/operator-framework/operator-sdk/releases/download/v0.15.2/operator-sdk-v0.15.2-x86_64-linux-gnu
https://github.com/operator-framework/operator-sdk/releases/download/v0.15.2/operator-sdk-v0.15.2-x86_64-linux-gnu
https://github.com/PacktPublishing/-Learn-Helm.git
https://github.com/PacktPublishing/-Learn-Helm.git
https://github.com/PacktPublishing/-Learn-Helm/tree/master/guestbook-operator
https://github.com/PacktPublishing/-Learn-Helm/tree/master/guestbook-operator

Creating a Helm operator 269

Scaffolding the operator file structure
Similar to Helm charts themselves, Helm Operators built by the operator-sdk CLI
have a specific file structure that must be adhered to. The file structure is explained in the
following table:

Figure 8.6 – The file structures explained

The operator file structure can be easily created using the operator-sdk new
command. In your Minikube VM, execute the following command to scaffold the
Guestbook Operator:

$ operator-sdk new guestbook-operator --type helm --kind
Guestbook --helm-chart Learn-Helm/helm-charts/charts/guestbook

INFO[0000] Creating new Helm operator 'guestbook-operator'.

INFO[0003] Created helm-charts/guestbook

WARN[0003] Using default RBAC rules: failed to get Kubernetes
config: could not locate a kubeconfig

INFO[0003] Created build/Dockerfile

INFO[0003] Created watches.yaml

INFO[0003] Created deploy/service_account.yaml

INFO[0003] Created deploy/role.yaml

INFO[0003] Created deploy/role_binding.yaml

INFO[0003] Created deploy/operator.yaml

INFO[0003] Created deploy/crds/charts.helm.k8s.io_v1alpha1_
guestbook_cr.yaml

INFO[0003] Generated CustomResourceDefinition manifests.

INFO[0003] Project creation complete.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

270 Using Helm with the Operator Framework

The operator-sdk new command created a local directory called guestbook-
operator, which contains the operator contents. It is specified that a Helm operator
should be created using the --type flag, along with Guestbook as the name of the CR.

Finally, the --helm-chart flag instructed the operator-sdk CLI to copy the source
Guestbook chart to the operator directory.

With the Guestbook operator successfully scaffolded, let's build the operator and push it
to your Quay registry.

Building the operator and pushing it to Quay
The operator-sdk CLI provides an operator-sdk build command that makes
it straightforward to build an operator image. This command is designed to be run
against the top-level directory of an operator, and will build the image by referencing the
Dockerfile located under the operator's build/ folder.

In your Minikube VM, run the operator-sdk build command, substituting your
Quay username where directed, as follows:

$ cd guestbook-operator

$ operator-sdk build quay.io/$QUAY_USERNAME/guestbook-operator

If the build is successful, you will receive the following message:

INFO[0092] Operator build complete.

Since the Minikube VM has Docker installed, the operator-sdk CLI used Docker
in the background to build the image. You can run the docker images command to
verify that the image has been built, as follows:

$ docker images

With the operator image built locally, it must be pushed to an image registry so that it
can be pulled from Kubernetes. In order to push an image to a registry using Docker, you
must first authenticate with the target registry. Use the docker login command to log
in to Quay, as shown in the following code snippet:

$ docker login quay.io --username $QUAY_USERNAME --password
$QUAY_PASSWORD

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Helm operator 271

Once logged in to Quay, use the docker push command to push your operator image
to your Quay registry, like this:

$ docker push quay.io/$QUAY_USERNAME/guestbook-operator

When the push is finished, return to the guestbook-operator repository that you
created in the Creating a Quay repository section. You should be able to see a new tag
published under the Repository tags section, as illustrated in the following screenshot:

Figure 8.7 – A new tag should be pushed to your Quay registry

Now that your operator has been pushed to a container registry, let's continue by
deploying the operator to your Kubernetes environment.

Deploying the Guestbook Operator
When scaffolding the Guestbook Operator, the operator-sdk CLI also created a
folder called deploy and generated the files required to deploy the operator within.

The following file structure depicts the contents of the deploy folder:

deploy/

 crds/

 charts.helm.k8s.io_guestbooks_crd.yaml

 charts.helm.k8s.io_v1alpha1_guestbook_cr.yaml

 operator.yaml

 role_binding.yaml

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

272 Using Helm with the Operator Framework

 role.yaml

 service_account.yaml

The crds/ folder contains the YAML resource required to create the Guestbook CRD
(charts.helm.k8s.io_guestbooks_crd.yaml). This file is required to register
the new Guestbook API endpoint with Kubernetes. In addition, the crds/ folder
contains an example Guestbook CR application (charts.helm.k8s.io_v1alpha1_
guestbook_cr.yaml). Creating this file will trigger the operator to install the
Guestbook Helm chart.

Review the contents of the CR in order to become familiar with the types of properties
defined, as follows:

$ cat guestbook-operator/deploy/crds/charts.helm.k8s.io_
v1alpha1_guestbook_cr.yaml

A snippet of the output is provided in the following code block:

Figure 8.8 – Snippet of the Guestbook CR

Each of the entries under the spec stanza refer to the Guestbook chart's values.yaml
file. The operator-sdk tool automatically created this example CR with each
of the default values that were included from this file. Additional entries can be added
or modified before applying this CR, to override other values of the Guestbook chart.
These values are consumed by the operator at runtime to deploy the Guestbook
application accordingly.

The deploy/operator.yaml file defines the actual operator itself and contains a
simple deployment resource. We will return soon to this file's contents.

The role_binding.yaml, role.yaml and service_account.yaml files were
created in order to provide the operator with the permissions necessary to watch for

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Helm operator 273

Guestbook CRs and install the Guestbook Helm chart to Kubernetes. It performs these
actions by authenticating with the Kubernetes API using the service account defined in
the service_account.yaml file. Once authenticated, the operator will be provided
authorization based on the role.yaml and role_binding.yaml resources. The
role.yaml file lists the finely grained permissions that describe the exact resources
and actions that the operator is allowed to perform. The role_binding.yaml file
binds the role to the operator's service account.

With an understanding of each resource created under the operator's deploy/ folder,
follow these steps to deploy your Guestbook operator:

1. Unfortunately, the Minikube VM does not contain Kubectl, so you must first exit
to your local system if you are still connected to the VM from the command line, by
running the following command:

$ exit

2. The resources that were created with operator-sdk earlier are also located
in the Packt repository under the guestbook-operator/ folder. If you have
not cloned this repository in previous chapters, clone it now using the following
command:

$ git clone https://github.com/PacktPublishing/-Learn-
Helm.git Learn-Helm

As a quick aside, note that the only resource in the Packt repository that is
modified from the resources you created in your Minikube VM is the role.
yaml file. The operator-sdk CLI generated a simple role.yaml file
based on the template files that were included in the guestbook Helm chart.
However, if you can recall, the guestbook chart contained a couple of resources
that would only be included based on a conditional value. These resources
were the Job and PersistentVolumeClaim hook resources that were only
included if persistent storage was enabled. One example of this is shown in the
PersistentVolumeClaim template, in the following code snippet:

{{- if .Values.redis.master.persistence.enabled }}

apiVersion: v1

kind: PersistentVolumeClaim

The operator-sdk CLI did not automatically create the Role-Based Access
Control (RBAC) rules for Jobs and PersistentVolumeClaims since it did

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm.git
https://github.com/PacktPublishing/-Learn-Helm.git

274 Using Helm with the Operator Framework

not know whether this template would be included.

As a result, the authors have added these rules to the role.yaml file, located
at https://github.com/PacktPublishing/-Learn-Helm/blob/
master/guestbook-operator/deploy/role.yaml#L81-L104.

3. The Guestbook operator will be dependent on a new API endpoint. Create this
endpoint by applying the CRD under the guestbook-operator/deploy/
crds folder, as follows:

$ kubectl apply -f guestbook-operator/deploy/crds/charts.
helm.k8s.io_guestbooks_crd.yaml

We will use the second file under that folder (the CR) later to deploy the
Guestbook application.

4. Next, you will need to modify the guestbook-operator/deploy/
operator.yaml file to specify the operator image that you built earlier.
You will notice the following lines of code within this file:

Replace this with the built image name

image: REPLACE_IMAGE

Replace the REPLACE_IMAGE text with the location of your operator image.
This value should be similar to quay.io/$QUAY_USERNAME/guestbook-
operator.

5. Once you have applied the CRD and updated your operator.yaml file, you
can proceed to apply each of the resources under the guestbook-operator/
deploy/ folder by running the following command:

$ kubectl apply -f guestbook-operator/deploy -n chapter8

6. Wait for the operator to report the 1/1 ready state by running a watch against the
Pods in the chapter8 namespace, like this:

$ kubectl get pods -n chapter8 -w

Now that the Guestbook operator has been deployed, let's use it to install the Guestbook
Helm chart.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Helm operator 275

Deploying the Guestbook application
When using Helm normally as a standalone CLI tool, you would install a Helm chart by
running the helm install command. With a Helm operator, you install a Helm chart
by creating a CR. Install the Guestbook Helm chart by creating the provided CR located
under the guestbook-operator/deploy/crds/ folder, as shown in the following
code snippet:

$ kubectl apply -f guestbook-operator/deploy/crds/charts.helm.
k8s.io_v1alpha1_guestbook_cr.yaml -n chapter8

Run another watch command against the Pods in the chapter8 namespace, as shown
in the following code snippet, and you should be able to see the Guestbook and Redis
Pods spin up as a result of the Helm chart installation:

$ kubectl get pods -n chapter8 -w

The following code block depicts each Pod in its READY state:

NAME READY
STATUS RESTARTS

example-guestbook-65bc5fdc55-jvkdz 1/1 Running 0

guestbook-operator-6fddc8d7cb-94mzp 1/1 Running 0

redis-master-0 1/1 Running 0

redis-slave-0 1/1 Running 0

redis-slave-1 1/1 Running 0

When you created the Guestbook CR, a helm install command was executed by the
operator to install the Guestbook chart. You can confirm the release that was created by
running helm list, like this:

$ helm list -n chapter8

NAME NAMESPACE REVISION UPDATED

example-guestbook chapter8 1 2020-02-24

An upgrade of the release can be performed by modifying the example-guestbook
CR. Modify your guestbook-operator/deploy/crds/charts.helm.k8s.io_
v1alpha1_guestbook_cr.yaml file to change the number of replicas from 1 to 2,
like this:

replicaCount: 2

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

276 Using Helm with the Operator Framework

Apply the change once you have updated the replicaCount value, as follows:

$ kubectl apply -f guestbook-operator/deploy/crds/charts.helm.
k8s.io_v1alpha1_guestbook_cr.yaml -n chapter8

The modification to the Guestbook CR will trigger a helm upgrade command against
the example-guestbook release. As you may recall from Chapter 5, Building Your
First Helm Chart, the upgrade hook for the Guestbook Helm chart will initiate a backup
of the Redis database. If you run a watch against the Pods in the chapter8 namespace
after modifying the CR, you will notice a backup Job begin and will see one of the two
Guestbook Pods terminate once the backup is finished. You will also notice from the
helm list command in the following code snippet that the revision number of the
example-guestbook release was increased to 2:

$ helm list -n chapter8

NAME NAMESPACE REVISION UPDATED

example-guestbook chapter8 2 2020-02-24

Although the revision number was increased to 2, one limitation of Helm-based
Operators as of writing is that you cannot initiate a rollback to a previous revision as
you can by using the CLI. If you attempt to run helm history against the example-
guestbook release, you will also notice that only the second revision is in the release
history, as illustrated in the following code snippet:

$ helm history example-guestbook -n chapter8

REVISION UPDATED STATUS

2 Tue Feb 25 04:36:10 2020 deployed

This is an important difference between using Helm regularly with the CLI and using
Helm via a Helm-based operator. Because the release history is not retained, the Helm-
based operator does not allow you to perform an explicit rollback. However, a helm
rollback command will be run in cases where upgrades fail. In this case, the rollback
hook will be executed in an attempt to roll back to the attempted upgrade.

Although the Helm-based operator does not retain release history, one area in which it
excels is synchronizing the desired and live states of an application. This is because the
operator constantly watches the state of the Kubernetes environment and ensures that
the application is always configured to match the configuration specified on the CR. In
other words, if one of the Guestbook application's resources is modified, the operator will
immediately revert the change to make it match the specification as defined on the CR.
You can see this in action by modifying a field on one of the Guestbook resources.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Helm operator 277

As an example, we will change the Guestbook deployment's replica count directly from 2
to 3 and watch the operator revert this back to 2 replicas automatically to re-synchronize
the desired state defined in the CR.

Execute the following kubectl patch command to change the replica count of the
Guestbook deployment from 2 to 3:

$ kubectl patch deployment example-guestbook -p
'{'spec':{'replicas':3}}' -n chapter8

Normally, this would simply add an additional replica of your Guestbook application.
However, because the Guestbook CR currently defines only 2 replicas, the operator
quickly changes the replica count back to 2 and terminates the additional Pod that
was created. If you actually wanted to increase the replica count to 3, you would have
to update the replicaCount value on the Guestbook CR. This process provides the
advantage of ensuring that the desired state matches the live state of the cluster.

Uninstalling the Guestbook application with a Helm-based operator is as simple as
removing the CR. Delete the example-guestbook CR to uninstall the release, like this:

$ kubectl delete -f guestbook-operator/deploy/crds/charts.helm.
k8s.io_v1alpha1_guestbook_cr.yaml -n chapter8

This will remove the example-guestbook release and all of the dependent resources.

You can also remove the Guestbook Operator and its resources as well, since we will not
need them in the next section. You can do this by running the following command:

$ kubectl delete -f guestbook-operator/deploy/ -n chapter8

In general, you should always make sure that you delete the CR first before deleting the
operator. The operator is programmed to perform a helm uninstall command on
your release when you delete the CR. If you accidentally delete the operator first, you will
have to manually run helm uninstall from the command line.

In this section, you created a Helm operator and learned how to deploy an application
using an operator-based approach. In the next section, we will continue the discussion on
Operators by investigating how they can be managed using Helm.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

278 Using Helm with the Operator Framework

Using Helm to manage Operators and CRs
In the previous section, you installed the Guestbook Operator by first creating the CRD
that is found underneath the guestbook-operator/deploy/crds/ folder. Next,
you created the operator resources contained underneath the guestbook-operator/
deploy/ folder. Finally, you created the CR to deploy the Guestbook application. Each
of these tasks was performed by using the Kubectl CLI, but this instead can also be
accomplished using Helm charts to provide a more flexible and repeatable solution toward
installing and managing an operator.

Helm allows you to provide a special directory called crds/ inside your Helm chart,
which is used to create CRDs whenever the chart is installed. Helm creates CRDs before
any of the other resources defined under the templates/ folder, making it simpler to
install applications such as Operators that depend on the presence of CRDs.

The following file structure depicts a Helm chart that could be used to install the
Guestbook Operator:

guestbook-operator/

 Chart.yaml

 crds/

 charts.helm.k8s.io_guestbooks_crd.yaml

 templates/

 operator.yaml

 role_binding.yaml

 role.yaml

 Service_account.yaml

 values.yaml

This Helm chart, upon installation, would first install the Guestbook CRD. If the CRD
is already present in the cluster, it would skip CRD creation and would simply create the
template resources instead. Note that while CRDs can be convenient to include in a Helm
chart, there are several limitations. First, CRDs in a Helm chart cannot contain any Go
templating, so CRDs cannot benefit from parameterization as in typical resources. CRDs
can also never be upgraded, rolled back, or deleted. As a result, users must take care
to modify or remove the CRDs manually if these actions are desired. Finally, installing
such a chart as previously described would require a cluster-admin privilege, the highest
privilege permitted in Kubernetes, because the chart contains at least one CRD resource.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Cleaning up your Kubernetes environment 279

The Helm chart described previously can be used by cluster administrators to easily install
the Guestbook operator. This, however, is only half of the equation, as end users must still
create CRs to deploy the Guestbook application. Luckily, end users of the operator can
also leverage Helm by creating a Helm chart that wraps the Guestbook CR.

An example layout for such a Helm chart is shown in the following file structure:

guestbook-cr

 Chart.yaml

 templates/

 guestbook.yaml

 values.yaml

The preceding example includes a template called guestbook.yaml. This template
could contain the Guestbook CR originally generated by the operator-sdk CLI,
with the name charts.helm.k8s.io_v1alpha1_guestbook_cr.yaml. Unlike
CRDs, CRs underneath the templates/ folder benefit from Go templating and lifecycle
management, as do all other resources. This methodology provides the most value when
the CR contains complex fields that may be conditionally included based on the user-
provided values or when multiple different CRs must be included in the same release.
With this method, you would also be able to manage the lifecycle of your CRs and
maintain a history of revisions.

Now that you have an understanding of how a Helm operator can be created and how
Helm can be used to help manage Operators, feel free to clean up your Kubernetes
environment in the next section.

Cleaning up your Kubernetes environment
First, run the following command to remove your Guestbook CRD:

$ kubectl delete crd guestbooks.charts.helm.k8s.io

Before you proceed with the next clean-up steps, note that one of the questions posed
later under the Questions section will challenge you with writing your own Helm charts
to implement the chart designs discussed under the Using Helm to manage Operators and
CRs section. You may want to postpone these steps to test your implementation.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

280 Using Helm with the Operator Framework

To continue the clean-up, run the following command to delete your chapter8
namespace:

$ kubectl delete ns chapter8

Finally, run the minikube stop command to stop your Minikube VM.

Summary
Operators are important to help ensure that the desired state always matches the live
state. Such a feat allows users to more easily maintain a source of truth for resource
configuration. Users can leverage the Helm-based operator to provide this type of
resource reconciliation, and it is easy to get started because this uses Helm charts as
its deployment mechanism. When a CR is created, the Helm operator will install the
associated Helm chart to create a new release. Subsequent upgrades will be performed
when the CR is modified, and the release will be uninstalled when the CR is deleted.

To manage the operator, cluster administrators can create a separate Helm chart used
for creating the operator's resources and CRDs. End users can also create a separate Helm
chart that can be used for creating the operator's CRs, along with any other resources that
may be relevant.

In the next chapter, we will discuss best practices and topics around security within the
Helm ecosystem.

Further reading
For more information about the Kubernetes resources, you can check the following links:

• To discover more Operators that have been developed by the community, consult
this repository: https://github.com/operator-framework/awesome-
Operators.

• You can learn more about Operators along with their origins from the Kubernetes
documentation at https://kubernetes.io/docs/concepts/extend-
kubernetes/operator/.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/.
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/.

Questions 281

Questions
1. How does a Kubernetes operator work?

2. What are the differences between using the Helm CLI and using a
Helm-based operator?

3. Imagine you are tasked with creating a Helm operator out of an existing Helm chart.
What steps would you take to complete this task?

4. How do the install, upgrade, rollback, and uninstall lifecycle hooks function in a
Helm operator?

5. What is the purpose of the crds/ folder in a Helm chart?

6. In the Using Helm to manage Operators and CRs section, we introduced two
different Helm charts that can be used to help manage Operators and CRs.
Implement the Helm charts by using the chart layouts provided within that section.
The charts should be used to install the Guestbook operator and to install the
Guestbook CR. Refer to Chapter 5, Building Your First Helm Chart for assistance on
creating a Helm chart.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

9
Helm Security

Considerations
As you have likely come to realize throughout this book, Helm is a powerful tool that
presents many deployment possibilities to users. This power can, however, get out of hand
if certain security paradigms are not recognized and followed. Luckily, Helm provides
many ways to incorporate security into everyday usage in ways that are simple to achieve,
from the moment the Helm CLI is downloaded to the moment a Helm chart is installed
on a Kubernetes cluster.

In this chapter, we will cover the following topics:

• Data provenance and integrity

• Helm chart security

• Additional considerations around RBAC, values, and chart repositories

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

284 Helm Security Considerations

Technical requirements
This chapter will make use of the following technologies:

• minikube

• kubectl

• Helm

• GNU Privacy Guard (GPG)

The installation and configuration of Minikube, Kubectl, and Helm was covered in
Chapter 2, Preparing a Kubernetes and Helm Environment.

We will also leverage the guestbook chart from the Packt repository, located at
https://github.com/PacktPublishing/-Learn-Helm, for a later example
in this chapter. If you have not already cloned this repository, be sure to do so with the
following command:

$ git clone https://github.com/PacktPublishing/-Learn-Helm.git
Learn-Helm

Data provenance and integrity
When working with any kind of data, there are two often-overlooked questions that
should be considered:

• Does the data come from a reliable source or from the source that you expected
it to?

• Does the data contain all of the contents that you expected it to?

The first question refers to the topic of data provenance. Data provenance is about
determining where data originated from.

The second question refers to the topic of data integrity. Data integrity is about
determining whether the contents you received from a remote location represent what
you expected to receive and can help determine whether the data was tampered with as it
was sent through the wire. Both data provenance and data integrity can be verified using
a concept called digital signatures. An author can create a unique signature based on
cryptography to sign data and the consumer of that data can use cryptographic tools to
verify the authenticity of that signature.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm
https://github.com/PacktPublishing/-Learn-Helm.git

Data provenance and integrity 285

If the authenticity is verified, then the consumer knows that the data originates from the
expected source and was not tampered with as it was transferred.

Authors can create a digital signature by first creating a Pretty Good Privacy (PGP)
keypair. PGP, in this context, refers to OpenPGP, which is a set of standards based on
encryption. PGP focuses on establishing asymmetric encryption, which is based on the
use of two different keys—private and public.

Private keys are meant to be kept secret, while public keys are designed to be shared. For
digital signatures, the private key is used to encrypt data, while a public key is used by
consumers to decrypt that data. The PGP keypair is often created using a tool called GPG,
which is an open source tool that implements the OpenPGP standard.

Once the PGP keypair is created, the author can use GPG to sign the data. When the data
is signed, GPG performs the following steps in the background:

1. A hash is calculated based on the contents of the data. The output is a fixed-length
string called the message digest.

2. The message digest is encrypted using the author's private key. The output is the
digital signature.

To verify the signature, consumers must use the author's public key to decrypt it. This
verification can also be performed using GPG.

Digital signatures play a role in Helm in two ways:

• First, each Helm download has an accompanying digital signature from one of the
maintainers that can be used to verify the authenticity of the binary. The signature
can be used to verify the origin of the download, as well as its integrity.

• Second, Helm charts can also be digitally signed to benefit from the same
verifications. Authors of a chart sign the chart during packaging and the chart users
verify the validity of the chart by using the author's public key.

With an understanding of how data provenance and integrity come into play as they
relate to digital signatures, let's create a GPG keypair on your local work station, if you
do not already have one, that will be used to elaborate on many of the previously
described concepts.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

286 Helm Security Considerations

Creating a GPG keypair
In order to create a keypair, you must first have GPG installed on your local machine.
Use the following instructions as a guide to install GPG on your local machine. Note that
on Linux systems, you probably already have GPG installed:

• For Windows, you can use the Chocolatey package manager, as in the
following command:

> choco install gnupg

You can also download the installer for Windows from https://gpg4win.org/
download.html.

• For macOS, you can use the Homebrew package manager using the
following command:

$ brew install gpg

You can also download the macOS-based installed from https://
sourceforge.net/p/gpgosx/docu/Download/.

• For Debian-based Linux distributions, you can use the apt package manager,
 as shown:

$ sudo apt install gnupg

• For RPM-based Linux distributions, you can use the dnf package manager,
as shown:

$ sudo dnf install gnupg

Once you have installed GPG, you can create your own GPG keypair, which we will use
throughout our discussion on data provenance and integrity.

The steps to configure this keypair are as follows:

1. Run the following command to create a new keypair. This command can be run
from any directory:

$ gpg --generate-key

2. Follow the prompts to enter your name and email address. These will be used to
identify you as the owner of the keypair and will be the name and email address
seen by people who receive your public key.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://gpg4win.org/download.html
https://gpg4win.org/download.html
https://sourceforge.net/p/gpgosx/docu/Download/
https://sourceforge.net/p/gpgosx/docu/Download/

Data provenance and integrity 287

3. Press the O key to continue.

4. You will then be prompted to enter your private key password. Enter and confirm
the desired passphrase that will be used for encryption and decryption operations..

You will see an output similar to the following once your GPG keypair has been created:

Figure 9.1: The output following successful creation of the GPG keypair

The output displays information about the public (pub) and private (sub) keys, as well
as the fingerprint of the public key (the second line of the output). The fingerprint is a
unique identifier used to identify you as the owner of that key. The third line, beginning
with uid, displays the name and email address that you entered as you generated your
GPG keypair.

With your gpg keypair now created, continue to the next section to learn how a Helm
download can be verified.

Verifying Helm downloads
As discussed in Chapter 2, Preparing a Kubernetes and Helm Environment, one of the ways
Helm can be installed is by downloading an archive from GitHub. These archives can be
installed from Helm's GitHub releases page (https://github.com/helm/helm/
releases) by selecting one of the links shown in the following screenshot:

Figure 9.2: The Installation section from Helm's GitHub releases page

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/helm/helm/releases
https://github.com/helm/helm/releases

288 Helm Security Considerations

At the bottom of the Installation section, you'll notice a paragraph explaining that the
release was signed. Each Helm release is signed by a Helm maintainer and can be verified
against the digital signature that corresponds to the downloaded Helm release. Each of the
digital signatures are located under the Assets section.

The following screenshot shows how these are represented:

Figure 9.3: The Assets section from Helm's GitHub releases page

To verify the provenance and integrity of your Helm download, you should also download
the corresponding .asc file. Note that .sha256.asc files are used to verify the integrity
only. In this example, we will download the corresponding .asc file, which will verify
both the provenance and integrity.

Begin verifying a Helm release by following these steps:

1. Download the Helm archive under the installation that corresponds with your
operating system. Although the Helm binary is likely already installed, you can still
download an archive to follow along with the example. Once you have finished with
the example, you can remove the archive from your workstation.

2. Download the .asc file that corresponds with your operating system. For example,
if you are running an AMD64-based Linux system, you would download the helm-
v3.0.0-linux-amd64.tar.gz.asc file.

Important note
The version contained in the filename corresponds to the actual Helm version
you are downloading.

Once both files are downloaded, you should see two similar files in the same directory on
the command line:

helm-v3.0.0-linux-amd64.tar.gz

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Data provenance and integrity 289

helm-v3.0.0-linux-amd64.tar.gz.asc

The next step involves importing the Helm maintainer's public key to your local gpg
keyring. This allows you to decrypt the digital signature contained in the .asc file to
verify the provenance and integrity of your download. The maintainer's public key can
be retrieved by following the link to their keybase account. The link can be found by
hovering your cursor over the keybase account words. In the example from Figure
9.2, this location resolves to https://keybase.io/bacongobbler. The public key
can then be downloaded by adding /pgp_keys.asc to the end, making the resulting
link https://keybase.io/bacongobbler/pgp_keys.asc.

Note that there are multiple Helm maintainers, so your link may differ if you are
performing verification on a different release. Be sure that you are downloading the
correct public key that corresponds to the key that signed the release.

Let's continue with the verification process:

1. Using the command line, download the public key corresponding to the Helm
release signature:

$ curl -o release_key.asc https://keybase.io/
bacongobbler/pgp_keys.asc

2. Once downloaded, you need to import the public key to your gpg keyring. This is
done by running the following command:

$ gpg --import release_key.asc

 If the import is successful, you will see the following message:

gpg: key 92AA783CBAAE8E3B: public key 'Matthew Fisher
<matt.fisher@microsoft.com>' imported

gpg: Total number processed: 1

gpg: imported: 1

3. Now that the public key of the digital signature has been imported, you can verify
the Helm installation's release by leveraging the --verify subcommand of GPG.
This should be run against the helm*.asc file:

$ gpg --verify helm-v3.0.0-linux-amd64.tar.gz.asc

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://keybase.io/bacongobbler
https://keybase.io/bacongobbler/pgp_keys.asc
https://keybase.io/bacongobbler/pgp_keys.asc
https://keybase.io/bacongobbler/pgp_keys.asc
https://keybase.io/bacongobbler/pgp_keys.asc

290 Helm Security Considerations

This command will attempt to decrypt the digital signature contained in the .asc
file. If it is successful, it means that the Helm download (the file ending in .tar.
gz) was signed by the person you expect (Matthew Fisher for this release)
and the download was not modified or altered in any way. A successful output is
as follows:

gpg: assuming signed data in 'helm-v3.0.0-linux-amd64.
tar.gz'

gpg: Signature made Wed 13 Nov 2019 08:05:01 AM CST

gpg: using RSA key
967F8AC5E2216F9F4FD270AD92AA783CBAAE8E3B

gpg: Good signature from 'Matthew Fisher <matt.fisher@
microsoft.com>' [unknown]

gpg: WARNING: This key is not certified with a trusted
signature!

gpg: There is no indication that the signature
belongs to the owner.

Primary key fingerprint: 967F 8AC5 E221 6F9F 4FD2 70AD
92AA 783C BAAE 8E3B

Upon further inspection of this output, you may notice the WARNING message indicating
that the key was not certified, which may lead you to question the validity of whether this
was actually successful. The verification was successful, but you have not instructed gpg
that the maintainer's public key is certified to belong to the person they say it belongs to.

You can perform this certification by following these steps:

1. Check that the last 64 bits (8 characters) of the primary key fingerprint displayed
at the end of the output match the 64-bit fingerprint displayed in the Helm releases
page. As you will recall from Figure 9.2, the fingerprint was displayed, as shown:

This release was signed with 92AA 783C BAAE 8E3B and can
be found at @bacongobbler's keybase account.

2. As you can see from the preceding code, the last 64 bits of the primary key
fingerprint is displayed on the Helm releases page, so we know that this public key
does belong to who we expect it to. As a result, we can safely certify the maintainer's
public key. This can be done by signing the public key using your own gpg keypair.
Perform this step by using the following command:

$ gpg --sign-key 92AA783CBAAE8E3B # Last 64 bits of

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/bacongobbler
https://github.com/bacongobbler

Signing and verifying Helm charts 291

fingerprint

3. In the Really sign? prompt, enter y.

Now that you have signed the maintainer's public key, the key is now certified. The
verification can now be run without displaying a WARNING message in the output:

$ gpg --verify helm-v3.0.0-linux-amd64.tar.gz.asc

gpg: assuming signed data in 'helm-v3.0.0-linux-amd64.
tar.gz'

gpg: Signature made Wed 13 Nov 2019 08:05:01 AM CST

gpg: using RSA key
967F8AC5E2216F9F4FD270AD92AA783CBAAE8E3B

gpg: checking the trustdb

gpg: marginals needed: 3 completes needed: 1 trust
model: pgp

gpg: depth: 0 valid: 2 signed: 1 trust: 0-, 0q,
0n, 0m, 0f, 2u

gpg: depth: 1 valid: 1 signed: 0 trust: 1-, 0q,
0n, 0m, 0f, 0u

gpg: next trustdb check due at 2022-03-11

gpg: Good signature from 'Matthew Fisher <matt.fisher@
microsoft.com>' [full]

Digital signatures also play a role in verifying the provenance and integrity of Helm charts.
We will continue this discussion in the next section.

Signing and verifying Helm charts
Similar to how the Helm maintainers sign releases, you can sign your own Helm charts
so that users can verify that the chart they install actually came from you and contains
the expected contents. To sign a chart, you must first have a gpg keypair present on your
local workstation.

Next, you can leverage certain flags from the helm package command to sign your
chart with a specified key.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

292 Helm Security Considerations

Let's demonstrate how this can be accomplished by leveraging the guestbook chart
from the Packt repository. This chart is located in the Learn-Helm/helm-charts/
charts/guestbook folder. We will assume that you already have a gpg keypair on your
local workstation, but if you do not, you can follow the instructions from the Setup section
of the Data provenance and integrity section of this chapter to configure your keypair.

One important point to note before signing the guestbook chart is that you must
export your public and secret keyrings to a legacy format if you are using GPG version 2
or greater. Previous versions of GPG stored keyrings in a .gpg file format, which is the
format that Helm expects your keyring to be in (at the time of writing). Newer versions of
GPG store keyrings in the .kbx file format, which is not currently supported.

Begin the signing process by converting your GPG public and secret keyrings into
the .gpg file format:

1. Find your gpg version by running the following command:

$ gpg --version

gpg (GnuPG) 2.2.9

libgcrypt 1.8.3

Copyright (C) 2018 Free Software Foundation, Inc.

2. If your gpg version is 2 or greater, export your public and secret keyring using the
following command:

$ gpg --export > ~/.gnupg/pubring.gpg

$ gpg --export-secret-keys > ~/.gnupg/secring.gpg

Once your keyrings have been exported, you will be able to sign and package your
Helm charts. The helm package command provides three key (pun intended)
flags that allow you to sign and package a chart:

--sign: Allows you to sign a chart using a PGP private key

--key: The name of the key to use when signing

--keyring: The location of the keyring containing the PGP private key

In the next step, these flags will be used with the helm package command to sign
and package the guestbook Helm chart.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Signing and verifying Helm charts 293

3. Run the following helm package command:

$ helm package --sign --key '$KEY_NAME' --keyring
~/.gnupg/secring.gpg guestbook

The $KEY_NAME variable can refer to either the email, name, or fingerprint
associated with the desired key. These details can be discovered by leveraging the
gpg --list-keys command.

When using the helm package command without signing, you would expect to
see one file produced as output—the tgz archive containing the Helm chart. In this
case, when signing and packaging the guestbook Helm chart, you will see that the
following two files are created:

guestbook-1.0.0.tgz

guestbook-1.0.0.tgz.prov

The guestbook-1.0.0.tgz.prov file is called a provenance file. The
provenance file contains a provenance record, which displays the following:

• The chart metadata from the Chart.yaml file

• The sha256 hash of the Helm guestbook-1.0.0.tgz file

• The PGP digital signature of the guestbook-1.0.0.tgz file

Users of a Helm chart will leverage the provenance file to verify the data provenance
and integrity of the chart. When pushing a chart to a chart repository, developers
should be sure to upload both the .tgz archive of the Helm chart and the .tgz.
prov provenance file.

Once you have packaged and signed your Helm chart, you will need to export
the public key that corresponds to the private key used to encrypt your digital
signature. This will allow users to download your public key and use it during
the verification process.

4. Export your public key to the ascii-armor format by using the following command:

$ gpg --armor --export $KEY_NAME > pubkey.asc

If you are releasing the guestbook chart publicly, this key can then be saved to
a downloadable location by your chart users, such as Keybase. Users could then
import this public key by leveraging the gpg --import command described in
the Verifying Helm releases section of this chapter.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

294 Helm Security Considerations

Chart users can leverage the helm verify command to verify a chart's data
provenance and integrity before installation. This command is designed to be run
against a locally downloaded .tgz chart archive and .tgz.prov provenance file.

5. The following command provides an example of running this process against the
guestbook Helm chart and assumes that your public key has been imported to a
keyring called ~/.gnupg/pubring.gpg:

$ helm verify --keyring ~/.gnupg/pubring.gpg guestbook-
1.0.0.tgz

If the verification is successful, no output will be displayed. Otherwise, an error
message will be returned. The verification could fail for a variety of reasons,
including the following:

The .tgz and .tgz.prov files are not in the same directory.

The .tgz.prov file is corrupt.

The file hashes do not match, indicating a loss of integrity.

The public key used to decrypt the signature does not match the private key
used to originally encrypt it.

The helm verify command is designed to be run on locally downloaded charts, so
users may find it better to instead leverage the helm install --verify command,
which performs verification and installation in a single command, assuming that the
.tgz and .tgz.prov files are both downloadable from a chart repository.

The following command describes how the helm install --verify command can
be used:

$ helm install my-guestbook $CHART_REPO/guestbook --verify
--keyring ~/.gnupg/pubring.gpg

By using the methodologies described in this section for signing and verifying Helm
charts, both you and your users can ensure that you are installing charts that both belong
to you and have been unaltered.

With an understanding of how data provenance and integrity play a role in Helm, let's
continue discussing the Helm security considerations by moving on to our next topic—
security in relation to Helm charts and Helm chart development.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Developing secure Helm charts 295

Developing secure Helm charts
While provenance and integrity play a major role in the security of Helm, they are not
the only concerns you need to consider. Chart developers should ensure that, during the
development process, they are adhering to best practices regarding security to prevent
vulnerabilities from being introduced when a user installs the chart in a Kubernetes
cluster. In this section, we will discuss many of the primary concerns around security as
it relates to Helm chart development and what you, as a developer, can do to write Helm
charts with security as a priority.

We will begin by first discussing the security around any container images that your Helm
chart may use.

Using secure images
Since the goal of Helm (and Kubernetes) is to deploy container images, the image itself
is a major security concern. To start, chart developers should be aware of the differences
between image tags and image digests.

A tag is a human-readable reference to a given image and provides both developers and
consumers with an easy method for determining the contents of an image. However, tags
can present a security concern as there are no guarantees that the contents of a given tag
will always remain the same. The image owner may choose to provide an updated image
using the same tag, for example, to address security vulnerabilities, which would result
in a different underlying image being executed at runtime, even though the tag is the
same. Performing these modifications against the same tag introduces the possibility of
regressions, which can cause unexpected adverse effects to users. Instead of referencing
an image by tag, images can also be referenced by digest. An image digest is a computed
SHA-256 value of an image that not only provides an immutable identifier to an exact
image, but also allows for the container runtime to verify that the image retrieved from
the remote image registry contains the expected contents. This removes the risk of
deploying an image that contains an accidental regression against a given tag, and can also
remove the risks of a man-in-the-middle attack, where the tag's contents are modified
with malicious intent.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

296 Helm Security Considerations

As an example, instead of referencing an image as quay.io/bitnami/redis:5.0.9
in a chart template, it can instead be referenced by digest as
quay.io/bitnami/redissha256:70b816f2127afb5d4af7ec9d6e8636b2f0f
973a3cd8dda7032f9dcffa38ba11f. Notice that instead of there being a tag after
the name of the image, the SHA-256 digest is explicitly specified. This assures you that the
image content will not change over time, even if the tag changes, thus strengthening your
security posture.

Over time, you can expect a tag or a digest associated with an image to become unsafe
to deploy as vulnerabilities are eventually likely to be published against packages or OS
versions that this image may contain. There are many different ways to determine the
vulnerabilities associated with a given image. One way is to leverage the native capabilities
of the registry that the image belongs to. Many different image registries contain
capabilities around image vulnerability scanning that can help provide insight as to when
an image is vulnerable.

The Quay container registry, for example, can automatically scan images at specified
intervals to determine the number of vulnerabilities an image contains. The Nexus and
Artifactory container registries are also examples of container registries that have this
capability. Outside of native scanning capabilities provided by container registries, other
tools can be leveraged, such as Clair (which is also the backing scanning technology of
Quay), Anchore, Vuls, and OpenSCAP. When your image registry or standalone scanning
tool reports that an image is vulnerable, you should immediately update your chart's
image to a newer version if available to prevent vulnerabilities from being introduced to
your users' Kubernetes clusters.

To help simplify the process around updating the container image, you can develop
a regular cadence where image updates are checked. This helps to prevent you from
getting to a point where your target image contains vulnerabilities that make it unfit
for deployment. Many teams and organizations also specify that images can only be
sourced from trusted registries to reduce the potential of running images that do contain
vulnerabilities. This setting is configured at the container runtime level and the location
and specific configurations vary based on each runtime.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Developing secure Helm charts 297

Apart from image vulnerability scanning and content sourcing, you should also avoid
deploying images that require elevated permissions or capabilities. Capabilities are used
to give a process a subset of root permissions. Some examples of capabilities are NET_
ADMIN, which allows a process to perform network-related operations, and SYS_TIME,
which allows a process to modify a system's clock. Running a container as root gives the
container access to all the capabilities, which should be limited whenever possible. A list
of capabilities can be found in the CAPABILITIES(7) page of the Linux manual pages
(http://man7.org/linux/man-pages/man7/capabilities.7.html).

Granting a container capability or allowing it to run as root gives malicious processes
more leverage to damage the underlying host. Not only does this impact the container
that introduced the vulnerability, but also any other container running on that host
and, potentially, the entire Kubernetes cluster. If a container does have vulnerabilities
but does not have any capabilities granted to it, the attack vector is much smaller and
could possibly be prevented altogether. When developing a Helm chart, both an image's
vulnerabilities and permission requirements must be taken into account to keep your
users, as well as other tenants of the Kubernetes cluster, safe.

In addition to the container image that is deployed, chart developers should also focus on
the resources granted to an application. We will dive into this topic in the next section.

Setting resource limits
A pod uses the resources that belong to its underlying node. Without the proper defaults
in place, it is possible for a pod to exhaust the node of resources, causing issues
such as CPU throttling and pod eviction. Exhausting the underlying node will also
prevent other workloads from being scheduled there. Because of the issues that can occur
when resource limits are not in check, chart developers should be concerned about setting
reasonable defaults either in their Helm chart or in the Kubernetes cluster.

Many charts allow the deployment resources field to be declared as a Helm value. A
chart developer can default the resources field in the values.yaml file, setting what
is believed by the developer to be the amount of resources that the application should
need. The following code shows an example of this:

resources:

 limits:

 cpu: 500m

 memory: 2Gi

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

298 Helm Security Considerations

If left at the default, this example value would be used to set the pod's CPU limit to
500m and the memory limit to 2Gi. Setting this default value in the values.yaml file
prevents the pod from exhausting the node resources, while also providing a suggested
value for the amount of application resources required. Users can then choose to override
the resource limits if necessary. Note that the chart developers can also set a default for the
resource requests, but this will not prevent the pod from exhausting the node resources.

While you should consider setting default resource limits in the values.yaml file,
you can also set limit ranges and resource quotas in the Kubernetes namespace that the
chart will be installed on. These are resources that are typically not included in a Helm
chart but are instead created by a cluster administrator before application deployment.
Limit ranges are used to determine the number of resources a container is allowed to use
within a namespace. Limit ranges are also used to set the default resource limits for each
container deployed to the namespace that does not already have resource limits defined.
The following is an example limit range defined by a LimitRange object:

apiVersion: v1

kind: LimitRange

metadata:

 name: limits-per-container

spec:

 limits:

 - max:

 cpu: 1

 memory: 4Gi

 default:

 cpu: 500m

 memory: 2Gi

 type: Container

LimitRange enforces the specified restrictions in the namespace where the
LimitRange object was created. It sets the maximum amount of allowed container
resources to 1 core of cpu and 4Gi of memory. If a resource limit is not defined, it
automatically sets the resource limit to 500m of cpu and 2Gi of memory. Limit ranges
can also be applied at the pod level by setting the type field to Pod. This would ensure
that the sum of resource utilization of all containers in the pod are under the specified
limits. In addition to setting limits against CPU and memory utilization, you can also set
a LimitRange object to default the storage claimed by a PersistentVolumeClaim
object by setting the type field to PersistentVolumeClaim.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Developing secure Helm charts 299

This would allow you to create the following resource to set a storage limit for a
single PVC:

apiVersion: v1

kind: LimitRange

metadata:

 name: limits-per-pvc

spec:

 - max:

 storage: 4Gi

 type: PersistentVolumeClaim

Of course, you could also set a default storage amount in your Helm chart's values.
yaml file. The default set in the values.yaml file reflects the amount of storage you
think is required for a default installation, with the LimitRange object enforcing an
absolute maximum that the user can override to.

In addition to limit ranges, you can also set resource quotas to add additional
restrictions against a namespace's resource usage. While limit ranges enforce resources
at a per-container, -pod, or -PVC level, resource quotas enforce resource usage at a
per-namespace level. They are used to define the maximum number of resources a
namespace can utilize. The following is an example resource quota:

apiVersion: v1

kind: ResourceQuota

metadata:

 name: pod-and-pvc-quota

spec:

 hard:

 limits.cpu: '4'

 limits.memory: 8Gi

 requests.storage: 20Gi

The preceding ResourceQuota object, when applied to a Kubernetes namespace, sets
the maximum CPU utilization to 4 cores, the maximum memory utilization to 8Gi, and
the maximum storage request to 20Gi for the sum of all workloads in the namespace.
Resource quotas can also be used to set a maximum amount of secrets, ConfigMaps,
and other Kubernetes resources per namespace. By using resource quotas, you can
prevent a single namespace from over-utilizing cluster resources.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

300 Helm Security Considerations

By setting reasonable default resource limits in your Helm chart, along with the existence
of LimitRange and ResourceQuota, you can ensure that users of your Helm chart do
not exhaust cluster resources and cause disruptions or outages. With an understanding of
how you can enforce resource limits, let's move on to the next topic around Helm chart
security—handling secrets in Helm charts.

Handling secrets in Helm charts
Handling secrets is a common concern when working with Helm charts. Consider the
WordPress application from Chapter 3, Installing Your First Helm Chart, where you
were required to provide a password to configure an admin user. This password was not
provided by default in the values.yaml file because this would have left the application
vulnerable if you forgot to override the password value. Chart developers should be
in the habit of not providing defaults for secret values such as passwords and should
instead require users to provide an explicit value. This can easily be done by leveraging
the required function. Helm also has the ability to generate random strings using the
randAlphaNum function.

Note, however, that this function generates a new random string each time the chart is
upgraded. For that reason, developers should design charts with the expectation that users
will provide their own password or other secret key, with the required function serving
as a gate to ensure that a value is provided.

When a user provides a secret during chart installation, that value should be saved in
secret, not ConfigMap. ConfigMaps display values in plain text and are not
designed to contain credentials or other secret values. Secrets, on the other hand,
provide obfuscation by Base64-encoding its contents. Secrets also allow you to mount its
contents to a pod as a tmpfs mount, meaning the contents are mounted to the pod in
volatile memory instead of on a disk. As a chart developer, you should ensure that all
credentials and secret configuration managed by your Helm charts are created using
Kubernetes Secrets.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Developing secure Helm charts 301

While chart developers should ensure that secrets are handled appropriately using
Kubernetes Secrets and the required function, chart users should ensure that secrets
such as credentials are provided to a Helm chart securely. Values are most commonly
provided to a Helm chart with the --values flag, where additional or overridden values
are declared in a separate values file and are passed to the Helm CLI during installation.
This is an appropriate method when working with regular values, but caution should be
taken when using this approach with secret values. Users should be sure that the values
files that contain secrets are not checked into a git repository or an otherwise public
location where those secrets could be exposed. One way that users can avoid exposing
secrets is by leveraging the --set flag to pass secrets inline from their local command
line. This reduces the risk of credentials being exposed, but users should be aware that this
would reveal the credentials in the bash history.

Another way that users can avoid exposing secrets is by leveraging an encryption tool to
encrypt values files that contain secrets. This would continue to allow users to apply the
--values flag and push the values file to a remote location, such as a git repository.
The values file could then only be decrypted by users who have the appropriate key and
would remain encrypted for all other users, only allowing trusted members access to the
data. Users can simply leverage GPG to encrypt the values files, or they can leverage
a special tool such as Sops. Sops (https://github.com/mozilla/sops) is a tool
designed to encrypt the values of YAML or JSON files but leave the keys unencrypted. The
following code shows a secret key/value pair from a Sops-encrypted file:

password:ENC[AES256GCM,data:xhdUx7DVUG8bitGnqjGvPMygpw==,
iv:3LR9KcttchCvZNpRKqE5LcXRyWD1I00v2kEAIl1ttco=,
tag:9HEwxhT9s1pxo9lg19wyNg==,type:str]

Notice how the password key is unencrypted but the value is encrypted. This allows you
to easily see what kind of values are contained in the file without exposing their secrets.

There are other tools capable of encrypting the values files that contain secrets. Some
examples include git-crypt (https://github.com/AGWA/git-crypt) and
blackbox (https://github.com/StackExchange/blackbox). Additionally,
tools such as HashiCorp's Vault or CyberArk Conjur can be used to encrypt secrets in
the form of key/value stores. Secrets can then be retrieved by authenticating with a secret
management system and then by utilizing them within Helm by passing them with --set.

With an understanding of how security plays a role in Helm chart development, let's now
discuss how Role-Based Access Control (RBAC) can be applied in Kubernetes to provide
greater security to your users.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/mozilla/sops
https://github.com/mozilla/sops
https://github.com/AGWA/git-crypt
https://github.com/AGWA/git-crypt
https://github.com/AGWA/git-crypt
https://github.com/StackExchange/blackbox

302 Helm Security Considerations

Configuring RBAC rules
The ability of an authenticated user in Kubernetes to perform actions is governed through
a set of RBAC policies. As introduced in Chapter 2, Preparing a Kubernetes and Helm
Environment, policies, known as roles, can be associated with users or service accounts,
and Kubernetes contains several default roles that can be associated. RBAC has been
enabled by default in Kubernetes since version 1.6. When thinking about Kubernetes
RBAC in the context of Helm usage, you need to consider two factors:

• The user installing a Helm chart

• The service account associated with the pod running the workload

In most cases, the individual responsible for installing a Helm chart is associated with a
Kubernetes user. However, Helm charts can be installed through other means, such as by a
Kubernetes operator with an associated service account.

By default, users and service accounts have minimal permissions in a Kubernetes
cluster. Additional permissions are granted through the use of roles that are scoped to
an individual namespace, or cluster roles that grant access at a cluster level. These are
then associated with a user or service account using either a role binding or a cluster role
binding, depending on the type of policy being targeted. While Kubernetes has a number
of included roles that can be applied, the concept of least-privileged access should be
used wherever possible. Least-privileged access refers to a user or application that is
granted only the minimum set of permissions that is needed to properly function. For
example, take the guestbook chart that we developed earlier. Imagine we wanted to
add new functionality that can query the metadata of pods in the guestbook
application's namespace.

While Kubernetes contains a built-in role called view that provides the necessary
permissions to read pod manifests in a given namespace, it also gives access to other
resources, such as ConfigMaps and deployments. To minimize the level of access that
is granted to an application, a custom policy in the form of a role or cluster role can be
created that provides only the necessary permissions that the application needs. Since
most typical users of a Kubernetes cluster do not have access to create resources at a
cluster level, let's create a role that is applied to the namespace that the Helm chart is
deployed in.

To create a new role, the kubectl create role command can be used. A basic role
contains two key elements:

• The type of action (verb) made against the Kubernetes API

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Configuring RBAC rules 303

• The list of Kubernetes resources to target

As an example, to demonstrate how RBAC can be configured in Kubernetes, let's
configure a set of RBAC rules to allow an authenticated user to view pods within a
namespace.

Important note
If you want to run through this example on your local workstation, make sure
that Minikube is started first by running minikube start.

You can then create a new namespace called chapter9 by running kubectl create
ns chapter9:

1. Use the kubectl CLI to create a new role called guestbook-pod-viewer:

$ kubectl create role guestbook-pod-viewer
--resource=pods --verb=get,list -n chapter9

With this new role created, it needs to be associated with a user or service account.
Since we want to associate it with an application running in Kubernetes, we
will apply the role to a service account. When a pod is created, it makes use of a
service account called default. When attempting to abide by the least-privileged
access principle, it is recommended that a separate service account is used. This
is to ensure that no other workloads are deployed in the same namespace as the
guestbook application as it would also inherit the same permissions.

2. Create a new service account called guestbook by executing the
following command:

$ kubectl create sa guestbook -n chapter9

3. Next, create a role binding called guestbook-pod-viewers to associate
guestbook-pod-viewer with guestbook ServiceAccount:

$ kubectl create rolebinding guestbook-
pod-viewers --role=guestbook-pod-viewer
--serviceaccount=chapter9:guestbook -n chapter9

Finally, to run the guestbook application itself using the newly created
guestbook ServiceAccount, the name of the service account would need to be
applied to the deployment.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

304 Helm Security Considerations

The following shows how the serviceAccount configuration appears in the
deployment YAML:

serviceAccountName: guestbook

You can easily install the guestbook application by using the chart you created in
Chapter 5, Building Your First Helm Chart, or by using the chart located in the Packt
repository at https://github.com/PacktPublishing/-Learn-Helm/
tree/master/helm-charts/charts/guestbook. This chart exposes a set
of values for configuring the deployment's service account.

4. Install the guestbook Helm chart by running the following command:

$ helm install my-guestbook Learn-Helm/helm-charts/
charts/guestbook \

--set serviceAccount.name=guestbook \

--set serviceAccount.create=false \

-n chapter9

Notice that in step 4, the serviceAccount.create value is set to false.
When you scaffolded your Helm chart in Chapter 5, Building Your first Helm Chart,
using the helm create command, the ability to create a service account upon
chart installation was provided. Since you already created a service account using
kubectl previously, this was not needed. However, the ability to create additional
resources related to RBAC during chart installation does not need to end at creating
service accounts. In fact, you could perform steps 1, 2, and 3 in a single chart
installation if your Helm chart contained the YAML resources necessary to create
roles and role bindings as well.

5. At this point, the guestbook application has the permissions necessary to list
and get pods. To verify this assumption, kubectl has a command that queries
whether a user or service account has the authority to perform an action. Execute
the following command to verify that the ServiceAccount guestbook has access
to query all the pods in the guestbook namespace:

$ kubectl auth can-i list pods
--as=system:serviceaccount:chapter9:guestbook -n chapter9

The --as flag makes use of the user impersonation feature in Kubernetes to allow
the debugging of authorization policies.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook
https://github.com/PacktPublishing/-Learn-Helm/tree/master/helm-charts/charts/guestbook

Accessing secure chart repositories 305

6. The result of the command should print yes as output. To confirm that the service
account cannot access a resource that it should not be able to, such as listing
deployments, execute the following command:

$ kubectl can-i list deployments
--as=system:serviceaccount:guestbook:guestbook -n
chapter9

7. Feel free to delete your release with the helm uninstall command:

$ helm uninstall my-guestbook -n chapter9

You can also stop your Minikube instance, which is not needed for the remainder of
this chapter:

$ minikube stop

As you can see from the output of no, the expected policies are in place.

When used effectively, Kubernetes RBAC aids in providing Helm chart developers with
the tools needed to enforce least-privilege access, protecting users and applications from
potential errant or malicious actions.

Next, we will discuss how chart repositories can be secured and accessed in a way that
enhances the overall security of Helm.

Accessing secure chart repositories
Chart repositories provide the ability to discover Helm charts and install them on your
Kubernetes cluster. Repositories were introduced in Chapter 1, Understanding Kubernetes
and Helm, as an HTTP server that includes an index.yaml file containing metadata
related to charts present in the repository. In previous chapters, we made use of charts
that were sourced from various upstream repositories and also implemented our own
repository using GitHub Pages. Each of these repositories is freely available for use
for whoever may be interested. However, Helm does support incorporating additional
security measures to protect the content stored within the repository, including
the following:

• Authentication

• Secure Sockets Layer/Transport Layer Security (SSL/TLS) encryption

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

306 Helm Security Considerations

While the majority of public Helm repositories do not require any form of authentication,
Helm does allow users to perform basic and certificate-based authentication against
a secured chart repository. For basic authentication, a username and password can be
provided when adding a repository using the helm repo add command through the
use of the --username and --password flags. For example, if you want to access a
repository that is protected using basic authentication, adding the repository would take
the following form:

$ helm repo add $REPO_URL --username=<username>
--password=<password>

Then, the repository can be interacted with without needing to repeatedly provide
the credentials.

For certificate-based authentication, the helm repo add command provides the
--ca-file, --cert-file, and --key-file flags. The --ca-file flag is used
to verify the chart repository's certificate authority, while the --cert-file and
--key-file flags are used to specify your client certificate and key, respectively.

Enabling basic authentication and certificate authentication on the chart repository itself
depends on the repository implementation that is used. For example, ChartMuseum, the
popular chart repository, provides the --basic-auth-user and --basic-auth-
pass flags that can be used at startup to configure the username and password for basic
authentication. It also provides the --tls-ca-cert flag to configure the Certificate
Authority (CA) certificate for certificate authentication. Other chart repository
implementations may provide other flags or require you to provide a configuration file.

Even with authentication in place, it is important that the transmission between the
HTTP server and your Helm client is facilitated securely. This can be performed using
Secure Sockets Layer (SSL) / Transport Layer Security (TLS) based encryption to secure
communication between your Helm client and your Helm chart repository. While a
requirement for certificate authentication, repositories requiring basic authentication
(and unauthenticated repositories) can still benefit from encrypting network traffic as
this will protect authentication attempts as well as the contents of the repository. As
with authentication, configuring TLS on the chart repository depends on the repository
implementation that is used. ChartMuseum provides the --tls-cert and --tls-
key flags to provide the certificate chain and key files. More general web servers, such as
NGINX, typically require a configuration file that provides the location of the certificate
and key files on the server. Offerings such as GitHub Pages already have TLS configured.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 307

Each of the Helm repositories that we have used so far have used certificates signed by
publicly available CAs that are stored in both your web browser as well as your underlying
operating system. Many large organizations have their own CAs that can be used to
produce the certificates configured in the chart repository. Since this certificate is likely
not from a publicly available CA, the Helm CLI may not trust the certificate, and adding
the repository results in the following error:

Error: looks like '$REPO_URL' is not a valid chart repository
or cannot be reached: Get $REPO_URL/index.yaml: x509:
certificate signed by unknown authority

To allow the Helm CLI to trust the chart repository's certificate, the CA certificate, or
CA bundle containing multiple certificates, can either be added to the trust store of the
operating system or explicitly specified using the --ca-file flag of the helm repo
add command. This allows the command to be executed without error.

Finally, depending on how the chart repository is configured, additional metrics can
also be obtained to perform request-level auditing and logging to determine who has
attempted to access the repository.

Through the use of authentication and managing certificates governing the transport
layer, additional capabilities are realized for enhancing the security footprint of
Helm repositories.

Summary
In this chapter, you learned about some of the different topics around security that need to
be considered when working with Helm. First, you learned how data provenance and the
integrity of Helm releases and Helm charts can be proven. Next, you learned about Helm
chart security and how a chart developer can employ best practices around security to
write a stable and secure Helm chart. Finally, you learned how RBAC can be used to
create an environment based on the concept of least privilege access and how chart
repositories can be secured to provide HTTPS encryption and to require authentication.
Now, with these concepts, you are better equipped to create a secure Helm architecture
and working environment.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

308 Helm Security Considerations

Further reading
• To learn more about data provenance and integrity in the context of Helm charts,

go to https://helm.sh/docs/topics/provenance/.

• To learn more about Kubernetes RBAC, check out the Using RBAC Authorization
page from the Kubernetes documentation at https://kubernetes.io/docs/
reference/access-authn-authz/rbac/.

• Check out the chart repository guide from the Helm documentation to
learn more about chart repositories at https://helm.sh/docs/topics/
chart_repository/.

Questions
1. What is data provenance and integrity? How are data provenance and data

integrity different?

2. Imagine you want to prove the data provenance and integrity of a Helm download.
Besides the release archive, what file does a user need to download from Helm's
GitHub release page to accomplish this?

3. What commands can a user run to verify the data provenance and integrity of a
Helm chart?

4. As a Helm chart developer, what can you do to ensure that you are deploying a
stable container image?

5. Why is it important to set resource limits on your Helm chart? What other
Kubernetes resources can be used to configure a pod and namespace's
resource limits?

6. What is the concept of least privilege access? Which Kubernetes resources allow
you to configure authorization and help achieve least privilege access?

7. What command and set of flags can be used to authenticate against a
 chart repository?

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://helm.sh/docs/topics/provenance/
https://helm.sh/docs/topics/provenance/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://helm.sh/docs/topics/chart_repository/
https://helm.sh/docs/topics/chart_repository/
https://helm.sh/docs/topics/chart_repository/
https://helm.sh/docs/topics/chart_repository/

ASSESSMENTS

Chapter 1: Understanding Kubernetes
and Helm
Here are some answers to the questions presented in this chapter:

1. An application is monolithic if it contains all necessary logic and features in a
single application. Monolithic applications can be broken up into multiple different
applications, referred to as microservices.

2. Kubernetes is a container orchestration tool. To give a few examples, it solves
problems around workload scheduling, availability, and scalability.

3. create, describe, edit, delete, and apply

4. There are many different types of resources a user must understand in order to
deploy an application. It is also challenging to maintain synchronized local and live
states, manage application life cycle, and maintain boilerplate YAML resource files.

5. Helm includes four life cycle commands that provide users with the ability to easily
manage Kubernetes applications. Users apply these commands to interact with
Helm charts, which is a packaging of the Kubernetes resources required to deploy
an application. Helm abstracts the complexity of Kubernetes resources and provides
a history of revisions for a given application, allowing applications to be rolled back
to a previous snapshot. It also allows YAML resources to be dynamically generated
and simplifies the synchronization between local and live state. Finally, Helm
applies Kubernetes resources in a predeterministic order and allows automated life
cycle hooks, which can be used to perform various automated tasks.

6. You can use the helm rollback command. Helm assigns a revision to each
application snapshot. A new revision is assigned when one or more areas of an
application are modified from their previously applied state.

7. Install, Upgrade, Rollback, and Uninstall.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

310 ASSESSMENTS

Chapter 2: Preparing a Kubernetes and
Helm Environment
Here are some answers to the questions presented in this chapter:

1. Windows and Mac users can install Helm using the Chocolatey or Homebrew
package managers, respectively. All users (Windows, Mac, and Linux) can also
install Helm from its GitHub releases page at https://github.com/helm/
helm/releases.

2. Helm authenticates using the local kubeconfig file.

3. Kubernetes roles provide authorization. An administrator can manage these
privileges by creating a RoleBinding, which binds a role to a user or group.

4. The helm repo add command is used to locally configure a Helm chart
repository. It is a requirement to install the charts contained within that repository.

5. The three XDG environment variables used by Helm are XDG_CACHE_HOME,
XDG_CONFIG_HOME, and XDG_DATA_HOME. XDG_CACHE_HOME is used to
assign the location for cached files (which includes downloaded charts from
upstream chart repositories). XDG_CONFIG_HOME is used to set the location for
Helm configuration (which includes repository information saved by helm repo
add). XDG_DATA_HOME is used to save plugin information, added using the helm
plugin install command.

6. Minikube allows users to easily create a single-node Kubernetes cluster on
their local machine. Minikube automatically configures the Kubeconfig
for authentication and assigns users with cluster-admin to perform any
desired action.

Chapter 3: Installing Your First Helm Chart
Here are some answers to the questions presented in this chapter:

1. The Helm Hub is a centralized location for upstream chart repositories. Users can
interact with it by using the helm search hub command, or by visiting the
Helm Hub website at https://hub.helm.sh/.

2. The helm get commands are used to get details of an installed Helm release
such as the applied values and generated Kubernetes resources. The helm show
commands are used to show general information of a Helm chart such as the list of
supported values and the chart README.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/helm/helm/releases
https://github.com/helm/helm/releases
https://hub.helm.sh/

Chapter 4: Understanding Helm Charts 311

3. The --set flag is used to provide inline values and is useful for providing
simple values or values that contain secrets that should not be saved to a file. The
--values flag is used to provide values by using a values file and is useful for
providing large amounts of values at a time and saving applied values to a source
control repository.

4. The helm history command can be used to list the revisions for a release.

5. If you upgrade a release without providing any values, the --reuse-values
flag is applied by default, which will reuse each of the values applied in the previous
release. If at least one value is provided, the --reset-values flag is applied
instead, which resets each value to their defaults and then merges the
provided values.

6. The helm history command would reveal six releases, with the sixth release
indicating that the application was rolled back to revision 3.

7. The helm list command can be used to view all of the releases deployed to
a namespace.

8. The helm search repo command can be used to list each of the
repository’s charts.

Chapter 4: Understanding Helm Charts
Here are some answers to the questions presented in this chapter:

1. YAML is the format most commonly used, though JSON can be used alternatively.

2. The three required fields are apiVersion, name, and version.

3. Values from a chart dependency can be referenced or overridden by placing desired
dependency values in a map whose name is equal to the name of the dependency
chart. Values can also be imported using the import-values setting, which can
be used to allow dependency values to be referenced using a different name.

4. You can create an upgrade hook to ensure that a data snapshot is taken before
running the helm upgrade command.

5. You can provide the README.md file to provide documentation for your chart. You
can also create the templates/NOTES.txt file, which can dynamically generate
release notes upon installation. Finally, the LICENSE file can be used to provide
legal information.

6. The range action allows chart developers to generate repeating YAML portions.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

312 ASSESSMENTS

7. The Chart.yaml file is used to define metadata about a Helm chart. This file
is also called the Chart Definition. The Chart.lock file is used to save chart
dependency state, providing metadata about the exact dependency versions used so
the charts/ folder can be recreated.

8. The helm.sh/hook annotation is used to define a hook resource.

9. Functions and pipelines allow chart developers to perform complex processing and
formatting of data within a template. Common functions include date, include,
indent, quote, and toYaml.

Chapter 5: Building Your First Helm Chart
Here are some answers to the questions presented in this chapter:

1. The helm create command can be used to scaffold a new Helm chart.

2. Declaring the Redis dependency prevented you from needing to create Redis
templates in your Helm chart. It allowed you to deploy Redis without needing to
know the proper Kubernetes resource configuration required.

3. The helm.sh/hook-weight annotation can be used to set the execution order.
Hooks are executed in ascending order by weight.

4. The fail function is used to immediately fail rendering and can be used to restrict
user input against a set of valid settings. The required function is used to declare
a required value, in which chart templating will fail if that value is not provided.

5. To publish a Helm chart to a GitHub Pages chart repository, you must first use the
helm package command to package your Helm chart in TGZ format. Next, you
should generate the repository’s index.yaml file with the helm repo index
command. Finally, the repository contents should be pushed to GitHub.

6. The index.yaml file contains metadata about each of the charts included in a
chart repository.

Chapter 6: Testing Helm Charts
Here are some answers to the questions presented in this chapter:

1. The helm template command is used to generate your Helm templates locally.
The helm lint command is used to lint for errors in your chart’s structure
and chart definition file. It also attempts to find errors that will result in a
failed installation.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7: Automating Helm Processes Using CI/CD and GitOps 313

2. To validate your chart templates prior to installation, you can run the helm
template command to generate your YAML resources locally to ensure they were
generated properly. You can also use the --verify flag to check with the API
server that your YAML schemas are correct without installing the resources. The
helm install --dry-run command can also perform this check with the API
server prior to installation.

3. One tool that can be used to lint the style of your YAML resources is the yamllint
tool. It can be used alongside helm template to lint your generated resources
(for example, helm template my-test test-chart | yamllint -.

4. A chart test is created by creating a chart template with the helm.sh/hook:
test annotation added. Chart tests are typically Pods that execute a script or short
command. They can be executed by running the helm test command.

5. The Chart Testing (ct) tool allows Helm chart maintainers to more easily test Helm
charts in a git monorepo. It performs thorough testing and ensures that charts that
are modified have had their versions incremented.

6. The ci/ folder is used to test multiple different combinations of Helm values.

7. Adding the --upgrade flag will help ensure regressions have not occurred for
charts that have not had their major version incremented. It will first install the
older version of the chart and then upgrade to the newer version. Then, it will delete
the release, install the new version, and attempt an upgrade against itself. Testing
will take place between each installation/upgrade.

Chapter 7: Automating Helm Processes Using
CI/CD and GitOps
Here are some answers to the questions presented in this chapter:

1. CI is an automated software development process that can be repeated when a
software change occurs. CD is a set of defined steps written to progress software
through a release process (commonly referred to as a pipeline).

2. While CI/CD describes the software development and release process, GitOps
describes the act of storing configuration in Git. An example of this is storing a
values file in Git, which can be applied to deploy an application to Kubernetes.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

314 ASSESSMENTS

3. A CI pipeline for creating and releasing Helm charts can lint, install, and test the
Helm charts. The Chart testing tool can help perform these steps more easily,
especially when maintaining a chart monorepo. The pipeline should also package
each Helm chart and deploy the charts to the chart repository. For GitHub Pages
chart repositories, the index.yaml file must be generated, and the contents must
be pushed to the repository.

4. CI allows charts to be easily and quickly tested and released. It can also help prevent
regressions as new features are added.

5. A CD pipeline would deploy Helm charts to each desired environment, with each
environment being a different pipeline stage. Smoke testing can be performed by
using the helm test command after each deployment.

6. A CD pipeline allows users to easily deploy their applications without needing to
manually invoke the Helm CLI commands. This can help prevent the possibility of
human error when deploying applications with Helm.

7. To maintain configuration for multiple environments, separate folders can be used
to separate the values files by environment. To reduce boilerplate, a file containing
the common values used across each environment can be saved and applied to each
Helm deployment.

Chapter 8: Using Helm with the
Operator Framework
Here are some answers to the questions presented in this chapter:

1. An operator works by leveraging a custom controller and custom resources. When
a new custom resource is created, the operator will perform the logic implemented
by the custom controller. Changes to the custom resource also trigger the controller
logic. Operators are typically implemented to install and manage the life cycle of
an application.

2. When using the Helm CLI, you must execute the install, upgrade, rollback,
and uninstall commands from the command line. However, when using a
Helm-based operator, these commands are performed automatically when you
create, modify, or delete a custom resource. When using a Helm-based
operator, you don’t have to run any Helm CLI commands locally.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9: Helm Security Considerations 315

With regard to the application life cycle, the Helm CLI allows users to roll back to a
previous revision, while the Helm operator does not allow this because it does not
keep a history of revisions.

3. You could first use the operator-sdk new command to scaffold a new Helm
operator, pointing the command to an existing Helm chart with the --helm-
chart flag. Next, you could build the operator using the operator-sdk build
command. Finally, you could push the operator image to a container registry.

4. Installation is performed by creating a new custom resource. Upgrading is
performed by modifying the custom resource. Rolling back is performed
automatically if an upgrade fails, but cannot be explicitly performed. Uninstallation
is performed by deleting the custom resource.

5. The crds/ folder allows Custom Resource Definitions (CRDs) to be created
before the contents in templates/ are created. It provides an easy way to deploy
operators that are dependent on CRDs.

6. Answers will vary, but an example of these charts has been provided at https://
github.com/PacktPublishing/-Learn-Helm/tree/master/ch8-q6-
answer. The example creates one chart called guestbook-operator, which is used
to deploy the operator resources (including the CRD), while the other chart is called
guestbook-cr and is used to deploy the custom resource.

Chapter 9: Helm Security Considerations
Here are some sample answers to the questions presented in this chapter:

1. Data provenance is about determining the origin of data. Data integrity determines
whether the data you received is the data that you expected.

2. A user needs to download the accompanying .asc file, which contains the
digital signature.

3. The helm verify command can be used to verify locally downloaded charts,
while the helm install --verify command can be used against charts
stored in an upstream chart repository.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/-Learn-Helm/tree/master/ch8-q6-answer
https://github.com/PacktPublishing/-Learn-Helm/tree/master/ch8-q6-answer
https://github.com/PacktPublishing/-Learn-Helm/tree/master/ch8-q6-answer

316 ASSESSMENTS

4. You can incorporate regular vulnerability scanning. You can also try to avoid
deploying images that need to be run as root or a subset of root capabilities.
Finally, you can reference images using a sha256 value instead of a tag to
ensure that you are always deploying the expected image.

5. Resource limits help prevent an application from being able to exhaust the
underlying node resources. You can also leverage LimitRanges to set
the maximum amount of resources per Pod or PVC, and you can leverage
ResourceQuotas to set the maximum amount of resources per namespace.

6. Least privilege refers to a user or application being granted only the minimum set
of permissions that is needed to properly function. To achieve least privilege access,
you can use Kubernetes Roles and RoleBindings to create least privilege roles
and bind those roles to users or groups.

7. The helm repo add command provides the --username and --password
flags, which are used for basic authentication and the --ca-file, --cert-file,
and --key-file flags, which are used for certificate-based authentication. The
--ca-file flag is also used to verify a chart repository’s certificate authority.

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Kubernetes - A Complete DevOps Cookbook

Murat Karslioglu

ISBN: 978-1-8388-280-42

• Deploy cloud-native applications on Kubernetes

• Automate testing in the DevOps workflow

• Discover and troubleshoot common storage issues

• Dynamically scale containerized services to manage fluctuating traffic needs

• Understand how to monitor your containerized DevOps environment

• Build DevSecOps into CI/CD pipelines

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/cloud-networking/kubernetes-a-complete-devops-cookbook

318 Other Books You May Enjoy

•

Hands-On Kubernetes on Windows

Piotr Tylenda

ISBN: 978-1-83882-156-2

• Understand containerization as a packaging format for applications

• Create a development environment for Kubernetes on Windows

• Grasp the key architectural concepts in Kubernetes

• Discover the current limitations of Kubernetes on the Windows platform

• Provision and interact with a Kubernetes cluster from a Windows machine

• Create hybrid Windows Kubernetes clusters in on-premises and
cloud environments

Leave a review - let other readers know what you think

Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book’s Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/cloud-networking/hands-on-kubernetes-on-windows

Index

Symbols
-n flag 74
--set 75
--values 75

A
Ansible 261
apiVersion field 118
Append Only File (AOF) 151
application programming

interface (API) 10, 260
applications

deploying, on Kubernetes 10
ArgoCD from Intuit 221

B
bare pod 129
Boolean operators, Go template language

and 112
eq 112
ge 112
gt 112
it 112
le 112

ne 112
not 112
or 112

browser
WordPress chart, viewing in 58-61

built-in objects, Helm
reference link 104

C
cache path 47
CD pipeline, to deploy

applications with Helm
about 243-251
designing 243
environments, updating 243-245
running 252-255

Certificate Authority (CA) 306
chart definitions

about 116, 117
chart dependencies, managing 120, 121
conditional dependencies 124, 125
dependencies, downloading 122, 123
optional metadata 119
required fields 117, 118

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

320 Index

values, importing with import-
values 126, 127

values, overriding from child chart 126
values, referencing from child chart 126

ChartMuseum 233
chart repository

creating 170-172
Guestbook chart, publishing to 170

chart templates 101
chart testing lint-and-install command

running 207-210
chart testing project

about 201-203
reference link 201
used, for improving chart tests 199-201

chart testing tools
installing 204-206

chart tests
improving, with chart testing

project 199-201
in live cluster 195
running 197-199

child chart 126
chroots 6
CI/CD 219
CI/CD pipeline, to build Helm charts

about 224, 230-234
designing 224
running 235-242

command line
WordPress chart information,

displaying from 61-63
WordPress chart, searching from 56-58

command-line interface (CLI) 14, 260
configuration path 47
containers 6
Content Management System (CMS) 54

continuous deployment 220
control loop 260
Custom Resource Definition

(CRD) 101, 261
Custom Resources (CRs) 115

D
data integrity 284
data path 47
data provenance 284
Deployment 10, 11
digital signatures 284, 285
dnf subcommands 24
Domain-Specific Language (DSL) 225

E
environment

setting up 221, 222

F
Flux by WeaveWorks 221

G
GitOps

using 220
Git SCM 136
Golang (Go) 101
Go template

about 102
code reuse, enabling with named

templates 113, 114
complex processing, with functions

and pipelines 110, 111

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Index 321

Custom Resources (CRs),
templating 115, 116

fields, parameterizing with values
and built-in objects 102, 103

fine-grained template processing,
with flow control 106-108

library charts 115
template variables 108-110
values.schema.json file 105

Go template functions
date 112
default 112
fail 112
include 112
indent 112
now 112
quote 112
reference link 112
required 112
splitList 112
toYaml 112

GPG keypair
creating 285-287

Guestbook 261
Guestbook application

about 140, 141
deploying 275-277
interacting with 141
reference link 140

Guestbook chart
installing 155, 156
publishing, to chart repository 170

Guestbook frontend
values, modifying to deploy 152-154

Guestbook Helm chart
chart definition, evaluating 144, 145
chart repository, adding 174

creating 142
fail function, using 166-168
improving 157
initial file structure, scaffolding 142, 143
input validation, adding 166
life cycle hooks, creating 157
life cycle hooks, executing 164, 165
pre-rollback hook, creating, to

restore database 162, 163
pre-upgrade hook, creating to

take data snapshot 158-162
publishing 172-174
Redis chart dependency,

adding 145, 146
required function, using 168, 169
values, adding 149-151
values.yaml file, modifying 148

Guestbook Operator
deploying 271-274

H
hash 285
Helm

about 21, 31
authentication 48-50
authorization 50, 51
configuring 43
CRs, managing 278, 279
environment variables 46, 47
installing 42, 43
life cycle management 128
operators, managing 278
plugins, adding 45, 46
plugins, reference link 45
role-based access control (RBAC) 50, 51
setting up 42

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

322 Index

subcommands 24
tab completion 48
upstream plugins, examples 46
upstream repositories, adding 44, 45

Helm, benefits
about 24
abstracted complexity, of

Kubernetes resources 25
automated life cycle hooks 27
consistency between local

and live states 26
dynamically configured

declarative resources 26
intelligent deployments 27
release history 25

Helm charts
about 23
documenting 133
linting 190-194
packaging 136
README.md file 134
secrets, handling 299-301
signing 291-293
structure 99, 101
templates/NOTES.txt file 135
verifying 294

Helm Diff 46
Helm downloads

verifying 287-291
Helm hook

overview 128, 129
Helm Hub 55
Helm Monitor 46
HELM_NAMESPACE environment

variable 74, 75
Helm operator

building 270
creating 262, 263

local development environment.
preparing 267

operator file structure,
scaffolding 268, 270

pushing, to Quay 271
Helm Secrets 46
helm template

server-side validation, adding
to chart rendering 189

template parameterization,
testing 181-185

used, for testing control actions 185-187
used, for testing functions and

pipelines 187, 188
used, for validating template

generation locally 179-181
Helm templating

verifying 179
Helm Unittest 46
hook

advanced concepts 132
executing 130, 131
reference link 130

hook deletion policies
reference link 132

Hypertext Preprocessor (PHP) 140

I
indent function 110
initial revision 23

J
jails 6
JavaScript Object Notation (JSON) 98

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Index 323

Jenkins
about 225
installing 226-230

Jenkins pipeline 225
job 129
JSON format 98

K
k8s 7
Kubectl

downloading, directly from link 41
installing 38
installing, via Minikube 39
installing, without Minikube 40
installing, with package manager 40
setting up 38

Kubectl, for Linux
download link 41

Kubectl, for macOS
download link 41

Kubectl, for Windows
download link 41

Kubectl, latest version
download link 41

Kubernetes
application, deploying 10
operators 260, 261

Kubernetes environment
cleaning up 90, 279
creating 63, 64

Kubernetes, features
active community 9, 10
container orchestration 8
high availability 9
scalability 9

Kubernetes package manager 21-24

Kubernetes resource
Deployment 10, 11
PersistentVolumeClaim 13
Service 12

Kubernetes resource configuration
challenges 18-21

Kubernetes resource management,
approaches

about 14
declarative configuration 14-18
imperative configuration 14, 16

L
least-privileged access 301
LICENSE file 134
Linux containers

URL 6
local Kubernetes environment

preparing, with Minikube 32

M
MariaDB 55
Markdown 134
Markdown Guide

reference link 134
message digest 285
microservices 4-6
Minikube

installing 32-34
Kubectl, installing via 39
reference link 32
resource allocation, configuring 36
used, for preparing local

Kubernetes environment 32

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

324 Index

Minikube binary
download link 33

Minikube cluster
cleaning up 256

Minikube environment
setting up 142

Minikube, subcommands
delete 38
start 37
stop 37

Monocular 56
monolithic 5
MySQL 55

N
name field 118
Native Computing Foundation (CNCF) 7
nodes 8

O
open source license

reference link 134
Operator pattern 261
operator-sdk

installing, to Minikube VM 267, 268

P
package manager

used, for installing Kubectl 40
package managers 22, 23
packages 22
PersistentVolumeClaim 13
PersistentVolumeClaims (PVCs) 157
pipeline as code feature 225
playbooks 261

plugin subcommand 46
Pretty Good Privacy (PGP) 284
private key 285
provenance file 293
public key 285

Q
Quay repository

creating 264-266

R
RBAC rules

configuring 301-304
README.md file

about 134
application-specific information 134

Redis 141
Redis chart dependency

downloading 147
Redis Database File (RDF) 151
release

about 67
inspecting 69-74

release history 25
ReplicaSet 11
repo subcommands, Helm

add 44
index 44
list 44
remove 44
update 44

representational state transfer (REST) 261
revision 85
Role-Based Access Control (RBAC) 50, 85

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

Index 325

S
secrets

handling, in Helm charts 299-301
secure chart repositories

accessing 305, 306
secure Helm charts

developing 294
resource limits, setting 297-299
secure images, using 295, 296

Semantic Versioning (SemVer) 118
Semantic Versioning specifications

(SemVer) 144
SemVer version

guideline 201
Software-As-A-Service (SaaS) 54, 219
Sops

URL 300
Source Code Management (SCM) 75
Sprig template library

reference link 112

T
tag 295
templates

linting 190-194
templates/NOTES.txt file 135
Time to Live (TTL) 132

U
Uniform Resource Locator (URL) 146

V
version control systems 219

view 302
VirtualBox

download link 35
installing 35

virtual machine (VM) 32

W
WordPress 54
WordPress application

about 54, 55
accessing 76-80
additional installation notes 74

WordPress chart
finding 55
installation, running 67, 68
installing 64
searching, from command line 56-58
value file, creating for

configuration 64-66
viewing, in browser 58-61

WordPress chart information
displaying, from command line 61-63

WordPress.com
about 54
disadvantages, over self-hosted

WordPress.org 54
WordPress history

inspecting 85-87
WordPress.org 54
WordPress release

Helm values, modifying 80-82
rollback, running 87, 88
rolling back 85
uninstalling 89, 90
upgrade, running 82
upgrading 80

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

326 Index

values, resetting during upgrade 83-85
values, reusing during upgrade 83-85

Y
Yamale

download link 204
YAML Ain't Markup Language

(YAML) 96, 147, 260
YAML format

about 96
key-value pairs, defining 96
value types 97, 98

yamllint
installation link 192
reference link 192

 EBSCOhost - printed on 2/9/2023 1:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title page
	Copyright
	Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1:
Introduction and Setup
	Chapter 1: Understanding Kubernetes and Helm
	From monoliths to modern microservices
	What is Kubernetes?
	Container Orchestration
	High availability
	Scalability
	Active community

	Deploying a Kubernetes application
	Deployment
	Services
	PersistentVolumeClaim

	Approaches in resource management
	Imperative and declarative configuration

	Resource configuration challenges
	The many types of Kubernetes resources
	Keeping the live and local states in sync
	Application life cycles are hard to manage
	Resource files are static

	Helm to the rescue!
	Understanding package managers
	The Kubernetes package manager

	Summary
	Further reading
	Questions

	Chapter 2: Preparing a Kubernetes and Helm Environment
	Technical requirements
	Preparing a local Kubernetes environment with Minikube
	Installing Minikube
	Installing VirtualBox
	Configuring VirtualBox as the designated hypervisor
	Configuring Minikube resource allocation
	Exploring the basic usage

	Setting up Kubectl
	Installing Kubectl

	Setting up Helm
	Installing Helm

	Configuring Helm
	Adding upstream repositories
	Adding plugins
	Environment variables
	Tab completion
	Authentication
	Authorization/RBAC

	Summary
	Further reading
	Questions

	Chapter 3: Installing your First Helm Chart
	Technical requirements
	Understanding the WordPress application
	Finding a WordPress chart
	Searching for WordPress charts from the
command line
	Viewing the WordPress chart in a browser
	Showing the WordPress chart information from the command line

	Creating a Kubernetes environment
	Installing the WordPress chart
	Creating a values file for configuration
	Running the installation
	Inspecting your release

	Additional installation notes
	The -n flag
	The HELM_NAMESPACE environment variable
	Choosing between --set and --values

	Accessing the WordPress application
	Upgrading the WordPress release
	Modifying the Helm values
	Running the upgrade
	Reusing and resetting values during an upgrade

	Rolling back the WordPress release
	Inspecting the WordPress history
	Running the rollback

	Uninstalling the WordPress release
	Cleaning up your environment
	Summary
	Further reading
	Questions

	Section 2:
Helm Chart Development
	Chapter 4: Understanding
Helm Charts
	Technical requirements
	Understanding the YAML format
	Defining key-value pairs
	Value types

	Understanding chart templates
	Go templating

	Understanding chart definitions
	Required fields
	Optional metadata
	Managing chart dependencies
	Downloading dependencies
	Conditional dependencies
	Overriding and referencing values from a child chart
	Importing values with import-values

	Life cycle management
	The basics of a Helm hook
	Hook execution
	Advanced hook concepts

	Documenting a Helm chart
	The README.md File
	The LICENSE file
	The templates/NOTES.txt file

	Packaging a Helm chart
	Summary
	Further reading
	Questions

	Chapter 5: Building Your First Helm Chart
	Technical requirements
	Understanding the Guestbook application
	Setting up the environment
	Creating a Guestbook Helm chart
	Scaffolding the initial file structure
	Evaluating the chart definition
	Adding a Redis chart dependency
	Modifying the values.yaml file
	Installing the Guestbook chart

	Improving the Guestbook Helm chart
	Creating pre-upgrade and pre-rollback life cycle hooks
	Adding input validation

	Publishing the Guestbook chart to a
chart repository
	Creating a chart repository
	Publishing the Guestbook Helm chart
	Adding your chart repository

	Cleaning up
	Summary
	Further reading
	Questions

	Chapter 6: Testing Helm Charts
	Technical requirements
	Setting up your environment
	Verifying Helm templating
	Validating template generation locally with
helm template
	Linting Helm charts and templates

	Testing in a live cluster
	Creating the chart tests
	Running the chart tests

	Improving chart tests with the chart testing project
	Introducing the chart testing project
	Installing the chart testing tools

	Cleaning up
	Summary
	Further reading
	Questions

	Section 3:
Adanced Deployment Patterns
	Chapter 7: Automating Helm Processes Using CI/CD and GitOps
	Technical requirements
	Understanding CI/CD and GitOps
	CI/CD
	Taking CI/CD to the next level using GitOps

	Setting up our environment
	Creating a CI pipeline to build Helm charts
	Designing the pipeline
	Understanding Jenkins
	Installing Jenkins
	Understanding the pipeline
	Running the pipeline

	Creating a CD pipeline to deploy applications with Helm
	Designing the pipeline
	Updating the environments
	Understanding the pipeline
	Running the pipeline

	Cleaning up
	Summary
	Further reading
	Questions

	Chapter 8: Using Helm with the Operator Framework
	Technical requirements
	Understanding Kubernetes Operators
	Creating a Helm operator
	Setting up the environment
	Scaffolding the operator file structure
	Building the operator and pushing it to Quay
	Deploying the Guestbook Operator
	Deploying the Guestbook application

	Using Helm to manage Operators and CRs
	Cleaning up your Kubernetes environment
	Summary
	Further reading
	Questions

	Chapter 9: Helm Security Considerations
	Technical requirements
	Data provenance and integrity
	Creating a GPG keypair
	Verifying Helm downloads

	Signing and verifying Helm charts
	Developing secure Helm charts
	Using secure images
	Setting resource limits
	Handling secrets in Helm charts

	Configuring RBAC rules
	Accessing secure chart repositories
	Summary
	Further reading
	Questions

	ASSESSMENTS
	Chapter 1: Understanding Kubernetes
and Helm
	Chapter 2: Preparing a Kubernetes and
Helm Environment
	Chapter 3: Installing Your First Helm Chart
	Chapter 4: Understanding Helm Charts
	Chapter 5: Building Your First Helm Chart
	Chapter 6: Testing Helm Charts
	Chapter 7: Automating Helm Processes Using CI/CD and GitOps
	Chapter 8: Using Helm with the
Operator Framework
	Chapter 9: Helm Security Considerations

	Other Books You May Enjoy

