
C
o
p
y
r
i
g
h
t

2
0
2
0
.

D
e

G
r
u
y
t
e
r
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on
2/9/2023 5:03 AM via
AN: 2499097 ; Siddhartha Bhattacharyya, Vaclav Snasel, Aboul Ella
Hassanien, Satadal Saha, B. K. Tripathy.; Deep Learning : Research
and Applications
Account: ns335141

Siddhartha Bhattacharyya, Vaclav Snasel, Aboul Ella Hassanien, Satadal Saha,
B. K. Tripathy (Eds.)
Deep Learning

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

De Gruyter Frontiers in
Computational Intelligence

Edited by
Siddhartha Bhattacharyya

Volume 7

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning

Research and Applications

Edited by
Siddhartha Bhattacharyya, Vaclav Snasel,
Aboul Ella Hassanien, Satadal Saha, B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Editors
Prof. (Dr.) Siddhartha Bhattacharyya
CHRIST (Deemed to be University)
Hosur Road, Bhavani Nagar
S. G. Palya 560 029 Bangalore, India
dr.siddhartha.bhattacharyya@gmail.com

Vaclav Snasel
VSB Technical University of Ostrava
17 Listopadu 2172/15
708 00 Ostrava, Czech Republic
vaclav.snasel@vsb.cz

Dr. Aboul Ella Hassanien
Cairo University
Information Technology Department
Ahmed Zewail
12613 Giza Governorate, Ad Doqi, Dokki, Egypt
aboitcairo@gmail.com

Dr. Satadal Saha
MCKV Institute of Engineering
G T Road North 243
711204 Liluah, West Bengal, India
satadalsaha@yahoo.com

B. K. Tripathy
VIT University
Near Katpadi Road
632014 Vellore, Tamil Nadu, India
tripathybk@rediffmail.com

ISBN 978-3-11-067079-0
e-ISBN (PDF) 978-3-11-067090-5
e-ISBN (EPUB) 978-3-11-067092-9
ISSN 2512-8868

Library of Congress Control Number: 2020938478

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2020 Walter de Gruyter GmbH, Berlin/Boston
Cover image: shulz/E+/getty images
Typesetting: Integra Software Services Pvt. Ltd.
Printing and binding: CPI books GmbH, Leck

www.degruyter.com

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://dnb.dnb.de
http://www.degruyter.com

Siddhartha Bhattacharyya would like to dedicate this book to his late father Ajit
Kumar Bhattacharyya, his late mother Hashi Bhattacharyya, his beloved wife Rashni,
his colleagues Abhishek, Arpan, Pampa, Soham, and Srijibendu.

Vaclav Snasel would like to dedicate this book to his wife Božena Snášelová.

Aboul Ella Hassanien would like to dedicate this book to his wife Nazaha Hassan
Elsaman.

Balakrushna Tripathy would like to dedicate this book to his beloved son Anurag.

Satadal Saha would like to dedicate this book to his little daughter Koushiki.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

Deep learning (DL) is a new area of machine learning (ML) research, which has
been introduced with the objective of moving ML closer to one of its original goals,
that is, artificial intelligence (AI). DL was developed as an ML approach to deal
with complex input–output mappings. While traditional ML methods successfully
solve problems where final value is a simple function of input data, DL techniques
are able to capture composite relations between air pressure recordings and English
words, millions of pixels and textual description, brand-related news and future
stock prices, and almost all real-world problems. DL framework uses a cascade of
multiple layers of nonlinear processing units for feature extraction and transforma-
tion. Each successive layer uses the output from the previous layer as input. The
learning may be supervised (e.g., classification) and/or unsupervised (e.g., pattern
analysis). These algorithms learn multiple levels of representations that correspond
to different levels of abstraction by using some form of gradient descent for training
via backpropagation. The main components include multiple hidden layers of an
artificial neural network and sets of propositional formulas. Other variations are also
in vogue where latent variables are organized layerwise in deep generative models.
Representative examples include deep belief networks and deep Boltzmann ma-
chines. DL is a state-of-the-art system in various disciplines, particularly computer
vision, automatic speech recognition, and human action recognition.

This volume comprises seven well-versed chapters reporting latest trends in DL
research and applications.

Chapter 1 presents the various cloud platforms available in market offerings
from different vendors. IBM provided ML platform – Data Science Experience is con-
sidered here for the field of study. Prior to this section, an overview of AI, ML, and
DL with their relationship is deliberated. Discussion on popular DL architectures
with elementary comparison is also considered in this chapter.

Unlike conventional ML algorithms, where humans learn more of feature extrac-
tion than machines, which just crunches numbers, DL algorithms are quite promising
as they have revolutionized the way data is dealt with. Based on the powerful notion
of artificial neural networks, these learning algorithms learn to represent data or, if
we rephrase, can extract features from raw data. DL has paved a way for end-to-end
systems, where one learning algorithm does all the tasks. Convolutional neural net-
works (CNNs) have earned a lot of fame lately, especially in the domain of computer
vision where in some cases its performance has beaten that of humans. In Chapter 2,
the authors try to demystify how CNNs work and illustrate using one novel applica-
tion in the field of astronomy. In addition, the chapter investigates what features the
network is learning.

Optical character recognition systems have been used for extraction of text con-
tained in scanned documents or images. This system consists of two steps: charac-
ter detection and recognition. One classification algorithm is required for character

https://doi.org/10.1515/9783110670905-202

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110670905-202

recognition by their features. Character can be recognized using neural networks.
The multilayer perceptron (MLP) provides acceptable recognition accuracy for char-
acter classification. Moreover, the CNN and the recurrent neural network (RNN) are
providing character recognition with high accuracy. MLP, RNN, and CNN may suffer
from the large amount of computation in the training phase. In Chapter 3, a CNN is
implemented for recognition of digits from MNIST database, and a comparative
study is established between MLP, RNN, and CNN.

DL techniques have had a huge impact on AI research. They have improved
on the traditional ML techniques where human expertise was required for feature
engineering. By removing one human factor, they have moved us one step for-
ward in the field of AI. They have not entirely removed humans though they are
required for designing the architectures and cleaning the data. DL techniques
have managed to achieve breakthrough results in domains such as speech recog-
nition, machine translation, image recognition, and object detection. Chapter 4 gives
a brief overview of various DL techniques being used today. Techniques that make
DL more effective have been described. Some interesting applications have also been
covered.

Handwritten document analysis using intelligent computing technology is a de-
manding research area nowadays considering its usefulness in identifying a person
and human characteristics, particularly that of persons having typical disabilities
such as dyslexia, dysgraphia, and Parkinson’s disease. Analysis of handwriting,
falling under the broad purview of graphology, helps us understand the writer’s
psychology, emotional outlays, and noticeable disorders as well. Since there pre-
vails a broad spectrum of cursive nature and high inconsistency of handwriting
styles, the techniques for modern handwriting analysis need to be more robust and
sensitive to different patterns compared to the traditional graphological techniques.
Herein lies the necessity of computing technology which intelligently analyzes
handwritten texts to find out the similarity of finer aspects of handwritings of chil-
dren or adult with some kind of learning/writing disability. DL technology is chosen
as the technical tool to identify and classify common features of handwriting of
children with developmental dysgraphia. Variational autoencoder, a deep unsuper-
vised learning technique, is purported to be used here. Chapter 5 reports successful
extraction of significant number of distinguishable handwriting characteristics that
are clinically proved to be symptoms of dysgraphia. Audio signal processing and its
classification dates back to the past century. From speech recognition to speaker
recognition and from speech to text conversion to music generation, a lot of advan-
ces have been made in this field using algorithms such as hidden Markov models,
RNNs with long–short-term memory layers, deep convolutional neural networks, and
the recent state-of-the-art model for music and speech generation using WaveNets.
These algorithms are applied after the audio signals are processed and effective fea-
ture extraction techniques are applied on them. Chapter 6 gives a detailed explana-
tion about what an audio signal is and how it is processed. It also covers the various

VIII Preface

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

feature extraction techniques and the classification algorithms. Finally, the present-
day applications and the potentials of DL in this field are explored.

In DL, data is transmitted through a number of layers in the feedforward net-
work between input and output layers. In a recurrent network, data may propa-
gate through a layer several times. Backpropagation through time (BPTT) technique
is used to train recurrent networks (RNN). The underlying idea of BPTT is to trans-
form a recurrent network into an unfolded feedforward network (multilayer network),
where conventional backpropagation learning is used for gradient calculation. Here,
each layer of the unfolded network represents a time step. The objective of Chapter 7
is to integrate the concept of BPTT in the framework of fuzzy time series prediction.
The model takes a sequence of previous values as input (fuzzy inputs) to the different
layer of the unfolded network and produces fuzzy output. Temperature dataset is
used to evaluate the performance of the model, and prediction accuracy of BPTT is
better than that of backpropagation neural network model.

This volume is intended for the students of computer science, electrical engi-
neering, and information sciences of different universities to cater to a part of their
curriculum. The editors would find this venture fruitful if this volume comes to use
for the academic and scientific fraternity as well. The editors would like to take this
opportunity to render their heartfelt gratitude to all the contributory authors and
reviewers for their cooperation during the book project. Thanks are also due to
Cambridge Scholar Publishing Ltd. for consenting to publish this volume.

India, Czech Republic and Egypt Siddhartha Bhattacharyya
September, 2019 Vaclav Snasel

Aboul Ella Hassanien
Satadal Saha
B. K. Tripathy

Preface IX

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Contents

Preface VII

List of Contributors XIII

Soumyajit Goswami
1 Deep Learning – A State-of-the-Art Approach to Artificial Intelligence 1

Karan Maheshwari, Aditya Shaha, Dhruv Arya, Rajkumar Rajasekaran,
and B. K. Tripathy
2 Convolutional Neural Networks: A Bottom-Up Approach 21

Ranjan Jana, Siddhartha Bhattacharyya, and Swagatam Das
3 Handwritten Digit Recognition Using Convolutional Neural Networks 51

Amit Adate, Dhruv Arya, Aditya Shaha, and B. K. Tripathy
4 Impact of Deep Neural Learning on Artificial Intelligence Research 69

Rajib Saha, Anirban Mukherjee, Avik Sarkar, and Shatabhisa Dey
5 Extraction of Common Feature of Dysgraphia Patients by Handwriting

Analysis Using Variational Autoencoder 85

Ankita Bose and B. K. Tripathy
6 Deep Learning for Audio Signal Classification 105

Mahua Bose and Kalyani Mali
7 Backpropagation Through Time Algorithm in Temperature Prediction 137

Index 153

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

List of Contributors

Amit Adate
School of Computer Science and Engineering
Vellore Institute of Technology
Vellore, Tamil Nadu, India
email2amitadate@gmail.com

Dhruv Arya
School of Computer Science and Engineering
Vellore Institute of Technology
Vellore, Tamil Nadu, India
aryadhruv@gmail.com

Siddhartha Bhattacharyya
CHRIST (Deemed to be University)
Bangalore, Karnataka, India
dr.siddhartha.bhattacharyya@gmail.com

Ankita Bose
VIT University, Vellore, Tamil Nadu, India
a1997bose@gmail.com

Mahua Bose
Department of Computer Science and
Engineering, University of Kalyani
Nadia, West Bengal, India
e_cithi@yahoo.com

Swagatam Das
Indian Statistical Institute
Kolkata, West Bengal, India
swagatamdas19@yahoo.co.in

Shatabhisa Dey
RCC Institute of Information Technology
Kolkata, West Bengal, India
shatabhisa.97@gmail.com

Soumyajit Goswami
IBM India Private Limited, Salt Lake, Sector V
Kolkata 700091, West Bengal, India
soumyajit_goswami@yahoo.com

Ranjan Jana
RCC Institute of Information Technology
Kolkata, West Bengal, India
ranjan.rcciit@gmail.com

Karan Maheshwari
School of Computer Science and Engineering
Vellore Institute of Technology
Vellore, Tamil Nadu, India
karan@cognet.ai

Kalyani Mali
Department of Computer Science and
Engineering, University of Kalyani
Nadia, West Bengal, India
kalyanimali1992@gmail.com

Anirban Mukherjee
RCC Institute of Information Technology
Kolkata, West Bengal, India
anirbanm.rcciit@gmail.com

Rajib Saha
RCC Institute of Information Technology
Kolkata, West Bengal, India
rajibsaha_4u@yahoo.co.in

Aditya Shaha
School of Computer Science and Engineering
Vellore Institute of Technology
Vellore, Tamil Nadu, India
aditya.shaha.p@gmail.com

Rajkumar Rajasekaran
School of Computer Science and Engineering
Vellore Institute of Technology
Vellore, Tamil Nadu, India
rrajkumar@vit.ac.in

Avik Sarkar
RCC Institute of Information Technology
Kolkata, West Bengal, India
avik.ron20@gmail.com

B. K. Tripathy
School of Information Technology and
Engineering, Vellore Institute of Technology
Vellore, Tamil Nadu, India
tripathybk@rediffmail.com

https://doi.org/10.1515/9783110670905-204

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110670905-204

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Soumyajit Goswami

1 Deep Learning – A State-of-the-Art
Approach to Artificial Intelligence

Abstract: This chapter presents various cloud platforms that are available in market
offerings from different vendors. IBM provided a machine learning (ML) platform
“IBM Watson Studio” (formerly “Data Science Experience”), and this is considered
here for the field of study. An overview of artificial intelligence, ML, and deep learn-
ing (DL) with their relationship is deliberated. Discussion on popular DL architectures
with elementary comparison is also considered.

Keywords: Artificial intelligence, machine learning, deep learning, IBM Watson
Studio (formerly, Data Science Experience or DSX)

1.1 Introduction

Deep learning (DL), the subfield of artificial intelligence (AI), is the most promising
area considered for research and industry. Although DL is a very modern topic, it is
already being used by multiple technology giants to fulfill their needs. Few exam-
ples are voice and image recognition algorithms of Google [1]: Netflix and Amazon
use it to decide [2] which video a person desires to watch or purchase in near future,
upcoming forecast by MIT researchers [3], and Facebook uses it to predict future
actions for advertisers [4]. UCLA researchers have manufactured an advanced mi-
croscope that produces a high-dimensional dataset used to train a DL network in
identifying cancer cells in tissue samples [5]. In a nutshell, it has been used nowa-
days everywhere whenever automation comes into picture.

In the following section of this chapter, the relationship between DL, machine
learning (ML), and AI has been discussed. A brief introduction to artificial neural
network (ANN) with its classification and its different learning techniques has been
specified in Section 1.3. As part of classification of ANN, feedforward neural networks
(FFNNs) and recurrent neural networks (RNNs) with their uses have been discussed.
While in the section of learning techniques, supervised, unsupervised, and reinforce-
ment learning are briefly considered. Section 1.4 has been reserved to discuss about
DL. It has been stated clearly in this section why the term “deep” has been used.
Multiple points have been identified, which makes DL as state of the art. In Section 1.6,
different activation functions such as sigmoid activation function, hyperbolic
tangent activation function, rectified linear unit (ReLU) activation function, and

Soumyajit Goswami, IBM India Private Limited, Salt Lake, Sector V, Kolkata, West Bengal, India

https://doi.org/10.1515/9783110670905-001

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110670905-001

softmax activation function are described in detail. There are many DL architec-
tures available in literature. Few of them became very popular and offers high
accuracy resulting in better performance. The concepts of restricted Boltzmann
machine (RBM), deep belief network (DBN), autoencoder (AE), and convolutional
neural network (CNN) are deliberated in this section. In Section 1.6, multiple ML
platforms from different organizations have been furnished. All of them provide
cloud infrastructures with high-performance graphics processing units (GPUs) to
quicken the training of DL network with the huge volumes of data, which lessens
the training time from weeks to hours. The last section of this chapter is dedi-
cated for describing different steps of using IBM ML platform – IBM Watson
Studio (formerly, Data Science Experience or DSX).

1.2 AI versus ML versus DL

AI is a subcategory of computer science that handles the simulation of intelligent
activities in computers. AI is a computer system, which can accomplish responsibil-
ities that usually need human acumen. Generally, a rule engine leads the AI system
and a good AI system should have an intelligent rule engine, which is based on a
series of meaningful IF–THEN statements. Since the 1950s, AI has been successfully
used in visual perception, speech recognition, decision-making, and translation be-
tween languages. AI and ML are often used interchangeably, especially in the realm
of big data.

As shown in Figure 1.1, DL is considered as a subcategory of ML and again ML
is a subcategory of AI. In other words, all DL is ML, but not all ML is DL, and so
forth.

ML, flourished since the 1980s, is a subset of AI but dynamic in nature and
does not require human intervention to make certain changes. Symbolic logic is an
example of AI but not considered as ML. As per the definition given by Tom Mitchel
[6], “A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T, as mea-
sured by P, improves with experience E.” In ML programs, there is no need of fol-
lowing IF–THEN rule engine, rather they can adjust themselves in response to the
data they are exposed to, which has been termed as learning. Learning can be of
three types, as explained in the subsequent section.

As DL is the subset of both AI and ML, all the characteristics of AI and ML are
propagated to DL inherently. It deals with the large amount of data applying on
ANN. Statistics propose that the accrued volume of data will grow from 4.4 zetta-
bytes to roughly 44 zettabytes in 2020. That is why sometimes it has been called as
deep neural network.

2 Soumyajit Goswami

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

1.3 Artificial neural network

An ANN is an information processing system that has several performance features
in common with biological neurons. An ANN is characterized by [7]
(a) its design pattern between the neurons, called architecture;
(b) its technique of determining the weights on the connections, called learning

algorithm;
(c) its activation functions.

The artificial neuron as shown in Figure 1.2 is the basic building block or processing
unit of an ANN.

1.3.1 Classification of ANN

Primarily, ANNs can be classified into two categories [7]: FFNNs and RNNs.

Artificial intelligence

Machine learning

Deep learning

Self-driving car, speech
recognition

Facebook facial
recognition, Netflix video

recommendation

Amazon purchase
prediction, smart email

categorization

Figure 1.1: Relationship between AI, ML, and DL.

1 Deep Learning – A State-of-the-Art Approach to Artificial Intelligence 3

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

1.3.1.1 Feedforward neural network

The movement of signals in FFNN is in the forward pathway only. As there is
no feedback loop, its behavior is independent of historical input and responds
only to its current involvement. There are primarily two types of FFNN, as de-
picted below.

1.3.1.1.1 Single-layer feedforward network
This is the simplest form of a layered network (Figure 1.3) which has only one input
layer of source nodes that portrays onto an output layer of computation nodes. Its
inputs are associated with the outputs through a sequence of single-layer weights.
Adaptive linear neuron, Hopfield network, and learning vector quantization are
common examples of single-layer feedforward network.

1.3.1.1.2 Multilayer feedforward network
This type of feedforward network has one input layer, one output layer, and one or
more hidden layers. By connecting these neurons as shown in Figure 1.4, the net-
work is empowered to evaluate higher order information.

W5

Activation
function Output

W4

W3

W2

W1

X1

X2

X3

X4

X5

Figure 1.2: An artificial neuron.

4 Soumyajit Goswami

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

1.3.1.2 Recurrent neural network

In the architecture of an RNN (Figure 1.5), it should have minimum one feedback
loop (can also be self-feedback). There are numerous varieties of recurrent networks

O1

O2

x1

x2

xn–1

xn

x3

Input layer Hidden layer Output layer

Figure 1.4: Multilayer feedforward network.

xn

Input layer Output layer

Wnm

W2m

W1m

W22

W21

W11

W12

Wn1

Wn2

Om

O2

O1

x2

x1

Figure 1.3: Single-layer feedforward network.

1 Deep Learning – A State-of-the-Art Approach to Artificial Intelligence 5

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

based on the pattern of the feedback. In a specific situation, the network can have a
single layer of neurons with each neuron feeding its output signal back to the in-
puts of all other neurons. Other types of recurrent networks may have self-feedback
loops with hidden neurons. Hopfield network, bidirectional associative memory,
brain state in a box, and adaptive resonance theory are few examples of RNN.

1.3.2 ANN learning

To acquire knowledge from environment and to improve the network’s performance
through learning is the most significant property of a neural network (NN). This
process indicates the subsequent order of actions [7]:
– Stimulation by an environment
– Changing free parameters as an outcome of stimulation
– Responding in a better means to the environment

1.3.2.1 Unsupervised learning

In unsupervised learning (Figure 1.6), no external trainer is required to accomplish
the learning procedure. Inputs are provided to the network but without the desired

Self-feedback loop

Feedback loop

O1

X1

X2

X3

Xn–1

Xn

Input layer Hidden layer Output layer

O2

Figure 1.5: Recurrent network.

6 Soumyajit Goswami

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

output(s). The network must decide itself what characteristics are used to assemble
the input data. Competitive learning rule is one of the ways to perform unsupervised
learning. If an NN has two layers – an input layer and a competitive layer, the input
layer neurons collect the feed data, whereas the competitive layer consists of neurons
participating among themselves and only the winners of the competition survive and
the other neurons switch off according to the “winner-takes-all” approach. Another
type of unsupervised learning is Hebbian, that is, correlate weight adjustment.

1.3.2.2 Supervised learning

If the desired output of an NN is already known and is feed to the network, the learn-
ing method of the network is called supervised learning. The network then processes
the inputs and relates its resulting outputs against the intended outputs. Differential
errors are then calculated, producing the system to regulate the weights to control the
network. This method happens repeatedly as the weights are continuously being fine-
tuned.

Supervised learning technique (Figure 1.7) is of two types – stochastic (weight
adjustment by probability) and through error correction. Error correction learning
rule is of two types, as stated below.
– Delta rule – It was designed by Widrow and Hoff in 1960 and is also known as

the Widrow and Hoff learning rule or the least mean square rule. The delta rule
uses the difference between target activation (i.e., target output values) and ob-
tained activation to undergo learning. The values of the weights are fine-tuned to
minimize the difference between target and actual output activation (i.e., error).

– Gradient descent rule – The prime characteristic of gradient descent is to
gradually but consistently reduce the output error by regulating the weights. If
a change in a weight (δw) increases (decreases) the error (δE), then the respec-
tive weight decreases (increases) and can be represented as follows:

Δwij = − η
δEi

δwij
(1:1)

The distance, η, is a standard parameter in NNs and is termed learning rate.

Environment Learning
system

Figure 1.6: Block diagram of unsupervised learning.

1 Deep Learning – A State-of-the-Art Approach to Artificial Intelligence 7

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

1.3.2.3 Reinforcement learning

In reinforcement learning, the learning of the network is achieved through constant
collaboration with the situation or environment. Figure 1.8 shows the block dia-
gram of a typical reinforcement learning network constructed around a trainer that
transforms a reinforcement signal collected from environment into an advanced sig-
nal termed as the heuristic reinforcement signal.

1.4 Deep learning

DL is a category of ML in which a network or model learns directly from dataset [8].
The word “deep” denotes the number of layers in the network – the deeper network

Environment
Training vector

Teacher
Desired response

Actual response

–

+

Learning
system

Error signal

Figure 1.7: Block diagram of supervised learning.

Environment

Primary reinforcement

Heuristic reinforcement

Teacher

Learning
system

Figure 1.8: Block diagram of reinforcement learning.

8 Soumyajit Goswami

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

consists of many layers. Traditional NNs comprise only two or three layers, whereas
deep networks can have hundreds of such layers as shown in Figure 1.9. There is no
specific definition beyond how many layers we can categorize the network as
“deep” [9]. Learning techniques are similar to ML and ANN, as depicted earlier. DL
is particularly suitable to identify modern smart applications [10] such as face rec-
ognition, text translation, voice recognition, and advanced driver assistance sys-
tems including lane classification and traffic sign recognition.

1.4.1 What makes DL state of the art?

– Advanced tools and techniques have deeply improved the accuracy of DL algo-
rithms. By comparing with ML in the same problem with same dataset, it has
been shown that DL minimizes the % of error drastically.

– DL can deal with massive dataset, which purposefully improvises the train-
ing of the network. In today’s world, there is no scarcity of data. As shown in
Figure 1.10, DL performs far better than ML at the presence of huge amount of
data.

– High-performance GPUs quicken the training of DL network with the huge vol-
umes of data, which lessens the training time from weeks to hours. GPUs are
available in any DL cloud platform.

Many standard models, developed and agreed by experts, are available in cloud
platforms to reuse in any DL network for any purpose.

Multiple hidden layers Output layerInput layer

Xn

Xn–1

X3
O1

O2

X2

X1

Figure 1.9: Block diagram of deep learning network.

1 Deep Learning – A State-of-the-Art Approach to Artificial Intelligence 9

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

1.4.2 Activation functions

Activation function or transfer function [11, 12] converts an input signal of a node of
an NN to an output signal, which is considered as an input to the next layer of the
network. It introduces nonlinearity into the network, which makes the network
more powerful and adds ability to learn something complex and complicated form
data. So, it is very significant to choose the appropriate activation function for any
network because it can considerably change the behavior of the network. The popu-
lar activation functions are described below. In all equations, f ′ðxÞ is considered as
the derivative of f ðxÞ, where x is the input signal.

1.4.2.1 Sigmoid activation function

Sigmoid function is defined as

f ðxÞ= 1
1+ e− x

f ′ðxÞ= f ðxÞð1− f ðxÞÞ
(1:2)

The sigmoid function curve looks like an S-shape, as illustrated in Figure 1.11. This
function exists between 0 and 1. We can find the slope of the sigmoid curve at any
two points; hence, it is differentiable.

Amount of data

Pe
rfo

rm
an

ce

Machine learning

Deep learning

Figure 1.10: Performance comparison between ML and DL.

10 Soumyajit Goswami

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

1.4.2.2 Hyperbolic tangent activation function

–10 –5 0
x

Sigmoid activation function

5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(x
)

Figure 1.11: Sigmoid activation function.

–10
–1

–0.8

–0.6

–0.4

f(x
)

–0.2

0.2

0.6

0.4

0.8

1
Hyperbolic tangent activation function

0

–5 0
x

5 10

Figure 1.12: “tanh” activation function.

1 Deep Learning – A State-of-the-Art Approach to Artificial Intelligence 11

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Hyperbolic tangent function is defined as

f ðxÞ= tanhðxÞ= 2
1+ e− 2x − 1

f ′ðxÞ= 1− f ðxÞ2
(1:3)

As shown in Figure 1.12, “tanh” function also looks like an S-shape. This function
exists between −1 and 1. It is differentiable too.

1.4.2.3 ReLU activation function

At present, ReLU is the furthermost used activation function. It is shown in Figure 1.13
and defined as

f xð Þ=0, for x< 0

x, otherwise

f ′ xð Þ=0, for x<0 (1:4)

1, otherwise

This function exists between 0 and infinity. It is differentiable too.

0
–10 –5 0

x
5 10

1

2

3

4

5f(x
)

6

7

8

9

10
ReLU activation function

Figure 1.13: Rectified linear unit activation function.

12 Soumyajit Goswami

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

1.4.2.4 Softmax activation function

Softmax function is a type of sigmoid function, which can handle multiple classes
in the classification problem. The output of the softmax function is equivalent to a
probability distribution. It can be defined as

f ðxÞjkj= 1 =
exjPk
k = 1 e

xk
(1:5)

1.4.3 Popular DL architectures

There are many DL architectures available in the literature. Few of them become
very popular and offer high accuracy with better performance [12].

1.4.3.1 Restricted Boltzmann machine

RBMs are extensively used in DL networks because of their historical importance and
comparative straightforwardness. It was invented by Geoff Hinton and is used for di-
mensionality reduction, classification, regression, collaborative filtering, feature learn-
ing, and topic modeling. Boltzmann machines (BMs) are the primary building blocks of
RBMs. BMs can be designed as NNs with bidirectionally associated stochastic process-
ing components. RBMs are shallow, two-layer NNs that establish the DBN. As shown in
Figure 1.14, It has just two layers – visible layer (or input layer) and hidden layer. Each
node of visible layer is connected to each of the hidden layer, but there is no connec-
tion between any node of any particular layer. This is the restriction in RBM network.

In recent years, few modified RBMs introduced by different researchers are dis-
criminative RBM, conditional RBM, and temperature-based RBM.

1.4.3.2 Deep belief network

DBN also falls under the same stack of RBM, because here also the nodes of any
single layer do not interconnect. DBNs, constructed by Hinton in 2006, are used
to recognize, cluster, and generate images, video sequences, and motion-capture
data.

To maximize the flexibility of DBNs, a novel prototype of convolutional DBN
was presented by Arel in 2010. It can extract the features of high-dimensional im-
ages. The structure of DBN has been demonstrated in Figure 1.15.

1 Deep Learning – A State-of-the-Art Approach to Artificial Intelligence 13

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Visible layer Hidden layer

Xn

X2

X1

Figure 1.14: Structure of RBM.

Hidden layer1Visible layer

Xn

X2

X1

Hidden layer2 Hidden layer3

Figure 1.15: Structure of deep belief network.

14 Soumyajit Goswami

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

1.4.3.3 Autoencoder

An AE is comprised of two symmetrical DBNs, as illustrated in Figure 1.16. The first
DBN does the encoding operation and the second one does the decoding. It has been
successfully used in image search, data compression, information retrieval, and so on.

As a practical example, 28 × 28 pixel (i.e., 784 pixels) image dataset can be taken
as input to an AE. The first layer of the encoding-half is generally kept a slightly
larger set of parameters. In essence, the encoder will contain the below set of
parameters:

784 (input) ----> 1000 ----> 500 ----> 250 ----> 100 ----> 30 (compressed vector)

Similarly, the decoder will contain the below set of parameters:

30 (compressed vector) ----> 100 ----> 250 ----> 500 ----> 1000 ----> 784 (output)

To improve the ability of AE, there exist various types of AE, such as denoising au-
toencoder, sparse autoencoder, variational autoencoder, and contractive autoencoder.

Encoding DBN

In
pu

t Output

Decoding DBN

Compressed feature
vector

Figure 1.16: Structure of autoencoder.

1 Deep Learning – A State-of-the-Art Approach to Artificial Intelligence 15

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

1.4.3.4 Convolutional neural network

The convolution operator of two functions f ðtÞand gðtÞcan be defined as follows:

f ðtÞ*gðtÞ =Δ
ð∞
−∞

f ðτÞgðt − τÞdτ=
ð∞
−∞

f ðt − τÞgðτÞdτ (1:6)

where τ is a dummy variable representing time.
This mathematical operation has been used in CNNs and has suitable perfor-

mance in processing 2D data with grid-like topology. The primary use of CNN is in
the areas of image classification, clustering, object recognition, behavior recogni-
tion, sound representation over spectrogram, and natural language processing on
hand-written documents. Image recognition functionality of CNN is majorly being
applied in self-driving cars, robotics, drones, security, medical diagnoses, and treat-
ments for the visually impaired.

Convolutional nets analyze images in a different way than RBMs. While RBMs
acquire to recreate and recognize the features of each image entirely, convolutional
nets analyze images in pieces. A convolutional network receives a normal color
image as a rectangular box whose width and height are measured by the number of
pixels and whose depth is three layers deep, one for each letter in red–green–blue.
In other words, a convolutional net treats an image as a 3D object.

There are few modified versions of CNN available in the literature, which was
shown to have better performance while comparing with conventional CNN.
Combination of RBM and CNN, termed as convolutional RBMs, provides an ad-
vanced convergence rate with a reduced value of the negative likelihood function.

1.5 ML platforms of multiple organizations

Company ML platform URL

IBM IBM Watson Studio (formerly, Data
Science Experience)

https://www.ibm.com/cloud/watson-studio

Amazon SageMaker https://aws.amazon.com/sagemaker/
Microsoft Azure Machine Learning Studio https://studio.azureml.net/
SKIL Skymind Intelligence Layer https://docs.skymind.ai/docs
Google Cloud AI https://cloud.google.com/products/ma

chine-learning/
Cloudera Data Science Workbench https://www.cloudera.com/products/data-

science-and-engineering/data-science-
workbench.html

Databricks MLlib https://docs.databricks.com/spark/latest/
mllib/index.html

Dataiku Collaborative Data Science Platform https://www.dataiku.com/

16 Soumyajit Goswami

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.ibm.com/cloud/watson-studio
https://aws.amazon.com/sagemaker/
https://studio.azureml.net/
https://docs.skymind.ai/docs
https://cloud.google.com/products/machine-learning/
https://cloud.google.com/products/machine-learning/
https://www.cloudera.com/products/data-science-and-engineering/data-science-workbench.html
https://www.cloudera.com/products/data-science-and-engineering/data-science-workbench.html
https://www.cloudera.com/products/data-science-and-engineering/data-science-workbench.html
https://docs.databricks.com/spark/latest/mllib/index.html
https://docs.databricks.com/spark/latest/mllib/index.html
https://www.dataiku.com/

1.6 IBM Watson Studio (formerly, Data Science
Experience)

In 2016, IBM launched DSX [13], which is modified as Watson Studio, to address
each stage of the data science lifecycle, offering notebooks, collaboration spaces, tu-
torials, and ML models by provisioning Spark, R, Python, Scala, and other ML lan-
guages. DSX also helps data scientists by providing support to their familiar tools
such as Jupyter, RStudio, Notebooks, and Apache Spark to create complex ML mod-
els and deploy these models to production. Figure 1.17 shows few snapshots from
IBM Watson Studio on projects and services subsections. A project is used to orga-
nize resources to achieve a precise goal. It can include data, collaborators, and ana-
lytical assets like notebooks and models. An admin can associate any number of
services with the project. The types of services that can be associated are
– IBM Apache Spark compute service
– Amazon Elastic MapReduce compute service
– IBM Analytics Engine compute service
– Cognos Dashboard Embedded
– IBM Watson Machine Learning
– IBM Streaming Analytics
– Watson Natural Language Classifier
– Visual Recognition
– Watson Assistant
– Watson Discovery
– Watson Knowledge Studio
– Watson Language Translator
– Natural Language Understanding
– Watson Personality Insights
– Watson Speech to Text
– Watson Text to Speech
– Watson Tone Analyzer

Once a project is created, an admin can add data assets to it for working with
that data. Data assets can be added from local files, community, and database
connections. All the collaborators in the project are automatically authorized to
access the data in the project. After adding raw data into project, data needs to
be refined, which consists of cleansing and shaping. Cleansing can be done by
removing data that is incorrect, incomplete, improperly formatted, or duplicated.
Whereas shaping data can be done by filtering, sorting, combining or removing
columns, and performing operations. The refined data is ready for analyzing and
visualizing [14].

1 Deep Learning – A State-of-the-Art Approach to Artificial Intelligence 17

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

(a) Projects (both for new and existing) Subsection

(b) Creating New Project

(c) Services (both for new and existing) Subsection

Figure 1.17: IBM Watson Studio subsections. (a) Projects (both for new and existing) subsection, (b)
creating new project, and (c) services (both for new and existing) subsection.

18 Soumyajit Goswami

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

1.7 Conclusion

In this chapter, an overview with their relationship between AI, ML, and DL has
been specified. At the same time, the reason for considering DL as state of the art in
modern era has been discussed. The main focus is to highlight different cloud plat-
forms available in the market by different vendors. In Section 1.6, different steps of
using ML with IBM Watson Studio – have been described, including data set man-
agement and cleansing raw data. Comparative discussion in terms of performance,
accuracy, 24 × 7 availability, and user-friendliness between the ML platform offer-
ings by multiple organizations can be considered for future study.

References

[1] https://www.forbes.com/sites/bernardmarr/2017/08/08/the-amazing-ways-how-google-
uses-deep-learning-ai/#509e1a7b3204

[2] https://www.techtimes.com/articles/3442/20140213/netflix-deep-learning-based-ai-will-tell
-you-what-you-want-to-watch-but-do-we-need-one.htm

[3] https://www.digitaltrends.com/computing/mit-future-video/
[4] https://theintercept.com/2018/04/13/facebook-advertising-data-artificial-intelligence-ai/
[5] https://www.systematics.co.il/wp-content/uploads/Deep_Learning_ebook.pdf
[6] https://www.cs.ubbcluj.ro/~gabis/ml/ml-books/McGrawHill%20-%20Machine%20Learning

%20-Tom%20Mitchell.pdf
[7] Haykin Simon S. Neural networks and learning machines. Pearson, Upper Saddle River,

2009, 3.
[8] Deng L. A tutorial survey of architectures, algorithms, and applications for deep learning.

APSIPA transactions on signal and information processing, 2014, 3.
[9] Deng L., Dong Y. Deep learning: Methods and applications. Foundations and Trends® in

Signal Processing, 2014, 7, 3–4, 197–387.
[10] Liu W., Zidong W., Xiaohui L., Nianyin Z., Yurong L., & Fuad E. A. A survey of deep neural

network architectures and their applications. Neurocomputing, 2017, 234, 11–26.
[11] Schmidhuber J. Deep learning in neural networks: An overview. Neural networks, 2015,61,

85–117.
[12] Bishop Ch. M. Pattern recognition and machine learning (information science and statistics).

2006.
[13] https://hortonworks.com/blog/exciting-data-science-experience-hdp/
[14] Kanit W., Smilkov D., Wexler J., Wilson J., Mané D., Fritz D., Krishnan D., Viégas F.B., &

Wattenberg M. Visualizing dataflow graphs of deep learning models in TensorFlow. IEEE
transactions on visualization and computer graphics, 2018, 24, 1, 1–12.

1 Deep Learning – A State-of-the-Art Approach to Artificial Intelligence 19

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.forbes.com/sites/bernardmarr/2017/08/08/the-amazing-ways-how-google-uses-deep-learning-ai/%23509e1a7b3204
https://www.forbes.com/sites/bernardmarr/2017/08/08/the-amazing-ways-how-google-uses-deep-learning-ai/%23509e1a7b3204
https://www.techtimes.com/articles/3442/20140213/netflix-deep-learning-based-ai-will-tell-you-what-you-want-to-watch-but-do-we-need-one.htm
https://www.techtimes.com/articles/3442/20140213/netflix-deep-learning-based-ai-will-tell-you-what-you-want-to-watch-but-do-we-need-one.htm
https://www.digitaltrends.com/computing/mit-future-video/
https://theintercept.com/2018/04/13/facebook-advertising-data-artificial-intelligence-ai/
https://www.systematics.co.il/wp-content/uploads/Deep_Learning_ebook.pdf
https://www.cs.ubbcluj.ro/~gabis/ml/ml-books/McGrawHill%2520-%2520Machine%2520Learning%2520-Tom%2520Mitchell.pdf
https://www.cs.ubbcluj.ro/~gabis/ml/ml-books/McGrawHill%2520-%2520Machine%2520Learning%2520-Tom%2520Mitchell.pdf
https://hortonworks.com/blog/exciting-data-science-experience-hdp/

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Karan Maheshwari, Aditya Shaha, Dhruv Arya,
Rajkumar Rajasekaran, and B.K. Tripathy

2 Convolutional Neural Networks:
A Bottom-Up Approach

Abstract: A lot has changed in the world since the inception of the so-called deep
learning (DL) era. Unlike conventional machine learning algorithms, where human
learns more of feature extraction than machine, which just crunches numbers, DL
algorithms are quite promising as they have revolutionized the way we deal with
data and have become adept in taking humanlike decisions. Based on the powerful
notion of artificial neural networks, these learning algorithms learn to represent
data or, if we rephrase, can extract features from raw data. DL has paved way for
end-to-end systems where one learning algorithm does all the tasks. Convolutional
neural networks have earned a lot of fame lately, especially in the domain of com-
puter vision where in some cases its performance has beaten that of humans. A lot
of work has been done on convNets and in this chapter we will demystify how con-
volutional neural networks work and will illustrate using one novel application in
the field of astronomy where we will do galaxy classification using raw images as
input and classify them based on its shape. In addition to this we will investigate
what features the network is learning. We will also discuss how DL superseded
other forms of learning and some recent algorithmic innovations centered on con-
volutional neural nets.

Keywords: deep learning (DL), convolutional neural networks, galaxy classifica-
tion, artificial neural networks, deconvolution

2.1 Introduction

We as humans have always wondered about our position in the universe. Since the
existence of mankind, we have always looked up into the sky and asked ourselves
qualitative questions about the Sun, the Moon, the stars, and the Universe. How the
universe came into existence? What’s the future of our universe? These are two of the
many questions, yet to be answered clearly. There are many theories but there is no
consensus about one in the scientific community. The astronomers and scientists in

Karan Maheshwari, Aditya Shaha, Dhruv Arya, Rajkumar Rajasekaran, School of Computer
Science and Engineering, Vellore Institute of Technology, Vellore, India.
B. K. Tripathy, School of Information Technology and Engineering, Vellore Institute of
Technology, Vellore, India.

https://doi.org/10.1515/9783110670905-002

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110670905-002

early twentieth century valued the data highly. For them collecting data meant hand
recording observations from the Earth, it certainly was a time-consuming and costly
process, but the only means to study the universe. They thought with more data
they’ll be able to answer all the impending questions. Today scientists have more
data than they can process. Everyday petabytes (1 Petabyte = 106 Gigabytes = 1,012 kil-
obytes) of data is downloaded and archived into data tombs and we believe why it is
called data tomb is self-explanatory. Today what scientists agree upon is that we
can’t answer the questions relating to our existence straight away but with more data
we will get more information about the different astronomical phenomena and events
occurring out there. Based upon that information we can frame new theories which
may lead us to the path of knowing the origin of our universe. Before the existence of
modern computing techniques and collecting data from space telescopes, cosmolo-
gists used to rely on crude techniques for analysis of hand recorded data.

It all began in 1800s when Harvard College Observatory’s director Edward
Pickering wanted to survey the whole sky using the newly discovered technique
(stellar spectroscopy) of that era, with a dedicated and determined team of human
machines who worked on classification of stars based upon presence of different
elements in the spectral lines. After several hit and trial combinations they finally
found the OBAFGKM star classification scheme which is still used till date. During
1911–15, these human computers were used to classify around 50,000 stars annu-
ally, which resulted in the Henry Draper catalogue (HDR). This amount of manual
classification done was big feat in itself but despite the hard work, no manual
method can cope with the current data rates.

With the launch of first space telescope (Hubble Space Telescope, 1990) and later
on followed by many, as the technology developed, scientists and engineers crafted
new state of the art techniques for recording data from the sky. Thus, now there is an
abundance of data.

Today when the space telescopes scan out the sky with around a trillion stars,
even at the incredible rate of classification by those human computers, it would
cost us around 16,000 years to classify a billion stars or merely 0.1% of total.

In short, we would like to summarize the whole era in terms of two problems
and their solutions.
1. The first problem was that data was recorded in crude way by hand or photo-

graphs from earth so it was highly distorted and inaccurate because of dust and
pollution in atmosphere. So, the solution to this problem was the launch of
space telescopes and it resulted in the second problem.

2. With the launch of space telescopes, the data capturing rates sky rocketed, and
then for humans it is just not possible to classify this much data manually as it
will take thousands of years to classify. The solution to this problem is what
this chapter is focused on.

22 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

To solve the second problem, we need tools or rather we need programs which can
predict anomalies if they occur or programs that can classify and cluster our data
by taking decisions or finding patterns in data, for example, classifying the shape
of the galaxy. In half a decade we will be marking 200 years of computation begin-
ning from the invention of difference engines to this date where computational
power has grown to such an extent that we have computers that can take decisions
autonomously. As said by Plato, necessity is the mother of invention so is the field
of machine learning (ML) as we needed programs which can learn to predict/clas-
sify/find patterns on its own or rather we’d say programs which can do the tasks
performed by the so-called human machines on large amounts of data, for example,
galaxy classification. Thus, formally we can say that ML is a program which im-
proves on its performance measure (p) over task (t) with more experience (e) of (t)
[1]. ML is a set of different techniques based on principles of statistics and calculus
that allow us to create programs, which without being explicitly coded can do
tasks, which requires human-level decision making and intelligence. Examples of
different ML-based algorithms are regression, logistic regression, artificial neural
networks (ANNs), support vector machines, clustering, and so on. Using these tech-
niques, we are either trying to predict value of some entity (e.g., house price predic-
tion) or we are trying to classify some entity (e.g., tumor class prediction), based on
certain factors which we call features of the data. For instance, let’s say we want to
predict the price/category of a house. This price/category will depend on a number
of factors (features), such as size of house (x1), locality (x2), number of bedrooms
(x3), and number of floors (x4). All these features become our input data and con-
tribute differently toward the house price or category; hence, their contributions
can be represented as w1, w2, w3, and w4, respectively. The actual price/category of
the house can be represented as y and the predicted price/category of the house
can be represented as y’.

We can group these algorithms based upon the way they learn.
1. Supervised ML algorithms: Here the data comprises of x1, x2,…, xn and y. The

goal of algorithm is to predict y’ correctly by learning the w1,w2,,wn, which map
the relationship between x and y. The algorithm learns under the supervision
provided by labeled y as it optimizes the weights based on error (y-y’). This
error is used to tune w1, wn based on different learning strategies (e.g., backpro-
pagation) and weight updating rules (e.g., gradient descent).

2. Unsupervised ML algorithms: Here the data comprises of only x1,x2, …, xn. The
goal of algorithm is to cluster or group the data into different number of catego-
ries (y1,y2..) prespecified by user. These algorithms make internal representa-
tions or cluster the data based on the data itself (x1,x2, …, xn). Here no
supervision is provided as we don’t have the values of label y.

So, it can be understood that the features representing the data are very important
because if we use incorrect features which cannot represent the data properly then

2 Convolutional Neural Networks: A Bottom-Up Approach 23

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

our predictions y’ will be incorrect. Therefore, in traditional ML algorithms, it just
becomes the task of optimizing weights of features that are extracted or designed
by human experts in the field and can be seen in Figure 2.1.

So, in these approaches human learns more about the problem rather than machine.
In our opinion, in traditional ML almost 90% of work is done by humans to figure
out features which define the data, the rest 10 % of work is done by computers, that
is numeric optimization. Computers are good in numeric optimization. ML should not
just mean numeric optimization of the given weights, we want computers to automat-
ically draw features from raw data. The current deep learning (DL) algorithms exactly
does this. DL algorithms are based on concept of ANNs which is inspired by human
cognition.

We know that brains process information, compute a lot of data, and retain short-
term and long-term memory. The human brain takes raw input through the five sen-
sory organs and process information. This is where the concept of ANNs (ANNs) fit in.
In ANNs the scientific community has tried to model how human brain works. The
brain has its fundamental building blocks which are responsible for taking the input
from the five senses (from the outside world) and sending instructions to the body.
Analogously in the ANN model where computation happens, the building blocks are
nerve cells or neurons. Neurons are responsible for taking input signals and mapping

Traditional
machine learning

algorithms

Extracting
quantitative

features
representing the

data
[roughly 90% of

the work]

Learning algorithm
maps input to

output
[10% of the work]

Figure 2.1: Machine learning in practice.

24 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

these inputs to a targeted response. Similarly ANNs have a dense network of intercon-
nected neurons where each connection has synaptic weights. The input signals are
propagated through this dense network and mapped to a target response. Table 2.1
and (Figure 2.2) show the comparison between biological neuron and artificial neuron.

In an ordinary neural network, we update the parameters w[L] using weight updating
rules like gradient descent which minimizes the loss after each iteration by backpro-
pagating the error.

In DL we have a dense network of layers of neurons where raw inputs are processed
linearly and nonlinearly layer after layer in a hierarchical order (Figure 2.3). DL is a
subfield of representation learning. Neural networks attempt to automatically learn

Table 2.1: Biological neuron versus artificial
neural networks.

Biological neuron Artificial neuron

Nerve cell Neuron

Dendrites Input signals

Synapses Weights

Soma Net input

Axon Output

Dendrites

Cell Body
Synapse

Axon

Nucleus

Input Weights

Weights

Weights

Input

Input Sigma

Activation
function

oi = fi(neti)

Input

Input

Figure 2.2: Neuron versus artificial neural networks.

2 Convolutional Neural Networks: A Bottom-Up Approach 25

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

good features or representations and deep neural networks (DNNs) or DL algo-
rithms (based on ANNs) attempt to learn (multiple levels of) representation and out-
put from raw inputs x. DL just does not mean using neural networks solely, it
means we have multiple layers of representation. Convolutional neural networks
(CNNs) (Le Cunn 1989) are one such DL architecture which is known to work on
data that is structured in a gridlike manner (Figure 2.3).

Z L½ �=W L½ �A L− 1½ �+B L½ �
A L½ �= g Z L½ �ð Þ

L is some layer 1 ≤ L ≤ N
Now coming back to our task of replacing human effort of classifying galaxy

images using a DL algorithm, we need to know on what basis images are recog-
nized. Image is a two-dimensional function f(x,y), where x and y are spatial coordi-
nates, and the amplitude of f at any pair of coordinates (x,y) is called intensity of
the pixel at that point in the image. So, in layman’s term we can say that an image
is a m × n-dimensional matrix which can be considered as a two-dimensional grid.
When we are talking about an image, we consider all the raw pixels as the features
of the image. For the task of object/image classification, researchers have long re-
lied on the edges of the object. Edge map of the image gives us the general outline
or shape of the object and can be really useful in object classification. In a lot of

X1

X2

H1

H2

Hk+1

Xn+1

Input features Hidden nodes output

Y’

Figure 2.3: Artificial neural network.

26 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

computer vision tasks, we start by passing a filter across the image which detects
edges in the image. Figure 2.4 shows how a filter is passed through an image.

The filter used here is a Sobel filter. Here we can say that the filter can be seen as
set of weights which maps input A[L−1] to output Z[L]. The effect of applying a filter
across an image is shown in Figure 2.5, where edges of a cat are detected using a
Sobel filter.

Like Sobel filter there are many different types of filters which can be used in vari-
ous settings. One question which should arise in readers mind is how to select the
optimum filter. As we stated before a ML algorithm learns parameters W which

31

12

00 1–1 2 7 4

50 8–2 9 3 1

21 70 2–1 5 1 3

0 1 3 1 7 8

4 2 1 6 2 8

2 4 5 2 3 9

1 0
=

–1
–12
–10
–3

0

–8
0 3

5

–2 –8
–4

5
16

–14
–18–6

2* 0 –2
1 0 –1

Figure 2.4: Application of Sobel filter on an image.

Figure 2.5: Output of the cat image after applying Sobel filter.

2 Convolutional Neural Networks: A Bottom-Up Approach 27

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

maps input X to output Y. Therefore, we could consider the task of object recogni-
tion as a supervised ML problem and learn the optimum filter that gives us right
features (edges), which can be further used to classify the object. CNNs learn the
right set of filters that extract correct features to classify the object. In the next sec-
tion, we have given a mathematical overview of CNNs. The name suggests that
CNNs use the mathematical operator called convolution. This convolution operation
is different from what is defined in mathematics or signal processing textbooks. The
DL community actually uses cross correlation (sum of element-wise product) but by
convention it is being called CNN and in this chapter, we will be following that con-
vention. As already mentioned, convolution operation can be performed on any
data that is oriented in a grid format. For example, audio data (one-dimensional
grid where amplitude is measured over time or sequences of texts) and images
(two-dimensional grid, where each position x, y represents a pixel). Thus, using the
right filter, which can be learnt using supervised ML, we can learn to extract the
right features.

Let us see how the convolution operation works.

2.2 The convolutional operation

In cricket, we judge a player’s merit by his/her average performance. This is noth-
ing but an average of runs that a player scores in all the matches he/she has played.
Now suppose we as the coach of a cricket team have been assigned the task of se-
lecting the best players from a bunch of players, we can use the convolution opera-
tion to help us out. The convolution operation is just a weighted sum of the runs of
the player in last n matches.

So, our responsibility is to choose the players who have not only performed
consistently well but also performed well in the recent past. So, the runs scored by
a player in the recent past should be given more weightage than the runs scored by
the player in distant past. Hence, we use a weighted sum to find the performance of
a player.

Let the weight of matches played in the past be less as compared to the recent
matches. Then the weights of the matches are given in Table 2.2:

Table 2.2: Weights assigned to set of seven matches played in past.

Match (w) Match (w) Match (w) Match (w) Match (w) Match (w) Match (w)

.

28 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

The runs scored by the player are given in Table 2.3.

After applying the convolution operation on these scores we get the values as in
Table 2.4.

For example, S6 was obtained by

S6 =X12w7 +X11w6 +X10w5 +X9w4 +X8w3 +X7w2 +X6w1

Thus, the convolution operation now gave us a smaller space which extracted im-
portant performance details from a larger space of run. Now, this space can be used
for a more thorough comparison of performance of players.

In the above convolution operation, the kernel (weights) that we used was one-
dimensional as our input was 1-dimensional. The same concept of convolution can
be extended for a two-dimensional Input (like Images) by using a two-dimensional
kernel:

S i, jð Þ= K*Ið Þ i, jð Þ =
X
m

X
n

I i+m, j+ nð ÞK m, nð Þ

In the above equation we are applying the convolution operation on the image I by
applying a kernel K of size (m × n). Figure 2.6 [2] shows the convolution operation
by a kernel of size (2 × 2) on an image of size (3 × 4). From the above example we
can see that by applying a one-dimensional kernel on 1-dimensional input we get a
one-dimensional output.

Similarly, by applying a two-dimensional kernel on two-dimensional input (gen-
erally grayscale images) we get a two-dimensional output. So, what will be the case
when we have a three-dimensional input (like RGB images)? In RGB images having
three channels (imagewidth × imageheight × 3) we need a kernel with the same number
of channels. It will be convolved with a filter having three channels. The reader
should note that each individual filter channel is convolved with the corresponding

Table 2.3: Runs scored by the player in the past.

X X X X X X X X X X X X

Table 2.4: Result of the convolution operation.

S S S S S S

.

2 Convolutional Neural Networks: A Bottom-Up Approach 29

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

input channel and the output of all channels is summed to a single output. Thus, we
get a two-dimensional output. In most of the CNNs, we use K number of three-
dimensional filters and we get a three-dimensional output where the third dimension
would be K, the number of filters. This is illustrated in Figure 2.7.

2.3 Relationships between input dimension, output
dimension, and the filter dimension

Now one question that can come in our mind is how we can predict the dimension
of the output without actually applying the filter. The answer to this question is

Input

Kernel
a b c d

e f g h

x y

z w

i j k I

m n

ax + by
+ ez + fw

bx + cy + fz
+ gw

ex + fy + iz
+ jw

ix + jy + mz
+ nw

fx + gy + jz
+ kw

gx + hy +
kz + lw

jx + ky + nz
+ ow

kx + ly + oz
+ pw

cx + dy + gz
+ hw

o p

Output

Figure 2.6: Convolution operation on image of size (4 × 4) with kernel (2 × 2).

30 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

through a mathematical relation that exists between the input dimension, output
dimension and the filter dimension. So let us start deriving this relation by answer-
ing a simple question. Why is the output size less than the input size? The answer is
that there are pixels on the image where we cannot place our kernel because we
will go out of the image boundary (Figures 2.8 and 2.9).

To avoid this, we can pad the image before applying the convolution operation, but
it will still increase the image dimension. So padding will increase the dimension of
the image by (2 × 2) for (3 × 3) kernel. But what if we increase the size of the kernel?
For example, for a (5 × 5) kernel we have to increase the size of the image by

Figure 2.8: Convolution operation on image with kernel size (3 × 3).

Figure 2.7: Convolution operation on three-dimensional images.

2 Convolutional Neural Networks: A Bottom-Up Approach 31

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

padding (4 × 4). So in general we can see that by using the kernel of size F for a convo-
lution operation we need a padding of F–1 on either sides of the image. In other
words, we cannot calculate the convolution of F–1 pixels on either side of the image.
So, the size of the image will decrease by F–1 So let the height and width of the image
be H and W, respectively. The height and width of the output be Ho and Wo, respec-
tively. So the output dimension of the image will be

Ho =H − F + 1

Wo =W− F + 1

Now as we saw in the above example that in order to calculate the convolution of
all pixels we need to pad the image and padding an image increases the dimensions
of the image by twice the padding size(above and below) So, after padding the di-
mensions of the output will be

Ho =H + 2P − F + 1

Wo =W+ 2P − F + 1

If we pad the image around with a pixel of value zero then it is called zero padding.
Many a times we can do padding by adding layers of pixels which are present at the
boundary. As padding is used to control the size of the output there are two com-
monly used types based on the output size. If the output size is equal to the input
size then we call it as same padding. If the input is not padded then we call that

Figure 2.9: Convolution operation on image with kernel size (5 × 5).

32 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

scheme as valid padding. In addition to these two types we can always define our
own custom pad size.

Reason for padding are (1) information on corner as filter passes only once and
(2) output will become very small if there is no padding. So, to control the size of
output we go for padding.

Now what if we don’t want to calculate the convolution operation for all the
pixels in our image but we want to calculate the convolution for alternate pixels or
maybe two alternate pixels or k-alternate pixels. In order to solve this we introduce
the concept of strides. A stride is nothing but a step that we take while applying the
convolution operation. In the normal case we have a stride of size 1, in which we
calculate the convolution for each pixel. To calculate the convolution of alternate
pixel we can have a stride of 2 and so on.

So how will the application of stride affect our output dimensions? Because we
are now calculating the alternate pixel convolution, the output size is bound to re-
duce by half of the input size. So, when we apply a stride of k, the output size will
decrease by (1 K=)th the input size. So the formula to calculate the output dimen-
sions when we use a padding of size P and Stride of S is

Ho=H + 2P− F
S

+ 1

Wo=W+ 2P− F
S

+ 1

2.4 Properties of CNNs

Now that we know what a convolutional operator is and how the convolutional op-
eration changes the output dimension it is now time to ask a very fundamental
question. What are CNNs? Also why do we use CNNs and how are they different
from the normal feed forward neural networks?

Let us answer these questions one by one. Convolutional networks are simply
neural networks that use convolution in place of general matrix multiplication in at
least one of their layers [2]. But why should we use the convolution operation? Why
are we moving from matrix multiplication operation used in ANNs to the convolu-
tion operation?

The convolution operation has the following benefits which help us improve
the ML process:
– Sparse interactions
– Parameter sharing
– Equivariant representations

2 Convolutional Neural Networks: A Bottom-Up Approach 33

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

2.4.1 Sparse connections

In the above example, we used kernels of size less than the image. By using a kernel
of smaller size we are able to capture meaningful information in that neighborhood
and only store this meaningful information for further processing. It is similar to
what we saw in the cricket team selection example. We capture meaningful perfor-
mance details from the array of 12 matches and store them in an array of size 6
which was significantly smaller than the original data and also helped us under-
stand how the player has performed in his last 6 matches.

Similarly in case of images the neighboring pixels contribute more when it
comes to detecting features such as edges. As we saw in the example above, a
(3 × 3) Sobel filter was able to capture the edges of high-dimensional images. But
how we are achieving sparse connectivity by using smaller kernels?

Consider the following case. We have to design a digit recognition software in
which each image has size (4 × 4). So there are a total of 16 pixels. Let us say that we
use an ANN to solve this problem. So the input layer has 16 values. Let the hidden
layer have 4 neurons. Therefore, the number of connections required to connect hid-
den layer to the input layer is 16 × 4 = 48 (Figure 2.12). Now if we use a CNN with a
kernel size of (2 × 2), the numbers of connections required are 4 × 9 = 36 (Figure 2.13).

To calculate the convolution operation for the above image, we have to multi-
ply the kernel with the image.

So, in a CNN, with a (2 × 2) kernel the output will be nine-neuron hidden layer
with neurons {K1, K2, K3, K4, K5, K6, K7, K8, K9} (Figure 2.10).

K1 = 1×w1 + 2×w2 + 5×w3 + 6×w4

Thus, sparse connectivity reduces significantly the number of calculations required
to calculate the output of the hidden layer. Another concern of sparse connectivity
is that “Are we losing information by not letting some of the neurons interact?” The
answer to this question can be explained with the help of Figure 2.11 from [2].

1 2 3 4

w1

* =

K1 K2 K3

K4 K5 K6

K7 K8 K9

w2

w4w3

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2.10: Using a (2 × 2) kernel on (4 × 4) image.

34 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

The neurons {x1,x2} and {x4,x5} in the input layer did not interact in the first hidden
layer because of the sparse connections. But indirectly they interacted at the second
hidden layer at the neuron g3 through the neurons {h2,h3,h4}.Thus deep CNNs can effi-
ciently describe the interactions between large portions of the inputs with the help of
kernels.

2.4.2 Receptive fields

The nodes which are directly affecting the highlighted node s3 (x1,x2,x3,x4,x5) are
called as receptive field of s3. The receptive field of the units in the deeper layers of a

K1

1 2 3 4 5 6 7

Neurons in the hidden layer

8 9 10 11 12 13

K2

14 15 16

Figure 2.12: Dense connections in case of an artificial neural network.

K2K1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Neurons in the hidden layer

Image pixels

Figure 2.13: Sparse connection in case of convolutional neural network.

g1

h1 h2 h3

g2 g3 g4 g5

h4 h5

x1 x2 x3 x4 x5

Figure 2.11: Interaction between sparsely connected neurons.

2 Convolutional Neural Networks: A Bottom-Up Approach 35

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

convolutional network is larger than the receptive field of the units in the shal-
low layers. This means that even though direct connections in a convolutional
net are very sparse, units in the deeper layers are getting input from all or most
of the input. This is why deeper layer learns complex features (high level) be-
cause their receptive field is across the whole of input image (larger than recep-
tive field of lower layers) (Figure 2.14).

2.4.3 Parameter sharing

In the example above if we see, the parameters required to find the output for
every neuron in the hidden layer are same. For calculating the output of the neu-
ron K11 the parameters required were {W1,W2,W3,W4}. Similarly, for the K12,K13,
and K14 (Figure 2.15) . But in case of fully connected ANN each neuron had a dif-
ferent set of parameters attached to it.

An intuitive explanation for parameter sharing can be illustrated using an
example. Let us, assume that we want to detect all the edges in the images. So the
filter that we will use to detect all edges will be the same. We won’t use Sobel filter
for one part of the image and Canny edge detector for others.

By sharing parameters there is a significant reduction in the number of parame-
ters of the network. So there exists a possibility of underfitting. So we can use mul-
tiple filters at a single layer to avoid underfitting. An intuitive explanation of the
same will be only by using Sobel filter we cannot accurately determine similar ob-
jects because mostly all cars have same shapes. So, in order to determine different
cars, we need to incorporate some other filters that will learn some other distin-
guishing features about the images.

2.4.4 Equivariance to translation

To understand how the convolution operator is equivariant to translation we first
need to understand what is translation. Translation means that each point/pixel in

Figure 2.14: An illustration showing that deep layers learn high-level features and shallow layers
learn low-level features.

36 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

the image has been moved the same magnitude in the same direction. Translation
can be depicted by this simple Figure 2.16.

An operator is said to be equivariant to a transformation when the effect of the
transformation is visible in the operator output. Equivariance should not be con-
fused with invariance. An operator is invariant to a transformation if the effects of
the transformation on the input do not have any impact on the operator output.
The convolution operator is translation equivariant, however there is no defini-
tive explanation for the mechanism by which the translation invariance is ob-
tained in CNN [3]. In the paper [4] translation-invariance was attributed to the
gradual increase in the receptive field size of neurons in successive convolution
layer. However, paper [5] suggested that the pooling operation is responsible for
the translation-invariance. In [3], the authors developed a tool called the transla-
tion-sensitivity map which was used to visualize and quantify the translation-
invariance in various architectures. It was observed that the architectural choices
have less effect on the translation-invariance of the network as compared to the
data augmentation.

Figure 2.16: Translation in an image.

K1

1 2 3 4 5 6 7 8 9

Image pixels

10 11 12 13 14 15 16

K1 K2 K2

Neurons in the hidden layer

Figure 2.15: Parameter sharing with multiple filters.

2 Convolutional Neural Networks: A Bottom-Up Approach 37

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Convolution is not naturally equivariant to some other transformations, such as
changes in the scale or rotation of an image. Other mechanisms are necessary for
handling these kinds of transformations.

2.5 Building a CNN

We’ve seen how convolution operation works, but in a CNN we don’t just convolve
the image. In every CNN, Convolution is the first step. In the second step we add
bias (constant) to the convolved image, which then passes through a nonlinear
function like ReLU. This stage is also known as the detector stage as it detects the
features of the image. In the third step the nonlinear output undergoes a pooling
function. In Figure 2.17, we have illustrated the steps involved in the fundamental
block of the CNN.

Step 1: Convolution Operation

3 0 1 2 7 4

1 5 8 9 3 1

2 7 2 5 1 3 1 0 –1 –12 –8 5 16

–3 –2 –8 –14
0 –6 –4 –18

–10 0 3 52* =0 –2
1 0 –1

0 1 3 1 7 8

4 2 1 6 2 8

2 4 5 2 3 9

Step 2: Adding bias and nonlinearity
Step 3: Pooling function applied to output of Step 2

–12 –8 16
+ bias

(element wise addition)

5

–2 –14–8
–10
–3

–6 –18–40

0 53
Pooling ReLU

Figure 2.17: An illustration of the steps involved in the fundamental block of the CNN.

38 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

2.5.1 Pooling in CNN

The role of the pooling function is to summarize the information the detected fea-
tures hold. Obviously, there have been architectures using different permutations
of these steps where certain times multiple convolution operations are performed
without using pooling. Computer vision community is highly active and comes up
with different state of the art architectures, and these topics are out of the scope of
this chapter.

Now let’s see how exactly these pooling functions work. As mentioned ear-
lier, the task of these pooling functions is to give summary of the detected fea-
tures and there are different variants of these functions. Commonly used forms
are max pooling and average pooling. In max pooling as the name suggests we
pass the maximum value of the feature to the output. In average pooling the
average of all the features is passed to the output. Pooling is performed by pass-
ing a pooling filter across the image and producing the output according to the
type of function defined. Example of max pooling can be illustrated in the fol-
lowing Figure 2.18.

We saw that convolution operation follows the property of equivariance to trans-
lation. Likewise, the pooling function helps the output become invariant to
changes in translation in the input. All variations of pooling help make the net-
work invariant to minute translations of the input. Researchers use combination
of convolution and pooling functions to make the networks robust to small
changes in images. One point the reader should note that is pooling operations
are sensitive to changes in scale and rotation. Figures 2.19 shows how max pool-
ing is invariant to translation. As observed in the figure below all the entities in

1 3 1 2 3

1 9 2 5 1

2 3 1 3 2
9 9 5

9 9 5

8
=

6 9

MAX POOL
Filter of 3×38 3 5 1 0

5 6 1 2 9

Figure 2.18: Illustration of max pooling.

2 Convolutional Neural Networks: A Bottom-Up Approach 39

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

the input is translated to right by 1 unit, but only half of the entities in the output
are changed.

2.5.2 Building block of CNN

The building blocks of a CNN are explained with help of Figure 2.20–2.21 and the
table 2.5 provides a detailed layer-wise description of the Le-Net Architecture.

AL− 1 = Imagewidth × Imageheight × Imagechannel

WL =Filterwidth ×Filterheight × Ichannel × Fnumber of filters

ZL =AL− 1*WL +BL

AL =Pool ReLU ZL� �� �
AL is of dimensionOutputwidth ×Outputheight ×Outputchannel

0.7 0.9

0.5 0.7

1 1 10.7

0.5 1 0.90.7

Detector Stage

Pooling Stage

Detector Stage

Pooling Stage

0.9 1

1 1

Figure 2.19: Pooling stage.

40 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

RG
B

Im
ag

e

5 ×
 5

×
 3

Fi
lte

r

5 ×
 5

×
 3

Fi
lte

r

5 ×
 5

×
 3

Fi
lte

r

Re
LU

*
24

 ×
 24

 ×
 6

4

28
 ×

 28
 ×

 3

12
 ×

 12
 ×

 6
4

+
bi

as
=

M
ax

 p
oo

lin
g

us
in

g
a

fil
te

r o
f

di
m

en
si

on
s

3 ×
 3

an
d

st
rid

e
of

le
ng

th
 2

64
 fi

lte
rs

 o
f d

im
es

io
ns

 5
 ×

 5
w

ith
 3

 c
ha

nn
el

s,
 s

tri
de

 o
f

le
ng

th
 1

an
d

va
lid

 p
ad

di
ng

AL =
 h(

g(
ZL))

ZL =
 A

L–
1 *

 W
L +

 B
L

h
is

 p
oo

l f
un

ct
io

n
g

is
 n

on
 li

ne
ar

 fu
nc

tio
n

AL–
1

W
L

Fi
gu

re
2.
20

:A
fu
nd

am
en

ta
lb

ui
ld
in
g
bl
oc

k
of

th
e
co

nv
ol
ut
io
na

ln
eu

ra
ln

et
w
or
k.

2 Convolutional Neural Networks: A Bottom-Up Approach 41

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

2.6 Complete CNN

2.6.1 Le-Net architecture

Table 2.5: Detailed layer-wise description of Le-Net.

Input layer

Convolution
layer

Stride =

Kernel size = ,
Number of
kernels = ,
Padding =

Output dimension

=
32− 5

1
+ 1

= 28 × 28 × 6

Number of parameters
= × × × =

Max pooling
layer

Stride = ,
kernel size = ,
Number of
kernels = ,
Padding =

Output dimension

=
28− 1
2

+ 1 = 14

= 14 × 14 × 6

Number of parameters =

Convolution
layer

Stride = ,
Kernel size =

Number of
kernels = ,
Padding =

Output dimension

=
14− 5
1

+ 1

= 10 × 10 × 16

Number of parameters
= × × × = ,

Max pooling
layer

Stride = ,
Kernel size = ,
Number of
kernels = ,
Padding =

Output dimension

=
10− 1
2

+ 1 = 5

= 5 × 5 × 16

Number of parameters =

Image

A32

32 28
28

14
14 10 10

5 5 128 84 26

Convolution
layer 1

Convolution
layer 2

Max
pooling
layer 1

Max
pooling
layer 2 Fully

connected
layer 1

Fully
connected

layer 2
Output
layer

Figure 2.21: The Le-Net architecture.

42 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

2.7 What is the network learning?

Now that we know how CNNs work, let’s try applying them. We have trained a CNN
for classifying images of cats and dogs. The network seems to be performing poorly
on the test set and we want to find out the reason behind it. We will explore some
techniques in this section which will help us in understanding what the CNN has
actually learned about a given problem.

Practitioners in the field of image processing have traditionally relied on using
filters designed specifically for the task. We have seen how Sobel filters can be used
to detect edges. Similarly, there are many filters which detect specific features. In
the previous decade, in most image categorization pipelines, multiple such filters
were used to extract features from images. The practitioner usually knew what spe-
cific feature that they were getting. For example, one might use a vertical edge de-
tecting filter to detect road markings. Being able to understand what features are
being extracted makes the decision-making process easy to understand.

In CNNs, we have thousands of filters. Furthermore, these filters are generated
by the training procedure. Only the dimensionality of the filters is fixed manually.
With so many filters being used, one very natural question comes to mind – what
specific features from the image are being used while categorizing the image? The
answer to this question helps us in debugging our CNN.

2.7.1 Visualizing the first layer

One simple way of discerning the types of features being extracted is to look at
the filters being used. We can understand these filters by visualizing them. Simply

Table 2.5 (continued)

Input layer

Fully connected
layer

Size = Output dimension
= ×

Number of parameters
= × × ×

= ,

Fully connected
layer

Size = Output dimension
= ×

Number of parameters
= × +

= ,

Output layer Size = Output dimension
= ×

Number of parameters
= × +

= ,

2 Convolutional Neural Networks: A Bottom-Up Approach 43

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

plotting the weights gives us good insights into what features of the input
image are being looked at by the filter. The filters from the first convolution
layer of our cats and dogs classifier have been visualized in Figure 2.22. The
first layer of this network used 64 7 × 7 by three (for the three channels) filters.
The 64 filters can be seen in the figure. Note how many filters are performing
the task of edge detection. In particular, the third last filter seems to be looking
at oriented edges at a 135° angle horizontally. Some filters are looking for
circles in specific channels.

It is not surprising that the network is looking for such primitive features in the first
layer. Experiments by neurophysiologists Torsten Wiesel and David Hubel in the
1960s on the working of brain had some similar results. They found that the cat
brain also looks for primitive features such as oriented bars of light in the first few
layers of the visual cortex.

Visualizing the weights of other layers of the network would not give us many
insights into the decision-making process. This is because the layers after the first
layer are looking at the output of the previous layer not the input image. Even if we
visualize these layers, the images would not be intuitive.

Another way using which we can debug the network is to find out the areas in
which the network is looking at in the input image. That is, for any input image, we
want to find out the regions in the image that result in a particular classification.
This might help us in gaining more insights into our classifier.

Figure 2.22: The first-layer filters of the cats and dogs classifier.

44 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

2.7.2 Saliency maps

Saliency maps [6] are used for finding the parts of the image that lead to a particu-
lar classification. They work by computing the gradients of the input image with
respect to the target class. Note that this is different from our training procedure
in which we find the gradients of the weights with respect to the loss function.
When we compute the gradients of weights with respect to a target class, we are
trying to find out how much and in which direction should we change them to
increase the probability of predicting that class. The weights that are being in-
creased are important for that particular target class. Similarly, when we take the
gradients of an image with respect to a target class, we find out the pixels that are
important for that particular target class. The gradients of our network for the cat
image with respect to the target class cat have been shown in Figure 2.23. The pix-
els of high importance in the original image are represented by white dots in the
saliency maps. Note how the collar of the cat is not considered to be important for
classification by the network. This might be because the input dataset contains
images of both dogs and cats with a collar. Thus, a collar is not a distinguishing
feature.

Saliency maps are particularly useful when debugging erroneous classification.
They can help us spot false correlations. If in the training dataset all the dog images
have a traffic light in them, the network might learn to classify all images with a
traffic light as dogs. This can be easily spotted by looking at a saliency map of an

(a) The input cat image (b) The saliency map for the input image

Figure 2.23: The input image and its saliency map: (a) the input cat image and (b) the saliency map
for the output image.

2 Convolutional Neural Networks: A Bottom-Up Approach 45

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

image with an erroneous classification. A saliency map will clearly show that the
traffic light plays a role in the classification of the image as a dog.

2.8 Transposed convolution

We now know how to map a 128 × 128 × 3 image into a 64 × 64 × 12 feature map. We
can easily achieve this by adding unit padding along the edges of the input feature
map and then using 12 kernels each of size 3 × 3 by 3 over it. However, our convolu-
tion operation cannot map a 64 × 64 × 12 feature map to a 128 × 128 × 3 feature map.
That is, it cannot perform the inverse operation. Let’s take the case of a television
which has the resolution 2,000 × 1,000. We want to display an image of resolution
1,000 × 500 on this television. To do a full-screen display, we will have to upscale
the image from 1,000 × 500 × 3 to 2,000 × 1,000 × 3. There are many algorithms for
performing this upscaling operation. We can use the many variants of interpolation
operation such as linear and cubic to achieve upscaling. In this section, we intro-
duce an operation that will allow neural networks to perform upscaling.

Let’s consider a feature map of size 4 × 4. When we use a kernel of shape 3 × 3 on
it with a stride of one, we get an output feature map of shape 2 × 2. The same is
shown in Figure 2.24. To recover the 4 × 4 input volume, we use a kernel of size 3 × 3
after applying zero padding of size 2 on the 2 × 2 feature map. The corresponding
transposed convolution operation has been depicted in Figure 2.25. Let s be the stride

Figure 2.24: 3 × 3 kernel convolving on a 4 × 4 feature map.

46 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

length, k be the kernel size (assuming a square kernel), and p be the zero padding
in the input image. Then to recover the original input image, when we have s = 1,
and p = 0, we set s′= s, k′= k, and p′= p for the transposed convolution. [7] can be
referred for a more in-depth discussion of the transposed convolution arithmetic. The
transposed convolution operation has been used for visualizing the feature maps of
the later layers in CNNs [8]. Transposed convolution layers are also being used in ap-
plications such as super resolution [9] and semantic segmentation [10].

2.9 Applications of CNN

In this section we will go through the recent progress in application of CNNs in dif-
ferent domains.
1. Localization: Localization is the task of finding the location of an object in an

image given that we know what kind of an object we are looking for. This is dif-
ferent from detection which involves finding all objects of interest in an image
and labelling them. Localization typically involves predicting a bounding box
around the object. Bounding box regression, which was developed by Girschik
et al. [11], has been used with some success for localization. This involves predict-
ing the coordinates of the bounding box in the last layer of the CNN. If the num-
ber of objects and the type of each object is known before hand, this technique
can be extended by having multiple parallel fully connected layer to predict the
bound box for each object.

2. Detection: In most scenarios such as in obstacle detection for self-driving cars, the
number of objects that are to be detected are not known beforehand. Detection
involves both localization of objects in the images and labelling them. There has

Figure 2.25: The transposed deconvolution operation.

2 Convolutional Neural Networks: A Bottom-Up Approach 47

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

been a lot of progress in this field. In [11], the authors have proposed a method
called region-based convolutional neural networks (R-CNNs). In this method, a
network is used to propose regions of interest in the image. These regions of inter-
est are then passed to a CNN classifier which predicts the class of the object in the
region. A faster version of R-CNNs was proposed in [12] where the region proposal
is done after a feature map of the whole image has been generated using a CNN.
Other approaches such as you only look once [13] and single shot detection [14]
have been developed. These approaches are significantly faster as they involve
passing the image through a CNN only once.

3. Semantic segmentation: Semantic segmentation involves assigning a class to
every pixel in the image. Long et al., presented a model in [10] called the fully
convolutional networks which achieved breakthrough results in semantic seg-
mentation. The model first uses the convolution operation to map the image to
a feature map and then the transposed convolution operation is used to map
this feature map back to a map with height and width the same as the input
image. The depth of the final output is equal to the number of classes. Thus,
the value of the point at row i, column j, and depth d in the output feature map
helps us compute the probability of the pixel Iij in the input image I belonging
to class d. Figures 2.15–2.26 illustrate localization, detection, and segmentation.

4. Speech recognition: The application of CNNs is not limited to just visual data.
CNNs are also being applied in speech and text processing. Speech recognition is
the task of identifying words and phrases in speech and storing them in machine-
readable format. Most approaches such as in [15] pass frames from the audio signal
to a CNN. The CNN uses a pooling operation over time. CNNs have been shown to
be comparable to recurrent neural networks (RNNs) for speech recognition.

5. Visual Question Answering (VQA): In VQA, our agent has to answer questions re-
lated to an image. These tasks require a deeper understanding of the image; simple
captions are not that useful. The agent also needs to perform complex reasoning.
Many modern approaches such as [16] use a CNN to map the image to a feature
vector using a CNN and using a RNN for generating an answer for the given textual
question. The advantage of such a system is that it can be trained end to end.

2.10 Conclusion and future work

In this chapter we have introduced the powerful CNNs (CNN). CNNs allow us to
overcome the many problems faced when making DNNs. They have found applica-
tion in many domains such as image classification, object detection, segmentation,
text classification, and speech recognition. The recently developed generative ad-
versarial networks (GANs) [17] have opened up new possibilities for applications of
CNNs. Radford et al. [18] presented an architecture that combines both GANs and

48 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

CNNs. This has resulted in many impressive breakthroughs in generative tasks in-
volving images. In [9], the authors have used this combination of CNNs and GANs
for upscaling images to higher resolutions. A lot of progress has also taken place in
mapping images from one domain to another even without paired datasets [19].
Capsule networks [20] have built upon CNNs and are an attempt at extracting equiv-
ariant features. CNNs are an active area of research and new applications with
breakthrough results are consistently being found.

References

[1] Mitchell T. M. Machine learning. WCB, 1997.
[2] Goodfellow I., Bengio Y., & Courville A. Deep Learning. MIT Press, 2016.
[3] Kauderer-Abrams E. Quantifying Translation-Invariance in Convolutional Neural Networks. 2017.
[4] Gens R., Pedro M. D. Deep symmetry networks. Advances in Neural Information Processing

Systems, 2014.

Pencil
Scissor

Pencil Scissor

Pencil, Scissor

(a) Original image (b) Classification

(c) Detection (d) Segmentation

Figure 2.26: Illustration of the differences between classification, detection, and segmentation.

2 Convolutional Neural Networks: A Bottom-Up Approach 49

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

[5] Jaderberg M., Simonyan K., & Zisserman A. Spatial transformer networks. Advances in Neural
Information Processing Systems, 2015.

[6] Simonyan K., Vedaldi A., Zisserman A. Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[7] Dumoulin V., Visin F. A guide to convolution arithmetic for deep learning. arXiv preprint
arXiv:1603.07285, 2016.

[8] Zeiler M. D., & Fergus R. Visualizing and understanding convolutional networks. European
conference on computer vision, Springer, Cham, September 2014, 818–833.

[9] Ledig C., Theis L., Huszr F., Caballero J., Cunningham A., Acosta A., & Shi W. Photo-Realistic
Single Image Super-Resolution Using a Generative Adversarial Network. CVPR, July 2017, 2(3), 4.

[10] Long J., Shelhamer E., & Darrell T. Fully convolutional networks for semantic segmentation.
Proceedings of the IEEE conference on computer vision and pattern recognition, 2015,
3431–3440.

[11] Girshick R., Donahue J., Darrell T., & Malik J. Rich feature hierarchies for accurate object
detection and semantic segmentation. Proceedings of the IEEE conference on computer
vision and pattern recognition, 2014, 580–587.

[12] Girshick R. Fast R-CNN. Proceedings of the IEEE international conference on computer vision,
2015, 1440–1448.

[13] Redmon J., Divvala S., Girshick R., & Farhadi A. You only look once: Unified, real-time object
detection. Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, 779–788.

[14] Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C. Y., & Berg A. C. Ssd: Single shot
multibox detector. European conference on computer vision, Springer, Cham, October 2016,
21–37.

[15] Palaz D., Collobert R. Analysis of cnn-based speech recognition system using raw speech as
input. Proceedings of INTERSPEECH, 2015, EPFL-CONF-210029.

[16] Malinowski M., Rohrbach M., & Fritz M. Ask your neurons: A neural-based approach to
answering questions about images. Proceedings of the IEEE international conference on
computer vision, 2015, 1–9.

[17] Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., & Bengio
Y. Generative adversarial nets. Advances in Neural Information Processing Systems, 2014,
2672–2680.

[18] Radford A., Metz L., Chintala S. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[19] Zhu J. Y., Park T., Isola P., & Efros A. A. Unpaired image-to-image translation using cycle-
consistent adversarial networks. arXiv preprint, 2017.

[20] Sabour S., Frosst N., & Hinton G. E. Dynamic routing between capsules. Advances in Neural
Information Processing Systems, 2017, 3856–3866.

50 Karan Maheshwari et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Ranjan Jana, Siddhartha Bhattacharyya, and Swagatam Das

3 Handwritten Digit Recognition Using
Convolutional Neural Networks

Abstract: Optical character recognition (OCR) systems have been used for extraction
of text contained in scanned documents or images. This system consists of two steps:
character detection and recognition. One classification algorithm is required for char-
acter recognition by their features. Character can be recognized using neural net-
works. The multilayer perceptron (MLP) provides acceptable recognition accuracy for
character classification. Moreover, the convolutional neural network (CNN) and the
recurrent neural network (RNN) are providing character recognition with high accu-
racy. MLP, RNN, and CNN may suffer from the large amount of computation in the
training phase. MLP solves different types of problems with good accuracy but it
takes huge amount of time due to its dense network connection. RNNs are suitable
for sequence data, while CNNs are suitable for spatial data. In this chapter, a CNN is
implemented for recognition of digits from MNIST database and a comparative study
is established between MLP, RNN, and CNN. The CNN provides the higher accuracy
for digit recognition and takes lowest amount of time for training the system with re-
spect to MLP and RNN. The CNN gives better result with accuracy up to 98.92% as
the MNIST digit dataset is used, which is spatial data.

Keywords: convolutional neural network, deep neural network, handwritten digit
recognition, multilayer perceptron, optical character recognition, recurrent neural
network

3.1 Introduction

Optical character recognition (OCR) translates the handwritten text image or printed
text image into normal text. The text images are generally from images of a text docu-
ment [1]. OCR is a significant area in many computer vision problems like automatic
number plate recognition, extracting business card information, and data entry for
passport, cheque, and invoice documents. OCR is mostly an offline process, which con-
verts text from a static document. Movement of handwriting can be used for handwrit-
ing character recognition [2]. In online character recognition, instead of using the
shape of the characters or words, the direction and pressure on pen can be used for

Ranjan Jana, RCC Institute of Information Technology, Kolkata, West Bengal, India.
Siddhartha Bhattacharyya, CHRIST (Deemed to be University), Bangalore, Karnataka, India.
Swagatam Das, Indian Statistical Institute, Kolkata, West Bengal, India.

https://doi.org/10.1515/9783110670905-003

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110670905-003

extra information to make the process more efficient. OCR is a mechanism that classi-
fies the character or word belonging in a text image. The character recognition from
text image is processed through character segmentation, features extraction, and fea-
tures classification. Introduction of multilayer perceptron (MLP) has been an outbreak
for data classification in computer vision [3], although the performance of MLP fully
depended on appropriate features of the object for classification [4, 5]. The classical
machine leaning technique has been revolutionized by deep neural networks (DNNs).
This network works on the raw pixel data to extract appropriate features for classifica-
tion [6]. DNN is designed with a huge number of hidden layers and connections. So,
the network has many numbers of parameters and it takes huge numbers of training
samples to prevent overfitting. DNN architectures are mainly classified into convolu-
tional neural network (CNN) and recurrent neural network (RNN) to solve the problems
of various computer vision tasks. For extraction of position-invariant features, CNN is
generally used, where RNN is used for modeling the network in sequence data [7]. CNN
has fewer numbers of parameters compared to a fully connected neural network [8].
CNN is able to model the data by changing the number of hidden layers and the num-
ber of trainable parameters of each layer [9]. CNN can design versatile nonlinear rela-
tionship between input and output with local receptive field and temporal
subsampling to provide a degree of shift, rotation, and distortion invariance [10]. In a
neural network, CNN is formed by a series of convolution and pooling layers between
input and output layers. A fully connected layer is performed for generating unique
representation of the input data in the last layer of the network. In this chapter, the
comparison of performances is made for MLP, RNN, and CNN methods on the MNIST
dataset. CNN provides better results compared to MLP and RNN.

This chapteris organized as follows. The motivation for handwritten digit recog-
nition is discussed in Section 3.2. Related works are presented in Section 3.3 and
the overview of MLP, CNN, and RNN architecture are discussed in Section 3.4. The
implementation details of the system are described in Section 3.5. Experimental re-
sults are shown in Section 3.6. Finally, the conclusions are derived in Section 3.7.

3.2 Motivation for handwritten digit recognition

The handwriting characters recognition technique was started around 1980. The task
of handwritten digit recognition using a classifier has a great importance in machine
learning. Handwriting character recognition is generally important for zip code recog-
nition for postal mail sorting, processing of bank check, extraction of numeric entries
in handwritten filled-up forms, and number plate recognition of any vehicle. The hand-
written digits are different in size, alignment, and thickness for different time even for
the same writer. Handwriting of different individuals for same digit are different that
influences the appearance of the digits. So, there are many challenges that need to be

52 Ranjan Jana, Siddhartha Bhattacharyya, and Swagatam Das

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

faced to implement handwritten character recognition. The common problem in digit
recognition is to predict the digits in spite of their similarity like 3 and 5, 9 and 4, 8 and
9, 5 and 6 as shown in Figure 3.1. The aim of this chapter is to implement a method for
recognition of handwritten digits with varying size, thickness, and orientation.

3.3 Related work

Arica and Vural proposed an offline character recognition system by using mini-
mal preprocessing operations to restrict loss of essential information [11]. They
used an efficient segmentation algorithm for detecting character boundary, slant
angle, lower and upper baseline, stroke width, and height from a grayscale
image. Hidden Markov model (HMM) was used to estimate the system parameters
as well as some feature space parameters. HMM was used to determine the rank
of the character based on the features of character shape. Khedher et al. de-
scribed that selection of good features provides better accuracy for any character
recognition system [12]. They discussed how different good features were selected
for recognizing Arabic handwritten characters. They used a real sample of hand-
written characters. The average recognition accuracy was 88% for the Arabic
numbers and 70% for the Arabic letters. Hanmandlu and Murthy implemented a
fuzzy model in the form of membership values for recognition of handwritten
English and Hindi numbers [13]. The membership function in the fuzzy set was
adapted by optimization of entropy. The accuracy of the model was 95% for
Hindi digits and 98.4% for English digits. Arora et al. implemented a system for
the recognition of Devanagari character [14]. Four features were extracted from
the shadow, straight line fitting, intersection, and chain code histogram using
box approach. The features of shadow were extracted from all portion of the
image and the features of chain code histogram, intersection, and straight-line-
fitting were extracted by partitioning the image into subimage. The system was
tested using 4,900 Devanagari characters and the accuracy was 92.8%. Kimura

3 and 5 9 and 4 8 and 9 5 and 6

Figure 3.1: Similarity of digits.

3 Handwritten Digit Recognition Using Convolutional Neural Networks 53

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

implemented a system for character recognition that used features selection
using a genetic algorithm [15]. He selected the genes in such a way that the rec-
ognition rate of training data should not exceed the predefined threshold. So, the
system was adopted as a reduction ratio for selecting the number of features.
Graves and Schmidhuber developed a multidimensional RNN model for Arabic
handwriting character recognition. They participated in the ICDAR word recogni-
tion competition in 2007 and the accuracy was 91% for the IFN/ENIT database
[16]. MLP was used by Pal and Singh for recognizing handwritten English char-
acters [17]. They extracted the features using character boundary tracing and
Fourier descriptors. The system classified each character by comparing features
and shape of the character. They did an investigation to get better accuracy for
character classification by using the optimized number of hidden layers. They
reported 94% recognition accuracy for handwritten English characters. Pradeep
et al. extracted the diagonal features for offline character recognition [18]. The sys-
tem was based on a neural network model and they used two approaches by using
54 features and 69 features to implement this recognition system. They reported
that the accuracy of offline character recognition was 97.8% for using 54 features
and 98.5% for using 69 features. Neves et al. proposed an offline handwritten digit
recognition system using a support vector machine and declared that it provided
better accuracy compared to MLP [19]. The experiment was done on an NIST SD19
standard dataset. They reported that, MLP is capable of distinguishing nonlinear
separable classes, but it could not achieve an optimal solution due to being stuck
in local minima. So, an MPL might not be able to provide higher accuracy for digit
recognition. Gaurav and Bhatia proposed a technique that deals with the various
preprocessing techniques which are detection and correction of skew, contrast
stretching, conversion into a binary image, removal of noise, segmentation, and
morphological operation for character recognition [20]. The technique was used for
the handwritten document containing a color background with different intensities.
They concluded that a single technique is not sufficient for character recognition
from the varied intensities background image. Deep learning was used in a broad
range of applications for its consistent performance in computer vision and ma-
chine learning [21]. Hu et al. implemented an OCR system and a face recognition
system using a DNN and a CNN, which gave better accuracy than other systems.
DNNs and CNNs provided a great opportunity for growing the applications of deep
learning. They used the system for solving the problem of face recognition for secu-
rity problems in Jordan. They achieved great success for face recognition. Ghazi
and Ekenel demonstrated the model of VGG-Face and lightened CNN on five bench-
mark datasets. They reported that preprocessing can improve the performance in
spite of having a small alignment of face or character [22]. The method showed fa-
vorable performance with accuracy up to 98.46% on MNIST dataset. Using CNN,
preprocessing of image/data and handcrafted features extraction was not required.
Younis and Alkhateeb implemented a face recognition system using a deep CNN on

54 Ranjan Jana, Siddhartha Bhattacharyya, and Swagatam Das

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

a face dataset, which was captured from different persons in University of Jordan
[23]. They implemented the system in the environment of Tensorflow and Keras.
The accuracy of face classification was acceptable after 80 epochs which took a
very low amount of time.

3.4 Overview of MLP, CNN, and RNN

MLP network has been used for a long time in pattern recognition, which used the
hand-crafted features for pattern classification. A huge amount of time is required
for selection of best features for a particular application. The best features are also
called hand-crafted features. The hand-crafted features are fully dependent on
some applications but it may not be applicable for other applications. Deep learning
(DL) was a revolution in the field of neural networks, which uses huge number of
layers for training the network to achieve better accuracy. DL consists of one input
layer, a series of hidden layers, and one output layer for features extraction and fea-
tures classification. DL tries to extract more features automatically through multiple
stage of feature learning process. Researchers have proposed numbers of neural
networks as modifications of existing model or a new model. They have generally
recommended MLP, CNN, and RNN for consistent performance in broad range of
applications.

3.4.1 Multilayer perceptron

A perceptron is a simple neural network model. It is the pioneer of complex neural
networks. It tries to solve difficult problems like biological brains. The power of
neural networks comes from their ability to model the system correctly from the
training data and it predicts the output for data classification. In this sense, neu-
ral networks learn mapping scientifically. These types of networks are capable of
learning any mapping function. The capability for prediction of any neural net-
works comes from the multilayered structure of the networks. The architecture of
MLP consist of one input layer, one output layer, and multiple hidden layers as
shown in Figure 3.2. The architecture learns the features at different scales and
combines them into higher-order features. For example, the architecture learns
lines, then from collections of lines to shape. MLP is an efficient classifier. During
training, the inputs are assigned with a class for the network to train the system.
The network learns mapping very efficiently from input dataset to output dataset
for data classification.

3 Handwritten Digit Recognition Using Convolutional Neural Networks 55

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

3.4.2 Convolutional neural network

CNN is an efficient neural network architecture in computer vision. It is used to ex-
tract the features automatically, and then classify the extracted features. The archi-
tecture uses a sequence of filters on raw pixels of an image to extract high-level,
middle-level, and low-level features and then classifies the image based on extracted
features. CNN maintains the spatial relationship between pixels using small squares
of input data to extract features. Features are extracted across the entire image to
allow the objects in the image to be translated or shifted. CNN architecture consists
of a sequence of different layers that transform an input data into an output data.
This architecture consists of input layer, output layer, and hidden layers as shown in
Figure 3.3. The hidden layers are divided into two modules. First module is used for
feature extraction and the second module is used for features classification. The first
module consists of repetitive convolution layers and pooling layers. The second mod-
ule consists of a number of dense layers. The number of nodes in the last dense layer
consists of the number of target classes. This layer is called output layer.

3.4.2.1 Convolution layer

Convolution layer is the main layer of a CNN. This layer consists of a set of convolu-
tion filters to perform some mathematical operations to generate one value in the
output map. In the forward pass, every filter is convoluted throughout the entire

Input layer

Hidden layer 1

Hidden layer 2

Output layer

Figure 3.2: Basic architecture of MLP.

56 Ranjan Jana, Siddhartha Bhattacharyya, and Swagatam Das

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

image subregions. It is simply the dot product between the values of the subregion
of input image/data and the values of the convolution filter. It produces a two-
dimension activation map of the convolution filter to detect some specific type of
features. The output data size of the convolution layer depends on the size of the
filter, the value of stride, and zero-padding. The number of neurons in a convolu-
tion layer that connect to the same subregion of the input data is controlled by the
size of the filter. These neurons learn to activate different features in the input data.
For the first convolution layer, the input data is the raw pixels of the input image
and the neurons learn to activate the presences of edges in the input image. The
step of convolution operation is called stride, which controls the size of the out-
put data of the convolution layer. If the stride is n then the convolution filter
moves n pixels at a time. For low value of stride, the filter is overlapping the re-
ceptive fields and produce large output data size. Zero-padding is used to pad the
border of the input data by the zero. It is required to maintain the output data size
same as input data size. Each convolution layer applies a rectified linear unit
(ReLU) to the output map which establishes nonlinearities into the architecture.
ReLU applies element wise activation without affecting the receptive fields of the
convolution layer. The most frequently used nonlinear activation functions in this
layer are f(x) = tanh(x), f(x) = max(0,x), and f(x) = 1+ e− xð Þ− 1.

3.4.2.2 Pooling layer

The pooling layer performs a nonlinear down-sampling operation on the input data
generated by previous convolution layer. This layer performs between two successive

Hidden layer
Input
layer

Convolution layer

Pooling layer

Convolution layer

Pooling layer

Fully connected layer

Fully connected layer

Dense layer
Output
layer

Figure 3.3: Basic architecture of CNN.

3 Handwritten Digit Recognition Using Convolutional Neural Networks 57

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

convolution layers. It is a procedure to compress the extracted features and reduce
the overfitting of the training data. Most frequently, pooling layer uses 2 × 2 filter
with a stride of 2 for down-sampling. So, this technique is discarding 75% of the acti-
vations. Although, several nonlinear functions are available, max pooling is the most
frequently used nonlinear function for pooling operation. In this layer, the input data
is partitioned into a number of square subregions and generates the highest value of
each subregion. The logic behind pooling is that the actual location of a feature in
the image/data is less significant. This layer provides the architecture to another
form of translation invariance.

3.4.2.3 Fully connected network (FCN) layer

After the repetitive convolution and pooling layers, one or more FCN layer performs
features classification. Here, every node of current layer is connected to every node
of previous layer. The number of nodes in the final FCN layer consists of the num-
ber of target classes. The softmax activation function is used to generate a value
between 0 and 1 for each node of the target class. The softmax function generates
the probability of an image/data belonging to each target class. The total of all soft-
max values is 1.

3.4.3 Recurrent neural network

RNN is capable to memorize the input into output mapping for its internal mem-
ory. The network contains minimum one feedback connection for memorization as
shown in Figure 3.4. A delay unit is used to introduce the output of RNN to loop
back into the network for memorization. RNN inserts the recent past data to the
current state. So, RNN has a present input data as well as recent past input data.
The network is an exceptional neural network that is proposed for sequence data.
This network allows demonstrating the dynamic behavior for a time sequence
data. RNN architecture uses its memory to process sequences of input data. RNN is
a feed-forward MLP with addition of loops in the architecture. So that, each neu-
ron of a layer can transfer its signal to the next layer. The output of a layer may
feedback as an input to the layer for the next input data. The recursive connec-
tions in RNN permit to gain knowledge of broad abstractions for any sequence of
input data. RNN is more applicable for connected handwriting character recogni-
tion or speech recognition.

58 Ranjan Jana, Siddhartha Bhattacharyya, and Swagatam Das

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

3.5 Implementation

Handwritten digit recognition has been applied for extraction of text contained in
scanned documents or images. One classification algorithm is required for character
recognition by their patterns. DNN has proved its excellent performance in the do-
main of machine learning [22, 23]. DNN consists of a huge number of hidden layers
and connections. So, the number of trainable parameters in DNN is enormous. A mas-
sive number of samples are required for training the system to prevent overfitting.
Whereas, CNN consists of a few hidden layers and lesser number of parameters
compared to DNN. So, CNN takes lesser number of samples for training the sys-
tem. CNN can change number of hidden layers and number of trainable parame-
ters in every layer during formation of the architecture. Accordingly, the CNN
architecture is planned for handwritten digits recognition. Here, the MNIST real
world database is used to check the performance of the system.

3.5.1 Database used

In this chapter, MNIST handwritten digits database is used to train and test the sys-
tem. The MNIST handwritten digit images have been normalized in size and are pre-
processed. So, a user is not required for preprocessing the image. The MNIST training
set and test set examples contained from approximately 250 writers. The MNIST data-
base consists of 60,000 images of handwritten digit used for training and 10,000 im-
ages of handwritten digit used for testing [24]. Each handwritten digit image consists

Delay
unit

Hidden layerInput layer Output layer

Figure 3.4: Basic architecture of RNN.

3 Handwritten Digit Recognition Using Convolutional Neural Networks 59

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

of 28 by 28 pixels and each pixel has a value between 0 (background) and 255 (fore-
ground) as shown in Figure 3.5. The database consists of training set image file, train-
ing set label file, test set image file, and test set label file. Pixel values are arranged
row wise in every image file. In the image file, all the pixel values of an image are
arranged in a row. So, each image file consists of 784 columns for 28 by 28 pixels. In
the label files, the label values consist of 10 columns. For a particular instance of any
digit, the label value is set by 1 for an appropriate column and set by 0 for the other
columns.

3.5.2 Design of proposed CNN architecture

In this work, two CNN architectures are implemented for MNIST digit recognition.
Each architecture consists of two hidden layers or convolution layers. The ReLU ac-
tivation function is applied after every convolution operation for nonlinearity of the
system. The first CNN architecture is named as “CNN Method 1” and it is imple-
mented with the following details. The CNN Method 1 is implemented with two hid-
den layers or convolution layers for digit recognition of MNIST dataset. Input image
size is 28 × 28, means total 784 numbers of pixels. So, the input layer has 784 num-
bers of inputs. Initially, a convolution operation is performed with 32 filters of size
5 × 5 without padding and the stride is equal to 1. The convolution operation gives
the output of 32 layers with size 24 × 24. Then, a subsampling operation is done
using a 2 × 2 max filter. This subsampling reduces 75% volume of the data and the
generated output consists of 32 layers of size 12 × 12. After that, another convolution
operation is performed with 64 filters of size 7 × 7 with zero-padding and the stride
is equal to 1. The convolution operations produce the output of 64 layers with size
12 × 12. After that, another subsampling operation is done using a 2 × 2 max filter.
This subsampling again reduces 75% volume of the data and the generated output
consists of 64 layers of size 6 × 6. Then, an FCN layer is attached with 2,304 input
nodes (64 × 6 × 6 nodes) and 1024 output nodes. Then, another FCN layer with 10
output nodes is attached for 10 digits.

Figure 3.5: Examples of MNIST dataset.

60 Ranjan Jana, Siddhartha Bhattacharyya, and Swagatam Das

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

The second CNN architecture is named as “CNN Method 2” and it consists of the
following details. The CNN Method 2 is implemented with two hidden layers or con-
volution layers for digit recognition of MNIST dataset as shown in Figure 3.6.

Input image size is 28 × 28, means a total 784 numbers of pixels. So, the input layer
has 784 numbers of inputs. Initially, a convolution operation is performed with 64
filters of size 5 × 5 without padding and the stride is equal to 1. The convolution
operation gives the output of 64 layers with size 24 × 24. Then, a subsampling opera-
tion is done using a 2 × 2 max filter. This subsampling reduces 75% volume of the
data and the generated output consists of 64 layers of size 12 × 12. After that, another
convolution operation is performed with 128 filters of size 7 × 7 with zero-padding

(Convolution with
64 filters of size

5×5) + ReLU

64 layers
with 24 × 24

Pooling with
2×2 filter,
stricle = 2

64 layers
with 12 × 12

(Convolution with 128 filters
of size 7×7) + ReLU

Pooling wih 2×2
filter, stricle = 2

128 layers
with 6 × 6

Fully connected layer
with 4608 nodes

(6 × 6 × 128)

Fully connected layer
with 1024 nodes

Output layer with 10
nodes for 10 digits

(0 to 9)

128 layers
with 12 × 12

Input image
28 × 28

Figure 3.6: Architecture of proposed CNN Method 2.

3 Handwritten Digit Recognition Using Convolutional Neural Networks 61

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

and the stride is equal to 1. The convolution operations produce the output of 128
layers with size 12 × 12. After that, another subsampling operation is done using
a 2 × 2 max filter. This subsampling again reduces 75% volume of the data and
the generated output consists of 128 layers of size 6 × 6. Then, an FCN layer is
attached with 4608 input nodes (128 × 6 × 6 nodes) and 1024 output nodes. Then,
another FCN layer with 10 output nodes is attached for 10 digits.

3.6 Experimental result

Initially, an MLP is implemented for digit recognition. The MLP has 784 nodes in
input layer as each image of MNIST has 784 pixels (28 × 28 pixels). The Xeon proces-
sor of 2.2 gigahertz with 128 GB RAM is used to train and test the system. MLP takes
huge amount of time as compared to CNN and RNN as shown in Table 3.1.

The experimental result of the MLP takes 5371 seconds to achieve 92.44% accuracy
for MNIST digit classification. To achieve the same accuracy, 295 s is sufficient for
training the RNN and 1354 s is sufficient for training the CNN implemented by

Table 3.1: Accuracy of RNN and CNN.

Steps CNN implemented by Younis
and Alkhateeb []

RNN

Accuracy Training time
(in seconds)

Accuracy Training time
(in seconds)

, .% .%

, .% .%

, .% .%

, .% .%

, .% .%

, .% .%

, .% .%

, .% .%

, .% .%

, .% , .% ,

, .% , .% ,

62 Ranjan Jana, Siddhartha Bhattacharyya, and Swagatam Das

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Younis and Alkhateeb. The comparative study for accuracy with respect to time
shows that, RNN train the system faster compared to CNN as shown in Figure 3.7.
But, CNN has the capability to train more and more if the training time is very high.

Experimental result shows the accuracy and training time with respect to num-
ber of steps for two proposed CNN methods with previous CNN method as shown
in Table 3.2. The proposed “CNN Method 2” gives the higher accuracy (98.92%)

100.00%

98.00%

96.00%

94.00%

Ac
cu

ra
cy

92.00%

90.00%

88.00%

86.00%
2,0000 4,000 6,000 8,000

CNN RNN

Training time in seconds
10,000 12,000 14,000 16,000

Figure 3.7: Accuracy vs. training time for CNN and RNN.

Table 3.2: Accuracy of previous CNN and proposed CNN.

Steps CNN Method CNN Method CNN implemented by Younis
and Alkhateeb []

Accuracy Training time
(in seconds)

Accuracy Training time
(in seconds)

Accuracy Training time
(in seconds)

, .% , .% .% ,

, .% , .% , .% ,

, .% , .% , .% ,

, .% , .% , .% ,

, .% , .% , .% ,

3 Handwritten Digit Recognition Using Convolutional Neural Networks 63

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

compared to previous CNN method and proposed “CNN Method 1” after 110,000 num-
bers of steps. But, the performance of proposed “CNN Method 1” is the fastest com-
pared to others by considering training time as shown in Figure 3.8. Although, the
parameters are different in previous CNN and proposed two CNNs, but the accuracy of
all the systems are similar with respect to number of steps for training the system as
shown in Figure 3.9. The prediction of the system appears incorrect for some cases
due to the improper style of writing as shown in Table 3.3.

Table 3.2 (continued)

Steps CNN Method CNN Method CNN implemented by Younis
and Alkhateeb []

Accuracy Training time
(in seconds)

Accuracy Training time
(in seconds)

Accuracy Training time
(in seconds)

, .% , .% , .% ,

, .% , .% , .% ,

, .% , .% , .% ,

, .% , .% , .% ,

, .% , .% , .% ,

, .% , .% , .% ,

Proposed CNN Method 2

99.50%

99.00%

98.50%

98.00%

97.50%

97.00%

96.50%

96.00%

95.50%

95.00%

94.50%
0

Ac
cu

ra
cy

5,000 10,000 15,000
Training time in seconds

20,000 25,000 30,000

Proposed CNN Method 1 Previous CNN Method

Figure 3.8: Accuracy versus training time.

64 Ranjan Jana, Siddhartha Bhattacharyya, and Swagatam Das

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

3.7 Conclusion

This chapter deals with MLP, RNN, and CNN for recognizing handwritten charac-
ters of MNIST character dataset. Implementations of handwritten digit recogni-
tion using two CNN methods are implemented using different parameters. From
the experimental results, it is proved that CNN is more accurate for recognizing of
handwritten characters. The proposed “CNN Method 2” provides the accuracy of
98.92% whereas the proposed “CNN Method 1” provides the accuracy of 98.85%
for MNIST character dataset. The experimental result shows that, the proposed
“CNN Method 2” is better in terms of accuracy and the proposed “CNN Method 1”
is better in terms of training time as compared to others for the MNIST dataset.
The accuracy of the system will be better by using more number of filters. But,
the training time will be very high. For further improvement, it is required to in-
crease the number steps for training the system.

Proposed CNN Method 2 Proposed CNN Method 1 Previous CNN Method

99.50%

99.00%

98.50%

98.00%

97.50%

97.00%

96.50%

96.00%

95.50%

95.00%

94.50%
0 20,000 40,000 60,000

Number of steps for training the system

80,000 10,0000 12,0000

Ac
cu

ra
cy

Figure 3.9: Accuracy vs. number of steps for training the CNN.

3 Handwritten Digit Recognition Using Convolutional Neural Networks 65

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Ta
bl
e
3.
3:

S
om

e
m
is
cl
as

si
fi
ed

im
ag

es
.

S
am

pl
e
M
N
IS
T

im
ag

es

A
ct
ua

ld
ig
it

Pr
ed

ic
te
d
di
gi
t

66 Ranjan Jana, Siddhartha Bhattacharyya, and Swagatam Das

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

References

[1] Arica N. & Vural F.T.Y. An overview of character recognition focused on offline handwriting.
IEEE Transactions on Systems, Man and Cybernetics – Part C: Applications and Reviews,
2001, 31(2), 216–233.

[2] Tappert C.C., Suen C.Y., & Wakahara T. The state of the art in online handwriting recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(8), 787–808.

[3] Quiles M.G. & Romero R.A.F. A computer vision system based on multi-layer perceptrons for
controlling mobile robots. International Congress of Mechanical Engineering, OuroPreto,
Brazil, November, 2005.

[4] Ruck D.W., Rogers S.K., & Kabrisky M. Feature selection using a multilayer perceptron.
Journal of Neural Network Computing, 1990, 2(2), 40–48.

[5] Yang J.B., Shen K.Q., Ong C.J., & Li X.P. Feature selection for MLP neural network: The use of
random permutation of probabilistic outputs. IEEE Transactions on Neural Networks, 2009,
20(12), 1911–1922.

[6] Lee H., Grosse R., Ranganath R., & Ng A.Y. Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations., International Conference on Machine
Learning, ACM, 2009, 609–616.

[7] Vu N.T., Adel H., Gupta P., & Schutze H. Combining recurrent and convolutional neural
networks for relation classification. NAACL HLT, 2016,534–539.

[8] Le Cun Y., Bottou L., Bengio Y., & Haffner P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998, 86(11),2278–2324.

[9] Krizhevsky A., Sutskever I., & Hinton G.E. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 2012,1097–1105.

[10] Le Cun B.B., Denker J.S., Henderson D., Howard R.E., Hubbard W., & Jackel L.D. Handwritten
digit recognition with a backpropagation network. Advances in neural information processing
systems, Citeseer, 1990.

[11] Arica N. & Vural F.T.Y. Optical character recognition for cursive handwriting. IEEE
Transactions on Pattern Analysis and Machine Intelligence, June, 2002, 24(6), 801–113.

[12] Khedher M.Z., Abandah G.A., & Al-Khawaldeh A.M. Optimizing feature selection for
recognizing handwritten Arabic characters. Proceedings of World Academy of Science
Engineering and Technology, February 2005, 4.

[13] Hanmandlu M. & Ramana Murthy O.V. Fuzzy model based recognition of handwritten
numerals. Pattern Recognition, 2007, 40, 1840–1854.

[14] Arora S., Bhattacharjee D., Nasipuri M., Basu D.K., & Kundu M. Combining multiple feature
extraction techniques for handwritten Devnagari character recognition. IEEE Region 10 and
the Third international Conference on Industrial and Information Systems, Kharagpur, India,
December 2008.

[15] Kimura Y. Feature selection for character recognition using genetic algorithm. Fourth
International Conference on Innovative Computing, Information and Control, IEEE, 2009.

[16] Graves A. & Schmidhuber J. Offline handwriting recognition with multidimensional recurrent
neural networks. Advances in Neural Information Processing Systems 22, NIPS'22,
Vancouver, MIT Press, 2009, 545–552.

[17] Pal A. & Singh D. Handwritten English character recognition using neural. Network International
Journal of Computer Science & Communication, July–December, 2010, 1(2), 141–144.

[18] Pradeep J., Srinivasan E., & Himavathi S. Diagonal based feature extraction for handwritten
alphabets recognition system using neural network. International Journal of Computer
Science & Information Technology (IJCSIT), February 2011, 3, 1.

3 Handwritten Digit Recognition Using Convolutional Neural Networks 67

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

[19] Neves R.F.P., Filho A.N.G.L., Mello C.A.B., & Zanchettin C. A SVM based off-line handwritten
digit recognizer. International Conference on Systems, Man and Cybernetics, IEEE, Brazil,
October 2011, 510–515.

[20] Gaurav K. & Bhatia P.K. Analytical review of preprocessing techniques for offline handwritten
character recognition. International Conference on Emerging Trends in Engineering &
Management, 2013.

[21] Hu G., Yang Y., Yi D., Kittler J., Christmas W., Li S.Z., & Hospedales T. When face recognition
meets with deep learning: An evaluation of convolutional neural networks for face
recognition. IEEE International Conference on Computer Vision Workshops, Santiago, Chile,
13–16 Dec 2015, 142–150.

[22] Ghazi M.M. & Ekenel H.K. A comprehensive analysis of deep learning based representation
for face recognition., IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2016, 34–41.

[23] Younis K.S. & Alkhateeb A.A. A new implementation of deep neural networks for optical
character recognition and face recognition., Proceedings of the New Trends in Information
Technology, Jordan, 25–27 April 2017.

[24] LeCun Y., Cortes C., & Burges C.J.C. http://yann.lecun.com/exdb/mnist/

68 Ranjan Jana, Siddhartha Bhattacharyya, and Swagatam Das

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://yann.lecun.com/exdb/mnist/

Amit Adate, Dhruv Arya, Aditya Shaha, and B.K. Tripathy

4 Impact of Deep Neural Learning on
Artificial Intelligence Research

Abstract: Deep learning techniques have had a huge impact on artificial intelligence
research. They have improved upon the traditional machine learning techniques where
human expertise was required for feature engineering. By removing one human factor,
they have moved us one step forward in the field of artificial intelligence. They have
not entirely removed humans, though. They are required for designing the architec-
tures and cleaning the data. Deep learning techniques have managed to achieve break-
through results in domains such as speech recognition, machine translation, image
recognition, and object detection. This chapter gives a brief overview of various deep
learning techniques being used today. Techniques that make deep learning more effec-
tive have been described. Some interesting applications have also been covered.

Keywords: deep learning, artificial intelligence, artificial neural networks, deep learn-
ing applications

4.1 Introduction

Modeling the functions of the human brain is the core challenge of artificial intelli-
gence research. The human brain is able to create complex models of the world that it
observes and extrapolates from it. Furthermore, it is very robust in its functioning. It
only takes the brain a few experiences to learn about a new entity. By looking at a ba-
nana once, humans are able to recognize bananas in different shapes and sizes.
Artificial intelligence researchers have been trying to tackle such problems for decades
now. The increase in computational and storage capacity has allowed researchers to
come up with methods that deal with very high dimensional inputs. Deep learning re-
search has also been helped by the availability of high-quality datasets. This chapter
provides a brief overview of deep learning approaches. These have been discussed
keeping in mind the impact of deep learning on artificial intelligence research and ap-
plications. First, some deep learning models are briefly described, and then some tech-
niques that have led to the success of deep learning have been discussed. Next, some
frameworks that aid the development of deep learning models have been presented,

Amit Adate, Dhruv Arya, Aditya Shaha, School of Computer Science and Engineering, Vellore
Institute of Technology, Vellore, India.
B. K. Tripathy, School of Information Technology and Engineering, Vellore Institute of
Technology, Vellore, India.

https://doi.org/10.1515/9783110670905-004

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110670905-004

after which some interesting applications are covered. Finally, some areas of research
of deep learning are presented which might become the focus of the coming years.

4.2 Convolutional neural models

Convolutional neural networks (CNN) are a class of deep neural networks (DNN) which
were built with the motive of achieving minimal preprocessing. Although they have
performed exceptionally well in the domains of image processing they can be used to
analyze any time-series data. The success of the CNNs can be attributed to the compar-
atively lesser preprocessing required by them which reduces human effort and any re-
quirement of the domain knowledge to hand-engineer the features. The connectivity
pattern between the neurons in a CNN is inspired from animal visual cortex in which a
neuron only responds to a stimuli in a fixed region of the visual field known as the
receptive field. In the convolution operation, the first argument is the input (in the
formula the function x) and the second argument is a kernel (in the formula w). The
output is referred to as a feature map. Instead of handcrafting features for an input
space, we learn the convolution operation weights that work as feature extractors:

Pnews tð Þ=
Xn
a=0

x að Þw t− að Þ (4:1)

which can be equivalently written as

s tð Þ= x*wð Þ tð Þ (4:2)

where * is the convolution operator.
CNNs differ from the conventional neural networks in a way that they have the

properties of sparse connectivity, weight sharing and translation equivariance [1].
Recently CNNs have been successfully applied in many domains such as object
detection, image classification, segmentation, text classification, speech recognition,
and so on.

4.3 Recurrent neural networks

Most machine learning models have not been designed with sequential data in mind.
That is not to say that they do not work with sequential data at all. Support vector
machines, fully connected feedforward neural networks, and so on can be trained to
work with sequential data of fixed size. However, that is where the problem lies, it
makes it difficult for us to deal with data that has long-term dependencies. Most texts
have such dependencies in them. Neural networks trained for classifying texts of
length 100 would not work with texts of length 200. Furthermore, most existing

70 Amit Adate, Dhruv Arya, Aditya Shaha, and B.K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

models have been designed while assuming that the data points are independent of
each other. Clearly, this is not a valid assumption for valid data where dependencies
exist between all units.

Recurrent neural networks (RNNs) have managed to overcome these problems to
an extent. As the name implies, the computational units in these networks have a re-
current connection. These networks process sequential data one unit at a time. They
maintain a set of activations for each step and are able to selectively pass information
across these steps. They have been designed while keeping sequential data in mind.

Let the input sequence of length T be represented by X = {x1, x2, . . . , xt, . . . , xT}.
A general RNN is represented by the following equation:

st = F st− 1, xt, θð Þ (4:3)

Here st is the internal state of the RNN at time t and θ is the set of weights of the
RNN. A more specific representation is given by

st =Wrecσ st− 1ð Þ+Winxt +b (4:4)

where σ is a nonlinear function that operates elementwise over the input. The pa-
rameter θ from the general case is made up of the weight matrices Wrec, Win, and
the bias b. Generally, s0 is initialized to zeros. It is clear from the equation how the
current state is dependent on both the current input xt and the state from the previ-
ous time-step st−1. The amount by which these two influence the current state is di-
rectly dependent on the weightsWin andWrec respectively.

While RNNs worked well, it was shown in [2] that they did not capture long-term
dependencies well. Furthermore, RNNs are tricky to train. They are also trained using
backpropagation. In their case, we backpropagate the gradients over the sequence,
thus we call it backpropagation through time. The gradients are computed by unroll-
ing the network into a multilayered network. They suffer from the exploding and van-
ishing gradients problems where the gradient either becomes too large or too small
for the initial layers in the unrolled network. The exploding gradients problem can be
dealt with by clipping the gradients which go over a certain threshold [3]. However,
vanishing gradients are more difficult to deal with. This is mainly because the gra-
dients for short-term dependencies are high while only the gradients for long-term
dependencies are low. This is the reason that classic RNNs cannot model long-term
dependencies. A variant of RNNs called long short-term dependency networks were
introduced in [4]. This variant worked by explicitly adding operations to allow hidden
state modification, retention, and deletion. This makes it particularly suitable for
handling long-term dependencies, thus resolving the vanishing gradients problem.

Traditionally, n-gram models have been used for text processing. Hidden Markov
models (HMMs) have been used for the same. However, HMMs work on an underlying
assumption that text sequences can be modeled as Markov models, that is, the next
state that we can land is only dependent on the previous state. In most applications,
an n-gram is taken as one state. However, this model fails to capture long-term

4 Impact of Deep Neural Learning on Artificial Intelligence Research 71

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

dependencies in texts. Furthermore, HMMs become computationally difficult to solve
as the number of hidden states increase. RNNs are more general than HMMs and their
variants, LSTMs, can capture long-term dependencies. This has made them the go-to
model for tasks such as text classification.

4.4 Generative adversarial networks

Generative models, in general, learn the underlying probability distribution of the
task. Generation is simply the sampling of data points from the learned distribution.
Suppose that the underlying probability distribution of some data D is pD, the task
of a generative modelM is to estimate this distribution in the form of pM.

One recently introduced generative model is the generative adversarial network
(GAN) [5]. The model works by using two competing neural networks, the genera-
tor, G, and the discriminator, D. The generator tries to model the probability distri-
bution of the training data pD as pG while the discriminator learns to distinguish
between samples generated by the generator and samples from the training data.
Both the networks are initialized randomly and perform very poorly at their respec-
tive tasks in the beginning. Both networks become better at their tasks over time,
however, as the modeled distribution pG becomes very similar to pD, the discrimina-
tor starts randomly predicting genuine or fake with equal probability. This analo-
gous to an amateur painter learning to imitate the painter Van Gogh while another
person simultaneously learns to spot fake Van Goghs. When the amateur painter
becomes as good as Van Gogh, the other person will not have any criteria to distin-
guish these paintings.

Formally, the generator is a differentiable function G and the discriminator is a
differentiable function D. Let z be some noise sampled from probability distribution
pz and pD is the probability distribution of the training data. The generator and dis-
criminator minimax game can be represented by the following equation:

min
G

max
D

V D;Gð Þ ¼ Ex⁓PD xð Þ logD xð Þ½ � þ Ex⁓p xð Þ log 1� D G zð Þð Þð Þ½ � (4:5)

Radford et al. [6] have shown how CNNs can be used as the generator and discrimina-
tor functions. They removed all pooling layers and used transposed convolution for
upsampling in the generator. This resulted in impressive results in generative tasks
related to images. The use of CNNs has become very common in the last few years in
GAN research.

GANs suffer from mode collapse. The loss function that we used earlier does not
ensure that the GAN is able to generate a variety of samples. It might learn to generate
a few samples that satisfy its loss function in that it beats the discriminator. This is
highly undesirable. GANs are very tricky to train in other ways too. Sometimes they fail
to converge and the model parameters keep on oscillating. If the discriminator

72 Amit Adate, Dhruv Arya, Aditya Shaha, and B.K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

becomes too good at its job, the gradient for the generator diminishes and it stops
learning. It is essential to balance the number of times the discriminator is trained for
each iteration of training the generator. Wasserstein GANs, introduced in [7], managed
to overcome some of these problems by using a different loss function. Conditional
GAN, introduced in [8], use the data class in-formation in the discriminator. This allows
them to capture better multimodal data representations. Zhu et al. introduced Cycle
GANs in [9] which allow mapping from one image domain to another even when no
paired datasets exist for those domains. For example, this allows us to convert the
image of a red car to that of a blue car even when we do not have an image of that
particular car model in blue. A thorough overview of GANs can be found in [10].

4.5 Variational autoencoders

Variational autoencoders (VAEs) [11] are another type of a generative model.
Autoencoders are networks where we have an encoder–decoder structure. The en-
coder takes a data point and maps it to a smaller vector which is called the latent
representation of the data. Then, a decoder takes this smaller vector and maps tries to
map it back to the original data point. Both the encoder and the decoder are trained
together by minimizing the mean squared error between the original input and the
output of the decoder. The encoder learns to compress that data and the decoder
learns to decompress it.

Now, if we take any random vector of the same dimensions as the latent repre-
sentation and pass it to the decoder, we should get a data point from the space of the
original data. We are effectively performing a generative task. However, the latent
space is not continuous, and the data reconstructed by the decoder for many random
vectors will be unrealistic. Essentially, variational autoencoders are autoencoders
that ensure that the activations of latent representation (hidden layer) are continu-
ous. This is done by making the encoder output two vectors of dimension d instead
of one vector of dimension d. These two vectors represent means and standard devia-
tions and are represented by μ and σ, respectively. We then sample a random vector
H of dimension d, and perform the following operation on each element hi:

zi = σi*hi +μi (4:6)

We get a vector Z which is then decoded back by the decoder. Note that this vector
Z will not be the same even when the same input is given at different times. This is
because the sampled vector H will differ. For the training, the Kullback–Leibler di-
vergence between the latent representation and unit Gaussian is minimized, the
mean squared error between the output and the input is also minimized simulta-
neously. The overall flow has been visualized in Figure 4.1. A good tutorial of VAEs
can be found in [12].

4 Impact of Deep Neural Learning on Artificial Intelligence Research 73

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

4.6 Deep reinforcement learning

The reinforcement learning literature is rife with algorithms that guarantee conver-
gence to the optimal solution when they are used with look-up tables. These rein-
forcement learning algorithms are analyzed for the cases when the underlying
Markov decision processes (MDP) have finite number of states and actions.
However, the look-up tables do not scale well for high-dimensional MDP which has
continuous (infinite) states or actions because of the curse of dimensionality. So,
function approximators like sigmoidal, multilayer perceptron, a radial basis func-
tion, or a memory based learning network must be used.

In [53], Widrow et al. introduced a reinforcement learning variant of ADALINE
Algorithm, in which an adaptive logic unit learned from the feedback the decision
functions that are not necessarily linearly separable. Barto, Andrew G. et al. proposed
in [54], that decision-making tasks with delayed consequences can be accurately for-
mulated as sequential decision problems and solved by dynamic programming. They
showed that the adaptive neural networks (ANN) will be successfully used for ap-
proximating the functions required for solving such problems. The dynamic pro-
gramming methods, in case when the states are finite and discrete, depend on the
look-up table representation of the evaluation functions to find the value of the
states in successive iterations. But when the state space is continuous, the discreti-
zation of state space results in exponential-states in the state space. However, with
the advancement in the knowledge of Deep learning, ANNs are being used for gen-
eralized functional approximation.

DecoderEncoder OutputSample

H

μ

σ

Input

Figure 4.1: Variational autoencoder.

74 Amit Adate, Dhruv Arya, Aditya Shaha, and B.K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

4.6.1 Deep Q-networks

One such important learning algorithm that is successfully used to learn control
policies from images using reinforcement learning and neural networks as function
approximators was deep Q-learning. It used a CNN with a variant of Q-learning. The
input to this model was images in the form of raw pixels and, as an output, it pre-
dicted the value function which was used to estimate the future rewards. The prob-
lem with applying deep learning directly as functional approximators is that:
1. Deep learning requires large amounts of hand-labeled data while reinforcement

learning uses scalar rewards that are usually sparse, noisy, and delayed.
2. Most deep learning algorithms assume that the data is being sampled from in-

dependent and identical distributions, however in reinforcement learning the
rewards received are highly correlated and the data distribution changes as the
agent learns new behaviors.

Deep Q-networks (DQN) used the experience replay mechanism that randomly sam-
pled from previous transitions to solve the problem of correlated data and nonsta-
tionary distribution. The experience replay stores the agents experience at each
time step, ϵt = (st,at,rt,st+1) in a dataset D = ϵ1, . . . ϵN which is collected over many
episodes into the replay memory[13].So, instead of performing updates after every
reward signal, deep Q-learning uses mini-batch updates drawn at random from the
experience replay. Once the updates are performed the agent selects and performs
actions according to the ϵ − greedy policy.

Performing the batch updates addresses many of the problems faced by directly
applying Q-learning with CNNs as functional approximators.
1. It is efficient to perform batch updates.
2. As there exists a strong correlation between data, it is inefficient to learn from

consecutive samples. We are able to break the correlations by sampling ran-
domly and hence the variance of the updates is reduced.

3. Traditional methods use on-policy learning in which the current parameters de-
termine the next data sample on which the parameters are trained on.
However, when the training distribution changes while learning, there is a
higher risk of the parameters being stuck in the local minima. Experience re-
play averages the behavior distribution over many of the previous states which
smoothens learning and avoids a suboptimal solution. Experience replay uses
off-policy learning.

Deep Q-learning algorithm uniformly samples from the experience replay. With this
method of sampling, transitions are replayed at the same frequency with which
they were experienced irrespective of their significance. In [14], the authors devel-
oped a framework in which the important transitions were replayed more fre-
quently which made the learning more efficient. One of the important concept that

4 Impact of Deep Neural Learning on Artificial Intelligence Research 75

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

needs to be addressed in this update would be how we can decide the importance
of the transition. The importance of the replay can be defined by how much the
agent learnt by taking the transition from its current state. This can be measured
using magnitude of the transition’s TD error δ which indicates how much the value
differed from the expected value. However, the TD error can be poor estimates
when the underlying rewards are noisy.

Policy search methods are reinforcement learning that aims at directly finding
the underlying policies by means of gradient-free or gradient-based methods.
Traditionally, evolutionary algorithms were used to solve these problems which are
gradient-free policy search algorithms. In evolutionary methods, the performance
of a population of agents is considered for evaluating the performance. These meth-
ods give successful results in case of small population but become intractable when
there are large numbers of agents or agents have multiple parameters. However,
evolutionary models can be used to train large networks if the neural networks
weight representation can be compressed. In [15], the authors represented the net-
works weights as Fourier-type coefficients, thus, using a compressed encoding for
weights. This method was successfully used for training for tasks that have very
large networks owing to the high dimensional input space.

4.7 Making deep learning work

4.7.1 Regularization

The quality and quantity of the crops are always important for the countries where
a large percentage of its population depends on agriculture. As the models are be-
coming more complex, overfitting has become more common. Overfitting happens
when the model fails to generalize to test data even though it gives good perfor-
mance on the test data. If we keep other things the same, overfitting increases with
increase in complexity of the model. While L1/L2 regularization has been used a lot,
two other techniques that are now being used are covered below:
1. Dropout: Dropout [16] is a regularization technique in which network connec-

tions are dropped with a certain probability p. This ensures that the network
does not become too reliant on those connections.

2. Batch normalization: Batch normalization [17] works by first calculating the
mean and the standard deviation of the activations of hidden layers in the net-
work for the batch. The activations of the batch are then normalized by sub-
tracting the mean from them and dividing them by the calculated standard
deviation. Two new parameters are introduced in these layers γ and β. These
are used to scale and shift the normalized activations x̂:

76 Amit Adate, Dhruv Arya, Aditya Shaha, and B.K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

y= x̂γ+ β (4:7)

3. This also has a small regularizing effect on the network.

4.7.2 Transfer learning

The success of deep learning has been possible partly due to the availability of huge
datasets and massive amounts of computational power. Deep neural architectures
such as VGG [18] are useless without a large dataset to train on. However, large data-
sets are often not available in domains where data collection is difficult or expensive.
Transfer learning has enabled deep learning to work with small datasets. It works on
the assumption that deep learning models learn to extract reusable features implicitly
when trained on a task. When two domains are similar, a model trained on the data-
set of one domain may be used for the other domain with some fine-tuning. Common
transfer learning approaches involve first training a model, typically a deep CNN, on
a large dataset such as ImageNet [19]. This enables the CNN to learn filters that can
extract features that are common across many image-oriented tasks. The last fully
connected layer of the network is then changed with another one with the number of
output neurons equal to the number of classes in the target dataset. Then, the net-
work is retrained on the target dataset. During the retraining phase, the number of
layers that are trained can vary. One may choose to just train last layer and use the
rest of the network as a feature extractor. The whole network can be retrained too.
Transfer learning has given some impressive results in the last decade.

4.8 Deep learning frameworks

Deep learning research has been made easier with the rise of many deep learning
frameworks. The network designer does not have to explicitly specify how the gra-
dients are to be computed, these frameworks automate this task for them. Most frame-
works covered here are open source. Furthermore, most of these rely on the CUDA [20]
for GPU processing. All these frameworks use some form of automatic differentiation.
Some popular deep learning frameworks have been briefly described below:
1. Theano: Theano [21] is an open source project which was developed at the

Montreal Institute for Learning Algorithms. It was under active development
since 2008 till 2017 when its final version 1.0.0 was released. Essentially, the
library allows definition and execution of mathematical expressions on both
GPU and CPU. Like most other libraries covered here, it has been implemented

4 Impact of Deep Neural Learning on Artificial Intelligence Research 77

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

in C++. It provides an API that is similar to the popular linear algebra frame-
work NumPy for Python.

2. Tensorflow: Tensorflow [22] was designed while keeping deployment of machine
learning models in mind. It has inbuilt support for distributing the workload over
multiple computational nodes. In Tensorflow, a computational graph must first
be defined and compiled. Later, the data can be fed and the graph is executed.

3. Keras: Keras [23] was built to make it easier to experiment with deep learning
models. It has several deep learning architectures inbuilt. It provides a higher
layer of abstraction than frameworks like Tensorflow or Theano. Keras is only a
wrapper, and the actual computation is delegated to the underlying computa-
tional library. The users can select either Theano or Tensorflow for the backend.

4. PyTorch: PyTorch [24] is a relatively new framework which was developed at
Facebook AI research. It is similar to Keras in that it was designed to be easy to
experiment with. Unlike Tensorflow, PyTorch does not require the user to com-
pile a computational graph first before execution. While PyTorch was not devel-
oped with deployment to production in mind, recent releases have added
features to make PyTorch models more suitable for production. These additions
have come in the form of a just-in-time (JIT) compiler that allows computational
graphs to be compiled and optimized before execution, just like Tensorflow.
Another important feature of PyTorch is that it allows neural networks to be de-
fined in an object-oriented manner.

5. Others: Many other deep learning frameworks have been developed in the last
few years. The computational network toolkit [25] was developed by Microsoft.
Some other notable frameworks are MXNet [26 27].

4.9 Engineering applications of deep learning

Success of deep learning techniques in a range of engineering applications has
been well documented. DNNs are being tailor-made for natural language process-
ing, speech recognition, object detection, and so on. In this section, we have cov-
ered some interesting engineering applications that have experienced advances
due to deep learning.

There remains a scope of research on finding the optimal number of clusters
from a true color image and in future the quantum inspired algorithms will open up
the door to resolve the multiobjective optimization problem efficiently within a
short time frame.
1. Style transfer: Style transfer involves repainting an image in the style of another

painting. While this was the domain of trained artists in the past, CNNs have
made it more accessible. Before deep learning, algorithms had to be constructed

78 Amit Adate, Dhruv Arya, Aditya Shaha, and B.K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

for every specific style. Gatys et al. [28] showed in their seminal work how the
style of an image can be captured separately from the content of the image. In
particular, they use CNNs as feature extractors where the gram matrix of the acti-
vations of any particular layer represents the style of the input image with re-
spect to that layer. It is understood that as we go deeper into a CNN, more
semantic features are captured. They used activations of the earlier layers of net-
work to use as a reference for content. Style transfer in this method involves opti-
mizing a randomly initialized image to have a similar activation gram matrix to
the style image and similar activations in the earlier layers to a desired content
image. Note that the network was only used as a feature extractor and was not
optimized. One shortcoming of this approach is that it takes a lot of time, as for
each content image, the optimization process has to be carried out again.
Johnson et al. [29] have used the methods presented by Gatys et al. to train neural
networks to do style transfer. In this approach, one CNN is used for feature ex-
traction and is not optimized while the CNN is used to convert a content image to
a stylized image. The loss is computed by using the feature extraction network
and the style transfer network is optimized. This approach is much faster than
[28] as style transfer only requires one passage through a CNN.

2. Super resolution: It is the task of obtaining a higher resolution (HR) image for a
given set of low resolution input images. Single image super resolution is an in-
teresting problem where we only have one input image. The interesting thing is
that there is no correct answer as such because the information regarding the
missing pixels is mostly not captured in the input. One input image can corre-
spond to many high-resolution output images. In [30], the authors have pre-
sented a model called super-resolution CNN that can be trained end to end for
Single image super resolution. They first upscale the input image using bicubic
interpolation and then pass it to a CNN which gives us a feature map in the final
layer that has the same dimensions as that of the desired HR image. The CNN is
trained to minimize the mean squared error between the output and the target.
The authors improved their model in [31] in which they processed all three chan-
nels of the input image simultaneously. Kim et al. [32] proposed the usage of the
same convolutional layer repeatedly multiple times. They show that although
such a network is difficult to train, the performance benefits are significant.

3. Automatic speech recognition: Automatic speech recognition is used to auto-
matically map audio to text. Graves et al. [33] have used a deep RNN architec-
ture to accomplish this task. They have used a connectionist temporal
classification loss [34] which is useful as it allows us to train RNNs where the
input and the output sequence alignment are not known. This happens in
speech recognition where multiple timesteps of an audio clip correspond to
the same letter. Zhao et al. [35] have presented an architecture that combines
RNNs and CNNs for automatic speech recognition. This enables the network
to capture both frequency and temporal dependence of the input. The network

4 Impact of Deep Neural Learning on Artificial Intelligence Research 79

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

is trained on spectrograms of the speech which makes CNNs suitable for the
job.

4. Image recognition, object detection, and segmentation: CNNs have been used
as feature extractors to find similarities between faces in [36]. This has been
used to do face recognition. The network was trained to map an image to a vec-
tor such that images of the same person should have vectors near each other
while images of different people should have vectors that are far away from
each other. When deployed, the network maps the input image to the vector-
ized representation and the distance is computed between it and the stored vec-
tors. One important thing to note here is that network does not need to be
trained specifically for faces that are to be recognized. Availability of high qual-
ity datasets such as COCO [37], ImageNet [19], and PASCAL VOC [38] have been
an impetus for object detection and segmentation research. Fully CNNs pre-
sented in [39] have shown breakthrough results for object segmentation.
Region-based convolutional network [40] was seminal in the field of object de-
tection. YOLO [41] and Fast R-CNN [42] are both faster during inference. Single
shot detection (SSD) [43] is another faster approach that builds upon the others
and has shown impressive results.

5. Text to speech synthesis: Deep learning has made synthesis of natural sound-
ing audio from text a reality. Earlier, to generate somewhat natural sounding
audio, a big database for each type of sound had to be painstakingly main-
tained. Wavenet [44] was a breakthrough work that used a fully CNN to synthe-
size audio from text. The network was conditioned on the identity of the
speaker whom it was being trained on which allowed a single network to have
multiple types of voices. In [45], the authors have presented another audio syn-
thesis approach that uses RNNs instead of convolutional networks. They use a
layered architecture where the networks at different layers are sampling the
input at a different temporal resolution. Tacotron [46] is another neural audio
synthesis model that uses encoder–decoder architecture.

6. Machine translation (sequence to sequence): The encoder–decoder approach
for mapping a sequence of inputs to another sequence using recurrent networks
presented in [47] has been seminal in the field of machine translation. Neural
machine translation approaches have become common. In [47], two LSTM, a
variant type of RNN, networks are used – an encoder and a decoder. The en-
coder takes a text sequence and iteratively maps it to a vector. Then, the de-
coder takes this vectorized representation of the input sequence and generates
a new sequence iteratively. The proposed method performs well for English to
French translation tasks. One important benefit of this technique is that the
model can be trained end to end. This approach is not perfect and it fails to
work for long sequences. In [48], the authors reason that a fixed-length vector
might not be able to capture all the information needed for translation. They
propose that activations generated for each input unit in the input sequence be

80 Amit Adate, Dhruv Arya, Aditya Shaha, and B.K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

stored and referred when decoding. They use an attention mechanism that al-
lows the decoder prioritize activations that are more relevant to the word being
generated. This model can also be trained end to end.

7. Playing Video Games (Atari games): In [13], Minh et al. showed that DQN model
was successfully able to achieve human-level performance across 41 out of 49
Atari games. DQN uses deep Q-learning algorithm a variant of Q-learning algo-
rithm which uses experience replay to solve the problems faced by neural
Q-learning. In [14], the authors extended DQN with prioritized replay in which
the frequency of replay in updates depended upon its TD error.

8. Work in and reasoning: Most of the literature on reasoning and knowledge re-
presentation used symbolic logic-based methods. Currently, research is being
done to train a DNN model that will be able to perform logical reasoning in the
form of basic ontology reasoning [49].

4.10 Conclusion

A lot of research is being done in the field of deep learning. This has mostly been
encouraged by the impressive results deep learning is achieving in all the domains
it is being applied to.

With the increase in the usage of DNNs for various applications, there is an in-
creased need for practitioners who can design task-specific architectures. This has
also generated interest in neural architecture search and hyper parameter optimiza-
tion algorithms which automate this process. Most of neural architecture search
techniques use either evolutionary algorithms or reinforcement learning. In particu-
lar, [50] presents how neural architectures can be searched using reinforcement
learning. One exciting approach in this field is differentiable architecture search
[51] which as the name implies assumes that the architecture space is continuous.
This allows the usage of gradient-based techniques.

One recent advance in the field has been the introduction of capsule networks
[52]. This neural network architecture that builds upon CNNs manages to learn
equivariant representations. That is, they can easily deal with the input even when
the image is scaled, rotated, or skewed. Research is being done to make the neural
decision-making process more understandable. Deployment of black boxes such as
neural networks in safety-critical applications raises several concerns. The field of
deep learning is very exciting due to the rapid advances being made in it.
Breakthrough results are being achieved very consistently due to new architectures,
training techniques, and datasets.

4 Impact of Deep Neural Learning on Artificial Intelligence Research 81

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

References

[1] Goodfellow I., Bengio Y., Courville A., & Bengio Y. Deep learning, Vol. 1, Cambridge, MIT
press, 2016.

[2] Bengio Y., Simard P., & Frasconi P. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 1994, 5(2), 157–166.

[3] Pascanu R., Mikolov T., & Bengio Y. Understanding the exploding gradient problem. CoRR,
abs/1211.5063, 2012.

[4] Hochreiter S. & Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8),
1735–1780.

[5] Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., &
Bengio J. Generative adversarial nets. Advances in Neural Information Processing Systems,
2014, 2672–2680.

[6] Radford A., Metz L., & Chintala S. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[7] Arjovsky M., Chintala S., & Bottou L. Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.
[8] Mirza M. & Osindero S. Conditional generative adversarial nets. arXiv preprint

arXiv:1411.1784, 2014.
[9] Zhu J.-Y., Park T., Isola P., & Efros A.A. Un-paired image-to-image translation using cycle-

consistent adversarial networks. arXiv preprint, 2017.
[10] Creswell A., White T., Dumoulin V., Arulkumaran K., Sengupta B., & Bharath A.A. Generative

adversarial networks: An overview. IEEE Signal Processing Magazine, 2018, 35(1), 53–65.
[11] Kingma D.P. & Welling M. Auto-encoding variational bayes. arXiv preprint. arXiv:1312.6114,

2013.
[12] Doersch C. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.
[13] Mnih V., Kavukcuoglu K., Silver D., Graves A., Antonoglou I., Wierstra D., & Riedmiller M.

Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.
[14] Schaul T., Quan J., Antonoglou I., and Silver D. Prioritized experience replay. In the

International Conference on Learning Representations (ICLR), 2016.
[15] Koutnk J., Cuccu G., Schmidhuber J., & Gomez F. Evolving large-scale neural networks for

vision-based reinforcement learning. Proceedings of the 15th annual conference on Genetic
and evolutionary computation. ACM, July 2013, 1061–1068.

[16] Hochreiter S. & Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8),
1735–1780.

[17] Ioffe, S., & Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning, 2015, 37, 448–456.

[18] Simonyan K. & Zisserman A. Very deep convolutional networks for large-scale image
recognition. arXiv preprint, arXiv:1409.1556, 2014.

[19] Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z. et al. Imagenet large
scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3),
211–252.

[20] Nickolls J., Buck I., Garland M., & Skadron K. Scalable parallel programming with CUDA, ACM
SIGGRAPH 2008 classes, ACM, 2008, 16.

[21] Bergstra J., Breuleux O., Bastien F., Lamblin P., Pascanu R., Desjardins G., & Bengio
Y. Theano: A CPU and GPU math compiler. Python. In Proc. 9th Python in Science Conf,
June 2010, 1.

[22] Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M. et al. Tensorflow: a system
for large-scale machine learning. OSDI, 2016, 16, 265–283.

82 Amit Adate, Dhruv Arya, Aditya Shaha, and B.K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

[23] Chollet F. Keras, 2015.
[24] Paszke A., Gross S., Chintala S., & Chanan G. Pytorch: Tensors and dynamic neural networks

in python with strong gpu acceleration. 2017.
[25] Yu D. & Huang X. Microsoft Computational Network Toolkit (CNTK). A Tutorial Given at NIPS.

2015.
[26] Chen T., Li M., Li Y., Lin M., Wang N., Wang M., Xiao T., Xu B., Zhang C., & Zhang Z. MXNet:

A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274, 2015.

[27] Jia Y., Shelhamer E., Donahue J., Karayev S., Long J., Girshick R., Guadarrama S., & Darrell T.
Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM
international conference on Multimedia. ACM, 2014, 675–678.

[28] Gatys L.A., Ecker A.S., & Bethge M. A neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576, 2015.

[29] Johnson J., Alahi A., & Fei-Fei L. Perceptual losses for real-time style transfer and super-
resolution. European Conference on Computer Vision. Springer, Cham, 2016, 694–711.

[30] Dong C., Change Loy C., He K., & Tang X. Learning a deep convolutional network for image
super-resolution. European conference on computer vision. Springer, Cham, 2014, 184–199.

[31] Dong C., Change Loy C., He K., & Tang X. Image super-resolution using deep convolutional
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2),
295–307.

[32] Kim J., Kwon Lee J., & Mu Lee K. Deeply-recursive convolutional network for image super-
resolution. Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, 1637–1645.

[33] Graves A., Mohamed A., & Hinton G. Speech recognition with deep recurrent neural networks.
Acoustics, Speech and Signal Processing. IEEE, 2013, 6645–6649.

[34] Graves A., Fernández S., Gomez F., & Schmidhuber J. Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural networks. Proceedings of the
23rd international conference on Machine learning. ACM, 2006, 369–376.

[35] Zhao Y., Jin X., & Hu X. Recurrent convolutional neural network for speech processing.
Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference.
March 2017, 5300–5304.

[36] Koch G., Zemel R., & Salakhutdinov R. Siamese neural networks for one-shot image
recognition, ICML Deep Learning Workshop, 2015, 2.

[37] Lin T.-Y., Maire M., Belongie S., Hays J., Perona P., Ramanan D., Dollár P., & Zitnick
C.L. Microsoft coco: Common objects in context. European conference on computer vision,
Springer, Cham, 2014, 740–755.

[38] Everingham M., Van Gool L., Williams C.K., Winn J., & Zisserman A. The pascal visual object
classes (voc) challenge. International Journal of Computer Vision, 2010, 88(2), 303–338.

[39] Long J., Shelhamer E., & Darrell T. Fully convolutional networks for semantic segmentation.
Proceedings of the IEEE conference on computer vision and pattern recognition. 2015,
3431–3440.

[40] Girshick R., Donahue J., Darrell T., & Malik J. Rich feature hierarchies for accurate object
detection and semantic segmentation. Proceedings of the IEEE conference on computer
vision and pattern recognition, 2014, 580–587.

[41] Redmon J., Divvala S., Girshick R., & Farhadi A. You only look once: Unified, real-time object
detection. Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, 779–788.

[42] Girshick R. Fast r-cnn. Proceedings of the IEEE international conference on computer vision.
2015, 1440–1448.

4 Impact of Deep Neural Learning on Artificial Intelligence Research 83

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

[43] Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C., & Berg A.C. Ssd: Single shot
multibox detector. European conference on computer vision. Springer, Cham, 2016, 21–37.

[44] Van Den Oord A., Dieleman S., Zen H., Simonyan K., Vinyals O., Graves A., Kalchbrenner N.,
Senior A., & Kavukcuoglu K. Wavenet: A generative model for raw audio, CoRR abs/
1609.03499, 2016.

[45] Mehri S., Kumar K., Gulrajani I., Kumar R., Jain S., Sotelo J., Courville A., & Bengio
Y. SampleRNN: An unconditional end-to-end neural audio generation model. arXiv preprint,
arXiv:1612.07837, 2016.

[46] Wang Y., Skerry-Ryan R.J., Stanton D., Wu Y., Weiss R.J., Jaitly N., Yang Z. et al. Tacotron:
Towards end-to-end speech synthesis. arXiv preprint arXiv:1703.10135, 2017.

[47] Sutskever I., Vinyals O., & Le Q.V. Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems, 2014, 3104–3112.

[48] Bahdanau D., Cho K., & Bengio Y. Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473, 2014.

[49] Hohenecker P. &Lukasiewicz T. Ontology Reasoning with Deep Neural Networks. arXiv
preprint arXiv:1808.07980, 2018.

[50] Bello, I., Zoph, B., Vasudevan, V., & Le, Q. V. Neural optimizer search with reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning. 2017, 70,
459–468.

[51] Liu H., Simonyan K., & Yang Y. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

[52] Sabour S., Frosst F., & Hinton G.E. Dynamic routing between capsules. Advances in Neural
Information Processing Systems, 2017, 3856–3866.

[53] Widrow, Bernard, Narendra K. Gupta, and Sidhartha Maitra. “Punish/reward: Learning with a
critic in adaptive threshold systems.” IEEE Transactions on Systems, Man, and Cybernetics 5,
1973: 455–465.

[54] Barto, Andrew G., Richard S. Sutton, and Christopher JCH Watkins. “Sequential decision
problems and neural networks.” Advances in neural information processing systems. 1990.

84 Amit Adate, Dhruv Arya, Aditya Shaha, and B.K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Rajib Saha, Anirban Mukherjee, Avik Sarkar, and Shatabhisa Dey

5 Extraction of Common Feature of
Dysgraphia Patients by Handwriting
Analysis Using Variational Autoencoder

Abstract: Nowadays, handwritten document analysis using intelligent computing
technology is a demanding research area, considering its usefulness in identifying a
person and human characteristics, particularly that of persons having typical disabil-
ities such as dyslexia, dysgraphia, and Parkinson’s disease. Analysis of handwriting,
falling under the broad purview of graphology, helps us understand the writer’s psy-
chology, emotional outlays, and noticeable disorders as well. Since there prevails a
broad spectrum of cursive nature and high inconsistency of handwriting styles, the
techniques for modern handwriting analysis need to be more robust and sensitive to
different patterns compared to the traditional graphological techniques. Herein lies
the necessity of computing technology, which should intelligently analyze handwrit-
ten texts to find out the similarity of finer aspects of handwritings of children or adult
with some kind of learning/writing disability. Deep learning technology is chosen as
the technical tool to identify and classify common features of handwriting of children
with developmental dysgraphia. Variational autoencoder, a deep unsupervised learn-
ing technique, is presently used for this purpose. This chapter reports successful ex-
traction and interpretation of significant number of distinguishable handwriting
characteristics that are clinically proved to be symptoms of dysgraphia.

Keywords: feature extraction, dysgraphia, handwriting analysis, variational autoen-
coder

5.1 Introduction

There are so many electronic gadgets/tools available today, which are commonly
used as digital platform for reading and writing, and as a medium of communication.
Yet today, traditional medium like printed books, study materials, and handwritten
documents are widely used and quite popular as learning or communication me-
dium. Communication through writing on paper by hand remains the most basic
mode though writing on digital screen by stylus is another useful mode. Therefore,
handwriting skill needs to be acquired by one and all in their tender age as a part of

Rajib Saha, Anirban Mukherjee, Avik Sarkar, Shatabhisa Dey, RCC Institute of Information
Technology, Kolkata, West Bengal, India.

https://doi.org/10.1515/9783110670905-005

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110670905-005

the basic education. Handwriting is a complex task involving perceptual, attention-
related, linguistic, and finer motor skills. Supposedly, handwriting is the foundation
of all other educational errands such as jot notes, self-expression, and composition.
The academic and behavioral progress of children is closely associated with prompt
and significant development of reading and writing skills. Handwriting of every indi-
vidual evolves with time on both qualitative and quantitative terms. Despite proper
handwriting training, a significant percentage of children in the world, fail to grasp
the skill and encounter difficulties in establishing their handwriting. This results in
diminution of cognitive performance, weakening of self-esteem and so on. Therefore,
detection and remediation of any kind of difficulty in handwriting at the earliest pos-
sible stage holds crucial importance.

Most individuals facing conspicuous handwriting challenges owing to motor or
sensory-motor weakness or disorder are considered to have dysgraphia [1], a neuro-
logical disorder. The prefix “dys” implies the presence of impairment while the root
word “graph” refers to the hand’s function in writing the letters similarly, the suffix
“ia” means having a condition. Hence, dysgraphia can be defined as the unique
condition of impaired letter writing by hand, that is, disabled handwriting.

The term dysgraphia is often attributed to individuals having deficits in the fol-
lowing aspects in their writings:
I. Accuracy in spellings
II. Grammatical and punctuation accuracy
III. Clarity or organization of written expression

This neurodegenerative disorder commonly develops when children are in the ini-
tial stage of their introduction to handwriting. It can also occur following severe
neurological trauma or may be found in a patient with physical impairments like
ADHD, Tourette syndrome, learning disabilities, or an autism spectrum disorder
such as Asperger’s syndrome. Apart from these, an individual can be suffering from
dysgraphia without having any other disabilities. They are believed to be the vic-
tims of the cursed genes.

Some of the general symptoms of dysgraphia are as follows:
I. Lack of consistency in the case (upper/lower) of letters
II. Sizes and shapes of letters are irregular and often they are incomplete
III. Odd writing grip
IV. Several mistakes in spellings (sometimes)
V. Significant change in speed of writing and copying
VI. Poor use of lines and spaces
VII. Reluctance or refusal to complete writing tasks
VIII. Experience of physical pain in hand and/or arm while writing

Dysgraphia can be widely classified into five types namely, dyslexic dysgraphia, motor
dysgraphia, spatial dysgraphia, phonological dysgraphia, and lexical dysgraphia. As

86 Rajib Saha et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

far as the present study is concerned, dyslexic, motor, and spatial dysgraphia are
of primary interest as these are characterized by poor handwriting. Dyslexic dys-
graphia affects an individual’s spontaneous writing and spelling. Motor dysgra-
phia is characterized by poor writing (both spontaneous and copied), bordering
on illegible and slanted writing which may be attributed to lack of fine motor
skills. Spatial dysgraphic patients often face difficulty in maintaining uniform
skew for lines and uniform gap between words. However, patients may suffer
from multiple type of dysgraphia and the symptoms may differ from individual to
individual.

VAE (variational autoencoder) has been used in this chapter. VAE [2] is noth-
ing but a neural network model that immediately adapts and adopts an inference
model for deduction of imperceptible features of image data and initiates a gener-
ative model to produce images from those deduced features. Earlier, authors [3]
have successfully generated different clusters of characters having similar hand-
writing features using MNIST, a handwritten numeric dataset. Moreover, VAE can
produce characters when alphabet dataset is used having more classes than
MNIST. Hence, the same process has been applied on the current dataset to gener-
ate the generative model. However, the features of the handwritings in the dataset
could not be perfectly captured since they are more complex when compared with
the handwritten numerals of MNIST, as the character image was mapped into a
one-dimensional vector.

5.2 Background

Except a few unfortunate children, majority of children are able to master the hand-
writing skills essential for copying or penning down their own thoughts. Their hand-
writing is intelligible and the handwriting process [4, 5] is carried out with comfort
and ease. It is by the age of six a child begins to get habituated with the form of the
letters and an approximate 2 years of formal education provides handwriting experi-
ence, which leads to stable and effective handwriting by the age of 8 [6]. Now chil-
dren who fail to adopt and develop handwriting proficiency by that age faces
developmental dysgraphia [7, 8].

According to prior studies, it is believed that the presence of dysgraphia is com-
mon among children with average IQ level and is also found among those who
have not been diagnosed with any neurological or perceptual motor disorders.

The risk of developmental dysgraphia in children with neurodevelopmental dis-
abilities is very high [9]. In school-going children the risk is comparatively low and
the percentage lies between 10 and 30 [8]. It is clinically proved that handwriting diffi-
culty is capable of making serious impact on an individual’s overall academic perfor-
mance, psychology, and behavior [10]. Thus, it is important to detect developmental

5 Extraction of Common Feature of Dysgraphia Patients 87

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

dysgraphia at the earliest, to prevent uncontrollable and undesired manifestation in
the adult life [11].

Scientific studies substantiate the utility of an automated system for recogniz-
ing the handwriting process and proceed with assessing the same to distinguish
handwriting features of children suffering from dysgraphia [8, 12–14]. However, as
perceived, concepts of deep learning will throw more light on the aspects of fea-
tures and would be more effective to diagnose and identify handwriting defects
among patients of dysgraphia.

Previously, a system of automatic rating of dysgraphia based on HPSQ total
score estimation was developed using the concept of machine learning which im-
plemented handwriting parameterization techniques and intrawriter normalization
approach.

For the first time, in this chapter, VAE, a deep learning technique to compress
data, is used to identify common handwriting features in dysgraphia patients. Deep
learning is a subset of unsupervised learning, also termed as hierarchical learning
which has created huge impact on the field of machine learning [15]. AE typically
comprises dense, fully connected layers of a feedforward neural network; it consists
of an encoder network and a decoder network. The encoder is compared to a convo-
lution neural network (CNN). The input is processed using several hidden layers
“h” inside an autoencoder. The input is encoded into a much smaller representation
as an output. The output received from the particular layer consists of sufficient
suitable information to be processed in the next layer of the network to produce
necessary output format. It simultaneously assimilates an inference model to de-
duce the latent features of image data and comprehends a generative model for
generating images from those deduced latent features. The input image is encoded
and decoded by VAE. Following this, clustering is implemented which may lead to
loss of information. The similarities and dissimilarities among the various charac-
ters contained in the dataset are depicted as the output of clustering of characters.
Identification of handwritings manually is comparatively easier than of identifica-
tion done by machines since handwriting varies from individual to individual.

VAE is considered as a neural network which can encrypt image into a direction
in the latent space of z real numbers. For the sample that has been collected from a
z-dimensional normal distribution, the direction is assumed to be arbitrary. Then,
the decoder network decodes the encoded vector representation and obtains the
original image. Random samples can be drawn from the distribution and fetch
them into decoder network for which the latent space is z-dimensional normal dis-
tribution. From this new images can be obtained that are absent in the dataset we
trained on. The architecture of the encoder is represented in Figure 5.1.

The pivotal facet of the VAE lies in the fact that its latent representation, y ∈ℙK

is derived from a particular Gaussian distribution (i.e., p(y) = N (y| μ, Σ), where μ
denotes mean and Σ denotes covariance). The VAE is trained in an unsupervised
manner as the output is basically the reconstructed version of the input. Let us

88 Rajib Saha et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

consider the given set of training data is S = {sn}n=1
N, the VAE comprises of a proba-

bilistic encoder qθ(y|s), that finds the latent representation y for the given set of
input data s. It also consists of a probabilistic decoder pϕ(s|y) which reconstructs
the input data for the specific latent representation, where θ represents the network
parameter for encoder and ϕ represents the network parameter for decoder.

Optimization of the variational bound LVAE θ,∅ð Þ with respect to the parameters
θ and ϕ in the encoder and decoder occurs learning VAE.

LVAE θ,∅ð Þ=
Xn
n− 1

− Ey~qθ yjsnð Þ½log p∅ðsn yÞ�+KLðqθðyj jsnÞjjp yð ÞÞ (5:1)

Here, the first term is the reconstruction error that has been computed by taking the
expectation with respect to the distribution of y while the second term denotes reg-
ularizer which is the Kullback–Leibler (KL) divergence between the estimated distri-
bution qθ(y|sn) and the true distribution p(y). This divergence is the measurement of
the amount of information lost while using q to represent p. The estimation of pa-
rameters can be done using an autoencoding variational Bayes algorithm [16].

The pictorial representation of an encoder and decoder is given in Figure 5.2(a)
and (b), respectively.

The encoder is said to be a neural network whose input is a data point s while
output is a hidden representation y, having weights and biases θ. Specifically
saying, let us consider y to be a 15 by 15 pixel photo of a handwritten digit. The
encoder “encodes” the data which is 225-dimensional into a latent (hidden) repre-
sentation space y, which is much less than 225 dimensions. This is conventionally
termed to be a “bottleneck” because the encoder must be capable of efficient com-
pression of the data into this lower-dimensional space.

From Figure 5.2, we can consider or assume the encoder to be denoted as qθ(y|s).
We know that the lower-dimensional space is arbitrary: the parameters to qθ(y|s),
which is a Gaussian probability density, is the output of the encoder. Sampling of
this distribution can be done to obtain the noisy values of the representations y.

Encoder

Auto encoder

Decoder

Feature
space

Sample
space

Figure 5.1: The simplest form of representation of the encoder architecture.

5 Extraction of Common Feature of Dysgraphia Patients 89

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

The decoder is also a neural network having representation y as the input,
while the parameters to the probability distribution of the data is its output, and
has weights and biases ϕ. The decoder has been denoted by pϕ(s|y). On execution
with the handwritten digit as example, let us assume that the images are black and
white and representation of each pixel is in the form of 0 or 1 (Figure 5.3).

The probability distribution of a single pixel can be represented using a Bernoulli
distribution. The latent representation of a digit y is given as input to the decoder
and the output, thus, obtained is 225 Bernoulli parameters, one for each of the 225

Encoder
qθ(y s)

Data: S Reconstruction: Ŝ
(a) (b)

Decoder
pϕ(s y)

yy

Figure 5.2: (a) The encoder is used to compress data into latent space (y). (b) The decoder is used
for reconstruction of given data which is a hidden representation.

Encode →
Inference

→ →

Input
image

Input Hidden

σ

Latent
distribution

Output

Reconstructed
image

Decode →
Generative

qθ(y s)

S

pϕ(s y)

μ

Ŝ

Figure 5.3: Illustration of the cited example.

90 Rajib Saha et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

pixels in the image. Decoding the real-valued numbers in y into 225 real-valued
numbers between 0 and 1 is done by the decoder. There is the occurrence of loss of
information as it goes from a smaller to a larger dimensionality [17].

The requirements of VAE are as follows:
I. It is essential to use two tractable distributions:

a. The initial distribution p(y) must be easy to be sampled from.
b. The conditional likelihood p(s|y,θ) should be computable.

II. In practice, this implies that the two distributions are seldom complex, for ex-
ample, uniform, Gaussian, or even isotropic Gaussian.

Once the image is encoded and decoded in the VAE, it involves reconstruction of
the images. For extraction of similar characteristics/features, clustering needs to be
performed.

Hierarchical clustering is a statistical cluster analysis process which involves
building of clusters in a hierarchical form. Here, splitting and merging are deter-
mined in a greedy manner. After hierarchical clustering the results thus obtained
are represented in a dendrogram. In case a set of M items with an M × M distance
(or similarity) matrix needs to be clustered, then the following needs to be per-
formed for the process of hierarchical clustering:
1) First, each M item is assigned to its own cluster; that is, in case of M items there

would be M clusters formed, each containing single item. Let us assume, that
the distances (with similarities) between the clusters is equivalent to the distan-
ces (similarities) between the items they have.

2) Next, the closest (most similar) pair of clusters needs to be calculated and
merged into a single cluster, so that there is a decrease in the number of clus-
ters by 1.

3) Next, the distances (similarities) between the newly formed clusters and each
of the old clusters need to be calculated.

4) Steps 2 and 3 are repeated until all items are clustered into a single cluster of
size M.

The uniqueness between VAE and a standard autoencoder is that they have contin-
uous latent spaces allowing easy random sampling and interpolation. This property
makes them effective generative models. This avoids producing unrealistic output
due to discontinuous latent space.

5.3 Proposed work and methodology

The chapter purports to thoroughly study the handwritings that have been taken from
children suffering from dysgraphia. With the help of deep learning as the technical

5 Extraction of Common Feature of Dysgraphia Patients 91

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

tool, a number of characteristics or patterns uniquely present in the samples collected
were deduced. These distinguishable characteristics are further recognized as symp-
toms of dysgraphia in the field of medicine. Hence, dysgraphia can be detected at an
early stage, which would in turn be helpful in taking up remedial measures like thera-
peutic care.

The very initial step of this study was collection of handwriting of children suf-
fering from dysgraphia and then those collected documents were scanned to pro-
ceed further. The assumptions taken into consideration are:
– Scanning has been performed perfectly, hence the introduced skew is the re-

sponsibility of the writer
– Salt and pepper noise [18, 19] and background noise [18, 19]might be present,

which may have been caused before or after the scanning process

The steps of the proposed work are as follows:

5.3.1 Preprocessing

To maximize the efficiency of processing and to reduce complicacy in the terminal
stages of the code, image preprocessing [20, 21] is done to obtain image of better
quality. Preprocessing steps performed for handwriting analysis includes binar-
ization [22, 23] and noise removal. Median filter technique [24] is adopted for salt
and pepper noise removal [18, 19, 24–26] while image binarization is done using
Otsu’s [22] thresholding technique. In binarization, binary image is obtained from
grayscale image.

5.3.2 Line segmentation

The binary image obtained is used for line segmentation. The present work implements
conversion of image into grayscale which is then binarized inversely, resulting in
a dark background with the text in a light shade. Resultant image is dilated and
findContours() function of OpenCV library is used to find the contours. Each of the
contours found is stored as a vector of points. Function RETR_EXTERNAL returns
only the extreme outer contours, which is the implemented mode of retrieval. In
CHAIN_APPROX_SIMPLE function, the horizontal, vertical, and diagonal seg-
ments are compressed and reduced to their end points only, as done in the
adopted approximation method. For example, an upright triangular contour is en-
coded with 3 points.

92 Rajib Saha et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Algorithm for line segmentation
STEP 1: Load the sample writings as images.
STEP 2: Convert image into grayscale.
STEP 3: Convert the grayscale image into binary image using proper threshold

and invert the image.
STEP 4: Dilate the binary image using kernel of 5 × 150 matrix of ones.
STEP 5: Find contours from the diluted image and consider only the extreme outer

flags.
STEP 6: Extract the desired region of the image using those contours and save

them as images which are basically lines in the writings.

5.3.3 Word segmentation

Word segmentation is performed by applying the abovementioned method on the
segmented lines and the characters are thereby segmented using each individual
word.

Algorithm for word segmentation
STEP 1: Load the sample lines as images.
STEP 2: Convert image into grayscale.
STEP 3: Convert the grayscale image into binary image using proper threshold

and invert the image.
STEP 4: Dilate the binary image using kernel of 5 x 35 matrix of ones.
STEP 5: Find contours from the diluted image and consider only the extreme outer

flags.
STEP 6: Extract the desired region of the image using those contours and save

them as images which are basically words in the line.

5.3.4 Character segmentation

The characters are thereby segmented using each individual word using the same
method as that of line segmentation.

Algorithm for character segmentation
STEP 1: Load the sample words as images.
STEP 2: Resize the contour containing the word using bicubic interpolation over

4 × 4 pixel neighborhoods.
STEP 3: Convert image into grayscale.
STEP 4: Convert the grayscale image into binary image using proper threshold

and invert the image.

5 Extraction of Common Feature of Dysgraphia Patients 93

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

STEP 5: Dilate the binary image using kernel of 5 x 5 matrix of ones.
STEP 6: Find contours from the diluted image and consider only the extreme outer

flags.
STEP 7: Extract the region of interest from the image using those contours and

save them as images which are basically characters in the words.

5.3.5 Implementation of VAE

The images thus obtained after character segmentation is fed to the VAE where the
image is reconstructed after encoding and decoding.

The steps that are followed are mentioned below:
STEP 1: The image is read.
STEP 2: The image is converted to desirable format for required channels and

size.
STEP 3: The image pixel intensity value is stored in an array.
STEP 4: The array is shaped to coincide with the input shape of the VAE model.
STEP 5: The data is split into training and test set.
STEP 6: The encoder model is constructed using fully connected layers are used

in the model to calculate mean and variance.
STEP 7: The decoder, a sequential model with fully connected layers is constructed.
STEP 8: The input and output shapes for the encoder and decoder are used to

construct the autoencoder.
STEP 9: The model is compiled using negative log normal loss function.
STEP 10: The middle-hidden layer represents the mean and variance layer using

KL. The model is trained as a whole and the mean and variance is up-
dated for every batch of data in each epoch using back propagation.

Once the result is obtained from the VAE, clustering is done. Clustering facilitates
grouping of similar attributes within the same cluster. The resultant cluster would,
thus, hold the clear picture that would be beneficial for deriving important conclu-
sions out of it. In an ideal scenario, it is expected that if we form clusters of the im-
ages of all the English alphabets, we would obtain 26 different clusters in all. But in
case of handwriting analysis of children suffering from dysgraphia, it is certain and
predictable that the number of clusters for all 26 alphabets would be less than 26.
This significant decrease in the number of clusters formed would pave the path to
conclude the obvious defective characteristics that is present in the handwriting.

The entire methodology is illustrated in the flowchart shown in Figure 5.4.

94 Rajib Saha et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

5.4 Results and discussion

The outputs of each step involved in this chapter are represented with sample out-
puts followed by discussion on inferences.

5.4.1 Line segmentation output

As discussed previously, line segmentation is performed as the first major step. Few
of the segmented lines obtained from handwriting samples of dysgraphia patients
are shown in Figure 5.5(a)–(h).

Read handwritten image
sample as grayscale

Read segmented words
as grayscale images

Resize contour using
bicubic interpolation

Binarize the image and
invert it

Dilate image using kernel
dimensions 5 × 5

Read contours considering
extreme flags only

Extract region of interest
to obtain characters

Read all character images

Format for required
channels and size

Store pixel intensity value in
array shaped similar to vae

model

Split data to training and
testing set

1

Binarize the image and
invert it

Dilate image using kernel
dimension 5 × 150

Read contours considering
extreme flags only

Extract region of interest
to obtain lines

Read segmented lines as
grayscale images

Binarize the image and
invert it

Dilate image using kernel
dimensions 5 × 35

Read contours considering
extreme flags only

Extractregion of interest
to obtain lines

Construct sequential
encoder and decoder

models

Merge models to create
vae model

Compile using negative log
normal loss function

Fit the model for training
and testing set

Use recons tructed image
for clustering

Plot the clustered
images

Stop

1

Start

Figure 5.4: Flowchart of the entire process.

5 Extraction of Common Feature of Dysgraphia Patients 95

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

5.4.2 Word segmentation output

After the lines are segmented, it is used as input for the next step which is word
segmentation. The word segmentation algorithm processes the segmented lines and
divides it further into smaller segments. The segmented words for each patient are
stored, few samples of which are shown in Figure 5.6.

5.4.3 Character segmentation output

Each segmented word is further segmented to obtain each character present in the
handwritten samples. Figure 5.7 shows a snapshot of character segmentation out-
put containing few segmented handwritten characters.

5.4.4 Output of reconstruction using VAE

The segmented characters were passed through the VAE to extract the common fea-
tures. The VAE takes the segmented characters as input and reconstructs the images
using only relevant information, by intelligent selective discarding of irrelevant infor-
mation. This reconstruction as shown in Figure 5.8 is done using an encoder and de-
coder network. After 500 epochs, the result is obtained over a training sample set of
1,050 characters; the loss is 0.2573 and validation loss is 0.2648.

5.5(a)

5.5(d)

5.5(f)

5.5(h)

5.5(b)

5.5(c)

5.5(e)

5.5(g)

Figure 5.5: Snapshot of line segments (a)–(h).

96 Rajib Saha et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

The images after reconstruction are clustered in order to loosely group them such
that the images have close similarities with each other when depicted as data points
in a two-dimensional plane. Such clustering samples are shown in Figures 5.9–5.12.

Figure 5.7: Snapshot of character segmentation output.

Figure 5.6: Snapshot of word segments.

5 Extraction of Common Feature of Dysgraphia Patients 97

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Figure 5.8: Reconstruction of segmented characters using VAE.

Figure 5.9: Representation of the cluster containing mostly character “e” written by patients.

Figure 5.10: Representation of the cluster containing mostly character “” written by patients.

Figure 5.11: Representation of the cluster containing mostly character “o” written by patients.

98 Rajib Saha et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Now the inferences that can be drawn from the output obtained are as follows:

1. The three images of handwritten alphabets in Figure 5.13 (very few in number
among all the images), substantially prove that children with dysgraphia have
an odd gripping, they certainly face difficulty in holding a pen/pencil while writ-
ing and as a result the formation of the alphabets or characters is starkly peculiar
and improper in comparison to that of a normal individual’s handwriting.

This in turn makes the handwriting illegible to understand. The outcome of an
odd holding grip is that it results in varying pressure imposed by the writer
while writing. Thus, pressure exerted by the person having handwriting disabil-
ity is far more than the fortunate ones and noticeably inconsistent throughout
the handwritten sample. In fact, one can easily realize why speed of writing is
very less for a dysgraphia patient. During data collection, it was noticed that a
paragraph which a normal individual takes an average of 50 s to complete was
actually being completed by dysgraphia patient in an average of 2.5 min.

2. Ambiguity in the handwriting:

The clusters obtained consisted of similar looking alphabets together; for ex-
ample, let us consider Figure 5.14 where “l,” “e,” and “c” were confused and
jumbled up by the patients. To state it specifically, they fail to figure out and
identify the specific character and as a result while copying they try to draw
the same that they visualize instead of understanding what the character is
and then penning it down.

Figure 5.13: Snapshot of distorted characters.

Figure 5.14: Snapshot representing ambiguous writing.

Figure 5.12: Representation of the cluster containing characters “t” and “w.”.

5 Extraction of Common Feature of Dysgraphia Patients 99

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

3. Failure to distinguish between similar characters present adjacent to each other:

The original words in Figure 5.15 were “little,” “lull,” “alumnae,” “will;” since
“le,” “ul,” “mn,” and “il” are similar and placed adjacent, it was beyond recog-
nition for them and as a result it lead to confusion and word formed by them
was difficult to be deciphered.

4. Similar alphabets contained in the same word gets interchanged often:

In the example shown in Figure 5.16 the original words were “bad” and “guy.”
Since, “b” and “d,” “y,” and “g” are, though, not exactly same but look quite
same, their position got interchanged when written by a dysgraphia patient.
Though such error is not the same for all the patients it is quite common among
majority.

5. Unclear and disconnected writing with errors in spellings:

This is one common facet for most; often the characters of words are disconnected
and written far apart making it two different words (as in Figure 5.17) with no mean-
ing and resulting in spelling mistakes.

Though handwriting can be a tangible tool to rely upon for detecting dysgra-
phia, certain characters can mislead too. Not all patients having illegible handwrit-
ing is a patient of dysgraphia or not all dysgraphia patients have extremely illegible
handwriting. It may so happen that a normal person possesses very poor handwrit-
ing as compared to a dysgraphia patient.

It is also observed that alphabets like “i,” “s,” and few more were written per-
fectly and the clusters were same throughout as shown in Figure 5.18.

Figure 5.15: Snapshot representing failure to
distinguish between similar characters.

Figure 5.16: Snapshot representing interchanged letters.

Figure 5.17: Snapshot representing
disconnected writing.

Figure 5.18: Snapshot of “i” and “s” present in the collected
samples.

100 Rajib Saha et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

After studying so many handwriting samples, it is noted that patients with severe
dysgraphia fail to write even a complete sentence and it’s almost impossible to con-
strue what is exactly written, as in Figure 5.19.

While collecting the handwriting samples, a child was found suffering from the dis-
order at a very serious and severe stage. Unfortunately, the ailment was all the
more complicated as the subject was affected with another neurodegenerative dis-
ease as well. He was reluctant to write at the very beginning; though after a while
of coaxing, he agreed to write but he failed to complete a single sentence and
began to cry with panic.

The psychologies common to majority of these patients are that they are ex-
tremely reluctant and unwilling to write. While writing they become extra cautious
about their handwriting and try to provide a suitable justification for their bad and
unclear handwriting. Their tendency is to minutely observe the given sample and
write the same which looked exactly similar. Not all but most of the patient ob-
served was in a state of agitation while writing. Few complained of pain in their
hands, as well. This endorses the theory which was read about the psychology of
dysgraphia patient.

As already mentioned at the beginning of the chapter, the type of dysgraphia
and symptoms present in a child varies uniquely and one may be suffering from
more than one type. Analysis of the types by the machine seems to be beyond reach
as of now.

In the field of agriculture, loss of production due to crop diseases is one of the
crucial challenges. Hence, plant disease detection has established a thoughtfulness
that production quality can be improved if the diseases are detected earlier. Different
machine learning techniques are prescribed in related literature and these are very
helpful in plant disease detection. Examples of these various machine learning meth-
ods are ANN, SVM, k-means clustering, K-NN and so on. Individually, these machine
learning method based applications are articulated for segmentation, classification,
and clustering. The experimental results in disease recognition show that the pro-
jected method is a primarily appreciated approach that can support disease detection
in a tiny computational effort.

A postponement of this chapter will emphasize on the importance of incor-
porating decision support system along with other machine learning techniques,
which may provide more accurate early detection of crop diseases. Future work

Figure 5.19: Handwriting of a patient with severe dysgraphia.

5 Extraction of Common Feature of Dysgraphia Patients 101

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

also targets the area where machine learning is developed only to understand
and handle various agriculture-related natural phenomenon. Also, the decision
which is deduced by the machine should be converted into human-readable text
or in the local language so that the farmer can understand and cooperate with
the machine.

5.5 Conclusion

In this chapter, extraction of common features of dysgraphia patients by handwriting
analysis using VAE was proposed. This method can be used to diagnose the disease at
the early stage. This is a cost-effective and noninvasive method or diagnostic tool.
Though no particular pattern was identified as an irrefutable sign of dysgraphia, the
results from the study can be utilized to test the cognitive skills of the patient. The
study could have been more effective had the samples been collected on an equipped
electronic tablet so that pressure, time, and other factors could be precisely recorded.
The study can be modified in future to yield better and more accurate result by adding
more functionality like monitoring, tracking the gradual progression of the disease,
and also identifying the stage in which the patient is at the time of acquiring the sam-
ple so that the improvement or deterioration of the condition can be detected at the
earliest. This can only continue up to the stage where the patient retains normal func-
tional ability. Dysgraphia patients in the terminal stages suffer from impaired func-
tional ability and its certain that they would be unable to provide sufficient data to
analyze using this model.

The study can also be applied to extract features for other neurodegenerative
diseases with slight modifications in the implementation to determine whether
handwriting analysis can be used as an early diagnostic method or not. This study
will also benefit from the availability of a large training set and dynamic data col-
lection. This will help in better image reconstruction. The dynamic collection will
provide more precise parameters for more accurate clustering.

References

[1] www.nature.com/npjdigitalmed
[2] Saha P., Das S.K., & Nandy S. Variational autoencoder coupled with deep generative neural

network for the identification of handwritten digits. International Journal of Applied
Engineering Research, ISSN 0973-4562, 2018, 13(10), 8014–8017.

[3] Kingma D.P. & Welling M. Auto-encoding variational Bayes, arXiv:1312.6114v10, 2014.
[4] Rosenblum S., Weiss P., & Parush S. Product and process evaluation of handwriting

difficulties. Educational Psychology Review, 2003, 15(1), 41–81.

102 Rajib Saha et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.nature.com/npjdigitalmed

[5] Erhardt R.P. & Meade V. Improving handwriting without teaching handwriting: The consultative
clinical reasoning process. Australian Occupational Therapy Journal, 2005, 52(3), 199–210.

[6] Rosenblum S. & Gafni-Lachter L. Handwriting proficiency screening questionnaire for children
(HPSQ-C): Development, reliability, and validity. The American Journal of Occupational
Therapy: official publication of the American Occupational Therapy Association, 2015, 69(3),
6903220030.

[7] O’Hare A. Hands up for handwriting. Developmental Medicine & Child Neurology, 2004, 46
(10), 651–651.

[8] Kushki A., Schwellnus H., Ilyas F., & Chau T. Changes in kinetics and kinematics of writing
during a prolonged writing task in children with and without dysgraphia. Research in
Developmental Disabilities, 2011, 32(3), 1058–1064.

[9] Fuentes C.T., Mostofsky S.H., & Bastian A.J. Perceptual reasoning predicts handwriting
impairments in adolescents with autism. Neurology, 2010, 75(20), 1825–1829.

[10] Peverly S.T., Vekaria P.C., Reddington L.A., Sumowski J.F., Johnson K.R., & Ramsay C.M. The
relationship of handwriting speed, working memory, language comprehension and outlines
to lecture notetaking and test-taking among college students. Applied Cognitive Psychology,
2013, 27(1), 115–126.

[11] Martins M.R.I., Bastos J.A., Cecato A.T., de Lourdes Souza Araujo M., Magro R., & Alaminos
V. Screening for motor dysgraphia in public schools. Jornal de Pediatria, 2013, 89(1), 70–74.

[12] Rosenblum S., Dvorkin A.Y., & Weiss P.L. Automatic segmentation as a tool for examining the
handwriting process of children with dysgraphic and proficient handwriting. Human
Movement Science, 2006, 25(45), 608–621.

[13] Rosenblum S., Goldstand S., & Parush S. Relationships among biomechanical ergonomic
factors, handwriting product quality, handwriting efficiency, and computerized handwriting
process measures in children with and without handwriting difficulties. The American Journal
of Occupational Therapy, 2006, 60(1), 28–39.

[14] Rosenblum S., Parush S., & Weiss P. The in air phenomenon: Temporal and spatial correlates
of handwriting process. Perceptual Motor Skills, 2003, 96, 933–954.

[15] Deng L. & Yu D. Deep learning: Methods and applications. Foundations and Trends® in
Signal Processing, 2014, 7(3–4), 197–387.

[16] Kingma D.P. & Welling M. Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114v10,
2013.

[17] https://jaan.io/what-is-variational-autoencoder-vae-tuto
[18] Farahmand A., Sarrafzadeh A., & Shanbehzadeh J. Document image noise and removal

methods. Proceedings of the International Multi Conference of Engineers and Computer
Scientists, Hong Kong, 2013, I.

[19] Story G., O’Gorman L., Fox D., Schaper L., & Jagadish H. The rightpages image-based
electronic library for alerting and browsing. IEEE Computer Society Press Los Alamitos, CA,
USA, 1991, 25(9), 17–26.

[20] Nicolas S., Paquet T., & Heutte L. Text line segmentation in handwritten document using a
production system. Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting
Recognition, 2004, IEEE, 3.

[21] Bin Abdl K.M. & Mohd Hashim S.Z., Handwriting identification: A direction review. IEEE
International Conference on Signal and Image Processing Applications, 2009, 978-1-4244-
5561-4/09.

[22] Otsu N. A threshold selection method from Gray level histogram. IEEE Transaction on system,
Man, Cybernetics, 1979, SMC-9, 62–66.

[23] Niblack W. An Introduction to Digital Image Processing. New Jersey Prentice-Hall, Englewood
Cliffs, 1986.

5 Extraction of Common Feature of Dysgraphia Patients 103

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://jaan.io/what-is-variational-autoencoder-vae-tuto

[24] Premchaiswadi N., Yimgnagm S., & Premchaiswadi W. A scheme for salt and pepper noise
reduction and its application for OCR systems. WSEAS Transactions on Computers, 2010, 9,
351–360.

[25] Plamondon R. & Srihari S.N. On-line and off-line handwriting recognition. A Comprehensive
Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22, 1.

[26] Solihin Y. & Leedham C.G. Noise and Background Removal from Handwriting Images, IEEE,
1997.

104 Rajib Saha et al.

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Ankita Bose and B. K. Tripathy

6 Deep Learning for Audio Signal
Classification

Abstract: Audio signal processing and its classification dates back to the past century.
From speech recognition to speaker recognition and from speech to text conversion to
music generation, a lot of advances has been made in this field using algorithms such
as hidden Markov models, recurrent neural networks with long short-term memory
layers (LSTM), deep convolutional neural networks (DCNNs), and the recent state-of-
the-art model for music and speech generation using WaveNets. These algorithms are
applied after the audio signals are processed and effective feature extraction techni-
ques are applied on them. Nowadays, devices come up with personal assistants with
which they can interact either through text inputs or voice inputs. Most applications
have also come up with voice search features, while some can generate transcripts
from videos and recognize the song title when played. The constant urge for attaining
perfection has also led to hybrid models combining supervised and unsupervised
learning techniques for better feature extraction. The ability to deal with spectral and
temporal data makes DCNNs different from deep neural networks and also makes it
the appropriate choice to deal with speech data because correlation between words
and phonemes are a characteristic of such data. The potentials of convolution neural
networks are huge and being extended in areas like environmental sound classifica-
tion, music and instrumental sound processing and classification, and large vocabu-
lary continuous speech recognition. Therefore, this chapter gives detailed explanation
about what an audio signal is and how it is processed. It will also cover the various
feature extraction techniques and the classification algorithms. Finally, the present-
day applications and the potentials of deep learning in this field will be explored.

Keywords: audio signal, feature extraction, speech processing, deep learning, appli-
cations of audio signal processing

6.1 Introduction

Language is one of the most important inventions of mankind without which commu-
nication would not have been possible. Speech using any language is the most effec-
tive and fast mode of communication because no other method can convey the
accurate emotions along with the information, parallelly. Computers have been com-
peting with humans in all aspects, be it processing speed or accuracy. The revolution

Ankita Bose, B. K. Tripathy, VIT University, Vellore, Tamil Nadu, India.

https://doi.org/10.1515/9783110670905-006

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110670905-006

brought about by artificial intelligence allows computers to think rationally and act
by keeping a balance between rational and human behavior. To fulfil this aim, a com-
puter needs to be equipped with the senses that a human is gifted with – vision, hear-
ing, taste, smell, and touch. Vision has already been incorporated in computers as
what is popularly known to be computer vision [1]. To allow taste, artificial tongues
are being created [2] and certain kind of sensors can detect the presence of gas which
can indicate the smell. For touch, scientists have already developed artificial skin [3],
which leaves us with the question of what has been done to give computers the abil-
ity to hear and speak like humans. Thus, we arrive at the discussion of processing
audio signals to enable the computers to understand audio data and respond like hu-
mans do. The context of audio is not restricted to just speech, it could be birds chirp-
ing, the sound of rain, the grunting of an engine, a baby crying, music from a flute,
or any of the more limitless possibilities. The applications of identifying what kind of
audio was processed holds good in multiple arenas like chatbots [4], surveillance, en-
vironmental sound classification [5](which could help detect the kind of scene from
the last phone call of a victim), classification of musical instruments [6] or musical
genres [7], speech to text converters (STT), [8] and the like. Learning to process audio
data also implants the ability to generate music for people who cannot play instru-
ments or generate speech for people who have difficulty in speaking (text to speech
converters) [9]. The learning is accomplished in two major steps: signal processing
for feature extraction and classification. The best features for classification happen to
be the Mel frequency cepstral coefficients (MFCCs) [10], and the classification algo-
rithms used has improved over time from hidden Markov models (HMMs) to deep
convolutional neural networks (DCNNs). The earliest used model was HMM [11] but it
had limitations [12], the most striking of which was the assumption which states
that the probability of being in a given state at time t only depends on the state at
time t–1. This was taken care by using long short-term memory layers (LSTMs) in
conjunction with recurrent neural networks (RNNs) [13]and also restricted Boltzman
machines (RBMs) were used for the same purpose [14] but DCNNs [5] proved to give
best results. While all these techniques served for classification, the best model for
generation of speech or music proved to be WaveNets. With the help of these models,
applications such as voice search, transcript generation, song search (Shazm, tells
which song is being played by recognizing the audio), dictation, and personal assis-
tants or audio books are made. With more and more data being available in corpuses
in written or audio form, language recognition and real time translation over video
chats are being made possible. Combining labelled video and audio classification in
the training data can make annotations for sound in videos possible (helpful for deaf
people). Detecting emotions from speech and context recognition are complex prob-
lems which can be solved by the combined use of both audio data classification and
natural language processing (NLP).

106 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

6.2 Audio signal processing and its importance

The fifth generation of computers are expected to think, analyze, and act on their
own. We prefer to give commands and get fast responses. Who could imagine that
saying “OK Google, play me some JAZZ” could actually play some jazz music for you,
without you exclusively having to search for the genre. You could also turn on the
fan without compromising the comfort of your sofa by telling Alexa (personal assis-
tant launched by Amazon) to do it for you. These fascinating advancements could be
made possible by audio signal processing. Not only can it be used for fancy things,
environmental sound classification [15] has made it possible to know the kind of envi-
ronment in which a signal has been recorded. This could help in locating a victim
from their last phone call or in annotating videos. There have been experiments on
classifying sounds from different birds, sounds of babies crying [16] to differentiate
normal and pathological cries, classification of musical instruments, identifying the
speaker, and much more. The study of various characteristics of an audio signal,
along with feature extraction and proper training using machine learning algorithms
makes this possible. The next section gives a detailed insight into the nitty-gritties of
an audio signal. Figure 6.1 shows an audio waveform.

6.2.1 Audio signals

The basic definition of sound says it is a vibration that propagates essentially
through any medium longitudinally and as both longitudinal and transverse waves
in solids. In case of longitudinal waves, the particles of the medium vibrate parallel
to the direction of wave propagation which might either be in the same or opposite
direction. This motion causes regions of compression and rarefaction which indeed
causes regions of varying pressure and hence these waves are also called Pressure
waves or Compression waves as shown in Figure 6.2.

On the other hand, particles in the medium travel in a direction perpendicular
to the wave propagation in case of transverse waves as shown in Figure 6.3. Waves
are defined in terms of various characteristics – for longitudinal waves, the regions
of highest particle concentration are known as compressions whereas the regions of
lowest particle concentration are known as rarefactions; for transverse waves, crests
are regions where maximum upward movement of particles occur and troughs are

Figure 6.1: An audio waveform.

6 Deep Learning for Audio Signal Classification 107

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

regions where maximum downward movement occurs. Movements are relative to
the rest position of the particle. For any wave, the distance between two consecu-
tive crests or troughs, or between two compressions or rarefactions, is known as the
wavelength. Frequency of a wave is the number of waves that pass through a fixed
point in the medium, per second. Shorter the wavelength, more is the frequency
and hence more is the pitch of the audio. A high-pitched audio appears shriller
than a low pitched one. The amplitude of a wave is the maximum displacement of
the particle from its mean or rest position and is a measure of loudness and inten-
sity. The more the amplitude, louder the sound appears. What tells apart a note
from a noise is the orderly repetitive nature of its wave. Waves that repeat itself at
intervals are more soothing as compared to waves that have irregular waveforms that
do not repeat and constitute noise which is very unpleasant. The quality or timbre of
a sound wave is determined by the waveform. Keeping the frequency constant, if the
waveform is changed, different sounds of the same pitch will be perceived; this as-
pect is explored more in electronic music where varied sounds are produced by mod-
ulating the waveforms. The earlier description is a small outlook on the anatomy of a
wave. For details on the mechanism by which a human being is able to hear please
refer to [17]. The subjective nature of volume, noise, and how sound perceived varies
among different individuals, and is immaterial to the context since we are to discuss
various audio signal processing techniques for feature extraction and classification.
The next section gives details on the various features of an audio wave and the meth-
ods by which they can be extracted.

Wavelength

Wavelength
Compression Rarefaction Compression Rarefaction

Figure 6.2: Depiction of a longitudinal wave.

Wavelength Crest

Amplitude

Trough

Figure 6.3: Depiction of a transverse wave.

108 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

6.2.2 Feature extraction methods

Machines learn through training. They are first made to get acquainted with the
kind of input they need to process and are told what exactly it is. This is the sim-
plest way in which supervised learning can be described. Therefore, when it comes
to audio classification, the classification algorithm is fed with a set of relevant fea-
tures corresponding to each audio piece, and a label, indicating either the words in
the original audio or a sentence or a musical note. When a new sample is to be clas-
sified, the program extracts features from the new sample and outputs the nearest
class to which these features belong. Audio features can be broadly divided into
two heads – physical and perceptual features [18]. Each of these broad categories
can be further subdivided into time, frequency, wavelet, image, and cepstral do-
mains. In many audio classification systems, there is a segment where relevance
feedback is taken from human beings, therefore, it becomes extremely important to
take into consideration the perceptual features, because the way humans perceive
sound is quite different from the physics of it. Therefore, either perceptual features
are extracted or signal features, that bear a correlation to the perceptual features,
are extracted [19].

A thorough research in psychoacoustics and the rudimentary stages of auditory
signal processing in humans forms the basis of perceptual features. The cochlea in
the inner ear serves as intersecting bandpass filters. To model it in real world, pro-
posed methods include gammatone filters [20–22], and simple implementation
using discrete Fourier transforms, among others and the features thus extracted are
known as cochleagrams. Another such feature is the correlogram which is responsi-
ble for capturing the essence of the fundamental frequency and higher harmonics
from the signal [23] that helps in segmentation of audio. Modular Spectrums on the
other hand are able to detect variances from extended durations which help in pre-
serving phonemic or syllabic structure in case of speech signals; this is done by ap-
plying some kind of transform on every frequency component along the time axis
[24]. The aforementioned features model the outer ear. To model the complexities of
the inner ear multiscale representations are used [25, 26]. Therefore, perceptual fea-
tures can be thought of as simple minor features that are able to convey notable
impressions of sound synonymity. Loudness, sharpness, and spectral features,
such as spectral centroid or spectral flux and roughness, are few among many such
features; MFCC being one of the most important and widely used ones, which will
be elaborated later in the chapter.

Physical features are more mathematical in nature and extraction techniques
are mostly applied on the crude signal without transforming it to other domains or
applying filters, as opposed to perceptual features. Such features include the mag-
nitude of energy, alterations in the amplitude of a waveform within every cycle [27],
the duration of such alterations, or the root-mean square of the magnitude of a
waveform. These features could also be rhythm-based and computed using different

6 Deep Learning for Audio Signal Classification 109

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

methods including finding the peaks of the output envelopes in frequency bands or
by finding pulse clarity or band periodicity, to state a few. Another set of physical
features are frequency-based which constitute spectral flux, line spectral frequen-
cies, spectral peaks, and the spectral centroid which is defined as the center of
gravity of spectral energy leading to the mean of the frequency values. Frequency
features also include pitch profiles, harmonicity, jitter, and a lot more spectral fea-
tures which will be elaborated later in the chapter. Wavelet transforms have an
upper-hand over Fourier transforms (FT) when representing discontinuous func-
tions, because they are able to deconstruct and reconstruct finite, non-periodic and
non-stationary signals precisely. Therefore, wavelet-based features such as Hurst
parameter features and matching pursuit-based Gabor features serve as an appro-
priate feature-set for vocal and musical audio signals. Image processing techniques
are used to extract features from time–frequency illustration of audio signals in the
form of image. These features are known as image spectrograms. Among other physi-
cal features are cepstral features and features from the eigen space, phase space, and
acoustic environment features.

The taxonomy of audio signal features branches out to great details with vari-
ous kinds of features under each head, interested readers can refer to [18] for fur-
ther details. In this chapter, only the most common and widely used features for
audio classification and learning have been mentioned and detailed.

6.2.3 Mel frequency cepstral coefficients (MFCCs)

MFCCs are the most widely used perceptual features because of their success in em-
bodying the speech amplitude spectrum concisely. These features are obtained
after applying a series of functions on the audio signal as described [10, 28].

It starts with applying a filter that amplifies the higher frequencies in the sig-
nal, which elevates the energy at these parts. After amplification, the entire signal
is fragmented into small frames ranging typically between 20ms and 40ms. This is
done because an audio signal changes constantly, but not much statistical varia-
tions are observed over short time frames, so the chosen range is appropriate as
ranges smaller than that would not give sufficient samples for decent spectral esti-
mation. The next process in the line is applying the Hamming window function
which eliminates the edge effects and assimilates all the frequency lines that are
placed close together. This is done to imitate the cochlea of the human ear that is
unable to discriminate between frequencies that are very near to each other, thus
maintaining the perceptual nature of this technique. The output of the Hamming
window is expressed in eq. (6.1).

y nð Þ= x nð Þ×w nð Þ (6:1)

110 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

w nð Þ=0.54−0.46× cos
2πn
N − 1

� �
, 0≤ n≤N − 1 (6:2)

In the eq. (6.2), N represents the number of samples in each frame and in eq. (6.1), y(n)
is the output signal. The input signal is represented by x(n) and w(n) represents the
Hamming window operation. A time signal is composed of its constituent frequencies
and a FT on the time signals gives us the corresponding complex-valued function in
the frequency domain. This transform is represented by eq. (6.3).

F ξð Þ=
ð∞
−∞

f xð Þe− 2πixξdx (6:3)

In the above equation ξ is any real number and Ƒ(ξ) represents the FT of the function
f(x). Therefore, after windowing, FT is applied on the resultant signal so now the sub-
ject worked upon is a frequency representation. The resultant signal after applying
FT is represented using eq. (6.4). The periodogram-based power spectral estimate for
the resultant frame, represented by Pi(k), is given by eq. (6.5).

Si kð Þ=
XN
n= 1

si nð Þy nð Þe− j2πkn=N 1≤ k≤K (6:4)

Pi kð Þ= 1
N

Si kð Þj j 2 (6:5)

In the above equation i is the total number of frames, n represents the samples in
each frame, N is the total number of samples in a frame and K represents the length
of the FT. y(n) is the output signal obtained after windowing. Let us assume that
first C coefficients are used for further processing (use shown later). The inability of
the cochlea to distinguish between near adjacent frequency lines becomes more
pronounced towards the higher frequencies. The Mel scale helps to incorporate this
behavior into the extracted features so that it is analogous to how humans process
audio. The Mel transform is given by eq. (6.6).

M fð Þ= 1125× ln 1+ f
700

� �
(6:6)

In the above equation, f is the frequency expressed in hertz. To represent the power
spectrum on the Mel scale, filterbanks are applied to it. Figure 6.4 shows a demon-
stration of the filterbanks and the windowed segments.

The number of these triangular filterbanks usually range from 20–40 and the
length of each filterbank is equal to C. Each filterbank is multiplied with the power
spectrum and the weighted sum of the coefficients are taken. So, if the number of
filterbanks taken is equal to say b such that 20 ≤ b ≤ 40, we get b numbers that denote
the energy constituent in each filter. Next step in line is to perform the logarithm of
the numbers obtained. This is done to imitate the fact that human beings do not

6 Deep Learning for Audio Signal Classification 111

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

perceive loudness on a linear scale. Variations in sound is not very evident when
the sound is too loud. At this stage, the numbers obtained are highly correlated.
Consequently, dimensionality reduction can be considered to make further computa-
tions faster and easier. Hence, discrete cosine transform (DCT) is applied to the log
filterbanks. This retains nearly half the coefficients, eliminating the higher valued
ones which result in improved performance. These coefficients are known as MFCCs.
They are commonly known as acoustic feature vectors. The most common representa-
tion of a DCT is given in eq. (6.7).

Xk =
XN − 1

n=0

xn cos
π
N

n+ 1
2

� �
× k

� �
, k=0, . . . ,N− 1 (6:7)

The eq. (6.7) represents a DCT, where numbers in one domain – x0,x1, . . ., xN-1 are
transformed into another domain as X0,X1, . . ., XN-1.In case of speech processing,
improvements in the results can also be made by adding features related to the dy-
namics of speech. The changes in the trajectory of the MFCCs are given by the Delta
function as shown in eq. (6.8). This would give us an equal number of delta coeffi-
cients as the MFCCs and appending these to the original features gives an extended
feature set that is shown to improve performances in automatic speech recognition.

dt¼
PN

n¼1 n ctþn� ct�nð Þ
2
PN

n¼1 n2
(6:8)

The full filterbank

Filter 8 from filterbank

50 100 150 200 250 50 100 150 200 250
0

am
pl

itu
de

am
pl

itu
de

0.5

1

50 100 150 200 250
0

am
pl

itu
de

0.5

1

50 100
Frequency Frequency

150 200 250
0

am
pl

itu
de

0.5

1

0

0.5

1

1.5

50 100 150 200 250

am
pl

itu
de

0

0.5

1

1.5

50 100 150 200 250

am
pl

itu
de

0

0.5

Windowed power spectrum using filter 8

Windowed power spectrum using filter 20Filter 20 from filterbank

Example power spectrum of an audio frame(a)

(c)

(e)

(b)

(d)

(f)

Figure 6.4: Plot of Mel filterbanks.

112 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

In the above equation, dt represents the delta coefficient of the tth frame, ct+n and
ct-n are static coefficients and the value of N is usually taken to be 2.

6.3 Timeline of algorithms used for audio signal
processing and classification

Research in audio signal processing and classification has been going on since a
long time starting around the beginning of the twentieth century. Speech recogni-
tion (SR) was the main area of interest among other audio processing techniques.
Environmental sound classification and music processing has gained interest more
recently. It took years of research to reach to the neural network approach for audio
classification that outperformed all the other then known techniques. Prior to that
HMMs and other probabilistic models would be used both for classification and
generation. These models are elaborated in this section along with their limitations.

6.3.1 Hidden Markov models

HMMs are stochastic models that work on sequences. The main functions of HMMs
include part-of-speech (POS) tagging, SR, and named entity tagging, among others.
HMMs are derived from the Markov Chain model (MCM) which consists of a set of
states Q = {q0,q1,q2, . . ., qN}, a transition matrix A as shown in eq. (6.9) and a start
state (q0) and final state(qN).

A=

a11 . . . a1N

..

. . .
. ..

.

aN1 � � � aNN

2
664

3
775 (6:9)

In the above equation aij, that is, the element in the ith row and jth column repre-
sents the probability of transition from state i to state j. The summation of probabili-
ties from a state to all the other states is 1, as a result the summation of each row in
the matrix is 1. The main property of the MCM is that the probability of being in a
particular state is dependent solely on the previous state; as demonstrated by eq.
(6.10).

P Xt + 1 = xt + 1jXt = xt, Xt − 1 = xt − 1, . . . , X0 = x0�=P½ ½Xt + 1 = xt + 1jXt = xt� (6:10)

MCMs are useful when all the states in a model are completely visible to us and we
are required to calculate the probability of a sequence of events. Figure 6.5 shows a
simple Markov model.

6 Deep Learning for Audio Signal Classification 113

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

But there are quite many events that are not completely visible to us, for example,
if we are to predict the weather outside from a room with closed windows and doors
or we have to predict the color of a ball drawn from an urn containing balls of many
colors. To be able to predict these events HMMs are introduced. There are N hidden
states – {S1,S2, . . ., SN}, in a HMM and in most cases, each state can be reached from
the other state. The state at time t is represented by qt. Each state contains M observa-
tions – {v1,v2, . . ., vM}. The state transition matrix denoted by eq. (6.9) is common for
both MCMs and HMMs. In addition to that, HMMs have an observation symbol proba-
bility distribution, B = {by(x)} that is indicative of the possibility of observation vx in
state qy, where 1 ≤ x ≤M and 1 ≤ y ≤ N as shown in eq. (6.11).

by xð Þ= P vx at tjqt = Sy
� 	

(6:11)

Lastly, it is composed of the initial state probabilities that indicates the chances of
being in a particular state at time t = 1, that is, the starting point. This is denoted by
π and explained through eq. (6.12).

πi =P q1 = Si½ � ;where 1≤ i≤N (6:12)

This entire model including N, M, A, B and π is denoted by λ and is shown
in Figure 6.6. It is used to explain or account for any set of observation sequences,
for example, given λ, HMMs can be used to calculate the probability of three con-
secutive rainy days starting from tomorrow. HMMs address three main problems:

Problem 1:
To compute the probability of an observation sequence O = {O1,O2, . . ., OT} over
duration T, given λ. The most efficient solution to this problem that requires the
least computation has been given by the forward–backward algorithm [29, 30].

Problem 2:
Choosing a state sequence Q = {q1,q2, . . ., qT}, that best explains an observation se-
quence O, given a model λ. The Viterbi algorithm best solves this problem [31, 32].

1

0.1

2 3 4

0.1 0.2 0.1 0.2

0.1

5

1.0

0.2

0.80.80.80.8

Figure 6.5: A five state Markov model with state transition probabilities.

114 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Problem 3:
Adjusting the model parameters to maximize the probability of a given observation,
that is P(O|λ). This problem is solved by the Baum–Welch method [33] or gradient
techniques [34].

HMMs can be constrained or unconstrained. Ergodic HMMs are the ones where tran-
sitions are possible from every state to the other state, hence they are uncon-
strained. Other variations of HMMs are left–right(LR) models where transitions are
constrained from state j to state i, that is, aij = 0 if j<i. Sometimes, the number of
jumps between the states is also constrained, that is, aij = 0 if j<i and j ≥ i+ℋ where
ℋ is the number of hops. Constrained HMMs also include parallel LR models which
is formed by the cross-coupled linkage between 2 parallel LR HMMs. They are more
relaxed than the typical LR models as they allow parallel paths.

In this chapter, we will discuss more on the use of HMMs in SR. Every classifica-
tion algorithm for speech processing works on features extracted. HMMs are shown
to work well with features extracted using linear predictive coding (LPC). A series of
steps are followed [35] to calculate the LPC coefficients that model the vocal track
and captures utterances. Consequently, they are also known as speech attributes.
These coefficients can also be used later to regenerate the original audio, hence it
serves very well as a speech compression algorithm. LPCs give coefficients that
form vectors with continuous values; but to use these as features for HMM, discrete
values are required for which a vector quantization (VQ) step is performed [36, 37].
First, the functioning of HMMs in identifying individual words will be explained fol-
lowed by continuous SR [37].

y1

b11 b21

b31

a12 a23

b33
b34

b24b14
b13

a21

b22 b32
b12

X1 X2 X3

y2 y3 y4

Figure 6.6: An hidden Markov model with hidden states depicted in X and visible states depicted in
Y. The hidden state probabilities are given in a and probability of a visible state from a hidden
state is given in b.

6 Deep Learning for Audio Signal Classification 115

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

In terms of HMMs, any word uttered can be thought of as a set of observations,
O, which corresponds to the outputs from the VQ. Since SR is independent of the
speaker, audio samples are taken from around K (usually K=100) speakers. Then
the probability of the observation sequence O(k) given the model is calculated and
focus lies on maximizing the product as shown in eq. (6.13). This is done using the
Baum–Welch algorithm [33].

P=
YK
k = 1

PðO kð ÞjλÞ (6:13)

Finding out the probability of the observed sequence then resembles problem 1.
This process confides in two segments – training and identification. During train-
ing, a model is built for every word present in the vocabulary and while identifying
a test observation, each model’s probability to generate the given observation se-
quence is assessed and the test case is classified as the word whose corresponding
model gives the highest probability. This probability P(O|λ) is calculated as shown
in eqs. (6.14)–(6.17) (all symbols and notations are in accordance with the standard
HMM model as already described above).

αt ið Þ=PðO1,O2, . . . , Ot , qt = SijλÞ (6:14)

∴ α1 ið Þ=πibi O1ð Þ; 1≤ i≤N (6:15)

αt + 1 jð Þ=
XN
i= 1

αt ið Þaij
� �

bj Ot + 1ð Þ; 1≤ j≤N, 1≤ t≤T− 1 (6:16)

PðOjλÞ=
XN
i= 1

αT ið Þ (6:17)

In (14) an expression is given, that finds out the probability of an observation se-
quence that ends in a particular state Si at time t = T, that is, the total duration of
observation. This probability is calculated for every state in the model. Training in-
volves adjusting the model parameters to maximize the probability of every model
for each word that they represent for which the solutions to problems 2 and 3 are
used. Training is terminated after no significant increase in probability is obtained
or after a certain number of iterations. To better each model, parameters like the
number of states, the initial state transition probability matrix, and the probability
of an observation in a state has to be tuned in order to reach perfect accuracy. In
every iteration of the training phase, these values are modified.

Along with individual word recognition, HMMs also contribute to continuous
SR. Any sentence, Ֆ, is a continuous speech consisting of words. The features in
this case is a sequence of phones, ℘, output by an acoustic processor (AP) (Jelinek
1976). To decide which sentence most probably caused ℘ is on the linguistic de-
coder and this is done by calculating the probability P(ς |℘) as shown in eq. (6.18).

116 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

ByBayes Theorem:Pðςj}Þ = Pð} jςÞP ςð Þ
P }ð Þ (6:18)

In the above equation P(ς) is an a-priori probability that is supposed to be calcu-
lated by the language model (LM). Here is where HMMs come to play because it
serves as the LM just mentioned. The Raleigh language is an implementation of the
procedure which serves for relatively simple language models. It is executed as a
graph with every branch having a state transition probability while word lists con-
tained in boxes on the edges serve as choices for the output of transitions. Features
for each of the words is then extracted using an AP and a corresponding HMM is
constructed which would either give 1 output or nothing at all. Next, the Viterbi al-
gorithm is used to find the most probable state path beginning from the start. The
word corresponding to this path is taken as the output.

HMMs had ruled for quite some time around when it was introduced due to its
commendable performance in certain types of SR. But it turns out that some of the
basic assumptions made to build up such models are the causes of its limitations. The
main Markov assumption that the probability of being in a particular state is solely
dependent only on its previous state is inaccurate because, in case of speech signals,
the reliance usually extends through more than one state. Also, the assumptions that
succeeding observations are independent and their distributions can be well repre-
sented by autoregressive or Gaussian densities, often leads to incorrect outcomes.

6.3.2 Long short-term memory-recurrent neural networks

In language, the smallest unit is a phoneme. Phonemes combine to form words which
in turn combines to form a sentence and many sentences together form a context.
Therefore, one cannot simply determine the entire word by listening to the phoneme
at a particular time frame, as the utterances before and after together makes a mean-
ingful word. Similarly, to determine the context of a given sentence or a piece of text,
which is an important application of NLP, it is necessary to take into account the en-
tire data before and after that sentence. RNNs were used widely for the task of SR, but
they were not good at modelling the dependencies between phonemes or words. This
is due to the fact that whenever the frame of consideration is increased, the vanishing
and exploding gradient descent problem arises. Long short-term memory-recurrent
neural networks (LSTM-RNNs) served as the solution which gave impressive results in
SR by capturing dependencies over extended time frames. The main divisions of a
LSTM unit are the input gate(i), forget gate(f), and the output gate(o). Since the net-
work is recurrent in nature, the connections from the output gates are directed back to
the input layer as shown in Figure 6.7. In essence, the forget gate controls the flow of
data to avoid redundancy or repetition, given the previous inputs, that is, it is required
to prevent similar words from reoccurring so that meaning is preserved. Memory(c) is

6 Deep Learning for Audio Signal Classification 117

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

also incorporated in LSTMs as shown in the Figure 6.7, so that it is able to remember
previous words encountered which helps to stick to the context. A single layer com-
prising LSTM units is not very good at the task of SR, so to make it better multiple
hidden layers of LSTMs are stacked together which is known as deep-LSTMs [38]. In
case of SR, commendable accuracy is obtained by using a combination of an acoustic
model(AM) and a LM both of which are built using LSTM-RNNs. The set of inputs to
any LSTM-RNN model, represented by x={x1,x2, . . ., xT}, can either be a set of discrete
words in case of a LM or a vector of MFCCs in case of an AM. The hidden sequence
calculated through t={1,2, . . ., T} is denoted as h = {h1,h2, . . ., hT} and the outputs as
y = {y1,y2, . . ., yT}.

The calculations of the hidden and output units are shown in eqs. (6.19) and
(6.20) where Ƕ(.) is a mere simplified representation of the more complex opera-
tions used to calculate the value of each hidden LSTM unit and W represents the
entire set of weights; at any point Wab represents the weights between the a and b
units which can one among i, f, o, c, x, and h, and b is a bias term.

ht =Ƕ Wxhxt + Whhht − 1 +bhð Þ (6:19)

yt = ðWhyht +byÞ (6:20)

The breakdown of Ƕ into the functions of the previous mentioned gates are shown
in eqs. (6.21)–(6.25) which also explains the flow of data within the LSTM unit.

it = σ Wxixt + Whiht − 1 +Wcict − 1 +bið Þ (6:21)

recurrent
output

output

SRN
unit

LSTM block

block output
output gate

forget gate

cell
f c

y o

i

z input gate

block input

peepholes

recurrent

unweighted connection
Legend

weighted connection

connection with time-lag
branching point

mutliplication
sum over all inputs

gate activation function
(always sigmoid)

input activation function
(usually tanh)

output activation function
(usually tanh)

recurrent +*

*

*

*
+ +

+

+

+

recurrent

recurrent

g

g

h

g

h

σ
σ

σ

σ

recurrent

recurrent

input

input

input

input

input

Figure 6.7: Detailed representation of a simple recurrent network unit (left) and long short-term
memory unit (right).

118 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

ft = σ Wxf xt + Whfht − 1 +Wcf ct − 1 + bf
� �

(6:22)

ct = ftct − 1 + ittanh Wxcxt +Whcht − 1 +bcð Þ (6:23)

ot = σ Wxoxt +Whoht − 1 +Wcoct + boð Þ (6:24)

ht = ottanh ctð Þ (6:25)

Various architectures involving LSTMs have been proposed [13, 38] and a detailed
comparative study on the proposed architectures have been carried out by [39] which
shows that bidirectional LSTM-RNNs(BLSTM-RNNs) give the best results when it
comes to phoneme recognition, therefore we will elaborate more on the training and
framework of BLSTMs which take into consideration the future context as well which
is necessary as explained before. Equations (6.26) and (6.27) show the calculation of
h and h!, which represents the backward and forward sequences respectively.

h!t =Ƕ Wxh!xt +Wh!h!h!t − 1 +bh!
� �

(6:26)

h t =Ƕ Wxh xt +Wh h h t − 1 +bh
� �

(6:27)

yt =Wh!yh!t +Wh yh t + by (6:28)

In deep LSTM-RNNs, the calculation for the hidden units are kept the same for all
the N layers as shown in (29), where h0 = x, and the output depends on the inputs
from the final hidden layer as shown in (30). In deep BLSTMs, every hidden layer
comprises a forward and a backward sequence: hn and hn!and every layer re-
ceives inputs from both the sequences in the previous layer.

hnt =Ƕ hn− 1hnh
n− 1
t + Whnhnh

n
t − 1 +bnh

� �
(6:29)

yt =WhNyh
N
t +by (6:30)

The network is trained to directly predict the phonemes from the acoustic input x. The
conditional probability, Pr(y|x), of all the possible phonemes given the input sequence
is calculated and the log probability of the target output sequence z, log Pr(z|x), is then
differentiated with respect to the network weights using backpropagation through time
and optimization is done using gradient descent. In [38] an improvement over the nor-
mal probability calculation is suggested by conditioning the output phoneme on both
the acoustic input and the phoneme at the previous time step.

6.3.3 Restricted Boltzman machines with deep belief networks

RBMs are probabilistic neural network models that have proved to be good at object
recognition, phone recognition, and also learn better representations of images and

6 Deep Learning for Audio Signal Classification 119

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

sound data. Since we are focused on audio signal processing, we will detail more on
the applications of RBMs in speech processing by phone recognition [40]. An RBM
comprises of a single layer of binary visible units, ʋ, and another layer of binary hid-
den units, ɧ. It is called restricted because of its bipartite nature, that is, there are no
intralayer connections. Sampling and fragmentation are a pre-requisite for any classi-
fication technique. Similarly, ʋ embodies a particular fragment containing ȵ samples.
This entire model can be represented as ϴ = {ձ,ճ,ω}. The energy of the joint architec-
ture is given in eq. (6.31), where ʋi and ɧj are the units in the visible and hidden layer
respectively, ձi is the bias for the ith unit in the visible layer whereas ճj is the bias for
the jth unit in the hidden layer and ωij is the weight between the ith unit in the visible
layer and the jth unit in the hidden layer.

E ʋ,ɧð Þ= −
X

i ϵ visible
ձivi −

X
j ϵ hidden

ճjɧj −
X
i, j

ʋiɧjωij (6:31)

The probabilities assigned to visible units and to all possible pairs of visible and
hidden units, using the energy function in (31), is given in eqs. (6.32) and (6.33)
respectively.

P ʋjθð Þ=
P

ɧ e
− E ʋ,ɧð ÞP

ν,ɧ e− E ʋ,ɧð Þ (6:32)

P ʋ,ɧjθð Þ= e− E ʋ,ɧð ÞP
ν,ɧ e− E ʋ,ɧð Þ (6:33)

Since the units contain binary values, the probability with which any of the hidden
and visible unit will be 1 is given by eq. (6.34) and (6.35), where σ(ϰ) = (1 + e− Þ− 1.

P ɧj = 1 ʋ; θj Þ = σ
X

i ϵ visible
ʋi ωij + ճj

 �

(6:34)

P ʋi = 1 ɧ; θj Þ = σ
X

j ϵ hidden
ɧi ωij + ձj

 �

(6:35)

In case, the RBM is required to replicate the joint distribution of the class labels
along with the data, the vector of binary representation of the class labels, ȴ, are
concatenated with the vector of visible units and the energy function taking into
consideration the labels is given in eq. (6.36).

E ʋ,ɧ, ȴð Þ= −
X

i ϵ visible
ձiʋi −

X
j ϵ hidden

ճjɧj −
X

y ϵ labels
ɕyȴy −

X
i, j

viɧjωij −
X

j, y ϵ labels
ȴyɧjωij

(6:36)

The probability with which the label corresponding to a particular unit is turned on
is given by eq. (6.25) and P(ȴ|ʋ) is given by eq. (6.38). In eq. (6.36) and eq. (6.37), ɕ is
the bias associated with each label.

120 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Pðȴy = 1jɧ; θÞ= softmax
X

j ϵ hidden
ɧjωyj + ɕy

 !
(6:37)

PðȴjʋÞ=
P

ɧ e
−E ʋ,ɧ, ȴð ÞP

l,ɧ e−E ʋ,ɧ, ȴð Þ (6:38)

Next, the RBMs are trained using either a generative or a discriminative approach as
shown in Figure 6.8 where V-H and v-h correspond to ʋ-ɧ of the discriminative and
generative model respectively and W corresponds to ω. The generative approach is
more of a short-cut method that speeds up the training by a margin. It is done using
the contrastive divergence (CD) approximation only once on the gradient, as shown
in eq. (6.39), where < . > data represents the expectation that denotes the number of
times ʋi and ɧj are both equal to 1 in the training set and < . > 1 represents the expec-
tation after applying CD1.

ωij = < ʋiɧj > data
− < ʋiɧj > 1 (6:39)

The discriminative approach is used to train the RBM weights, so they act as initial
values for the weights of a deep belief network. For models depicted by (36), the
weight update takes place as shown in eq. (6.40); but to generalize the model well
and prevent over fitting, the gradient of a function of ȴ and ʋ, f(ȴ,ʋ) is used to

V2 νi
2

νi
1

νi
0

hj
1

hj
0

etc.

WT

WT

WT

WT

WT

W

W

W

W

W

V1

V0

H1

H0

Figure 6.8: An Infinite logistic belief net where the generative part
of the model is represented by downward arrows. The upward
arrows represent parameters belonging to the discriminative part of
the model.

6 Deep Learning for Audio Signal Classification 121

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

update the weights. Ƌ in (41), is a parameter that controls the influence of the term
it is associated with.

Δωij =
X

j2 hidden
σ ճj +ωjy +

X
i2 visible

υiωij

� �
ʋi −

X
y 2 labels,
j 2 hidden

σ ճj +ωjy +
X

i2 visible
ʋiωij

� �
PðȴjʋÞʋi

(6:40)

f ʋ, ȴð Þ= ƌPðȴjʋÞ+PðʋjȴÞ (6:41)

Another variation of RBMs are the mean-covariance RBMs (mcRBMs), that gives one
of the lowest error rates on the standard TIMIT dataset which is most widely used for
the purpose of phone recognition. mcRBMs are composed of two categories of hidden
units – precision and mean units. The precision units are required to impose smooth-
ness constraints, consequently, they are active for samples that deviate beyond con-
strained limits. Therefore, the active precision units define the covariance matrix,
particular to the sample. More about the structure of mcRBMs can be found in [41].

One way to look at deep belief networks (DBNs) is that they are layers of RBMs
stacked up together as shown in Figure 6.9. Such models, when used for phone rec-
ognition [40], give very accurate results which turn out to be even better than RNNs.
It is not easy to train DBNs with many hidden layers because it is hard to determine
the posterior distribution for the variables in the hidden layer. After assessing algo-
rithms like Markov chain Monte Carlo [42] and CD, the most optimal training for
DBNs turned out to be the complementary priors algorithm coupled with the wake
sleep algorithm [43]. A DBN consists of multiple hidden layers out of which two of
the top-most layers have undirected connections whereas the rest of the layers have
generative weights and recognition weights, that is, specific directed weights in the
upward and downward directions, respectively. The greedy algorithm (GA) used to
train it works on the principle that each model in the sequence learns from its previ-
ous model. The input of a layer is the output from the previous layer which is ob-
tained by performing a nonlinear transform on the vector of data representations. As
a result, individual models in the stack have varying representations of the actual
data. All the layers in the model have an equal number of units. Figure 6.9(b) shows
a model of the DBN as described so far. The weights between the first two layers are
learned based on the assumption that the parameters in the higher layers will
formulate a complementary prior [43] for W0. To construct the vector input for
H1, that is, the first hidden layer, the data in V0 is mapped through WT

0 . This is a
generative model which can be perfected by using a GA that states – W0 is learnt
with the assumption that all other weight matrices are cinched after which W0 is
fixed and WT

0 is used to generate vectors for H1 even if consecutive changes in
the weights of the higher layers indicate that this assumption is incorrect. The

122 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

higher-level weight matrices are then locked to each other but kept unbound
with W0 and an RBM model is learnt for the higher-level data that was generated
using WT

0 to reconstruct the original input data vector. Any changes made to the
higher-level weight matrices by the GA results in an improvement in the genera-
tive model. The GA is tested recursively and CD is used for learning the tied
weights while being separated from the weights of the bottom layers. In this
manner, weights are determined layer-wise efficiently though not optimally as
the model might suffer from under fitting. To solve this problem, back-fitting is
used which is a variation of the wake-sleep algorithm [44]. After learning the ini-
tial weights from GA, the recognition weights used for deduction and the genera-
tive weights used for defining the model are separated for further training. In
the bottom-up pass, the recognition weights help determine the states of the hid-
den units stochastically and the generative weights are modified as per the
maximum likelihood algorithm while the weights between the two top-most
layers of the RBM is adjusted by fitting it according to the penultimate layer’s
posterior distribution. In the top-down pass, mapping is done through the gen-
erative weights to activate units in the bottom layers stochastically while only
modifying the recognition weights. The RBM at the top can either settle at its
equilibrium distribution or undergo few stages of CD before attaining equilib-
rium, before commencing the top-down phase. The later proves to be better at
generating varying modes of the data.

In case of phone recognition, Backpropagating DBNs gave the best results, that is,
the least phone error rate (PER) on the TIMIT dataset. As an input to the first vi-
sual layer, MFCCs along with their first and second temporal derivatives are used
for each frame. The initial weight training for BP-DBNs follow the layer-wise CD
approach with the addition of a final layer of outputs and then fine-tune the pa-
rameters of the model discriminatively using backpropagation. The number of
output units equals the dimension of the binary representation of class labels
which is decided arbitrarily. The probability assigned to each class, ɮ, given the

w

(a) RBM (b) DBN

h
h1

v
w1

w2

h2

hd

v

Figure 6.9: Deep belief networks as stack of restricted Boltzman machines .

6 Deep Learning for Audio Signal Classification 123

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

ɖ-dimensional representation, ɚ, of an input speech fragment generated by the
model, ϴ, and the vector of class ɮ’s transformed posterior probability distribu-
tion, ɔɮ, is given in eq. (6.42).

Pðɮjθ,ɚÞ = eɔɮɚP
ƈ 2 classes eɔƈ ɚ

(6:42)

The best results were given by a four-layer BP-DBN each containing 2048 units,
with an additional output layer of 128 units.

6.3.4 WaveNets

WaveNets are probabilistic models [9] that give state-of-the-art performances in
speech and music generation while being commendable at discriminative tasks like
phone recognition as well. Audio generated by WaveNets sound more natural than
present day concatenative and parametric methods, as a single model can success-
fully capture the characteristics of different speakers and generate speech conditioned
on any particular speaker. Unlike other models where training is performed on ex-
tracted features, WaveNets are trained on the raw audio waveform. The combined
probability of generating a particular waveform is expressed as products of probabili-
ties of each sample conditioned on all previous samples as shown in eq. (6.43).

p ψð Þ=
YT
t = 1

pðψtjψ1, . . . , ψt − 1Þ (6:43)

The above principle is implemented using many layers of causal convolution neu-
ral networks (CaCNNs) without the pooling layers and equal time dimension of
input and output layers. The output of the model is calculated using a softmax
layer that gives a categorical distribution indicating the probability of a sample,
ψt, being generated. During training, the parameters are tuned to achieve the
maximum log-likelihood of the data. Following (31), it is evident that during train-
ing the conditional probability for predicting the samples at each time step can be
calculated parallelly as ψ is already known. Generation of audio is a sequential
phenomenon where every sample generated is fed back into the network to make
predictions for the subsequent time step. Though the training time for CaCNNs is
lesser than RNNs due to the absence of recurrent connections, it takes a greater
number of hidden layers or larger filters to increase the receptive field. An in-
creased receptive field length is very important for capturing the dependencies in
speech and musical signals during training to ensure naturalistic speech and har-
monious music generation. To reduce computations resulting from additional hid-
den layers, a dilation factor (Df) is introduced in each layer, keeping the total
number of layers in the model as constant. In dilated CaCNNs, the length of the

124 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

filter is smaller than the area it is applied on and it works by skipping a specific
number of intermediate input values as shown in Figure 6.10. The Df indicates the
number of values to be skipped and helps increase the receptive field without the
addition of more hidden layers.

A standard CaCNN has Df equal to 1 as shown in Figure 6.11. When comparing the
CaCNNs of Figures 6.10 and 6.11, it can be observed that keeping the number of
hidden layers constant, the receptive field of CaCNN in Figure 6.10 is more than
thrice the receptive field of CaCNN in Figure 6.11 which results from the introduc-
tion of dilations in each layer in the former. Usually the Df is increased exponen-
tially over the layers up to a certain point and the cycle is repeated again. A block
of CaCNN with a Df of 1,ϝ,ϝ2,ϝ3, . . ., ϝ˪-1 over ˪ layers, respectively, has a receptive
field of 2ϝ˪-1 and turns out to be better than a (1 x ϝ˪-1) convolutional model due to
the increased receptive field and its capacity to capture the nonlinearities due to
the hidden layers in between.

Output
Dilation = 8

Hidden layer
Dilation = 4

Hidden layer
Dilation = 2

Hidden layer
Dilation = 1

Input

Figure 6.10: causal convolution neural networks with dilation.

Output

Hidden layer

Hidden layer

Hidden layer

Input

Figure 6.11: Standard causal convolution neural networks without dilation.

6 Deep Learning for Audio Signal Classification 125

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Raw audio is represented using 16 bits giving 65,536 possibilities which makes it a
computation-intensive task so a μ-law transform as shown in eq. (6.44), is applied
to the data to scale it down to 256 possibilities which can now be represented using
8 bits without trading the originality of the signal. The conditional probabilities in
the output is then represented using a softmax distribution which works better than
Gaussian scale mixture because the former makes no prior assumptions about the
shape of the data.

f ψt

� �
= sign ψt

� � ln 1+ μ ψt

�� ��� �
ln 1+ μð Þ , where− 1<ψt < 1 and μ= 255 (6:44)

The activations of each neuron in the kth layer is given by eq. (6.45), where * is the
convolution operator, ʘ is the element-wise product operator, f denotes the filter
and g denotes the gate. The weight matrices W, are the learnable parameters also
known as the convolution filter and σ(.) is the sigmoid function. This form of activa-
tion works significantly better for audio signals as compared to the linear ReLU acti-
vation layers.

z = tanh Wf , k*ψ
� �

ʘσ Wg, k*ψ
� �

(6:45)

Figure 6.12 shows the overall representation of the above model. From (43), it is evi-
dent that WaveNets can be conditioned on external factors, Ɛ, such as speaker iden-
tity, text, and musical tags, such as genre or type of instruments as shown in eq.
(6.46). Two types of conditioning can be done with WaveNets – global in which case
one external factor has its influence entirely over all time steps; and local condition-
ing where the external factor is time dependent and has to undergo a transformation

Softmax

tanh

Dilated
Conv

Causal
Conv

σ

ReLUReLU+

+

1 × 1

×

1 × 11 × 1 Output

Skip-connections

Input

k Layers

Residual

Figure 6.12: Overall representation of waveNet architecture.

126 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

for upsampling to make up for its lower sampling rate, that is, y = f(Ɛ). The activa-
tions for global and local conditioning is shown in eqs. (6.47) and (6.48), respectively,
where V*, k is a trainable parameter and VT

*, kƐ is a vector used over the entire time
duration.

p ψjƐð Þ=
YT
t = 1

pðψtjψ1, . . . , ψt − 1, ƐÞ (6:46)

z = tanh Wf , k*ψ+VT
f , kƐ

 �
ʘσ Wg, k*ψ+VT

g, kƐ

 �

(6:47)

z = tanh Wf , k*ψ+VT
f , k*y

 �
ʘσ Wg, k*ψ+VT

g, k*y

 �

(6:48)

When used for speech generation without conditioning it on text, it generates audio
which sounds like speech but does not contain any actual words as it does not know
what to say. But this model could be used to generate language-like sounds condi-
tioned on different speakers based on their identity which is one-hot encoded and fed
into the model during training as well as during generation. The accuracy with which a
single WaveNet model can generate voices of different speakers shows that its internal
architecture is very efficient in capturing the characteristics of multiple speakers. For
text to speech (TTS), the WaveNet is trained on the log of the fundamental frequencies
as well as linguistic features extracted from the input texts. This gave significantly
better mean opinion score results (which indicates how natural the generated speech
sounds) than LSTM-RNN parametric and HMM-driven concatenative models, when
tested on North-American English and Mandarin Chinese. For music generation, the
WaveNets can be trained on music datasets which are annotated with relevant infor-
mation like genre, mood, volume, and tempo that can be used as conditioning factors
during generation. A general observation with music generation is that longer receptive
fields are essential to capture musical dependencies between notes and result in more
melodious pieces. Experiments have also been performed to apply WaveNets in the do-
main of SR, where raw audio is fed as input and the model is slightly modified by add-
ing a pooling layer followed by normal convolutional layers to the existing model and
trained to perfect two tasks predicting the next frame and classifying the present one.
WaveNets give the least PER rates when compared to any model trained on the TIMIT
dataset that takes raw audio as input. The time required to train WaveNets can be opti-
mized by using parallel architectures as demonstrated in [45].

6.4 Current applications

Audio signal processing, as mentioned already, is an integral part of AI and has huge
contributions towards its advancements. It has a wide range of applications – chatbots
that serve as personal assistants in banks, tourism websites, messaging applications;

6 Deep Learning for Audio Signal Classification 127

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

labelling different regions in videos as per the sound emitted using environmental
sound classification, or detecting the surrounding by processing an audio clip; music
genre classification can help classify any new untagged music, the same models can
be used to classify different types of cries of babies in order to identify their needs, or
predict the different types of animals or birds by the sounds emitted by them. Speech
or music generation can also be used for producing context specific text or genre spe-
cific music which can be used in story making applications or music applications. In
this section, a little brief on few of the applications is provided.

6.4.1 Speech to text converter

STTs are used in almost all applications these days as a voice search utility or video
transcript generation or subtitles. It can also be used by disabled people who cannot
write using their hands as a dictation tool. For a long time the HMMs trained using
expectation–maximization algorithm along with Gaussian mixture models were un-
beatable [46].With the invention of increasingly efficient machine learning (ML) algo-
rithms and hardware over the years, deep neural networks (DNNs) vanquished all of
the prevailing methods [8]. The best STTs so far have been built by Google using
parametric [47] and concatenative [48] models. The most elementary operation for
STT is phoneme detection and a particular word is then formed by a concatenated
phoneme sequence. The commencement of any SR starts with feature extraction
which can either be MFCCs or LPCs after which various classification algorithms are
applied. Detailed descriptions of models such as HMMs and LSTM-RNNs used to
build STTs have been given in the previous sections, waveNets being the one to give
the best performances. Languages usually have specific linguistic features like gram-
mar and statistics like frequencies of bigrams, trigrams, and so on. These features are
characteristic of languages and can be learnt hence known as linguistic or language
model. To enhance STT, sometimes the acoustic probabilities are combined with the

World
boundary
detection

Pre-
processing

Input speech
signal

MFCC features
Lexicon

Acoustic
matching

Acoustic model

Recognition

Language
model

Figure 6.13: Speech recognition module.

128 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

linguistic probabilities and the product of both the results are combined to determine
the word said. Though existing models give good enough results, efforts are being
made to better the performances in continuous SR. Figure 6.13 shows a comprehen-
sive view of a speech recognition module.

6.4.2 Audio classification

Tasks like predicting the type of surroundings from an indistinct clip like that of a busy
road or an airport or the inside of a bus, predicting the bird species given their chirping
sound, the genre of a given song, or any task where the outputs are required to be dis-
tinct labels, belong to this domain. It is helpful in various arenas like surveillance [49]
and contextwise computing [50]. Be it songs or any sound, every audio signal belong-
ing to a specific category have common features that might not be perceived by the
human ear but can be detected by the feature extraction algorithms. In case of music
genre classification, MFCCs are extracted and fed into deep feed forward neural net-
works and trained against genres which are fed as class tags after one-hot encoding.
MFCCs combined with timbral features also give very good classification accuracies [7].
In [51], a new feature extraction method known as Daubechies wavelet coefficient his-
tograms was devised and tested with classification algorithms like linear discriminant
analysis and support vector machines; the classification results thus obtained were
more accurate than the former mentioned approach. In case of environmental sound
classification, once again MFCCs are extracted and this time DCNNs [5] are chosen as
they give the best results for this kind of classification where once again the different
classes such as airport, bus, busy street, shopping mall, and railway station are one-
hot encoded and act as output labels. Similar approaches can be taken for any other
type of classification for instance musical instrument classification, where features are
extracted and fed into a neural network model to perform supervised training.

6.4.3 Speech and music generation

AI has made huge advancements in the fields of music generation where a model is
trained against huge musical datasets so that it can generate new music on its own.
WaveNets vanquished in the competition and give appreciable results when it
comes to either music or speech generation. Speech generation conditioned on text
is used in applications like audio books and it is flexible enough to generate differ-
ent voices. It also helps in communication where one does not know the correct
pronunciation but knows how to spell any word in that language. It is also helpful
for clarification of pronunciations or learning a new language. Till date, TTS has
been done mainly by playing pre-recorded sound which has been manually uttered.
Storing such audio files on servers and fetching them on user request requires both

6 Deep Learning for Audio Signal Classification 129

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

huge amount of storage and increases the response time, the former being the big-
ger concern. Substituting the mechanism with a sound generating algorithm condi-
tioned on text is quite a solution. Similarly, music generation can be conditioned
on multiple factors such as tempo, genre, and instruments, which is of help to peo-
ple who cannot play instruments but have a taste in music. Some music softwares
which have incorporated AI and are running successfully are Orb Composer, IBM
Watson Beat, OrchExtra, Google Magenta’s NSynthSuper, ChucK, and Jukedeck.

6.4.4 Language translation

Language Translation becomes extremely important when intercultural meetings
happen or anytime when travelling to another destination whose language is un-
known. As a result, most often people find themselves using Google translate.
Artificial intelligence’s take on language translation is done by sequence to se-
quence learning [52] where deep LSTM-RNNs were used and gave excellent results
comparable to the state of the art. Any sentence or word to be translated is consid-
ered to be a query sequence which is to be mapped to the target sequence in the
other language to which the translation is required. Another solution to the transla-
tion problem has been proposed using RNN encoder–decoder [53]. They are capable
enough to grasp sensible phrase and sentence representations.

6.4.5 Personal assistants

Ever since Apple introduced its personal assistant, Siri, there has been huge com-
petition among the top organizations to introduce their own efficient chatbots.
Consequently, Amazon’s Alexa and Google’s Google Home have entered the battle-
field. These bots are not just mere question–answer systems, but their extended func-
tionalities allow them to be linked to other applications such as electricity controls
that allows them to collaborate with smart home architectures. Users can command
them to play music, switch on/off electrical appliances, ask them questions, interact
with them, have friendly conversations, make phone calls or appointments, and a ton
of other things. To be able to provide such services, the personal assistant devices
have to be linked to the external modules using application program interface. Some
of the commonly used Personal Assistants are depicted in Figure 6.14.

These days even banks, hospitals, or travel websites have their own chatbots with
which any user can interact to clear their own doubts. In such cases, the chatbots act
as question–answer models [54–57]. In such models there are multiple components
that work together – the input device which acquires either a voice input or a text
input, a processing unit that converts the input into computer understandable form, a
conversion unit, and a database. In the processing unit if the input is in the form of

130 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

text then there are mechanisms to understand the language used which is done using
information about the character encoding and other metadata. In case of voice inputs,
the processing is done using speech recognizers mentioned earlier. After the input is
processed, algorithms are deployed that perform domain classification which help to
understand the query and the context to which it belongs [58, 59]. The natural lan-
guage question is then converted to a query in a language that the database will re-
spond to, for example Structured Query Language. Information is then retrieved from
the database as answers to the query which is then output to the user interface either
as voice using TTS conversion [60] or text output. This is summarized in Figure 6.15.

Speech

Sentence Language
generation

Language
understandingWords

System manager Database
Graphs & tables

Speech
synthesis

Discourse
context

Speaker
recognition

Speech
recognition

Language
recognition

Meaning
representation

Speech

Figure 6.15: Summary of a question–answer model.

Figure 6.14: Personal assistants that made it big.

6 Deep Learning for Audio Signal Classification 131

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

6.5 Future scope

With the amount of research going on in this domain, we can expect to see quite
miraculous applications in the future. The existing architectures though good, still
have a long way to go in terms of cognitive skills and accuracy. Most of the work
related to speech and translations still need to be extended to different languages
and various accents of the same language. More varieties of deep architectures are
being explored to perfect the art of conversations with machines. As new and im-
proved hardware is made available, problems related to storage are resolved and
parallel architectures are allowing incredibly fast processing time. Therefore, the
training of ML architectures will be more perfect with time. With availability of
more information, NLP is reaching new heights; soon people will find friends in
chatbots and there will be commercialization of personal assistants that can assist
teachers, doctors, or even give a tough competition to them.

6.6 Conclusion

This chapter mainly focusses on drawing a clear picture about an audio signal
and methods to process it and finally understand it. Physics has put forth the
nitty-gritties about sound ages ago and only recently with the advent of AI, effort
is made to make the computer understand sound – be it speech, music, or noise.
Many algorithms and models have been tried in the past but due to constraints in
hardware and availability of labelled data, efficient algorithms could not be built
to recognize or understand sound. Given that an audio signal is quite complex,
simple algorithms were not good enough to capture the characteristics or com-
plexities. Today, the availability of huge amount of data has sparked research in
innumerable arenas and it is rightly said that “Data is the new Currency.” New
and improved hardware along with data has allowed researches to devise effi-
cient algorithms that can process audio signals better. Deep architectures have
always given better performances as they are able to study the higher order de-
pendencies between data – this is proved by countless research in this field, a
fraction of which has been mentioned and detailed in this chapter. As is seen
from studies, DNNs are beating other pre-existing models in terms of accuracy
and are able to model AI better. Currently, they are the best in image classifica-
tion and used in multiple arenas like self-driving cars, healthcare, and giving
pretty good performance in fields such as brain-computer interfaces and audio
classification. Audio processing is one of the fundamental human senses and
with the help of DNNs it is being successfully incorporated in machines, contrib-
uting to a more complete AI.

132 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

References

[1] Bradski, G., Kaehler, A. Learning OpenCV. 1st Edition. Learning. 2008.
https://doi.org/10.1109/MRA.2009.933612.

[2] Wide, P., Winquist, W., Bergsten, P., & Petriu, E.M. The human-based multisensor fusion
method for artificial nose and tongue sensor data. IEEE Transactions on Instrumentation and
Measurement, 1998. https://doi.org/10.1109/19.746559.

[3] Efimenko, K., Rackaitis, M., Manias, E., Vaziri, A., Mahadevan, L., & Genzer, J. Nested self-
similar wrinkling patterns in skins. Nature Materials, 2005.
https://doi.org/10.1038/nmat1342.

[4] Li, J., Monroe, W., Ritter, A., Jurafsky, D., Galley, M., & Gao, J. Deep Reinforcement Learning
for Dialogue Generation. Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, 2016. https://doi.org/10.18653/v1/D16-1127.

[5] Salamon, J., & Bello J.P. Deep convolutional neural networks and data augmentation for
environmental sound classification. IEEE Signal Processing Letters, 2017.
https://doi.org/10.1109/LSP.2017.2657381.

[6] Martin, K.D., & Kim, Y.E. Musical instrument identification: a pattern-recognition approach.
The Journal of the Acoustical Society of America, 1998. https://doi.org/10.1121/1.424083.

[7] Tzanetakis, G., and Cook, P. Musical genre classification of audio signals. IEEE Transactions
on Speech and Audio Processing, 2002. https://doi.org/10.1109/TSA.2002.800560.

[8] Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly, N., Senior, A. et al. Deep neural
networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine,
2012. https://doi.org/10.1109/MSP.2012.2205597.

[9] van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N.,
Senior, A., & Kavukcuoglu, K. WaveNet: a generative model for raw audio. Conference on Neural
Information Processing Systems 2016, 1–15. https://doi.org/10.1109/ICASSP.2009.4960364.

[10] Muda, L., Begam, M., & Elamvazuthi, I. Voice recognition algorithms using mel frequency
cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques. JOURNAL OF
COMPUTING, VOLUME 2, ISSUE 3, 2010, 2(3), 138–43.
https://doi.org/10.5815/ijigsp.2016.09.03.

[11] Juang, B.H., & Rabiner, L.R. Hidden Markov models for speech recognition. Technometrics,
1991. https://doi.org/10.1080/00401706.1991.10484833.

[12] Chakraborty, Ch., & Talukdar, P.H. Issues and limitations of HMM in speech processing: a
survey. International Journal of Computer Applications, 2016.

[13] Sak, H., Senior, A., & Beaufays, F. Long short-term memory based recurrent neural network
architectures for large vocabulary speech recognition. Interspeech. 2014.
https://doi.org/arXiv:1402.1128.

[14] Lee, H., Pham, P., Largman, Y., & Ng, A. Unsupervised feature learning for audio classification
using convolutional deep belief networks. Nips, 2009.
https://doi.org/10.1145/1553374.1553453.

[15] Piczak, K.J. Environmental Sound Classification with Convolutional Neural Networks. IEEE
International Workshop on Machine Learning for Signal Processing, MLSP, 2015.
https://doi.org/10.1109/MLSP.2015.7324337.

[16] Reyes-Galaviz, O., Arch-Tirado, E., & Reyes-Garcia, C.A. Classification of Infant Crying to
Identify Pathologies in Recently Born Babies with ANFIS. Computers Helping People with
Special Needs. 2004, vol. 3118 of Lecture Notes in Computer Science, 408–415. Doi: 10.1007/
978-3-540-27817-7_60.

6 Deep Learning for Audio Signal Classification 133

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

[17] Alberti, P.W. The Anatomy and Physiology of the Ear and Hearing. Occupational Exposure to
Noise: Evaluation, Prevention and Control, 2001.

[18] Alías, F., Socoró, J., & Sevillano, X. A Review of Physical and Perceptual Feature Extraction
Techniques for Speech, Music and Environmental Sounds. Applied Sciences, 2016.
https://doi.org/10.3390/app6050143.

[19] Richard, G., Sundaram, S., & Narayanan, S. An Overview on Perceptually Motivated Audio
Indexing and Classification. Proceedings of the IEEE, 2013.
https://doi.org/10.1109/JPROC.2013.2251591.

[20] Katsiamis, A.G., Drakakis, E.M. & Lyon, R.F. Practical gammatone-like filters for auditory
processing. Eurasip Journal on Audio, Speech, and Music Processing, 2007.
https://doi.org/10.1155/2007/63685.

[21] Patterson, R.D., Robinson, K., Holdsworth, J., McKeown, D., Zhang, C., & Allerhand, M.,
Complex sounds and auditory images. Simulation. 1992. https://doi.org/10.1016/B978-0-08-
041847-6.50054-X.

[22] Slaney, M. An Efficient Implementation of the Patterson-Holdsworth Auditory Filter Bank.
Apple Computer Perception Group Tech Report. 1993.

[23] Wang, D., & Brown, G.J. Computational auditory scene analysis: principles, algorithms, and
applications. Neural Networks, IEEE Transactions, 2008.
https://doi.org/10.1109/TNN.2007.913988.

[24] Thompson, J.K., & Atlas, L.E. A Non-Uniform Modulation Transform for Audio Coding with
Increased Time Resolution. 2003 IEEE International Conference on Acoustics, Speech, and
Signal Processing, 2003. Proceedings. ICASSP ’03. https://doi.org/10.1109/ICASSP.2003.
1199990.

[25] Mesgarani, N., Slaney, M., & Shamma, S.A. Discrimination of speech from nonspeech based
on multiscale spectro-temporal modulations. IEEE Transactions on Audio, Speech and
Language Processing, 2006. https://doi.org/10.1109/TSA.2005.858055.

[26] Yang, X., Wang, K., & Shamma, S.A. Auditory representations of acoustic signals. IEEE
Transactions on Information Theory, 1992. https://doi.org/10.1109/18.119739.

[27] Mitrović, D., Zeppelzauer, M., & Breiteneder, C. Features for content-based audio retrieval.
Advances in Computers, 2010. https://doi.org/10.1016/S0065-2458(10)78003-7.

[28] Logan, B. Mel Frequency Cepstral Coefficients for Music Modeling. International Symposium
on Music Information Retrieval, 2000. https://doi.org/10.1.1.11.9216.

[29] Baum, L.E., Eagon, J.A. An inequality with applications to statistical estimation for
probabilistic functions of Markov processes and to a model for ecology. Bulletin of the
American Mathematical Society, 1967. https://doi.org/10.1090/S0002-9904-1967-11751-8.

[30] Baum, L.E., Sell, G.R. Growth transformations for functions on manifolds. Pacific Journal of
Mathematics, 1968. https://doi.org/10.2140/pjm.1968.27.211.

[31] Forney G.D. Jr. The Viterbi Algorithm. Proceedings of the IEEE, 1973.
https://doi.org/10.1109/PROC.1973.9030.

[32] Viterbi, A.J. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory, 1967.
https://doi.org/10.1109/TIT.1967.1054010.

[33] Dempster, A.P., Laird, N.M., & Rubin, D.B. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society. Series B, 1977.
https://doi.org/10.2307/2984875.

[34] Levinson, S.E., Rabiner, L.R., & Sondhi, M.M. An introduction to the application of the theory
of probabilistic functions of a Markov process to automatic speech recognition. Bell System
Technical Journal, 1983. https://doi.org/10.1002/j.1538-7305.1983.tb03114.x.

134 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1109/ICASSP.2003.1199990
https://doi.org/10.1109/ICASSP.2003.1199990

[35] O’Shaughnessy, D. Linear predictive coding. IEEE Potentials, 1988.
https://doi.org/10.1109/45.1890.

[36] Makhoul, J., Roucos, S., & Gish, H. Vector Quantization in Speech Coding. Proceedings of the
IEEE, 1985. https://doi.org/10.1109/PROC.1985.13340.

[37] Rabiner, L.R., Levinson, S.E., & Sondhi, M.M. On the application of vector quantization and
hidden Markov models to speaker‐independent, isolated word recognition. Bell System
Technical Journal, 1983. https://doi.org/10.1002/j.1538-7305.1983.tb03115.x.

[38] Graves, A., Mohamed, A., & Hinton, G. Speech Recognition with Deep Recurrent Neural
Networks. ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing – Proceedings, 2013. https://doi.org/10.1109/ICASSP.2013.6638947.

[39] Graves, A., & Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Networks, 2005.
https://doi.org/10.1016/j.neunet.2005.06.042.

[40] Mohamed, A., Dahl, G., & Hinton, G. Deep Belief Networks for Phone Recognition. NIPS 22
Workshop on Deep Learning for Speech Recognition, 2009.
https://doi.org/10.4249/scholarpedia.5947.

[41] Dahl, G., Abdel-Rahman M., & Hinton, G. Phone recognition with the mean-covariance
restricted boltzmann machine. NIPS, 2010. https://doi.org/10.1586/ern.12.52.

[42] Neal, R.M. Connectionist learning of belief networks. Artificial Intelligence. 1992.
https://doi.org/10.1016/0004-3702(92)90065-6.

[43] Hinton, G.E., Osindero, S., & The, Y.W. A fast learning algorithm for deep belief nets. Neural
Computation, 2006. https://doi.org/10.1162/neco.2006.18.7.1527.

[44] Hinton, G.E., Dayan, P., Frey, B.J., & Neal, R.M. The ‘Wake-Sleep’ algorithm for unsupervised
neural networks. Science, 1995. https://doi.org/10.1126/science.7761831.

[45] van den Oord, A., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O., van den Driessche, G.,
Lockhart, E. et al. Parallel WaveNet: Fast High-Fidelity Speech Synthesis, 28 November 2017.
ArXiv: 1711.10433v1[Cs.LG]

[46] Juang, B.H., Levinson, S.E., Sondhi, M.M. Maximum likelihood estimation for multivariate
mixture observations of Markov chains. IEEE Transactions on Information Theory, 1986.
https://doi.org/10.1109/TIT.1986.1057145.

[47] Zen, H., Tokuda, K., & Black, A.W. Statistical parametric speech synthesis. Speech
Communication, 2009. https://doi.org/10.1016/j.specom.2009.04.004.

[48] Godlewski jun, E. Der Eireifungsporze\ im Lichte der Untersuchung der Kernplasmarelation
bei Echinodermenkeimen. Archiv für Entwicklungsmechanik der Organismen, 1918, 44(3–4),
499–529. https://doi.org/10.1007/BF02554390.

[49] Radhakrishnan, R., Divakaran, A., & Smaragdis, P. Audio analysis for surveillance
applications. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,
2005. https://doi.org/10.1109/ASPAA.2005.1540194.

[50] Chu, S., Narayanan, S., & Kuo, C.C.J. Environmental sound recognition with time-frequency
audio features. IEEE Transactions on Audio, Speech and Language Processing, 2009.
https://doi.org/10.1109/TASL.2009.2017438.

[51] Li, T., Ogihara, M., & and Li, Q. A comparative study on content-based music genre
classification. Proceedings of the 26th Annual International ACM SIGIR Conference on
Research and Development in Informaion Retrieval – SIGIR ’03, 2003.
https://doi.org/10.1145/860435.860487.

[52] Sutskever, I., Vinyals, O., Le, Q.V. Sequence to sequence learning with neural networks.
NIPS’14: Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2, 2014, 1–9. arXiv:1409.3215 [cs.CL]

6 Deep Learning for Audio Signal Classification 135

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

[53] Huang, S., Cheng, C., Chiang, C., & Chang, C. Learning Phrase Representations Using RNN
Encoder–Decoder for Statistical Machine Translation Kyunghyun. Circuits and Systems,
APCCAS 2006. IEEE Asia Pacific Conference On, 2006.
https://doi.org/10.1109/APCCAS.2006.342179.

[54] Hermjakob, U. Parsing and Question Classification for Question Answering. Proceedings of
the Workshop on ARABIC Language Processing Status and Prospects, 2011.
https://doi.org/10.3115/1117856.1117859.

[55] Li, X., & Roth, D. Learning Question Classifiers. Proceedings of the 19th International
Conference on Computational Linguistics, 2002. https://doi.org/10.3115/1072228.1072378.

[56] Ravichandran, D., & Hovy, E. Learning Surface Text Patterns for a Question Answering
System. Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics – ACL ’02, 2001. https://doi.org/10.3115/1073083.1073092.

[57] Zhang, D., & Lee, W.S. Question Classification Using Support Vector Machines. Proceedings
of the 26th International ACM SIGIR Conference on Research and Development in Information
Retrieval, 2003. https://doi.org/10.1145/860435.860443.

[58] Ravuri, S., & Stolcke, A. A Comparative Study of Neural Network Models for Lexical Intent
Classification. 2015 IEEE Workshop on Automatic Speech Recognition and Understanding,
ASRU 2015 – Proceedings, 2016. https://doi.org/10.1109/ASRU.2015.7404818.

[59] Ravuri, S., & Stolcke, A. A Comparative Study of Recurrent Neural Network Models for Lexical
Domain Classification. ICASSP, IEEE International Conference on Acoustics, Speech and
Signal Processing – Proceedings, 2016. https://doi.org/10.1109/ICASSP.2016.7472844.

[60] Capes, T., Coles, P., Conkie, A., Golipour, L., Hadjitarkhani, A., Hu, Q., Huddleston, N. et al.
Siri On-Device Deep Learning-Guided Unit Selection Text-To-Speech System. Proceedings of
the Annual Conference of the International Speech Communication Association,
INTERSPEECH, 2017. https://doi.org/10.21437/Interspeech.2017-1798.

[61] Jelinek, F. Continuous Speech Recognition by Statistical Methods. Proceedings of the IEEE,
1976. https://doi.org/10.1109/PROC.1976.10159.

136 Ankita Bose and B. K. Tripathy

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mahua Bose and Kalyani Mali

7 Backpropagation Through Time
Algorithm in Temperature Prediction

Abstract: In deep learning, data is transmitted through a number of layers in the
feedforward network between input and output layers. In a recurrent network, data
may propagate through a layer several times. Backpropagation through time (BPTT)
technique is used to train recurrent networks (RNN). The underlying idea of BPTT is
to transform a recurrent network into an unfolded feedforward network (multilayer
network) where conventional backpropagation learning is used for gradient calcu-
lation. Here, each layer of the unfolded network represents a time step. The objec-
tive of this study is to integrate concept of BPTT in the framework of fuzzy time
series prediction. The model takes sequence of previous values as input (fuzzy in-
puts) to the different layer of the unfolded network and produces fuzzy output.
Temperature dataset is used to evaluate the performance of the model and predic-
tion accuracy of BPTT is better than that of backpropagation neural network model.

Keywords: fuzzy set, layer, neural network, order, unfolding

7.1 Introduction

Deep learning technique is applicable to different fields such as image and speech
processing, pattern recognition, bioinformatics, and so on. Recently, it is employed
in monsoon rainfall prediction [1, 2] also. Objective of this research is to apply deep
learning in the context of fuzzy time series (FTS) forecasting.

FTS forecasting is a branch of traditional time series forecasting where observa-
tions are fuzzy sets [3] and a relationship is established between the current obser-
vation and previous observation. The topic [4–6] was first introduced in 1993 and
1994. Then it is presented in the simplified form [7] in the year 1996. In the first-
order forecasting model, present state is dependent on previous state only. In high
order forecasting model present state depends on more than one previous state.
FTS model has already been applied in various application areas such as student
enrolment [5–10], temperature [10–11], unemployment [8], stock exchange [8–14],
and so on.

Backpropagation neural network (BPNN) is integrated successfully in fuzzy
forecast models by many researchers [9–14]. In the past, for the high order models

Mahua Bose, Kalyani Mali, Department of Computer Science and Engineering, University of
Kalyani, Nadia, West Bengal, India

https://doi.org/10.1515/9783110670905-007

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110670905-007

using BPNN, values of previous time periods are fed together at the input layer at a
time and there is a single hidden layer. But in this work, inputs for the previous
time periods are fed into different layer of the network instead of same layer. This is
the main difference between the proposed approach and the existing neural net-
work based high order FTS models. There are many variations of BPTT algorithm.
Description of different types of BPTT algorithms is found in the published work by
Williams and Zipser in the year 1995[15]. In epochwise BPTT algorithm, weight up-
dations are done only at the end of each training example sequence (which is called
an epoch). Computation of gradient value is same in epochwise BPTT model and
real-time BPTT model. But the basic difference between them is that, in epochwise
BPTT in addition to the ∂ values, the error at each intermediate step is also consid-
ered. In truncated BPTT algorithm, denoted as BPTT (h), data values of previous h
time steps are used only.

This chapter presents epochwise BPTT model which is truncated in nature. The
model takes sequence of previous values as input (fuzzy inputs) to the different
layer of the unfolded network. Number of order is same as the number of time steps
(or layers) in the network. This model is called TBPTT (h1, h2). Here, h1 is the num-
ber of the steps in the forward pass and h2 is the number of the steps in the back-
ward pass. In this study, h1 = h2.

The work is presented in the following sections: In Section 7.2, description of BPTT
model is provided. Section 7.3 describes the entire methodology. Comparison of the
experimental results is shown in Section 7.4. Conclusion is presented in Section 7.5.

7.2 Basic concept of backpropagation through time

The basic principle of back propagation through time [16–17] is to unfold the net-
work at the time steps 1, 2, . . ., T to store longer history of information. The unfold-
ing technique converts a recurrent network into an equivalent feedforward network
with multiple steps of computation. The unfolded network is trained with back
propagation and all copies of each equivalent connection weight should be identi-
cal. Updations of weights are done using the sum of the gradients calculated for
weights in each layer [Figure 7.1].

Basic algorithm:
1. Unroll the recurrent network for an arbitrary number of levels (in forward

pass).
2. Back propagate the error (in backward pass).
3. Weight changes at each unrolled stages (connection weights of the equivalent

connection on each fold) are added to get a single set of weight changes.

138 Mahua Bose and Kalyani Mali

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

There are many variations of BPTT algorithm. In this study, Epochwise BPTT
[15] will be employed for prediction. Let us consider an unfolded network. The out-
put of n-th processing node at time t + 1 is expressed as,

Sn t + 1ð Þ=
X
l2u

wnlyl tð Þ+
X
l2I

wnlxl t + 1ð Þ (7:1)

In each node, output at time t + 1 is a function of the current input x (t + 1) and
previous output value Y (t). xl (t) denotes the external input signals to the nth node
at time t. The element wnl represents the weight on the link from the lth node to the
nth node. Set of input nodes represented by I and u denotes the set of nodes in the
recurrent layer. Each processing node applies the logistic function:

Yn t + 1ð Þ= fn Sn t + 1ð Þð Þ (7:2)

f ′n Sn t + 1ð Þð Þ=Yn t + 1ð Þ 1−Yn t + 1ð Þ½ � (7:3)

Input (t0 + h)

Computing
unit (t0 + h)

Computing
unit (t0 + h – 1)

Computing
unit (t0 + 1)

Computing
unit (t0)

Input (t0 + h – 1)

Input (t0 + 1)

Input (t0)

Figure 7.1: Example of unrolling.

7 Backpropagation Through Time Algorithm in Temperature Prediction 139

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Epochwise BPTT process proceeds by repeating eqs. (7.4) and (7.5).

2n t; Fð Þ=
en t; Fð Þ if t =T

en t; Fð Þ+ P
l2u

wln∂l t + 1; Fð Þ if t <T

(
(7:4)

∂n t; Fð Þ= f ′n Sn tð Þð Þ2n t; Fð Þ (7:5)

For nth node, error “e” at time “t” is calculated by subtracting actual output from the
target.

Each connection weight wij is updated as follows:

∂F=∂wij
� �

= learning rateð Þ*
XT − 1

t =0

xj tð Þ∂i t + 1, Fð Þ (7:6)

“x“ terms in the equation represent either the output of a processing node or an
external input node of the network at time t. Final time step is denoted by T.

7.3 Proposed method

In this study, epochwise BPTT algorithm [15] is applied for forecasting high-order FTS.
Computation is done by truncating the backward propagation of information to a pre-
defined number of time steps. So this model is a combination of epochwise BPTT and
truncated BPTT [Figure 7.2]. Steps of the proposed BPTT-based approach are as follows.

Time Input Computing
units

Desired output Input Computing
units

Desired output

t0 + h + 1

t0 + h – 1

t0 + h – 2

t0 + 1

t0 – 1

t0

t0 + h

Figure 7.2: Epochwise BPTT (truncated).

140 Mahua Bose and Kalyani Mali

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Step 1. Apply fuzzy c-means (FCM) algorithm [18] to create “k” clusters and obtain
fuzzy membership value of each datapoint in each cluster.

Step 2. Choose number of prior time steps “h.” Here, this is equal to the number of
order of the model.

Step 3. Apply truncated version of epochwise BPTT as described below.
Let us consider, total number of datapoints (total time period) is “MAX”
and number of prior time steps is “h.” Each layer of the unfolded network
takes fuzzy membership values as input.

Algorithm:
3.1. Initial activation = 0; iteration= 0.
3.2. t = 1;
3.3. Repeat steps 3.4–3.9 until t ≤ MAX-h
3.4. t0 = t; repeat steps 3.5–3.6 until t0 < t + h
3.5. Calculate output values in the forward pass using eqs. (7.1)–(7.3).
3.6. t0 = t0 + 1.
3.7. Proceed in the backward direction repeating eqs. (7.4) and (7.5).
3.8. Update each connection weight using eq. (7.6).
3.9. t = t + 1.
3.10. Iteration = Iteration + 1
3.11. If Iteration < maximum iteration, go to step 3.2, else stop.

Step 4. Defuzzification:
Let us consider that m clusters are created in the dataset. If the output
membership values are µ1, µ2, … … …, µm. and corresponding centers of the
clusters are c1, c2, … … …, cm. Then,

Output=
Pm

i= 1 ciμiPm
i= 1 μi

(7:7)

Example:
Let us consider temperature (August) data set. Fuzzy C-means algorithm is applied to create three
clusters. Membership values are shown in Table 7.1. Number of input units and processing units
are three in this case. Now for the fifth order model, number of prior time steps h = 5.

Now, the following sequence of membership values is fed into the system. Each layer of the un-
folded network represents a time step. Each of three membership values is fed into the input layer
of the network through three nodes.

Time External input
t = (. . .)
t = (. . .)
t = (. . .)
t = (. .)
t = (. . .)

7 Backpropagation Through Time Algorithm in Temperature Prediction 141

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Final output is compared with the values at T = 6, that is, (0.03 0.22 0.75). Back propagation is
done and weights are updated. Then, the next sequence is fed into the system.

Time External input
t = (. . .)
t = (. . .)
t = (. .)
t = (. . .)
t = (. . .)

Final output is compared with the values at T = 7, that is, (0 0.01 0.99). Back propagation is done
and weights are updated. Then, the next sequence is fed into the system and so on.

Let the center of three clusters be 26.59, 27.95, and 29.1 and the output memberships in the corre-
sponding clusters are 0.035354, 0.388622, and 0.626119. Then, the output is calculated by eq. (7.7).

Output = ((26.59*0.035354) + (27.95*0.388622) + (29.1*0.626119)) / ((0.035354 + 0.388622 +
0.626119)) = 28.59.

Table 7.1: A fraction of August data set.

Days Data Membership values in cluster

 . . .

 . .

 . . .

− − − − −

142 Mahua Bose and Kalyani Mali

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

7.4 Experimental results and discussion

7.4.1 Description of datasets

Experiments are carried out using four real-world data sets: daily average tempera-
ture dataset (June, July, August, and September) of Taipei, Taiwan (Tables 7.2–7.5).

7.4.2 Performance evaluation

FTS model of order fifth, sixth, seventh, and eighth are used in this study Here, num-
ber of prior time steps is equivalent to the number of order taken, that is, for fifth-
order model, h = 5. In the first step, fuzzy-c-means algorithm is applied to create dif-
ferent number of clusters for each dataset and fuzzy logical relationships are defined
using BPTT model. Fuzziness index m = 2; for temperature datasets error = 0.005.
Number of clusters used in each dataset is shown in the Tables 7.6–7.9 with RMSE for
in-sample data.

Table 7.2: Actual and predicted values in °C for June dataset.

Day Actual Predicted Day Actual Predicted

 . . .

 . − .

 − . .

 . − . .

 − . .

 . − . .

 . . .

7 Backpropagation Through Time Algorithm in Temperature Prediction 143

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table 7.3: Actual and predicted values in °C for July dataset.

Day Actual Predicted Day Actual Predicted

 . . .

 . − . .

 . − . .

 . − . .

 . − . .

 . − . .

 . . .

 . . .

 . . − − −

Table 7.4: Actual and predicted values in °C for August dataset.

Day Actual Predicted Day Actual Predicted

 . . .

 . − .

 . − . .

 . − . .

 . − . .

 . .

 . . .

144 Mahua Bose and Kalyani Mali

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table 7.4 (continued)

Day Actual Predicted Day Actual Predicted

 . . .

 . . .

 . . − − −

Table 7.5: Actual and predicted values in °C for September dataset.

Day Actual Predicted Day Actual Predicted

 . . .

 . − . .

 . − . .

 . − . .

 . − . .

 . − . .

 . − . .

 . .

 . . .

7 Backpropagation Through Time Algorithm in Temperature Prediction 145

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table 7.6: Error estimation for June data set using BPTT model.

Error Number of
clusters

Order

th th th th

RMSE

Theil’s U statistic

Table 7.7: Error estimation for July data set using BPTT model.

Error Number of
clusters

Order

th th th th

RMSE

Theil’s U statistic

Table 7.8: Error estimation for August data set using BPTT model.

Error Number of
clusters

Order

th th th th

RMSE

Theil’s U statistic

146 Mahua Bose and Kalyani Mali

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Number of external input nodes is equal to the number of clusters taken.
Number of external input nodes and number of computing units are equal. Number
of iteration in each of the dataset is 100, learning rate = 0.5.

Predicted values are computed taking different combination of sequence length
(prior time steps) and clusters. Then, prediction error is computed by using root
mean square error (RMSE) and Theil’s U statistic [19]. It is observed that the accu-
racy of forecast is dependent on the number of clusters created and the order of the
model (number of layer used). For each dataset, only predicted values (correspond-
ing to minimum RMSE) are shown (Tables 7.2–7.5).

RMSE=

ffiPn
i= 1 A− Pð Þ2

n

s
(7:8)

U =
ffiXn
i= 1

A−Pð Þ2
s !, ffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i= 1

A2

s !
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i= 1

P2

s ! !
(7:9)

where A and P represent actual and predicted values, respectively. Number of ob-
servations is n.

Error estimation for June data set using BPTT model is shown in Table 7.6.
Using four clusters, there are four membership values and these are fed into the
system as four external inputs. If we are using fifth order model then the number of
layers in the unfolded network is five (i.e., h = 5) and membership values of previ-
ous five periods are fed into each layer of the network. In this case, RMSE value is
1.17. Similarly, other values are computed using different combination of sequence
length (prior time steps) and clusters.

June dataset (Table 7.6) produces minimum RMSE (0.99) in sixth order (h = 6)
using four clusters. Using July dataset (Table 7.7), minimum RMSE (1.13) is obtained
in sixth order with six clusters. For August dataset (Table 7.8), minimum RMSE (0.98)

Table 7.9: Error estimation for September data set using BPTT model.

Error Number of
clusters

Order

th th th th

RMSE

Theil’s U statistic

7 Backpropagation Through Time Algorithm in Temperature Prediction 147

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

is in fifth order (h = 5) using three clusters. Using September dataset (Table 7.9) mini-
mum RMSE (1.23) is in seventh order with seven clusters and eight clusters. Using
eight clusters in 8th order RMSE is 1.23 also.

It is revealed from the experimental results that the accuracy of forecast is de-
pendent on the number of clusters created and the number of layers (i.e., order) of
the model. Good forecasting accuracy is achieved if the value of U (eq. (7.9)) is close
to zero.

Performance of high-order BPNN model [11] using temperature dataset is also
provided in Table 7.10. In this model, there is one input layer and hidden layer.
Values of previous time periods are fed together at a time (number of input nodes is
equal to the number of time periods). Middle points of the corresponding intervals
are used as input. In this case, datasets for the months of June and July are parti-
tioned into 17 intervals. Datasets for the months of August and September are parti-
tioned into 20 and 21 intervals, respectively.

From the comparative study (using RMSE values) with BPNN model, it is seen that,
BPTT model using fuzzy input produces better result for three of the datasets (June,
July, and September). For August dataset improvement is marginal (Figure 7.3).

Actual and predicted values in Tables 7.2–7.5 are in �C. Predicted values
in Tables 7.2–7.5 are based on in-sample data. So, first few days’ values are not pres-
ent. For example in case of June dataset, temperature values (membership) of previ-
ous six days (sixth order model) are used to predict the seventh value. It is
possible to get forecast for the first few days of the month (July, August, and
September) from its previous month’s data. These out-of-sample observations are
shown separately in Tables 7.11 and 7.12. Estimated RMSE values for July, August,

Table 7.10: Error estimation for BPNN model on temperature data [11].

Error Month Order

th th th th

RMSE June

July

August

September

Theil’s U statistic June

July

August

September

148 Mahua Bose and Kalyani Mali

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

and September dataset are 1.01, 0.71, and 1.81, respectively. Actual and predicted
values in Tables 7.11–7.12 are in ˚C.

This work deals with univariate model. In each of the temperature dataset
(Tables 7.2–7.5) the difference between the maximum value and minimum value is
small, that is, data range is small. But for the applications where such difference is
large, preprocessing of data is required before clustering. In this case, differences

1.6

1.4

1.2

1

0.8

RM
SE

0.6

0.4

0.2

0
June July August September

BPNN [10]
BPTT

Figure 7.3: RMSE values: BPNN versus BPTT.

Table 7.11: Performance on out-of-sample data (first few
days of July and August) using proposed model.

Day July August

Actual Predicted Actual Predicted

 . . .

 . . .

7 Backpropagation Through Time Algorithm in Temperature Prediction 149

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

between consecutive values are to be calculated before clustering. Differencing
helps in reducing the number of clusters. Preprocessing of data is necessary if the
time series contains patterns like trend, seasonal effect and so on.

Drawback of using BPTT is the memory requirement for the large sequence. Let us
discuss the issues related to time complexity and space complexity of both of the mod-
els. For a BPNN model with n input layer nodes, h hidden layer nodes, and m output
layer nodes, there are h(n + 1) and m(h + 1) link weights in the first and second layer,
respectively. For each epoch, both the space and time complexity is O(h · (m + n)) [20].

Let us consider that the number of hidden layer nodes and input nodes are n
and m, respectively. Epoch length is represented by h. In case of fully connected
network, number of adaptable weights = n (n + m) and number of nonzero weights
between units = n2. If the desired output values at every time period is considered,
then epochwise BPTT has space complexity in O(nh) and average time complexity
(per time step) is O(n2) [15].

7.5 Conclusion

The proposed model can work with different number of clusters and orders. In addi-
tion to temperature data, this forecasting model is applicable to other datasets. In

Table 7.12: Performance on out-of-sample
data (first few days of September) using
proposed model.

Day September

Actual Predicted

 . .

 . .

 . .

 . .

 . .

 . .

 . .

 .

 . .

 . .

150 Mahua Bose and Kalyani Mali

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

future, the technique can also be extended for forecasting multiple observations.
Applications using variable/dynamic sequence length (prior time step) [21] instead of
fixed sequence length can also be investigated in future. This approach is also applica-
ble for solving complex and dynamic real-world problems like sequence classification
in bioinformatics where large databases with multiple variables are required. Other sig-
nal analysis applications are in the field of seismology and speech processing.

References

[1] Misra S., Sarkar S., & Mitra P. Statistical downscaling of precipitation using long short-term
memory recurrent neural networks. Theoretical and applied climatology, 2018, 134(3–4),
1179–1196.

[2] Saha M., Mitra P., & Ravi N. Deep learning for predicting the monsoon over the homogeneous
regions of India. Journal of earth system science, 2017, 126(54), 1–18.

[3] Zadeh L.A. Fuzzy set. Information and control, 1965, 8, 338–353.
[4] Song Q., & Chissom B.S. Fuzzy time series and its models. Fuzzy sets and systems, 1993a,

54, 269–277.
[5] Song Q., & Chissom B.S. Forecasting enrollments with fuzzy time series –Part I. Fuzzy sets

and systems, 1993b, 54, 1–9.
[6] Song Q., & Chissom B.S. Forecasting enrollments with fuzzy time series –Part II. Fuzzy sets

and systems, 1994, 64, 1–8.
[7] Chen S.M. Forecasting enrollments based on fuzzy time series. Fuzzy sets and systems, 1996,

81, 311–319.
[8] Lu W., Chen X., Pedrycz W., Liu X., & Yang J. Using interval information granules to improve

forecasting in fuzzy time series. International journal of approximate reasoning, 2015, 57,
1–18.

[9] Chen M.Y. A high-order fuzzy time series forecasting model for internet stock trading. Future
generation of computer system, 2014, 37, 461–467.

[10] Bose M., & Mali K. Fuzzy time series forecasting model using particle swarm optimization
and neural network. Soft Computing for Problem Solving, Advances in Intelligent Systems
and Computing, Springer, Singapore, 2019, 816.

[11] Singh P., & Borah B. High-order fuzzy-neuro expert system for daily temperature Forecasting.
Knowledge-based systems, 2013, 46, 12–21.

[12] Huarng K., & Yu H.K. The application of neural networks to forecast fuzzy time series. Physica
A, 2006, 363(2), 481–491.

[13] Aladag C.H. Using multiplicative neuron model to establish fuzzy logic relationships. Expert
systems with applications, 2013, 40(3), 850–853.

[14] Aladag C.H., Basaran M.A., Egrioglu E., Yolcu U., & Uslu V.R. Forecasting in high order fuzzy
time series by using neural networks to define fuzzy elations. Expert with applications, 2009,
36, 4228–4231.

[15] William R.J., & Zipser D. Gradient-based learning algorithms for recurrent networks and their
computational complexity, Chauvin & Rumelhart, eds., Backpropagation: Theory,
Architectures and Applications, New York, 1995, 433–486.

[16] Rumelhart D.E., & McClelland J.D. ed. Parallel Distributed Processing, MIT press, Cambridge,
USA, 1986.

7 Backpropagation Through Time Algorithm in Temperature Prediction 151

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

[17] Werbos P.J. Backpropagation through time: What it does and how to do it. Proceedings of the
IEEE, 1990, 78(10), 1550–1560.

[18] Bezdek J.C. Pattern recognition with fuzzy objective function algorithms, Plenum Press,
New York, USA, 1981.

[19] Theil H. Applied Economic Forecasting, Rand McNally, 1966.
[20] Alpaydin E. Introduction to Machine Learning, 2nd, The MIT Press, 2010.
[21] Grau, I., Nápoles, G., Bonet, I., & García, M. M. Backpropagation through Time Algorithm for

Training Recurrent Neural Networks using Variable Length Instances. Computación y
Sistemas, 2013, 17(1), 15–24.

152 Mahua Bose and Kalyani Mali

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

Activation function 1, 10–13
Adaptive linear neuron (ADALINE) 4
Amazon 1, 16
Artificial intelligence (AI) 1, 19, 69
Artificial Neural Network (ANN) 1, 2, 3–8, 21,

24, 33, 69, 74
Autoencoder (AE) 2, 15

Back propagation Neural Network 137
Back propagation Through Time 138

Convolutional Neural Network (CNN) 2, 16, 21,
26, 28, 33, 37, 39, 48, 51, 52

Data Science Experience (DSX) 2, 16, 17
Deconvolution 21
Deep Belief Network (DBN) 2, 13
Deep learning 21, 24, 25, 28, 69, 74, 75, 76,

77, 78
Deep Learning Applications 69
Deep Neural Network (DNN) 2, 51
Delta Rule 7
Developmental Dysgraphia 87

Facebook 1
Feature extraction 96, 102
Feed Forward Neural Networks (FFNNs) 1, 3
Fuzzy Time Series 137, 140, 143

Galaxy Classification 21
Google 1
Gradient Descent Rule 7
Graphics Processing Units (GPUs) 2

handwriting analysis 92, 94, 102
handwritten digit recognition 51, 52,

54, 65
Hebbian 7

Hopfield network 4, 6
Hyperbolic 1, 12

IBM 2, 16, 17

Least mean square (LMS) 7

Machine Learning 1, 8, 17
MIT 1
multilayer perceptron 51

Netflix 1

optical character recognition 51, 54

Recurrent Neural Networks (RNNs) 1, 3, 5–6, 51
Reinforcement 1, 8
Relu 1, 12
Restricted Boltzmann Machine (RBM) 2, 13
RMSE 143, 147

Sigmoid 1, 10, 13
Simulation 2
Softmax 1, 13
State-of-the-art 1, 9, 19
Stochastic 7, 13
Supervised 1, 7

Theil’s U statistic 147

UCLA 1
Unsupervised 1, 6

variational auto encoder 87, 88

Watson Studio 17, 18

https://doi.org/10.1515/9783110670905-008

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110670905-008

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

De Gruyter Frontiers in Computational Intelligence

Already published in the series

Volume 6: Quantum Machine Learning
Siddhartha Bhattacharyya, Indrajit Pan, Ashish Mani, Sourav De,
Elizabeth Behrman, Susanta Chakraborti (Eds.)
ISBN 978-3-11-067064-6, e-ISBN (PDF) 978-3-11-067070-7
e-ISBN (EPUB) 978-3-11-067072-1

Volume 5: Machine Learning Applications
S. Bhattacharyya, R. Das, S. Nandy (Eds.)
ISBN 978-3-11-060853-3, e-ISBN (PDF) 978-3-11-060853-3
e-ISBN (EPUB) 978-3-11-060853-3

Volume 4: Intelligent Decision Support Systems
S. Bhattacharyya, S. Borra, M. Bouhlel, N. Dey (Eds.)
ISBN 978-3-11-061868-6, e-ISBN (PDF) 978-3-11-062110-5,
e-ISBN (EPUB) 978-3-11-061871-6

Volume 3: Big Data Security
I. Banerjee, S. Bhattacharyya, S. Gupta (Eds.)
ISBN 978-3-11-060588-4, e-ISBN (PDF) 978-3-11-060605-8,
e-ISBN (EPUB) 978-3-11-060596-9

Volume 2: Intelligent Multimedia Data Analysis
S. Bhattacharyya, I. Pan, A. Das, S. Gupta (Eds.)
ISBN 978-3-11-055031-3, e-ISBN (PDF) 978-3-11-055207-2,
e-ISBN (EPUB) 978-3-11-055033-7

Volume 1: Machine Learning for Big Data Analysis
S. Bhattacharyya, H. Baumik, A. Mukherjee, S. De (Eds.)
ISBN 978-3-11-055032-0, e-ISBN (PDF) 978-3-11-055143-3,
e-ISBN (EPUB) 978-3-11-055077-1

www.degruyter.com

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.degruyter.com

 EBSCOhost - printed on 2/9/2023 5:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Preface
	Contents
	List of Contributors
	1 Deep Learning – A State-of-the-Art Approach to Artificial Intelligence
	2 Convolutional Neural Networks: A Bottom-Up Approach
	3 Handwritten Digit Recognition Using Convolutional Neural Networks
	4 Impact of Deep Neural Learning on Artificial Intelligence Research
	5 Extraction of Common Feature of Dysgraphia Patients by Handwriting Analysis Using Variational Autoencoder
	6 Deep Learning for Audio Signal Classification
	7 Backpropagation Through Time Algorithm in Temperature Prediction
	Index

