
C
o
p
y
r
i
g
h
t

2
0
2
0
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 7:23 AM via
AN: 2527744 ; Giuseppe Ciaburro.; Hands-On Simulation Modeling with Python : Develop Simulation Models to Get Accurate Results and Enhance Decision-making
Processes
Account: ns335141

Hands-On
Simulation Modeling
with Python

Develop simulation models to get accurate results and enhance
decision-making processes

Giuseppe Ciaburro

BIRMINGHAM—MUMBAI

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Hands-On Simulation Modeling with Python
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Devika Battike
Senior Editor: David Sugarman
Content Development Editor: Joseph Sunil
Technical Editor: Sonam Pandey
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Joshua Misquitta

First published: July 2020

Production reference: 1160720

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-509-7

www.packt.com

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	Get a free eBook or video every month

•	Fully searchable for easy access to vital information

•	Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Packt.com
packt.com
customercare@packtpub.com
www.packt.com

Contributors

About the author
Giuseppe Ciaburro holds a PhD in environmental technical physics, along with two
master’s degrees. His research was focused on machine learning applications in the study
of urban sound environments. He works at the Built Environment Control Laboratory
at the Università degli Studi della Campania Luigi Vanvitelli, Italy. He has over 18 years’
professional experience in programming (Python, R, and MATLAB), first in the field
of combustion, and then in acoustics and noise control. He has several publications to
his credit.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewers
Greg Walters has been involved with computers and computer programming since
1972. He is well versed in Visual Basic, Visual Basic.NET, Python, and SQL, and is an
accomplished user of MySQL, SQLite, Microsoft SQL Server, Oracle, C++, Delphi,
Modula-2, Pascal, C, 80x86 Assembler, COBOL, and Fortran. He is a programming
trainer and has trained numerous individuals in many pieces of computer software,
including MySQL, Open Database Connectivity, Quattro Pro, Corel Draw!, Paradox,
Microsoft Word, Excel, DOS, Windows 3.11, Windows for Workgroups, Windows 95,
Windows NT, Windows 2000, Windows XP, and Linux. He is currently retired and, in his
spare time, is a musician and loves to cook. He is also open to working as a freelancer on
various projects.

Yoon Hyup Hwang is a seasoned data scientist in the marketing and finance industries
and is the author of two applied machine learning books. He has almost a decade of
experience building numerous machine learning models and data science products.
He holds an M.S.E. in Computer and Information Technology from the University of
Pennsylvania and a B.A. in Economics from the University of Chicago. He enjoys training
various martial arts, snowboarding, and roasting coffee. He currently lives in the Greater
New York Area with his artist wife, Sunyoung, and a playful dog, Dali (named after
Salvador Dali).

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

authors.packtpub.com
authors.packtpub.com

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

Section 1:
Getting Started with Numerical Simulation

1
Introducing Simulation Models

Introducing simulation models 4
Decision-making workflow 5
Comparing modeling and simulation 6
Pros and cons of simulation modeling 6
Simulation modeling terminology 7

Classifying simulation models 9
Comparing static and dynamic models 9
Comparing deterministic and
stochastic models 9
Comparing continuous and discrete
models 10

Approaching a simulation-
based problem 10

Problem analysis 11
Data collection 11
Setting up the simulation model 11
Simulation software selection 13
Verification of the software solution 14
Validation of the simulation model 15
Simulation and analysis of results 16

Dynamical systems modeling 16
Managing workshop machinery 17
Simple harmonic oscillator 18
Predator-prey model 20

Summary 22

2
Understanding Randomness and Random Numbers

Technical requirements 24
Stochastic processes 24
Types of stochastic process 25

Examples of stochastic processes 26
The Bernoulli process 26
Random walk 27

Table of Contents

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Poisson process 29

Random number simulation 30
Probability distribution 31
Properties of random numbers 32

The pseudorandom number
generator 33
The pros and cons of a random
number generator 33
Random number generation algorithms 34
Linear congruential generator 34
Random numbers with uniform
distribution 37
Lagged Fibonacci generator 39

Testing uniform distribution 42
The chi-squared test 42
Uniformity test 45

Exploring generic methods for
random distributions 51
The inverse transform sampling method 51
The acceptance-rejection method 52

Random number generation
using Python 53
Introducing the random module 54
The random.random() function 54
The random.seed() function 55
The random.uniform() function 56
The random.randint() function 56
The random.choice() function 57
The random.sample() function 58
Generating real-valued distributions 58

Summary 59

3
Probability and Data Generation Processes

Technical requirements 62
Explaining probability concepts 62
Types of events 62
Calculating probability 63
Probability definition with an example 63

Understanding Bayes’ theorem 66
Compound probability 66
Bayes’ theorem 68

Exploring probability
distributions 69
Probability density function 70
Mean and variance 71
Uniform distribution 72
Binomial distribution 76
Normal distribution 79

Summary 83

Section 2:
Simulation Modeling Algorithms and
Techniques

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
Exploring Monte Carlo Simulations

Technical requirements 88
Introducing Monte Carlo
simulation 88
Monte Carlo components 89
First Monte Carlo application 89
Monte Carlo applications 90
Applying the Monte Carlo method for
Pi estimation 91

Understanding the central limit
theorem 96
Law of large numbers 96
Central limit theorem 97

Applying Monte Carlo

simulation 101
Generating probability distributions 101
Numerical optimization 102
Project management 103

Performing numerical
integration using
Monte Carlo 104
Defining the problem 104
Numerical solution 106
Min-max detection 108
Monte Carlo method 109
Visual representation 111

Summary 113

5
Simulation-Based Markov Decision Processes

Technical requirements 116
Overview of Markov processes 116
The agent-environment interface 117
Exploring MDPs 119
Understanding the discounted
cumulative reward 122
Comparing exploration and
exploitation concepts 123

Introducing Markov chains 124
Transition matrix 125
Transition diagram 126

Markov chain applications 127
Introducing random walks 127
Simulating a one-dimensional random
walk 129
Simulating a weather forecast 132

The Bellman equation
explained 138
Dynamic programming concepts 139
Principle of optimality 139
The Bellman equation 140

Multi-agent simulation 140
Summary 142

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
Resampling Methods

Technical requirements 144
Introducing resampling
methods 144
Sampling concepts overview 145
Reasoning about sampling 146
Pros and cons of sampling 146
Probability sampling 147
How sampling works 147

Exploring the Jackknife
technique 148
Defining the Jackknife method 148
Estimating the coefficient of variation 150
Applying Jackknife resampling using
Python 151

Demystifying bootstrapping 156
Introducing bootstrapping 156
Bootstrap definition problem 157
Bootstrap resampling using Python 158
Comparing Jackknife and bootstrap 161

Explaining permutation tests 162
Approaching cross-validation
techniques 163
The validation set approach 163
Leave-one-out cross validation 164
K-fold cross validation 165
Cross-validation using Python 165

Summary 168

7
Using Simulation to Improve and Optimize Systems

Technical requirements 170
Introducing numerical
optimization techniques 170
Defining an optimization problem 171
Explaining local optimality 173
Defining the descent methods 174
Approaching the gradient descent
algorithm 174
Understanding the learning rate 177
Explaining the trial and error method 178
Implementing gradient descent in
Python 178

Facing the Newton-Raphson
method 183
Using the Newton-Raphson algorithm
for root-finding 183

Approaching Newton-Raphson for
numerical optimization 184
Applying the Newton-Raphson
technique 185

Deepening our knowledge of
stochastic gradient descent 189
Discovering the multivariate
optimization methods in Python 191
The Nelder–Mead method 191
Powell's conjugate direction algorithm 195
Summarizing other optimization
methodologies 197

Summary 198

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Section 3:
Real-World Applications

8
Using Simulation Models for Financial Engineering

Technical requirements 202
Understanding the geometric
Brownian motion model 202
Defining a standard Brownian motion 203
Addressing the Wiener process as
random walk 204
Implementing a standard Brownian
motion 205

Using Monte Carlo methods for
stock price prediction 207
Exploring the Amazon stock price trend 208

Handling the stock price trend as time
series 213
Introducing the Black-Scholes model 215
Applying Monte Carlo simulation 216

Studying risk models for
portfolio management 220
Using variance as a risk measure 221
Introducing the value-at-risk metric 221
Estimating the VaR for some NASDAQ
assets 223

Summary 232

9
Simulating Physical Phenomena Using Neural Networks

Technical requirements 234
Introducing the basics of neural
networks 234
Understanding biological neural
networks 235
Exploring ANNs 236

Understanding feedforward
neural networks 242
Exploring neural network training 243

Simulating airfoil self-noise
using ANNs 244
Importing data using pandas 246
Scaling the data using sklearn 249
Viewing the data using matplotlib 252

Splitting the data 256
Explaining multiple linear regression 258
Understanding a multilayer perceptron
regressor model 260

Exploring deep neural networks 264
Getting familiar with convolutional
neural networks 264
Examining recurrent neural networks 265
Analyzing LSTM networks 266

Summary 267

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

10
Modeling and Simulation for Project Management

Technical requirements 270
Introducing project
management 270
Understanding what-if analysis 271

Managing a tiny forest problem 272
Summarizing the Markov decision
process 272
Exploring the optimization process 273
Introducing MDPtoolbox 275
Defining the tiny forest management
example 275

Addressing management problems
using MDPtoolbox 278
Changing the probability of fire 282

Scheduling project time using
Monte Carlo simulation 284
Defining the scheduling grid 285
Estimating the task's time 286
Developing an algorithm for project
scheduling 287
Exploring triangular distribution 288

Summary 294

11
What's Next?

Summarizing simulation
modeling concepts 295
Generating random numbers 296
Applying Monte Carlo methods 298
Addressing the Markov decision process 299
Analyzing resampling methods 300
Exploring numerical optimization
techniques 302
Using artificial neural networks for
simulation 303

Applying simulation model to
real life 304

Modeling in healthcare 304
Modeling in financial applications 305
Modeling physical phenomenon 306
Modeling public transportation 307
Modeling human behavior 308

Next steps for simulation
modeling 309
Increasing the computational power 309
Machine learning-based models 311
Automated generation of simulation
models 312

Summary 313
Other Books You May Enjoy

Leave a review - let other
readers know what you think 317

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
Simulation modeling helps you to create digital prototypes of physical models to analyze
how they work and predict their performance in the real world. With this comprehensive
guide, you’ll learn about various computational statistical simulations using Python.

Starting with the fundamentals of simulation modeling, you’ll learn about concepts
such as randomness and explore data generating processes, resampling methods,
and bootstrapping techniques. You’ll then cover key algorithms such as Monte Carlo
simulations and the Markov Decision Process, which are used to develop numerical
simulation models, and discover how they can be used to solve real-world problems.
As you make progress, you’ll develop simulation models to help you get accurate results
and enhance decision-making processes. Using optimization techniques, you’ll learn to
modify the performance of a model to improve results and make optimal use of resources.
The book will guide you through creating a digital prototype using practical use cases
for financial engineering, prototyping project management to improve planning, and
simulating physical phenomena using neural networks.

By the end of this book, you’ll be able to construct and deploy simulation models of your
own to solve real-world challenges.

Who this book is for
Hands-On Simulation Modeling with Python is for simulation developers and engineers,
model designers, and anyone already familiar with the basic computational methods
that are used to study the behavior of systems. This book will help you explore advanced
simulation techniques such as Monte Carlo methods, statistical simulations, and
much more using Python. Working knowledge of the Python programming language
is required.

What this book covers
Chapter 1, Introduction, analyzes the basics of numerical simulation and highlights the
difference between modeling and simulation and the strengths of simulation models such
as defects. The different types of models are analyzed, and we study practical modeling
cases to understand how to elaborate a model starting from the initial considerations.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

viii Preface

Chapter 2, Understanding Randomness and Random Numbers, defines stochastic processes
and explains the importance of using them to address numerous real-world problems.
The main methods for generating random numbers with practical examples in Python
code, and the generation of uniform and generic distributions, are both explored. It also
explains how to perform a uniformity test using the chi-square method.

Chapter 3, Probability and the Data Generating Process, shows how to distinguish between
the different definitions of probabilities and how they can be integrated to obtain useful
information in the simulation of real phenomena.

Chapter 4, Monte Carlo Simulations, explores techniques based on Monte Carlo methods
for process simulation. We will first learn the basic concepts, and then we will see how to
apply them to practical cases.

Chapter 5, Simulation-Based Markov Decision Process, shows how to deal with decision-
making processes with Markov chains. We will analyze the concepts underlying
Markovian processes and then analyze some practical applications to learn how to choose
the right actions for the transition between different states of the system.

Chapter 6, Resampling Methods, shows how to apply resampling methods to approximate
some characteristics of the distribution of a sample in order to validate a statistical model.
We will analyze the basics of the most common resampling methods and learn how to use
them by solving some practical problems.

Chapter 7, Use of Simulation to Improve and Optimize Systems, shows how to use the
main optimization techniques to improve the performance of our simulation models.
We will see how to use the gradient descent technique, the Newton-Raphson method,
and stochastic gradient descent. We will also see how to apply these techniques with
practical examples.

Chapter 8, Simulation Models for Financial Engineering, shows practical cases of using
simulation methods in a financial context. We will learn how to use Monte Carlo methods
to predict stock prices and how to assess the risk associated with a portfolio of shares.

Chapter 9, Simulating Physical Phenomena with Neural Networks, shows how to develop
models based on artificial neural networks to simulate physical phenomena. We will start
by exploring the basic concepts of neural networks, and we will examine their architecture
and its main elements. We will see how to train a network to update its weights.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface ix

Chapter 10, Modeling and Simulation for Project Management, deals with practical cases
of project management using the tools we learned how to use in the previous chapters.
We will see how to evaluate in advance the results of the actions undertaken in the
management of a forest using Markov processes, and then move on to evaluating the time
required for the execution of a project using the Monte Carlo simulation.

Chapter 11, What’s Next?, provides a better understanding of the problems associated with
building and deploying simulation models and additional resources and technologies to
learn how to hone your machine learning skills.

To get the most out of this book
Working knowledge of Python programming language is required.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account at www.
packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the onscreen instructions.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

www.packt.com
www.packt.com
www.packtpub.com/support
www.packtpub.com/support
www.packt.com

x Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

• WinRAR/7-Zip for Windows

• Zipeg/iZip/UnRarX for Mac

• 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-Simulation-Modeling-with-Python. In case
there’s an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781838985097_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: “Mount the downloaded WebStorm-10*.dmg disk image file as
another disk in your system.”

A block of code is set as follows:

import random

import statistics

import matplotlib.pyplot as plt

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

import random

import statistics

import matplotlib.pyplot as plt

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python
https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781838985097_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838985097_ColorImages.pdf

Preface xi

Any command-line input or output is written as follows:

$ python jakknife_estimator.py

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
“Select System info from the Administration panel.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

customercare@packtpub.com
www.packtpub.com/support/errata
copyright@packt.com
authors.packtpub.com
authors.packtpub.com
packt.com

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Section 1:
Getting Started
with Numerical

Simulation

In this section, the basic concepts of simulation modeling are addressed. This section
helps you to understand the fundamental concepts and elements of numerical simulation.

This section contains the following chapters:

Chapter 1, Introducing Simulation Models

Chapter 2, Understanding Randomness and Random Numbers

Chapter 3, Probability and Data Generating Processes

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

1
Introducing

Simulation Models
A simulation model is a tool capable of processing information and data and predicting
the responses of a real system to certain inputs, thus becoming an effective support for
analysis, performance evaluation, and decision-making processes. The term simulation
refers to reproducing the behavior of a system. In general, we speak of simulation both in
the case in which a concrete model is used and in the case in which an abstract model is
used that reproduces reality using a computer. An example of a concrete model is a scale
model of an airplane that is then placed in a wind tunnel to carry out simulated tests to
estimate suitable performance measures.

Although, over the years, physicists have developed theoretical laws that we can use to
obtain information on the performance of dynamic systems, often, the application of these
laws to a real case takes too long. In these cases, it is convenient to construct a numerical
simulation model that allows us to simulate the behavior of the system under certain
conditions. This elaborated model will allow us to test the functionality of the system in a
simple and immediate way, saving considerable resources in terms of time and money.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

4 Introducing Simulation Models

In this chapter, we're going to cover the following main topics:

• Introducing simulation models

• Classifying simulation models

• Approaching a simulation-based problem

• Dynamical systems modeling

Important Note
In this chapter, an introduction to simulation techniques will be discussed.
In order to deal with the topics at hand, it is necessary that you have a basic
knowledge of algebra and mathematical modeling.

Introducing simulation models
Simulation uses abstract models built to replicate the characteristics of a system. The
operation of a system is simulated using probability distributions to randomly generate
system events, and statistical observations are obtained from the simulated system. It plays
a very important role, especially in the design of a stochastic system and in the definition
of its operating procedures.

By not working directly on the real system, many scenarios can be simulated simply by
changing the input parameters, thus limiting the costs that would occur if this solution
were not used and, ultimately, reducing the time it would take. In this way, it is possible to
quickly try alternative policies and design choices and model systems of great complexity
by studying their behavior and evolution over time.

Important Note
Simulation is used when working on real systems is not convenient due to
high costs, technical impossibility, and the non-existence of a real system.
Simulation allows you to predict what happens to the real system if certain
inputs are used. Changing these input parameters simulates different scenarios
that allow us to identify the most convenient one from various points of view.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing simulation models 5

Decision-making workflow
In a decision-making process, the starting point is identifying the problematic context
that requires a change and therefore a decision. The context that's identified is then
analyzed in order to highlight what needs to be studied for the decisions that need to be
made; that is, those elements that seem the most relevant are chosen, the relationships
that connect them are highlighted, and the objectives to be achieved are defined. At this
point, a formal model is constructed, which allows us to simulate the identified system in
order to understand its behavior and to arrive at identifying the decisions to be made. The
following diagram describes the workflow that allows us to make a decision, starting from
observing the problematic context:

Figure 1.1 – Decision-making workflow

This represents a way of spreading knowledge and involves various actors. Constructing a
model is a two-way process:

• Definition of conceptual models

• Continuous interaction between the model and reality by comparison

In addition, learning also has a participatory characteristic: it proceeds through the
involvement of different actors. The models also allow you to analyze and propose
organized actions so that you can modify the current situation and produce the
desired solution.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

6 Introducing Simulation Models

Comparing modeling and simulation
To start, we will clarify the differences between modeling and simulation. A model is
a representation of a physical system, while simulation is the process of seeing how a
model-based system would work under certain conditions.

Modeling is a design methodology that is based on producing a model that implements
a system and represents its functionality. In this way, it is possible to predict the behavior
of a system and the effects of the variations or modifications that are made on it. Even if
the model is a simplified representation of the system, it must still be close enough to the
functional nature of the real system, but without becoming too complex and difficult
to handle.

Important Note
Simulation is the process that puts the model into operation and allows you
to evaluate its behavior under certain conditions. Simulation is a fundamental
tool for modeling because, without necessarily resorting to physical
prototyping, the developer can verify the functionality of the modeled system
with the project specifications.

Simulation allows us to study the system through a wide spectrum of conditions so that
we can understand how representative the model is of the system that it refers to.

Pros and cons of simulation modeling
Simulation is a tool that's widely used in a variety of fields, from operational research
to the application industry. This technique can be made successful by it overcoming the
difficulties that each complex procedure contains. The following are the pros and cons of
simulation modeling. Let's start with the concrete advantages that can be obtained from
the use of simulation models (pros):

• It reproduces the behavior of a system in reference to situations that cannot be
directly experienced.

• It represents real systems, even complex ones, while also considering the sources
of uncertainty.

• It requires limited resources in terms of data.

• It allows experimentation in limited time frames.

• The models that are obtained are easily demonstrable.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing simulation models 7

As anticipated, since it is a technique capable of reproducing complex scenarios, it has
some limitations (cons):

• The simulation provides indications of the behavior of the system, but not
exact results.

• The analysis of the output of a simulation could be complex and it could be difficult
to identify which may be the best configuration.

• The implementation of a simulation model could be laborious and, moreover, it may
take long calculation times to carry out a significant simulation.

• The results that are returned by the simulation depend on the quality of the input
data: it cannot provide accurate results in the case of inaccurate input data.

• The complexity of the simulation model depends on the complexity of the system it
intends to reproduce.

Nevertheless, simulation models represent the best solution for the analysis of
complex scenarios.

Simulation modeling terminology
In this section, we will analyze the elements that make up a model and those that
characterize a simulation process. We will give a brief description of each so that you
understand their meaning and the role they play in the numerical simulation process.

System
The context of an investigation is represented through a system; that is, the set of elements
that interact with each other. The main problem linked to this element concerns the
system boundaries, that is, which elements of reality must be inserted in the system that
represents it and which are left out and the relationships that exist between them.

State variables
A system is described in each instant of time by a set of variables. These are called
state variables. For example, in the case of a weather system, the temperature is a state
variable. In discrete systems, the variables change instantly at precise moments of time
that are finite. In continuous systems, the variables vary in terms of continuity with
respect to time.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

8 Introducing Simulation Models

Events
An event is defined as any instantaneous event that causes the value of at least one of
the status variables to change. The arrival of a blizzard for a weather system is an event,
as it causes the temperature to drop suddenly. There are both external events and
internal events.

Parameters
Parameters represent essential terms when building a model. They are adjusted during
the model simulation process to ensure that the results are brought into the necessary
convergence margins. They can be modified iteratively through sensitivity analysis or in
the model calibration phase.

Calibration
Calibration represents the process by which the parameters of the model are adjusted in
order to adapt the results to the data observed in the best possible way. When calibrating
the model, we try to obtain the best possible accuracy. A good calibration requires
eliminating, or minimizing, errors in data collection and choosing a theoretical model
that is the best possible description of reality. The choice of model parameters is decisive
and must be done in such a way as to minimize the deviation of its results when applied
to historical data.

Accuracy
Accuracy is the degree of correspondence of the simulation result that can be inferred
from a series of calculated values with the actual data, that is, the difference between
the average modeled value and the true or reference value. Accuracy, when calculated,
provides a quantitative estimate of the quality expected from a forecast. Several indicators
are available to measure accuracy. The most used are mean absolute error (MAE), mean
absolute percentage error (MAPE), and mean squared error (MSE).

Sensitivity
The sensitivity of a model indicates the degree to which the model's outputs are affected
by changes in the selected input parameters. A sensitivity analysis identifies the sensitive
parameters for the output of the model. It allows us to determine which parameters
require further investigation so that we have a more realistic evaluation of the model's
output values. Furthermore, it allows us to identify which parameters are not significant
for the generation of a certain output and therefore can possibly be eliminated from
the model. Finally, it tells us which parameters should be considered in a possible and
subsequent analysis of the uncertainty of the output values provided by the model.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying simulation models 9

Validation
This is the process that verifies the accuracy of the proposed model. The model must be
validated to be used as a tool to support decisions. It aims to verify whether the model
that's being analyzed corresponds conceptually to our intentions. The validation of a
model is based on the various techniques of multivariate analysis, which, from time to
time, study the variability and interdependence of attributes within a class of objects.

Classifying simulation models
Simulation models can be classified according to different criteria. The first distinction is
between static and dynamic systems. So, let's see what differentiates them.

Comparing static and dynamic models
Static models are the representation of a system in an instant of time, or representative
models of a system in which the time variable plays no role. An example of a static
simulation is a Monte Carlo model.

Dynamic models, on the other hand, describe the evolution of the system over time. In
the simplest case, the state of the system at time t is described by a function x (t). For
example, in population dynamics, x (t) represents the population present at time t. The
equation that regulates the system is dynamic: it describes the instantaneous variation of
the population or the variation in fixed time intervals.

Comparing deterministic and stochastic models
A model is deterministic when its evolution, over time, is uniquely determined by its
initial conditions and characteristics. These models do not consider random elements
and lend themselves to be solved with exact methods that are derived from mathematical
analysis. In deterministic models, the output is well determined once the input data and
the relationships that make up the model have been specified, despite the time required
for data processing being particularly long. For these systems, the transformation rules
univocally determine the change of state of the system. Examples of deterministic systems
can be observed in some production and automation systems.

Stochastic models, on the other hand, can be evolved by inserting random elements
into the evolution. These are obtained by extracting them from statistical distributions.
Among the operational characteristics of these models, there is not just one relationship
that fits all. There's also probability density functions, which means there is no one-to-one
correspondence between the data and system history.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

10 Introducing Simulation Models

A final distinction is based on how the system evolves over time: this is why we
distinguish between continuous and discrete simulation models.

Comparing continuous and discrete models
Continuous models represent systems in which the state of the variables changes
continuously as a function of time. For example, a car moving on a road represents a
continuous system since the variables that identify it, such as position and speed, can
change continuously with respect to time.

In discrete models, the system is described by an overlapping sequence of physical
operations, interspersed with inactivity pauses. These operations begin and end in well-
defined instances (events). The system undergoes a change of state when each event
occurs, remaining in the same state throughout the interval between the two subsequent
events. This type of operation is easy to treat with the simulation approach.

Important Note
The stochastic or deterministic, or continuous or discrete, nature of a model
is not its absolute property and depends on the observer's vision of the system
itself. This is determined by the objectives and the method of study, as well as
by the experience of the observer.

Now that we've analyzed the different types of models in detail, we will learn how to
develop a numerical simulation model.

Approaching a simulation-based problem
To tackle a numerical simulation process that returns accurate results, it is crucial to
rigorously follow a series of procedures that partly precede and partly follow the actual
modeling of the system. We can separate the simulation process workflow into the
following individual steps:

1. Problem analysis

2. Data collection

3. Setting up the simulation model

4. Simulation software selection

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Approaching a simulation-based problem 11

5. Verification of the software solution

6. Validation of the simulation model

7. Simulation and analysis of results

To fully understand the whole simulation process, it is essential to analyze the various
phases that characterize a study based on simulation in depth.

Problem analysis
In this initial step, the goal is to understand the problem by trying to identify the aims
of the study and the essential components, as well as the performance measures that
interest them. Simulation is not simply an optimization technique and therefore there
is no parameter that needs to be maximized or minimized. However, there is a series of
performance indices whose dependence on the input variables must be verified. If an
operational version of the system is already available, the work is simplified as it is enough
to observe this system to deduce its fundamental characteristics.

Data collection
This represents a crucial step in the whole process since the quality of the simulation
model depends on the quality of the input data. This step is closely related to the
previous one. In fact, once the objective of the study has been identified, data is collected
and subsequently processed. Processing the collected data is necessary to transform
it into a format that can be used by the model. The origin of the data can be different:
sometimes, the data is retrieved from company databases, but more often than not, direct
measurements in the field must be made through a series of sensors that, in recent years,
have become increasingly smart. These operations weigh down the entire study process,
thus lengthening their execution times.

Setting up the simulation model
This is the crucial step of the whole simulation process; therefore, it is necessary to pay
close attention to it. To set up a simulation model, it is necessary to know the probability
distributions of the variables of interest. In fact, to generate various representative
scenarios of how a system works, it is essential that a simulation generates random
observations from these distributions.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

12 Introducing Simulation Models

For example, when managing stocks, the distribution of the product being requested and
the distribution of time between an order and the receipt of the goods is necessary. On
the other hand, when managing production systems with machines that can occasionally
fail, it will be necessary to know the distribution of time until a machine fails and the
distribution of repair times.

If the system is not already available, it is only possible to estimate these distributions by
deriving them, for example, from the observation of similar, already existing systems.
If, from the analysis of the data, it is seen that this form of distribution approximates a
standard type distribution, the standard theoretical distribution can be used by carrying
out a statistical test to verify whether the data can be well represented by that probability
distribution. If there are no similar systems from which observable data can be obtained,
other sources of information must be used: machine specifications, instruction manuals
for the machines, experimental studies, and so on.

As we've already mentioned, constructing a simulation model is a complex procedure.
Referring to simulating discrete events, constructing a model involves the following steps:

1. Defining the state variables

2. Identifying the values that can be taken by the state variables

3. Identifying the possible events that change the state of the system

4. Realizing a simulated time measurement, that is, a simulation clock, that records the
flow of simulated time

5. Implementing a method for randomly generating events

6. Identifying the state transitions generated by events

After following these steps, we will have the simulation model ready for use. At this
point, it will be necessary to implement this model in a dedicated software platform;
let's see how.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Approaching a simulation-based problem 13

Simulation software selection
The choice of the software platform that you will perform the numerical simulation with
is fundamental for the success of the project. In this regard, we have several solutions that
we can adopt. This choice will be made based on our knowledge of programming. Let's see
what solutions are available:

• Simulators: These are application-oriented packages for simulation. There
are numerous interactive software packages for simulation, such as MATLAB,
COMSOL Multiphysics, Ansys, SolidWorks, Simulink, Arena, AnyLogic, and
SimScale. These pieces of software represent excellent simulation platforms whose
performance differs based on the application solutions provided. These simulators
allow us to elaborate on a simulation environment using graphic menus without the
need to program. They are easy to use but many of them have excellent modeling
capabilities, even if you just use their standard features. Some of them provide
animations that show the simulation in action, which allows you to easily illustrate
the simulation to non-experts. The limitations presented by this software solution
are the high costs of the licenses, which can only be faced by large companies, and
the difficulty in modeling solutions that have not been foreseen by the standards.

• Simulation languages: A more versatile solution is offered by the different
simulation languages available. There are solutions that facilitate the task of the
programmer who, with these languages, can develop entire models or sub-models
with a few lines of code that would otherwise require much longer drafting times,
with a consequent increase in the probability of error. An example of a simulation
language is the general-purpose simulation system (GPSS). This is a generic
programming language that was developed by IBM in 1965. In it, a simulation clock
advances in discrete steps, modeling a system as transactions enter the system and
are passed from one service to another. It is mainly used as a process flow-oriented
simulation language and is particularly suitable for application problems. Another
example of a simulation language is SimScript, which was developed in 1963 as an
extension of Fortran. SimScript is an event-based scripting language, so different
parts of the script are triggered by different events.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

14 Introducing Simulation Models

• GPSS: General-purpose programming languages are designed to be able to create
software in numerous areas of application. They are particularly suitable for
the development of system software such as drivers, kernels, and anything that
communicates directly with the hardware of a computer. Since these languages are
not specifically dedicated to a simulation activity, they require the programmer
to work harder to implement all the mechanisms and data structures necessary
in a simulator. On the other hand, by offering all the potential of a high-level
programming language, they offer the programmer a more versatile programming
environment. In this way, you can develop a numerical simulation model perfectly
suited to the needs of the researcher. In this book, we will use this solution by
devoting ourselves to programming with Python. This software platform offers a
series of tools that have been created by researchers from all over the world that
make the elaboration of a numerical modeling system particularly easy. In addition,
the open source nature of the projects written in Python makes this solution
particularly inexpensive.

Now that we've made the choice of the software platform we're going to use and have
elaborated on the numerical model, we need to verify the software solution.

Verification of the software solution
In this phase, a check is carried out on the numerical code. This is known as debugging,
which consists of ensuring that the code correctly follows the desired logical flow, without
unexpected blocks or interruptions. The verification must be provided in real time during
the creation phase because correcting any concept or syntax errors becomes more difficult
as the complexity of the model increases.

Although verification is simple in theory, debugging large-scale simulation code is a
difficult task due to virtual competition. The correctness or otherwise of executions
depends on time, as well as on the large number of potential logical paths. When
developing a simulation model, you should divide the code into modules or subroutines
in order to facilitate debugging. It is also advisable to have more than one person review
the code, as a single programmer may not be a good critic. In addition, it can be helpful to
perform the simulation when considering a large variety of input parameters and checking
that the output is reasonable.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Approaching a simulation-based problem 15

Important Note
One of the best techniques that can be used to verify a discrete-event
simulation program is one based on tracking. The status of the system, the
content of the list of events, the simulated time, the status variables, and the
statistical counters are shown after the occurrence of each event and then
compared with handmade calculations to check the operation of the code.

A track often produces a large volume of output that needs to be checked event by event
for errors. Possible problems may arise, including the following:

• There may be information that hasn't been requested by the analyst.

• Other useful information may be missing, or a certain type of error may not be
detectable during a limited debugging run.

After the verification process, it is necessary to validate the simulation model.

Validation of the simulation model
In this step, it is necessary to check whether the model that has been created provides
valid results for the system in question. We must check whether the performance
measurements of the real system are well approximated by the measurements generated
by the simulation model. A simulation model of a complex system can only approximate
it. A simulation model is always developed for a set of objectives. A model that's valid for
one purpose may not be valid for another.

Important Note
Validation is a where the level of accuracy between the model and the system is
respected. It is necessary to establish whether the model adequately represents
the behavior of the system. The value of a model can only be defined in relation
to its use. Therefore, validation is a process that aims to determine whether a
simulation model accurately represents the system for the set objectives.

In this step, the ability of the model to reproduce the real functionality the system is
ascertained; that is, it is ensured that the calibrated parameters, relative to the calibration
scenario, can be used to correctly simulate other system situations. Once the validation
phase is over, the model can be considered transferable and therefore usable for the
simulation of any new control strategies and new intervention alternatives. As widely
discussed in the literature on this subject, it is important to validate the model parameters
that were previously calibrated on the basis of data other than that used to calibrate the
model, always with reference to the phenomenon specific to the scenario being analyzed.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

16 Introducing Simulation Models

Simulation and analysis of results
A simulation is a process that evolves during its realization and where the initial results
help lead the simulation toward more complex configurations. Attention should be paid to
some details. For example, it is necessary to determine the transient length of the system
before reaching stationary conditions if you want performance measures of the system
at full capacity. It is also necessary to determine the duration of the simulation after the
system has reached equilibrium. In fact, it must always be kept in mind that a simulation
does not produce the exact values of the performance measures of a system since each
simulation is a statistical experiment that generates statistical observations regarding
the performance of the system. These observations are then used to produce estimates
of performance measures. Increasing the duration of the simulation can increase the
accuracy of these estimates.

The simulation results return statistical estimates of a system's performance measures.
A fundamental point is that each measurement is accompanied by the confidence
interval, within which it can vary. These results could immediately highlight a better
system configuration than the others, but more often, more than one candidate
configuration will be identified. In this case, further investigations may be needed to
compare these configurations.

Dynamical systems modeling
In this section, we will analyze a real case of modeling a production process. In this
way, we will learn how to deal with the elements of the system and how to translate the
production instances into the elements of the model. A model is created to study the
behavior of a system over time. It consists of a set of assumptions about the behavior of
the system being expressed using mathematical logical-symbolic relationships. These
relationships are between the entities that make up the system. Recall that a model is
used to simulate changes in the system and predict the effects of these changes on the
real system. Simple models are resolved analytically, using mathematical methods, while
complex models are numerically simulated on the computer, where the data is treated as
the data of a real system.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dynamical systems modeling 17

Managing workshop machinery
In this section, we will look at a simple example of how a discrete event simulation of
a dynamic system is created. A discrete event system is a dynamic system whose states
can assume logical or symbolic values, rather than numerical ones, and whose behavior
is characterized by the occurrence of instantaneous events within an irregular timing
sequence not necessarily known a priori. The behavior of these systems is described in
terms of states and events.

In a workshop, there are two machines, which we will call A1 and A2. At the beginning
of the day, five jobs need to be carried out: W1, W2, W3, W4, and W5. The following table
shows how long we need to work on the machines in minutes:

Figure 1.2 – Table showing work time on the machines

A zero indicates that a job does not require that machine. Jobs that require two machines
must pass through A1 and then through A2. Suppose that we decide to carry out the
jobs by assigning them to each machine so that when they become available, the first
executable job is started first, in the order from 1 to 5. If, at the same time, more jobs can
be executed on the same machine, we will execute the one with a minor index first.

The purpose of modeling is to determine the minimum time needed to complete all the
works. The events in which state changes can occur in the system are as follows:

1. A job becomes available for a machine.

2. A machine starts a job.

3. A machine ends a job.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

18 Introducing Simulation Models

Based on these rules and the evaluation times indicated in the previous table, we can
insert the sequence of the jobs, along with the events scheduled according to the execution
times, into a table:

Figure 1.3 – Table of job sequences

This table shows the times of the events in sequence, indicating the start and end of the
work associated with the two machines available in the workshop. At the end of each job,
a new job is sent to each machine according to the rules set previously. In this way, the
deadlines for the work and the subsequent start of another job are clearly indicated. This
is just as easy as it is to identify the time interval in which each machine is used and when
it becomes available again. The table solution we have proposed represents a simple and
immediate way of simulating a simple dynamic discrete system.

The example we just discussed is a typical case of a dynamic system in which time
proceeds in steps, in a discrete way. However, many dynamic systems are best described
by assuming that time passes continuously. In the next section, we will analyze the case of
a continuous dynamic system.

Simple harmonic oscillator
Consider a mass m resting on a horizontal plane, without friction, and attached to a wall
by an ideal spring, of elastic constant k. Suppose that, when the horizontal coordinate x
is zero, the spring is at rest. The following diagram shows the scheme of a simple
harmonic oscillator:

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dynamical systems modeling 19

Figure 1.4 – The scheme of a harmonic oscillator

If the block of mass m is moved to the right with respect to its equilibrium position (x> 0),
the spring, being elongated, calls it to the left. Conversely, if the block is placed to the left
of its equilibrium position (x < 0), then the spring is compressed and pushes the block to
the right. In both cases, we can express the component along the x-axis of the force due to
the spring according to the following formula:

Here, we have the following:

• is the force.

• is the elastic constant.

• is the horizontal coordinate that indicate the position of the mass m.

From the second law of dynamics, we can derive the component of acceleration along x
as follows:

Here, we have the following:

• is the acceleration.

• is the elastic constant.

• is the mass of the block.

• is the horizontal coordinate that indicate the position of the mass m.

𝐹𝐹𝑥𝑥 = −𝑘𝑘 ∗ 𝑥𝑥

𝑎𝑎𝑥𝑥 = − 𝑘𝑘
𝑚𝑚 ∗ 𝑥𝑥

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

20 Introducing Simulation Models

If we indicate with
=

 the rate of change of the speed and with
=

 the speed,
we can obtain the evolution equations of the dynamic system, as follows:

Here, we have the following:

• 𝜔𝜔2 = − 𝑘𝑘
𝑚𝑚

For these equations, we must associate the initial conditions of the system, which we can
write in the following way:

The solutions to the previous differential equations are as follows:

In this way, we obtained the mathematical model of the analyzed system. In order to study
the evolution of the oscillation phenomenon of the mass block m over time, it is enough
to vary the time and calculate the position of the mass at that instant and its speed.

In decision-making processes characterized by high levels of complexity, the use of
analytical models is not possible. In these cases, it is necessary to resort to models that
differ from those of an analytical type for the use of the calculator as a tool not only for
calculation, such as in mathematical programming models, but also for representing the
elements that make up reality why studying the relationships between them.

Predator-prey model
In the field of simulations, simulating the functionality of production and logistic
processes is considerably important. These systems are, in fact, characterized by high
complexity, numerous interrelationships between the different processes that pass through
them, segment failures, unavailability, and the stochasticity of the system parameters.

{
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑣𝑣
𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑 = − 𝜔𝜔2 ∗ 𝑑𝑑

{𝑥𝑥(0) = 𝑥𝑥0
𝑣𝑣(0) = 𝑣𝑣0

{ 𝑥𝑥(𝑡𝑡) = 𝑥𝑥0 cos(𝜔𝜔𝑡𝑡) + 𝑣𝑣0
𝜔𝜔 sin (𝜔𝜔𝑡𝑡)

𝑣𝑣(𝑡𝑡) = 𝑣𝑣0 cos(𝜔𝜔𝑡𝑡) − 𝑥𝑥0𝜔𝜔 sin (𝜔𝜔𝑡𝑡)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dynamical systems modeling 21

To understand how complex the analytical modeling of some phenomena is, let's analyze
a universally widespread biological model. This is the predator-prey model, which was
developed independently by the Italian researcher Vito Volterra and the American
biophysicist Alfred Lotka.

On an island, there are two populations of animals: prey and predators. The vegetation
of the island provides the prey with nourishment in quantities that we can consider as
unlimited, while the prey is the only food available for the predators. We can consider
the birth rate of the prey constant over time; this means that in the absence of predators,
the prey would grow by exponential law. Their mortality rate, on the other hand, depends
on the probability they have of falling prey to a predator and therefore on the number of
predators present per unit area.

As for the predators, the mortality rate is constant, while their growth rate depends on
the availability of food and therefore on the number of prey per unit area present on the
island. We want to study the trend of the size of the two populations over time, starting
from a known initial situation (number of prey and predators).

To carry out a simulation of this biological system, we can model it by means of the
following system of finite difference equations, where x(t) and y(t) are the number of prey
and predators at time t, respectively:

Here, we have the following:

• α, β, γ, δ are positive real parameters related to the interaction of the two species

• is the instantaneous growth rates of the prey.

• is the instantaneous growth rates of the predators.

The following hypotheses underlie in this model:

• In the absence of predators, the number of prey increases according to an
exponential law, that is, with a constant rate.

• Similarly, in the absence of prey, the number of predators decreases at a
constant rate.

{
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝛼𝛼 ∗ 𝑑𝑑(𝑑𝑑) − 𝛽𝛽 ∗ 𝑑𝑑(𝑑𝑑) ∗ 𝑦𝑦(𝑑𝑑)
𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑 = 𝛾𝛾 ∗ 𝑦𝑦(𝑑𝑑) − 𝛿𝛿 ∗ 𝑑𝑑(𝑑𝑑) ∗ 𝑦𝑦(𝑑𝑑)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

This is a deterministic and continuous simulation model. In fact, the state of the system,
represented by the size of the two populations in each instance of time, is univocally
determined by the initial state and the parameters of the model. Furthermore, at least in
principle, the variables – that is, the size of the populations – vary continuously over time.

The differential system is in normal form and can be solved with respect to the derivatives
of maximum order but cannot be separated into variables. It is not possible to solve this
in an analytical form, but with numerical methods, it is solved immediately (the Runge-
Kutta method). The solution obviously depends on the values of the four constants and
the initial values.

Summary
In this chapter, we learned what is meant by simulation modeling. We understood
the difference between modeling and simulation, and we discovered the strengths of
simulation models, such as defects. To understand these concepts, we clarified the
meaning of the terms that appear most frequently when dealing with these topics.

We then analyzed the different types of models: static versus dynamic, deterministic
versus stochastic, and continuous versus discrete. We then explored the workflow
connected to a numerical simulation process and highlighted the crucial steps. Finally, we
studied some practical modeling cases to understand how to elaborate on a model starting
from the initial considerations.

In the next chapter, we will learn how to approach a stochastic process and understand
the random number simulation concepts. Then, we will explore the differences between
pseudo and non-uniform random numbers, as well as the methods we can use for random
distribution evaluation.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
Understanding

Randomness and
Random Numbers

In many real-life situations, it is useful to flip a coin in order to decide what to do. Many
computers also use this procedure as part of their decision-making process. In fact, many
problems can be solved in a very effective and relatively simple way by using probabilistic
algorithms. In an algorithm of this type, decisions are made based on random
contributions that remember the dice roll with the help of a randomly chosen value.

The generation of random numbers has ancient roots, but only recently has the process
been sped up, allowing it to be used on a large scale in scientific research as well. These
generators are mainly used for computer simulations, statistical sampling techniques, or
in the field of cryptography.

In this chapter, we're going to cover the following topics:

• Stochastic processes

• Random number simulation

• The pseudorandom number generator

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

24 Understanding Randomness and Random Numbers

• Testing uniform distribution

• Exploring generic methods for random distributions

• Random number generation using Python

Technical requirements
In this chapter, we will introduce random number generation techniques. In order to
understand these topics, a basic knowledge of algebra and mathematical modeling is
needed.

To work with the Python code in this chapter, you need the following files (available on
GitHub at https://github.com/PacktPublishing/Hands-On-Simulation-
Modeling-with-Python):

• LinearCongruentialGenerator.py

• LearmouthLewisGenerator.py

• LaggedFibonacciAlgorithm.py

• UniformityTest.py

• Random.Generation.py

Stochastic processes
A stochastic process is a family of random variables that depends on a parameter, t. A
stochastic process is specified using the following notation:

Here, t is a parameter, and T is the set of possible values of t.

Usually, time is indicated by t, so a stochastic process is a family of time-dependent
random variables. The variability range of t, that is, the set, T, can be a set of real numbers,
possibly coinciding with the entire time axis. But it can also be a discrete set of values.

The random variables, Xt, are defined on the set, X, called the space of states. This can be a
continuous set, in which case it is defined as a continuous stochastic process, or a discrete
set, in which case it is defined as a discrete stochastic process.

Consider the following elements:

{𝑋𝑋𝑡𝑡 , 𝑡𝑡 ∈ 𝑇𝑇}

𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ∈ 𝑋𝑋

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python
https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python

Stochastic processes 25

This means the values that the random variables, Xt, can take are called system states and
represent the possible results of an experiment. The Xt variables are linked together by
dependency relationships. We can know a random variable if we know both the values
it can assume and the probability distribution. So, to understand a stochastic process,
it is necessary not only to know the values that Xt can take but also the probability
distributions of the variables and the joint distributions between the values. Simpler
stochastic processes, in which the variability range of t is a discrete set of time values,
 can also be considered.

Important note
In practice, there are numerous phenomena that are studied through the
theory of stochastic processes. A classic application in physics is the study of
the motion of a particle in each medium, the so-called Brownian motion.
This study is carried out statistically using a stochastic process. There are
processes where even by knowing the past and the present, the future cannot
be determined; whereas, in other processes, the future is determined by the
present without considering the past.

Types of stochastic process
Stochastic processes can be classified according to the following characteristics:

• Space of states

• Time index

• Type of stochastic dependence between random variables

The state space can be discrete or continuous. In the first case, the stochastic process
with discrete space is also called a chain, and space is often referred to as the set of
non-negative integers. In the second case, the set of values assumed by the random
variables is not finite or countable, and the stochastic process is in continuous space.

The time index can also be discrete or continuous. A discrete-time stochastic process is
also called a stochastic sequence and is denoted as follows:

Here, the set, T, is finite or countable.

{𝑋𝑋𝑛𝑛 | 𝑛𝑛 ∈ 𝑇𝑇}

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

26 Understanding Randomness and Random Numbers

In this case, the changes of state are observed only in certain instances: finite or countable.
If state changes occur at any instant in a finite or infinite set of real intervals, then there is
a continuous-time process, which is denoted as follows:

{𝑋𝑋(𝑡𝑡) | 𝑡𝑡 ∈ 𝑇𝑇}

The stochastic dependence between random variables, X(t), for different values of t
characterizes a stochastic process and sometimes simplifies its description. A stochastic
process is stationary in the strict sense that the distribution function is invariant with
respect to a shift on the time axis, T. A stochastic process is stationary in the broad sense
that the first two moments of the distribution are independent of the position on the
T axis.

Examples of stochastic processes
The mathematical treatment of stochastic processes seems complex, yet we find cases of
stochastic processes every day. For example, the number of patients admitted to a hospital
as a function of time, observed at noon each day, is a stochastic process in which the space
of states is discrete, being a finite subset of natural numbers, and time is discrete. Another
example of a stochastic process is the temperature measured in a room as a function of
time, observed at every instant, with continuous state space and continuous time. Let's
now look at a number of structured examples that are based on stochastic processes.

The Bernoulli process
The concept of a random variable allows us to formulate models that are useful for
the study of many random phenomena. An important early example of a probabilistic
model is the Bernoulli distribution, named in honor of the Swiss mathematician, James
Bernoulli (1654-1705), who made important contributions to the field of probability.

Some of these experiments consist of repeatedly performing a given test. For example,
we want to know the probability of getting a head when throwing a coin 1,000 times.

In each of these examples, we look for the probability of obtaining x successes in n trials.
If x indicates the successes, then n - x will be the failures.

A sequence of Bernoulli trials consists of a Bernoulli trial under the following hypotheses:

• There are only two possible mutually exclusive results for each trial, arbitrarily
called success and failure.

• The probability of success, p, is the same for each trial.

• All tests are independent.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Stochastic processes 27

Independence means that the result of a test is not influenced by the result of any other
test. For example, the event, the third test was successful, is independent of the event, the
first test was successful.

The toss of a coin is a Bernoulli trial: the heads event can be considered successful, and
the tails event can be considered unsuccessful. In this case, the probability of success is p
= 1/2. In rolling two dice, the event, the sum of the points is seven, and the complementary
event are both unsuccessful. In this case, it is a Bernoulli trial and the probability of
success is p = 1/6.

Important note
Two events are said to be complementary when the occurrence of the first
excludes the occurrence of the second but one of the two will certainly occur.

Let p denote the probability of success in a Bernoulli trial. The random variable, X, which
counts the number of successes in n trials is called the binomial random variable of the n
and p parameters. X can take integer values between 0 and n.

Random walk
The random walk is a discrete parameter stochastic process in which Xt, where X
represents a random variable, describes the position taken at time t by a moving point.
The term, random walk, refers to the mathematical formalization of statistics that describe
the displacement of an object that moves randomly. This kind of simulation is extremely
important for a physicist and has applications in statistical mechanics, fluid dynamics, and
quantum mechanics.

Random walks represent a mathematical model that is used universally to simulate a path
formalized by a succession of random steps. This model can assume a variable number
of degrees of freedom, depending on the system we want to describe. From a physical
point of view, the path traced over time will not necessarily simulate a real motion, but it
will represent the trend of the characteristics of the system over time. Random walks find
applications in chemistry, biology, and physics, but also in other fields such as economics,
sociology, and information technology.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

28 Understanding Randomness and Random Numbers

Random one-dimensional walking is a model that is used to simulate the movement of
a particle moving along a straight line. There are only two potential movements on the
allowed path: either to the right (with a probability that is equal to p) or to the left (with
a probability that is equal to q) of the current position. Each step has a constant length
and is independent of the others, as shown in the following diagram:

Figure 2.1 – One-dimensional walking

The position of the point in each instant is identified by its abscissa, X(n). This position,
after n steps, will be characterized by a random term. Our aim is to calculate the
probability of passing from the starting point after n movements. Obviously, nothing
assures us that the point will return to the starting position. The variable, X(n), returns
the abscissa of the particle after n steps. It is a discrete random variable with a binomial
distribution.

At each instant, the particle steps right or left based on the value returned by a random
variable, Z(n). This variable can take only two values: +1 and -1. It assumes a + 1 value
with a probability of p > 0 and a value of -1 with a probability that is equal to q. The sum
of the two probabilities is p + q = 1. The position of the particle at instant n is given by the
following equation:

This shows the average number of returns to the origin of the particle, named p. The
probability of a single return is given by the following geometric series:

We assume that the probability of the particle returning to the origin tends to 1. This
means that despite the frequency of the returns decreasing with the increase in the
number of steps taken, they will always be in an infinite value of steps taken. So, we can
conclude that a particle with equal probability of left and right movement, left free to
walk casually to infinity with great probability, returns infinite times to the point from
which it started.

𝑋𝑋𝑛𝑛 = 𝑋𝑋𝑛𝑛−1 + 𝑍𝑍𝑛𝑛 ; 𝑛𝑛 = 1, 2, …

𝜇𝜇 = ∑ 𝑛𝑛 𝑝𝑝𝑛𝑛(1 − 𝑝𝑝) =
∞

𝑛𝑛=0
∑ 𝑛𝑛 𝑝𝑝𝑛𝑛 1

√𝑛𝑛 ∗ 𝜋𝜋
 → ∞

∞

𝑛𝑛=0

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Stochastic processes 29

The Poisson process
There are phenomena in which certain events, with reference to a certain interval of time
or space, rarely happen. The number of events that occur in that interval varies from 0 to
n, and n cannot be determined a priori. For example, the number of cars passing through
an uncrowded street in a randomly chosen 5-minute time frame can be considered a rare
event. Similarly, the number of accidents at work that happen at a company in a week, or
the number of printing errors on a page of a book, is rare.

In the study of rare events, a reference to a specific interval of time or space is
fundamental. For the study of rare events, the Poisson probability distribution is used,
named in honor of the French mathematician, Simeon Denis Poisson (1781-1840), who
first obtained the distribution. The Poisson distribution is used as a model in cases where
the events or realizations of a process, distributed randomly in space or time, are counts,
that is, discrete variables.

The binomial distribution is based on a set of hypotheses that define the Bernoulli trials,
and the same happens for the Poisson distribution. The following conditions describe
the so-called Poisson process:

• The realizations of the events are independent, meaning that the occurrence of
an event in a time or space interval has no effect on the probability of the event
occurring a second time in the same, or another, interval.

• The probability of a single realization of the event in each interval is proportional to
the length of the interval.

• In any arbitrarily small part of the interval, the probability of the event occurring
more than once is negligible.

An important difference between the Poisson distribution and the binomial distribution
is the number of trials and successes. In a binomial distribution, the number, n, of trials
is finite and the number, x, of successes cannot exceed n; in a Poisson distribution, the
number of tests is essentially infinite and the number of successes can be infinitely large,
even if the probability of having x successes becomes very small as x increases.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

30 Understanding Randomness and Random Numbers

Random number simulation
The availability of random numbers is a necessary requirement in many applications.
 In some cases, the quality of the final application strictly depends on the possibility
of generating good quality random numbers. Think, for example, of applications such
as video games, cryptography, generating visuals or sound effects, telecommunications,
signal processing, optimizations, and simulations. In an algorithm of this type, decisions
are made based on the pull of a virtual currency, which is based on a randomly
chosen value.

There is no single or general definition of a random number since it often depends on the
context. The concept of random number itself is not absolute, as any number or sequence
of numbers can appear to be random to an observer, but not to another who knows the
law with which they are generated. Put simply, a random number is defined as a number
selected in a random process from a finite set of numbers. With this definition, we focus
on the concept of randomness in the process of selecting a sequence of numbers.

In many cases, the problem of generating random numbers concerns the random
generation of a sequence of 0 and 1, from which numbers in any format can be obtained:
integers, fixed points, floating points, or strings of arbitrary length. With the right
functions, it is possible to obtain good quality sequences that can also be used in scientific
applications, such as the Monte Carlo simulation. These techniques should be easy to
implement and be usable by any computer. In addition, like all software solutions, they
should be very versatile and quickly improved.

Important note
These techniques have a big problem that is inherent to the algorithmic nature
of the process: the final string can be predicted from the starting seed. This is
why we call this process pseudorandom.

Despite this, many problems of an algorithmic nature are solved very effectively and
relatively simply using probabilistic algorithms. The simplest example of a probabilistic
algorithm is perhaps the randomized quicksort. This is a probabilistic variant of the
homonymous sorting algorithm, where, by choosing the pivot element, the algorithm
manages to randomly guarantee optimal complexity in the average case, no matter
the distribution of the input. Cryptography is a field in which randomness plays
a fundamental role and deserves specific mention. In this context, randomness does
not lead to computational advantages, but it is essential to guarantee the security of
authentication protocols and encryption algorithms.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random number simulation 31

Probability distribution
It is possible to characterize a random process from different points of view. One of
the most important characteristics is the probability distribution. The probability
distribution is a model that associates a probability with each observable modality
of a random variable.

The probability distribution can be either discrete or continuous, depending on whether
the variable is random, discrete, or continuous. It is discrete if the phenomenon is
observable with an integer number of modes. The throw of the dice is a discrete
statistical phenomenon because the number of observable modalities is equal to 6. The
random variable can take only six values (1, 2, 3, 4, 5, and 6). Therefore, the probability
distribution of the phenomenon is discrete. The probability distribution is continuous
when the random variable assumes a continuous set of values; in this case, the statistical
phenomenon can be observed with an infinite or very high number of modalities. The
probability distribution of body temperature is continuous because it is a continuous
statistical phenomenon, that is, the values of the random variable vary continuously.

Let's now look at different kinds of probability distributions.

Uniform distribution
In many cases, processes characterized by a uniform distribution are considered and
used. This means that each element is as likely as any of the others to be selected if an
infinite number of extractions is performed. If you represent the elements and their
respective probabilities of being extracted on a graph, you get a rectangular graph
as follows:

Figure 2.2 – The probabilities of the elements

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

32 Understanding Randomness and Random Numbers

Since the probability is expressed as a real number between 0 and 1, where 0 represents
the impossible event and 1 the certain event, in a uniform distribution, each element will
have a 1/n probability of being selected, where n is the number of items. In this case, the
sum of all the probabilities must give a uniform result, since, in an extraction, at least one
of the elements is chosen for sure. A uniform distribution is typical of artificial random
processes such as dice rolling, lotteries, and roulette and is also the most used in several
applications.

Gaussian distribution
Another very common probability distribution is the Gaussian or normal distribution,
which has a typical bell shape. In this case, the smaller values, or those that are closer to
the center of the curve, are more likely to be extracted than the larger ones, which are far
away from the center. The following diagram shows a typical Gaussian distribution:

Figure 2.3 – Gaussian distribution

Gaussian distribution is important because it is typical of natural processes. For example,
it can represent the distribution of the noise in many electronic components, or it can
represent the distribution of errors in measurements. It is, therefore, used to simulate
statistical distributions in the fields of telecommunications or signal processing.

Properties of random numbers
By random number, we refer to a random variable distributed in a uniform way between 0
and 1. The statistical properties that a sequence of random numbers must possess are
as follows:

• Uniformity

• Independence

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

The pseudorandom number generator 33

Suppose you divide an interval, [0.1], into n subintervals of equal amplitude. The
consequence of the uniformity property is that if N observations of a random number
are made, then the number of observations in each subinterval is equal to N/n. The
consequence of the independence property is that the probability of obtaining a value in
a particular range is independent of the values that were previously obtained.

The pseudorandom number generator
The generation of real random sequences using deterministic algorithms is impossible:
at most, pseudorandom sequences can be generated. These are, apparently, random
sequences that are actually perfectly predictable and can be repeated after a certain
number of extractions. A PRNG is an algorithm designed to output a sequence of
values that appear to be generated randomly.

The pros and cons of a random number generator
A random number generation routine must be the following:

• Replicable

• Fast

• Not have large gaps between two generated numbers

• Have a sufficiently long running period

• Generate numbers with statistical properties that are as close as possible to
ideal ones

The most common cons of random number generators are as follows:

• Numbers not uniformly distributed

• Discretization of the generated numbers

• Incorrect mean or variance

• Presence of cyclical variations

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

34 Understanding Randomness and Random Numbers

Random number generation algorithms
The first to deal with the random number generation problem was John von Neumann, in
1949. He proposed a method called middle-square. This method allows us to understand
some important characteristics of a random number generation process. To start, we need
to provide an input as the seed or a value that starts the sequence. This is necessary to be
able to generate different sequences each time. However, it is important to ensure that the
good behavior of the generator does not depend on which seed is used. From here, the
first flaw of the middle-square method appears, that is, when using the zero value as
a seed, only a sequence of zeros will be obtained.

Another shortcoming of this method is the repetitiveness of the sequences. As in all of the
other PRNGs that will be discussed, each value depends on the previous one, and, at most,
on the internal state variables of the generator. Since this is a limited number of digits, the
sequence can only be repeated from a certain point onward. The length of the sequence,
before it begins to repeat itself, is called the period. A long period is important because
many practical applications require a large amount of random data, and a repetitive
sequence might be less effective. In such cases, it is important that the choice of the seed
has no influence on the potential outcomes.

Another important aspect is the efficiency of the algorithm. The size of the output data
values and internal state, and, therefore, the generator input (seed), are often intrinsic
features of the algorithm and remain constant. For this reason, the efficiency of a PRNG
should be assessed not so much in terms of computational complexity, but in terms of the
possibility of a fast and efficient implementation of the calculation architectures available.
In fact, depending on the architecture you are working on, the choice of different PRNGs,
or different design parameters of a certain PRNG, can result in a faster implementation by
many orders of magnitude.

Linear congruential generator
One of the most common methods for generating random numbers is the Linear
Congruence Generator (LCG). The theory on which it rests is simple to understand
and implement. It also has the advantage of being computationally light. The recursive
relationship underlying this technique is provided by the following equation:

Here, we can observe the following:

• a is the multiplier (non-negative integers)

• c is the increment (non-negative integers)

𝑥𝑥𝑘𝑘+1 = (𝑎𝑎 ∗ 𝑥𝑥𝑘𝑘 + 𝑐𝑐) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

The pseudorandom number generator 35

• m is the mode (non-negative integers)

• x0 is the initial value (seed or non-negative integers)

The modulo function, denoted by mod, results in the remainder of the Euclidean division
of the first number by the second. For example, 18 mod 4 gives 2 as it is the remainder of
the Euclidean division between the two numbers.

The linear congruence technique has the following characteristics:

• It is cyclical with a period that is approximately equal to m

• The generated numbers are discretized

To use this technique effectively, it is necessary to choose very large m values. As an
example, set the parameters of the method and generate the first 16 pseudorandom values.
Here is the Python code that allowed us to generate that sequence of numbers:

import numpy as np

a = 2

c = 4

m = 5

x = 3

for i in range (1,17):

 x= np.mod((a*x+c), m)

 print(x)

The following results are returned:

0

4

2

3

0

4

2

3

0

4

2

3

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

36 Understanding Randomness and Random Numbers

0

4

2

3

In this case, the period is equal to 4. It is easy to verify that, at most, m distinct
integers, Xn, can be generated in the interval, [0, m - 1]. If c = 0, the generator is called
multiplicative. Let's analyze the Python code line by line. The first line was used to import
the library:

import numpy as np

numpy is a library of additional scientific functions of the Python language, designed
to perform operations on vectors and dimensional matrices. numpy allows you to work
with vectors and matrices more efficiently and faster than you can do with lists and lists
of lists (matrices). In addition, it contains an extensive library of high-level mathematical
functions that can operate on these arrays.

After importing the numpy library, we set the parameters that will allow us to generate
random numbers using LCG:

a = 2

c = 4

m = 5

x = 3

At this point, we can use the LCG formula to generate random numbers. We only generate
the first 16 numbers, but we will see from the results that these are enough to understand
the algorithm. To do this, we use a for loop:

for i in range (1,17):

 x= np.mod((a*x+c), m)

 print(x)

To generate random numbers according to the LCG formula, we have used the
np.mod() function. This function returns the remainder of a division when given
a dividend and divisor.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

The pseudorandom number generator 37

Random numbers with uniform distribution
A sequence of numbers uniformly distributed between [0, 1] can be obtained using the
following formula:

The obtained sequence is periodic, with a period less than or equal to m. If the period is
m, then it has a full period. This occurs when the following conditions are true:

• If m and c have prime numbers

• If m is divisible by a prime number, b, for which it must also be divisible

• If m is divisible by 4, then a - 1 must also be divisible by 4

Important note
By choosing a large value of m, you can reduce both the phenomenon of
periodicity and the problem of generating rational numbers.

Furthermore, it is not necessary for simulation purposes that all numbers between [0, 1]
are generated, because these are infinite. However, it is necessary that as many numbers as
possible within the range have the same probability of being generated.

Generally, a value of m is m ≥ 109 so that the generated numbers constitute a dense subset
of the interval, [0, 1].

An example of a multiplicative generator that is widely used in 32-bit computers is the
Learmonth-Lewis generator. This is a generator in which the parameters assume the
following values:

• a = 75

• c = 0

• m = 231 – 1

Let's analyze the code that generates the first 100 random numbers according to this
method:

import numpy as np

a = 75

c = 0

m = 2**(31) -1

x = 0.1

𝑈𝑈𝑛𝑛 = 𝑋𝑋𝑛𝑛
𝑚𝑚

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

38 Understanding Randomness and Random Numbers

for i in range(1,100):

 x= np.mod((a*x+c),m)

 u = x/m

 print(u)

The code we have just seen was analyzed line by line in the Linear congruential generator
section of this chapter. The difference, in addition to the values of the parameters, lies
in the generation of a uniform distribution in the range of [0, 1] through the following
command:

u = x/m

The following results are returned:

Figure 2.4 – LCG output

Since we are dealing with random numbers, the output will be different from the
previous one.

A comparison between the different generators must be made based on the analysis
of the periodicity, the goodness of the uniformity of the numbers generated, and the
computational simplicity. This is because the generation of very large numbers can lead
to the use of expensive computer resources. Also, if the Xn numbers get too big, they are
truncated, which can cause a loss of the desired uniformity statistics.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

The pseudorandom number generator 39

Lagged Fibonacci generator
The lagged Fibonacci algorithm for generating pseudorandom numbers arises from the
attempt to generalize the method of linear congruences. One of the reasons that led to the
search for new generators was the need, useful for many applications especially in parallel
computing, to lengthen the generator period. The period of a linear generator when m is
approximately 109 is enough for many applications, but not all of them.

One of the techniques developed is to make Xn + 1 dependent on the two previous values,
Xn and Xn − 1, instead of only on Xn, as is the case in the LCG method. In this case, the
period may arrive close to the value, m2, because the sequence will not repeat itself until
the following equality is obtained:

The simplest generator of this type is the Fibonacci sequence represented by the following
equation:

This generator was first analyzed in the 1950s and provides a period, m, but the sequence
does not pass the simplest statistical tests. We then tried to improve the sequence using
the following equation:

This sequence, although better than the Fibonacci sequence, does not return satisfactory
results. We had to wait until 1958, when Mitchell and Moore proposed the following
sequence:

Here, m is even and X0, ... X54 are arbitrary integers that are not all even. Constants 24
and 55 are not chosen at random but are numbers that define a sequence whose least
significant bits (Xn mod 2) have a period of length 255-1. Therefore, the sequence (Xn) must
have a period of length of at least 255-1. The succession has a period of 2M-1 (255-1) where
m = 2M.

Numbers 24 and 55 are commonly called lags and the sequence (Xn) is called a Lagged
Fibonacci Generator (LFG). The LFG sequence can be generalized with the following
equation:

(𝑋𝑋𝑛𝑛+𝜆𝜆, 𝑋𝑋𝑛𝑛+𝜆𝜆+1) = (𝑋𝑋𝑛𝑛, 𝑋𝑋𝑛𝑛+1)

𝑋𝑋𝑛𝑛+1 = (𝑋𝑋𝑛𝑛 + 𝑋𝑋𝑛𝑛−1) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚

𝑋𝑋𝑛𝑛+1 = (𝑋𝑋𝑛𝑛 + 𝑋𝑋𝑛𝑛−𝑘𝑘) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚

𝑋𝑋𝑛𝑛 = (𝑋𝑋𝑛𝑛−24 + 𝑋𝑋𝑛𝑛−55) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚, 𝑛𝑛 ≥ 55

𝑋𝑋𝑛𝑛 = (𝑋𝑋𝑛𝑛−𝑙𝑙 ⊗ 𝑋𝑋𝑛𝑛−𝑘𝑘) 𝑚𝑚𝑚𝑚𝑚𝑚 2𝑀𝑀, 𝑙𝑙 > 𝑘𝑘 > 0

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

40 Understanding Randomness and Random Numbers

Here, ⊗ refers to any of the following operations: +, −, ×, or ⊗ (exclusive or).

Only some pairs (k, l) give sufficiently long periods. In these cases, the period is 2M-1
(2l-1). The pairs (k, l) must be chosen appropriately. The only condition on the first l
values is that at least one of them must be odd; otherwise, the sequence will be composed
of even numbers.

Let's look at how to implement a simple example of additive LFG in Python using the
following parameters: x0 = x1 = 1 and m = 232. Here is the code to generate the first 100
random numbers:

import numpy as np

x0=1

x1=1

m=2**32

for i in range (1,101):

 x= np.mod((x0+x1), m)

 x0=x1

 x1=x

 print(x)

Let's analyze the Python code line by line. The first line was used to import the library:

import numpy as np

After importing the numpy library, we set the parameters that will allow us to generate
random numbers using LFG:

x0=1

x1=1

m=2**32

At this point, we can use the LFG formula to generate random numbers. We only generate
the first 100 numbers. To do this, we use a for loop:

for i in range (1,101):

 x= np.mod((x0+x1), m)

 x0=x1

 x1=x

 print(x)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

The pseudorandom number generator 41

To generate random numbers according to the LFG formula, we use the np.mod()
function. This function returns the remainder of a division when given a dividend and
divisor. After generating the random number, the two previous values are updated as
follows:

x0=x1

x1=x

The following random numbers are printed:

Figure 2.5 – Table of random numbers using LFG

The initialization of an LFG is particularly complex, and the results of this method are
very sensitive to the initial conditions. If extreme care is not taken when choosing the
initial values, statistical defects may occur in the output sequence. These defects could
harden the initial values along with subsequent values that have a careful periodicity.
Another potential problem with LFG is that the mathematical theory behind the method
is incomplete, making it necessary to rely on statistical tests rather than theoretical
performance.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

42 Understanding Randomness and Random Numbers

Testing uniform distribution
Test adaptation (that is, the goodness of fit) in general, has the purpose of verifying
whether a variable under examination does or does not have a certain hypothesized
distribution on the basis, as usual, of experimental data. It is used to compare a set of
frequencies observed in a sample, with similar theoretical quantities assumed for the
population. By means of the test, it is possible to quantitatively measure the degree of
deviation between the two sets of values.

The results obtained in the samples do not always exactly agree with the theoretical results
that are expected according to the rules of probability. Indeed, it is very rare for this to
occur. For example, although theoretical considerations lead us to expect 100 heads and
100 tails from 200 flips of a coin, it is rare that these results are obtained exactly. However,
despite this, we must not unnecessarily deduce that the coin is rigged.

The chi-squared test
The chi-squared test is a test of hypotheses that gives us back the significance of the
relationship between two variables. It is a statistical inference technique that is based on
the chi-squared statistic and its probability distribution. It can be used with nominal and/
or ordinal variables, generally arranged in the form of contingency tables.

The main purpose of this statistic is to verify the differences between observed and
theoretical values, called expected values, and to make an inference on the degree of
deviation between the two. The technique is used with three different objectives that are
all based on the same fundamental principle:

• The randomness of the distribution of a categorical variable

• The independence of two qualitative variables (nominal or ordinal)

• The differences with a theoretical model

For now, we will just consider the first aspect. The method consists of a comparison
procedure between the observed empirical frequencies and the theoretical frequencies.
Let's consider the following definitions:

• H0: Null hypothesis or the absence of a statistical relationship between two variables

• H1: Research hypothesis that supports the existence of the relationship, for instance,
H1 is true if H0 is false

• Fo: Observed frequencies, that is, the number of data of a cell detected

• Fe: Expected frequencies, that is, the frequency that should be obtained based on the
marginal totals if there was no association between the two variables considered

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing uniform distribution 43

The chi-squared test is based on the difference between observed and expected
frequencies. If the observed frequency is very different from the expected frequency, then
there is an association between the two variables.

As the difference between the observed frequency and the expected frequency increases,
so does the value of chi-squared. The chi-squared value is calculated using the following
equation:

Let's look at an example to understand how to calculate this value. We build a contingency
table that shows student choices for specific courses divided by genres. These are the
observed values:

Figure 2.6 – Table of student choices divided by genres

In addition, we calculate the representation of each value as a percentage of column totals
(observed frequencies):

Figure 2.7 – Table of choices in percentages of column totals

Now we calculate the expected value, as follows:

Expected value =
(𝑇𝑇𝑇𝑇𝑇𝑇 𝑟𝑟𝑇𝑇𝑟𝑟) ∗ (𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝑇𝑇𝑇𝑇𝑇𝑇

Let's calculate it for the first cell (Biotechnology – Male):

Expected value =
(985) ∗ (1166)

2239 = 512.9567

χ2 = ∑
(𝐹𝐹𝑜𝑜 − 𝐹𝐹𝑒𝑒)2

𝐹𝐹𝑒𝑒

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

44 Understanding Randomness and Random Numbers

The contingency matrix of expected values is as follows:

Figure 2.8 – Table of contingency matrix

Let's calculate the contingency differences (Fo – Fe), as follows:

Figure 2.9 – Table of contigency differences

Finally, we can calculate the chi-squared value, as follows:

If the two characters were independent, we would expect a chi-squared value of zero. On
the other hand, random fluctuations are always possible. So, even in the case of perfect
independence, we will never have zero. Therefore, even chi-squared values that are far
from zero could make the result compatible with the null hypothesis, H0, of independence
between the variables.

Important note
One question that arises is whether the value obtained is only the result
of a fluctuation, or does it arise from the dependence between the data?

Statistical theory tells us that if the variables are independent, the distribution of the
chi-squared frequencies follows an asymmetric curve. In our case, we have a frequency
distribution table of two features: course and gender. That is, the course feature with three
modes and the genre feature with two modes. In the case of independence, how much is
the square value that leaves a 5% probability on the right?

To answer this question, we must first calculate the so-called degrees of freedom, n, which
is defined as follows:

𝑛𝑛 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑛𝑛𝑜𝑜𝑟𝑟𝑟𝑟 − 1) ∗ (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟 − 1)

χ2 = ∑
(𝐹𝐹𝑜𝑜 − 𝐹𝐹𝑒𝑒)2

𝐹𝐹𝑒𝑒
=

(−101.957)2

512.9567 +
(−101.957)2

472.0433 + ⋯ = 84.35

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing uniform distribution 45

In our case, from the contingency table, we obtain the following:

𝑛𝑛 = (3 − 1) ∗ (3 − 1) = 2 ∗ 1 = 2

Now we need the following chi-squared distribution table:

Figure 2.10 – Chi-squared distribution table

In the previous table, we look for the value, n = 2, in the first column, and then we
scroll through the rows until we reach the column that is equal to 0.05. Here, we find
the following:

This means that if the data was independent, we would only have a 5% chance of getting
χ2 > 5.99 from the calculations. Having obtained χ2 = 84.35 , we can discard the null
hypothesis, H0, of independence from the data with a confidence of 5%. This means the
possibility that H0 is true is only 5%. Therefore, the research hypothesis, H1, will be true,
with 95% confidence.

Uniformity test
After having generated the pseudorandom numerical sequence, it is necessary to verify
the goodness of the obtained sequence. It is a question of checking whether the sequence
obtained, which constitutes a random sample of the experiment, follows a uniform
distribution. To carry out this check, we can use the χ2 test (chi-squared test). Let's
demonstrate how to do this.

χ2,0.052 = 5.99

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

46 Understanding Randomness and Random Numbers

The first operation is to divide the interval, [0, 1], into s subintervals of the same length.
Then, we count how many numbers of the generated sequence are included in the i-th
interval, as follows:

The Ri values should be as close as possible to the N/s value. If the sequence were perfectly
uniform, then each subinterval would have the same number of samples in the sequence.

We indicate, with V, the variable to perform the test. This variable is calculated using the
following formula:

After introducing the tools that allow us to perform a uniformity test, let's analyze a
practical example that will help us to understand how to carry out this procedure. We
generate a pseudorandom numerical sequence of 100 values, by means of the congruent
linear generator, by fixing the parameters as follows:

• a = 75

• c = 0

• m = 231 – 1

This is the random number generator already seen in the Lagged Fibonacci generator
section. We have already introduced the code that allows us to generate the sequence, so
let's modify it for our new requirements by storing the sequence in an array:

import numpy as np

a = 75

c = 0

m = 2**(31) -1

x = 0.1

u=np.array([])

for i in range(0,100):

 x= np.mod((a*x+c),m)

 u= np.append(u,x/m)

 print(u[i])

𝑅𝑅𝑖𝑖 = {𝑥𝑥𝑖𝑖 |𝑥𝑥𝑗𝑗 ∈ 𝑠𝑠𝑖𝑖, 𝑗𝑗 = 1, … 𝑁𝑁}

𝑉𝑉 = ∑
(𝑅𝑅𝑖𝑖 − 𝑁𝑁

𝑠𝑠)
2

𝑁𝑁
𝑠𝑠

𝑆𝑆

𝑖𝑖=1

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing uniform distribution 47

The following results are returned:

Figure 2.11 – Output table of LFG random numbers

To better understand how the numbers are distributed in the range considered, we will
divide the interval, [0, 1], into 20 parts (s = 20), and then count how many values of
the sequence fall into each interval of amplitude 0.05.

 Finally, we calculate the V variable:

N=100

s=20

Ns =N/s

S = np.arange(0, 1, 0.05)

counts = np.empty(S.shape, dtype=int)

V=0

for i in range(0,20):

 counts[i] = len(np.where((u >= S[i]) & (u < S[i]+0.05))[0])

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

48 Understanding Randomness and Random Numbers

 V=V+(counts[i]-Ns)**2 / Ns

print("R = ",counts)

print("V = ", V)

Let's analyze the code line by line:

N=100

s=20

Ns =N/s

The first three lines set the variable, N (the number of random numbers), and s (the
number of pats), and then we calculated the ratio.

After that, we divide the interval, [0, 1], into 20 subintervals:

S = np.arange(0, 1, 0.05)

Now we initialize the counts array, which contains how many values of the sequence fall
in each interval, and the V variable, as follows:

counts = np.empty(S.shape, dtype=int)

V=0

To count how many values of the sequence fall in each interval, we will use a for loop:

for i in range(0,20):

 counts[i] = len(np.where((u >= S[i]) & (u < S[i]+0.05))[0])

 V=V+(counts[i]-Ns)**2 / Ns

First, we use the np.where() function to count how many values satisfy the following
conditions ((u >= S[i]) & (u < S[i]+0.05)); these are the extremes of each
subinterval. Then, we calculate the V variable using the following equation:

𝑉𝑉 = ∑
(𝑅𝑅𝑖𝑖 − 𝑁𝑁

𝑠𝑠)
2

𝑁𝑁
𝑠𝑠

𝑆𝑆

𝑖𝑖=1

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing uniform distribution 49

Finally, we will print the results:

print("R = ",counts)

print("V = ", V)

The following results are returned:

R = [8 3 4 7 4 5 2 3 7 7 5 4 5 2 7 5 5 5 3 9]

V = 14.8

Before analyzing the meaning of the calculated V value, let's consider the sequence
of counts obtained. To appreciate the distribution of the frequencies obtained, we draw
a bar graph:

import matplotlib.pyplot as plt

Ypos = np.arange(len(counts))

plt.bar(Ypos,counts)

The following plot is printed:

Figure 2.12 – Distribution of frequencies

As you can see, all of the ranges are covered with values ranging from a minimum of 2 to a
maximum of 9.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

50 Understanding Randomness and Random Numbers

However, now, let's analyze the value of V obtained. As we anticipated, V = 14.8, so
what do we do with this value? First, let's calculate the so-called degrees of freedom, n:

Now, we must compare the V value obtained with the probability of exceeding the critical
value. To get this value, we must visualize the chi-squared distribution table:

Figure 2.13 – The chi-squared distribution table

In the previous table, we look for the value, n = 19, in the first column, and then we
scroll through the rows until we reach the column that is equal to 0.05. Here, we find
the following:

If the statistic of the V test is less (14.8 < 30.14), then we can accept the hypothesis of
uniformity of the generated sequence.

𝑛𝑛 = (2 − 1) ∗ (20 − 1) = 1 ∗ 19 = 19

χ19,0.052 = 30.14

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring generic methods for random distributions 51

Exploring generic methods for random
distributions
Most programming languages provide users with functions for the generation of
pseudorandom numbers with uniform distributions in the range of [0, 1]. These
generators are, very often, considered to be continuous. However, in reality, they are
discrete even if they have a very small discretization step. Any sequence of pseudorandom
numbers can always be generated from a uniform distribution of random numbers. In
the following sections, we will examine some methods that allow us to derive a generic
distribution starting from a uniform distribution of random numbers.

The inverse transform sampling method
By having a PRNG with continuous and uniform distributions in the range of [0, 1], it
is possible to generate continuous sequences with any probability distribution using the
inverse transform sampling technique. Consider a continuous random variable, x, having
a probability density function of f(x). The corresponding distribution function, F(x), is
determined for this function, as follows:

The distribution function, F(x), of a random variable indicates the probability that the
variable assumes a value that is less than or equal to x. The analytical expression (if any)
of the inverse function is then determined, such as x = F - 1. The determination of the
sample of the variable, x, is obtained by generating a value between 0 and 1 and replacing
it in the expression of the inverse distribution function.

This method can be used to obtain samples from many types of distribution functions,
such as exponential, uniform, or triangular. It turns out to be the most intuitive, but not
the most computationally effective, method.

Let's proceed by starting with a decreasing exponential distribution:

The corresponding distribution function, F(x), is determined for this function, as follows:

𝐹𝐹(𝑥𝑥) = ∫ 𝑓𝑓(𝑥𝑥) ∗ 𝑑𝑑𝑥𝑥
𝑥𝑥

0

𝑓𝑓(𝑥𝑥) = 𝜆𝜆 ∗ 𝑒𝑒−𝜆𝜆𝜆𝜆, 𝜆𝜆 > 0

𝐹𝐹(𝑥𝑥) = ∫ 𝜆𝜆 ∗ 𝑒𝑒−𝜆𝜆𝜆𝜆 ∗ 𝑑𝑑𝑥𝑥
∞

0
= 1

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

52 Understanding Randomness and Random Numbers

The trend of the decreasing exponential distribution function is shown in the
following plot:

Figure 2.14 – Representation of the decreasing exponential function

Get the distribution function by solving the integral:

By operating the inverse transformation of the distribution function, we get the following:

Here, r is within the range of [0 ÷ 1]. r is extracted from a uniform distribution by means
of a uniform generator. λ represents the average inter-arrival frequency if x represents the
time, and 1/λ is the average inter-arrival time.

The method of the inverse transformation in the discrete case has a very intuitive
justification. The interval, [0, 1], is divided into contiguous subintervals of amplitude
p (x1), p (x2),. . . and X is assigned according to whether these intervals contain the
U that is being generated.

The acceptance-rejection method
The inverse transformation method is based on the calculation of the inverse
transformation, F – 1, which cannot always be calculated (or, at least, not efficiently).
In the case of law distributions defined on finite intervals [a, b], the rejection-acceptance
method is used.

𝐹𝐹(𝑥𝑥) = ∫ 𝜆𝜆 ∗ 𝑒𝑒−𝜆𝜆𝜆𝜆 ∗ 𝑑𝑑𝑥𝑥
∞

0
= 1 − 𝑒𝑒−𝜆𝜆𝜆𝜆 = 𝑟𝑟

𝑥𝑥 = − 1
𝜆𝜆 ∗ 𝑙𝑙𝑙𝑙(1 − 𝑟𝑟)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random number generation using Python 53

Suppose we know the probability density of the random variable, X, that we intend to
generate: fX(x). This is defined on a finite interval, [a, b], and the image is defined in the
range of [0, c]. In practice, the fX(x) function is entirely contained within the rectangle,
[a, b] x [0, c], as shown in the following plot:

Figure 2.15 – Representation of the f(x) function

We generate two uniform pseudorandom sequences between [0, 1]: U1 and U2. Next, we
derive two other uniform numerical sequences according to the following rule:

{𝑋𝑋 = 𝑎𝑎 + (𝑏𝑏 − 𝑎𝑎) ∗ 𝑈𝑈1
𝑌𝑌 = 𝑐𝑐 ∗ 𝑈𝑈2

Each pair of values (U1, U2) will correspond to a pair (x, y) belonging to the rectangle,
[a, b] x [0, c]. If the pair (x, y) falls within the area of the function, fX(x), it is accepted
and will subsequently be used to create the desired pseudorandom sequence; otherwise,
it will be discarded. In the latter case, the procedure is repeated until a new pair located
in the area of fX(x) is found. The sequence of X values that is obtained is a pseudorandom
sequence that follows the distribution law, fX(x), because we have chosen only values that
fall in that area.

Random number generation using Python
So far, we have seen what methods can be used for generating random numbers. We have
also proposed some solutions in Python code for the generation of random numbers
through some universally used methods. These applications have been useful for
understanding the basis on which random number generators have been made. In Python,
there is a specific module for the generation of random numbers: this is the random
module. Let's examine what it is.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

54 Understanding Randomness and Random Numbers

Introducing the random module
The random module implements PRNGs for various distributions. The random module
is based on the Mersenne Twister algorithm, which was originally developed to produce
inputs for Monte Carlo simulations. The Mersenne Twister algorithm is a PRNG that
produces almost uniform numbers suitable for a wide range of applications.

It is important to note that random numbers are generated using repeatable and
predictable deterministic algorithms. They begin with a certain seed value and, every time
we ask for a new number, we get one based on the current seed. The seed is an attribute
of the generator. If we invoke the generator twice with the same seed, the sequence of
numbers that will be generated starting from that seed will always be the same. However,
these numbers will be evenly distributed.

Let's analyze, in detail, the functions contained in the module through a series of
practical examples.

The random.random() function
The random.random() function returns the next nearest floating-point value from the
generated sequence. All return values are enclosed between 0 and 1.0. Let's explore a
practical example that uses this function:

import random

for i in range(20):

 print('%05.4f' % random.random(), end=' ')

print()

We first imported the random module and then we used a for loop to generate 20
pseudorandom numbers. Each number is printed in a format that includes 5 digits,
including 4 decimal places.

The following results are returned:

0.7916 0.2058 0.0654 0.6160 0.1003 0.3985 0.3573 0.9567 0.0193
0.4709 0.8573 0.2533 0.8461 0.1394 0.4332 0.7084 0.7994 0.3361
0.1639 0.4528

As you can see, the numbers are uniformly distributed in the range of [0, 1].

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random number generation using Python 55

By running the code repeatedly, you get sequences of different numbers. Let's try the
following:

0.6918 0.8197 0.4329 0.2674 0.4118 0.1937 0.2267 0.8259 0.9081
0.4583 0.7300 0.7148 0.9814 0.2237 0.7419 0.7766 0.2626 0.1886
0.1328 0.0037

We have confirmed that every time we invoke the random() function, the generated
sequence is different from the previous one.

The random.seed() function
As we have verified, the random() function produces different values each time it is
invoked and has a very large period before any number is repeated. This is useful for
producing unique values or variations, but there are times when it is useful to have the
same set of data available to be processed in different ways. To do this, we can use the
random.seed() function. This function initializes the basic random number generator.
Let's look at an example:

import random

random.seed(1)

for i in range(20):

 print('%05.4f' % random.random(), end=' ')

print()

We used the same code from the previous example. However, this time, we set the seed
(random.seed(1)). The number in parentheses is an optional argument and can be any
object whose hash can be calculated. If this argument is omitted, the current system time
is used. The current system time is also used to initialize the generator when the module is
imported for the first time.

The following results are returned:

0.1344 0.8474 0.7638 0.2551 0.4954 0.4495 0.6516 0.7887 0.0939
0.0283 0.8358 0.4328 0.7623 0.0021 0.4454 0.7215 0.2288 0.9453
0.9014 0.0306

Let's see what happens if we launch this piece of code again:

0.1344 0.8474 0.7638 0.2551 0.4954 0.4495 0.6516 0.7887 0.0939
0.0283 0.8358 0.4328 0.7623 0.0021 0.4454 0.7215 0.2288 0.9453
0.9014 0.0306

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

56 Understanding Randomness and Random Numbers

The result is similar. The seed setting is particularly useful when you want to make the
simulation repeatable.

The random.uniform() function
The random.uniform() function generates numbers within a defined numeric range.
Let's look at an example:

import random

for i in range(20):

 print('%6.4f' % random.uniform(1, 100), end=' ')

print()

We asked it to generate 20 random numbers in the range of [1, 100). The following results
are returned:

26.2741 84.3327 67.6382 9.2402 2.6524 2.4414 75.8031 25.7064
11.8394 62.8554 35.0979 7.8820 16.8029 53.2107 17.6463 28.0185
71.4474 46.0155 32.8782 47.9033

This function can be used when requesting random numbers in well-defined intervals.

The random.randint() function
This function generates random integers. The arguments for randint() are the values of
the range, including the extremes. The numbers may be negative or positive, but the first
value should be less than the second. Let's look at an example:

import random

for i in range(20):

 print(random.randint(-100, 100), end=' ')

print()

The following results are returned:

9 -85 88 -24 -68 -46 -88 -22 -82 -81 -21 -24 90 -60 6 44 -36
-67 -98 43

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random number generation using Python 57

The entire range is represented in the sequence of randomly generated numbers.

A more generic form of selecting values from a range is obtained by using the random.
range() function. In this case, the step argument is provided, in addition to the start
and end values. Let's look at an example:

import random

for i in range(20):

 print(random.randrange(0, 100,5), end=' ')

print()

The following results are returned:

5 90 30 90 70 25 95 80 5 60 30 55 15 30 90 65 90 30 75 15

The returned sequence is a random distribution of the values expected from the passed
arguments.

The random.choice() function
A common use for random number generators is to select a random element from a
sequence of enumerated values, even if these values are not numbers. The choice()
function returns a random element of the non-empty sequence passed as an argument:

import random

CitiesList = ['Rome','New York','London','Berlin','Moskov',
'Los Angeles','Paris','Madrid','Tokio','Toronto']

for i in range(10):

 CitiesItem = random.choice(CitiesList)

 print ("Randomly selected item from Cities list is - ",
CitiesItem)

The following results are returned:

Randomly selected item from Cities list is - Paris

Randomly selected item from Cities list is - Moskov

Randomly selected item from Cities list is - Tokio

Randomly selected item from Cities list is - Madrid

Randomly selected item from Cities list is - Rome

Randomly selected item from Cities list is - Los Angeles

Randomly selected item from Cities list is - Toronto

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

58 Understanding Randomness and Random Numbers

Randomly selected item from Cities list is - Paris

Randomly selected item from Cities list is - Moskov

Randomly selected item from Cities list is - Rome

At each iteration of the cycle, a new element is extracted from the list containing
the names of the cities. This function is suitable to use in extracting values from a
predetermined list.

The random.sample() function
Many simulations require random samples from a population of input values. The
random.sample() function generates samples without repeating the values and
without changing the input sequence. Let's look at an example:

import random

DataList = range(10,100,10)

print("Initial Data List = ",DataList)

DataSample = random.sample(DataList,k=5)

print("Sample Data List = ",DataSample)

The following results are returned:

Initial Data List = range(10, 100, 10)

Sample Data List = [30, 60, 40, 20, 90]

Only five elements of the initial list were selected, and this selection was completely
random.

Generating real-valued distributions
The following functions generate specific distributions of real numbers:

• betavariate (alpha, beta): This is the beta distribution. The conditions for the
parameters are alpha> -1 and beta> -1. Return values are in the range of 0 to 1.

• expovariate (Lambd): This is the exponential distribution. lambd is 1.0 divided
by the desired average. (The parameter was supposed to be called "lambda," but this
is a reserved word in Python.) The return value is between 0 and positive infinity.

• gammavariate (alpha, beta): This is the gamma distribution. The conditions
on the parameters are alpha> 0 and beta> 0.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 59

• gauss (mu, sigma): This is the Gaussian distribution. mu is the mean and sigma
is the standard deviation. This is slightly faster than the normalvariate()
function defined next.

• lognormvariate (mu, sigma): This is the normal logarithmic distribution.
If you take the natural logarithm of this distribution, you will get the normal
distribution with mean mu and sigma standard deviation. mu can have any value,
while sigma must be greater than zero.

• normalvariate (mu, sigma): This is the normal distribution. mu is the mean
and sigma is the standard deviation.

• vonmisesvariate (mu,kappa): mu is the average angle, expressed in radians
with a value between 0 and 2 * pi, while kappa is the concentration parameter,
which must be greater than or equal to zero. If kappa is equal to zero, this
distribution narrows to a constant random angle in a range between 0 and 2 * pi.

• paretovariate (alpha): This is the Pareto distribution. alpha is the
form parameter.

• weibullvariate (alpha,beta): This is the Weibull distribution. Here, alpha
is the scale parameter and beta is the form parameter.

Summary
In this chapter, we learned how to define stochastic processes and understand the
importance of using them to address numerous real-world problems. For instance, the
operation of slot machines is based on the generation of random numbers, as are many
complex data encryption procedures. Next, we introduced the concepts behind random
number generation techniques. We explored the main methods of generating random
numbers using practical examples in Python code. The generation of uniform and generic
distributions was discussed. We also learned how to perform a uniformity test using the
chi-squared method. Finally, we looked at the main functions available in Python for
generating random numbers: random, seed, uniform, randint, choice,
and sample.

In the next chapter, we will learn the basic concepts of probability theory. Additionally,
we will learn how to calculate the probability of an event happening after it has already
occurred, and then we will learn how to work with discrete and continuous distributions.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

3
Probability and

Data Generation
Processes

The field of probability calculation was born in the context of gambling. It was then
developed further, assuming a relevant role in the analysis of collective phenomena and
becoming an essential feature of statistics and statistical decision theory. Probability
calculation is an abstract and highly formalized mathematical discipline, while
maintaining relevance to its original and pertinent empirical context. The concept of
probability is strongly linked to that of uncertainty. The probability of an event can, in
fact, be defined as the quantification of the level of randomness of that event. What is
not known or cannot be predicted with an absolute level of certainty is known as being
random. In this chapter, we will learn how to distinguish between the different definitions
of probabilities and how these can be integrated to obtain useful information in the
simulation of real phenomena.

In this chapter, we're going to cover the following main topics:

• Explaining probability concepts

• Understanding Bayes' theorem

• Probability distributions

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

62 Probability and Data Generation Processes

Technical requirements
In this chapter, an introduction to theory of probability will be discussed. To deal
with these topics, it is necessary that you have a basic knowledge of algebra and
mathematical modeling.

To install a library not contained in your Python environment, use the pip install
command. To work with the Python code in this chapter, you need the following
files (available on GitHub at the following URL: https://github.com/
PacktPublishing/Hands-On-Simulation-Modeling-with-Python):

• UniformDistribution.py

• BinomialDistribution.py

• NormalDistribution.py

Explaining probability concepts
If we take a moment to reflect, we'll notice that our everyday lives are full of probabilistic
considerations, although not necessarily formalized as such. Examples of probabilistic
assessments include choosing to participate in a competition given the limited chance
of winning, the team's predictions of winning the championship, statistics that inform
us about the probability of death from smoking or failure to use seat belts in the event
of a road accident, and the chances of winning in games and lotteries.

In all situations of uncertainty, there is basically a tendency to give a measure of
uncertainty that, although indicated in various terms, expresses the intuitive meaning of
probability. The fact that probability has an intuitive meaning also means that establishing
its rules can, within certain limits, be guided by intuition. However, relying completely
on intuition can lead to incorrect conclusions. To avoid reaching incorrect conclusions,
it is necessary to formalize the calculation of probabilities by establishing their rules and
concepts in a logical and rigorous way.

Types of events
We define an event as any result to which, following an experiment or an observation,
a well-defined degree of truth can be uniquely assigned. In everyday life, some events
happen with certainty, while others never happen. For example, if a box contains only
yellow marbles, by extracting one at random, we are sure that it will be yellow, while it is
impossible to extract a red ball. We call the events of the first type – that is, extracting a
yellow marble – certain events, while those of the second type – that is, extracting a red
marble – impossible events.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python
https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python

Explaining probability concepts 63

To these two types of events – certain and impossible – are events that can happen, but
without certainty. If the box contains both yellow and red balls, then extracting a yellow
ball is a possible but not certain event, as is extracting a red ball. In other words, we
cannot predict the color of the extracted ball because the extraction is random.

Something that may or may not happen at random is called a random event. In Chapter
2, Understanding Randomness and Random Numbers, we introduced random events. An
example of such a random event is being selected in chemistry to check homework over
a week's worth of lessons.

The same event can be certain, random, or impossible, depending on the context in which
it is considered. Let's analyze an example: winning the Mega Millions jackpot game. This
event can be considered certain if we buy all the tickets of the game; it is impossible if we
do not buy even one; and it is random if we buy one or more than one, but not all.

Calculating probability
The succession of random events has led people to formulate bets on their occurrence.
The concept of probability was born precisely because of gambling. 3,000 years ago,
the Egyptians played an ancestor of the dice game. The game of dice was widespread in
ancient Rome too, so much so that some studies have found that this game dates back to
the age of Cicero. But the birth of the systematic study of the calculation of probabilities
dates back to 1654, by the mathematician and philosopher Blaise Pascal.

Probability definition with an example
Before we analyze some simple examples of calculating the probability of the occurrence
of an event, it is good to define the concept of probability. To start, we must distinguish
between a classical approach to the definition of probability and the frequentist point
of view.

A priori probability
The a priori probability P(E) of a random event E is defined as the ratio between the
number s of the favorable cases and the number n of the possible cases, which are all
considered equally probable:

𝑃𝑃(𝐸𝐸) = number of the favorable cases
number of the possible cases = 𝑠𝑠

𝑛𝑛

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

64 Probability and Data Generation Processes

In a box, there are 14 yellow marbles and six red marbles. The marbles are similar in
every way except for their color; they're made of the same material, same size, perfectly
spherical, and so on. We'll put a hand into the box without looking inside, pulling out
a random marble. What is the probability that the pulled-out marble is red?

In total, there are 14 + 6 = 20 marbles. By pulling out a marble, we have 20 possible cases.
We have no reason to think that some marbles are more privileged than others; that is,
they are more likely to be pulled out. Therefore, the 20 possible cases are equally probable.

Of these 20 possible cases, there are only six cases in which the marble being pulled out is
red. These are the cases that are favorable to the expected event.

Therefore, the red marble being pulled out has six out of 20 possible occurrences.
Defining its probability as the ratio between the favorable and possible cases, we will
get the following:

Based on the definition of probability, we can say the following:

• The probability of an impossible event is 0

• The probability of a certain event is 1

• The probability of a random event is between 0 and 1

Previously, we introduced the concept of equally probable events. Given a group of events,
if there is no reason to think that some event occurs more frequently than others, then all
group events should be considered equally likely.

Complementary events
Complementary events are two events – usually referred to as E and Ē – that are
mutually exclusive.

For example, when rolling some dice, we consider the event as E = number 5 comes out.

The complementary event will be Ē = number 5 does not come out.

E and Ē are mutually exclusive because the two events cannot happen simultaneously;
they are exhaustive because the sum of their probabilities is 1.

For event E, there are 1 (5) favorable cases, while for event Ē, there are 5 favorable cases;
that is, all the remaining cases (1, 2, 3, 4, 6). So, the a priori probability is as follows:

𝑃𝑃(𝐸𝐸) = P(red marble pulled − out) = 6
20 = 0.3 = 30%

𝑃𝑃(𝐸𝐸) = 1
6 ; 𝑃𝑃(Ē) = 5

6

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Explaining probability concepts 65

Due to this, we can observe the following:

Relative frequency and probability
However, the classical definition of probability is not applicable to all situations. To affirm
that all cases are equally probable is to make an a priori assumption about their probability
of occurring, thus using the same concept in the definition that you want to define.

The relative frequency f(E) of an event subjected to n experiments, all carried out under
the same conditions, is the ratio between the number v of the times the event occurred
and the number n of tests carried out:

If we consider the toss of a coin and the event E = heads up, classical probability gives us
the following value:

If we perform many throws, we will see that the number of times the coin landed heads up
is almost equal to the number of times a cross occurs. That is, the relative frequency of the
event E approaches the theoretical value:

Given a random event E, subjected to n tests performed all under the same conditions, the
value of the relative frequency tends to the value of the probability as the number of tests
carried out increases.

Important Note
The probability of a repeatable event coincides with the relative frequency of its
occurrence when the number of tests being carried out is sufficiently high.

Note that in the classical definition, the probability is evaluated a priori, while the
frequency is a value that's evaluated posteriori.

𝑃𝑃(𝐸𝐸) + 𝑃𝑃(Ē) = 1
6 + 56 = 1

𝑓𝑓(𝐸𝐸) = 𝑣𝑣
𝑛𝑛

𝑃𝑃(𝐸𝐸) = 1
2

𝑓𝑓(𝐸𝐸) ≅ 𝑃𝑃(𝐸𝐸) = 1
2

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

66 Probability and Data Generation Processes

The frequency-based approach is applied, for example, in the field of insurance to assess
the average life span of an individual, the probability of theft, and the probability of
accidents. It can also be applied in the field of medicine in order to evaluate the probability
of contracting a certain disease, or the probability that a drug is effective. In all these
events, the calculation is based on what has happened in the past; that is, by evaluating the
probability by calculating the relative frequencies.

Let's now look at another approach we can use to calculate probabilities that estimates the
levels of confidence in the occurrence of a given event.

Understanding Bayes' theorem
From the Bayesian point of view, probability measures the degree of likelihood that
an event will occur. It is an inverse probability in the sense that from the observed
frequencies, we obtain the probability. Bayesian statistics foresee the calculation of the
probability of a certain event before carrying out the experiment; this calculation is
made based on previous considerations. Using Bayes' theorem, by using the observed
frequencies, we can calculate the a priori probability, and from this, we can determine the
posterior probability. By adopting this method, the prediction of the degree of credibility
of a given hypothesis is used before observing the data, which is then used to calculate the
probability after observing the data.

Important Note
In the frequentist approach, we determine how often the observation falls in
a certain interval, while in the Bayesian approach, the probability of truth is
directly attributable to the interval.

In cases where a frequentist result exists within the limit of a very large sample, the
Bayesian and frequentist results coincide. There are also cases where the frequentist
approach is not applicable.

Compound probability
Now, consider two events, E1 and E2, where we want to calculate the probability
P(E1 ∩ E2) that both occur. Two cases can occur:

• E1 and E2 are stochastically independent

• E1 and E2 are stochastically dependent

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Bayes' theorem 67

The two events, E1 and E2, are stochastically independent if they do not influence each
other, that is, if the occurrence of one of the two does not change the probability of the
second occurring. Conversely, the two events, E1 and E2, are stochastically dependent if
the occurrence of one of the two changes the probability of the second occurring.

Let's look at an example: You draw a card from a deck of 40 that contains the numbers
1-7, plus the three face cards for each suit. What is the probability that it is a face card and
from the hearts suit?

To start, we must ask ourselves whether the two events are dependent or independent.

There are 12 faces, three for each symbol, so the probability of the first event is equal to
12/40, that is, 3/10. The probability that the card is from the hearts suit is not influenced
by the occurrence of the event that the card is a face; therefore, it is worth 10/40, that is,
1/4. Therefore, the compound probability will be 3/40.

Therefore, this is a case of independent events. The compound probability is given by the
product of the probabilities of the individual events, as follows:

Let's look at a second example: We draw a card from a deck of 40 and, without putting it
back in the deck, we draw a second one. What is the probability that they are two queens?

The probability of the first event is 4/40, that is, 1/10. But when drawing the second card,
there's only 39 remaining, and there's only three queens. So, the probability that the
second card is still a queen will have become 3/39, that is, 1/13. Therefore, the compound
probability will be given by the product of the probability that the first card is a queen for
the probability that the second is still a queen, that is, 1/130.

Thus, this is a case of dependent events; that is, the probability of the second event is
conditioned by the occurrence of the first event. Similarly, the two events are considered
dependent if the two cards are drawn simultaneously, when there is no reintegration.

When the probability of an E2 event depends on the occurrence of the E1 event, we
speak of the conditional probability, which is denoted by P(E2 | E1), and we see that the
probability of E2 is conditional on E1.

When the two events are stochastically dependent, the compound probability is given by
the following equation:

𝑃𝑃(𝐸𝐸1 ∩ 𝐸𝐸2) = 𝑃𝑃(𝐸𝐸1) ∗ 𝑃𝑃(𝐸𝐸2) = 3
10 ∗ 1

4 = 3
40

(1 ∩ 2) = (1) ∗ (2 | 1) =
1

10
∗

1
13

=
1

130

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

68 Probability and Data Generation Processes

From the previous equation, we can derive the equation that gives us the conditional
probability:

After defining the concept of conditional probability, we can move on and analyze the
heart of Bayesian statistics.

Bayes' theorem
Let's say that E1 and E2 are two dependent events. In the Compound probability section,
we learned that the compound probability between the two events is calculated using the
following equation:

By exchanging the order of succession of the two events, we can write the following
equation:

The left-hand part of the two previous equations contain the same quantity, which must
also be true for the right part. Based on this consideration, we can write the following
equation:

The same is true by exchanging the order of events:

The preceding equations represent the mathematical formulation of Bayes' theorem. The
use of one or the other depends on the purpose of our work. Bayes' theorem is derived
from two fundamental probability theorems: the compound probability theorem and the
total probability theorem. It is used to calculate the probability of a cause that triggered
the verified event.

(2 | 1) =
(1 ∩ 2)

(1)

(1 ∩ 2) = (1) ∗ (2 | 1)

(1 ∩ 2) = (2) ∗ (1 | 2)

𝑃𝑃(𝐸𝐸2|𝐸𝐸1) =
𝑃𝑃(𝐸𝐸2) ∗ 𝑃𝑃(𝐸𝐸1|𝐸𝐸2)

𝑃𝑃(𝐸𝐸1)

𝑃𝑃(𝐸𝐸1|𝐸𝐸2) =
𝑃𝑃(𝐸𝐸1) ∗ 𝑃𝑃(𝐸𝐸2|𝐸𝐸1)

𝑃𝑃(𝐸𝐸2)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring probability distributions 69

In Bayes' theorem, we know the result of the experiment and we want to calculate the
probability that it is due to a certain cause. Let's analyze the elements that appear in the
equation that formalizes Bayes' theorem in detail:

Here, we have the following:

• (2| 1) is called posterior probability (what we want to calculate)

• (2) is called prior probability

• (1| 2) is called likelihood (represents the probability of observing the E1 event
when the correct hypothesis is E2)

• (1) is called marginal likelihood

Bayes' theorem applies to many real-life situations, such as in the medical field for finding
false positives in one analysis, or to verify the effectiveness of a drug.

Now, let's learn how to represent the probabilities of possible results in an experiment.

Exploring probability distributions
A probability distribution is a mathematical model that links the values of a variable to
the probabilities that these values can be observed. Probability distributions are used to
model the behavior of a phenomenon of interest in relation to the reference population, or
to all the cases of which the researcher observes a given sample.

Based on the measurement scale of the variable of interest X, we can distinguish two types
of probability distributions:

• Continuous distributions: The variable is expressed on a continuous scale

• Discrete distributions: The variable is measured with integer numerical values

𝑃𝑃(𝐸𝐸2|𝐸𝐸1) =
𝑃𝑃(𝐸𝐸2) ∗ 𝑃𝑃(𝐸𝐸1|𝐸𝐸2)

𝑃𝑃(𝐸𝐸1)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

70 Probability and Data Generation Processes

In this context, the variable of interest is seen as a random variable whose probability law
expresses the degree of uncertainty with which its values can be observed. Probability
distributions are expressed by a mathematical law called probability density function
(f(x)) or probability function (p(x)) for continuous or discrete distributions, respectively.
The following diagram shows a continuous distribution (to the left) and a discrete
distribution (to the right):

Figure 3.1 – A continuous distribution and a discrete distribution

To analyze how a series of data is distributed, which we assume can take any real value, it
is necessary to start with the definition of the probability density function. Let's see how
that works.

Probability density function
The Probability Density Function (PDF) P(x) represents the probability p(x) that a given
x value of the continuous variable is contained in the interval (x, x + Δx), divided by the
width of the interval Δx, when this tends to be zero:

The probability of finding a given x value in the interval [a, b] is given by the following
equation:

Since x takes a real value, the following property holds:

𝑃𝑃(𝑥𝑥) = lim
∆𝑥𝑥→0

𝑝𝑝(𝑥𝑥 + ∆𝑥𝑥) − 𝑝𝑝(𝑥𝑥)
∆𝑥𝑥 = 𝑑𝑑𝑝𝑝(𝑥𝑥)

𝑑𝑑𝑥𝑥

() = ∫ ()

∫ () = 1
+∞

−∞

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring probability distributions 71

In practice, we do not have an infinite set of real values, but rather a discrete set N of real
numbers xi. Then, we proceed by dividing the interval [xmin, xmax] into a certain number
Nc of subintervals (bins) of amplitude Δx, considering the definition of probability as the
ratio between the number of favorable cases and the number of possible cases.

The calculation for the PDF refers to dividing the interval [xmin, xmax] into Nc subintervals
and counting how many xi values fall into each of these subintervals, before dividing each
value by Δx * N, as shown in the following equation:

Here, we can see the following:

• P(x) is the PDF

• ni is the number of x values that fall in the i-th sub-interval

• ∆ is the amplitude of each sub-interval

• is the number of observations x

Now, let's learn how to determine the probability distribution of a variable in the Python
environment.

Mean and variance
The expected value, which is also called the average of the distribution of a random
variable, is a position index. The expected value of a random variable represents the
expected value that can be obtained with a sufficiently large number of tests so that it is
possible to predict, by probability, the relative frequencies of the various events.

The expected value of a discrete random variable, if the distribution is finite, is a real
number given by the sum of the products of each value of the random variable for the
respective probability:

The expected value is, therefore, a weighted sum of the values that the random variable
assumes when weighted with the associated probabilities. Due to this, it can be either
negative or positive.

After the expected value, the most used parameter to characterize the probability
distributions of the random variables is the variance, which indicates how scattered the
values of the random variable are relative to its average value.

𝑃𝑃(𝑥𝑥) = 𝑛𝑛𝑖𝑖
∆𝑥𝑥 ∗ 𝑁𝑁

𝐸𝐸(𝑥𝑥) = 𝑥𝑥1𝑝𝑝1 + 𝑥𝑥2𝑝𝑝2 +⋯+ 𝑥𝑥𝑛𝑛𝑝𝑝𝑛𝑛 =∑𝑥𝑥𝑖𝑖𝑝𝑝𝑖𝑖
𝑛𝑛

𝑖𝑖=1

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

72 Probability and Data Generation Processes

Given a random variable X, whatever E(X) is its expected value. Consider the random
variable X–E(X), whose values are the distances between the values of X and the expected
value E(X). Substituting a variable X for the variable X–E(X) is equivalent to translating
the reference system that brings the expected value to the origin of the axes.

The variance of a discrete random variable X, if the distribution is finite, is calculated with
the following equation:

The variance is equal to zero when all the values of the variable are equal and therefore
there is no variability in the distribution; in any case, it is positive and measures the degree
of variability of a distribution. The greater the variance, the more scattered the values are.
The smaller the variance, the more the values of X are concentrated around the average
value.

Uniform distribution
The simplest of the continuous variable probability distribution functions is the one in
which the same degree of confidence is assigned to all the possible values of a variable
defined in a certain range. Since the probability density function is constant, the
distribution function is linear. The uniform distribution is used to treat measurement
errors whenever they occur with certainty that a certain variable is contained in a certain
range, but there is no reason to believe some values are more plausible than others. Using
suitable techniques, starting from a uniformly distributed variable, it is possible to build
other variables that have been distributed at will.

Now, let's start practicing using it. We will start by generating a uniform distribution
of random numbers contained in a specific range. To do this, we will use the numpy
random.uniform() function. This function generates random values uniformly
distributed over the half-open interval [a, b); that is, it includes the first, but excludes
the second. Any value within the given interval is equally likely to be drawn by uniform
distribution:

1. To start, we import the necessary libraries:

import numpy as np

import matplotlib.pyplot as plt

𝜎𝜎2 =∑(𝑥𝑥𝑖𝑖 − 𝐸𝐸(𝑥𝑥))2 ∗ 𝑝𝑝𝑖𝑖
𝑛𝑛

𝑖𝑖=1

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring probability distributions 73

numpy is a Python library that contains numerous functions that help us manage
multidimensional matrices. Furthermore, it contains a large collection of high-level
mathematical functions that we can perform on these matrices.

matplotlib is a Python library for printing high-quality graphics. With
matplotlib, it is possible to generate graphs, histograms, bar graphs, power
spectra, error graphs, scatter graphs, and so on with a few commands. This is
a collection of command-line functions like those provided by the MATLAB
software.

2. After this, we define the extremes of the range and the number of values we want to
generate:

a=1

b=100

N=100

Now, we can generate the uniform distribution using the random.uniform()
function, as follows:

X1=np.random.uniform(a,b,N)

With that, we can view the numbers that we generated. To begin, draw a diagram in
which we report the values of the 100 random numbers that we have generated:

plt.plot(X1)

plt.show()

The following graph will be output:

Figure 3.2 – Diagram plotting the 100 numbers

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

74 Probability and Data Generation Processes

3. At this point, to analyze how the generated values are distributed in the interval
considered, we draw a graph of the probability density function:

plt.figure()

plt.hist(X1, density=True, histtype='stepfilled',
alpha=0.2)

plt.show()

The matplotlib.hist() function draws a histogram, that is, a diagram of
a continuous character shown in classes. It is used in many contexts, usually to
show statistical data, when there is an interval of the definition of the independent
variable divided into subintervals. These subintervals can be intrinsic or artificial,
can be of equal or unequal amplitude, and are or can be considered constant. Each
of these can either be an independent or dependent variable. Each rectangle has a
non-random length equal to the width of the class it represents. The height of each
rectangle is equal to the ratio between the absolute frequency associated with the
class and the amplitude of the class, and it can be defined as frequency density. The
following four parameters are passed:

• X1: Input values.

• density=True: This is a bool which, if True, makes the function return the
counts normalized to form a probability density.

• histtype='stepfilled': This parameter defines the type of histogram to
draw. The stepfilled value generates a line plot that is filled by default.

• alpha=0.2: This is a float value that defines the characteristics of the content
(0.0 is transparent and 1.0 is opaque).

The following graph will be output:

Figure 3.3 – Graph plotting the generated values

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring probability distributions 75

Here, we can see that the generated values are distributed almost evenly throughout
the range. What happens if we increase the number of generated values?

4. Then, we repeat the commands we just analyzed to modify only the number of
samples to be managed. We change this from 100 to 10000:

a=1

b=100

N=10000

X2=np.random.uniform(a,b,N)

plt.figure()

plt.plot(X2)

plt.show()

plt.figure()

plt.hist(X2, density=True, histtype='stepfilled',
alpha=0.2)

plt.show()

It is not necessary to reanalyze the piece of code line by line since we are using the
same commands. Let's see the results, starting from the generated values:

Figure 3.4 – Graph plotting the number of samples

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

76 Probability and Data Generation Processes

Now, the number of samples that have been generated has increased significantly.
Let's see how they are distributed in the range considered:

Figure 3.5 – Graph showing the sample distribution

Analyzing the previous histogram and comparing it with what we obtained in the case of
N=100, we can see that this time, the distribution appears to be flatter. The distribution
becomes more and more flat as N increases, to increase the statistics in each individual
bin.

Binomial distribution
In many situations, we are interested in checking whether a certain characteristic occurs
or not. This corresponds to an experiment with only two possible outcomes-also called
a dichotomous-that can be modeled with a random variable X that assumes value 1
(success) with probability p and value 0 (failure) with probability 1-p, with 0 <p < 1,
as follows:

𝑋𝑋 = {1, 𝑝𝑝
0, 1 − 𝑝𝑝

The expected value and variance of X are calculated as follows:

𝐸𝐸(𝑋𝑋) = 0 ∗ (1 − 𝑝𝑝) + 1 ∗ 𝑝𝑝 = 𝑝𝑝

𝜎𝜎2 = 𝐸𝐸(𝑋𝑋2) − (𝐸𝐸(𝑋𝑋))2 = (02 ∗ (1 − 𝑝𝑝) + 12 ∗ 𝑝𝑝) − 𝑝𝑝2 = 𝑝𝑝 ∗ (1 − 𝑝𝑝)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring probability distributions 77

The binomial distribution is the probability of obtaining x successes in n independent
trials. The probability density for the binomial distribution is obtained using the following
equation:

𝑃𝑃𝑥𝑥 = (𝑛𝑛
𝑥𝑥) 𝑝𝑝𝑥𝑥𝑞𝑞𝑛𝑛−𝑥𝑥 , 0 ≤ 𝑥𝑥 ≤ 𝑛𝑛

Here, we have the following:

• Px is the probability density

• n is the number of independent experiments

• x is the number of successes

• p is the probability of success

• q is the probability of fail

Now, let's look at a practical example. We throw a dice n = 10 times. In this case we
want to study the binomial variable x = number of times a number <= 3 came out. We
define the parameters of the problem as follows:

We then evaluate the probability density function with Python code, as follows:

1. Let's start as always by importing the necessary libraries:

import numpy as np

import matplotlib.pyplot as plt

Now, we set the parameters of the problem:
N = 1000

n = 10

p = 0.5

Here, N is the number of trials, n is the number of independent experiments in each
trial, and p is the probability of success for each experiment.

𝑛𝑛 = 10
0 ≤ 𝑥𝑥 ≤ 𝑛𝑛

𝑝𝑝 = 3
6 = 0.5

𝑞𝑞 = 1 − 𝑝𝑝 = 0.5

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

78 Probability and Data Generation Processes

2. Now, we can generate the probability distribution:

P1 = np.random.binomial(n,p,N)

The numpy random.binomial() function generates values from a binomial
distribution. These values are extracted from a binomial distribution with the
specified parameters. The result is a parameterized binomial distribution, in which
each value is equal to the number of successes obtained in the n independent
experiments. Let's take a look at the return values:

plt.plot(P1)

plt.show()

The following graph is output:

Figure 3.6 – A graph plotting the return values for the binomial distribution
Let's see how these samples are distributed in the range considered:

plt.figure()

plt.hist(P1, density=True, alpha=0.8, histtype='bar',
color = 'green', ec='black')

plt.show()

This time, we used a higher alpha value to make the colors brighter, we used the
traditional bar-type histogram, and we set the color of the bar.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring probability distributions 79

3. Finally, we used the ec parameter to set the edge color of each bar. The following
results are obtained:

Figure 3.7 – Histogram plotting the return values

All the areas of the binomial distributions, that is, the sum of the rectangles, being the sum
of probability, are worth 1.

Normal distribution
As the number of independent experiments that are carried out increases, the binomial
distributions approach a curve called the bell curve or Gauss curve. The normal
distribution, also called the Gaussian distribution, is the most used continuous
distribution in statistics. Normal distribution is important in statistics for the following
fundamental reasons:

• Several continuous phenomena seem to follow, at least approximately, a
normal distribution.

• The normal distribution can be used to approximate numerous discrete
probability distributions.

• The normal distribution is the basis of classical statistical inference by virtue of the
central limit theorem.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

80 Probability and Data Generation Processes

Normal distribution has some important characteristics:

• The normal distribution is symmetrical and bell-shaped.

• Its central position measures – the expected value and the median – coincide.

• Its interquartile range is 1.33 times the mean square deviation.

• The random variable in the normal distribution takes values between -∞ and + ∞.

In the case of a normal distribution, the normal probability density function is given by
the following equation:

𝑓𝑓(𝑋𝑋) = 1
√2𝜋𝜋𝜋𝜋

𝑒𝑒−(1/2)[(𝑋𝑋−𝜇𝜇)/𝜎𝜎]2

Here, we have the following:

• is the expected value.

• is the standard deviation.

Note that, since e and π are mathematical constants, the probabilities of a normal
distribution depend only on the values assumed by the parameters µ and σ.

Now, let's learn how to generate a normal distribution in Python. Let's start as always by
importing the necessary libraries:

Import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Here, we have imported a new seaborn library. It is a Python library that enhances the
data visualization tools of the matplotlib module. In the seaborn module, there are
several features we can use to graphically represent our data. There are methods that
facilitate the construction of statistical graphs with matplotlib.

Now, we set the parameters of the problem. As we've already mentioned, only two
parameters are needed to generate a normal distribution: the expected value and the
standard deviation. The μ value is also indicated as the center of the distribution and
characterizes the position of the curve with respect to the ordinate axis. The σ parameter
characterizes the shape of the curve since it represents the dispersion of the values around
the maximum of the curve.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring probability distributions 81

To appreciate the functionality of these two parameters, we will generate a normal
distribution by changing the values of these parameters, as follows:

mu = 10

sigma =2

P1 = np.random.normal(mu, sigma, 1000)

mu = 5

sigma =2

P2 = np.random.normal(mu, sigma, 1000)

mu = 15

sigma =2

P3 = np.random.normal(mu, sigma, 1000)

mu = 10

sigma =2

P4 = np.random.normal(mu, sigma, 1000)

mu = 10

sigma =1

P5 = np.random.normal(mu, sigma, 1000)

mu = 10

sigma =0.5

P6 = np.random.normal(mu, sigma, 1000)

For each distribution, we have set the two parameters (µ and σ) and then used the numpy
random.normal() function to generate a normal distribution. Three parameters are
passed: µ, σ, and the number of samples to generate. At this point, it is necessary to view
the generated distributions. To do this, we will use the distplot() function of the
seaborn library, as follows:

Plot1 = sns.distplot(P1)

Plot2 = sns.distplot(P2)

Plot3 = sns.distplot(P3)

plt.figure()

Plot4 = sns.distplot(P4)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

82 Probability and Data Generation Processes

Plot5 = sns.distplot(P5)

Plot6 = sns.distplot(P6)

plt.show()

The distplot() function allows us to flexibly plot a univariate distribution of
observations. To do this, use the hist function of matplotlib and the kdeplot() and
rugplot() functions of seaborn. Let's first analyze the results that were obtained in the
first graph:

Figure 3.8 – Seaborn plot of the samples

Three curves have been generated that represent the three distributions we have named:
P1, P2, P3. The only difference that we can notice lies in the value of μ, which assumes the
values 5, 10, 15. Due to the variation of μ, the curve moves along the x-axis, but its shape
remains unchanged. Let's now see the graph that represents the remaining distributions:

Figure 3.9 – Merged plots

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 83

In this case, by keeping the value of µ constant, we have varied the value of σ, which
assumes the following values: 2, 1, 0.5. As σ increases, the curve flattens and widens, while
as σ decreases, the curve narrows and rises.

A specific normal distribution is one that's obtained with µ = 0 and σ = 1. This distribution
is called the standardized normal distribution.

Now that we've seen all the relevant kinds of probability distribution, let's recap what we
covered in this chapter.

Summary
Knowing the basics of probability theory in depth helps us to understand how random
phenomena work. We discovered the differences between a priori, compound, and
conditioned probabilities. We have also seen how Bayes' theorem allows us to calculate
the conditional probability of a cause of an event, starting from the knowledge of the a
priori probabilities and the conditional probability. Next, we analyzed some probability
distributions, and how such distributions can be generated in Python.

In the next chapter, we will learn the basic concepts of Monte Carlo simulation and
explore some of its applications. Then, we will discover how to generate a sequence of
numbers that have been randomly distributed according to a Gaussian. Finally, we will
take a look at the practical application of the Monte Carlo method in order to calculate a
definite integral.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Section 2:
Simulation Modeling

Algorithms and
Techniques

In this section, we will analyze some of the most used algorithms in numerical
simulation. We will see the basics of how these techniques work and how to apply
them to solve real problems.

This section contains the following chapters:

• Chapter 4, Exploring Monte Carlo Simulations

• Chapter 5, Simulation-Based Markov Decision Processes

• Chapter 6, Resampling Methods

• Chapter 7, Using Simulations to Improve and Optimize Systems

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
Exploring Monte

Carlo Simulations
Monte Carlo simulation is used to reproduce and numerically solve a problem in which
random variables are also involved, and whose solution by analytical methods is too
complex or impossible. In addition, the use of simulation allows you to test the effects
of changes in the input variables or in the output function more easily and with a high
degree of detail. Starting from modeling the processes and generating random variables,
simulations composed of multiple runs capable of obtaining an approximation of the
probability of certain results are performed.

This method has assumed great importance in many scientific and engineering areas,
above all for its ability to deal with complex problems that previously could only be
solved through deterministic simplifications. It is mainly used in three distinct classes
of problems: optimization, numerical integration, and the generation of probability
functions. In this chapter, we will explore various techniques based on Monte Carlo
methods for process simulation. We will first learn the basic concepts and then we will
learn how to apply them to practical cases.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

88 Exploring Monte Carlo Simulations

In this chapter, we're going to cover the following main topics:

• Introducing Monte Carlo simulation

• Understanding the central limit theorem

• Applying Monte Carlo simulation

• Performing numerical integration using Monte Carlo

Technical requirements
In this chapter, we will provide an introduction to Monte Carlo simulation. In order to
deal with the topics in this chapter, it is necessary to have a basic knowledge of algebra and
mathematical modeling.

To work with the Python code in this chapter, you'll need the following files (available on
GitHub at the following URL: https://github.com/PacktPublishing/Hands-
On-Simulation-Modeling-with-Python):

• SimulatingPi.py

• CentralLimitTheorem.py

Introducing Monte Carlo simulation
In simulation procedures, the evolution of a process is followed, but at the same time,
forecasts of possible future scenarios are made. A simulation process consists of building a
model that closely imitates a system. From the model, numerous samples of possible cases
are generated and subsequently studied over time. After this, the results are analyzed over
time, all while highlighting the alternative decisions that can be made.

The term Monte Carlo simulation was born at the beginning of the Second World War by
J. von Neumann and S. Ulam as part of the Manhattan project at the Los Alamos nuclear
research center. They replaced the parameters of the equations that describe the dynamics
of nuclear explosions with a set of random numbers. The choice of the name Monte Carlo
was due to the uncertainty of the winnings that characterize the famous casino of the
Principality of Monaco.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python
https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python

Introducing Monte Carlo simulation 89

Monte Carlo components
To obtain a simulation with satisfactory results, applications that use the Monte Carlo
method are based on the following components:

• Probability Density Functions (PDFs) of the physical system

• Methods for estimating and reducing statistical error

• A uniform random number generator, which allows us to obtain a uniform function
distributed in the range between 0-1

• An inversion function, which allows one random variable uniform to be passed to a
population variable

• Sampling rules, which allow us to divide the space into specific volumes of interest

• Parallelization and optimization algorithms for efficient implementation with
respect to the available computing architecture

The Monte Carlo simulation calculates a series of possible realizations of the phenomenon
in question, along with the weight of the probability of a specific occurrence, while trying
to explore the whole space of the parameters of the phenomenon.

Once this random sample has been calculated, the simulation gathers measurements of
the quantities of interest on this sample. It is well executed if the average value of these
measurements on the system realizations converge to the true value.

Important Note
The functionality of the Monte Carlo simulation can be summarized as follows:
a phenomenon is observed n times, and the methods adopted in each event are
recorded, with the aim of identifying the statistical distribution of the character.

First Monte Carlo application
The primary objective of the Monte Carlo method is to estimate a parameter
representative of a population. To do this, the calculator generates a series of n random
numbers that make up the sample of the population in question.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

90 Exploring Monte Carlo Simulations

For example, suppose we want to evaluate a parameter, A, currently unknown, which
can be interpreted as the average value of a random variable. The Monte Carlo method
consists of, in this case, estimating this parameter by calculating the average of a sample
consisting of N values of X. This is obtained using a procedure that involves the use of
random numbers, as shown in the following diagram:

Figure 4.1 – Process of a random generator

In the Monte Carlo simulation, a series of possible realizations of a phenomenon are
calculated in order to explore all the available parameters.

Important Note
In this calculation, the weight of the probability of each event assumes
importance. When the representative sample is calculated, the simulation
measures the quantities of interest on this sample.

Monte Carlo simulation works if the average value of these measurements on the system
results converges to the real value.

Monte Carlo applications
The Monte Carlo simulation proves to be a valid tool for addressing the
following problems:

• Intrinsically probabilistic problems involving phenomena related to the stochastic
fluctuation of random variables

• Problems of an essentially deterministic nature, completely devoid of random
components, but whose solution strategy can be treated as an expectation value of a
function of stochastic variables

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing Monte Carlo simulation 91

The necessary conditions for the application of the method are the independence and
analogy of the experiments. For independence, it is understood that the results of each
repetition of the experiment must not be able to influence each other. By analogy,
however, reference is made to the fact that, for the observation of the character, the same
experiment is repeated n times.

Applying the Monte Carlo method for Pi estimation
The Monte Carlo method is a problem-solving strategy that uses statistics. If we indicate
with P the probability of a certain event, then we can randomly simulate this event and
obtain P by finding the ratio between the number of times our event occurred and the
number of total simulations, as follows:

We can apply this strategy to get an approximation of Pi. Pi (π) is a mathematical constant
indicating the relationship between the length of a circumference and its diameter. In fact,
if we denote by C the length of a circumference and by d its diameter, we know that C = d
* π. The length of a circumference with a diameter equal to 1 is worth π.

Important Note
Usually, we approximate the value of Pi with 3.14 to simplify the accounts.
However, π is an irrational number; that is, it has an infinite number of digits
after the decimal point that never repeat on a regular basis.

Given a circle of radius 1, it can be inscribed in a square of length 2. For convenience, we
will only consider a fraction of the circle, as shown in the following figure:

Figure 4.2 – A fraction of the circle

𝑃𝑃 = number of event occurrences
number of total simulations

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

92 Exploring Monte Carlo Simulations

By analyzing the previous figure, we can see that the area of the square in blue is 1 and that
the area of the circular sector in yellow (1/4 of the circle) is instead pi / 4. We randomly
place a very large number of points inside the square. Thanks to the very large number
and random distribution, we can approximate the size of the areas with the number of
points contained in them.

If we generate N random numbers inside the square, the number of points that fall in
the circular sector, which we will denote by M, divided by the total number of generated
numbers, N, we will have to approximate the area of the circular sector and therefore it
will be equal to Pi/4. From this, we can derive the following equation:

The greater the number of points generated, the more precise the approximation of Pi will
be.

Now, let's analyze the code line by line to understand how we have implemented the
simulation procedure for estimating Pi:

1. To start, we import the necessary libraries:

import math

import random

import numpy as np

import matplotlib.pyplot as plt

The math library provides access to the mathematical functions defined by the
C standard library. The random library implements pseudo-random number
generators for various distributions. The CIT module is based on the Mersenne
Twister algorithm. The numpy library offers additional scientific functions of the
Python language, designed to perform operations on vectors and dimensional
matrices. Finally, the matplotlib library is a Python library for printing high-
quality graphics.

2. Let's move on and initialize the parameters:

N = 10000

M = 0

𝜋𝜋 = 4 ∗ 𝑀𝑀
𝑁𝑁

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing Monte Carlo simulation 93

As we mentioned previously, N represents the number of points that we generate,
that is, those that we are going to position. Instead, M will be the points that fall
within the circular sector. To start, these points will be zero and as we generate
them, we will try to perform a check. In a positive scenario, we will gradually
increase this number.

3. Let's proceed and initialize the vectors that will contain the coordinates of the points
that we will generate:

XCircle=[]

YCircle=[]

XSquare=[]

YSquare=[]

Here, we have defined two types of points: Circle and Square. Circle is a
point that falls within the circular sector, while Square is a point that falls within
the space of the square outside the circular sector. Now, we can generate the points:

for p in range(N):

 x=random.random()

 y=random.random()

Here, we used a for loop that iterates the process a number of times equal to the
number (N) of samples we want to generate. We then used the random() function
of the CiT library to generate the points. The random() function returns the next
nearest floating-point value from the generated sequence. All the return values are
enclosed between 0 and 1.0.

4. Now, we can check where the point we just generated falls:

if(x**2+y**2 <= 1):

 M+=1

 XCircle.append(x)

 YCircle.append(y)

 else:

 XSquare.append(x)

 YSquare.append(y)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

94 Exploring Monte Carlo Simulations

The if loop allows us to check the position of the points. Recall that the points of a
circumference are defined by the following equation:

If x0=y0=0 and r=1, the previous equation turns into the following:

This makes us understand that the necessary condition for a point to fall within the
circular sector is that the following equation is verified:

If this condition is satisfied, the value of M is increased by 1 unit and the values
of the x and y values that are generated are stored in the Circle point vector
(XCircle, YCircle). Otherwise, the value of M is not updated, and the values
of x and y that are generated are stored in the vector of the Square point vector
(XSquare, YSquare).

5. Now that we've iterated this procedure for the 10,000 points that we have decided to
generate, we can make the estimate of Pi:

Pi = 4*M/N

print('N=%d M=%d Pi=%.2f' %(N,M,Pi))

In this way, we can calculate Pi and print the results, as follows:
N=10000 M=7857 Pi=3.14

The estimate that we've obtained is acceptable. Usually, we stop at the second
decimal place, so this is okay. Now, let's draw a graph, where we will draw the
generated points. To start, we will generate the points of the circumference arc:

XLin=np.linspace(0,1)

YLin=[]

for x in XLin:

 YLin.append(math.sqrt(1-x**2))

The linspace() function of the numpy library allows us to define an array
composed of a series of N numerical elements equally distributed between two
extremes (0,1). This will be the x of the arc of circumference (XLin). On the
other hand, the y numerical elements (YLin) will be obtained from the equation of
the circumference while solving them with respect to y, as follows:

(𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2 = 𝑟𝑟2

𝑥𝑥2 + 𝑦𝑦2 = 1

𝑥𝑥2 + 𝑦𝑦2 ≤ 1

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing Monte Carlo simulation 95

To calculate the square root, we used the math.sqrt() function.

6. Now that we have all the points, we can draw the graph:

plt.axis ('equal')

plt.grid (which='major')

plt.plot (XLin , YLin, color='red' , linewidth='4')

plt.scatter(XCircle, YCircle, color='yellow', marker
='.')

plt.scatter(XSquare, YSquare, color='blue' , marker
='.')

plt.title ('Monte Carlo method for Pi estimation')

plt.show()

The scatter() function allows us to represent a series of points not closely
related to each other on two axes. The following diagram is printed:

Figure 4.3 – Plot of the Pi estimation

Consistent with what we established at the beginning of this chapter, we plotted the points
inside the circular sector in yellow, while those outside the circular sector are in blue. To
highlight the separation line, we have drawn the circumference arc in red.

𝑦𝑦 = √1 − 𝑥𝑥2

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

96 Exploring Monte Carlo Simulations

Now that we've applied the Monte Carlo method to estimate Pi, the time has come
to deepen some fundamental concepts for simulation based on the generation of
random numbers.

Understanding the central limit theorem
The Monte Carlo method is essentially a numerical method for calculating the expected
value of random variables; that is, an expected value that cannot be easily obtained
through direct calculation. To obtain this result, the Monte Carlo method is based on
two fundamental theorems of statistics: the law of large numbers and the central
limit theorem.

Law of large numbers
This theorem states the following: considering a very large number of variables, x(N →∞) ,
the integral that defines the average value is approximate to the estimate of the expected
value. Let's try to give an example so that you understand this. We flip a coin 10 times, 100
times, and 1,000 times and check how many times we get heads. We can put the results we
obtained into a table, as follows:

Figure 4.4 – Table showing the results for coin toss

Analyzing the last column of the previous table, we can see that the value of the frequency
approaches the probability of 50%. We can therefore say that as the number of tests
increases, the frequency value tends to the theoretical probability value. The latter value
can be achieved in the hypothesis of a number of throws that tends to infinity.

Important Note
The use of the law of large numbers is different. Actually, the law of large
numbers allowed us, in the Applying the Monte Carlo method for Pi estimation
section, to equal the number of launches with the area of the circular sector. In
this way, we were able to estimate the value of Pi simply by generating random
numbers. Also, in this case, the greater the number of random variables
generated, the closer the estimate of Pi is to the expected value.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the central limit theorem 97

The law of large numbers allows you to determine the centers and weights of a Monte
Carlo analysis for the estimate of definite integrals but does not say how large the number
N must be. You do not have an estimate to understand with what order of magnitude you
can perform a simulation so that you can consider the numbers large enough. To answer
this question, it is necessary to resort to the central limit theorem.

Central limit theorem
Monte Carlo not only allows us to obtain an estimate of the expected value, as established
by the law of large numbers, but also allows us to estimate the uncertainty associated with
it. This is possible thanks to the central limit theorem, which returns an estimate of the
expected value and the reliability of that result.

Important Note
The central limit theorem can be summarized with the following definition:
given a dataset with an unknown distribution, the sample's means will
approximate the normal distribution.

If the law of large numbers tells us that the random variable allows us to evaluate the
expected value, the central limit theorem provides information on its distribution.

The interesting feature of the central limit theorem is that there are no constraints on the
distribution of the function used for the generation of the N samples, from which the
random variable is formed. In fact, it is not important what the distribution associated
with the random variable is, but when the average is characterized by a finite variance
and is obtained for a very large number of samples, it can be described through a Gaussian
distribution.

Let's take a look at a practical example. We generate 10,000 random numbers with a
uniform distribution. We then extract 100 samples from this population, also taken
randomly. We repeat this operation for a consistent number of times and for each time, we
evaluate its average and store this value in a vector. In the end, we draw a histogram of the
distribution that we have obtained. Here is the Python code:

import random

import numpy as np

import matplotlib.pyplot as plt

a=1

b=100

N=10000

DataPop=list(np.random.uniform(a,b,N))

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

98 Exploring Monte Carlo Simulations

plt.hist(DataPop, density=True, histtype='stepfilled',
alpha=0.2)

plt.show()

SamplesMeans = []

for i in range(0,1000):

 DataExtracted = random.sample(DataPop,k=100)

 DataExtractedMean = np.mean(DataExtracted)

 SamplesMeans.append(DataExtractedMean)

plt.figure()

plt.hist(SamplesMeans, density=True, histtype='stepfilled',
alpha=0.2)

plt.show()

Now, let's analyze the code line by line to understand how we have implemented the
simulation procedure to understand the central limit theorem:

1. To start, we import the necessary libraries:

import random

import numpy as np

import matplotlib.pyplot as plt

The random library implements pseudo-random number generators for various
distributions. The numpy library offers additional scientific functions of the
Python language and is designed to perform operations on vectors and
dimensional matrices.

Finally, the matplotlib library is a Python library for printing
high-quality graphics.

2. Let's move on and initialize the parameters:

a=1

b=100

N=10000

The a and b parameters are the extremes of the range and N is the number of values
we want to generate.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the central limit theorem 99

Now, we can generate the uniform distribution using the numpy random.
uniform() function, as follows:

 DataPop=list(np.random.uniform(a,b,N))

3. At this point, we draw a histogram of the data in order to verify that it is a uniform
distribution:

plt.hist(DataPop, density=True, histtype='stepfilled',
alpha=0.2)

plt.show()

The matplotlib.hist() function draws a histogram; that is, a diagram in
classes of a continuous character.

This is used in many contexts, usually to show statistical data when there is an
interval of definition of the independent variable divided into subintervals.

The following diagram is printed:

Figure 4.5 – Plot of the data distribution
The distribution appears evidently uniform—in fact, we can see that each bin is
populated with an almost constant frequency.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

100 Exploring Monte Carlo Simulations

4. Let's now pass the values to the extraction of the samples from the
generated population:

SamplesMeans = []

for i in range(0,1000):

 DataExtracted = random.sample(DataPop,k=100)

 DataExtractedMean = np.mean(DataExtracted)

 SamplesMeans.append(DataExtractedMean)

First, we initialized the vector that will contain the samples. To do this, we used a
for loop to repeat the operations 1,000 times. At each step, we first extracted 100
samples from the population generated using the random.sample() function.
The random.sample() function extracts samples without repeating the values
and without changing the input sequence.

5. Next, we calculated the average of the extracted samples and added the result at the
end of the vector containing the samples. Now, all we need to do is view the results:

plt.figure()

plt.hist(SamplesMeans, density=True,
histtype='stepfilled', alpha=0.2)

plt.show()

The following histogram is printed:

Figure 4.6 – Plot of the extracted samples

The distribution has now taken on the typical bell-shaped curve characteristic of the
Gaussian distribution. This means that we have proved the central limit theorem.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Monte Carlo simulation 101

Applying Monte Carlo simulation
Monte Carlo simulation used to study the response of a model to randomly generated
inputs. The simulation process takes place in the following three phases:

1. N inputs are generated randomly.

2. A simulation is performed for each of the N inputs.

3. The outputs of the simulations are aggregated and examined. The most common
measures include estimating the average value of an output and distributing the
output values, as well as the minimum or maximum output value.

Monte Carlo simulation is widely used for the analysis of financial, physical, and
mathematical models.

Generating probability distributions
The generation of probability distributions that cannot be found with analytical
methods can easily be addressed with Monte Carlo methods. For example, let's say
we want to estimate the probability distribution of the damage caused by earthquakes in a
year in Japan.

Important Note
In this type of analysis, there are two sources of uncertainty: how many
earthquakes there will be in a year and how much damage each earthquake will
do. Even if it is possible to assign a probability distribution to these two logical
levels, it is not always possible to put this information together with analytical
methods to derive the distribution of the annual losses.

It is easier to do a Monte Carlo simulation of this type, as follows:

1. A random number is extracted from the distribution of the number of
annual events.

2. If events occur from the previous point, extractions are made from the distribution
of losses.

3. Finally, we add the values of the extractions we performed to obtain a value that
represents an annual loss caused by events.

By cyclically repeating these three points, a sample of annual losses is generated,
from which it is possible to estimate the probability distribution, which could not be
obtained analytically.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

102 Exploring Monte Carlo Simulations

Numerical optimization
There are various algorithms that can be used to find the local minima of a function.
Typically, these algorithms proceed according to the following steps:

1. They start from an assigned point.

2. They control in which direction the function tends to have values smaller than the
current one.

3. Moving in this direction, they find a new point where the function has a lower value
than the previous one.

They keep repeating these steps until they reach a minimum. In the case of a function
with only one minimum, this method allows us to achieve a result. But what if we
have a function with many local minima and we want to find the point that minimizes the
function globally? The following diagram shows the two cases just mentioned;
that is, a distribution with only one minimum (left) and a distribution with several
minimums (right):

Figure 4.7 – Graphs of the two distributions

A local search algorithm could stop at any of the many local minima of the function. How
would you know if you found one of the many local minimums or the global minimum?
There is no way to strictly establish this. The only practical possibility is to explore
different areas of the search domain to increase the probability of finding, among the
various local minima, the global one.

Important Note
Different methods have been developed to explore domains, which can be very
complicated, with many dimensions and with constraints to be respected.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying Monte Carlo simulation 103

Monte Carlo methods provide a solution to this problem; that is, an initial population
of points belonging to the domain is created, which is then evolved by defining coupling
algorithms between the points in which random genetic mutations also occur. When
simulating different generations of points, a selection process intervenes that maintains
only the best points, that is, those that give lower values of the function to
be minimized.

Each generation keeps track of which point represents the best specimen ever. Continuing
with this process, the points tend to move to local lows, but at the same time, they explore
many areas of the optimization domain. This process can continue indefinitely, though
at some point it is stopped, and the best specimen is taken as an estimate of the global
minimum.

Project management
Monte Carlo methods allow you to simulate the behavior of an event of interest and, in
general, return as a result a random variable whose properties, such as mean, variance,
probability density function, and so on, provide us with important information on the
quality of the simulation.

This is a statistical analysis technique that can be applied in all those situations in which
we are faced with very uncertain project estimates, with the aim of reducing the level of
uncertainty through a series of simulations. In this sense, it can be applied to the analysis
of the times, costs, and risks associated with a project and, therefore, to the evaluation of
the impact that this project may have on the community.

Important Note
For each of these variables, the simulations do not provide a single estimate
but a range of possible estimates, along with, associated with each estimate, the
level of probability that that estimate is accurate.

For example, this technique can be used to determine the overall cost of a project through
a discrete series of simulation cycles. In the planning phase of a project, the activities that
make up the project are identified, and the cost associated with each activity is estimated.
In this way, the total cost of the project can be determined. Since, however, we rely on cost
estimates, we cannot be sure that this overall cost, and therefore also the completion costs,
are certain. A Monte Carlo simulation can therefore be carried out.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

104 Exploring Monte Carlo Simulations

Performing numerical integration using
Monte Carlo
Monte Carlo simulations represent a numerical solution for calculating integrals. In fact,
with the use of the Monte Carlo algorithm, it is possible to adopt a numerical procedure
for the solution of mathematical problems, with many variables that do not present an
analytical solution. The efficiency of the numerical solution increases compared to other
methods when the size of the problem increases.

Important Note
Let's analyze the problem of a definite integral. In the simplest cases, there are
methods for integration that foresee the use of techniques such as integration
by parts, integration by replacement, and so on. In more complex situations,
however, it is necessary to adopt numerical procedures that involve the use
of a computer. In these cases, the Monte Carlo simulation provides a simple
solution that's particularly useful in cases of multidimensional integrals.

However, it is important to highlight that the result that's returned by this simulation
approximates the integral and not its precise value.

Defining the problem
In the following equation, we denote with I the definite integral of the function f in the
limited interval [a, b]:

In the interval [a, b], we identify the maximum of the function f and indicate it with U.
To evaluate the approximation that we are introducing, we draw a base rectangle, [a, b],
and the height, U. The area under the function f(x), which represents the integral of f(x),
will surely be smaller than the area of the base rectangle, [a, b], and the height, U. The
following diagram shows the area subtended by the function f — which represents the
integral of f(x) — and the area A of the rectangle with base [a, b] and height U, which
represents our approximation:

𝐼𝐼 = ∫ 𝐹𝐹(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing numerical integration using Monte Carlo 105

Figure 4.8 – Plot of the function

By analyzing the previous diagram, we can identify the following intervals:

• x ∈ [a, b]

• y ∈ [0, U]

In the Monte Carlo simulation, x and y both represent random numbers. At this point,
we can consider a point in the plane of the Cartesian coordinates, (x, y). Our goal is to
determine the probability that this point is within the area highlighted in the previous
diagram; that is, that it is y ≤ f(x). We can identify two areas:

• The area subtended by the function f, which coincides with the definite integral I

• The area A of the rectangle with base [a, b] and height U

Let's try to write a relationship between the probability and these two areas:

It is possible to estimate the probability, P (y <= f (x)), through Monte Carlo simulation. In
fact, in Applying the Monte Carlo method for Pi estimation section, we faced a similar case.
To do this, N pairs of random numbers (xi, yi) are generated, as follows:

𝑃𝑃(𝑦𝑦 ≤ 𝑓𝑓(𝑥𝑥)) = 𝐼𝐼
𝐴𝐴 = 𝐼𝐼

(𝑏𝑏 − 𝑎𝑎) ∗ 𝑈𝑈

x𝑖𝑖 ∈ [a, b]

y𝑖𝑖 ∈ [0, U]

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

106 Exploring Monte Carlo Simulations

Generating random numbers in the intervals considered will certainly determine
conditions in which yi ≤ f (xi) will result. If we number this quantity and denote it with
the symbol M, we can analyze its variation. This is an approximation whose accuracy
increases as the number of random number pairs (xi, yi) generated increases. The
approximation of the calculation of the probability P(y < f(x)) will therefore be equal to
the following value:

After calculating this probability, it will be possible to trace the value of the integral using
the previous equation, as follows:

This is the mathematical representation of the problem. Now, let's see the
numerical solution.

Numerical solution
We will begin by setting up the components that we will need for the simulation,
starting from the libraries that we will use to defining the function and its domain of
existence. The Python code for numerical integration through the Monte Carlo method is
shown here:

import random

import numpy as np

import matplotlib.pyplot as plt

random.seed(2)

f = lambda x: x**2

a = 0.0

b = 3.0

NumSteps = 1000000

XIntegral=[]

YIntegral=[]

XRectangle=[]

YRectangle=[]

𝜇𝜇 = 𝑀𝑀𝑁𝑁

𝐼𝐼 ≅ 𝜇𝜇 ∗ (𝑏𝑏 − 𝑎𝑎) ∗ 𝑈𝑈 = 𝑀𝑀
𝑁𝑁 ∗ (𝑏𝑏 − 𝑎𝑎) ∗ 𝑈𝑈 = 𝑀𝑀

𝑁𝑁 ∗ 𝐴𝐴

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing numerical integration using Monte Carlo 107

Now, let's analyze the code line by line to understand how we have implemented the
simulation procedure to understand the central limit theorem:

1. To start, we import the necessary libraries:

import random

import numpy as np

import matplotlib.pyplot as plt

The random library implements pseudo-random number generators for various
distributions. The numpy library offers additional scientific functions of the Python
language, designed to perform operations on vectors and dimensional matrices.
Finally, the matplotlib library is a Python library for printing high-quality
graphics. Let's set the seed:

random.seed(2)

The random.seed() function is useful if we wish to have the same set of data
available to be processed in different ways as it makes the simulation reproducible.
This function initializes the basic random number generator. If you use the same
seed in two successive simulations, you always get the same sequence of pairs
of numbers.

2. Now, we will define the function that we want to integrate:

f = lambda x: x**2

We know that in order to define a function in Python, we use the def clause, which
automatically assigns a variable to it. Actually, functions can be treated like other
Python objects, such as strings and numbers. These objects can be created and used
at the same time (on the fly) without resorting to the creation and definition of
variables that contain them.

In Python, functions can also be used in this way, using a syntax called lambda.
The functions that are created in this way are anonymous. This approach is often
used when you want to pass a function as an argument for another function. The
lambda syntax requires the lambda clause, followed by a list of arguments, a colon
character, the expression to evaluate the arguments, and finally the input value.

3. Let's move on and initialize the parameters:

a = 0.0

b = 3.0

NumSteps = 1000000

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

108 Exploring Monte Carlo Simulations

As we mentioned in the Defining the problem section, a and b represent the ends
of the range in which we want to calculate the integral. NumSteps represents the
number of steps in which we want to divide the integration interval. The greater
the number of the steps, the better the simulation will be, even if the algorithm
becomes slower.

4. Now, we will define four vectors so that we can store the pairs of
generated numbers:

XIntegral=[]

YIntegral=[]

XRectangle=[]

YRectangle=[]

Whenever the generated y value is less than or equal to f(x), this value and the relative x
value will be added at the end of the XIntegral, and YIntegral vectors. Otherwise,
they will be added at the end of the XRectangle, and YRectangle vectors.

Min-max detection
Before using the method, it is necessary to evaluate the minimum and maximum of
the function:

Important Note
Recall that if the function has only one minimum/maximum, the work is
simple. If there are repeated minimums/maximums, then the procedure
becomes more complex.

1. In the following Python code, we are extracting the min/max of the distribution:

ymin = f(a)

ymax = ymin

for i in range(NumSteps):

 x = a + (b - a) * float(i) / NumSteps

 y = f(x)

 if y < ymin: ymin = y

 if y > ymax: ymax = y

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing numerical integration using Monte Carlo 109

2. To understand all these cases, even complex ones, we will look for the minimum/
maximum for each step in which we have divided the interval [a, b]. We first
initialize the minimum and maximum with the value of the function in the far left
of the range (a):

ymin = f(a)

ymax = ymin

3. Then, we use a for loop to check the value at each step:

for i in range(NumSteps):

 x = a + (b - a) * float(i) / NumSteps

 y = f(x)

4. For each step, the x value is obtained by increasing the left end of the interval (a) by
a fraction of the total number of steps provided by the current value of i. Once this
is done, the function at that point is evaluated. Now, you can check this, as follows:

 if y < ymin: ymin = y

 if y > ymax: ymax = y

5. The two if statements allow us to verify whether the current value of f is less than/
greater than the value chosen so far as the minimum/maximum and, if so, to update
these values. Now, we can apply the Monte Carlo method.

Monte Carlo method
Now, we will apply the Monte Carlo method, as follows:

1. Now that we've set and calculated the necessary parameters, it is time to proceed
with the simulation:

A = (b - a) * (ymax - ymin)

N = 1000000

M = 0

for k in range(N):

 x = a + (b - a) * random.random()

 y = ymin + (ymax - ymin) * random.random()

 if y <= f(x):

 M += 1

 XIntegral.append(x)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

110 Exploring Monte Carlo Simulations

 YIntegral.append(y)

 else:

 XRectangle.append(x)

 YRectangle.append(y)

NumericalIntegral = M / N * A

print ('Numerical integration = ' +
str(NumericalIntegral))

2. To start, we will calculate the area of the rectangle, as follows:

A = (b - a) * (ymax - ymin)

3. Then, we will set the numbers of random pairs we want to generate:

N = 1000000

4. Here, we initialize the M parameter, which represents the number of points that fall
under the curve that represents f(x):

M = 0

5. Now, we can calculate this value. To do this, we will use a for loop that iterates the
process N times. First, we generate the two random numbers, as follows:

for k in range(N):

 x = a + (b - a) * random.random()

 y = ymin + (ymax - ymin) * random.random()

6. Both x and y fall within the rectangle of area A; that is, x ∈ [a, b] and y ∈ [0, maxy].

Now, we need to determine whether the following is true:

We can do this with an if statement, as follows:
if y <= f(x):

 M += 1

 XIntegral.append(x)

 YIntegral.append(y)

𝑦𝑦 ≤ 𝑓𝑓(𝑥𝑥)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Performing numerical integration using Monte Carlo 111

7. If the condition is true, then the value of M is incremented by one unit and the
current values of x and y are added to the XIntegral and YIntegral vectors.
Otherwise, the points will be stored in the XRectangle, and YRectangle
vectors:

 else:

 XRectangle.append(x)

 YRectangle.append(y)

8. After iterating for N times, we can estimate the integral:

NumericalIntegral = M / N * A

print ('Numerical integration = ' +
str(NumericalIntegral))

The following result is printed:
Numerical integration = 8.996787006398996

The analytical solution for this simple integral is as follows:

The percentual error we made is equal to the following:

This is a negligible error that defines our reliable estimate.

Visual representation
We will now plot the results using the following steps:

1. Finally, we can visualize what we have achieved in the numerical integration by
plotting scatter plots of the generated points. For this reason, we memorized the
pairs of points that were generated in the four vectors:

XLin=np.linspace(a,b)

YLin=[]

for x in XLin:

 YLin.append(f(x))

𝐼𝐼 = ∫ 𝑥𝑥2𝑑𝑑𝑥𝑥 = [𝑥𝑥3

3 + 𝑐𝑐]
0

3
= 9

3

0

9 − 8.996787006398996
9 ∗ 100 = 0.03 %

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

112 Exploring Monte Carlo Simulations

plt.axis ([0, b, 0, f(b)])

plt.plot (XLin,YLin, color='red' , linewidth='4')

plt.scatter(XIntegral, YIntegral, color='blue', marker
='.')

plt.scatter(XRectangle, YRectangle, color='yellow',
marker ='.')

plt.title ('Numerical Integration using Monte Carlo
method')

plt.show()

2. To start, we generate the points we need in order to draw the representative curve of
the function:

XLin=np.linspace(a,b)

YLin=[]

for x in XLin:

 YLin.append(f(x))

The linspace() function of the numpy library allows us to define an array
composed of a series of N numerical elements equally distributed between two
extremes (0 , 1). This will be the x of the function, while the y (YLin) will be
obtained from the equation of the function solving them with respect to y,
as follows:

3. Now that we have all the points, we can draw the graph:

plt.axis ([0, b, 0, f(b)])

plt.plot (XLin,YLin, color='red' , linewidth='4')

plt.scatter(XIntegral, YIntegral, color='blue', marker
='.')

plt.scatter(XRectangle, YRectangle, color='yellow',
marker ='.')

plt.title ('Numerical Integration using Monte Carlo
method')

plt.show()

We first set the length of the axes using the plt.axis() function. So, we plotted
the curve of the x2 function, which, as we know, is a convex increasing the
monotone function in the range of values considered [0 , 3].

𝑦𝑦 = 𝑥𝑥2

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 113

We then plotted two scatter plots:
• One for the points that are under the curve (points in blue)

• One for the points that are above the function (points in yellow)

The scatter() function allows us to represent a series of points not closely
related to each other on two axes.

The following diagram is Numerical integration using the Monte Carlo method:

Figure 4.9 – Plot of numerical integration results

As we can see, all the points in blue are positioned below the curve of the function (curve
in red), while all the points in yellow are positioned above the curve of
the function.

Summary
In this chapter, we addressed the basic concepts of Monte Carlo simulation. We explored
the Monte Carlo components used to obtain a simulation with satisfactory results. Hence,
we used Monte Carlo methods to estimate the value of pi.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

114 Exploring Monte Carlo Simulations

We then tackled two fundamental concepts of Monte Carlo simulation: the law of large
numbers and the central limit theorem. For example, the law of large numbers allows us
to determine the centers and weights of a Monte Carlo analysis for the estimate of definite
integrals. The central limit theorem is of great importance and it is thanks to this that
many statistical procedures work.

Next, we analyzed practical applications of using Monte Carlo methods in real life:
numerical optimization and project management. Finally, we learned how to perform
numerical integration using Monte Carlo techniques.

In the next chapter, we will learn the basic concepts of the Markov process. We will
understand the agent-environment interaction process and how to use Bellman equations
as consistency conditions for the optimal value functions to determine the optimal policy.
Finally, we will learn how to implement Markov chains to simulate random walks.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
Simulation-Based
Markov Decision

Processes
Markov Decision Processes (MDPs) model decision-making in situations where
outcomes are partly random and partly under the control of a decision maker. An MDP
is a stochastic process characterized by five elements: decision epochs, states, actions,
transition probability, and reward. The characteristic elements of a Markovian process are
the states in which the system finds itself and the available actions that the decision maker
can carry out on those states. These elements identify two sets: the set of states in which
the system can be found and the set of actions available for each specific state. The action
chosen by the decision maker determines a random response from the system, which
brings it into a new state. This transition returns a reward that the decision maker can use
to evaluate the goodness of their choice. In this chapter, we will learn how to deal with
decision-making processes with Markov chains. We will analyze the concepts underlying
Markovian processes and then analyze some practical applications to learn how to choose
the right actions for the transition between different states of the system.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

116 Simulation-Based Markov Decision Processes

In this chapter, we're going to cover the following main topics:

• Overview of Markov processes

• Introducing Markov chains

• Markov chain applications

• The Bellman equation explained

• Multi-agent simulation

Technical requirements
In this chapter, MDPs will be introduced. In order to deal with the topics in this chapter, it
is necessary that you have a basic knowledge of algebra and mathematical modeling.

To work with the Python code in this chapter, you'll need the following files (available on
GitHub at the following URL: https://github.com/PacktPublishing/Hands-
On-Simulation-Modeling-with-Python):

• SimulatingRandomWalk.py

• WeatherForecasting.py

Overview of Markov processes
Markov's decision-making process is defined as a discrete-time stochastic control process.
In Chapter 2, Understanding Randomness and Random Numbers, we said that stochastic
processes are numerical models used to simulate the evolution of a system according to
random laws. Natural phenomena, both by their very nature and by observation errors,
are characterized by random factors. These factors introduce a random number into
the observation of the system. This random factor determines an uncertainty in the
observation since it is not possible to predict with certainty what the result will be. In
this case, we can only say that it will assume one of the many possible values with a
certain probability.

If starting from an instant t in which an observation of the system is made, the evolution
of the process will depend only on t, while it will not be influenced by the previous
instants. Here, we can say that the stochastic process is Markovian.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python
https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python

Overview of Markov processes 117

Important note
A process is called Markovian when the future evolution of the process
depends only on the instant of observation of the system and does not depend
in any way on the past.

Characteristic elements of a Markovian process include the states in which the system
finds itself and the available actions that the decision maker can carry out on those states.
These elements identify two sets: the set of states in which the system can be found and
the set of actions available for each specific state. The action chosen by the decision maker
determines a random response from the system, which brings it into a new state. This
transition returns a reward that the decision maker can use to evaluate the goodness of
their choice.

The agent-environment interface
A Markovian process takes on the characteristics of an interaction problem between two
elements in order to achieve a goal. The two characteristic elements of this interaction
are the agent and the environment. The agent is the element that must reach the goal,
while the environment is the element that the agent must interact with. The environment
corresponds to everything that is external to the agent.

The agent is a piece of software that performs the services necessary for another piece
of software in a completely automatic and intelligent way. They are known as
intelligent agents.

The essential characteristics of an agent are listed here:

• The agent continuously monitors the environment, and this action causes a change
in the state of the environment.

• The available actions belong to a continuous or discrete set.

• The agent's choice of action depends on the state of the environment and this
choice requires a certain degree of intelligence as it is not trivial.

• The agent has a memory of the choices made – intelligent memory.

The agent's behavior is characterized by attempting to achieve a specific goal. To do this, it
performs actions on an environment it does not know a priori, or at least not completely.
This uncertainty is filled through the interaction between the agent and the environment.
In this phase, the agent learns to know the states of the environment by measuring it, in
this way planning its future actions.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

118 Simulation-Based Markov Decision Processes

The strategy adopted by the agent is based on the principles of error theory: proof of the
actions and memory of the possible mistakes made in order to make repeated attempts
until the goal is achieved. These actions by the agent are repeated continuously, causing
changes in the environment that change their state.

Important Note
Crucial to the agent's future choices is the concept of reward, which represents
the environment's response to the action taken. This response is proportional
to the weight that the action determines in achieving the objective: it will be
positive if it leads to correct behavior, while it will be negative in the case of an
incorrect action.

The decision-making process that leads the agent to achieving their objective can be
summarized in three essential points:

• Objective of the agent

• Interaction with the environment

• Total or partial uncertainty of the environment

In this process, the agent receives stimuli from the environment through the
measurements made by sensors. The agent decides what actions to take based on the
stimuli received from the environment. As a result of the agent's actions, determining a
change in the state of the environment will receive a reward.

The crucial elements in the decision-making process are shown in the following diagram:

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Overview of Markov processes 119

Figure 5.1 – The agent's decision-making process

While choosing an action, it becomes crucial to have a formal description of the
environment. This description must return essential information regarding the properties
of the environment, and not a precise representation of the environment.

Exploring MDPs
The agent-environment interaction, which we discussed in the previous section, is
approached as a Markov decision-making process. This choice is dictated by loading
problems and computational difficulties. As anticipated in the Overview of Markov
processes section, a Markov decision-making process is defined as a discrete-time
stochastic control process.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

120 Simulation-Based Markov Decision Processes

Here, we need to perform a sequence of actions, with each action leading to a
non-deterministic change regarding the state of the environment. By observing the
environment, we know its state after performing an action. On the other hand, if the
observation of the environment is not available, we do not know the state, even after
performing the action. In this case, the state is a probability distribution of all the
possible states of the environment. In such cases, the change process can be viewed as
a snapshot sequence.

The state at time t is represented by a random variable st. Decision-making is interpreted
as a discrete-time stochastic process. A discrete-time stochastic process is a sequence of
random variables xt, with t ∈ N. We can define some elements as follows:

• State space: Set of values that random variables can assume

• History of a stochastic process (path): Realization of the sequence of random
variables

The response of the environment to a certain action is represented by the reward. The
agent-environment interaction in a Markov decision process can be summarized by the
following diagram:

Figure 5.2 – The agent-environment interaction in MDP

The essential steps of the agent-environment interaction, schematically represented in the
previous diagram, are listed here:

1. The interaction between the agent and the environment occurs at discrete instants
over time.

2. In every instant, the agent monitors the environment by obtaining its state st ∈ S,
where S is the set of possible states.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Overview of Markov processes 121

3. The agent performs an action a ∈ A(st), where A(st) is the set of possible actions
available for the state st.

4. The agent chooses one of the possible actions according to the objective to
be achieved.

5. This choice is dictated by the policy π (s, a), which represents the probability that
the action a is performed in the state s.

6. At time t + 1, the agent receives a numerical reward rt + 1 ∈ R corresponding to the
action previously chosen.

7. Because of the choice, the environment passes into the new state.

8. The agent must monitor the state of the environment and perform a new action.

9. This iteration repeats until the goal is achieved.

In the iterative procedure we have described, the state st + 1 depends on the previous
state and the action taken. This feature defines the process as an MDP, which can be
represented by the following equation:

In the previous equation, δ represents the state function. We can summarize an MDP
as follows:

1. The agent monitors the state of the environment and has a series of actions.

2. At a discrete time t, the agent detects the current state and decides to perform an
action at ∈ A.

3. The environment reacts to this action by returning a reward rt = r (st, at) and moving
to the state st + 1 = δ (st, at).

Important Note
The r and δ functions are characteristics of the environment that depend only
on the current state and action. The goal of MDP is to learn a policy that, for
each state of the system, provides the agent with an action that maximizes the
total reward accumulated during the entire sequence of actions.

Now, let's analyze some of the terms that we introduced previously. They represent crucial
concepts that help us understand Markovian processes.

𝑠𝑠𝑡𝑡+1 = 𝛿𝛿(𝑠𝑠𝑡𝑡, 𝑎𝑎)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

122 Simulation-Based Markov Decision Processes

The reward function
A reward function identifies the target in a Markovian process. It maps the states of
the environment detected by the agent by enclosing them in a single number, which
represents the reward. The purpose of this process is to maximize the total reward
that the agent receives over the long term as a result of their choices. Then, the reward
function collects the positive and negative results obtained from the actions chosen by the
agent and uses them to modify the policy. If an action selected based on the indications
provided by the policy returns a low reward, then the policy will be modified to select
other actions. The reward function performs two functions: it stimulates the efficiency of
the decisions and determines the degree of risk aversion of the agent.

Policy
A policy determines the agent's behavior in terms of decision-making. It maps both the
states of the environment and the actions to be chosen in those states, which represent
a set of rules or associations that respond to a stimulus. A policy is a fundamental part
of a Markovian agent as it determines its behavior. In a Markov decision-making model,
a policy provides a solution that associates a recommended action with each state
potentially achievable by the agent. If the policy provides the highest expected utility
among the possible actions, it is called an optimal policy (π*). In this way, the agent does
not have to keep their previous choices in memory. To make a decision, the agent only
needs to execute the policy associated with the current state.

The state-value function
The state-value function provides us with the information necessary to evaluate the
quality of a state for an agent. It returns the value of the expected goal that was obtained
following the policy of each state, which is represented by the total expected reward. The
agent depends on the policy in order to choose the actions to be performed.

Understanding the discounted cumulative reward
The goal of MDP is to learn a policy that guides an agent in choosing the actions to be
performed for each state of the environment. This policy aims to maximize the total
reward received during the entire sequence of actions performed by the agent. Let's learn
how to maximize this total reward. The total reward that's obtained from adopting a
policy is calculated as follows:

𝑅𝑅𝑇𝑇 = ∑ 𝑟𝑟𝑡𝑡+1 = 𝑟𝑟𝑡𝑡 +
𝑇𝑇

𝑖𝑖=0
𝑟𝑟𝑡𝑡+1 + ⋯ + 𝑟𝑟𝑇𝑇

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Overview of Markov processes 123

In the preceding equation, rT is the reward of the action that brings the environment into
the terminal state sT.

To get the maximum total reward, we can select the action that provides the highest
reward for each individual state, which leads to the choice of the optimal policy that
maximizes the total reward.

Important Note
This solution is not applicable in all cases; for example, when the goal or
terminal state is not achieved in a finite number of steps. In this case, both rt
and the sum of the rewards you want to maximize tend to infinity.

An alternative technique uses the discounted cumulative reward, which tries to maximize
the following amount:

In the previous equation, γ is called the discount factor and represents the importance of
future rewards. The discount factor is 0 ≤ γ ≤ 1 and has the following conditions:

• γ <1: The sequence rt converges to a finite value.

• γ = 0: The agent does not consider future rewards, thereby trying to maximize the
reward only for the current state.

• γ = 1: The agent will favor future rewards over immediate rewards.

The value of the discount factor may vary during the learning process to take special
actions or states into account. An optimal policy may include individual actions that
return low rewards, provided that the total reward is higher.

Comparing exploration and exploitation concepts
Upon reaching the goal, the agent looks for the most rewarded behavior. To do this, they
must link each action to the reward returned. In the case of complex environments with
many states, this approach is not feasible due to many action-reward pairs.

Important Note
This is the well-known exploration-exploitation dilemma: for each state, the
agent explores all possible actions, exploiting the action most rewarded in
achieving the objective.

𝑅𝑅𝑇𝑇 = ∑ 𝛾𝛾𝑖𝑖 ∗ 𝑟𝑟𝑡𝑡+1 = 𝑟𝑟𝑡𝑡 +
∞

𝑖𝑖=0
𝛾𝛾 ∗ 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾2 ∗ 𝑟𝑟𝑡𝑡+2 + ⋯

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

124 Simulation-Based Markov Decision Processes

Decision-making requires a choice between the two available approaches:

• Exploitation: The best decision is made based on current information

• Exploration: The best decision is made by gathering more information

The best long-term strategy can impose short-term sacrifices as this approach requires
collecting adequate information to reach the best decisions.

In everyday life, we often find ourselves having to choose between two alternatives that,
at least theoretically, lead to the same result: this approach is the exploration-exploitation
dilemma. For example, let's say we need to decide whether to choose what we already
know (exploitation) or choose something new (exploration). Exploitation keeps our
knowledge unchanged, while exploration makes us learn more about the system. It is
obvious that exploration exposes us to the risk of wrong choices.

Let's look at an example of using this approach in a real-life scenario– we must choose the
best path to reach our trusted restaurant:

• Exploitation: Choose the path you already know.

• Exploration: Try a new path.

In complex problems, converging toward an optimal strategy can be too slow. In these
cases, a solution to this problem is represented by a balance between exploration
and exploitation.

An agent who acts exclusively based on exploration will always behave randomly in each
state with a convergence to an optimal strategy that is practically impossible. On the
contrary, if an agent acts exclusively based on exploitation, they will always use the same
actions, which may not be optimal.

Introducing Markov chains
Markov chains are discrete dynamic systems that exhibit characteristics attributable to
Markovian processes. These are finite state systems – finite Markov chains – in which the
transition from one state to another occurs on a probabilistic, rather than deterministic,
basis. The information available about a chain at the generic instant t is provided by
the probabilities that it are in any of the states, and the temporal evolution of the chain
is specified by specifying how these probabilities update by going from the instant t at
instant t + 1.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing Markov chains 125

Important Note
A Markov chain is a stochastic model in which the system evolves over time
in such a way that the past affects the future only through the present: Markov
chains have no memory of the past.

A random process characterized by a sequence of random variables X = X0, ..., Xn with
values in a set j0, j1, ..., jn is given. This process is Markovian if the evolution of the process
depends only on the current state, that is, the state after n steps. Using conditional
probability, we can represent this process with the following equation:

If a discrete-time stochastic process X has a Markov property, it is called a Markov chain.
A Markov chain is said to be homogeneous if the following transition probabilities do not
depend on n, and only on i and j:

In such hypotheses, let's assume we have the following:

All joint probabilities can be calculated by knowing the numbers pij and the following
initial distribution:

This probability represents the distribution of the process at zero time. The probabilities pij
are called transition probabilities, and pij is the probability of transition from i to j in each
time phase.

Transition matrix
The application of homogeneous Markov chains is easy by adopting the matrix
representation. Through this, the formula expressed by the previous equation becomes
much more readable. We can represent the structure of a Markov chain through the
following transition matrix:

𝑃𝑃(𝑋𝑋𝑛𝑛+1 = 𝑗𝑗|𝑋𝑋0 = 𝑖𝑖0,… , 𝑋𝑋𝑛𝑛 = 𝑖𝑖𝑛𝑛) = 𝑃𝑃(𝑋𝑋𝑛𝑛+1 = 𝑗𝑗|𝑋𝑋𝑛𝑛 = 𝑖𝑖𝑛𝑛)

𝑃𝑃(𝑋𝑋𝑛𝑛+1 = 𝑗𝑗|𝑋𝑋𝑛𝑛 = 𝑖𝑖)

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝑋𝑋𝑛𝑛+1 = 𝑗𝑗|𝑋𝑋𝑛𝑛 = 𝑖𝑖)

𝑝𝑝𝑖𝑖0 = 𝑃𝑃(𝑋𝑋0 = 𝑖𝑖)

𝑝𝑝11 𝑝𝑝12 … 𝑝𝑝1𝑛𝑛
𝑝𝑝21 𝑝𝑝22 … 𝑝𝑝2𝑛𝑛
… … … …
𝑝𝑝𝑛𝑛1 𝑝𝑝2𝑛𝑛 … 𝑝𝑝𝑛𝑛𝑛𝑛

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

126 Simulation-Based Markov Decision Processes

This is a positive matrix in which the sum of the elements of each row is unitary. In fact,
the elements of the ith row are the probabilities that the chain, being in the state Si at the
instant t, passes through S1 or S2,. . . or Sn at the next instant. Such transitions are mutually
exclusive and exhaustive of all possibilities. Such a positive matrix with unit sum lines is
stochastic. We will call each vector positive line x stochastic such that T = [x1 x2. . . xn], in
which the sum of the elements assumes a unit value:

The transition matrix has the position (i, j) to pass from result i to result j by performing a
single experiment.

Transition diagram
The transition matrix is not the only solution for describing a Markov chain. An
alternative is an oriented graph called a transition diagram, in which the vertices are
labeled by the states S1, S2, ..., Sn, and there is a direct edge connecting the vertex Si to the
vertex Sj if and only if the probability of transition from Si to Sj is positive.

Important Note
The transition matrix and the transition diagram contain the same information
necessary for representing the same Markov chain.

Let's take a look at an example: consider a Markov chain with three possible states – 1, 2,
and 3 – represented by the following transition matrix:

As mentioned previously, the transition matrix contains the same information as the
transition diagram. Let's learn how to draw this diagram. There are three possible
states – 1, 2, and 3 – and the direct boundary from each state to other states shows the
probabilities of transition pij. When there is no arrow from state i to state j, this means that
pij = 0:

∑𝑥𝑥𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

[

 13

1
3

1
3

2
3 0 1

3
1
4

1
4

2
4]

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Markov chain applications 127

Figure 5.3 – Diagram of the transition matrix

In the preceding transition diagram, the arrows that come out of a state always add up to
exactly 1, just like for each row in the transition matrix.

Markov chain applications
Now, let's look at a series of practical applications that can be made using Markov chains.
We will introduce the problem and then analyze the Python code that will allow us to
simulate how it works.

Introducing random walks
Random walks identify a class of mathematical models used to simulate a path consisting
of a series of random steps. The complexity of the model depends on the system features
we want to simulate, which are represented by the number of degrees of freedom and
the direction. The authorship of the term is attributed to Karl Pearson who, in 1905,
first referred to the term casual walk. In this model, each step has a random direction
that evolves through a random process involving known quantities that follow a precise
statistical distribution. The path that's traced over time will not necessarily be descriptive
of real motion: it will simply return the evolution of a variable over time. This is the reason
for the widespread use of this model in all areas of science: chemistry, physics, biology,
economics, computer science, and sociology.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

128 Simulation-Based Markov Decision Processes

One-dimensional random walk
The one-dimensional casual walk simulates the movement of a punctual particle that
is bound to move along a straight line, thus having only two movements: right and left.
Each movement is associated with a random shift of one step to the right with a fixed
probability p or to the left with a probability q. Each single step is the same length and is
independent of the others. The following diagram shows the path to which the punctual
particle is bound, along with the direction and the two vertices allowed:

Figure 5.4 – One-dimensional walk

After n passes, the position of the point will be identified by its abscissa X(n),
characterized by a random term. Our aim is to calculate the probability with which the
particle will return to the starting point, after n steps.

Important Note
The idea that the point will actually return to its starting position is not
assured. To represent the position of the point on the straight line, we will
adopt the X(n) variable, which represents the abscissa of the line after the
particle has moved n steps: this variable is a discrete random variable with a
binomial distribution.

The path of the point particle can be summarized as follows: for each instant, the particle
moves one step to the right or left according to the value returned by a random variable Z
(n). This random variable takes only two dichotomous values:

• +1 with probability p > 0

• -1 with probability q

The two probabilities are related to each other through the following equation:

Let's consider random variables Zn with n = 1, 2, …. Suppose that these variables are
independent and with equal distribution. The position of the particle at instant n will be
represented by the following equation:

p + q = 1

𝑋𝑋𝑛𝑛 = 𝑋𝑋𝑛𝑛−1 + 𝑍𝑍𝑛𝑛 ; 𝑛𝑛 = 1,2, …

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Markov chain applications 129

In the previous formula, Xn is the next value in the walk, Xn-1 is the observation in the
previous time phase, and Zn is the random fluctuation in that step.

Important Note
The Xn variable identifies a Markov chain; that is, the probability that the
particle in the next moment is in a certain position depends only on the
current position, even if we know all the moments preceding the current one.

Simulating a one-dimensional random walk
The simulation of a casual walk does not represent a trivial succession of random numbers
since the next step to the current one represents its evolution. The dependence between
the next two steps guarantees a certain consistency from one passage to the next. This is
not guaranteed in a banal generation of independent random numbers, which instead
return big differences from one number to another. Let's learn how to represent the
sequence of actions to be performed in a simple casual walking model through the
following pseudocode:

1. Start from the 0 position.

2. Randomly select a dichotomous value (-1, 1).

3. Add this value to the previous time step.

4. Repeat step 2 onward.

This simple iterative process can be implemented in Python by processing a list of 1,000
time steps for the random walk. Let's take a look:

1. Let's start by loading the necessary libraries:

from random import seed

from random import random

from matplotlib import pyplot

The random module implements pseudo-random number generators for various
distributions. The random module is based on the Mersenne Twister algorithm.
Mersenne Twister is a pseudo-random number generator. Originally developed to
produce inputs for Monte Carlo simulations, almost uniform numbers are generated
via Mersenne Twister, making them suitable for a wide range of applications.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

130 Simulation-Based Markov Decision Processes

From the random module, two libraries were imported: seed and random. In
this code, we will generate random numbers. To do this, we will use the random()
function, which produces different values each time it is invoked. It has a very long
period before any number is repeated. This is useful for producing unique values or
variations, but there are times when it is useful to have the same dataset available for
processing in different ways. This is necessary to ensure the reproducibility of the
experiment. To do this, we can use the random.seed() function contained in the
seed library. This function initializes the basic random number generator.

The matplotlib library is a Python library for printing high-quality graphics.
With matplotlib, it is possible to generate graphs, histograms, bar graphs,
power spectra, error graphs, scatter graphs, and so on with a few commands.
This is a collection of command-line functions like those provided by
the MATLAB software.

2. Now, we will investigate the individual operations. Let's start with setting the seed:

seed(1)

The random.seed() function is useful if we wish to have the same set of
data available to be processed in different ways as this makes the simulation
reproducible.

Important Note
This function initializes the basic random number generator. If you use the
same seed in two successive simulations, you will always get the same sequence
of pairs of numbers.

3. Let's move on and initialize the crucial variable of the code:

RWPath= list()

The RWPath variable represents a list that will contain the sequence of values
representative of the random walk. A list is an ordered collection of values, which
can be of various types. It is an editable container, meaning that we can add, delete,
and modify existing values. For our purposes, where we want to continuously
update our values through the subsequent steps of the path, a list represents the
most suitable solution. The list() function accepts a sequence of values and
converts them into lists. With the preceding command, we simply initialized the list
that is currently empty, and with the following code, we start to populate it:

RWPath.append(-1 if random() < 0.5 else 1)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Markov chain applications 131

The first value that we add to our list is a dichotomous value. It is simply a matter
of deciding whether the value to be added is 1 or -1. The choice, however, is made
on a random basis. Here, we generate a random number between 0 and 1 using the
random() function and then check whether it is <0.5. If it is, then we add -1;
otherwise, we add 1. At this point, we will use an iterative cycle with a for loop,
which will repeat the procedure for 1,000 steps:

for i in range(1, 1000):

At each step, we will generate a random term, as follows:
 ZNValue = -1 if random() < 0.5 else 1

Important Note
As we did when we chose the first value to add to the list, we generate a
random value with the random() function, so if the value that's returned is
lower than 0.5, the ZNValue variable assumes the value -1; otherwise, 1.

4. Now, we can calculate the value of the random walk at the current step:

XNValue = RWPath[i-1] + ZNValue

The XNValue variable represents the value of the abscissa on the current step. It is
made up of two terms: the first represents the value of the abscissa in the previous
state, while the second is the result of generating the random value. This value must
be added to the list:

RWPath.append(XNValue)

This procedure will be repeated for the 1,000 steps that we want to perform. At the
end of the cycle, we will have the entire sequence stored in the list.

5. Finally, we can visualize it through the following piece of code:

pyplot.plot(RWPath)

pyplot.show()

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

132 Simulation-Based Markov Decision Processes

The pyplot.plot() function plots the values contained in the RWPath list on
the y axis using x as an index array with the following value: 0..N-1. The plot()
function is extremely versatile and will take an arbitrary number of arguments.

Finally, the pyplot.show()function displays the graph that's created, as follows:

Figure 5.5 – The trend plot of the random walk path

In the previous graph, we can analyze the path followed by the point particle in a
random process. This curve can describe the trends of a generic function, not necessarily
associated with a road route. As anticipated, this process is configured as a Markovian
process in that the next step is independent of the position from the previous step and
depends only on the current step. The casual walk is a mathematical model widely used in
finance. In fact, it is widely used to simulate the efficiency of information deriving from
the markets: the price varies for the arrival of new information, which is independent of
what we already know.

Simulating a weather forecast
Another potential application of Markov chains is in the development of a weather
forecasting model. Let's learn how to implement this algorithm in Python. To start, we
can work with a simplified model: we will consider only two climatic conditions/states,
that is, sunny and rainy. Our model will assume that tomorrow's weather conditions
will be affected by today's weather conditions, making the process take on Markovian
characteristics. This link between the two states will be represented by the following
transition matrix:

𝑃𝑃 = [0.80 0.20
0.25 0.75]

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Markov chain applications 133

The transition matrix returns the conditional probabilities P (A | B), which indicate the
probability that event A occurs after event B has occurred. This matrix therefore contains
the following conditional probabilities:

In the previous transition matrix, each row contains a complete distribution. Therefore,
all the numbers must be non-negative and the sum must be equal to 1. The climatic
conditions show a tendency to resist change. For this reason, after a sunny day, the
probability of another sunny – P (Sunny | Sunny) – day is greater than a rainy – P (Sunny
| Rainy) day. The climatic conditions of tomorrow are not directly related to those of
yesterday; it follows that the process is Markovian. The previous transition matrix is
equivalent to the following:

Figure 5.6 – Transition diagram

The simulation model we want to elaborate on will have to calculate the probability that
it will rain in the next few days. It will also have to allow you to recover a statistic of the
proportion of sunny and rainy days in a certain period of time. The process, as mentioned
previously, is Markovian, and the tools we analyzed in the previous sections allow us to
obtain the requested information. Let's get started:

1. Let's see the Python code that alternates sunny and rainy days, starting from a
specific initial condition. As always, we will analyze it line by line, starting with
loading the necessary libraries:

import numpy as np

import matplotlib.pyplot as plt

The numpy library is a Python library that contains numerous functions that
can help us manage multidimensional matrices. Furthermore, it contains a large
collection of high-level mathematical functions we can use on these matrices. We
will use two functions: random.seed()and random.choose().

𝑃𝑃 = [𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆)
𝑃𝑃(𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆|𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑃𝑃(𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆|𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆)]

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

134 Simulation-Based Markov Decision Processes

The matplotlib library is a Python library for printing high-quality graphics.
With matplotlib, it is possible to generate graphs, histograms, bar graphs,
power spectra, error graphs, scatter graphs, and so on with a few commands. It
is a collection of command-line functions like those provided by the MATLAB
software. Let's move on and illustrate the code:

np.random.seed(3)

The random.seed() function initializes the seed of the random number
generator. In this way, the simulation that uses random numbers will be
reproducible. The reproducibility of the experiment will be guaranteed by the fact
that the random numbers that will be generated will always be the same.

2. Now, let's define the possible states of the weather conditions:

StatesData = ['Sunny','Rainy']

Two states are provided: sunny and rainy. The transitions matrix representing the
transition between the weather conditions will be set as follows:

TransitionStates = [['SuSu','SuRa'],['RaRa','RaSu']]

TransitionMatrix = [[0.80,0.20],[0.25,0.75]]

The transition matrix returns the conditional probabilities P (A | B), which indicate
the probability that event A occurs after event B has occurred. All the numbers in
a row must be non-negative and the sum must be equal to 1. Let's move on and set
the variable that will contain the list of state transitions:

WeatherForecasting = list()

The WeatherForecasting variable will contain the results of the weather
forecast. This variable will be of the list type.

Important Note
A list is an ordered collection of values and can be of various types. It is an
editable container and allows us to add, delete, and modify existing values.

For our purposes, which is to continuously update our values through the
subsequent steps of the path, the list represents the most suitable solution. The
list() function accepts a sequence of values and converts them into lists.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Markov chain applications 135

3. Now, we decide on the number of days for which we will predict the weather
conditions:

NumDays = 365

4. For now, we have decided to simulate the weather forecast for a 1-year time horizon;
that is, 365 days. Let's fix a variable that will contain the forecast of the current day:

TodayPrediction = StatesData[0]

5. Furthermore, we also initialized it with the first vector value containing the possible
states. This value corresponds to the Sunny condition. We print this value on the
screen:

print('Weather initial condition =',TodayPrediction)

6. At this point, we can predict the weather conditions for each of the days set by the
NumDays variable. To do this, we will use a for loop that will execute the same
piece of code several times equal to the number of days that we have set in advance:

for i in range(1, NumDays):

7. Now, we will analyze the main part of the entire program. Within the for loop,
the forecast of the time for each consecutive day occurs through an additional
conditional structure: the if statement. Starting from a meteorological condition
contained in the TodayPrediction variable, we must predict that of the next
day. We have two conditions: sunny and rainy. In fact, there are two control
conditions, as shown in the following code:

if TodayPrediction == 'Sunny':

 TransCondition = np.random.
choice(TransitionStates[0],replace=True,
p=TransitionMatrix[0])

 if TransCondition == 'SuSu':

 pass

 else:

 TodayPrediction = 'Rainy'

 elif TodayPrediction == 'Rainy':

 TransCondition = np.random.
choice(TransitionStates[1],replace=True,
p=TransitionMatrix[1])

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

136 Simulation-Based Markov Decision Processes

 if TransCondition == 'RaRa':

 pass

 else:

 TodayPrediction = 'Sunny'

8. If the current state is Sunny, we use the numpy random.choice() function
to forecast the weather condition for the next state. A common use for random
number generators is to select a random element from a sequence of enumerated
values, even if these values are not numbers. The random.choice() function
returns a random element of the non-empty sequence passed as an argument. Three
arguments are passed:

TransitionStates[0]: The first row of the transition states

replace=True: The sample is with a replacement

p=TransitionMatrix[0]: The probabilities associated with each entry in the
state passed

The random.choise() function returns random samples of the SuSu,
SuRa, RaRa, and RaSu types, according to the values contained in the
TransitionStates matrix. The first two will be returned starting from sunny
conditions and the remaining two starting from rain conditions. These values will
be stored in the TransCondition variable.

Within each if statement, there is an additional if statement. This is used to
determine whether to update the current value of the weather forecast or to leave it
unchanged. Let's see how:

if TransCondition == 'SuSu':

 pass

 else:

 TodayPrediction = 'Rainy'

If the TransCondition variable contains the SuSu value, the weather conditions
of the current day remain unchanged. Otherwise, it is replaced by the Rainy value.
The elif clause performs a similar procedure, starting from the rain condition. At
the end of each iteration of the for loop, the list of weather forecasts is updated,
and the current forecast is printed:

WeatherForecasting.append(TodayPrediction)

print(TodayPrediction)

Now, we need to predict the weather forecast for the next 365 days.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Markov chain applications 137

9. Let's draw a graph with the sequence of forecasts for the next 365 days:

plt.plot(WeatherForecasting)

plt.show()

The following graph is printed:

Figure 5.7 – Plot of the weather forecast
Here, we can see that the forecast of sunny days prevails over the rainy ones.

Important Note
The flat points at the top represent all the sunny days, while the dips in-
between are the rainy days.

10. To quantify this prevalence, we can draw a histogram. In this way, we will be able to
count the occurrences of each condition:

plt.figure()

plt.hist(WeatherForecasting)

plt.show()

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

138 Simulation-Based Markov Decision Processes

The following is a histogram of the weather condition for the next 365 days:

Figure 5.8 – Histogram of the weather forecast

With this, we can confirm the prevalence of sunny days. The result we've obtained derives
from the transition matrix. In fact, we can see that the probability of the persistence of a
solar condition is greater than that of rain. In addition, the initial condition has been set to
the sunny condition. We can also try to see what happens when the initial condition is set
to the rain condition.

The Bellman equation explained
In 1953, Richard Bellman introduced the principles of dynamic programming in order
to efficiently solve sequential decision problems. In this type of problem, decisions are
periodically implemented and influence the size of the model. In turn, these influence
future decisions. The principle of optimality, enunciated by Bellman, allows, through
an intelligent application, you to efficiently deal with the complexity of the interaction
between the decisions and the sizes of the model. Dynamic programming techniques
were also applied from the outset to problems in which there is no temporal or sequential
aspect.

Important Note
Although dynamic programming can be applied to a wide range of problems
by providing a common abstract model, from a practical point of view, many
problems require models of such dimensions to preclude, then as now, any
computational approach. This inconvenience was then called the 'curse of
dimensionality' and was an anticipation, in still informal terms, of concepts of
computational complexity.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Bellman equation explained 139

The greatest successes of dynamic programming have been obtained in the context of
sequential decision models, especially of the stochastic type, such as Markovian decision
processes, but also in some combinatorial models.

Dynamic programming concepts
Dynamic Programming (DP) is a programming technique designed to calculate an
optimal policy based on a perfect model of the environment in the form of an MDP. The
basis of dynamic programming is the use of state values and action values in order to
identify good policies.

DP methods are applied to Markov decision-making processes using two processes called
policy evaluation and policy improvement, which interact with each other:

• Policy evaluation is done through an iterative process that seeks to solve Bellman's
equation. The convergence of the process for k → ∞ imposes approximation rules,
thus introducing a stop condition.

• Policy improvement improves the policy based on current values.

In the policy iteration technique, the two phases just described alternate, and each
concludes before the other begins.

Important Note
The iterative process when evaluating policies obliges us to evaluate a policy
at each step through an iterative process whose convergence is not known a
priori and depends on the starting policy. To address this problem, we can stop
evaluating the policy at some point, while still ensuring that we converge to an
optimal value.

Principle of optimality
The validity of the dynamic optimization procedure is ensured by Bellman's principle of
optimality: An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision.

Based on this principle, it is possible to divide the problem into stages and solve the stages
in sequence, using the dynamically determined values of the objective function, regardless
of the decisions that led to them. This allows us to optimize one stage at a time, reducing
the initial problem to a sequence of smaller subproblems therefore easier to solve.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

140 Simulation-Based Markov Decision Processes

The Bellman equation
Bellman's equation helps us solve MDP by finding the optimal policy and value functions.
The optimal value function V * (S) is the one that returns the maximum value of a state.
This maximum value is the one corresponding to the action that maximizes the reward
value of the optimal action in each state. It then adds a discount factor multiplied by
the value of the next state by the Bellman equation, through a recursive procedure. The
following is an example of a Bellman equation:

In the previous equation, we have the following:

• () is the function value at state s.

• (,) is the reward we get after acting a in state s.

• γ is the discount factor.

• (′) is the function value at the next state.

For a stochastic system, when we take an action, it is not said that we will end up in a later
state, but that we can only indicate the probability of ending up in that state.

Multi-agent simulation
An agent can be defined as anything that is able to perceive an environment through
sensors and act in it through actuators. Artificial intelligence focuses on the concept of
a rational agent, or an agent who always tries to optimize an appropriate performance
measure. A rational agent can be a human agent, a robotic agent, or a software agent. In
the following diagram, we can see the interaction between the agent and the environment:

Figure 5.9 – Interaction between the agent and the environment

𝑉𝑉(𝑠𝑠) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎(𝑅𝑅(𝑠𝑠, 𝑚𝑚) + 𝛾𝛾 ∗ 𝑉𝑉(𝑠𝑠′))

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Multi-agent simulation 141

An agent is considered autonomous when it can flexibly and independently choose the
actions to be taken to achieve its goals, without constantly resorting to the intervention
of an external decision system. Note that, in most complex domains, an agent can only
partially obtain information and have control in the environment that it has been inserted
into, thus exerting, at most, a certain influence on it.

An agent can be considered autonomous and intelligent if it has the following
characteristics:

• Reactivity: It must perceive the environment, managing to adapt in good time to
the changes that take place.

• Proactivity: It must show behavior oriented toward achieving the objectives set
with initiative.

• Social skills: It must be able to interact with other agents for the pursuit of
their goals.

There are numerous situations where multiple agents coexist in the same environment and
interact with each other in different ways. In fact, it is quite rare for an agent to represent
an isolated system. We can define a Multi-agent System (MAS) as a group of agents that
can potentially interact with each other. A MAS can be competitive, which is where each
agent tries to exclusively maximize their own interests, even at the expense of those of
others, rather than cooperative, which is where agents are willing to give up part of their
objectives in an attempt to maximize the global utility of the system.

The types of possible interactions are as follows:

• Negotiation: This occurs when agents must seek an agreement on the value to be
assigned to some variables.

• Cooperation: This occurs when there are common goals for which agents try to
align and coordinate their actions.

• Coordination: This is a type of interaction aimed at avoiding situations of conflict
between agents.

The use of MAS systems introduces a series of advantages:

• Efficiency and speed: Thanks to the possibility of performing computations
in parallel.

• Robustness: The system can overcome single-agent failures.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

142 Simulation-Based Markov Decision Processes

• Flexibility: Adding new agents to the system is extremely easy.

• Modularity: Extremely useful in the software design phase due to the possibility of
reusing the code.

• Cost: The single unit-agent has a very low cost compared to the overall system.

The growing attention that's being paid to multi-agent systems for the treatment of
problems based on decision-making processes is linked to some characteristics that
distinguish them, such as flexibility and the possibility of representing independent
entities through distinct computational units that interact with each other. The various
stakeholders of a decision-making system can, in fact, be modeled as autonomous agents.
Several practical real-world applications have recently adopted an approach based on
problems such as satisfying and optimizing distributed constraints and identifying
regulations that have an intermediate efficiency between the centralized (optimal) and the
non-coordinated (bad) ones.

Summary
In this chapter, we learned the basic concepts of the Markov process. This is where
the future evolution of the process depends only on the instant of observation of
the system and in no way depends on the past. We have seen how an agent and the
surrounding environment interact and the elements that characterize its actions. We
now understand the reward and policy concepts behind decision-making. We then
went on to explore Markov chains by analyzing the matrices and transition diagrams
that govern their evolution.

Then, we addressed some applications in order to put the concepts we'd learned about
into practice. We dealt with a casual walk and a forecast model of weather conditions by
adopting an approach based on Markov chains. Next, we studied Bellman equations as
coherence conditions for optimal value functions to determine optimal policy. Finally,
we introduced multi-agent systems, which allow us to consider different stakeholders in a
decision-making process.

In the next chapter, we will understand how to obtain robust estimates of confidence
intervals and standard errors of population parameters, as well as how to estimate the
distortion and standard error of a statistic. We will then discover how to perform a test for
statistical significance and how to validate a forecast model.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
Resampling Methods
Resampling methods are one of the most interesting inferential applications of stochastic
simulations and random numbers. They are particularly useful in the nonparametric
field, where the traditional inference methods cannot be correctly applied. They generate
random numbers to be assigned to random variables or random samples. They require
machine time related to the growth of repeated operations. They are very simple to
implement and once implemented, they are automatic. Selecting the required elements
must provide a sample that is, or at least can be, representative of the population. To
achieve this, all the characteristics of the population must be included in the sample. In
this chapter, we will try to extrapolate the results obtained from the representative sample
of the entire population. Given the possibility of making mistakes in this extrapolation, it
will be necessary to evaluate the degree of accuracy of the sample and the risk of arriving
at incorrect predictions. In this chapter, we will learn how to apply resampling methods
to approximate some characteristics of the distribution of a sample in order to validate a
statistical model. We will analyze the basics of the most common resampling methods and
learn how to use them by solving some practical cases.

In this chapter, we're going to cover the following main topics:

• Introducing resampling methods

• Exploring the jackknife technique

• Demystifying bootstrapping

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

144 Resampling Methods

• Explaining permutation tests

• Approaching the cross-validation technique

Technical requirements
In this chapter, we will address resampling method technologies. In order to deal with
the topics in this chapter, it is necessary that you have a basic knowledge of algebra and
mathematical modeling. To work with the Python code in this chapter, you'll need the
following files (available on GitHub at the following URL: https://github.com/
PacktPublishing/Hands-On-Simulation-Modeling-with-Python):

• JackknifeEstimator.py

• BootstrapEstimator.py

• KfoldCrossValidation.py

Introducing resampling methods
Resampling methods are a set of techniques based on the use of subsets of data, which can
be extracted either randomly or according to a systematic procedure. The purpose of this
technology is to approximate some characteristics of the sample distribution – a statistic,
a test, or an estimator – to validate a statistical model.

Resampling methods are one of the most interesting inferential applications of stochastic
simulations and the generation of random numbers. These methods became widespread
during the 1960s, originating from the basic concepts of Monte Carlo methods. The
development of Monte Carlo methods took place mainly in the 1980s, following the
progress of information technology and the increase in the power of computers. Their
usefulness is linked to the development of non-parametric methods, in situations where
the methods of classical inference cannot be correctly applied.

The following details can be observed from resampling methods:

• They repeat simple operations many times.

• They generate random numbers to be assigned to random variables or random
samples.

• They require more machine time as the number of repeated operations grows.

• They are very simple to implement and once implemented, they are automatic.

Over time, various resampling methods have been developed and can be classified based
on some characteristics.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python
https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python

Introducing resampling methods 145

Important note
A first classification can be made between methods based on randomly
extracting subsets of sample data and methods in which resampling occurs
according to a non-randomized procedure.

Further classification can be performed as follows:

• The bootstrap method and its variants, such as subsampling, belong to the random
extraction category.

• Procedures such as Jackknife and cross-validation fall into the
non-randomized category.

• Statistical tests, called permutation or exact tests, are also included in the family
of resampling methods.

Sampling concepts overview
Sampling is one of the fundamental topics of all statistical research. Sampling generates
a group of elementary units, that is, a subset of a population, with the same properties as
the entire population, at least with a defined risk of error.

By population, we mean the set, finite or unlimited, of all the elementary units to which
a certain characteristic is attributed, which identifies them as homogeneous.

Important Note
For example, this could be the population of temperature values in each place,
in a time span that can be daily, monthly, or yearly.

Sampling theory is an integral and preparatory part of statistical inference, along with
the resulting sampling techniques, and allows us to identify the units whose variables are
to be analyzed.

Statistical sampling is a method used to randomly select items so that every item in a
population has a known, non-zero probability of being included in the sample. Random
selection is considered a powerful means of building a representative sample that, in its
structure and diversity, reflects the population under consideration. Statistical sampling
allows us to obtain an objective sample: the selection of an element does not depend
on the criteria defined for reasons of research convenience or availability and does not
systematically exclude and favor any group of elements within a population.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

146 Resampling Methods

In random sampling, associated with the calculation of probabilities, the following actions
are performed:

• Extrapolation of results through mathematical formulas and an estimate of the
associated error

• Control over the risk of reaching an opposite conclusion to reality

• Calculation – through a formula – of the minimum sample size necessary to obtain
a given level of accuracy and precision

Reasoning about sampling
Now, let's learn why it may be preferable to analyze the data of a sample rather than that
of the entire population:

• Consider a case in which the statistical units do not present variability. Here, it
is useless to make many measurements because the population parameters are
determined with few measurements. For example, if we wanted to determine the
average of 1,000 identical statistical units, this value would be equal to that obtained
if we only considered 10 units.

Important Note
Sampling is used if not all the elements of the population are available. For
example, investigations into the past can only be done on available historical
data, which is often incomplete.

• Sampling is indicated when there is a considerable amount of time being saved
when achieving results. This is because even if electronic computers are used, the
data-entry phase is significantly reduced if the investigation is limited to a few
elements of the overall population.

Pros and cons of sampling
When information is collected, a survey is performed on all the units that make up the
population under study. When an analysis is carried out on the information collected,
it is possible to use it only on part of the units that make up the population.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing resampling methods 147

The pros of sampling are as follows:

• Cost reduction

• Reduction of time

• Reduction of the organizational load

The disadvantage of sampling is as follows:

• The sampling base is not always available or easy to know

Sampling can be performed by forced choice in cases where the reference population
is partially unknown in terms of composition or size. Sampling cannot always replace
a complete investigation, such as in the case of surveys regarding the movement of marital
status, births, and deaths: all individual cases must be known.

Probability sampling
In probability sampling, the probability that each unit of the population must be extracted
is known. In contrast, in non-probability sampling, the probability that each unit of the
population must be extracted is not known.

Let's take a look at an example. If we extract a sample of university students by drawing
lots from those present on any day in university, we do not get a probabilistic sample
for the following reasons: non-attending students have no chance of entering, and the
students who attend the most are more likely to be extracted than the other students of the
following years.

How sampling works
The sampling procedure involves a series of steps that need to be followed appropriately in
order to extract data that can adequately represent the population. Sampling is carried out
as follows:

1. Define the objective population in the detection statistics.

2. Define the sampling units.

3. Establish the size of the sample.

4. Choose the sample or samples on which the load will be statistically detected
according to a method of sampling.

5. Finally, formulate a judgment on the goodness of the sample.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

148 Resampling Methods

Exploring the Jackknife technique
This method is used to estimate characteristics such as the distortion and the standard
deviation of a statistic. This technique allows us to obtain the desired estimates without
necessarily resorting to parametric assumptions. Jackknife is based on calculating
the statistics of interest for the sub-samples we've obtained, leaving out one sample
observation at a time. The jackknife estimate is consistent for various sample statistics,
such as mean, variance, correlation coefficient, maximum likelihood estimator, and others.

Defining the Jackknife method
The Jackknife method was proposed in 1949 by M. H. Quenouille who, due to the low
computational power of the time, created an algorithm that requires a fixed number of
accounts.

Important Note
The main idea behind this method is to cut a different observation from
the original sample each time and to re-evaluate the parameter of interest.
The estimate will be compared with the same one that was calculated on the
original sample.

Since the distribution of the variable is not known, the distribution of the estimator is not
known either.

Jackknife samples are constructed by leaving an observation xi out of the original sample
each time, as shown in the following equation:

Then, n samples of size m = n-1 are obtained. Let's take a look at an example. Consider
a sample of size n = 5 that produces five Jackknife samples of size m = 4, as follows:

𝑥𝑥𝑖𝑖 = (𝑥𝑥1, 𝑥𝑥2,… , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1,… , 𝑥𝑥𝑛𝑛)

𝑥𝑥(1) = (𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5)
𝑥𝑥(2) = (𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5)
𝑥𝑥(3) = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥4, 𝑥𝑥5)
𝑥𝑥(4) = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥5)
𝑥𝑥(5) = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Jackknife technique 149

The pseudo-value ̂ is recalculated on the generic ith sample Jackknife. The procedure
is iterated n times on each of the available Jackknife samples:

The following diagram shows this preliminary procedure:

Figure 6.1 – Representation of the Jackknife method

To calculate the variance of the Jackknife estimate, the following equation will be used:

𝑥𝑥(1) = (𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5) → 𝜃𝜃(1)
𝑥𝑥(2) = (𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5) → 𝜃𝜃(2)
𝑥𝑥(3) = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥4, 𝑥𝑥5) → 𝜃𝜃(3)
𝑥𝑥(4) = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥5) → 𝜃𝜃(4)
𝑥𝑥(5) = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) → 𝜃𝜃(5)

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 = √𝑉𝑉 − 1
𝑉𝑉 ∑(𝜃𝜃(𝐽𝐽) − 𝜃𝜃(.))2

𝐽𝐽

𝐽𝐽=1

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

150 Resampling Methods

In the previous equation, the term ̂ (.) is defined as follows:

The calculated standard deviation will be used for building confidence intervals for
the parameters.

With the aim of evaluating, and possibly reducing, the estimator distortion, the Jackknife
estimate of the distortion is calculated as follows:

�̂�𝜃𝑖𝑖∗ = 𝑛𝑛 ∗ �̂�𝜃 − (𝑛𝑛 − 1) ∗ �̂�𝜃𝑖𝑖
Essentially, the Jackknife method reduces bias and evaluates variance for an estimator.

Estimating the coefficient of variation
To make comparisons regarding variability between different distributions, we can use
the coefficient of variation (CV) since it considers the average of the distribution. The
variation coefficient is a relative measure of dispersion and is a dimensionless magnitude.
It allows us to evaluate the dispersion of the values around the average, regardless of the
unit of measurement.

Important Note
For example, the standard deviation of a sample of income expressed in
dollars is completely different from the standard deviation of the same income
expressed in euros, while the dispersion coefficient is the same in both cases.

The coefficient of variation is calculated using the following equation:

In the previous equation, we use the following parameters:

• is the standard deviation of the distribution.

• | | is the absolute value of the mean of the distribution.

𝜃𝜃(.) =
1
𝑛𝑛∑𝜃𝜃(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

𝐶𝐶𝐶𝐶 = 𝜎𝜎
|𝜇𝜇| ∗ 100

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Jackknife technique 151

The variance is the average of the differences squared between each of the observations
in a group of data and the arithmetic mean of the data:

So, it represents the squared error that we commit, on average, replacing a generic
observation xi with the average µ. The standard deviation is the square root of the variance
and therefore represents the square root of the mean squared error:

The CV, which can be defined starting from the average and standard deviation, is the
appropriate index for comparing the variability of two characters. CV
is particularly useful when you want to compare the dispersion of data with different units
of measurement or with different ranges of variation.

Applying Jackknife resampling using Python
Now, let's look at some Python code that compares the CV of a distribution and the one
obtained with resampling according to the Jackknife method:

1. Let's see the code step by step, starting with loading the necessary libraries:

import random

import statistics

import matplotlib.pyplot as plt

The random module implements pseudo-random number generators for various
distributions. The random module is based on the Mersenne Twister algorithm.
Mersenne Twister is a pseudo-random number generator. Originally developed to
produce inputs for Monte Carlo simulations, almost uniform numbers are generated
via Mersenne Twister, making them suitable for a wide range of applications.

The statistics module contains numerous functions for calculating
mathematical statistics from numerical data. With the tools available in this
module, it will be possible to calculate the averages and make measurements of the
central position and diffusion measures.

𝜎𝜎2 = 1
𝑁𝑁∑(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2

𝑁𝑁

𝑖𝑖=1

𝜎𝜎 = √1𝑁𝑁∑(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2
𝑁𝑁

𝑖𝑖=1

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

152 Resampling Methods

The matplotlib library is a Python library for printing high-quality graphics.
With matplotlib, it is possible to generate graphs, histograms, bar graphs,
power spectra, error graphs, scatter graphs, and so on with a few commands.
This is a collection of command-line functions like those provided by the
MATLAB software.

2. We now generate a distribution that represents our data population. We will use this
data to extract samples using the sampling methods we are studying. To do this, we
first create an empty list that will contain such data:

PopData = list()

A list is an ordered collection of values and can be of various types. It is an editable
container – in fact, it allows us to add, delete, and modify existing values. For our
purpose, which is to continuously update our values, the list represents the most
suitable solution. The list() function accepts a sequence of values and converts
them into lists. With this command, we simply initialized the list, which is
currently empty.

3. The list will be populated through the generation of random numbers. Then, to
make the experiment reproducible, we will fix the seed in advance:

random.seed(5)

The random.seed () function is useful if we want to have the same set
of data available to be processed in different ways as this makes the
simulation reproducible.

Important Note
This function initializes the basic random number generator. If you use the
same seed in two successive simulations, you always get the same sequence of
pairs of numbers.

4. Now, we can populate the list with 100 randomly generated values:

for i in range(100):

 DataElem = 10 * random.random()

 PopData.append(DataElem)

In the previous piece of code, we generated 100 random numbers between 0
and 1 using the random() function. Then, for each step of the for loop, this
number was multiplied by 10 to obtain a distribution of numbers between 0
and 10.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Jackknife technique 153

5. Now, let's define a function that calculates the coefficient of variation, as follows:

def CVCalc(Dat):

 CVCalc = statistics.stdev(Dat)/statistics.mean(Dat)

 return CVCalc

As indicated in the Estimating the coefficient of variation section, this coefficient
is simply the ratio between the standard deviation and the mean. To calculate
the standard deviation, we used the statistics.stdev() function. This
function calculates the sample standard deviation, which represents the square
root of the sample variance. To calculate the mean of the data, we used the
statistics.mean function. This function calculates the sample arithmetic
mean of the data. We can immediately use the newly created function to calculate
the variation coefficient of the distribution that we have created:

CVPopData = CVCalc(PopData)

print(CVPopData)

The following result is returned:
0.6569398125747403

For now, we leave this result out, but we will use it later to compare the results we
obtained by resampling.

6. Now, we can move on and resample according to the Jackknife method. To begin,
we fix the variables that we will need in the following calculations:

N = len(PopData)

JackVal = list()

PseudoVal = list()

N represents the number of samples present in the starting distribution. The
JackVal list will contain the Jackknife sample, while the PseudoVal list will
contain the Jackknife pseudo values.

7. The two newly created lists must be initialized to zero to avoid problems in
subsequent calculations:

for i in range(N-1):

 JackVal.append(0)

for i in range(N):

 PseudoVal.append(0)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

154 Resampling Methods

The JackVal list has a length of N-1 and relates to what we discussed in the
Defining the Jackknife method section.

8. At this point, we have all the tools necessary to apply the Jackknife method. We will
use two for loops to extract the samples from the initial distribution by calculating
the pseudo value at each step of the external loop:

for i in range(N):

 for j in range(N):

 if(j < i):

 JackVal[j] = PopData[j]

 else:

 if(j > i):

 JackVal[j-1]= PopData[j]

 PseudoVal[i] = N*CVCalc(PopData)-

 (N-1)*CVCalc(JackVal)

Jackknife samples (JackVal) are constructed by leaving an observation xi out of
the original sample at each step of the external loop (for i in range(N)). At the
end of each step of the external cycle, the pseudo value is evaluated using the
following equation:

9. To analyze the distribution of pseudo values, we can draw a histogram:

plt.hist(PseudoVal)

plt.show()

The following graph is printed:

�̂�𝜃𝑖𝑖∗ = 𝑛𝑛 ∗ �̂�𝜃 − (𝑛𝑛 − 1) ∗ �̂�𝜃𝑖𝑖

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the Jackknife technique 155

Figure 6.2 – Distribution of pseudo values

10. Now, let's calculate the average of the pseudo values that we have obtained:

MeanPseudoVal=statistics.mean(PseudoVal)

print(MeanPseudoVal)

The following result is returned:
0.6545985339842991

As we can see, the value we've obtained is comparable with what we obtained from
the starting distribution. Now, we will calculate the variance of the pseudo values:

VariancePseudoVal=statistics.variance(PseudoVal)

print(VariancePseudoVal)

The following result is returned:
0.2435929299444099

Finally, let's evaluate the variance of the Jackknife estimator:
VarJack = statistics.variance(PseudoVal)/N

print(VarJack)

The following result is returned:
0.002435929299444099

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

156 Resampling Methods

We will use these results to compare the different resampling methods.

Demystifying bootstrapping
The most well-known resampling technique is the one defined as bootstrapping, as
introduced by B. Efron in 1993. The logic of the bootstrap method is to build samples that
are not observed, but statistically like those observed. This is achieved by resampling the
observed series through an extraction procedure where we reinsert the observations.

Introducing bootstrapping
This procedure is like extracting a number from an urn, with subsequent reinsertion
of the number before the next extraction. Once a statistical test has been chosen, it is
calculated both on the observed sample and on a large number of samples of the same
size as that observed and obtained by resampling. The N values of the test statistic then
allow us to define the sample distribution; that is, the empirical distribution of the
chosen statistic.

Important Note
A statistical test is a rule for discriminating samples that, if observed, lead to
the rejection of an initial hypothesis, from those which, if observed, lead to
accepting the same hypothesis until proven otherwise.

Since the bootstrapped samples derive from a random extraction process with
reintegration from the original series, any temporal correlation structure of the observed
series is not preserved. It follows that bootstrapped samples have properties such as the
observed sample, but respect, at least approximately, the hypothesis of independence.
This makes them suitable for calculating test statistics distributions, assuming there's
a null hypothesis for the absence of trends, change points, or of a generic systematic
temporal trend.

Once the sample distribution of the generic test statistic under the null hypothesis is
known, it is possible to compare the value of the statistic itself, as calculated on the
observed sample with the quantiles, deduced from the sample distribution, and check
whether the value falls into critical regions with a significance level of 5% and 10%,
respectively. Alternatively, you can define the percentage of times that the value of the
statistic calculated on the observed sample is exceeded by the values coming from the N
samples. This value is the statistic p-value for the observed sample and checks whether
this percentage is far from the commonly adopted meaning of 5% and 10%.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Demystifying bootstrapping 157

Bootstrap definition problem
Bootstrap is a statistical resampling technique with reentry so that we can approximate
the sample distribution of a statistic. It therefore allows us to approximate the mean
and variance of an estimator so that we can build confidence intervals and calculate test
p-values when the distribution of the statistics of interest is not known.

Important Note
Bootstrap is based on the fact that the only available sample is used to generate
many more samples and to build the theoretical reference distribution. Use the
data from the original sample to calculate a statistic and estimate its sample
distribution without making any assumptions about the distribution model.

The plug-in principle is used to generate the distribution; that is, the estimate of θ is
constructed by substituting the empirical equivalent of the unknown distribution function
of the population. The distribution function of the sample is obtained by constructing
a distribution of frequencies of all the values it can assume in that experimental situation.

In the simple case of simple random sampling, the operation is as follows. Consider an
observed sample with n elements, as described by the following equation:

From this distribution, m other samples of a constant number equal to n, say x * 1, ..., x
* m, are resampled. In each bootstrap extraction, the data from the first element of the
sample can be extracted more than once. Each one that's provided has a probability equal
to 1 / n of being extracted.

Let E be the estimator of θ that interests us to study, say, E(x) = θ. This quantity is
calculated for each bootstrap sample, E(x * 1),…, E(x * m). In this way, m estimates of
θ are available, from which it is possible to calculate the bootstrap mean, the bootstrap
variance, the bootstrap percentiles, and so on. These values are approximations of the
corresponding unknown values and carry information on the distribution of E(x).
Therefore, starting from these estimated quantities, it is possible to calculate confidence
intervals, test hypotheses, and so on.

x = (x1, . . . , xn)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

158 Resampling Methods

Bootstrap resampling using Python
We proceed in a similar way to what we did for Jackknife resampling. We will generate a
random distribution, carry out a resampling according to the bootstrap method, and then
compare the results. Let's see the code step by step in order to understand the procedure:

1. Let's start by importing the necessary libraries:

import random

import numpy as np

import matplotlib.pyplot as plt

NumPy is a Python library that contains numerous functions that help us manage
multidimensional matrices. Furthermore, it contains a large collection of high-level
mathematical functions that we can use on these matrices.

2. Now, we will generate a distribution that represents our data population. We will
use this data to start extracting samples using the sampling methods we have
studied. To do this, we will create an empty list that will contain such data:

PopData = list()

This list will be populated through generating random numbers.

3. To make the experiment reproducible, we will fix the seed in advance:

random.seed(7)

The random.seed () function is useful if we want to have the same set of data
available to be processed in different ways as it makes the simulation reproducible.

4. Now, we can populate the list with 1,000 randomly generated values:

for i in range(1000):

 DataElem = 50 * random.random()

 PopData.append(DataElem)

In the previous piece of code, we generated 1,000 random numbers between 0 and
1 using the random() function. Then, for each step of the for loop, this number
was multiplied by 50 to obtain a distribution of numbers between 0 and 50.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Demystifying bootstrapping 159

5. At this point, we can start extracting a sample of the initial population. The first
sample can be extracted using the random.choices() function, as follows:

PopSample = random.choices(PopData, k=100)

This function extracts a sample of size k elements chosen from the population with
substitution. We extracted a sample of 100 elements from the original population of
1,000 elements.

6. Now, we can apply the bootstrap method, as follows:

PopSampleMean = list()

for i in range(10000):

 SampleI = random.choices(PopData, k=100)

 PopSampleMean.append(np.mean(SampleI))

In this piece of code, we created a new list that will contain the sample. Here,
we used a for loop with 1,000 steps. At each step, a sample of 100 elements was
extracted using the random.choices () function from the initial population.
Then, we obtained the average of this sample. This value was then added to the
end of the list.

Important Note
We resampled the data with the replacement, thereby keeping the resampling
size equal to the size of the original dataset.

7. We now print a histogram of the sample we obtained to visualize its distribution:

plt.hist(PopSampleMean)

plt.show()

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

160 Resampling Methods

The following graph is printed:

Figure 6.3 – Histogram of the sample distribution
Here, we can see that the sample has a normal distribution.

8. We can now calculate the mean of the three distributions that we have generated.
Let's start with the bootstrap estimator:

MeanPopSampleMean = np.mean(PopSampleMean)

print("The mean of the Bootstrap estimator is
",MeanPopSampleMean)

The following result is returned:
The mean of the Bootstrap estimator
is 24.105354873028915

We can then calculate the mean of the initial population:
MeanPopData = np.mean(PopData)

print("The mean of the population is ",MeanPopData)

The following result is returned:
The mean of the population is 24.087053989747968

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Demystifying bootstrapping 161

Finally, we calculate the mean of the simple sample that was extracted from the
initial population:

MeanPopSample = np.mean(PopSample)

print("The mean of the simple random sample is
",MeanPopSample)

The following result is returned:
The mean of the simple random sample
is 23.140472976536497

We can now compare the results. Here, the population and bootstrap sample means are
practically identical, while the generic sample mean deviates from these values. This tells
us that the bootstrap sample is more representative of the initial population than a generic
sample that was extracted from it.

Comparing Jackknife and bootstrap
In this section, we will compare the two sampling methods that we have studied by
highlighting their strengths and weaknesses:

• Bootstrap requires approximately 10 times more computational effort. Jackknife
can, at least theoretically, be done by hand.

• Bootstrap is conceptually simpler than Jackknife. Jackknife requires n repetitions
for a sample of n, while bootstrap requires a certain number of repetitions. This
leads to choosing a number to use, which is not always an easy task. A general
rule of thumb is that this number is 1,000 unless you have access to a great deal of
computing power.

• Bootstrap introduces errors due to having additional sources of variation due to
the finished resampling. Note that this error is reduced for large sizes or where only
specific bootstrap sample sets are used.

• Jackknife is more conservative than bootstrap as it produces slightly larger
estimated standard errors.

• Jackknife always provides the same results, due to the small differences between the
replicas. Bootstrap, on the other hand, provides different results each time it is run.

• Jackknife tends to work best for estimating the confidence interval for pair
agreement measures.

• Bootstrap performs better for distorted distributions.

• Jackknife is best suited for small samples of original data.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

162 Resampling Methods

Explaining permutation tests
When observing a phenomenon belonging to a set of possible results, we ask ourselves
what the law of probability is that we can assign to this set. Statistical tests provide a rule
that allows us to decide whether to reject a hypothesis based on the sample observations.

Parametric approaches are very uncertain about the experiment plan and the population
model. When these assumptions are not respected, particularly when the data law does
not conform to the needs of the test, the parametric results are less reliable. When the
hypothesis is not based on knowledge of the data distribution and assumptions have not
been verified, nonparametric tests are used. Nonparametric tests offer a very important
alternative since they need fewer hypotheses.

Permutation tests are a special case of randomization tests that use series of random
numbers formulated from statistical inferences. The computing power of modern
computers has made their widespread application possible. These methods do not require
that their assumptions about data distribution are met.

A permutation test is performed through the following steps:

1. A statistic is defined whose value is proportional to the intensity of the process
or relationship being studied.

2. A null hypothesis H0 is defined.

3. A dataset is created based on the scrambling of those actually observed. The mixing
mode is defined according to the null hypothesis.

4. The reference statistics are recalculated, and the value is compared with the one that
was observed.

5. The last two steps are repeated many times.

6. If the observed statistic is greater than the limit obtained in 95% of the cases based
on shuffling, H0 is rejected.

Two experiments use values in the same sample space under the respective distributions
P1 and P2, both of which are members of an unknown population distribution. Given
the same dataset x, if the inference conditional on x, which is obtained using the same
test statistic, is the same, assuming that the exchangeability for each group is satisfied
in the null hypothesis. The importance of permutation tests lies in their robustness and
flexibility. The idea of using these methods is to generate a reference distribution from the
data and recalculate the test statistics for each permutation of the data with reference to
the resulting discrete law.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Approaching cross-validation techniques 163

Approaching cross-validation techniques
Cross-validation is a method used in model selection procedures based on the principle of
predictive accuracy. A sample is divided into two subsets, of which the first (training set)
is used for construction and estimation, while the second (validation set) is used to verify
the accuracy of the predictions of the estimated model. Through a synthesis of repeated
predictions, a measure of the accuracy of the model is obtained. A cross-validation
method is like jackknife, in that it leaves one observation out at a time. In another
method, known as K-fold validation, the sample is divided into K subsets and,
in turn, each of them is left out as a validation set.

Important Note
Cross validation can be used to estimate the Mean Squared Error (MSE) test
(or, in general, any measure of precision) of a statistical learning technique in
order to evaluate its performance or select its level of flexibility.

Cross validation can be used for both regression and classification problems. The three
main validation techniques of a simulation model are the validation set approach,
Leave-One-Out Cross Validation (LOOCV), and k-fold cross validation. In the following
sections, we will learn about these concepts in more detail.

The validation set approach
This technique consists of randomly dividing the available dataset into two parts:

• A training set

• A validation set, called the hold-out set

A statistical learning model is adapted to the training data and subsequently used for
predicting with the data of the validation set.

The measurement of the resulting test error, which is typically the MSE in the case of
regression, provides an estimate of the real test error. In fact, the validation set is the result
of a sampling procedure and therefore different samplings result in different estimates of
the test error.

This validation technique has various pros and cons. Let's take a look at a few:

• The method tends to have high variability; that is, the results can change
substantially as the selected test set changes.

• Only a part of the available units is used for function estimates. This can lead to less
precision in function estimating and over-estimating the test error.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

164 Resampling Methods

The LOOCV and k-fold cross validation techniques try to overcome these problems.

Leave-one-out cross validation
LOOCV also divides the observation set into two parts. However, instead of creating two
subsets of a comparable size, we do the following:

1. A single observation (x1, y1) is used for validation and the remaining observations
make up the training set.

2. The function is estimated based on the n-1 observations of the training set.

3. The prediction ̂ 1 is made using x1. Since (x1, y1) was not used in the function
estimate, an estimate of the test error is as follows:

But even if MSE1 is impartial to the test error, it is a poor estimate because it is very
variable. This is because it is based on a single observation (x1, y1).

4. The procedure is repeated by selecting for validation (x2, y2), where a new estimate
of the function is made based on the remaining n-1 observations, and calculating
the test error again, as follows:

5. Repeating this approach n times produces n test errors.

6. The LOOCV estimate for the MSE test is the average of the n MSEs available,
as follows:

LOOCV has some advantages over the validation set approach:

• Using an n-1 unit to estimate the function has less bias. Consequently, the LOOCV
approach does not tend to overestimate the test error.

• As there is no randomness in the choice of the test set, there is no variability in the
results for the same initial dataset.

LOOCV can be computationally intensive, so for large datasets, it takes a long time
to calculate. In the case of linear regression, however, there are direct computational
formulas with low computational intensity.

𝑀𝑀𝑀𝑀𝑀𝑀1 = (𝑦𝑦1 − �̂�𝑦1)2

𝑀𝑀𝑀𝑀𝑀𝑀2 = (𝑦𝑦2 − �̂�𝑦2)2

𝐶𝐶𝐶𝐶𝑛𝑛 =
1
𝑛𝑛∑𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Approaching cross-validation techniques 165

K-fold cross validation
In k-fold cross-validation (k-fold CV), the set of observations is randomly divided into
k groups, or folders, of approximately equal size. The first folder is considered as a
validation set and the function is estimated on the remaining k-1 folders. The mean
square error MSE1 is then calculated on the observations of the folder that's kept out. This
procedure is repeated k times, each time choosing a different folder for validation, thus
obtaining k estimates of the test error. The k-fold CV estimate is calculated by averaging
these values, as follows:

This method has the advantage of being less computationally intensive if k << n.
Furthermore, the k-fold CV tends to have less variability than the LOOCV on different
size datasets n.

Choosing k is crucial in k-fold cross-validation. What happens when k changes in cross
validation? Let's see what an extreme choice of k entails:

• A high k value results in larger training sets and therefore less bias. This implies
small validation sets, and therefore greater variance.

• A low k value results in smaller training sets and therefore greater bias. This implies
larger validation sets, and therefore low variance.

Cross-validation using Python
In this section, we will look at an example of the application of cross-validation. First, we
will create an example dataset that contains simple data to identify in order to verify the
procedure being performed by the algorithm. Then, we will apply k-fold cross-validation
and analyze the results:

1. As always, we start by importing the necessary libraries:

import numpy as np

from sklearn.model_selection import KFold

numpy is a Python library that contains numerous functions that help us manage
multidimensional matrices: Furthermore, it contains a large collection of high-level
mathematical functions we can use on these matrices.

𝐶𝐶𝐶𝐶(𝑘𝑘) = 1
𝑘𝑘 ∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

166 Resampling Methods

Scikit-learn is an open source Python library that provides multiple tools for
machine learning. In particular, it contains numerous classification, regression, and
clustering algorithms; support vector machines; logistic regression; and much more.
Since it was released in 2007, Scikit-learn has become one of the most used libraries
in the field of machine learning, both supervised and unsupervised, thanks to the
wide range of tools it offers, but also thanks to its API, which is documented, easy to
use, and versatile.

Important Note
Application programming interfaces (APIs) are sets of definitions and
protocols that application software is created and integrated with. They allow
products or services to communicate with other products or services without
knowing how they are implemented, thus simplifying app development
and allowing a net saving of time and money. When creating new tools and
products or managing existing ones, APIs offer flexibility; simplify design,
administration, and use; and provide opportunities for innovation.

The scikit-learn API combines a functional user interface with an optimized
implementation of numerous classification and meta-classification algorithms. It
also provides a wide variety of data preprocessing, cross-validation, optimization,
and model evaluation functions. Scikit-learn is particularly popular for academic
research since developers can use the tool to experiment with different algorithms
by changing only a few lines of code.

2. Now, let's generate the starting dataset:

StartedData=np.arange(10,110,10)

print(StartedData)

Here, we generated a vector containing 10 integers, starting from the value 10 up to
100 with a step equal to 10. To do this, we used the NumPy arange() function.
This function generates equidistant values within a certain range. Three arguments
have been passed, as follows:

 10: Start of the interval. This value is included. If this value is omitted, the default
value of 0 is used.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Approaching cross-validation techniques 167

110: End of range. This value is not included in the range except in cases of
floating-point numbers.

10: Spacing between values. This is the distance between two adjacent values. By
default, this value is equal to 1.

The following array was returned:
[10 20 30 40 50 60 70 80 90 100]

3. Now, we can set the function that will allow us to perform k-fold cross validation:

kfold = KFold(5, True, 1)

Sklearn's KFold() function performs k-fold cross validation by dividing the
dataset into k consecutive folds without shuffling by default. Each fold is then used
once as validation, while the remaining k - 1 folds form the training set. Three
arguments were passed, as follows:

5: Number of folds required. This number must be at least 2.

True: Optional Boolean value. If it is equal to True, the data is mixed before it's
divided into batches.

1: Seed used by the random number generator.

4. Finally, we can resample the data by using k-fold cross validation:

for TrainData, TestData in kfold.split(StartedData):

 print("Train Data :", StartedData[TrainData],"Test
Data :", StartedData[TestData])

To do this, we used a loop for the elements generated by the kfold.split()
method, which returns the indexes that the dataset is divided into. Then, for
each step,
which is equal to the number of folds, the elements of the subsets that were drawn
are printed.

The following results are returned:
Train Data : [10 20 40 50 60 70 80 90]

Test Data : [30 100]

Train Data : [10 20 30 40 60 80 90 100]

Test Data : [50 70]

Train Data : [20 30 50 60 70 80 90 100]

Test Data : [10 40]

Train Data : [10 30 40 50 60 70 90 100]

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

168 Resampling Methods

Test Data : [20 80]

Train Data : [10 20 30 40 50 70 80 100]

Test Data : [60 90]

These pairs of data (Train Data, Test Data) will be used in succession to train
the model and to validate it. This way, you can avoid overfitting and bias problems.
Every time you evaluate the model, the extracted part of the dataset is used and the
remaining part of the dataset is used for training.

Summary
In this chapter, we learned how to resample a dataset. We analyzed several techniques
that approach the problem differently. First, we analyzed the basic concepts of sampling
and learned about the reasons that push us to use a sample extracted from a population.
We then examined the pros and cons of this choice. We also analyzed how a resampling
algorithm works.

We then tackled the first resampling method: the Jackknife method. We first defined the
concepts behind the method and then moved on to the procedure, which allows us to
obtain samples from the original population. To put the concepts we learned into practice,
we applied Jackknife resampling to a practical case.

We then explored the bootstrap method, which builds unobserved but statistically, like
the observed samples. This is accomplished by resampling the observed series through
an extraction procedure where we reinsert the observations. After defining the method,
we worked through an example to highlight the characteristics of the procedure.
Furthermore, a comparison between Jackknife and bootstrap was made.

After analyzing the concepts underlying permutation tests, we concluded this chapter by
looking at various cross-validation methods. Our knowledge of the k-fold cross-validation
method was deepened through an example.

In the next chapter, we will learn about the basic concepts of various optimization
techniques and how to implement them. We will understand the difference between
numerical and stochastic optimization techniques, and we will learn how to implement
stochastic gradient descent. We will then discover how to estimate missing or latent
variables and optimize model parameters. Finally, we will discover how to use
optimization methods in real-life applications.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Using Simulation

to Improve and
Optimize Systems

Simulation models allow us to obtain a lot of information using few resources. As often
happens in life, simulation models are also subject to improvements in order to increase
their performance. Through optimization techniques, we try to modify the performance
of a model to obtain improvements both in terms of the results and when trying to
exploit resources. Optimization problems are usually so complex that a solution cannot
be determined analytically. Complexity is determined first by the number of variables and
constraints, which define the size of the problem, and then by the possible presence of
non-linear functions. To solve an optimization problem, it is necessary to use an iterative
algorithm that, given a current approximation of the solution, determines, with an
appropriate sequence of operations, updates to this approximation. Starting from an initial
approximation, a sequence of approximations that progressively improve the solution
is determined.

In this chapter, we will learn how to use the main optimization techniques to improve
the performance of our simulation models. We will learn how to use the gradient descent
technique, the Newton-Raphson method, and stochastic gradient descent. We will also
learn how to apply these techniques with practical examples.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

170 Using Simulation to Improve and Optimize Systems

In this chapter, we're going to cover the following main topics:

• Introducing numerical optimization techniques

• Exploring the gradient descent technique

• Facing the Newton-Raphson method

• Deepening our knowledge of stochastic gradient descent

• Discovering multivariate optimization applications in Python

Technical requirements
In this chapter, we will learn how to use simulation models to improve and optimize
systems. To deal with the topics in this chapter, it is necessary that you have a basic
knowledge of algebra and mathematical modeling. To work with the Python code
in this chapter, you'll need the following files (available on GitHub at the following
URL: https://github.com/PacktPublishing/Hands-On-Simulation-
Modeling-with-Python:

• gradient_descent.py

• newton_raphson.py

• scipy_optimize.py

Introducing numerical optimization
techniques
In real life, optimizing means choosing the best option among several available
alternatives. Each of us optimizes an itinerary to reach a destination, organizes our day,
how we use savings, and so on. In mathematics, optimizing means determining the value
of the variables of a function so that it assumes its minimum or maximum. Optimization
is the discipline that deals with the formulation of useful models in applications, thereby
using efficient methods to identify an optimal solution.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python
https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python

Introducing numerical optimization techniques 171

Optimization models have great practical interest for the many applications offered.
In fact, there are numerous decision-making processes that require you to determine
the choice that minimizes the cost or maximizes the gain and are therefore attributable
to optimization models. In optimization theory, a relevant position is occupied by
mathematical optimization models, for which the evaluation function and the constraints
that characterize the permissible alternatives are expressed through equations and
inequalities. Mathematical optimization models come in different forms:

• Linear optimization

• Integer optimization

• Nonlinear optimization

Defining an optimization problem
An optimization problem consists of trying to determine the points that belong to a set F
in which a function f takes values that are as low as possible. This problem is represented
in the following form:

𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑥𝑥) ∀ 𝑥𝑥 ∈ 𝐹𝐹

Here, we have the following:

• f is called the objective function

• F is called the feasible set and contains all the admissible choices for x

Important Note
If you have a maximization problem, that is, if you have to find a point where
the function f takes on the highest possible value, you can always go back to the
minimal problem, thus changing the sign of the objective function.

The elements that minimize the function f by satisfying the previous relationship are
called global optimal solutions, also known as optimal solutions or minimum solutions.
The corresponding value of the objective function f is called the global optimum value,
also known as the optimal or minimum.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

172 Using Simulation to Improve and Optimize Systems

The complexity of the optimization problem, that is, its difficulty of resolution, obviously
depends on the characteristics of the objective function and the structure of the flexible
set. Usually, an optimization problem is characterized by whether there is complete
freedom in the choice of the vector x. We can therefore state that there are two types of
problems, as follows:

• Unconstrained minimization problem, if F = Rn; that is, if the flexible set
F coincides with the whole set Rn

• Constrained minimization problem, if F⊂ Rn; that is, if the flexible set F is only
a part of the set Rn

While solving an optimization problem, the first difficulty we face is understanding
whether the value is well placed, in the sense that there may not be a point F where the
function f(x) takes the value of pi with the least decimal value. In fact, one of the following
conditions could occur:

• The flexible set F may be empty.

• The flexible set F may not be empty but the objective function could have a lower
limit equal to −∞.

• The flexible set F may not be empty and the objective function could have a lower
limit equal to −∞ but, also in this case, there could be no global minimum points of
f on F.

A sufficient but not necessary condition for the existence of a global minimum point in an
optimization problem is that expressed by the Weierstrass theorem through the following
proposition: let F⊂ Rn be a non-empty and compact set. Let f be a continuous function on
F. If so, a global minimum point of f exists in F.

The previous proposition applies only to the class of constrained problems in which the
flexible set is compact. To establish existence results for problems with non-compact
flexible sets, that is, in the case where F = Rn, it is necessary to try to characterize some
subset of F containing the optimal solutions to the problem.

Important Note
A compact space is a topological space where every open covering of it
contains a finished sub-covering.

In general, there isn't always an optimal solution for the problem at hand and, where it
exists, it isn't always unique.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing numerical optimization techniques 173

Explaining local optimality
Unfortunately, all global optimality conditions have limited application interest. In fact,
they are linked to the overall behavior of the objective function on the admissible set and,
therefore, are necessarily described by complex conditions from a computational point of
view. Next to the notion of global optimality, as introduced by defining the optimization
model, it is appropriate to define the concept of local optimality.

We can define a local optimum as the best solution to a problem in a small neighborhood
of possible solutions. In the following graph, we can identify four local minimum
conditions for the function f(x), which therefore represent the local optimum:

Figure 7.1 – Local minimum conditions for the f(x) function

However, only one of these is a global optimum, while the other three remain local
optima. Local optimality conditions are more useful from an application point of view.
These are nothing but necessary conditions, but in general, they are not sufficient. This
is because an assigned point is a local minimum point of a minimization problem.
Therefore, from a theoretical point of view, they do not give a satisfactory characterization
of the local minima of the optimization problem, but they do play an important role in the
definition of minimization algorithms.

Many problems that are faced in real life can be represented as nonlinear optimization
problems. This motivates the increasing interest, from a technical and scientific point
of view, in the study and development of methods that can solve this class of difficult
mathematical problem.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

174 Using Simulation to Improve and Optimize Systems

Exploring the gradient descent technique
The goal of any simulation algorithm is to reduce the difference between the values
predicted by the model and the actual values returned by the data. This is because a lower
error between the actual and expected values indicates that the algorithm has done a good
simulation job. Reducing this difference simply means minimizing the objective function
that the model being built is based on.

Defining the descent methods
Descent methods are iterative methods that, starting from an initial point x0 ∈ Rn,
generate a sequence of points {xn} n ∈ N defined by the following equation:

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 + 𝛾𝛾𝑛𝑛 ∗ 𝑔𝑔𝑛𝑛

Here, the vector is a search direction and the scalar is a positive parameter called
step length, which indicates the distance by which we move in the direction.

In a descent method, the vector and the parameter are chosen to guarantee the
decrease of the objective f function at each iteration, as follows:

𝑓𝑓𝑥𝑥𝑛𝑛+1 < 𝑓𝑓𝑥𝑥𝑛𝑛 ∀ 𝑛𝑛 ≥ 0

Using the vector, we take a direction of descent, which is such that the line x = xn +
∗ forms an obtuse angle with the gradient vector ∇ f (xn). In this way, it is possible to

guarantee the decrease of f, provided that is sufficiently small.

Depending on the choice of there are different descent methods. The most common
are as follows:

• Gradient descent method

• Newton-Raphson method

Let's start by analyzing the gradient descent algorithm.

Approaching the gradient descent algorithm
A gradient is a vector-valued function that represents the slope of the tangent of the
function graph, indicating the direction of the maximum rate of increase of the function.
Let's consider the convex function represented in the following diagram:

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing numerical optimization techniques 175

Figure 7.2 – The convex function

The goal of the gradient descent algorithm is to reach the lowest point of this function.
In more technical terms, the gradient represents a derivative that indicates the slope or
inclination of the objective function.

To understand this better, let's assume we got lost in the mountains at night with poor
visibility. We can only feel the slope of the ground under our feet. Our goal is to reach
the lowest point of the mountain. To do this, we will have to walk a few steps and move
toward the direction of the highest slope. We will do this iteratively, moving one step at a
time until we finally reach the mountain valley.

In mathematics, the derivative is the rate of change or slope of a function at a given
point. So, the value of the derivative is the incline of the slope at a specific point. The
gradient represents the same thing, with the addition that it is a vector value function
that stores partial derivatives. This means that the gradient is a vector and that each of its
components is a partial derivative with respect to a specific variable.

Let's analyze a function, f (x, y), that is, a two-variable function, x and y. Its gradient is a
vector containing the partial derivatives of f: the first with respect to x and the second with
respect to y. If we calculate the partial derivatives of f, we get the following:

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿 , 𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

176 Using Simulation to Improve and Optimize Systems

The first of these two expressions is called a partial derivative with respect to x, while the
second partial derivative is with respect to y. The gradient is the following vector:

The preceding equation is a function that represents a point in a two-dimensional space,
or a two-dimensional vector. Each component indicates the steepest climbing direction
for each of the function variables. Hence, the gradient points in the direction that the
function increases the most in.

Similarly, if we have a function with five variables, we would get a gradient vector with five
partial derivatives. Generally, a function with n variables results in an n-dimensional
gradient vector, as follows:

For gradient descent, however, we don't want to maximize f as fast as possible. Instead, we
want to minimize it, that is, find the smallest point that minimizes the function.

Suppose we have a function y = f(x). Gradient descent is based on the observation that
if the function f is defined and differentiable in a neighborhood of x, then this function
decreases faster if we move in the direction of the negative gradient. Starting from a value
of x, we can write the following:

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 𝛾𝛾 ∗ ∇𝑓𝑓(𝑥𝑥𝑛𝑛)
Here, we have the following:

• is the learning rate

• ∇ is the gradient

For sufficiently small values, the algorithm converges to the minimum value of the
function f in a finite number of iterations.

∇𝑓𝑓(𝑥𝑥, 𝑦𝑦) =
[

 𝛿𝛿𝑓𝑓
𝛿𝛿𝑥𝑥
𝛿𝛿𝑓𝑓
𝛿𝛿𝑦𝑦]

∇𝑓𝑓(𝑥𝑥, 𝑦𝑦,… . 𝑧𝑧) =

[

 𝛿𝛿𝑓𝑓
𝛿𝛿𝑥𝑥
𝛿𝛿𝑓𝑓
𝛿𝛿𝑦𝑦…
…
𝛿𝛿𝑓𝑓
𝛿𝛿𝑧𝑧]

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing numerical optimization techniques 177

Important Note
Basically, if the gradient is negative, the objective function at that point is
decreasing, which means that the parameter must move toward larger values
to reach a minimum point. On the contrary, if the gradient is positive, the
parameters move toward smaller values to reach the lower values of the
objective function.

Understanding the learning rate
The gradient descent algorithm searches for the minimum of the objective function
through an iterative process. At each step, an estimate of the gradient is performed
to direct the descent in the direction that minimizes the objective function. In this
procedure, the choice of the learning rate parameter becomes crucial. This parameter
determines how quickly or slowly we will move to the optimal values of the objective
function:

• If it is too small, we will need too many iterations to converge to the best values.

• If the learning rate is very high, we will skip the optimal solution.

In the following diagram, you can see the two possible scenarios imposed by the value of
the learning rate:

Figure 7.3 – The scenarios for the learning rate

Due to this, it is essential to use a good learning rate. The best way to identify the optimal
learning rate is through trial and error.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

178 Using Simulation to Improve and Optimize Systems

Explaining the trial and error method
The term trial and error defines a heuristic method that aims to find a solution to
a problem by attempting it and checking if it has produced the desired effect. If so,
the attempt constitutes a solution to the problem; otherwise, we continue with
a different attempt.

Let's analyze the essential characteristics of the method:

• It is oriented toward the solution: It does not aim to find out why an attempt
works, but simply seeks it.

• It is specific to the problem in question: It has no claim to generalize to other
problems.

• It is not optimal: It usually limits itself to finding a single solution that will usually
not be the best possible one.

• It does not require having thorough knowledge of it: It proposes to find a solution
to a problem of which little or nothing is known about it.

The trial and error method can be used to find all the solutions to the problem or the best
solution among them if there is more than one. In this case, instead of stopping at the first
attempt that provided a desired result, we take note of it and continue in the attempts until
all the solutions are found. At the end, these are compared based on a given criterion,
which will determine which of them is to be considered the best.

Implementing gradient descent in Python
In this section, we will apply what we have learned so far on the gradient descent by
completing a practical example. We will define a function and then use that method to
find the minimum point of the function. As always, we will analyze the code line by line:

1. Let's start by importing the necessary libraries:

import numpy as np

import matplotlib.pyplot as plt

numpy is a Python library that contains numerous functions that help us manage
multidimensional matrices. Furthermore, it contains a large collection of high-level
mathematical functions we can use on these matrices.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing numerical optimization techniques 179

matplotlib is a Python library for printing high-quality graphics. With
matplotlib, it is possible to generate graphs, histograms, bar graphs, power spectra,
error graphs, scatter graphs, and so on with a few commands. It is a collection of
command-line functions like those provided by the Matlab software.

2. Now, let's define the function:

x = np.linspace(-1,3,100)

y=x**2-2*x+1

First, we defined an interval for the dependent variable x. We will only need this
to visualize the function and draw a graph. To do this, we used the linspace()
function. This function creates numerical sequences. Then, we passed three
arguments: the starting point, the ending point, and the number of points to be
generated. Next, we defined a parabolic function.

3. Now, we can draw a graph and display it:

fig = plt.figure()

axdef = fig.add_subplot(1, 1, 1)

axdef.spines['left'].set_position('center')

axdef.spines['bottom'].set_position('zero')

axdef.spines['right'].set_color('none')

axdef.spines['top'].set_color('none')

axdef.xaxis.set_ticks_position('bottom')

axdef.yaxis.set_ticks_position('left')

plt.plot(x,y, 'r')

plt.show()

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

180 Using Simulation to Improve and Optimize Systems

First, we defined a new figure and then set the axes so that the x-axis coincides
with the minimum value of the function and the y-axis coincides with the center of
the parabola. This will make it easier to visually locate the minimum point of the
function. The following diagram is printed:

Figure 7.4 – The minimum point of the function
As we can see, the minimum of the function corresponding to y = 0 occurs for a
value of x equal to 1. This will be the value that we will have to determine through
the gradient descent method.

4. Now, let's define the gradient function:

Gradf = lambda x: 2*x-2

Recall that the gradient of a function is its derivative. In this case, doing this is easy
since it is a single-variable function.

5. Before applying the iterative procedure, it is necessary to initialize a series of
variables:

actual_X = 3

learning_rate = 0.01

precision_value = 0.000001

previous_step_size = 1

max_iteration = 10000

iteration_counter = 0

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing numerical optimization techniques 181

As seen here:
• The actual_X variable will contain the current value of the independent variable

x. To start, we initialize it at x = 3, which represents the far-right value of the
display range of the function in the graph.

• The learning_rate variable contains the learning rate. As explained in the
Understanding the learning rate section, it is set at 0.01. We can try to see what
happens if we change that value.

• The precision_value variable will contain the value that defines the degree of
precision of our algorithm. Being an iterative procedure, the solution is refined at
each iteration and tends to converge. But this convergence may come after a very
large number of iterations, so to save resources, it is advisable to stop the iterative
procedure once adequate precision has been reached.

• The previous_step_size variable will contain the calculation of this precision
and will be initialized to 1.

• The max_iteration variable contains the maximum number of iterations that we
have provided for our algorithm. This value will be used to stop the procedure if it
does not converge.

• Finally, the iteration_counter variable will be the iteration counter.

6. Now, we are ready for the iteration procedure:

while previous_step_size > precision_value and
iteration_counter < max_iteration :

 PreviousX = actual_X

 actual_X = actual_X - learning_rate *
Gradf(PreviousX)

 previous_step_size = abs(actual_X - PreviousX)

 iteration_counter = iteration_counter +1

 print('Number of iterations = ',iteration_counter ,'\
nActual value of x is = ',actual_X)

 print('X value of f(x) minimum = ', actual_X)

The iterative procedure uses a while loop, which will repeat itself until both
conditions are verified (TRUE). When at least one of the two assumes a FALSE
value, the cycle will be stopped. The two conditions provide a check on the precision
and the number of iterations.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

182 Using Simulation to Improve and Optimize Systems

This procedure, as anticipated in the Defining the gradient descent section, requires
that we update the current value of x in the direction of the gradient's descent. We
do this using the following equation:

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 𝛾𝛾 ∗ ∇𝑓𝑓(𝑥𝑥𝑛𝑛)
At each step of the cycle, the previous value of x is stored so that we can calculate
the precision of the previous step as the absolute value of the difference between
the two x values. In addition, the step counter is increased at each step. At the end
of each step, the number of iterations and the current value of the x are printed, as
follows:

Number of iterations = 520

Actual value of x is = 1.0000547758790321

Number of iterations = 521

Actual value of x is = 1.0000536803614515

Number of iterations = 522

Actual value of x is = 1.0000526067542224

Number of iterations = 523

Actual value of x is = 1.000051554619138

Number of iterations = 524

Actual value of x is = 1.0000505235267552

Number of iterations = 525

Actual value of x is = 1.0000495130562201

Number of iterations = 526

Actual value of x is = 1.0000485227950957

As we can see at each step, the value of x progressively approaches the exact value.
Here, 526 iterations were executed.

7. At the end of the procedure, we can print the result:

print('X value of f(x) minimum = ', actual_X)

The following result is returned:
X value of f(x) minimum = 1.0000485227950957

As we can verify, the returned value is very close to the exact value, which is equal
to 1. It differs precisely from the value of the precision that we imposed as the term
for the iterative procedure.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Facing the Newton-Raphson method 183

Facing the Newton-Raphson method
Newton's method is the main numerical method for the approximation of roots of
nonlinear equations. The function is linearly approximated at each iteration to obtain a
better estimate of the zero point.

Using the Newton-Raphson algorithm for root-finding
Given a nonlinear function f and an initial approximation x0, Newton's method generates
a sequence of approximations {xk} k > 0 by constructing, for each k, a linear model of the
function f in a neighborhood of xk and approximating the function with the model itself.
This model can be constructed starting from Taylor's development of the function f at a
point x belonging to a neighborhood of the iterated current point xk, as follows:

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥𝑘𝑘) + (𝑥𝑥 − 𝑥𝑥𝑘𝑘) ∗ 𝑓𝑓′(𝑥𝑥𝑘𝑘) + (𝑥𝑥 − 𝑥𝑥𝑘𝑘)2 ∗
𝑓𝑓′′(𝑥𝑥𝑘𝑘)
2! +⋯

Truncating Taylor's first-order development gives us the following linear model:

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥𝑘𝑘) + (𝑥𝑥 − 𝑥𝑥𝑘𝑘) ∗ 𝑓𝑓′(𝑥𝑥𝑘𝑘)

The previous equation remains valid in a sufficiently small neighborhood of xk.

Given x0 as the initial data, the first iteration consists of calculating x1 as the zero of the
previous linear model with k = 0, that is, to solve the following scalar linear equation:

𝑓𝑓(𝑥𝑥) = 0

The previous equation leads to the next iterated x1 in the following form:

Similarly, the subsequent equation iterates x2, where x3 is constructed so that we can
elaborate on a general validity equation, as follows:

The form of the update equation is like the generic formula of descent methods. From a
geometric point of view, the previous update equation represents the line tangent to the
function f at the point (xk, f(xk)). It is for this reason that the method is also called the
tangent method.

𝑥𝑥1 = 𝑥𝑥0 −
𝑓𝑓(𝑥𝑥0)
𝑓𝑓′(𝑥𝑥0)

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

184 Using Simulation to Improve and Optimize Systems

Geometrically, we can define this procedure through the following steps:

• The tangent of the function is plotted at the starting point x0.

• The intercept of this line is identified with the x-axis. This point represents the new
value x1.

• This procedure is repeated until convergence.

The following diagram shows this procedure:

Figure 7.5 – The procedure of finding a tangent

This algorithm is well-defined if f '(xk) = 0 for every k. With regards to the computational
cost, it can be noted that, at each iteration, the evaluation of the function f and its
derivative before in point xk are required.

Approaching Newton-Raphson for numerical
optimization
The Newton-Raphson method is also used for solving numerical optimization problems.
In this case, the method takes the form of Newton's method for finding the zeros of a
function, but applied to the derivative of the function f. This is because determining
the minimum point of the function f is equivalent to determining the root of the first
derivative f '.

In this case, the update formula takes the following form:

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓′(𝑥𝑥𝑛𝑛)
𝑓𝑓′′(𝑥𝑥𝑛𝑛)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Facing the Newton-Raphson method 185

In the previous equation, we have the following:

• 𝑓𝑓′(𝑥𝑥𝑛𝑛) is the first derivative of the function f

• 𝑓𝑓′′(𝑥𝑥𝑛𝑛) is the second derivative of the function f

Important Note
The Newton-Raphson method is usually preferred over the descending
gradient method due to its speed. However, it requires knowledge of the
analytical expression of the first and second derivatives and converges
indiscriminately to the minima and maxima.

There are variants that bring this method to global convergence and that lower the
computational cost by avoiding having to determine the direction of the research with
direct methods.

Applying the Newton-Raphson technique
In this section, we will apply what we have learned so far about the Newton-Raphson
method by completing a practical exercise. We'll define a function and then use that
method to find the minimum point of the function. As always, we will analyze the code
line by line:

1. Let's start by importing the necessary libraries:

import numpy as np

import matplotlib.pyplot as plt

2. Now, let's define the function:

x = np.linspace(0,3,100)

y=x**3 -2*x**2 -x + 2

First, we defined an interval for the dependent variable x. We will only need
this to visualize the function in order to draw a graph. To do this, we used the
linspace() function. This function creates numerical sequences. Then, we
passed three arguments: the starting point, the ending point, and the number of
points to be generated. Next, we defined a cubic function.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

186 Using Simulation to Improve and Optimize Systems

3. Now, we can draw a graph and display it:

fig = plt.figure()

axdef = fig.add_subplot(1, 1, 1)

axdef.spines['left'].set_position('center')

axdef.spines['bottom'].set_position('zero')

axdef.spines['right'].set_color('none')

axdef.spines['top'].set_color('none')

axdef.xaxis.set_ticks_position('bottom')

axdef.yaxis.set_ticks_position('left')

plt.plot(x,y, 'r')

plt.show()

First, we defined a new figure and then we set the axes so that the x-axis coincides
with the minimum value of the function and the y-axis coincides with the center of
the parabola. This will make it easier to visually locate the minimum point of the
function. The following graph is printed:

Figure 7.6 – The minimum point of the function
Here, we can see that the minimum of the function occurs for a value of x roughly
equal to 1.5. This will be the value that we will have to determine through the
gradient descent method. But to have the precise value so that we can compare it
with what we will get later, we need to extract this value:

print('Value of x at the minimum of the function', x[np.
argmin(y)])

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Facing the Newton-Raphson method 187

To determine this value, we used NumPy's argmin() function. This function
returns the position index of the minimum element in a vector. The following result
is returned:

Value of x at the minimum of the function
1.5454545454545454

4. Now, let's define the first and second derivative functions:

FirstDerivative = lambda x: 3*x**2-4*x -1

SecondDerivative = lambda x: 6*x-4

5. Now, we will initialize some parameters:

actual_X = 3

precision_value = 0.000001

previous_step_size = 1

max_iteration = 10000

iteration_counter = 0

These parameters have the following meaning:
• The actual_X variable will contain the current value of the independent variable

x. To start, we initialize it at x = 3, which represents the far-right value of the
display range of the function in the graph.

• The precision_value variable will contain the value that defines the degree of
precision of our algorithm. Being an iterative procedure, the solution is refined at
each iteration and tends to converge. But this convergence may come after a very
large number of iterations, so to save resources, it is advisable to stop the iterative
procedure once adequate precision has been reached.

• The previous_step_size variable will contain the calculation of this precision
and will be initialized to 1.

• The max_iteration variable contains the maximum number of iterations that we
have provided for our algorithm. This value will be used to stop the procedure if it
does not converge.

• Finally, the iteration_counter variable will be the iteration counter.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

188 Using Simulation to Improve and Optimize Systems

6. Now, we can apply the Newton-Raphson method, as follows:

while previous_step_size > precision_value and
iteration_counter < max_iteration :

 PreviousX = actual_X

 actual_X = actual_X - FirstDerivative(PreviousX)/
SecondDerivative(PreviousX)

 previous_step_size = abs(actual_X - PreviousX)

 iteration_counter = iteration_counter +1

 print('Number of iterations = ',iteration_counter ,'\
nActual value of x is = ',actual_X)

This procedure is similar to what we adopted to solve our problem in the
Implementing gradient descent in Python section. A while loop, which will repeat
itself until both conditions are verified (TRUE), was used here. When at least one
of the two assumes a FALSE value, the cycle will be stopped. These two conditions
provide a check on the precision and the number of iterations.

The Newton-Raphson method updates the current value of x as follows:

At each step of the cycle, the previous value of x is stored in order to calculate the
precision of the previous step as the absolute value of the difference between the two
x values. In addition, the step counter is increased at each step. At the end of each
step, the number of the iteration and the current value of x are printed, as follows:

Number of iterations = 1

Actual value of x is = 2.0

Number of iterations = 2

Actual value of x is = 1.625

Number of iterations = 3

Actual value of x is = 1.5516304347826086

Number of iterations = 4

Actual value of x is = 1.5485890147300967

Number of iterations = 5

Actual value of x is = 1.5485837703704566

Number of iterations = 6

Actual value of x is = 1.5485837703548635

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓′(𝑥𝑥𝑛𝑛)
𝑓𝑓′′(𝑥𝑥𝑛𝑛)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deepening our knowledge of stochastic gradient descent 189

As we mentioned in the Approaching Newton-Raphson for numerical optimization
section, the number of iterations necessary to reach the solution is drastically
skewed. In fact, we went from the 526 iterations necessary to bring the method
based on the gradient's descent to convergence, to only 6 iterations for the Newton-
Raphson method.

7. Finally, we will print the result:

print('X value of f(x) minimum = ', actual_X)

The following result is returned:
X value of f(x) minimum = 1.5485837703548635

As we can verify, the returned value is very close to the exact value, which is
equal to 1.5454545454545454. It differs precisely in terms of the value of the
precision that we imposed as the term for the iterative procedure.

Deepening our knowledge of stochastic
gradient descent
As we mentioned in the Exploring the gradient descent technique section, the
implementation of the gradient descent method consists of initially evaluating both the
function and its gradient, starting from a configuration chosen randomly in the space of
dimensions.

From here, we try to move in the direction indicated by the gradient. This establishes a
direction of descent in which the function tends to a minimum and examines whether the
function actually takes on a value lower than that calculated in the previous configuration.
If so, the procedure continues iteratively, recalculating the new gradient. This can be
totally different from the previous one. After this, it starts again in search of a new
minimum.

This iterative procedure requires that, at each step, the entire system status is updated. This
means that all the parameters of the system must be recalculated. From a computational
point of view, this equates to an extremely expensive operating cost and greatly slows
down the estimation procedure. With respect to the standard gradient descent method, in
which the weights are updated after calculating the gradient for the entire dataset, in the
stochastic method, the system parameters are updated after a certain number of examples.
These are chosen randomly in order to speed up the process and to try and avoid any local
minimum situations.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

190 Using Simulation to Improve and Optimize Systems

Consider a dataset that contains n observations of a phenomenon. Here, let f be an
objective function that we want to minimize with respect to a series of parameters x. Here,
we can write the following equation:

From the analysis of the previous equation, we can deduce that the evaluation of the
objective function f requires n evaluations of the function f, one for each value contained
in the dataset.

In the classic gradient descent method, at each step, the function gradient is calculated in
correspondence with all the values of the dataset through the following equation:

In some cases, the evaluation of the sum present in the previous equation can be
particularly expensive, such as when the dataset is particularly large and there is no
elementary expression for the objective function. The stochastic descent of the gradient
solves this problem by introducing an approximation of the gradient function. At each
step, instead of the sum of the gradients being evaluated in correspondence to the data
contained in the dataset, the evaluation of the gradient is used only in a random subset of
the dataset.

So, the previous equation replaces the following:

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 𝛾𝛾 ∗ ∇𝑓𝑓𝑖𝑖(𝑥𝑥𝑛𝑛)
In the previous equation,∇ () is the gradient of one of the observations in the dataset,
chosen randomly.

The pros of this technique are as follows:

• Based only on a part of the observations, the algorithm allows a wider exploration
of the parametric space, with the greater possibility of finding new and potentially
better points of the minimum.

• Taking a step of the algorithm is computationally much faster, which ensures faster
convergence toward the minimum point.

• The parameter estimates can also be calculated by loading only a part of the dataset
into memory at a time, allowing this method to be applied to large datasets.

𝑓𝑓(𝑥𝑥) = 1
𝑛𝑛 ∑ 𝑓𝑓𝑖𝑖

𝑛𝑛

𝑖𝑖=1
(𝑥𝑥)

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 𝛾𝛾 ∗ 1𝑛𝑛∑∇𝑓𝑓𝑖𝑖(𝑥𝑥𝑛𝑛)
𝑛𝑛

𝑖𝑖=1

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Discovering the multivariate optimization methods in Python 191

Discovering the multivariate optimization
methods in Python
In this section, we will analyze some numerical optimization methods contained in the
Python SciPy library. SciPy is a collection of mathematical algorithms and functions based
on NumPy. It contains a series of commands and high-level classes that can be used to
manipulate and display data. With SciPy, functionality is added to Python, making it a
data processing and system prototyping environment, similar to commercial systems such
as MATLAB.

Scientific applications that use SciPy benefit from the development of add-on modules
in numerous fields of numerical computing made by developers around the world.
Numerical optimization problems are also covered among the available modules.

The SciPy optimize module contains numerous functions for the minimization/
maximization of objective functions, both constrained and unconstrained. It treats
nonlinear problems with support for both local and global optimization algorithms.
In addition, problems regarding linear programming, constrained and nonlinear least
squares, search for roots, and the adaptation of curves are dealt with. In the following
sections, we will analyze some of them.

The Nelder–Mead method
Most of the well-known optimization algorithms are based on the concept of derivatives
and on the information that can be deduced from the gradient. However, many
optimization problems deriving from real applications are characterized by the fact
that the analytical expression of the objective function is not known, which makes it
impossible to calculate its derivatives, or because is particularly complex, so coding the
derivatives may take too long. To solve this type of problem, several algorithms have been
developed that do not attempt to approximate the gradient but rather use the values of the
function in a set of sampling points to determine a new iteration by other means.

The Nelder-Mead method tries to minimize a nonlinear function by evaluating test points
that constitute a geometric form called a simplex.

Important Note
A simplex is defined as a set of closed and convex points of a Euclidean space
that allow us to find the solution to the typical optimization problem of linear
programming.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

192 Using Simulation to Improve and Optimize Systems

The choice of geometric figure for the simplex is mainly due to two reasons: the ability
of the simplex to adapt its shape to the trend in the space of the objective function
deforming itself, and the fact that it requires the memorization of only n + 1 points. Each
iteration of a direct search method based on the simplex begins with a simplex, specified
by its n + 1 vertices and the values of the associated functions. One or more test points
and the respective values of the function are calculated, and the iteration ends with a
new simplex so that the values of the function in its vertices satisfy some form of descent
condition with respect to the previous simplex.

The Nelder-Mead algorithm is particularly sparing in terms of its evaluation of the
function at each iteration, given that, in practice, it typically requires only one or two
evaluations of the function to build a new simplex. However, since it does not use any
gradient assessment, it may take longer to find the minimum.

This method is easily implemented in Python using the minimize routine of the SciPy
optimize module. Let's look at a simple example of using this method:

1. Let's start by loading the necessary libraries:

import numpy as np

from scipy.optimize import minimize

import matplotlib.pyplot as plt

from matplotlib import cm

from matplotlib.ticker import LinearLocator,
FormatStrFormatter

from mpl_toolkits.mplot3d import Axes3D

The library that's needed to generate 3D graphics is imported (Axes3D).

2. Now, let's define the function:

def matyas(x):

 return 0.26*(x[0]**2+x[1]**2)-0.48*x[0]*x[1]

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Discovering the multivariate optimization methods in Python 193

The Matyas function is continuous, convex, unimodal, differentiable, and
non-separable, and is defined on two-dimensional space. The matyas function is
defined as follows:

This function is defined on a x, y E [-10, 10]. This function has one global minimum
in f(0, 0) = 0.

3. Let's visualize the matyas function:

x = np.linspace(-10,10,100)

y = np.linspace(-10,10,100)

x, y = np.meshgrid(x, y)

z = matyas([x,y])

fig = plt.figure()

ax = fig.gca(projection='3d')

surf = ax.plot_surface(x, y, z, rstride=1, cstride=1,

 cmap=cm.RdBu,linewidth=0,
antialiased=False)

ax.zaxis.set_major_locator(LinearLocator(10))

ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

fig.colorbar(surf, shrink=0.5, aspect=10)

plt.show()

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 0.26 ∗ (𝑥𝑥2 + 𝑦𝑦2) − 0.48 ∗ 𝑥𝑥 ∗ 𝑦𝑦

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

194 Using Simulation to Improve and Optimize Systems

To start, we defined the independent variables, x and y, in the range that we have
already specified [-10.10]. So, we created a grid using the numpy meshgrid()
function. This function creates an array in which the rows and columns correspond
to the values of x and y. We will use this matrix to plot the corresponding points of
the z variable, which corresponds to the Matyas function. After defining the x, y,
and z variables, we traced a three-dimensional graph to represent the function. The
following graph is plotted:

Figure 7.7 – Meshgrid plot to represent the function

4. As we already mentioned, the Nelder-Mead method does not require us to calculate
a derivative as it is limited to evaluating the function. This means that we can
directly apply the method:

x0 = np.array([-10, 10])

NelderMeadOptimizeResults = minimize(matyas, x0,

 method='nelder-mead',

 options={'xatol': 1e-8, 'disp': True})

print(NelderMeadOptimizeResults.x)

To do this, we first defined an initial point to start the search procedure from for
the minimum of the function. So, we used the minimize() function of the SciPy
optimize module. This function finds the minimum of the scalar functions of one or
more variables. The following parameters have been passed:

• matyas: The function you want to minimize

• x0: The initial vector

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Discovering the multivariate optimization methods in Python 195

• method = 'nelder-mead': The method used for the minimization procedure

Additionally, the following two options have been added:
• 'xatol': 1e-8: Defines the absolute error acceptable for convergence

• 'disp': True: Set to True to print convergence messages

5. Finally, we printed the results of the optimization method, as follows:

Optimization terminated successfully.

 Current function value: 0.000000

 Iterations: 77

 Function evaluations: 147

[3.17941614e-09 3.64600127e-09]

The minimum was identified in the value 0, as already anticipated. Furthermore,
this value was identified in correspondence with the following values:

X = 3.17941614e-09

Y = 3.64600127e-09

These are values that are very close to zero, as we expected. The deviation from this
value is consistent with the error that we set for the method.

Powell's conjugate direction algorithm
Conjugate direction methods were originally introduced as iterative methods for
solving linear systems with a symmetric and positive definite coefficient matrix, and for
minimizing strictly convex quadratic functions.

The main feature of conjugated direction methods for minimizing quadratic functions is
that of generating, in a simple way, a set of directions that, in addition to being linearly
independent, enjoy the further important property of being mutually conjugated.

The idea of Powell's method is that if the minimum of a quadratic function is found along
each of the p(p < n) directions in a stage of the research, then when taking a step along
each direction, the final displacement from the beginning up to the p-th step is conjugated
with respect to all the p subdirections of research.

For example, if points 1 and 2 are obtained from one-dimensional searches in the
same direction but from different starting points, then the line formed by 1 and 2 will
be directed toward the maximum. The directions represented by these lines are called
conjugate directions.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

196 Using Simulation to Improve and Optimize Systems

Let's analyze a practical case of applying the Powell method. We will use the matyas
function, which we defined in the Nelder-Mead method section:

1. Let's start by loading the necessary libraries:

import numpy as np

from scipy.optimize import minimize

2. Now, let's define the function:

def matyas (x):

 return 0.26 * (x [0] ** 2 + x [1] ** 2) -0.48 * x [0]
* x [1]

3. Now, let's apply the method:

x0 = np.array([-10, 10])

PowellOptimizeResults = minimize(matyas, x0,

 method='Powell',

 options={'xtol': 1e-8, 'disp': True})

print(PowellOptimizeResults.x)

The minimize() function of the SciPy optimize module was used here. This
function finds the minimum of the scalar functions of one or more variables. The
following parameters were passed:

• matyas: The function we want to minimize

• x0: The initial vector

• method = 'Powell': The method used for the minimization procedure

Additionally, the following two options have been added:
• 'xtol': 1e-8: Defines the absolute error acceptable for convergence

• 'disp': True: Set to True to print convergence messages

4. Finally, we printed the results of the optimization method. The following results are
returned:

Optimization terminated successfully.

 Current function value: 0.000000

 Iterations: 3

 Function evaluations: 66

[-6.66133815e-14 -1.32338585e-13]

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Discovering the multivariate optimization methods in Python 197

The minimum was identified in the value 0, as specified in the Nelder-Mead
method section. Furthermore, this value was identified in correspondence with the
following values:

X = -6.66133815e-14

Y = -1.32338585e-13

These are values very close to zero, as we expected. We can now make a comparison
between the two methods we applied to the same function. We can note that the
number of iterations necessary to reach convergence is equal to 3 for the Powell
method, while it is equal to 77 for the Nelder-Mead method. A drastic reduction
in the number of evaluations of the function is also noted; 66 against 147. Finally,
the difference between the calculated value and the expected value is reduced by the
Powell method.

Summarizing other optimization methodologies
The minimize() routine from the SciPy optimize package contains numerous methods
for unconstrained and constrained minimization. We analyzed some of them in detail in
the previous sections. In the following list, we have summarized the most used methods
provided by the package:

• Newton-Broyden-Fletcher-Goldfarb-Shanno (BFGS): This is an iterative
unconstrained optimization method used to solve nonlinear problems. This method
looks for the points where the first derivative is zero.

• Conjugate Gradient (CG): This method belongs to the family of conjugate gradient
algorithms and performs a minimization of the scalar function of one or more
variables. This method requires that the system matrix be symmetric and positive
definite.

• Dog-leg trust-region (dogleg): The method first defines a region around the
current best solution, where the original objective function can be approximated.
The algorithm therefore takes a step forward within the region.

• Newton-CG: This method is also called truncated Newton's method. It is a method
that identifies the direction of research by adopting a procedure based on the
conjugate gradient, to roughly minimize the quadratic function.

• Limited-memory BFGS (L-BFGS): This is part of the family of quasi-Newton
methods. It uses the BFGS method for systematically saving computer memory.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

198 Using Simulation to Improve and Optimize Systems

• Constrained Optimization By Linear Approximation (COBYLA): The operating
mechanism is iterative and uses the principles of linear programming to refine
the solution found in the previous step. Convergence is achieved by progressively
reducing the pace.

Summary
In this chapter, we learned how to use different numerical optimization techniques to
improve the solutions offered by a simulation model. We started by introducing the basic
concepts of numerical optimization, defining a minimization problem, and learning
to distinguish between local and global minimums. We then moved on and looked at
the optimization techniques based on gradient descent. We defined the mathematical
formulation of the technique and gave it a geometric representation. Furthermore, we
deepened our knowledge of the concepts surrounding the learning rate and trial and error.
By doing this, we addressed a practical case in order to reinforce the concepts we learned
by solving the problem of searching for the minimum of a quadratic function.

Subsequently, we learned how to use the Newton-Raphson method to search for the roots
of a function and then how to exploit the same methodology for numerical optimization.
We also analyzed a practical case for this technology to immediately put the concepts we
learned into practice. We did this by looking for the local minimum of a convex function.

We then went on to study the stochastic gradient descent algorithm, which allows us to
considerably reduce the computational costs of a numerical optimization problem. This
result is obtained by using a single estimate of the gradient at each step, which is chosen in
a stochastic way among those available.

Finally, we explored the multivariate numerical optimization algorithms contained in the
Python SciPy package. For some of them, we defined the mathematical formulation and
proposed a practical example of using the method. For the others, a summary was drawn
up to list their characteristics.

In the next chapter, we will learn how to use simulation models to handle financial
problems. We will explore how the geometric Brownian motion model works, and we will
discover how to use Monte Carlo methods for stock price prediction. Finally, we will learn
how to model credit risks using Markov chains.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Section 3:
Real-World

Applications

In this section, we will use the techniques that we introduced in the previous chapters
to deal with practical cases. By the end of this section, you will be well versed in the
real-world applications of simulation modeling.

This section contains the following chapters:

• Chapter 8, Using Simulation Models for Financial Engineering

• Chapter 9, Simulating Physical Phenomena Using Neural Networks

• Chapter 10, Modeling and Simulation for Project Management

• Chapter 11, What’s Next?

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

8
Using Simulation

Models for Financial
Engineering

The explosive entry of systems based on artificial intelligence and machine learning has
opened up new scenarios for the financial sector. These methods can bring benefits such
as user rights protections, as well as macroeconomic benefits.

Monte Carlo methods find a natural application in finance for the numerical resolution
of pricing and problems in covered call options. Essentially, these methods consist
of simulating a given process or phenomenon using a given mathematical law and
a sufficiently large set of data, created randomly from distributions that adequately
represent real variables. The idea is that, if an analytical study is not possible, or adequate
experimental sampling is not possible or convenient, the numerical simulation of the
phenomenon is used. In this chapter, we will look at practical cases of using simulation
methods in a financial context. You will learn how to use Monte Carlo methods to predict
stock prices and how to assess the risk associated with a portfolio of sharess.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

202 Using Simulation Models for Financial Engineering

In this chapter, we're going to cover the following topics:

• Understanding the geometric Brownian motion model

• Using Monte Carlo methods for stock price prediction

• Studying risk models for portfolio management

Technical requirements
In this chapter, we will learn how to use simulation models for financial engineering. In
order to understand these topics, basic knowledge of algebra and mathematical modeling
is needed.

To work with the Python code in this chapter, you need the following files (available on
GitHub at https://github.com/PacktPublishing/Hands-On-Simulation-
Modeling-with-Python):

• StandardBrownianMotion.py

• AmazonStockMontecarloSimulation.py

• ValueAtRisk.py

Understanding the geometric Brownian
motion model
The name Brownian comes from the Scottish botanist Robert Brown who, in 1827,
observed, under the microscope, how pollen particles suspended in water moved
continuously in a random and unpredictable way. In 1905, it was Einstein who gave
a molecular interpretation of the phenomenon of movement observed by Brown. He
suggested that the motion of the particles was mathematically describable, assuming
that the various jumps were due to the random collisions of pollen particles with water
molecules.

Today, Brownian motion is, above all, a mathematical tool in the context of probability
theory. This mathematical theory has been used to describe an ever-widening set of
phenomena, studied by disciplines that are very different from physics. For instance, the
prices of financial securities, the spread of heat, animal populations, bacteria, illness,
sound, and light are modeled using the same instrument.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python
https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python

Understanding the geometric Brownian motion model 203

Important note
Brownian motion is a phenomenon that consists of the uninterrupted and
irregular movement made by small particles or grains of colloidal size, that
is, particles that are far too small to be observed with the naked eye but are
significantly larger than atoms when immersed in a fluid.

Defining a standard Brownian motion
There are various ways of constructing a Brownian motion model and various equivalent
definitions of Brownian motion. Let's start with the definition of a standard Brownian
motion (the Wiener process). The essential properties of a standard Brownian motion
include the following:

• The standard Brownian motion starts from zero.

• The standard Brownian motion takes a continuous path.

• The increases suffered by the Brownian process are independent.

• The increases suffered by the Brownian process in the time interval, dt, indicate a
Gaussian distribution, with an average that is equal to zero and a variance that is
equal to the time interval, dt.

Based on these properties, we can consider the process as the sum of a large number of
extremely small increments. After choosing two instants, t and s, the random variable, Y
(s) -Y (t), follows a normal distribution, with a mean of (s-t) and variance of 2 (s-t),
which we can represent using the following equation:

The hypothesis of normality is very important in the context of linear transformations. In
fact, the standard Brownian motion takes its name from the type of distribution that is a
standard normal distribution, with parameters of = 0 and 2 = 1.

Therefore, it can be said that the Brownian motion, Y (t), with a unit mean and variance
can be represented as a linear transformation of a standard Brownian motion, according
to the following equation:

In the previous equation, we can observe the following:

• () is the standard Brownian motion.

𝑌𝑌(𝑠𝑠) − 𝑌𝑌(𝑡𝑡)~𝒩𝒩(𝜇𝜇(𝑠𝑠 − 𝑡𝑡), 𝜎𝜎2(𝑠𝑠 − 𝑡𝑡))

𝑌𝑌(𝑡𝑡) = 𝑌𝑌(0) + 𝜇𝜇 ∗ 𝑡𝑡 + 𝜎𝜎 ∗ 𝑍𝑍(𝑡𝑡)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

204 Using Simulation Models for Financial Engineering

The weak point of this equation lies in the fact that the probability that Y (t) assuming a
negative value is positive; in fact, since Z (t) is characterized by independent increments,
which can assume a negative sign, the risk of the negativity of Y (t) is not zero.

Now, consider the Brownian motion (the Wiener process) for sufficiently small time
intervals. An infinitesimal increment of this process is obtained in the following form:

The previous equation can be rewritten as follows:

This process is not limited in variation, and, therefore, cannot be differentiated in the
context of classical analysis. In fact, the previous one tends to infinity for the interval, dt.

Addressing the Wiener process as random walk
A Wiener process can be considered a borderline case of random walk. We dealt with a
random walk in Chapter 5, Simulation-Based Markov Decision Processes. We have seen
that the position of a particle at instant n will be represented by the following equation:

In the previous formula, we can observe the following:

• Yn is the next value in the walk.

• Yn-1 is the observation in the previous time phase.

• Zn is the random fluctuation in that step.

If the n random numbers, Zn, have a mean equal to zero and a variance equal to 1, then,
for each value of n, we can define a stochastic process using the following equation:

𝑍𝑍(𝑡𝑡+𝑑𝑑𝑡𝑡) − 𝑍𝑍(𝑡𝑡) = 𝛿𝛿𝑍𝑍𝑡𝑡 = 𝑁𝑁 ∗ √𝑑𝑑𝑑𝑑

𝑍𝑍(𝑡𝑡+𝑑𝑑𝑡𝑡) − 𝑍𝑍(𝑡𝑡)
𝑑𝑑𝑑𝑑 = 𝑁𝑁

√𝑑𝑑𝑑𝑑

𝑌𝑌𝑛𝑛 = 𝑌𝑌𝑛𝑛−1 + 𝑍𝑍𝑛𝑛 ; 𝑛𝑛 = 1,2, …

𝑌𝑌𝑛𝑛(𝑡𝑡) =
1
√𝑛𝑛

∗∑𝑍𝑍𝑘𝑘
𝑘𝑘

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the geometric Brownian motion model 205

The preceding formula can be used in an iterative process. For very large values of n, we
can write the following:

𝑌𝑌𝑛𝑛(𝑠𝑠) − 𝑌𝑌𝑛𝑛(𝑡𝑡) ~ 𝒩𝒩(0, (𝑠𝑠 − 𝑡𝑡))

The previous formula is due to the central limit theorem that we covered in Chapter 4,
Monte Carlo Simulations.

Implementing a standard Brownian motion
So, let's demonstrate how to generate a simple Brownian motion in the Python
environment. Let's start with the simplest case, in which we define the time interval, the
number of steps to be performed, and the standard deviation:

1. We start by importing the following libraries:

import numpy as np

import matplotlib.pyplot as plt

The numpy library is a Python library containing numerous functions that can help
us in the management of multidimensional matrices. Additionally, it contains a
large collection of high-level mathematical functions that we can use to operate on
these matrices.

The matplotlib library is a Python library used for printing high-quality
graphics. With matplotlib, it is possible to generate graphs, histograms, bar
graphs, power spectra, error graphs, scatter graphs, and more using just a few
commands. This includes a collection of command-line functions similar to those
provided by the MATLAB software.

2. Now, let's proceed with some initial settings:

np.random.seed(4)

n = 1000

SQN = 1/np.math.sqrt(n)

ZValues = np.random.randn(n)

Yk = 0

SBMotion=list()

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

206 Using Simulation Models for Financial Engineering

In the first line of code, we used the random.seed() function to initialize the
seed of the random number generator. In this way, the simulation that uses random
numbers will be reproducible. The reproducibility of the experiment will be
guaranteed by the fact that the random numbers that are generated will always be
the same. We set the number of the iterations (n), and we calculated the first term of
the following equation:

Then, we generated the n random numbers using the random.randn() function.
This function returns a standard normal distribution of n samples with a mean
of 0 and a variance of 1. Finally, we set the first value of the Brownian motion as
required from the properties, (Y(0)=0), and we initialized the list that will contain the
Brownian motion location coordinates.

3. At this point, we will use a for loop to calculate all of the n positions:

for k in range(n):

 Yk = Yk + SQN*ZValues[k]

 SBMotion.append(Yk)

We simply added the current random number, multiplied by SQN, to the variable
that contains the cumulative sum. The current value is then appended to the
SBMotion list.

4. Finally, we draw a graph of the Brownian motion created:

plt.plot(SBMotion)

plt.show()

The following graph is printed:

𝑌𝑌𝑛𝑛(𝑡𝑡) =
1
√𝑛𝑛

∗∑𝑍𝑍𝑘𝑘
𝑘𝑘

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Monte Carlo methods for stock price prediction 207

Figure 8.1 – Brownian motion graph

So, we have created our first simulation of Brownian motion. Its use is particularly suited
to financial simulations. In the next section, we will demonstrate how this is done.

Using Monte Carlo methods for stock price
prediction
As we explored in Chapter 4, Monte Carlo Simulations, Monte Carlo methods simulate
different evolutions of the process under examination using different probabilities that the
event may occur under certain conditions. These simulations explore the entire parameter
space of the phenomenon and return a representative sample. For each sample obtained,
measures of the quantities of interest are carried out to evaluate their performance. A
correct simulation means that the average value of the result of the process converges to
the expected value.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

208 Using Simulation Models for Financial Engineering

Exploring the Amazon stock price trend
The stock market provides an opportunity to quickly earn large amounts of money, that
is, in the eyes of an inexperienced user at least. Exchanges on the stock market can cause
large fluctuations in price attracting the attention of speculators from all over the world.
In order to obtain revenues from investments in the stock market, it is necessary to
have solid knowledge obtained from years of in-depth study of the phenomenon. In this
context, the possibility of having a tool to predict stock market securities represents a need
felt by all.

Let's demonstrate how to develop a simulation model of the stock of one of the most
famous companies in the world. Amazon was founded by Jeff Bezos in the 1990s, and it
was one of the first companies in the world to sell products via the internet. Amazon stock
has been listed on the stock exchange since 1997 under the symbol AMZN. The historical
values of AMZN stock can be obtained from various internet sites that have been dealing
with the stock market over the past 10 years. We will refer to the performance of AMZN
stock on the NASDAQ GS stock quote from 2010-04-08 to 2020-04-07. In order to get the
data from 2020-04-07, we need to select 2020-04-08 on the Yahoo website as the end date.

Data can be downloaded in .csv format from the Yahoo Finance website at https://
finance.yahoo.com/quote/AMZN/history/.

In the following screenshot, you can see the Yahoo Finance section for AMZN stock with
a highlighted button to download the data:

Figure 8.2 – Amazon data on Yahoo Finance

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://finance.yahoo.com/quote/AMZN/history/
https://finance.yahoo.com/quote/AMZN/history/

Using Monte Carlo methods for stock price prediction 209

The downloaded AMZN.csv file contains a lot of features, but we will only use two of
them, as follows:

• Date: Date of quote

• Close: Close price

We will analyze the code, line by line, to fully understand the whole process, which will
lead us to the simulation of a series of predicting scenarios of the performance of the
Amazon stock price:

1. As always, we start by importing the libraries:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from scipy.stats import norm

from pandas.plotting import register_matplotlib_
converters

register_matplotlib_converters()

The following libraries were imported:

The pandas library is an open source BSD-licensed library that contains data
structures and operations to manipulate high-performance numeric values for the
Python programming language.

SciPy is a collection of mathematical algorithms and functions based on NumPy.
It has a series of commands and high-level classes to manipulate and display data.
With SciPy, functionality is added to Python, making it a data processing and
system prototyping environment similar to commercial systems such as MATLAB.

2. Now, let's import the data contained in the AMZN.csv file:

AmznData = pd.read_csv('AMZN.csv',header=0,

 usecols = ['Date',Close'],parse_dates=True,

 index_col='Date')

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

210 Using Simulation Models for Financial Engineering

We used the read_csv module of the pandas library, which loads the data in a
pandas object called DataFrame. The following arguments are passed:

'AMZN.csv': The name of the file.

header=0: The row number containing the column names and the start of the
data. By default, if a non-header row is passed (header=0), the column names are
inferred from the first line of the file.

usecols=['Date',Close']: This argument extracts a subset of the dataset by
specifying the column names.

parse_dates=True: A Boolean value; if True, try parsing the index.

index_col='Date': This allows us to specify the name of the column that will
be used as the index of the DataFrame.

3. Now we will explore the imported dataset to extract preliminary information. To do
this, we will use the info() function, as follows:

print(AmznData.info())

The following information is printed:
<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 2518 entries, 2010-04-08 to 2020-04-07

Data columns (total 1 columns):

Close 2518 non-null float64

dtypes: float64(1)

memory usage: 39.3 KB

None

Here, a lot of useful information is returned: the object class, the number of
records present (2,518), the start and end values of the index (2010-04-08 to
2020-04-07), the number of columns and the type of data they contain,
and other information.

We can also print the first five lines of the dataset, as follows:
print(AmznData.head())

The following data is printed:
 Close

Date

2010-04-08 140.960007

2010-04-09 140.059998

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Monte Carlo methods for stock price prediction 211

2010-04-12 141.199997

2010-04-13 140.160004

2010-04-14 144.279999

If we wanted to print a different number of records, it would be enough to specify
it by indicating the number of lines to be printed. Similarly, we can print the last 10
records of the dataset:

print(AmznData.tail())

The following records are printed:
 Close

Date

2020-04-01 1907.699951

2020-04-02 1918.829956

2020-04-03 1906.589966

2020-04-06 1997.589966

2020-04-07 2011.599976

An initial quick comparison between the head and the tail allows us to verify that
the Amazon stock in the last 10 years has gone from a value of about $140 to about
$2,011. This is an excellent deal for Amazon sharesholders.

Using the describe() function, we will extract a preview of the data using basic
statistics:

print(AmznData.describe())

The following results are returned:
 Close

count 2518.000000

mean 723.943074

std 607.588565

min 108.610001

25% 244.189995

50% 398.995011

75% 1006.467514

max 2170.219971

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

212 Using Simulation Models for Financial Engineering

We can confirm the significant increase in value in the last 10 years, but we can also
see how the stock has undergone significant fluctuations given the very high value
of the standard deviation. This tells us that the sharesholders who were loyal to the
shares, and maintained the shares over time, benefited the most from the increase in
the shares.

4. After analyzing the preliminary data statistics, we can take a look at the
performance of the Amazon shares in the last 10 years by drawing a simple graph:

plt.figure(figsize=(10,5))

plt.plot(AmznData)

plt.show()

The following matplotlib functions were used:

figure(): This function creates a new figure, which is empty for now. We set the
size of the frame using the figsize parameter, which sets the width and height in
inches.

plot(): This function plots the AmznData dataset.

show(): This function, when running in IPython with the PyLab mode, displays all
the figures and returns to the IPython prompt.

The following graph is printed:

Figure 8.3 – Amazon shares graph

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Monte Carlo methods for stock price prediction 213

The significant increase undergone by Amazon stock over the past 10 years is evident.
Furthermore, it should be noted that the greatest increase has been recorded since 2015,
but we'll try to extract more information from the data.

Handling the stock price trend as time series
The trend over time of the Amazon stock price, represented in the previous graph, is
configured as a sequence of ordered data. This type of data can be conveniently handled
as a time series. Let's consider a simple definition: a time series contains a chronological
sequence of experimental observations of a variable. This variable can relate to data of
different origins. Very often, it concerns financial data such as unemployment rates,
spreads, stock market indices, and stock price trends.

Dealing with the problem as a time series will allow us to extract useful information from
the data in order to develop predictive models for the management of future scenarios. It
may be useful to compare the trend of stock prices in the same periods for different years
or, more simply, between contiguous periods.

Let Y1, ..., Yt, ..., Yn be the elements of a time series. Let's start by comparing the data for
two different times indicated with t and t + 1. It is, therefore, two contiguous periods;
we are interested in evaluating the variation undergone by the phenomenon under
observation, which can be defined by the following ratio:

This percentage ratio is called a percentage change. It can be defined as the percentage
change rate of Y of time t + 1 compared to the previous time, t. This descriptor returns
information about how the data underwent a change over a period. The percentage change
allows you to monitor both the stock prices and the market indices, not just comparing
currencies from different countries:

1. To evaluate this useful descriptor, we will use the pct_change() function
contained in the pandas library:

AmznDataPctChange = AmznData.pct_change()

This function returns the percentage change between the current element and a
previous element. By default, the function calculates the percentage change from the
immediately preceding row.

𝑌𝑌𝑡𝑡+1 − 𝑌𝑌𝑡𝑡
𝑌𝑌𝑡𝑡

∗ 100

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

214 Using Simulation Models for Financial Engineering

The concept of the percentage variation of a time series is linked to the concept of
the return of a stock price. The returns-based approach allows the normalization
of data, which is an operation of fundamental importance when evaluating the
relationships between variables characterized by different metrics.

We will deal with the return on a logarithmic scale as this choice will give us several
advantages: normally distributed results; values returned (logarithm of the return)
very close to the initial one (the return), at least for very small values; and additive
results over time.

2. To pass the return on a logarithmic scale, we will use the log() function of the
numpy library, as follows:

AmznLogReturns = np.log(1 + AmznDataPctChange)

print(AmznLogReturns.tail(10))

The following results are printed:
 Close

Date

2020-03-25 -0.028366

2020-03-26 0.036267

2020-03-27 -0.028734

2020-03-30 0.033051

2020-03-31 -0.007272

2020-04-01 -0.021787

2020-04-02 0.005817

2020-04-03 -0.006399

2020-04-06 0.046625

2020-04-07 0.006989

3. To better understand how the return is distributed over time, let's draw a graph:

plt.figure(figsize=(10,5))

plt.plot(AmznLogReturns)

plt.show()

The following graph is printed:

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Monte Carlo methods for stock price prediction 215

Figure 8.4 – Logarithmic values of the returns

The previous graph shows us that the logarithmic return is normally distributed over the
entire period and the mean is stable.

Introducing the Black-Scholes model
The Black-Scholes (BS) model certainly represents the most important and revolutionary
work in the history of quantitative finance. In traditional financial literature, it is assumed
that almost all financial asset prices (stocks, currencies, and interest rates) are driven by a
Brownian drift motion.

This model assumes that the expected return of an asset is equal to the non-risky interest
rate, r. This approach is capable of simulating returns on a logarithmic scale of an asset.
Suppose we observe an asset in the instants: t(0), t(1)...,t(n). We note, using s(i) = S(ti), the
value of an asset at t(i). Based on these hypotheses, we can calculate the return using the
following equation:

Then, we will transform the return on the logarithmic scale, as follows:

𝑦𝑦(𝑖𝑖) = [𝑠𝑠(𝑖𝑖) − 𝑠𝑠(𝑖𝑖 − 1)]
𝑠𝑠(𝑖𝑖 − 1) , 𝑖𝑖 = 1,2, … , 𝑛𝑛

𝑥𝑥(𝑖𝑖) = ln 𝑠𝑠(𝑖𝑖) − ln𝑠𝑠(𝑖𝑖 − 1) , 𝑖𝑖 = 1,2, … , 𝑛𝑛

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

216 Using Simulation Models for Financial Engineering

By applying the BS approach to Brownian geometric motion, the stock price will satisfy
the following stochastic differential equation:

In the previous equation, dB(t) is a standard Brownian motion and μ and σ are real
constants. The previous equation is valid where the hypothesis that s (i) - s (i - 1) is small,
and this happens when the stock prices undergo slight variations. This is because ln (1 +
z) is roughly equal to z if z is small. The analytical solution of the previous equation is the
following equation:

By passing the previous equation on a logarithmic scale, we obtain the following equation:

In the previous equation, we can observe the following:

• α is the drift.

• B(t) is a standard Brownian motion.

• is the standard deviation.

We introduced the concept of drift, which represents the trend of a long-term asset in the
stock market. To understand drift, we will use the concept of river currents. If we pour
liquid color into a river, it will spread by following the direction imposed by the river's
current. Similarly, drift represents the tendency of a stock to follow the trend of a long-
term asset.

Applying Monte Carlo simulation
Using the BS model discussed in the previous section, we can evaluate the daily price of
an asset starting from that of the previous day multiplied by an exponential contribution
based on a coefficient, r. This coefficient is a periodic rate of return. It translates into the
following equation:

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝜇𝜇 ∗ 𝑑𝑑(𝑡𝑡) ∗ 𝑑𝑑𝑡𝑡 + 𝜎𝜎 ∗ 𝑑𝑑(𝑡𝑡) ∗ 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑆𝑆(𝑡𝑡) = 𝑆𝑆(0) ∗ 𝑒𝑒(𝛼𝛼(𝑡𝑡)+𝜎𝜎∗𝐵𝐵(𝑡𝑡))

ln 𝑆𝑆(𝑡𝑡)
𝑆𝑆(0) = 𝛼𝛼(𝑡𝑡) + 𝜎𝜎 ∗ 𝐵𝐵(𝑡𝑡)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆 − 1) ∗ 𝑆𝑆𝑟𝑟

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Monte Carlo methods for stock price prediction 217

The second term in the previous equation, er, is called the daily return, and, according to
the BS model, it is given by the following formula:

There is no way to predict the rate of return of an asset. The only way to represent it is to
consider it as a random number. So, to predict the price trend of an asset, we can use a
model based on random movement such as that represented by BS equations.

The BS model assumes that changes in the stock price depend on the expected return
over time. The daily return has two terms: the fixed drift rate and the random stochastic
variable. The two terms provide for the certainty of movement and uncertainty caused
by volatility.

To calculate the drift, we will use the expected rate of return, which is the most likely rate
to occur, using the historical average of the log returns and variance, as follows:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(log(𝑑𝑑𝑚𝑚𝑑𝑑𝑟𝑟𝑑𝑑𝑚𝑚𝑟𝑟)) − 0.5 ∗ 𝑣𝑣𝑚𝑚𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑣𝑣𝑚𝑚(log⁡(𝑑𝑑𝑚𝑚𝑑𝑑𝑟𝑟𝑑𝑑𝑚𝑚𝑟𝑟))

According to the previous equation, the daily change rate of the asset is the mean of
the returns, which are less than half of the variance over time. We continue our work,
calculating the drift for the return of the Amazon security calculated in the Handling the
stock price trend as time series section:

1. To evaluate the drift, we need the mean and variance of the returns. Since we also
calculate the standard deviation, we will need the calculation of the daily return:

MeanLogReturns = np.array(AmznLogReturns.mean())

VarLogReturns = np.array(AmznLogReturns.var())

StdevLogReturns = np.array(AmznLogReturns.std())

Three numpy functions were used:

mean(): This computes the arithmetic mean along the specified axis and returns
the average of the array elements.

var(): This computes the variance along the specified axis. It returns the variance
of the array elements, which is a measure of the spread of a distribution.

std(): This computes the standard deviation along the specified axis.

Now we can calculate the drift as follows:
Drift = MeanLogReturns - (0.5 * VarLogReturns)

print("Drift = ",Drift)

(()+ ∗ ())

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

218 Using Simulation Models for Financial Engineering

The following result is returned:
Drift = [0.00086132]

This is the fixed part of the Brownian motion. The drift returns the annualized
change in the expected value and compensates for the asymmetry in the results
compared to the straight Brownian motion.

2. To evaluate the second component of the Brownian motion, we will use the random
stochastic variable. This corresponds to the distance between the mean and the
events, expressed as the number of standard deviations. Before doing this, we need
to set the number of intervals and iterations. The number of intervals will be equal
to the number of observations, which is 2,518, while the number of iterations,
which represents the number of simulation models that we intend to develop, is 20:

NumIntervals = 2518

Iterations = 20

3. Before generating random values, it is recommended that you set the seed to make
the experiment reproducible:

np.random.seed(7)

Now, we can generate the random distribution:
SBMotion = norm.ppf(np.random.rand(NumIntervals,
Iterations))

A 2518 x 20 matrix is returned, containing the random contribution for the 20
simulations that we want to perform and for the 2,518 time intervals that we want
to consider. Recall that these intervals correspond to the daily prices of the last 10
years.

Two functions were used:

norm.ppf(): This SciPy function gives the value of the variate for which the
cumulative probability has the given value.

np.random.rand(): This NumPy function computes random values in a given
shape. It creates an array of the given shape and populates it with random samples
from a uniform distribution over [0, 1].

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Monte Carlo methods for stock price prediction 219

We will calculate the daily return as follows:
DailyReturns = np.exp(Drift + StdevLogReturns * SBMotion)

The daily return is a measure of the change that occurred in a stock's price. It is
expressed as a percentage of the previous day's closing price. A positive return
means the stock has grown in value, while a negative return means it has lost value.
The np.exp() function was used to calculate the exponential of all elements in the
input array.

4. After long preparation, we have arrived at a crucial moment. We will be able to
carry out predictions based on the Monte Carlo method. The first thing to do is to
recover the starting point of our simulation. Since we want to predict the trend of
Amazon stock prices, we recover the first value present in the AMZN.csv file:

StartStockPrices = AmznData.iloc[0]

The pandas iloc() function is used to return a pure integer using location-
based indexing for selection. Then, we will initialize the array that will contain the
predictions:

StockPrice = np.zeros_like(DailyReturns)

The numpy zeros_like() function is used to return an array of zeros with the
same shape and type as a given array. Now, we will set the starting value of the
StockPrice array, as follows:

StockPrice[0] = StartStockPrices

5. To update the predictions of the Amazon stock prices, we will use a for loop that
iterates for a number that is equal to the time intervals we are considering:

for t in range(1, NumIntervals):

 StockPrice[t] = StockPrice[t - 1] * DailyReturns[t]

For the update, we will use the BS model according to the following equation:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆 − 1) ∗ 𝑆𝑆𝑟𝑟

 = (− 1) ∗ (()+ ∗ ())

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

220 Using Simulation Models for Financial Engineering

Finally, we can view the results:
plt.figure(figsize=(10,5))

plt.plot(StockPrice)

AMZNTrend = np.array(AmznData.iloc[:, 0:1])

plt.plot(AMZNTrend,'k*')

plt.show()

The following graph is printed:

Figure 8.5 – Amazon trend graph

In the previous graph, the curve highlighted in black represents the trend of the Amazon
stock prices in the last 10 years. The other curves are our simulations. We can see that
some curves move away from the expected curve, while others appear much closer to the
actual trend.

Studying risk models for portfolio
management
Having a good risk measure is of fundamental importance in finance, as it is one of
the main tools for evaluating financial assets. This is because it allows you to monitor
securities and provides a criterion for the construction of portfolios. One measure, more
than any other, that has been widely used over the years is variance.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Studying risk models for portfolio management 221

Using variance as a risk measure
The advantage of a diversified portfolio in terms of risk and the expected value allows us
to find the right allocation for the securities. Our aim is to obtain the highest expected
value at the same risk or to minimize the risk of obtaining the same expected value. To
achieve this, it is necessary to trace the concept of risk back to a measurable quantity,
which is generally referred to as the variance. Therefore, by maximizing the expected
value of the portfolio returns for each level of variance, it is possible to reconstruct a curve
called the efficient frontier, which determines the maximum expected value that can be
obtained with the securities available for the construction of the portfolio for each level of
risk.

The minimum variance portfolio represents the portfolio with the lowest possible variance
value regardless of the expected value. This parameter has the purpose of optimizing
the risk represented by the variance of the portfolio. Tracing the risk exclusively to the
measure of variance is optimal only if the distribution of returns is normal. In fact, the
normal distribution enjoys some properties that make the variance a measure that is
enough to represent the risk. It is completely determinable through only two parameters
(mean and variance). It is, therefore, enough to know the mean and the variance to
determine any other point of the distribution.

Introducing the value-at-risk metric
Consider the variance as the only risk measure in the case of non-normal and limiting
values. A risk measure that has been widely used for over two decades is Value at Risk
(VaR). The birth of VaR was linked to the growing need for financial institutions to
manage risk and, therefore, be able to measure it. This is due to the increasingly complex
structure of financial markets.

Actually, this measure was not introduced to stem the limits of variance as a risk measure
since an approach to calculate the VaR value starts precisely from the assumptions of
normality. However, to make it easier to understand, let's enclose the overall risk of a
security into a single number or a portfolio of financial assets by adopting a single metric
for different types of risk.

In the financial context, the VaR is an estimate, given a confidence interval, of how high
the losses of a security or portfolio may be in each time horizon. The VaR, therefore,
focuses on the left tail of the distribution of returns, where events with a low probability of
realization are located. Indicating the losses and not the dispersion of the returns around
their expected value makes it a measure closer to the common idea of risk than variance.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

222 Using Simulation Models for Financial Engineering

Important note
J.P. Morgan is credited as the bank that made VaR a widespread measure. In
1990, the president of J.P. Morgan, Dennis Weatherstone, was dissatisfied with
the lengthy risk analysis reports he received every day. He wanted a simple
report that summarized the bank's total exposure across its entire trading
portfolio.

After calculating the VaR, we can say that, with a probability given by the confidence
interval, we will not lose more than the VaR of the portfolio in the next N days. VaR is the
level of loss that will not be exceeded with a probability given by the confidence interval.

For example, a VaR of €1 million over a year with a 95% confidence level means that
the maximum loss for the portfolio for the next year will be €1 million in 95% of cases.
Nothing tells us what happens to the remaining 5% of cases.

The following graph shows the probability distribution of portfolio returns with the
indication of the value of the VaR:

Figure 8.6 – Probability distribution of the portfolio returns

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Studying risk models for portfolio management 223

VaR is a function of the following two parameters:

• Time horizon

• Level of confidence

Some characteristics of VaR must be specified:

• VaR does not describe the worst loss.

• VaR says nothing about the distribution of losses in the left tail.

• VaR is subject to sampling errors.

Important note
The sampling error tells us how much the sampled value deviates from the real
population value. This deviation is because the sample is not representative of
the population or has distortions.

VaR is a widely used risk measure that summarizes, in a single number, important aspects
of the risk of a portfolio of financial instruments. It has the same unit of measurement
as the returns of the portfolio on which it is calculated, and it is simple to understand,
answering the simple question: How bad can financial investments go?

Let's now examine a practical case of calculating the VaR.

Estimating the VaR for some NASDAQ assets
NASDAQ is one of the most famous stock market indices in the world. Its name is an
acronym for the National Association of Securities Dealers Quotation. This is the index
that represents the stocks of the technology sector in the US. Thinking of NASDAQ in
the investor's mind, the brands of the main technological and social houses of the US can
easily emerge. Just think of companies such as Google, Amazon, Facebook, and many
others; they are all covered by the NASDAQ listing.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

224 Using Simulation Models for Financial Engineering

Here, we will learn how to recover the data of the quotes of six companies listed by
NASDAQ, and then we will demonstrate how to estimate the risk associated with the
purchase of a portfolio of sharess of these securities:

1. As always, we start by importing the libraries:

import datetime as dt

import numpy as np

import pandas_datareader.data as wb

import matplotlib.pyplot as plt

from scipy.stats import norm

The following libraries were imported:

The datetime library contains classes for manipulating dates and times. The
functions it contains allow us to easily extract attributes for formatting and
manipulating dates.

The pandas_datareader.data module of the pandas library contains
functions that allow us to extract financial information, not just from a series of
websites that provide these types of data. The collected data is returned in the
pandas DataFrame format. The pandas library is an open source BSD-licensed
library that contains data structures and operations to manipulate high-
performance numeric values for the Python programming language.

2. We will set the stocks we want to analyze by defining them with tickers. We also
decide the time horizon:

StockList = ['ADBE','CSCO','IBM','NVDA','MSFT','HPQ']

StartDay = dt.datetime(2019, 1, 1)

EndDay = dt.datetime(2019, 12, 31)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Studying risk models for portfolio management 225

Six tickers have been included in a DataFrame. A ticker is an abbreviation
used to uniquely identify the sharess listed on the stock exchange of a particular
security on a specific stock market. It is made up of letters, numbers, or
a combination of both. The tickers are used to refer to six leading companies in the
global technology sector:

ADBE: Adobe Systems Inc. – one of the largest and most differentiated software
companies in the world.

CSCO: Cisco Systems Inc. – the production of Internet Protocol (IP)-based
networking and other products for communications and information technology.

IBM: International Business Machines – the production and consultancy of
information technology-related products.

NVDA: Nvidia Corp. – visual computing technologies. This is the company that
invented the GPU.

MSFT: Microsoft Corp. – this is one of the most important companies in the sector,
as well as one of the largest software producers in the world by turnover.

HPQ: HP Inc. – the leading global provider of products, technologies, software,
solutions, and services to individual consumers and large enterprises.

After deciding the tickers, we set the time horizon of our analysis. We simply set the
start date and end date of our analysis by defining the whole year of 2019.

3. Now we can recover the data:

StockData = wb.DataReader(StockList, 'yahoo',

 StartDay,EndDay)

StockClose = StockData["Adj Close"]

print(StockClose.describe())

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

226 Using Simulation Models for Financial Engineering

To retrieve the data, we used the DataReader() function of the pandas_
datareader.data module. This function extracts data from various internet
sources into a pandas DataFrame. The following topics have been passed:

StockList: The list of stocks to be recovered

'yahoo': The website from which to collect data

StartDay: Start date of monitoring

EndDay: End date of monitoring

The recovered data is entered in a pandas DataFrame that will contain 36 columns
corresponding to 6 pieces of information for each of the 6 stocks. Each record will
contain the following information for each day: the high value, the low value, the
open value, the close value, the volume, and the adjusted close.

For the risk assessment of a portfolio, only one value will suffice: the adjusted
close. This column was extracted from the starting DataFrame and stored in the
StockData variable. We then developed basic statistics for each stock using the
describe() function. The following statistics have been returned:

Figure 8.7- Statistics of the portfolios
Analyzing the previous table, we can note that there are 252 records. These are
the days when the stock exchange was opened in 2019. Let's take note of it as this
data will be useful later on. We also note that the values in the columns have very
different ranges due to the different values of the stocks. More easily understand the
trend of stocks, it is better to draw graphs. Let's do this next:

fig, axs = plt.subplots(3, 2)

axs[0, 0].plot(StockClose['ADBE'])

axs[0, 0].set_title('ADBE')

axs[0, 1].plot(StockClose['CSCO'])

axs[0, 1].set_title('CSCO')

axs[1, 0].plot(StockClose['IBM'])

axs[1, 0].set_title('IBM')

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Studying risk models for portfolio management 227

axs[1, 1].plot(StockClose['NVDA'])

axs[1, 1].set_title('NVDA')

axs[2, 0].plot(StockClose['MSFT'])

axs[2, 0].set_title('MSFT')

axs[2, 1].plot(StockClose['HPQ'])

axs[2, 1].set_title('HPQ')

In order to make an easy comparison between the trends of the 6 stocks, we
have traced 6 subplots that are ordered in 3 rows and 2 columns. We used the
subplots() function of the matplotlib library. This function returns a
tuple containing a figure object and axes. So, when you use fig, axs = plt.
subplots(), you unpack this tuple into the variables of fig and axs. Having
fig is useful if you want to change the attributes at the figure level or save the
figure as an image file later. The variable, axs, allows us to set the attributes of the
axes of each subplot. In fact, we called this variable to define what to draw in each
subplot by calling it with the row-column indices of the chart matrix. In addition,
for each chart, we also printed the title, which allows us to understand which ticker
it refers to.

After doing this, we plot the graph:
plt.figure(figsize=(10,5))

plt.plot(StockClose)

plt.show()

The following matplotlib functions were used:

figure(): This function creates a new figure, which is empty for now, and we set
the size of the frame using the figsize parameter, which sets the width and height
in inches.

plot(): This function plots the AmznData dataset.

show(): This function, when running in IPython in PyLab mode, displays all the
figures and returns to the IPython prompt.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

228 Using Simulation Models for Financial Engineering

The following graphs are printed:

Figure 8.8 – Graphs of the statistics
Analyzing the previous figure, everything is clearer. The trends of stocks are
evident. Leaving aside the absolute value, which varies considerably from one
stock to another, we can note that only the Microsoft stock has recorded an almost
increasing trend throughout the monitoring period. On the contrary, the other
stocks have shown fluctuating trends. We also note that the HPQ stock has recorded
three sudden falls.

4. After taking a quick look at the trend of stocks, the time has come to evaluate the
returns:

StockReturns = StockClose.pct_change()

print(StockReturns.tail())

The pct.change() function returns the percentage change between the current
close price and the previous value. By default, the function calculates the percentage
change from the immediately preceding row.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Studying risk models for portfolio management 229

The concept of the percentage variation of a time series is linked to the concept
of the return of a stock price. The returns-based approach provides for the
normalization of data, which is an operation of fundamental importance to
evaluate the relationships between variables characterized by different metrics.
These concepts have been explored in the Using Monte Carlo methods for stock price
prediction section of this chapter. Note that we have only referred to some of them.

We then printed the queue of the returned DataFrame to analyze its contents. The
following results are returned:

Figure 8.9 – The stock returns DataFrame
In the previous table, the minus sign indicates a negative return or a loss.

5. Now we are ready to assess the investment risk of a substantial portfolio of stocks of
these prestigious companies. To do this, we need to set some variables and calculate
others:

PortfolioValue = 1000000000.00

ConfidenceValue = 0.95

Mu = np.mean(StockReturns)

Sigma = np.std(StockReturns)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

230 Using Simulation Models for Financial Engineering

To start, we set the value of our portfolio; it is a billion dollars. These figures should
not frighten you. For a bank that manages numerous investors, achieving this
investment value is not difficult. So, we set the confidence interval. Previously, we
said that VaR is based on this value. Subsequently, we started to calculate some
fundamental quantities for the VaR calculation. I am referring to the mean and
standard deviation of returns. To do this, we used the related numpy functions:
np.mean () and np.std.

We continue to set the parameters necessary for calculating the VaR:
WorkingDays2019 = 252.

AnnualizedMeanStockRet = MeanStockRet/WorkingDays2019

AnnualizedStdStockRet =

 StdStockRet/np.sqrt(WorkingDays2019)

Previously, we saw that the data extracted from the finance section of the Yahoo
website contained 252 records. This is the number of working days of the stock
exchange in 2019, so we set this value. So, let's move on to annualizing the mean
and the standard deviation just calculated. This is because we want to calculate the
annual risk index of the stocks. For the annualization of the average, it is enough to
divide by the number of working days, while for the standard deviation, we must
divide by the square root of the number of working days.

6. Now we have all the data we need to calculate the VaR:

INPD = norm.ppf(1-ConfidenceValue,AnnualizedMeanStockRet,

 AnnualizedStdStockRet)

VaR = PortfolioValue*INPD

To start, we calculate the inverse normal probability distribution with a risk level
of 1 for the confidence, mean, and standard deviation. This technique involves the
construction of a probability distribution starting from the three parameters we
have mentioned. In this case, we work backward, starting from some distribution
statistics, and try to reconstruct the starting distribution. To do this, we use the
norm.ppf() function of the SciPy library.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Studying risk models for portfolio management 231

The norm() function returns a normal continuous random variable. The acronym,
ppf, stands for percentage point function, which is another name for the quantile
function. The quantile function, associated with a probability distribution of a
random variable, specifies the value of the random variable so that the probability
that the variable is less than or equal to that value is equal to the given probability.

At this point, the VaR is calculated by multiplying the inverse normal probability
distribution obtained by the value of the portfolio. To make the value obtained more
readable, it was rounded to the first two decimal places:

RoundVaR=np.round_(VaR,2)

Finally, the results obtained were printed, one for each row, to make the comparison
simple:

for i in range(len(StockList)):

 print("Value-at-Risk for", StockList[i],

 "is equal to ",RoundVaR[i])

The following results are returned:
Value-at-Risk for ADBE is equal to -1547.29

Value-at-Risk for CSCO is equal to -1590.31

Value-at-Risk for IBM is equal to -2047.22

Value-at-Risk for NVDA is equal to -1333.65

Value-at-Risk for MSFT is equal to -1286.01

Value-at-Risk for HPQ is equal to -2637.71

The stocks that returned the highest risk were HP and IBM, while the one that returned
the lowest risk was the Microsoft stock.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

232 Using Simulation Models for Financial Engineering

Summary
In this chapter, we applied the concepts of simulation based on Monte Carlo methods and,
more generally, on the generation of random numbers to real cases related to the world
of financial engineering. We started by defining the model based on Brownian motion,
which describes the uninterrupted and irregular movement of small particles when
immersed in a fluid. We learned how to describe the mathematical model, and then we
derived a practical application that simulates a random walk as a Wiener process.

Afterward, we dealt with another practical case of considerable interest, that is, how to
use Monte Carlo methods to predict the stock prices of the famous Amazon company.
We started to explore the trend of Amazon sharess in the last 10 years, and we performed
simple statistics to extract preliminary information on any trends that we confirmed
through visual analysis. Subsequently, we learned to treat the trend of stock prices as
a time series, calculating the daily return. We then addressed the problem with the BS
model, defining the concepts of drift and standard Brownian motion. Finally, we applied
the Monte Carlo method to predict possible scenarios relating to the trend of stock prices.

As a final practical application, we assessed the risk associated with a portfolio of sharess
of some of the most famous technology companies listed on the NASDAQ market. We
first defined the concept of referrals connected to a financial asset, and then we introduced
the concept of VaR. Subsequently, we implemented an algorithm that, given a confidence
interval and a time horizon, calculates the VaR on the basis of the daily returns returned
by the historical data of the stock prices.

In the next chapter, we will learn about the basic concepts of artificial neural networks,
how to apply feedforward neural network methods to our data, and how the neural
network algorithm works. Then, we will understand the basic concepts of a deep neural
network and how to use neural networks to simulate a physical phenomenon.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

9
Simulating Physical

Phenomena Using
Neural Networks

Neural networks are exceptionally effective at getting good characteristics for highly
structured data. Physical phenomena are conditioned by numerous variables that can
be easily measured through modern sensors. In this way, big data is produced that
is difficult to deal with using classic techniques. Neural networks lend themselves to
simulating complex environments.

In this chapter, we will learn how to develop models based on artificial neural networks
(ANNs) to simulate physical phenomena. We will start by exploring the basic concepts
of neural networks, and then we will examine their architecture and main elements. We
will demonstrate how to train a network to update its weights. Then, we will apply these
concepts to a practical use case to solve a regression problem. In the last part of
the chapter, we will analyze deep neural networks.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

234 Simulating Physical Phenomena Using Neural Networks

In this chapter, we're going to cover the following topics:

• Introducing the basics of neural networks

• Understanding feedforward neural networks

• Simulating airfoil self-noise using ANNs

• Exploring deep neural networks

Technical requirements
In this chapter, we will learn how to use ANNs to simulate complex environments.
To understand the topics, basic knowledge of algebra and mathematical modeling
is needed.

To work with the Python code in this chapter, you need the following file (available on
GitHub at https://github.com/PacktPublishing/Hands-On-Simulation-
Modeling-with-Python):

• Airfoil Self-Noise.py

Introducing the basics of neural networks
ANNs are numerical models developed with the aim of reproducing simple neural
activities of the human brain, such as object identification and voice recognition. The
structure of an ANN is composed of nodes that, similar to the neurons present in a
human brain, are interconnected with each other through weighted connections, which
reproduce the synapses between neurons.

The system output is updated until it iteratively converges via the connection weights.
The information derived from experimental activities is used as input data and the
result processed by the network is returned as an output. The input nodes represent the
predictive variables, and the output neurons are represented by the dependent variables.
We use the predictive variables to process the dependent variables.

ANNs are very versatile in simulating regression and classification problems.
They can learn the process of working out the solution to a problem by analyzing
a series of examples. In this way, the researcher is released from the difficult task
of building a mathematical model of the physical system, which, in some cases, is
impossible to represent.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python
https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python

Introducing the basics of neural networks 235

Understanding biological neural networks
ANNs are based on a model that draws inspiration from the functioning principles of the
human brain and how the human brain processes the information that comes to it from
the peripheral organs. In fact, ANNs consist of a series of neurons that can be thought
of as individual processors, since their basic task is to process the information that is
provided to them at the input. This processing is similar to the functioning of a biological
neuron, which receives electrical signals, processes them, and then transmits the results to
the next neuron. The essential elements of a biological neuron include the following:

• Dendrites

• Synapses

• Body cells

• Axon

The information is processed by the biological neuron according to the following steps:

1. Dendrites get information from other neurons in the form of electrical signals.

2. The flow of information occurs through the synapses.

3. The dendrites transmit this information to the cell body.

4. In the cell body, the information is added together.

5. If the result exceeds a threshold limit, the cell reacts by passing the signal to another
cell. The passage of information takes place through the axon.

The following diagram shows the essential elements of the structure of a biological
neuron:

Figure 9.1 – Structure of a neuron

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

236 Simulating Physical Phenomena Using Neural Networks

Synapses assume the role of neurotransmitters; in fact, they can exert an excitatory or
inhibitory action against the neuron that is immediately after it. This effect is regulated
by the synapses through the weight that is associated with them. In this way, each neuron
can perform a weighted sum of the inputs, and if this sum exceeds a certain threshold, it
activates the next neuron.

Important note
The processing performed by the neuron lasts for a few milliseconds. From a
computational point of view, it represents a relatively long time. So, we could
say that this processing system, taken individually, is relatively slow. However,
as we know, it is a model based on quantity; it is made up of a very high
number of neurons and synapses that work simultaneously and in parallel.

In this way, the processing operations that are performed are very effective, and they
allow us to obtain results in a relatively short period of time. We can say that the strength
of neural networks lies in the teamwork of neurons. Taken individually, they do not
represent a particularly effective processing system; however, taken together, they
represent an extremely high-performing simulation model.

The functioning of a brain is regulated by neurons and represents an optimized machine
that can solve even complex problems. It is a simple structure, improved over time
through the evolution of the species. It has no central control; the areas of the brain are
all active in carrying out a task, which is aimed at solving a problem. The workings of all
parts of the brain take place in a contributory way, and each part contributes to the result.
In addition to this, the human brain is equipped with a very effective error regulation
system. In fact, if a part of the brain stops working, the operations of the entire system
continue to be performed, even if with a lower performance.

Exploring ANNs
As we have stated, a model based on ANNs draws inspiration from the functioning of
the human brain. In fact, an artificial neuron is similar to a biological neuron in that it
receives information as input derived from another neuron. A neuron's input represents
the output of the neuron that is found immediately before in the architecture of a model
based on neural networks.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing the basics of neural networks 237

Each input signal to the neuron is then multiplied by the corresponding weight. It is then
added to the results obtained by the other neurons to process the activation level of the
next neuron. The essential elements of the architecture of a model based on ANNs include
the neurons that are distinguished from the input neurons, and the output neurons by
the number of layers of synapses and by the connections between these neurons. The
following diagram shows the typical architecture of an ANN:

Figure 9.2 – Architecture of an ANN

The input signals, which represent the information detected by the environment, are
sent to the input layer of the ANN. In this way, they travel, in parallel, along with
the connections through the internal nodes of the system and up to the output. The
architecture of the network, therefore, returns a response from the system. Put simply,
in a neural network, each node is able to process only local information with no
knowledge of the final goal of the processing and not keeping any memory of the latter.
The result obtained depends on the architecture of the network and on the values
assumed by the artificial synapses.

There are cases in which a single synapse layer is unable to return an adequate network
response to the signal supplied at the input. In these cases, multiple layers of synapses
are required because a single layer is not enough. These networks are called deep neural
networks. The network response is obtained by treating the activation of one layer of
neurons at a time and then proceeding from the input to the output, passing through the
intermediate layers.

Important note
The ANN target is the result of the calculation of the outputs performed for
all the neurons, so an ANN is presented as a set of mathematical function
approximations.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

238 Simulating Physical Phenomena Using Neural Networks

The following elements are essential in an ANN architecture:

• Weights

• Bias

• Layers

• Activation functions

In the following sections, we will deepen our understanding of these concepts.

Describing the structure of the layers
In the architecture of an ANN, it is possible to identify the nodes representing the neurons
distributed in a form that provides a succession of layers. In a simple structure of an ANN,
it is possible to identify an input layer, an intermediate layer (hidden layer), and an output
layer, as shown in the following diagram:

Figure 9.3 – The various layers of an ANN

Each layer has its own task, which it performs through the action of the neurons it
contains. The input layer is intended to introduce the initial data into the system for
further processing by the subsequent layers. From the input level, the workflow of the
ANN begins.

Important note
In the input layer, artificial neurons have a different role to play in some
passive way because they do not receive information from the previous levels.
In general, they receive a series of inputs and introduce information into the
system for the first time. This level then sends the data to the next levels where
the neurons receive weighted inputs.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing the basics of neural networks 239

The hidden layer in an ANN is interposed between input levels and output levels. The
neurons of the hidden layer receive a set of weighted inputs and produce an output
according to the indications received from an activation function. It represents the
essential part of the entire network, since it is here that the magic of transforming the
input data into output responses takes place.

Hidden levels can operate in many ways. In some cases, the inputs are weighted
randomly, while in others, they are calibrated through an iterative process. In general,
the neuron of the hidden layer functions as a biological neuron in the brain. That is, it
takes its probabilistic input signals, processes them, and converts them into an output
corresponding to the axon of the biological neuron.

Finally, the output layer produces certain outputs for the model. Although they are very
similar to other artificial neurons in the neural network, the type and number of neurons
in the output layer depend on the type of response the system must provide. For example,
if we are designing a neural network for the classification of an object, the output layer will
consist of a single node that will provide us with this value. In fact, the output of this node
must simply provide a positive or negative indication of the presence or absence of the
target in the input data. For example, if our network must perform an object classification
task, then this layer will contain only one neuron destined to return this value. This is
because this neuron must return a binary signal, that is, a positive or negative response
that signals the presence or absence of the object among the data provided as input.

Analyzing weights and biases
In a neural network, weights represent a crucial factor in converting an input signal
into the system response. They represent a factor such as the slope of a linear regression
line. In fact, the weight is multiplied by the inputs and the result is added to the other
contributions. These are numerical parameters that determine the contribution of a single
neuron in the formation of the output.

If the inputs are x1, x2, … xn, and the synaptic weights to be applied to them are
denoted as w1, w2, … wn, the output returned by the neuron is expressed through the
following formula:

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) =∑𝑥𝑥𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

240 Simulating Physical Phenomena Using Neural Networks

The previous formula is a matrix multiplication to reach the weighted sum. The neuron
elaboration can be denoted as follows:

In the previous formula, the bias assumes the role of the intercept in a linear equation. The
bias represents an additional parameter that is used to regulate the output along with the
weighted sum of the inputs to the neuron.

The input of the next layer is the output of the neurons in the previous layer, as shown in
the following diagram:

Figure 9.4 – Output of the neurons

The schema presented in the previous diagram explains the role played by the weight in
the formation of a neuron. Note that the input provided to the neuron is weighed with
a real number that reproduces the activity of the synapse of a biological neuron. When
the weight value is positive, the signal has an excitatory activity. If, on the other hand, the
value is negative, the signal is inhibitory. The absolute value of the weight indicates the
strength of the contribution to the formation of the system response.

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =∑𝑥𝑥𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1
+ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing the basics of neural networks 241

Explaining the role of activation functions
The abstraction of neural network processing is primarily obtained via the activation
functions. This is a mathematical function that transforms the input into output and
controls a neural network process. Without the contribution of activation functions,
a neural network can be assimilated to a linear function. A linear function occurs
when the output is directly proportional to the input. For example, let's analyze the
following equation:

In the previous equation, the exponent of x is equal to 1. This is the condition for the
function to be linear: it must be a first-degree polynomial. It is a straight line with no
curves. Unfortunately, most real-life problems are nonlinear and complex in nature. To
treat nonlinearity, activation functions are introduced in neural networks. Recall that,
for a function to be nonlinear, it is sufficient that it is a polynomial function of a degree
higher than the first. For example, the following equation defines a nonlinear function of
the third degree:

The graph of a nonlinear function is curved and adds to the complexity factor. Activation
functions give the nonlinearity property to neural networks and make them true universal
function approximators.

There are many activation functions available for a neural network to use. The most used
activation functions are listed here:

• Sigmoid: The sigmoid function is a mathematical function that produces a
sigmoidal curve, which is a characteristic curve for its S shape. This is one of the
earliest and most used activation functions. This squashes the input to any value
between 0 and 1 and makes the model logistic in nature.

• Unit step: A unit step activation function is a much-used feature in neural
networks. The output assumes a value of 0 for a negative argument and a value of
1 for a positive argument. The range is between (0,1) and the output is binary in
nature. These types of activation functions are useful for binary schemes.

• Hyperbolic tangent: This is a nonlinear function, defined in the range of values (-1,
1), so you do not need to worry about activations blowing up. One thing to clarify is
that the gradient is stronger for tanh than sigmoid. Deciding between sigmoid and
tanh will depend on your gradient strength requirement. Like sigmoid, tanh also
has the missing slope problem.

𝑦𝑦 = 5 ∗ 𝑥𝑥 + 3

𝑦𝑦 = 5 ∗ 𝑥𝑥3 + 3

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

242 Simulating Physical Phenomena Using Neural Networks

• Rectified Linear Unit (ReLU): This is a function with linear characteristics for parts
of the existence domain that will output the input directly if it is positive; otherwise,
it will output zero. The range of output is between 0 and infinity. ReLU finds
applications in computer vision and speech recognition using deep neural networks.

The previously listed activation functions are shown in the following diagram:

Figure 9.5 – Representation of activation functions

Now we will look at the simple architecture of a neural network, which shows us how the
flow of information proceeds.

Understanding feedforward neural networks
The processing from the input layer to the hidden layer(s) and then to the output layer is
called feedforward propagation. The transfer function is applied at each hidden layer, and
then the activation function value is propagated to the next layer. The next layer can be
another hidden layer or the output layer.

Important note
The term "feedforward" is used to indicate the networks in which each
node receives connections only from the lower layers. These networks emit
a response for each input pattern but fail to capture the possible temporal
structure of the input information or to exhibit endogenous temporal
dynamics.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding feedforward neural networks 243

Exploring neural network training
The learning ability of an ANN is manifested in the training procedure. This represents
the crucial phase of the whole algorithm as it is through the characteristics extracted
during training that the network acquires the ability to generalize. The training takes
place through a comparison between a series of inputs corresponding to known outputs
and those supplied by the model. At least, this is what happens in the case of supervised
algorithms in which the labeled data is compared with that provided by the model.

The results achieved by the model are influenced by the data used in the training phase—
to obtain good performance, the data used must be sufficiently representative of the
phenomenon. From this, we can understand the importance of the dataset used in this
phase, which is called the training set.

To understand the procedure through which a neural network learns from data, let's
consider a simple example. We will analyze the training of a neural network with a single
hidden level. Let's say that the input level has a neuron and the network will have to face a
binary classification problem—only two output values of 0 or 1.

The training of the network will take place according to the following steps:

1. Enter the input in the form of a data matrix.

2. Initialize the weights and biases with random values. This step will be performed
once, at the beginning of the procedure only. Later weights and biases will be
updated through the error propagation process.

3. Apply inputs to the network.

4. Calculate the output for each neuron from the input level, to the hidden levels, to
the output level.

5. Calculate the error on the outputs.

6. Use the output error to calculate the error signals for the previous layers. The partial
derivative of the activation function is used to calculate the error signals.

7. Use the error signals to calculate the weight adjustments.

8. Apply the weight adjustments.

9. Repeat steps 4 to 9 until the error is minimized.

Steps 3 and 4 represent the direct propagation phase, while steps 5 and 8 represent the
backpropagation phase.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

244 Simulating Physical Phenomena Using Neural Networks

The most used method to train a network through the adjustment of neuron weights is the
delta rule, which compares the network output with the desired values. Subtract the two
values and the difference is used to update all of the input weights, which have different
values of zero. The process is repeated until convergence is achieved.

The following diagram shows the weight adjustment procedure:

Figure 9.6 – The weight adjustment procedure

The training procedure is extremely simple: it is a simple comparison between the
calculated values and the labeled values. The difference between the weighted input values
and the expected output values is calculated from the comparison—the difference, which
represents the evaluation error between the calculated and expected values, is used to
recalculate all of the input weights. It is an iterative procedure that is repeated until the
error between the expected and calculated values approaches zero.

Simulating airfoil self-noise using ANNs
The noise generated by an airfoil is due to the interaction between a turbulent airflow
and the aircraft's airfoil blades. Predicting the acoustic field in these situations requires
an aeroacoustics methodology that can operate in complex environments. Additionally,
the method that is used must avoid the formulation of coarse hypotheses regarding
geometry, compactness, and the content of the frequency of sound sources. The prediction
of the sound generated by a turbulent flow must, therefore, correctly model both the
physical phenomena of sound propagation and the turbulence of the flow. Since these two
phenomena manifest energy and scales of very different lengths, the correct prediction of
the sound generated by a turbulent flow is not easy to model.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Simulating airfoil self-noise using ANNs 245

Aircraft noise is a crucial topic for the aerospace industry. The NASA Langley Research
Center has funded several strands of research to effectively study the various mechanisms
of self-noise airfoil. Interest was motivated by its importance for broadband helicopter
rotors, wind turbines, and cell noises. The goal of these studies then focused on the
challenge of reducing external noises generated by the entire cell of an aircraft by 10
decibels.

In this example, we will elaborate on a model based on ANNs to predict self-noise airfoil
from a series of airfoil data measured in a wind tunnel.

Important note
The dataset we will use was developed by NASA in 1989 and is available on the
UCI Machine Learning Repository site. The UCI Machine Learning Repository
is available at https://archive.ics.uci.edu/ml/datasets/
Airfoil+Self-Noise.

The dataset was built using the results of a series of aerodynamic and acoustic tests on
sections of aerodynamic blades performed in an anechoic wind tunnel.

The following list shows the features of the dataset:

• Number of instances: 1,503

• Number of attributes: 6

• Dataset characteristics: Multivariate

• Attribute characteristics: Real

• Dataset date: 2014-03-04

The following list presents a brief description of the attributes:

• Frequency: Frequency in Hertz (Hz)

• AngleAttack: Angle of attack in degrees

• ChordLength: Chord length in meters

• FSVelox: Free-stream velocity in meters per second

• SSDT: Suction-side displacement thickness (SSDT) in meters

• SSP: Scaled sound pressure level in decibels

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise

246 Simulating Physical Phenomena Using Neural Networks

In the six attributes we have listed, the first five represent the predictors, and the last one
represents the response of the system that we want to simulate. It is, therefore, a regression
problem because the answer has continuous values. In fact, it represents the self-noise
airfoil, in decibels, measured in the wind tunnel.

Importing data using pandas
The first operation we will perform is the importing of data, which, as we have already
mentioned, is available on the UCI website. As always, we will analyze the code line
by line:

1. We start by importing the libraries. In this case, we will operate differently from
what has been done so far. We will not import all of the necessary libraries at the
beginning of the code, but we will introduce them in correspondence with their use
and we will illustrate their purposes in detail:

import pandas as pd

The pandas library is an open source, BSD-licensed library that provides high-
performance, easy-to-use data structures and data analysis tools for the Python
programming language. It offers data structures and operations for manipulating
numerical data in a simple way. We will use this library to import the data contained
in the dataset retrieved from the UCI website.

The UCI dataset does not contain a header, so it is necessary to insert the names
of the variables in another variable. Now, let's put these variable names in the
following list:

ASNNames=
['Frequency','AngleAttack','ChordLength','FSVelox',
'SSDT','SSP']

2. Now we can import the dataset. This is available in .dat format, and, to make your
job easier, it has already been downloaded and is available in this book's GitHub
repository:

ASNData = pd.read_csv('airfoil_self_noise.dat', delim_
whitespace=True, names=ASNNames)

To import the .dat dataset, we used the read_csv module of the pandas library.
In this function, we passed the filename and two other attributes, namely delim_
whitespace and names. The first specifies whether or not whitespace will be
used as sep, and the second specifies a list of column names to use.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Simulating airfoil self-noise using ANNs 247

Important note
Remember to set the path so that Python can find the .dat file to open.

Before beginning with data analysis through ANN regression, we perform an
exploratory analysis to identify how data is distributed and extract preliminary
knowledge. To display the first 20 rows of the imported DataFrame, we can use the
head() function, as follows:

print(ASNData.head(20))

The pandas head() function gets the first n rows of a pandas DataFrame. In this
case, it returns the first 20 rows for the ASNData object based on position. It is used
for quickly testing whether our dataset has the right type of data in it. This function,
with no arguments, gets the first five rows of data from the DataFrame.

The following data is printed:

Figure 9.7 – DataFrame output
To extract further information, we can use the info() function, as follows:

print(ASNData.info())

The info() method returns a concise summary of the ASNData DataFrame,
including the dtypes index and the dtypes column, non-null values, and
memory usage.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

248 Simulating Physical Phenomena Using Neural Networks

The following results are returned:
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1503 entries, 0 to 1502

Data columns (total 6 columns):

Frequency 1503 non-null int64

AngleAttack 1503 non-null float64

ChordLength 1503 non-null float64

FSVelox 1503 non-null float64

SSDT 1503 non-null float64

SSP 1503 non-null float64

dtypes: float64(5), int64(1)

memory usage: 70.5 KB

None

By reading the information returned by the info method, we can confirm that it is
1,503 instances and 6 variables. In addition to this, the types of variables returned to
us are 5 float64 variables and 1 int64 variables.

3. To obtain a first screening of the data contained in the ASNData DataFrame, we
can compute a series of basic statistics. We can use the describe() function in
the following way:

BasicStats = ASNData.describe()

BasicStats = BasicStats.transpose()

print(BasicStats)

The describe() function produces descriptive statistics that return the central
tendency, dispersion, and shape of a dataset's distribution, excluding Not-a-
Number (NaN) values. It is used for both numeric and object series, as well as the
DataFrame columns containing mixed data types. The output will vary depending
on what is provided. In addition to this, we have transposed the statistics to appear
better on the screen and to make it easier to read the data.

The following statistics are printed:

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Simulating airfoil self-noise using ANNs 249

Figure 9.8 – Basic statistics of the DataFrame

From the analysis of the previous table, we can extract useful information. First of all,
we can note that the data shows great variability. The average of the values ranges from
approximately 0.14 to 2,886. Not only that, but some variables have a very large standard
deviation. For each variable, we can easily recover the minimum and maximum. In this
way, we can note that the interval of the analyzed frequencies goes from 200 to 20,000 Hz.
These are just some considerations; we can recover many others.

Scaling the data using sklearn
In the statistics extracted using the describe() function, we have seen that the
predictor variables (frequency, angle of attack, chord length, free-stream velocity, and
SSDT) have an important variability. In the case of predictors with different and varied
ranges, the influence on the system response by variables with a larger numerical range
could be greater than those with a lower numeric range. This different impact could
affect the accuracy of the prediction. Actually, we want to do exactly the opposite, that is,
improve the predictive accuracy and reduce the sensitivity of the model from features that
can affect prediction due to a wide range of numerical values.

To avoid this phenomenon, we can reduce the values so that they fall within a common
range, guaranteeing the same characteristics of variability possessed by the initial dataset.
In this way, we will be able to compare variables belonging to different distributions and
variables expressed in different units of measurement.

Important note
Recall how we rescale the data before training a regression algorithm. This is a
good practice. Using a rescaling technique, data units are removed, allowing us
to compare data from different locations easily.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

250 Simulating Physical Phenomena Using Neural Networks

We then proceed with data rescaling. In this example, we will use the min-max method
(usually called feature scaling) to get all of the scaled data in the range [0, 1]. The formula
to achieve this is as follows:

To do feature scaling, we can apply a preprocessing package offered by the sklearn
library. This library is a free software machine learning library for the Python
programming language. The sklearn library offers support for various machine learning
techniques, such as classification, regression, and clustering algorithms, including support
vector machines (SVMs), random forests, gradient boosting, k-means, and DBSCAN.
sklearn is created to work with various Python numerical and scientific libraries such as
NumPy and SciPy:

Important note
To import a library that is not part of the initial distribution of Python, you can
use the pip install command, followed by the name of the library. This
command should be used only once and not every time you run the code.

1. The sklearn.preprocessing package contains numerous common utility
functions and transformer classes to transform the features in a way that works with
our requirements. Let's start by importing the package:

from sklearn.preprocessing import MinMaxScaler

To scale features between the minimum and maximum values, the MinMaxScaler
function can be used. In this example, we want to rescale the date between zero and
one so that the maximum absolute value of each feature is scaled to unit size.

2. Let's start by setting the scaler object:

ScalerObject = MinMaxScaler()

3. To get validation of what we are doing, we will print the object just created in order
to check the set parameters:

print(ScalerObject.fit(ASNData))

The following result is returned:
MinMaxScaler(copy=True, feature_range=(0, 1))

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑠𝑠𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Simulating airfoil self-noise using ANNs 251

4. Now, we can apply the MinMaxScaler() function, as follows:

ASNDataScaled = ScalerObject.fit_transform(ASNData)

The fit_transform() method fits to the data and then transforms it. Before
applying the method, the minimum and maximum values that are to be used for
later scaling are calculated. This method returns a NumPy array object.

5. Recall that the initial data had been exported in the pandas DataFrame format.
Scaled data should also be transformed into the same format in mdoo to be able to
apply the functions available for pandas DataFrames. The transformation procedure
is easy to perform; just apply the pandas DataFrame() function as follows:

ASNDataScaled = pd.DataFrame(ASNDataScaled,
columns=ASNNames)

6. At this point, we can verify the results obtained with data scaling. Let's compute the
statistics using the describe() function once again:

summary = ASNDataScaled.describe()

summary = summary.transpose()

print(summary)

The following statistics are printed:

Figure 9.9 – Output with scaled data

From the analysis of the previous table, the result of the data scaling appears evident. Now
all six variables have values between 0 and 1.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

252 Simulating Physical Phenomena Using Neural Networks

Viewing the data using matplotlib
Now, we will try to have a confirmation of the distribution of the data through a visual
approach:

1. To start, we will draw a boxplot, as follows:

import matplotlib.pyplot as plt

boxplot = ASNDataScaled.boxplot(column=ASNNames)

plt.show()

A boxplot, also referred to as a whisker chart, is a graphical description used
to illustrate the distribution of data using dispersion and position indices. The
rectangle (box) is delimited by the first quartile (25th percentile) and the third
quartile (75th percentile) and divided by the median (50th percentile). In addition,
there are two whiskers, one upper and one lower, indicating the maximum and
minimum distribution values excluding any anomalous values.

matplotlib is a Python library for printing high-quality graphics. With
matplotlib, it is possible to generate graphs, histograms, bar graphs, power
spectra, error graphs, scatter graphs, and more with just a few commands. This is a
collection of command-line functions similar to those provided by the MATLAB
software.

As we mentioned earlier, the scaled data is in pandas DataFrame format. So,
it is advisable that you use the pandas.DataFrame.boxplot function. This
function makes a boxplot of the DataFrame columns, which are optionally grouped
by some other columns.

The following diagram is printed:

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Simulating airfoil self-noise using ANNs 253

Figure 9.10 – Boxplot of the DataFrame
In the previous diagram, you can see that there are some anomalous values
indicated by small circles at the bottom and side of the extreme whiskers of each
box. Three variables have these values, called outliers, and their presence can
create problems in the construction of the model. Furthermore, we can verify that
all the variables are contained in the extreme values that are equal to 0 and 1; this
is the result of data scaling. Finally, some variables such as FSVelox show great
variability of values compared to others, for example, SSDT.

We now measure the correlation between the predictors and the response variable.
A technique for measuring the relationship between two variables is offered by
correlation, which can be obtained using covariance. To calculate the correlation
coefficients in Python, we can use the pandas.DataFrame.corr() function.
This function computes the pairwise correlation of columns, excluding NA/null
values. Three procedures are offered, as follows:

pearson (standard correlation coefficient)

kendall (Kendall Tau correlation coefficient)

spearman (Spearman rank correlation)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

254 Simulating Physical Phenomena Using Neural Networks

Important note
Remember that the correlation coefficient of two random variables is a measure
of their linear dependence.

2. Let's calculate the correlation coefficients for the data scaled:

CorASNData = ASNDataScaled.corr(method='pearson')

with pd.option_context('display.max_rows', None,

 'display.max_columns', CorASNData.shape[1]):

print(CorASNData)

To show all data columns in a screenshot, we used the option_context function.
The following results are returned:

Figure 9.11 – Data columns in the DataFrame
We are interested in studying the possible correlation between the predictors and
the system response. So, to do this, it will be sufficient to analyze the last row of
the previous table. Recall that the values of the various correlation indices vary
between -1 and +1; both extreme values represent perfect relationships between
the variables, while 0 represents the absence of a relationship. This is if we consider
linear relationships. Based on this, we can say that the predictors that show a greater
correlation with the response (SSP) are Frequency and SSDT. Both show a negative
correlation.

To see visual evidence of the correlation between the variables, we can plot a
correlogram. A correlogram graphically presents a correlation matrix. It is used to
focus on the most correlated variables in a data table. In a correlogram, correlation
coefficients are shown with as nuances that depend on our values. Next to the
graph, a colored bar will be proposed in which the corresponding nuanced values
of the correlation coefficient can be read. To plot a correlogram, we can use the
matplotlib.pyplot.matshow() function, which shows a DataFrame as a
matrix in a new figure window.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Simulating airfoil self-noise using ANNs 255

3. Let's plot a correlogram, as follows:

plt.matshow(CorASNData)

plt.xticks(range(len(CorASNData.columns)), CorASNData.
columns)

plt.yticks(range(len(CorASNData.columns)), CorASNData.
columns)

plt.colorbar()

plt.show()

The following diagram is returned:

Figure 9.12 – Correlogram of the DataFrame

As we already did in the case of the correlation matrix, in this case too, to analyze the
correlation between predictors and the system response, it will be sufficient to consider
the bottom row of the graph. The trends already obtained from the correlation matrix
are confirmed.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

256 Simulating Physical Phenomena Using Neural Networks

Splitting the data
The training of an algorithm, based on machine learning, represents a crucial phase
of the whole process of elaboration of the model. Performing the training of an ANN
on the same dataset, which will subsequently be used to test the network, represents a
methodological error. This is because the model will be able to perfectly predict the data
used for testing, having already seen them in the training phase. However, when it will
then be used to predict new cases that have never been seen before, it will inexorably
commit evaluation errors. This problem is called data overfitting. To avoid this error, it is
good practice to train a neural network to use a different set of data from the one used in
the test phase. Therefore, before proceeding with the training phase, it is recommended
that you perform a correct division of the data.

Data splitting is used to split the original data into two sets: one is used to train the
model and the other to test the model's performance. The training and testing procedures
represent the starting point for the model setting in predictive analytics. In a dataset
that has 100 observations for predictor and response variables, a data splitting example
occurs that divides this data into 70 rows for training and 30 rows for testing. To perform
good data splitting, the observations must be selected randomly. When the training data
is extracted, the data will be used to upload the weights and biases until an appropriate
convergence is achieved.

The next step is to test the model. To do this, the remaining observations contained in the
test set will be used to check whether the actual output matches the predicted output. To
perform this check, several metrics can be adopted to validate the model:

1. We will use the sklearn library to split the ASNDataScaled DataFrame. To
start, we will import the train_test_split function:

from sklearn.model_selection import train_test_split

2. Now, we can divide the starting data into two sets: the X set containing the
predictors and the Y set containing the target. We will use the pandas.
DataFrame.drop() function, as follows:

X = ASNDataScaled.drop('SSP', axis = 1)

print('X shape = ',X.shape)

Y = ASNDataScaled['SSP']

print('Y shape = ',Y.shape)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Simulating airfoil self-noise using ANNs 257

3. Using the pandas.DataFrame.drop() function, we can remove rows or
columns indicating label names and the corresponding axis or the index or column
names. In this example, we have removed the target column (SSP) from the starting
DataFrame.

The following shapes are printed:
X shape = (1503, 5)

Y shape = (1503,)

As is our intention, the two datasets, X and Y, now contain the 5 predictors and the
system response, respectively.

4. Now we can divide the two datasets, X and Y, into two further datasets that will be
used for the training phase and the test phase, respectively:

X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size = 0.30, random_state = 5)

print('X train shape = ',X_train.shape)

print('X test shape = ', X_test.shape)

print('Y train shape = ', Y_train.shape)

print('Y test shape = ',Y_test.shape)

The train_test_split() function was used by passing the following four
parameters:

X: The predictors.

Y: The target.

test_size: This parameter represents the proportion of the dataset to include in
the test split. The following types are available: float, integer or none, and optional
(default = 0.25).

random_state: This parameter sets the seed used by the random number
generator. In this way, the repetitive splitting of the operation is guaranteed.

The following results are returned:
X train shape = (1052, 5)

X test shape = (451, 5)

Y train shape = (1052,)

Y test shape = (451,)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

258 Simulating Physical Phenomena Using Neural Networks

As expected, we finally divided the initial dataset into four subsets. The first two, X_
train and Y_train, will be used in the training phase. The remaining two, X_test
and Y_test, will be used in the testing phase.

Explaining multiple linear regression
In this section, we will deal with a regression problem using ANNs. To evaluate the results
effectively, we will compare them with a model based on a different technology. Here,
we will make a comparison between the model based on multiple linear regression and a
model based on ANNs.

In multiple linear regression, the dependent variable (response) is related to two or
more independent variables (predictors). The following equation is the general form
of this model:

In the previous equation, x1, x2, ... xn are the predictors, and y is the response variable.
The βi coefficients define the change in the response of the model related to the changes
that occurred in xi, when the other variables remain constant. In the simple linear
regression model, we are looking for a straight line that best fits the data. In the multiple
linear regression model, we are looking for the plane that best fits the data. So, in the latter
our aim is to minimize the overall squared distance between this plane and the response
variable.

To estimate the coefficients β, we want to minimize the following term:

To execute a multiple linear regression study, we can easily use the sklearn library. The
sklearn.linear_model module is a module that contains several functions to resolve
linear problems as a LinearRegression class that achieves an ordinary least squares
linear regression:

1. To start, we will import the function as follows:

from sklearn.linear_model import LinearRegression

Then, we set the model using the LinearRegression() function with the
following command:

Lmodel = LinearRegression()

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑥𝑥1 + 𝛽𝛽2 ∗ 𝑥𝑥2 + ⋯ + 𝛽𝛽𝑛𝑛 ∗ 𝑥𝑥𝑛𝑛

∑[𝑦𝑦𝑖𝑖 − (𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑥𝑥1 + 𝛽𝛽2 ∗ 𝑥𝑥2 + ⋯+ 𝛽𝛽𝑛𝑛 ∗ 𝑥𝑥𝑛𝑛)]2
𝑖𝑖

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Simulating airfoil self-noise using ANNs 259

2. Now, we can use the fit() function to fit the model:

Lmodel.fit(X_train, Y_train)

The following parameters are passed:

X_train: The training data.

Y_train: The target data.

Eventually, a third parameter can be passed; this is the sample_weight
parameter, which contains the individual weights for each sample.

This function fits a linear model using a series of coefficients to minimize the
residual sum of squares between the expected targets and the predicted targets.

3. Finally, we can use the linear model to predict the new values using the predictors
contained in the test dataset:

Y_predLM = Lmodel.predict(X_test)

At this point, we have the predictions.

Now, we must carry out a first evaluation of the model to verify how much the
prediction approached the expected value.

There are several descriptors for evaluating a prediction model. In this example, we
will use the mean squared error (MSE).

Important note
MSE returns the average of the squares of the errors. This is the average
squared difference between the expected values and the value that is predicted.
MSE returns a measure of the quality of an estimator; this is a non-negative
value and, the closer the values are to zero, the better the prediction.

4. To calculate the MSE, we will use the mean_squared_error() function
contained in the sklearn.metrics module. This module contains score
functions, performance metrics and pairwise metrics, and distance computations.
We start by importing the function, as follows:

from sklearn.metrics import mean_squared_error

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

260 Simulating Physical Phenomena Using Neural Networks

5. Then, we can apply the function to the data:

MseLM = mean_squared_error(Y_test, Y_predLM)

print('MSE of Linear Regression Model')

print(MseLM)

6. Two parameters were passed: the expected values (Y_test) and the values that
were predicted (Y_predLM). Then, we print the results, as follows:

MSE of Linear Regression Model

0.015826467113949756

The value obtained is low and very close to zero. However, for now, we cannot
add anything. We will use this value, later on, to compare it with the value that we
calculate for the model based on neural networks.

Understanding a multilayer perceptron regressor
model
A multilayer perceptron contains at least three layers of nodes: input nodes, hidden
nodes, and output nodes. Apart from the input nodes, each node is a neuron that uses
a nonlinear activation function. A multilayer perceptron works with a supervised
learning technique and backpropagation method for training the network. The presence
of multiple layers and nonlinearity distinguishes a multilayer perceptron from a simple
perceptron. A multilayer perceptron is applied when data cannot be separated linearly:

1. To build a multilayer perceptron-based model, we will use the sklearn
MLPRegressor function. This regressor proceeds iteratively in the data training.
At each step, it calculates the partial derivatives of the loss function with respect to
the model parameters and uses the results obtained to update the parameters. There
is a regularization term added to the loss function to reduce the model parameters
to avoid data overfitting.

First, we will import the function:
from sklearn.neural_network import MLPRegressor

The MLPRegressor() function implements a multilayer perceptron regressor.
This model optimizes the squared loss by using a limited-memory version of the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm or stochastic gradient
descent algorithm.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Simulating airfoil self-noise using ANNs 261

2. Now, we can set the model using the MLPRegressor function, as follows:

MLPRegModel = MLPRegressor(hidden_layer_sizes=(50),

 activation='relu', solver='lbfgs',

 tol=1e-4, max_iter=10000, random_state=0)

The following parameters are passed:

hidden_layer_sizes=(50): This parameter sets the number of neurons in the
hidden layer; the default value is 100.

activation='relu': This parameter sets the activation function. The following
activation functions are available: identity, logistic, tanh, and ReLU. The last one is
set by default.

solver='lbfgs': This parameter sets the solver algorithm for weight
optimization. The following solver algorithms are available: LBFGS, stochastic
gradient descent (SGD), and the SGD optimizer (adam).

tol=1e-4: This parameter sets the tolerance for optimization. By default, tol is
equal to 1e-4.

max_iter=10000: This parameter sets the maximum number of iterations.
The solver algorithm iterates until convergence is imposed by tolerance or by this
number of iterations.

random_state=1: This parameter sets the seed used by the random number
generator. In this way, it will be possible to reproduce the same model and obtain
the same results.

3. After setting the parameters, we can use the data to train our model:

MLPRegModel.fit(X_train, Y_train)

The fit() function fits the model using the training data for predictors (X_
train) and the response (Y_train). Finally, we can use the model trained to
predict new values:

Y_predMLPReg = MLPRegModel.predict(X_test)

In this case, the test dataset (X_test) was used.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

262 Simulating Physical Phenomena Using Neural Networks

4. Now, we will evaluate the performance of the MLP model using the MSE metric,
as follows:

MseMLP = mean_squared_error(Y_test, Y_predMLPReg)

print(' MSE of the SKLearn Neural Network Model')

print(MseMLP)

The following result is returned:
MSE of the SKLearn Neural Network Model

0.003315706807624097

At this point, we can make an initial comparison between the two models that we
have set up: the multiple linear regression-based model and the ANN-based model.
We will do this by comparing the results obtained by evaluating the MSE for the two
models.

5. We obtained an MSE of 0.0158 for the multiple linear regression-based model, and
an MSE of 0.0033 for the ANN-based model. The last one returns a smaller MSE
than the first by an order of magnitude, confirming the prediction that we made
where neural networks return values much closer to the expected values.

Finally, we make the same comparison between the two models; however, this time,
we adopt a visual approach. We will draw two scatter plots in which we will report
on the two axes the actual values (expected) and the predicted values, respectively:

SKLearn Neural Network diagram

plt.figure(1)

plt.subplot(121)

plt.scatter(Y_test, Y_predMLPReg)

plt.plot((0, 1), "r--")

plt.xlabel("Actual values")

plt.ylabel("Predicted values")

plt.title("SKLearn Neural Network Model")

SKLearn Linear Regression diagram

plt.subplot(122)

plt.scatter(Y_test, Y_predLM)

plt.plot((0, 1), "r--")

plt.xlabel("Actual values")

plt.ylabel("Predicted values")

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Simulating airfoil self-noise using ANNs 263

plt.title("SKLearn Linear Regression Model")

plt.show()

By reporting the actual and expected values on the two axes, it is possible to check
how this data is arranged. To help with the analysis, it is possible to trace the
bisector of the quadrant, that is, the line of the equation, Y = X.

The following diagrams are printed:

Figure 9.13 – Scatterplots of the neural network models

Hypothetically, all observations should be positioned exactly on the bisector line (the
dotted line in the diagram), but we can be satisfied when the data is close to this line.
About half of the data points must be below the line and the other half must be above the
line. Points that move significantly away from this line represent possible outliers.

Analyzing the results reported in the previous diagram, we can see that, in the graph
related to the ANN-based model, the points are much closer to the dotted line. This
confirms the idea that this model returns better predictions than the multiple linear
regression-based model.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

264 Simulating Physical Phenomena Using Neural Networks

Exploring deep neural networks
Deep learning is defined as a class of machine learning algorithms with certain
characteristics. These models use multiple, hidden, nonlinear cascade layers to perform
feature extraction and transformation jobs. Each level takes in the outputs from the
previous level. These algorithms can be supervised, to deal with classification problems,
or unsupervised, to deal with pattern analysis. The latter is based on multiple hierarchical
layers of data characteristics and representations. In this way, the features of the higher
layers are obtained from those of the lower layers, thus forming a hierarchy. Moreover,
they learn multiple levels of representation corresponding to various levels of abstraction
until they form a hierarchy of concepts.

The composition of each layer depends on the problem that needs to be solved.
Deep learning techniques mainly adopt multiple hidden levels of an ANN but also
sets of propositional formulas. The ANNs adopted have at least 2 hidden layers, but
the applications of deep learning contain many more layers, for example, 10 or 20
hidden levels.

The development of deep learning in this period certainly depended on the exponential
increase in data, with the consequent introduction of big data. In fact, with this
exponential increase in data, there has been an increase in performance due to the
increase in the level of learning, especially with respect to algorithms that already
exist. In addition to this, the increase in computer performance also contributed to the
improvement of obtainable results and to the considerable reduction in calculation times.
There are several models based on deep learning. In the following sections, we will analyze
the most popular ones.

Getting familiar with convolutional neural networks
A consequence of the application of the deep learning algorithms to ANNs is the
development of a new model that is much more complex but with amazing results, that is,
the convolutional neural network (CNN).

A CNN is a particular type of artificial feedforward neural network in which the
connectivity pattern between neurons is inspired by the organization of the visual cortex
of the human eye. Here, individual neurons are arranged in such a way as to devote
themselves to the various regions that make up the visual field as a whole.

The hidden layers of this network are classified into various types: convolutional, pooling,
ReLU, fully connected, and loss layers, depending on the role played. In the following
sections, we will analyze them in detail.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring deep neural networks 265

Convolutional layers
This is the main layer of this model. It consists of a set of learning filters with a limited
field of vision but extended along the entire surface of the input. Here, there are
convolutions of each filter along the surface dimensions, making the scalar products
between the filter inputs and the input image. Therefore, this generates a two-dimensional
activation function that is activated if the network recognizes a certain pattern.

Pooling layers
In this layer, there is a nonlinear decimation that partitions the input image into a set
of non-overlapping rectangles whose values are determined according to the nonlinear
function. For example, with max pooling, the maximum of a certain value is identified
for each region. The idea behind this layer is that the exact position of a feature is less
important than its position compared to the others; therefore, superfluous information is
omitted, also avoiding overfitting.

ReLU layers
The ReLU layer allows you to linearize the two-dimensional activation function and to set
all negative values to zero.

Fully connected layers
This layer is generally placed at the end of the structure. It allows you to carry out the
high-level reasoning of the neural network. It is called "fully connected" because the
neurons in this layer have all been completely connected to the previous level.

Loss layers
This layer specifies how much the training penalizes the deviation between the predictions
and the true values in output; therefore, it is always found at the end of the structure.

Examining recurrent neural networks
One of the tasks considered standard for a human, but of great difficulty for a machine,
is the understanding of a piece of text. Given an ordered set of words, how can a machine
be taught to understand its meaning? It is evident that, in this task, there is a more
subtle relationship between the input data than in other cases. In the case of the process
of classifying the content of an image, the whole image is processed by the machine
simultaneously. This does not make sense in the elaboration of a piece of text, since the
meaning of the words does not depend only on the words themselves, but also on their
context.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

266 Simulating Physical Phenomena Using Neural Networks

Therefore, to understand a piece of text, it is not enough to know the set of words that are
needed in it, but it is necessary to relate them to respect the order in which they are read.
It is necessary to consider, and subsequently remember, the temporal context.

Recurrent neural networks essentially allow us to remember data that could be significant
during the process we want to study.

This depends on the propagation rule that is used. To understand the functioning of this
type of propagation, and of memory, we can consider a case of a recurrent neural network:
the Elman network.

An Elman network is very similar to a hidden single-layer feedforward neural network,
but a set of neurons called context units is added to the hidden layer. For each neuron
present in the hidden layer, a context unit is added, which receives, as input, the output
of the corresponding hidden neuron and returns its output to the same hidden neuron.

A type of network very similar to that of Elman is that of Jordan, in which the context
units save the states of the output neurons instead of those of the hidden neurons. The
idea behind it, however, is the same as Elman, and it is the same as many other recurrent
neural networks that are based on the following principle: receiving a sequence of data as
input and processing a new sequence of output data, which is obtained by subsequently
recalculating the data of the same neurons.

The recurrent neural networks that are based on this principle are manifold, and the
individual topologies are chosen to face different problems. For example, if it is not
enough to remember the previous state of the network, but information processed
many steps before may be necessary, Long Short-Term Memory (LSTM) neural networks
can be used.

Analyzing LSTM networks
LSTM is a special architecture of recurrent neural networks. These models are particularly
suited to the context of deep learning because they offer excellent results and performance.

LSTM-based models are perfect for prediction and classification in the time series field,
and they are replacing several traditional machine learning approaches. This is because
LSTM networks can account for long-term dependencies between data. For example, this
allows us to keep track of the context within a sentence to improve speech recognition.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 267

An LSTM-based model contains cells, named LSTM blocks, that are linked together. Each
cell provides three types of ports: the input gate, the output gate, and the forget gate. These
ports execute the write, read, and reset functions, respectively, on the cell memory. These
ports are analogical and are controlled by a sigmoid activation function in the range of [0,
1]. Here, 0 means total inhibition, and 1 means total activation. The ports allow the LSTM
cells to remember information for an unspecified amount of time.

Therefore, if the input port reads a value below the activation threshold, the cell will
maintain the previous state, whereas if the value is above the activation threshold, the
current state will be combined with the input value. The forget gate restores the current
state of the cell when its value is zero, while the exit gate decides whether the value inside
the cell should be removed or not.

Summary
In this chapter, we learned how to develop models based on ANNs to simulate physical
phenomena. We started by analyzing the basic concepts of neural networks and the
principles they are based on that are derived from biological neurons. We examined, in
detail, the architecture of an ANN, understanding the concepts of weights, bias, layers,
and the activation function.

Subsequently, we analyzed the architecture of a feedforward neural network. We saw
how the training of the network with data takes place, and we understood the weight
adjustment procedure that leads the network to correctly recognize new observations.

Next, we applied the concepts learned by tackling a practical case. We developed a model
based on neural networks to solve a regression problem. We learned how to scale data and
then how to subset the data for training and testing. We learned how to develop a model
based on linear and MLP regression and how to evaluate the performance of these models
to make a comparison.

Finally, we explored deep neural networks. We defined them by analyzing their basic
concepts. We analyzed the basics of CNNs, recurrent neural networks, and LSTM
networks.

In the next chapter, we will explore other practical model simulation applications. We will
focus on simulation models in the field of project management.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

10
Modeling and

Simulation for
Project Management
Sometimes, monitoring resources, budgets, and milestones for various projects and
divisions can present a challenge. Simulation tools help us improve planning and
coordination in the various phases of the project so that we always keep control of it. In
addition, the preventive simulation of a project can highlight the critical issues related
to a specific task. This helps us evaluate the cost of any actions to be taken. Through the
preventive evaluation of the development of a project, errors that increase the costs of a
project can be avoided.

In this chapter, we will deal with practical cases of project management using the tools
we learned about in the previous chapters. We will learn how to evaluate the results of the
actions we take when managing a forest using Markov processes, and then move on and
learn how to evaluate a project using the Monte Carlo simulation.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

270 Modeling and Simulation for Project Management

In this chapter, we're going to cover the following main topics:

• Introducing project management

• Managing a tiny forest problem

• Scheduling project time using the Monte Carlo simulation

Technical requirements
In this chapter, we will address modeling examples of project management. To deal with
these topics, it is necessary that you have a basic knowledge of algebra and mathematical
modeling.

To work with the Python code in this chapter, you'll need the following files (available on
GitHub at the following URL: https://github.com/PacktPublishing/Hands-
On-Simulation-Modeling-with-Python):

• TinyForestManagement.py

• TinyForestManagementModified.py

• MonteCarloTasksScheduling.py

Introducing project management
To assess the consequences of a strategic or tactical move in advance, companies need
reliable predictive systems. Predictive analysis systems are based on data collection and
the projection of reliable scenarios in the medium- and long-term. In this way, we can
provide indications and guidelines for complex strategies, especially those that must
consider numerous factors from different entities.

This allows us to examine the results of the evaluation in a more complete and
coordinated way since we can simultaneously consider a range of values and,
consequently, a range of possible scenarios. Finally, when managing complex projects,
the use of artificial intelligence to interpret data has increased, thus giving these projects
meaning. This is because we can perform a sophisticated analysis of the information
in order to improve the strategic decision-making process we will undertake. This
methodology allows us to search and analyze data from different sources so that we can
identify patterns and relationships that may be relevant.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python
https://github.com/PacktPublishing/Hands-On-Simulation-Modeling-with-Python

Introducing project management 271

Understanding what-if analysis
What-if analysis is a type of analysis that can contribute significantly to making
managerial decisions more effective, safe, and informed. It is also the basic level of
predictive analysis based on data. What-if analysis is a tool capable of elaborating different
scenarios to offer different possible outcomes. Unlike advanced predictive analysis, what-if
analysis has the advantage of only requiring basic data to be processed.

This type of activity falls into the category of predictive analytics, that is, those that
produce forecasts for the future, starting from a historical basis or trends. By varying some
parameters, it is possible to simulate different scenarios and, therefore, understand what
impact a given choice would have on costs, revenues, profits, and so on.

It is therefore a structured method to determine which predictions related to strategy
changes can go wrong, thereby judging the probability and consequences of the studies
carried out before they happen. Through the analysis of historical data, it is possible
to create such predictive systems capable of estimating future results following the
assumptions that were made about a group of variables of independent inputs, thus
allowing us to formulate some forecasting scenarios with the aim of evaluating the
behavior of a real system.

Analyzing the scenario at hand allows us to determine the expected values related to a
management project. These analysis scenarios can be applied in different ways, the most
typical of which is to perform multi-factor analysis, that is, analyze models containing
multiple variables:

• Realization of a fixed number of scenarios by determining the maximum and
minimum difference and creating intermediate scenarios through risk analysis. Risk
analysis aims to determine the probability that a future result will be different from
the average expected result. To show this possible variation, an estimate of the less
likely positive and negative results is performed.

Random factorial analysis through the use of Monte Carlo methods, thus solving a
problem by generating appropriate random numbers and observing that fraction of the
numbers that obeys one or more properties. These methods are useful for obtaining
numerical solutions for problems that are too complicated to solve analytically.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

272 Modeling and Simulation for Project Management

Managing a tiny forest problem
As we mentioned in Chapter 5, Simulation-Based Markov Decision Processes, a stochastic
process is called Markovian if it starts from an instant t in which an observation of the
system is made. The evolution of this process will depend only on t, so it will not be
influenced by the previous instants. So, a process is called Markovian when the future
evolution of the process depends only on the instant of observing the system and does not
depend in any way on the past. MDP is characterized by five elements: decision epochs,
states, actions, transition probability, and reward.

Summarizing the Markov decision process
The crucial elements of a Markovian process are the states in which the system finds
itself, and the available actions that the decision maker can carry out on that state. These
elements identify two sets: the set of states in which the system can be found, and the
set of actions available for each specific state. The action chosen by the decision maker
determines a random response from the system, which ultimately brings it into a new
state. This transition returns a reward that the decision maker can use to evaluate the
goodness of their choice.

Important Note
In a Markovian process, the decision maker has the option of choosing which
action to perform in each system state. The action chosen takes the system to
the next state and the reward for that choice is returned. The transition from
one state to another enjoys the property of Markov: the current state depends
only on the previous one.

A Markov process is defined by four elements, as follows:

• S: System states.

• A: Actions available for each state.

• P: Transition matrix. This contains the probabilities that an action a takes the
system from s state to s' state.

• R: Rewards obtained in the transition from s state to s' state with an action a.

In an MDP problem, it becomes crucial to take actions to obtain the maximum reward
from the system. Therefore, this is an optimization problem in which the sequence of
choices that the decision maker will have to make is called an optimal policy.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Managing a tiny forest problem 273

A policy maps both the states of the environment and the actions to be chosen to those
states, representing a set of rules or associations that respond to a stimulus. The policy's
goal is to maximize the total reward received through the entire sequence of actions
performed by the system. The total reward that's obtained by adopting a policy is
calculated as follows:

In the previous equation, rT is the reward of the action that brings the environment into
the terminal state sT. To get the maximum total reward, we can select the action that
provides the highest reward to each individual state. This leads to choosing the optimal
policy that maximizes the total reward.

Exploring the optimization process
As we mentioned in Chapter 5, Simulation-Based Markov Decision Processes, an MDP
problem can be addressed using dynamic programming (DP). DP is a programming
technique that aims to calculate an optimal policy based on a knowing model of the
environment. The core of DP is to utilize the state-value and action-value in order to
identify good policies.

In DP methods, two processes called policy evaluation and policy improvement are used.
These processes interact with each other, as follows:

• Policy evaluation is done through an iterative process that seeks to solve Bellman's
equation. The convergence of the process for k → ∞ imposes approximation rules,
thus introducing a stop condition.

• Policy improvement improves the current policy based on the current values.

In the DP technique, the previous phases alternate and end before the other begins via
an iteration procedure. This procedure requires a policy evaluation at each step, which it
done through an iterative method whose convergence is not known a priori and depends
on the starting policy; that is, we can stop evaluating the policy at some point, while still
ensuring convergence to an optimal value.

𝑅𝑅𝑇𝑇 = ∑ 𝑟𝑟𝑡𝑡+1 = 𝑟𝑟𝑡𝑡 +
𝑇𝑇

𝑖𝑖=0
𝑟𝑟𝑡𝑡+1 + ⋯ + 𝑟𝑟𝑇𝑇

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

274 Modeling and Simulation for Project Management

Important Note
The iterative procedure we have described uses two vectors that preserve the
results obtained from the policy evaluation and policy improvement processes.
We indicate the vector that will contain the value function with V; that is,
the discounted sum of the rewards obtained. We indicate the carrier that will
contain the actions chosen to obtain those rewards with Policy.

The algorithm then, through a recursive procedure, updates these two vectors. In the
policy evaluation, the value function is updated as follows:

In the previous equation, we have the following:

• () is the function value at the state s.

• (, ′) is the reward returned in the transition from state s to state s'.

• γ is the discount factor.

• (′) is the function value at the next state.

In the policy improvement process, the policy is updated as follows:

In the previous equation, we have the following:

• (′) is the function value at state s'.

• (, ′) is the reward returned in the transition from state s to state s' with action a.

• γ is the discount factor.

• (, ′) is the probability that an action a in the s state is carried out in the s' state.

Now, let's see what tools we have available to deal with MDP problems in Python.

𝑉𝑉(𝑠𝑠) =∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑠𝑠)(𝑠𝑠, 𝑠𝑠′) (𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑠𝑠)(𝑠𝑠, 𝑠𝑠′) + 𝛾𝛾 ∗ 𝑉𝑉(𝑠𝑠′))
𝑠𝑠′

()

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Managing a tiny forest problem 275

Introducing MDPtoolbox
The MDPtoolbox package contains several functions connected to the resolution of
discrete-time Markov decision processes, that is, value iteration, finite horizon, policy
iteration, linear programming algorithms with some variants, and several functions we
can use to perform reinforcement learning analysis.

This toolbox was created by researchers from the Applied Mathematics and Computer
Science Unit of INRA Toulouse (France), in the Matlab environment. The toolbox was
presented by the authors in the following article: Chadès, I., Chapron, G., Cros, M. J.,
Garcia, F., & Sabbadin, R. (2014). MDPtoolbox: a multi-platform toolbox to solve stochastic
dynamic programming problems. Ecography, 37 (9), 916-920.

Important Note
The MDPtoolbox package was subsequently made available in other
programming platforms, including GNU Octave, Scilab, and R. It was later
made available for Python programmers by S. Cordwell. You can find out
more at the following URL: https://github.com/sawcordwell/
pymdptoolbox.

To use the MDPtoolbox package, we need to install it. The different installation
procedures are indicated on the project's GitHub website. As recommended by the author,
you can use the default Python pip package manager. Pip stands for Python Package
Index and is the largest and most official Python package repository. Anyone who
develops a Python package, in 99% of cases, makes it available on this repository.

To install the MDPtoolbox package using pip, just write the following command:

pip install pymdptoolbox

Once installed, just load the library to be able to use it immediately.

Defining the tiny forest management example
To analyze in detail how to deal with a management problem using Markovian processes,
we will use an example already available in the MDPtoolbox package. It deals with
managing a small forest in which there are two types of resources: wild fauna and trees.
The trees of the forest can be cut, and the wood that's obtained can be sold. The decision
maker has two actions: wait and cut. The first action is to wait for the tree to grow fully
before cutting it to obtain more wood. The second action involves cutting the tree to get
money immediately. The decision maker has the task of making their decision every 20
years.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/sawcordwell/pymdptoolbox
https://github.com/sawcordwell/pymdptoolbox

276 Modeling and Simulation for Project Management

The tiny forest environment can be in one of the following three states:

• State 1: Forest age 0-20 years

• State 2: Forest age 21-40 years

• State 3: Forest age over 40 years

We might think that the best action is to wait until we have the maximum amount of
wood to come and thus obtain the greatest gain. Waiting can lead to the loss of all the
wood available. This is because as the trees grow, there is also the danger that a fire could
develop, which could cause the wood to be lost completely. In this case, the tiny forest
would be returned to its initial state (state 1), so we would lose what we would have
gained.

In the case a fire does not occur, at the end of each period t (20 years), if the state is
s and the wait action is chosen, the forest will move to the next state, which will be
the minimum of the following pair (s + 1, 3). If there are no fires, the age of the forest
will never assume a state higher than 3 since state 3 matches with the oldest age class.
Conversely, if a fire occurs after the action is applied, the forest returns the system to its
initial state (state 1), as shown in the following image:

Figure 10.1 – States of the age of a forest

Set p = 0.1 as the probability that a fire occurs during a period t. The problem is how
to manage this in the long-term to maximize the reward. This problem can be treated
as a MDP.

Now, let's move on and define the problem as an MDP. We have said that the elements of
an MDP are state, action, transition matrix P, and reward R. We must then define these
elements. We have defined the states already – there are three. We also defined the actions:
wait or cut. We pass these to define the transition matrix P (s, s', a). It contains the chances
of the system going from one state to another. We have two actions available (Wait, Cut),
so we will define two transition matrices. If we indicate with p the probability that a fire
occurs, then in the case of the wait action, we will have the following transition matrix:

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Managing a tiny forest problem 277

Now, let's analyze the content of the transition matrix. Each row is relative to a state, in the
sense that row 1 returns the probabilities that, starting from state 1, it will remain in state
1 or pass to state 2 or 3. In fact, if we are in state 1, we will have a probability p that we
remain in that state, which happens if a fire occurs. Always starting from state 1, if no fire
occurs, we have the remaining 1-p probability of moving to the next state, which is state 2.
From this, it is clear that when starting from state 1, the probability of passing to state 3 is
equal to 0 – it's impossible to do so.

Row 2 of the transition matrix contains the transition probabilities starting from state
2. In fact, starting from state 2, if a fire occurs, there will be an equal probability p to
pass into state 1. Always starting from state 2, if no fire occurs, we have the remaining
1-p probability of moving to the next state, which is state 3. In this case, once again, the
probability of remaining in state 2 is equal to 0.

Finally, if we are in state 3, if a fire occurs, we will have a probability equal to p of going to
state 1, and the remaining 1-p probability of remaining in state 3, which happens if no fire
occurs. The probability of going to state 2 is equal to 0.

Now, let's define the transition matrix in the case of choosing the cut action:

In this case, the analysis of the previous transition matrix is much more immediate. In
fact, the cut action brings the state of the system to 1 in each instance. Therefore, the
probability is always 1. Then, that 1 goes to state 1 and 0 for all the other transitions as
they are not possible.

Now, let's define the vectors that contain the rewards; that is, the vector R (s, s', as we have
defined it), starting from the rewards returned by the wait action:

𝑃𝑃(, ,1) = [
𝑝𝑝 1 − 𝑝𝑝 0
𝑝𝑝 0 1 − 𝑝𝑝
𝑝𝑝 0 1 − 𝑝𝑝

]

𝑃𝑃(, ,2) = [
1 0 0
1 0 0
1 0 0

]

𝑅𝑅(, 1) = [
0
0
4
]

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

278 Modeling and Simulation for Project Management

The action of waiting for the growth of the forest will bring a reward of 0 for the first two
states, while the reward will be the maximum for state 3. The value of the reward in state
3 is equal to 4, which represents the value provided by the system by default. Let's see how
the vector of rewards is modified if you choose the cut action:

In this case, cutting in state 1 does not bring any reward since the trees are not able to
supply wood yet. The cut in state 2 brings a reward, but this is lower than the maximum
reward, which we said is obtainable if we wait for the end of the three periods t before
cutting. A similar situation arises if the cut is made at the beginning of the third period.
In this case, the reward is greater than that of the previous state but still less than the
maximum.

Addressing management problems using MDPtoolbox
Our goal is to develop a policy that allows us to manage the tiny forest in order to
obtain the maximum prize. We will do this using the MDPtoolbox package, which we
introduced in the previous section, and analyzing the code line by line:

1. Let's start as always by importing the necessary library:

import mdptoolbox.example

By doing this, we imported the MDPtoolbox module, which contains the data for
this example.

2. To begin, we will extract the transition matrix and the reward vectors:

P, R = mdptoolbox.example.forest()

This command retrieves the data stored in the example. To confirm the data is
correct, we print the content of these variables, starting from the transition matrix:

print(P[0])

The following matrix is printed:
[[0.1 0.9 0.]

 [0.1 0. 0.9]

 [0.1 0. 0.9]]

𝑅𝑅(, 2) = [
0
1
2
]

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Managing a tiny forest problem 279

This is the transition matrix for the wait action. Consistent with what is indicated in
the Defining the tiny forest management example section, having set p = 0.1, we can
confirm the transition matrix.

Now, we print the transition matrix related to the cut action:
print(P[1])

The following matrix is printed:
[[1. 0. 0.]

 [1. 0. 0.]

 [1. 0. 0.]]

This matrix is also consistent with what was previously defined. Now, let's check the
shape of the reward vectors, starting with the wait action:

print(R[:,0])

Let's see the content:
[0. 0. 4.]

If the cut action is chosen, we will have the following rewards:
print(R[:,1])

The following vector is printed:
[0. 1. 2.]

Finally, let's fix the discount factor:
gamma=0.9

All the problem data has now been defined. We can now move on and look at the
model in greater detail.

3. The time has come to apply the policy iteration algorithm to the problem we have
just defined:

PolIterModel = mdptoolbox.mdp.PolicyIteration(P, R,
gamma)

PolIterModel.run()

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

280 Modeling and Simulation for Project Management

The mdptoolbox.mdp.PolicyIteration() function performs a discounted
MDP that's solved using the policy iteration algorithm. Policy iteration is a dynamic
programming method that adopts a value function in order to model the expected
return for each pair of action-state. These techniques update the value functions
using the immediate reward and the (discounted) value of the next state in a process
called bootstrapping. The results are stored in tables or with approximate function
techniques.

The function, starting from an initial P0 policy, updated the function value and the
policy through an iterative procedure, alternating the following two phases:

• Policy evaluation: Given the current policy P, estimate the action-value function.

• Policy Improvement: If we calculate a better policy based on the action-value
function, then this policy is made the new policy and we return to the previous step.

When the value function can be calculated exactly for each action-state pair,
the policy iteration we performed with the greedy policy improvement leads to
convergence by returning the optimal policy. Essentially, repeatedly executing these
two processes converges the general process toward the optimal solution.

In the mdptoolbox.mdp.PolicyIteration() function, we have passed the
following arguments:

• P: Transition probability

• R: Reward

• gamma: Discount factor

The following results are returned:
• V: Optimal value function. V is an S length vector.

• policy: Optimal policy. The policy is an S length vector. Each element is an integer
corresponding to an action that maximizes the value function. In this example, only
two actions are foreseen: 0 = wait, 1 = cut.

• iter: Number of iterations.

• time: CPU time used to run the program.

Now that the model is ready, we must evaluate the results by checking the
obtained policy.

To begin, we check the updates of the value function:
print(PolIterModel.V)

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Managing a tiny forest problem 281

The following results are returned:
(26.244000000000014, 29.484000000000016,
33.484000000000016)

A value function specifies how good for the system a state is. This value represents
the total reward expected for a system from the status s. The value function depends
on the policy that the agent selects for the actions to be performed on.

Let's move on and extract the policy:
print(PolIterModel.policy)

A policy suggests the behavior of the system at a given time. It maps the detected
states of the environment and the actions to take when they are in those states. This
corresponds to what, in psychology, would be called a set of rules or associations of
the stimulus response. The policy is the crucial element of an MDP model since it
defines the behavior. The following results are returned:

(0, 0, 0)

Here, the optimal policy is to not cut the forest in all three states. This is due to the
low probability of a fire occurring, which causes the wait action to be the best action
to perform. In this way, the forest has time to grow and we can achieve both goals:
maintain an old forest for wildlife and earn money by selling the cut wood.

Let's see how many iterations have been made:
print(PolIterModel.iter)

The following result is returned:
2

Finally, let's print the CPU time:
print(PolIterModel.time)

The following result is returned:
0.12830829620361328

Only 0.13 seconds is required to perform the value iteration procedure.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

282 Modeling and Simulation for Project Management

Changing the probability of fire
The analysis of the previous example has clarified how to derive an optimal policy from a
well-posed problem. We can now define a new problem by changing the initial conditions
of the system. Under the default conditions provided in our example, the probability of a
fire occurring is low. In this case, we have seen that the optimal policy advises us to wait
and not cut the forest. But what if we increase the probability of a fire occurring? This
is a real-life situation; just think of warm places particularly subject to strong winds. To
model this new condition, simply change the problem settings by changing the probability
value p. The mdptoolbox.example.forest() module allows us to modify the basic
characteristics of the problem. Let's get started:

1. Let's start by importing the example module:

import mdptoolbox.example

P, R = mdptoolbox.example.forest(3,4,2,0.8)

In contrast with the example discussed in the previous section, Addressing
management problems, where we used MDPtoolbox, in this case, we have passed
some parameters. Let's analyze them in detail. In the mdptoolbox.example.
forest () function, we passed the following parameters (3, 4, 2, 0.8). Let's
analyze their meaning:

3: Number of states. This must be an integer greater than 0.

4: The reward when the forest is in the oldest state and the wait action is
performed. This must be an integer greater than 0.

2: The reward when the forest is in the oldest state and the cut action is
performed. This must be an integer greater than 0.

0.8: The probability of a fire occurring. This must be in]0, 1[.

By analyzing the past data, we can see that we confirmed the first three parameters,
while we only changed the probability of a fire occurring, thus increasing this
possibility from 0.1 to 0.8.

Let's see this change to the initial data as it changed the transition matrix:
print(P[0])

The following matrix is printed:
[[0.8 0.2 0.]

 [0.8 0. 0.2]

 [0.8 0. 0.2]]

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Managing a tiny forest problem 283

As we can see, the transition matrix linked to the wait action has changed. Now, the
probability that the transition is in a state other than 1 has significantly decreased.
This is due to the high probability that a fire will occur. Let's see what happens when
the transition matrix is linked to the cut action:

print(P[1])

The following matrix is printed:
[[1. 0. 0.]

 [1. 0. 0.]

 [1. 0. 0.]]

This matrix remains unchanged. This is due to the result of the cut action, which
returns the system to its initial state. Likewise, reward vectors may be unchanged
since the rewards that were passed are the same as the ones provided by the default
problem. Let's print these values:

print(R[:,0])

This is the reward vector connected to the wait action. The following vector is
printed:

[0. 0. 4.]

In the case of the cut action, the following vector is retuned:
print(R[:,1])

The following vector is printed:
[0. 1. 2.]

As anticipated, nothing has changed. Finally, let's fix the discount factor:
gamma=0.9

All the problem data has now been defined. We can now move on and look at the
model in greater detail.

2. We will now apply the value iteration algorithm:

PolIterModel = mdptoolbox.mdp.PolicyIteration(P, R,
gamma)

PolIterModel.run()

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

284 Modeling and Simulation for Project Management

Now, we can extract the results, starting with the value function:
print(PolIterModel.V)

The following results are printed:
(1.5254237288135597, 2.3728813559322037,
6.217445225299711)

Let's now analyze the crucial part of the problem: let's see what policy the
simulation model suggests to us:

print(PolIterModel.policy)

The following results are printed:
(0, 1, 0)

In this case, the changes we've made here, compared to the default example, are
substantial. It's suggested that we adopt the wait action if we are in state 1 and 3,
while if we are in state 2, it is advisable to try to cut the forest. Since the probability
of a fire is high, it is convenient to cut the wood already available and sell it before a
fire destroys it in full.

Then, we print the number of iterations of the problem:
print(PolIterModel.iter)

The following result is printed:
1

Finally, we print the CPU time:
print(PolIterModel.time)

The following result is printed:
0.14069104194641113

These examples have highlighted how simple the modeling procedure of a
management problem is through using MDPs.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scheduling project time using Monte Carlo simulation 285

Scheduling project time using Monte
Carlo simulation
Each project requires a time of realization, and the beginning of some activities can be
independent or dependent on previous activities ending. Scheduling a project means
determining the times of realization of the project itself. A project is a temporary effort
undertaken to create a unique product, service, or result. The term project management
refers to the application of knowledge, skills, tools, and techniques for the purpose of
planning, managing, and controlling a project and the activities of which it is composed.

The key figure in this area is the project manager, who has the task and responsibility of
coordinating and controlling the various components and actors involved, with the aim
of reducing the probability of project failure. The main difficulty in this series of activities
is to achieve the objectives set in compliance with constraints such as the scope of the
project, time, costs, quality, and resources. In fact, these are limited aspects that are linked
to each other and that need effective optimization.

The definition of these activities constitutes one of the key moments of the planning
phase. After defining what the project objectives are with respect to time, cost, and
resources, it is necessary to proceed with identifying and documenting the activities that
must be carried out to successfully complete the project.

For complex projects, it is necessary to create an ordered structure by decomposing
the project into simpler tasks. For each task, it will be necessary to define activities and
execution times. This starts with the main objective and breaks down the project to the
immediately lower level in all those deliverables or main sub-projects that make it up.

These will, in turn, be broken down. This will continue until you are satisfied with the
degree of detail of the resulting final items. Each breakdown results in a reduction in the
size, complexity, and cost of the interested party.

Defining the scheduling grid
A fundamental part of all project management is constructing the scheduling grid. This
is an oriented graph that represents the temporal succession and the logical dependencies
between the activities involved in the realization of the project. In addition to constructing
the grid, the scheduling process also determines the start and end times of activities based
on factors such as duration, resources, and so on.

In the example we are dealing with, we will take care of evaluating the times necessary for
the realization of a complex project. Let's start by defining the scheduling grid. Suppose
that, by decomposing the project structure, we have defined six tasks. For each task, the
activities, the personnel involved, and the time needed to finish the job were defined.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

286 Modeling and Simulation for Project Management

Some tasks must be performed in a series, in the sense that the activities of the previous
task must be completed so that they can start those of the next task. Others, however, can
be performed in parallel, in the sense that two teams can simultaneously work on two
different tasks to reduce project delivery times. This sequence of tasks is defined in the
scheduling grid, as follows:

Figure 10.2 – Sequence of tasks in the grid

The preceding diagram shows us that the first two tasks develop in parallel, which means
that the time required to finish these two tasks will be provided by the time-consuming
task. The third task develops in a series, while the next two are, again, in parallel. The last
task is still in the series. This sequence will be necessary when we evaluate the project
times.

Estimating the task's time
The duration of these tasks is often difficult to estimate due to the number of factors that
can influence it: the availability and/or productivity of the resources, the technical and
physical constraints between the activities, and the contractual commitments.

Expert advice, supported by historical information, can be used wherever possible. The
members of the project team will also be able to provide information on the duration or
the maximum recommended limit for the duration for the task by deriving information
from similar projects.

There are several ways we can estimate tasks. In this example, we will use three-point
estimation. In three-point estimation, the accuracy of the duration of the activity estimate
can be increased in terms of the amount of risk in the original estimate. Three-point
estimates are based on determining the following three types of estimates:

• Optimistic: The duration of the activity is based on the best scenario in relation to
what is described in the most probable estimate. This is the minimum time it will
take to complete the task.

• Pessimistic: The duration of the activity is based on the worst-case scenario in
relation to what is described in the most probable estimate. This is the maximum
time that it will take to complete the task.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scheduling project time using Monte Carlo simulation 287

• More likely: The duration of the activity is based on realistic expectations in terms
of availability for the planned activity.

A first estimate of the duration of the activity can be constructed using an average of the
three estimated durations. This average typically provides a more accurate estimate of the
duration of the activity than a more likely single value estimate. But that's not what we
want to do.

Suppose that the project team used three-point estimation for each of the six tasks. The
following table shows the times proposed by the team:

After defining the sequence of tasks and the time it will take to perform each individual
task, we can develop an algorithm for estimating the overall time of the project.

Developing an algorithm for project scheduling
In this section, we will analyze an algorithm for scheduling a project based on the Monte
Carlo simulation. We will look at all the commands in detail, line by line:

1. Let's start by importing the libraries that we will be using in the algorithm:

import numpy as np

import random

import pandas as pd

numpy is a Python library that contains numerous functions that help us manage
multidimensional matrices. Furthermore, it contains a large collection of high-level
mathematical functions we can use on these matrices.

The random library implements pseudo-random number generators for various
distributions. The random module is based on the Mersenne Twister algorithm.

The pandas library is an open source BSD licensed library that contains data
structures and operations that can be used to manipulate high-performance
numeric values for the Python programming language.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

288 Modeling and Simulation for Project Management

2. Let's move on and initialize the parameters and the variables:

N = 10000

TotalTime=[]

T = np.empty(shape=(N,6))

N represents the number of points that we generate. These are the random numbers
that will help us define the time of that task. The TotalTime variable is a list that
will contain the N assessments of the overall time needed to complete the project.
Finally, the T variable is a matrix with N rows and six columns and will contain the
N assessments of the time needed to complete each individual task.

3. Now, let's set the three-point estimation matrix, as defined in the table in the
Estimating the task's time section:

TaskTimes=[[3,5,8],

 [2,4,7],

 [3,5,9],

 [4,6,10],

 [3,5,9],

 [2,6,8]]

This matrix contains the three times for each representative row of the six tasks:
optimistic, more likely, and pessimistic.

At this point, we must establish the form of the distribution of times that we intend
to adopt.

Exploring triangular distribution
When developing a simulation model, it is necessary to introduce probabilistic events.
Often, the simulation process starts before you have enough information about the
behavior of the input data. This forces us to decide on a distribution. Among those that
apply to incomplete data is the triangular distribution. The triangular distribution is
used when assumptions can be made on the minimum and maximum values and on
the modal values.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scheduling project time using Monte Carlo simulation 289

Important Note
A probability distribution is a mathematical model that links the values of
a variable to the probabilities that these values can be observed. Probability
distributions are used for modeling the behavior of a phenomenon of interest
in relation to the reference population, or to all the cases in which the
investigator observes a given sample.

In Chapter 3, Probability and Data Generating Processes, we analyzed the most widely
used probability distributions. When the random variable is defined in a certain range,
but there are reasons to believe that the degrees of confidence decrease linearly from the
center to the extremes, there is the so-called triangular distribution. This distribution is
very useful for calculating measurement uncertainties since, in many circumstances, this
type of model can be more realistic than the uniform one.

Let's consider the first task of the project we are analyzing. For this, we have defined the
three times: optimistic (3), more likely (5), and pessimistic (8). We draw a graph in which
we report these three times on the abscissa and the probability of their occurrence on the
ordinate. Using the triangular probability distribution, the probabilities that the event
occurs is between the limit values, which in our case are optimistic and pessimistic. We do
this while assuming the maximum value in correspondence with the value more likely to
occur. For the intermediate values, where we know nothing, suppose that the probability
increases linearly from optimistic to more likely, and then always decreases linearly from
more likely to pessimistic, as shown in the following graph:

Figure 10.3 – Probability graph

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

290 Modeling and Simulation for Project Management

Our goal is to model the times of each individual task using a random variable with
uniform distribution in the interval (0, 1). If we indicate this random variable with
trand, then the triangular distribution allows us to evaluate the probability that the
task ends in that time is distributed. In the triangular distribution, we have identified
two triangles that have the abscissa in common for x = c. This value acts as a separator
between the two values that the distribution assumes. Let's denote it with Lh. It is given by
the following formula:

In the previous equation, we have the following:

• a: Optimistic time

• b: Pessimistic time

• c: More likely time

That being said, we can generate variations according to the triangular distribution with
the following equations:

The previous equations allow us to perform the Monte Carlo simulation. Let's see how:

1. First, we generate the separation value of the triangular distribution:

Lh=[]

for i in range(6):

 Lh.append((TaskTimes[i][1]-TaskTimes[i][0])

 /(TaskTimes[i][2]-TaskTimes[i][0]))

Here, we initialized a list and then populated it with a for loop that iterates over
the six tasks, evaluating a value of Lh for each one.

Now, we use two for loops and an if conditional structure to develop the Monte
Carlo simulation:

for p in range(N):

 for i in range(6):

 trand=random.random()

𝐿𝐿ℎ =
(𝑐𝑐 − 𝑎𝑎)
(𝑏𝑏 − 𝑎𝑎)

𝑇𝑇 = {𝑎𝑎 + √𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 ∗ (𝑏𝑏 − 𝑎𝑎) ∗ (𝑐𝑐 − 𝑎𝑎) ∀ 𝑎𝑎 < 𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 < 𝐿𝐿ℎ
𝑏𝑏 − √(1 − 𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡) ∗ (𝑏𝑏 − 𝑎𝑎) ∗ (𝑏𝑏 − 𝑐𝑐) ∀ 𝐿𝐿ℎ ≤ 𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 < 1

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scheduling project time using Monte Carlo simulation 291

 if (trand < Lh[i]):

 T[p][i] = TaskTimes[i][0] +

 np.sqrt(trand*(TaskTimes[i][1]-

 TaskTimes[i][0])*

 (TaskTimes[i][2]-TaskTimes[i][0]))

 else:

 T[p][i] = TaskTimes[i][2] –

 np.sqrt((1-trand)*(TaskTimes[i][2]-

 TaskTimes[i][1])*

 (TaskTimes[i][2]-TaskTimes[i][0]))

The first for loop continues generating the random values N times, while the
second loop is used to perform the evaluation for six tasks. The conditional
structure if, on the other hand, is used to discriminate between the two values
distinct from the value of Lh so that it can use the two equations that we defined
previously.

Finally, for each of the N iterations, we calculate an estimate of the total time for the
execution of the project:

TotalTime.append(T[p][0]+

 np.maximum(T[p][1],T[p][2]) +

 np.maximum(T[p][3],T[p][4]) + T[p][5])

For the calculation of the total time, we referred to the scheduling grid defined in
the Defining the scheduling grid section. The procedure is simple: if the tasks develop
in a series, then you add the times up, while if they develop in parallel, you choose
the maximum value among the times of the tasks.

2. Now, let's take a look at the values we have attained:

Data = pd.DataFrame(T,columns=['Task1', 'Task2', 'Task3',

 'Task4', 'Task5', 'Task6'])

pd.set_option('display.max_columns', None)

print(Data.describe())

For detailed statistics of the times estimated with the Monte Carlo method, we
have transformed the matrix (Nx6) containing the times into a pandas DataFrame.
The reason for this is that the pandas library has useful functions that allow us to
extract detailed statistics from a dataset immediately. In fact, we can do this with
just a line of code by using the describe() function.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

292 Modeling and Simulation for Project Management

The describe() function generates a series of descriptive statistics that return
useful information on the dispersion and the form of the distribution of a dataset.

The pandas set.option() function was used to display all the statistics of the
matrix and not just a part of it, as expected by default.

The following results are returned:

Figure 10.4 – Values of the DataFrame
By analyzing these statistics, we have confirmed that the estimated times are
between the limit values imposed by the problem: optimistic and pessimistic. In
fact, the minimum and maximum times are very close to these values. Furthermore,
we can see that the standard deviation is very close to the unit. Finally, we can
confirm that we have generated 10,000 values.

We can now trace the histograms of the distribution of the values of the times to
analyze their form:

hist = Data.hist(bins=10)

The following diagram is printed:

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Scheduling project time using Monte Carlo simulation 293

Figure 10.5 – Histograms of the values
By analyzing the previous diagram, we can confirm the triangular distribution of
the time estimates, as we had imposed at the beginning of the calculations.

3. At this point, we only need to print the statistics of the total times. Let's start with
the minimum value:

print("Minimum project completion time = ",

 np.amin(TotalTime))

The following result is returned:
Minimum project completion time = 14.966486785163458

Let's analyze the average value:
print("Mean project completion time = ",np.
mean(TotalTime))

The following result is returned:
Mean project completion time = 23.503585938922157

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

294 Modeling and Simulation for Project Management

Finally, we will print the maximum value:
print("Maximum project completion time = ",np.
amax(TotalTime))

The following result is printed:
Maximum project completion time = 31.90064194829465

In this way, we obtained an estimate of the time needed to complete the project based on
the Monte Carlo simulation.

Summary
In this chapter, we addressed several practical model simulation applications
based on project management-related models. To start, we looked at the essential elements
of project management and how these factors can be simulated to retrieve
useful information.

Next, we tackled the problem of running a tiny forest for the wood trade. We treated the
problem as an MDP, summarizing the basic characteristics of these processes and then
moved on to a practical discussion of them. We defined the elements of the problem
and then we saw how to use the policy evaluation and policy improvement algorithms
to obtain the optimal forest management policy. This problem was addressed using the
MDPtoolbox package, which is available from Python.

Subsequently, we addressed the problem of evaluating the execution times of a project
using Monte Carlo simulation. To start, we defined the task execution diagram by
specifying which tasks are performed in series and which are performed in parallel. So, we
introduced the times of each task through three-point estimation. After this, we saw how
to model the execution times of the project with triangular distribution using random
evaluations of each phase. Finally, we performed 10,000 assessments of the overall
project times.

In the next chapter, we will summarize the simulation modeling processes we looked at
in the previous chapters. Then, we will explore the main simulation modeling applications
that are used in real life. Finally, we will discover future challenges regarding
simulation modeling.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
What's Next?

In this chapter, we will summarize what has been covered so far in this book and what
the next steps are from this point on. You will learn how to apply all the skills that you
have gained to other projects, as well as the real-life challenges in building and deploying
simulation models and other common technologies that data scientists use. By the end of
this chapter, you will have a better understanding of the issues associated with building
and deploying simulating models and additional resources and technologies you can learn
about to sharpen your machine learning skills.

In this chapter, we're going to cover the following main topics:

• Summarizing simulation modeling concepts

• Applying simulation models to real life

• Next steps for simulation modeling

Summarizing simulation modeling concepts
Useful in cases where it is not possible to develop a mathematical model capable of
effectively representing a phenomenon, simulation models imitate the operations
performed over time by a real process. The simulation process involves generating an
artificial history of the system to be analyzed; subsequently, the observation of this
artificial history is used to trace information regarding the operating characteristics
of the system itself and make decisions based on it.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

296 What's Next?

The use of simulation models as a tool to aid decision-making processes has ancient roots
and is widespread in various fields. Simulation models are used to study the behavior of
a system over time, and are built based on a set of assumptions made on the behavior
of the system that's expressed using mathematical-logical-symbolic relationships. These
relationships are between the various entities that make up the system. The purpose of
a model is to simulate changes in the system and predict the effects of these changes on
the real system. For example, they can be used in the design phase before the model's
actual construction.

Important Note
Simple models are resolved analytically, using mathematical methods. The
solution consists of one or more parameters, called behavior measures.
Complex models are simulated numerically on the computer, where the data is
treated as being derived from a real system.

Let's summarize the tools we have available to develop a simulation model.

Generating random numbers
In simulation models, the quality of the final application strictly depends on the possibility
of generating good quality random numbers. In several algorithms, decisions are made
based on a randomly chosen value. The definition of random numbers includes that
of random processes through a connection that specifies its characteristics. A random
number appears as such because we do not know how it was generated, but once the law
within which it was generated is defined, we can reproduce it whenever we want.

Deterministic algorithms do not allow us to generate random number sequences, but
simply make pseudo-random sequence generation possible. Pseudo-random sequences
differ from random ones in the strict sense in that they are reproducible and therefore
predictable.

Multiple algorithms are available for generating pseudo-random numbers. In Chapter 2,
Understanding Randomness and Random Numbers, we analyzed the following in detail:

• Linear Congruential Generator (LCG): This generates a sequence of pseudo-
randomized numbers using a piecewise discontinuous linear equation.

• Lagged Fibonacci Generator (LFG): This is based on a generalization of the
Fibonacci sequence.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summarizing simulation modeling concepts 297

More specific methods are added to these ones to generate uniform distributions
of random numbers. The following graph shows a uniform distribution of 1,000 random
numbers in the range 1-10:

Figure 11.1 – A graph of the distribution of random numbers

We analyzed the following methods, both of which we can use to derive a generic
distribution, starting from a uniform distribution of random numbers:

• Inverse transform sampling method: This method uses inverse cumulative
distribution to generate random numbers.

• Acceptance-rejection method: This method uses the samples in the region under
the graph of its density function.

A pseudo-random sequence returns integers uniformly distributed in each interval, with
a very long repetition period and with a low level of correlation between one element of
the sequence and the next.

To self-evaluate the skills that are acquired when generating random numbers, we
can try to write some Python code for a bingo card generator. Here, we just limit the
numbers from 1 to 90 and make sure that the numbers cannot be repeated and are
equally likely.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

298 What's Next?

Applying Monte Carlo methods
Monte Carlo simulation is a numerical method based on probabilistic procedures. Vine
is widely used in statistics for the resolution of problems that present analytical difficulties
that are not otherwise difficult to overcome. This method is based on the possibility of
sampling an assigned probability distribution using random numbers. It generates a
sequence of events distributed according to the assigned probability. In practice, instead
of using a sample of numbers drawn at random, a sequence of numbers that has been
obtained with a well-defined iterative process is used. These numbers are called
pseudo-random because, although they're not random, they have statistical properties
similar to those of true random numbers. Many simulation methods can be attributed to
the Monte Carlo method, which aims to determine the typical parameters of complex
random phenomena.

The following diagram describes the procedure leading from a set of distributions of
random numbers to a Monte Carlo simulation:

Figure 11.2 – Procedure of a Monte Carlo simulation, starting from a series of distributions of random
numbers to one

The Monte Carlo method is essentially a numerical method for calculating the expected
value of random variables; that is, an expected value that cannot be easily obtained
through direct calculation. To obtain this result, the Monte Carlo method is based on two
fundamental theorems of statistics:

• Law of large numbers: The simultaneous action of many random factors leads
to a substantially deterministic effect.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summarizing simulation modeling concepts 299

• Central limit theorem: The sum of many independent random variables
characterized by the same distribution is approximately normal, regardless of the
starting distribution.

Monte Carlo simulation is used to study the response of a model to randomly generated
inputs.

Addressing the Markov decision process
Markov processes are discrete stochastic processes where the transition to the next state
depends exclusively on the current state. For this reason, they can be called stochastic
processes without memory. The typical elements of a Markovian process are the states in
which the system finds itself, and the available actions that the decision maker can carry
out on that state. These elements identify two sets: the set of states in which the system
can be found, and the set of actions available for each specific state. The action chosen by
the decision maker determines a random response from the system, which brings it into
a new state. This transition returns a reward that the decision maker can use to evaluate
their choice, as shown in the following diagram:

Figure 11.3 – Reward returned from the transition states

Crucial to the system's future choices is the concept of reward, which represents the
response of the environment to the action taken. This response is proportional to the
weight that the action determines in achieving the objective: it will be positive if it leads
to correct behavior, while it will be negative in the case of a wrong action.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

300 What's Next?

Another fundamental concept in Markovian processes is policy: a policy determines the
system's behavior in decision making. It maps both the states of the environment and
the actions to be chosen in those states, representing a set of rules or associations that
respond to a stimulus. In a Markov decision-making model, policy provides a solution
that associates a recommended action with each state that can be achieved by the agent.
If the policy provides the highest expected utility among the possible actions, it is called
an optimal policy. In this way, the system does not have to keep its previous choices in
memory. To make a decision, it only needs to execute the policy associated with the
current state.

Now, let's consider a practical application of a process that can be treated according
to the Markov model. In a small industry, an operating machine works continuously.
Occasionally, however, the quality of the products is no longer permissible due to the wear
and tear of the spare parts, so the activity must be interrupted and complex maintenance
carried out. It is observed that the deterioration occurs after an exponential operating
time Tm of an average of 40 days, while maintenance requires an exponential random
time of an average of 1 day. How is it possible to describe this system with a Markovian
model to calculate the probability at a steady state of finding the working machine?

The company cannot bear the downtime of the machine, so it keeps a second one ready
to be used as soon as the first one requires maintenance. This second machine is, however,
of lower quality, so it breaks after an exponential random work time of 5 days on average
and requires an exponential time of 1 day on average to start again. As soon as the main
machine is reactivated, the use of the secondary is stopped. If the secondary breaks before
the main is reactivated, the repair team insists only on the main one being used, taking
care of the secondary only after restarting the main. How is it possible to describe the
system with a Markovian model, calculating the probability at a steady state with both
machines stopped?

Think about how you might answer those questions using the knowledge you have gained
from this book.

Analyzing resampling methods
In resampling methods, a subset of data is extracted randomly or according to
a systematic procedure from an original dataset. The aim is to approximate the
characteristics of a sample distribution by reducing the use of system resources.

Resampling methods are methods that repeat simple operations many times, generating
random numbers to be assigned to random variables or random samples. In these
operations, they require more computational time as the number of repeated operations
grows. They are very simple methods to implement and once implemented, they are
automatic.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summarizing simulation modeling concepts 301

These methods generate dummy datasets from the initial data and evaluate the variability
of a statistical property from its variability on all dummy datasets. The methods differ
from each other in the way dummy datasets are generated. In the following diagram,
you can see some datasets that were generated from an initial random distribution:

Figure 11.4 – Examples of datasets generated by an initial random distribution

Different resampling methods are available. In this book, we analyzed the
following methods:

• Jackknife technique: Jackknife is based on calculating the statistics of interest
for various sub-samples, leaving out one sample observation at a time. The jackknife
estimate is consistent for various sample statistics, such as mean, variance, the
correlation coefficient, the maximum likelihood estimator, and others.

• Bootstrapping: The logic of the bootstrap method is to build samples that are
not observed, but are statistically like those observed. This is achieved by
resampling the observed series through an extraction procedure where we
reinsert the observations.

• Permutation test: Permutation tests are a special case of randomization tests
and use series of random numbers formulated from statistical inferences. The
computing power of modern computers has made their widespread application
possible. These methods do not require assumptions about data distribution to
be met.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

302 What's Next?

• Cross-validation technique: Cross-validation is a method used in model selection
procedures based on the principle of predictive accuracy. A sample is divided into
two subsets, of which the first (training set) is used for construction and estimation
and the second (validation set) is used to verify the accuracy of the predictions of
the estimated model.

Sampling is used if not all the elements of the population are available. For example,
investigations into the past can only be done on available historical data, which is often
incomplete.

Exploring numerical optimization techniques
Numerous applications, which are widely used to solve practical problems, make use of
optimization methods to drastically reduce the use of resources. Minimizing the cost
or maximizing the profit of a choice are techniques that allow us to manage numerous
decision-making processes. Mathematical optimization models are an example of
optimization methods, in which simple equations and inequalities allow us to express the
evaluation and avoid the constraints that characterize the alternative methods.

The goal of any simulation algorithm is to reduce the difference between the values
predicted by the model and the actual values returned by the data. This is because a lower
error between the actual and expected values indicates that the algorithm has done a good
simulation job. Reducing this difference simply means minimizing an objective function
that the model being built is based on.

In this book, we have addressed the following optimization methods:

• Gradient descent: This method is one of the first methods that was proposed for
unconstrained minimization and is based on the use of the search direction in
the opposite direction to that of the gradient, or anti-gradient. The interest of the
direction opposite to the gradient lies precisely in the fact that, if the gradient is
continuous, it constitutes a descent direction that is canceled if and only if the point
that's reached is a stationary point.

• Newton-Raphson: This method is used for solving numerical optimization
problems. In this case, the method takes the form of Newton's method for finding
the zeros of a function, but applied to the derivative of the function . This is
because determining the minimum point of the function is equivalent to
determining the root of the first derivative.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summarizing simulation modeling concepts 303

• Stochastic gradient descent: This method solves the problem of evaluating the
objective function by introducing an approximation of the gradient function.
At each step, instead of the sum of the gradients being evaluated in correspondence
with data contained in the dataset, the evaluation of the gradient is used only in
a random subset of the dataset.

Using artificial neural networks for simulation
Artificial neural networks (ANNs) are numerical models that have been developed
with the aim of reproducing some simple neural activities of the human brain, such as
object identification and voice recognition. The structure of an ANN is composed of
nodes that, analogous with the neurons present in a human brain, are interconnected
with each other through weighted connections, which reproduces the synapses between
neurons. The system output is updated until it iteratively converges via the connection
weights. The information that's derived from experimental activities is used as input
data and the result is processed by the network and returned as output. The input nodes
represent the predictive variables that we need in order to process the dependent variables
that represent the output neurons. The following diagram shows the functionality of an
artificial neuron:

Figure 11.5 – Functionality of an artificial neuron

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

304 What's Next?

An ANN's target is the result of calculating the outputs of all the neurons. This means
an ANN is a set of mathematical function approximations. A model of this type can
simulate the behavior of a real system, such as in pattern recognition. This is the process
in which a pattern/signal is assigned to a class. A neural network recognizes patterns by
following a training session, in which a set of training patterns are repeatedly presented
to the network, with each category that they belong to specified. When a pattern that has
never been seen before but belongs to the same category of patterns that it has learned
is presented, the network will be able to classify it thanks to the information that was
extracted from the training data. Each pattern represents a point in the multidimensional
decision space. This space is divided into regions, each of which is associated with a class.
The boundaries of these regions are determined by the network through the training
process.

Now that we have recapped all the concepts we have learned about throughout this book,
let's see how they can be applied to challenges in the real world.

Applying simulation model to real life
The algorithms that we have analyzed in detail throughout this book represent valid
tools for simulating real systems. This is why they are widely used in real life to carry
out research on the possible evolution of a phenomenon, following a possible choice
made on it.

Let's look at some specific examples.

Modeling in healthcare
In the healthcare sector, simulation models have a significant weight and are widely
used to simulate the behavior of a system in order to extract knowledge. For example,
it is necessary to demonstrate the clinical efficacy of the health intervention under
consideration before undertaking an economic analysis. The best available sources are
randomized controlled trials. Trials, however, are often designed to leave out the economic
aspects, so the key parameters for economic evaluations are generally absent. Therefore,
a method is needed to evaluate the effect of disease progression, in order to limit the bias
in the cost-effectiveness analysis. This implies the construction of a mathematical model
that describes the natural history of the disease, the impact of the interventions applied
on the natural history of the disease, and the results in terms of costs and objectives.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying simulation model to real life 305

The most commonly used techniques are extrapolation, decision analysis, the Markov
model, and Monte Carlo simulations:

• In extrapolation, the results of a trial with short follow-up periods are extrapolated
beyond the end of the trial itself and consider various possible scenarios, some more
optimistic, in which the benefits associated with an intervention are assumed to be
constant over time.

• The Markovian model is frequently used in pharmacoeconomic evaluations,
especially following the numerous requests for cost-effectiveness evaluations by
government organizations.

• An alternative to calculating the costs and benefits of a therapeutic option is
the Monte Carlo simulation. As in the Markov model, even in the Monte Carlo
simulation, precise states of health and the probability of transition are defined. In
this case, however, based on the probability of transition and the result of a random
number generator, a path is constructed for each patient until the patient themselves
reaches the ultimate state of health envisaged by the model. This process is repeated
for each patient in usually very large groups (even 10,000 cases), thus providing
a distribution of survival times and related costs. The average values of costs and
benefits obtained with this model are very similar to those that we would have
calculated by applying the Markov model.

• However, the Monte Carlo simulation also provides a frequency distribution and
variance estimates, which allow you to evaluate the level of uncertainty of the results
of the model itself. In fact, the Monte Carlo simulation is often used to obtain
a sensitivity analysis of the results deriving from the application of the Markov
model.

Modeling in financial applications
The Monte Carlo simulation is normally used to predict the future value of various
financial instruments. However, as highlighted previously, it is good to underline that
this forecasting method is presented exclusively as an estimate and therefore does not
provide a precise value as a result. The main financial applications of this method concern
pricing options (or derivatives in general) and evaluation security portfolios and financial
projects. From this, it is immediately evident that they present an element of analogy.

In fact, options, portfolios, and financial projects have a value that's influenced by many
sources of uncertainty. The simulation in question does not lend itself to the evaluation
of any financial instrument. Securities such as shares and bonds are not normally valued
with the method, precisely because their value is subordinated to a lower number of
sources of uncertainty.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

306 What's Next?

The options, on the other hand, are derivative securities, the value of which are influenced
by the performance of the underlying functions (which may have the most varied content)
and by numerous other factors (interest rates, exchange rates, and so on). The Monte
Carlo simulation allows you to generate pseudo-random values for each of these variables
and assign a value to the desired option. It should be noted, however, that the Monte Carlo
method is only one of those available for pricing options.

Continuing with the category of financial instruments, portfolios are sets of different
securities, normally of a varied nature. Portfolios are exposed to a variety of sources of
risk. The operational needs of modern financial intermediaries have led to the emergence
of calculation methods that aim to monitor the overall risk exposure of their portfolios.
The main method in this context is value at risk (VaR), which is often calculated using the
Monte Carlo simulation.

Ultimately, when a company must evaluate the profitability of a project, it will have to
compare the cost of the same with the revenue generated. The initial cost is normally (but
not necessarily) certain. The cash flows that are generated, however, are hardly known
a priori. The Monte Carlo method allows us to evaluate the profitability of the project by
attributing pseudo-random values to the various cash flows.

Modeling physical phenomenon
The simulation of a physical model allows you to experiment with the model by putting
it to the test by changing its parameters. The simulation of a model therefore allows you
to experiment with the various possibilities of the model, as well as its limits, in terms of
how the model acts as a framework for the experimentation and organization of our ideas.
When the model works, it is possible to remove the scaffolding. In this situation, maybe
it turns out that it stands up or something new has been discovered. When constructing
a model, reference is made to the ideas and knowledge through which the reality of the
phenomenon is formally represented.

Just as there is no univocal way to face and solve problems, there is no univocal way
to construct the models that describe the behavior of a given phenomenon. The
mathematical description of reality struggles to keep considerations of the infinite,
complex, and related aspects that represent a physical phenomenon. If the difficulty
is already significant for a physical phenomenon, it will be even greater in the case of
a biological phenomenon.

The need to select between relevant and non-relevant variables leads to discrimination
between these variables. This choice is made thanks to ideas, knowledge, and the school
from which those who work on the model come from.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Applying simulation model to real life 307

Random phenomena permeate everyday life and characterize various scientific fields,
including mathematics and physics. The interpretation of these phenomena experienced
a renaissance from the middle of the last century with the formulation of Monte Carlo
methods. This milestone was achieved thanks to the intersection of research on the
behavior of neurons in a chain reaction and the results achieved in the electronic field
with the creation of the first computer. Today, simulation methods based on random
number generation are widely used in physics.

One of the key points of quantum mechanics is to determine the energy spectrum of
a system. This problem, albeit with some complications, can be resolved analytically in the
case of very simple systems. In most cases, however, an analytical solution does not exist.
Because of this, there's a need to develop and implement numerical methods capable of
solving the differential equations that describe quantum systems. In recent decades, due
to technological development and the enormous growth in computing power, we have
been able to describe a wide range of phenomena with incredibly high precision.

Modeling public transportation
In recent years, the analysis of issues related to vehicular traffic has taken on an
increasingly important role in trying to develop well-functioning transport within cities
and on roads in general. Today's transport systems need an optimization process that is
coordinated with a development that offers concrete solutions to requests. Through better
transportation planning, a process that produces fewer cars in the city and more parking
opportunities should lead to a decrease in congestion.

A heavily slowed and congested urban flow, in fact, can not only inconvenience motorists
due to the increase in the average travel, but also make road circulation less safe and
increase atmospheric and noise pollution.

There are many causes that have led to an increase in traffic, but certainly the most
important is the strong increase in overall transport demand; this increase is due to factors
of a different nature, such as a large diffusion of cars, a decentralization of industrial and
city areas, and an often lacking public transport service.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

308 What's Next?

To try and solve the problem of urban mobility, we need to act with careful infrastructure
management and with a traffic network planning program. An important planning tool
could be a model of the traffic system, which essentially allows us to evaluate the effects
that can be induced on it by interventions in the transport networks, while also allowing
us to compare different design solutions. The use of a simulation tool allows us to evaluate
some decisional or behavioral problems, quickly and economically, where it is not possible
to carry out experiments on the real system. These simulation models represent a valid
tool available to technicians and decision makers in the transport sector for evaluating the
effects of alternative design choices. These models allow detailed analysis of the solutions
being planned at the local level.

There are simulation tools available that allow us to accurately and specifically represent
traffic and its evolution instant by instant, all while taking the geometric aspects of the
infrastructure and the real behavior of the drivers into consideration, both of which are
linked to the characteristics of the vehicle and the driver. Simulation models allow these
to be represented on a small scale and, therefore, at a relatively low cost, as well as the
effects and consequences related to the development of a new project. Micro-simulations
provide a dynamic vision of the phenomenon since the characteristics of the motion of
the individual vehicles (flow, density, and speed) are no longer taken into account.

Modeling human behavior
The study of human behavior in the case of a fire, or in cases of general emergency,
presents difficulties that cannot be easily overcome since many of the situations whose
data it would be important to know about cannot be simulated in laboratory settings.
Furthermore, the reliability of the data drawn from exercises in which there are no
surprises or anxiety effects such as stress, as well as the possibility of panic that can occur
in real situations, can be considered relative. Above all, the complexity of human behavior
makes it difficult to predict the data that would be useful for fire safety purposes.

Studies conducted by scientists have shown that the behaviors of people during situations
of danger and emergency are very different. In fact, research has shown that during an
evacuation, people will often do things that are not related to escaping from fire, and
these things can constitute up to two-thirds of the time it takes an individual to leave the
building. People often want to know what's happening before evacuating, as the alarm
does not necessarily convey much information about the situation.

Having a simulation model capable of reproducing a dangerous situation is extremely
useful for analyzing the reactions of people in such situations. In general terms, models
that simulate evacuations address this problem in three different ways: optimization,
simulation, and risk assessment.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Next steps for simulation modeling 309

The underlying principles of each of these approaches influence the characteristics of
each model. Numerous models assume that occupants evacuate the building as efficiently
as possible, ignoring secondary activities and those not strictly related to evacuation.
The escape routes chosen during the evacuation are considered optimal, as are the
characteristics of the flow of people and exits. The models that consider a large number
of people and that treat the occupants as a homogeneous whole, therefore without giving
weight to the specific behavior of the individual, tend toward these aspects.

Next steps for simulation modeling
For most of human history, it has been reasonable to expect that when you die, the world
will not be significantly different from when you were born. Over the past 300 years, this
assumption has become increasingly outdated. This is because technological progress
is continuously accelerating. Technological evolution translates into a next-generation
product better than the previous one. This product is therefore a more efficient and
effective way of developing the next stage of evolutionary progress. It is a positive feedback
circuit. In other words, we are using more powerful and faster tools to design and build
more powerful and faster tools. Consequently, the rate of progress of an evolutionary
process increases exponentially over time, and the benefits such as speed, economy, and
overall power also increase exponentially over time. As an evolutionary process becomes
more effective and/or efficient, more resources are then used to encourage the progress
of this process. This translates into a second level of exponential growth; that is, the
exponential growth rate itself grows exponentially.

This technological evolution also affects the field of numerical simulation, which must
be compared with the users' need to have more performant and simpler-to-make models.
The development of a simulation model requires significant skills in model building,
experimentation, and analysis. If we want to progress, we need to make significant
improvements in the model building process to meet the demands that come from the
decision-making environment.

Increasing the computational power
Numerical simulation is performed by computers, so higher computational powers
make the simulation process more effective. The evolution of computational power was
governed by Moore's law, named after the Intel founder who predicted one of the most
important laws regarding the evolution of computational power: every 18 months, the
power generated by a chip doubles in computing capacity and halves in price.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

310 What's Next?

When it comes to numerical simulation, computing power is everything. Today's
hardware architectures are not so different from those of a few years ago. The only thing
that has really changed is the power in processing information. In numerical simulation,
information is processed: the more complex a situation becomes, the more the variables
involved increase.

The growing processing capacity required for software execution and the increase in the
amount of input data have always been satisfied by the evolution of central processing
units (CPUs), according to Moore's law. However, lately, the growth of the computational
capacity of CPUs has slowed down and the development of programming platforms has
posed new performance requirements that create a strong discontinuity with respect to
the hegemony of these CPUs with new hardware architectures in strong diffusion both
on the server and on the device's side. In addition, the growing distribution of intelligent
applications requires the development of specific architectures and hardware components
for the various computing platforms.

Graphical processing units (GPUs) were created to perform heavy and complex
calculations. They consist of a parallel architecture made up of thousands of small and
efficient cores, designed for the simultaneous management of multiple operations. Field
programming gateway array (FPGA) architectures are integrated circuits designed to be
configured after production based on specific customer requirements. FPGAs contain a
series of programmable logic blocks and a hierarchy of reconfigurable interconnections
that allow the blocks to be "wired together."

The advancement of hardware affects not only computing power but also storage capacity.
We cannot send information at 1 GBps without having a physical place to contain it. We
cannot train a simulation architecture without storing a dataset of several terabytes in size.
Innovating means seeing opportunities that were not there previously by making use of
components that constantly become more efficient. To innovate means to see what can be
done by combining a more performant version of the three accelerators.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Next steps for simulation modeling 311

Machine learning-based models
Machine learning is a field of computer science that allows computers to learn to
perform a task without having to be explicitly programmed for its execution. Evolved
from the studies on pattern recognition and theoretical computational learning in the
field of artificial intelligence, machine learning explores the study and construction of
algorithms that allow computers to learn information from available data and predict new
information in light of what has been learned. By building a model that automatically
learns to predict new data from observations, these algorithms overcome the classic
paradigm of strictly static instructions. Machine learning finds its main use in computing
problems where the design and implementation of ad hoc algorithms is not practicable or
convenient.

Machine learning has deep links to the field of numerical simulation, which provides
methods, theories, and domains of application. In fact, many machine learning problems
are formulated as problems regarding minimizing a certain loss function against a specific
set of examples (the training set). This function expresses the discrepancy between the
values predicted by the model during training and the expected values for each example
instance. The ultimate goal is to develop a model capable of correctly predicting the
expected values in a set of instances never seen before, thus minimizing the loss function.
This leads to a greater generalization of prediction skills.

The different machine learning tasks are typically classified into three broad categories,
characterized by the type of feedback that the learning system is based on:

• Supervised learning: The sample inputs and the desired outputs are presented to
the computer, with the aim of learning a general rule capable of mapping the inputs
to the outputs.

• Unsupervised learning: The computer only provides input data, without any
expected output, with the aim of learning some structure in the input data.
Unsupervised learning can represent a goal or aim to extrapolate salient features of
the data that are useful for executing another machine learning task.

• Reinforcement learning: The computer interacts with a dynamic environment in
which it must achieve a certain goal. As the computer explores the domain of the
problem, it is given feedback in terms of rewards or punishments in order to direct
it toward the best solution.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

312 What's Next?

The following diagram shows the different types of machine learning algorithms:

Figure 11.6 – Different types of machine learning algorithms

Automated generation of simulation models
Automated machine learning (AutoML) defines applications that can automate the
end-to-end process of applying machine learning. Usually, technical experts must process
data through a series of preliminary procedures before submitting it to machine learning
algorithms. The steps necessary to perform a correct analysis of the data through these
algorithms requires specific skills that not everyone has. Although it is easy to create
a model based on deep neural networks using different libraries, knowledge of the
dynamics of these algorithms is required. In some cases, these skills are beyond those
possessed by analysts, who must seek the support of industry experts to solve the problem.

AutoML has been developed with the aim of creating an application that automates the
entire machine learning process so that the user can take advantage of these services.
Typically, machine learning experts should perform the following activities:

• Preparing the data

• Selecting features

• Selecting an appropriate model class

• Choosing and optimizing model hyperparameters

• Postprocessing machine learning models

• Analyzing the results obtained

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 313

AutoML automates all these operations. It offers the advantages of producing simpler
and faster-to-create solutions that often outperform hand-designed models. There are
several AutoML frameworks available, each of which has characteristics that indicate its
preferential use.

Summary
In this chapter, we summarized the technologies that we have exposed throughout this
book. We have seen how to generate random numbers and listed the most frequently
used algorithms for generating pseudo-random numbers. Then, we saw how to apply
Monte Carlo methods for numerical simulation based on the assumptions of two
fundamental laws: the law of large numbers and the central limit theorem. We then
went on to summarize the concepts that Markovian models are based on and then
analyzed the various resampling methods that are available. After that, we explored
the most used numerical optimization techniques and learned how to use ANNs for
numerical simulation.

Subsequently, we mentioned a series of fields in which numerical simulation is widely
used and looked at the next steps that will allow simulation models to evolve.

In this book, we studied various computational statistical simulations using Python.
We started with the basics in order to understand various methods and techniques to
deepen our knowledge of complex topics. At this point, the developers working with the
simulation model would be able to put their knowledge to work, adopting a practical
approach to the required implementation and associated methodologies so that they're
operational and productive in no time. I hope that I have provided detailed explanations
of some essential concepts through the use of practical examples and self-assessment
questions, exploring numerical simulation algorithms and providing an overview of the
relevant applications in order to help you make the best models for your needs.

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Reinforcement Learning Algorithms with Python

Andrea Lonza

ISBN: 978-1-78913-111-6

• Develop an agent to play CartPole using the OpenAI Gym interface

• Discover the model-based reinforcement learning paradigm

• Solve the Frozen Lake problem with dynamic programming

• Explore Q-learning and SARSA with a view to playing a taxi game

• Apply Deep Q-Networks (DQNs) to Atari games using Gym

• Study policy gradient algorithms, including Actor-Critic and REINFORCE

• Understand and apply PPO and TRPO in continuous locomotion environments

• Get to grips with evolution strategies for solving the lunar lander problem

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

316 Other Books You May Enjoy

Practical Data Analysis Using Jupyter Notebook

Marc Wintjen

ISBN: 978-1-83882-603-1

• Understand the importance of data literacy and how to communicate effectively
using data

• Find out how to use Python packages such as NumPy, pandas, Matplotlib, and
the Natural Language Toolkit (NLTK) for data analysis

• Wrangle data and create DataFrames using pandas

• Produce charts and data visualizations using time-series datasets

• Discover relationships and how to join data together using SQL

• Use NLP techniques to work with unstructured data to create sentiment
analysis models

• Discover patterns in real-world datasets that provide accurate insights

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leave a review - let other readers know what you think 317

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
acceptance-rejection method 52, 53
activation functions, ANNs

Hyperbolic tangent 241
Rectified Linear Unit (ReLU) 242
role, explaining 241
sigmoid function 241
unit step activation function 241

agent
about 117
characteristics 117

agent, characteristics
proactivity 141
reactivity 141
social skills 141

agent-environment interface 117-119
airfoil self-noise

simulating, ANNs used 244-246
airfoil self-noise simulation, with ANNs

data, importing with pandas 246-248
data, scaling with sklearn 249-251
data, splitting 256, 257
data, viewing with Matplotlib 252-255

multilayer perceptron regressor
model 260-263

multiple linear regression 258-260
Amazon stock price trend

exploring 208-212
handling, as time series 213-215

Application Programming
Interfaces (APIs) 166

applications, Monte Carlo simulation
about 101
numerical optimization 102, 103
probability distributions, generating 101
project management 103

a priori probability p(E) 63, 64
artificial neural networks (ANNs)

activation functions, role 241
architecture 237
architecture elements 238
biases, analyzing 239, 240
exploring 236, 237
layer structure 238, 239
used, for simulating airfoil

self-noise 244, 245
using, for simulation 303, 304
weights, analyzing 239, 240

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

320 Index

automated machine learning
(AutoML) 312

B
Bayes' theorem

about 66, 68, 69
compound probability 67, 68

behavior measures 296
bell curve 79
Bellman equation

about 140
Dynamic programming

(DP) concepts 139
explaining 138, 139
principle of optimality 139

Bernoulli process 26, 27
binomial distribution 76-79
biological neural networks

about 235, 236
elements 235
information, processing 235
structure 235

Black-Scholes (BS) model 215, 216
bootstrap

definition problem 157
resampling, with Python 158-161
versus Jackknife 161

bootstrapping
about 156, 301
demystifying 156

Brownian motion 25
Broyden-Fletcher-Goldfarb-Shanno

(LBFGS) algorithm 260

C
central limit theorem

about 96-100
law of large numbers 96, 97

central processing units (CPU) 310
certain events 62
chi-squared test 42-45
coefficient of variation (CV)

estimating 150
complementary events 64
compound probability 66- 68
computational power

increasing 309, 310
conditional probability 67
conjugate gradient (CG) 197
Constrained Optimization By Linear

Approximation (COBYLA) 198
continuous models

versus discrete models 10
convolutional neural network (CNN)

about 264
convolutional layers 265
fully connected layers 265
loss layers 265
pooling layers 265
ReLU layers 265

cross-validation
techniques, approaching 163
using Python 165-168

cross-validation techniques
about 302
approaching 163
set approach, validating 163, 164

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 321

D
daily return 217
data overfitting 256
decision-making workflow 5
deep neural networks

about 237
convolutional neural networks

(CNN) 264
exploring 264
Long Short-Term Memory

(LSTM), analyzing 266
recurrent neural networks,

examining 265, 266
def clause 107
descent methods

defining 174
deterministic models

versus stochastic models 9
dichotomous 76
discounted cumulative reward 122, 123
discrete models

versus continuous models 10
dog-leg trust-region (dogleg) 197
dynamical systems modeling

about 16
harmonic oscillator 18-20
predator-prey model 20-22
workshop machinery, managing 17, 18

dynamic models
versus static models 9

dynamic programming (DP)
about 139, 273
policy evaluation 139
policy improvement 139

E
environment 117
estimates

types 286
event

defining 62
types 62, 63

exploration concepts 124
versus exploitation concepts 123, 124

F
feature scaling 250
feedforward 242
feedforward neural networks

about 242
training 243, 244
weight adjustment procedure 244

feedforward propagation 242
Field programming gateway

arrays (FPGA) 310
frequency density

about 74
parameters 74

G
Gauss curve 79
Gaussian distribution 32, 79
general-purpose simulation

system (GPSS). 13
generic methods, random distributions

acceptance-rejection method 52, 53
inverse transform sampling

method 51, 52

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

322 Index

Geometric Brownian motion model 202
gradient descent

about 302
implementing, in Python 178-182

gradient descent algorithm
approaching 174-176

gradient descent technique
exploring 174

Graphical processing units (GPUs) 310

H
harmonic oscillator 18-20
Hyperbolic tangent 241

I
Internet Protocol (IP) 225
inverse transform sampling method 51, 52

J
Jackknife

technique, exploring 148
versus bootstrap 161

Jackknife method
defining 148-150

Jackknife resampling
applying, with Python 151-155

Jackknife technique 301

K
k-fold cross-validation (k-fold CV) 165

L
Lagged Fibonacci Generator

(LFG) 39-41, 296
lambda 107
law of large numbers 96, 97
Learmonth-Lewis generator 37
learning rate 177
leave-one-out cross validation

(LOOCV) 163, 164
likelihood probability 69
Limited-memory BFGS (L-BFGS) 197
Linear Congruential Generator

(LCG) 34-36, 296
local optimality 173
Long Short-Term Memory

(LSTM) neural networks
analyzing 266

M
machine learning-based models

about 311
reinforcement learning 311
supervised learning 311
unsupervised learning 311

marginal likelihood probability 69
Markov chain

about 124, 125
transition diagram 126, 127
transition matrix 125

Markov chain applications

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 323

1D random walk, simulating 129-132
about 127
one-dimensional casual walk 128, 129
random walk 127
weather forecast, simulating 132-138

Markov decision processes (MDPs)
about 139
addressing 299, 300
agent-environment interface 117-119
discounted cumulative reward 122, 123
exploration concepts, versus

exploitation concepts 123, 124
exploring 119-121
overview 116, 117
policy 122
reward function 122
state-value function 122
summarizing 272, 273

Markovian 117, 272
Matplotlib

used, for viewing data 252-255
Matyas function 193
MC algorithm, used for performing

numerical integration
about 104
applying 109-111
issue, defining 104-106
min-max detection 108, 109
numerical solution 106-108
visual representation 111-113

MDPtoolbox
about 275
URL 275

used, for addressing management
problems 278-281

mean 71, 72
mean absolute error (MAE) 8
mean absolute percentage error (MAPE) 8
mean square error (MSE) 8, 163, 259
middle-square 34
modeling

versus simulation 6
modulo function 35
Monte Carlo 30
Monte Carlo (MC) algorithm

used, for performing numerical
integration 104

Monte Carlo methods
applying 298
fundamental theorems 298
using, for stock price prediction 207

Monte Carlo simulation
about 88
applications 89-91
applying 101, 216-220
applying, for Pi estimation 91-95
components 89
tools, for resolving issues 90, 91
used, for scheduling project time 284

multi-agent simulation 140-142
multi-agent system (MAS)

about 141
advantages 141

multi-agent system (MAS),
interaction types

cooperation 141
coordination 141
negotiation 141

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

324 Index

multilayer perceptron regressor
model 260-263

multiple linear regression 258-260
multiplicative 36
multivariate optimization

methods, Python
about 191
Nelder-Mead method 191-195
Powell's conjugate direction

algorithm 195, 196

N
NASDAQ assets

VaR, estimating for 223-231
Nelder-Mead method 191-195
neural networks

ANNs 236
basics 234
biological neural networks 235, 236

Newton-Broyden-Fletcher-Goldfarb-
Shanno (BFGS) 197

Newton-CG 197
Newton-Raphson 302
Newton-Raphson algorithm

approaching, for numerical
optimization 184

using, for root-finding 183
Newton-Raphson method 183
Newton-Raphson technique

applying 185-189
normal distribution

about 79-83
characteristics 80

Not-a-Number (NaN) 248
numerical integration

performing with Monte Carlo
(MC) algorithm 104-113

numerical optimization
Newton-Raphson algorithm,

approaching for 184
numerical optimization techniques

about 170
exploring 302
gradient descent 302
Newton-Raphson 302
stochastic gradient descent 303

O
optimization methodologies

conjugate gradient (CG) 197
Constrained Optimization By Linear

Approximation (COBYLA) 198
dog-leg trust-region (dogleg) 197
Limited-memory BFGS (L-BFGS) 197
Newton-Broyden-Fletcher-

Goldfarb-Shanno (BFGS) 197
Newton-CG 197

optimization problem 171, 172
optimization process

exploring 273, 274
outliers 253

P
pandas

used, for importing data 246-248
percentage point function (ppf) 231
permutation tests 162, 301

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 325

Pi estimation
Monte Carlo simulation,

applying for 91-95
Poisson process 29
policy evaluation 139
policy improvement 139
portfolio management

risk models, studying for 220
posterior probability 69
Powell's conjugate direction

algorithm 195, 196
predator-prey model 20-22
principle of optimality 139
prior probability 69
probability 65, 66
probability concepts

calculating 63
defining, with example 63
event, types 62, 63
explaining 62

probability density function (PDF) 70, 71
probability distribution

about 31, 69
binomial distribution 76-79
exploring 69, 70
Gaussian distribution 32
mean and variance 71, 72
normal distribution 79-83
probability density function

(PDF) 70, 71
types 31
uniform distribution 31-76

probability distribution, types
continuous distributions 69
discrete distributions 69

probability function 70
probability sampling 147
project management 270

project time
scheduling, with Monte Carlo

simulation 284
project time, scheduling with

Monte Carlo simulation
scheduling grid, defining 285
task's time, estimating 286
triangular distribution,

exploring 290-294
pseudorandom number generator 33
Python

gradient descent, implementing 178-182
multivariate optimization methods 191
used, for applying Jackknife

resampling 151-155
used, for generating random

numbers 53
used, for resampling bootstrap 158, 161
using, for cross-validation 165-168

R
random.choice() function 57, 58
random distributions

generic methods, exploring 51
random event 63
random module 54
random number generation algorithms 34
random number generator

cons 33
pros 33

random numbers
generating 296, 297
generating, with Python 53
properties 32
simulation 30
with uniform distribution 37, 38

random.randint() function 56, 57

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

326 Index

random.random() function 54
random.sample() function 58
random.seed() function 55
random.uniform() function 56
Random Walk

about 27, 28
Wiener process, addressing as 204

real-valued distributions
generating 58, 59

Rectified Linear Unit (ReLU) 242
recurrent neural networks

examining 265, 266
reinforcement learning 311
relative frequency f(E) 65, 66
resampling methods

about 144, 145
analyzing 300, 301
bootstrapping 301
cross-validation technique 302
Jackknife technique 301
permutation test 301

risk models
studying, for portfolio management 220

risk models, studying for
portfolio management

Value-at-Risk metric 221-223
variance, using as risk measure 221

root-finding
Newton-Raphson algorithm,

using for 183

S
sampling

concepts overview 145
cons 147
pros 146
reasoning about 146

statistical sampling 145
theory 145
using 147

scheduling grid 285
sigmoid function 241
simulation

artificial neural networks (ANNs),
using for 303, 304

versus modeling 6
simulation-based problem

analysis 11
approaching 10
data collection 11
results, simulation and analysis 16
simulation models, setting up 11, 12
simulation model, validating 15
simulation software, selecting 13
software solution, verifying 14, 15

simulation model
about 4
applying, for real life 304
automated generation of 312
classifying 9
financial applications,

modeling 305, 306
healthcare, modeling 304, 305
human behavior, modeling 308, 309
physical phenomenon,

modeling 306, 307
public transportation,

modeling 307, 308
setting up 11, 12
validating 15

simulation modeling

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 327

computational power,
increasing 309, 310

concepts, summarizing 295, 296
cons 7
machine learning-based models 311
next steps 309
pros 6
terminology 7

simulation modeling, terminology
accuracy 8
calibration 8
events 8
parameters 8
sensitivity 8
state variables 7
system 7
validation 9

simulation software
selecting 13

simulation software, selecting
GPSS 14
simulation languages 13
simulators 13

sklearn
used, for scaling data 249-251

standard Brownian motion model
about 203, 204
implementing 205-207

standardized normal distribution 83
state space 120
static models

versus dynamic models 9
stochastic gradient descent (SGD)

about 189, 190, 261, 303
pros 190

stochastic models
versus deterministic models 9

stochastic process

about 24, 25
Bernoulli process 26, 27
example 26
Poisson process 29
Random Walk 27, 28
types 25, 26

stochastic process (path)
history 120

stochastic sequence
types 25

stock price prediction
Monte Carlo methods, using 207

supervised learning 311
support vector machines (SVMs) 250
synapses 236

T
task's time

estimating 286
tiny forest problem

management example 275-278
managing 272
Markov decision process,

summarizing 272, 273
MDPtoolbox 275
optimization process, exploring 273, 274
probability, modifying of fire 282-284

training set 243
transition diagram 126, 127
transition matrix 125
trial and error method 178
triangular distribution

exploring 290-294

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

328 Index

U
UCI Machine Learning Repository

reference link 245
uniform distribution

about 31, 32, 72-76
testing 42
testing, with chi-squared test 42-45

uniformity test 45-50
unit step activation function 241
unsupervised learning 311

V
Value-at-Risk metric (VaR)

about 221-223
estimating, for NASDAQ assets 223-231

value at risk (VaR) 306
variance 71, 72

using, as risk measure 221

W
what-if analysis 271
Wiener process

addressing, as random walk 204
workshop machinery

managing 17, 18

 EBSCOhost - printed on 2/9/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1:
Getting Started with Numerical Simulation
	Chapter 1: Introducing Simulation Models
	Introducing simulation models
	Decision-making workflow
	Comparing modeling and simulation
	Pros and cons of simulation modeling
	Simulation modeling terminology

	Classifying simulation models
	Comparing static and dynamic models
	Comparing deterministic and stochastic models
	Comparing continuous and discrete models

	Approaching a simulation-based problem
	Problem analysis
	Data collection
	Setting up the simulation model
	Simulation software selection
	Verification of the software solution
	Validation of the simulation model
	Simulation and analysis of results

	Dynamical systems modeling
	Managing workshop machinery
	Simple harmonic oscillator
	Predator-prey model

	Summary

	Chapter 2: Understanding Randomness and Random Numbers
	Technical requirements
	Stochastic processes
	Types of stochastic process
	Examples of stochastic processes
	The Bernoulli process
	Random walk
	The Poisson process

	Random number simulation
	Probability distribution
	Properties of random numbers

	The pseudorandom number generator
	The pros and cons of a random number generator
	Random number generation algorithms
	Linear congruential generator
	Random numbers with uniform distribution
	Lagged Fibonacci generator

	Testing uniform distribution
	The chi-squared test
	Uniformity test

	Exploring generic methods for random distributions
	The inverse transform sampling method
	The acceptance-rejection method

	Random number generation using Python
	Introducing the random module
	The random.random() function
	The random.seed() function
	The random.uniform() function
	The random.randint() function
	The random.choice() function
	The random.sample() function
	Generating real-valued distributions

	Summary

	Chapter 3: Probability and Data Generation Processes
	Technical requirements
	Explaining probability concepts
	Types of events
	Calculating probability
	Probability definition with an example

	Understanding Bayes’ theorem
	Compound probability
	Bayes’ theorem

	Exploring probability distributions
	Probability density function
	Mean and variance
	Uniform distribution
	Binomial distribution
	Normal distribution

	Summary

	Section 2:
Simulation Modeling Algorithms and Techniques
	Chapter 4: Exploring Monte Carlo Simulations
	Technical requirements
	Introducing Monte Carlo simulation
	Monte Carlo components
	First Monte Carlo application
	Monte Carlo applications
	Applying the Monte Carlo method for Pi estimation

	Understanding the central limit theorem
	Law of large numbers
	Central limit theorem

	Applying Monte Carlo simulation
	Generating probability distributions
	Numerical optimization
	Project management

	Performing numerical integration using
Monte Carlo
	Defining the problem
	Numerical solution
	Min-max detection
	Monte Carlo method
	Visual representation

	Summary

	Chapter 5: Simulation-Based Markov Decision Processes
	Technical requirements
	Overview of Markov processes
	The agent-environment interface
	Exploring MDPs
	Understanding the discounted cumulative reward
	Comparing exploration and exploitation concepts

	Introducing Markov chains
	Transition matrix
	Transition diagram

	Markov chain applications
	Introducing random walks
	Simulating a one-dimensional random walk
	Simulating a weather forecast

	The Bellman equation explained
	Dynamic programming concepts
	Principle of optimality
	The Bellman equation

	Multi-agent simulation
	Summary

	Chapter 6: Resampling Methods
	Technical requirements
	Introducing resampling methods
	Sampling concepts overview
	Reasoning about sampling
	Pros and cons of sampling
	Probability sampling
	How sampling works

	Exploring the Jackknife technique
	Defining the Jackknife method
	Estimating the coefficient of variation
	Applying Jackknife resampling using Python

	Demystifying bootstrapping
	Introducing bootstrapping
	Bootstrap definition problem
	Bootstrap resampling using Python
	Comparing Jackknife and bootstrap

	Explaining permutation tests
	Approaching cross-validation techniques
	The validation set approach
	Leave-one-out cross validation
	K-fold cross validation
	Cross-validation using Python

	Summary

	Chapter 7: Using Simulation to Improve and Optimize Systems
	Technical requirements
	Introducing numerical optimization techniques
	Defining an optimization problem
	Explaining local optimality
	Defining the descent methods
	Approaching the gradient descent algorithm
	Understanding the learning rate
	Explaining the trial and error method
	Implementing gradient descent in Python

	Facing the Newton-Raphson method
	Using the Newton-Raphson algorithm for root-finding
	Approaching Newton-Raphson for numerical optimization
	Applying the Newton-Raphson technique

	Deepening our knowledge of stochastic gradient descent
	Discovering the multivariate optimization methods in Python
	The Nelder–Mead method
	Powell's conjugate direction algorithm
	Summarizing other optimization methodologies

	Summary

	Section 3:
Real-World Applications
	Chapter 8: Using Simulation Models for Financial Engineering
	Technical requirements
	Understanding the geometric Brownian motion model
	Defining a standard Brownian motion
	Addressing the Wiener process as random walk
	Implementing a standard Brownian motion

	Using Monte Carlo methods for stock price prediction
	Exploring the Amazon stock price trend
	Handling the stock price trend as time series
	Introducing the Black-Scholes model
	Applying Monte Carlo simulation

	Studying risk models for portfolio management
	Using variance as a risk measure
	Introducing the value-at-risk metric
	Estimating the VaR for some NASDAQ assets

	Summary

	Chapter 9: Simulating Physical Phenomena Using Neural Networks
	Technical requirements
	Introducing the basics of neural networks
	Understanding biological neural networks
	Exploring ANNs

	Understanding feedforward neural networks
	Exploring neural network training

	Simulating airfoil self-noise using ANNs
	Importing data using pandas
	Scaling the data using sklearn
	Viewing the data using matplotlib
	Splitting the data
	Explaining multiple linear regression
	Understanding a multilayer perceptron regressor model

	Exploring deep neural networks
	Getting familiar with convolutional neural networks
	Examining recurrent neural networks
	Analyzing LSTM networks

	Summary

	Chapter 10: Modeling and Simulation for Project Management
	Technical requirements
	Introducing project management
	Understanding what-if analysis

	Managing a tiny forest problem
	Summarizing the Markov decision process
	Exploring the optimization process
	Introducing MDPtoolbox
	Defining the tiny forest management example
	Addressing management problems using MDPtoolbox
	Changing the probability of fire

	Scheduling project time using Monte Carlo simulation
	Defining the scheduling grid
	Estimating the task's time
	Developing an algorithm for project scheduling
	Exploring triangular distribution

	Summary

	Chapter 11: What's Next?
	Summarizing simulation modeling concepts
	Generating random numbers
	Applying Monte Carlo methods
	Addressing the Markov decision process
	Analyzing resampling methods
	Exploring numerical optimization techniques
	Using artificial neural networks for simulation

	Applying simulation model to real life
	Modeling in healthcare
	Modeling in financial applications
	Modeling physical phenomenon
	Modeling public transportation
	Modeling human behavior

	Next steps for simulation modeling
	Increasing the computational power
	Machine learning-based models
	Automated generation of simulation models

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Index

