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Preface to the Fourth Edition

In this preface we intend to give the reader a glimpse of those portions and
aspects of this book which have been added to its existing body in this present,
fourth edition. However, the reader wishing to get an impression of the spirit
permeating the book as a whole should also peruse the prefaces of the first, second
and third edition. Indeed it might be a good idea to read them in this order. The
first edition of this book appeared in 1998, the second in 2006 and the third in 2013.
All three were well received by reviewers and frequently quoted by researchers in a
variety of areas. Many developments happened in the 20 years since the appearance
of the first edition. The present one includes new material amounting to doubling
of the size of one of the previous chapters and to the addition of one new appendix.
Also there are numerous augmentations clear across the text.

Nothing of the body of the text that accumulated through the years was ever
eliminated. In the preface to the second and third edition we have already em-
phasized an important characteristic of the book and reiterate it now: the original
internal numbering system has been retained through all editions. Accordingly all
citations of items identified by the internal numbers in any of the previous editions
remain intact throughout.

In the past, the Tannaka Duality Theorem for compact groups was not included.
Edwin Hewitt and Kenneth Ross [148] referred in 1969 to this result as presented
by Tannaka and Krein by writing “Although these theorems were published in
1938 and 1949, respectively, mathematicians have used them very little, and they
have not contributed to harmonic analysis on compact non-Abelian groups as the
Pontryagin-van Kampen theorem has done for LCA groups.” Fifty years later
we can say that they have not contributed to the knowledge on the structure of
compact groups—the subject of this book, and that this was primarily the reason
why we did not include Tannaka Duality in the earlier editions. So why do we
include it now?

In the new Appendix 7 we focus on the class V of vector spaces over K = R
or K = C, and on the class W of weakly complete topological K-vector spaces.
Here a topological K-vector space is called weakly complete if and only if, as a
topological K-vector space, it is isomorphic to KJ , for some set J . These two cate-
gories possess two features that deserve to be mentioned at once: Firstly, the dual
V ∗ = HomV(V,K) of a V-object V is aW-object, and the dual W ′ = HomW(W,K)
of a W-object is a V-object and, moreover, there are natural isomorphisms V ∼=
(V ∗)′ and W ∼= (W ′)∗ establishing a rather elementary duality between V and

W. For K = R, we have also isomorphisms HomV(V,R) ∼= Hom(V,R/Z) = V̂ and

HomW(W,R) ∼= Hom(W,R/Z) = Ŵ , so that the duality between V and W over R
is a part of the Pontryagin Duality as we shall discuss in Appendix 7. Indeed their
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viii Preface to the Fourth Edition

Pontryagin Duality had been the subject of Chapter 7 already in all preceding
editions.

The second noteworthy feature of the dual categories V and W is the compat-
ibility of their respective tensor products with duality: (V1 ⊗V V2)∗ ∼= V ∗1 ⊗W V ∗2
(and dually). These tensor products make V andW what in Appendix 3, following
a general practice, we call symmetric monoidal categories. Therefore both of them
have algebras and Hopf algebras.

In particular, we introduce in a natural fashion the class of weakly complete
topological algebras A and show that for each of them the set of invertible elements
A−1 is a topological group, indeed a pro-Lie group. So there is a functor A 7→ A−1

from the category of all weakly complete topological algebras to the category of
all topological groups, each with their morphisms. The Adjoint Functor Existence
Theorem applies and secures the existence of a left adjoint K[−] to this functor,
which takes a topological group G to the weakly compact topological algebra K[G].
This leads us to study in the new Part 3 of Chapter 3 the group algebras of compact
groups. If G is a compact group, then the isomorphic copy of G in R[G]−1 can be
characterized in terms of the Hopf algebra structure of R[G]. Indeed we shall be
able to characterize precisely those real weakly complete symmetric cocommutative
Hopf algebras which occur (up to isomorphism) as group Hopf algebras R[G] for
compact groups G. We shall call them compactlike. That is, our approach yields the
folllowing equivalence theorem: There is a precise categorical equivalence between
the category of compact groups and the category of weakly complete compactlike
real symmetric Hopf algebras.

The relevance of this context for the traditional theory of compact groups is
this: The duality between V and W implements in a straightforward fashion a du-
ality between weakly complete cocomplete real symmetric Hopf algebras and (ab-
stract) commutative real symmetric Hopf algebras. The (abstract) real symmetric
Hopf algebras appearing as dual objects of the weakly complete compactlike real
symmetric Hopf algebras (namely, the R[G] with compact G) are called reduced
Hopf algebras (following G. Hochschild in [155]). Thus the equivalence theorem
above yields the following duality theorem: The category of compact groups is dual
to the category of reduced real Hopf algebras. This is the Tannaka-Hochschild Du-
ality Theorem. It is now filled with additional significance due to the fact which
we establish in Part 3, namely, that the dual R[G]′ of the weakly complete real
symmetric group Hopf algebra of a compact group is naturally isomorphic to the
real symmetric Hopf algebra R(G,R) of representative functions of the compact
group G.

Aside from the innovation regarding the weakly complete group algebras of
compact groups, we implemented numerous smaller local improvements of material
present in earlier editions. An example is Theorem 6.55 in which it is now clearly
formulated that for a compact Lie group G every element of the commutator alge-
bra g′ of the Lie algebra g = L(G) of G is itself a commutator. Another significant
improvement of an earlier result is Theorem A1.32 concerning the general theory
of divisibility in abelian groups. This material benefitted from the developments of
the recent monograph [144] by Herfort, Hofmann and Russo. Among the cardinal
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Preface to the Fourth Edition ix

numbers naturally attached to mainly compact groups we expanded notably the
presentation of density. The presentaton of these complementary results begins
with the definition of the logarithm of arbitrary cardinal numbers in Definition
12.16a and finally culminates in our systematic comparison of density and weight
for arbitrary compact groups in 12.31a, from which we conclude that the density
of a closed subgroup of a compact group never exceeds the density of the latter.
By a theorem of Itzkowitz [216], a closed subgroup of a separable compact group
is separable which now emerges as a special case of the general situation. The
Appendix 5 on Measures on Compact Groups is complemented by a subsection on
infinite compact groups G dealing with the existence of subgroups of G failing to
be measurable with respect to Haar measure of G. This issue sounds simple but
leads into complications of set theory and logic.

Selected references for the Preface of the Fourth Edition

[∗] The Pro-Lie Group Aspect of Weakly Complete Algebras and Weakly Com-
plete Group Hopf Algebras, J. of Lie Theory 28 (2019), 413–455 (by Rafael
Dahmen and Karl H. Hofmann).

[†] On Weakly Complete Group Algebras of Compact Groups, J. of Lie Theory
30 (2020), 407–424 (by Karl H. Hofmann and Linus Kramer).
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Preface to the Second and Third Editions

In the first edition of this book, which appeared in 1998, we endeavored to pro-
duce a self-contained exposition of the structure theory of compact groups. The
focus was indeed on structure theory and not on representation theory or abstract
harmonic analysis, yet the book does contain not only an introduction to, but a
wealth of material on, these topics. Indeed, the first four chapters of the book
provide a more than adequate introduction to the basics of representation theory
of compact groups and the judiciously pedestrian style of these chapters is meant
to serve graduate students. Because of our aim for the book to be self-contained
it also included material such as an introduction to linear Lie groups, to abstract
abelian groups, and to category theory. A prominent feature of the book is the
derivation of the structure theory of arbitrary compact groups using an exten-
sion of Lie theory, unfettered by dimension restrictions. We record again our apt
comments in the preface to the first edition: “It is generally believed that the ap-
proximation of arbitrary compact groups by Lie groups settles any issue on the
structure of compact groups as soon as it is resolved for Lie groups. . . .Our book
will go a long way to shed light on this paradigm. . . . In fact the structure theory
presented in this book, notably in Chapter 9, in most cases removes the necessity
to use projective limit arguments at all. The structure theorems presented in this
book are richer and often more precise than information gleaned directly from
approximation arguments.”

The driving forces behind the writing of the second edition, which was pub-
lished in 2006, and this third edition were new material discovered by the authors
and others since the first edition appeared, various questions about the structure
of compact groups put to the authors by our readers over the ensuing years, and
our wish to clarify some aspects of the book which we feel needed improvement.
However, in writing the second and third editions we were cognizant of the fact
that the book was already sizable, and our commitment to self-containment was
not feasible if the book were to remain at less than a thousand pages. The second
and third editions also provided us with opportunities to correct many typograph-
ical errors which inevitably occur in such a large book, and a small number of
mathematical errors which were easily corrected and not of serious consequence.

The list of references has increased as we include recent publications which are
most pertinent to the specific content of the book. We still do not claim com-
pleteness in these additional references any more than we did in the first edition,
otherwise we would have produced an unreasonably bulky list of references.

Both the second and third editions, however, remain unchanged in one im-
portant way: The numbering system of the first edition for Definitions, Lemmas,
Remarks, Propositions, Theorems, and Main Theorems remains completely intact
in the subsequent editions. Therefore all earlier citations and references made to
them by numbers remain valid for users of later editions. This cannot hold for
references to page numbers, since, due to the augmentation of the text, they have
changed. We were able to accomodate all additions organically in the text. Fre-
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quently, we added new pieces of information to existing propositions and theorems.
In two cases we added a second portion to an existing theorem and numbered it
Theorem 8.36bis and Theorem 9.76bis. Sometimes we added a subsection at the
end of a chapter, thereby avoiding any recasting of existing numbering.

As already indicated, one of our mathematical philosophies is the emphasis and
application of Lie theory pervading the book from Chapter 5. By that we mean a
consistent use of not necessarily finite dimensional Lie algebras and the associated
exponential function wherever it is feasible and advances the structural insight. In
this sense we should alert readers to our publications [∗], [†], and [‡], which may
be considered as an extension of the Lie theoretical aspects of this book in the
direction of a wide-ranging Lie theory for the class of pro-Lie groups: Indeed the
book [∗] may be considered a sequel to this book. A pro-Lie group is a limit of a
projective system of finite dimensional real Lie groups in which the kernels of the
bonding morphisms are not necessarily compact. If we call a topological group G
almost connected whenever the group G/G0 of connected components is compact,
then the structure and Lie theory of pro-Lie groups covers that of locally compact
almost connected groups which includes all connected locally compact groups and
all compact groups. However, not all pro-Lie groups are locally compact—as even
infinite products RX illustrate. It is shown in [∗] that a topological group is a
pro-Lie group if and only if it is isomorphic to a closed subgroup of a product of
finite dimensional real Lie groups; so this example is already representative.

Judging the significance of recent developments for further research and appli-
cation is tricky. However, with this reservation in mind, we mention a few among
the numerous topics which were added to the content of the second and third
editions.

In the second edition, we clarified the ambiguity in the common terminology
surrounding the concept of a simple compact connected Lie group. In abstract
group theory a simple group is a group without nonsingleton proper normal sub-
groups. However, in classical Lie group theory a connected Lie group is called
“simple” if its Lie algebra is simple, that is, has no nonzero proper ideals. This is
equivalent to saying that every nonsingleton closed proper normal subgroup is dis-
crete or, equivalently, that it is locally isomorphic to a compact connected Lie group
without nonsingleton proper closed normal subgroups. But is a compact group of
the latter type simple in the sense of abstract group theory? Could it perhaps
contain some nonclosed nontrival normal subgroups? The answer is that a com-
pact group having no nontrivial closed normal subgroups has no nontrivial normal
subgroups at all and thus is simple in the sense of abstract group theory. A proof
is surprisingly nontrivial in so far as it requires Yamabe’s Theorem that an arcwise
connected subgroup of a Lie group is an analytic subgroup. We recorded these mat-
ters around Theorem 9.90. Having clarified the fact that a compact algebraically
simple group is either finite or connected, we call a compact group weakly reductive
if it is isomorphic to a cartesian product of simple compact groups. This allowed
us to record also our Countable Layer Theorem 9.91 which says that every com-
pact group G contains a canonical finite or countably infinite descending sequence:

G = N0 ⊃ N1 ⊃ N2 ⊃ · · ·
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xii Preface to the Second and Third Editions

of closed normal subgroups such that, firstly, each quotient group Nj/Nj+1 is
strictly reductive and, secondly, that

⋂
j Nj is the identity component of the center

of the identity component G0. It is quite surprising that countability should occur
without the hypothesis of metrizability. The Countable Layer Theorem confirms
the intuition that compact groups, no matter how large their weight is, are “wide”
rather than “deep”. We use the Countable Layer Theorem in our proof of Theorem
10.40 that every compact group is dyadic.

It reasonable to ask what is the probability that two randomly chosen elements
commute in a compact group. A so-called FC-group is a group with finitely many
conjugacy classes. In this third edition, from Definition 9.92 through Example
9.100 we discuss the structure of compact FC-groups. It is probably not surprising
that from the viewpoint of topological groups these are “almost abelian,” and what
this means is said in Theorem 9.99. This gives rise to the subsequent discussion
of the commutativity degree d(G) of a compact group, that is, the probability that
a pair (x, y) of randomly picked elements x and y satisfies xy = yx. (Thus d(G)
is the Haar measure in G×G of the set {(x, y)|xy = yx}.) The nature of d(G) is
completely clarified in Theorem 9.102. This question lies in the realm of topological
combinatorial group theory.

Hilbert’s Fifth Problem can be cast in the following form: Is a locally euclidean
group a Lie group? This was answered affirmatively in the 1950s by Gleason,
Montgomery and Zippin [263]. In 1974, Szenthe [347] formulated a much used
transformation group theory extension saying, in the context of a compact group
G, that a transitive action ofG on a spaceX causesX to be a real analytic manifold
provided X is locally contractible. Our Chapter 10 on actions of compact groups is
now augmented by a rather detailed and important discussion of transitive actions
of a compact group G on a space X. From Definition 10.60 through Corollary
10.93 we discuss what happens if X is rationally and mod 2 acyclic. Subsequently
we consider the situation when X has some open subset contractible to a point
in X. In this latter case, X is a compact manifold. All locally contractible spaces
fall into this category. The first of these two topics emerged around 1965 in the
context of compact monoid theory but has attracted renewed and recent interest
by researchers indicating a need for alerting the audience of this book to this aspect
of compact transformation group theory. The second consolidates Szenthe’s theory.
Renewed interest in this issue was kindled by Antonyan’s discovery [9] of a serious
gap in Szenthe’s original proof. Several recent publications provide alternative
proofs (see [11], [120], [172]), thereby closing the gap; our presentation in this
book is close to [172], but not identical with it.

Chapter 12 on cardinality invariants of compact groups has been expanded
and revised in several places so as to include Theorem 12.31 saying that for any
compact group G of weight w(G) and every infinite cardinal ℵ ≤ w(G) there is a
closed subgroup H ⊆ G such that w(H) = ℵ.

We mention, finally, that Appendix 5 and Appendix 6 were added. Appendix 5
discusses, from scratch, the compact semigroup P (G) of all probability measures
on a compact group G under convolution. The fact that P (G) has a zero element
is a classical result of Wendel, which for us secures the existence and uniqueness
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of Haar measure on a compact group. In previous editions that information was
packed into a long drawn-out exercise in Chapter 2. So, in this one particular aspect
providing a proof of the existence and uniqueness of normalized Haar measure on
a compact group, the present third edition is even more self-contained than the
earlier editions were.

Appendix 6 reports very briefly on a technique, which was introduced in the
second edition of Pontryagin’s famed book [295] on topological groups, namely,
the representation of compact groups in terms of projective limits of certain well-
ordered inverse systems. This technique yields itself to the application of transfinite
induction and therefore has been used in several recent publications as well. In
this appendix we mention, in particular, the theorem that the underlying space
of every compact group is supercompact. Appendix 6 also contains the theorem
that a compact group can be isomorphic to the full homeomorphism group of a
completely regular Hausdorff space only if it is profinite.

Selected references for the Preface of the Third Edition

[∗] The Lie Theory of Connected Pro-Lie Groups—A Structure Theory for Pro-
Lie Algebras, Pro-Lie Groups, and Connected Locally Compact Groups, Eu-
ropean Mathematical Society Publishing House, 2006, xii + 663pp.

[†] The Structure of Almost Connected Pro-Lie Groups, J. of Lie Theory 21
(2011), 347–383.

[‡] Local Splitting of Locally Compact Groups and Pro-Lie Groups, J. of Group
Theory 14 (2011), 931–935.
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Preface to the First Edition

The territory of compact groups seems boundless. How vast it is we realized in
the course of teaching the subject off and on for thirty years, after pursuing joint
research in the area for eighteen years, and by writing this book. We cover a lot
of material in it, but we remain in awe of the enormity of those topics on compact
groups we felt we must leave out.

Therefore, we must indicate the drift of the contents and explain our strategy.
The theme of this book is the Structure Theory of compact groups. One cannot
speak about compact groups without dealing with representation theory, and in-
deed various topics which belong to abstract harmonic analysis. While this book
is neither on the representation theory nor on the harmonic analysis of compact
groups, it does contain in its early chapters the elements of representation theory
of compact groups (and some in great generality). But a large volume of material
in the research and textbook literature referring to technical aspects of representa-
tion theory and harmonic analysis of compact groups remains outside the purview
of this text.

One cannot speak about compact groups without, at some time, examining
Lie group and Lie algebra theory seriously. This book contains a completely self-
contained introduction to linear Lie groups and a substantial body of material on
compact Lie groups. Our approach is distinctive in so far as we define a linear Lie
group as a particular subgroup of the multiplicative group of a Banach algebra.
Compact Lie groups are recognized at an early stage as being linear Lie groups.
This approach avoids the use of machinery on manifolds.

There are quite a number of excellent and accessible sources dealing with such
matters as the classification of complex simple Lie algebras and, equivalently, com-
pact simple Lie algebras; we do not have to reserve space for them here.

Two of the results on compact groups best known among the educated mathe-
matical public are that, firstly, a compact group is a limit of compact Lie groups,
and, secondly, compact Lie groups are compact groups of matrices. Of course we
will prove both of these facts and use them extensively. But we hasten to point out
a common misconception even among mathematicians who are reasonably well in-
formed on the subject. It is generally believed that the approximation of arbitrary
compact groups by Lie groups settles any issue on the structure of compact groups
as soon as it is resolved for Lie groups. There is veracity to this legend, as most
legends are founded in reality—somewhere, but this myth is far from reflecting the
whole truth. Our book will go a long way to shed light on this paradigm on the
structure theory of compact groups. In fact the structure theory presented in this
book, notably in Chapter 9, in most cases removes the necessity to use projective
limit arguments at all. The structure theorems presented in this book are richer
and often more precise than information gleaned directly from approximation ar-
guments. In this spirit we present the structure theory with a goal to be free, in
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Preface to the First Edition xv

the end, of all dimensional restrictions, in particular, of the manifold aspect of Lie
groups.

Finally, one cannot speak about compact groups without talking about totally
disconnected compact groups; according to the principle of approximating compact
groups by compact Lie groups, totally disconnected groups are approximated by
finite groups and are therefore also known as profinite groups. We will, by necessity,
discuss this subject—even early on, but the general theory of profinite groups has
a strong arithmetic flavor; this is not a main thrust of this book. In contrast with
that direction we emphasize the strong interplay between the algebraic and the
topological structures underlying a compact group. In a simplified fashion one
might say that this is, in the first place, a book on the structure of connected
compact groups and, in the second, on the various ways that general compact
groups are composed of connected compact groups and totally disconnected ones.

The table of contents, fairly detailed as it is, serves the reader as a first vantage
point for an overview of the topics covered in the book. The first four chapters
are devoted to the basics and to the fundamental facts of linear representation of
compact groups. After this we step back and take a fresh approach to another core
piece, Chapters 5 and 6, in which we deal with the requisite Lie theory. From there
on out, it is all general structure theory of compact groups without dimensional
restrictions. It will emerge as one of the lead motives, that so much of the struc-
ture theory of compact groups is understood, once commutative compact groups
are elucidated; the inner and technical reasons will emerge as we progress into
the subject. But it is for this reason that we begin emphasizing the abelian group
aspect from the first chapter onwards. Compact abelian groups have a territory of
their own, called duality theory; some of it can be dealt with in the first chapter
on a very elementary level—and we do that; some requires more information on
characters and we shall have sufficient information in the second chapter to get, at
this early stage, a proof of the Pontryagin–van Kampen Duality Theorem for
compact abelian groups. Yet the finer aspects of duality and a fuller exploitation
is deferred to Chapters 7 and 8. There are very good reasons why, in the context
of abelian topological groups, we do not restrict ourselves to compact groups but
cover at least locally compact ones, and indeed develop a certain amount of duality
even beyond these. The theory of compact abelian groups will lead us deeply into
aspects of topology and even set theory and logic. Armed with adequate knowledge
of compact abelian groups we finally deal in earnest with the structure of compact
groups in Chapter 9. In Chapter 10 we broach the topic of compact transforma-
tion groups; part of this material is so basic that it could have been presented in
the first chapter. However for the applications of compact transformations group
theory that we need, more sophisticated results are required. We can present these
only after we completed certain parts of the structure theory such as compact Lie
group theory. Therefore we opt for keeping material on transformation groups in
one place. The later chapters then discuss a variety of special topics pointing up
additional ramifications of the structure of compact groups of large infinite dimen-
sion; much of this material reflects some of the authors’ own research interests.
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Most works in the general area of group theory, topological algebra, and func-
tional analysis will consider compact groups a “classical topic,” having its roots
in the second and third decade of this century. (For some discussion of the history
of Lie groups and topological groups see e.g. [41] (notably p. 287–305), [70], [138],
[292].) Nevertheless, interested readers will observe novel aspects in the way we
approach the subject and place our emphasis. In the first four chapters it was
our aim to progress into the theory with as few prerequisites as possible and with
the largest pay-offs possible at the same time. Thus our approach to the basic
representation theory, while still reflecting the classical approach by Peter and
Weyl has our particular stamp on it. Later on, one of our main motives, emerging
from Chapter 5 on, is a very general theory of the exponential function far beyond
the more traditional domain of finite dimensional Lie groups; and even there our
direct approach places much heavier emphasis on the exponential function as the
essential feature of Lie group theory than authors commonly do. But we are cer-
tainly not bucking a trend in doing so. In many respects, in the end, one might
consider our approach as a general Lie theory for compact groups, irrespective of
dimension.

Strategies for using the book. We were employing certain strategies ourselves: the
first and foremost being to make this a source book which is as self-contained as
possible. This caused us to present rather fully some source material one needs
in separate appendices of which there are four. Dealing with an advanced topic
like this we do not find it always possible to abstain from citing other sources.
We make an effort to state the prerequisites at the beginning of each chapter and
warn the reader about those rare points where we have to invoke outside source
material. In lieu of lengthy introductions to either the book or to the individual
chapters we have provided, for an orientation of the reader, a postscript at the end
of each chapter with commentaries on the material that was covered.

With regard to our efforts to make this a self-contained source on the struc-
ture of compact groups, we think it to be quite justified to call the book a primer
for the student. The initial chapters should be accessible for the beginning gradu-
ate student having had basic analysis, algebra, elementary functional analysis up
through the elements of Banach spaces and Banach algebras, and having acquired
a small body of background information about point set topology; later chapters
will require more background knowledge, including some algebraic topology.

For reasons we have indicated, one might argue with us whether it is right to
call the book a handbook for the expert. Yet correspondence with mathematicians
working in various fields of specialisation who asked us about information regarding
the structure of compact groups has convinced us that there is a large body of
structural information at hand which is not accessible, or, at least, not easily and
readily accessible in the textbook and handbook literature, and we hope that some
of the material presented here justifies, to some extent, the designation “handbook”
as well. We have made an attempt to compile a fairly detailed table of contents
and a large alphabetical index. The list of references is substantial but is by no
means exhaustive.
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The book contains material for several separate courses or seminars. In Chap-
ters 1 through 4 one has the body of an introductory course on compact groups of
two semesters. Chapter 5 contains more than enough material for a one-semester
introductory course on the general theory of (linear) Lie groups. Chapter 6 has
up to two semesters worth of additional material on the structure of compact Lie
groups. Appendix 1 makes up for a one semester course in basic abelian group
theory, starting from the most basic facts reaching up to rather sophisticated log-
ical aspects of modern algebraic theory of groups. Appendix 3 is an introductory
course into category theory for the working mathematician (to borrow a title from
MacLane) replete with examples from numerous mathematical endeavors not im-
mediately related to compact group theory. Such courses have been taught by us
through the years in one form or another and our lecture notes became the bases
for some of the material in the book. Other portions of the book are more likely to
lend themselves to seminars or specialized advanced courses rather than to basic
courses.

Background and Acknowledgements. Much material that was developed in courses
given by the authors in their respective environments made its way into this mono-
graph. The first author has taught courses on Lie group theory at the University
of Tübingen, Germany, at Tulane University in New Orleans, and the Technische
Hochschule Darmstadt now Technische Universität Darmstadt) from the early six-
ties through recent years. He has given courses on compact groups at Tulane Uni-
versity repeatedly, beginning 1966, at the Université de Paris VI in the fall of 1973,
at the Université Catholique de Louvain-la-Neuve in March 1988, at Technische
Hochschule Darmstadt from 1989 on. The Lecture Notes from these courses formed
the nucleus of the first four chapters of this book. At the Technische Hochschule
Darmstadt, in the context of these courses, he taught courses on abelian groups
and on category theory; the lecture notes from these provided the basis material
for parts of Chapter 8 and of the Appendices 1 and 3. The second author has had
a history of courses of general topology and of topological groups which strongly
influenced certain pedagogical aspects of our presentation. From the year 1979 on,
both authors cooperated on a research project involving compact groups. Morris
brought to this project his expertise on topological groups, varieties of topologi-
cal groups, and his interest in free topological groups, and Hofmann contributed
his knowledge of compact groups and Lie groups. Basically, the project concerned
the study of free compact groups and is reflected in many parts of the book from
Chapter 8 on, notably in Chapters 11 and 12.

We owe a debt of gratitude to people and institutions. First and foremost to
our families. They have shown much appreciated tolerance for the stress caused
to them in the process of our research and our writing of this book. Without their
encouragement the project would hardly have materialized.

We have had the active support in many concrete ways through our colleagues.
Laszlo Fuchs at Tulane University graciously allowed us to use his course notes
for our treatment of the Whitehead Problem in Appendix 1; without his assistance
in the matter this section could not have been written. Karl-Hermann Neeb
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xviii Preface to the First Edition

and Helge Glöckner at the University of Erlangen read large portions of the
book and directed our attention to errors we have had in earlier drafts. Their
suggestions were most valuable. Dieter Remus of the University of Hannover
read several chapters of the book carefully and shared with us his list of typos
and his knowledge of the literature. Our students Brigitte Breckner, Robert
Graeff, Jürgen Heil, Peter Lietz, Peter Maier, Erhard Weidenauer
at Technische Hochschule Darmstadt did their best in error detection on parts of
the text as it was developed and distributed. Dong Hoon Lee of Case Western
Reserve University, Visiting Professor at Technische Hochschule Darmstadt dur-
ing the summer of 1997, contributed much through his wise input, notably the
matters concerning the automorphism group of compact groups. Richard Bödi
of the University of Tübingen carefully read Chapter 5 and helped us greatly with
typographical and mathematical errors in earlier versions of the text. Vladimir
Pestov of Victoria University of Wellington, New Zealand gave us valuable com-
ments. Several others—too many to name—read some portions of the text and
pointed out errors and omissions. None of these readers are, of course, responsible
for errors, typographical or otherwise, that remained in the text. Benno Art-
mann of the Technische Universität Darmstadt helped us by insisting that a book
on the structure of compact groups should contain enough information to explain
which surfaces and which spheres are compact groups; the answers to these ques-
tions are easily formulated but their proofs are far less elementary than one might
think at first glance.

We most cordially thank Wolfgang Ruppert of the University of Vienna for
providing the pictures in Chapters 1 and 11, and in Appendices 1 and 3. He has
been extremely helpful and cooperative. The System Manager of the Computer
Network of Technische Universität Darmstadt, Dr. Holger Grothe, has helped
us with great patience and endurance in more ways than we could mention here.
The authors typeset the book in plain TEX and were allowed to use a program
for the alphabetical index written by Ulrike Klein of Technische Universität
Darmstadt.

Naturally we have to thank institutions for their support, notably our home
institutions Technische Hochschule Darmstadt, the University of Wollongong, and
the University of South Australia. Both of the authors enjoyed many times the
gracious hospitality of Tulane University of which the first one is an Adjunct Fac-
ulty Member. The Deutsche Forschungsgemeinschaft supported the project “Lie-
Gruppen” at the Technische Hochschule Darmstadt for several years, and we are
also grateful to the Mathematical Analysis Research Group at the University of
Wollongong for supporting work on topological groups.

Very prominently we express our gratitude to our publisher, Verlag Walter
de Gruyter in Berlin. Manfred Karbe and Irene Zimmermann, our editors, have
worked with deep mathematical insight, diligence and patience on our source ma-
terial, and polished the final format giving the text the shape in which the reader
finds it now. They have tirelessly communicated with us; with the volume of this
book under our eyes we thoroughly appreciate their input.

K. H. Hofmann and S. A. Morris Darmstadt and Adelaide, 1998
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Chapter 1

Basic Topics and Examples

In this chapter we introduce the notion of a topological group, and in particular a
compact (topological) group. We discover that we are surrounded by topological
groups, and indeed by compact groups. Concrete examples are the linear (or ma-
trix) groups. But these are more than just interesting examples, we shall see that
they play a central role in the theory.

It is very easy to build new compact groups from given ones—by forming closed
subgroups, quotient groups or even arbitrary products. The last of these shows
that arbitrarily large compact groups are at hand. Another operation of central
importance is that of projective limit. Some of the basic results on the structure
of compact groups require that we familiarize ourselves with this concept at an
early stage.

Pride of place in the theory of compact abelian groups goes to the Pontryagin
Duality Theorem. To give the flavor of this, we need to know that if G is a compact
abelian group then its character group, Ĝ, is an abelian group, and that if A is an
abelian group, then Â is a compact abelian group. The Pontryagin Duality The-

orem says that the character group
̂̂
G of the character group of G is isomorphic

as a topological group to G and that
̂̂
A is isomorphic as a group to A. We are

familiar with duality theory from vector space theory, but here we see the sur-
prising fact that in going from a compact abelian group G to its character group,
the abelian group, Ĝ absolutely no information is lost, since we can retrieve the
compact group G from its character group Ĝ simply by taking its character group̂̂
G. So the study of compact abelian groups is “reduced” to the study of abelian
groups. In this chapter we prove half of the Pontryagin Duality Theorem, using
projective limits. The key to the proof is observing that every abelian group is a
directed union of its finitely generated subgroups, and analyzing what this means
for the character groups. This necessitates the study of projective limits which are
also used to show that compact totally disconnected groups are profinite.

Prerequisites. This chapter requires some basic knowledge of linear algebra, point
set topology and abelian group theory (such as the structure of finitely generated
abelian groups). In order to keep the book sufficiently self-contained, we shall
present basic aspects of the theory of abelian groups in Appendix 1. Some refer-
ences to these basic subject matter areas are given at the end of the chapter.
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2 1. Basic Topics and Examples

Definitions and Elementary Examples

Definitions 1.1. (i) A topological group is a group G together with a topology
such that multiplication (x, y) 7→ xy:G ×G → G and inversion x 7→ x−1:G → G
are continuous functions.

(ii) A compact group is a topological group whose topology is compact Haus-
dorff.

(iii) A locally compact group is a topological group whose topology is a Hausdorff
space in which the identity has a compact neighborhood. ut

The following remark is immediate:

Remark 1.2. If G is a topological group and H a subgroup, then H is a topological
group with respect to the induced topology. If H is a compact subspace, then H
is a compact group. ut

Examples 1.3. (i) The additive group R of real numbers with the usual topology
is a Hausdorff topological group which is not compact. The multiplicative group
R× = R \ {0} of real numbers with the induced topology is a topological group.

The subgroup S0 def
= {1,−1} is a compact (and discrete) subgroup.

(ii) The multiplicative group C× def
= C \ {0} of nonzero complex numbers with

the induced topology is a topological group. Its subgroup, S1 def
= {z ∈ C | |z| = 1},

consisting of all complex numbers of absolute value 1 is a compact group on the
1-sphere, often called the circle group.

(iii) The multiplicative group H× def
= H \ {0} of nonzero quaternions with the

usual topology is a topological group. Also, the subgroup S3 def
= {q ∈ H | |q| = 1}

of unit quaternions is a compact group, called the 3-sphere group.
(iv) All finite groups are compact groups with their discrete topology. ut

The last example appears rather trivial. Some basic construction processes,
however, will allow us to take them as a point of departure for the construction
of rather complicated groups. Examples 1.3(i), (ii) and (iii) seem to indicate that
spheres tend to have compact group structures. Yet the spheres in dimensions 0,
1, and 3 are the only ones which carry topological group structures; this is by no
means obvious at this stage.

One of the most prevalent sources of topological groups is the class of groups of
automorphisms of finite-dimensional vector spaces over the field of real numbers
or of complex numbers, or, equivalently, the class of groups of real or complex
matrices. These are the so-called linear groups or matrix groups. We approach this
subject in greater generality. Generality is not a goal in itself, but on a level of
greater generality concepts and proofs actually become simpler and more lucid.

We shall write K for the field R or the field C of complex numbers.
An algebra over K is a vector space over K which is also a ring, in such a way

that for all ring elements x, y and scalars α, we have α(xy) = (αx)y = x(αy).
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1. Basic Topics and Examples 3

A Banach algebra over K is an algebra A with identity endowed with a norm
which makes the underlying vector space a Banach space and satisfies the inequal-
ity ‖xy‖ ≤ ‖x‖‖y‖. (Banach algebras without identity are interesting, too, but not
to us.) An element u ∈ A is called a unit if it is invertible, that is if there is an
element u′ with uu′ = u′u = 1. The set of all units will be denoted A−1. It is the
largest subgroup containing 1 in the multiplicative semigroup of A.

Proposition 1.4. The group A−1 of units of any Banach algebra A is a topological
group. It is an open subset of A; that is, every point of A−1 has a neighborhood
which is an open ball in A.

Proof. Continuity of multiplication: If a, b ∈ A and ‖y−b‖ ≤ 1 then ‖y‖ ≤ ‖b‖+1
and we obtain the estimate ‖xy − ab‖ ≤ ‖xy − ay‖ + ‖ay − ab‖ ≤ ‖x − a‖‖y‖ +
‖a‖‖y− b‖ ≤ ‖x− a‖(‖b‖+ 1) + ‖a‖‖y− b‖. This number is small when x is close
to a and y is close to b. (In fact we have shown the continuity of multiplication in
the multiplicative semigroup A.)

Continuity of inversion: If a is a unit then ‖x−1 − a−1‖ = ‖(x−1a − 1)a−1‖ ≤
‖
(
(a−1x)−1− 1

)
‖‖a−1‖. If x is close to a then a−1x is close to 1 by the continuity

of multiplication. Thus it suffices to show continuity of inversion at the identity.
But if ‖h‖ < 1, then ‖(1−h)−1−1‖ = ‖h+h2 + · · · ‖ ≤ ‖h‖(1+‖h‖+‖h‖2 + · · ·) =
‖h‖(1 − ‖h‖)−1. We can make this number as small as we like by choosing ‖h‖
close to 0. This proves continuity of inversion at 1. So A−1 is a topological group.

The set A−1 of units is open: If ‖h‖ < 1, then 1−h has the inverse 1+h+h2+· · ·
and thus the open ball B of radius 1 around 1 is contained in A−1. If a is a unit,
then, in view of the continuity of multiplication, the function λa:A → A given
by λa(x) = ax is continuous and has a continuous inverse λ−1

a given by λ−1
a (x) =

a−1x. Thus λa is a homeomorphism. Hence λa(B) is an open neighborhood of
λa(1) = a in A. But λa(B) = aB is contained in A−1. This shows that A−1 is
open in A. ut

If V is an arbitrary Banach space over K then L(V ) = Hom(V, V ), the algebra
of all continuous linear operators of V , is a Banach algebra with respect to the
operator norm defined by ‖T‖ = sup{‖Tx‖ | ‖x‖ ≤ 1}. Its group of units, the group
of all invertible continuous operators is called Gl(V ), the general linear group on
V . If V = Kn, then Gl(V ) is also denoted Gl(n,K) or Gln(K). This group may be
identified with the group of all invertible n × n-matrices over K, and it is called
the general linear group of degree n. (Recall from the theory of topological vector
spaces that a finite-dimensional vector space such as Hom(V, V ) with dimV <∞
supports only one vector space topology! The topology of Gl(n,K) is therefore the
topology induced from the unique vector space topology of Hom(Kn,Kn) which,

as a vector space, is isomorphic to Kn2

.)

Corollary 1.5. The general linear group Gl(V ) on a Banach space V is a topo-
logical group when it is given the topology induced by the operator norm topology.
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4 1. Basic Topics and Examples

In particular, the general linear group Gl(n,K) of degree n over K = R or K = C
is a topological group. All subgroups of these groups are topological groups.

Proof. This is immediate from Proposition 1.4 and the preceding remarks! ut

Examples 1.6. (i) The group Sl(n,K)
def
= {g ∈ Gl(n,K) | det g = 1} is a topolog-

ical group, called the special linear group of degree n over K.
(ii) Let H denote a Hilbert space over K with scalar product (· | ·). The set

of all g ∈ Gl(H) satisfying (gx | gx) = (x | x) for all x ∈ H is a subgroup U(H),
called the unitary group on H.
This gives rise to two important special cases:

(a) If H is Rn with the standard scalar product (x | y) = x1y1 + · · ·+xnyn, then
the group U(H) is written O(n) and is called the orthogonal group of degree
n. The group SO(n) = O(n) ∩ Sl(n,R) is called the special orthogonal group
of degree n.

(b) If H is Cn with the standard scalar product (x | y) = x1y1 + · · ·+xnyn, then
the group U(H) is written U(n) and is called the unitary group of degree n.
The group SU(n) = U(n) ∩ Sl(n,C) is called the special unitary group of
degree n.

All groups O(n), SO(n), U(n), and SU(n) are compact groups for n = 1, . . . .

(c) The set Hn is a vector space under componentwise addition and scalar mul-
tiplication on the right: (x1, . . . , xn)·h = (x1h, . . . , xnh). An endomorphism
of Hn is then a morphism g:Hn → Hn of the underlying addition groups
satisfying g(x·h) = (gx)·h. For x ∈ H, x = a1 + ia2 + ja3 + ka4, we de-
fine x = a1 − ia2 − ja3 − ka4 and endow Hn with an inner product given
by (x | y) = Re(y1x1 + · · · + ynxn). Thus we make Hn into a real Hilbert
space H. Now we define the symplectic group of degree n, written Sp(n), to
be the group of all endomorphisms g of the H-vector space Hn that satisfy
(gx | gy) = (x | y), i.e. that are contained in O(H). These are certainly
invertible. Thus Sp(n) = Gl(n,H) ∩O(H). ut

Exercise E1.1. (i) Show that O(n), U(n), and Sp(n) are compact.
(ii) Let A be an algebra over K. An involution on A is a self-map ∗:A → A

with a∗∗ = a, (c·a)∗ = c·a∗ (where c is the complex conjugate of c if c ∈ C and
is c if c ∈ R), (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗. An element u ∈ A is called
unitary if uu∗ = u∗u = 1, that is if u−1 = u∗. Show that the set U(A) of all
unitary elements is a group. A Banach algebra A with an involution satisfying
‖a∗a‖ = ‖a‖2 is called a C∗-algebra. Show that for a Hilbert space H the algebra
L(H) is a C∗-algebra with respect to the forming of the adjoint operator T 7→ T ∗

given by (Tx | y) = (x | T ∗y). ut

We shall return much more systematically to groups of invertible elements in
Banach algebras when we treat linear Lie groups (Chapter 5).
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1. Basic Topics and Examples 5

Definitions 1.7. A morphism of topological groups is a continuous function f :G→
H between topological groups that is also a group homomorphism. It is called an
isomorphism of topological groups if it has an inverse morphism of topological
groups. If G and H are isomorphic as topological groups, then we write G ∼= H. ut

We do not have to dwell here on the fact that the concepts introduced in Defi-
nition 1.7 are of a category theoretical nature; the context will make it clear that
a morphism of compact groups f :G → H is a morphism of topological groups
between compact groups, and that an isomorphism of compact groups is an iso-
morphism of topological groups between compact groups.

Remark 1.8. If G is a compact group and H a Hausdorff topological group, and
if f :G→ H is an injective morphism of topological groups then the corestriction
f ′:G→ f(G), f ′(g) = f(g) is an isomorphism of compact groups.

Proof. Since G is compact, f is continuous and H is Hausdorff, the image f(G) is
a compact group, and f maps closed, hence compact subsets of G onto compact,
hence closed subsets of H. Then f ′, being a bijective continuous and closed map
is a homeomorphism, and thus f ′

−1
is a morphism of compact groups. ut

Exercise E1.2. (i) Recall (and verify) that there is an injective morphism of real
algebras from H into the algebra M2(C) of complex 2× 2 matrices given by

r·1 + x·i+ y·j + z·k 7→
(
r + x·i y + z·i
−y + z·i r − x·i

)
.

Show that this morphism induces an isomorphism of compact groups

f :S3 → SU(2).

(ii) Identify R3 with the subspace R·i+R·j+R·k of H. Show that R3 is invariant
under all inner automorphisms z 7→ qzq−1, q ∈ H. Show that unit quaternions
q ∈ S3 induce orthogonal maps of R3. Show that in this fashion one defines a
morphism of compact groups p: S3 → SO(3) whose kernel is S0 = {−1, 1}. (To
be continued in Exercise E1.3(iv) below where it is shown that p is surjective. In
Appendix A2.29 it is proved that S3 and SO(3) are, up to isomorphism, the only
connected topological groups locally isomorphic to SO(3).)

(iii) Show that O(n) is isomorphic to a subgroup of U(n) and that U(n) is
isomorphic to a subgroup of O(2n) (in the sense of compact groups).

(iv) Show that an algebraic homomorphism between topological groups is con-
tinuous if and only if it is continuous at the identity element. ut

Actions, Subgroups, Quotient Spaces

We recall a few facts from group theory. If G is a group and X a set, we say that
G operates or acts on X if there is a function (g, x) 7→ gx:G×X → X such that
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6 1. Basic Topics and Examples

1x = x and g(hx) = (gh)x. We say that the action is transitive if Gx = X for one
(hence all) x ∈ X. For each x ∈ X the set Gx = {g ∈ G | gx = x} is a subgroup
called the stability subgroup or isotropy subgroup (German: Standuntergruppe) of
G at x. If G acts on X and Y , then a function f :X → Y is called equivariant if
f(gx) = gf(x) for all g ∈ G and x ∈ X.

Any subgroup H of a group G gives rise to a partition of G into a set G/H of
cosets gH, g ∈ G. The group G acts transitively on the set G/H via (g, g′H) 7→
gg′H:G×G/H → G/H and the stability group GH of G at H is H.

IfG acts onX, then for each x ∈ X there is an equivariant bijection fx:G/Gx →
Gx given unambiguously by fx(gGx) = gx and the function g 7→ gx:G → Gx
decomposes into the composition of the quotient map q = (g 7→ gGx):G→ G/Gx
and fx. We have a commutative diagram of equivariant functions

G
g 7→gx−−−−−−−−−−−−−→ X

q

y xincl

G/Gx −−−−−−−−−−−−−→
fx

Gx.

If H is a subgroup of G acting transitively on X and containing the stability
group Gx then H = G.

Exercise E1.3. (i) Verify the preceding assertion.
(ii) Show that SO(n) acts transitively on the n− 1-sphere Sn−1 , n = 1, . . . . In

fact, much more is true: SO(n) acts transitively on the set X of oriented orthonor-
mal n-tuples (e1, . . . , en) ∈ (Rn)n.

(iii) The stability subgroup of SO(n) acting on Sn−1 at (0, . . . , 0, 1) ∈ Sn−1

may be identified with SO(n− 1). If G is a subgroup of SO(n) acting transitively
on Sn−1 and containing SO(n− 1), then G = SO(n).

(iv) Apply (iii) with n = 3 and the subgroup p(S3) with p from Exercise E1.2(ii)
and show that p is surjective. ut

If N is a normal subgroup of G, that is, satisfies gN = Ng or, equivalently,
gNg−1 = N for all g ∈ G, thenG/N is a group with the multiplication (gN, hN) 7→
ghN :G/N ×G/N → G/N . The quotient map q:G→ G/N , q(g) = gN is a surjec-
tive morphism of groups with kernel N . Conversely, if f :G→ H is a morphism of
groups we have the canonical decomposition of morphisms indicated by the follow-
ing diagram involving the well-defined isomorphism of groups f ′:G/ ker f → f(G),
f ′
(
g(ker f)

)
= f(g):

G
f−−−−−−−−−→ H

quot

y xincl

G/ ker f −−−−−−−−−→
f ′

f(G).

Each of the statements in this discussion has its counterpart for topological
groups and topological spaces. In order to secure terminology we formulate the
relevant definitions and add a few remarks special to the topological situation:
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1. Basic Topics and Examples 7

Definitions 1.9. (i) We say that a topological group G acts on a topological space
X if there is a continuous function (g, x) 7→ gx:G ×X → X which implements a
group action.

(ii) If H is a subgroup of a topological group G, then the set G/H of cosets
gH, g ∈ G is a topological space with respect to the quotient topology, called the
quotient space of G modulo H or also the homogeneous space of G modulo H. If N
is a normal subgroup of G, then the group G/N with the quotient topology is called
the quotient group of G modulo N . The quotient group R/Z will be written T. ut

Just for the record, we recall that the quotient topology on G/H is the finest
topology making the quotient map q:G→ G/H, q(g) = gH continuous. Therefore
a subset V of G/H is open if and only if q−1(V ) is open in G, that is if and only
if there is an open subset U of G that is saturated in the sense that UH = U and
that V = {uH:u ∈ U}.

We now proceed to establish some basic facts:

Proposition 1.10. (i) If the topological group G acts on the Hausdorff topo-
logical space X then each stability subgroup Gx is closed. The bijective func-
tion fx:G/Gx → Gx arising from the canonical decomposition of the function
g 7→ gx:G → Gx is continuous. If G is compact, it is a homeomorphism. In par-
ticular, if G is compact and acts transitively on a Hausdorff space X, then for
any x ∈ X, the spaces G/Gx and X are naturally homeomorphic and X may be
considered as a homogeneous space of G (modulo the stability group Gx).

(ii) If H is a subgroup of G, then the quotient map q:G → G/H is open, and
G/H is a Hausdorff space if and only if H is closed. If N is a normal subgroup
of G, then G/N is a topological group. If G is a compact group and N a closed
normal subgroup, then G/N is a compact group.

(iii) Assume that G is a group with a topology such that all left translations λg,
λgx = gx, are continuous. Then every open subgroup is closed. This applies, in
particular, to every topological group G.

(iv) If f :G → H is a morphism of topological groups, then the bijective map
f ′:G/ ker f → f(G) arising from the canonical decomposition of f is continuous.
If G/ ker f is compact and H is Hausdorff then f ′ is an isomorphism of compact
groups. The quotient group G/N of a topological group modulo a closed normal
subgroup is compact if there is a compact subset C with CN = G. This is certainly
the case if G is compact.

Proof. Exercise E1.4. ut

Exercise E1.4. Prove Proposition 1.10. ut

Exercise E1.5. Show that the sphere Sn−1 may be identified with a homogeneous
space of SO(n) modulo a subgroup isomorphic to SO(n− 1). ut

The following exercise will show that the circle group has several natural man-
ifestations: multiplicative ones, namely, S1 ∼= U(1) ∼= SO(2), and an additive one,
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8 1. Basic Topics and Examples

namely, T. It will also illustrate that the action of the group SO(2) of planar rota-
tions on the euclidean plane is the basis of an exact formulation of the elementary
concept of an angle.

Exercise E1.6. Prove the following statements.
(i) The function f :R→ C× given by f(t) = e2πit is a morphism of topological

groups inducing an isomorphism

f ′:T→ S1, f ′(t+ Z) = e2πit

of compact abelian groups.
(ii) S1 may be identified with U(1) if one identifies C× and Gl(1,C) in the

obvious way.
(iii) The isomorphism t 7→ 2πt:R → R induces an isomorphism t + Z 7→

2πt+ 2πZ:T→ R/2πZ.

R:R/2πZ→ SO(2), R(t+ 2πZ) =

(
cos t − sin t
sin t cos t

)
is an isomorphism of compact groups.

(iv) Let E = R2 denote the euclidean plane with the scalar product
(X | Y ) = x1y1 + x2y2, X = (x1, x2), Y = (y1, y2). The group SO(2) acts on
E by matrix multiplication, i.e. such that R(t+ 2πZ)·(x1, x2) = (x′1, x

′
2), where(

x′1
x′2

)
=

(
cos t − sin t
sin t cos t

)(
x1

x2

)
.

A half-line is a set of points of the form H = R+·X, 0 6= X ∈ E, R+ = [0,∞[. A
line is a set of the form L = R·X, 0 6= X ∈ E. By abuse of notation we also consider
cos and sin as functions on R/2πZ via sin(t+2πZ) = sin t and cos(t+2πZ) = cos t.

If (H1, H2) is an ordered pair of half-lines in E we write Hj = R+·Xj with
‖X1‖ = ‖X2‖; then there is a unique θ ∈ R/2πZ such that X2 = R(θ)·X1. The
element θ is called the oriented angle ang(H1, H2) between the half-lines H1 and H2

(in this order!). If (L1, L2) is an ordered pair of lines, write Lj = R·Xj with ‖X1‖ =
‖X2‖. Let p:R/2πZ → R/πZ denote the (“double covering”) morphism given by
p(r + 2πZ) = r + πZ. Then p

(
ang(R+·X1,R+·X2)

)
= p

(
ang(R+·X1,−R+·X2)

)
and this element of R/π·Z is called the oriented angle ang(L1, L2) between the
lines L1 and L2 (in this order!). In order to avoid an inflation of notation we use
the same functional symbol for the oriented angle between half-lines and between
lines; confusion is impossible if one looks at the arguments of the function ang(·, ·).

If X1 and X2 are nonzero elements of E, then

(X1 | X2) = ‖X1‖·‖X2‖ cos
(

ang(R+·X1,R+·X2)
)
.

For half-lines H1, H2, and H3 we have

ang(H1, H2) = − ang(H2, H1),

ang(H1, H3) = ang(H1, H2) + ang(H2, H3),

and the same for lines.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



1. Basic Topics and Examples 9

Any transformation X 7→ R(θ)·X of E is called a rotation by an angle θ ∈
R/2πZ. ut

For the action of compact groups we derive a simple, but very useful fact which
gives the first impression of the emergence of invariant objects for the action of
compact groups.

Proposition 1.11. If a compact group G acts on a topological space X and x
is a fixed point , that is, satisfies Gx = {x}, then x has a basis of G-invariant
neighborhoods.

More specifically, if U is any neighborhood of x, then the set

V =
⋂
g∈G

gU

is a G-invariant neighborhood of x contained in U .

Proof. Since all functions y 7→ hy:X → X, h ∈ G, are bijective and hG = G
we find hV = h

⋂
g∈G gU =

⋂
g∈G hgU =

⋂
g∈G gU = V . Thus V is G-invariant.

Clearly, V ⊆ U since 1 ∈ G and 1U = U .
We now suppose that V is not a neighborhood of x in X and derive a contra-

diction; this will finish the proof. We may assume that U is open, for otherwise we
can replace U by its interior. For any subset W of X we define

GW = {g ∈ G | gW \ U 6= Ø}.

By our supposition that V is not a neighborhood of x, for any neighborhood W
of x we compute Ø 6= W \ V = W \

⋂
g∈G gU =

⋃
g∈G(W \ gU), and so there

is some g ∈ G with W \ gU 6= Ø and then g−1W \ U 6= Ø. Thus GW 6= Ø. Let
U denote the neighborhood filter of x. Since W ⊆ W ′ implies GW ⊆ GW ′ , the
family {GW |W ∈ U} is a filter basis on G. Hence by the compactness of G, there
is an element g ∈

⋂
W∈U GW . Then, for all neighborhoods N of 1 in G, we have

gN ∩ GW 6= Ø, that is, gNW \ U 6= Ø. By the continuity of the action, given
an arbitrary neighborhood W0 of x we find N and W so that NW ⊆ W0. Hence
gW0 \ U 6= Ø. Thus every neighborhood W0 of x meets the set X \ g−1U . This
last set is closed as U and hence g−1U is open. Therefore x ∈ X \ g−1U and thus
gx /∈ U . But x = gx since x is a fixed point. Thus x /∈ U and that is a contradiction
since U is a neighborhood of x.

Second proof using nets. If V is not a neighborhood of x, then for each neigh-
borhood W of x there is an element gW ∈ G such that W \ gWU 6= Ø. Hence
there is an xW ∈W with g−1

W xW /∈ U . Since G is compact, there is a subnet gW (j)

converging to some g. On account of xW ∈ W , the subnet xW (j) converges to x.

By the continuity of the action, g−1
W (j)xW (j) converges to g−1x which is x since x

is a fixed point. We may assume that U is open. Then g−1
W (j)xW (j) /∈ U implies

x /∈ U , a contradiction.
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10 1. Basic Topics and Examples

Third proof using Wallace’s Lemma. Let B be a compact subset of X and A
a compact subset of G such that A·B ⊆ B. Now let U be an open neighborhood

of B. We shall show that U ′
def
=
⋂
g∈A g

−1U is a neighborhood of B which in the
special case that A = G is invariant. Specializing to B = {x} again we get a proof
of Proposition 1.11.

Define f :G×X → X by f(g, y) = g−1·x. Then f−1(U) is an open neighborhood
ofA−1×B ⊆ G×X. Then by Wallace’s Lemma (see Proposition A4.29 of Appendix
4) there are open neighborhoods V of A inG andW ofB inX such that V −1×W ⊆
f−1(U), and so V ·W = f(V −1 ×W ) ⊆ U . Hence W ⊆ g−1U for all g ∈ V , that
is, W ⊆

⋂
g∈V g

−1U ⊆
⋂
g∈A g

−1·U = U ′. Hence U ′ is a neighborhood of B. ut

Corollary 1.12. If G is a compact group and U any neighborhood of the identity,
then

V =
⋂
g∈G

gUg−1

is a neighborhood of the identity which is contained in U and is invariant under
all inner automorphisms.

Proof. The group G acts on G via (g, x) 7→ gxg−1, and 1 is a fixed point for this
action. An application of Proposition 1.11 yields the result. ut

A topological group is called a SIN-group or said to have small invariant neigh-
borhoods if every neighborhood of the identity contains a neighborhood of the
identity which is invariant under all inner automorphisms. Clearly every abelian
topological group is a SIN-group. From Corollary 1.12, every compact group is
also a SIN-group.

Corollary 1.13. If G is a compact group acting on a topological vector space E in
such a fashion that all maps π(g) = (x 7→ gx):E → E are linear, then the family
{π(g) | g ∈ G} of continuous operators of E is equicontinuous, that is, given a
neighborhood U of 0 there is a neighborhood V of 0 such that π(g)(V ) ⊆ U for
all g ∈ G. In fact, V may be chosen to be V =

⋂
g∈G π(g)U , in which case V is

G-invariant.

Proof. Since the action is linear, the origin 0 is a fixed point. Then we apply
Proposition 1.11 to obtain the result. ut

Products of Compact Groups

Using our elementary examples as raw material, we can construct a vast supply of
compact groups.

Proposition 1.14. If {Gj | j ∈ J} is an arbitrary family of compact groups, then
the product G =

∏
j∈J Gj with the product topology is a compact group. Every

closed subgroup H of G is a compact group.
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1. Basic Topics and Examples 11

Proof. It is straightforward to observe that the product topology makes the carte-
sian product of any family of topological groups into a topological group. Since
Tychonoff’s Theorem [100] says that the product space of any family of compact
spaces is compact, G is a compact group. By Remark 1.2, any closed subgroup H
of G is a compact group. ut

As a simple example we see that any closed subgroup of any product
∏
j∈J U(nj)

or any product
∏
j∈J O(nj) is a compact group. This is very elementary, but we

shall see soon (namely, in Corollary 2.29 below) that all compact groups are ob-
tained in this fashion up to isomorphy.

Applications to Abelian Groups

An important example arises out of the preceding proposition. For two sets X and
Y the set of all functions f :X → Y will be denoted by Y X .

Definition 1.15. If A is an abelian group (which we prefer to write additively)
then the group

Hom(A,T) ⊆ TA

of all morphisms of abelian groups into the underlying abelian group of the circle
group (no continuity involved!) given the induced group structure and topology of
the product group TA (that is, pointwise operations and the topology of pointwise

convergence) is called the character group of A and is written Â. Its elements are
called characters of A. ut

Proposition 1.16. The character group Â of any abelian group A is a compact
abelian group.

Proof. By Proposition 1.14, the product TA is a compact abelian group. For any
pair (a, b) ∈ A× A the set M(a, b) = {χ ∈ TA | χ(a+ b) = χ(a) + χ(b)} is closed
since χ 7→ χ(c):TA → T is continuous by the definition of the product topology.

But then Â =
⋂

(a,b)∈A×AM(a, b) is closed in TA and therefore compact. ut

Let us look at a few examples: In order to recognize Ẑ we note that the function
f 7→ f(1): Hom(Z,T) → T is an algebraic isomorphism and is continuous by the

definition of the topology of pointwise convergence. Since Ẑ is compact and T
Hausdorff, it is an isomorphism of compact groups. Hence

(1) Ẑ ∼= T.

If Z(n) = Z/nZ is the cyclic group of order n, then the function z + nZ 7→
1
nz+Z gives an injection j:Z(n)→ T which induces an isomorphism Hom(Z(n), j):

Hom
(
Z(n),Z(n)

)
→ Hom(Z(n),T) = Ẑ(n). Since the function f 7→ f(1 + nZ):

Hom
(
Z(n),Z(n)

)
→ Z(n) is an isomorphism, we have

(2) Ẑ(n) ∼= Z(n).
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12 1. Basic Topics and Examples

If X is a set, and {Ax | x ∈ X} a family of abelian groups, let us denote with⊕
x∈X Ax the direct sum of the Ax, that is, the subgroup of the cartesian product∏
x∈X Ax consisting of all elements (ax)x∈X with ax = 0 for all x outside some

finite subset of X. A special case is Z(X) =
⊕

x∈X Ax with Ax = Z for all x ∈ X.
This is the free abelian group on X (cf. Appendix A1.6).

Proposition 1.17. The function

Φ:
∏
x∈X

Hom(Ax,T)→ Hom(
⊕
x∈X

Ax,T)

which associates with a family (fx)x∈X of morphisms fx:Ax → T the morphism

(ax)x∈X 7→
∑
x∈X

fx(ax):
⊕
x∈X

Ax → T

is an isomorphism of compact groups. Notably,

(3) (
⊕
x∈X

Ax)̂ ∼= ∏
x∈X

Âx.

In particular

(4) Z(X)̂ ∼= ẐX ∼= TX .

Proof. Abbreviate
⊕

x∈X Ax by A. We notice that Φ is well defined, since the
fx(ax) vanish with only finitely many exceptions for (ax)x∈X . Clearly Φ is a mor-
phism of abelian groups. Further (fx)x∈X ∈ ker Φ if and only if

∑
x∈X fx(ax) = 0

for all (ax)x∈X ∈ A. Choosing for a given y ∈ X the family (ax) so that ax = 0
for x 6= y and ay = a we obtain fy(a) = 0 for any a ∈ Ay. Thus fy = 0 for all
y ∈ X. Hence Φ is injective. If f :A → T is a morphism, define fy:Ay → T by
fy = f ◦copry where copry:Ay → A is the natural inclusion. Then Φ

(
(fx)x∈X

)
= f

follows readily. Thus Φ is surjective, too, and thus is an isomorphism of abelian
groups. Next we show that Φ is continuous. By the definition of the topology on
Hom(A,T) ⊆ TA, it suffices to show that for each (ax)x∈X ∈ A, the function
(fx)x∈X 7→ Φ

(
(fx)x∈X

)(
(ax)x∈X

)
=
∑
x∈X fx(ax) :

∏
x∈X Hom(Ax,T) → T is

continuous. Since only finitely many ax are nonzero, this is the case if (fx)x∈X 7→
fy(ay) is continuous for each fixed y, and this holds if fy 7→ fy(ay): Hom(Ay,T)→
T is continuous. However, by definition of the topology of pointwise convergence,
this is indeed the case. Since the domain of Φ is compact by the theorem of Ty-
chonoff and the range is Hausdorff, this suffices for Φ to be a homeomorphism.

The last assertion of the proposition is a special case. This remark concludes
the proof of the proposition. ut
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1. Basic Topics and Examples 13

The compact abelian groups TX are called torus groups. The finite dimensional
tori Tn are special cases.

We cite from the basic theory of abelian groups the fact that a finitely generated
abelian group is a direct sum of cyclic groups (cf. Appendix A1.11). Thus (1), (2)
and (3) imply the following remark:

Remark 1.18. If E is a finite abelian group, then Ê is isomorphic to E (although
not necessarily in any natural fashion!). If F is a finitely generated abelian group

of rank n, that is, F = E ⊕ Zn with a finite abelian group E, then F̂ ∼= Ê × Tn.ut

In particular, the character groups of finitely generated abelian groups are
compact manifolds. (We shall not make any use of this fact right now. See for
example [141].)

There are examples of compact abelian groups whose topological nature is quite
different.

Example 1.19. Let {Gj | j ∈ J} be any family of finite discrete nonsingleton
groups. Then G =

∏
j∈J Gj is a compact group. All connected components are

singleton, and G is discrete if and only if J is finite. ut

A topological space in which all connected components are singletons is called
totally disconnected. Arbitrary products of totally disconnected spaces are totally
disconnected, and all discrete spaces are totally disconnected. The standard Cantor
middle third set C is a compact metric totally disconnected space. In fact it may be
realized as the set of all real numbers r in the closed unit interval, whose expansion
r =

∑∞
n=1 an3−n with respect to base 3 has all coefficients an in the set {0, 2}.

Then the map f : {−1, 1}N → C given by f
(
(rn)n∈N

)
=
∑∞
n=1(rn + 1)3−n is a

homeomorphism. The set S0 = {−1, 1} is a finite group, and thus, by Proposition
1.14, the domain of f is a compact group.

Hence the Cantor set can be given the structure of a compact abelian group.
In this group, every element has order 2, so that in fact, algebraically, it is a
vector space over the field GF(2) of 2 elements, and by (2) and (3) above, it is the
character group of Z(2)(N).

One can show that all compact metric totally disconnected spaces without
isolated points are homeomorphic to C. In particular, all metric compact totally
disconnected infinite groups are homeomorphic to C. (See [51], or e.g. Section 3.1,
Theorem 4 of Fedorchuk, The Fundamentals of Dimension Theory in [14].)

Definition 1.20. Let X and Y be sets and F ⊆ Y X a set of functions from X to
Y . We say that F separates the points of X if for any two different points x1 and
x2 in X, there is an f ∈ F such that f(x1) 6= f(x2). ut

If G and H are groups, then a set F of homomorphisms from G to H is easily
seen to separate the points of G if and only if for each g 6= 1 in G there is an f ∈ F
with f(g) 6= 1.
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14 1. Basic Topics and Examples

For any abelian group A there is always a large supply of characters. In fact
there are enough of them to separate the points. In order to see this we resort to
some basic facts on abelian groups:

An abelian group A is called divisible if for each a ∈ A and each natural
number n there is an x ∈ A such that n·x = a. Examples of divisible groups are
Q and R. Every homomorphic image of a divisible group is divisible, whence T is
divisible. The crucial property of divisible groups is that for every subgroup S of
an abelian group A and a homomorphism f :S → I into a divisible group there is
a homomorphic extension F :A→ I of f . (See Appendix 1, A1.15.)

I
=−−−−−−−−−→ I

f

x xF
S −−−−−−−−−→

incl
A

Lemma 1.21. The characters of an abelian group A separate the points.

Proof. Assume that 0 6= a ∈ A. We must find a morphism χ:A → T such that
χ(a) 6= 0. Let S be the cyclic subgroup Z·a of A generated by a. If S is infinite,
then S is free and for any nonzero element t in T (e.g. t = 1

2 + Z) there is an
f :S → T with f(a) = t 6= 0. If S has order n, then S is isomorphic to 1

nZ/Z ⊆ T,
and thus there is an injection f :S → T. If we let χ:A → T be an extension of f
which exists by the divisibility of T, then χ(a) = f(a) 6= 0. ut

Definitions 1.22. For a compact abelian group G a morphism of compact groups
χ:G → T is called a character of G. The set Hom(G,T) of all characters is an
abelian group under pointwise addition, called the character group ofG and written
Ĝ. Notice that we do not consider any topology on Ĝ. ut

Now we can of course iterate the formation of character groups and oscillate be-
tween abelian groups and compact abelian groups. This deserves some inspection;
the formalism is quite general and is familiar from the duality of finite-dimensional
vector spaces.

Lemma 1.23. (i) If A is an abelian group, then the function

ηA:A→ ̂̂
A, ηA(a)(χ) = χ(a)

is an injective morphism of abelian groups.
(ii) If G is a compact abelian group, then the function

ηG:G→ ̂̂
G, ηG(g)(χ) = χ(g)

is a morphism of compact abelian groups.
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Proof. (i) The morphism property follows readily from the definition of pointwise

addition in Â. An element g is in the kernel of ηA if χ(g) = 0 for all characters.
Since these separate the points by Lemma 1.21, we conclude g = 0. Hence ηA is
injective.

(ii) Again it is immediate that ηG is a morphism of abelian groups. We must ob-
serve its continuity: The function g 7→ χ(g):G→ T is continuous for every charac-

ter χ by the continuity of characters. Hence the function g 7→
(
χ(g)

)
χ∈Ĝ:G→ TĜ

is continuous by the definition of the product topology. Since
̂̂
G = Hom(Ĝ,T) ⊆ TĜ

inherits its structure from the product, ηG is continuous. ut

Exercise E1.7. For a discrete abelian group A and a compact abelian group G

the members of
̂̂
A and

̂̂
G separate the points of Â, respectively, Ĝ. Equivalently,

the evaluation morphisms η
Â

: Â→
̂̂̂
A and η

Ĝ
: Ĝ→

̂̂̂
G are injective.

[Hint. Observe that already ηA(A) separates the points of Â.] ut

Let us look at our basic examples: If A is a finite abelian group, then Â is

isomorphic to A by Remark 1.18. Hence
̂̂
A is isomorphic to A and ηA:A → ̂̂

A is
injective by Lemma 1.23. Hence ηA is an isomorphism.

Every character χ:T → T yields a morphism of topological groups f :R → T
via f(r) = χ(r + Z). Let q:R → T be the quotient homomorphism. We set V =
] − 1

3 ,
1
3 [⊆ R and W = q(V ). Then q|V :V → W is a homeomorphism. Assume

that x and y are elements of W such that x+ y ∈ W , too. Then r = (q|V )−1(x),
s = (q|V )−1(y) and t = (q|V )−1(x+ y) are elements of V such that q(r+ s− t) =
q(r) + q(s) − q(t) = x + y − (x + y) = 0 in T. Hence r + s − t ∈ ker q = Z. But
also |r + s − t| ≤ |r| + |s| + |t| < 3· 13 = 1. Hence r + s − t = 0 and (q|V )−1(x) +
(q|V )−1(y) = r + s = t = (q|V )−1(x + y). Now let U denote an open interval
around 0 in R such that f(U) ⊆ W . If we set ϕ = (q|V )−1 ◦ f |U :U → R then for
all x, y, x+ y ∈ U we have ϕ(x+ y) = ϕ(x) + ϕ(y). Under these circumstances ϕ
extends uniquely to a morphism F :R → R of abelian groups (see Exercise E1.8
below). Now q ◦ F = f = χ ◦ q since F extends ϕ and U generates the abelian
group R. Then Z = ker q ⊆ ker(q ◦ F ), that is, F (Z) ⊆ ker q = Z. Thus if we
set n = F (1), then n ∈ Z. Since ϕ is continuous, then F is continuous at 0. As
a morphism, F is continuous everywhere (see Exercise E1.2(iv)). As a morphism
of abelian groups, F is quickly seen to be Q-linear, and from its continuity it
follows that it is R-linear. Thus F (t) = nt and χ(t+Z) = nt+Z follows. Thus the

characters of T are exactly the endomorphisms µn = (g 7→ ng) and n 7→ µn:Z→ T̂
is an isomorphism.

Exercise E1.8. Prove the following proposition:

The Extension Lemma. Let U be an arbitrary interval in R containing 0 and
assume that ϕ:U → G is a function into a group such that x, y, x+ y ∈ U implies
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16 1. Basic Topics and Examples

ϕ(x+ y) = ϕ(x)ϕ(y). Then there is a morphism F :R→ G of groups extending ϕ.
If U contains more than one point then F is unique.

[Hint. For r ∈ R and two integers m and n with r/m, r/n ∈ U show m·ϕ(r/m) =
n·ϕ(r/n). Define F (r) to be this unique element of G and show that F is a mor-
phism.] ut

We shall treat the Extension Lemma again in Lemma 5.8 below in a systematic
fashion.

Now that we have determined T̂ we look at ηZ. We have ηZ(n)(χ) = χ(n) =

nχ(1) = µn
(
χ(1)

)
for any character χ of Z. Since χ 7→ χ(1): Ẑ→ T is an isomor-

phism by (1) above and since every character of T is of the form µn, this shows
that ηZ is an isomorphism.

Now we show that ηT is an isomorphism, too. We recall that T̂ is infinite cyclic
and is generated by the identity map ε:T → T. In other words, any character
χ:T→ T of T̂ is of the form χ = n·ε = µn. Now we observe ηT(g)(n·ε) = n·ε(g) =
n·g for all n ∈ Z. Taking n = 1 we note that the kernel of ηT is singleton and
thus ηT is injective. In order to show surjectivity we assume that Ω: T̂ → T is a
character of T̂ ∼= Z. Then Ω(ε) is an element g ∈ T and we see ηT(g)(n·ε) = n·g =
n·Ω(ε) = Ω(n·ε). Thus ηT(g) = Ω. This shows that ηT is surjective, too. Thus ηT
is an isomorphism.

Remark 1.24. (i) Assume that A and B are abelian groups such that ηA and ηB
are isomorphisms. Then ηA⊕B is an isomorphism.

(ii) If G and H are compact abelian groups and ηG and ηH are isomorphisms,
then ηG×H is an isomorphism.

(iii) For any finitely generated abelian group A, the map ηA:A → ̂̂
A is an

isomorphism.
(iv) If G ∼= Tn × E for a natural number n and a finite abelian group E then

ηG:G→ ̂̂
G is an isomorphism.

(v) Every torus group Tn contains an element such that the subgroup generated
by it is dense.

Proof. Exercise E1.9. ut

Exercise E1.9. Prove Remarks 1.24(i)–(v).

[Hint. For (iii) and (iv) recall that the evaluation morphism is an isomorphism for
cyclic groups, for Z and for T. Also recall the Fundamental Theorem for Finitely
Generated Abelian Groups (cf. Appendix A1.11).

For a proof of (v) set T = Tn. Every quotient group of T modulo some closed
subgroup is a compact group which is a quotient group of Rn and is, therefore,
a torus by Appendix 1, Theorem 1.12(ii). Now let x ∈ T ; then T/Z·x is a torus,
and by (iv) above, its characters separate the points. Thus, Z·x is dense in T iff
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1. Basic Topics and Examples 17

all characters of T vanish on Z·x, i.e. on x, iff

(∀χ ∈ T̂ ) [χ(Z·x) = {0}]⇒[χ = 0]

iff the map χ 7→
(
n 7→ χ(n·x)

)
: T̂ → Ẑ is injective iff the map χ 7→ χ(x): T̂ → T

is injective (via the natural isomorphism Ẑ ∼= T). But since η:T → ̂̂
T is an

isomorphism by (iv) above, any homomorphism α: T̂ → T is an evaluation, i.e.

there is a unique x ∈ T such that for any χ ∈ T̂ we have χ(x) = α(χ). Thus, in
conclusion, we have an element x ∈ T such that Z·x is dense in T iff we have an
injective morphism Zn ∼= T̂ → T. But the injective morphisms Zn → R/Z abound
(cf. Appendix A1.43).

Provide a direct proof of Remark 1.24(v) as follows: Let rj ∈ R, j = 1, . . . , n,
be n real numbers such that {1, r1, . . . , rn} is a set of linearly independent elements
of the Q-vector space R. Then the element x + Z ∈ Rn/Zn, x = (r1, . . . , rn) has
the property that Z·(x+ Z) is dense. See [34], Chap. 7, §1, no 3, Corollaire 2 de la
Proposition 7.] ut

Projective Limits

Definition 1.25. Let J be a directed set, that is, a set with a reflexive, transitive
and antisymmetric relation ≤ such that every finite nonempty subset has an upper
bound. A projective system of topological groups over J is a family of morphisms
{fjk:Gk → Gj | (j, k) ∈ J × J, j ≤ k}, where Gj , j ∈ J are topological groups,
satisfying the following conditions:

(i) fjj = idGj for all j ∈ J
(ii) fjk ◦ fkl = fjl for all j, k, l ∈ J with j ≤ k ≤ l. ut

Lemma 1.26. (i) For a projective system of topological groups, define the topo-
logical group P by P =

∏
j∈J Gj. Set

G = {(gj)j∈J ∈ P | (∀j, k ∈ J) j ≤ k ⇒ fjk(gk) = gj}.

Then G is a closed subgroup of P . If inc:G → P denotes the inclusion and
prj :P → Gj the projection, then the function fj = prj ◦ inc:G→ Gj is a morphism
of topological groups for all j ∈ J , and for j ≤ k in J the relation fj = fjk ◦ fk is
satisfied.

(ii) If all groups Gj in the projective system are compact, then P and G are
compact groups.

Proof. (i) Assume that j ≤ k in J . Define Gjk = {(gl)l∈J ∈ P | fjk(gk) = gj}.
Since fjk is a morphism of groups, this set is a subgroup of P , and since fjk is
continuous, it is a closed subgroup. But G =

⋂
(j,k)∈J×J, j≤kGjk. Hence G is a

closed subgroup. The remainder is straightforward.
(ii) If all Gj are compact, then P is compact by Tychonoff’s Theorem, and thus

G as a closed subgroup of P is compact, too. ut
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18 1. Basic Topics and Examples

Definitions 1.27. If P = {fjk:Gk → Gj | (j, k) ∈ J×J, j ≤ k} is a projective sys-
tem of topological groups, then the group G of Lemma 1.26 is called its projective
limit and is written G = limP. As a rule it suffices to remind oneself of the entire
projective system by recording the family of groups Gj involved in it; therefore the
notation G = limj∈J Gj is also customary. The morphisms fj :G → Gj are called
limit maps and the morphisms fjk:Gk → Gj are called bonding maps. ut

Example 1.28. Assume that we have a sequence ϕn:Gn+1 → Gn, n ∈ N of
morphisms of compact groups:

G1
ϕ1← G2

ϕ2← G3
ϕ3← G4

ϕ4← · · ·

Then we obtain a projective system of compact groups by defining fjj = idGj and,
for j < k the morphisms

fjk = ϕj ◦ ϕj+1 ◦ · · · ◦ ϕk−1:Gk → Gj .

Then G = limn∈NGn is simply given by {(gn)n∈N | (∀n ∈ N)ϕn(gn+1) = gn}.
(i) Choose a natural number p and set Gn = Z(pn) = Z/pnZ. Define

ϕn:Z(pn+1)→ Z(pn) by ϕn(z + pn+1Z) = z + pnZ:

Z(p)
ϕ1← Z(p2)

ϕ2← Z(p3)
ϕ3← Z(p4)

ϕ4← · · ·

The projective limit of this system is called the group Zp of p-adic integers.
(ii) Set Gn = T for all n ∈ N and define ϕn(g) = p·g for all n ∈ N and g ∈ T.

(It is customary, however, to write p in place of ϕn):

T p← T p← T p← T p← · · ·

The projective limit of this system is called the p-adic solenoid Tp. ut

Let us discuss these examples in the following exercises:

Exercise E1.10. (i) Observe that the bonding maps ϕ1, ϕ2, . . . are morphisms
of rings. Prove that Zp is a compact ring with continuous multiplication so that
all limit maps fn:Zp → Z/pnZ are morphisms of rings.

(ii) Define η:Z→ Zp by η(z) = (z + pnZ)n∈N. Show that this is a well defined
injective morphism of rings.

(iii) Prove the following statement: For an arbitrary element g = (zn+pnZ)n∈N ∈
Zp, the sequence

(
η(zn)

)
n∈N converges to g in Zp. Conclude that η has a dense

image.
(iv) Show that Zp is totally disconnected.
(v) Show that the limit map fm has kernel {(zn+pnZ)n∈N | zm ≡ 0 (mod pm)}.

Show that it is pmZp = η(pmZ). Prove that the subgroups pmZp are open and
closed and form a basis for the filter of neighborhoods of 0.
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(vi) Show that the limit of the system

(
1

p
·Z/Z)

p← (
1

p2
·Z/Z)

p← (
1

p3
·Z/Z)

p← (
1

p4
Z/Z)

p← · · ·

is a group Z′p isomorphic to Zp.
(vii) Show that Zp is torsion-free; that is, it has no elements of finite order).ut

The following lemma will be useful in the next exercise and in many similar
situations.

Lemma 1.29. Assume that f :G→ H is a morphism of topological groups. Then
the following conditions are equivalent:

(1) The kernel N of f is discrete and f is open.
(2) There is an open neighborhood U of 1 such that f |U :U → f(U) is a homeo-

morphism onto an open identity neighborhood in H.

Proof. (1)⇒(2) Since multiplication and inversion are continuous in G and since
{1} is an open subset in N , we find an open neighborhood U of 1 in G so that
UU−1 ∩N = {1}. Now assume that f(u) = f(v) with u, v ∈ U . Then f(uv−1) =
f(u)f(v)−1 = 1, whence uv−1 ∈ UU−1∩N = {1}. Thus u = v and f |U :U → f(U)
is bijective. By hypothesis f and thus f |U is both continuous and open.

(2)⇒(1) Since f |U is injective, f(u) = 1 = f(1) implies u = 1. Thus U ∩N =
{1}. As U is an open set, this implies that {1} is open in N and thus N is discrete
since translations on N are homeomorphisms. Let W be an open set in G and w ∈
W . Then U∩w−1W is an open neighborhood of 1 in G. Thus, by (2), f(U∩w−1W )
is an open set Ww in H. Hence f(w)Ww = f

(
w(U∩w−1W )

)
= f(wU∩W ) ⊆ f(W )

is an open neighborhood of f(w) in H contained in f(W ). Hence f(W ) is open.
Thus f is an open map. ut

Definition 1.30. A morphism of topological groups f :G→ H is said to implement
a local isomorphism if there is an open neighborhood U of 1 in G such that f(U)
is open in H and f |U :U → f(U) is a homeomorphism. ut

This is precisely the situation of Lemma 1.29.

Exercise E1.11. (i) Let f :Tp → T be defined by f
(
(rn + Z)n∈N

)
= pr1 + Z and

show that Z′p = ker f . In other words, there is an exact sequence:

0→ Zp
α→ Tp

f→ T→ 0.

(ii) Show that the morphisms in the sequence of abelian topological groups

0→ Z ϕ→ Z′p × R π→ Tp → 0

are well defined by

ϕ(z) =
(
(p−nz + Z)n∈N,−z

)
, π

(
(zn + Z)n∈N, r

)
= (zn + p−nr + Z)n∈N.
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Show that this sequence is exact. Conclude that π implements a local isomorphism
between Z′p × R and Tp. Show that π(Z′p × {0}) = ker f1.

In Theorem 8.22 of Chapter 8, we will give characterizations of finite dimension-
al compact abelian groups.

(iii) Visualize a compact subspace of R3 obtained as follows. Embed a solid
torus (= doughnut) D1 into euclidean space. Embed a second solid torus D2 into
D1 by winding it around p times inside D1. Embed a third solid torus D3 into D2

by winding it p times around inside D2 (and hence p2 times inside D1). Continue
recursively in this fashion and form the intersection D∞ of the descending family
D1⊃D2⊃D3⊃ · · · . Prove—at least visualize!—that D∞ is homeomorphic to Tp.

Figure 1.1: The dyadic solenoid

(iv) Show that Tp is connected but not arcwise connected. (The arc component
of 0 in Tp is {(p−nr + Z)n∈N | r ∈ R}.)

Proposition 1.31. Assume that G = limj∈J Gj for a projective system
fjk:Gk → Gj of compact groups, j ≤ k in J , and denote with fj :G → Gj the
limit maps. Then the following statements are equivalent:

(1) All bonding maps fjk are surjective.
(2) All limit maps fj are surjective.

Proof. (1)⇒(2) Fix i ∈ J . Let h ∈ Gi; we must find an element g = (gj)j∈J ∈ G
with gi = fi(g) = h. For all k ∈ J with i ≤ k we define Ck ⊆

∏
j∈J Gj by

{(xj)j∈J | (∀j ≤ k)xj = fjk(xk) and xi = h}.

Since fik is surjective, Ck 6= Ø. If i ≤ k ≤ k′ then we claim Ck′ ⊆ Ck. Indeed
(xj)j∈J ∈ Ck′ implies fjk(xk) = fjkfkk′(xk′) = fjk′(xk′) = xj and xi = h.
Thus (xj)j∈J ∈ Ck and the claim is established. Now {Ck | k ∈ J, i ≤ k} is
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a filter basis of compact sets in
∏
j∈J Gj and thus has nonempty intersection.

Assume that g = (gm)m∈J is in this intersection. Then, firstly, gi = h. Secondly,
let j ≤ k. Since J is directed, there is a k′ with i, k ≤ k′. Then (gm)m∈J ∈ Ck′ .
Hence gj = fjk′(gk′) = fjkfkk′(gk′) = fjk(gk) by the definition of Ck′ . Hence
g ∈ limj∈J Gj . Thus g is one of the elements we looked for.

(2)⇒(1) Let j ≤ k. Then fj = fjkfk. Thus the surjectivity of fj implies that
of fjk. ut

Definition 1.32. A projective system of topological groups in which all bonding
maps and all limit maps are surjective is called a strict projective system and its
limit is called a strict projective limit. ut

Proposition 1.33. (i) Let G = limj∈J Gj be a projective limit of compact groups.
Let Uj denote the filter of identity neighborhoods of Gj, U the filter of identity
neighborhoods of G, and N the set {ker fj | j ∈ J}. Then

(a) U has a basis of identity neighborhoods {f−1
k (U) | k ∈ J, U ∈ Uk}.

(b) N is a filter basis of compact normal subgroups converging to 1. (That is,
given a neighborhood U of 1, there is an N ∈ N such that N ⊆ U .)

(ii) Conversely, assume that G is a compact group with a filter basis N of
compact normal subgroups with

⋂
N = {1}. For M ⊆ N in N let fNM :G/M →

G/N denote the natural morphism given by fNM (gM) = gN . Then the fNM
constitute a strict projective system whose limit is isomorphic to G under the map
g 7→ (gN)N∈N :G → limN∈N G/N . With this isomorphism, the limit maps are
equivalent to the quotient maps G→ G/N .

Proof. (i)(a) Let V ∈ U . Then by the definition of the projective limit there is
an identity neighborhood of

∏
j∈J Gj of the form W =

∏
j∈JWj with Wj ∈ Uj

for which there is a finite subset F of J such that j ∈ J \ F implies Wj = Gj
such that W ∩ limj∈J Gj ⊆ V . Since J is directed, there is an upper bound k ∈ J
of F . There is a U ∈ Uk such that fjk(U) ⊆ Wj for all j ∈ F . Then f−1

k (U) ⊆
W ∩ limj∈J Gj ⊆ V .

(i)(b) Evidently, each ker fj is a compact normal subgroup. Since i, j ≤ k
implies ker fk ⊆ ker fi ∩ ker fj and J is directed, N is a filter basis. For each
j ∈ J we have ker fj = f−1

j (1) ⊆ f−1
j (U) for any U ∈ Uj . Since f−1

j (U) is a basic
neighborhood of the identity by (a), we are done.

(ii) It is readily verified that the family of all morphisms fNM :G/M → G/N
for M ⊆ N in N constitutes a strict projective system of compact groups. An
element (gNN)N∈N ∈

∏
N∈N G/N with gN ∈ G is in its limit L if and only if for

each pair M ⊇ N in N we have fMN (gNN) = gMM , that is, g−1
M gN ∈ M . Thus

for each g ∈ G certainly (gN)N∈N ∈ L. The kernel of the morphism ϕ = (g 7→
(gN)N∈N ):G→ L is

⋂
N = {1}. Hence ϕ is injective. Assume γ = (gNN)N∈N ∈

L. Then {gNN | N ∈ N} is a filter basis of compact sets in G, for if M ⊇ N
then g−1

M gN ∈M , and thus gN ∈ gMM ∩ gNN . Hence its intersection contains an
element g and then g ∈ gNN is equivalent to gN = gNN . Thus ϕ(g) = γ. We
have shown that ϕ is also surjective and thus is an isomorphism of compact groups
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(see Remark 1.8). If qN :G → G/N is the quotient map, and if fN :L → G/N is
the limit map defined by fN

(
(gNN)N∈N

)
= gNN , then clearly qN = fN ◦ ϕ. The

proof of the proposition is now complete. ut

The significance of the preceding proposition is that we can think of a strict
projective limit G as a compact group which is approximated by factor groups
G/N modulo smaller and smaller normal subgroups N . This is not a bad image.
The group G is decomposed into cosets gN whose size can be made as small as
we wish using the normal subgroups in the filter basis N .

Some special cases are of considerable theoretical interest.

Totally Disconnected Compact Groups

Theorem 1.34. For a locally compact group G, the following statements are equiv-
alent:

(1) The filter of neighborhoods of the identity has a basis of open subgroups.
(2) G is totally disconnected.

If G is compact, these conditions are also equivalent to the following ones:

(3) The filter of neighborhoods of the identity has a basis of open normal sub-
groups.

(4) G is a strict projective limit of finite groups.

Proof. (1)⇒(2) Since every open subgroup is also closed, condition (1) implies
that {1} is the intersection of open and closed subsets. Therefore {1} is the con-
nected component of the identity and thus G is totally disconnected.

(2)⇒(1) Fix a compact identity neighborhood W . Since the component of 1 in
the compact space W is singleton, 1 has a basis of open and closed neighborhoods
in W . (Cf. Exercise E1.12 below.) Now let U be an open and closed neighborhood
of {1} in the interior of W . Then U will be open compact in G. Now there is a
compact neighborhood V of {1} such that UV ⊆ U , for if not, then the family
{UV \ U | V ∈ U} (with the neighborhood filter U of 1) is a filter basis of
compact sets, since U is compact open. A point g in its intersection is contained
in the complement of U . On the other hand, g ∈ U , since the relation g ∈ UV −1

implies gV ∩ U 6= Ø for any identity neighborhood V , whence g ∈ U = U . Now
choose a symmetric open neighborhood V = V −1 with UV ⊆ U . Recursively, we
find UV n ⊆ U . But H =

⋃
n∈N V

n is the subgroup generated by V in G. Hence
H ⊆ UH ⊆ U . Thus any neighborhood U contains an open subgroup and (1) is
proved.

Now we assume that G is compact.
(1)⇒(3) If H is an open subgroup of G, then

N =
⋂
g∈G

gHg−1
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is an open normal subgroup contained in H by Corollary 1.12. Thus (1) implies
(3).

(3)⇒(4) Let N be a filter basis of the filter of identity neighborhoods con-
sisting of open normal subgroups. An open subgroup N in any topological group
is the complement of the union of all other cosets, each of which is open. Hence it
is automatically closed. Thus G/N is a compact and discrete group, and hence it
is finite. By Proposition 1.33, G is the strict projective limit of the factor groups
G/N . This proves (4).

(4)⇒(1) If G = limj∈J Gj is a strict projective limit of finite groups then it
is a subgroup of

∏
j∈J Gj . Products of totally disconnected spaces are totally dis-

connected, and subspaces of totally disconnected spaces are totally disconnected.
ut

The compact groups characterized by the equivalent conditions of Theorem 1.34
are also called profinite groups, in view of condition (4).

Exercise E1.12. (i) Prove that in a compact space the connectivity relation is
the intersection of all equivalence relations with open compact equivalence classes.

(ii) Show that in any topological group, the identity component is a closed fully
characteristic subgroup. (A subgroup of a topological group is called characteris-
tic, if it is invariant under all (continuous and continuously invertible!) automor-
phisms. It is called fully characteristic, if it is invariant under all (continuous!)
endomorphisms.)

(iii) Show that in every locally compact group G, the identity component G0

is the intersection of the set of all open subgroups H such that H/G0 is compact.

[Hint. For (iii): Consider the factor group G/G0. Observe that it is totally discon-
nected and locally compact. Then utilize the equivalence of (1) and (2) in Theorem
1.34.] ut

Exercise E1.13. Prove the following proposition.

A surjective homomorphic image of a totally disconnected compact group is totally
disconnected.

[Hint. Let G be totally disconnected compact and f :G→ H a surjective morphism

of compact groups. Let K
def
= ker f be its kernel. By Proposition 1.10(iv) we

may assume that H = G/K and that f is the quotient morphism. By 1.34, the
identity of G has a neighborhood basis N (G) consisting of compact (normal) open
subgroups N . Then the subgroup KN =

⋃
k∈K kN is open and K =

⋂
N∈N (G)KN

(since K = K =
⋂
U∈U KU with the filter U of identity neighborhoods. Thus the

identity of G/K has a neighborhood basis of open subgroups, which are, therefore,
closed. Thus G/K is totally disconnected.] ut
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Some Duality Theory

Let A be an arbitrary abelian group. Let F denote the family of all finitely gen-
erated subgroups. This family is directed, for if F, E ∈ F then F + E ∈ F .
Also, A =

⋃
F∈F F . If E, F ∈ F and E ⊆ F then the inclusion E → F in-

duces a morphism fEF : F̂ → Ê via fEF (χ) = χ|E for χ:F → T. The family

{fEF : F̂ → Ê | E, F ∈ F , E ⊆ F} is a projective system of compact abelian
groups. By the divisibility of T, each character on E ⊆ F extends to one on F and
so this system is strict. The inclusion F → A induces a morphism fF : Â → F̂ by
fF (χ) = χ|F for each character χ:A→ T.

Proposition 1.35. The map χ 7→ (χ|F )F∈F : Â → limF∈F F̂ is an isomorphism
of compact abelian groups.

Proof. Define ϕ: Hom(A,T) → limF∈F Hom(F,T) by ϕ(χ) = (χ|F )F∈F . This
definition yields a morphism of compact groups. A character χ of A is in its kernel
if and only if χ|F = 0 for all F ∈ F . But since A =

⋃
F∈F F this is the case if

and only if χ = 0. Thus ϕ is injective. Now let γ = (χF )F∈F ∈ limF∈F F̂ . By the
definition of the bonding maps, this means that for every pair of finitely generated
subgroups E ⊆ F in A we have χF |E = χE . Now we can unambiguously define a
function χ:A → T as follows. We pick for each a ∈ A an F ∈ F with a ∈ F (for
instance, F = Z·a). By the preceding, the element χF (a) in T does not depend on
the choice of F . Hence we define a function χ:A→ T by χ(a) = χF (a). If a, b ∈ A,
take F = Z·a+Z·b and observe χ(a+b) = χF (a+b) = χF (a)+χF (b) = χ(a)+χ(b).
Thus χ ∈ Hom(A,T) and χ|F = χF . Hence ϕ(χ) = γ. Thus ϕ is bijective and
hence an isomorphism of compact groups (see Remark 1.8). ut

In short: The character group Â of any abelian group A is the strict projective

limit of the character groups F̂ of its finitely generated subgroups F . We know
that F̂ is a direct product of a finite group and a finite-dimensional torus group
(see Remark 1.18). In particular, every character group of an abelian group is
approximated by compact abelian groups on manifolds.

Assume that G = limj∈J Gj is a strict projective limit of compact abelian
groups with limit maps fj :G→ Gj . Every character χ:Gj → T gives a character

χ ◦ fj :G→ T of G. Since fj is surjective, χ 7→ χ ◦ fj : Ĝj → Ĝ is injective. Under

this map, we identify Ĝj with a subgroup of Ĝ.

Proposition 1.36. If G is a strict projective limit limj∈J Gj then Ĝ =
⋃
j∈J Ĝj.

Proof. With our identification of Ĝj as a subgroup of Ĝ, the right side is contained
in the left one. Now assume that χ:G→ T is a character of G. If we denote with V
the image of ]− 1

3 ,
1
3 [ in T, then {0} is the only subgroup of T which is contained

in V . Now U = χ−1(V ) is an open neighborhood of 0 in G. Hence by Proposition
1.33(i) there is a j ∈ J such that ker fj ⊆ U . Hence χ(ker fj) is a subgroup of
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T contained in V and therefore is {0}. Thus ker fj ⊆ kerχ and there is a unique
morphism χj :Gj → T such that χ = χj ◦ fj . With our convention, this means

exactly χ ∈ Ĝj . Thus Ĝ ⊆
⋃
j∈J Ĝj . ut

The next theorem is one half of the famous Pontryagin Duality Theorem for
compact abelian groups.

Theorem 1.37. For any abelian group A the morphism ηA:A→ ̂̂
A is an isomor-

phism.

Proof. We know that Â is the strict projective limit limF∈F F̂ with the directed
family F of finitely generated subgroups of A. (See Proposition 1.35.) The limit

maps fF : Â → F̂ are given by fF (χ) = χ|F , and these surjective maps induce

injective morphisms Hom(fF ,T): Hom(F̂ ,T)→ Hom(Â,T) with Hom(fF ,T)(Σ) =

Σ ◦ fF . By Proposition 1.36, Hom(Â,T) is the union of the images of the injective

morphisms Hom(fF ,T). Thus for any Ω ∈ Hom(Â,T) there is an F ∈ F such

that Ω is in the image of Hom(fF ,T). Hence there is a Σ ∈ Hom(F̂ ,T) such

that Ω = Hom(fF ,T)(Σ) = Σ ◦ fF . But ηF :F → Hom(F̂ ,T) is an isomorphism by
Remark 1.24(i). Hence there is an a ∈ F such that Σ = ηF (a). Thus Ω = ηF (a)◦fF .
Therefore, for any character χ:A → T of A we have Ω(χ) = ηF (a)

(
fF (χ)

)
=

ηF (a)(χ|F ) = (χ|F )(a) = χ(a) = ηA(a)(χ). Thus ηA is surjective. The injectivity
was established in Lemma 1.23. ut

It is helpful to visualize our argument by diagram chasing:

F
ηF−−−−−−−−−→ Hom(F̂ ,T)

inc

y yHom(înc,T)

A −−−−−−−−−→
ηA

Hom(Â,T).

The other half of the Pontryagin Duality Theorem claims that ηG:G → ̂̂
G is

an isomorphism for any compact abelian group G, too. We cannot prove this at
the present level of information. However, in practicing the concept of a projective
limit we can take one additional step.

Let us, at least temporarily, use the parlance that a compact abelian group G

is said to have duality if ηG:G → ̂̂
G is an isomorphism. We propose the follow-

ing exercise whose proof we indicate rather completely since it is of independent
interest.

Exercise E1.14. If a compact abelian group G is the limit limj∈J Gj of a strict
projective system of compact abelian groups Gj which have duality, then G has
duality.
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Proof. After Lemma 1.23, we have to show that ηG:G→ ̂̂
G is bijective. We attack

the harder part first and show that ηG is surjective. Assume that Ω ∈ ̂̂G; that is,
Ω is a morphism of abelian groups Ĝ → T. By Proposition 1.36, Ĝ =

⋃
j∈J Ĝj .

If we denote with Ωj the restriction Ω|Ĝj , then Ωj : Ĝj → T is an element of
̂̂
Gj .

Since Gj has duality by hypothesis, ηGj is surjective and thus there is a gj ∈ Gj
such that ηGj (gj) = Ωj . We claim that g

def
= (gj)j∈J ∈

∏
j∈J Gj is an element of

limj∈J Gj = G. For this purpose assume that j ≤ k in J . We have a commutative
diagram

Gk
ηGk−−−−−−−−−→ ̂̂

Gk
fjk

y ŷ̂fjk
Gj −−−−−−−−−→

ηGj

̂̂
Gj .

(We shall consider this claim in a separate exercise below.) We notice that̂̂
fjk:

̂̂
Gk →

̂̂
Gj

is the restriction map sending Ωk to Ωk|Ĝj = Ωj . Thus

ηGj
(
fjk(gk)

)
=
̂̂
fjk
(
ηGk(gk)

)
=
̂̂
fjk(Ωk) = Ωj = ηGj (gj).

But since Gj has duality, ηGj is injective, and thus

fjk(gk) = gj ,

which establishes the claim g ∈ limj∈J Gj . For each limit map fj :G → Gj , as
before, we have a commutative diagram:

G
ηG−−−−−−−−−→ ̂̂

G

fj

y ŷ̂fj
Gj −−−−−−−−−→

ηGj

̂̂
Gj .

Thus
̂̂
fj
(
ηG(g)

)
= ηGj

(
fj(g)

)
= ηGj (gj) = Ωj for all j ∈ J . Now we observe

that
̂̂
fj :
̂̂
G→ ̂̂

Gj is the restriction Σ→ Σ|Ĝj . Thus the restriction of the morphism

ηG(g): Ĝ→ T to each Ĝj is Ωj , and therefore this morphism is none other than the
given map Ω. Hence ηG(g) = Ω and the claim of the surjectivity of ηG is proved.

As a second step we show that ηG is injective. We have observed before that
this statement is equivalent to the assertion that the characters of G separate
the points. Hence we assume that 0 6= g ∈ G. Set N = {ker fj | j ∈ J}. From
Proposition 1.33(i) we know that

⋂
N = {0}. Hence there is a j ∈ J such that

g /∈ ker fj , that is, fj(g) 6= 0. Since the group Gj has duality, its characters separate

its points. Hence there is a χ ∈ Ĝj such that χ
(
fj(g)

)
6= 0. Hence χ ◦ fj ∈ Ĝ is a

character of G which does not annihilate g. The assertion is now proved. ut

Exercise E1.15. Prove the following statements
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(i) Assume that f :A→ B is a morphism of abelian groups. Then the diagram

A
ηA−−−−−−−−−→ ̂̂

A

f

y ŷ̂f
B −−−−−−−−−→

ηB

̂̂
B

is commutative.
(ii) For a morphism f :G→ H of compact abelian groups, the analogous state-

ment is true. ut

In view of Remark 1.24, the Exercise E1.14 shows, in particular, that any strict
projective limit of groups isomorphic to products of finite-dimensional torus groups
and finite groups have duality. Let us observe that this applies to the examples in
1.28.

We set ⋃
n∈N

1

pn
Z =

1

p∞
Z

and notice that this set is subring of Q (cf. Appendix 1, Definition A1.30).

Example 1.38. (i) The group Zp of all p-adic integers has duality and its character

group is the group Z(p∞)
def
= 1

p∞Z/Z of all elements in T of p-power order. This

group is isomorphic to the subgroup of S1 of all pn-th roots of unity for n = 1, 2, . . . .
(ii) The p-adic solenoid Tp has duality and its character group is the group

1
p∞Z of all rational numbers which can be represented as m/pn, m ∈ Z, n ∈ N.

Proof. The groups Z(pn) and T have duality by Remark 1.24. Hence in both
examples Exercise E1.14 applies and shows that Zp and Tp have duality. The
identification of their respective character groups is in both cases a consequence
of Proposition 1.36.

Example (i): The dual of the morphism ϕn:Z(pn+1) → Z(pn) is the inclu-

sion 1
pnZ/Z →

1
pn+1Z/Z. Hence Proposition 1.36 implies Ẑp =

⋃
n∈N

1
pnZ/Z =

1
p∞Z/Z = Z(p∞).

Example (ii): The dual of the morphism µp:T→ T is the morphism µp:Z→ Z.
This map is equivalent to the inclusion Z → 1

pZ. Hence by Proposition 1.36, we

obtain T̂p =
⋃
n∈N

1
pnZ = 1

p∞Z. ut

Exercise E1.16. In 1.28(i) and E1.10 we introduced the compact ring Zp of p-adic
integers. Immediately prior to 1.38 we have also defined the ring 1

p∞Z. We now

define a locally compact abelian group Qp containing Zp as an open, and 1
p∞Z as

a dense subgroup.
Define

Φn:

1
p∞Z
pn+1Z

→
1
p∞Z
pnZ

, Φn(q + pn+1Z) = q + pnZ
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and set

Qp = lim

(
1
p∞Z
pZ

Φ1←−−−
1
p∞Z
p2Z

Φ2←−−−
1
p∞Z
p3Z

Φ3←−−− · · ·

)
.

Then we have a commutative diagram in which the rows are limit diagrams
and the columns are exact

· · · 0 ←−−−−−−−−− 0 · · · ←−−− 0y y y
· · · Z

pnZ
ϕn←−−−−−−−−− Z

pn+1Z · · · ←−−− Zpyincl

yincl

yincl

· · ·
1
p∞ Z
pnZ

Φn←−−−−−−−−−
1
p∞ Z
pn+1Z · · · ←−−− Qpyquot

yquot

yquot

· · · Z(p∞)
id←−−−−−−−−− Z(p∞) · · · ←−−− Z(p∞)y y y

· · · 0 ←−−−−−−−−− 0 · · · ←−−− 0.

Show that Qp contains a copy of 1
p∞Z densely. Show that Qp is a 1

p∞Z-module

such that the module operation (q, r) 7→ qr: 1
p∞Z × Qp → Qp extends the multi-

plication of 1
p∞Z. Show that

Qp = Zp ∪
1

p
Zp ∪

1

p2
Zp ∪ · · · .

Thus Qp is an ascending union of compact open subgroups, all isomorphic to Zp.
Show that Qp is torsion-free.

One can carry the investigation further by showing that Qp is a field. (For more
information see [147, 372].) ut

The members of Qp are called p-adic rationals.
The examples of abelian groups and compact abelian groups for which we have

determined character groups are best summarized in a table, whose use should be
self-explanatory. All groups which are listed have duality.
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1.39. Tables of Basic Character Groups.

GROUP Z T Z(n) Zp Z(p∞) Tp 1
p∞Z

CHARACTER GROUP T Z Z(n) Z(p∞) Zp 1
p∞Z Tp

Table 1.1: Some elementary groups and their character groups.

GROUP A B A⊕B E finite Zn ⊕ E Tn × E R
CHARACTER GROUP Â B̂ Â× B̂ E finite Tn × E Zn ⊕ E R

Table 1.2: Elementary sums and products.

For Z and T, see the comments after Proposition 1.16, Lemma 1.23.

For Z(n) and finite E, see the comments after Proposition 1.16, and Remark 1.18.

For Zn ⊕ E and Tn × E, see Remarks 1.18, 1.24.

For Zp and Z(p∞), see Example 1.38(i).

For Tp and 1
p∞Z, see Example 1.38(ii).

The case R is a separate matter which is not subordinate to our discussions here,
but which we consider in the following exercise. This will give an outlook to a
theory of characters for locally compact abelian groups which would contain dis-
crete and compact abelian groups as special cases. This exercise requires a certain
familiarity with the topology of uniform convergence on compact sets in function
spaces.

Exercise E1.17. Denote by R̂ the group Hom(R,T) of all morphisms of abelian
topological groups f :R → T, endowed with the topology of uniform convergence
on compact subsets of R. Let p:R → T denote the quotient homomorphism. Use
the Extension Lemma (E1.8) to show that F 7→ p ◦ F : Hom(R,R) → Hom(R,T)
is, algebraically, an isomorphism. Show that it is a homeomorphism if domain and
range are given the topology of uniform convergence on compact subsets of R.
Note that F 7→ F (1): Hom(R,R) → R is an isomorphism of topological groups.
The group Hom(R,R) is the usual vector space dual of R. Use the duality of

finite-dimensional vector spaces to secure that ηR:R → ̂̂R is an isomorphism of
topological groups. ut

Postscript

The chapter is designed to provide a self-contained introduction to the most im-
mediately accessible results of substance on compact groups. The background re-
quirements for these are deliberately kept to a minimum. A barrier is Haar measure
which we shall overcome in the next chapter. Chapter 1 should give an impression
of the vastness of the class of compact groups.

The basic examples and building blocks have been introduced. These include
the orthogonal and unitary groups, groups on the Cantor set—among them the
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group of p-adic integers—and the solenoids of van Dantzig. We have also identified
the compact totally disconnected groups as the profinite ones.

It is consistent with the approach that we hasten to feature the character
group of an arbitrary abelian group as a prime example of compact groups; we
have to defer to Chapter 2 the insight that in this fashion we obtain all compact
abelian groups. For the very formulation of that half of the duality theorem which
we present here, we need, of course, the character group of a compact abelian
group. On the basic level of this chapter we were able to see that every abelian
group appears as the character group of some compact abelian group (namely, its
character group). There is a more general context, which puts the duality between
discrete and compact abelian groups in the light of a deeper understanding, namely,
the context of locally compact abelian groups. We shall move into this context in
Chapter 7.

References for this Chapter—Additional Reading

[14], [15], [33], [34], [51], [65], [66], [80], [87], [92], [100], [102], [113], [114], [115],
[134], [135], [141], [147], [149], [152], [211], [230], [266], [277], [287], [295], [299],
[309], [317], [331], [341], [349], [372].
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Chapter 2

The Basic Representation Theory
of Compact Groups

One of the most central results for the theory of compact groups is the Theorem
of Peter and Weyl which says, among other things, that every compact group
has sufficiently many finite dimensional unitary representations. We shall prove
this result in the present chapter and elaborate on other ramifications in the next
two chapters. One consequence of the Peter–Weyl Theorem is that every compact
group is a strict projective limit of closed subgroups of unitary groups, but there
are numerous other important consequences.

In Chapter 1 we proved that part of the Pontryagin Duality Theorem which says
that the natural map of a (discrete) abelian group into the character group of its
character group is an isomorphism of groups. In this chapter we prove the second
part of the Pontryagin Duality Theorem which asserts that the canonical map of a
compact abelian group into its second dual is an isomorphism of compact groups.
A key ingredient in its proof is that compact abelian groups have sufficiently many
characters to separate points, which is a special case of the result that sufficiently
many finite dimensional unitary representations exist.

We give a definition of compact Lie groups and show that every compact group
is a projective limit of compact Lie groups. This is of great significance in our later
investigations.

Prerequisites. Our approach in this chapter uses integration of scalar valued con-
tinuous functions on compact spaces; we apply this to the integration of functions
on a compact group with respect to Haar measure. We assume familiarity with
some basic Hilbert space theory, including the rudiments of compact operators
which we shall provide to the extent we need them, and we shall use some elemen-
tary Banach space theory. In an exercise with detailed directions, an overview of
a proof of the existence and uniqueness of Haar measure on a compact group is
given.

Some Basic Representation Theory for Compact Groups

We shall be concerned with linear actions of a compact group G on a topological
vector space E. We recall for the record that a topological vector space is a vector
space E over K = R or K = C which is a topological group with respect to addition
and for which scalar multiplication (r, x) 7→ r·x:K×E → E is continuous. We shall
adopt the convention to write K for the field of real, respectively, complex numbers.
A continuous linear self-map of E is called an endomorphism of E or a continuous
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operator of E. The vector space Hom(E,E) ⊆ EE of these endomorphisms is
a topological vector space relative to the structure induced from the topological
vector space product EE . The topology so obtained is the topology of pointwise
convergence or, equivalently, the strong operator topology . One also writes Lp(E)
for this topological vector space.

Recall that for a group G and a set E a function (g, x) 7→ gx:G×E → E is an
action if 1x = x and (gh)x = g(hx) for all g, h ∈ G and x ∈ E.

Definition 2.1. Let G be a topological group and E a topological vector space.
(i) We say that E is a G-module if there is an action (g, x) 7→ gx:G× E → E

such that
(a) x 7→ gx:E → E is a continuous vector space endomorphism of E for each

g ∈ G,
(b) g 7→ gx:G→ E is continuous for each x ∈ E.

(ii) A representation of G on E is a continuous map π:G → Lp(E) satisfying
π(1) = idE and π(gh) = π(g)π(h) for all g,h ∈ G. ut

The following observation is immediate from the definitions:

Remark 2.2. (i) Let G be a topological group and E a G-module. Then the
function π:G→ Lp(E) given by π(g)(x) = gx is a representation of G on E.

(ii) If π:G → Lp(E) is a representation then the function (g, x) 7→ gx
def
=

π(g)(x):G× E → E endows E with the structure of a G-module. ut

After the preceding remark we are aware of the fact that, in reality, the concept
of a G-module E is the same thing as that of a representation of G on E. There
is a certain preference in algebraic circles toward the module aspect and a leaning
towards the representation aspect among analysts. We shall freely move between
the two concepts.

However, one also notices that in the spirit of topological algebra, for a G-
module E one would expect a postulate demanding the continuity of the action
(g, x) 7→ gx:G × E → E. It is fortunate that, as shown in Theorem 2.3, for most
situations this is in fact a consequence of the module concept as introduced in
Definition 2.1. Let us first recall that a Baire space is a topological space in which
every countable union of closed sets without interior points has no interior points.
The Baire Category Theorem says that every locally compact space and every
space whose topology can be defined through a complete metric is a Baire space.
(See [34, 100, 147], or [230].)

Theorem 2.3. Assume that E is a G-module for a topological group G and that
π:G→ Lp(E) is the associated representation (see 2.2(ii)). If E is a Baire space,
then for every compact subspace K of G the set π(K) ⊆ Hom(E,E) is equicon-
tinuous at 0, that is, for any neighborhood V of 0 in E there is a neighborhood U
of 0 such that KU ⊆ V .
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As a consequence, if G is locally compact, the function

(g, x) 7→ gx:G× E → E

is continuous.

Proof. First step: Given V we find a closed 0-neighborhood W with W −W ⊆ V
and [0, 1]·W ⊆ W . Notice that also the interior, intW , of W is star-shaped, that
is, satisfies [0, 1]· intW = intW . Next we consider

C =
⋂
g∈K

g−1W.

Since K is compact, Kx is compact for any x ∈ E and thus, as Kx ⊆ E =⋃
n∈N n· intW and the n·W form an ascending family, we find an n ∈ N with

K · x ⊆ n·W , that is, with x ∈
⋂
g∈K n·g−1W . Hence for each x ∈ E there is a

natural number n such that x ∈ n·C. Therefore

E =
⋃
n∈N

n·C,

where all sets n·C are closed. But E is a Baire space, and so for some n ∈ N, the
set n·C has interior points, and since x 7→ n·x is a homeomorphism of E, the set C
itself has an interior point c. Now for each g ∈ K we find g(C− c) ⊆W −W ⊆ V .
But U = C − c is a neighborhood of 0, as KU ⊆ V , our first claim is proved.

Second step: For a proof of the continuity of the function α =
(
(g, x) 7→ gx

)
:

G × E → E, it suffices to show the continuity of α at the point (1, 0). To see
this it suffices to note that for fixed h ∈ G and fixed y ∈ E the difference
α(g, x) − α(h, y) = gx − hy = h

(
h−1g(x − y) + (h−1gy − y)

)
= π(h)

(
α(h−1g,

x − y) + (h−1gy − y)
)

falls into any given neighborhood of 0 as soon as h−1g is
close enough to 1 and the difference x−y is close enough to zero, because α is con-
tinuous at (1, 0), because π(h) is continuous by Definition 2.1(i)(a), and because
k 7→ ky:G→ E is continuous by Definition 2.1(i)(b).

Third step: We now assume that G is locally compact and show that α is contin-
uous at (1, 0). For this purpose it suffices to know that for a compact neighborhood
K of 1 in G the set π(K) ⊆ Hom(E,E) is equicontinuous; for then any neighbor-
hood V of 0 yields a neighborhood U of 0 in E with α(K × U) = π(K)(U) ⊆ V .
This completes the proof of the second claim. ut

According to the above theorem, if G is a compact group, and E is a G-module
which is at the same time a Banach space, the compact group G acts on E in the
sense of Definition 1.9; that is (g, x) 7→ gx : G× E → E is continuous.

Example 2.4. Let G be a compact group. Set E = C(G,K); then E is a Banach
space with respect to the sup-norm given by ‖f‖ = supt∈G |f(t)|. We define gf =
π(g)(f) by gf(t) = f(tg). Then π:G → Lp(E) is a faithful (that is, injective)
representation, and G acts on E.
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Proof. We note |f1(tg1) − f2(tg2)| ≤ |f1(tg1) − f1(tg2)| + |f1(tg2) − f2(tg2)| ≤
|f1(tg1) − f1(tg2)| + ‖f1 − f2‖. Since G is compact, f1 is uniformly continuous.
Hence the first summand is small if g1 and g2 are close. The second summand
is small if f1 and f2 are close in E. This shows that (g, f) 7→ gf :G × E → E
is continuous. It is straightforward to verify that this is a linear action. Finally
π(g) = idE is tantamount to f(tg) = f(t) for all t ∈ G and all f ∈ C(G,K). Since
the continuous functions separate the points, taking t = 1 we conclude g = 1. ut

In Example 2.4, under the special hypotheses present, we have verified the
conclusion of Theorem 2.3 directly.

A G-module E for which π is injective (or faithful) is called a faithful G-module.
Thus every compact group G has at least one faithful Banach G-module.

Corollary 2.5. If E is a Banach G-module for a compact group G, then

sup{‖π(g)‖ | g ∈ G} <∞.

Proof. By Theorem 2.3, the set π(G) is equicontinuous. Hence for the closed unit
ball V around 0 there is closed ball U = r·V of radius r > 0 such that GU ⊆ V ,
equivalently, GV ⊆ 1

rV . Hence ‖gx‖ ≤ 1/r for all x ∈ V , that is, ‖π(g)‖ ≤ 1/r for
all g ∈ G. ut

A small warning is in order: It is not true in general that g 7→ π(g):G →
Hom(E,E)−1 = Gl(E) is continuous with respect to the operator norm. We there-
fore do not have the continuity of the function g 7→ ‖π(g)‖:G→ R available to us
nor the quick proof of 2.5 which this information would entail.

The Haar Integral

For the moment, let G denote a compact Hausdorff space. An element µ of the
topological dual E′ of the Banach space E = C(G,K) is a (K-valued) integral
or measure. (It is not uncommon in our context to use the words “integral” and
“measure” synonymously; the eventual justification is, as is usual in the case of such
an equivocation, a theorem; here it is the Riesz Representation Theorem of measure
theory.) The number µ(f) is also written 〈µ, f〉 or indeed

∫
f dµ =

∫
G
f(g) dµ(g).

It is not our task here to develop or review measure theory in full. What we
need is the uniqueness and existence of one and only one particular measure on a
compact group G which is familiar from the elementary theory of Fourier series as
Lebesgue measure on the circle group T = R/Z. The formulation of the existence
(and uniqueness theorem) will be easily understood.

Definition 2.6. Let G denote a compact group. A measure µ is called invariant
if µ(gf) = µ(f) for all g ∈ G and f ∈ E = C(G,K). It is called a Haar measure if
it is invariant and positive, that is, satisfies µ(f) ≥ 0 for all f ≥ 0. The measure µ
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is called normalized if µ(1) = 1 where 1 also indicates the constant function with
value 1. ut

Example 2.7. If p:R → T denotes the morphism given by p(t) = t + Z and
C1(R,K) denotes the Banach space of all continuous functions f :R → K with
period 1, then f 7→ f ◦ p:C(T,K) → C1(R,K) is an isomorphism of Banach

spaces. The measure γ on T defined by γ(f) =
∫ 1

0
(f ◦ p)(x) dx with the ordinary

Riemann integral on [0, 1] is a normalized Haar measure on T. ut

Exercise E2.1. Verify the assertion of Example 2.7. Give a normalized Haar
measure on S1. For n ∈ Z define en:T → C by en(t + Z) = e2πint. Compute
γ(ejek) for j, k ∈ Z. ut

We now state the Existence and Uniqueness Theorem of Haar Measure. We
shall present one of its numerous proofs in Appendix 5.

Theorem 2.8 (The Existence and Uniqueness Theorem of Haar measure). For
each compact group G there is one and only one normalized Haar measure. ut

The preceding theorem can be used to show that any Haar measure γ also
satisfies the conditions specified in the following exercises.

Exercise E2.2.
∫
G
f(gt) dγ(t) = γ(f) for all g ∈ G and f ∈ C(G,K). ut

Exercise E2.3.
∫
G
f(t−1) dγ(t) = γ(f) for all f ∈ C(G,K). ut

Definition 2.9. We shall use the notation γ ∈ C(G,K)′ for the unique normalized
Haar measure, and we shall also write γ(f) =

∫
G
f(g) dg. ut

Consequences of Haar Measure

Theorem 2.10 (Weyl’s Trick). Let G be a compact group and E a G-module
which is, at the same time, a Hilbert space. Then there is a scalar product relative
to which all operators π(g) are unitary.

Specifically, if (• | •) is the given scalar product on E, then

(1) 〈x | y〉 =

∫
G

(gx | gy) dg

defines a scalar product such that

(2) M−2(x | x) ≤ 〈x | x〉 ≤M2(x | x)
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with

(3) M = sup{
√

(gx | gx) | g ∈ G, (x | x) ≤ 1},

and that

(4) 〈gx | gy〉 = 〈x | y〉 for all x, y ∈ E, g ∈ G.

Proof. For each x, y ∈ E the integral on the right side of (1) is well-defined, is linear
in x and conjugate linear in y. Since Haar measure is positive, the information
(gx | gx) ≥ 0 yields 〈x | x〉 ≥ 0. By Corollary 2.5, the positive number M in
(3) is well-defined. Then 〈x | x〉 ≤

∫
G
M2(x | x) dg = M2(x | x) since γ is

positive and normalized. Also, (x | x) = (g−1gx | g−1gx) ≤ M2(gx | gx), whence
〈x | x〉 ≥

∫
G
M−2(x | x) dg = M−2(x | x). This proves (2) and thus also the fact

that 〈• | •〉 is positive definite, that is, a scalar product. Finally, let h ∈ G; then
〈hx | hy〉 =

∫
G

(ghx | ghy) dg =
∫
G

(gx | gy) dg = 〈x | y〉 by the invariance of γ. ut

The idea of the construction is that for each g ∈ G we obtain a scalar product
(x, y) 7→ (gx | gy). The invariant scalar product is the “average” or “expectation”
of this family with respect to the probability measure γ.

Definition 2.11. If G is a topological group, then a Hilbert G-module is a Hilbert
space E and a G-module such that all operators π(g) are unitary, that is, such
that

(gx | gy) = (x | y) for all x, y ∈ E, g ∈ G. ut

Recall from Theorem 2.3, that in every Hilbert G-module of a locally compact
group the action(g, x) 7→ gx:G × E → E is continuous. By Weyl’s Trick 2.10,
for compact G, it is never any true loss of generality to assume for a G-module
on a Hilbert space that E is a Hilbert module. Every finite dimensional K-vector
space is a Hilbert space (in many ways). Thus, in particular, every representation
of a compact group on a finite dimensional K-vector space may be assumed to be
unitary.

Hilbert modules are the crucial type of G-modules for compact groups G as we
shall see presently. For the moment, let us observe, that every compact group G
has at least one faithful Hilbert module.

Example 2.12. Let G be a compact group and H0 the vector space C(G,K)
equipped with the scalar product

(f1 | f2) = γ(f1f2) =

∫
G

f1(g)f2(g) dg.

Indeed the function (f1, f2) 7→ (f1 | f2) is linear in the first argument, conjugate
linear in the second, and (f | f) = γ(ff) ≥ 0 since γ is positive. Also, if f 6= 0,
then there is a g ∈ G with f(g) 6= 0. Then the open set U = {t ∈ G | (ff)(t) > 0}
contains g, hence is nonempty. The relation (f | f) = 0 would therefore imply
that U does not meet the support of γ, which is G—an impossibility. Hence the
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scalar product is positive definite and H0 is a pre-Hilbert space. Its completion is
a Hilbert space H, also called L2(G,K).

The translation operators π(g) given by π(g)(f) =gf are unitary since (π(g)f |
π(g)f) =

∫
G
f(tg)f(tg) dt =

∫
G
f(t)f(t) dt = (f | f) by invariance. Every unitary

operator on a pre-Hilbert space H0 extends uniquely to a unitary operator on its
completion H, and we may denote this extension with the same symbol π(g).

The space L(H) of bounded operators on the Hilbert space H is a C∗-algebra
(cf. Exercise E1.1) and U(H) = U

(
L(H)

)
denotes its unitary group. Then π:G→

U(H) is a morphism of groups. We claim that it is continuous with respect to
the strong operator topology, that is, g 7→ gf :G → H is continuous for each
f ∈ H. Let ε > 0 and let f0 ∈ C(G,K) be such that ‖f − f0‖2 < ε where
‖f‖22 = (f | f). Then ‖gf −hf‖2 ≤ ‖gf −gf0‖2 + ‖gf0 −hf0‖2 + ‖hf0 −hf‖2 =
‖gf0−hf0‖2 +2‖f−f0‖2 < ‖gf0−hf0‖2 +2ε in view of the fact that π(g) is unitary.
But ‖gf0 −hf0‖2 ≤ ‖gf0 −hf0‖∞ where ‖f0‖∞ is the sup-norm supg∈G |f0(g)| for
a continuous function f0. By Example 2.4 the function g 7→ gf is continuous
with respect to the sup-norm; hence ‖gf0 −hf0‖∞ can be made less than ε for g
close enough to h. For these g and h we then have ‖gf −hf‖2 < 3ε. This shows
the desired continuity. Since π(g) = idH implies π(g)|H0 = idH0

and this latter
relation already implies g = 1 by Example 2.4, the representation π is injective.
Thus L2(G,K) is a faithful Hilbert module. It is called the regular G-module and
the unitary representation π:G→ U

(
L2(G,K)

)
is called the regular representation.

ut

For the record we write:

Remark 2.13. Every compact group possesses faithful unitary representations
and faithful Hilbert modules. ut

The Main Theorem on Hilbert Modules for
Compact Groups

We consider a Hilbert space H. A sesquilinear form is a function B:H ×H → K
that is linear in the first and conjugate linear in the second argument, and that is
bounded in the sense that there is a constant M such that |B(x, y)| ≤ M‖x‖·‖y‖
for all x, y ∈ H. If T is a bounded linear operator on H, then B(x, y) = (Tx | y)
defines a sesquilinear form with M = ‖T‖ in view of the Inequality of Cauchy and
Schwarz saying that |(x | y)| ≤ ‖x‖·‖y‖. (For our purposes we included continuity
in the definition of sesquilinearity.)

Lemma 2.14. If B is a sesquilinear form, then there exists a unique bounded
operator T of H such that ‖T‖ ≤M and that B(x, y) = (Tx | y).

Proof. Exercise. ut

Exercise E2.4. Prove Lemma 2.14.
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[Hint. Fix x ∈ H. The function y 7→ B(x, y) is a bounded conjugate linear form
on H. Hence there is a unique element Tx ∈ H such that B(x, y) = (Tx | y)
by the elementary Riesz Representation Theorem for Hilbert spaces. The function
T = (x 7→ Tx):H → H is linear. Use |B(x, y)| ≤M‖x‖·‖y‖ to deduce ‖T‖ ≤M .]ut

Lemma 2.15. Let G denote a compact group and T a bounded operator on a
Hilbert G-module E. Then there is a unique bounded operator T̃ on E with ‖T̃‖ ≤
‖T‖ such that

(5) (T̃ x | y) =

∫
G

(Tgx | gy) dg =

∫
G

(π(g)−1Tπ(g)(x) | y) dg.

Proof. Since π is a unitary representation, π(g)∗ = π(g)−1 and so the last two
integrals in (5) are equal. The prescription B(x, y) =

∫
G

(Tgx | gy) dg defines a
function B which is linear in x and conjugate linear in y. Because

|(Tgx | gy)| ≤ ‖Tgx‖·‖gy‖ = ‖T‖·‖gx‖·‖gy‖ = ‖T‖·‖x‖·‖y‖

(as G acts unitarily onH!) we obtain the estimate |B(x, y)| ≤
∫
G
‖T‖·‖x‖·‖y‖ dg =

‖T‖·‖x‖·‖y‖. Hence B is a sesquilinear form, and so by Lemma 2.14, there is a

bounded operator T̃ with B(x, y) = (T̃ x | y) and ‖T̃‖ ≤ ‖T‖. ut

In any ring R, the commutant C(X) (or, in semigroup and group theory equiv-
alently called the centralizer Z(X,R)) of a subset X ⊆ R is the set of all elements
r ∈ R with xr = rx for all x ∈ X. Using integration of no more than K-valued
functions, we have created the operator

T̃ =

∫
G

π(g)−1Tπ(g) dg,

where the integral indicates an averaging over the conjugates π(g)−1Tπ(g) of T ;
we shall return to the integration of vector valued functions in Part 2 of Chapter 3,
leading up to Proposition 3.30. It is clear that the averaging self-map T 7→ T̃ of
Hom(H,H) is linear and bounded. Its significance is that its image is exactly the
commutant C

(
π(G)

)
of π(G) in Hom(H,H). Thus it is the set of all bounded

operators S on H satisfying Sπ(g) = π(g)S. This is tantamount to saying that
S(gx) = g(Sx) for all g ∈ G and x ∈ H. Such operators are also called G-module
endomorphisms or intertwining operators. In the present context the commutant
is sometimes denoted also by HomG(H,H).

Lemma 2.16. The following statements are equivalent for an operator S of H:
(1) S ∈ HomG(H,H).

(2) S = S̃.

(3) There is an operator T such that S = T̃ .

Proof. (1)⇒(2) By definition, (S̃x | y) =
∫
G

(Sgx | gy) dg. By (1) we know
Sgx = gSx, and since H is a unitary G-module, (Sgx | gy) = (gSx | gy) =
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= (Sx | y). Since γ is normalized, we find (S̃x | y) = (Sx | y) for all x and y in H.
This means (2).

(2)⇒(3) Trivial.
(3)⇒(1) Let x and y be arbitrary in H and h ∈ G. Then

(Shx | y) = (T̃ hx | y) =

∫
G

(Tghx | gy) dg =

∫
G

(
Tghx | gh(h−1y)

)
dg

=

∫
G

(Tgx | gh−1y) dg = (T̃ x | h−1y) = (Sx | h−1y) = (hSx | y)

in view of the invariance of γ and the fact that π(g)−1 = π(g)∗. Hence Sπ(h) =
π(h)S for all h ∈ G and thus (1) is proved. ut

We see easily that HomG(H,H) is a closed C∗-subalgebra of L(H).

An orthogonal projection of H is an idempotent operator P satisfying P ∗ = P ,
that is, (Px | y) = (x | Py) for all x, y ∈ H. The function P 7→ P (H) is a
bijection from the set of all orthogonal projections of H to the set of all closed
vector subspaces V of H. Indeed every closed vector subspace V has a unique
orthogonal complement V ⊥ and thus determines a unique orthogonal projection
of H with image V and kernel V ⊥.

Definition 2.17. If G is a topological group and E a G-module, then a vector
subspace V of E is called a submodule if GV ⊆ V . Equivalently, V is also called
an invariant subspace. ut

Lemma 2.18. For a closed vector subspace V of a Hilbert G-module H and the
orthogonal projection P with image V the following statements are equivalent:

(1) V is a G-submodule.
(2) P ∈ HomG(H,H).
(3) V ⊥ is a G-submodule.

Proof. (1)⇒(2) Let x ∈ H; then x = Px+ (1− P )x and thus

(∗) gx = gPx+ g(1− P )x

for all g ∈ G. But Px ∈ V and thus gPx ∈ V since V is invariant. Since the
operator π(g) is unitary, it preserves orthogonal complements, and thus g(1−P )x ∈
V ⊥. Then (∗) implies gPx = P (gx)

(
and g(1− P )x = (1− P )(gx)

)
.

(2)⇒(3) The kernel of a morphism of G-modules is readily seen to be invari-
ant. Since V ⊥ = kerP and P is a morphism of G-modules, clearly V ⊥ is invariant.

(3)⇒(1) Assume that V ⊥ is invariant. We have seen in the preceding two
steps of the proof that the orthogonal complement W⊥ of any invariant closed
vector subspace W of H is invariant. Now we apply this to W = V ⊥. Hence
(V ⊥)⊥ is invariant. But (V ⊥)⊥ = V , and thus V is invariant. ut

The problem of finding invariant subspaces of a Hilbert G-module therefore
amounts to finding orthogonal projections in HomG(H,H).
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Recall that an operator T on a Hilbert space H is called positive if it is selfad-
joint or hermitian (i.e. satisfies T = T ∗) and if (Tx | x) ≥ 0 for all x ∈ H.

Lemma 2.19. If T is a hermitian (respectively, positive) operator on a Hilbert

G-module H, then so is T̃ .

Proof. For x, y ∈ H we have

(T̃ x | y) =

∫
G

(gTg−1x | y) dg =

∫
G

(Tg−1x | g−1y) dg.

If T = T ∗, then (Tg−1x | g−1y) = (T ∗g−1x | g−1y) = (g−1x | Tg−1y) =

(Tg−1y | g−1x) and thus (T̃ x | y) = (T̃ y | x). Hence T̃ is hermitian. If T is pos-

itive, then T̃ is hermitian by what we just saw, and taking y = x and observing
(Tg−1x | g−1x) ≥ 0 we find that T̃ is positive, too. ut

Next we turn to the important class of compact operators. Recall that an
operator T :V → V on a Banach space is called compact if for every bounded
subset B of V the image TB is precompact. Equivalently, this says that TB is
compact, since V is complete.

Lemma 2.20. If T is a compact operator on a Hilbert G-module H, then T̃ is also
compact.

Proof. Let B denote the closed unit ball of H. We have to show that T̃B is

precompact. Since all π(g) are unitary, we have gB = B for each g ∈ G. Hence A
def
=

TGB is compact since T is compact. Since the function (g, x) 7→ gx:G×H → H
is continuous by Theorem 2.3, the set GA is compact. The closed convex hull K of
GA is compact (see Exercise E2.5 below). Now let y ∈ H be such that Re(x | y) ≤ 1

for all x ∈ K. Then x ∈ B implies Re(T̃ x | y) =
∫
G

Re(gTg−1x | y) dg ≤
∫
G
dg = 1

since gTg−1x ∈ GTGB ⊆ GA ⊆ K for all g ∈ G. Hence T̃ x is contained in every
closed real half-space which contains K. From the Theorem of Hahn and Banach
we know that a closed convex set is the intersection of all closed real half-spaces
which contain it. Hence we conclude T̃ x ∈ K and thus T̃B ⊆ K. This shows that
T̃ is compact. ut

It is instructive at this point to be aware of the information used in the pre-
ceding proof: the joint continuity of the action proved in 2.3, the precompactness
of the convex hull of a precompact set in a Banach space (subsequent Exercise!),
the Hahn–Banach Theorem, and of course the compactness of G.

Exercise E2.5. Show that in a Banach space V , the closed convex hull K of a
precompact set P is compact.
[Hint. Since V is complete, it suffices to show that K is precompact. Thus let U
be any open ball around 0. Since P is precompact, there is a finite set F ⊆ P
such that P ⊆ F + U . The convex hull S of F is compact (as the image of a
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finite simplex under an affine map). Hence there is a finite set F ′ ⊆ S such that
S ⊆ F ′+U . Now the convex hull of P is contained in the convex set S +U, hence
in the set F ′+U +U, and its closure is contained in F ′+U +U +U = F ′+ 3U.]ut

We can summarize our findings immediately in the following lemma.

Lemma 2.21. On a nonzero Hilbert G-module H let x denote any nonzero vector
and T the orthogonal projection of H onto K·x. Then T̃ is a nonzero compact
positive operator in HomG(H,H).

Proof. This follows from the preceding lemmas in view of the fact that an orthogo-
nal projection onto a one-dimensional subspace K·x is a positive compact operator
and that (Tx | x) = ‖x‖2 > 0, whence (T̃ x | x) =

∫
G

(Tg−1x | g−1x) dg > 0. ut

Now we recall some elementary facts on compact positive operators. Notably,
every compact positive nonzero operator T has a positive eigenvalue λ and the
eigenspace Hλ is finite dimensional. (See also Dunford and Schwartz [94] or Rudin
[307].)

Exercise E2.6. Let H be a Hilbert space and T a nonzero compact positive
operator. Show that there is a largest positive eigenvalue λ and that Hλ is
finite dimensional.

[Hint. Without loss of generality assume ‖T‖ = 1. Note ‖T‖ = sup{‖Tx‖ | ‖x‖ ≤
1} = sup{Re(Tx | y) | ‖x‖, ‖y‖ ≤ 1}. Since T is positive, 0 ≤ (T (x+ y) | x+ y) =
(Tx | x)− 2 Re(Tx | y) + (Ty | y), whence Re(Tx | y) ≤ 1

2

(
(Tx | x) + (Ty | y)

)
≤

max{(Tx | x), (Ty | y)}. It follows that ‖T‖ = sup{(Tx | x) | ‖x‖ = 1}. Now there
is a sequence xn ∈ H with 1 − 1

n < (Txn | xn) ≤ 1 and ‖xn‖ = 1. Since T is
compact there is a subsequence yk = xn(k) such that z = limk∈N Tyk exists with
‖z‖ = 1. Now 0 ≤ ‖Tyn − yn‖2 = ‖Tyn‖2 − 2·(Tyn | yn) + ‖yn‖2 → 1− 2 + 1 = 0.
Hence z = lim yn and Tz = z.] ut

We now have all the tools for the core theorem on the unitary representations
of compact groups.

The Fundamental Theorem on Unitary Modules

Theorem 2.22. Every nonzero Hilbert G-module for a compact group G contains
a nonzero finite dimensional submodule.

Proof. By Lemma 2.21 we find a nonzero compact positive operator T̃ which is
invariant by 2.16. But T̃ has a finite dimensional nonzero eigenspace Hλ for an
eigenvalue λ > 0 by Exercise E2.6. If T̃ x = λ·x, then T̃ gx = gT̃x = g(λ·x) = λ·gx.
Thus Hλ is the desired submodule. ut
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Definition 2.23. A G-module E is called simple if it is nonzero and {0} and E
are the only invariant submodules. The corresponding representation of G is called
irreducible. ut

Corollary 2.24. Every nonzero Hilbert G-module for a compact group G contains
a simple nonzero G-module.

Proof. By the Fundamental Theorem on Unitary Modules 2.22, we may assume
that the given module H is finite dimensional. Every descending chain of nonzero
submodules then is finite and thus has a smallest element. It follows that H has a
nonzero minimal submodule which is necessarily simple. ut

Corollary 2.25. Every nonzero Hilbert G-module for a compact group G is a
Hilbert space orthogonal sum of finite dimensional simple submodules.

Proof. Let E be a Hilbert G-module and consider, by virtue of Corollary 2.24
and Zorn’s Lemma, a maximal family F = {Ej | j ∈ J} of finite dimensional
submodules such that j 6= k in J implies Ej ⊥ Ek. Let H be the closed span of
this family (that is, its orthogonal sum). Then H is a G-module. If H 6= E, then
H⊥ is a nonzero G-module by Lemma 2.18. Hence it contains a nonzero simple
submodule K. Then F ∪ {K} is an orthogonal family of finite dimensional simple
submodules which properly enlarges the maximal family F , and this is impossible.
Thus E = H, and this proves the corollary. ut

Definition 2.26. We say that a family {Ej | j ∈ J} of G-modules, respectively,
the family {πj | j ∈ J} of representations separates the points of G if for each
g ∈ G with g 6= 1 there is a j ∈ J such that πj(g) 6= idEj , that is, there is an
x ∈ Ej such that gx 6= x. ut

Corollary 2.27. If G is a compact group, then the finite dimensional simple
modules separate the points.

Proof. By Example 2.12, there is a faithful Hilbert G-module E. By Corollary 2.25,
the module E is an orthogonal direct sum

⊕
j∈J Ej of simple finite dimensional

submodules Ej . If g ∈ G and g 6= 1, then there is an x ∈ E such that gx 6= x.
Writing x as an orthogonal sum

∑
j∈J xj with xj ∈ Ej we find at least one index

j ∈ J such that gxj 6= xj and this is what we had to show. ut

Corollary 2.28. The orthogonal and the unitary representations π:G → O(n),
respectively, π:G→ U(n) separate the points of any compact group G.

Proof. By Weyl’s Trick 2.10, for a compact group G, every finite dimensional real
representation is orthogonal and every complex finite dimensional representation
is unitary for a suitable scalar product. The assertion therefore is a consequence
of Corollary 2.27. ut
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In other words, given a compact group G, for each element g ∈ G different from
its identity e, and for each ground field K ∈ {R,C} we find a natural number ng and
a representation πg:G → O(ng) in the case K = R, respectively, πg:G → U(ng)
in the case K = C, such that g /∈ kerπg. Since each of the groups O(ng) and

U(ng) is compact by Example 1.6, the product P
def
=
∏
e6=g∈GO(ng) for K = R,

respectively, P
def
=
∏
e6=g∈G U(ng) for K = C, is a compact group by Proposition

1.14. By the universal property of the product (see e.g. Definition A3.43(i)) we
have a morphism π:G→ P , π(x) = (πg(x))g 6=e, which is injective by the selection
of πg. Then by Remark 1.8, π implements an isomorphism of compact groups
G→ π(G).

In the interest of the algebraic background which we shall pursue further in the
next chapter we may take this argument a step further. Each orthogonal group
O(ng) is contained in the real, respectively complex, algebra Mng (K) of all n× n
matrices over K. Then the product A

def
=
∏
e6=g∈GMng (K) is an algebra over K with

respect to componentwise addition, scalar multiplication, and multiplication, and
a topological space with respect to the product topology. The algebraic operations
are continuous with respect to the topology, and so A is what one calls a topological
algebra (over K). The subset of all multiplicatively invertible elements (or units)
is denoted by A−1. As inversion is calulated componentwise, it is also continuous,
and so A−1 is indeed a topological group with respect to multiplication. It is clear
that the product P of the orthogonal, respectively unitary groups, is a compact
subgroup of A−1, and thus the compact group G has an isomorphic copy in A−1.

We summarize these conclusions in the following useful result:

Compact Groups as Subgroups of Generic Objects

Corollary 2.29. (i) Every compact group G is isomorphic to a closed subgroup
of a product

∏
j∈J O(nj) of orthogonal groups and of a product

∏
j∈J U(nj) of

unitary groups.

(ii) Every compact group is isomorphic to a compact multiplicative group of
invertible elements of a real topological algebra A =

∏
j∈J Aj for some family of

finite dimensional real full matrix algebras Aj = Mnj (R). ut

The first part of this result was announced immediately after Proposition 1.14. A
finer version of Corollary 2.29 (i) will appear in Corollary 2.36. The second part of
Proposition 2.29 will be put into a more systematic context in Part 3 of Chapter 3.

Lemma 2.30. If E is an irreducible finite dimensional G-module, then
HomG(E,E) is a division ring over K. If K = C, then HomG(E,E) = C· idE.

If G is abelian, then dimCE = 1, and there is a morphism χ:G → C× such
that gx = χ(g)·x for all x ∈ E.

Proof. Let ϕ:E → E be G-equivariant, i.e. satisfy ϕ(g·x) = g·ϕ(x). Then kerϕ
and imϕ are submodules of E. If ϕ 6= 0, then kerϕ = {0} and imϕ = E follow,
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and so ϕ is bijective, that is, has an inverse. Thus HomG(E,E) is a division ring
over K.

Assume now that K = C. If 0 6= ϕ ∈ HomG(E,E), then ϕ has a nonzero
eigenvalue λ. Then ϕ−λ· idE is an element of HomG(E,E) with a nonzero kernel,
hence must be zero by the preceding. Thus ϕ = λ· idE .

Now assume that G is abelian, that K = C, and that π:G→ Hom(E,E) is the
associated representation. Commutativity of G implies π(G) ⊆ HomG(E,E) =
C· idE . Hence for each g ∈ G there is a χ(g) ∈ C such that π(g) = χ(g)· idE . We
see immediately, that χ is a morphism G→ C×. Moreover, every vector subspace
of E is a submodule. Hence the simplicity of E implies dimE = 1. ut

We remark that from a purely algebraic point of view, the finite dimensionality
was not needed. If, however, G is a topological group and E a topological vector
space, then the bijectivity of a continuous endomorphism does not necessarily
imply its invertibility. The Inverse Mapping Theorem for bounded operators on
Banach spaces (see [94]) allows this conclusion still for Banach spaces (at least).
Also, if E is a G-module in the sense of Definition 2.1, then the morphism ϕ
constructed in the abelian case is continuous. If G is, in addition, compact then
χ(G) is a compact subgroup of C× and is, therefore, contained in S1. Hence χ is
a character in the sense of Definition 1.22 (up to the isomorphy of S1 with T).

Corollary 2.31. The characters of a compact abelian group separate the points.

Proof. This is an immediate consequence of Corollary 2.27 and Lemma 2.30. ut

This allows us to prove the second half of the Pontryagin Duality Theorem:

Theorem 2.32. For any compact abelian group G the morphism ηG:G → ̂̂
G is

an isomorphism.

Proof. By Corollary 2.31, ηG:G → ̂̂
G is injective, hence an isomorphism onto

its image Γ ⊆ ̂̂
G (cf. Remark 1.8). We claim that Γ =

̂̂
G; a proof of this claim

will finish the proof. By Corollary 2.31 once again, the claim is proved if every

character of
̂̂
G/Γ is zero, that is, if every character of

̂̂
G which vanishes on Γ is

zero. By Theorem 1.37 we may identify Ĝ with the character group of
̂̂
G under

the evaluation isomorphism. Thus a character f of
̂̂
G vanishing on Γ is given by

an element χ ∈ Ĝ such that f(Ω) = Ω(χ). But we have 0 = f
(
ηG(g)

)
= ηG(g)(χ)

for all g ∈ G since f annihilates Γ. By the definition of ηG we then note χ(g) =
ηG(g)(χ) = 0 for all g ∈ G, that is, χ = 0 and thus f = 0. ut

Theorems 1.37 and 2.32 constitute the object portion of the Pontryagin Duality
Theorem for discrete and compact abelian groups. Up to natural isomorphism it
sets up a bijection between the class of discrete and that of compact abelian groups.
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It shall reveal its true power when it is complemented by the morphism part. This
will set up a similar bijection between morphisms as we shall see in Chapter 7.
However, this belongs to the domain of generalities and does, in fact, not require
more work in depth. The nontrivial portion of the duality is accomplished.

The following consequence of the duality theorem turns out to be very useful.

Corollary 2.33. (i) Let G be a compact abelian group and A a subgroup of the

character group Ĝ. The following two conditions are equivalent:
(1) A separates the points of G.

(2) A = Ĝ.
(ii) (The Extension Theorem for Characters) If H is a closed subgroup of G,

then every character of H extends to a character of G.

Proof. (i) Corollary 2.31 says that (2) implies (1), and so we have to prove that

(1) implies (2). Since the characters of the discrete group Ĝ/A separate the points

by Lemma 1.21, in order to prove (2) it suffices to show that every character of Ĝ

vanishing on A must be zero. Thus let Ω be a character of Ĝ vanishing on A. By
Theorem 2.32, there is a g ∈ G with ηG(g) = Ω. Thus χ ∈ A implies 0 = Ω(χ) =
ηG(g)(χ) = χ(g). From (1) we now conclude g = 0. Hence Ω = ηG(g) = 0.

(ii) The collection of all restrictions χ|H of characters of G to H separates the
points of H since the characters of G separate the points of G by Corollary 2.31.
Then (i) above shows that the function χ 7→ χ|H: Ĝ → Ĥ is surjective, and this
proves the assertion. ut

Corollary 2.34. For every compact abelian group G there is a filter basis N of
compact subgroups such that G is the strict projective limit limN∈N G/N of factor
groups each of which is a character group of a finitely generated abelian group.

Proof. Let A = Ĝ denote the character group of G and F the family of finitely
generated subgroups. If F ∈ F , let NF = F⊥ denote the annihilator {g ∈ G |
χ(g) = 0 for all χ ∈ F}. Since F ⊆ F ′ in F implies NF ′ ⊆ NF , the family
N = {NF | F ∈ F} is a filter basis of closed subgroups. An element g is in

⋂
N

if and only if it is in the annihilator of every finitely generated subgroup of A,
hence if and only if it is annihilated by all of A, since A is the union of all of
its finitely generated subgroups. Thus g = 0 by Corollary 2.31. By Proposition
1.33(ii), therefore, G is the strict projective limit G = limF∈F G/NF .

Now we claim that the character group of G/NF may be identified with F . This
will finish the proof of the corollary. If qF :G→ G/NF denotes the quotient map,

then the function ϕ 7→ ϕ ◦ qF : (G/NF )̂ → Ĝ is injective as qF is surjective. Its
image is precisely the group F⊥⊥ of all characters vanishing on NF . Since every
character χ ∈ F vanishes on NF , we have F ⊆ F⊥⊥. We shall now show equality
and thereby prove the claim. But when F⊥⊥ is identified with the character group
of G/NF then the subgroup F separates the points of G/NF since the only coset
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g + NF ∈ G/NF annihilated by all of F is NF by the definition of NF . Now
Corollary 2.33 shows F = F⊥⊥. ut

Exercise E2.7. Assume that G is a compact abelian group whose character group
is of the form A ⊕ B with two subgroups A and B. Show that the morphism
g 7→ (g+NA, g+NB):G→ G/NA×G/NB is an isomorphism and that (G/NA)̂ ∼=
N̂B ∼= A and (G/NB)̂ ∼= N̂A ∼= B. ut

If G is a compact abelian group whose character group is finitely generated
and thus is of the form Ĝ = F ⊕ E with F ∼= Zn and a finite group E then G is
isomorphic to Tn ×E by a repeated application of Exercise E2.7 above in view of

T̂ ∼= Z and Ẑ(n) ∼= Z(n), and in view of Remark 1.24(ii). Therefore, Corollary 2.34
yields the following remark:

Remark 2.35. Every compact abelian group is the strict projective limit of a
projective system of groups G/N isomorphic to Tn(N)×EN with suitable numbers
n(N) = 0, 1, . . . , and finite abelian groups EN . ut

More information will follow in 2.42 and 2.43 below.

But now we have further important conclusions from the Fundamental Theorem
on Unitary Modules 2.22.

Corollary 2.36. Every compact group is a strict projective limit of a projective
system of groups each of which is isomorphic to a closed subgroup of an orthogonal
(or a unitary) group.

Proof. Assume that G is a compact group. We define N to be the set of all
kernels of morphisms f :G → O(n) for some n. All of these groups are compact
normal subgroups, and

⋂
N = {1} by Corollary 2.28. Now assume that N1, N2 ∈

N . Then there are morphisms fj :G → O(nj), j = 1, 2 and Nj = ker fj . Let
j: O(n1)×O(n2)→ O(n1 + n2) which in matrix form is given by

(T1, T2) 7→
(
T1 0
0 T2

)
.

Define f :G→ O(n1 +n2) by f(g) = j
(
f1(g), f2(g)

)
. Then ker f = ker f1∩ker f2 =

N1∩N2. This shows that N1∩N2 ∈ N . Hence N is a filter basis and thus G is the
strict projective limit limN∈N G/N by Proposition 1.33(ii). The same argument
works with unitary instead of orthogonal groups. ut

The preceding corollary says in effect that every compact group can be approxi-
mated with arbitrary accuracy by compact matrix groups (consisting of orthogonal
matrices). Recall that this means that we find arbitrarily small compact normal
subgroups N such that G/N is isomorphic to such a matrix group. This result is
a sharper version of Corollary 2.29.
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We now formulate an idea which is rather useful when dealing with topological
groups.

Definition 2.37. Let G be a topological group. We say that G has no small
subgroups (or is an NSS-group), respectively, no small normal subgroups if there
is a neighborhood U of the identity such that for every subgroup, respectively,
normal subgroup H of G the relation H ⊆ U implies H = {1}. ut

According to this definition we shall say that a topological group has small
subgroups if each of its identity neighborhoods contains a nonsingleton subgroup.

It is clear that R and T have no small subgroups. More generally, the additive
groups of any Banach space and any topological groups locally isomorphic to it
have no small subgroups. However, both the p-adic groups Zp and the p-adic
solenoids Tp (see Examples 1.28(i) and (ii)) have small subgroups. If G has no
small subgroups and H is a subgroup of G then H has no small subgroups.

For a more general insight, let us return to Proposition 1.4 and the discussion
which follows it.

Lemma 2.38. If A is a Banach algebra and G = A−1 is the group of units, then
G has no small subgroups. As a consequence, every subgroup of G has no small
subgroups.

Proof. Let B = {a ∈ A | ‖1−a‖ < 1} denote the unit ball around 1 in A. Then the
function exp:A→ G given by expx =

∑∞
n=0

1
n! ·x

n has a local inverse log:B → A
given by log(1− x) = −

∑∞
n=1

1
n ·x

n for ‖x‖ < 1.

Now we select an open ball V of radius r around 0 in A such that exp 2V ⊆ B.
Then U = expV is an open neighborhood of 1 in G. Let 1 6= h ∈ U . Then
a = log h ∈ V and thus 0 < ‖a‖ < r. If n is the largest natural number below
r/‖a‖, then ‖n·a‖ = n‖a‖ < r while r ≤ ‖(n + 1)·a‖ < ‖n·a‖ + r < 2r. Hence
(n + 1)·a ∈ 2V \ V and thus hn+1 = exp(n + 1)·a ∈ B \ U since exp maps 2V
injectively into B. Therefore, if H is any subgroup of G contained in U , then
H = {1} for every h ∈ H different from 1 has a power outside U . The very last
assertion is immediate. ut

The following observation is practically trivial, but serves as a convenient ref-
erence.

Lemma 2.39. Let G = limj∈J Gj be a strict projective limit of compact groups
such that G has no small normal subgroups. Then there is an index j ∈ J such
that G ∼= Gj.

Proof. From Proposition 1.33(i) we know that the filter basisN of all kernels ker fj
of the limit maps fj :G → Gj converges to 1. Assume now that U is an identity
neighborhood in which {1} is the only normal subgroup. Then there is an index
j ∈ J such that ker fj ⊆ U . It follows that ker fj = {1}. Hence fj is injective. It
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is surjective anyhow since the projective limit is strict. Hence fj :G → Gj is an
isomorphism by Remark 1.8. ut

Now we are ready for the following important consequence of our previous
results.

Corollary 2.40. For a compact group G, the following statements are equivalent:
(1) G is isomorphic as a topological group to a (compact) group of orthogonal

(or unitary) matrices.
(2) G has a faithful finite dimensional orthogonal (or unitary) representation.
(3) G has a faithful finite dimensional representation.
(4) G is isomorphic as a topological group to a closed subgroup of the multiplica-

tive group of some Banach algebra A.
(5) There is a Banach algebra A and an injective morphism j:G → A−1 into

the multiplicative group of A.
(6) G has no small subgroups.
(7) G has no small normal subgroups.

Proof. (1)⇒(2) This is trivial.
(2)⇒(3) Again this is trivial
(3)⇒(4) Let π:G → Hom(V, V ) be an injective representation for a finite

dimensional vector space V over K. We take A = Hom(V, V ) with the operator
norm. Then (4) is an immediate consequence of Remark 1.8.

(4)⇔(5) Remark 1.8 again.
(4)⇒(6) Immediate from Lemma 2.38.
(6)⇒(7) This is trivial.
(7)⇒(1) By Proposition 1.33 and Corollary 2.36 there is a filter basis N of

closed normal subgroups N of G converging to 1 such that G = limN∈N G/N and
such that G/N is isomorphic to a closed subgroup of an orthogonal group O(nN )
(respectively, unitary group U(mN )). By (7) and Lemma 2.39 there is an N ∈ N
with G ∼= G/N . Hence G is a closed subgroup of an orthogonal or unitary group
in finitely many dimensions and (1) is proved. ut

This allows us to make the following definition.

The Definition of a Compact Lie Group

Definition 2.41. A compact group G is called a compact Lie group if it satisfies
one, and therefore all, of the equivalent conditions of Corollary 2.40. In particular,
G is a Lie group if it has no small subgroups. ut

We remark that this definition is consistent with all other definitions of a Lie
group in the general domain of compact groups. Notice that all compact matrix
groups are compact Lie groups.

Exercise E2.8. (i) Every finite group is a compact Lie group.
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(ii) A totally disconnected compact group is a compact Lie group if and only
if it is finite.

(iii) A finite direct product of compact Lie groups is a compact Lie group.
(iv) Every closed subgroup of a compact Lie group is a compact Lie group. ut

Proposition 2.42. (i) A compact abelian group is a compact Lie group if and only
if it is isomorphic to Tn × E for some natural number n and finite abelian group
E, that is if and only if it is the character group of a finitely generated abelian
group.

(ii) A compact connected abelian group is a compact Lie group if and only if it
is isomorphic to Tn for some natural number n; i.e. is an n-torus.

Proof. (i) No group Tn×E has small subgroups. Hence all of these groups are Lie
groups. Conversely, assume that G is a compact abelian Lie group. By Remark
2.35 and Lemma 2.39, G is isomorphic to Tn×E, where E is a finite group E. (ii)
follows directly from (i). ut

Exercise E2.9. If G is a closed subgroup of Tn, then G is isomorphic to the direct
product of a finite dimensional torus group and a finite group. ut

Neither the p-adic groups Zp nor the p-adic solenoids Tp are compact Lie groups
because they have small subgroups. More trivially, an infinite product of nonsin-
gleton compact groups is never a compact Lie group, because it, too, has small
subgroups. We shall argue later that the underlying space of a compact Lie group
always has to be a (real analytic) manifold (Corollary 5.37).

The converse question whether a topological group on a compact manifold is
a Lie group has an affirmative answer, too, but that is a more delicate question.
We shall be able to answer it when we have more information on the structure of
compact groups.

Corollary 2.36 can now be reformulated in a smooth fashion:

Approximating a Compact Group by Compact Lie Groups

Corollary 2.43. Every compact group is a strict projective limit of compact Lie
groups. ut

Theorem 1.34 which we derived in an elementary fashion (that is, without the
aid of integration on the group) is a forerunner of this theorem. The significance
of Corollary 2.43 is that it reduces the theory of arbitrary compact groups in large
measure to that of compact Lie groups. How this works we shall see when we learn
more about compact Lie groups in Chapters 5 and 6.
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Postscript

In this chapter we have leapt over the barrier of Haar measure in a somewhat
unorthodox manner. The existence and uniqueness of Haar measure was outlined
in Theorem 2.8 and its proof is given in Appendix 5 in a form that is due to James
Wendel [373]. This proof was one of the earliest applications to harmonic analysis
of the theory of compact topological semigroups which was in the process of being
developed at the time Wendel’s proof was published. It is an appropriate choice
in the context of our presentation of compact groups; it provides information on
compact groups beyond the existence of Haar measure as such, and it is compatible
with the spirit of topological algebra. Wendel’s proof, on the other hand, does not
yield a proof of the existence of Haar measure on locally compact noncompact
groups. The reader finds an updated contemporary presentation of this material
in [177].

We have proceeded in this chapter to exploit Haar measure for the structure
and representation theory as fully as possible at this point. We have proceeded to
the Theorem of Peter and Weyl on a route which is somewhat different from that
taken in other sources. We first aim for a proof of the existence of finite dimensional
subrepresentations in any unitary representation of a compact group and develop
everything from there. All proofs somehow rest on averaging operators; ours is
more geometric and uses the averaging of compact operators rather than, say,
Hilbert–Schmidt operators. Our proof of the existence of sufficiently many finite
dimensional unitary representations of a compact group leading up to 2.22 is fairly
direct and is taken from [160].

The definition of a compact Lie group in 2.41 is a bit unconventional, but it is
appropriate to our approach. We shall show in Chapter 5 that it fits perfectly into
the theory of linear Lie groups and of analytic groups. A significant outcome of
the investigations of this chapter is the surprising result that every compact group
is a strict projective limit of matrix groups. The next chapter is a generalisation
of the classical theory of trigonometric functions and trigonometric polynomials
expanding on the seminal work of Peter and Weyl.

References for this Chapter—Additional Reading

[34], [40], [38], [94], [100], [147], [149], [160], [177], [196], [211], [219], [229], [230],
[263], [307], [317], [331], [373].
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Chapter 3

The Ideas of Peter and Weyl, Tannaka, Hopf, and
Hochschild

The emphasis in the first part of this chapter is on the algebra C(G,K) of continu-
ous functions on a compact group G. We know from Example 2.4 that C(G,K) is
a G-module. So the module aspect will be once more in the foreground. In partic-
ular, we shall find a dense submodule R(G,K) whose structure we shall describe
accurately. The prerequisites include a knowledge of the preceding part and such
tools as the Approximation Theorem of Weierstraß and Stone.

In the second part of this chapter, however, we expand these ideas to a very
wide class of G-modules on locally convex topological vector spaces which satisfy a
certain (very weak) completeness condition. In order to appreciate this part of the
chapter, the reader should have some familiarity with locally convex topological
vector spaces. The reader may wish to skip this portion at the first reading and
go directly to Part 1 of the next chapter; the price for skipping it is the loss of
some of the beautiful generality inherent in the general theory of modules over a
compact group, and in Part 2 of the next chapter we shall utilize Part 2 of this
chapter.

Likewise, the reader primarily interested in the internal structure of compact
groups may also skip at a first reading the third part of this chapter and return to it
at a later time if the need arises. The following comments serve as an introduction
to the remainder of the present Chapter 3.

In Chapters 1 and 2, specifically Theorem 2.32, we saw that the category of
compact abelian groups is dual to the category of abelian groups. This is the
Pontryagin Duality Theorem for compact abelian groups. The Tannaka Duality
Theorem identifies a category which is dual to the category of compact groups.
Part 3 will describe a conceptually new approach to the Tannaka Duality Theo-
rem. For this purpose it systematically exploits the much more elementary duality
between K-vector spaces (K = R or K = C) and weakly complete K-vector spaces.
Here a weakly complete K-vector space is any topological vector space that is iso-
morphic to a power KJ for a set J . Our approach leads to symmetric Hopf algebras
in the symmetric monoidal categories of R-vector spaces and of weakly complete
R-vector spaces. This allows us to identify organically a special category of weakly
complete real symmetric Hopf algebras as completely equivalent to the category of
compact groups. Then the dual category of weakly complete real symmetric Hopf
algebras is the category of reduced Hopf algebras which now emerges as the dual
category to that of compact groups in the Tannaka-Hochschild Duality Theorem.
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In this process we learn that the weakly complete group algebra R[G] of a
compact group also contains the Lie algebra of G which we shall get to know more
explicitly in subsequent sections, and it contains, in addition, the compact monoid
of probability measures on G. We shall return to measure theory later in the book,
notably in Appendix 5.

In the process we formulate a theorem on the algebra structure of the real or
complex group algebra K[G] and a dual result (Theorem 3.82 and Corollary 3.83)
which may be viewed as refinements of the Peter–Weyl Theorems of the earlier
parts of this chapter.

Prerequisites. As a tool we need vector valued integration of Radon measures on
compact Hausdorff spaces, but we review it in this chapter. A certain familiarity
with locally convex topological vector spaces is assumed.

The third part of this chapter requires familiarity with real and complex vector
spaces and their duality; for this purpose and its ramifications we have expressly
formulated Appendix 7 in order to secure self-contained access to this circle of
basic linear algebra in this book. In the same vein, the methods of constructing
group algebras in the category of weakly complete topological vector spaces, we use
fundamental category theoretical methods such as the Adjoint Functor Existence
Theorem for which we refer the reader to the compact course taught in Appendix
3, Theorem A3.28 through Theorem A3.60.

The concept of a symmetric Hopf algebra is present in many different corners
of this book. The systematic background for this concept is that of a symmetric
(or commutative) monoidal category as we expose it in Appendix 3 from Defini-
tion A3.62 onward to the end of the appendix. However, for the purposes of this
chapter one needs from the subsection of Appendix 3 on “Commutative Monoidal
Categories and its Monoid Objects” (beginning after Theorem A3.60) primarily
Part 5: “Symmetric Hopf Algebras over R and C” beginning with Definition A3.93,
while the Parts 2, 3, and 4 which occasionally require technical efforts on Graded
Commutative Hopf Algebras are not needed here.

However, the basic structure theory proper of the real or complex group algebra
requires only the foundational material provided in the first 3 chapters of this book.

Part 1: The Classical Theorem of Peter and Weyl

Definition 3.1. Let G denote a topological group and assume that E is a G-
module. (See Definition 2.1.) We say that an element x ∈ E is almost invariant or
G-finite if span(Gx), the linear span of its orbit Gx, is finite dimensional. The set
of almost invariant vectors in E is denoted Efin. ut

Evidently, each orbit Gx is a G-invariant set and thus span(Gx) is a submodule.
Therefore, an element x ∈ E is almost invariant if and only if there is a G-
invariant finite dimensional vector subspace V of E with x ∈ V .
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Lemma 3.2. Let E be a G-module. Then Efin is a submodule. Moreover, if E is
any algebra, that is, is equipped with a bilinear map (x, y) 7→ xy:E×E → E and if
the actions x 7→ gx are algebra morphisms for all g ∈ G, then Efin is a subalgebra.

Proof. Clearly Efin is closed with respect to scalar multiplication. Thus let x, y ∈
Efin. We must show that x+y and, where applicable, xy are elements of Efin. Now

(1) span
(
G(x+ y)

)
⊆ span(Gx) + span(Gy)

and

(2) span(Gxy) ⊆ span
(
(Gx)(Gy)

)
⊆ span

[(
span(Gx)

)(
span(Gy)

)]
,

provided that g(xy) = (gx)(gy) for all g ∈ G and x, y ∈ E. Condition (1) immedi-
ately implies that span

(
G(x + y)

)
is finite dimensional, whence x + y ∈ Efin. Let

us consider any two finite dimensional vector subspaces V and W in an arbitrary
algebra E. Then span(VW ) is finite dimensional. Indeed if v1, . . . , vm is a basis
of V and w1, . . . , wn is a basis of W , then the finite family {vjwk | j = 1, . . . ,m,
k = 1, . . . , n} spans span(VW ). As a consequence, (2) implies xy ∈ Efin. ut

We specialize this immediately to theG-module C(G,K) for a compact groupG.

Definition 3.3. The set C(G,K)fin of almost invariant continuous functions on
G is written R(G,K) and its elements are called representative functions. ut

Note that R(G,K) is a subalgebra of C(G,K), sometimes called the represen-
tation ring of G.

Thus a continuous function f on a compact group is a representative function
if and only if the set of its translates gf spans a finite dimensional vector space.
Clearly every constant function is a representative function. However, the door is
open to a much larger supply of representative functions:

Proposition 3.4. Let G be a compact group. Then the following statements are
equivalent for a continuous function f ∈ C(G,K):

(1) There is a finite dimensional G-module E and there are vectors x ∈ E and
u ∈ E′ (where E′ is the dual of E, i.e. the vector space of all linear functionals
on E), such that

f(g) = 〈u, gx〉 for all g ∈ G.

(2) f ∈ R(G,K).

Proof. (1)⇒(2): Assume (1), take a basis x1, . . . , xn is of E, and set fk(g) =
〈u, gxk〉. Now for any h ∈ G we have hx =

∑n
j=1 cj ·xj for suitable scalars cj ∈ K.

Thus hf(g) = f(gh) = 〈u, ghx〉 =
∑n
j=1〈u, g(cj ·xj)〉 =

(∑n
j=1 cj ·fj

)
(g). So for

any h ∈ G, the function hf is in the span of {f1, . . . , fn}. Hence f ∈ R(G,K).
(2)⇒(1): Let E = span(Gf); then E is a submodule of C(G,K). We define

a functional u ∈ E′ as the restriction to E of the point measure δ1 ∈ M(G,K)
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given by 〈δ1, ϕ〉 = ϕ(1), that is, the evaluation of a continuous function at 1. Then
f(g) = gf(1) = 〈δ1, gf〉 = 〈u, gf〉. Thus (1) holds. ut

Let us observe what this means in terms of matrices.

Corollary 3.5. For a compact group G, the representative functions are exactly
the functions G → K which appear as scalar multiples of the coefficient functions
g 7→ ajk(g) of all finite dimensional matrix representations

g 7→
(
ajk(g)

)
j,k=1,...,n

: G→Mn(K)

of G.

Proof. Firstly, let f be a representative function. By Proposition 3.4, there is a
finite dimensional representation π:G → Gl(E) such that f(g) = 〈u, π(g)(x)〉 for
vectors x ∈ E and u ∈ E′.

If 〈u, x〉 6= 0 then we choose a basis e1 = x, e2, . . . , en of E and a dual basis u1 =
〈u, x〉−1·u, u2, . . . Then π(g) has the matrix ajk(g) = 〈uj , π(g)(ek)〉, j, k = 1, . . . , n
with respect to the basis e1, . . . , en. In particular, we have f(g) = 〈u, x〉−1·a11(g).

If, however, 〈u, x〉 = 0 and if u 6= 0, x 6= 0—which is the only case of interest—
then we find a basis e1 = x, e2, . . . , en of E and a dual basis u1, u2 = u, . . . , un. In
this situation we observe f(g) = a21(g).

Thus in any case, f is a scalar multiple of a coefficient function of a matrix
representation.

Secondly, assume that f(g) = cajk(g) is a scalar multiple of a coefficient
function of a matrix representation P :G → Mn(K). Then let E = Kn and
let π:G → Gl(E) be the representation given by P . If e1 = (1, 0, . . . , 0), and
so on, is the standard basis of E and if we identify E with its own dual so
that 〈(a1, . . . , an), (x1, . . . , xn)〉 = a1x1 + · · · + anxn, then f(g) = cajk(g) =
〈c·ej , π(g)(ek)〉. Thus f is a representative function by Proposition 3.4. ut

Exercise E3.1. Assume that G = T. Describe the functions in R(G,R) and
R(G,C). ut

Let us observe that for each finite dimensional G-module E, the dual E′ is also
a G-module, called the adjoint module: Indeed if the representation associated
with E is π:G → Gl(E), then the adjoint operator π(g)

′
:E′ → E′ given by

π(g)′(u) = u◦π(g), that is, by 〈π(g)′(u), x〉 = 〈u, π(g)(x)〉 defines a representation

π′:G→ Gl(E′) given by π′(g) = π(g−1)′ = π(g)′
−1

.
This has an immediate consequence: Assume that for a function f :G→ K we

set

f̌(g) = f(g−1) for all g ∈ G.

By Proposition 3.4, for a representative function f , we have f(g) = 〈u, π(g)(x)〉 =
〈π(g)′(u), x〉 with a vector x from a finite dimensional G-module E and u ∈ E′.
Let η:E → E′′ denote the natural isomorphism defined by η(x)(u) = 〈u, x〉. Then
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f(g) = 〈π(g)′(u), x〉 = 〈η(x), π′(g−1)(u)〉. Thus Proposition 3.4 again shows that
f̌ is a representative function.

The assignment f 7→ f̌ is an automorphism of algebras on R(G,K) satisfying
ˇ̌f = f , that is, it is an involution. The map f 7→ f of R(G,K) into itself (which
is just the identity map in the case K = R) is an involutive conjugate linear
automorphism of algebras. This involution is a G-module automorphism since

gf = (gf). It therefore maps R(G,K) into itself, that is R(G,K) = R(G,K).
There is a simple connection between the two involutions: If f ∈ R(G,K), then

by Proposition 3.4 there is a finite dimensional G-module E and vectors x ∈ E and
u ∈ E′ such that f(g) = 〈u, gx〉. By Weyl’s Trick 2.10 we may assume that E is a

finite dimensional Hilbert G-module. Let us consider the conjugate vector space Ẽ
of E which has the same underlying addition as E and the scalar multiplication
given by

c • x = c·x for all c ∈ K.

(In the case K = R we have Ẽ = E.) Now the function ι: Ẽ → E′ given by
〈ιy, x〉 = (x|y) is an isomorphism of G-modules since 〈ι(gy), x〉 = (x|π(g)(y)

)
=(

π(g)∗x|y
)

=
(
π(g)−1x|y

)
= 〈ι(y), g−1x〉 = 〈gι(y), x〉 holds for all x, y ∈ E. ut

If, for the moment, we set fxy(g) = 〈ι(y), gx〉 = (gx | y) then

fxy(g) = (π(g)x | y) =
(
x | π(g−1)y

)
= (π(g−1)y | x)

= f̌yx(g).

Let us denote by π the representation associated with Ẽ. If e1, . . . , en is an
orthonormal basis of E, then the functions akj = fejek are the matrix coefficients

of π. By the definition of Ẽ, the matrix coefficients of π(g) are ajk(g).

For easy reference we summarize these observations:

Lemma 3.6. Let E denote a finite dimensional G-module and E′ its dual module.
(i) The dual module E′ is isomorphic to the conjugate module Ẽ under ι: Ẽ → E′

with 〈ι(y), x〉 = (x|y).
(ii) The assignments f 7→ f, f̌ :C(G,K) → C(G,K) are involutions mapping

R(G,K) into itself. For fxy(g) = 〈ι(y), gx〉 we have

(∗) fxy = f̌yx.

(iii) If, for a suitable basis of E, the representation π has the matrix coefficients

g 7→ ajk(g), j, k = 1, . . . , n, then π, the representation associated with Ẽ, has

the matrix coefficients g 7→ ajk(g). ut

After Corollaries 2.27 and 2.28 we know that the finite dimensional represen-
tations of a compact group separate the points. As a consequence we know that
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there are plenty of representative functions. In fact, we immediately obtain a cele-
brated result which generalizes the fact that any continuous periodic function can
be approximated uniformly by trigonometric polynomials. (See e.g. [231], p. 514.)

The Classical Theorem of Peter and Weyl

Theorem 3.7. Let G be a compact group. Then R(G,K) is dense in C(G,K) and
in L2(G,K).

Proof. By Lemma 3.2 we know that R(G,K) is a subalgebra of C(G,K) containing
the constant functions. By the preceding remarks we know that R(G,K) is closed
under conjugation. We shall show that it separates the points. For this purpose let
g1 6= g2 in G. Then by Corollary 2.28 there is a finite dimensional G-module E and
a vector x ∈ E such that g1x 6= g2x. Hence there must be a functional u ∈ E′ with
〈u, g1x〉 6= 〈u, g2x〉. Then by Corollary 3.5 we have found a representative function
f with f(g1) 6= f(g2). Thus R(G,K) is a point separating subalgebra of C(G,K)
containing constants and being closed under conjugation. Then the Theorem of
Stone and Weierstraß implies that R(G,K) is dense in C(G,K) with respect to
the topology of uniform convergence. (Cf. [34], X.39, Proposition 7, or [331], p.
161.) Since uniform convergence certainly implies convergence in L2(G,K), and
since C(G,K) is dense in L2(G,K) by the definition of L2(G,K) (see Example
2.12), it follows that R(G,K) is dense in L2(G,K) with respect to the topology of
L2(G,K). ut

Let us observe in the context of the Theorem of Peter and Weyl that C(G,K)
has also the structure of a G-module by translation on the left side of the argu-
ments:

Remark 3.8. (i) The operation (g, f) 7→ gf :G × C(G,K) → C(G,K) given by
gf(x) = f(g−1x) makes C(G,K) into a G-module.

(ii) For g, h ∈ G and f ∈ C(G,K) one has g(
hf) = h(gf). The action(

(g, h), f
)
7→
(
x 7→ f(g−1xh)

)
: (G×G)× C(G,K)→ C(G,K) defines on C(G,K)

the structure of a G×G-module.
(iii) If one restricts the action of G × G in (ii) to the diagonal of G × G one

obtains (g, f) 7→ g·f :G× C(G,K)→ C(G,K) given by (g·f)(x) = f(g−1xg).

Proof. Exercise E3.2. ut

Exercise E3.2. Verify the details of Remark 3.8. ut

In order to distinguish the two actions let us call (g, f) 7→ gf the action on the
right of the argument and (g, f) 7→ gf the action on the left of the argument.

Proposition 3.9. (i) The involution f 7→ f̌ :C(G,K) → C(G,K) is an isomor-
phism of G-modules if on the domain the action is on the right of the argument
and on the range on the left—and vice versa.
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(ii) The subset R(G,K) of C(G,K) is the set of almost invariant vectors with
respect to both actions.

Proof. (i) We observe (gf )̌ (x) = gf(x−1) = f(g−1x−1) = f
(
(xg)−1

)
= f̌(xg) =

(g f̌)(x). Thus ˇ exchanges the two actions.
(ii) Let f ∈ R(G,K); we have to show that the span of all translates gf is

finite dimensional. Now (gf )̌ = g f̌ by (i) and f̌ ∈ R(G,K) by (∗) in 3.6(ii). Thus
span{(gf )̌ | g ∈ G} = (span{gf | g ∈ G})̌ is finite dimensional. Since ˇ is a vector
space automorphism, span{gf | g ∈ G} is finite dimensional and the assertion is
proved. ut

By the very definition of R(G,K) and by Proposition 3.9, every one of its
elements is contained in a finite dimensional vector subspace which is invariant with
respect to left translation, right translation, and conjugation of the argument. We
wish to analyze the finite dimensional submodules of R(G,K) more systematically.
Proposition 3.4 suggests how such an investigation may be undertaken.

We need some elementary linear algebra which is absolutely indispensable in
this context.

An Excursion into Linear Algebra

Let us consider an arbitrary finite dimensional vector space E. As usual, E′ denotes
the dual, and E′⊗E the tensor product of the two vector spaces over K. We must
know how the vector spaces E′ ⊗ E, Hom(E,E), and its dual Hom(E,E)′ are
related by natural isomorphisms.

Lemma 3.10. (i) The vector space E′ ⊗ E is isomorphic to Hom(E,E) under
a morphism θE :E′ ⊗ E → Hom(E,E) given by θE(v ⊗ x)(y) = 〈v, y〉·x. For
x1, x2 ∈ E and v1, v2 ∈ E′ we have

(3) θE(v2 ⊗ x2) ◦ θE(v1 ⊗ x1) = (y 7→ 〈v2, x1〉〈v1, y〉·x2).

(ii) The function τE :E′ ⊗E → Hom(E,E)′ which assigns to an element v ⊗ x
the functional of Hom(E,E) given by

〈τE(v ⊗ x), ϕ〉 = 〈v, ϕ(x)〉

is an isomorphism of vector spaces and

(4) 〈τE(v2 ⊗ x2), θE(v1 ⊗ x1)〉 = 〈v2, x1〉〈v1, x2〉.

(iii) In particular,

〈τE(v2 ⊗ x2), θE(v1 ⊗ x1)〉·x3 = 〈v2, x1〉〈v1, x2〉·x3

=
(
θE(v2 ⊗ x3) ◦ θE(v1 ⊗ x1)

)
(x2).

Proof. Exercise E3.3. ut
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Exercise E3.3. Prove the statements of Lemma 3.10. ut

The following exercise may be skipped in the context of representation theory;
it illustrates, however, the semigroup structure of the set of all rank one endomor-
phisms of a vector space.

Exercise E3.4. Let Γ denote a group and Γ0 the semigroup obtained from Γ
by attaching a disjoint element 0 acting as zero, i.e. satisfying γ0 = 0γ = 0.
Let X and Y two arbitrary sets and (y, x) 7→ [y, x]:Y × X → Γ0 any function.
Then X × Γ0 × Y becomes a semigroup Σ with respect to the multiplication
(x, γ, y)(x′, γ′, y′) = (x, γ[y, x′]γ′, y′). (Notice that the sequence of letters is the
same on both sides of the equation!) The set I = X × {0} × Y is an ideal and the
quotient Σ/I obtained by collapsing the elements of I to one point is a semigroup
which we call [X,Γ0, Y ]. Such semigroups are called Rees matrix semigroups (see
e.g. [62]).

Show that the set {θE(v ⊗ x) | v ∈ E′, x ∈ E} under composition of en-
domorphisms is a semigroup which is isomorphic to a Rees matrix semigroup.

ut

Definition 3.11. If 1 denotes the distinguished element idE of Hom(E,E), then
we use the abbreviation T for θ−1

E (1). The functional τE(T) = τEθ
−1
E (1) is called

the trace and is written tr. ut

Consider any basis e1, . . . , en of E and u1, . . . , un the dual basis characterized
by 〈uj , ek〉 = δjk. Then for each x ∈ E we note 1(x) = x =

∑n
j=1〈uj , x〉·ej =

θE(
∑n
j=1 uj ⊗ ej)(x). This means θE(

∑n
j=1 uj ⊗ ej) = 1 and thus

(5) T =
n∑
j=1

uj ⊗ ej .

On the other hand, if ϕ:E → E is any endomorphism of E, then the coefficients
of its matrix with respect to our basis are ajk = 〈uj , ϕ(ek)〉. Thus

trϕ = 〈τE(
n∑
j=1

uj ⊗ ej), ϕ〉

=
n∑
j=1

〈uj , ϕ(ej)〉

= a11 + a22 + · · ·+ ann.
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If, in particular, ϕ = θE(v ⊗ x), then

〈τE(T), ϕ〉 =
n∑
j=1

〈τE(uj ⊗ ej), θE(v ⊗ x)〉

=
n∑
j=1

〈uj , x〉〈v, ej〉 = 〈v,
n∑
j=1

〈uj , x〉·ej〉 = 〈v, x〉.

Thus the trace is characterized by the fact that

(6) tr
(
θE(v ⊗ x)

)
= 〈v, x〉.

Exercise E3.5. Show trϕψ = trψϕ. ut

Lemma 3.12. The isomorphism τE ◦ θ−1
E : Hom(E,E) 7→ Hom(E,E)′ assigns to

a morphism ϕ:E → E the functional ψ 7→ trψϕ.

Proof. It suffices to verify the claim for ψ = θE(v2 ⊗ x2) and ϕ = θE(v1 ⊗ x1).
Then ψ

(
ϕ(y)

)
= 〈v2, x1〉〈v1, y〉·x2 = 〈v2, x1〉·θE(v1 ⊗ x2)(y) by (3) in Lemma

3.10. Then we have trψϕ = 〈v2, x1〉〈v1, x2〉 by (6) above. But this means trψϕ =
〈τE(v2⊗ x2), θE(v1⊗ x1)〉 = 〈τEθ−1

E (ψ), ϕ〉 by (4) in Lemma 3.10. This proves the
assertion. ut

Let us illustrate the situation in the diagram

E′ ⊗ E θE−−−−−−−−−→ Hom(E,E)

τE

y yτE◦θ−1
E

Hom(E,E)′
id−−−−−−−−−→ Hom(E,E)′.

We keep in mind that, in this scheme of things, Hom(E,E) is a K-algebra.

The G-Modules E′ ⊗ E, Hom(E,E) and Hom(E,E)′

Equipped with these tools we return to G-modules and assume now, that E is a
finite dimensional G-module. Then the dual E′ is a G-module with respect to the
adjoint action given by

(7) 〈gv, x〉 = 〈v, g−1x〉,

that is, by πE′(g) = πE(g−1)′ if ϕ′:E′ → E′ is the adjoint map of an endomorphism
ϕ:E → E. As a consequence, E′⊗E is a module in at least three significant ways.

Firstly, it is a G×G-module in such a fashion that (g, h)·(v ⊗ x) = gv ⊗ hx.

Secondly, if we consider E′ as the trivial module characterized by gv = v for all
g ∈ G and v ∈ E′, then E′ ⊗E is a G-module via g(v⊗ x) = v⊗ gx. This module
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is easily understood right away in terms of the given module E: For any v ∈ E′,
the vector subspace v ⊗ E is a submodule of E′ ⊗ E which is isomorphic to the
G-module E. Thus if u1, . . . , un is a basis of E′ , then E′ ⊗E =

⊕n
j=1 uj ⊗E is a

direct sum of G-modules, and we have the observation

Remark 3.13. If the trivial action is considered on E′, then the G-module E′⊗E
is isomorphic to the G-module En with n = dimE. ut

Notice that this module action is derived from the first by restriction of the
operators (g, h) = (v ⊗ x 7→ gv ⊗ hx) to the second component g.

Thirdly, however, we have on E′ ⊗E the G-module operation which is derived
from the G×G-modules structure by restriction of the action to the diagonal: it
is given by g·(v ⊗ x) = gv ⊗ gx.

It is clear that on Hom(E,E) and Hom(E,E)′ there are unique module struc-
tures such that the isomorphisms θE and τE are isomorphisms of modules. Thus

firstly, Hom(E,E) is a G × G-module in such a way that
(
(g, h)ϕ)

(
x) =

hϕ(g−1x). In other words, πHom(E,E)(g, h)(ϕ) = πE(h)ϕπE(g)−1. Indeed we now

note
(
(g, h)θE(v ⊗ x)

)
(y) = πE(h)θE(v ⊗ x)(g−1y) = 〈v, g−1y〉·hx = 〈gv, y〉·hx =

θE(gv ⊗ hx)(y) = θE
(
(g, h)(v ⊗ x)

)
(y). Thus θE is a module isomorphism with

respect to the first module action.
Secondly, Hom(E,E) is a G-module so that (gϕ) = πE(g) ◦ ϕ, and
thirdly, Hom(E,E) is a G-module such that (g·ϕ)(x) = gϕ(g−1x), that is, that

g·ϕ = π(g)ϕπ(g)−1.
In the context of arbitrary Hilbert G-modules, the third action was crucial

in Chapter 2. The subspace of fixed points of this module is exactly the space
HomG(E,E) of endomorphisms commuting with all π(g), that is, of all module
endomorphisms with respect to the third action. By Remark 3.13 and the fact
that θE is a module isomorphism with respect to the first, hence also with respect
to the second action we know that in regard to the second action, Hom(E,E) is
isomorphic to the G-module En.

On Hom(E,E)′ we consider the G×G-module structure given by

(8) 〈(g, h)ω, ϕ〉 = 〈ω, π(g)−1ϕπ(h)〉.

If πHom(E,E)′ is the representation of the dual G×G-module of Hom(E,E) given
for each ω ∈ Hom(E,E) by

〈(g, h)ω, ϕ〉 = 〈ω, (g, h)−1ϕ〉
= 〈ω, π(h)−1ϕπ(g)〉,

and if we denote with κ:G × G → G × G the involutive automorphism given by
κ(g, h) = (h, g), then the module structure we have defined in (8) satisfies

(g, h)ω = (πHom(E,E)′ ◦ κ)(g, h)(ω).
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Exercise E3.6. Show that τE a module isomorphism. Conclude that τE is also
an isomorphism for the adjoint actions on Hom(E,E)′ of the second and third
module structure on Hom(E,E). ut

Exercise E3.7. Let E be a (finite dimensional) Hilbert space with respect to
a scalar product. Let ϕ∗ denote the adjoint operator of ϕ ∈ Hom(E,E). Show
that Hom(E,E) is a Hilbert space over K with respect to the scalar product
〈ϕ|ψ〉 = trϕψ∗. ut

The G × G-module E′ ⊗ E is simple whenever E is simple. This is, in fact, a
consequence of a more general lemma:

Lemma 3.14. If E is a simple G-module and F a simple H-module over K = C
for compact groups G and H, then the G × H-module E ⊗ F characterized by
(g, h)(x⊗ y) = gx⊗ hy is simple.

Proof. We may identify Hom(E ⊗ F,E ⊗ F ) with Hom(E,E) ⊗ Hom(F, F ) via

(ϕ⊗ ψ)(x⊗ y) = ϕ(x)⊗ ψ(y). The operator T 7→ T̃ of

Hom(E,E)⊗Hom(F, F )

into itself according to Lemma 2.15 may be computed as follows

(ϕ⊗ ψ)̃ =
∫
G×H πE(g)ϕπE(g)−1 ⊗ πF (h)ψπF (h)−1 d(g, h)

= (
∫
G
πE(g)ϕπE(g)−1 dg)⊗ (

∫
H
πF (h)ψπF (h)−1 dh) = ϕ̃⊗ ψ̃.

If E is simple, then ϕ 7→ ϕ̃ is a projection onto HomG(E,E) by Lemma 2.16,

and ψ 7→ ψ̃ is a projection onto HomH(F, F ). If E and F are simple we have
HomG(E,E) = C· idE and HomH(F, F ) = C· idF by Lemma 2.30. Hence the self-

map T 7→ T̃ of Hom(E ⊗ F,E ⊗ F ) is a projection onto C· idE⊗F . If V is an
invariant subspace of E⊗F , then the orthogonal projection of E⊗F onto V is in
HomG×F (E ⊗ F,E ⊗ F ). It follows that P = idE⊗F or P = 0, that is V = E ⊗ F
or V = {0}. ut

As a consequence of this lemma and the fact that θE and τE are G×G-module
isomorphisms, we have the following conclusion:

Lemma 3.15. If K = C and E is a simple G-module for a compact group, then
Hom(E,E) and Hom(E,E)′ are simple G×G-modules. ut

The Fine Structure of R(G,K)

We continue to let E denote a finite dimensional G-module.
Now we can return to Proposition 3.4 and exploit the linear algebra which we have
just prepared. The function (u, x) 7→

(
g 7→ 〈u, gx〉

)
:E′ × E → C(G,K) takes its
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values in R(G,K) and is bilinear. It therefore induces a linear map

(9) ΦE :E′ ⊗ E → R(G,K).

It is characterized by the formula

(10) ΦE(u⊗ x)(g) = 〈u, gx〉.

Definition 3.16. The image of E′⊗E under ΦE in R(G,K) is written RE(G,K).
ut

Lemma 3.17. The set RE(G,K) is a finite dimensional vector subspace of R(G,K)
which is invariant under left and right translations of the arguments, and

ΦE :E′ ⊗ E → RE(G,K)

is an equivariant surjective linear map.

Proof. It suffices to show the equivariance of ΦE with respect to the G ⊗ G-
module structures. Now ΦE

(
(g, h)(v ⊗ x)

)
(γ) = ΦE(gv ⊗ hx)(γ) = 〈gv, γhx〉 =

〈v, g−1γhx〉 = ΦE(v ⊗ x)(g−1γh) =
(
h
gΦE(v ⊗ x)

)
(γ). This proves the lemma. ut

Definition 3.18. We define

σE : Hom(E,E)→ RE(G,K)

and

ρE : Hom(E,E)′ → RE(G,K)

by σE = ΦE ◦ θ−1
E and ρE = ΦE ◦ τ−1

E . ut

The following observations are now readily verified. Equivariance here refers
to the G × G-module structure, from which the equivariance with respect to the
restricted actions follows at once.

Remark 3.19. The function σE = ΦE ◦θ−1
E : Hom(E,E)→ RE(G,K) is an equiv-

ariant surjective map which assigns to an endomorphism ϕ:E → E the function
g 7→ tr

(
ϕπ(g)

)
.

The function ρE = ΦE ◦τ−1
E : Hom(E,E)′ → RE(G,K) is an equivariant surjec-

tive linear map which associates with a functional ω on Hom(E,E) the function
(g 7→ 〈ω, π(g)〉) = ω ◦ π. ut

Exercise E3.8. Verify the details of Remark 3.19. ut
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We now have a network of G × G-module maps which is summarized in the
following diagram:

(11)

E′ ⊗ E τE−−−−−−−−−→ Hom(E,E)′

θE

y yρE
Hom(E,E) −−−−−−−−−→

σE
RE(G,K),

ΦE = σE ◦ θE = ρE ◦ τE .

What we need next is information on the kernel of ΦE or, equivalently, the
kernel of ρE . Clearly, we have τE(ker ΦE) = ker ρE .

Proposition 3.20. For a finite dimensional G-module E we have the following
conclusions:

(i) The kernel of ρE is described by

ker ρE = π(G)⊥ = {ω ∈ Hom(E,E)′ | (∀g ∈ G) 〈ω, π(g)〉 = 0}
= {ω | ω

(
π(G)

)
= {0}}.

(ii) If one denotes with res: Hom(E,E)′ → span
(
π(G)

)′
the restriction map

given by res(ω) = ω|span
(
π(G)

)
, and by inc:π(G)⊥ → Hom(E,E)′ the inclusion

map, then the following sequence is an exact sequence of G×G-module maps:

0→ π(G)⊥
inc→ Hom(E,E)′

res→
(
spanπ(G)

)′ → 0.

(iii) The G×G-modules spanπ(G)
(
in Hom(E,E)

)
and RE(G,K)

(
in R(G,K)

)
are isomorphic. In particular,

dimRE(G,K) = (dimE)2 − dimπ(G)⊥.

Proof. (i) This is immediate from the definition of ρE (see Definition 3.18).
(ii) This is pure linear algebra: If X is a subset of a finite dimensional vector

space V then the sequence

0→ X⊥
inc→ V ′

res→ (spanX)′ → 0

is exact.
(iii) More linear algebra: The surjective maps ρE : Hom(E,E)′ → RE(G,K) and

res:Hom(E,E)′ →
(
spanπ(G)

)′
have the same kernels by (i) and (ii) above. Hence

their images are isomorphic. The assertion about the dimensions is elementary
linear algebra. ut

We are clearly motivated at this point to say something about the vector sub-

space A def
= spanπ(G) of the algebra Hom(E,E). Firstly, apart from being a sub-

module with respect to the most general action we pursued, namely, the G × G-
action, A is clearly a subalgebra since π(G) is multiplicatively closed. Let us denote
with F the subalgebra HomG(E,E) of Hom(E,E). Notice that F is the commu-
tant C(A) of A in Hom(E,E) (as introduced in the section preceding 2.16). The
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bicommutant C2(A) = C(F) of A certainly contains A. It is not an obvious matter
to find that it actually agrees with A. In fact, even if we momentarily assume that,
firstly, K = C and, secondly, that E is a simple module, so that after Lemma 2.30
we know F = C·1 and thus C2(A) = C(1) = Hom(E,E), we have no immediate
reason for the conclusion A = spanπ(G) = Hom(E,E). However Lemma 3.15 now
allows us to conclude A = Hom(E,E) because A is a G×G-submodule and 1 ∈ A.
Hence we have

Proposition 3.21. If E is a simple G-module over C with a compact group G,
then spanπ(G) = Hom(E,E). ut

Exercise E3.9. (i) Show that for K = C, a compact group G, and a finite dimen-
sional G-module E, one has C(F) = A.

(ii) Let G = T = R/Z and let E = R2 be the G-module given by the represen-
tation π:G→ Hom(R2,R2) by

π(t+ Z) =

(
cos 2πt sin 2πt
− sin 2πt cos 2πt

)
.

(We identify an endomorphism of R2 with its matrix representation.) Set 12 =(
1 0
0 1

)
and i =

(
0 1
−1 0

)
. Show that spanπ(G) = R·1 + R·i 6= Hom(R2,R2).ut

Let us observe that there is an algebraic theory behind the preceding discussions
which culminates in the so-called Density Theorem of Jacobson for semisimple
modules. (See e.g. [35], §1, no 2, Theorème 1, p. 39, [218], p. 104, Theorem 11, or
[219], p. 28 and p. 127.) This theorem would allow us to conclude that A agrees
with its double commutant regardless of the ground field. We shall return to this
point in Lemma 3.80, in whose proof we shall spell out the Jacobson Density
Theorem.

If we now take Propositions 3.20 and 3.21 together, recalling Remark 3.19, we
obtain the following conclusion.

Theorem 3.22. Let G be a compact group and E a simple G-module, then the
maps σE : Hom(E,E) → RE(G,C) and ρE : Hom(E,E)′ → RE(G,C) are isomor-
phisms with respect to the following module actions:

(i) G × G acting so that (g, h) transforms f ∈ RE(G,C) into γ 7→ f(g−1γh)
and ϕ ∈ Hom(E,E) into π(h)ϕπ(g)−1 (while acting on Hom(E,E, )′ by the
action given by 〈(g, h)ω, ϕ〉 = 〈ω, π(g)−1ϕπ(h)〉),

(ii) G acting so that g transforms f into gf and ϕ into ϕπ(g)−1,
(iii) G acting so that g transforms f into γ 7→ f(g−1γg) and ϕ into π(g)ϕπ(g)−1

(and acting on Hom(E,E)′ by the adjoint action). ut

Corollary 3.23. (i) If E is a simple G-module for a compact group G, then the
G-module RE(G,C) with respect to the action (g, f) 7→ gf is isomorphic to the
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G-module En with n = dimE. In particular,

dimCRE(G,C) = (dimCE)2.

(ii) The function f 7→ f̌ maps the module RE(G,C) with respect to the action on
the left of the argument isomorphically onto the module RE′(G,C) with respect to
the action on the right of the argument. In particular, with respect to (g, f) 7→ gf ,
the module RE(G,C) is isomorphic to (E′)n.

Proof. (i) By 3.13, the module E′⊗E is isomorphic to En when the action on E′

is considered to be trivial. However, ΦE :E′ ⊗ E → RE(G,C) is equivariant with
respect to this action. By Theorem 3.22 and Remark 3.19, ΦE is an isomorphism.

(ii) If u ∈ E′ and x ∈ E, and if we set f(g) = 〈u, gx〉, then f̌(g) = 〈u, g−1x〉 =
〈gu, x〉. Hence f 7→ f̌ maps RE(G,C) into RE′(G,C), and since it is bijective and
dimRE(G,C) = n2 = dimRE′(G,C) it induces an isomorphism between these
two vector spaces. Proposition 3.9(i) proves the asserted equivariance.

The remainder now follows from (i) above. ut

As the next step we shall show that the vector space R(G,K) is the direct
sum of all finite dimensional subspaces RE(G,K) as E ranges through a set of
representatives of the set of isomorphy classes of the class of all simple G-modules.
Therefore, in the present discussion we fix a set E of simple G-modules which
meets every isomorphy class of simple G-modules in precisely one element E ∈ E .

Firstly, we generalize Corollary 3.23 to the case that K is either C or R. The
following lemma will be a helpful tool.

Lemma 3.24. Let E be a G-module which is a finite direct sum of simple sub-
modules all of which are isomorphic to a simple module F . Then the following
conclusions hold:

(i) If f1:F1 → E and f2:E → F2 are equivariant morphisms and F1 and F2 are
simple, then F1 6∼= F implies f1 = 0 and F2 6∼= F implies f2 = 0.

(ii) If f1:E1 → E is an injective equivariant morphism, and f2:E → E2 is a
surjective equivariant morphism, then E1 and E2 are modules all of whose
simple summands are isomorphic to F .

Proof. (i) We may write E = Fn. We then have n coprojections coprj :F → E
mapping F isomorphically onto the j-th factor, and n projections prj :E → F .
The n maps prj ◦ f1:F1 → F are necessarily zero if F1 6∼= F , and since the pro-
jections prj separate the points of E, we conclude f1 = 0. Likewise, the n maps
f2 ◦ coprj :F → F2 are all zero if F2 6∼= F . Since the sum of the images of the n
coprojections coprj is E, it follows that f2 = 0.

(ii) By Corollary 2.25 we know (in view of Weyl’s Trick 2.10!) that E1 and
E2 are direct sums of simple modules. If F1 is a simple submodule of E1, then (i)
shows at once that F1

∼= F . If F2 is a simple direct summand of E2 and p:E2 → F2

the orthogonal projection, then p ◦ f2:E → F2 is a surjective morphism. From (i)
we conclude F2

∼= F . This proves the lemma. ut
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Lemma 3.25. If E is a simple G-module, then RE(G,K) is a direct sum of simple
submodules each of which is isomorphic to E.

Proof. By Lemma 3.17 the G-module RE(G,K) is a homomorphic image of the
module E′ ⊗ E which by Remark 3.13 is isomorphic to En with n = dimE. The
assertion follows from Lemma 3.24(ii). ut

Proposition 3.26. (i) The vector space R(G,K) is the direct sum of the finite di-
mensional subspaces RE(G,K) where E ranges through the set E of representatives
of the set of isomorphy classes of the class of all simple G-modules.

(ii) In the sense of L2(G,K), these summands RE(G,K), E ∈ E, are orthogonal
and L2(G,K) is their orthogonal direct sum.

Proof. (i) For a simple G-module E, the finite dimensional vector space RE(G,K)
is an invariant submodule of L2(G,K). Hence by Lemma 2.18, the orthogonal
projection PE of L2(G,K) onto RE(G,K) is equivariant. If now E0 denotes any
simple submodule of L2(G,K) which is not isomorphic to E, then PE(E0) = {0}
by Lemma 3.24. In view of Lemma 3.25, this means that PE

(
RE0

(G,K)
)

= {0}
for all simple E0 which are not isomorphic to E. If, temporarily, we denote the
span of all of these RE0

(G,K) with SE , then PE(SE) = {0}.
Now we claim that R(G,K) = RE(G,K) + SE . Let f ∈ R(G,K). Then by

Proposition 3.4, there is a finite dimensional G-module V , a linear functional
u ∈ V ′ and a vector x ∈ V such that f(g) = 〈u, gx〉. By Corollary 2.25 (in view of
Weyl’s Trick 2.10!) we have V = E1 ⊕ · · · ⊕ Em with simple G-modules Ej and,
accordingly, V ′ = E′1⊕· · ·⊕E′m. We write x = x1 + · · ·+xm with xj ∈ Ej and u =
u1 + · · ·+um with uj ∈ V ′j for j = 1, . . . ,m. Then f(g) = 〈u, gx〉 =

∑m
j=1〈uj , gxj〉,

and if we set fj(g) = 〈uj , gxj〉, then f = f1 + · · ·+ fm and fj ∈ REj (G,K).
Hence R(G,K) is the linear span of all the submodules RE(G,K) as E ranges

through E and this certainly shows RE(G,K) + SE = R(G,K). Since RE(G,K)
and SE are orthogonal direct summands and E was arbitrary in E , then R(G,K)
is the direct vector space sum of the summands RE(G,K), E ∈ E .

(ii) We have seen that the subspaces RE(G,K), E ∈ E form an orthogonal
family in L2(G,K). Their sum is R(G,K) and R(G,K) is dense in L2(G,K) by the
Peter–Weyl Theorem 3.7. Hence L2(G,K) is the orthogonal Hilbert space sum of
the RE(G,K) as E ranges through E . ut

Corollary 3.27. Let E and F denote two simple G-modules. Then the following
two statements are equivalent:

(1) E ∼= F .
(2) RE(G,K) = RF (G,K).

Proof. By Lemma 3.25 we have RE(G,K) ∼= Em and RF (G,K) ∼= Fn. Lemma
3.24 then shows that (2) implies (1). Conversely, suppose the negation of (2).
Then Proposition 3.25 shows that RE(G,K) and RF (G,K) are orthogonal. In the
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notation of the proof of Proposition 3.26, this means that RF (G,K) ⊆ kerPE =
SE . The definition of SE now shows that (1) fails. ut

It is important that we understand the indexing of the direct sum representa-
tions of R(G,K) and L2(G,K). The class of simple G-modules is a proper class
(and not a set). However, isomorphy is a well-defined equivalence relation on this

class, and the class of equivalence classes is a set which we shall denote with Ĝ. If
E is a simple G-module, let [E] denote its isomorphy class. If E1 and E2 are simple
G-modules then [E1] = [E2] if and only if RE1

(G,K) = RE2
(G,K) by Corollary

3.27. Thus if ε ∈ Ĝ, then we may write Rε(G,K) = RE(G,K) with any E ∈ ε, and
the contents of Proposition 3.26 may be rewritten in the following more conclusive
form:

We recall that for an orthogonal family {Ej | j ∈ J} of closed vector subspaces
of a Hilbert space we write

∑
j∈J Ej for the algebraic direct sum and

⊕
j∈J Ej for

the orthogonal Hilbert space direct sum.

The Fine Structure Theorem for R(G,K)

Theorem 3.28.

(12) R(G,K) =
∑
ε∈Ĝ

Rε(G,K) and L2(G,K) =
⊕
ε∈Ĝ

Rε(G,K)

are valid for any compact group, and

Rε(G,K) ∼= Em with E ∈ ε

and a suitable number m ≤ dimKE with equality holding if K = C. ut

In this fashion, the G-module R(G,K) is a catalogue of all simple G-modules
over K. Likewise, L2(G,K) is a Hilbert space version of this catalogue. If K = C,
we know that the multiplicity m with which the simple module E occurs in the
catalogue is exactly the K-dimension of E. After Corollary 3.83 in Part 3 of this
chapter we shall know the exact size of the natural number m depending on ε for
K = R as well.

We have previously used the notation Ĝ for the character group of a com-
pact abelian (and also of a discrete abelian group). Now we have once more used

the same notation Ĝ to denote the set of all isomorphy classes of simple mod-
ules of an arbitrary compact group. However, there is no real conflict of notation:
If G is a compact abelian group, then the elements of Ĝ may be considered as
the morphisms G → C× into the multiplicative group of nonzero complex num-
bers. To be sure we did, in general, view Ĝ as Hom(G,T) ∼= Hom(G,S1), but
every morphism χ:G → C× has a compact image as G is compact, and thus
χ(G) ⊆ S1, because S1 is the unique maximal compact subgroup of C× ∼= R× T.
Every morphism χ:G → C× is a representation πχ:G → Gl(C) given by
πχ(g)(v) = χ(g)v. The associated module E on C is simple, and thus the function
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χ 7→ [E] from the set of characters of G to the set of isomorphy classes of simple
modules ofG is well defined. But conversely, every simpleG-module E over C is one
dimensional by Lemma 2.30 and defines a unique character χ:G→ C× such that
the module action is given by g·x = χ(g)x. An isomorphic module gives the same
character χ (Exercise!) and the function [E] 7→ χ—therefore well-defined— inverts
the function previously introduced. Thus we have a natural bijection between the
set of all characters of G and the set of all equivalence classes of complex simple
G-modules. It is true that we have considered on Ĝ the structure of an abelian
group whereas the set of equivalence classes of simple modules does not a priori
carry such a structure.

Exercise E3.10. (i) Explain the details necessary to define the two functions
χ 7→ [E] and [E] 7→ χ and verify explicitly that they are inverse functions of each
other.

(ii) In what way can one endow the set of all isomorphy classes of irreducible
G-modules for a compact abelian group with the structure of a group such that
the two functions of (i) above become isomorphisms of groups?

(iii) Consider G = T = R/Z and K = R; verify that Ĝ can be identified with
N0 in such a fashion that 0 6= n ∈ Z determines the irreducible representation πn

given by πn(t + Z) =

(
cos 2πnt sin 2πnt
− sin 2πnt cos 2πnt

)
, and that Rn(G,R) = span{t 7→

cos 2πnt, sin 2πnt | n ∈ N0}. Interpret Theorem 3.28 in the light of these observa-
tions. ut

Part 2: The General Theory of G-Modules

The objective of this section is to complete a general structure theory of G-modules
on rather arbitrary locally convex vector spaces. The Classical Theorem of Peter
and Weyl 3.7 and the Fine Structure Theorem for R(G,K) are the models for
the general results for which we aim. As a principal tool from functional analysis
we need a sufficiently general theory of integration for vector valued continuous
functions on compact spaces.

One of the tools we need in Part 2 of this chapter is vector valued inte-
gration. If E is a G-module for a compact group G with Haar measure dg,
then we want to form the so-called averaging operator P :E → E defined by
Px =

∫
G
gx dg =

∫
G
πE(g)(x)dg. This requires that we can integrate continuous

functions f :G → E (here f(g) = gx). If E = Rn then f(x) =
(
f1(x), . . . , fn(x)

)
,

and the integration is reduced to scalar integration. Hence the averaging opera-
tor P is certainly well-defined for finite dimensional G-modules. The applications
of the averaging operator to the character theory presented in the next chapter
pertain almost exclusively to finite dimensional G-modules. Thus this material
can be digested without going into vector valued integration on fairly arbitrary
locally convex spaces which we outline by reducing the problem to the integration
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of scalar functions, somewhat in the spirit of integration of functions with values
in Rn.

Vector Valued Integration

We have managed quite well so far with the integration of continuous functions
f :G → K. However, we have, in fact, repeatedly integrated continuous functions
f :G → E with values in some topological vector space E and obtained, as an
integral, an element of E, that is a vector. For instance, if E is a Hilbert space, then
the function x 7→

∫
G

(f(g) | x)dg:E → K is well defined through scalar integration
and is easily seen to be a bounded R-linear functional u (which happens to be
conjugate linear over C if K = C). Hence, by the elementary Riesz Representation
Theorem of Continuous Linear Functionals on Hilbert Space (cf. e.g. [331], p. 261,
Theorem A) there is a unique element I(f) ∈ E such that u(x) = (I(f) | x).
This vector I(f) in the Hilbert space E is the integral of f and is written

∫
G
f

or
∫
G
f(g)dg. We used this procedure implicitly in Lemma 2.15 and the sections

which followed it. In fact we even integrated operator valued functions such as
ϕ = (g 7→ π(g)−1Tπ(g)). In this case we consider the topological vector space E
of all bounded operators of a Hilbert space H. What we did in Section 2 was to
take a continuous linear functional ω:E → K given by ω(S) = (Sx | y) for fixed
vectors x, y ∈ H and then to notice (with the aid of Lemma 2.14) that there is one
and only one element I(ϕ) ∈ E which satisfies the linear equation

ω
(
I(ϕ)

)
=
∫
G
ω
(
ϕ(g)

)
dg

for all continuous linear functionals ω of E. (It sufficed at that time to consider
only a particular type of functional ω.)

We have seen that we have to deal with a variety of G-modules which are
topological vector spaces, such as C(G,K), or L2(G,K) or vector spaces of bounded
operators. Evidently, we want to see a uniform theory handling vector valued
integration so that, as first priority we can apply the averaging operator (“the
expectation”) to vector valued functions.

This requires a little functional analysis which we break down into a sequence
of exercises. In particular, we have to understand vector valued integration which
we shall survey. The caliber of the tools we need is that of the Theorem of Hahn
and Banach in locally convex spaces ([40, 317]).

We consider a locally convex topological vector space E over R. We denote by E′

its topological dual, that is, the vector space of all continuous linear functionals.
We fix a vector subspace A ⊆ E′ which separates the points of E. Certainly
A = E′ is a valid choice and it is the one in which we are most interested. Another
natural choice, however, arises if E is the topological dual F ′ of a topological vector
space F (a predual of E); then we have a natural linear map η:F → E′ given by

η(f)(e) = e(f) for f ∈ F , e ∈ E = F ′; then A
def
= η(F ) is a viable choice. We

remember that there is an injection ι:E → RA given by ι(x)(ω) = ω(x), due to
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the fact that the continuous linear functionals from A separate points. The weak
topology (with respect to A) on E is that topology which makes ι an embedding,
that is, a homeomorphism onto the image, when RA is given the product topology.

Now we take a compact Hausdorff space G and a Radon measure µ ([37], Chap.
III, §1, no 3, Définition 2) that is, a continuous linear functional of C(G,R) for
which we write 〈µ, f〉 =

∫
fdµ =

∫
f(g)dµ(g). Let F ∈ C(G,E) and note that we

obtain a well defined element

p = (〈µ, ω ◦ F 〉)ω∈A =
(∫
〈ω, F (g)〉 dµ(g)

)
ω∈A in RA.

We hope that, under suitable circumstances, we can find an element I(F ) ∈ E
such that ι

(
I(F )

)
= p, in other words, that

(13) 〈ω, I(F )〉 =
∫
〈ω, F (g)〉 dµ(g) for all ω ∈ A.

For our purposes it will be sufficient to assume that µ is a probability measure,
that is, 〈µ, f〉 ≥ 0 for all nonnegative f ∈ C(G,R) and 〈µ, 1〉 = 1. After all, we
shall apply this theory to a compact group G and Haar measure. An open zero-set
with respect to µ is any open set U ⊆ G such that 〈µ, f〉 = 0 for any continuous
function whose support is contained in U . The union of all open zero-sets is an
open zero set, and its complement is called the support supp(µ) of µ. For each
ω ∈ A we set

mω = min{〈ω, F (g)〉 | g ∈ supp(µ)}, Mω = max{〈ω, F (g)〉 | g ∈ supp(µ)}.

Using positivity and
∫
dµ = 1, we then compute the following estimate

(14) mω ≤ 〈µ, ω ◦ F 〉 =
∫
〈ω, F (g)〉 dµ(g) ≤Mω.

In other words, p is contained in the compact plank

P =
∏
ω∈A

[mω,Mω].

Note that 〈µ, ω ◦ F 〉 −mω =
∫
G

(〈ω, F (g)〉 −mω) dµ(g) is an integral with respect
to a positive measure over a nonnegative function. If it vanishes, it follows that
the integrand is zero over the support of µ which implies Mω = mω. Likewise,
Mω − 〈µ, ω ◦ F 〉 = 0 implies Mω = mω. Thus we can sharpen (14) as follows. For
all ω ∈ A,

(15) mω < Mω =⇒ mω < 〈µ, ω ◦ F 〉 =
∫
〈ω, F (g)〉 dµ(g) < Mω.

Let us denote the subspace of RA consisting of all linear functions L:A → R
by A∗. (In fact this is the algebraic dual of A in the so-called weak *-topology,
i.e. the topology of pointwise convergence.) The element p =

{
ω 7→ 〈µ, ω ◦ F 〉 =∫

〈ω, F (g)〉dµ(g)
}

is linear and is, therefore, in A∗.
We now want to observe that ι(E) is dense in A∗.

Exercise E3.11. Show ι(E) = A∗.
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[Hint. (i) Show that A∗ is closed in RA. (ii) Conclude that ι(E) ⊆ A∗. (iii) Consider
an arbitrary finite dimensional subspace V of A and let res:A∗ → V ∗ denote the
restriction map given by res(L) = L|V . Show that res

(
ι(E)

)
= V ∗ by noting that

res
(
ι(E)

)
separates the points of V . (iv) Let M be any finite subset of A and

consider the projection prM :RA → RM . Argue that prM (ιE) = prM (A∗) and
conclude that this proves the assertion.] ut

We set K = ι−1(P ). Then ι(K) = P ∩ ι(E) and we claim that ι(K) is dense in
P ∩A∗.

Exercise E3.12. Show ι(K) = P ∩A∗.
[Hint. (i) The subset ι(K) of P is closed and convex and is, therefore, a compact
subset of P ∩A∗. (ii) By the Hahn–Banach Theorem, it therefore is the intersection
of all closed half-spaces H of A∗ which contain ι(K). (iii) If A is any vector
space over R and A∗ ⊆ RA its algebraic dual with the weak *-topology, i.e. the
topology induced from RA, then the continuous linear functionals of A∗ are the
point evaluations u 7→ 〈u, a〉. (iv) Each ω ∈ A defines a closed half-space H of A∗

through H = {L ∈ A∗ | L(ω) ≤ M}, and every closed half- space H of A∗ is so
obtained. (v) The set ι(K) is the intersection of all Sν = {(rω)ω∈A ∈ A∗ | mν ≤
rν ≤Mν} as ν ranges through A. (vi) The intersection of all these Sν , however, is
P ∩A∗.] ut

Now K is the set of all x ∈ E with mω ≤ 〈ω, x〉 ≤ Mω and ω ∈ A. Hence it is
the intersection in E of all closed half-spaces containing F (G) whose boundaries
are parallel to hyperplanes which are kernels of functionals ω from A. Let us say
that a subset of E is A-convex if it is the intersection of closed half-spaces defined
by functionals from A. Such a set is automatically closed. If A = E′, then a subset
is A-convex if it is closed and convex. The set K is the A-convex hull of F (G) in
E. What we have achieved so far is the conclusion

(16) p ∈ ι(K), and K is the A-convex hull of F (G).

If ι(K) is closed in A∗, then we can indeed conclude the existence of a unique
I(F ) ∈ E which satisfies (13). Since ι is an embedding as soon as E is equipped
with the weak topology, the closedness of ι(K) in E′

∗
is guaranteed as soon as K

is weakly compact (i.e. compact with respect to the smallest topology making all
functions x 7→ 〈ω, x〉:E → R, ω ∈ E′, continuous). Notice that this is certainly
the case if K is compact in the given topology.

We recall that G is compact, whence F (G) is compact. Hence K is precompact.

Exercise E3.13. In a locally convex vector space V , the closed convex hull K of
a precompact set P is precompact.

[Hint: Let U0 be an arbitrary closed neighborhood of 0 in V . It suffices to show that
a finite union of translates of U0 covers K. We find a closed convex neighborhood
U of 0 such that U +U ⊆ U0. Since P is precompact, there is a finite subset Q of

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



72 3. The Ideas of Peter and Weyl

P such that P ⊆ Q+ U . The convex hull

X =
{∑
x∈Q

rx·x : 0 ≤ rx, x ∈ Q, and
∑
x∈Q

rx = 1
}

of Q is compact and X +U is closed and convex, and P ⊆ Q+U ⊆ X +U , hence
X + U contains K. By the compactness of X there is a finite subset R of X such
that X ⊆ R+ U . Thus K ⊆ X + U ⊆ R+ U + U ⊆ R+ U0.]

At this point we see very clearly which hypothesis on the space E will allow
us to conclude what we want, namely, that all closed convex precompact sets are
weakly compact. This is a very weak completeness condition.

However, in view of the fact that for the representation theory of a compact
group G we keep the group G fixed, it is sensible to formulate a form of complete-
ness which is adjusted to a particular given compact group G. We let C(G,E)
denote the topological vector space of all continuous functions f :G→ E given the
topology of uniform convergence.

Definitions 3.29. Let E be a locally convex topological vector space and A a
point separating vector space A ⊆ E′ of continuous functionals.

(i) E will be called feebly A-complete if there is a point separating vector
space A ⊆ E′ of continuous functionals such that every closed convex precompact
set of E is compact for the weak topology (with respect to A). We say that E is
feebly complete if E is feebly E′-complete.

(ii) Let G be a compact group. Then E is called G-A-complete if there is a
continuous linear map

I:C(G,E)→ E

such that

(∀ω ∈ A) 〈ω, I(f)〉 =

∫
G

〈ω, f(g)〉 dg,

where dg denotes Haar measure on G. We say that E is G-complete if it is G-E′-
complete. ut

If B is a subset of a feebly A-complete vector space , then we have called the
intersection of all half spaces which are closed for the weak topology with respect
to A and which contain B the A-convex hull of B.

If A = E′, then the E′-convex hull is the closed convex hull with respect to the
given topology in view of the Hahn–Banach Theorem.

The first part of the following proposition summarizes our preceding discussion.

Proposition 3.30. (i) Let E be a locally convex topological vector space and
A ⊆ E′ a point separating vector space of continuous linear functionals. Assume
that E is feebly A-complete and that G is a compact Hausdorff space. Assume
further that µ is a Radon probability measure on G. Then for every continuous
function F :G→ E there is a unique element

∫
G
F (g)dµ(g) ∈ E such that for each
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linear functional ω ∈ A we have

(∗) 〈ω,
∫
G
F (g)dµ(g)〉 =

∫
G
〈ω, F (g)〉 dµ(g).

If ω ∈ A and 〈ω, F
(
supp(µ)

)
〉 = {x}, then 〈ω,

∫
G
F (g)dµ(g)〉 = x, otherwise

(∗∗) min〈ω, F
(
supp(µ)

)
〉 < 〈ω,

∫
G
F (g)dµ(g)〉 < max〈ω, F

(
supp(µ)

)
〉.

The integral
∫
G
F dµ is contained in the A-convex hull of F (G).

Moreover, if E is feebly complete, then
∫
Fdµ is contained in the closed convex

hull of F (G) in E.
(ii) If the vector space C(G,E) is given the topology of uniform convergence,

and if E is feebly complete, then F 7→
∫
Fdµ:C(G,E)→ E is a continuous linear

map.
(iii) If G is a compact group and λ is Haar measure on G, then the function

I:C(G,E)→ E given by I(F ) =
∫
F dλ =

∫
G
F (g) dg is linear and satisfies

(∗∗∗) 〈ω, I(F )〉 =

∫
G

〈ω, F (g)〉 dg

for all ω ∈ A. If E is feebly complete, then I is continuous.
(iv) Every feebly complete locally convex vector space E is G-complete for any

compact group.

Proof. (i) is a summary of the preceding discussions.
(ii) Linearity is readily verified by (∗). Now let U be any closed convex identity

neighborhood and f ∈ C(G,E) a function with f(G) ⊆ U . Then, if E is feebly
complete, the closed convex hull of f(G) is contained in U . Hence

∫
fdµ ∈ U by

the last assertion of (i) above.
(iii) is now a consequence of (i) and (ii), and (iv) follows from (iii) ut

We recall from the theory of topological vector spaces that a subset B is called
bounded if for every 0-neighborhood V there is a real number r with B ⊆ rV .
A space is called quasicomplete if every bounded closed subset is complete. We
notice the following chain of implications for a given locally convex topological
vector space and, for the last implication, G-module E:

Hilbert space ⇒ Banach space ⇒ Fréchet space ⇒
complete ⇒ quasicomplete ⇒ feebly complete ⇒

G-complete.

Table 3.1: Completeness conditions allowing integration over G-orbits.

Exercise E3.14. Verify the preceding implications. ut

Exercise E3.15. Use Proposition 3.3(i) to develop the integration theory of con-
tinuous E-valued functions on a compact space G when E is a complex vector
space. ut
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For two compact spaces G1 and G2 we may identify C(G1,K)⊗C(G2,K) with
a dense subalgebra of C(G1×G2,K) closed under complex conjugation by writing
(f1⊗ f2)(g1, g2) = f1(g1)f2(g2). If for j = 1, 2 we have probability measures µj on
compact spaces Gj , then the functional µ1 ⊗ µ2:C(G1,K)⊗ C(G2,K)→ K given
by 〈µ1 ⊗ µ2, f1 ⊗ f2〉 = 〈µ1, f1〉〈µ2, f2〉 =

∫
f1dµ1

∫
f2dµ2 extends to a unique

probability measure on C(G1 × G2,K) which we again denote by µ1 ⊗ µ2. It is
called the product measure. (Sometimes, notably in set theoretical measure theory,
one also writes µ1 × µ2.) The Fubini Theorem of elementary measure theory says∫

f(g1, g2)d(µ1 ⊗ µ2)(g1, g2) =
∫ (∫

f(g1, g2)dµ2(g2)
)
dµ1(g1)

=
∫ (∫

f(g1, g2)dµ1(g1)
)
dµ2(g2).

(Cf. [37], Chap. III, §4, no 1, Théorème 2.)

Exercise E3.16. Prove the assertions in the preceding paragraph. ut

For the application we have in mind we are exclusively interested in Haar
measure λ on a compact group G.

Proposition 3.31. Assume that E is a G-complete locally convex topological vec-
tor space, G a compact group and dg Haar measure on G. Then:

(i) If f ∈ C(G,E) is a constant function with value x, then
∫
fdµ = x.

(ii) If T :E1 → E2 is a continuous morphism between G-complete locally convex
spaces, then for f ∈ C(G,E1) one has

T (
∫
G
f(g) dg) =

∫
G

(T ◦ f)(g) dg,

that is, integration commutes with linear operators.
(iii) (Fubini) If G1 and G2 are two compact groups with Haar measures γ1, re-

spectively, γ2 and f ∈ C(G1 ×G2, E) then

(17)

∫
f(g1, g2)d(γ1 ⊗ γ2)(g1, g2) =

∫ (∫
f(g1, g2) dg2

)
dg1

=
∫ (∫

f(g1, g2) dg1

)
dg2.

Proof. Since E is G-complete we have

(†)
(
∀ω ∈ E′, f ∈ C(G,E)

)
〈ω, I(f)〉 =

∫
G

〈ω, f(g)〉 dg.

(i) By Proposition (†), f(G) = {x} implies 〈ω,
∫
fdλ〉 = 〈ω, x〉 for all ω ∈ E′,

whence the assertion.
(ii) T induces an adjoint map T ′:E′2 → E′1 via T ′(ω2) = ω2 ◦ T . Now we use

(†) to compute

〈ω2,
∫

(T ◦ f)dµ〉 =
∫
G
〈ω2, T

(
f(g)

)
〉dµ(g) =

∫
G
〈T ′(ω2), f(g)〉dµ(g)

= 〈T ′(ω2),
∫
fdµ〉 = 〈ω2, T (

∫
fdµ)〉.

This proves the assertion.
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(iii) Let ω ∈ E′. Then by (†) we have 〈ω,
∫
f(g1, g2)d(λ1 ⊗ λ2)(g1, g2)〉 =∫

〈ω◦f〉(g1, g2)d(λ1⊗λ2)(g1, g2) =
∫ (∫

(ω◦f)(g1, g2)dλ2(g2)
)
dλ1(g1) by the scalar

Fubini Theorem. But by (†) again,∫
(ω ◦ f)(g1, g2)dλ2(g2) = 〈ω,

∫
f(g1, g2)dλ2(g2)〉,

and applying this once more to integration with respect to λ1, we find

〈ω,
∫
f(g1, g2)d(λ1 ⊗ λ2)(g1, g2)〉 = 〈ω,

∫ (∫
f(g1, g2)dλ1(g1)

)
dλ2(g2)〉,

and this proves the first equation in (17). The second is proved analogously. ut

The First Application: The Averaging Operator

The tools prepared in the preceding subsection allow us to deal in a very systematic
way with the fixed points of a given G-module. We actually worked with this
formalism in an ad hoc fashion in some crucial spots in Chapter 2.

We shall consider a compact group G with normalized Haar measure γ (see
Definition 2.6ff.). We shall fix a vector subspace A of E′ which separates points of
E. In most cases A = E′. We shall consistently assume that E is G-A-complete.
We recall right away that this is the case if A = E′ and E is feebly complete. We
have a continuous linear map I:C(G,E)→ E such that 〈ω, I(f)〉 =

∫
G
〈ω, f(g)〉 dg

for all ω ∈ A. We use the notation∫
G
f dγ =

∫
G
f(g) dg

def
= I(f).

Definition 3.32. Assume that E is a G-A-complete locally convex G-module. We
define

P = PG : E → E by Px =
∫
G
gx dg.

The function P is called the averaging operator of the module E. ut

Let us first remark that P is well defined. Indeed the function g 7→ gx is in
C(G,E) by Definition 2.1.(i)(b). Since E is G-A-complete,

∫
G
gxdg is well defined.

The averaging operator is perhaps the single most important tool applying to linear
actions of compact groups. In the next chapter we shall discuss generalizations of
the averaging operator (see Definition 4.12).

We shall see presently that P is an idempotent operator. Therefore we record
the following observation from linear algebra:

Lemma 3.33. If p:E → E is a vector space endomorphism with p2 = p then we
have the following conclusions:

(i) (1− p)2 = 1− p.
(ii) ker p = im(1− p).

(iii) The function f : im p×ker p→ E and f ′:E → im p×ker p given by f(x, y) =
x + y and f ′(z) =

(
P (z), z − P (z)

)
are inverse isomorphisms. If E is a
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topological vector space and p is continuous, then f and f ′ are isomorphisms
of topological vector spaces.

Proof. Exercise E3.17. ut

Exercise E3.17. Prove Lemma 3.33. ut

Definitions 3.34. (i) Let G operate on a set X (see Definition 1.9 and the dis-
cussion preceding it). We shall write

Xfix =
{
x ∈ X | Gx = {x}

}
for the set of fixed points.1 ut

(ii) Assume that G acts linearly on a vector space E. We write

Eeff = span{gx− x | g ∈ G, x ∈ E}

and call this space the effective vector subspace. If E is actually a G-module (see
Definition 2.1) we set

EEff = Eeff

and call this space the effective submodule. If A is a point separating vector sub-
space of E′, we shall denote by

clA(X) the closure of a set X in E with respect to the coarsest topology making

all functionals in A continuous. In particular we shall write EAEff
def
= clA(Eeff). We

shall say that A is G-invariant if for every ω ∈ G and g ∈ G also ω ◦ πE(g) ∈ A.ut

We note that EEff and EAEff are one and the same thing as soon as A = E′.
Otherwise EAEff may be bigger.

For a vector space E on which G acts linearly we obviously have Efix ⊆ Efin

(see Definition 3.1).

Lemma 3.35. (i) If G acts linearly on E, then G(Eeff) ⊆ Eeff .
(ii) If E is a G-module, then G(EEff) ⊆ EEff .
(iii) If A is a G-invariant and point separating vector subspace of E′, then

G(EAEff) ⊆ EAEff .

Proof. (i) Observe that h(gx− x) = (hgx− x)− (hx− x) for all g, h ∈ G, x ∈ E.
(ii) follows from (i) by the fact that each πE(g):E → E is continuous. (iii) follows
from (i) again because each π(g):E → E is continuous with respect to the weak
topology induced by the functionals of A if these are permuted by the adjoint
action of G. ut

1 We point out quickly that this notation deviates from other frequently used notation.
The fixed point set Xfix is often denoted XG; however, it appears that this notation
is completely occupied by the set of all functions G→ X.
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It follows that EEff is indeed a submodule; this justifies the choice of nomencla-
ture in Definition 3.32. Now we proceed to the core definition in this subsection.

Theorem 3.36 (Splitting Fixed Points). Let E denote a G-A-complete locally
convex G module for a compact group G and P :E → E the averaging operator
of E. Then

(i) Px is in the A-convex hull of the orbit Gx (that is, the closed convex hull if
A = E′), and Pgx = gPx = Px for all g ∈ G and x ∈ E,

(ii) P is a linear projection, that is P 2 = P ,
(iii) imP = Efix and Eeff ⊆ kerP ⊆ EAEff ; in particular, clA(kerP ) = EAEff .
(iv) The continuous linear bijection

(x, y) 7→ x+ y : Efix × kerP → E

is a G-module morphism with inverse

x 7→ (Px, x− Px):E → Efix × kerP.

(v) If E is a real vector space and the set ω(Gx) is not singleton for an ω ∈ A,
then

min〈ω,Gx〉 < 〈ω, Px〉 < max〈ω,Gx〉.

(vi) If, in addition, E is feebly complete and the action (g, x) 7→ gx:G× E → E
is continuous, then P is continuous, kerP = EEff and E ∼= Efix × EEff via
the map in (iv) above.

Proof. (i) By Proposition 3.30, Px =
∫
gxdg is in the A-convex hull of Gx. If

h ∈ G, then Phx =
∫
ghxdg =

∫
gxdg = Px by the right invariance of Haar

measure. Similarly, hPx = π(h)
∫
gxdg =

∫
π(h)gxdg by Proposition 3.31(ii). But∫

hgxdg =
∫
gxdg = Px by the left invariance of Haar measure.

(ii) P 2x =
∫
g(Px)dg =

∫
Pxdg = Px in view of (i) above and Proposition

3.31(iii). The linearity of P follows from the linearity of the action of G and the
linearity of the integral via Proposition 3.31(i).

(iii) If x ∈ Efix, then Px =
∫
gxdg =

∫
xdg = x by Proposition 3.31(iii) again.

Hence x ∈ imP . If, on the other hand, x = Py, then gx = gPy = Py = x by (i)
above. Thus PE = Efix. Next observe P (gx − x) = Pgx − Px = Px − Px = 0
by (i) above. Hence P (Eeff) = {0} and thus Eeff ⊆ kerP . Next let x ∈ kerP . We
observe that gx = x+ (gx− x) ∈ x+Eeff is contained in one and the same affine
variety for all g ∈ G, i.e. Gx ⊆ x+Eeff . It follows that the A-convex hull of Gx is
contained in clA(x+Eeff) = x+EAEff . Hence 0 = Px ∈ x+EAEff , whence x ∈ EAEff .

(iv) is a consequence of Lemma 3.32.
(v) The support of the Haar measure on a compact group G is G because of

invariance. Hence (∗∗) in Proposition 3.30 yields the assertion.
(vi) We now assume that A = E′ and that (g, x) 7→ gx:G×E → E is continu-

ous. Assume that U is a closed convex 0-neighborhood in E. Then by Corollary 1.13
we find a 0-neighborhood V with GV ⊆ U . If x ∈ V , then Gx ⊆ V ⊆ U . Then Px,
which is in the closed convex hull of Gx by (i), is contained in U , that is PV ⊆ U .
This shows that P is continuous.
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In particular, kerP is closed, and now (iii) implies kerP = EEff and the re-
mainder follows from (iv). ut

We recall that after Theorem 2.3, the action (g, x) 7→ g·x is automatically
continuous if E is a Baire space (for instance, if E is a Banach space); in this case
the conclusion (vi) is instantaneously available. Every such module then splits
neatly into an algebraic and topological direct sum of the fixed point module and
the effective submodule, whereby the projection onto the former is implemented
by the averaging operator P of E.

As noted before, the application of the averaging operator is one of the most
effective tools in the representation theory of compact groups. Of course, in most
situations, one can formulate what amounts to an application of the averaging
operator in explicit terms without referring to its general background theory. But
in the long run, this is unsatisfactory and a general theory is appropriate. Let us
briefly review, where we have already seen the averaging operator at work:

Example 3.37. (i) (Weyl’s Trick) Let E denote a G-module. We consider the
vector space of bilinear forms Bil(E;K) ⊆ KE×E , B:E × E → K. Then G acts
linearly on this vector space via (g·B)(x, y) = B(g−1x, g−1y). Then for each B the
bilinear form PB is invariant and contained in the closed convex hull of G·B.

(ii) (Equivariant Operators) Let E and F be two G-modules and Hom(E,F )
the vector space of all continuous vector space morphisms E → F endowed with
the topology of uniform convergence on bounded sets. For instance, if E and F
are Banach spaces, this is the Banach space of all bounded operators E → F with
the operator norm. Then Hom(E,F ) is a G-module with the action (g·f)(x) =
gf(g−1x), that is, g·f = πF (g)fπE(g)−1. For every f :E → F the operator Pf is
an equivariant map, or a morphism of G-modules. The averaging operator P of
Hom(E,F ) is a projection onto the submodule HomG(E,F ) =

(
Hom(E,F )

)
fix

of
all equivariant operators.

If E is a Hilbert space, then the space of all compact operators is aG-submodule
of Hom(E,E), hence is respected by P . For the proof of the Fundamental Theorem
2.22 we took a rank one projection f and used that Pf was a nonzero compact
equivariant self-map of E.

(iii) The modules C(G,K) and L2(G,K).
Case (a): G acts by translation of the right of the argument. Then Pf is a

constant function and the averaging operator maps both of these modules onto the
submodule K·1 = R[K](G,K) where [K] denotes the class of modules isomorphic
to the trivial one dimensional one and where 1 is the constant function on G with
value 1.

Case (b): G acts by conjugation of the argument in C(G,K) (and by L2-
extension of this action on L2(G,K)). A function f ∈ C(G,K) is called a class
function if it is a function which is constant on conjugacy classes of G. Then Pf
is a class function, that is, is constant on conjugacy classes. The averaging oper-
ator P maps both modules onto the submodule of all continuous class functions
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(respectively, the L2 elements fixed under this action). We shall utilize this fact
for a better understanding of characters in the next chapter. ut

Compact Groups Acting on Convex Cones

The question whether Efix is non-zero has no general answer. However, there is one
instance which allows the conclusion Efix 6= {0}, namely, if a G-module contains
an invariant convex cone. Experience confirms that indeed this is the only realistic
instance in which the existence of non-zero fixed points can be secured. This should
not come as a big surprise for the following reason. Assume that x is a non-zero
fixed point, Then x has a closed convex invariant neighborhood B separated from
0 by a closed affine hyperplane (see Proposition 1.11). Then W = R+·B is a closed
convex invariant pointed cone having x in its interior.

If E is a topological vector space, a cone or wedge W is a nonempty closed
convex and additively closed subset. In other words, W + W ⊆ W , R+·W ⊆ W
and W = W .

Exercise E3.18. (a) Show that the hyperquadrant W = (R+)n in Rn is a cone
(recall R+ = {r ∈ R | 0 ≤ r}!).

(b) Show that the set {(x1, . . . , xn) | x2
1 + · · · + x2

n−1 ≤ x2
n and 0 ≤ xn} is a

cone.
(c) Show that the set of all hermitian operators T of a Hilbert spaceH satisfying

(Tx | x) ≥ 0 is a cone. ut

Theorem 3.38. Let E be a G-complete real locally convex G-module with an
invariant cone W which is not a vector space. Then W ∩ Efix 6⊆ W ∩ −W . In
particular W ∩ Efix 6= {0}.

Proof. Let P denote the averaging operator of E. Since W is not a vector space,
there is an x ∈ W with −x /∈ W . The largest vector subspace of W is W ∩ −W
which is closed since W is closed. In the factor space E/(W ∩ −W ) we have a
nonzero element x+(W∩−W ) and hence there is a continuous functional assigning
this point the value 1 by the Theorem of Hahn and Banach. When composed
first with the quotient morphism E → E/(W ∩ −W ), this functional yields a
continuous linear functional ω ∈ E′ vanishing on W ∩−W such that 〈ω, x〉 = 1 and
〈ω,W 〉 ⊆ [0,∞[. Since W is invariant, Gx ⊆W . Hence Px, being contained in the
closed convex hull of Gx by Theorem 3.36(i), is in W . If 〈ω,Gx〉 = {〈ω, x〉}, then
〈ω, Px〉 = 1. If 〈ω,Gx〉 contains more than one element, then by Theorem 3.36(v)
we have 0 < min〈ω,Gx〉 < 〈ω, Px〉. In either case 0 < 〈ω, Px〉. Since ω vanishes
on W ∩ −W this means Px ∈W \ (W ∩ −W ). ut

Corollary 3.39. (i) If P ′:E′ → E′ denotes the adjoint of P and ω ∈ E′ then P ′ω
is a linear continuous functional fixed under the adjoint action. In particular, each
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affine variety (P ′ω)−1(r) is invariant as a whole. If 〈ω,w〉 ≥ 0 for all w ∈ W ,
then 〈P ′ω,w〉 ≥ 0 for all w ∈W .

(ii) Assume, in addition to the hypotheses of Theorem 3.38, that W∩−W = {0},
i.e. that W is pointed, and that there exists a functional ω ∈ E′ such that 〈ω,w〉 > 0
for all w ∈ W \ {0}. Then P ′ω also satisfies 〈P ′ω,w〉 > 0 for w ∈ W \ {0} and

B
def
= (P ′ω)−1(1) is a G-invariant closed basis of W , that is, W = R+·B.

Proof. Exercise E3.19. ut

Exercise E3.19. (i) Prove Corollary 3.39.
(ii) Adapt the proof of Theorem 3.38 to obtain a proof of the following gener-

alisation of it: If E is a G-A-complete G-module for a compact group G and W is
an invariant cone which is closed for the weak topology with respect to A, then W
contains a non- zero fixed point. ut

If E is the vector space of all compact operators on a G-Hilbert module H,
then the set W of all positive compact operators is a cone which is invariant
under conjugation by all unitary operators. Hence by Theorem 3.38 and Example
E3.18(ii) there is a compact equivariant operator. This is what we used in the
proof of the Fundamental Theorem 2.22.

More Module Actions, Convolutions

Definition 3.40. If G is a compact group and E a G-complete locally convex
G-module, for each f ∈ C(G,K) and x ∈ E we define f̃x ∈ C(G,E) by f̃x(g) =
f(g)·gx and set

f ∗ x =
∫
G
f(g)·gx dg = I(f̃x). ut

We note that the function (f, x) 7→ f ∗ x:C(G;K)×E → E is well defined and
that f ∗ x is contained in the closed convex hull Cf (x) of {f(g)·gx | g ∈ G}

If 1 denotes the constant function with value 1, then 1 ∗ x = Px with the
averaging operator P . The vector f ∗ x is a “weighted average”.

Lemma 3.41. (i) The function (f, x) 7→ f ∗ x:C(G,C) × E → E is a bilinear
map. The function f 7→ f ∗ x0 is continuous.

(ii) If the action (g, x) 7→ gx:G × E → E is continuous, then (f, x) 7→ f ∗
x:C(G,K)× E → E is continuous.

Proof. (i) Linearity in f follows from the linearity of f 7→ f̃x and the linearity
of I, and linearity in x from the linearity of the G-action,yielding the linearity of
x 7→ f̃x, and the linearity of I.

Assume next that W is an arbitrary 0-neighborhood in E. Choose a closed
convex 0-neighborhood U such that U +U ⊆W . Let f0 ∈ C(G,K) and x0 ∈ E be
given.
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Since Gx0 is compact for any x0, then there is an r > 0 such that r·Gx0 ⊆ U .
Hence (f − f0)(g)·gx0 ∈ U if ‖f − f0‖ ≤ r where ‖h‖ denotes the sup-norm of h.
Hence (f − f0) ∗ x0 ∈ U by Theorem 3.36(i).

(ii) Now set M = ‖f0‖ + 1. According to Corollary 1.13 we find a zero neigh-
borhood V with GV ⊆M−1·U . Thus x−x0 ∈ V implies G(x−x0) ⊆M−1·U and
hence f(g)·g(x−x0) ∈ ‖f‖M−1·U ⊆ U as soon as ‖f‖ ≤M . Hence f ∗(x−x0) ∈ U
for these x and f by Theorem 3.36(i).

Finally, whenever f is so that ‖f −f0‖ ≤ r and ‖f‖ ≤ ‖f0‖+1 and x−x0 ∈ V ,
then f ∗ x− f0 ∗ x0 = f ∗ (x− x0) + (f − f0) ∗ x0 ∈ U + U ⊆ W . This shows the
continuity of ∗. ut

Example 3.42. Let E be the G-module C(G,K) with the operation (g, f) 7→ gf ,
gf(h) = f(g−1h). Then for f1, f2 ∈ C(G,K) we have

(18) f1 ∗ f2 =
∫
f1(g)(gf2) dg,

or, equivalently

(19) (f1 ∗ f2)(h) =
∫
f1(g)f2(g−1h) dg =

∫
f1(hg)f2(g−1) dg.

Proof. (18) is just the application of Definition 3.40 to the special situation.
Now let h ∈ G. Then δh:C(G,K) → K given by 〈δh, f〉 = f(h) is a probabil-
ity measure, at any rate a continuous linear morphism of vector spaces. Hence
Proposition 3.31(ii) applies and yields δh

(∫
f1(g)gf2 dg

)
=
∫
δh
(
f1(g)gf2

)
dg =∫

f1(g)gf2(h) dg =
∫
f1(g)f2(g−1h) dg on the one hand and δh(f1∗f2) = (f1∗f2)(h)

on the other. Hence (18) implies (19). Conversely, two elements ϕj ∈ C(G,K),
j = 1, 2 agree if and only if δh(ϕ1) = ϕ1(h) = ϕ2(h) = δh(ϕ2) for all h ∈ G. Hence
(19) also implies (18). ut

Lemma 3.43. Let E be a G-complete G-module. For fj ∈ C(G,K), j = 1, 2 and
x ∈ E, we have

f1 ∗ (f2 ∗ x) = (f1 ∗ f2) ∗ x.

Proof. The left hand side of the equation is defined as
∫
f1(g)·g(f2 ∗ x) dg =∫

f1(g)π(g)
(∫
f2(h)·hx dh

)
dg =

∫
f1(g)

(∫
f2(h)·π(g)hx dh

)
dg in view of Propo-

sition 3.31(ii). The inner integral, by left invariance of Haar measure, equals∫
f2(g−1h)hx dh. Thus

(20) f1 ∗ (f2 ∗ x) =
∫ (∫

f1(g)f2(g−1h)·hx dh
)
dg.

On the other hand, the right hand side of the equation is given by
∫

(f1 ∗
f2)(h)·hx dh =

∫ (∫
f1(g)f2(g−1h) dg

)
·hx dh in view of (19) above. We consider

the linear continuous map T :K → E given by T (r) = r·hx. Then for any ϕ ∈
C(G,K) we have (

∫
ϕ(g) dg)·hx = T (

∫
ϕ(g) dg) =

∫
(T ◦ ϕ)(g) dg =

∫
ϕ(g)·hx dg

by Proposition 3.31(ii). We therefore conclude

(21) (f1 ∗ f2) ∗ x =
∫ (∫

f1(g)f2(g−1h)·hx dg
)
dh.
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By the Fubini Theorem 3.31(iii), the right hand sides of (9) and (10) agree.
Hence the lemma is proved. ut

Lemma 3.44. Let E be a G-module and a Banach space. According to Corol-
lary 2.5, define C = sup{‖π(g)‖ | g ∈ G}. Then

‖f ∗ x‖ ≤ C‖f‖‖x‖.

Proof. Let ω ∈ E′, ‖ω‖ = 1. Then |〈ω, f ∗ x〉| = |
∫
〈ω, f(g)·π(g)(x)〉 dg| ≤∫

|〈ω, f(g)·π(g)(x)〉| dg ≤ ‖ω‖‖f‖C‖x‖ = C‖f‖·‖x‖. This proves the claim. ut

Proposition 3.45. Let G be a compact group and E a G-module and a Banach
space. Then the following conclusions hold.

(i) If g ∈ G, f ∈ C(G,K) and x ∈ E, then g(f∗x) = gf∗x and f∗(gx) = g−1f∗x
where gf(h) = f(g−1h) and gf(h) = f(hg).

(ii) (g·f)(h) = f(g−1hg) implies (g·f) ∗ x = g
(
f ∗ (g−1x)

)
.

(iii) If f is a class function (i.e. is constant on conjugacy classes of G), then
x 7→ f ∗ x:E → E is an equivariant map for any G-module E.

(iv) The Banach space C(G,K) is in fact a Banach algebra with respect to the
multiplication ∗. Moreover, g(f1 ∗ f2) = gf1 ∗ f2 and g−1f1 ∗ f2 = f1 ∗ gf2.

Proof. (i) g(f ∗x) = π(g)
∫
f(h)·hx dh =

∫
f(h)·π(g)hx dh =

∫
f(g−1h)·hx dh =∫

gf(h)·hx dh = gf∗x. Also f∗(gx) =
∫
f(h)·hgx dh =

∫
f(hg−1).hx dh = g−1f∗x.

(ii) (g·f) ∗ x = gfg−1 ∗ x = g
(
f ∗ (g−1x)

)
.

(iii) f ∈ C(G,K) is a class function if and only if g·f = f . Then the assertion
follows from (ii) above.

(iv) By Lemma 3.43, the multiplication ∗ is associative, and by Lemma 3.41,
both distributive laws hold. With the notation of Lemma 3.44 we have C = 1,
whence ‖f1 ∗ f2‖ ≤ ‖f1‖‖f2‖.

For a proof of the remainder we apply the preceding statements to E =
C(G,K). ut

Definition 3.46. The multiplication ∗ on C(G,K) is called convolution and
C(G,K) endowed with this multiplication is called the convolution algebra C(G,K).

ut

Lemma 3.47. If F is a closed submodule of a G-complete G-module E, then
f ∗ F ⊆ F for all f ∈ C(G,K). If x ∈ Efix, then f ∗ x = (

∫
f)·x.

Proof. If x ∈ F , then f(g)·gx ∈ F . Hence the closed convex hull of {f(g)·gx | g ∈
G} is in F , thus f ∗ x ∈ F by Proposition 3.30. The rest is straightforward. ut

Proposition 3.48. The vector space R(G,K) is a dense ideal of the convolution
algebra C(G,K). In particular, R(G,K) has itself a convolution algebra structure.

For each ε ∈ Ĝ, the vector space Rε(G,K) is an ideal of C(G,K), and R(G,K) =
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∑
ε∈ĜRε(G,K) is an ideal direct sum decomposition of the convolution algebra

R(G,K).

Proof. Let ε ∈ Ĝ. Then Rε(G,K) is a finite dimensional, hence closed submodule
of C(G,K). Hence C(G,K)∗Rε(G,K) ⊆ Rε(G,K) by Lemma 3.47. Thus Rε(G,K)
is a left ideal. Considering C(G,K) as a right module it follows in the same way
that Rε(G,K) also is a right ideal, hence a two-sided ideal. Then R(G,K) =∑
ε∈ĜRε(G,K) is likewise an ideal and the remainder follows. ut

Lemma 3.49. If E is G-complete G-module, then for each 0-neighborhood U and
each x ∈ E there is a positive function f ∈ C(G,K) such that f ∗ x− x ∈ U . Thus
the set C(G,K) ∗ E is dense in E.

Proof. We choose a closed convex 0-neighborhood V in E with V ⊆ U . Since g 7→
gx:G→ E is continuous by Definition 2.1((i)(b), there is an identity neighborhood
W in G such that Wx− x ∈ V .

Now we choose a nonnegative function f ∈ C(G,K) so that
∫
f = 1 and f

vanishes outside W . If ω is a real continuous linear functional on E such that
〈ω, v〉 ≤ 1 for all v ∈ V , then 〈ω, f ∗ x − x〉 =

∫
f(g)〈ω, gx〉 dg −

∫
f ·〈ω, x〉 =∫

f(g)〈ω, gx − x〉 dg ≤
∫
f(g)·1 = 1 since f(g) = 0 for g /∈ W , and gx − x ∈ V

for g ∈ W . But V is the intersection of all closed real half-spaces containing V ,
whence f ∗ x− x ∈ V ⊆ U . ut

Lemma 3.50. For f ∈ R(G,K) we have f ∗ E ⊆ Efin (see Definition 3.1).

Proof. By Definition 3.3, the orbit Gf spans a finite dimensional G-invariant vector
subspace F of C(G,K). By Lemma 3.41, ϕ 7→ ϕ ∗x:C(G,K)→ E is linear. Hence
F ∗ x is a finite dimensional vector subspace of E. Also by Proposition 3.45 we
have g(F ∗ x) = gF ∗ x ⊆ F ∗ x since F is invariant. Hence f ∗ x is contained in
the invariant finite dimensional vector subspace F ∗ x and thus f ∗ x ∈ Efin. ut

We are now ready for the “big” version of the Theorem of Peter and Weyl 3.7.
Recall the definition of a G-complete locally convex vector space from 3.29 and
recall that every feebly complete G-module is G-complete by 3.30(iv).

The Big Peter and Weyl Theorem

Theorem 3.51. Let E be a G-complete (Definition 3.29) locally convex G-module
for a compact group G. Then E = Efin: every element can be approximated by
almost invariant elements.

Moreover, Efin = R(G,K) ∗ E.

Proof. By Lemma 3.50 we know that R(G,K) ∗ E ⊆ Efin. By the Classical Peter
and Weyl Theorem 3.7, R(G,K) is dense in C(G,K). By Lemma 3.41, the function
ϕ 7→ ϕ ∗ x is continuous, hence R(G,K) ∗ x is dense in C(G,K) ∗ x and thus
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R(G,K) ∗E is dense in C(G,K) ∗E. By Lemma 3.49, C(G,K) ∗E is dense in E.
Hence R(G,K) ∗ E is dense in E and thus Efin is dense in E.

Finally we have noted R(G,K) ∗E ⊆ Efin. In order to argue the converse, take
x ∈ Efin. Then there is a finite dimensional submodule F of E containing x. By
the first part of the theorem, R(G,K)∗F is dense in F . But F is finite dimensional
whence R(G,K) ∗ F = F . ut

In the spirit of the Fine Structure Theorem for R(G,K) 3.28 we shall explore
the fine structure of Efin for an arbitrary G-complete complex G-module. For this
purpose we shall prepare in the next chapter the concept of characters which is
fundamental for all of representation theory. This will require that we restrict our
attention to the ground field K = C. In the meantime we draw some conclusions
which are accessible now and hold for either K = R or K = C. In Chapter 6 we
shall need to return to the real representation theory of compact abelian groups.

Corollary 3.52. Under the hypotheses of the Big Peter and Weyl Theorem 3.51,
(i) the G-module Efin is the module direct sum of the submodules Rε(G,K) ∗ E

as ε ranges through the set Ĝ of equivalence classes of irreducible G-modules
over K, and

(ii) each element of Rε(G,K) ∗ E is contained in a finite direct sum of simple
submodules each of which belongs to the class ε.

Proof. (i) By Theorems 3.28 and 3.51 we know that Efin = R(G,K) ∗ E =∑
ε∈ĜRε(G,K) ∗E. We have to show that this sum is direct: Abbreviate R(G,K)

by R. Let I = Rη(G,K) and J =
∑
ε∈Ĝ,ε6=η Rε(G,K); then I ∗ J ⊆ I ∩ J = {0} by

Proposition 3.48. Let F denote any finite dimensional submodule of the submodule
I ∗E ∩J ∗E which by 3.51 is contained in Efin. Assume x ∈ F . Then x = fI ∗ y =
fJ ∗ z with fI ∈ I and fJ ∈ J with y, z ∈ E. Hence I ∗ x = I ∗ fJ ∗ z = {0} and
J ∗ x = J ∗ fI ∗ y = {0}, whence R ∗ x = (I ⊕ J) ∗ x = {0}. Thus R ∗ F = {0}.
Since R ∗ F is dense in F by 3.51 we have F = {0} and thus I ∗E ∩ J ∗E = {0}.
Hence

Efin =
⊕
ε∈Ĝ

Rε(G,K) ∗ E.

(ii) Let x ∈ Rε(G,K) ∗ E. Then x = f ∗ y with f ∈ Rε(G,K) and F
def
=

Rε(G,K) ∗ y is a finite dimensional submodule. Now R(G,K) is dense in C(G,K)
(3.7) and thus C(G,K)∗x ⊆ R(G,K)∗f ∗y ⊆ Rε(G,K)∗y = F since Rε(G,K) is an
ideal in R(G,K) and Rε(G,K) ∗ y is finite dimensional. But x ∈ C(G,K) ∗ x ⊆ F
by Lemma 3.49. Now ϕ 7→ ϕ∗y:Rε(G,K)→ F is a surjective G-module morphism
by 3.45. By the Fine Structure Theorem 3.28 the module Rε(G,K) is a direct sum
of simple G-modules all contained in ε. Hence by 3.24(ii) the module F is a direct
sum of simple modules each contained in ε. ut

The findings of this corollary will be refined in the next chapter in the case
that K = C.
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Corollary 3.53. Assume that E is a Hilbert G-module over K (cf. Definition 2.11).
Then each direct summand Rε(G,K) ∗ E is closed and E is a Hilbert space direct
orthogonal sum of all of these summands. Each summand Rε(G,K) ∗ E is the
Hilbert space direct sum

⊕
j∈Jε Ej of simple submodules Ej each of which belongs

to the class ε.

Proof. By 2.25, E is the orthogonal Hilbert space direct sum of simple submodules.
Let Eε =

⊕
j∈Jε Ej the Hilbert space direct sum within E of a maximal orthogonal

family of submodules contained in ε; by Zorn’s Lemma this exists. Then E =⊕
ε∈ĜEε, because the orthogonal complement of this submodule, if nonzero would

have to contain a nonzero simple submodule by 2.24 which is impossible by the
construction of the Eε. It follows from 3.52 that Rε(G,K) ∗ E ⊆ Eε. Conversely,

if x ∈ Eε, and ε 6= η ∈ Ĝ, then the module Rη(G,K) ∗ x is the direct sum of
simple modules out of η. Hence its orthogonal projection into any summand Ej
of the orthogonal Hilbert space sum Eη =

⊕
j∈Jη Ej is zero by 3.24(i). Hence

Rη(G,K) ∗ x = {0}. Thus
(∑

η 6=εR(G,K)
)
∗ x = {0} and thus x ∈ R(G,K) ∗ x =

Rε(G,K)∗x ⊆ Rε(G,K)∗E. Thus Eε = Rε(G,K)∗E and the corollary is proved.ut

Complexification of Real Representations

There is general machinery which allows us to move comparatively freely between
the representation (G-module) theory over the two ground fields K = R and
K = C. Trivially, we can consider every complex G-module as a real one by simply
restricting the field of scalars. The somewhat more involved part is the ascending
from real to complex modules. The background is pure linear algebra.

Let E denote a real vector space. The tensor product EC
def
= C⊗E is a complex

vector space via the multiplication c·(d ⊗ v) = cd ⊗ v. The function v 7→ 1 ⊗ v:
E → EC implements an isomorphism of real vector spaces onto the real vector
subspace 1 ⊗ E, and if we identify E with a real vector subspace of EC via this
map we may write EC = E⊕i·E. The function κ:EC → EC given by κ(c⊗v) = c⊗v
is an involution (i.e. κ2 = idEC) of real vector spaces satisfying i·κ(v) = −κ(i·v),
and the fixed point vector space of κ is E. If we set P = 1

2 (idEC +κ), then P is
a projection (i.e. P 2 = P ) of real vector spaces satisfying i·P = 1

2 (i· idEC +i·κ) =
1
2 (i· idEC −κi· idEC) = (1− P )i· idEC such that E = PEC. Moreover, Pκ = P . The
following lemma is helpful.

Lemma A. If V is a complex vector subspace of EC with κV = V , then V =
PV ⊕ iPV .

Proof. We note PV = 1
2 (idEC +κ)V ⊆ V +κV = V , and thus, since V is a complex

vector subspace, PV + iPV ⊆ V . If v ∈ V we write v = x + iy with x, y ∈ E.
Then x = Pv ∈ PV and y = P (−iv) ∈ PV , whence v = x+ iy ∈ PV + iPV . We
observe that PV ∩ iPV ⊆ E ∩ iE = {0}. ut

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



86 3. The Ideas of Peter and Weyl

If E is a real Hilbert space, then EC is a complex Hilbert space with respect to
the scalar product given by (c⊗v | d⊗w) = (cd)(v | w). The underlying real vector
space of EC is a real Hilbert space relative to the inner product (v, w) 7→ Re(v | w).
In particular, in this vector space, v and i·v are perpendicular since Re(v | i·v) = 0.
The operator κ is orthogonal and P is an orthogonal projection with respect to
this real Hilbert space structure on EC.

Now we apply this background information to G-modules and assume that E
is a real G-module. Then EC is a complex G-module relative to the operation
g(c⊗ v) = c⊗ gv. If x, y ∈ E then this is tantamount to saying that g(x+ i·y) =
gx + i·gy. If π:G → Gl(E) denotes the representation associated with the real
G-module E, we denote with πC:G → Gl(EC) the representation associated with
the complex G-module EC. We note

(∀g ∈ G) κπC(g) = πC(g)κ and PπC(g) = πC(g)P.

If E is a real Hilbert G-module, then EC is a complex Hilbert G- module.

Lemma B. Let E be a real simple G-module and V a complex G-submodule of
EC which is invariant under κ. Then either V = {0} or V = EC.

Proof. From Lemma A we know that V = PV ⊕ iPV . Since P is equivariant,
PV is a submodule of the simple real G-module E. Thus if PV = {0}, then
V = PV + iPV = {0}, and if PV = E, then V = PV + iPV = E + iE = EC. ut

A complex structure on a real vector space is an endomorphism of real vector
spaces I ∈ Hom(E,E) satisfying I2 = − idE . Whenever such a complex structure
exists, we have a scalar multiplication ∗:C × E → E, (a + ib)∗v = a·v + b·(Iv),
a claim whose verification is straightforward. The endomorphisms ϕ of the com-
plex vector space so defined are exactly the real endomorphisms ϕ ∈ Hom(E,E)
satisfying ϕI = Iϕ.

Proposition 3.54. For a real simple G-module E, the following conditions are
equivalent:

(1) EC fails to be a complex simple G-module.

(2) EC contains a complex G-module F such that EC = F ⊕ κF and κF ∼= F̃ ,
the conjugate complex module of F (see 3.6 and preceding discussion).

(3) The real G-module E is the underlying real vector space of a complex G-
module; i.e. there is a complex structure I ∈ Gl(E) such that Iπ(g) = π(g)I
for all g ∈ G.

If these conditions are satisfied, then the complex G-module (E, I) is isomorphic to
the complex G-module F . Moreover, the real G-module E, the real G-module un-
derlying F and the real G-module underlying κF are all isomorphic. In particular,
F is a simple G-module both over R and C.

If E is a real Hilbert module, then E, F and κF are isometrically isomorphic as
real Hilbert G-modules. The real vector space automorphism I of E is orthogonal
and satisfies (v | Iv) = 0 for all v. Let IC denote the unique extension of I to
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a complex involution of EC. Then we may take F to be the eigenspace of IC for

the eigenvalue i, and the function ι
def
=
√

2
2 (idEC −i·IC) maps the real Hilbert G-

module E isometrically isomorphically onto F .

Proof. (1)⇒(2). Assume EC is not simple. Then there is a nonzero proper complex
submodule F ⊆ EC, and κF is a complex G-module such that i·κf = κ(−i)·f =
κi • f where c • f = c·v is the scalar multiplication of the conjugate vector space
F̃ . Thus κ: F̃ → κF is an isomorphism of complex vector spaces and G-modules.
The vector subspaces V1 = F ∩ κF and V2 = F + κF are complex G-submodules
which are, in addition, invariant under κ. Hence Lemma B applies to both and
shows that Vj is either {0} or EC for both j = 1 and j = 2. Suppose V1 = EC;
then F = EC contradicting the assumption that F is proper. Hence V1 = {0}.
Secondly, V2 contains F which was assumed to be nonzero, hence V2 = EC. This
shows that EC = F ⊕ κF .

(2)⇒(3). Assume (2) is true. We claim F ∩E = {0}. Suppose it is not true; then
since E ∩ F is a real submodule of the simple G-module E, we have E ⊆ F and
then F = EC since F is a complex vector subspace of EC. This is impossible since
F is a proper subspace. This establishes the claim and also shows that F ∩ iE =

i(F∩E) = {0}. Now set ϕ
def
= P |F :F → E. Then kerϕ = F∩kerP = F∩iE = {0},

and PF = PκF = P (F + κF ) = PEC = E. Thus ϕ is bijective. It is equivariant,
and thus ϕ is an isomorphism or real G-modules. Defining Ix = ϕ

(
iϕ−1(x)

)
we

obtain the desired complex structure on E.
(3)⇒(1). Assume (3) is true. Since I2 = − idE , the real vector space automor-

phism I of E is semisimple with spectrum {i,−i}. Now I extends uniquely to a
complex vector space automorphism IC = 1 ⊗ I of EC commuting with all πC(g)
and satisfying I2

C = − idEC and having the spectrum {i,−i}. Let F denote the
eigenspace of IC for the eigenvalue i. Then F is a nonzero proper πC(G)-invariant
subspace.

In the process of the proof we have already established the isomorphy of the
complex G-modules (E, I) and F , and the isomorphy of the real G-modules E,
F and κF . Since κ is a real isometric automorphism of the real Hilbert space
underlying EC, the real G-modules F and κF are isometrically isomorphic. We

see that IC ◦ ι =
√

2
2 (IC + i idEC) = i idEC ◦ ι. Since κ is a real isometry, for v ∈ E

we have (v − iIv | v − iIv) = ‖v − iIv‖2 = ‖κ(v − iIv)‖2 = (v + iIv | v + iIv).
Since the right, respectively, left hand sides are ‖v‖2 ± Re(v | iIv) + ‖iIv‖2 and
since (v, Iv) is real it follows that (v | Iv) = −Re(−i)(v | Iv) = −Re(v | iIv) = 0.
Because I2

C = − idEC this suffices for I to be orthogonal, and for ι to be isometric
on E. ut

If χ:G→ C is a homomorphism with values in S1 we write

χ(g) = χ1(g) + χ2(g)i, χ1(g) = Re (χ(g)) , χ2(g) = Im (χ(g)) .

As an example, if G = T = R/Z and χ(t+ Z) = e2πint for some integer n ∈ Z (cf.
E1.9). Then χ1(t+ Z) = cos 2πnt and χ2(t+ Z) = sin 2πnt.
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Corollary 3.55. For a compact abelian group G the following conclusions hold:
(i) A simple real G-module is either one-dimensional or two-dimensional.
(ii) If E is a real simple two-dimensional G-module, then E has a complex struc-

ture I and there is a character χ ∈ Hom(G,S1) such that gv = χ1(g)·v +
χ2(g)·(Iv) = χ(g) ∗ v for v ∈ E (with the complex scalar multiplication ∗
given by (a+ ib)∗v = a·v + b·(Iv)).

(iii) If Hom(G,Z(2)
)

= {0}, then a nontrivial irreducible real G-module is two-
dimensional. This applies, in particular, to all connected compact abelian
groups, and thus to all torus groups.

Proof. (i) By 2.30 a simple complexG-module is one-dimensional. Hence by Propo-
sition 3.54, either dimCEC = 1 or dimC F = 1. In the first case, dimRE = 1 and
in the second case dimRE = dimR F = 2.

(ii) In Proposition 3.54 we saw that a two-dimensional simple real G-module
has a complex structure I commuting with all π(g) such that E with the complex
scalar multiplication ∗ is isomorphic to the complex G-module F . By 2.30, there
exists a character χ ∈ Hom(G,S1) such that for f ∈ F we have gf = χ(g)·f . Then
the claim follows.

(iii) The maximal compact subgroup of the multiplicative group R \ {0} is
{1,−1}. Thus if π:G → Gl(1,R) is a representation, as G is compact we have to
have π(G) ⊆ {1,−1}, giving an element of Hom

(
G,Z(2)

)
. If this set contains only

one element, no nonconstant representation π is possible. If G is connected, then
π(G) ⊆ {1,−1}0 = {1}. ut

Let A be an additively written abelian group. Then the multiplicative group
S0 = {1,−1} ⊆ Z acts automorphically on A under the natural Z-module action.
Let A/S0 denote the orbit space. Then an orbit Γ ∈ A/S0 is either Γ = {0}, or
Γ = {a} for an involution a (i.e. 2·a = 0), or Γ = {a,−a} for an element a which
is not of order two. The fact that we have written A additively was just a matter
of convenience; the concepts apply to any abelian group.

In the following proposition, for a compact abelian group G we let Ĝ =
Hom(G,S1) denote the abelian group of multiplicative characters, and ĜR the

set of isomorphy classes of real simple G-modules. We note that a character χ ∈ Ĝ
is an involution, i.e. satisfies χ2 = 1 if and only if χ(G) ⊆ {1,−1}. In this situa-
tion, either χ is the constant character or χ(G) = {1,−1}. We shall denote with

I:R2 → R2 the automorphism which has the matrix representation I =

(
0 −1
1 0

)
.

We abbreviate idR2 by 1.

Proposition 3.56. Let G be a compact abelian group. Then there is a surjective
function re: Ĝ→ ĜR such that re−1 re(χ) = S0·χ = {χ, χ} and that the irreducible
real linear representations are classified by the following three mutually exclusive
cases:

(i) If χ = 1 is the constant character, then re(χ) is the class of the trivial
G-module R.
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(ii) If χ2 = 1 and χ(G) = {1,−1}, then re(χ) is the class of modules iso-
morphic to the module R with the action πre(χ):G → SO(1) ⊆ Hom(R,R),
πre(χ)(g)(r) = χ(g)r.

(iii) If χ is not an involution then re(χ) is the equivalence class of the G-module
defined on R2 by πre(χ):T → SO(2) ⊆ Hom(R2,R2),

πre(χ)(g) = χ1(g)·1 + χ2(g)·I.

Proof. From Corollary 3.55 we know that each nontrivial simple real G-module is
either one- or two-dimensional. In the first case, π(G) ⊆ O(1) where O(1) contains
the scalar multiplications by 1 and −1. If the module is trivial, we are in case (i),
if not in case (ii).

Now assume that we have a two dimensional simple real G-module. Then by
3.55(ii) we may identify it with the underlying real vector space of C such that
the module action is given by gc = χ(g)c for a character χ ∈ Hom(G,S1). By
Proposition 3.54(iii) these are exactly given by (iii) above.

Thus the function re is surjective. Proposition 3.54 shows that re−1 re(χ) =
{χ, χ}. ut

Proposition 3.57. Let E be a real Hilbert G-module according to Definition 2.11.
By the splitting of fixed points (3.36) we have a canonical orthogonal decomposition
E = Efix ⊕Eeff . Assume that G is a compact abelian group with Hom

(
G,Z(2)

)
=

{0}. Then there is a unique orthogonal Hilbert space sum decomposition

Eeff =
⊕

ε∈ĜR\{1}

Eε.

There is a function ε 7→ χε : ĜR → Ĝ, such that re(χε) = ε and there is a real
orthogonal vector space automorphism I:Eeff → Eeff satisfying I2 = − idEeff

such

that for each ε ∈ ĜR and each v ∈ Ere(χ) we have

gv = (χε)1(g)·v + (χε)2(g)·Iv.

Further, (v | Iv) = 0 for all v ∈ Eeff .

If G is connected then for each ε ∈ ĜR there is an element gε ∈ G such that
I|Eε = πEeff

(gε).

Proof. By Corollary 3.25 Eeff is the Hilbert space direct sum of submodules
Rε(G,R) ∗ E where ε ranges through the set of equivalence classes of nontrivial
simple modules and each Rε(G,R) ∗ E is an orthogonal Hilbert space direct sum⊕

j∈Jε Ej of simple submodules Ej each of which belongs to the class ε. By Propo-

sition 3.55 above, each element ε ∈ Ĝ determines uniquely one pair of conjugate
characters; let χε be one of them. If j ∈ Jε then Ej ∈ εD is endowed with an
endomorphism Ij with I2

j = − idEj such that for v ∈ Ej we have

πEj (g) = (χε)1(g)· idEj +(χε)2(g)·Ij .
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We write Eε
def
= Rε(G,R) ∗ E =

⊕
j∈Jε Ej and set

Iε:Eε → Eε, Iε =
⊕
j∈Jε

Ij .

Finally we define

I:Eeff → Eeff , I =
⊕

ε∈ĜR\{1}

Iε.

Then I2 = − idEeff
and for g ∈ G, v ∈ Eχ we have

πEeff
(g) = (χε)1(g)· idEeff

+(χε)2(g)·I.

From 3.5 we know that I is orthogonal and satisfies (v | Iv) = 0 for all v ∈ Eeff .
Finally assume that G = G0. Then, for each nonconstant character ρ, the group

ρ(G) is a nonsingleton compact connected subgroup of the circle group S1. But S1

is the only such. (Its inverse image in R under t 7→ e2πit is a nondiscrete closed
subgroup, and hence is R. Cf. e.g. Appendix A1.12.) Thus there is a gε ∈ G such
that χε(gε) = i. Then (χε)1(gε) = 0 and (χε)2(gχ) = 1. Consequently,

I|Eε = πEeff
(gε). ut

We should keep in mind that the existence of ε 7→ χε and, consequently of I is
based on a choice. This cannot be helped, if indeed one wishes to realize Eeff as a
complex G-module.

Exercise E3.20. Formulate and prove a generalisation of Proposition 3.57 without
assuming that Hom

(
G,Z(2)

)
6= {0}.

[Hint. Eeff decomposes into a direct sum E2 ⊕ EI where E2 is the direct sum of
all Eχ with χ(G) ⊆ {1,−1} and EI is exactly as was Eeff in Proposition 3.57.] ut

Part 3: The Weakly Complete Group Algebra

In Part 2 we brought compact groups and locally convex topological vector spaces
together. Now we focus on one particularly simple category of locally convex real
or complex vector spaces which we call weakly complete vector spaces. Their basic
aspects we treat in Appendix 7 in a self-contained way. In the context of weakly
complete vector spaces, also weakly complete topological algebras arise in a natural
fashion (see Definition A7.32).

In this section, as a tool, we shall use the language of category theory, for which
we give a self-contained introduction in Appendix 3.

We begin by fixing some notation: Let WA be the category of weakly complete
unital K-algebras for the ground field K = R or K = C, and let TG be the category
of topological groups. For any unital algebra A, the subset A−1 of invertible ele-
ments, or units, forms a subgroup of (A, ·). If A is a weakly complete unital algebra,
then A−1 is a topological group (see Lemma A7.36). Then (A 7→ A−1) :WA→ TG
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is a well defined functor. It is rather directly seen to preserve intersections and ar-
bitrary products and hence, by Proposition A3.51, it is a continuous functor (see
Definition A3.50), that is, it preserves arbitrary limits.

In order to conclude from this information that (A 7→ A−1) has in fact a left
adjoint, we need to show that is satisfies the Solution Set Condition (see Definition
A3.58).

Lemma 3.58. The functor A 7→ A−1 from the category of weakly complete unital
algebras to the category of topological groups satisfies the solution set condition.

Proof. For a proof we claim that for any topological group G there is a set S(G) of
pairs (ϕ,A) with a continuous group morphism ϕ:G→ A−1 for some object A of
WA with the following property: For every pair (f,B), f :G→ B−1 with a weakly
complete unital algebra B, there is a pair (ϕ,A) in S(G) and a WA-embedding
e:A→ B such that

f = G
ϕ−−−−−−−−−→A−1 e|A−1

−−−−−−−−−→B−1,

where e|A−1 denotes the bijective restriction and corestriction of e.
Indeed if f :G → B−1 determines a unique smallest algebraic unital abstract

subalgebra C of B generated by f(G), then there is only a set of these “up to
equivalence”. Then on each of these there is only a set of algebra topologies and,
a fortiori, only a set of them for which the corestriction is continuous; for each of
these, there is at most a set of algebra completions up to isomorphism. So, up to
equivalence there is only a set of pairs (ϕ,A), ϕ:G → A−1 such that the unital
algebra generated by ϕ(G) is dense in A. Any such set S(G) will satisfy the claim.

ut

Now we are in a position to apply the Left Adjoint Functor Existence Theorem
A3.60 to conclude that (A 7→ A−1):WA→ TG has a left adjoint TG → WA which
we shall denote G 7→ K[G].

Definition 3.59. For each topological group G and each of the ground fields
K = R or K = C we shall call K[G] the weakly complete unital topological group
algebra over K, or also more succinctly, the weakly complete group algebra of G if
the applicable ground field K is understood. ut

We reformulate what we have observed:

The Weakly Complete Group Algebra Theorem

Theorem 3.60. To each topological group G there is attached functorially a
weakly complete group algebra K[G] with a natural morphism ηG:G → K[G]−1

such that the following universal property holds:
For each weakly complete unital K-algebra A and each morphism of topological
groups f :G → A−1 there exists a unique morphism of weakly complete unital

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



92 3. The Ideas of Tannaka, Hopf, and Hochschild

algebras f ′:K[G]→ A restricting to a morphism f ′′:K[G]−1 → A−1 of topological
groups such that f = f ′′ ◦ ηG.

Proof. This is now a consequence of the Adjoint Functor Existence Theorem
A.3.60. ut

We shall retain the diagram for this robust universal property of the group
algebra in our mind:

top groups wc algebras

G
ηG−−−−−−−−−→ K[G]−1 K[G]

∀f
y yf ′′ y∃!f ′
A−1 −−−−−−−−−→

id
A−1 A.

According to Definition A3.37, η is called the front adjunction.

Exercise E3.21. For any finite discrete group G the weakly complete group
algebra K[G] is isomorphic to the finite dimensional elementary classical group
algebra.

[Hint. Verify the universal property for the classical group algebra.]

We draw some immediate conclusions for the weakly complete group algebra
of a topological group G.

Corollary 3.61. Let G be any topological group. Then
(i) the subalgebra linearly spanned by ηG(G) in K[G] is dense in K[G].
(ii) Let ηCG:G → C[G]−1 be the front adjunction in the case of the complex

ground field. Then the closed real linear span spanR(ηCG(G)) inside the weakly
complete real vector space underlying C[G] is in fact R[G] (up to natural
isomorphism), and the morphism of topological groups ηRG:G → R[G]−1,
ηRG(g) = ηCG(g) for all g ∈ G is the front adjunction for R[G].

(iii) The real weakly complete group algebra R[G] is contained, up to natural iso-
morphism, in the complex weakly complete group algebra C[G].

Proof. (i) Let S = span
(
ηG(G)

)
⊆ K[G] be the closed subalgebra linearly

spanned by ηG(G). Let fS :G → S−1 be a morphism of topological groups and
f :G→ K[G] the coextension of fS . Then by the universal property of K[G] there
is a unique morphism f ′:K[G] → S of weakly complete unital algebras such that
f ′ ◦ ηG = f , implying that (f ′|S) ◦ ηo

G = fS with the corestriction ηo
G:G → S of

ηG to S. Thus S has the universal property of K[G]; then the uniqueness of K[G]
implies S = K[G].

(ii) Set SR = spanR
G(ηG(G)). Then SR is a closed real unital subalgebra of the

real weakly complete unital subalgebra underlying C[G]. Moreover, ηRG:G → S−1
R

is a well-defined morphism of topological groups as a corestriction of ηRG. We shall

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



3. The Ideas of Tannaka, Hopf, and Hochschild 93

prove the claim by verifying that ηRG:G → S−1
R satisfies the required universal

property of Theorem 3.60 for K = R with SR in place of R[G].
So let A be a weakly complete real unital algebra and f :G→ A−1 a morphism

of topological groups. Then AC
def
= C⊗R A, the complexification of A is a weakly

complete complex unital algebra. Now fC(g)
def
= 1⊗f(g) ∈ 1⊗A−1 ⊆ A−1

C defines a
morphism of topological groups fC:G→ AC. By the universal property of topolog-
ical groups C[G] according to Theorem 3.60 there is a unique morphism f ′C:C[G]→
AC fC(g) = f ′C

(
ηCG(g)

)
. We claim that there is a morphism of weakly complete real

unital algebras f ′R:SR → A such that f ′C(s) = 1 ⊗ f ′R(s). Now ηCG(g) = ηRG(g) ∈
SR by definition of SR, and likewise ηCG(g)−1 = ηCG(g−1) exists in SR, whence
ηRG(G) ⊆ S−1

R ⊆ A−1. Further f ′C(ηRG(g)) = f ′C(ηCG(g)) = fC(g) = 1⊗f(g) ∈ 1⊗A,

whence f ′C(SR) = f ′C
(
spanR(ηRG(G))

)
⊆ f ′C

(
spanR

(
ηRG(G)

))
⊆ 1⊗ f(G) ⊆ 1 ⊗ A.

Therefore f ′C|SR:SR → 1⊗A is a morphism of weakly complete real unital algebras.
Since a 7→ 1⊗ a : A→ 1⊗A is an isomorphism of real weakly complete algebras,
the existence of f ′R:SR → A is shown as claimed. The uniqueness is clear from the
uniqueness of f ′C:C[G] → AC. Thus SR has the required universal property and
thus is naturally isomorphic to R[G].

(iii) Let R[G] be given. By Theorem 3.60 there is a complex weakly com-
plete complex group algebra C[G] with the front adjunction ηG:G → C[G]. By

Assertion (ii) above, C[G] contains a real weakly complete group algebra R̃[G] =

spanR(ηG(G)) with the corestriction of ηG to R̃[G] as its front adjunction. However,
since the functor G 7→ K[G] : TG → WA like any left adjoint functor is uniquely
determined up to natural isomorphism by its right adjoint A 7→ A−1 :WA→ TG,
we know that R̃[G] ∼= R[G] and so the assertion follows. ut

Convention. Henceforth we shall always assume that for every topological group
G, the weakly complete complex group algebra C[G] contains the weakly complete
real group algebra R[G] in such a fashion that

ηG(G) ⊆ R[G] = spanR(ηG(G)) ⊆ C[G].

We recall from Corollary 2.29(ii) that it can be proved in any theory of compact
groups at a very early stage that every compact group has an isomorphic copy in
the group of units of a weakly complete unital algebra. As a consequence we have

Corollary 3.62. (The Group Algebra of a Compact Group) If G is a compact
group, then ηG:G → R[G]−1 induces an isomorphism of topological groups onto
its image. ut

By Corollary 3.61(iii), this remains true for the complex weakly complete group
algebra as well.
In other words, any compact group may be considered as a subgroup of the group
of units of its weakly complete real or complex group algebras.
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Exercise E3.22. Let G be a topological group whose continuous finite dimen-
sional representations (over K) separate the points of G. Then ηG:G→ K[G]−1 is
injective.

Before we move further into the subject let us pause for a comment and a
warning:

The comment: The initial results show once again the power of the universal
property provided by a left adjoint situation. We shall see more of this power
shortly.

The warning: The close relationship being suggested between R[G] and C[G]
in Corollary 3.61 is deceptive. Indeed, for any compact group G, we may and shall
write G ⊆ R[G] ⊆ C[G]. We shall see later that even for compact abelian groups
G, the fine structures of R[G] and C[G] are significantly different, even for the
circle group G = T = R/Z.

The Hopf Aspect of Weakly Complete Group Algebras

The category (TG,×) of topological groups together with the cartesian product
and the category (WA,⊗W) of weakly complete K-algebras endowed with the
tensor product of weakly complete K-vector spaces are both symmetric monoidal
categories (see Appendix 3, notably Definition A3.62ff.). We shall now establish
the fact that G 7→ K[G] : TG → WA is a multiplicative functor (see Definition
A3.66).

If A and B are weakly complete algebras, we have (a1⊗b1)(a2⊗b2) = a1a2⊗b1b2
which implies

A−1 ⊗B−1 ⊆ (A⊗B)−1,

where we have used the natural inclusion function j:A × B → A ⊗ B and write
A−1 ⊗B−1 in place of j(A−1 ×B−1).

Now let G and H be topological groups. Then

ηG(G)⊗ ηH(H) ⊆ K[G]−1 ⊗K[H]−1 ⊆
(
K[G]⊗K[H]

)−1
,

and so we have the morphism

G×H →
(
K[G]⊗K[H]

)−1
,

(g, h) 7→ ηG(g) ⊗ ηH(h) which, by the univeral property of K[−] gives rise to a
unique morphism α:K[G×H]→ K[G]⊗K[H] such that

(1) (∀(g, h) ∈ G×H)α(ηG×H(g, h)) = ηG(g)⊗ ηH(h).

On the other hand, the morphisms jG:G→ G×H, jG(g) = (g, 1H) and pG:G×
H → G, pG(g, h) = g yield pGjG = idG. Therefore K[pG]:K[G × H] → K[G]
is an algebra retraction, and via K[jG] we may identify K[G] with a subalgebra
of K[G × H]; likewise K[H] is an algebra retract of the algebra K[G × H]. Since
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(g, 1)(1, h) = (g, h) in G ×H, with the identifications of K[G],K[H] ⊆ K[G ×H]
we have

(2) (∀(g, h) ∈ G×H) ηG(g)ηH(h) = ηG×H(g, h) ∈ K[G×H].

The function

K[G]×K[H]→ K[G×H], (a, b) 7→ ab

is a continuous bilinear map of weakly complete vector spaces; therefore the uni-
versal property of the tensor product in W yields a unique W-morphism

β:K[G]⊗K[H]→ K[G×H]
such that

(3) (∀a ∈ K[G], b ∈ K[H])β(a⊗ b) = ab ∈ K[G×H].

Now, if for an arbitrary element (g, h) ∈ G×H we set a = ηG(g) and b = ηH(h),
then we have

(4) β
(
ηG(g)⊗ ηH(h)

)
= a⊗ b = ab = ηG(g)ηH(h) = ηG×H(g, h).

By Corollary 3.61, ηG(G) generates K[G] as a weakly complete unital algebra and
likewise ηH(H) generates K[H] in this fashion, and the algebraic tensor product of
K[G] and K[H] is dense in K[G]⊗K[H]. Therefore, (4) implies β ◦ α = idK[G×H].
In other words, the diagram

K[G×H]
idK[G×H]−−−−−−−−−→ K[G×H]

α

y xβ
K[G]⊗K[H] −−−−−−−−−→

idK[G]⊗K[H]

K[G]⊗K[H]

commutes. Similarly, let us look at α ◦ β : K[G]⊗K[H]→ K[G]⊗K[H]: We recall
(4) and (1) and verify

α
(
β(ηG(g)⊗ ηH(h))

)
= α(ηG×H(g, h)) = ηG(g)⊗ ηH(h)

By the same argument as above we conclude α ◦ β = idK[G]⊗K[H].
Taking everything together, we have proved the following important result:

Multiplicativity of the Group Algebra Functor K[−])

Theorem 3.63. For two arbitrary topological groups G and H the natural mor-
phisms of weakly complete unital algebras α:K[G × H] → K[G] ⊗W K[H] and
β:K[G]⊗W K[H]→ K[G×H] are inverse isomorphisms of each other. ut

The primary consequence of the Multiplicativity Theorem is that each weakly
complete group algebra K[G] is in fact a symmetric Hopf algebra (see Appendix
3, Definition A3.65(iii)), that is, a group object (see Definition A3.64(ii)) in the
symmetric monoidal category (W,⊗W) of weakly complete vector spaces which we
discuss at some length in Appendix 7 in order to have a self-contained reference
in this book.
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So let G be a topological group and δG:G → G × G the diagonal morphism
δG(g) = (g, g). Together with the constant morphism kG:G→ E = {1} we have a
comonoid (δG, kG) (according to the discussion preceding Definition A3.64). Since
the group-algebra functor K[−] is multiplicative we have morphisms of weakly
complete unital algebras K[δG]:K[G]→ K[G×G] and K[kG]:K[G]→ K[{1}] = K.
By Theorem 3.63 above we have an isomorphism αG:K[G × G] → K[G] ⊗ K[G].
Moreover, the natural inclusion iG: E → G provides us with a natural morphism
ιG:K = K[E]→ K[G] providing us with a natural endomorphism ιG ◦κG : K[G]→
K[G] also called the augmentation.

This yields the following Lemma.

Lemma 3.64. For any topological group G, the weakly complete group algebra
K[G] is a Hopf algebra for the cocommutative and coassociative comultiplation

γG:K[G]→ K[G]⊗K[G], γG = αG ◦K[δG]

the co-identity κG:K[G]→ K, κG = K[kG] and an augmentation ιG ◦κG : K[G]→
K[G].

Proof. By the preceding observations γG and κG are natural morphisms of weakly
complete algebras which satisfy the required conditions for a comonoid since K[−]
is a functor and since (G, δG, kG) is a comonoid in the symmetric monoidal category
(TG,×) as is straightforwardly verified. ut

In Appendix 3, we define in Definition A3.95 the concept of the set G(A) of
grouplike elements in a weakly complete Hopf algebra A. So at this point, the
following fairly immediate remark will be relevant:

Lemma 3.65. For each topological group G we have ηG(G) ⊆ G
(
K[G]

)
.

Proof. We have to observe that for all elements x ∈ K[G] with x ∈ ηG(G) we have

γG(x) = x⊗ x and κG(x) = 1.

Now we recall the definition

(∗) γG = (K[G]
K[δG]−−−−−−−−−→K[G×G]

αG−−−−−−−−−→K[G]⊗K[G]) .

If a = ηG(g) for some g ∈ G, then γG(a) = αG(a, a) = a ⊗ a by (∗) and by (1)
above. ut

We now address the claim that the Hopf algebra K[G] is a symmetric one, that
is, that it is a group object in the symmetric monoidal category (W,⊗W). For each
topological group G the opposite group Gop is the underlying topological space of
G together with the multiplication (g, h) 7→ g∗h defined by g∗h = hg. The groups
G and Gop are isomorphic under the function invG:G → Gop, invG(g) = g−1.
Analogously, every topological algebra A gives rise to an opposite algebra Aop on
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the same underlying topological vector space but with the multiplication defined
by a∗b = ba, giving us

(A−1)op = (Aop)−1

by definition, but not necessarily being isomorphic to A. Consequently,

((K[G])−1)op = (K[G]op)−1

and there are morphisms of topological groups ηG:G→ K[G]−1 and ηGop :Gop →
K[Gop]−1. So we have an isomorphism K[invG]:K[G]→ K[Gop] of weakly complete
topological algebras and, accordingly, an involutive isomorphism of topological
groups K[invG]−1:K[G]−1 → K[Gop]−1. This gives us a commutative diagram

G
ηG−−−−−−−−−→ K[G]−1

invG

y yK[invG]−1

Gop −−−−−−−−−→
ηGop

K[Gop]−1.

producing an isomorphism of weakly complete algebras K[G]→ K[Gop].
But we also have a commutative diagram

G
ηG−−−−−−−−−→ K[G]−1

invG

y yinvK[G]−1

Gop −−−−−−−−−→
ηGop

(K[G]−1)op = (K[G]op)−1.

Let us abbreviate f
def
=
(
ηGop) ◦ invG:G → (K[G]op)−1. So by the adjunction

formalism, there is a unique involutive isomorphism f ′:K[G]→ K[G]op of weakly
complete algebras such that f = f ′|K[G]−1 ◦ ηG.

We have a grounding functorA→ |A| from the categoryWA of weakly complete
algebras to the category W of weakly complete vector spaces, where |A| is simply
the weakly complete vector space underlying the weakly complete algebra A. With
this convention we formulate the following definition:

Definition 3.66. For each topological group G there is a morphism of weakly

complete vector spaces σG
def
= |f ′|: |K[G]| → |K[G]op| = |K[G]|, called symmetry or

antipode. ut

So for any topological group G we have

(∗∗) (∀g ∈ G)σG(ηG(g)) = ηG(g−1) = ηG(g)−1,

that is, on the subgroup ηG(G) of K[G]−1 the morphism σG of weakly complete
vector spaces agrees with the multiplicative inversion of K[G].

In the following main theorem, for any topological group G we write WG for
the underlying weakly complete vector space |K[G]| of the weakly complete group
algebra K[G] over K = R or K = C. We recall that E denotes the singleton group
object. The weakly complete vector space morphism of the augmentation

K[G]
kG−−−−−−−−−→K[E]

K(ιG)−−−−−−−−−→K[G]
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will be written ωG:WG →WG. These are category theoretical formalities.
In Appendix 3 in Definition A3.101, a weakly complete Hopf algebra A is called

group-saturated if the linear span of the subset G(A) of grouplike elements is dense
in A.

The Weakly Complete Hopf Group Algebras

Theorem 3.67. For any topological group G, the weakly complete group algebra
K[G] is a weakly complete symmetric group-saturated Hopf algebra.

Specifically, the following diagram involving natural morphisms of weakly com-
plete vector spaces commutes:

WG ⊗WG

σG⊗idWG−−−−−−−−−→ WG ⊗WG

γG

x yµG
WG −−−−−−−−−→

ωG
WG.

Proof. Relation (∗∗) is equivalent to

(∀x ∈ ηG(G))σG(x)x = xσG(x) = 1.

Using the bilinearity of multiplication (x, y) 7→ xy in K[G], defining µG:K[G] ⊗
K[G]→ K[G] by µG(x⊗y) = xy, and remembering from Lemma 3.65 that γG(x) =
x ⊗ x for all x = ηG(g) with some g ∈ G, once more, we obtain the equivalent
relation

(∗∗∗) (∀x ∈ ηG(G)) (µG ◦ (σG ⊗ idK[G]) ◦ γG)(x) = 1.

By Corollary 3.61, the weakly complete algebra K[G] is the closed linear span of
ηG(G), and so equation (∗∗∗) holds in fact for all elements of K[G] which the
theorem expresses in the form of a commutative diagram. According to Definition
A3.65 this is exactly what we have to show for K[G] to be a weakly complete
symmetric Hopf algebra. The fact that K[G] is group-saturated is a consequence
of Lemma 3.65 and Corollary 3.61. ut

IfWH denotes the category of weakly complete symmetric Hopf algebras, then
A 7→ G(A) defines a functor from WH to the category of topological groups TG.

The functor H
def
= (G 7→ K[G]) : TG → WH from the category of topological

groups to the category of weakly complete symmetric Hopf algebras is known to
us since Theorem 3.60 as the corestriction of the weakly complete group algebra
functor (G 7→ K[G]) : TG → WA into the bigger category of all weakly complete
unital algebras. In this context we shall now proceed to show a sharper functor
adjunction theorem as follows:

The Weakly Complete Group Hopf Algebra Adjunction Theorem

Theorem 3.68. The functor H: TG → WH from the category of topological
groups to the category of weakly complete symmetric Hopf algebras is left adjoint
to the functor (A 7→ G(A)) :WH → TG.
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Equivalently: for a topological group G there is natural morphism of topological
groups ηG:G → G

(
H(G)

)
= G

(
K[G]

)
such that for each morphism of topologi-

cal groups f :G → G(A) for a weakly complete Hopf algebra A there is a unique
morphism of weakly complete symmetric Hopf algebras f ′: H(G) → A such that
f(g) = f ′

(
ηG(g)

)
for all g ∈ G:

TG WH

G
ηG−−−−−−−−−→ G

(
H(G)

)
H(G) = K[G]

∀f
y yG(f ′)

y∃!f ′
G(A) −−−−−−−−−→

id
G(A) A

Remark. Notice that the topological group morphism ηG in Theorem 3.68 is in
general a corestriction of the morphism named ηG in Theorem 3.60.

Proof. Let A be a weakly complete symmetric Hopf algebra and f :G → G(A)
a continuous group morphism. Since A is, in particular, a weakly complete asso-
ciative unital algebra and G(A) ⊆ A−1, by the Weakly Complete Group Algebra
Theorem 3.60 there is a unique morphism f ′:K[G]→ A of weakly complete alge-
bras such that f(g) = f ′(ηG(g)) for all g ∈ G. Since each ηG(g) is grouplike by
Lemma 3.65, we have ηG(G) ⊆ G

(
H(G)

)
. We shall see below that the morphism

f ′ of weakly complete algebras is indeed a morphism of weakly complete Hopf
algebras and therefore maps grouplike element into grouplike elements. Hence f ′

maps G
(
H(G)

)
into G(A).

We now have to show that f ′ is a morphism of Hopf algebras, that is, f ′ respects
(a) comultiplication,
(b) coidentity, and
(c) symmetry.

For (a) we must show that the following diagram commutes:

K[G]
cK[G]−−−−−−−−−→ K[G]⊗K[G] ∼= K[G×G]

f ′
y yf ′⊗f ′
A

cA−−−−−−−−−→ A⊗A.

Since K[G] is generated as a topological algebra by ηG(G) by Corollary 3.61, it
suffices to track all elements x = ηG(g) ∈ K[G] for g ∈ G. Every such element is
grouplike in K[G] by Lemma 3.65, and so (f ′ ⊗ f ′)γK[G](x) = (f ′ ⊗ f ′)(x ⊗ x) =
f ′(x) ⊗ f ′(x) in A ⊗ A, while on the other hand f ′(x) = f(g) ∈ G(A), whence
γA(f ′(x)) = f ′(x)⊗ f ′(x) as well. This proves (a).

For (b) we must show that the following diagram commutes.

K[G]
kK[G]−−−−−−−−−→ K ∼= K[{1G}]

f ′
y yidK

A
kA−−−−−−−−−→ K.
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Again it suffices to check the elements x = ηA(g). Since all grouplike elements are
always mapped to 1, this is a trivial exercise.

Finally we consider (c), where again we follow all elements x = ηA(g). On the
one hand we have f ′(σK[G](x)) = f ′(x−1) = f ′(x)−1 in A−1. But again f ′(x) is
grouplike, and thus σA(f ′(x)) = f ′(x)−1, which takes care of case (c), and this
completes the proof of the theorem. ut

As with any adjoint pair of functors, there is an alternative way to express the
adjunction in the preceding theorem: see e.g. Proposition A3.36:

Corollary 3.69. For each weakly complete symmetric Hopf algebra A there is a
natural morphism of symmetric Hopf algebras εA: H

(
G(A)

)
→ A such that for any

topological group G and any morphism of weakly complete symmetric Hopf algebras
ϕ: H(G) → A there is a unique continuous group morphism ϕ′:G → G(A) such
that for each x ∈ H(G) = K[G] one has ϕ(x) = εA

(
K[ϕ′](x)

)
, where K[ϕ′] =

H(ϕ′). ut

From Theorem 3.67 we recall that each weakly complete symmetric Hopf alge-
bra A = K[G] = H(G) is group-saturated, that is, A = S(A).

Corollary 3.70. In the circumstances of Corollary 3.69,

im(εA) = εA
(
H
(
G(A)

))
= S(A).

Proof. Set B = H
(
G(A)

)
; then εA:B → A is a morphism of Hopf algebras, and

so, in particular, a morphism of weakly complete vector spaces. Hence im(εA) =
εA(B) is a closed Hopf subalgebra of A. Since εA is a morphism of Hopf algebras,
εA
(
G(B)

)
⊆ G(A) and thus εA

(
S(B)

)
⊆ S(A). Since B is group-saturated, i.e.,

B = S(B) and so im(εA) = εA
(
S(B)

)
. Hence im(εA) ⊆ S(A).

On the other hand, quite generally, by Proposition A3.38(2), we have G(A) ⊆
im(εA), and since im(εA) is closed, we conclude S(A) ⊆ im(εA) which completes
the proof. ut

In particular, we have the

Remark 3.71. εA is quotient homomorphism if and only if A = S(A)). ut

From the general theory of adjunctions (as e.g. in Appendix 3, Proposition
A3.38), in view of the Weakly Complete Group Hopf Algebra Adjunction Theorem
3.68 we may draw some immediate conclusions.

Corollary 3.72. For any weakly complete symmetric Hopf algebra A and any
topological group G we have

(1) (∀A)
(
G(A)

ηG(A)−−−−−−−−−→ G
(
K[G(A)]

) G(εA)−−−−−−−−−→ G(A)
)

= idG(A), and
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(2) (∀G)
(
K[G]

K[ηG]−−−−−−−−−→ K
[
G(K[G])

] εK[G]−−−−−−−−−→ K[G]
)

= idK[G] . ut

This corollary suggests the specification of particular subcategories on the side
of topological groups on the one hand and of weakly complete symmetric Hopf
algebras on the other as follows:

Definition 3.73. (i) A topological group G such that ηG:G→ G(K[G]) is an iso-
morphism will be called K-linearizable, if the natural morphism ηG:G→ G(K[G])
of topological groups is an isomorphism of topological groups. The full subcategory
of TG consisting of all K-linearizable topological groups will be written TGK.

(ii) A weakly complete symmetric Hopf algebra A over K will be called group-
determined if the natural morphism εA:K[G(A)]→ A is bijective. The full subcat-
egory of WH consisting of all group-determined weakly complete symmetric Hopf
algebras over K will be written WHK. ut

All finite discrete topological groups are K-linearizable, and one of our primary
goals will be to establish that all compact groups are R-linearizable. The group
T = R/Z will be seen to fail to be C-linearizable.

We apply the category theoretical result Proposition A3.40(ii) and observe
that the functor H = (G 7→ K[G]) from TG toWH maps TGK intoWHK, thereby
inducing the functor HK: TGK → WHK. The functor G from WH to TG maps
WHK into TGK, thereby inducing the functor GK:WHK → TGK. For the concept
of the equivalence of two categories, see Definition A3.39.

Theorem 3.74. The categories TGK of K-linearizable topological groups and the
category WHK of group determined weakly complete symmetric Hopf algebras over
K are equivalent under the pair of adjoint functors HK and GK. ut

A group determined weakly complete symmetric Hopf algebra A is isomorphic
to K[G(A)]. The comultiplication of a group is the diagonal morphism and is
therefore automatically cocommutative. Therefore we note:

Remark 3.74a. Any group determined weakly complete symmetric Hopf algebra
is cocommutative. ut

The Dual of a Weakly Complete Group Hopf Algebra

From Theorem A3.94 we know that the topological dual K[G]′ of a weakly complete
group Hopf algebra K[G] is a symmetric Hopf algebra (of K-vector spaces). In order
to understand this duality clearly, we now define a morphism of weakly complete
vector spaces:

Definition 3.75. Let G be an arbitrary topological group and denote by K[G]′ the
topological dual of the weakly complete symmetric K-Hopf algebra H(G) = K[G].

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



102 3. The Ideas of Tannaka, Hopf, and Hochschild

Define a morphism of vector spaces

FG:K[G]′ → R(G,K), by FG(ω) = ω ◦ ηG

Exercise E3.23. (i) FG is a natural transformation.
(ii) R(G,K) is a K-Hopf algebra.
(iii) FG is a morphism of K-Hopf algebras.
(iv) We recall the module actions (g, f) 7→ gf,

gf : G×R(G,K), gf(x) = f(xg),
gf(x) = f(g−1x), see 2.4 and 3.8. Similarly every associative algebra A, such as
K[G] has the two A−1-module actions (g, a) 7→ ga and (g, a) 7→ ag−1 which induce
two module actions on A∗. Accordingly K[G] has two G-module actions on K[G]
via (g, a) 7→ ηG(g)a and (g, a) 7→ aηG(g)−1. These induce module actions on K[G]′.

The function FG respects both module actions.
[Hint. (i) is straightforward. (ii) The natural isomorphismR(G×H,K) ∼= R(G,K)⊗
R(H,K) implies that R(G,K) is a symmetric Hopf algebra in a natural fashion.
(iii) is to be made evident by diagam chasing, for instance for the associative
multiplication m:G×G→ G by the commutativity of the following diagram:

K[G]′
FG−−−−−−−−−→ R(G,K)

K[m]

y yR(m,K)

K[G×G]′ R(G×G,K)

∼=
y y∼=

K[G]′ ⊗V K[G]′ −−−−−−−−−→
FG⊗VFG

R(G,K)⊗V R(G,K).

The commuting of the other diagram involved is left as an exercise.
(iv) For ω ∈ K[G]′ and g ∈ G we have g·ω(a) = ω(ηG(g)−1a) and g ∗ ω(a) =

ω(aηG(g)). Then we have e.g. FG(g.ω)(h) = (g·ω)(h) = ω(g−1h) = FG(ω)(g−1h) =
(h·FG)(ω)(h). The second action works analogously.] ut

The Duals of Weakly Complete Group Hopf Algebras

Theorem 3.76. For an arbitrary topological group G, the function FG:K[G]′ →
R(G,K) is a natural isomorphism of K-Hopf algebras, and it respects the natural
G-module actions.

Proof. In view of Exercise E3.23(iii) we have to show the bijectivity of FG. The
injectivity of FG is seen as follows: By Corollary 3.61(ii) we have span(ηG(G)) =
K[G] and so the relation {0} = (ω ◦ ηG(G)) = ω(ηG(G)) implies ω = 0.

For a proof of the surjectivity of FG we use an argument that we also indicate
in Appendix 3 following Corollary A3.107. So let f ∈ R(G,K). By Proposition
3.34 there is a finite dimensional G-module V , an element ω in its dual V ′, and
an element v ∈ V such that f(g) = 〈ω, π(g)(v)〉 with the representation π of G
belonging to the G-module V . Then π:G → End(V ) where π(G) ⊆ Aut(V ) =
End(V )−1. By the universal property of K[G], the morphism π:G → End(V )
provides an algebra morphism π:K[G] → End(V ) so that π(g) = π(ηG(g)) for all
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g ∈ G. Then indeed L(a) = 〈ω, π(a)(v)〉 defines a linear form L ∈ K[G]′ such that
f(g) = L

(
ηG(g)

)
. So the surjectivity of FG is secured. ut

With this theorem we connect the concept of weakly complete group Hopf
algebras with the traditional concept of the algebra of representative functions of
a topological group, which for compact groups G dominated the early chapters 1,
2 and 3 of this book. From the duality of the category VK of K-vector spaces and
the categoryWK of weakly complete vector spaces (see Theorem A7.9) we see that
Theorem 3.86 implies at once the following understanding of a weakly complete
group algebra as a vector space dual:

Corollary 3.76a. Any weakly complete symmetric Hopf algebra K[G] may be
viewed as the algebraic (G-module) dual R(G,K)∗ of R(G,K). ut

Recall that a weakly complete symmetric Hopf algebra A is called group-
saturated iff S(A) = A, and recall also that we have a linear map τA:A′ →
R(G(A),K) defined by τA(ω) = ω|G(A).

Proposition 3.77. For a weakly complete symmetric group-saturated Hopf algebra
A the function τA:A′ → R(G(A),K) is an injective morphism of Hopf algebras. If
A is also group-determined, then τA is an isomorphism of symmetric Hopf algebras.

Proof. Since A is group-saturated, we know from Corollary A3.107 in Appendix
3 that τA is injective. We have a commutative diagram

A′
id−−−−−−−−−→ A′

ε′A

y yτA
K[G(A)]′

FG(A)−−−−−−−−−→ R(G(A),K).

Since εA:A → K[G(A)] is a morphism of weakly complete symmetric Hopf alge-
bras, its dual is a morphism of symmetric Hopf algebras. Since FG(A) is an isomor-
phism of symmetric Hopf algebras, it follows that τA is a morphism of symmetric
Hopf algebras.

If A is group determined, εA is an isomorphism, and then so is τA. ut

Note that the last assertion of this proposition follows also from Theorem 3.76
directly. Also observe that τA respects the G(A)-module actions.

Definition 3.78. A symmetric Hopf algebra R over K is called weakly reduced if
its algebraic dual R∗ is group-determined (see Definition 3.73(ii)). ut

By Remark 3.74a we know that
any weakly reduced symmetric Hopf algebra is automatically commutative and is
of the form R(G,K) for some topological group G.

If it helps, we may reformulate the equivalence Theorem 3.74 into a duality
theorem which, while not genuinely revealing new information, is a general back-
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drop of what has been generally accepted as “Tannaka Duality”. However, it does
not speak of compact groups yet.

Fact 3.79. The category of K-linearizable topological groups is dual to the cat-
egory of weakly reduced symmetric Hopf algebras over K. ut

A Principal Structure Theorem of K[G] for Compact G

In this subsection we finally assume that G is a compact group and assume, ac-
cording to Corollary 3.62, that ηG is an inclusion map; that is,

for the remainder of this chapter we write

(#) G ⊆ K[G].

As in the Fine Structure Theorem for R(G,K) 3.28, we let ĜK denote the set
of equivalence classes of simple G-modules over K. Since we do not consider the
ground field K fixed on the case K = C we choose the notation ĜK in place of Ĝ
in order to indicate the dependence on K.

For each element ε ∈ ĜK, we select a finite dimensional G-module Eε,K from the

class ε. If ε ∈ ĜK , then the ring Lε,K = EndG(Eε,K) of all K-linear endomorphisms
of Eε,K which commute with the G-action is, by Schur’s Lemma 2.30, a finite
dimensional division ring over K. Hence

Lε,K = C if K = C,
Lε,K ∈ {R,C,H} if K = R.

We view Eε,K as a right module over Lε,K. We denote the corresponding representa-
tion by ρε,K:G → EndLε,K(Eε,K) ⊆ EndK(Eε,K). Before we enter the presentation
of the principal theorem on the weakly complete group algebra K[G] of a com-
pact group we elaborate on some basic ideas of the Parts 1 and 2 of this chapter.
The first lemma extends the details of Proposition 3.21 and the comments which
precede Proposition 3.21 and follow Exercise E3.9.

Lemma 3.80. Let E be a finite dimensional vector space over K and ρ:G −→
EndK(E) the representation of the simple G-module E. Let A denote the K-
span of the set {ρ(g) | g ∈ G}. Then A = EndL(E), where L = EndA(E) =
EndG(E), L ∈ {R,C,H}. In particular, E is an L-vector space such that dimKE =
dimK L·dimLE, and A is isomorphic to a full m × m matrix ring over L with
m = dimLE.

Proof. First of all we note that A is a K-algebra containing idE . Hence every
A-submodule of the additive group E is a G-invariant linear subspace, and vice
versa. Therefore E is a simple A-module and so Jacobson’s Density Theorem
applies, which, for the sake of completeness, we cite here in its entirety (see e.g.
[75]).

Jacobson’s Density Theorem. Let M 6= 0 be a vector space, let A ⊆ End(M)
be a subring of End(M), and assume that M is simple as a left A-module. Put
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L = EndA(M). Then L is a division ring and M is a right L-module in a natural
way.

Moreover, for every 2k-tuple (x1, . . . , xk, y1, . . . , yk) ∈ M2k, such that the ele-
ments x1, . . . , xk are linearly independent, there exists an element a ∈ A such that
a(xi) = yi holds for all i = 1, . . . k.

Now the division ring L is a finite dimensional K-algebra over K, and hence is
isomorphic to R,C, or H. Moreover, A = EndL(E). ut

Specifically, let x1, . . . , xm be an L-basis for E, and let ϕ ∈ EndL(E) be arbi-
trary. Then there exists an element a ∈ A such that a(xi) = ϕ(xi) holds for all
i = 1, . . . ,m. Therefore ϕ = a.

The following result now extends Lemma 3.14.

Lemma 3.81a. Let E and F be finite dimensional vector spaces over K and as-
sume that ρ:G→ EndK(E) and σ:H → EndK(F ) are irreducible representations of
groups G and H. Assume also that EndG(E) = L = EndH(F ). Then HomL(F,E)
is a simple G×H-module over K, where (g, h)(f) = ρ(g) ◦ f ◦ σ(h−1).

Proof. We define A ⊆ EndK(E) and B ⊆ EndK(F ) as in Lemma 3.80. Then
A = EndL(E) and B = EndL(F ). The K-vector space Hom(F,E) is in a natural
way a left A-module and a right B-module. For every nonzero f ∈ HomL(F,E) we
have AfB = HomL(F,E). Therefore HomL(F,E) is simple as a left G×H-module
over K. ut

We are now ready to prove a principal structure theorem for the weakly com-
plete group algebra K[G] of a compact group G for either K = R or K = C.

For each ε ∈ ĜK we have the G-module Eε,K and the corresponding irreducible
representation ρε,K:G→ EndK(Eε,K) into the group of units of the concrete matrix

ring Mε
def
= EndL(Eε,K)) over L = EndG(Eε,K) of L-dimension (dimLEε,K)2. In

the spirit of Proposition 3.20, we specify the following multiplicity lemma for Mε

whose proof was implicit in Lemma 3.80.

Lemma 3.81b. The one-sided left G-module Mε = HomL(Eε,K, Eε,K) is a direct

sum of dimLEε,K =
dimK Eε,K

dimR L copies of the simple G-module Eε,K. ut

There is a unique function ρG:G →
∏
ε∈ĜK

Mε, which is an injective group

morphism into the multiplicative group of units of the product defined by the
universal property of the product such that

G
ρG−−−−−−−−−→

∏
ε∈ĜK

Mε

=

y yprχ

G −−−−−−−−−→
ρχ,K

Mχ

commutes for all χ ∈ ĜK.
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The Algebra Structure of K[G]

Theorem 3.82. For any compact group G, the weakly complete symmetric Hopf
algebra K[G] is a direct product

K[G] =
∏
ε∈ĜK

Kε[G]

of finite dimensional minimal two-sided ideals Kε[G] such that for each ε ∈ ĜK
there is a K-algebra isomorphism

Kε(G) ∼= Mε = EndL(Eε,K), L = EndG(Eε,K)

In particular, each of these two-sided ideals Kε(G) is a two sided simple G × G-
module and as an algebra is isomorphic to a full matrix ring over L.

Remark. The diagram

G
ηG−−−−−−−−−→ K[G]

=

y y∼=
G −−−−−−−−−→

ρG

∏
ε∈ĜK

Mε

=

y yprχ

G −−−−−−−−−→
ρχ,K

Mχ

commutes for all χ ∈ ĜK.

Proof. By Theorem 3.76 and Theorem 3.28, the topological dual K[G]′ ∼= R(G,K)
is the direct sum of the finite dimensional two-sided G-submodules Rε(G,K) as ε

ranges through the set of isomorphy classes of simple G-modules over K in ĜK.
The G×G-module Rε(G,K) is defined as the image of the linear map

ϕ:E′ε,K ⊗K Eε,K −→ R(G,K),

where

ϕ(u⊗ v)(g) = 〈u, ρε,K(g)v〉.

If we put ψ(f)(g) = trK(ρε,K(g)f), for f ∈ EndK(Eε,K) and g ∈ G, then the
diagram

E′ε,K ⊗K Eε,K
ϕ−−−−−−−−−→ Rε(G,K)

s

y =

y
EndK(Eε,K)

ψ−−−−−−−−−→ Rε(G,K)

commutes, where s(u⊗v) = [w 7→ v〈u,w〉]. We recall that the group G×G acts on
Rε(G,K) via (a, b)(λ) = [g 7→ λ(a−1gb)]. If we put (a, b)(u⊗v) = (u◦ρε,K(a−1))⊗
ρε,K(b)v and (a, b)(f) = ρε,K(b) ◦ f ◦ ρε,K(a−1), then all maps in this diagram are
G×G-equivariant.

Assume that K = L. Then EndK(Eε,K) = EndL(Eε,K) is simple as a G × G-
module by Lemma 3.81a and thus ψ is an isomorphism.
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Assume next that K ( L. Then K = R and L = C or L = H. By Weyl’s Trick
(see Theorem 2.10ff.) there exists a G-invariant positive definite L-hermitian form
(·|·) on E, semi-linear in the first argument and linear in the second argument.
This allows us to rewrite Rε(G,K) as the set of maps g 7→ Re(u|gv), for u, v ∈ E.
The G-invariance of (·|·) yields that Re(au|gbv) = Re(u|a−1gbv). If we consider
the algebra inclusion

j: EndL(Eε,K)→ EndK(Eε,K),

then Re(u|v) = trK[w 7→ v(u|w)] holds for the trace map of EndK(Eε,K). It follows
that the map ψ ◦ j in the diagram

E′ε,K ⊗K Eε,K
ϕ−−−−−−−−−→ Rε(G,K)

s

y =

y
EndK(Eε,K)

ψ−−−−−−−−−→ Rε(G,K)

j

x
EndL(Eε,K)

is surjective and G × G-equivariant. Since EndL(Eε,K) is a simple G × G-module
over K by Lemma 3.81a, the map ψ ◦ j is an isomorphism.

For the remaining part of the proof we apply standard duality theory (see e.g.
A7.11). We put

Rχ =
⊕

χ6=ε∈ĜK

Rε(G,K)

and define Kχ[G] as the annihilator of Rχ. The annihilator mechanism supplies us
with the diagram

K[G]
⊥←→ {0}∣∣∣ ∣∣∣

Kχ[G]
⊥←→ Rχ∣∣∣ ∣∣∣ }

∼= Rχ(G,K)

{0} ⊥←→ R(G,K).

By the duality of VK and WK it follows that K[G] ∼=
∏
ε∈ĜK

Kε[G] with

Kε[G] ∼= Rε(G,K)′.

Now, if any closed vector subspace J of K[G] satisfies G·J ⊆ J and J ·G ⊆ J ,
then we also have span(G)·J ⊆ J and J · span(G) ⊆ J (where we view G as a subset
of K[G]). Then Corollary 3.61 says that span(G) = K[G], and so K[G]·J ⊆ J and
J ·K[G] ⊆ J . That is, J is a closed two-sided ideal of K[G]. Therefore each Kε[G]
is a two-sided ideal in K[G].

It remains to clarify the multiplicative structure of the ideals Kε[G]. If we

consider ε ∈ ĜK and the representation ρε,K, then the map

G
ρε,K−−−−−−−−→GlL(Eε,K)=EndL(Eε,K)−1 inc−−−−−−−−→EndL(Eε,K), L=EndG(Eε,K)
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and the universal property of K[G] described in the Weakly Complete Group
Algebra Theorem 3.60 provides a morphism of weakly complete algebras

πε:K[G]→ EndL(Eε,K)

extending ρε,K. We also have the product projection of weakly complete algebras
prε:K[G]→ Kε[G]. Both maps πε and prε have the same kernel

∏
ε6=ε′∈ĜK

Kε′ [G].

So there is an injective morphism

α:Kε[G]→ EndL(Eε,K)

such that πε = α ◦ prε. Since both algebras have the same dimension, α is an
isomorphism of K-algebras. ut

Corollary 3.83. There is an isomorphism of G×G-modules

R(G,K) =
⊕
ε∈ĜK

EndLε(Eε,K), Lε = EndG(Eε,K).
ut

Thus the multiplicity m of Eε,K as a G-module in R(G,K) is

m = dimLε(Eε,K) =
dimKEε,K
dimK Lε

.

While this conclusion is well-known for K = C (see e.g Theorems 3.22 and
3.28), a reference for the case K = R is not easily found.

The algebra structure of the weakly complete symmetric Hopf algebra K[G] is
satisfactorily elucidated in Theorem 3.82, the comultiplication is not easily acces-
sible due to the complications on the way to a representation theory of G×G in
general, even if that of G is known as in Theorem 3.82. In the case of commu-
tative compact groups G and the complex ground field C these complications go
away, and so we shall clarify the situation in these circumstances in a subsequent
subsection.

The crux of further information is the following argument. For each topolog-
ical group G, our Theorem 3.76 provided an isomorphism of symmetric K-Hopf
algebras

FG:K[G]′ → R(G,K).

So each member f :G→ K of R(G,K) arises uniquely as a function g 7→ 〈ωf , η(g)〉
for some linear form ωf ∈ K[G]′. By the duality of VK and WK in Appendix 7 we
may identify K[G]′

∗
and K[G] and obtain an isomorphism

F ∗G:R(G,K)∗ → K[G].

Thus every linear form µ onR(G,K) determines uniquely an element F ∗G(µ) ∈ K[G]
such that 〈

µ, (g 7→ 〈ωf , ηg〉)
〉

= 〈ωf , F ∗G(µ)〉.

If µ happens to be of the special type that there is an element gµ ∈ G such that
〈µ, f〉 = f(gµ) for all f ∈ R(G,K), that is, for all f = (g 7→ 〈ωf , η(g)〉), then we
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conclude that 〈ω, F ∗G(µ)〉 = 〈ω, η(gµ)〉 for all ω ∈ K[G] and that implies F ∗G(µ) =
η(gµ). As a summary of this argument, for each g ∈ G we let evg:R(G,K) → K
be the point evaluation at g defined by evg(f) = f(g).

Lemma 3.84. The isomorphism F ∗G:R(G,K)∗ → K[G] maps the point evaluation
evg to ηG(g) ∈ G

(
K[G]

)
for each g ∈ G, that is, F ∗G(evg) = ηG(g). ut

If we write evg = evG(g), then we may formulate this lemma as the commuta-
tivity of the diagram

G
ηG−−−−−−−−−→ K[G]−1

evG

y yinc

R(G,K)∗ −−−−−−−−−→
F∗
G

K[G].

If A is a unital K-algebra, then the set of morphisms f :A → K of K-algebras
is called the spectrum of A, denoted Spec(A). If A∗ denotes the algebraic dual of
the underlying vector space of A, we have Spec(A) ⊆ A∗, and the subset is closed
in the topology of pointwise conergence on A∗, i.e., Spec(A) is a closed subset of
the weakly complete vector space A∗. Occasionally, the elements of A∗ are called
the characters of A, a notation which we seek to avoid in the context of this book,
since we us the word “character” in another context.

Now we recall from Proposition A3.99 in Appendix 3 that the isomorphism
of weakly complete symmetric Hopf algebras F ∗G maps the set Spec(R(G,K)) ⊆
R(G,K)∗ homeomorphically onto the set G(K[G]) of grouplike elements of K[G].

From Lemma 3.65 we recall ηG(G) ⊆ G(K[G]).
We summarize our arguments of the position of the sets η(G) ⊆ G

(
K[G]

)
⊆

K[G] as follows:

Theorem 3.85. For an arbitrary topological group G and its weakly complete group
Hopf algebra K[G], the isomorphism F ∗G:R(G,K)∗ → K[G] of weakly complete Hopf
algebras maps the set

evG of point evaluations evg = (f 7→ f(g)) : R(G,K)→ K
bijectively onto the image η(G) of G in K[G], and it maps the spectrum
Spec(R(G,K)) bijectively onto the pro-Lie group G

(
K[G]

)
of grouplike elements in

K[G]. In terms of a diagram:

R(G,K)∗
F∗G−−−−−−−−−→ K[G]∣∣∣ ∣∣∣

Spec
(
R(G,K)

) ∼=−−−−−−−−−→ G
(
K[G]

)∣∣∣ ∣∣∣
evG(G)

∼=−−−−−−−−−→ ηG(G). ut

With the emergence of the spectrum we extended the scope of Part 3 of this
Chapter from category theory to functional analysis.
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The Spectrum of the K-Algebra R(G,K)

At this point we address the claim, yet to be proved, that a compact group G is
R-linearizable. Recall that for compact G we write G ⊆ G

(
K[G]

)
⊆ K[G]. We con-

sider R(G,K) as an involutive unital K-algebra, with complex conjugation as invo-
lution in the case of K = C and as the identity as involution in the case of K = R.
A morphism µ of involutive algebras is one preserving the involution, i.e., satisfy-
ing µ(f∗) = µ(f)∗. The set of morphisms of involutive algebras µ:R(G,K) → K
will be called Spec∗(R(G,K)). Note that it is a subset of R(G,K)∗.

Lemma 3.86. (The Point Evaluation Lemma) For a compact group G, every
element of Spec∗(R(G,C)) is a point evaluation.

We present the proof through two lemmas in which we assume G to be compact
and abbreviate the commutative involutive algebra R(G,C) by A.

The first lemma explicitly uses the preservation of multiplication by elements
of Spec(A). Its proof is based on the elementary theory of a finite dimensional
Hilbert space over K.

Lemma A. For each f ∈ A there is a nonnegative number kf such that

(∀µ ∈ Spec∗(A)) |µ(f)| ≤ kf .

Proof. For each f ∈ R(G,C) there is a finite dimensional G-submodule Ef of
R(G,C) containing f and on which G acts unitarily via (g·f)(x) = f(xg). Then
Ef is a finite dimensional Hilbert space with respect to the inner product (f1|f2) =∫
g∈G f1(g)f2(g)dm(g) ≤ ‖f1‖·‖f2‖ with Haar measure m on G (see Appendix 5).

Let e1, . . . , en be an orthonormal basis of Ef so that for some n-tuple of functions
Fm ∈ R(G,C) we have

(∀x, g ∈ G), f(x·g) =
n∑

m=1

Fm(g)em(x).

We observe f(g) =
∑n
m=1 Fm(g)em(1) and

(∀g ∈ G) (f |f) = (g·f |g·f) =
n∑

m=1

Fm(g)Fm(g) =
( n∑
m=1

FmFm

)
(g).

Since µ is a morphism of involutive complex algebras we conclude
(f |f) =

∑n
m=1 µ(Fm)µ(Fm),

and

|µ(f)|2 = µ(ff) = µ
( n∑
k,m=1

FkFmek(1)em(1)
)

=
n∑

k,m=1

µ(Fk)µ(Fm)ek(1)em(1).

Now let Tf be the hermitian operator on CN with coefficient matrix
(ek(1)em(1))k,m=1,...,n

and u ∈ Cn the vector (µ(F1), . . . , µ(Fn)). If we write
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[(v1, . . . , vn)|(w1, . . . , wn)] =
∑n
m=1 vmwm,

then we have
[(u|u)] = (f |f) and [u|Tfu] = |µ(f)|2,

and therefore
|µ(f)| ≤ kf

def
= ‖Tf‖1/2·(f |f)1/2. ut

As a consequence we derive

Lemma B. Spec∗(A) is compact in the topology of pointwise convergence, and
g 7→ evg:G→ Spec∗(A), evg(f) = f(g), is a homeomorphic embedding.

Proof. For f ∈ A we let Df be the compact complex disk of radius kf . Then for
all µ ∈ Spec∗(A) ⊆ KA we have

µ ∈
∏
f∈A

Df ⊆ KA

by Lemma A. Since the set Spec∗(A) is closed in KA in the topology of pointwise
convergence, it is a closed subspace of the compact space

∏
f∈ADf and is, therefore

compact. For each g ∈ G, clearly evg ∈ Spec∗(A), and g 7→ evg is clearly a
continuous injection. Thus, by compactness of G, it is a homeomorphic embedding.

ut

We can now complete the proof of the Point Evaluation Lemma 3.86, which

asserts the surjectivity of g 7→ evg : G → X, X
def
= Spec∗(A). We claim that

the dual surjection C(X) → C(G) is injective which will prove our claim. Let us
suppose for the moment that G ⊆ X (which we may) and that G 6= X. Then
C(X,K) would contain the dense unital involutive subalgebra A by the Stone
Weierstraß Theorem which, when restricted to G, would yield an algebra A|G
isomorphic to A, which is impossible as G is a proper subspace of X.

In the case K = R, any morphism µ:R(G,R) → R of real algebras, extends
uniquely to a (complex) morphism

µ̃:C⊗R R(G,R)→ C, where C⊗R R(G,R) ∼= R(G,C),
such that µ̃ = µ̃. Trivially, µ is a point evaluation of R(G,R), if and only if µ̃ is
a point evaluation of R(G,C), and µ is continuous if and only if µ̃ is continuous.
Hence the Point Evaluation Lemma 3.86 implies the analogous result over R:

Corollary 3.87. For a compact group G, the set Spec(R(G,R)) of algebra mor-
phisms of R(G,R) is precisely the set of point evaluations f 7→ f(g), g ∈ G. ut

Recall that R(G,R)∗ and R[G] are natually isomorphic by the duality of VR and
WR (according to Appendix 7), since R[G]′ and R(G,R) are naturally isomorphic
by Theorem 3.76.

After Corollary 3.62 we may identify a compact group G with its isomorphic
image via ηG in G(R[G]), and now the preceding Corollary 3.87 and Theorem 3.68

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



112 3. The Ideas of Tannaka, Hopf, and Hochschild

allow us to conclude the following theorem, for which we recall that in Definition
3.73(i) we call a topological group R-linearizable if ηG:G→ G(R[G]) is an isomor-
phism of topological groups. Also recall that a weakly complete symmetric real
Hopf algebra A is group-determined if εA:R[G(A)]→ A is an isomorphism.

R-Linearizability of Compact Groups

Theorem 3.88.
(i) Every compact group is R-linearizable.
(ii) The weakly complete symmetric real group-Hopf algebra R[G] of a compact

group is group-determined. ut

It appears that a direct proof of the assertion that in R[G], for a compact group G,
every grouplike element is a group element is nontrivial in general. If G happens
to be finite then the proof, of course, is elementary linear algebra.

At this point, one piece of information seems to be open: Let A be a weakly
complete symmetric real Hopf algebra A in which the group G(A) of grouplike
elements is compact and algebraically and topologically generates A. Will the
natural morphism εA: H

(
G(A)

)
= R[G(A)] → A be in fact an isomorphism? In

other words:
If G(A) is compact and A is group-saturated, is A group-determined?

For the investigation of this question we need some elementary preparation.
Assume that G is a compact group and R(G,R) ⊆ C(G,R) is the real symmetric
Hopf algebra of all representative functions f ∈ C(G,R) as usual (see Definition
3.3). We now let M be a subalgebra and a G-submodule of R(G,R). Recall that
SpecM denotes the set of all algebra morphisms M → R. From Definition 1.20 we
recall that M ⊆ C(G,R) is said to separate points if for two points g1 6= g2 in G
there is an f ∈ M such that f(g1) 6= f(g2). In other words, different points in G
can be distinguished by different point evaluations of some function from M . The
next lemma is just revisiting the Stone-Weierstraß Theorem: cf. Theorem 3.7 and
its proof.

Lemma α. If a unital subalgebra M of R(G,R) separates points, then M is dense
in C(G,R) with respect to the sup norm and is dense in L2(G,R) with respect to
the L2-norm.

Proof. Since M is a unital subalgebra of R(G,R), it contains the scalar multiples
of the constant functions of value 1, that is, M contains all the constant functions.
Moreover, the algebra M ⊆ C(G,R) separates the points of G. Therefore the
Stone-Weierstraß Theorem applies and shows thatM is dense in C(G,R) in the sup
norm topology of C(G,R). Since L2(G,R) is the L2-norm completion of C(G,R)
and M is uniformly d ense in C(G,R) it follows that M is dense in L2(G,R) in
the L2-norm. ut
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Lemma β. If a G-submodule M of R(G,E) is L2-dense in R(G,R) then it agrees
with R(G,R).

Proof. Let ĜR denote the set of isomorphy classes of irreducible real G-modules.
By the Fine Structure Theorem of R(G,R) (see Theorem 3.28)

R(G,R) =
∑
ε∈ĜR

R(G,R)ε,

where
∑

denotes the algebraic direct sum of (finite dimensional) vector subspaces

and where R(G,R)ε is a finite direct sum of simple modules for each ε ∈ ĜR.
(Cf. Theorem 3.82.) In particular, each R(G,R)ε is finite dimensional. Further
L2(G,R) =

⊕
ε∈ĜR(G,R)ε where

⊕
denotes the Hilbert space direct sum.

The submoduleM ofR(G,R) adjusts to the canonical decomposition ofR(G,R)
since Mε is necessarily a submodule of R(G,R)ε. Hence M =

∑
ε∈ĜMε and the

L2-closure of M in L2(G,R) is the Hilbert space sum
⊕

ε∈ĜMε. By hypothesis,

this closure agrees with L2(G,R). This implies Mε = Rε for all ε ∈ Ĝ. Hence
M =

∑
ε∈ĜMε =

∑
ε∈ĜRε = R(G,R). ut

Now we are ready for another main result on compact groups in the present
context of weakly complete group algebras.

Theorem 3.89. Let A be a weakly complete real symmetric Hopf algebra satisfying
the following two conditions:

(i) The subgroup G(A) of grouplike elements of A is compact,
(ii) G(A) generates A algebraically and topologically, that is, S(A) = A.

Then εA:R[G(A)] = H
(
G(A)

)
→ A is a natural isomorphism.

Proof. We set G = G(A). By Remark 3.71, the morphism εA:R[G] → A is a
quotient homomorphism of weakly complete Hopf algebras. Now ηG:G→ G(R[G])
is an isomorphism by 3.88(i). Hence εA induces an isomorphism G(εA):G(R[G])→
G by Corollary 3.72. So G(R[G]) is identified with G if we consider G as included
in R[G] as we agreed to to do in (#) at the beginning of this section on compact
groups.

By the Duality between real Hopf algebras in VR and weakly complete real
Hopf algebras in WR, the dual morphism ε′A:A′ → R[G]′ is injective. Proposition
3.77 then gives us an inclusion A′ ⊆ R(G,R) of real Hopf algebras as well as of
G-modules such that the natural map Spec(A′)→ Spec

(
R(G,R)

)
is the identity.

Now applying Lemmas α and β above with M = A′ we conclude A′ = R(G,R)
which, in turn, shows that εA is an isomorphism. ut

The Tannaka-Hochschild Duality

For a concise formulation of the consequences let us use the following notation:
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Definition 3.90. A real weakly complete symmetric Hopf algebra A will be called
compactlike if its subgroup G(A) of grouplike elements is compact and S(A) =

span
(
G(A)

)
= A. ut

The Equivalence of Compact Groups and Compactlike Hopf algebras

Theorem 3.91. The categories of compact groups and of weakly complete sym-
metric compactlike real Hopf algebras are equivalent.

Proof. This now follows immediately from Theorems 3.88 and 3.89. ut

Definition 3.92. A real symmetric Hopf algebra R over K is called reduced if its
algebraic dual R∗ is compactlike (see Definition 3.90). ut

Since we chose our definitions in such a fashion that the categories of real
symmetric Hopf algebras and of weakly complete real symmetric grouplike Hopf
algebras are equivalent, we have as an immediate consequence of the Equivalence
Theorem 3.91 the following celebrated result:

The Tannaka-Hochschild Duality Theorem

Theorem 3.93. The category of compact groups is dual to the full category of
real reduced Hopf algebras. ut

Whichever way one looks at various versions of this duality theorem, the con-
cept of a reduced Hopf algebra is loaded with complexity. An application of this
duality to a general structure theory of compact groups is therefore limited. This is
quite in contrast with the Pontryagin–van Kampen Duality Theorem for compact
abelian groups which we secured early on in Theorems 1.31 and 2.32. It is therefore
not surprising, that in the case of compact abelian groups, our theory of weakly
complete group algebras will be more attractive than the most general form which
we have pursued up to this point.

Compact Abelian Groups

If G is a compact commutative group, some statements made for the general case
become indeed simpler and more lucid. In the first part of this discussion we con-
sider K = C. From Lemma 2.30 we know that there is a natural bijection from the
character group Ĝ according to Definition 1.15 onto the set ĜC of isomorphy classes
ε of irreducible G-modules E, all of which have complex dimension 1. This bijection
associates with a character χ ∈ Ĝ = Hom(G,T) the class of the module Eχ = C,
χ·c = e2πiχc. Accordingly, Theorem 3.28 (12) reads R(G,C) =

∑
χ∈ĜC·fχ, for a

suitable basis fχ, χ ∈ Ĝ. In other words, as a G-module, R(G,C) ∼= C(Ĝ).
Accordingly, we expect C[G] to be uncomplicated. Our Theorem 3.82 makes

this clear:
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The complex algebra C[G] may be naturally identified with the componentwise

algebra CĜ.

In the abelian case, our understanding of the comultiplication of C[G] = CĜ
will be much more explicit than in the general situation of Theorem 3.82. Each
character χ:G → T determines a morphism fχ:G → C−1 = C×, fχ(g) = e2πχ(g).

By the universal property of C[G] = CĜ, this value agrees with the χ-th projection
of ηG(g). Hence

(∀g ∈ G,χ ∈ Ĝ) ηG(g)(χ) = e2πi〈χ,g〉.

Accordingly, if we write S1 = {z ∈ C; |z| = 1}, then ηG(g) ∈ Hom(Ĝ,S1) ∼= ̂̂
G ∼= G.

Then Corollary 3.61(ii) implies

Hom(Ĝ,S1) ⊆ spanR(Hom(Ĝ,S1)) = R[G] ⊆ C[G] = CĜ.

Recall from Theorem 3.63 that we have an isomorphism αG:C[G × G] →
C[G] ⊗W C[G], and from Lemma 3.64 we recall the comultiplication γG:C[G] →
C[G]⊗W C[G] to be the composition

C[G]
C[δG]−−−−−−−−−→C[G×G]

αG−−−−−−−−−→C[G]⊗W C[G].

Now, for a compact abelian group G, the diagonal morphism δG:G→ G×G has
the group operation of Ĝ as its dual, namely:

δ̂G: Ĝ× Ĝ→ Ĝ. δ̂G(χ1, χ2) = χ1 + χ2,

as we write abelian group operations additively in general. If now we also write

C[G]⊗W C[G] = CĜ×Ĝ (identifying ϕ⊗ ψ with (χ1, χ2) 7→ ϕ(χ1)ψ(χ2)), then we
have

γG = Cδ̂G :CĜ → CĜ×Ĝ, i. e., (∀ϕ ∈ CĜ), γG(ϕ)(χ1, χ2) = ϕ(χ1 + χ2).

This allows us to determine explicitly the elements of the group G(CĜ) of all
grouplike elements:

Indeed a nonzero element ϕ ∈ CĜ is in G(CĜ) iff

γG(ϕ) = ϕ⊗ ϕ in CĜ ⊗W CĜ = CĜ×Ĝ,

where (ϕ⊗ ϕ)(χ1, χ2) = ϕ(χ1)ϕ(χ2). This is the case iff

(∀ϕ1, ϕ2 ∈ Ĝ)ϕ(χ1 + χ2) = γG(ϕ)(χ1, χ2) = (ϕ⊗ ϕ)(χ1, χ2) = ϕ(χ1)ϕ(χ2),

that is, iff ϕ is a morphism of groups from Ĝ to C× = (C \ {0}, ·).

Similarly, an element ϕ ∈ CĜ is primitive iff

ϕ(χ1 + χ2) = γG(ϕ)(χ1, χ2)
(
(ϕ⊗ 1) + 1⊗ ϕ)

)
(χ1‘, χ2) = ϕ(χ1) + ϕ(χ2)

iff ϕ: Ĝ→ (C,+) is a morphism of topological groups.
Let us summarize this discourse, recalling that C[G] ⊗W C[H] for compact

groups G and H may be identified with C[G×H]:
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The Weakly Complete Group Hopf Algebra C[G] for Compact Abelian G

Theorem 3.94. Let G be a compact abelian group and Ĝ its character group.
Denote the weakly complete commutative symmetric group Hopf algebra C[G] by
A. Then we have the following conclusions:

(i) A may be identified with CĜ such that ηG:G→ A−1 is defined by

(∀g ∈ G,χ ∈ Ĝ) ηG(g)(χ) = e2πi〈χ,g〉 ∈ S1,

where S1 = {z ∈ C : |z| = 1} ⊆ C×. The natural image of G in A−1 is

ηG(G) = Hom(Ĝ,S1) ∼= ̂̂
G ∼= G,

and
G ∼= Hom(Ĝ,S1) ⊆ R[G] ⊆ C[G] = CĜ.

(ii) If the isomorphic weakly complete algebras A⊗WA and CĜ×Ĝ are identified,
then the comultiplication γG:A→ A⊗W A of A is given by

(∀ϕ: Ĝ→ C, χ1, χ2 ∈ Ĝ) γG(ϕ)(χ1, χ2) = ϕ(χ1 + χ2) ∈ C.

(iii) The group of grouplike elements of A is

G(A) = Hom(Ĝ,C×) ⊆ CĜ.

(iv) The weakly complete Lie algebra of primitive elements of A is

P(A) = Hom(Ĝ,C) ⊆ CĜ. ut

We write R×+ for the multiplicative subgroup {z ∈ C : 0 < z ∈ R ⊆ C} of C×.
There is an elementary isomorphism of topological groups

(r, t+ Z) 7→ ere2πit = er+2πit : R× T→ C×.

For A = CĜ, from Statements (i) and (iii) in Theorem 3.94 we observe that G(A)
is the direct product

G(A) = Hom(Ĝ,R×+)·Hom(Ĝ,S1) ∼= L(G)× ηG(G),

where L(G) denotes the weakly complete R-vector space Hom(Ĝ,R). We observe
that ηG(G) ∼= G is clearly the maximal compact subgroup of G(A). Recall that,
according to Definition 3.73, the compact abelian group G is called C-linearizable
iff ηG:G → G(C[G]) = G(A) is an isomorphism of topological groups. Here this

is the case if and only if L(G) = {0}. Since T̂ ∼= Z according to Table 1.39,
and Hom(Z,R) ∼= R, the circle group T is not C-linearizable, while Theorem 3.88
showed that, like every compact group, it is R-linearizable.

After Theorems 1.37 and 2.36 we know that the categories of abelian groups
and the category of compact abelian groups are dual. So any abelian group A
occurs in the form Ĝ for some compact abelian group G. From the theory of
abelian groups we know that Hom(A,R) = {0} if and only if A is a torsion group
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(cf. Remark A1.17, Propositions A1.33 and A1.39). So the question arises which

compact abelian group G has a torsion group as character group Ĝ. We answer
this question satisfactorily in Corollary 8.5 early in Chapter 8 on the structure
of compact abelian groups. Indeed, the character group Ĝ of a compact abelian
group G is a torsion group if and only if G is totally disconnected; such groups
were discussed in Theorem 1.34. Therefore we have

Corollary 3.95. A compact abelian group G is C-linearizable, that is, the equal-
ity ηG(G) = G(C[G]) holds, if and only if G is totally disconnected. ut

The exponential function of the algebra A = CĜ is computed componentwise
according to expA((cχ)

χ∈Ĝ) = (ecχ)
χ∈Ĝ. It maps P(A) = Hom(Ĝ,C) into G(A) =

Hom(Ĝ,C×) as is established in Theorem A3.102 quite generally for all symmetric

K-Hopf algebras. If we define expG:L(G)→ G for a morphism f : Ĝ→ R of groups
by expG(f)) = expA(if), then we have the following set-up for expA:P(A) →
G(A):

Remark 3.96. For a compact abelian group G and the weakly complete complex

symmetric Hopf algebra A
def
= C[G] the following diagram is commutative:

P(A) = Hom(Ĝ,R) + Hom(Ĝ, iR)
∼=→ L(G)× L(G)

expA

y yidL(G)× expG

G(A) = Hom(Ĝ,R×+)·Hom(Ĝ,S1)
∼=→ L(G)×G.

We understand C[G] = CĜ rather explicitly, but R[G] only rather implicitly.
However, in combination with our discussion in Corollary 3.55 and Proposition
3.56, Theorem 3.82 applies with K = R in order to shed some light on its intrinsic
structure. In particular, in the case of a compact abelian group G, we have Lε,R =
{R,C}.

We define the function σG:C[G] → C[G] as follows: For χ ∈ Ĝ we set χ̌(g) =
χ(−g) = −χ(g) Then

(∀ϕ ∈ CĜ)σ(ϕ)(χ) = ϕ(χ̌).

Exercise E3.24. For a compact group G, the function σG is an involution of
weakly complete real algebras of C[G] whose precise fixed point algebra is R[G].
Accordingly, C[G] = R[G]⊕ iR[G].

The Probability Semigroup of a Compact G inside R[G]

We shall invoke measure theory in the form pioneered for arbitrary locally compact
groups in [37]. For a compact group G it is less technical and is summarized in
Appendix 5. In this form it adapts reasonably to the formalism of its real group
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algebra R[G]. This discussion will help us to understand the power ot the group
algebras R[G] for a compact group.

Indeed any compact Hausdorff topological group provides us with a real Banach
algebra C(G,R) endowed with the sup-norm. In the category of Banach spaces
equipped with a suitable tensor product, C(G,R) is a symmetric Hopf-algebra.
Accordingly, its topological dual C(G,R)′ yields the Banach algebra and indeed
Banach Hopf algebra M(G,R) (see e.g. [163]). Its elements µ are the so called
Radon measures on G. The general source books of this orientation of measure and
probability theory are Bourbaki’s book [37] and, for the foundations of harmonic
analysis, the book of Hewitt and Ross [147]. For a measure theory in the context
of compact groups see also Appendix 5 entitled “Measures on Compact Groups”.

So let W be a weakly complete real vector space. Then W may be identified
with W ′

∗
(see Appendix 7, Theorem A7.9). For F ∈ C(G,W ) and µ ∈ M(G,R)

we obtain a unique element
∫
G
F dµ ∈W such that we have

(∗) (∀ω ∈W ′)
〈
ω,

∫
G

F dµ

〉
=

∫
g∈G
〈ω, F (g)〉dµ(g).

(See [37], Chap. III, §3, no 1, Définition 1.) Let supp(µ) denote the support of µ.
(See [37], Chap. III, §2, no 2, Définition 1.)

Lemma 3.97. Let T :W1 →W2 be a morphism of weakly complete vector spaces,
G a compact Hausdorff space, and µ a measure on G. If F ∈ C(G,W1), then
T (
∫
G
F dµ) =

∫
G

(T ◦ F )dµ.

Proof. See e.g. [37], Chap. III, §3, no 2, Proposition 2. ut

In [37] it is shown that the vector space M(G) = M(G,R) is also a complete
lattice with respect to a suitable natural partial order (see [37], Chap. III, §1, no 6)
so that each µ ∈ M(G) is uniquely of the form µ = µ+ − µ− for the two positive
measures µ+ = µ ∨ 0 and µ− = −µ ∨ 0. One defines |µ| = µ+ + µ−. If M+(G)
denotes the cone of all positive measures, we have M(G) = M+(G)−M+(G) ([37],
Chap. III, §1, no 5, Théorème 2). Moreover, ‖µ‖ = |µ|(1) =

∫
d|µ|. A measure

is called a probability measure if it is positive and µ(1) = 1. We write P (G)
for the set of all probability measures on G and we note M+(G) = R+·P (G)
where R+ = [0,∞[ ⊆ R. We denote by Mp(G) the vector space M(G,R) with
the topology of pointwise convergence and recall that P (G) has the structure
of a compact submonoid of Mp(G)×; some aspects are discussed in Appendix 5
(see Lemma A5.8ff.). On M+(G) the topologies of Mp(G) and the compact open
topology of M(G,R) agree ([37], Chap. III, §1, no 10, Proposition 18), Also M+

p (G)
is a locally compact convex pointed cone with the closed convex hull P (G) of the set
of point measures as basis. We also recall, that any positive linear form on C(G,R)
is in M+(G) (i.e., is continuous) (see [37], Chap. III, §1, no 5, Théorème 1).
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Now we allow this machinery and our structure theory of the weakly complete
group Hopf algebra R[G] of for a compact group G to come together in order to
further illuminate the structure of R[G].

So we let G be a compact group. By Corollary 3.62 we shall again assume that G
is a compact subgroup of R[G]−1, and indeed that G = G(R[G]) is the subgroup of
grouplike elements. The function incG:G→ R[G] is the inclusion map. By Theorem
3.76 there is an isomorphism FG:R[G]′ → R(G,R) where FG(ω)(g) = 〈ω, g〉.

Therefore, in the spirit of relation (∗), in the present situation let F = incG ∈
C(G,R[G])

(∀ω ∈ R[G]′)

〈
ω,

∫
G

Fdµ

〉
=

∫
g∈G
〈ω, g〉dµ(g) =

∫
g∈G

FG(ω)(g) dµ(g),

we are led to the following definition

Definition 3.98. Let G be a compact group. Then each µ ∈ M(G,R) gives rise
to an element

ρG(µ)
def
=

∫
G

incG dµ ∈ R[G]

such that for all ω ∈ R[G]′ we have

(∗∗) 〈ω, ρG(µ)〉 =

∫
g∈G
〈ω, g〉 dµ(g) =

∫
g∈G

FG(ω)(g) dµ(g) = µ(FG(ω)).

Therefore we have a morphism of vector spaces

ρG:M(G,R)→ R[G].

We let τR(G,R) denote the weakest topology making the functions µ 7→ µ(f) :
M(G,R) → R continuous for all f ∈ R(G,R), that is (M(G,R), τR(G,R)) is em-

bedded into the weakly complete space RR(G,R). ut

On any compact subspace of Mp(G) such as P (G) the topology τR(G,R) agrees

with the topology of Mp(G), embedded into RC(G,R).

Lemma 3.99. The morphism ρG is injective and has dense image.

Proof. We observe µ ∈ ker ρG if for all f ∈ R(G,R) we have
∫
g∈G f(g) dµ(g) = 0.

Since µ is continuous on C(G,R) in the norm topology and R(G,R) is dense in
C(G,R) by the Theorem of Peter and Weyl (see e.g. Theorem 3.7), it follows that
µ = 0. So ρG is injective.

If µ = δx is a measure with support {x} for some x ∈ G, then ρG(µ) =∫
G

incG dδx = x. Thus G ⊆ ρG(M(G)). Since R[G] is the closed linear span of G
by Corollary 3.61(i), it follows that ρG has a dense image. ut

We note that in some sense ρG is dual to the inclusion morphism of vector
spaces R(G,R)→ C(G,R).
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Returning to (**) in Definition 3.98 for a compact group G we observe

Lemma 3.100. The morphism

ρG: (M(G,R), τR(G,R))→ R[G]

is a topological embedding. ut

If µ is a probabililty measure, then the element ρG(µ) =
∫
G

incG dµ is con-
tained in the compact closed convex hull conv(G) ⊆ R[G]. Intuitively,

∫
G

incG dµ =∫
g∈G g dµ(g) ∈ conv(G) is the center of gravity of the “mass” distribution µ con-

tained in G ⊆ R[G]. In particular, if γ ∈ M(G,R) denotes normalized Haar mea-
sure on G, then

ρG(γ) =

∫
G

incG dγ =

∫
g∈G

g dg

is the center of gravity of G with respect to Haar measure.

We note that in the weakly complete vector space R[G] the closed convex hull

B(G)
def
= conv(G) ⊆ R[G]

is compact. (See e.g. Exercise E3.13.)

Lemma 3.101. The restriction ρG|P (G):P (G) → B(G) is an affine homeomor-
phism.

Proof. (i) Affinity is clear and injectivivity we know from Lemma 3.100.
(ii) Since P (G) is compact in the weak topology and ρG is injective and con-

tinuous, ρG|P (G) is a homeomorphism onto its image. But G ⊆ ρG(P (G)), and
B(G) is the closed convex hull of G in R[G]. So it follows that B(G) ⊆ ρG(P (G)).

ut

If κG:R[G]→ R is the coidentity of the Hopf algebra R[G] according to Lemma
3.64, then κG(G) = {1} and so κG(B(G)) = {1} as well. From GG ⊆ G we
deduce that conv(G) conv(G) ⊆ conv(G) and from there, by the continuity of the
multiplication in R[G], and from 1 ∈ G ⊆ B(G), it follows that B(G) is a compact
submonoid of R[G]× contained in the submonoid κ−1

G (1).

Then the cone R+[G]
def
= R+·B(G), due to the compactness of B(G), is a locally

compact submonoid as well. The set
κ−1
G (1) ∩ R+[G] = {x ∈ R+[G] : κG(x) = 1} = B(G)

is a compact basis of the cone R+[G].

Corollary 3.102. The function ρG|M+(G) : M+(G)→ R+[G] is an isomorphism
of convex cones and ρG(M(G)) = R+[G]− R+[G].
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Proof. Since M+(G) = R+·P (G) and R+[G] = R+·B(G), Lemma 3.101 shows
that ρG|M+(G) is an affine homeomorphism. Since M(G) = M+(G) −M+(G),
the corollary follows. ut

Among other things this means that every element of R+[G] − R+[G] is an
integral

∫
G

incG dµ in R[G] for some Radon measure µ ∈M(G) on G.

In order to summarize our findings we firstly list the required conventions:
Let G be a compact group viewed as a subgroup of the group R[G]−1 of units of
the weakly complete group Hopf algebra R[G]. Let B(G) = conv(G) denote the
closed convex hull of G in R[G] and define R+[G] = R+·B(G). Let κG:R[G]→ R
denote the co-identity and I = kerκG the augmentation ideal. We let incG:G →
R[G] denote the inclusion map and consider ρG:M(G,R) → R[G] with ρG(µ) =∫
G

incG dµ.

The Probability Theorem of a Compact Group G inside R[G]

Theorem 3.103. For a compact group G the following conclusions hold:
[a] B(G) ⊇ G is a compact submonoid of 1 + I ⊆ (R[G], ·) with Haar measure

γ of G as zero element.
[b] R+[G] is a locally compact pointed cone with basis B(G), and is a submonoid

of (R[G], ·).
[c] The function ρG: (M(G), τR(G,R))→ R[G] is an injective morphism of topo-

logical vector spaces with dense image R+[G] − R+[G]. It induces a homeo-
morphism onto its image.

[d] The function ρG|M+(G):M+
p (G) → R+[G] is an affine homeomorphism

from the locally compact convex cone of positive Radon measures on G onto
R+[G] ⊇ B(G) ⊇ G. ut

Remark 3.104. The Haar measure γ is mapped by ρG onto the center of gravity∫
G

incG dγ of G, γ ∈ B(G) ⊆ 1 + I. ut

It should be noted that ρG:M(G,R)→ R[G] is far from surjective if G is infi-
nite: Indeed, if we identify R[G] with R(G,R)∗ according to Corollary 3.76a, then
any element u ∈ R[G] representing a linear form on R(G,R) which is discontinuous
in the norm topology induced by C(G,R) fails to be an element of ρG(M(G)).

In Appendix 7 we indicate in Definition A7.22 through Theorem A7.31 some
features of a general theory of pro-Lie groups G, notably the focus on their Lie
algebras L(G) and exponential functions exp:L(G)→ G: see Proposition A7.24ff.
Using the terminology introduced there we know since Corollary 2.43, that every
compact group is a pro-Lie group, and we shall return to this aspect of compact
groups many times in this book. Here Theorem 3.103 shows that for a compact
group G, the weakly complete real group algebra R[G] does not only contain
G and its entire pro-Lie group theory encapsulated in the exponential function
expG:L(G) → G according to Theorem A3.102, but also its measure theory, no-
tably, that of the monoid of probability measures P (G) ∼= B(G).
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Recall the hyperplane ideal I = kerκG for the co-identity κG:R[G]→ R.

Corollary 3.105. Let G be a compact group, R[G] its real symmetric group Hopf

algebra, and γ ∈ R[G] its normalized Haar measure. Then J
def
= R·γ is a one-

dimensional ideal, and R[G] = I⊕J is the ideal direct sum of I and J . The vector
subspace J is a minimal nonzero ideal and is in fact, in the terminology of Theorem
3.82, the minimal ideal Rε0 [G] for the class ε0 of trivial simple G-modules ∼= R
with g·r = r·g = r for all r ∈ R, g ∈ G. Consequently, J ∼= R[G]/I ∼= R and
I ∼= R[G]/J .

Proof. In the multiplicative monoid B(G) ⊆ R[G], the idempotent element λ is a
zero of the monoid (I, ·), that is, λB(G) = B(G)λ = {λ}. (See Corollary A5.12.)
As a consequence, JB(G) = B(G)J ⊆ J . The vector space spanB(G) contains
spanG which is dense in R[G] by Corollary 3.61(i). Hence JR[G] = R[G]J ⊆ J
and so J is a two-sided ideal. Since κG(B(G)) = {1} by Theorem 3.103(a), we
know J 6⊆ I, and since I is a hyperplane, R[G] = I ⊕ J follows. The reference to
Theorem 3.82 is straightforward. ut

We note that R[G]/J is a weakly complete topological algebra containing a
copy of G and indeed of P (G) with Haar measure in the copy of P (G) being the
zero of the algebra. It is neither a group algebra nor a Hopf algebra in general as
the example of G = Z(3) shows.

While the group G(R[G]) ∼= G of grouplike elements of R[G] (and its closed
convex hull B(G)) is contained in the affine hyperplane 1 + I, in the light of
Theorem A3.102 it is appropriate to observe that in the circumstances of Corollary
3.105, the Lie algebra of primitive elements P(R[G]) ∼= L(G) is contained in I =
kerκGc.

Indeed the ground field R is itself a Hopf algebra with the natural isomorphism
cR:R → R ⊗ R satisfying cR(r) = r·(1 ⊗ 1) = r ⊗ 1 = 1 ⊗ r. Now the coidentity
κ of any coalgebra A is a morphism of coalgebras so that we have a commutative

diagram for A
def
= R[G]:

(†)
A

cA−−−−−−−−−→ A⊗A
κ

y yκ⊗κ
R cR−−−−−−−−−→ R⊗ R.

If a ∈ A is primitive, then c(a) = a⊗ 1 + 1⊗ a. The commutativity of (†) provides
κ(a) ⊗ 1 = α(κ(a))(κ ⊗ κ)(c(a)) = (κ ⊗ κ)(a ⊗ 1 + 1 ⊗ a) = κ(a) ⊗ 1 + 1 ⊗ κ(a),
yielding 1⊗κ(a) = 0, that is κ(a) = 0 which indeed means a ∈ kerκ = I. We note
that these matters are also compatible with Theorem A3.102 insofar as, trivially,
exp(I) ⊆ 1 + I.

While we have proved in this Part 3 the Tannaka-Hochschild duality theorem
for compact groups, the reader who was focussing on just that theorem may have
missed the much richer results that have been proved en route to that theorem.
Therefore an exposition of what has been achieved is given in the Postscript to
this chapter.
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Postscript

Part 1 deals with the classical Theorem of Peter and Weyl while Part 2 is less
conventional. We isolated the weakest feasible topological vector space condition
on G-modules (G-completeness) which, on the representation space of a compact
group, allows the averaging operator to function. In this book we introduced a
rather weak condition referring to the topological vector space structure only
which entails G-completeness, namely, feeble completeness. We exposed the av-
eraging operator and its role in identifying fixed points. In the next chapter we
generalize it and produce other projection operators which helps us to elucidate
the full structure of very general types of G-modules. The Big Peter–Weyl The-
orem not only says that the vector space of almost invariant vectors is dense in
a feebly complete module, but also gives a canonical direct sum decomposition.
We elaborate on this in the next chapter for the case of complex scalars. Through
most of this chapter we proved all statements simultaneously for the real and the
complex ground fields. In the last subsection, however, we explained, how real rep-
resentations are analyzed in terms of complex ones. The special discussion of the
representation theory of compact abelian groups in the last sections of the chapter
are used in Chapter 6.

While in Chapters 1 and 2 we already proved the Pontryagin duality of com-
pact abelian groups and discrete abelian groups, Chapter 7 of this book will be
devoted to the Pontryagin Duality Theorem for locally compact abelian groups.
That theorem tells us that if G is any locally compact abelian group, then the
group Ĝ of characters with the compact open topology is again a locally compact
abelian group called the dual group or character group of G. Then if one formŝ̂
G, the dual group of the dual group of G, one verifies that

̂̂
G is isomorphic as

a topological group to G. Two important observations follow: (i) in going from

G to its dual group Ĝ, no information is lost since the original group G can be
recreated from Ĝ by taking its dual group; (ii) the structure of the dual group Ĝ
is rather simple, being a locally compact abelian group. Indeed, in the important
case that G is a compact abelian group we saw already that the dual group Ĝ is a
discrete abelian group—a purely algebraic object and there is a wealth of known
information about abelian groups.

The Tannaka Duality Theorem for compact groups was proved by the Japanese
mathematician Tadao Tannaka in 1939 in [350]. The idea is to replace the charac-
ters in Pontryagin duality by finite-dimensional unitary representations. The task
then is to put an algebraic structure on the representations such that it is possible
to reconstruct the original compact group. Such was also the basis for Mark Grig-
orievich Krein’s approach in 1949 in [232]. In his 1965 book [155], the German-born
American mathematician Gerhard Paul Hochschild gave an approach to the Tan-
naka Duality Theorem which attached to every compact group a certain kind of
Hopf algebra and showed how the compact group could be reconstructed from the
Hopf algebra. However this approach of Hochschild has been largely overlooked as
the exposition was, to say the least, not to everyone’s taste.
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Our approach in the third part of the chapter chooses a different avenue. In the
classical period of (mostly finite) group theory it was a routine practice to generate
from a finite group G a group algebra over a field K: Consider the elements of G as
basis elements of a K-vector space, say, K[G], and extend the multiplication of G
to one on K[G] by linear extension in the obvious fashion. (Cf. [209], p. 105.) This
“linearisation process” served as a link from groups to their linear representations
over K. In this fashion any G-module, meaning every linear representation of G,
became automatically a K[G]-module and thus algebraists had a road from module
theory to representation theory and obtained direct access to homological algebra.

In the case of topological groups, such a simple path from groups to alge-
bras seemed not immediately available. However, the theory of operator algebras
allowed the creation of “group algebras of topological groups” in terms of Lp-
algebras, C∗-algebras or W ∗-algebras, i.e. von Neumann algebras. The literature
on such efforts is vast and the technical complications are considerable. An excel-
lent example is the essay of M. Takesaki in [348].

In Part 3 of Chapter 3 we propose a procedure for creating group algebras of
topological groups over K = R and K = C which, firstly, is still simple in the
sense that is is close to basic K-vector space theory, and, secondly, works perfectly
for compact groups G.But what is basic K-vector space theory? The first thing

one learns in a course on linear algebra is that a vector space V has a dual V ∗
def
=

Hom(V,K) ⊆ KV . One may not be taught at that time, that V ∗ inherits from KV a
topology called “the weak topology” which will make it isomorphic as a topological
vector space to a topological vector space KJ . But we call “weakly complete” any
topological vector space that is isomorphic to a topological vector space KJ . We
have a good reason to introduce them in Chapter 7 on topological abelian groups in
Definition 7.27, and for this purpose to collect all needed information in Appendix
7. It is that material that we mean by “basic K-vector space theory”. A weakly
complete unital K-algebra, accordingly, is a topological associative algebra with
identity whose underlying vector space structure is that of a weakly complete K-
vector space. In Appendix 7 we show that, somewhat surprisingly, the group of
its multiplicatively invertible elements, say U , is a pro-Lie group (see Appendix
7, Definition A7.22ff.) whose component factor group U/U0 is always compact
(indeed singleton if K = C!). (Cf. also [188] and [192].) In the present part we
show that for every compact group G there is a functorially associated weakly
complete unital algebra K[G] whose group of units contains G (more accurately: a
naturally isomorphic copy of G) in such a way that every morphism of topological
groups f :G → U into the group of units U of some weakly complete unital K-
algebra A extends uniquely to a morphism f ′:K[G] → A of weakly complete K-
algebras. We call K[G] the weakly complete group algebra of G. If G is a finite group,
then K[G] is precisely the “classical” group algebra. But there is much more than
meets the eye. The category W of all weakly complete K-vector spaces supports
an appropriate tensor product (W1,W2) 7→ W1 ⊗W W2 which has the known
universal property encoding bilinearity. As is explained in detail in Appendix 3,
this allows us to speak of weakly complete Hopf algebras. This is relevant since it
turns out that every weakly complete group algebra K[G] is automatically a weakly
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complete symmetric K-Hopf algebra. In Appendix 3 we learn, that symmetric Hopf
algebras have primitive and grouplike elements. In the case of R[G] for a compact
group G the grouplike elements are exactly the elements of G ⊆ R[G], and the
set of primitive elements is naturally isomorphic to the Lie-algebra L(G) of G
(see Definition 9.44 and Proposition 9.45ff.), so that the Lie algebra L(G) of any
compact group G can be canonically identified with a subspace of R[G]. Moreover,
in Theorem A7.41, we learn that every weakly complete unital algebra A has a
natural exponential function exp:A → U from A to its group U of units. In the
case of A = R[G] for a compact group G, it is this exponential function that
induces the exponential function expG:L(G) → G of the compact group G. The
main result is an accurate description of those weakly complete symmetric real
Hopf algebras R[G] for which the functor G 7→ R[G] implements an equivalence of
categories (see Definition A3.39).

One prominent feature of weakly complete K-vector spaces and, notably, that
of real weakly complete vector spaces, is their duality theory which we encounter
in Chapter 7: See in particular Theorem 7.30. But we have in Appendix 7 a more
comprehensive presentation: See Theorems A7.9 and A7.10. In the spirit of this
duality one notices that the dual K[G]′ of the weakly complete K-group Hopf
algebra K[G] of a compact group is a (purely algebraic) K-Hopf algebra, namely,
the Hopf algebra R(G,K) which we have encountered as mere algebra under the
name of algebra of representative functions earlier in this chapter and whose Hopf
algebra structure was discussed for K = R by Hochschild in [155] under the name
of reduced Hopf algebra. Our approach elucidates what “reduced” means. So, as
a corollary, our approach through weakly complete group algebras yields a very
lucid form of the classical Tannaka Duality Theorem [350] for compact groups. For
compact abelian groups G we illustrate and discuss very explicitly the isomorphism

C[G] ∼= CĜ. The derivation of the real group Hopf algebra R[G] from this set-up
is a bit more involved due to the occasionally intricate moving between real and
complex representation theory; we encountered that in the subsection of Chapter 3
with the headline “Complexification of Real Representation” (following Corollary
3.53).

Finally we show that for a compact group G, the real symmetric group Hopf
algebra R[G] supports indeed the entire probability measure theory of G which we
touch upon in Appendix 5. Indeed the multiplicative topological semigroup of R[G]
contains an isomorphic copy of the compact monoid P (G) of probability measurs
whose monoidal zero element is Haar measure γ. We see that R[G] contains not
only the group G itself, but its entire pro-Lie theory in terms of the exponential
function expG:L(G) → G, and now we know that it also contains the potentially
involved monoidal structure of its monoid P (G) of probability measures.

References for this Chapter—Additional Reading

[34], [35], [37], [38], [40], [62], [77], [78], [110], [155], [218], [219], [231], [173], [243],
[317], [331], [350].
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Chapter 4

Characters

This chapter will continue the line of thought of Chapter 3. Chapter 3 was for-
mulated without any reference to characters of (nonabelian) compact groups. As
a consequence, almost all results could be phrased simultaneously for the real and
the complex ground field. However, characters still constitute one of the most im-
portant set of tools of representation theory. Characters of an arbitrary compact
group G, as we shall see are certain representative functions from R(G,C) . In this
chapter, therefore, we restrict our attention to the complex ground field. In Chap-
ters 1 and 2 we defined a character f of a compact (or discrete) abelian group G to
be an element of Hom(G,T). The isomorphism e:T→ S1 given by e(r+Z) = e2πir

and the inclusion ι:S1 → C allows us to associate with f the function χf :G→ C
given by χf = ι ◦ e ◦ f ∈ R(G,C). We noted at the end of Part 1 of the previ-
ous chapter that, conversely, every irreducible finite dimensional representation π
of an abelian group gives a character f such that π(g)(x) = χf (g)·x. Under the
identification of f and χf the characters of compact abelian groups are subsumed
under that which we shall introduce here.

In Part 2 of this chapter we apply character theory in order to complete the
theory of general complex G-modules over the general class of locally convex vector
spaces which we began in Chapter 3. There we concluded the discourse with the
Big Peter–Weyl Theorem 3.51 that generalized the classical Peter–Weyl Theorem
3.7. We expanded the Big Peter–Weyl Theorem and proved a first generalisation
of the Fine Structure Theorem 3.28 for R(G,K) in the form of Corollaries 3.52 and
3.53. In this chapter we will, for the complex ground field, arrive at the definitive
generalisations of the Fine Structure Theorem 3.28 in the form of the Structure
Theorem ofG-Modules 4.22 and the Structure Theorem of HilbertG-Modules 4.23.

Prerequisites. The prerequisites for this chapter are the same as those for Chap-
ters 1 and 2. The second part demands the functional analytic background used
in the second portion of the preceding chapter. We shall freely use nets where
feasible, such as in the proof of Theorem 4.19.

Part 1: Characters of Finite Dimensional
Representations

In the preceding remarks and those at the end of Part 1 of Chapter 3, we noted that
the characters of an abelian group are linked with its irreducible representations.
We shall now generalize this linkage to arbitrary groups. In the spirit of our present
discourse, we carry this out for compact groups; the formalism as such does not
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depend on the compactness, but it does refer to finite dimensional representations,
and compactness secures an abundance of these. As ground field, we shall now
restrict our attention to C. This does not surprise us if we recall the abelian
theory. Thus we consider a compact group G and a finite dimensional G-module
E. This gives us the finite dimensional function space RE(G,C) whose structure
was completely elucidated in Part 1 of Chapter 3 (in contrast with the ground
field R for which we had partial information). The key was contained in diagram
(11) Proposition 3.20. Clearly, π shall denote the representation associated with
the module E.

Lemma 4.1. For a function χ ∈ RE(G,C) the following conditions are equivalent:
(i) χ = σE(1), where again 1 = idE.
(ii) χ = ρE(tr).

(iii) For any basis e1, . . . , en of E and the corresponding dual basis u1, . . . , un of
E′ the function χ equals

∑n
j=1 ΦE(uj ⊗ ej); that is, χ(g) =

∑n
j=1〈uj , gej〉.

(iv) χ = tr ◦π; that is, χ(g) = tr
(
π(g)

)
.

These conditions imply

(v) χ is constant on conjugacy classes of G and satisfies χ(1) = dimCE.

If E is simple then all these five conditions are equivalent.

Proof. By Remark 3.19 and in view of the remarks following Definition 3.11 of
the trace, the first four conditions are equivalent. In order to prove that these
conditions imply (v), we first observe that χ(1) = tr

(
π(1)

)
= tr(idE) = dimCE.

Further χ(g−1xg) = trπ(g)−1π(x)π(g) = trπ(x) = χ(x) for all x, g ∈ G. This
proves (v).

Finally assume that E is simple. Then σE is an isomorphism by Theorem 3.22.
Hence (v) implies that σ−1

E (χ) is a fixed element in Hom(E,E) under the action
by conjugation. By Lemma 2.30 this element then must be a scalar multiple of
idE . Consequently, χ is a scalar multiple of the σE(idE) = tr ◦π. Since by (v)
the functions χ and tr ◦π assume the same value on 1, equality follows. This
proves (iv). ut

We have seen, notably, that for simple modules E, any function in RE(G,C)
which is constant on conjugacy classes is a scalar multiple of χ = tr ◦π.

Definition 4.2. (i) If G is a compact group and E a finite dimensional G-module
over C, then the representative function χE = tr ◦πE ∈ RE(G,C) is called the
character of the module E and its associated representation πE . If E is simple,
then χE is also called a simple or an irreducible character.

(ii) We shall denote the linear span of all characters in R(G,C) by X(G) and,
accordingly, the linear span of all characters in RE(G,C) by XE(G). The elements
of XE(G) are called generalized characters and sometimes, by abuse of language,
also simply characters of E. ut
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Remark 4.3. Isomorphic modules have equal characters.

Proof. Exercise E4.1. ut

Exercise E4.1. Prove Remark 4.3. ut

This remark allows us to write for ε ∈ Ĝ, a class of isomorphic G-modules,
χε = χE for E ∈ ε. ut

Proposition 4.4. (i) If ε ∈ Ĝ, then Xε(G) = C·χε.
(ii) X(G) is the direct sum

∑
ε∈ĜC.χε of one-dimensional L2-orthogonal sub-

spaces. Its closure in L2(G,C) is
⊕

ε∈ĜC.χε.

(iii) If χ is a generalized character, then there is a unique family (nε)ε∈Ĝ ∈ CĜ
of complex numbers vanishing with finitely many exceptions, such that

χ =
∑
ε∈Ĝ

nε·χε.

If χ is a character, then all nε are nonnegative integers.
(iv) A representative function on G is constant on conjugacy classes of G if

and only if it is a generalized character.

Proof. (i) is just a summary of previous remarks and definitions.
(ii) In view of Xε(G) = X(G) ∩ Rε(G,C), the assertion is a consequence of

Theorem 3.28.
(iii) By (ii), the family {χε | ε ∈ Ĝ} is a basis of the vector space X(G),

hence every generalized character is a finite linear combination of simple characters
with unique coefficients. If χ = χE for a finite dimensional module E, we write
E = E1⊕· · ·⊕En with simple modules Ej according to Corollary 2.25 and conclude
from the definition of a character that χ = tr ◦πE =

∑n
j=1 tr ◦πEj =

∑n
j=1 χ[Ej ].

Thus χ is a finite sum of simple characters and the assertion follows.
(iv) Assume that f ∈ R(G,C) is constant on conjugacy classes. By Theorem

3.28 we may write f =
∑
ε∈Ĝ fε with fε ∈ Rε(G,C). Then all fε are constant on

conjugacy classes because fixed vectors under a module action are preserved under
equivariant projections. Now Lemma 3.29 shows that fε is a scalar multiple of χε.
Thus f is a linear combination of simple characters and is, therefore, a generalized
character. The converse is immediate from Lemma 3.29. ut

In view of our main results in Theorem 3.28, this conclusion was immediate.
The consequences are significant and far reaching even though they follow rather
quickly.

Corollary 4.5. Two finite dimensional G-modules for a compact group G are
equivalent if and only if their characters agree.
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Proof. In Remark 4.3 we observed that the isomorphy of the modules
implied equality of the characters. Conversely assume that E and F are two
finite dimensional modules and that χE = χF . By Proposition 4.4(iii), χE =∑
ε∈Ĝ nε(E)·χε with unique nonnegative numbers nε(E). The corresponding

representation for χF holds with nε(F ) = nε(E). If we represent E and F as
direct sums of simple modules, each simple module M occurs in E with multiplic-
ity n[M ](E), but in F with multiplicity n[M ](F ), and since these are equal, the
isomorphy of E and F follows. ut

We have remarked before thatR(G,C) is a “catalogue” for all simpleG-modules
over C, each listed as often as its dimension indicates. Now X(G) is a more econom-
ical and still very canonical “list.” But remember that this list does not contain
any submodules; it is a C-vector space with the characters as an L2-orthogonal
basis.

The following remarks require the knowledge of the averaging operator intro-
duced and discussed in 3.32ff.

Proposition 4.6. Let G be a compact group and denote with Cclass(G,C) the space
of all continuous complex class functions, that is functions constant on conjugacy
classes of G. Let G act on C(G,C) via (g·f)(x) = f(g−1xg). Then the averaging
operator P of this module is a continuous projection of C(G,C) onto Cclass(G,C).
The submodule R(G,C) is projected onto the space X(G) of generalized characters,
and

(1) X(G) = Cclass(G,C).

In other words, every continuous class function can be uniformly approximatedby
generalized characters.

Further, every continuous function f :G → C decomposes uniquely into a sum
f0 + f1 with a class function f0 and a function f1 ∈ C(G,C)eff with respect to the
action by conjugation of the argument.

Proof. The action (g, f) 7→ g·f :G × C(G,C) → C(G,C) is continuous by The-
orem 2.3. Hence P is continuous by Theorem 3.36(vi). From Theorem 3.36(iii)
it retracts C(G,C) onto its fixed point set, which is exactly Cclass(G,C). Since
R(G,C) is dense in C(G,C) by the Classical Peter and Weyl Theorem 3.7, we
know that PR(G,C) is dense in PC(G,C) = Cclass(G,C). Every submodule

Rε(G,C) with ε ∈ Ĝ is finite dimensional, hence closed, and thus is mapped
by P into itself. Also, PRε(G,C) is the fixed point space of Rε(G,C) and is,
therefore, the space of class functions in this module. Hence PRε(G,C) = C·χε =
Xε(G) by Lemma 4.1 and Proposition 4.4. From Theorem 3.28 it now follows that
PR(G,C) = P

(∑
ε∈ĜRε(G,C)

)
=
∑
ε∈Ĝ Xε(G) = X(G). Thus (6) follows. The

remainder is a consequence of Theorem 3.36(vi) (because the action is continuous
in view of Theorem 2.3!) ut
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We recall that G × G acts unitarily on C(G,C) via
(
(g, h)·f

)
(x) = f(g−1xh)

with respect to the scalar product (f1|f2) =
∫
G
f1(g)f2(g) dg (recall Example

2.12!). This action extends to L2(G,C). In particular, the action of Proposition
4.6 above extends unitarily.

Proposition 4.7. The averaging operator of the G-module L2(G,C) with the ac-
tion extending the action of G on C(G,C) in Proposition 4.6 retracts L2(G,C) =⊕

ε∈ĜRε(G;C) onto the Hilbert subspace
⊕

ε∈Ĝ Xε(G) in which X(G) is L2-dense.

Further, L2(G,C) is the orthogonal direct sum of X(G) and L2(G,C)eff with respect
to conjugation of the arguments.

Proof. Exercise E4.2. ut

Exercise E4.2. Prove Proposition 4.7. ut

Exercise E4.3. Assume that a compact group G acts on a compact space X (see
Definition 1.9). Then the orbit projection x 7→ Gx:X → X/G is a continuous open
map and X/G is a compact Hausdorff space. ut

If we denote the orbit equivalence relation of conjugation on G by conj, then
G/conj is a compact Hausdorff space, and C(G/conj,C) is canonically isomorphic
to Cclass(G,C).

Exercise E4.4. Let G be a finite group. Then a complex function on G is a class
function if and only if it is a generalized character. The dimension of the space
of class functions is the cardinality of G/conj, that is, the number of conjugacy
classes and this is equal to the number of characters and equal to the number of
elements in Ĝ. What is the dimension of R(G,C)? ut

Lemma 4.8. If E is a finite dimensional G-module and P its averaging operator,
then trP =

∫
χE = dimEfix.

Proof. trP = tr
∫
π(g) dg =

∫
tr
(
π(g)

)
dg =

∫
χE . But P is a projection by the

Splitting Fixed Points Theorem 3.36. Therefore, trP = dim imP = dimEfix by
that same theorem. ut

Proposition 4.9. (i) If χ is a real linear combination of characters, then the
relations χ̌(g) = χ(g−1) = χ(g) hold.

(ii) χE = χE′ for every finite dimensional module E.
(iii) Assume that E and F are two finite dimensional modules, and consider on

Hom(E,F ) the action given by g·ϕ = πF (g)ϕπE(g)−1. Then χHom(E,F ) = χFχE.
If HomG(E,F ) denotes the space of all equivariant operators E → F , then

dim HomG(E,F ) = (χF |χE) in L2(G,C).

In particular, the simple characters form an orthonormal system in L2(G,C).
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(iv) If χj, j = 1, 2 are two characters, then (χ1 ∗ χ2)(1) = (χ1|χ2).

(v) χε ∗ χε′(1) = δεε′ for ε, ε′ ∈ Ĝ.

Proof. (i) Let π denote a representation on E with χ = tr ◦π. We may assume
that π is unitary. Then π(g−1) = π(g)∗ and χ(g−1) = tr

(
π(g−1)

)
= tr

(
π(g)∗

)
=

tr
(
π(g)

)
. Thus χ(g−1) = χ(g) for every character, and then also for every gener-

alized real linear combination of characters.
(ii) By Lemma 3.6(iii), the matrix coefficients of the representation associated

with Ẽ are the complex conjugates of those of the representation associated with
E. By Lemma 3.6(i), the modules E′ and Ẽ are isomorphic. The assertion is now
clear from these facts.

(iii) By (ii) we have χE′⊗F = χFχE . On the other hand, E′ ⊗F ∼= Hom(E,F )
under the map θEF given by θEF (v⊗x)(y) = 〈v, y〉·x , and this action is equivariant
if on Hom(E,F ) we consider the action stated in the proposition. (These asser-
tions are simple generalisations of the set-up of Lemma 3.10 and the computation
following Remark 3.13.) Thus χHom(E,F ) = χFχE . Hence, in view of the preced-

ing Lemma 4.8, we find dim HomG(E,F ) = dim
(
Hom(E,F )

)
fix

=
∫
χHom(E,F ) =∫

χFχE = (χF |χE).

If both E and F are simple, then either they are nonisomorphic, in which case
all members of HomG(E,F ) are zero or else E and F are isomorphic, in which case
HomG(E,F ) ∼= HomG(E,E) = C· idE , whence (χF |χE) = dim HomG(E,F ) = 1.
Thus the set of simple characters is an orthonormal system in L2(G,C).

(iv) (χ1 ∗ χ2)(1) =
∫
χ1(g)χ2(g−1) dg =

∫
χ1(g)χ2(g) dg = (χ1|χ2).

(v) This is now a consequence of the preceding statements. ut

Theorem 4.10 (The Center Theorem). (i) A function f ∈ C(G,C) is in the
center of the convolution algebra C(G,C) if and only if it is a class function. In
particular, a function f ∈ C(G,C) is central if and only if it can be approximated
by generalized characters; that is the center of C(G,C) is X(G) = Cclass(G,C).

(ii) The elements eε
def
= χε(1)·χε = dimE·χE (with [E] = ε) are central idem-

potents, and

(2) eε ∗ f = f ∗ eε = f for all f ∈ Rε(G,C).

Further, eε ∗ C(G,C) = Rε(G,C).

Proof. (i) For f, f1 ∈ C(G,C) we have (f1 ∗ f)(h) =
∫
f1(g)f(g−1h) dg. The

transformation of variables g 7→ g′ = g−1h = (h−1g)−1 on the compact group G

does not change the integral; thus, noting g = g′
−1
h we have

∫
f1(g)f(hg−1) dg =∫

f(g′)f1(g′
−1
h) dg′ = (f ∗ f1)(h). Hence (f1 ∗ f − f ∗ f1)(h) =

∫
f1(g)

(
f(g−1h)−

f(hg−1)
)
dg =

(
f1 ∗ (hf − h−1

f)
)
(1). Now f is a class function if and only if

hf− h−1

f = 0 for all h ∈ G. If this is satisfied, then f1 ∗f = f ∗f1 for all f1 and f is
central. Conversely, if f is central, then 0 =

(
f1∗(hf− h−1

f)
)
(1) = (hf− h−1

f | (f1)̌ )
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for all f1 ∈ C(G,C) and h ∈ G. Since C(G,C) is dense in L2(G,C) in the L2-norm,

it follows that hf − h−1

f = 0 for all h ∈ G, and thus f is a class function.
The remainder of Part (i) now follows from Proposition 4.6.

(ii) Let ε ∈ Ĝ. By Part (i) above χε is central in C(G,C), hence so is χε ∗ χε,
whence χε ∗ χε is central and hence is a generalized character by (i) again. By
Proposition 3.48, χε ∗ χε ∈ Rε(G,C), whence χε ∗ χε = c·χε for a suitable c ∈ C
by Proposition 4.4(i). We evaluate at 1 and obtain on the right side c·χε(1). On
the left side, the preceding Proposition 4.9(iv) gives us (χε ∗χε)(1) = (χε|χε) = 1.
Hence c = χε(1)−1. If we set eε = χ(1)·χε then eε ∗ eε = eε, that is eε is a
central idempotent and Xε(G) = C·eε. Since Rε(G,C) is an ideal of C(G,C) by
Proposition 3.48, we have C(G,C) ∗ eε ⊆ Rε(G,C). If q:Rε(G,C) → Rε(G;C)
is given by q(f) = eε ∗ f , then q2 = q and q is equivariant with respect to all
G-module structures on Rε(G,C) by Proposition 3.45(iii). Hence q is equivariant
with respect to the actions of G on the left and the right of the argument. Thus,
if we let G × G act on Rε(G,C) via

(
(g, h)·f

)
(x) = f(g−1xh), then q is G × G-

equivariant. Let E denote a simple G-module with [E] = ε. Then Hom(E,E) is
a simple G × G-module by Lemma 3.15. In view of the equivariant isomorphism
σE : Hom(E,E) → Rε(G,C) of Theorem 3.22 we know that Rε(G,C) is a simple
G × G-module. By Schur’s Lemma 2.30, q = c· idRε(G,C) for some c ∈ C. Since
q2 = q we conclude c = 0 or c = 1, but since q(eε) = eε, we know that q
cannot vanish. Hence c = 1 and q is the identity. Thus (2) follows. But then also
Rε(G,C) = eε ∗Rε(G,C) ⊆ eε ∗ C(G,C). ut

The central idempotents form an idempotent commutative subsemigroup under
multiplication ∗. Such semigroups are also called semilattices (see e.g. [62, 196]).

One writes e ≤ f if e ∗ f = e. The minimal elements in this semilattice are
exactly the eε, ε ∈ Ĝ. Thus the minimal elements in the semilattice of central
idempotents classify the isomorphy classes of simple modules.

It is convenient for the following to have a name for the semilattice of all central
idempotents of the convolution algebra R(G,C).

Definition 4.11. The ∗-multiplicative semilattice of all central idempotents e =
e ∗ e of R(G,C) is denoted ZI(G). ut

Exercise E4.5. (i) Show that every central idempotent of (R(G,C), ∗) is a sum

of a finite set of elements eε, ε ∈ Ĝ.

(ii) Show that with two central idempotents e, f in R(G,C) also e ∨ f def
=

(e + f) − (e ∗ f), and e ⊕ f def
= (e ∨ f) − (e ∗ f) = (e + f) − 2(e ∗ f) are central

idempotents.
(iii) Show that (ZI(G),⊕, ∗) is a commutative ring in which every element e

satisfies e ⊕ e = 0 and is multiplicatively idempotent. Such a ring is also called a
Boolean ring. An identity exists in (ZI(G),⊕, ∗) if and only if G is finite.

(iv) Show that (ZI(G),∨, ∗) is a distributive lattice. (On ZI(G) define the
partial order ≤ by e ≤ f iff e ∗ f = e and show that e∨ f is the least upper bound
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of {e, f}, that e ∗ (f ∨ g) = (e ∗ f) ∨ (e ∗ g) and that e ∨ (f ∗ g) = (e ∨ f) ∗ (e ∨ g).

[Hint. Establish the claim for an arbitrary Boolean ring.]

(v) Show that e 7→ e:ZI(G)→ ZI(G) is an involutive automorphism of Boolean
rings which sends e[E] with a simple module E to e[E′].

[Hint. Use Proposition 4.9(iii).] ut

Notice that by the Center Theorem 4.10, all elements eε belong to ZI(G) as
does the constant function with value 0.

Exercise E4.6. Let us denote, for any set X, by F(X) the Boolean ring of all
finite subsets of F ⊆ X under the addition

(F1, F2) 7→ (F1 ∪ F2) \ (F1 ∩ F2)

and under the multiplication

(F1, F2) 7→ (F1 ∩ F2).

Show that the map which takes a finite subset {ε1, . . . , εn} ⊆ Ĝ to the element

eε1 + · · ·+ eεn ∈ ZI(G) is an isomorphism of Boolean rings F(Ĝ)→ ZI(G).

Thus ZI(G) is isomorphic to the Boolean ring F(Ĝ). ut

Part 2: The Structure Theorem of Efin

Armed with the arsenal of character theory we now attack the problem of de-
scribing G-modules in great generality. We consider a G-complete G-module for a
compact group G and recall that every feebly complete G-module E is G-complete.
We shall assume, in addition, that the action (g, x) 7→ gx:G×E → E is continuous.
We have seen in the Splitting Fixed Points Theorem 3.36 that E has a continu-
ous projection P :E → E, the averaging operator whose image is the fixed point
module Efix and whose kernel is the closed effective submodule EEff . Whenever
one has a continuous projection p:E → E, p2 = p, then E splits algebraically
and topologically into a direct sum of im p and ker p. We now have the tools for
a vast generalization of the averaging operator. For every element e ∈ ZI(G) we
can readily define a projection Pe as follows:

Definition 4.12. (i) For ε ∈ Ĝ let eε ∈ R(G,C) denote the central element
χε(1)·χε.

(ii) For each e ∈ ZI(G) we define Pe:E → E by

(3) Pe(x) = e ∗ x

and set E(e) = imPe. Accordingly, we have

Peε :E → E, Peε(x) = eε ∗ x = χε(1)·χε ∗ x.

We write Eε = E(eε) for ε ∈ Ĝ. ut
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Notice that the averaging operator P is Pe for the constant function e on G
with value 1. Indeed, e is the trace of the constant morphism π:G→ Gl(1,C) and
is, therefore, the central idempotent associated with the one-dimensional simple
module. By definition, Pe(x) =

∫
G

1·gx dg = P (x).

Proposition 4.13. Let E denote a G-complete G-module for a compact group G
with jointly continuous action. Then the following conclusions hold:

(i) Each Pe is equivariant and E(e) and kerPe are submodules.
(ii) For e, e′ ∈ ZI(G) we have

PePe′ = Pe∗e′ Pe + Pe′ − PePe′ = Pe∨e′ .

In particular, P 2
e = Pe and PePe′ = 0 if e ∗ e′ = 0.

(iii) For each e ∈ ZI(G), the map

(x, y) 7→ x+ y : E(e)× kerPe → E

is an isomorphism of G-modules whose inverse is given by

x 7→
(
Pe(x), (1− Pe)(x)

)
: E → E(e)× kerPe.

(iv) If ε1, . . . , εn is any finite collection of different elements from Ĝ and e =
eε1 + · · ·+ eεn , then the map

(x1, . . . , xn) 7→ x1 + · · ·+ xn : Eε1 × · · · × Eεn → E(e)

is an isomorphism of G-modules with inverse

x 7→
(
Peε1 (x), . . . , Peεn (x)

)
: E(e)→ Eε1 × · · · × Eεn .

Proof. (i) It follows from Proposition 3.45(iii) that Pe is equivariant, and thus
E(e) = imPe and kerPe are invariant.

(ii) Pe
(
Pe′(x)

)
= e ∗ (e′ ∗ x) = (e ∗ e′) ∗ x = Pe∗e′(x) by Lemma 3.43. Also

(Pe +Pe′ −PePe′)(x) = e ∗x+ e′ ∗x− e ∗ (e′ ∗x) = e+ e′ − (e ∗ e′) ∗x = Pe∨e′(x).
If e′ = e, then e′ ∗ e = e2 = e since e is idempotent with respect to convolution.

Thus P 2
e = Pe. Also P0(x) = 0 ∗ x = 0 by Lemma 3.41(i).

(iii) follows from Lemma 3.36(iv), (vi) in conjunction with (i) above which
contributes equivariance.

(iv) We define Φ:E(e)→ Eε1 × · · · × Eεn by Φ(x) =
(
Peε1 (x), . . . , Pεn (x)

)
for

x ∈ E(e), and Ψ:Eε1 × · · · ×Eεn → E(e) by Ψ(x1, . . . , xn) = x1 + · · ·+ xn. Then
ΦΨ(x1, . . . , xn) = Φ(x1 + · · · + xn) = Φ(x1) + · · · + Φ(xn) = x1 + · · · + xn since
Peεj (xk) = Peεj

(
Peεk (xk)

)
= δjk·xk. Since e = eε1 + · · · + eεn = eε1 ⊕ · · · ⊕ eεn ,

we have ΨΦ = (Peε1 + · · ·+Peεn )|E(e) = Pe|E(e) = idE(e) by (ii) above. Hence Ψ
and Φ are inverses of each other and (iv) is proved. ut

Lemma 4.14. Let F be a simple submodule of E and ε = [F ]. Then Peε |F = idF .
Moreover, ε′ 6= ε implies Peε′F = {0}.
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Proof. Because of eε′ ∗ eε = 0 and Peε′ ◦ Pε = Peε′ ∗ eε according to Proposi-

tion 4.13(ii), the second assertion is a consequence of the first. Now let x ∈ F and
u ∈ E′. Then f = (g 7→ 〈u, gx〉) is in R[F ](G,C) by Definition 3.16 in view of the
fact that u|F ∈ F ′. Then e[F ] ∗ f = f by (2) in the Center Theorem 4.10. Hence

〈u, x〉 = f(1) = (e[F ] ∗ f)(1)

=
∫
G
e[F ](g)〈u, g−1x〉 dg

= 〈u,
∫
G
e[F ](g)·g−1x dg〉

= 〈u,
∫
G
e[F ](g

−1)·gx dg〉
= 〈u, e[F ] ∗ x〉,

as e[F ](g) = e[F ](g
−1) by Proposition 4.9(i)). Thus 〈u, x〉 = 〈u, Pe[F ]

(x)〉 for all
u ∈ E′, and this shows x = Peε(x). ut

Note that this lemma justifies the use of e rather than that of e in the definition
of Pe.

If {Ej | j ∈ J} is a family of vector spaces, we shall denote the vector subspace
of
∏
j∈J Ej consisting of all J-tuples (xj)j∈J whose components vanish with finitely

many exceptions by
∑
j∈J Ej and call it the (exterior) direct sum of the Ej .

Proposition 4.15. In the circumstances of Proposition 4.13, we also have
(i) Eε ⊆ Efin for all ε ∈ Ĝ.

(ii) The function ι
def
= (x 7→

(
Peε(x)

)
ε∈Ĝ) : E →

∏
ε∈ĜEε induces an equivari-

ant continuous bijection from Efin onto the direct sum
∑
ε∈ĜEε.

Proof. (i) By Lemma 3.49 it follows that Eε = Peε(E) = e ∗ E ⊆ Efin.
(ii) The function ι is equivariant by Proposition 4.13(i). Let x ∈ Efin and

F = spanGx. Then F is a finite dimensional G-module. Thus F is a direct sum
of simple submodules by Theorem 2.10 and Corollary 2.25. Hence F = F1 ⊕ · · · ⊕
Fm such that there is a finite set {E1, . . . , Em} of pairwise nonisomorphic simple
modules and an m-tuple of natural numbers (n1, . . . , nm) with Fk ∼= Enkk . If we
set e = e[E1] ⊕ · · · ⊕ e[Em], we obtain that Pe|F = idF by Proposition 4.13(iv) and
Lemma 4.14. Now x ∈ F and so x = Pe(x). If x ∈ ker ι then 0 = Pe(x) = x for
all e ∈ ZI(G) in view of Proposition 4.13(iv). Thus ι is injective. It remains to
identify im ι. If x ∈ Efin and F is as above, then ι(x) ∈

∑
ε∈ĜEε, since ε 6= [Ek]

for k = 1, . . . ,m implies Peε(x) = PeεPe(x) = Peε∗e(x) = P0(x) = 0. Hence im ι ⊆∑
ε∈ĜEε. Conversely, let y = (xε)ε∈Ĝ ∈

∑
ε∈ĜEε. Since all of the xε vanish with

the exception of a finite subcollection {xε1 , . . . , xεn}, the element x =
∑n
k=1 xεk

satisfies

Pε(x) =

{
xk, if ε = εk, k = 1, . . . , n;
0, otherwise.

Hence ι(x) = (Pε(x))
ε∈Ĝ = y. The proof is complete. ut
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Now we need to understand the structure of Eε.

Definition 4.16. A G-module E is called cyclic if there is an element w ∈ E such
that E = spanGw. Each element w with this property is called a generator. ut

Clearly, every simple module is cyclic. The following example illustrates what
might happen.

Example 4.17. Let F be a complex simple G-module for a compact group G.
The nonzero submodules of F 2 which are different from {0} × F , and F 2 are the
graphs of equivariant maps f :F → F . All of these are isomorphic to F . However,
the simplicity of F implies that f = c· idF with c ∈ C. Hence these submodules

are all of the form Fc
def
= {(x, c·x) | x ∈ F}, c ∈ C. If dimF > 1 then we find a pair

{x, y} of linearly independent elements of F . Then (x, y) cannot be an element of
any Fc, nor of {0} × F . Hence the cyclic submodule generated by (x, y) is F 2. ut

However, there is some control over cyclic modules contained in some power of
a simple module, as the next observation shows.

Proposition 4.18. (i) Assume that x ∈ E satisfies Peεx = x 6= 0, i.e. x ∈ Eε,
with ε = [F ]. Then the cyclic G-submodule V ⊆ E generated by x is isomorphic
to F k for some natural number k ≤ dimF .

(ii) Conversely, each module F k with k ≤ dimF is cyclic.

In particular, every isotypic cyclic module V is finite dimensional and is, there-
fore, of the form V = spanG.x.

Proof. (i) We set M = RF ′(G,C) ∗ x. We know e[F ′] ∈ RF ′(G,C) from the
Center Theorem 4.10. Hence x = Peεx = e[F ] ∗ x = e[F ′] ∗ x ∈ RF ′(G,C) ∗ x = M .
Now we consider the linear map α:RF ′(G,C) → M , α(f) = f ∗ x. Note that
α(gf) = gf ∗x = g(f ∗x) = gα(f) by Proposition 3.45. Thus α is equivariant if we
consider on RF ′(G,C) the module structure (g, f) 7→ gf , gf(h) = f(g−1h). The
Fine Structure Theorem of R(G,C) 3.28 implies that RF ′(G,C), when considered
as a G-module under (g, f) 7→ gf , is the direct sum of n submodules isomorphic
to F ′′ = F with n = dimF . Thus the G-module M is a homomorphic image of
the G-Module Fn, hence is of the form Fm with m ≤ n by Lemma 3.24. Now let
V be the G-submodule of M generated by x. Then by Lemma 3.24 again, V is a
direct sum of k simple submodules isomorphic to F .

(ii) Since F k is an equivariant homomorphic image of F dimF ∼= RF (G,C) for
the action (g, f) 7→ gf (see 3.23), it suffices to observe that the latter module is
cyclic. But RF (G,C) ∼= Hom(E,E) with (g, ϕ) 7→ πF (g)ϕ by 3.22(i). Now 1 =
idF is a cyclic generator of Hom(F, F ), since G·1 = πF (G) and span

(
πF (G)

)
=

Hom(F, F ) by 3.21.
The last remark of the proposition follows from the fact that a finite dimensional

vector subspace in a (Hausdorff) topological vector space is always closed. ut

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



4. Characters 137

Next is some linear algebra of topological vector spaces! Let F denote a finite
dimensional vector space with a basis x1, . . . , xn and E an arbitrary topological
vector space, and consider on Hom(F,E) the topology of pointwise convergence.
Then the function Hom(F,E)→ En given by f 7→

(
f(x1), . . . , f(xn)

)
is an isomor-

phism of topological vector spaces whose inverse assigns to (y1, . . . , yn) ∈ En the
linear map

∑n
k=1 rk·xk 7→

∑n
k=1 rk·yk. This remark gives us a good visualisation

of the topological vector space Hom(F,E).
Also, we recall the isomorphism θ:F ′ ⊗ E → Hom(F,E) given by

θ(u⊗ x)(y) = 〈u, y〉·x. This endows F ′ ⊗ E with a unique vector space topology
such that θ is an isomorphism of topological vector spaces. If both F and E are
G-modules then F ′ has the structure of the adjoint module and the isomorphism
θ is equivariant if we consider on F ′ ⊗ E the action given by g(u ⊗ x) = gu ⊗ gx
and on Hom(F,E) the action given by g·f = πE(g) ◦ f ◦ πF (g)−1. If we denote
(F ′ ⊗ E)fix by F ′ ⊗G E then θ maps F ′ ⊗G E isomorphically onto HomG(F,E).

In view of the duality of finite dimensional vector spaces (and G-modules),
every finite dimensional vector space (or G-module) F is the dual of F ′. Thus
F ⊗E has a unique vector space topology making it (equivariantly) isomorphic to
Hom(F ′, E).

In this fashion, for a basis x1, . . . , xn of F , the function (y1, . . . , yn) 7→∑n
k=1 xk ⊗ yk:En → F ⊗ E is an isomorphism of topological vector spaces.

Exercise E4.7. Verify explicitly all claims in the preceding two paragraphs. ut

The topologies on Hom(F,E), and on F ′⊗E as well as on its vector subspaces
such as HomG(F,E) and F ′⊗GE shall be called the natural vector space topologies.
We shall now identify the structure of the submodules Eε explicitly. In the following
theorem and its proof we shall consider a simple G-module F and a G-module E.
Then the G-modules HomG(F,E)⊗F and (F ′⊗GE)⊗F are well-defined with their
natural vector space topologies and the tensor product actions obtained by letting
G act trivially on HomG(F,E) and F ′ ⊗G E, respectively. The following theorem
gives, among other things, a complete structure theorem for the components Eε.

Theorem 4.19. Let F denote a simple module in ε ∈ Ĝ and E a G-complete
G-module such that (g, x) 7→ gx:G × E → E is continuous. Then the function
p: HomG(F,E) ⊗ F → E, uniquely determined by p(f ⊗ x) = f(x), is an isomor-
phism of topological vector spaces and G-modules onto its image E[F ].

Let xk ∈ F , k = 1, . . . ,dimF be any basis and let uk ∈ F ′ denote the elements
of the dual basis of F ′. The function q:E → HomG(F,E)⊗ F given by

q(x) = dimF ·
dimF∑
k=1

PHom(F,E)

(
θ(uk ⊗ x)

)
⊗ xk

satisfies pq = Peε and qp = idHomG(F,E)⊗F . In particular, q|Eε inverts the core-
striction of p onto its image.
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Proof. The proof is a bit lengthy, and we proceed as follows: Firstly we note
that p is well-defined and equivariant. Secondly, we prove that im p = Eε, thirdly
we show that p is injective by showing that ker p = {0}. As the fourth step, we
establish the continuity of p, and as the fifth we show that q is the inverse of p.
The observation that q is continuous will then complete the proof.

Step 1. We note that p is well-defined in view of the universal property of the
tensor product since (f, x) 7→ f(x): HomG(F,E)×F → E is bilinear. Then equiv-
ariance of p is readily verified: p(g(f⊗x)) = p(f⊗gx) = f(gx) = gf(x) = gp(f⊗x)
in view of the equivariance of f .

Step 2. If f ∈ HomG(F,E), then the corestriction f :F → f(F ) of f maps F
equivariantly into f(F ). By simplicity of F we know that f(F ) = {0} or f(F ) ∼= F .
By Lemma 4.14 we note Peεf(x) = f(x) and thus f(x) ∈ Eε. Conversely, let
x ∈ Eε. Then Lemma 4.18 shows that x ∈ F1 ⊕ · · · ⊕ Fk ⊆ E with Fj ∼= F . Then
there exist elements f1, . . . , fk ∈ HomG(F,E) such that fj maps F isomorphically
onto Fj and elements xj ∈ Fj such that x = x1 + · · ·+ xk. Set yj = f−1

j (xj) ∈ F .
We now define the element z ∈ HomG(F,E) ⊗ F by z = f1 ⊗ y1 + · · · + fk ⊗ yk.
Then p(z) = f1(y1) + · · ·+ fk(yk) = x1 + · · ·+ xk = x. Hence im p = Eε.

Step 3. We take a z ∈ HomG(F,E)⊗F and assume p(z) = 0. There exist finitely
many elements f1, . . . , fn ∈ HomG(F,E) such that

z ∈ (f1 ⊗ F )⊕ · · · ⊕ (fn ⊗ F ).

If we set E1 =
∑n
j=1 im fj , and if we identify Hom(F,E1) with a submodule of

Hom(F,E) via the map induced by the inclusion E1 → E, then z ∈ HomG(F,E1)⊗
F . For our purpose it is, therefore, no loss of generality to assume that dimE is
finite and that Peε = idE . Now E is a finite direct sum of simple submodules, all of
which have to be isomorphic to F by Lemma 4.18. Thus E ∼= Fm for some m. But
Hom(F, Fm) ∼= Hom(F, F )m and thus HomG(F,E) ∼= HomG(F, F )m = Km, that
is dim HomG(F,E) = m. Hence dim

(
HomG(F,E)⊗ F

)
= m· dimF = dimFm =

dimE. Since p is surjective by Step 2, p is an isomorphism in our case and p(z) = 0
indeed implies z = 0.

Step 4. We show that p: HomG(F,E) ⊗ F → Eε is continuous. Firstly, if f ∈
HomG(F,E) and f 6= 0, then f(F ) ∼= F and hence f(F ) ⊆ Eε in view of Lemma
4.14. Hence the inclusion Eε → E induces an inclusion.

Now we recall that the simple module F is span(Gx) for any non-zero element
x ∈ F . Hence there are elements g1 = 1, g2, . . . , gn ∈ G such that g1x, . . . , gnx is
a basis of F . Then

(f1, . . . , fn) 7→ f1 ⊗ g1x+ · · ·+ fn ⊗ gnx : HomG(F,Eε)
n → HomG(F,Eε)⊗ F

is an isomorphism of vector spaces, and we have to observe that the map

α =
(
(f1, . . . , fn) 7→ f1(g1x) + · · ·+ fn(gnx)

)
: HomG(F,Eε)

n → Eε

is continuous. Notice f1(g1x)+ · · ·+fn(gnx) = g1f1(x)+ · · ·+gnfn(x) since the fj ,
j = 1, . . . , n are equivariant. Now a net (f (j))j∈J of elements f (j) ∈ HomG(F,E)
converges to f ∈ HomG(F,E) if and only if f (j)(gx) = gf (j)(x) converges to
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gf(x) if and only if limj∈J f
(j)(x) = f(x). Consequently, limj∈J(f

(j)
1 , . . . , f

(j)
n ) =

(f1, . . . , fn) in HomG(F,E) if and only if

(4) lim
j∈J

f
(j)
k (x) = fk(x) for k = 1, . . . , n.

Clearly (4) implies

(5) lim
j∈J

α(f
(j)
1 , . . . , f (j)

n ) = g1f1(x) + · · ·+ gnfn(x) = α
(

lim
j∈J

(f
(j)
1 , . . . , f (j)

n )
)
.

Thus α is continuous.
At this point we know that p a continuous equivariant algebraic isomorphism

of vector spaces onto Eε. It remains to show that its inverse is continuous. This
requires the explicit identification of a left inverse q of p.

Step 5. Let xk ∈ F and uk ∈ F ′ the elements of dual bases and q:E →
HomG(F,E)⊗F as in the statement of the theorem. Since (g, x) 7→ gx:G×E → E
is continuous, then the action G × (F ′ ⊗ E) → F ′ ⊗ E given by (g, u ⊗ x) 7→
gu ⊗ gx is continuous, too, whence PF ′⊗E :F ′ ⊗ E → F ′ ⊗ E is continuous by
Theorem 3.36(vi). For the remainder of the proof, we shall identify F ′ ⊗ E and
Hom(F,E) under the isomorphism θ. Then F ′ ⊗G E = imP with P = PF ′⊗E is

identified with HomG(F,E). Now q(x) = dimF ·
∑dimF
k=1 P (uk⊗x)⊗xk. This map

is continuous by the natural topologies on the tensor products and by the continu-
ity of P . Since we know that p is bijective, in order to complete the proof, it now
suffices to show that pq(x) = x for all x ∈ E. Note that with our identification,
p: (F ′ ⊗G E)⊗ F → E is given by

p
(
(v1 ⊗ z1 + · · ·+ vm ⊗ zm)⊗ y

)
= 〈v1, y〉·z1 + · · ·+ 〈vm, y〉·zm.

Now let x ∈ E. First let us deduce from the definition of dual bases that

dimF∑
k=1

〈guk, xk〉 =

dimF∑
k=1

〈uk, πF (g−1)xk〉

= trπF (g−1) = χF (g−1) = χε(g)

in view of Proposition 4.9(i). Now we compute

pq(x) = p
(

dimF ·
dimF∑
k=1

P (uk ⊗ x)⊗ xk
)

= p
(

dimF ·
dimF∑
k=1

∫
G

(guk ⊗ gx) dg ⊗ xk
)

= dimF ·
∫
G

∑dimF
k=1 〈guk, xk〉gx dg

= dimF ·
∫
χε(g)·gx dg = eε ∗ x = Peεx.

This shows pq = Peε and thus pqp = Peεp = p since im p = Eε = Peε(E) and
P 2
eε = Peε . But p is injective after Step 3. Hence qp = id(F ′⊗GE)⊗F . The proof is

complete. ut
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The G-modules Eε are characterized by various properties, as we shall show
now.

Proposition 4.20. For a G-complete G-module E and a simple G-module F , the
following statements are equivalent:

(1) Every simple submodule S of E is isomorphic to F .
(2) All equivariant homomorphisms E → S into a simple module are zero unless

S is isomorphic to F .
(3) If x ∈ E and u ∈ E′, then g 7→ 〈u, gx〉 is in RF (G,C).
(4) Pe[F ]

= idE.
(5) The map HomG(F,E)⊗F → E sending f ⊗ x to f(x) is an isomorphism of

G-modules.

Proof. (1)⇒(2). Assume that S is simple and not isomorphic to F . Let x ∈ Efin and
ϕ:E → S an equivariant morphism. We claim that ϕ(x) = 0. If this is established,
then ϕ(Efin) = {0} and since, by the Big Peter and Weyl Theorem 3.51, Efin

is dense in E, we obtain ϕ(E) = {0} as asserted. Now x is contained in a finite
dimensional submodule M . But M is a direct sum of simple submodules Mj , every
one of which is isomorphic to F by (1). Thus f(Mj) = {0} since Mj

∼= F 6∼= S.
Hence f(x) ∈ f(M) = {0}, as claimed.

(2)⇒(3). Fix an arbitrary functional u ∈ E′ and consider the map ϕ:E →
R(G,C) given by ϕ(x)(g) = 〈u, gx〉. Then ϕ(gx)(h) = 〈u, hgx〉 =

(
gϕ(x)

)
(h),

whence ϕ is equivariant when R(G,C) is considered as a G-module with the action
(g, f) 7→ gf . For every simple module S, the submodule RS(G,C) is isomorphic
to SdimS by 3.28, the Fine Structure Theorem of R(G,C). If p is any projection
from RS(G,C) onto a direct summand S, then p ◦ ϕ = 0 if S 6∼= F . Since the p
separate the points of RS(G,C), the map ϕ followed by the projection of R(G,C)
into RS(G,C) is zero. Hence imϕ ⊆ RF (G,C) by the Fine Structure Theorem
3.28. And this shows that g 7→ 〈u, gx〉 is in RF (G,C).

(3)⇒(4). Let u ∈ E′ be arbitrary. Then f = (g 7→ 〈u, gx〉) is in RF (G,C) by
(4). On the other hand,

〈u, Pe[F ]
x〉 =

∫
G
e[F ](h)〈u, hx〉 dh

=
∫
G
e[F ](h

−1)f(h) dh = (e[F ] ∗ f)(1) = f(1)

= 〈u, x〉

by the Center Theorem 4.10. Since u was arbitrary, we conclude Pe[F ]
x = x.

(4)⇒(5). This follows from Theorem 4.19.

(5)⇒(1). It suffices to show that a simple submodule of a G-module of the
form V ⊗ F with a trivial G-module V is isomorphic to F . Let S denote a simple
submodule of V ⊗ F . Assume that 0 6= x ∈ S. Then x = v1 ⊗ x1 + · · ·+ vm ⊗ xm,
whence x is contained in the submodule M = v1 ⊗ F + · · · + vm ⊗ F . Since
0 6= x ∈ M ∩ S and S is simple, S ⊆ M . By Lemma 4.14 we get Pe[F ]

|M = idM .
If we had S 6∼= F , then, also by Lemma 4.14, we would have S = Pe[F ]

(S) = {0},
a contradiction. Hence S ∼= F , as asserted. ut
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Definition 4.21. (i) A G-module E satisfying the equivalent conditions of Propo-
sition 4.20 is called an isotypic G-module of type [F ]. If dimE is finite, then
dim HomG(F,E) is called the multiplicity of E.

(ii) The direct summands Eε = imPeε of Efin according to Propositions 4.13
and 4.15 are called the isotypic components of E. ut

We summarize our results in the following basic result on the general represen-
tation theory of compact groups:

The Structure Theorem of G-Modules

Theorem 4.22. Let E denote a G-complete G-module with jointly continuous
action (g, x) 7→ gx. Then Efin is algebraically the direct sum of the isotypic com-

ponents Eε, ε ∈ Ĝ of E. Each one of these is the image of the continuous pro-
jection Peε given by Peεx = χε(1)·χε ∗ x, and therefore is algebraically and topo-
logically a direct summand of E. Each isotypic component E[F ] is isomorphic to
HomG(F,E)⊗F as a topological vector space and G-module under the map given
by f ⊗ x 7→ f(x). ut

Together with the Big Peter and Weyl Theorem 3.51, this theorem completely
describes the general representation theory of compact groups on topological vec-
tor spaces permitting integration; we have seen in the paragraphs surrounding
Proposition 3.30 that a weak completeness condition is sufficient. While the Big
Peter and Weyl Theorem generalizes the Classical Peter and Weyl Theorem 3.7,
the Structure Theorem for G-Modules 4.22 above generalizes the Fine Structure
Theorem 3.28. The dense vector space of almost invariant vectors is algebraically
decomposed into a direct sum of topological vector spaces

(i) each of which is an algebraic and topological direct summand of E for which
we have an explicit projection,

(ii) each of which is an isotypic G- module of precisely known structure V ⊗ F ,
with a simple module F , and with a multiplicity counting topological vector
space and trivial module V , whose structure depends in an explicit fashion
of that of the given vector space E.

In this sense, everything we wish to know is essentially reduced to knowing the
isotypic components and thus to (a) the structure of topological vector spaces, (b)
the G-module structure of all simple modules. The word “essentially” indicates
that we do not exactly know in which way Efin is a direct sum in the topological
sense (cf. Proposition 4.14), and exactly how Efin is to be completed in order
to obtain E. But all of these problems are already present in the module E =
C(G,C) and its submodule of representative functions R(G,C) , and indeed, more
elementarily, we encounter the same deficiency in the basic theory of Fourier series,
that is the theory of G = R/Z where R(R/Z,C) is the space of trigonometric
polynomials. One shows that every periodic continuous complex valued function
on R can be uniformly approximated by trigonometric polynomials, but there is
no Fourier series expansion for this topology. The appropriate topology for the
approximation of a function by its Fourier series is L2.
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Indeed, our general results contained in Theorems 3.51 and 4.22 can be im-
proved if E is a Hilbert space.

Theorem 4.23 (The Structure Theorem of Hilbert G-Modules). Let E be a Hilbert
G-module (cf. Definition 2.11). Then all operators Pe with e ∈ ZI(G) are orthog-
onal projections, and E is a Hilbert space direct sum

E =
⊕
ε∈Ĝ

Eε.

Each isotypic component is a Hilbert space direct sum

Eε =
⊕
j∈J(ε)

Fj , Fj ∈ ε for all j ∈ J(ε).

Proof. Firstly, let e ∈ ZI(G). We want to show that P ∗e = Pe, that is (Pex|y) =
(x|Pey). Observing Proposition 4.9(i), π(g)∗ = π(g−1), and

∫
f =

∫
f̌ , we obtain

(Pex|y) = (

∫
G

e(g−1)·π(g)x | y) =

∫
G

e(g−1)(π(g)x|y) dg

=

∫
G

e(g)(x | π(g−1y) dg =

∫
G

(x | e(g)·π(g−1y) dg

=

∫
G

(x | e(g−1)·π(g)y) dg = (x | Pey),

as asserted.
Thus Proposition 4.13(ii) implies that Eε′ ⊆ kerPeε for ε′ 6= ε, and thus the

sum Efin =
∑
ε∈ĜEε is extended over mutually orthogonal closed subspaces. Its

closure E, therefore, is the orthogonal Hilbert space sum
⊕

ε∈ĜEε. This proves
the first assertion.

Now let Eε denote the isotypic component of type ε. By Corollary 2.25, Eε is
the Hilbert space direct sum

⊕
j∈J(ε) Fj of a family of simple submodules Fj . By

Proposition 4.18, it follows that Fj ∈ ε. ut

We note that the isotypic decomposition is unique and has canonically deter-
mined summands. On the other side, the sum decomposition

Eε =
⊕
j∈J(ε)

Fj , Fj ∈ ε

is not unique. In Corollary 2.25 one had to invoke the Axiom of Choice. The only
isomorphy invariant for Eε is the multiplicity card J(ε) which is, in essence, a
Hilbert space dimension. In the general theory we have no such cardinal available.
We therefore had to code multiplicity in terms of a locally convex topological
vector space which is canonically attached to each isotypic component, namely
the space HomG(F,E) of the Structure Theorem 4.22. When specialized to Hilbert
modules, this vector space is a Hilbert space whose Hilbert space dimension is the
multiplicity mentioned above.
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A particular class of locally convex complete vector spaces is that of so-called
weakly complete vector spaces. We shall discuss these vector spaces in greater
detail in Appendix 7. Suffice it here to understand that a real vector space is called
weakly complete iff it is algebraically and topologically isomorphic to a product RI
of a family of copies of the reals.

Exercise E4.8. Prove the following application of the Structure Theorem of G-
Modules 4.22.

Let V be a locally convex weakly complete vector space isomorphic to RI and
an effective G-module for a compact group G. In particular, the associated repre-
sentation π:G→ AutV is injective. Assume that Vfin = V . Then

(i) V is a finite direct sum (and product) V1 ⊕ · · · ⊕ Vk of isotypic components.
(ii) G is a compact Lie group.

In particular, if G is profinite, then it is finite.

[Hint. (i) By Theorem 4.22, Vfin is a direct sum of its isotypic components

Vε, where ε ∈ Ĝ is an equivalence class of irreducible representations of G. Each
Vε is a module retract of V under a canonical projection Pε and is therefore
complete, and thus as a closed vector subspace of a weakly complete vector space

is weakly complete. The universal property of the product W
def
=
∏
ε∈Ĝ Vε gives

us an equivariant G-module morphism ϕ:V → W of weakly complete G-modules
such that prε ◦ϕ = Pε. Since morphisms of weakly complete vector spaces have a
closed image (see [188], Theorem A2.12(b)) and∑

ε∈Ĝ

Vε = {(vε)ε∈Ĝ ∈W : vε = 0 for all but finitely many ε ∈ Ĝ} ⊆W

is in the image of ϕ and is dense in W we know that ϕ is surjective. Now V = Vfin

and ϕ(Vfin) ⊆Wfin whence Wfin = W . It is readily verified that
Wε = {(vη)

η∈Ĝ ∈W : vη = 0 for η 6= ε}.
Therefore Wfin =

∑
ε∈Ĝ Vε, and thus∑

ε∈Ĝ

Vε = W =
∏
ε∈Ĝ

Vε.

This equation, however, implies that the set S
def
= {ε ∈ Ĝ : Vε 6= {0}} is finite. List

the members of {Vε : ε ∈ S} as V1, . . . , Vk. Then assertion (i) follows.

(ii) For a simple G-module F denote by [F ] ∈ Ĝ its equivalence class. Let Fj ,
j = 1, . . . , k be simple G-modules such that S = {[Fj ] : j = 1, . . . , k}, Vj = V[Fj ]. A
simple G-module is finite-dimensional by Theorem 3.51, so the underlying vector
space of each Fj is finite dimensional. By Weyl’s Trick 2.10 the G-module structure
of Fj is given by an orthogonal representation πj :G→ O(Fj), j = 1, . . . , k defined
by πj(g)(v) = g·v. By Theorem 4.22 again, Vj ∼= HomG(Fj , V )⊗Fj , where g ∈ G,
f ∈ Hom(Fj , V ), and v ∈ V imply g·(f ⊗ v) = f ⊗ g·v. Since V is an effective

(or faithful) G-module, (i) implies
⋂k
j=1 kerπj = {1}. Since O(Fj) is a compact

Lie group, so L
def
= O(F1) × · · ·×O(Fk) is a compact Lie group as well. Thus the

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



144 4. Characters

compact group G allows an injective representation G → L into a compact Lie
group and is therefore a compact Lie group.

Since as profinite compact Lie group is finite, the assertion follows.] ut

Cyclic Modules

The structure theorems yield for us a classification of cyclic modules.

Theorem 4.24. Assume that E is a complex Hilbert G-module for a compact
group G and that E =

⊕
ε∈ĜEε is its isotypic decomposition. Then the following

assertions are equivalent:
(i) E is cyclic.

(ii) There is a countable subset C ⊆ Ĝ such that E =
⊕

ε∈C Eε and Eε ∼= Fm(ε),
[F ] = ε and 1 ≤ m(ε) ≤ dimF .

(iii) There is a countable subset C ⊆ Ĝ such that E =
⊕

ε∈C Eε and Eε is cyclic.

Proof. (i) implies (ii) Assume that E is cyclic; i.e. E = span(G·w). The isotypic
component Eε is the image of E under the continuous equivariant projection Peε
according to the Structure Theorem 4.23. Hence it is cyclic and isotypic, and
therefore, by 4.18, is of the form Eε = spanG·wε ∼= Fm(ε) with [F ] = ε, 0 ≤
m(ε) ≤ dimF and with wε = Peε(w). Now w is the Hilbert space orthogonal
sum w =

⊕
ε∈Ĝ wε. Hence the family (‖wε‖2)

ε∈Ĝ is square summable (i.e. is in

`2(Ĝ)), and thus the set C def
= {ε ∈ Ĝ | wε 6= 0} is countable. Then E has the form

explained in (ii).
(ii)⇒(iii) is a trivial implication.

(iii)⇒(i) Assume Eε = spanGwε for all ε ∈ C in a countable subset C ⊆ Ĝ
and that E =

⊕
ε∈C Eε. We may assume that each wε has norm 1. Let {ε1, ε2, . . .}

be an enumeration of C and write wn for wεn . The orthogonal sum w =
∑∞
n=1

1
nwn

is a member of E =
⊕

n∈NEεn since ( 1
n )n∈N is square summable. Define F =

spanG·w. then Fε = PeεF . Since Peη is a continuous retraction, its application
commutes with the formation of the closure. Hence by the equivariance of Peη we
compute

Fη = Peη spanG·w = spanG·Peηw = spanG·
(

1
n ·wη

)
= Eη.

Then from 4.23 it follows that F = E which showsthat E is cyclic. ut

From Proposition 4.18 we have a good idea what isotypic cyclic modules of
type [F ] look like: their dimension is bounded by (dimF )2.

Certain portions of Theorem 4.24 work for any feebly complete G-module. The
isotypic components of a cyclic module are always cyclic and are as specified in
4.18. If a family (vε)ε∈Ĝ consists of elements satisfying spanG·vε = Eε and is

summable with a sum v, then spanG·v =
⊕

ε∈ĜEε.
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Corollary 4.25. Let G be a connected compact abelian group and E a Hilbert
G-module over K = R or K = C such that each isotypic component is simple.
Assume that at most countable many isotopic components are nonzero. Then E is
cyclic.

Moreover, if E has only a finite number of nonzero isotypic components, then
the set of generators is an open dense subset of E.

Proof. If K = C then the assertion is an immediate consequence of the preceding
Theorem 4.24. So assume now that K = R. The module E = Eeff is of the form⊕

ε∈ĜR\{1}
Eε where the isotypic component Eε is simple by hypothesis. Since G is

connected, it is two-dimensional (3.55(iii)). By Proposition 3.57 E has a complex
G-module structure such that Eε = Eχε is a complex one-dimensional isotypic
component determined by the character χε according to 3.57. Hence by 4.24, E is
a cyclic complex G-module generated by an element w ∈ E.

Let F = spanRGw and ε ∈ ĜR \{1}. Abbreviate χε by ρ. Recall the projection

P = Peρ onto the isotypic component Eρ = Eε. Set wε
def
= P (w) ∈ Eε ∩ F . Since

P is a continuous retraction we have P (F ) = P spanRGw = spanGP (w). If the
module Eε is {0}, then it is trivially cyclic. If not then wε 6= 0 since Eε = P (E) is a
complex cyclic module with generator P (w). Since the real G-module Eε is simple
by hypothesis, Eε = spanRGwε = P (F ). Thus Eε ⊆ F and therefore F = E.
Hence E is cyclic.

Now assume that E has only a finite number of nonzero isotypic components
E1, . . . , En. Every nonzero element of Ej is a generator. Let Pj denote the equiv-
ariant projection onto Ej . Then P−1

1 (0)∪ · · · ∪P−1
n (0) is the set of nongenerators,

and it is clearly closed and nowhere dense. ut

Postscript

The theory of characters is classical. However Part 2 of this chapter culminating in
a fairly complete structure theory of G-modules such as is summarized in Theorem
4.22 is not. While the Hilbert space version 4.23 is an essential part of the common
textbook literature of the subject, the developments leading up to 4.22 are not in
the books and may, for all we know, be published here for the first time. They are
taken from [169].

The description of the structure of the isotypic components of a feebly complete
G-module E as described in 4.22 is as satisfactory as one might desire. It extends
their characterisation from the case of finite dimensional modules verbatim. The
proof in the general situation, however, required protracted arguments. Also, the
fact that each isotypic component is a closed equivariant linear retract of E is
gratifying.

On the other hand, the result that the subspace Efin of almost invariant ele-
ments is algebraically the direct sum of the isotypic components is probably the
best one can expect in terms of a global decomposition in view of the generality we
have allowed for the locally convex vector space E. Theorem 4.23, the Structure
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Theorem of Hilbert G-Modules, illustrates what one does obtain if E is as special
as a Hilbert space.

The material on cyclic submodules in the last subsection will be used in Chap-
ter 6.

References for this Chapter—Additional Reading

[62], [169], [196].
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Chapter 5

Linear Lie Groups

We recall from Definition 2.41 that a compact group is called a compact Lie group
if it has no small subgroups. Corollary 2.40 provided a number of equivalent con-
ditions for a compact group to be a Lie group. For instance, every compact group
of matrices is a compact Lie group, and every compact Lie group is isomorphic
to a compact matrix group. We shall investigate the fundamentals of Lie group
theory by paying particular attention to that aspect of Corollary 2.40 which says
that for a compact group G the following two conditions are equivalent:

(1) G is a compact Lie group.
(2) G is isomorphic as a topological group to a compact subgroup of the multi-

plicative group of some Banach algebra A.

Typically, for the standard compact matrix groups such as SO(n) or U(n) we may
take A = Mn(R) or A = Mn(C), the algebra of real or complex n × n-matrices.
Therefore, we shall concentrate on Lie groups which are closed subgroups of the
multiplicative group of some Banach algebra.

This focus demands that we now learn some basic facts about Banach algebras
which generalize familiar aspects of elementary real and complex analysis. Isolated
aspects were anticipated in Proposition 1.4 and Lemma 2.38.

Prerequisites. We require an acquaintance with basic Banach algebra theory and
elementary real and complex analysis, notably manipulation of power series. Often
we shall apply the inverse function theorem and use the Picard–Lindelöf existence
and uniqueness theorem for ordinary differential equations. We make reference to
the spectral theory of elements in a Banach algebra, but for the reader interested
in finite dimensional situations only, the theory of eigenvalues of endomorphisms
of finite dimensional complex vector spaces suffices. In the last section (for 5.70)
we shall use a partition of unity subordinate to an open cover in a paracompact
space for which we shall give references.

Preliminaries

We let A be a Banach algebra with identity 1 over K = R or K = C. The set
of invertible elements or units is again called A−1 (cf. Proposition 1.4). We recall
some elementary facts from analysis.

A family {aj | j ∈ J} of elements of A is said to be absolutely summable if
for each ε > 0 there is a finite set F ⊆ J such that for every finite set G ⊆ J
with G ∩ F = Ø we have

∑
j∈G ‖aj‖ < ε. We say that an element a is the sum

of the family if {aj | j ∈ J} if for each ε > 0 there is a finite subset F of J such
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that for all finite subsets G of J with F ⊆ G we have ‖a −
∑
j∈G aj‖ < ε. Every

absolutely summable family has a unique sum (see Exercise E5.1(i) below), and
we write a =

∑
j∈J aj . We shall deal always with countable index sets.

If we have a family {αn ∈ K | n = 0, 1, 2, . . .} of scalars, and if, for some x ∈ A,
the family {αn·xn | n = 0, 1, 2, . . .} (with x0 = 1) is absolutely summable, then we
say that the power series with coefficients αn is absolutely convergent for x and
has the sum

∑∞
n=0 αnx

n. We also say simply that the power series
∑∞
n=0 αn·xn

is absolutely convergent. The following exercise is a direct generalisation of the
corresponding fact in elementary analysis:

Exercise E5.1. (i) Let E be a Banach space. Then for an absolutely summable
family {aj | j ∈ J} the set {j ∈ J | aj 6= 0} is countable and the sum a =

∑
j∈J aj

exists uniquely.

(ii) For ρ =
(
limn∈N

n
√
|αn|

)−1 ∈ [0,∞], the power series with coefficients αn
converges absolutely for ‖x‖ < ρ.

(iii) The power series
∑∞
n=0 x

n is absolutely convergent for ‖x‖ < 1 and its
sum is the inverse of 1− x in A. In particular, the whole open unit ball around 1
belongs to the set A−1.

(iv) The power series
∑∞
n=0

1
n! ·x

n is absolutely convergent for all x ∈ A.
(v) The power series

∑∞
n=1

1
n ·x

n is absolutely convergent for ‖x‖ < 1.

[Hint. (i) Firstly note that Jn
def
= {j ∈ J : ‖aj‖ ≥ 1

n} is finite and then that
aj 6= 0 iff j ∈

⋃∞
n=1 Jn. Secondly, define recursively a sequence F1 ⊆ F2 ⊆ · · ·

of finite subsets of J such that G ∩ Fn = Ø implies
∑
j∈G |aj | <

1
n . Show that

sn =
∑
j∈Fn aj yields a Cauchy sequence. Use completeness of E to get a = lim sn.

Verify that a meets the requirements.] ut

If E and F are Banach spaces and An:En → F is a continuous n-linear map,
we shall write Anh

n instead of An(h, . . . , h), h ∈ E. If U and V are open sub-
sets of E and F , respectively, then a function f :U → V is called analytic if for
each u ∈ U there is a positive number r and a family of nonnegative numbers
{αn | n = 0, 1, . . .} with

∑∞
n=0 αnr

n convergent such that the following conditions
are satisfied:

(i) ‖x− u‖ < r implies x ∈ U ,

(ii) there is a family {An | n = 1, 2, . . .} of continuous multilinear maps
An:En → F and an element A0 ∈ E such that

‖A0‖ ≤ α0 and (∀n ∈ N) sup
‖h1‖,...,‖hn‖≤1

‖An(h1, . . . , hn)‖ ≤ αn, and

(iii) f(x) =
∑∞
n=0An(x− u)n for all ‖x− u‖ < r.

We say that (iii) is a power series expansion of f near u.

Exercise E5.2. (i) Let Br(a) denote the open ball with radius r around a in
a Banach algebra A. If

∑∞
n=0 γn·xn converges absolutely for ‖x‖ < r, then the

function f :Br(0)→ A given by f(x) =
∑∞
n=0 κn·xn is analytic.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



5. Linear Lie Groups 149

[Hint. Write x = u+ h and set

xFj =

{
h if j ∈ F ;
u if j /∈ F ,

and
Aknh

k =
∑

F⊆{1,2,...,n}
|F |=k

xF1xF2 · · ·xFn for k ≤ n.

Compute xn = un + A1nh + A2nh
2 + · · · + An−1,nh

n−1 + hn. Define Anh
n to be∑∞

m=n κmAnmh
n, show that this sum is majorized by

∑∞
m=n(mn )|αm|‖h‖n‖u‖m−n

and that
∑∞
n=0Anh

n is the power series expansion of f(u+ h) around 0.]
(ii) The composition of analytic functions is analytic; that is if g:V → W and

f :U → V are analytic, then g◦f :U →W is analytic. In particular, if, in a Banach
algebra A the function g has a power series expansion

∑∞
n=0 αnx

n around 0 and
f has a power series expansion

∑∞
n=0 βn(x− α0·1)n around α0·1 then f ◦ g has a

power series expansion f
(
g(x)

)
=
∑∞
n=0 γnx

n at zero.
(iii) If two analytic functions f, g:U → V are given, then the set of points

u ∈ U , at which they have coinciding power series expansions near u, is both
open and closed in U . In particular, if U is connected and f and g agree on some
nonempty open set, then they agree. ut

The Exponential Function and the Logarithm

We have seen in Exercise E5.1(iv) that
∑∞
n=0

1
n! ·x

n is absolutely convergent for all
x in a Banach algebra A. We shall call the sum expx. The following elementary
exercise provides the first information on exp.

Exercise E5.3. If x and y commute in A, i.e. satisfy xy = yx, then
(i) 1

n! (x+ y)n =
∑
p+q=n

1
p!

1
q! ·x

pyq (the binomial formula), and

(ii) exp(x + y) = expx exp y (the functional equation of the exponential func-
tion).

(iii) For every x the element expx has inverse exp−x.

[Hint. The elementary power series proof works.] ut

Informally speaking, the binomial formula and the functional equation for the
exponential function are equivalent things.

Definition 5.1. For a Banach algebra A with identity we define
(i) exp:A→ A−1 by expx =

∑∞
n=0

1
n! ·x

n, and

(ii) log:B1(1)→ A by log(1 + x) = −
∑∞
n=1

(−1)n

n ·xn.
The function exp is called the exponential function of A and log the logarithm. ut

By Exercise E5.1(iii) and (iv) the two functions are well-defined. By Exercise
E5.2(ii) they are analytic.
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The connected component of 0 of the open 0-neighborhood exp−1B1(1) is
denoted N0 and the set {(x, y) ∈ A × A | expx exp y ∈ B1(1)} is written D.
It is instructive to contemplate briefly the real Banach algebra A = C and the
homeomorphism exp0: {z = x+iy ∈ A : |y| < π} → C\]−∞, 0], exp0(z) = ez. We
write log0 = exp−1

0 . Then the domainN0 is bounded by the curve {log0(1+eit) : t ∈
]−π, π[}. The points log 2, ±πi3 are on this curve and limt→±π log0(1 + eit) = ±πi2 .

Lemma 5.2. Blog 2(0) ⊆ N0 and {(x, y) ∈ A×A | ‖x‖+ ‖y‖ < log 2} ⊆ D.

Proof. The second assertion implies the first via y = 0. Let ‖x‖+‖y‖ < log 2. Then,
since in a Banach algebra we have ‖xn‖ ≤ ‖x‖n we compute ‖ expx exp y − 1‖ =
‖
∑

0<p+q
1
p!q!x

pyq‖ ≤
∑

0<p+q
1
p!q!‖x‖

p‖y‖q = e‖x‖e‖y‖ − 1 = e‖x‖+‖y‖ − 1 <

elog 2 − 1 = 2− 1 = 1. ut

Proposition 5.3. (i) log(expx) = x for all x ∈ N0.
(ii) exp(log x) = x for all x ∈ B1(1).
(iii) exp |N0:N0 → B1(1) is an analytic homeomorphism with analytic inverse

log:B1(1)→ N0.

Proof. Before we begin the proof we recall that Definition 5.1 applies, in partic-
ular, to A = C, giving the classical exponential function exp:C → C \ {0} and
log:B1(1) → C. The relations log ez = z for z near 0 and elog(1+z) = 1 + z for
|z| < 1 are part of the classical theory. However, if one wants a proof directly from
Definition 5.1, one should first argue that exp′ z = exp z and log′ z = 1

z (directly
from the power series and the basic theorem on the differentiation of power series
on the open disc of convergence). Now the derivative of z 7→ log(exp z) is exp z

exp z = 1
by the chain rule and agrees with the derivative of z 7→ z. Both functions take the
value 0 for z = 0 and therefore agree. Similarly, we note that the derivative of the

function ϕ:B1(0)→ C, ϕ(z) = exp(log(1 + z)
)

at z is ϕ′(z) = ϕ(z)
1+z and ϕ′′(z) = 0

is quickly verified via the quotient rule. Now ϕ′(z)
ϕ(z) is the derivative of logϕ(z) and

z 7→ 1
1+z is the derivative of z 7→ log(1 + z). Since ϕ(0) = ϕ′(z) = 1, ϕ(z) = 1 + z

follows for all small enough z and then for all z with |z| < 1. After this recalling
of elementary complex function theory we can proceed with the proof.

(i) The function Ψ:N0 → A given by Ψ(x) = log(expx) is analytic and has a
power series expansion Ψ(x) =

∑∞
n=0 γn·xn at zero. For z ∈ K with |z| < log 2

define ψ(z) ∈ C by ψ(z)·1 = Ψ(z·1) = (
∑∞
n=0 γnz

n)·1. Then ψ(z) = log(ez) = z
by our initial remarks, that is γ0 = γn = 0 for n > 1. Thus the analytic functions
Ψ and the inclusion map N0 → A agree on a neighborhood of 0 and so agree on
the connected domain N0.

(ii) The function Φ:B1(1) → A−1 given by Φ(x) = exp(log x) is analytic and
has a power series expansion Φ(1 + h) = exp

(
log(1 + h)

)
=
∑∞
n=0 δnh

n. Again

define ϕ(z) by ϕ(1 + z)·1 = Φ((1 + z)·1) = elog(1+z)·1 for |z| < 1 and notice
ϕ(z) = 1 + z by our initial remarks. This implies δ0 = δ1 = 1, δn = 0 for n > 1.
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Hence the analytic functions h 7→ Φ(1+h) and h 7→ 1+h from B1(0) into A agree
on a neighborhood of 0 and hence agree on the ball B1(0).

(iii) By the definition of N0 we have exp(N0) ⊆ exp
(

exp−1B1(1)
)
⊆ B1(1),

and by (ii) we have logB1(1) ⊆ exp−1
(
B1(1)

)
; since B1(1) and thus logB1(1) are

connected, logB1(1) ⊆ N0 follows from the definition of N0. These facts together
with (i) and (ii), however, prove assertion (iii). ut

We note that we have used some facts on analytic functions from Exercise E5.2,
namely, that two analytic functions which agree on a nonempty open subset of a
connected common domain agree. If we do not wish to use this fact, our proof still
shows in an elementary fashion that log(expx) = x and exp log(1 +x) = 1 +x for
all x sufficiently close to 0.

Definition 5.4. We define the Baker–Campbell–Hausdorff–Dynkin multiplication
or, C–H-multiplication for short, by

(x, y) 7→ x ∗ y = log(expx exp y):D → A. ut

This multiplication is analytic and is defined at least for all pairs (x, y) with
‖x‖+ ‖y‖ < log 2, and thus is defined certainly on B log 2

2
(0)×B log 2

2
(0).

Proposition 5.5. For ‖x‖ + ‖y‖ < log 2, the element x ∗ y is the sum of an
absolutely summable family which can be grouped as follows

x ∗ y = x+ y +
1

2
·[x, y] +H3(x, y) +H4(x, y) + · · · ,

where Hn(x, y) denotes a homogeneous polynomial in the two (in general not com-
muting) variables x and y of homogeneous degree n and where [x, y] = xy − yx.
Also

‖x ∗ y‖ ≤ − log
(
2− e‖x‖+‖y‖

)
.

Proof. Assume ‖x‖ + ‖y‖ < log 2. First notice that (expx exp y − 1)n is a well
defined element of the open unit ball around 0 and is the sum of an absolutely
summable family of elements

1∏n
k=1 pk!qk!

xp1yq1 · · ·xpnyqn , 0 < p1 + q1, . . . , pn + qn.

Set N0 = {0, 1, 2, . . .}. If we multiply each of these terms by −(−1)n/n, let n
range through N, and the pairs (p1, q1), . . . , (pn, qn) through N0×N0 with the sole
restriction pk + qk > 0 for all k, then we obtain an absolutely summable family
whose sum is

x ∗ y =
∞∑
n=1

−(−1)n

n
·(expx exp y − 1)n.
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If r and s are real numbers with r+ s < log 2 such that ‖x‖ ≤ r and ‖y‖ ≤ s, then
a majorizing family of positive real numbers is

1

n
∏n
k=1 pk!qk!

r
∑n

k=1
pks
∑n

k=1
qk

with n = 1, 2, . . . and 0 < p1 + q1, . . . , pn + qn. Recall that 0 ≤ r+ s < log 2 entails
0 < 2 − er+s < 1 and note that the sum of this family is

∑∞
n=1

1
n (eres − 1)n =∑∞

n=1
1
n (er+s − 1)n = − log

(
1− (er+s − 1)

)
= − log(2− er+s).

We define

Id
def
=
{(

(p1, q1), . . . , (pn, qn)
)
| pk + qk > 0, k = 1, . . . , n;

∑n
k=1(pk + qk) = d

}
,

and set

Hd(x, y) =
∑(

(p1,q1),...,(pn,qn)
)
∈Id

−(−1)n

n
∏n
k=1 pk!qk!

·xp1yq1 · · ·xpnyqn , x, y ∈ A,

hd(r, s) =
∑(

(p1,q1),...,(pn,qn)
)
∈Id

1

n
∏n
k=1 pk!qk!

·r
∑n

k=1
pks
∑n

k=1
qk , r, s ∈ R.

Then Hd and hd are homogeneous of degree d, and

‖Hd(x, y)‖ ≤ hd(‖x‖, ‖y‖), x, y ∈ A.

For d = 1 we have to sum over the index set I1 = {
(
(1, 0)

)
,
(
(0, 1)

)
}, and for d = 2

over the index set

I2 =


(
(2, 0)

)
,
(
(1, 0), (0, 1)

)(
(0, 2)

)
,
(
(1, 0), (1, 0)

)(
(1, 1)

)
,
(
(0, 1), (0, 1)

)(
(0, 1), (1, 0)

)
 .

A quick calculation gives H1(x, y) = x+ y and H2(x, y) = 1
2 ·(xy− yx). Moreover,∑∞

d=1 hd(r, s) = − log(2− er+s). ut

Exercise E5.4. Compute Hd(x, y) for d = 3, 4, and hd(r, s) for d = 1, 2. ut

Corollary 5.6. (i) For all (x, y) ∈ D we have

exp(x ∗ y) = expx exp y.

(ii) If B is a zero neighborhood such that B ∗ B, B ∗ (B ∗ B) and (B ∗ B) ∗ B
are defined, then x, y, z ∈ B implies x ∗ (y ∗ z) = (x ∗ y) ∗ z.

(iii) If (x, y) ∈ D and [x, y] = 0 then x ∗ y = x+ y.
(iv) If (x,−x) ∈ D then x ∗ (−x) = (−x) ∗ x = 0.

Proof. (i) Since (x, y) ∈ D we have ‖ expx exp y − 1‖ < 1, hence exp(x ∗ y) =
exp

(
log
(
1 + (expx exp y − 1)

))
= expx exp y by Proposition 5.3(ii).
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(ii) By (i) we obtain

exp
(
x ∗ (y ∗ z)

)
= expx(exp y exp z)

= (expx exp y) exp z = exp
(
(x ∗ y) ∗ z

)
.

Since (x, y∗z) ∈ D we have ‖ exp
(
x∗(y∗z)

)
−1‖ = ‖ expx exp(y∗z)−1‖ < 1, hence

B∗(B∗B) ⊆ N0. Therefore, log
(
1+(expx exp(y∗z)−1)

)
= log

(
exp(x∗(y∗z))

)
=

x∗ (y ∗z) by Proposition 5.3(i). Likewise we find log
(

exp((x∗y)∗z)
)

= (x∗y)∗z)
for all x, y, z ∈ B. Hence (ii) follows.

(iii) If x and y commute, then exp(x + y) = expx exp y by Exercise E5.3 and
if (x, y) ∈ D, then x ∗ y = log(expx exp y) = log exp(x+ y) = x+ y.

(iv) Since [x,−x] = −[x, x] = 0, by (iii) we have x ∗ (−x) = x + (−x) = 0.
Likewise, (−x) ∗ x = 0. ut

By the preceding results, there is a ball B = Br(0) around 0 which is a local
group with respect to a partially defined multiplication ∗:B×B → A in the sense
of the properties listed in the preceding proposition, and the exponential function
induces a local isomorphism exp |B : B → expB into the multiplicative group
A−1. The local group operation ∗ is given by a power series, hence is analytic.
Its definition therefore uses, from the given Banach algebra A, apart from the
topology, the following information:

(i) the scalar multiplication,
(ii) the addition,

(iii) the multiplication.
Assuming that we are given ∗, can we recover (i), (ii), and (iii)?
Let us first observe, that the scalar multiplication is not too problematic. By

Corollary 5.6(iii), for every x ∈ A, the function t 7→ t·x: ] − ε, ε[→ (B, ∗) is con-
tinuous and satisfies (s·x) ∗ (t·x) = (s + t)·x whenever s, t, s + t ∈ ] − ε, ε[ and
t 7→ exp t·x is a morphism of topological groups R→ A−1 in view of Exercise E5.3.
This calls for a definition. First we note a piece of background information which,
for topological abelian groups is discussed in great detail in Chapter 7. If G is a
topological group and X a topological space, then the set C(X,G) of continuous
functions f :X → G is a group under pointwise operations. Let U denote the filter
of all identity neighborhoods U of G and K the set of compact subsets K of X.
For K ∈ K and U ∈ U we set W (K,U) = {f ∈ C(X,G) | f(K) ⊆ U}. Then
{W (K,U) | (K,U) ∈ K × U} is a filterbasis of identity neighborhoods of a topol-
ogy making C(X,G) into a topological group. This topology, and each topology
induced by it on a subset of C(X,G) is called the topology of uniform convergence
on compact sets. In this chapter this topology is used mostly in the more familiar
case that G carries a metric compatible with its topology and that X = R. Then a
sequence fn of continuous functions from R to G converges to a continuous func-
tion f if and only if for each number r ∈ R the sequence of function fn|[−r, r]
converges uniformly to f |[−r, r] in the sense of the metric of G.

Definition 5.7. (i) A one parameter subgroup of a topological group G is a homo-
morphism X:R → G of topological groups, that is an element X of Hom(R, G).
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The topological space Hom(R, G) which we obtain by endowing Hom(R, G) with
the topology of uniform convergence on compact subsets of R will be denoted by
L(G).

(ii) A local one parameter subgroup of G is a continuous function f : I → G with
an interval I ⊆ R which is a neighborhood of 0 such that s, t, s + t ∈ I implies
f(s+ t) = f(s)f(t). ut

One useful lemma which we discussed in an earlier exercise (Exercise E1.8)
must be recorded at this point:

Lemma 5.8. For every local one parameter subgroup f : I → G of a topological
group there is a unique extension X:R→ G to a one parameter subgroup.

Proof. Let r ∈ R. There is at least one natural number n such that r
n ∈ I. Assume

that m,n ∈ N satisfy r
m ,

r
n ∈ I. Then, since I is an interval, kr

mn ∈ I for k =

0, 1, . . . ,max{m,n}. We observe that f(r/mn)mn =
(
f(r/mn)m

)n
=
(
f(r/mn +

· · ·+r/mn)
)n

since f(r/mn)k+1 = f(kr/mn)f(r/mn) for k = 0, . . . ,max{m,n}−1
as f is a local morphism. But f(mr/mn) = f(r/n). Thus f(r/mn)mn = f(r/n)n.
Exchanging the roles of m and n we also find f(r/mn)mn = f(r/m)m. Thus we
can unambiguously define

(1) X(r) = f(r/n)n for any natural number n with r/n ∈ I.

Next we observe that X(r + s) = X(r)X(s) for all r, s ∈ R; indeed let us
find a natural number n such that r/n, s/n, and (r + s)/n are all in I. Then
f(r + s) = f(r)f(s) = f(s)f(r). In particular, f(r) and f(s) are contained in
some abelian subgroup of G and thus X(r + s) = f( r+sn )n =

(
f( rn )f( sn )

)n
=

f( rn )nf( sn )n = X(r)X(s).
Clearly, X|I = f since for r ∈ I we can apply definition (1) with n = 1. Thus X

is a morphism of groups extending the continuous function f . In particular, X is
continuous at 0. A morphism of groups between topological groups is continuous
if and only if it is continuous at the identity (Exercise E1.2(iv)). Hence X is
continuous.

Finally, let X and Y be two one parameter subgroups extending f . Then the
equalizer E = {r ∈ R | X(r) = Y (r)} is a closed subgroup of R. It contains the
identity neighborhood I, hence is also open. As R is connected, E = R follows,
and thus X = Y . The proof is complete. ut

With this lemma we obtain at once:

Proposition 5.9 (Recovery of Scalar Multiplication). Let A denote a Banach
algebra. The function which associates with any x ∈ A the one parameter subgroup
t 7→ exp t·x:R→ A−1 of A−1 is a homeomorphism α:A→ L(A−1).
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Proof. (i) α is injective: Assume that exp t·x = exp t·y for all t ∈ R. Choose r > 0
so small that |t| < r implies t·x, t·y ∈ N0. Then t·x = log exp t.x = log exp t·y = t·y
for all of these t and thus x = y.

(ii) α is surjective: Let X:R → A−1 denote a one parameter group. Choose
r > 0 so small that |t| < r implies ‖X(t)− 1‖ < 1. If we set I = {t ∈ R | |t| < r},
then f : I → A given by f(t) = logX(t) is continuous and for s, t, s + t ∈ I
satisfies f(s + t) = log

(
X(s)X(t)

)
=
(

logX(s)
)
∗
(

logX(t)
)

= f(s) ∗ f(t). Now
let AX denote the closed subalgebra generated by X(R) in A. Then AX is a
commutative subalgebra. By the definition of the logarithm through a power series,
f(t) ∈ AX . Also (x, y) ∈ AX ∩D implies x ∗ y = x+ y by Corollary 5.6(iii). Thus
f(s) ∗ f(t) = f(s) + f(t). Now f : I → (A,+) is a local one parameter subgroup of
(A,+). By Lemma 5.8, there is a unique extension to a one parameter subgroup
F :R→ (A,+). For any integer n we have n·F (1) = F (n). If m is a natural number,
then m·F (n/m) = F

(
m(n/m)

)
= F (n) = n·F (1), whence F (n/m) = (n/m)·F (1).

Thus F (t) = t·F (1) for all rational, and then by continuity also for all real numbers.
Set x = F (1). Then α(x):R→ A−1 given by α(x)(t) = exp t·x = expF (t) is a one
parameter group which for |t| < r yields α(x)(t) = exp f(t) = exp logX(t) = X(t).
By the uniqueness part of Lemma 5.8 we conclude X = α(x). Thus the surjectivity
of α is proved.

(iii) α is continuous: Let limn xn = x in A. If C ⊆ R is compact, then t·x =
limn t·xn uniformly on C. In particular, there is a closed ball B around 0 containing
C·x and C·xn for all n. Since exp:A → A−1 ⊆ A is uniformly continuous on B
(Exercise E5.5), then α(x)(t) = exp t·x = limn exp t·xn = limn α(xn)(t) uniformly
on C.

(iv) α−1 is continuous: Assume that X = limnXn in L(A−1). Let r > 0 be
such that X(r), Xn(r) ∈ B1(1) for all n. Then

r·α−1(X) = logX(r) = lim
n

logXn(r) = lim
n
r·α−1(Xn),

and since r 6= 0, this implies α−1(X) = limn α
−1(Xn). ut

Exercise E5.5. Show that exp:A → A is uniformly continuous on any bounded
subset of A.

[Hint. The proof for the elementary exponential function on C works.] ut

The preceding result 5.9 can be interpreted as saying among many other things
that scalar multiplication can be recovered from the group A−1 and indeed from
the local operation ∗ in A near 0. Next we try the recovery of addition.

Proposition 5.10 (Recovery of Addition). Let A be a Banach algebra. Then for
any x, y ∈ A we have

(2) x+ y = lim
n
n

(
1

n
·x ∗ 1

n
·y
)
.
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As a consequence,

(3) exp(x+ y) = lim
n

(
exp

1

n
·x exp

1

n
·y
)n

.

Proof. First we choose a natural number p such that ‖x‖, ‖y‖ < p
2 log 2. Then

p·( 1
p ·x ∗

1
p ·y) =

∑∞
k=1 p·Hk( 1

p ·x,
1
p ·y) is absolutely summable with majorant

∞∑
k=1

1

pk−1
hk(‖x‖, ‖y‖).

Assume now that ε > 0 is given. Find q such that
∑∞
k=q+1

1
pk−1hk(‖x‖, ‖y‖) < ε/2.

Choose N ∈ N such that N ≥ p and that n > N implies∥∥∥∥ q∑
k=2

1

nk−1
Hk(x, y)

∥∥∥∥ ≤ 1

n

q∑
k=2

1

nk−2
hk(‖x‖, ‖y‖) < ε/2.

Now let n > N . Then∥∥∥∥n·( 1

n
·x ∗ 1

n
·y)− (x+ y)

∥∥∥∥ =

∥∥∥∥ ∞∑
k=2

n·Hk(
1

n
·x, 1

n
·y)

∥∥∥∥
≤
∥∥∥∥ q∑
k=2

1

nk−1
·Hk(x, y)

∥∥∥∥+

∥∥∥∥ ∞∑
k=q+1

n·Hk(
1

n
·x, 1

n
·y)

∥∥∥∥
<
ε

2
+

∞∑
k=q+1

1

nk−1
·hk(‖x‖, ‖y‖)

≤ ε

2
+

∞∑
k=q+1

1

pk−1
·hk(‖x‖, ‖y‖)

<
ε

2
+
ε

2
= ε.

Thus (2) is proved. But then (3) is a consequence of (2) and Corollary 5.6(i). ut

A reader may expect that we now proceed to recover the algebra multiplication
from the locally defined ∗-operation in a similar way to that which we used for
addition. Indeed for two elements a, b ∈ B1(1) we can write ab = exp

(
(log a) ∗

(log b)
)
. But this does not extend to a global formula in a useful way. Instead, we

can recover the bracket operation [x, y] = xy − yx. If we compute, for very small
x and y, the ∗-product of

1

n
·x ∗ 1

n
·y =

1

n
·(x+ y) +

1

2n2
·[x, y] +

1

n3
·(· · ·)

and the negative of

1

n
·y ∗ 1

n
·x =

1

n
·(x+ y) +

1

2n2
·[y, x] +

1

n3
·(· · ·),
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we obtain
1

n
·x ∗ 1

n
·y ∗ −1

n
·x ∗ −1

n
·y =

1

n2
·[x, y] +

1

n3
·(· · ·).

This suggests the following result. In a group G, we write comm(x, y) = xyx−1y−1.

Proposition 5.11 (Recovery of the Bracket). Let A be a Banach algebra. Then
for any x, y ∈ A we have

(4) [x, y] = lim
n
n2

(
1

n
·x ∗ 1

n
·y ∗ −1

n
·x ∗ −1

n
·y
)
.

As a consequence,

(5) exp[x, y] = lim
n

comm
(

exp
1

n
·x, exp

1

n
·y
)n2

.

Proof. Exercise E5.6 ut

Exercise E5.6. Prove Proposition 5.11.

[Hint. Use the proof of Proposition 5.10 as guide.] ut

The bracket operation is a prime example of a multiplication in a non-associat-
ive algebra which we formally define as follows:

Definition 5.12. A Lie algebra L over a given field K is a vector space over K
together with a bilinear multiplication

(x, y) 7→ [x, y]:L× L→ L

satisfying the following conditions:
(i) (∀x ∈ L) [x, x] = 0,
(ii) (∀x, y z ∈ L)

[
x, [y, z]

]
+
[
y, [z, x]

]
+
[
z, [x, y]

]
= 0 (Jacobi identity). ut

Since 0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x], condition (i)
implies

(i′) (∀x, y ∈ L) [x, y] = −[y, x].
If the characteristic of K is different from 2 then from (i′) we can also deduce

(i) by letting y = x. Since we are interested here in the fields K = R and C, the
axioms (i) and (i′) can be used interchangeably for these fields.

A function f :L → M between Lie algebras is a morphism of Lie algebras if it
is linear and satisfies f([x, y]) = [f(x), f(y)].

Example 5.13. (i) If A is any associative algebra over K then the bracket [x, y] =
xy−yx defines on A the structure of a Lie algebra (A, [·, ·]). Every vector subspace
L of A with [L,L] ⊆ L is a Lie algebra with respect to the bracket operation.
In particular, for any vector space E, the algebra A = Hom(E,E) becomes a Lie
algebra with respect to the bracket. This Lie algebra is denoted gl(E). For E = Kn
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we write gl(n,K) instead; this algebra may be identified with the Lie algebra of all
n × n-matrices over K. The vector subspace sl(n,K) of all matrices with trace 0
is closed under the formation of brackets and is, therefore, a Lie subalgebra of
gl(n,K).

(ii) If E is any vector space over K endowed with a bilinear multiplication
(x, y) 7→ xy—associative or not—then a vector space endomorphism D:E → E is
called a derivation if D(xy) = (Dx)y+x(Dy). The set Der(E) of all derivations is a
Lie subalgebra of (Hom(E,E), [·, ·]). (In other words, the bracket of two derivations
is a derivation.)

If L is a Lie algebra and x ∈ L, define ad(x):L→ L by ad(x)(y) = [x, y], y ∈ L.
Then ad(x) ∈ Der(L). We say that ad(x) is an inner derivation of L.

Exercise E5.7. Verify the details of the preceding examples. ut

The next step is to investigate the operation of inner automorphisms.
If, for a Banach algebra A, we denote with A the vector space Hom(A,A) of

all continuous linear self-maps and consider on A the operator norm and com-
position as multiplication, then A is again a Banach algebra. In particular, A−1

is a topological group and we have an exponential function expA:A → A−1. In
order to keep exponential functions cleanly separate, we shall frequently write
eT = idA +T + 1

2! ·T
2 + · · · for T ∈ A. The group AutA of all automorphisms of

the Banach algebra A is a (closed) subgroup of A−1 and is, therefore, a topological
group.

(i) For an element x ∈ A we define linear operators L(x), R(x):A → A by
L(x)(y) = xy and R(x)(y) = yx. We shall later also write Lx and Rx in place of
L(x) and R(x), respectively.

(ii) For each g ∈ A−1 we denote the inner automorphism x 7→ gxg−1 of A by
Ad(g):A→ A, that is Ad(g)(x) = gxg−1,

(iii) A derivation of A is a derivation D:A→ A which is also continuous. The
Lie algebra of all continuous derivations Der(A) is a (closed) Lie subalgebra of
(A, [·, ·]). For each a ∈ A the map ad(a):A→ A, ad(a)(x) = [a, x] is a continuous
derivation.

Lemma 5.14. (i) L(x), R(x) ∈ A and L:A → A is a contractive morphism of
Banach algebras, while R:A→ Aop is a contractive morphism of Banach algebras
into the opposite of A with a multiplication given by S ? T = TS. Also, L and
g 7→ R(g)−1 are morphisms of topological groups A−1 → A−1. For all x, y ∈ A we
have [L(x), R(y)] = 0.

(ii) Ad(g) = L(g)R(g)−1 = R(g)−1L(g) for all g ∈ A−1, and Ad:A−1 →
Aut(A) is a morphism of topological groups.

(iii) ad(x) = L(x) − R(x) and ad: (A, [·, ·]) → Der(A) is a morphism of (topo-
logical ) Lie algebras.

Proof. (i) It is immediate that the distributive law (x + y)z = xz + yz means
L(x + y) = L(x) + L(y) and that the associative law (xy)z = x(yz) is expressed
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as L(xy) = L(x)L(y). The algebra law (t·x)z = t·(xz) for t ∈ K is equivalent to
L(t·x) = t·L(x). Also, ‖xy‖ ≤ ‖x‖‖y‖ translates into ‖L(x)‖ ≤ ‖x‖. Thus L is a
contractive morphism of Banach algebras. The corresponding assertions on R are
proved similarly. The restriction of L to A−1 is then a morphism of topological
groups as is the function g 7→ R(g)−1.

Finally, [L(x), R(y)](z) = L(x)R(y)(z)−R(y)L(x)(z) = x(zy)− (xz)y = 0.
(ii) Ad(g)(z) = gzg−1 = L(g)R(g−1)(z). Hence Ad(g) = L(g)R(g)−1, and

clearly x 7→ gxg−1 is a member of Aut(A) ⊆ A−1, since multiplication and inver-
sion in A are continuous, and L and g 7→ R(g)−1 are commuting morphisms of
topological groups A−1 7→ A−1, it follows that Ad:A−1 → Aut(A) is a morphism
of topological groups.

(iii) ad(x)(y) = xy − yx = L(x)(y)−R(x)(y), and the linearity and continuity
of L and R shows that of ad. The Jacobi identity is equivalent to ad[x, y] =
[ad(x), ad(y)]. ut

The automorphisms Ad(g) are called inner automorphisms of A and the deriva-
tions adx are called inner derivations.

Lemma 5.15. Assume that
∑∞
j=0 ajx

j is a convergent power series in a Banach
algebra.

(i) If α:A → A is a continuous morphism of algebras, then α
(∑∞

j=0 ajx
j
)

=∑∞
j=0 ajα(x)j.

(ii) L(
∑∞
j=0 ajx

j) =
∑∞
j=0 ajL(x)j and R(

∑∞
j=0 ajx

j) =
∑∞
j=0 ajR(x)j.

(iii) α(expx) = expα(x), L(expx) = eL(x) and R(expx) = eR(x).

Proof. (i) is straightforward from the fact that α is a continuous algebra morphism.
(ii) By 1.14(i) the function L:A → A is a continuous morphism of algebras.

Thus the assertion on L is a special case of (i). The proof for R is similar.
(iii) is a consequence of (i) and (ii). ut

We shall presently apply this to expx =
∑∞
j=0

1
n! ·x

n. A comment on our no-
tation is in order. We will have to consider the exponential function on our pri-
mary Banach algebra A and on our secondary Banach algebra A. The former we
shall continue to denote by exp or expA; the second we shall write in the form
T 7→ eT : Hom(A,A) → Gl(A) (and rarely also in the form expA). Here the argu-
ment is always a bounded operator T . This notational distinction is quite helpful.

Proposition 5.16 (Inner Automorphisms and the Adjoint Representation). Let
A be a Banach algebra with identity.

(i) g(exp y)g−1 = exp Ad(g)(y), g ∈ A−1, y ∈ A.
(ii) If x ∈ A then Ad(expx) = ead(x). In other words,

Ad ◦ expA = expA ◦ ad .
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Accordingly, the following diagram is commutative:

A
ad−−−−−−−−−→ A = Hom(A,A)

expA

y expA

y yT 7→eT
A−1 −−−−−−−−−→

Ad
A = Gl(A).

(iii) expx exp y exp−x = exp
(
ead(x)y

)
for all x, y ∈ A.

(iv) x ∗ y ∗ −x = ead xy = y + [x, y] + 1
2 ·
[
x, [x, y]

]
+ · · · for all sufficiently small

elements x, y ∈ A.

Proof. (i) If we apply Lemma 5.15(iii) with α = Ad(g), we obtain g(exp y)g−1 =
Ad(g)(exp y) = exp Ad(g)(y).

(ii) In view of Exercise E5.3, using Lemma 5.14(iii) we compute

ead(x) = eL(x)−R(x) = eL(x)e−R(x).

By Lemma 5.15(iii) we know

eL(x)e−R(x) = L(expx)R(expx)−1.

Lemma 5.14(ii) implies

L(expx)R(expx)−1 = Ad(expx).

Taking all of this together we obtain (ii).
(iii) We apply (i) with g = expx and use (ii) to deduce (iii).
(iv) Assume that x and y are so small that ead xy ∈ B1(1) and that x ∗ y and

x ∗ y ∗ −x are defined and contained in N0. Then exp(x ∗ y ∗ −x) ∈ B1(1) and
x ∗ y ∗ −x = log exp(x ∗ y ∗ −x) = log(expx exp y exp−x) by Corollary 5.6. Now
(iii) above shows exp(x∗y ∗−x) = exp(ead xy). Applying log to this equation gives
x ∗ y ∗ −x = ead yx. ut

Notice that the analytic function (x, y) 7→ ead xy : A × A → A is defined
everywhere and is linear in y. It agrees with the analytic function (x, y) 7→ x∗y∗−x
for all x and y sufficiently near 0, hence for all pairs (x, y) on any connected open
neighborhood of (0, 0) on which it is defined.

Corollary 5.17. Let V be a closed vector subspace of A and x, y ∈ A. Then the
following three statements are equivalent:

(i) [x, V ] ⊆ V .
(ii) et· ad xV = V for all t ∈ R.
(iii) Ad(exp t·x)V = (exp t·x)V (exp−t·x) = V for all t ∈ R.

Moreover, if ‖x‖ < log 2
2 , then adx = −

∑∞
n=1

(−1)n

n ·(ead x − idA)n and these con-
ditions are also equivalent to the statement
(iv) ead xV = V .

Finally, the following proposition holds.
(v) If [x, y] = 0 then ead xy = y, and if ‖x‖ < log 2

2 then both conditions are
equivalent.
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Proof. The equivalence of (ii) and (iii) follows from Proposition 5.16(ii) and the
implication (ii)⇒(iv) is trivial.

(i)⇒(ii) Condition (i) says that V is invariant under (adx). Then et· ad xV ⊆ V
for all t and thus also e−(t· ad x)V = e−t· ad xV ⊆ V which implies V ⊆ et· ad xV.

(ii)⇒(i) Let v ∈ V . Note that

[x, v] + t·
∞∑
n=0

tn

(n+ 2)!
(adx)n+2v =

1

t
·
(
et· ad xv − v

)
∈ V

by (ii). Then [x, v] = lim06=t→0
1
t ·
(
et· ad xv − v

)
∈ V since V is closed.

(iv)⇒(i) Assume that ‖x‖ < log 2
2 . Therefore, ‖(adx)(y)‖ = ‖[x, y]‖ = ‖xy −

yx‖ ≤ 2‖x‖‖y‖ < (log 2)‖y‖. Then ‖ ad(x)‖ < log 2 in A. Hence ‖ead x − idA ‖ < 1
by Lemma 5.2 and ad(x) = log ead x = log

(
idA +(ead x − idA)

)
. Thus, if V is

invariant under ead x, it is invariant under T = ead x − idA and then under adx =
log(idA +T ) = T − 1

2 ·T
2 + 1

3 ·T
3 − 1

4 ·T
4 ± · · · .

(v) The formula ead xy = y+
∑∞
n=0

1
n+1 (adx)n[x, y] shows that [x, y] = 0 always

implies ead xy = y. If ‖x‖ < log 2
2 , then we saw adx = −

∑∞
n=1

(−1)n

n ·(ead x− idA)n.
Thus ead xy = y implies (ead x − idA)y = 0 and therefore [x, y] = 0. ut

Differentiating the Exponential Function in a
Banach Algebra

We need more information on the exponential function and the Campbell–Haus-
dorff formalism.

We define two analytic functions and begin with an entire one: define

(6) f :C→ C, f(z) =
∞∑
n=0

(−1)n

(n+ 1)!
zn =

{
(1− e−z)z−1 if z 6= 0,
1 if z = 0.

Observe

f(−z) =
ez − 1

z
for z 6= 0.

Let us note

(∗) f−1(0) = 2πiZ \ {0}.

Thus we get an analytic function

(6) g:C \ f−1(0)→ C, g(z) =
1

f(z)
.

The power series expansion of g on an open disc of radius 2π starts off by g(z) =
1 + 1

2z + · · · .
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Lemma 5.18. For two commuting elements u, v in a Banach algebra,

(8) (expu)f(u− v) =
∞∑
n=1

1

n!

∑
p+q=n−1

upvq.

Proof. Let u and v denote commuting elements in a Banach algebra with u 6= v.
Then

(un − vn)(u− v)−1 =

n−1∑
p=0

un−p−1vp =
∑

p+q=n−1

upvq, n = 1, . . . ,

whence

(expu)f(u− v) = (expu)
(
1− exp−(u− v)

)
(u− v)−1 = (expu− exp v)(u− v)−1

implies that (8) is valid. ut

Now we consider a Banach algebra A with identity.

Proposition 5.19. For x ∈ A and ‖y‖ ≤ 1 we have

(9) exp(x+ y)− expx = (expx)f(adx)y + ρ(x, y), ‖ρ(x, y)‖ ≤ ‖y‖2e1+‖x‖.

Proof. For each x, y ∈ A and each natural number n, the binomial formula for
noncommuting variables is as follows. Let N = {1, . . . , n}, and for J ⊆ N we set

u(J) = u1(J) · · ·un(J), uk(J) =

{
y for k ∈ J ,
x for k ∈ N \ J .

In particular u(Ø) = xn and u({k}) = xk−1yxn−k =
(
Lk−1
x Rn−kx

)
y, whence∑

J⊆N
|J|=1

u(J) =
∑

p+q=n−1

(
LpxR

q
x

)
(y),

where |J | denotes the number of elements in J . Now

(10) (x+ y)n =
∑
J⊆N

u(J) = xn +
∑
J⊆N
|J|=1

u(J) + ρn(x, y),

with a remainder ρn(x, y) =
∑

J⊆N
|J|≥2

u(J) which, for ‖y‖ ≤ 1, satisfies

‖ρn(x, y)‖ ≤
∑
J⊆N
|J|≥2

‖x‖n−|J|‖y‖|J| =
n∑

m=2

(
n

m

)
‖y‖m‖x‖n−m

≤ ‖y‖2
n∑

m=0

(
n

m

)
‖x‖n−m = ‖y‖2(1 + ‖x‖)n,
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whence ∥∥∥∥ 1

n!
·ρn(x, y)

∥∥∥∥ ≤ ‖y‖2 (1 + ‖x‖)n

n!
.

Thus

(11) exp(x+ y) = expx+
∞∑
n=1

1

n!

( ∑
p+q=n−1

LpxR
q
x

)
y + ρ(x, y),

with ‖ρ(x, y)‖ ≤ ‖y‖2e(1+‖x‖) as soon as ‖y‖ ≤ 1.
The linear operators Lx and Rx commute, and Lx − Rx = adx. Accordingly,

Lemma 5.18 (8) yields

(12) eLxf(adx) =
∞∑
n=1

1

n!

∑
p+q=n−1

LpxR
q
x

for all x, y ∈ A. As a consequence, for all x ∈ A and all ‖y‖ ≤ 1 we obtain

exp(x+ y) = expx+ eLxf(adx)y + ρ(x, y)

= expx+ Lexp xf(adx)y + ρ(x, y)

= expx+ (expx)f(adx)y + ρ(x, y),

which is (9). ut

We draw several important conclusions. For the first we recall the concept of a
derivative in the simplest context. If A1 and A2 are Banach spaces and F :U → A2

is a function on an open subset of A1, the derivative of F at u ∈ U is a linear
operator at F ′(u):A1 → A2 such that F (u+ h)− F (u) = F ′(u)h+ r(u, h) with a
remainder term r(u, v) satisfying lim06=h→0

1
‖h‖ ·r(u, h) = 0.

Corollary 5.20 (The Derivative of the Exponential Function). Let A be a Banach
algebra with identity. The derivative exp′(a):A→ A of the exponential function at
a ∈ A is computed as

(13) exp′(a)(h) = (exp a)f(ad a)(h) = (exp a)
idA−e− ad a

ad a
(h).

Equivalently,

(14) L−1
exp a exp′(a) = Lexp−a exp′(a) = f(ad a).

Proof. This follows at once from the definition of the derivative and from Propo-
sition 5.19(9). ut

We recall that x ∗ y = x + y + 1
2 ·[x, y] + · · · is defined for all elements x and

y in sufficiently small neighborhood B of 0 in a Banach algebra. In the following
result we operate in such a B whose size we shall specify.
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Theorem 5.21. Assume that A is a Banach algebra with identity and B an open
ball around 0 such that

(a) (B ∗B) ∗B and B ∗ (B ∗B) is defined,
(b) x, y ∈ B and t ∈ [0, 1] implies that x ∗ t·y satisfies ‖x ∗ t·y‖ < π.

Then the following statements hold:
(i) For x ∈ B there is a neighborhood V of 0 and there are real numbers C1,

C2 such that for all y ∈ V

(15) (−x) ∗ (x+ y) = f(adx)(y) + o1(x, y), ‖o1(x, y)‖ ≤ ‖y‖2C1,

(16) x ∗ y = x+ g(adx)(y) + o2(x, y), ‖o2(x, y)‖ ≤ ‖y‖2C2.

(ii) Let x, y ∈ B and assume that g is the smallest closed Lie subalgebra of
(A, [·, ·]) containing x and y. Then x ∗ y − (x+ y) ∈ [g, g], and x ∗ y ∈ g.

(iii) Assume that Aj, j = 1, 2 are Banach algebras and B a ball around 0 in A1

satisfying (a) and (b) above. Let g be a closed Lie subalgebra of (A1, [·, ·]). Assume
that T : g → A2 is a continuous linear map such that T [x, y] = [Tx, Ty]. Then
x, y ∈ B1 ∩ g implies T (x ∗ y) = (Tx) ∗ (Ty).

(iv) If B0 is any connected open neighborhood such that (x, y) 7→ x∗y:B0×B0 →
A is defined and analytic, if g0 is any closed Lie subalgebra of (A, [·, ·]), and if
g0 ∩ B0 is connected, then (g0 ∩ B0) ∗ (g0 ∩ B0) ⊆ g0. In particular, if B0 is an
open ball around 0, then g0 ∩B0 is automatically connected.

Proof. (i) The functions F and G given by F (y) = (−x)∗(x+y) and G(y) = (−x)+
(x∗y) are defined on suitable open neighborhoods U1 and U2 of 0, respectively, and
are inverses of each other. Hence for the derivatives in 0 we have G′(0) = F ′(0)−1.
Thus (16) follows from (15), and we have to prove (15). Assume that −x, x+y ∈ B
and ‖y‖ ≤ 1. From Proposition 5.19 we know

(17) exp(x+ y) = expx
(
1 + f(adx)y + σ(x, y)

)
with σ(x, y) = e−xρ(x, y) and thus ‖σ(x, y)‖ ≤ ‖y‖2e(1+2‖x‖).

Then from Corollary 5.6(i) and (17) we know that exp
(
(−x) ∗ (x + y)

)
=

(exp−x) exp(x + y) = 1 + f(adx)y + σ(x, y). For small enough y we may take
logarithms on both sides and obtain (−x)∗ (x+y) = log

(
1+f(adx)y+σ(x, y)

)
=

f(adx)y+τ(x, y) with ‖τ(x, y)‖ ≤ ‖y‖2r(‖x‖, ‖y‖) where r denotes a real analytic
function of two variables. This completes the proof of (15).

Now let x, y ∈ B. By (a) we can define ϕ(t) = x ∗ t·y ∈ A for t ∈ [0, 1] and
by (b) we know that ‖ϕ(t)‖ < π, whence ‖ adϕ(t)‖ < 2π. Hence (16) implies
ϕ(t + h) = x ∗ (t + h)·y = x ∗ (t·y + h·y) = x ∗ (t·y ∗ h·y) = (x ∗ t·y) ∗ h·y
(by (a) and 5.6(ii)) = ϕ(t) ∗ h·y = ϕ(t) + h·g

(
adϕ(t)

)
(y) + o2(x, h·y), and thus

ϕ′(t) = g
(

adϕ(t)
)
(y) with ϕ(0) = x.

(ii) Fix x, y ∈ B and let g be the smallest closed Lie subalgebra containing x

and y; set v
def
= [g, g]. Let U be an open zero neighborhood such that u ∈ U implies

‖u+x+t·y‖ < π for all t ∈ [0, 1]. Then Λt:U → A, Λt(u) = g
(

ad(u+x+t·y)
)
(y)−y

is a vector field (depending on t) such that u ∈ U∩g implies Λt(u) ∈ v. We consider
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the function α: [0, 1] → A, α(t) = x ∗ t·y − (x + t·y). Then α′(t) = ϕ′(t) − y =
g
(

adϕ(t)
)
(y)− y = Λt

(
α(t)

)
. The initial value problem

ω′(t) = Λt
(
ω(t)

)
, ω(0) = 0

in the Banach space v has a unique local solution ω: [0, ε[→ g∩U . The coextension
Ω: [0, ε[→ A, Ω(t) = ω(t) is the unique solution of the initial value problem in A.
We know such a solution in A to be α. Hence Ω = α|[0, ε[ by uniqueness. The
analytic curve t 7→ α(t) + v: [0, 1]→ A/v is zero on a nonempty interval and thus,
by analyticity, is zero. Hence x∗y−(x+y) = α(1) ∈ v. Finally x∗y ∈ x+y+v ⊆ g
follows.

(iii) By (ii) and [g, g] ⊆ [g, g] ⊆ g we have ϕ(t) = x ∗ t·y ∈ g for all x, y ∈
B ∩ g and t ∈ [0, 1]. Then y + 1

2 [ϕ(t), y] + · · · = g
(

adϕ(t)
)
(y) = ϕ′(t) ∈ g,

and since T respects brackets on g by hypothesis, we have T
(
g
(

adϕ(t)
)
(y)
)

=

g
(

ad(Tϕ)(t)
)
(Ty). Therefore ψ

def
= Tϕ: [0, 1] → A2 is the unique solution of the

initial value problem ψ′(t) = g
(

adψ(t)
)
(Ty), ψ(0) = Tx. Thus by (ii), applied to

A2, we find T (x ∗ y) = Tϕ(1) = ψ(1) = (Tx) ∗ (Ty).
(iv) By (ii) we know (g0 ∩B) ∗ (g0 ∩B) ⊆ g0. The analytic function

α: (g0 ∩B0)× (g0 ∩B0)→ A/g0, α(x, y) = x ∗ y + g0,

vanishes on the open subset (g0 ∩ B0 ∩ B) × (g0 ∩ B0 ∩ B) of the connected set
open domain (g0∩B0)× (g0∩B0) and is, therefore, zero. This proves the claim. ut

In 5.21(ii), a proof of the assertion x ∗ y ∈ g alone would have been simpler.
Alternative proofs of 5.21(ii) require a more detailed analysis of the Campbell–
Hausdorff formalism defining the local ∗-multiplication. Indeed, it is a fact that the
homogeneous polynomial functions (u, v) 7→ Hn(u, v) in the Campbell–Hausdorff
series (see 5.5) are Lie polynomials, i.e. their values are taken in the Lie subalgebra
of (A, [·, ·]) generated by u and v. We shall not go into this aspect here. At any
rate, 5.21 shows once more, among other things, the significance of closed Lie
subalgebras of (A, [·, ·]) for the exponential function and the Campbell–Hausdorff
multiplication.

We return briefly to the derivative of the exponential function. A differentiable
function F :U → A from an open set U of a Banach spaceA to A is called regular
in u if F ′(u) is invertible. After we computed the derivative of exp:A→ A−1 ⊆ A
for a Banach algebra, we are in a position to determine the points a ∈ A in which
exp is regular. For this purpose we need the concept of the spectrum, Spec a, of
an element a in a complex Banach algebra A with identity (cf. [39]):

Spec a = {λ ∈ C | a− λ·1 /∈ A−1}.

If A is a real Banach algebra and a ∈ A then Spec a is defined to be Spec 1⊗ a
for 1⊗ a ∈ C⊗A, the complexification of A.

The algebra of all continuous operators of a Banach space is a Banach algebra
with respect to the operator norm, and thus the spectrum of an operator is well
defined.
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Lemma 5.22. Let a ∈ A for a Banach algebra A with identity. Then the following
statements are equivalent:

(i) f(a) /∈ A−1.
(i′) 0 ∈ Spec f(a).
(ii) Spec a ∩ (2πiZ \ {0}) 6= Ø.

Proof. (i) and (i′) are just reformulations of each other.
For a proof of the equivalence of (i′) and (ii) we invoke some spectral theory1.

(A good reference is Bourbaki [39] at the end of the chapter. The part that is
particularly relevant for our discourse in this chapter is Chapter I, §4, no 8 and
no 9, pp. 47ff. Unfortunately, these statements rest on a very general theorem
whose proof is long and complicated, involving amongst other things holomorphic
functions in several variables; its generality is not needed here.)

The Spectral Mapping Theorem (Bourbaki [39] Proposition 7, p. 47) says that
f(Spec a) = Spec f(a). Then 0 ∈ Spec f(a) = f(Spec a) iff Spec a ∩ f−1(0) 6= Ø.
In view of (∗) this implies the equivalence of (i′) and (ii).

Alternative proof: the set F
def
= (Spec a) ∩ (2πiZ \ {0}) is finite. Let U be an

open neighborhood of Spec a in C such that U ∩ (2πiZ \ {0}) = F . The zeros of f
are all of order one. Hence there is a holomorphic function on U vanishing nowhere
such that f(z) = (z− λ1) · · · (z− λk)g(z) for z ∈ U , {λ1, . . . , λk} = F (with k = 0
and f = g if F = Ø). Since g(z) 6= 0 for z ∈ U the prescription 1

g (z) = g(z)−1

defines a holomorphic function on U . By the holomorphic functional calculus (see
e.g. [39]) g(a) and 1

g (a) are well-defined elements of A, and g(a) 1
g (a) = (g 1

g )(a) =

const1(a) = 1 (where constc denotes the constant function with value c). Likewise
1
g (a)g(a) = 1. Hence g(a) ∈ A−1. Now f(a) = (a − λ·1) · · · (a − λk·1)g(a) is

invertible if and only if k = 0, i.e. F = Ø. ut

Exercise E5.8. Prove the Spectral Mapping Theorem in the case that A =
Hom(Cn,Cn).

[Hint. Use the Jordan normal form of an endomorphism of Cn.] ut

The following corollary is now an immediate consequence.

Proposition 5.23. Let g be a closed Lie subalgebra of (A, [·, ·]). Then the linear
operator

L−1
exp x exp′(x)|g = f(adg x): g→ g, where (adg x)(y) = [x, y] for x, y ∈ g

is invertible if and only if

Spec adg x ∩ (2πiZ \ {0}) = Ø. ut

1 The case that A = Hom(E,E) for a finite dimensional complex vector space is
elementary and suffices for most of our purposes.
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In particular, this allows us to say exactly in which points a of A the exponential
function of A is regular. (In 5.41(iii) below we shall sharpen this information
considerably.)

Local Groups for the Campbell–Hausdorff Multiplication

Let us consider in A an open ball B = Br(0) around 0 such that r < log 2
2 such

that B ∗B is defined.

Definition 5.24. We shall say that a non-empty subset Γ ⊆ B is a local group
with respect to B if

(i) (Γ ∗ Γ) ∩B ⊆ Γ,
(ii) −Γ = Γ.

We say that Γ is closed if it is closed in B. ut

Notice that a local group contains 0, for if a ∈ Γ, then −a ∈ Γ by (ii) and thus
0 = a ∗ −a ∈ (Γ ∗ Γ) ∩B ⊆ Γ by (i).

From 5.21(ii) we know that for every closed Lie subalgebra g of (A, [·, ·]) there

are sufficiently small open balls B such that Γ
def
= g ∩ B is a local group with

respect to B.

Definition 5.25. If Γ is a subset of A, we let T(Γ) denote the set of all elements
x ∈ A for which we find a sequence xn ∈ Γ converging to 0 and a sequence m(n)
of natural numbers such that x = limnm(n)·xn. The elements of T(Γ) are called
the subtangent vectors of Γ at 0. If both x and −x are subtangent vectors, then x
is called a tangent vector. ut

We observe right away T(Γ ∩ B) = T(Γ). Indeed let 0 6= y ∈ T(Γ ∩ B). Then
y = limn p(n)·yn with yn ∈ Γ. Pick for each n ∈ N an element xn ∈ Γ with
‖xn − yn‖ < 1/p(n)2. Now limn p(n)·(xn − yn) = 0 and y = limn p(n)·xn ∈ T(Γ).
Hence T(Γ ∩B) ⊆ T(Γ), and the reverse inclusion is obvious.

Also, if U is any open neighborhood of 0, then T(U ∩ Γ) = T(Γ).

Lemma 5.26. For an element x ∈ A and a closed local group Γ with respect to
B, the following statements are equivalent:

(i) x ∈ T(Γ).
(ii) There is a sequence xn ∈ Γ converging to 0 and a sequence r(n) of natural

numbers such that x = limn r(n)·xn.
(iii) R·x ∩B ⊆ Γ.

As a consequence,

(†) B ∩ T(Γ) = Γ ∩ T(Γ).

Proof. (iii)⇒(i) is easy: let xn = 1
n ·x. Then x = n·xn = limn n·xn and limn xn = 0.
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(i)⇒(ii) is trivial. (ii)⇒(iii) Assume x = lim t(n)·xn for a sequence xn → 0 with
xn ∈ Γ and t(n) ∈ N. Let r be an arbitrary real number r such that r·x ∈ B. We
must show r·x ∈ Γ. Set r(n) = rt(n). Then r·x = lim r(n)·xn. For a real number s
let [s] = max{z ∈ Z | z ≤ s}. Then s = [s] + d(s) with 0 ≤ d(s) = s − [s] <
1. Then 0 ≤ ‖d

(
r(n)

)
·xn‖ ≤ d

(
r(n)

)
‖xn‖ ≤ ‖xn‖, whence lim d

(
r(n)

)
·xn = 0.

Thus r·x = lim r(n)·xn = lim[r(n)]·xn. If r·x ∈ Γ then (−r)·x = −r·x ∈ Γ.
It is therefore no loss of generality to assume that r(n) ≥ 0. For all sufficiently
large n, the elements [r(n)]·xn are all in B. Now consider the assertion k·xn ∈ Γ
for k = 1, 2, . . . , [r(n)] for these n. For k = 1 this is true by hypothesis (i). If
k < [r(n)] and if we assume that k·xn ∈ Γ, then (k+ 1)·xn = (k·xn) ∗xn ∈ Γ since
(k+1)·xn = k+1

[r(n)] ·([r(n)]·xn) ∈ B by the convexity of B and since Corollary 5.6(iii)

and condition 5.24(i) apply. By induction, it follows that [r(n)]·xn ∈ Γ and thus,
since Γ is closed in B we have r·x = limn[r(n)]·xn ∈ Γ. This completes the proof
of the equivalence of (i), (ii), and (iii).

In order to see B ∩T(Γ) = Γ∩T(Γ) we first note that, trivially the right hand
side is contained in the left hand side. If x ∈ B ∩ T(Γ), then x ∈ R·x ∩B ⊆ B ∩ Γ
by the preceding. ut

The following result provides a crucial insight.

Theorem 5.27. Let A denote a Banach algebra with identity. Assume that B is
an open ball around 0 whose radius is less than log 2

2 and that Γ is a closed local
group with respect to B. Then T(Γ) is a closed Lie subalgebra of (A, [· , ·]). If Γ is
locally compact then there is an open ball B′ around 0 in B such that

(‡) B′ ∩ Γ = B′ ∩ T(Γ).

Also, dimT(Γ) is finite.

Proof. (i) First we show that T(Γ) is closed. Assume that x ∈ T(Γ), that is
x = limn xn with xn ∈ T(Γ). There is a real number d > 0 such that r·xn ∈ B for
all sufficiently large n and all |r| ≤ d. Then by Lemma 5.26 we have r·xn ∈ Γ for
these n and for |r| ≤ d. Since Γ is closed in B we deduce r·x ∈ Γ for |r| ≤ d. By
Lemma 5.26 this implies x ∈ T(Γ).

From Lemma 5.26 the set T(Γ) is closed under scalar multiplication. We shall
now show that it is closed under addition and the bracket. For this purpose let
x, y ∈ T(Γ). Then 1

n ·x,
1
n ·y ∈ Γ for all large n by Lemma 5.26. Thus also 1

n ·x∗
1
n ·y ∈

Γ for all large n by 5.24(i). Now by the Recovery of Addition 5.10, x + y =
limn n( 1

n ·x ∗
1
n ·y) ∈ T(Γ). In a similar fashion, the Recovery of the Bracket 5.11

shows that [x, y] ∈ T(Γ).
(ii) Now assume that Γ is locally compact. From Lemma 5.26 we know Γ ∩

T(Γ) = B ∩ T(Γ). This set is a neighborhood of 0 in the Banach space T(Γ)
and is locally compact. Hence T(Γ) is locally compact. But a Banach space is
locally compact if and only if it is finite dimensional. Thus dimT(Γ) <∞. A finite
dimensional vector subspace of a Banach space is complemented. Consequently,
there is a vector space complement E such that A = T(Γ) ⊕ E topologically and
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algebraically. The derivative at 0 of the function µ:
(
B ∩ T(Γ)

)
⊕
(
B ∩ E

)
→ A,

µ(x+ y) = x ∗ y = x+ y+ 1
2 ·[x, y] +H3(x, y) + · · · is the identity µ(0)′ = idA:A =

T(γ ⊕ E) → A. Hence by the Theorem of the Local Inverse [237], µ is a local
diffeomorphism and thus we find open balls C in T(Γ) and D in E both centered
at 0 in such a fashion that x+y 7→ x∗y:C⊕D → C ∗D is a diffeomorphism of an
open zero neighborhood of A onto an open zero neighborhood of A. Now suppose
that there is no open ball B′ around 0 with B′ ∩ T(Γ) = B′ ∩ Γ. Then there are
sequences xn ∈ T(Γ) and yn ∈ E with xn ∗ yn → 0, xn ∗ yn ∈ Γ and yn 6= 0. From
5.26(†) we know B ∩ T(Γ) ⊆ Γ, and thus xn ∈ Γ. Now yn = (−xn) ∗ xn ∗ yn ∈
Γ ∗ Γ ∩ B ⊆ Γ for all large enough n by Definition 5.24. Let r > 0 be the radius
of a ball Br(0) such that Γ ∩ Br(0) is compact. Since limn ‖[ r

2‖yn‖ ]·yn‖ = r
2 , the

sequence [ r
2‖yn‖ ]·yn = yn∗· · ·∗yn is eventually in the compact set Γ∩Br(0). Hence

it has a converging subsequence, and after renaming the sequence, if necessary,
we may assume that z = limn[ r

2‖yn‖ ]·yn exists. By definition of T(Γ) we have

z ∈ T(Γ). Also, ‖z‖ = r/2 > 0. On the other hand yn ∈ E implies z ∈ E. Thus
z ∈ T(Γ) ∩ E = {0}, a contradiction. ut

This theorem has an important consequence:

Theorem 5.28. Let A denote a Banach algebra with identity. Assume that B is
an open ball around 0 whose radius is less than log 2

2 and that Γ is a locally compact
local group with respect to B. Then T(Γ) ∩B is an open ball in the Banach space
T(Γ) and is open and closed in Γ. In particular, if Γ is also connected, then

Γ = T(Γ) ∩B.

Proof. (a) Before we get into the technicalities of the proof, we note that for
each x ∈ B and each neighborhood U of 0 in B such that x ∗U ⊆ B, the set x ∗U
is a neighborhood of x in B. Indeed, let V be an open neighborhood of x in B such
that −x ∗ V ⊆ U , then V = x ∗ (−x ∗ V ) ⊆ x ∗ U .

(b) We claim that Γ is closed in B. Assume that x = limn xn ∈ B with xn ∈ Γ.
Then we look for a closed ball C around 0 such that C ∩ Γ is compact; such a C
exists because Γ is locally compact at 0. We may assume that we choose C so small
that x∗C is defined and contained in B. By (a) above, x∗C is a neighborhood of x
in B. Thus xn ∈ x∗C for all large n and there is an N such that −xm∗xn ∈ C ⊆ B
for m,n ≥ N . Then −xN ∗xn ∈ C ∩Γ implies −xN ∗x = limn−xN ∗xn ∈ Γ, since
C ∩ Γ is compact. Thus x = xN ∗ (−xN ∗ x) ∈ (Γ ∗ Γ) ∩B ⊆ Γ. Hence Γ is closed.

(c) By 5.27, T(Γ) is a Banach subspace of A, and then B is an open ball
around 0 in it. We claim that B ∩ T(Γ) is open and closed in Γ; thus if Γ is also
connected, we shall conclude Γ = T(Γ)∩B. Since obviously B∩T(Γ) is closed in Γ
as T(Γ) is closed, we must show that for every point x ∈ B∩T(Γ) the set B∩T(Γ)
is a neighborhood of x in Γ. Since Γ is closed, Theorem 5.27 applies and yields
an open ball B′ around 0 such that B′ ∩ Γ ⊆ T(Γ). Now we choose an open ball
B′′ ⊆ B′ so small that the function x ∗B′′ ⊆ B. Then x ∗B′′ is a neighborhood of
x in B. We will now show that (x ∗B′′) ∩ Γ is contained in T(Γ). This will prove
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that B ∩T(Γ) is a neighborhood of x in Γ and complete the proof. For a proof let
y ∈ (x ∗B′′) ∩ Γ. Then

−x ∗ y ∈
(
− x ∗ (x ∗B′′)

)
∩
(
− T(Γ) ∩B) ∗ Γ ⊆ B′′ ∩ (Γ ∗ Γ) ⊆ B′ ∩ Γ ⊆ T(Γ).

Now T(Γ) is a closed Lie subalgebra of (A, [·, ·]) by 5.27, and thus 5.21(iv) shows
that T(Γ) ∩B is a local group with respect to B. Then

y = x ∗ (−x ∗ y) ∈ (T(Γ) ∩B) ∗ (T(Γ) ∩B) ⊆ T(Γ),

which is what we wanted to show. ut

Subgroups of A−1 and Linear Lie Groups

Lemma 5.29. Let G denote a subgroup of A−1 for a Banach algebra A. Let
B = Br(0) be any open ball around 0 such that

expB ⊆ B1(1).

Then Γ = B ∩ log(B1(1) ∩G) is a local group with respect to B.

Proof. Firstly, −Γ = Γ is clear, since −B = B and G−1 = G. Secondly, assume
that x, y ∈ Γ and x ∗ y ∈ B. Then expx, exp y ∈ B1(1) ∩ G. Also, exp(x ∗ y) =
expx exp y ∈ G and exp(x ∗ y) ∈ expB ⊆ B1(1). Thus x ∗ y = log exp(x ∗ y) ∈
B ∩ log(B1(1) ∩G) = Γ. ut

We set g = T(Γ) and recall that g = T(Γ∩U) for any open zero neighborhood
U of A (see the comment following Definition 5.25). Thus we can write

(18) g = T
(

log(B1(1) ∩G)
)

= T
(

log(B1(1) ∩G)
)
.

Notice that after Theorem 5.27 the set g = T(Γ) is a closed Lie algebra in (A, [· , ·]).

Definition 5.30. Assume thatG is any subgroup of A−1. We define the completely
normable Lie algebra g by T

(
log(B1(1)∩G)

)
⊆ (A, [·, ·]) and call it the Lie algebra

of G in A. ut

Locally Compact Subgroups of Invertible Elements

in a Banach Algebra

Theorem 5.31. Let A denote a Banach algebra with identity and G a locally
compact subgroup of A−1. Then the Lie algebra g of G in A is a closed finite
dimensional Lie subalgebra of (A, [· , ·]) and

(i) for every open ball B around 0 with expB ⊆ B1(1) the function

exp |(B ∩ g) : B ∩ g→ V with V = exp(B ∩ g)

is a diffeomorphism onto an identity neighborhood of G.
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(ii) For each such B there is an open ball C around 0 contained in B such that
C ∩ exp−1G = C ∩ g.

Proof. Let Γ = B ∩ log(B1(1) ∩G). Then g = T(Γ) is a closed finite dimensional
Lie algebra by Theorem 5.27, and g∩B is open and closed in Γ by Theorem 5.28.
Since exp maps B homeomorphically onto the open neighborhood expB of 1 in
A−1, exp maps B ∩ g homeomorphically onto a neighborhood of 1 in G. This
proves (i).

(ii) By Theorem 5.28, for each B as in (i), there exists an open ball C around
0 in B such that C ∩ Γ = C ∩ g. It follows that exp(C ∩ g) ⊆ G, whence C ∩ g ⊆
C ∩ exp−1G. Conversely, if x ∈ C ∩ exp−1G, then expx ∈ B1(1) ∩ G, whence
x = log expx ∈ C ∩ Γ = C ∩ g. This completes the proof of (ii). ut

The Definition of Linear Lie Groups

Definition 5.32. A topological group G is called a linear Lie group if there is a
Banach algebra A with identity and an isomorphism of topological groups from G
onto a subgroup G` of the multiplicative group A−1 of A such that there is a closed
Lie subalgebra g of (A, [· , ·]) with the property that exp maps some 0-neighborhood
of g homeomorphically onto a 1-neighborhood of G`.

Any group such as G` will be called a Lie subgroup of A−1. ut

The assumption that for some open ball B around 0 in A the exponential
function exp maps B ∩ g homeomorphically onto an identity neighborhood in G
entails in particular that Γ = B ∩ g is a local subgroup with respect to B.

The entire multiplicative group A−1 of any Banach algebra is a linear Lie
group whose Lie algebra is (A, [· , ·]). It is clear that we may assume for any linear
Lie group that it is already embedded into the multiplicative group A−1 of some
Banach algebra A if it is convenient. In this case G is simply a Lie subgroup of
A−1. If H is a Lie subgroup of A−1 and H ⊆ G, we shall also briefly say that H
is a Lie subgroup of G. Recall that no subgroup of A−1 has small subgroups by
Lemma 2.38. Hence, in particular, linear Lie groups do not have small subgroups.

Proposition 5.33. (i) Every locally compact subgroup G of the multiplicative
group of a Banach algebra is a linear Lie group with g = T(Γ), Γ = B ∩
log(B1(1) ∩G).

(ii) A locally compact subgroup H of an arbitrary linear Lie group G is a Lie
subgroup. Moreover, G contains a subset C which is homeomorphic to a closed
convex symmetric identity neighborhood in the Banach space g/h such that (c, h) 7→
ch:C×H → CH is a homeomorphism onto a neighborhood of 1 in G. (The Tubular
Neighborhood Theorem for Subgroups)

(iii) A closed subgroup H of a finite dimensional linear Lie group G is a Lie
subgroup.

(iv) A compact Lie group is a linear Lie group.
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(v) If A is a Banach algebra and G a Lie subgroup of A−1, then G is closed
in A−1.

Proof. (i) Use Theorem 5.31 and Definition 5.32 and note that the Lie algebra of
G is g = T(Γ)!

(ii) The first assertion is immediate from (i). For a proof of the second, by
Definition 5.32 we may assume that G is a closed subgroup of the group A−1 of
invertible elements of a Banach algebra A, such that expA:A→ A−1 maps a closed
Lie algebra g = T(Γ) in A into G implementing a local homeomorphism from B∩g
onto an identity neighborhood ofG. The Lie algebra h = T(B∩log(B1(1)∩H)) ⊆ A
is a direct summand of g since dim h < ∞. Thus g = v ⊕ h with a closed vector
subspace v of g. Let B0 be a closed ball around 0 such that B0 ∗ B0 is defined in
A. We find open zero neighborhoods U and V of v and h, respectively, contained
in B0 satisfying the following properties:

(a) U ∗ V ⊆ B0.
(b) By the Theorem of the Local Inverse, the function u⊕v 7→ u∗v:U⊕V → U∗V

is a homeomorphism onto a zero neighborhood of g.
(c) U ∗V is mapped homeomorphically by exp |g onto an identity neighborhood

of G, and
(d) U ∗ V is so small that (U ∗ V ) ∩ exp−1(H) = (U ∗ V ) ∩ h (see 5.31(ii)).

Regarding (d): If X ∈ U and Y ∈ V are such that X ∗ Y ∈ h, then X = (X ∗ Y ) ∗
(−Y ) ∈ U ∩ (h ∩B0) ∗ (h ∩B0) ⊆ U ∩ h = {0}. Hence (d) implies

(∗) (U ∗ V ) ∩ exp−1(H) = V

Now we let U1 be a closed convex symmetric zero neighborhood of v such that

(∗∗) U1 ⊆ U and U1 ∗ U1 ⊆ U ∗ V

and set C = expU1. We consider the continuous surjective function m:C ×H →
CH, m(c, h) = ch and assume that m(c1, h1) = m(c2, h2), i.e. c1h1 = c2h2 for
cj ∈ C and hj ∈ H, j = 1, 2. We write cj = expXj for Xj ∈ U1 for j = 1, 2. Then
exp

(
(−X2) ∗X1

)
= c−1

2 c1 = h2h
−1
1 ∈ H, whence

−Y def
= (−X2) ∗X1 ∈ (−U1 ∗ U1) ∩ exp−1H ⊆ (U ∗ V ) ∩ exp−1H = V

by (∗∗) and (∗). Hence X2 ∗ 0 = X2 = X1 ∗ Y and thus, by (b) above, X2 ⊕ 0 =
X1 ⊕ Y , whence Y = 0 and X1 = X2, i.e. c1 = c2 and thus also h1 = h2.
Therefore m is bijective. By (b) and (c) above and in view of U1 ⊆ U from (∗∗),
we conclude that m|(C × V ′), V ′ = expV , implements a homeomorphism from
the open neighborhood C×V ′ of (1, 1) in C×H onto an open neighborhood CV ′

of 1 in CH; in particular, CH is a neighborhood of 1. The group H acts on the
right on C × H =

⋃
h∈H(C × V ′)h by multiplication on the right factor and on

CH =
⋃
h∈H(CV ′)h by multiplication on the right, and m is equivariant for this

action. This allows us to conclude that m is a homeomorphism.
For (iii) note that a finite dimensional linear Lie group G, being locally homeo-

morphic to g with g ∼= Rn for some n as a vector space, is locally compact. Closed
subspaces of locally compact spaces are locally compact. Thus (ii) applies.
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In view of Definition 2.41, (iv) is a consequence of (iii), Corollary 2.40.
Proof of (v). By Definition 5.32 there is an open ball B around zero in A such

that exp |B:B → U
def
= expB is a homeomorphism onto an identity neighborhood

U of A−1 and that exp |(B ∩ g): (B ∩ g)→ V
def
= exp(B ∩ g) is a homeomorphism

of an identity neighborhood of G. Since g is closed in A by Definition 5.32, the
set B ∩ g is closed in B and then the set V is closed in U since exp |B:B →
U is a homeomorphism. Therefore G is locally closed in A−1 (see Appendix 4,
Definition A4.22. Hence G is closed in A−1 by A4.23. ut

Note that in 5.33(ii) we have observed not only that a locally compact subgroup
H of a linear Lie group G is itself a linear Lie group, but we have shown that it
is very nicely embedded into G, namely, in a “tubular fashion.” If G is finite
dimensional, the set C may be taken to be an m-cell with m = dimG− dimH so
that H has a neighborhood in G homeomorphic to H×[−1, 1]m. Local compactness
of H was used in 5.33(ii) only in concluding that h is algebraically and topologically
a direct summand of g. The tubular neighborhood theorem holds if one postulates
this as an assumption.

Exercise E5.9. Assume that A is a C∗-algebra (see Exercise E1.1 and Example
2.12). Then the group U(A) = {g ∈ A−1 | g∗ = g−1} of unitary elements is a Lie
subgroup of A−1 with Lie algebra u(A) = {a ∈ A | a∗ = −a}.

Special case: A = C, U(A) = S1, u(A) = iR. Thus, as a consequence T = R/Z
has the classical representation as a linear Lie group. We may say that T(T) = R
and expT:R→ T is the quotient map expT(r) = r + Z. ut

Exercise E5.10. (i) We consider Kn and A = Hom(Kn,Kn) and fix a scalar
product (x|y) =

∑n
j=1 xjyj . Then A is in fact a C∗-algebra with an involution

defined by (ϕ(x)|y) = (x|ϕ∗(y)). Then

Gl(n,K) = A−1, Sl(n,K), O(n), SO(n), U(n), SU(n)

are Lie subgroups of Gl(n,K) with Lie algebras

gl(n,K) = (Hom(Kn,Kn), [·, ·]),
o(n) = {ϕ ∈ gl(n,R) | ϕ∗ = −ϕ},
u(n) = {ϕ ∈ gl(n,C) | ϕ∗ = −ϕ},

sl(n,K) = {ϕ ∈ gl(n,K) | trϕ = 0},
so(n) = o(n) ∩ sl(n,R),

su(n) = u(n) ∩ sl(n,C).

Determine the dimensions of all of these Lie groups.
(ii) Prove the following propositions.

1) Every discrete group is a linear Lie group.
2) The additive group of every Banach space is a linear Lie group.

[Hint. Regarding (ii) 1). Recall that a family (sj)j∈J in a topological abelian ad-
ditively written group S is called summable if the net of all finite partial sums
sF =

∑
j∈F sj for finite subsets F ⊆ J converges as F ranges through the set

Fin(J) of finite subsets of J .
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Let G be a discrete group. Set

A
def
= `1(G) = {(xg)g∈G | xg ∈ C, (|xg|)g∈G is summable in R}

with ‖(xg)g∈G‖1 =
∑
g∈G |xg|. This is a Banach algebra with respect to the mul-

tiplication

(xg)g∈G ∗ (yh)h∈G = (
∑
gh=k

xgyh)k∈G.

Prove that this multiplication is well-defined and turns A into a Banach algebra
with identity 1 = (eg)g∈G where e1 = 1 and eg = 0 for g 6= 1. Now let

g
def
= (δgh)h∈G with δgh =

{
1 if h = g,
0 if h 6= g.

Then gh = g ∗ h and g 7→ g : G → A−1 is an injective morphism of groups. For
two different elements g and h in G show that ‖g − h‖1 = 2. Hence {g | g ∈ G} is

a discrete hence closed subgroup of A−1.
Regarding (ii) 2). Let E be a real Banach space. Consider the Banach space

E1
def
= E × R with the sup-norm. Set A = L(E1), the Banach algebra of all

bounded operators of E1 with the operator norm. For x ∈ E let Tx ∈ A be defined
by Tx(y, r)) = (y + r·x, r). Set G = {Tx | x ∈ E} and show that G is a closed
subgroup of A−1. Show that x 7→ Tx:E → G is an isomorphism of topological

groups. Define tx(y, r) = (r·x, 0) and g
def
= {tx ∈ A | x ∈ E}. Show that [g, g] ⊆ g

and that exp:A→ A−1 maps g homeomorphically onto G.] ut

Analytic Groups

This subsection may be skipped without impairing the understanding of the re-
mainder of the book; however, it is an important link to a more general theory of
Lie groups.

Corollary 5.34. Let G denote a Lie subgroup of the multiplicative group of a
Banach algebra. Let B be an open ball around 0 such that B ∗ B is defined and
mapped into B1(1) under exp and (B∗B)∩g is mapped homeomorphically onto an
identity neighborhood of G. Set V = exp(B∩g). Then U = {gV | g ∈ G} is an open
cover of G. For each g ∈ G, the function ϕg: gV → B∩g, ϕg(x) = log(g−1x) is an
analytic and analytically invertible homeomorphism with the following property:

(A) If Ø 6= U = gV ∩ hV and Ug = ϕg(U), Uh = ϕh(U), then ϕh ◦ (ϕg|Ug)−1:
Ug → Uh is an analytic and analytically invertible homeomorphism f of open
subsets of g.

Proof. It is clear that U is an open cover of G since V is an open identity neigh-
borhood by definition. For x ∈ Ug we note ϕ−1

g (x) = g expx. Thus we compute

f(x) = ϕh
(
g expx) = log

(
h−1g expx). Therefore exp f(x) = h−1g expx, whence

h−1g = exp f(x) exp−x = exp(f(x) ∗ −x) ∈ exp(B ∗ B) ⊆ B1(1). If we set
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u = log(h−1g), then u = f(x) ∗ −x or f(x) = u ∗ x. Hence f :Ug → Uh is an
analytic function between open sets of g. ut

Assume that a Hausdorff topological space M has an open cover
{Uj | j ∈ J} such that there is a family ϕj :Uj → Bj of homeomorphisms onto
open sets of some Banach space E satisfying

(A) if Uj ∩ Uk 6= Ø then the function ϕk ◦
(
ϕj |(Uj ∩ Uk)

)−1
maps ϕj(Uj ∩ Uk)

analytically onto ϕk(Uj ∩ Uk).

Then M is called an analytic manifold modelled on E. If E = Rn then M is
called an analytic manifold of dimension n. Therefore, Corollary 5.34 can also be
expressed as follows:

Corollary 5.35. Every Lie subgroup G of the multiplicative group of some Banach
algebra is an analytic manifold modelled on g. If G is locally compact then G is a
manifold of dimension dim g. ut

If f :M →M ′ is a function between analytic manifolds then f is called analytic
if for any m ∈M and any coordinate system ϕj :Uj → Bj with m ∈ Uj and any co-
ordinate system ϕ′j′ :U

′
j′ → B′j′ with f(m) ∈ U ′j′ the function x 7→ ϕ′j′

(
f(ϕ−1

j (x))
)

from a sufficiently small neighborhood C of ϕj(m) in Bj into B′j′ is analytic.

Exercise E5.11. Let G be a linear Lie group. Assume that it is a Lie subgroup of
A−1 for a Banach algebra A with the analytic structure defined in Corollaries 5.34
and 5.35. With the obvious analytic structure on G × G, show that (x, y) 7→
xy:G×G→ G and x 7→ x−1:G→ G are analytic functions. ut

Any topological group G with the structure of an analytic manifold such that
multiplication and inversion are analytic functions is called an analytic group. Thus
once more Corollary 5.34 and Exercise E5.11 can be rephrased to read:

Corollary 5.36. Every linear Lie group is an analytic group. ut

As a consequence of this corollary and Corollary 2.40 we now have:

Corollary 5.37. Every compact Lie group is a finite dimensional analytic group.ut

The Intrinsic Exponential Function of a Linear Lie Group

Theorem 5.31 has an important consequence for the classification of one parameter
groups which extends to all linear Lie groups. Recall Definition 5.7 in which we
denoted with L(G) the space Hom(R, G) of all one parameter groups with the
topology of uniform convergence on compact sets. We emphasize the fact that L(G)
is, to begin with, a topological space canonically (and functorially) associated with

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



176 5. Linear Lie Groups

G. In this subsection we shall see that G endows L(G) with a lot of additional
structure. In order to proceed, the following definition is helpful:

Definition 5.38. A topological vector space is called completely normable if it
admits a norm with respect to which it is a Banach space. A topological Lie algebra
is a Lie algebra g which is a topological vector space such that (x, y) 7→ [x, y]: g×
g → g is continuous. It is called completely normable if its topology is defined by
a Banach space norm. ut

Definition 5.39. If G is an arbitrary topological group then we call the function

(19) expG:L(G)→ G expG(X) = X(1)

the exponential function of G. ut

If G is a linear Lie group we assume that G ⊆ A−1 for some Banach algebra A
and that g = T

(
log(B1(1) ∩G)

)
is the Lie algebra of G in A. We recall from 5.3

that logA:B1(1)→ log(B1(1)) is a well defined homeomorphism and set

M1 ={g ∈ B1(1) | expA[0, 1]·(logA g) ⊆ B1(1) ∩G}, and

N1 = logM1 = {X ∈ g | [0, 1]·X ⊆ logA(B1(1) ∩G)}.

Proposition 5.40. Assume that G is a Lie subgroup of the group A−1 of units in
a Banach algebra A and that α:A → L(A−1) is the homeomorphism of Proposi-
tion 5.9 given by α(x)(t) = expA t·x. Then expA x = α(x)(1) = expG

(
α(x)

)
and

we have the following conclusions:
(i) α induces a homeomorphism αG: g→ L(G).
(ii) expA |N1:N1 → M1 is an analytic homeomorphism with analytic inverse

log:M1 → N1 of an open connected zero neighborhood N1 in g to an open identity
neighborhood of G.

(iii) If G is locally compact then g∩exp−1
A G is a zero-neighborhood of exp−1

A G.
(iv) If X, Y, X ∗ Y ∈ N1, then there are identity neighborhoods UX and UY

such that (X ∗UY )∪ (UX ∗Y ) ⊆ N1, and the set {(X,Y ) ∈ N1×N1 | X ∗Y ∈ N1}
is a neighborhood of (0, 0) ∈ N1 ×N1.

Proof. (i) The function αG is just the restriction of the function A → L(A−1) of
the Recovery of Scalar Multiplication 5.9 and is, therefore, a homeomorphism onto
its image which is contained in L(G) by Definition 5.32. Conversely, if X:R→ G
is a one parameter subgroup of G, then by Proposition 5.9, X = α(x) for some
x ∈ A, that is X(t) = exp t·x for all t ∈ R. If ε > 0 is such that |t| < ε implies
X(t) ∈ exp(B ∩ g) where Γ = B ∩ g is a local group mapped homeomorphically
onto an identity neighborhood of G inside B1(1), then t·x = logX(t) ∈ Γ ⊆ g.
Then x ∈ g and αG is surjective. Hence α: g→ L(G) is a homeomorphism.

(ii) We notice that N1 = {x ∈ A | exp[0, 1]·x ⊆ B1(1) ∩ G} by the defi-
nitions of M1 and N1. In particular, N1 is a connected subset of the open set

U
def
= exp−1

A B1(1) and therefore is in the identity component of 0 in U . It is then
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clear from 5.3, that expA |N1:N1 →M1 and log |M1:M1 → N1 invert each other.
Furthermore, exp[0, 1]·x ⊆ G implies expR·x ⊆ G since [0, 1] generates the addi-
tive group R. By (i) this implies x ∈ g. Thus N1 ⊆ g. We claim that N1 is open
in g. If not, there is a point x ∈ N1 which fails to be an inner point of g ∩ U .
Then there is a sequence (tn, xn) ∈ [0, 1] × (g ∩ U) with x = limn xn but with
tn·xn /∈ g ∩ U . As [0, 1] a subsequence of tn converges, and upon renaming it and
xn accordingly we may as well assume that t = lim tn exists. But then, since g∩U
is open in g we would have t·x /∈ g ∩ U which would contradict [0, 1]·x ⊆ g ∩ U
which we know from x ∈ N1. A completely analogous proof shows that M1 is open
in G. This finishes the proof of (ii).

(iii) is a consequence of 5.31(ii).
(iv) follows from the fact that N1 is open by (ii) and that the multiplication ∗

given by X ∗ Y = log(expX expY ) is continuous. ut

Every element g of N1 is connected with 1 by the unique local one parameter
semigroup expA([0, 1]· log g). One sometimes says that the identity neighborhood
M1 of G is uniquely ruled by one parameter semigroups or simply by arcs (which
is perhaps a bit too terse).

The Exponential Function of a Linear Lie Group

Theorem 5.41. Let G denote a linear Lie group.
(i) The space L(G) is a completely normable topological real Lie algebra with

respect to the following operations:
(s) Scalar multiplication: (r·X)(t) = X(tr) for X ∈ L(G), r, t ∈ R.
(a) Addition: (X + Y )(t) = limn

(
X(t/n)Y (t/n)

)n
for X, Y ∈ L(G), t ∈ R.

(b) Lie bracket: [X,Y ](t) = limn comm
(
X(t/n)Y (t/n)

)n2

with comm(g, h) =
ghg−1h−1 for X, Y ∈ L(G), t ∈ R.

Furthermore,
(e) the exponential function expG:L(G) → G, expGX = X(1) maps all suf-

ficiently small 0-neighborhoods of L(G) homeomorphically onto 1-neighbor-
hoods of G, that is it induces a local homeomorphism at 0.

(ii) There is an open zero neighborhood N1 of L(G), and an open identity
neighborhood of G such that expG |N1:N1 → M1 is a homeomorphism such that
M1 is ruled by one parameter semigroups. Its inverse is denoted log:M1 → N1.

(iii) The image im expG = expG L(G) of the exponential function algebraically
generates the identity component G0 of G, in symbols G0 = 〈expG g〉, and G0 is
open in G.

(iv) G is discrete if and only if L(G) = {0}.
(v) If X ∈ L(G) and (Spec adX) ∩ (2πiZ \ {0}) = Ø then there is an open

neighborhood U of X in g such that expG |U :U 7→ expU is a homeomorphism onto
an open neighborhood of expGX in G and Y 7→ log

(
expGX)−1 expG(X + Y )

)
:

U → U ′ ⊆ g is an analytic and analytically invertible homeomorphism onto an
open zero neighborhood of g.
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In particular, expG g is a neighborhood of each g ∈ G such that exp−1
G (g)

contains an X for which Spec adX does not contain a nonzero integral multiple
of 2πi.

(vi) If H is a locally compact subgroup of G, then L(H) ∩ exp−1
G G is a neigh-

borhood of 0 in exp−1
G H.

Proof. (i) Since G is a linear Lie group we may assume that G is a closed subgroup
of A−1 for a Banach algebra A. If we transport the Lie algebra structure and the
topology from the Lie algebra g ⊆ (A, [· , ·]) of G in A to L(G) via α, then L(G)
becomes a completely normed topological Lie algebra and (e) is automatically
satisfied. Furthermore, Recovery of Scalar Multiplication 5.9 proves (s), Recovery
of Addition 5.10 proves (a), and Recovery of the Bracket 5.11 proves (b).

(ii) The assertion follows from Proposition 5.40(ii).
(iii) By (ii) we have M1 ⊆ im expG. Hence im expG is a neighborhood of the

identity in G. We recall that a connected topological group C (such as G0 here) is
algebraically generated by any neighborhood U of the identity (such as im expG in
our case); indeed the subgroup 〈U〉 =

⋃∞
n=1(U ∪ U−1)n is open and hence closed

in C, since its cosets form a partition of C. This proof shows, in particular, that
G0 is open.

(iv) If G is discrete, then L(G) = Hom(R, G) is singleton. Conversely, if
L(G) = {0}, then G0 = 〈expG{0}〉 = {1} by (iii) and {1} is open in G.

(v) For a proof of (v) we may and shall assume that G ⊆ A−1 for a Banach
algebra A and that the exponential function of G is the restriction expG: g → G
of the exponential function of A to g. We define ϕ:A→ A by

ϕ(Y ) = (expG−X)
(

expG(X + Y )
)

= L−1
expGX

expG
(
TX(Y )

)
(with Lax = ax and TXY = X+Y in A). Since TX |g: g→ g and LexpGX |G:G→ G
are homeomorphisms, our proof will be accomplished if we can show that ϕ
maps an open neighborhood U0 of 0 bijectively onto an open identity neighbor-
hood of G. By the chain rule ϕ′(0) =

(
L−1

expGX

)′
(expGX) ◦ exp′G(X) ◦ T ′X(0).

Since La is linear,
(
L−1

expGX

)′
(expGX) = L−1

expGX
, and TX(0) = idA. Hence

ϕ′(0) = L−1
expGX

exp′G(X) = f(adX) by Proposition 5.23, and by the assump-

tion on Spec adX, the operator ϕ′(0) is invertible on A and g by 5.23. Now let V
be a 0-neighborhood in g mapped homeomorphically onto an identity neighbor-
hood in G (by Definition 5.32). Now we define W = ϕ−1(expG V ) and Φ:W → V
by Φ(Z) = log

(
ϕ(Z)

)
. Now Φ′(0) = log′(1)◦ϕ′(0) by the chain rule. We note that

log′(1) = exp′G(0)−1 = idA, Hence Φ′(0) = ϕ′(0): g→ g is invertible. Thus by the
Theorem of the Local Inverse, Φ maps an open neighborhood U0 of 0 in W onto
an open neighborhood of 0. Hence ϕ maps U0 onto an open identity neighborhood
in G. This is what we had to show.

(vi) By 5.33(ii), H is a Lie subgroup of G. As in the proof of (v) we may
assume that G ⊆ A−1 and that L(G) is identified with g ⊆ A in such a fashion that
expG: g→ G is the restriction of the exponential function exp:A→ A−1 to g. Then
L(H) becomes identified with a finite dimensional subalgebra h of g (see 5.31). By
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5.31 we find an open ball C around 0 in A such that C ∩ exp−1
A H = C ∩ h. Since

C ∩ exp−1
A H is a neighborhood of 0 in exp−1

A H, the set C ∩ h is a neighborhood
of 0 in exp−1

A H. As C ∩ h = C ∩ g ∩ exp−1
A H = C ∩ g ∩ exp−1

G H ⊆ C ∩ h the set
C ∩ h is a neighborhood of 0 in exp−1

G H. Claim (vi) follows. (See also 5.40(iii).) ut

We recognize after Theorem 5.41 that the Lie algebra L(G) of G as a completely
normable Lie algebra is uniquely and canonically determined by G. For any embed-
ding of G as a closed subgroup of the multiplicative group A−1 of some Banach
algebra A, the Lie algebra of G in A is isomorphic to L(G) as a completely normable
Lie algebra. The norm of g induced by that of A is not determined by G.

We now recognize the functorial property of the prescription G 7→ L(G) (cf.
Appendix 3). In the last part of the following result we make a brief reference to
universal covering groups which are discussed in Appendix 2.

Functoriality of the Lie Algebra of a Lie Group

Theorem 5.42. (i) (Global Version) Let G and H be linear Lie groups. If
f :G→ H is a morphism of topological groups, then the prescription

L(f)(X) = f ◦X for X ∈ L(G) = Hom(R, G)

defines a unique morphism L(f):L(G) → L(H) of topological real Lie algebras
such that

expH ◦L(f) = f ◦ expG

that is such that the following diagram is commutative

L(G)
L(f)−−−−−−−−−→ L(H)

expG

y yexpH

G −−−−−−−−−→
f

H.

The relation L(f1) = L(f2) for two morphisms fj :G → H, j = 1, 2 implies
f1|G0 = f2|G0.

(ii) (Local Version) Assume that for two linear Lie groups G and H there are
identity neighborhoods U and V of G and H, respectively, and a continuous map
f :U → V such that f(xy) = f(x)f(y) whenever x, y, xy ∈ U . Then there is
a continuous Lie algebra morphism L(f): g → h such that for suitably small 0-
neighborhoods B and C of g and h, respectively, the following diagram commutes:

B
L(f)|B−−−−−−−−−→ C

expG |B
y yexpH |C

U −−−−−−−−−→
f

V.

(iii) (Lie’s Fundamental Theorem) For two linear Lie groups G and H, assume
that T : g→ h is a morphism of completely normable Lie algebras. Then there are
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open identity neighborhoods U and V of G and H, respectively, and a continuous
map f :U → V such that f(xy) = f(x)f(y) whenever x, y, xy ∈ U and that,
for appropriately chosen 0-neighborhoods B and C of g and h, respectively, the
following diagram commutes:

B
T |B−−−−−−−−−→ C

expG |B
y yexpH |C

U −−−−−−−−−→
f

V.

(iv) (Local Characterisation of Lie Groups) Two linear Lie groups G and H
have identity neighborhoods U and V linked by a homeomorphism f :U → V such
that x, y, xy ∈ U implies f(xy) = f(x)f(y) if and only if the universal covering
groups of G0 and H0 are isomorphic if and only if g and h are isomorphic.

Proof. (i) From L(f)(X) = f ◦ X we have expH
(
L(f)(X)

)
= (f ◦ X)(1) =

f
(
X(1)

)
= f(expGX). Also

L(f)(r·X)(t) =
(
(f ◦ r·X)

)
(t) = f

(
r·X(t)

)
= f

(
X(tr)

)
=
(
r·(f ◦X)

)
(t)

=
(
r·L(f)(X)

)
(t)

by Theorem 5.41(i)(s). Similarly,

L(f)(X + Y )(t) = f
(
X + Y )(t) = f

{
lim
n

(
X(t/n)Y (t/n)

)n}
= lim

n

{
f
(
X(t/n)

)
f
(
Y (t/n)

)}n
=
(
(f ◦X) + (f ◦ Y )

)
(t)

=
(
L(f)(X) + L(f)(Y )

)
(t)

by Theorem 5.41(i)(a). In just the same way Theorem 5.41(i)(b) implies

L(f)[X,Y ] = [L(f)(X),L(f)(Y )].

The continuity of L(f) follows if we establish continuity at 0. However, if B is
an open ball around 0 in L(H) which is mapped homeomorphically onto an open
identity neighborhood of H under expH , then U = (f ◦ expG)−1

(
expH(B)

)
is an

open zero neighborhood of L(G), and L(f)(U) ⊆ B.

Next we show the uniqueness. If F :L(G) → L(H) is a Lie algebra morphism
with expH ◦F = f ◦ expG, then F (X)(1) = f

(
X(1)

)
. Since F preserves scalar

multiplication, we deduce F (X)(t) =
(
t·F (X)

)
(1) =

(
F (t·X)

)
(1) = f

(
(t·X)(1)

)
=

f
(
X(t)

)
= L(f)(X)(t) for all t ∈ R, whence F = L(f). (Note that the uniqueness

proof requires the preservation of scalar multiplication by F only.)
Finally assume that L(f1) = L(f2) for two morphisms. If expG maps the zero

neighborhood B of L(G) homeomorphically onto the zero neighborhood U of G,
then g ∈ U implies

f1(g) = expH L(f1)(expG |B)−1(g) = expH L(f2)(expG |B)−1(g) = f2(g).
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Thus the equalizer E
def
= {g ∈ G | f1(g) = f2(g)} is a closed subgroup of G

containing U . Hence it is open and thus contains G0 which establishes the claim
f1|G0 = f2|G0.

(ii) Let f :U → V be given as specified in (ii). Let X:R → G be a one pa-
rameter group. There is an ε > 0 such that X(]−ε, ε[) ⊆ U . The function t 7→
fX(t): ]ε, ε[→ H extends to a unique one parameter group L

(
f ◦L(f)

)
X:R→ H.

(For an elementary proof see the Extension Lemma 5.8 (cf. also E1.8), for a more
sophisticated one see Appendix A2.26.) This gives us a function L(f):L(G) →
L(H) such that expH ◦T agrees on a sufficiently small 0-neighborhood B with f ◦
expG |B. It respects scalar multiplication because of r·(L(f)X)(t) = L(f)X(rt) =
L(f)(r·X)(t). Exactly as we showed in the first part of the proof that L(f) re-
spected addition and brackets using recovery of addition and brackets we see now
that L(f) respects addition and brackets. Thus L(f) is a morphism of completely
normable Lie algebras. From its construction it follows that expH ◦L(f) agrees on
a sufficiently small 0-neighborhood B of g with f ◦ expG |B.

(iii) Let T : g → h be a morphism of completely normable Lie algebras. We
may assume G ⊆ A−1

1 , g ⊆ A1, H ⊆ A−1
2 , and h ⊆ A2 for suitable Banach

algebras. Pick open balls Bj around 0 in Aj such that Bj ∗Bj is defined. Note that
expG |(B1 ∩ g):B1 ∩ g→ U and expH |(B2 ∩ h):B2 ∩ h→ V are homeomorphisms
onto open identity neighborhoods U and V of G and H, respectively, that X, Y ∈
Bj implies ‖X ∗ t·Y ‖ < π for all t ∈ [0, 1], and that TB1 ⊆ B2. Then 5.21(iii)
implies for all X, Y ∈ B1 ∩ g that T (X ∗ Y ) = (TX) ∗ (TY ). We set f :U →
V , f(g) = expH(T log g) (where log = (expG |B1 ∩ g)−1). This f satisfies the
requirements of (iii).

(iv) By (ii) and (iii) above, the homeomorphism f :U → V exists as stated
iff g ∼= h. By Appendix A2.21 every connected Lie group possesses a universal
covering group. By A2.28, the homeomorphism f :U → V exists if and only if the
universal covering groups of G and H are isomorphic. ut

We notice that part (iii) and, consequently, part (iv) are more sophisticated
than the rest because it is comparatively hard to create, from a morphism of the
Lie algebras (an object of pure linear algebra) a local group morphism.

Exercise E5.12. Prove the following proposition:

The only connected linear Lie groups (up to isomorphism) having a Lie algebra
isomorphic to so(3) are SO(3) and S3 ∼= SU(2).

[Hint. By Appendix A2.30 the topological groups listed are the only ones which
are locally isomorphic to SO(3). They are linear Lie groups. By Theorem 5.42(iv)
they are the only ones (up to isomorphism) whose Lie algebra is isomorphic
to so(3).] ut

One should be aware of a subtlety involving the idea of topological groups being
locally isomorphic. Assume that G and H are topological groups. It is fair to call
them locally isomorphic if there are identity neighborhoods U and V of G and H,
respectively, and a homeomorphism f :U → V such that u, u′, uu′ ∈ U implies
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f(uu′) = f(u)f(u′). It is not fair, however, to call such a homeomorphism a local
isomorphism because it is not necessarily the case that f−1(vv′) = f−1(v)f−1(v′)
for all v, v′ ∈ V with vv′ ∈ V . Example: G = R, H = T = R/Z, U =

]
− 1

2 ,
1
2

[
,

V = T\{ 1
2 +Z}, f :U → V , f(t) = t+Z, v = v′ = 1

3 +Z ∈ V , and v+v′ = − 1
3 +Z,

whence f−1(v) + f−1(v′) = 2
3 6= −1/3 = f−1(v + v′). However, if f is given,

passage to smaller identity neighborhoods U ′ and V ′ and to an invertible restriction
f ′ = f |U ′:U ′ → V ′ has the local homomorphism property together with f ′

−1
.

If we are interested in analytic structures then one remarkable consequence of
Theorem 5.42 is that a continuous group morphism between linear Lie groups is
automatically analytic with respect to the analytic structures on the groups.

Exercise E5.13. (i) Let G and H be linear Lie groups and f :G→ H a morphism
of topological groups. Then f is analytic with respect to the analytic structures of
G and H introduced in 5.34 and 5.35.

(ii) Let G, H, and K be linear Lie groups and f :G → H and g:H → K
morphisms of topological groups. Then L(g ◦ f) = L(g) ◦L(f); that is Lie algebra
morphisms L(f) compose correctly. ut

By a very slight abuse of notation, we shall often denote the Lie algebra L(G) =
Hom(R, G) of a linear Lie group by g.

The Adjoint Representation of a Linear Lie Group

In view of the fact that we consider associative algebras as well as Lie algebras
which are not associative it is appropriate to consider nonassociative algebras in
general. They provide a large supply of Lie groups arising in various contexts. So
let E be a Banach space and let A denote the Banach algebra of all bounded
linear operators of E. Now assume that E is endowed with a continuous bilinear
multiplication (x, y) 7→ xy. For the purposes of the next theorem we shall call
E a not necessarily associative completely normable algebra. The group Aut(E)
of automorphisms of E consists of all α ∈ A−1 satisfying α(xy) = α(x)α(y).
Obviously Aut(E) is closed in A−1 with respect to the topology of pointwise
convergence, hence a fortiori with respect to the operator norm topology which has
at least as many closed sets. The vector space Der(E) of all continuous derivations
D ∈ A defined by D(xy) = (Dx)y + x(Dy) is a closed Lie subalgebra of the Lie
algebra (A, [·, ·]).

Theorem 5.43. Assume that E is a not necessarily associative completely norm-
able algebra and consider the exponential function exp = (T 7→ eT ) : A → A−1 of
the Banach algebra A. Let B1(1) denote the open unit ball in A around the identity
operator and log:B1(1)→ A the logarithm. Then

(i) eDer(E) ⊆ Aut(E) and
(ii) log

(
B1(1) ∩Aut(E)

)
⊆ Der(E).

(iii) Aut(E) is a Lie subgroup with Lie algebra aut(E) = Der(E).

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



5. Linear Lie Groups 183

Proof. Assume for the moment that we had established (i) and (ii). Let N0 denote
the component of 0 in exp−1 B1(1). From Proposition 5.3(iii) it follows that

exp |N0:N0 → B1(1) and log:B1(1)→ N0

are analytic inverses of each other. Thus, by (i) and (ii), the functions

exp |
(
N0 ∩Der(E)

)
:
(
N0 ∩Der(E)

)
→
(
B1(1) ∩Aut(E)

)
, and

log |
(
B1(1) ∩Aut(E)

)
:
(
B1(1) ∩Aut(E)

)
→
(
N0 ∩Der(E)

)
are analytic inverses of each other. In view of Definition 5.32, we then will have
proved (iii). Thus it remains to prove (i) and (ii).

For Banach spaces V and W let Hom(V,W ) denote the Banach space of all
bounded linear operators V → W with the operator norm and note in passing
that Hom(E,E) = A. We consider the Banach space E = Hom

(
E,Hom(E,E)

)
(which is isomorphic to the space of continuous bilinear mappings E × E → E)
and three functions T 7→ Tl, T 7→ Tr, T 7→ T◦ : Hom(E,E)→ Hom(E , E) given by

(Tlϕ)(x)(y) = ϕ(Tx)(y), (Trϕ)(x)(y) = ϕ(x)(Ty), (T◦ϕ)(x)(y) = T
(
ϕ(x)(y)

)
for ϕ ∈ E , x, y ∈ E. Also we shall denote with m the element of E which is given
by m(x)(y) = xy.

Claim (i) All three functions are contractive Banach space operators, and the
first two reverse products while the last one preserves products. In particular,
(Tl)

n = (Tn)l, (Tr)
n = (Tn)r, and (T◦)

n = (Tn)◦.
Claim (ii) For all R,S, T ∈ Hom(E,E), the operators R◦, Sl, and Tr commute

pairwise.
Claim (iii) An element D ∈ Hom(E,E) is a derivation of E if and only if

(Dl +Dr)(m) = D◦(m).

Claim (iv) An element T ∈ Hom(E,E) is an endomorphism of E (i.e. respects
multiplication) if and only if

(TlTr)(m) = T◦(m).

The proof of these claims is Exercise E5.14. Now assume that D ∈ Der(E).
Then (Dl + Dr)(m) = D◦(m) by Claim (iii). In view of Claim (ii), the operators
Dl +Dr and D◦ commute. If α and β are two commuting operators on a Banach
space which for some element x0 satisfy α(x0) = β(x0), then for k = 2, 3, . . . ,
recursively, we find αk(x0) = α

(
αk−1(x0)

)
= α

(
βk−1(x0)

)
= βk−1

(
α(x0)

)
=

βk−1β(x0) = βk(x0). Thus we have (Dl + Dr)
n(m) = Dn

◦ (m), n = 0, 1, . . . and
therefore p(D1 + Dr)(m) = p(D◦)(m) for each power series p(ξ) converging at
Dl +Dr and D◦. In particular, eD◦(m) =

(
eDl+Dr

)
(m). Now eDl+Dr = eDleDr in

Hom(E , E) by Claim (ii) and Exercise E5.3. By Claim (i) we have

eD◦ = (eD)◦, eDl = (eD)l, eDr = (eD)r.

Then (eD)◦(m) = eD◦(m) =
(
(eD)l(e

D)r
)
(m) and hence eD ∈ AutE by Claim

(iv). This completes the proof of Statement 5.43(i).
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For a proof of Statement 5.43(ii) we consider a T ∈ B1(1). By Claim (i), the
relation ‖T − 1‖ < 1 implies ‖Tl − 1‖ = ‖(T − 1)l‖ ≤ ‖T − 1‖ < 1 and similarly
‖Tr − 1‖ < 1 and ‖T◦− 1‖ < 1. The classical functional equation of the logarithm
(cf. Exercise E5.3) and Claim (i) imply log(TlTr) = log Tl + log Tr. Again by
Claim (i) we have

log T◦ = (log T )◦, log Tl = (log T )l, log Tr = (log T )r.

Now let T ∈ B1(1)∩AutE. Then TlTr(m) = TrTl(m) = T◦(m) by Claims (ii) and
(iv). Then

(
(log T )l + (log T )r

)
(m) = (log T )◦(m), and thus log T is a derivation

by Claim (iii). This completes the proof of the theorem. ut

Observe that the preceding proof works without restriction on the dimension
of E and on the nature of the multiplication on E. Assertion 5.43(ii) is noteworthy

in so far as the entire unit ball around 1 inside the linear Lie group G
def
= AutE is

mapped into the Lie algebra g
def
= DerE. In other words, N0 ∩ exp−1

G G ⊆ g. As a
rule, one can only show that some, possibly small, identity neighborhood of G is
mapped into g by the logarithm. The seemingly technical proof of 5.43 would be
more lucid if we were to us the tensor product of Banach spaces; then we would
have an isomorphism α: E → Hom(E ⊗ E,E), α(ϕ)(x ⊗ y) = ϕ(x)(y). However,
the machinery for developing tensor products of Banach spaces is intricate, and
our approach avoids it.

Exercise E5.14. (a) Prove Claims (i), (ii), (iii), and (iv) in the preceding proof
of Theorem 5.43.

(b) Formulate a different proof of Theorem 5.43 for finite dimensional E.
The proof that eD is an automorphism for a derivation D is a simple power se-
ries calculation in view of the Leibniz rule for Dn(xy). In order to show that
exp |B:B → expB maps B ∩ DerE homeomorphically onto (expB) ∩ AutE for
some small ball around 0 first observe that AutE is closed in Hom(E,E)−1, hence
is locally compact as E and thus Hom(E,E) is finite dimensional. Apply Theorem
5.31 to see that AutE is a Lie group. Show that an element D ∈ Hom(E,E)
is in aut(E) if and only if et·D ∈ Aut(E) for all t ∈ R. Differentiate the curve
t 7→ et·D(xy) = (et·Dx)(et·Dy) at t = 0. ut

We now exploit the results of Theorem 5.43 for linear Lie groups in general.

The Adjoint Representation Theorem

Theorem 5.44. Let G denote a linear Lie group with Lie algebra g = L(G). Then
the following conclusions hold:

(i) There is a unique morphism Ad:G→ Aut g such that the following diagram
is commutative:

g
ad−−−−−−−−−→ Der g

expG

y yD 7→eD
G −−−−−−−−−→

Ad
Aut g.
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Equivalently,

(20)
Ad ◦ expG = expAut g ◦ ad, i.e.

Ad(expGX) =eadX for all X ∈ g.

For all g ∈ G and X,Y ∈ g, the following equations hold:

g(expY )g−1 = exp Ad(g)(Y ), and(21)

expX expY exp−X = exp(eadXY ).(22)

(ii) The kernel of the adjoint representation Ad is the centralizer Z(G0, G) of
the identity component of G in G.

Proof. (i) We may assume that there is a Banach algebra A with G ⊆ A−1. Then
the Lie subalgebra g ⊆ (A, [·, ·]) as in (18) may be identified with the Lie algebra
g of G such that expG: g→ G becomes identified with the function expA |g: g→ G
with expA x = ex in A (cf. Proposition 5.40). Let g ∈ G ⊆ A−1. We claim that
then the inner automorphism AdA(g):A → A, AdA(g)(a) = gag−1 maps g into
itself. Indeed, y ∈ g means expR·y ⊆ G, and g(exp t·y)g−1 = exp(t·gyg−1) by
Proposition 5.16. Hence t 7→ exp(t·gyg−1) is a one parameter subgroup of G and
this yields gyg−1 ∈ g by 5.40(i), proving the claim. Now Ad(g): g → g given by
Ad(g)(y) = gyg−1 is a well-defined automorphism of g. The claim that Ad:G →
Aut(g) is a morphism of topological groups follows at once from 5.14(ii) where it
was shown that AdA:A→ Aut(A) was a morphism of topological groups.

Theorem 5.43 implies that Aut(g) is a linear Lie group with Lie algebra aut(g) =
Der(g) and with exponential function D 7→ eD. The adjoint representation adA :
A → Der(A) given by adA(x)(y) = [x, y] maps g into Der g and thus gives us the
adjoint representation ad: g→ Der(g) of the Lie algebra g. From 5.16(ii) we have
the following commutative diagram:

A
ad−−−−−−−−−→ DerA

expA

y yD 7→eD
A−1 −−−−−−−−−→

Ad
Aut(A).

After the preceding, restricting the maps in this diagram yields the commutativity
of the diagram in the theorem and formula (20). Formula (21) arises from Propo-
sition 5.16(i) and (22) comes from Proposition 5.16(iii). Formula (20) determines
Ad(g) uniquely on a sufficiently small neighborhood of 0 in g, since exp is a local
homeomorphism; as a linear operator, Ad(g) is then determined uniquely.

(ii) By (21), Ad(g) = idg holds exactly when g(expX)g−1 = expX for all
X ∈ g, that is if and only if g is in the centralizer of exp g. But exp g is an identity
neighborhood of G0, and thus generated G0. The assertion follows. ut

Exercise E5.15. Show that ϕ 7→ L(ϕ): AutG → Aut g is a morphism of groups
whose kernel is the group of all automorphisms of G agreeing on G0 with idG0

. In
particular, this morphism is an injection of groups if G is connected, in which case
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it identifies AutG with a subgroup of the linear Lie group Aut g. Note that the
adjoint representation Ad:G → Aut g is the composition of g 7→ (x 7→ gxg−1) :
G→ AutG and ϕ 7→ L(ϕ). ut

Note that the entire set-up of the adjoint representation of a linear Lie group
is canonically associated with the group.

For the following result involving the adjoint action of G on g = L(G) we recall
that, for an endomorphism T :E → E of a vector space of dimension n <∞ over
any field we always have a canonical decomposition E = E0⊕E+ into T -invariant
subspaces such that T |E0:E0 → E0 is nilpotent and T |E+:E+ → E+ is an
automorphism. One calls E0 the Fitting null component or the nil-space and E+ the
Fitting one component of T . (Indeed E+ = TnE and E0 = kerTn.) We shall apply
this as follows: For a linear Lie group G let g ∈ G. Then T = Ad(g)−idg: g→ g is a
vector space endomorphism of g. We shall write g+(g) for its Fitting one component
and g0(g) for its Fitting null component. Notice that g+ and g0 are invariant under
Ad(g) = T + idg and that −Ad(g−1)T = −Ad(g)−1T = Ad(g)−1− idg. Hence g+

and g0 are also the Fitting one and Fitting null component of Ad(g)−1, respectively.

Proposition 5.45. Let G be a finite dimensional linear Lie group and g = L(G)
its Lie algebra, and consider any g ∈ G. Then there are open neighborhoods U+ of
0 in g+(g) and U0 of 0 in g0(g) and open neighborhoods VX of 0 in g and Wg of
g in G such that the functions

Y ⊕ Z 7→ Ad(g)−1(Y ) ∗ Z ∗ (−Y ) :U+ ⊕ U0 → VX ,(∗)
Y ⊕ Z 7→ (expY )g expZ(exp−Y ) :U+ ⊕ U0 →Wg,(∗∗)

are analytic homeomorphisms.

Proof. By definition of g+(g) and the remarks preceding the proposition, the linear
map D: g→ g, D(Y ⊕Z) = (Ad(g)−1−1)Y ⊕Z is invertible. For sufficiently small
Y and Z we set Ψ(Y ⊕ Z) = Ad(g)−1Y ∗ Z ∗ (−Y ) and compute Ψ(Y ⊕ Z) =
Ad(g)Y + Z − Y + o(Y,Z;X), where o(Y,Z;X) is an analytic function satisfying
‖Y⊕Z‖−1·‖o(Y, Z;X)‖ → 0 as Y⊕Z → 0. It follows that Ψ′(0) = D. The Theorem
of the Local Inverse shows that for sufficiently small choice of zero neighborhoods
U+ and U0 of g+(g) and g0(g), respectively, and a suitable VX , the function in (∗)
is an analytic homeomorphism.

Now we turn to (∗∗) and assume G to be a closed subgroup of A−1 for some
Banach algebra (cf. 5.32). Consider the function Φ: g = g+(g)⊕g0(g)→ G defined
by Φ(Y ⊕ Z) = g−1 expY g expZ(exp−Y ) (in G ⊆ A). Now we compute, for all
sufficiently small Y and Z in g,

g−1 expY g expZ exp−Y = exp Ad(g)−1Y expZ(exp−Y )

= exp
(

Ad(g−1)Y
)

expZ(exp−Y )

= exp
(

Ad(g)−1Y ∗ Z ∗ (−Y )
)

= exp Ψ(Y ⊕ Z).
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Let B be a zero neighborhood of g such that exp |B:B → expB is a homeo-
morphism onto an identity neighborhood and let C be a zero-neighborhood of g
such that Φ(C) ⊆ expB. Then log ◦Φ:C → B is analytic and agrees on some
neighborhood of 0 with Ψ. Since log: expB → B is a homeomorphism, and x 7→
g−1x:G→ G is a homeomorphism, the map Y ⊕Z 7→ expY g expZ exp−Y : g→ G
implements a local homeomorphism at 0 which is what we had to show. ut

Subalgebras, Ideals, Lie Subgroups, Normal Lie Subgroups

Definitions 5.46. A subset a, respectively, i in a Lie algebra g is called a sub-
algebra, respectively, an ideal, if it is a vector subspace and satisfies [a, a] ⊆ a,
respectively, [g, i] ⊆ i. ut

Definition 5.47. A subgroup H of a linear Lie group G with Lie algebra g = L(G)
is a Lie subgroup if there is a (closed) Lie subalgebra h of g such that there is an
open ball B in g around 0 such that expG maps B ∩ h homeomorphically onto an
open identity neighborhood of H. ut

From Theorem 5.31 and Proposition 5.33 following it we know that every locally
compact subgroup of a linear Lie group is a Lie subgroup, and that, in particular,
every closed subgroup of a finite dimensional Lie group is a Lie subgroup.

A Lie subgroup satisfies itself the conditions of Definition 5.32. Therefore, a Lie
subgroup H of a linear Lie group G is a linear Lie group in its own right, and its
Lie algebra is h, and its exponential function is the restriction of the exponential
function of G to h.

Proposition 5.48. Let G be a linear Lie group, contained in A−1 for some Banach

algebra A and let H be a subgroup of G and let h
def
= {x ∈ g | expR·x ⊆ H}. Assume

that the following hypotheses are satisfied:
(i) h is a closed subspace of g.
(ii) There exists an identity neighborhood V in G contained in B1(1) ∩ G such

that log(V ∩H) ⊆ h.
Then H is a linear Lie subgroup of G and thus, in particular, a linear Lie group.

Proof. By Proposition 5.40(ii) and with the notation used there, expA maps N1

homeomorphically onto M1. We may assume that V ⊆ M1. We set U
def
= log V .

Then U∩exp−1H = log(V ∩H) and expA maps this set homeomorphically onto the
identity neighborhood V ∩H of H. Since exp h ⊆ H we have U∩h ⊆ U∩exp−1H =
log(V ∩ H). But log(V ∩ H) ⊆ h by condition(ii), and log V = U by definition.
Thus log(V ∩ H) ⊆ U ∩ h. Hence U ∩ h = log(V ∩ H) = U ∩ exp−1H and
V ∩H = expG(U ∩h). Thus expG maps U ∩h homeomorphically onto the identity
neighborhood V ∩H of H. In order to see that the requirements of Definition 5.47
are satisfied for H it is sufficient to know that h is a closed Lie subalgebra of g.
Since h is closed by (i), the set U ∩ h is closed in U . Since expG |U :U → V is
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a homeomorphism, the set V ∩H = expG(U ∩ h) is closed in H. Therefore H is
locally closed and thus closed by Appendix 4, A4.32.

By condition (i), h = h. From its definition, h is closed under real scalar
multiplication. Let X, Y ∈ h. Then t

n ·X,
t
n ·Y ∈ h for all t ∈ R and n ∈ N.

By Recovery of Addition 5.10 we have t·(X + Y ) = limn n( tn ·X ∗
t
n ·Y ). But

(expG
t
n ·X)(expG

t
n ·Y ) ∈ HH = H for all t ∈ R and thus expG t·(X + Y ) =

limn

(
(expG

t
n ·X) expG

t
n ·Y )

)n ∈ H = H. Hence X+Y ∈ h by definition of h. The
proof of [X,Y ] ∈ h is analogous, but here we use Recovery of the Bracket 5.11.
Thus h is a closed Lie subalgebra of g which is what remained to be verified. ut

It is not our task here to develop a full-fledged Lie theory for linear Lie groups
although all the tools for such a venture are now in our hands. Typically, structure
problems on the Lie group level are transformed into algebraic problems on the
Lie algebra level. The following proposition is an example.

Proposition 5.49. Let H be a connected Lie subgroup of a linear Lie group G.
Then the following statements are equivalent:

(1) H is normal in G.
(2) h is an Ad(G)-invariant subspace of g.

These statements imply the following two equivalent statements:
(3) (∀X ∈ g) eadXh ⊆ h,
(4) h is an ideal of g,

and if G is also connected, then all four conditions are equivalent.

Proof. The subgroup H is normal if and only if gHg−1 = H for all g ∈ G. Since
H is a connected Lie subgroup, then by 5.41(iii), H is algebraically generated by
all expX with X ∈ h. Therefore, H is normal if and only if g(expX)g−1 ∈ H for
all g ∈ G and X ∈ h.

An X ∈ g is in h if and only if exp t·X ∈ H for all t ∈ R. By Theorem 5.44(21)
we know g(exp t·X)g−1 = exp t·Ad(g)(X); thus g(exp t·X)g−1 ∈ H for all t ∈ R
and all g ∈ G if and only if Ad(g)(X) ∈ h. Thus the equivalence of (1) and (2) is

established. (2)⇒(3) If X ∈ g then g
def
= expX gives Ad(g) = eadX by 5.44(20).

Hence (2) implies (3).
(3)⇒(4) Take Y ∈ h and X ∈ g. Then eadX(Y ) ∈ h by (3). But et· adXY =

Y + t·[X,Y ] + o(t) by Theorem 5.44 (20) with a remainder satisfying t−1o(t)→ 0
for 0 6= t→ 0. Hence t−1·(et· adX(Y )−Y ) = [X,Y ]+t−1o(t) is in h for all non-zero
t ∈ R. Passing to the limit with t→ 0 yields [X,Y ] ∈ h.

(4)⇒(2) If h is an ideal, then X ∈ g and Y ∈ h implies eadXY = Y +[X,Y ]+
1
2! ·
[
X, [X,Y ]

]
+ · · · ∈ h. By Theorem 5.44(22) this implies

expX(expY ) exp−X = exp eadX(Y ) ∈ exp h ⊆ H.

Since H is connected, exp h generates H. Thus we conclude that H is invariant
under all inner automorphism implemented by elements g = expX with X ∈ g.
But now we assume that G is connected, too. Thus G is generated by all of these
elements g and thus H is invariant under all inner automorphisms. ut
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Proposition 5.50. Let G and H be linear Lie groups and f :G→ H a morphism
of topological groups. (See Theorem 5.42). Then the kernel, ker f , is a normal Lie
subgroup of G with Lie algebra kerL(f) for the morphism L(f):L(G) → L(H) of
topological real Lie algebras as in Theorem 5.42. Thus

ker
(
L(f)

)
= L

(
ker(f)

)
and the following diagram is commutative

kerL(f)
incl−−−−−−−−−→ L(G)

expker(f)

y yexpG

ker(f) −−−−−−−−−→
incl

G.

Proof. From Definition 5.39, which tells us that L(ker f) = Hom(R, ker f), we
have X ∈ L(ker f) iff L(f)(X)(r) = (f ◦ X)(r) = f

(
X(r)

)
= 1 for all r ∈ R iff

L(f)(X) = 0 iff X ∈ kerL(f). Thus ker
(
L(f)

)
= L

(
ker(f)

)
. For any morphism of

topological groups f it is true that ker f is a closed normal subgroup. It remains
to observe that ker f is a Lie subgroup.

We may assume G ⊆ A−1 for a Banach algebra A and that expG = expA |g. We
want to apply Proposition 5.48 and notice that condition 5.48(i) has been verified.
We prove 5.48(ii), i.e. we have to exhibit an identity neighborhood V in ker f such
that exp−1(V ∩ ker f) ⊆ L(ker f).

Let B be an open ball around 0 in g contained in N1 (see Proposition 5.40 and
Proposition 5.48 above) such that L(f)(B) is contained in a neighborhood of 0 in

h on which expH is injective. Set V = expGB. Let K0
def
= exp−1

G (V ∩ ker f). By
5.40(ii), this is the set of all X ∈ B such that expH L(f)X = f(expGX) = 1. Since
expH is injective on L(f)(B) it follows that L(f)X = 0, i.e. X ∈ kerL(f). Thus
K0 ⊆ kerL(f) = L(ker f). This verifies 5.48(ii) and ker f is a linear Lie group by
Proposition 5.48. ut

Proposition 5.51. (i) Let {Gj | j ∈ J} be a family of linear Lie groups contained

in a linear Lie group G and set H
def
=
⋂
j∈J Gj, h

def
=
⋂
j∈J L(Gj). Then L(H) = h

and if J is finite, then H is a linear Lie group.

(ii) Let {Gj | j ∈ J} be a family of linear Lie groups and set H
def
=
∏
j∈J Gj,

h
def
=
∏
j∈J Gj. Then L(H) ∼= h, and if J is finite, then H is a linear Lie group.

(iii) Let f1, f2:G → H be morphisms of topological groups between linear Lie

groups. Then E
def
= {g ∈ G | f1(g) = f2(g)}, the equalizer of f1 and f2 (see

Appendix 3, A3.43(ii)), is a Lie subgroup and

L(E) = {X ∈ L(G) | L(f1)(X) = L(f2)(X)}.

(iv) Let fj :Gj → H, j = 1, 2, be morphisms of topological groups between lin-
ear Lie groups. Set P = {(g1, g2) ∈ G1 × G2 | f1(g1) = f2(g2)}, the pullback (see
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Appendix 3, A3.43(iii)). Then P is a linear Lie group and L(P ) is the pullback of
L(f1) and L(f2).

(v) Let f :G→ H be a morphism of topological groups between linear Lie groups,
and let S be a Lie subgroup of H. Then the inverse image f−1(S) is a Lie subgroup
of G and L

(
f−1(S)

)
= L(f)−1

(
L(S)

)
.

Proof. (i) A one parameter subgroup X:R→ G has its image in H iff X(r) ∈ Gj
for all r ∈ R and j ∈ J . Thus X ∈ L(G) iff X ∈ L(Gj) for all j ∈ J . Hence
L(H) =

⋂
j∈J L(Gj) = h. We choose an open ball B around 0 in g which is

mapped homeomorphically onto an identity neighborhood V of G by expG. Since
Gj is a Lie subgroup for each j we find open balls Bj ⊆ B in g such that expG
implements a homeomorphism of the zero neighborhood Bj∩L(Gj) to the identity

neighborhood Vj ∩ Gj , Vj = expGBj . Set BH
def
=
⋂
j∈J Bj and VH

def
=
⋂
j∈J Vj .

Then expG implements a homeomorphism from BH onto VH . However, if J is
finite, then BH is an open zero neighborhood of g and VH is an open identity
neighborhood of G, and expG maps BH ∩h =

⋂
j∈J Bj ∩L(Gj) homeomorphically

onto
⋂
j∈J Vj ∩Hj = VH ∩H. In view of Definition 5.47 this shows that H is a Lie

subgroup of G with L(H) = h.
(ii) Let Gj ⊆ A−1

j , j ∈ J for Banach algebras Aj . Then A =
∏
j∈J Aj is a Ba-

nach algebra with ‖(aj)j∈J‖ = max{‖aj‖ : j ∈ J}. Assume that expAj maps Uj∩gj
for a zero neighborhood Uj in Aj homeomorphically onto an identity neighbor-
hood Vj of Gj . If we set G =

∏
j∈J Gj and g =

∏
j∈J gj , then expA =

∏
j∈J expAj

maps (
∏
j∈J Uj) ∩ (

∏
j∈J gj) onto

∏
j∈J Vj securing enough information for Defi-

nition 5.32 to apply to prove the claim.
We note that the case (v) of the inverse image is a special case of the case (iv)

of the pullback, since the inverse image f−1(S) is the pullback of the morphism
f :G→ H and the inclusion morphism S → H. A direct proof of the cases (iii) of
the equalizer and (iv) of the pullback are recommended as an exercise along the
lines of the proofs of (i) and (ii). However, in Appendix 3, A3.45 it is recorded
how one constructs equalizers by using products and intersections, and in A3.44
how one constructs pullbacks using products and equalizers. Since L(·) preserves
intersections and products by (i) and (ii), it preserves equalizers and pullbacks
(cf. A3.51; we use the version here in which the word “arbitrary” is replaced by
“finite”). ut

Exercise E5.16. Supply all details of the proofs of parts (iii), (iv) and (v) of
Proposition 5.51. ut

We have seen in Theorem 5.31 and its consequences that in a locally compact
linear Lie group G, every closed subgroup H determines a Lie subalgebra h such
that H is a linear Lie group with L(H) = h and H0 = 〈exp h〉.

The converse is not even true for compact Lie groups as the following example
shows:
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Exercise E5.17. Let T denote the two dimensional compact Lie group of all
matrices 

cos 2πs sin 2πs 0 0
− sin 2πs cos 2πs 0 0

0 0 cos 2πt sin 2πt
0 0 − sin 2πt cos 2πt

 , s, t ∈ R.

Determine the Lie algebra t in gl(4,R) of T . Let a be a real number and denote
by h the set of all 

0 r 0 0
−r 0 0 0
0 0 0 ar
0 0 −ar 0

 , r ∈ R.

Show that h is a Lie subalgebra of t and that there is a connected linear Lie
subgroup H of T having h as it Lie algebra if and only if a is rational. Thus, for
instance, a =

√
2 is a case where such a linear Lie subgroup does not exist.

Furthermore, for A = M4(R) the Banach algebra of all 4×4 real matrices with
the operator norm and for the unit ball B1(1) in A around 1, for any natural
number n by choosing a suitable rational number a, the number of connected
components of B1(1) ∩ H exceeds n. In particular, log(B1(1) ∩ H) fails to be
contained in h. ut

This example indicates that the next best thing to finding the missing linear

Lie group is the subgroup H
def
= exp h. In the case of the example, H is the image

exp h of a one parameter group which happens to be dense (cf. Remark 1.24(v) for
related density arguments). Thus one might consider, for a given closed subalgebra
h of the Lie algebra g of a linear Lie group G the subgroup H = 〈exp h〉. But then,
due to the algebraic generation process over which we have little control, it is not
at all clear that we can recover from H the Lie algebra h via L(H) = Hom(R, H).
That this is nevertheless the case, is not an entirely trivial matter which we discuss
now.

In the following theorem and its proof we choose N1 ⊆ g and M1 ⊆ G as we
did for 5.40(ii) in the paragraph preceding 5.40. Conclusion (iv) is of topological
interest and refers to a topological construction described in Appendix 2A. For an
understanding of the Lie theoretical implications of the theorem alone it may be
skipped.

Analytic Subgroups and the Recovery of Subalgebras

Theorem 5.52. Assume that G is a linear Lie group and that h is a closed
subalgebra of g = L(G). Set H = 〈exp h〉. Then

(i) there exists a unique arcwise connected locally arcwise connected group topol-
ogy O on H containing the topology on H induced from that of G such that
exp(N1∩h) ∈ O and that exp |(N1∩h):N1∩h→ exp(N1∩h) is a homeomorphism
onto an open identity neighborhood of (H,O). The function expG |h: h → (H,O)
is continuous.
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(ii) Assume that h, as a completely normable vector space, is separable, i.e. has
a countable dense subset. This is always the case if h is finite dimensional. Then
(H,O) is separable.

(iii) (Recovery of subalgebras) If h is separable, then L(H) = h.
(iv) The topology O on H is the arc component topology obtained from the

topology induced by that of G on H (see Lemma A4.1ff.).

Proof. We set K
def
= exp(N1 ∩ h) and since h =

⋃
n∈N n·(N1 ∩ h) we also have

exp h ⊆
⋃
n∈N(expN1 ∩ h)n ⊆ 〈K〉 ⊆ H. Thus H is generated by K. For easy

reference we cite here from the Appendix A2 the basic theorem on generating
subgroups of topological groups A2.25.

Let K be a symmetric subset (K = K−1) of a group G containing 1. Assume
that K is a connected topological space such that

(i) x, y, xy ∈ K, with xy ∈ V for an open subset V of K imply the existence of
open neighborhoods Ux and Uy of x and y such that xUy ∪ Uxy ⊆ V ,

(ii) {(x, y) ∈ K ×K | x, y, xy ∈ K} is a neighborhood of (1,1) in K ×K, and
multiplication is continuous at (1,1).

(iii) inversion is continuous at 1.
Then there is a unique topology O on the subgroup H = 〈K〉 generated by K which
induces on K the given topology and makes H a topological group such that K is
an open identity neighborhood of H.

We recall from 5.40(iv) that the hypotheses of this lemma are satisfied in the
present circumstances and that it yields the desired topology O. The topologi-
cal group (H,O) is generated by the arcwise connected subset K containing the
identity. Therefore it is arcwise connected. It is locally arcwise connected since it
contains an open subset K homeomorphic to the nonempty open subset N1 ∩ h of
a Banach space. In order to show continuity of expG |h: h→ (H,O) we recall that
this function restricts to a continuous function expG |(N1 ∩ h):N1 ∩ h→ (H,O). If
0 6= X ∈ h consider an open ball C in h containing X and a natural number n such
that 1

n ·C ⊆ N1. Let µ:C → N1 be defined by µ(Y ) = 1
n ·Y and p: (H,O)→ (H,O)

by p(h) = hn. Since (H,O) is a topological group, the function p is continuous.
Then

e
def
= p ◦ (exp |(N1 ∩ h)) ◦ µ:C → (H,O)

is continuous and because of expY = (exp 1
n ·Y )n agrees with expG |C. Thus

expG |h: h → (H,O) is continuous at X, and then everywhere on h since X was
arbitrary.

(ii) If h is separable, then the continuous image exp h of h in (H,O) is separable,
and since H is generated algebraically by this set, (H,O) is separable.

(iii) Trivially, h ⊆ {X ∈ g | expR·X ⊆ H} = L(H). We claim equality holds.
Suppose that equality does not hold. Find a sufficiently small open ball around 0
in g such that B ∗B ∗B is defined and exp is injective on B ∗B. Then there is an

X ∈ B \ h with [0, 1]·X ⊆ exp−1H. Set B0
def
= h∩B. Assume for the moment that

0 ≤ r ≤ s ≤ 1 and (r·X ∗B0)∩ (s·X ∗B0) 6= Ø. Then we find elements P, Q ∈ B0

such that r·X∗P = s·X∗Q, i.e. (s−r)·X = (−r·X)∗(s·X) = P∗(−Q) ∈ B0∗B0 ⊆ h
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(Theorem 5.21(iv)). But X /∈ h now implies s − r = 0. Thus the sets r·X ∗ B0

form a disjoint family of subsets of N1 ∩ exp−1H. Since expB0 ∈ O the family
{exp r X expB0 | r ∈ [0, 1]} is an uncountable family of disjoint open subsets of
(H,O). Then certainly (H,O) cannot be separable.

(iv) is a consequence of Appendix 4, A4.5. This completes the proof. ut

In the more general theory of Lie groups the subgroups of a Lie group G of
the form 〈exp h〉 for a Lie subalgebra h of g are frequently called analytic sub-
groups. With their finer topology O they may be endowed with an analytic struc-
ture exactly as we did in 5.34ff. The recovery of subalgebras is somewhat sub-
tle, although the topological apparatus used is, within the framework of general
topology, elementary. The subtlety becomes apparent if one realizes that some
hypothesis such as the separability of h is needed. Therefore, the following exam-
ple is an important illustration of what might happen on the level of topological
groups. Let E = `1(Rd) the Banach space of all real tuples (xr)r∈R such that the
family (|xr|)r∈R is summable and let this sum designate the norm. The tuples
er = (δrs)s∈R, δrr = 1 and δrs = 0 otherwise generate a free discrete subgroup.
In the product Banach space g = E × R the subgroup D generated by the fam-
ily {(er,−r) | r ∈ R} is discrete and free. Set G = E×R

D and write exp: g → G,
exp(x, r) = (x, r) + D. Then exp is a continuous open homomorphism of topo-
logical groups inducing a local isomorphism. The proper closed vector subspace

h
def
= E×{0}, however, is mapped surjectively onto G. The one parameter subgroup

r 7→ exp(0, r):R → G does not lift to h, i.e. it is not of the form r 7→ exp r·X for
any X ∈ h. The completely normable vector space h indeed fails to be separable.
Recall from E5.10(ii) 2) that E × R is a linear Lie group which may be identified
with its own Lie algebra. Thus G is locally isomorphic to a linear Lie group.

Proposition 5.52 in fact contains more information than we pause to develop
here. Indeed, the local faithfulness of exp |h: h→ (H,O) allows us to introduce an
analytic structure on H whose underlying topology is O.

Normalizers, Centralizers, Centers

The concepts governing the theory of Lie algebras are generally modelled after
corresponding group theoretical concepts. We just saw that ideals correspond to
normal subgroups. Another example follows. For a group G we shall denote by
ι:G → G the inversion given by ι(g) = g−1 and by κh:G → G the conjugation
κh(g) = ghg−1 of h by g. Notice that for a subset H of G one has gHg−1 = H if
and only if g ∈

⋂
h∈H κ

−1
h (H) ∩ ι−1κ−1

h (H).

Definition 5.53. (i) If H is a subgroup of a group G then the largest subgroup

N(H,G) = {g ∈ G | gHg−1 = H} =
⋂
h∈H

κ−1
h (H) ∩ ι−1κ−1

h (H)

of G containing H in which H is normal is called the normalizer of H in G.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



194 5. Linear Lie Groups

If M is a subset of G then the set

Z(M,G) = {g ∈ G | (∀m ∈M) gmg−1 = m}

of elements commuting with each element of M is called the centralizer of M in
G. The centralizer Z(G,G) of all of G is called the center Z(G) of G; it is the set
of elements commuting with all elements of the group.

(ii) If h is a subalgebra of a Lie algebra g then the largest subalgebra n(h, g) =
{X ∈ g | [X, h] ⊆ h} of g containing h in which h is an ideal is called the idealizer
of h in g or, alternatively, the normalizer of h in g.

If m is a subset of g then the set z(m, g) = {X ∈ g | (∀Y ∈ m) [X,Y ] = 0} of
elements commuting with each element of m is called the centralizer of m in g.

The centralizer z(g, g) is called the center of g written z(g). A Lie algebra g is
called commutative or abelian if all brackets vanish, i.e. [g, g] = {0}, equivalently,
g = z(g). ut

From the second variant of the definition of a normalizer one observes at once
that in a topological group G the normalizer N(H,G) of a closed subgroup is
closed. Likewise the centralizer of any subset of G is closed. Similarly, the normal-
izer n(h, g) of a closed subalgebra h is closed, and the centralizer z(m, g) of any
subset m is closed. It is, however, remarkable, that in the context of a linear Lie
group G, the normalizer N(H,G) of certain relevant subgroups H may turn out
to be closed even though the subgroup H itself may fail to be closed.

Proposition 5.54. (i) Assume that h is a closed separable subalgebra of the Lie
algebra g = L(G) of a linear Lie group G and set H = 〈exp h〉. Then the normalizer
N(H,G) is a linear Lie subgroup of G such that

(23) L
(
N(H,G)

)
= n
(
h, g
)

and N(H,G)0 = 〈exp n(h, g)〉.

In particular, the normalizer of H is closed.
(ii) Let M be a subset of a linear Lie group G, then the centralizer Z(M,G) is

a linear Lie subgroup of G and

L
(
Z(M,G)

)
= {X ∈ g | (∀m ∈M) Ad(m)(X) = X}.

(iii) If H = 〈exp h〉 (as in (i) above), then

(24) L
(
Z(H,G)

)
= z(h, g

)
and Z(H,G)0 = 〈exp z

(
h, g)〉.

(iv) The center Z of a connected linear Lie group G is a Lie subgroup of G,
and its Lie algebra z is the center of g.

(v) A connected linear Lie group G is abelian if and only if g is abelian.
(vi) Let E be a Banach space, F a closed vector subspace, and π:G → Gl(E)

be a morphism of topological groups. Write N(F,G)
def
= {g ∈ G | π(g)(F ) ⊆ F},

n(F, g) = {X ∈ g | L(π)(X)(F ) ⊆ F}; further write Z(F,G)
def
= {g ∈ G | (∀v ∈

F )π(g)(v) = v}, z(F, g) = {X ∈ g | (∀v ∈ F )L(π)(X)(v) = 0}. Then N(F,G)
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and Z(F,G) are closed Lie subgroups satisfying

L
(
N(F,G)

)
= n(F, g) and L

(
Z(F,G)

)
= z(F, g).

Proof. (i) If gHg−1 = H, the inner automorphism Ig (given by Ig(x) = gxg−1) per-
mutes the one parameter subgroups of G contained in H; i.e. Ad(g)L(H) = L(H).
By the recovery of subalgebras 5.52(iii) we know h = L(H). Hence Ad(g)(h) = h.
Conversely, if Ad(g)(h) = h, then gHg−1 = g〈exp h〉g−1 = 〈g(exp h)g−1〉 =
〈exp Ad(g)h〉 = 〈exp h〉 = H in view of Theorem 5.44. Therefore,

(∗) N(H,G) = {g ∈ G | Ad(g)h = h}.

Now let B be an open ball around 0 in g that is mapped homeomorphically
by expG onto an identity neighborhood V of G and that X ∈ B implies that
‖eadX − idg ‖ < 1 and adX = log eadX . Then X ∈ B is in n(h, g

)
iff [X, h] ⊆ h

iff eadXh = h (cf. also 5.17 and 5.49). By 5.44(20) we have Ad(expX) = eadX ;
hence eadXh = h is equivalent to Ad(expX)h = h, and by (∗) this means exactly
expX ∈ N(H,G). Thus X ∈ B ∩ n(h, g) iff expX ∈ V ∩ N(H,G). According to
Definition 5.47, this implies that N(H,G) is a Lie subgroup of G whose Lie algebra
is n(h, g). This establishes the first half of (23). The second half of (23) now follows
from 5.41(iii) since N(H,G) is a linear Lie group.

(ii) A one parameter subgroup X ∈ L(G) is in L
(
Z(M,G)

)
iff for each m ∈M

we have expG t·Ad(m)(X) = Im(expG t·X) = expG t·X for all t ∈ R. This is
the case iff Ad(m)(X) = X. Thus, denoting by Fixα the fixed point set of an
endomorphism α of g, we get

(∗∗) L
(
Z(M,G)

)
= {X ∈ g | (∀m ∈M) Ad(m)X = X} =

⋂
m∈M

FixAd(m).

Since the fixed point set of a continuous endomorphism of g is a closed Lie subal-

gebra, the set c
def
= L

(
Z(M,G)

)
is a closed Lie subalgebra of g. The fixed point set

of the automorphism Ad(m) of the Lie algebra g is a closed Lie subalgebra. Hence
c =

⋂
m∈M FixAd(m) is a closed Lie subalgebra of g.

Since G is a linear Lie group we may assume G ⊆ A−1 for a suitable Ba-
nach algebra A and we may consider g to be a closed Lie subalgebra of (A, [·, ·])
in such a way that expG: g → G is the restriction of the exponential function
of A. The function Ad(m):G → G extends to a function AdA(m):A → A given
by AdA(m)(a) = mam−1 (cf. Lemma 5.14 and the discussion preceding it).
Then each AdA(m) is an automorphism of Banach algebras and is, consequently,
also an automorphism of the completely normable Lie algebra (A, [·, ·]). Then by
Lemma 5.15(iii), the exponential function maps the common fixed point set FM
of all AdA(m), m ∈ M into itself, and by 5.15(i), the logarithm log:B1(1) → A
maps FM ∩B1(1) into FM . We note FM ∩ g = c and FM ∩G = Z(M,G). Now let
B be an open ball around 0 in A which under the exponential function is mapped
homeomorphically onto an open identity neighborhood V of A−1 contained in
B1(1) in such a way that exp(B ∩ g) is the identity neighborhood V ∩ G of G.
Then the restriction of the exponential function implements a homeomorphism
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B ∩L
(
Z(M,G)

)
→ V ∩Z(M,G) onto an identity neighborhood of Z(M,G). This

shows that Z(M,G) is a Lie subgroup with Lie algebra c = L
(
Z(M,G)

)
.

(iii) For a proof of (24), note that X ∈ L
(
Z(H,G)

)
iff Ad(h)X = X for all

h ∈ H iff eadYX = Ad(expY )X = X for all Y ∈ h. Then 5.17(iv) implies
[h, X] = {0} (since we may assume g ⊆ A for some Banach algebra A). Thus (24)
is proved. Since Z(H,G) is a linear Lie group, (26) follows from 5.41.(iii).

We prove (iv) straightforwardly from (ii) and (iii) by taking M = H = G, and
(v) is an instant consequence of (iv).

(vi) One observes at once that N(F,G) and Z(F,G) are subgroups of G and

that n(F, g) and z(F, g) are Lie subalgebras of g. The set Sv
def
= {g ∈ G | π(g)(v) ⊆

F} is closed since g 7→ π(g)(v):G → E is a continuous function and F is closed
in E. Since N(F,G) =

⋂
v∈F Sv, the subgroup N(F,G) of G is closed. Similarly,

Z(F,G), n(F,E), and z(F, g) are closed in G and g, respectively.
Assume X ∈ L

(
N(F,G)

)
∩ B. Then et·L(π)(X)(v) = π(exp t·X)(v) ∈ F for

all v ∈ F . The derivative of the function t 7→ et·L(π)(X)(v):R → F at 0 is
L(π)(X)(v). Hence L(π)(X)(v) ∈ F for all v ∈ V and thus X ∈ n(F,G). Con-
versely, assume X ∈ n(F,G). Then L(π)(X)(v) ∈ F for all v ∈ V and, recursively,(
L(π)(X)

)n
(v) ∈ F for all v ∈ V and all n = 1, 2, . . . . Thus et·L(π)(X)(v) =

v + t·L(π)(X)(v) + t2

2! ·
(
L(π)(X)

)2
(v) + · · · ∈ F , whence X ∈ L

(
N(F,G)

)
. The

same arguments show that X ∈ L
(
Z(F,G)

)
iff X ∈ z(F, g). Thus

L
(
N(F,G)

)
= n(F, g) and L

(
Z(F,G)

)
= z(F, g).

We assume that G ⊆ A−1 for a Banach algebra A and let 0 < r ≤ 1 be such that

π
(
G∩Br(1)

)
⊆ B1(idE) ⊆ Gl(E). We note that U

def
= logBr(1) is mapped homeo-

morphically onto Br(1) under exp:A→ A−1. Consider g ∈ N(F,G)∩Br(1). Then
‖ idE −π(g)‖ < 1 and, recursively, from π(g)(F ) ⊆ F , we get (idE −π(g))n(F ) ⊆
F , n = 1, 2 . . . . Hence

(∗) log π(g)(F ) =

( ∞∑
n=1

1

n
·
(

idE −π(g)
)n)

(F ) ⊆ F.

If X ∈ g ∩ U then π(expX) = eL(π)(X) ∈ G ∩ B1(idE) and thus log π(expX) =
L(π)(X), or equivalently, log π(g) = L(π)(log g) for g ∈ G ∩ Br(1). Thus (∗) and
the definition of n(F, g) yield log g ∈ n(F,G). Thus the exponential function maps
n(F,G) ∩ U homeomorphically onto N(F,G) ∩ Br(1). Hence N(F,G) is a Lie
subgroup of G by Definition 5.47 and is therefore a linear Lie group. The case of
Z(F,G) is similar. ut

Part (vi) of the previous proposition applies, in particular, to the adjoint rep-
resentation Ad:G → Aut(g) ⊆ Gl(g). If one takes F = h, a subalgebra of g, then
n(F,G) = n(h, g) in accordance with the notation introduced prior to 5.54. This
makes the connection of Part (vi) with the earlier parts of Proposition 5.54 evident.

Exercise E5.18. (i) Prove the following classification of abelian linear Lie groups.
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The finite dimensional abelian linear Lie groups are exactly the topological groups
which are isomorphic to Rm × Tn ×D for suitable nonnegative integers m and n
and some arbitrary discrete abelian group D.

(ii) Prove the following remark which contributes to an understanding of the
role of analytic subgroups in abelian linear Lie groups (cf. 5.52 above)

Let G be a abelian linear Lie group. Let ∆ be the kernel of exp: g → G. If h is a
vector subspace of g and if h has a basis of elements D1, . . . , Dr with Dj ∈ ∆, then

H
def
= exp h is a closed Lie subgroup of G with L(H) = h.

(iii) Formulate a structure theorem for abelian linear Lie groups without re-
striction on the dimension.

[Hint. (i) If G is an abelian linear Lie group, then 5.54(v) shows that g ∼= Rp with
zero brackets for some nonnegative integer p. Then exp:Rp → G is a homomor-
phism, which is continuous, open with discrete kernel (by 5.41(ii)), and with image
G0 (by 5.41(iii)). Hence G0 is a quotient of Rp modulo a discrete subgroup. These
are classified in Appendix A1.12. This shows that G0 is an open subgroup of G iso-
morphic to a divisible group Rm×Tn. From Appendix A1.36, there is a subgroup
D of G such that G = G0 ⊕D (when G is written additively). Since G0 is open,
D is discrete and G is isomorphic to the topological group G0 × D. Conversely,
every discrete group is a linear Lie group by E5.10(ii). Hence Rm × Tn × D is a
linear Lie group by 5.51(ii).

(ii) Apply Appendix A1.12(iii).
(iii) Note that exp: g → G is always an open homomorphism of topological

groups with discrete kernel defined on the additive group of a Banach space.] ut

For the formulation of the following result we recall from linear algebra that an
endomorphism T :E → E of a vector space is called semisimple if each T -invariant
vector subspace has a T -invariant complement, and nilpotent if Tn = 0 for some
n. It is an easy exercise to verify that a semisimple nilpotent endomorphism is
zero. (Let n be the smallest nonzero integer such that Tn = 0. Assume n > 0.
Write E = E1 ⊕ kerTn−1 with TE1 ⊆ E1, and let x ∈ E1. Since Tnx = 0 we
have Tx ∈ E1 ∩ kerTn−1 and thus E1 = {0}. Hence E = kerTn−1 contradicting
the choice of n.) Thus for a semisimple endomorphism the nil-space E0 of T (see
remarks preceding 5.45) is in fact the kernel, kerT , of T .

Proposition 5.55. Let G be a finite dimensional linear Lie group and g = L(G)
its Lie algebra. Let g ∈ G be any element such that Ad g is semisimple. Then⋃
x∈G xZ(g,G)0x

−1 is a neighborhood of g in G.

Proof. We shall apply Proposition 5.45. What is more special here than in Propo-
sition 5.45 is that Ad g is semisimple and that, as a consequence, the Fitting null
component g0(g) of the semisimple vector space endomorphism Ad(g) − 1 of g is
simply its kernel and therefore agrees with the set {X ∈ g | Ad(g)(X) = X}, and
by 5.54(ii) this set equals L

(
Z(g,G)

)
, i.e. the Lie algebra of the centralizer of g

in G.
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From Proposition 5.45 we find open neighborhoods U+ of 0 in the Fitting
one-component g+(g) of Ad(g)− 1 and U0 of 0 in L

(
Z(g,G)

)
, and an open neigh-

borhood Wg of g in G such that the function Y ⊕ Z 7→ (expY )g expZ(exp−Y ) :
U+ ⊕ U0 → Wg is a homeomorphism. Since g expZ ∈ Z(g,G), the assertion fol-
lows. ut

The information provided by the proof is a bit sharper than that contained
in the conclusion of the proposition. The proposition itself will be crucial in the
proof of the important Maximal Torus Theorem 6.30 in the chapter on compact
Lie groups.

The Commutator Subgroup

The center of a Lie group was, in principle, easy to handle. The commutator
subgroup is much harder to treat.

Definition 5.56. (i) If g is a Lie algebra and a and b are subsets, then [a, b]
denotes the linear span of all [a, b] with a ∈ a, b ∈ b. In particular, [g, g] is an ideal
called the commutator algebra of g, also written g′.

(ii) If G is a group and A and B are subsets, then comm(A,B) denotes the
subgroup generated by all comm(a, b) = aba−1b−1. In particular, comm(G,G) is a
normal subgroup called the commutator group of G, or commutator subgroup of
G, also written G′. ut

If G is a topological group we shall often refer to G′ as the algebraic com-
mutator group of G; it is a serious issue in topological group theory that G′ is
not closed in general. One will, therefore, often consider the closure G′ and call
this closed normal subgroup, in a grammatically somewhat imprecise fashion, the
closed commutator group.

Exercise E5.19. Verify that the commutator algebra and the center of a Lie
algebra are ideals preserved under all derivations.

Show that every morphism g → c into a commutative Lie algebra factors
through the quotient homomorphism g→ g/g′. Show that every morphism G→ C
of groups into a commutative group factors through the quotient morphism G→
G/G′. Every morphism G → C of Hausdorff topological groups factors through
the quotient morphism G 7→ G/G′. ut

Lemma 5.57. Let A denote a Banach algebra with identity and g a closed Lie
subalgebra. Assume that B is an open ball around 0 such that x∗y and comm∗(x, y)
= x ∗ y ∗ (−x) ∗ (−y) are defined for all x, y ∈ B and that x ∗ y has norm less than
π for such x, y. Then

(25) comm∗(x, y) ∈ [g, g] for all x, y ∈ g ∩B.
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Proof. By Proposition 5.16, we have x ∗ y ∗ −x ∗ −y = ead xy ∗ −y, and from
Theorem 5.21(ii) we know ead xy ∗ −y − (ead xy − y) ∈ [g, g]. But ead xy − y =
[x, y] + 1

2! ·
[
x, [x, y]

]
+ · · · ∈ [g, g]. These pieces of information, taken together yield

comm(x, y) ∈ [g, g]. ut

For the following discussion recall from 5.25 how the set of subtangent vectors
T(Γ) of a set Γ in a Banach space was defined.

Theorem 5.58. Let g be a closed Lie subalgebra with respect to the bracket in a
Banach algebra A and let B denote an open ball around 0 such that B ∗B ∗B ∗B is
defined and contained in a ball of radius π. Let Γ denote the smallest closed local
subgroup with respect to B containing all commutators x ∗ y ∗ −x ∗ −y defined in
B with x, y ∈ g ∩B. Then T(Γ) = [g, g] and Γ = B ∩ [g, g].

Proof. If x, y, and [x, y] are in B, then [x, y] = limn n
2( 1
n ·x ∗

1
n ·y ∗

−1
n ·x ∗

−1
n ·y) ∈

B∩Γ by the Recovery of the Bracket 5.11 and the definition of Γ. Hence B∩[g, g] ⊆
T(Γ) in view of Lemma 5.26. In particular, this implies B ∩ [g, g] ⊆ B ∩ T(Γ) ⊆
B ∩ Γ. But Lemma 5.57(25) implies x ∗ y ∗ −x ∗ −y ∈ [g, g] for all x, y ∈ B with
x ∗ y ∗ −x ∗ −y ∈ B. Hence Γ ⊆ [g, g]. ut

Proposition 5.59. If under the conditions of Theorem 5.58, the dimension of
g′ = [g, g] is finite, then the following statements hold:

(i) There are elements Xj , Yj ∈ g, j = 1, . . . , n = dim g′ such that for each
n-tuple (r1, . . . , rn) of real numbers with 0 < |rj | ≤ 1 there is an ε > 0 such that
the function ϕ: ]−ε, ε[n → B ∩ g given by

ϕ(s1, . . . , sn)

= (r1·X1 ∗s1·Y1 ∗−r1·X1 ∗−s1·Y1)∗ · · · ∗ (rn·Xn ∗sn·Yn ∗−rn·Xn ∗−sn·Yn)

= comm∗(r1·X1, s1·Y1)∗ · · · ∗comm∗(rn·Xn, sn·Yn)

is a homeomorphism onto some 0-neighborhood of g′.
(ii) Each element of a whole zero neighborhood of g′ is a ∗-product of at most

n ∗-commutators. In particular, there is an open ball B′ around 0 in g′ such that
B′ ∩ g′ is the smallest local subgroup with respect to B′ containing all
comm∗(X,Y ) ∈ B′, X, Y ∈ B′.

Proof. (ii) is an immediate consequence of (i) and thus we have to prove (i).
Assuming dim g′ = n we find pairs (X ′j , Yj) ∈ g × g, j = 1, . . . , n such that
{[X ′j , Yj ] | j = 1, . . . , n} is a basis of g′. Then for each n-tuple of nonzero real num-
bers rj the vectors [rj ·X ′j , Yj ] = rj ·[X ′j , Yj ], j = 1, . . . , n, form a basis. Accordingly,

there is a δ > 0 such that for all 0 < t < δ the elements 1
t ·(e

t· ad rj ·X′jYj − Yj) =
[rj ·X ′j , Yj ] + o(t) will be linearly independent. We select a t ∈ ]0, δ[ and an ε0 > 0
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so that for all |sj | < ε0 and all |rj | ≤ 1, the element

ϕ(s1, . . . , sn)

def
= (t·r1·X ′1 ∗s1·Y1 ∗−t·r1·X ′1∗ −s1·Y1)∗ · · · ∗ (t·rn·X ′n ∗sn·Yn ∗−t·rn·X ′n ∗−sn·Yn)

= (s1·ead r1·(t·X′1)Y1 ∗−s1·Y1)∗ · · · ∗ (sn·ead rn·(t·X′n)Yn ∗−sn·Yn)

is defined and is contained in an open ball B around 0 satisfying the conditions
specified in Theorem 5.58. Then by Theorem 5.58 and the hypothesis dim g′ <∞,
the function ϕ takes its values in [g, g] = [g, g]. We set Xj = t·X ′j and record that

(∗) {erj ·XjYj − Yj | j = 1, . . . , n} is a basis of g′.

We compute the derivative of ϕ: ]−ε0, ε0[
n → g′ at (0, . . . , 0). For each j = 1, . . . , n,

the derivative at 0 of the curve s 7→ s·ead rj ·XjYj∗(−s·Yj) = s·(erj ·XjYj−Yj)+o(s),
1
s ·o(s)→ 0 for s→ 0, is erj ·XjYj−Yj . If U is a sufficiently small zero neighborhood
of g′, then the function (Z1, . . . , Zn) 7→ Z1 ∗ · · · ∗ Zn : Un → g′ has the derivative
(Z1, . . . , Zn) 7→ Z1 + · · · + Zn : (g′)n → g′. By the chain rule, the derivative
ϕ′(0, . . . , 0) now is the linear map

(h1, . . . , hn) 7→
n∑
j=1

hj ·(erj ·XjYj − Yj)

from Rn to g′. By (∗), this linear map has rank n and thus is a linear isomorphism
of Rn → g′. Then the Theorem of the Local Inverse (see e.g. [237]) shows that
a whole neighborhood ] − ε, ε[ n of 0 in ] − ε0, ε0[ n is mapped homeomorphically
onto a 0 neighborhood of [g, g] and this is what we wanted to prove. ut

For the purposes of proving (ii) it would have sufficed to take r1 = · · · =
rn = 1. But we shall use the sharper form of (i) in the proof of van der Waerden’s
Continuity Theorem 5.64 below. These results show the intimate relation between
commutators on the local group level and the brackets on the Lie algebra level.
In order to draw conclusions on the global structure of the commutator group let
us recall a few group theoretical concepts. The commutator ghg−1h−1 in a group
G will again be written comm(g, h). The commutator group G′ of G is the group
generated by all commutators. It is a characteristic, hence normal subgroup.

Exercise E5.20. Prove the identity

comm(g,mn) = comm(g,m)m
(

comm(g, n)
)
m−1

= comm(g,m) comm(g, n) comm
(

comm(g, n)−1,m
)
.

Use this identity to prove the following result: Let Ω = Ω−1 denote a subset
of G generating G. Then G′ is the smallest normal subgroup containing all com-
mutators comm(a, b) with a, b ∈ Ω and the smallest subgroup H containing all
commutators comm(a, b) with a, b ∈ Ω and being closed under the formation of
commutators comm(a, x) with elements a ∈ Ω and x ∈ H. If Ω is invariant under
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inner automorphisms, then G′ is generated by all commutators comm(a, b) with
a, b ∈ Ω. ut

The Commutator Subgroup Theorem

Theorem 5.60. Let G denote a connected linear Lie group such that g′ = [g, g]
is finite dimensional. Then G′ is the subgroup algebraically generated by exp[g, g];
i.e.

(26) G′ = 〈exp g′〉.

Furthermore,

(27) L(G′) = g′.

Proof. The Recovery of Subalgebras 5.52(iii) conclusion (26) implies (27); thus we
shall have to prove (26).

Firstly, we show that G′ ⊆ 〈exp g′〉. Let B denote a ball around 0 in g such
that B ∗B ∗B ∗B is defined and contained in a ball of radius π (with respect to
a norm induced from a Banach algebra containing G and g). Since dim g′ < ∞
the Subalgebra g′ is closed and for X, Y ∈ B we have comm(expX, expY ) =
exp comm∗(X,Y ) ∈ exp g′ = exp g′ by 5.57(25). Thus the group generated by all
comm(g, h) with g, h ∈ expB is contained 〈exp g′〉. The group 〈exp g′〉 is invariant
under inner automorphisms since g(exp g′)g−1 = exp Ad(g)[g, g] ⊆ exp[g, g]. But
according to Exercise E5.20, the commutator group G′ is the smallest normal
subgroup containing all commutators comm(expX, expY ) with X,Y ∈ B. Hence
G′ ⊆ 〈exp g′〉. Secondly, we show that 〈exp g′〉 ⊆ G′. By 5.59(ii) there is an open
ball B′ ⊆ B around 0 in g′ such that B′ ∩ g′ is the local subgroup with respect to
B′ generated by all comm∗(X,Y ) in B′ with X, Y ∈ B′. But B′ ∩ exp−1G′ is a
local subgroup with respect to B′ containing the commutators comm∗(X,Y ) ∈ B′,
X, Y ∈ B′, since exp comm∗(X,Y ) = comm(expX, expY ) ∈ G′. Therefore B′ ∩
g′ ⊆ B′∩exp−1G′ and thus exp(B′∩g′) ⊆ G′. Hence 〈exp g′〉 = 〈exp(B′∩g′)〉 ⊆ G′.
Thus (26) is proved. ut

Example 5.61. Let G denote the linear Lie group of all matrices
1 x z 0
0 1 y 0
0 0 1 0
0 0 0 eu

 , u, x, y, z ∈ R.

Its commutator group G′ consists of all matrices
1 0 z 0
0 1 0 0
0 0 1 0
0 0 0 1

 , z ∈ R,
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and its center Z is the direct product of G′ and the group of matrices
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eu

 , u ∈ R.

The subgroup D consisting of the matrices
1 0 m 0
0 1 0 0
0 0 1 0
0 0 0 e−m

√
2+n

 , m, n ∈ Z

is discrete and central. The factor group Γ = G/D (being analytic by Exercise
E5.22 below, but not a linear Lie group by arguments given in the discussion of
Example 5.76 below) has a nonclosed commutator group Γ′ which is dense in the
center Z(Γ) = Z(G)/D ∼= T2. ut

Remember that, in the following proposition, a Lie subalgebra of the Lie algebra
of a linear Lie group is automatically closed and separable if it is finite dimensional.

Proposition 5.62. Assume that a subgroup of the form H = 〈exp h〉 with h a
closed separable Lie subalgebra of g is dense in a linear Lie group G. Then it is
normal and h is an ideal of g; in fact g′ ⊆ h. Moreover, if g′ is finite dimensional,
then G′ ⊆ H.

Proof. Since N(H,G) is closed by Proposition 5.53 and H is dense in G we
conclude that H is normal, and it then follows from (24) above that n(h, g) = g,
i.e. that h is an ideal. Thus (adX)(g) ⊆ h for all X ∈ h. Then X ∈ h and
Y ∈ g implies Ad(expX)(Y ) − Y = eadX(Y ) − Y = [X,Y ] + 1

2! ·
[
X, [X,Y ]

]
+

· · · ∈ h. The relation α1α2 − 1 = (α1 − 1)(α2 − 1) + (α1 − 1) + (α2 − 1) in
the ring of vector space endomorphisms of g shows that X1, X2 ∈ h and Y ∈ g
implies Ad(expX1 expX2)(Y )−Y ∈ h. By induction we conclude Ad(H)(Y )−Y =
Ad(〈exp h〉)(Y )− Y ⊆ h. Since H is dense in G we have

(∀g ∈ G)(∀Y ∈ g) Ad(g)(Y )− Y ∈ h.

Now let X, Y ∈ g. Then the curve t 7→ et· adXY − Y :R→ h has all of its tangent
vectors in h, and thus [X,Y ] = d

dt

∣∣
t=0

et· adXY ∈ h. Hence g′ ∈ h and therefore
G′ = 〈exp g′〉 ⊆ 〈exp h〉 = H if Theorem 5.60 applies. ut

Forced Continuity of Morphisms between Lie Groups

By 5.59 in an n-dimensional Lie group G, whose Lie algebra g satisfies g = g′,
there is a neighborhood in which every element is a product of n commutators.
This property forces algebraic morphisms from G into any compact topological
group to be continuous as we shall show now.
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An independent (and elementary) observation on compact groups is needed.

Lemma 5.63. Let H be a compact group and U an identity neighborhood. Consider
a fixed natural number n. Then there is an identity neighborhood W of H such that
for x1, . . . , xn ∈W ,

comm({x1} ×H) · · · comm({xn} ×H) ⊆ U.

Proof. Since U is an identity neighborhood of H and we find an identity neigh-
borhood V such that V n = V · · ·V ⊆ U . For any h ∈ H there is a neighborhood
Uh of h and an identity neighborhood Wh such that comm(Wh, Uh) ⊆ V . By
the compactness of H there are finitely many h(p), p = 1, . . . , P in H such that

H = Uh(1) ∪ · · · ∪ Uh(P ). Set W
def
= Wh(1) ∩ · · · ∩Wh(P ). Then x ∈ W and h ∈ H

implies comm(x, h) ∈ V . Hence W satisfies the requirement. ut

Van der Waerden’s Continuity Theorem

Theorem 5.64. Assume that f :G→ H is a group homomorphism where H is a
compact group and G is an n-dimensional linear Lie group such that L(G)′ = L(G);
i.e. G0 = (G0)′. Then f is continuous.

Proof. Let UH be an identity neighborhood in H. We must show that f−1(UH)
is an identity neighborhood of G. Using the preceding Lemma 5.63 we find an
identity neighborhood WH of H such that

(∗) (∀h1, . . . , hn ∈WH) comm({h1} ×H) · · · comm({hn} ×H) ⊆ UH .

Thus by (∗) it suffices to show that the set⋃
{comm({g1} ×G) · · · comm({gn} ×G) : f(g1), . . . , f(gn) ∈WH}

is an identity neighborhood of G.
Now by 5.59(i) we find vectors Xj ∈ g, j = 1, . . . , n such that for each n-tuple

(r1, . . . , rn) of nonzero real numbers with |rj | ≤ 1 the set of all

comm({exp r1·X1} ×G) · · · comm({exp rn·Xn} ×G)

is certainly an identity neighborhood. The proof of the theorem now boils down
to finding, for each j = 1, . . . , n, a real number rj with 0 < |rj | ≤ 1 such that
f(exp rj ·Xj) ∈WH . Define a group homomorphism τ :R→H by τ(r)=f(exp r·Xj).
If τ is constant, set rj = 1

2 . In that case f(exp rj ·Xj) = 1 ∈WH . Now assume that
τ is nondegenerate. Then the subset τ(]0, 1]) of the compact space H is infinite
and therefore has an accumulation point h. Let V be an identity neighborhood of
H such that V V −1 ⊆WH . Find two real numbers s and t such that 0 < s < t ≤ 1,
that τ(s) 6= τ(t), and that τ(s), τ(t) ∈ V h. We set rj = t − s. Then 0 < rj ≤ 1
and f(exp rj ·Xj) = τ(rj) = τ(t)τ(s)−1 ∈ V hh−1V −1 = V V −1 ⊆ WH . Thus rj
satisfies our requirements. ut
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Corollary 5.65. Let G be a connected linear Lie group such that G′ = G. Then
every homomorphism from G to O(n) or U(n) is automatically a continuous rep-
resentation.

Proof. By 5.60 we have L(G)′ = L(G′) = L(G). The assertion then follows from
5.64. ut

This applies in particular to groups like G = SO(n), G = SU(n) (cf. e.g., 6.8
below). In the next chapter we shall in fact observe, that the property G = G′ is
a very prevalent phenomenon among connected compact Lie groups.

Corollary 5.66. A compact connected Lie group G satisfying G′ = G supports
only one compact group topology.

Proof. By 5.60 we have g′ = g. If O is a compact group topology on G, then
idG:G → (G,O) is continuous by 5.64. Then, as G is compact, idG is a homeo-
morphism. ut

It should be emphasized that this statement means that the cardinality of the
set of all compact group topologies on the underlying group G is one. This is to
be contrasted with a different statement, applying for instance to the case of a
torus group Tn where there are uncountably many different compact Lie group
topologies, yet they are all isomorphic. The following exercise is to illustrate this
point.

Exercise E5.21. (i) Show that Tn has discontinuous automorphisms and thus
different compact Lie group topologies. Show that all compact Lie groups on the
underlying group of Tn are isomorphic compact Lie groups.

(ii) Show that there are countably infinitely many isomorphy classes of con-
nected Lie group topologies on the underlying group of Tn.

[Hint. (i) Observe from the Appendix 1 that the underlying group of Tn is isomor-

phic to Q(2ℵ0 )⊕
⊕

p prime Z(p∞)n (cf. A1.34). Exhibit discontinuous automorphisms
from this information. Note that the dimension n is an algebraic invariant and that
Tn is divisible. In 2.42 we have classified all compact Lie groups. Use these pieces
of information for a proof of the uniqueness up to topological isomorphism.

(ii) Remark that Tn is algebraically isomorphic to Tn×Rm form, n = 0, 1, 2 . . . .
By E5.18, each connected linear abelian Lie group is isomorphic to one of these.]

ut

In fact there are compact group topologies on the underlying group of Tn which
are not Lie group topologies. But this is the subject of a later chapter on compact
abelian groups.
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Quotients of Linear Lie Groups

We have introduced linear Lie groups; it is interesting to observe that the class
of linear Lie groups is not closed under the formation of quotients even if these
are relatively well behaved. A simple and theoretically interesting example is that
of the so-called Heisenberg algebra h and the corresponding Heisenberg group H.
(The name arises from basic quantum mechanics; the quantum mechanical model
of a free particle on a real line describes the position of the particle by a hermi-
tian (unbounded) operator Q on separable Hilbert space (here being L2(R)), its
momentum by a hermitian (unbounded) operator P , and these do not commute;
in particular, if I denotes the identity operator, they satisfy [P,Q] = i·I when
physical quantities are appropriately normalized. If we set p = −i·P , q = i·Q,
and i·I = ι, then all of these are skew hermitian operators satisfying [p, q] = ι
and spanning a Lie algebra called the Heisenberg algebra. It generates a group of
bounded unitary operators called the Heisenberg group. The names are generally
extended to all objects which are isomorphic to these.)

Example 5.67. (i) Let T denote the Banach algebra of all upper triangular ma-
trices

〈t;x, y; z〉 def
=

 t x z
0 t y
0 0 t

 , t, x, y, z ∈ R.

Then T−1 = {〈t;x, y; z〉 | t 6= 0}. The Heisenberg group H is the subgroup of all
elements 〈1;x, y; z〉 ∈ T−1, and the Heisenberg algebra h is the Lie subalgebra of
(T, [· , ·]) consisting of all 〈0;x, y; z〉 ∈ T. Thus H is a linear Lie group. Its center Z
consists of all 〈1; 0, 0; z〉. It contains an infinite cyclic subgroup F = {〈1; 0, 0;n〉 |
n ∈ Z}. Then F is a discrete subgroup, hence a closed subgroup, and it is central,
hence normal. The quotient map q:H → H/F onto the quotient group G = H/F
induces a local isomorphism. (It is not hard to show that, in such circumstances,
the factor group G = H/F is an analytic group: Exercise E5.22.)

The center of G is the circle group Z/F . We claim that G is not a linear Lie
group. Observe that this requires a proof that G cannot be embedded into the
multiplicative group of any Banach algebra. In the context of compact groups,
however, it is reassuring that we shall be able to show (in Theorem 6.7 below)
that quotients of compact Lie groups are compact Lie groups. Here, in fact, we
shall prove:

Lemma A. If f:H → A−1 is a morphism of topological groups from the Heisenberg
group H into the group of units of a Banach algebra A such that f(F ) = {1}, then
f(Z) = {1}.

Proof. Suppose by way of contradiction that there is a morphism f :H → A−1

into a subgroup of the group of units of a Banach algebra with f(F ) singleton but
f(Z) not singleton. We shall derive a contradiction, and for this purpose we may
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and shall assume that A is the closed linear span of f(H). Then S = f(Z/F ) is a
central circle group.

If A is not complex, we consider the complexification C⊗A and obtain a com-
plex representation h 7→ 1 ⊗ f(h):H → C ⊗ A. Thus, without losing generality,
we assume A to be complex. The circle group S makes A into an S-module un-
der multiplication. Consider the isotypic decomposition of Afin =

∑
χ∈Ŝ Aχ (see

Theorem 4.39), where Aχ is the set of all a ∈ A with sa = χ(s)·a. If a ∈ Aχ
and b ∈ A, then s(ab) = χ(s)·ab, and thus Aχ is a right ideal. Since S is central,
we also get s(ba) = b(sa) = χ(s)·ba, and so Aχ is likewise a left ideal. It follows
that AχAρ ⊆ Aχ ∩ Aρ and this intersection is zero if χ 6= ρ. Thus Aχ annihilates
all Aρ with ρ 6= χ and thus annihilates the kernel of the canonical projection
P = Peχ :A→ A onto Aχ since the sum of these Aρ is dense in kerP = (idA−P )A
by the Big Peter and Weyl Theorem 3.51 and since A = PA ⊕ (ida−P )A al-
gebraically and topologically (see 4.13(iii)). Thus P is a ring morphism. Not all
isotypic components can vanish. Each non-zero one of them is an algebra with
identity, and Pf :H → PA is a morphism and Pf(Z) = P (S) is still a nontriv-
ial circle group. The improvement is that now Pf(z) = Pf(z)P (1) = χ(z)·P (1).
Since S is nonsingleton, we must have at least one isotypic component other than
Afix. We shall henceforth restrict our attention to such a component and assume
that f(z) = χ(z)·1.

We define P,Q,R ∈ L(H) by

P (t) = 〈1; t, 0; 0〉, Q(t) = 〈1; 0, t; 0〉, R(t) = 〈1; 0, 0; t〉.

In the algebra T we have P (t) = et·〈0;1,0;0〉, Q(t) = et·〈0;0,1;0〉, and Z(t) = et·〈0;0,0;1〉.
In T we notice

[〈0; 1, 0; 0〉, 〈0; 0, 1; 0〉] = 〈0; 0, 0; 1〉.

By Proposition 5.40, this implies [P,Q] = R in L(H). Then

[L(f)(P ),L(f)(Q)] = L(f)(R)

by Theorem 5.42. By Proposition 5.9, we find unique elements p′, q, r ∈ A such
that L(f)(P )(t) = (f ◦ P )(t) = exp t·p′, L(f)(Q)(t) = (f ◦ Q)(t) = exp t·q, and
L(f)(R)(t) = (f ◦R)(t) = exp t·r = e2πit·1. In particular, r = 2πi·1. Thus, in view
of Proposition 5.40, we note [p′, q] = 2πi·1. We set p = (2πi)−1·p′, and therefore
have elements p, q in the Banach algebra A such that [p, q] = 1. We claim that this
is impossible and prove this claim in a subsequent lemma. It will follow that the
analytic group G = H/F which is locally isomorphic to the linear Lie group H is
not itself a linear Lie group. ut

It is instructive to pursue the digression into the Heisenberg Lie algebra just a
little further. Part (b) of the subsequent lemma will finish the proof of Lemma A
above.

Lemma B. (a) Let F denote a field. Then there is an associative algebra A(p, q)
over F such that for any associative algebra A′ over F containing elements p′, q′
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with p′q′−q′p′ = 1 there is a unique morphism of associative algebras ϕ:A(p, q)→
A′ with ϕ(p) = p′ and ϕ(q) = q′. In particular, there is an automorphism of A(p, q)
with p 7→ q and q 7→ −p. Moreover, the subalgebras A(p) and A(q) generated
by 1 and p, respectively, q are isomorphic to the polynomial algebra K[ζ] in one
variable ζ. In A(p, q) we have

(28) [p, qn] = n·qn−1 for n = 1, 2 . . . .

Equation (28) holds in any associative algebra for elements p and q satisfying
[p, q] = 1. In any such situation, qn 6= 0 for all n ∈ N.

(b) Let A denote an arbitrary Banach algebra with identity. Then A cannot
contain elements p, q with pq − qp = 1.

Proof. (a) We consider the free associative algebra K[ξ, η] in two noncommuting
variables and let I denote the ideal generated by the element ξη − ηξ − 1. Then
A(p, q) = K[ξ, η]/I has the universal property with p = ξ + I and q = η + I.

In particular, the prescription p 7→ q and q 7→ −p extends to a unique auto-
morphism whose inverse is the unique extension of p 7→ −q and q 7→ p.

Now we consider the polynomial algebra P = K[ζ] in one variable and the
associative algebra A′ = Hom(P, P ) of all vector space endomorphisms of P . We
define p′, q′ ∈ A′ by p′f(ζ) = f ′(ζ) with the derivative f ′ of the polynomial f , and
q′f(ζ) = ζf(ζ). Then p′q′f(ζ) = p′

(
ζf(ζ)

)
= f(ζ)+ζf ′(ζ) = f(ζ)+q′p′f(ζ). Thus

p′q′−q′p′ = idA′ . Hence there is a unique morphism ϕ:A(p, q)→ A′ with ϕ(p) = p′

and ϕ(q) = q′. Since the algebra generated in A′ by q′ is clearly isomorphic to K[ζ],
it follows that A(q) ∼= K[ζ]. The automorphism with q 7→ p, p 7→ −q takes A(q) to
A(p).

The function D:A(p, q) → A(p, q) given by D = ad p is a derivation with
Dq = 1. Hence Dqn = n·qn−1 as one observes readily by induction. This shows
(28). The universal property of A(p, q) entails that this identity is true in any
algebra as soon as [p, q] = 1. In such a situation we certainly have q 6= 0, and then
(28) shows inductively that qn 6= 0 for n ∈ N.

(b) Now suppose that A is a Banach algebra containing elements p and q with
[p, q] = 1. Then (28) implies

n‖qn−1‖ ≤ ‖[p, qn]‖ ≤ 2‖p‖·‖qn‖ ≤ 2‖p‖·‖q‖·‖qn−1‖,

that is

(n− 2‖p‖·‖q‖)‖qn−1‖ ≤ 0

for all n ∈ N. As soon as n > 2‖p‖·‖q‖, this implies qn−1 = 0 a contradiction to
(a) above. ut

The proof of Part (b) in the preceding Lemma A is due to H. Wielandt [374].
The passing to a quotient group of a topological group modulo a discrete nor-

mal subgroup occurs frequently. It is important to keep in mind that this process
produces groups which are locally isomorphic. Let us formulate this in a proposi-
tion:
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Proposition 5.68. Let G be a topological group and D a discrete normal subgroup.
Let U be an open identity neighborhood of G such that UU−1∩D = {1}. Then the
quotient homomorphism p:G→ G/D, p(g) = gD maps U homeomorphically onto
p(U) = UD/D.

Proof. Quotient homomorphisms are continuous and open. Thus p|U :U → p(U) is
continuous and open. It remains to show that this function is injective. So consider
u, v ∈ U such that p(u) = p(v). Then p(uv−1) = 1 and so uv−1 ∈ D∩UU−1 = {1},
whence u = v. ut

One says briefly that quotient maps modulo discrete normal subgroups induce
local isomorphisms. In the following exercise one may elaborate this formalism a
bit further:

Exercise E5.22. Assume that G is an analytic group and that D is a discrete
normal subgroup. Show that G/D is an analytic group in a unique fashion such
that the quotient homomorphism G→ G/D is analytic. ut

This result shows that quotient group G = H/F which we produced in Example
5.67 is in fact an analytic group.

Exercise E5.23. Show that every associative algebra A generated by two elements
p, q with [p, q] = 1 is a free K[ξ]-module for the module operation f(ξ).a =
f(ad p)(a) with a basis 1, q, q2, . . . . Also, A has an ascending filtration An, n =
0, 1, . . . , that is an ascending family of vector spaces satisfying AmAn ⊆ Am+n

such that the graded algebra GA associated with A (see e.g., [36], Chap. III, §2,
no. 3, p. 166) is commutative and is the polynomial algebra generated by two
elements p and q.

[Hint. We consider the polynomial algebra A[t] with one commuting variable t. If
in A we have

∑n
j=0 anq

n = 0 with an 6= 0, then an application of αt = et· ad p yields∑n
j=0 an(q + t·1)n = 0, that is tnan·1 +R where R is a polynomial in t of degree

≤ n − 1. It follows that an = 0, a contradiction. Then the subalgebra generated
by 1 and q is isomorphic to K[ξ], the polynomial algebra in ξ under ξ 7→ q. By the
same token, applying βt = e−t· ad q we obtain that the algebra generated by 1 and
p is isomorphic to K[ξ].

Now we consider A as a left K[ξ]-module under f(ξ)·a = f(ad p)(a) and∑n
j=0 an.q

n = 0 with an ∈ K(ξ) and an 6= 0. The preceding procedure implies

an = 0. It follows that A is a free K[ξ] module with basis 1, q, q2, . . . . The mor-
phism ϕ:K[ξ, η] → A of the free associative algebra in two generators given by
ϕ(ξ) = p and ϕ(η) = q maps K[ξ] and K[η] isomorphically. We let Fn[ξ, η] de-
note the vector subspace of all polynomials in ξ and η in degree ≤ n. Then
the family An = ϕ(Fn[ξ, η]), n = 0, 1, . . . defines on A an ascending filtration,
that is a family of vector subspaces with AmAn ⊆ Am+n. The graded algebra
GA =

⊕∞
n=0A

n/An−1 (where A−1 = {0}) with the multiplication defined unam-
biguously by (x+Am−1)(y+An−1) = xy+Am+n−1 is generated by p = p+A0 and
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q = q+A0, and pq = (p+A0)(q+A0) = pq+A1 = qp+A1 = (q+A0)(p+A0) = qp.
Hence GA is a graded commutative algebra generated by p and q. Use the first
part to prove that GA(q) is a free GA(p)-module.] ut

The Topological Splitting Theorem for Normal
Vector Subgroups

A vector subgroup V of a topological group G is a closed subgroup which is iso-
morphic, in the category of topological groups, to the additive group of a real
topological vector space.

Lemma 5.69. If G is a linear Lie group and V a closed subgroup then the following
conditions are equivalent.

(i) V is a vector subgroup.
(ii) V is a Lie subgroup with Lie algebra L(V ) = v such that exp |v: v→ V is an

isomorphism of abelian topological groups.
In particular, if these conditions are satisfied, then V is isomorphic to the additive
subgroup of some Banach space.

Proof. Exercise E5.24. ut

Exercise E5.24. Prove Lemma 5.69.

[Hint. For a proof of (i)⇒(ii) let ϕ:E → V be an isomorphism of abelian topological
groups from the additive group of a real topological vector space E onto V . Recall
L(V ) = Hom(R, V ) and define a function α:E → L(V ) by α(x)(r) = ϕ(r·x).
Prove that α is an isomorphism of abelian topological groups. Conclude that
expV :L(V )→ V is an isomorphism of topological groups with inverse α ◦ϕ−1. By
the functoriality of L, the inclusion j:V → G gives an embedding L(j):L(V ) →
L(G) = g. Then the vector subspace v = L(G) of g is closed. It is therefore
isomorphic to the underlying topological vector space of a Banach space, and
expG |v: v→ V is an isomorphism of abelian topological groups. Conclude that V
is a Lie subgroup.] ut

By the Tubular Neighborhood Theorem for Subgroups 5.33(ii) for every linear
Lie group G and a closed Lie subgroup N there is a closed subset C containing 1
such that

(29) (n, c) 7→ nc:N × C → NC

is a homeomorphism onto neighborhood of N of G. For a closed subgroup N of an
arbitrary topological groupG we shall say thatN has a tubular neighborhood if such
a C exists. If G is a linear Lie group, by 5.33(ii) we can choose C homeomorphic
to a convex closed symmetric subset of g/n.
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In the proof of the following theorem we shall use the concept of paracompact-
ness and that of a partition of unity. For these topics see e.g. [34], Chap. 9, §4,
no 3, 4, or [101], p. 299ff.

Theorem 5.70 (The Topological Splitting Theorem for Vector Subgroups). Let
N be a vector subgroup of a topological group G such that the following conditions
are satisfied:

(a) N has a tubular neighborhood in G.
(b) The quotient space G/N = {Ng | g ∈ G} is paracompact.

Then there is a continuous map σ:G/N → G such that

(n, ξ) 7→ nσ(ξ):N ×G/N → G

is a homeomorphism satisfying Nσ(ξ) = ξ. In particular, with C
def
= σ(G/N), the

function
(n, c)→ nc:N × C → NC = G

is a homeomorphism, and G is homeomorphic to N ×G/N .

Proof. Let C ⊆ G be such that NC is a tubular neighborhood of N in G according
to hypothesis (a). The interior of NCg/N in G/N in an open neighborhood V ′g of
Ng ∈ G/N . We note that {Vg | g ∈ G} is an open cover of G/N . Since G/N is
paracompact by hypothesis (b), there is a partition of unity subordinate to this
cover, i.e. a family of continuous functions fj :G/N → [0, 1] and a locally finite
open cover {Vj | j ∈ J} of G/N such that for each j ∈ J there is a g ∈ G such
that supp fj ⊆ Vj ⊆ V ′g , and that

∑
j∈J fj = 1 (where all but a finite number of

summands fj(ξ) are nonzero for each ξ ∈ G/N).
Let p:G→ G/N denote the quotient map and set Uj = p−1(Vj), pj :Uj → Vj ,

pj = p|Uj . Let j ∈ J . Fix a g ∈ G such that Vj ⊆ V ′g . Since ρg:G→ G, ρg(x) = xg
is a homeomorphism, the function

(30) (n, c) 7→ nc:N × C → NCg

is a homeomorphism onto a neighborhood of Ng. The continuous function τj :Vj →
Uj , τj(Ncg) = cg satisfies pjτj = idVj . For i, j ∈ J and ξ ∈ Vi ∩ Vj we have
Nτi(ξ) = Nτj(ξ) and thus τi(ξ)τj(ξ)

−1 ∈ N . We therefore can define

(31) κij :G/N → n, expκij(ξ) =

{
τi(ξ)τj(ξ)

−1 if ξ ∈ Vi ∩ Vk,
1 otherwise.

It is clear that κji = −κij . If ξ ∈ Vi ∩ Vj ∩ Vk, then exp
(
κij(ξ) + κjk(ξ)

)
=

expκij(ξ) expκjk(ξ) = τi(ξ)τj(ξ)
−1τj(ξ)τk(ξ)−1 = τi(ξ)τk(ξ)−1 = exp(κik(ξ), that

is

(32) (∀ξ ∈ Vi ∩ Vj ∩ Vk) κij(ξ) + κjk(ξ) = κik(ξ).

Now we define for each j ∈ J a function

(33) ϕj :Vi → n, ϕj(ξ) =
∑
i∈J

fi(ξ)·κij(ξ).
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Because supp fi ⊆ Vi, the function ξ 7→ fi(ξ)·κij(ξ):Uj → n is continuous for all
i ∈ J , and thus ϕj is continuous. Now let ξ ∈ Uj ∩ Uk. If ξ /∈ Ui, then fi(ξ) = 0.
If ξ ∈ Ui, then (32) implies fi(ξ)·κij = fi(ξ)·

(
κik(ξ) + κkj(ξ)

)
. Hence

(34)

ϕj(ξ) =
∑
i∈J

fi(ξ)·κij(ξ)

=
∑
i∈J

fi(ξ)·κik(ξ) +
∑
i∈J

fi(ξ)·κkj(ξ)

= ϕk(ξ) + κkj(ξ).

For each j ∈ J we set

(35) σj :Vj → Uj , σj(ξ) = expϕj(ξ)τj(ξ).

Then

(36) p
(
σj(ξ)

)
= p
(
τj(ξ)

)
= ξ for ξ ∈ Vj .

Now let ξ ∈ Uj ∩ Uk. Then (34) and (31) imply

σj(ξ) = exp
(
ϕj(ξ)

)
τj(ξ)

= exp
(
ϕk(ξ) + κkj(ξ)

)
τj(ξ)

= exp
(
ϕk(ξ)

)(
τk(ξ)τj(ξ)

−1
)
τj(ξ)

= exp
(
ϕk(ξ)

)
τk(ξ) = σk(ξ).

Hence we can define unambiguously

(37) σ:G/N → G, σ(ξ) = σj(ξ) if ξ ∈ Uj .

Then σ is continuous since all σj are continuous, and p ◦ σ = idG/N . The function

(n, ξ) 7→ nσ(ξ):N ×G/N → G

has the inverse g 7→ (gσ
(
p(g)

)
, p(g)

)
and thus is the desired homeomorphism. ut

Theorem 5.71 (The Vector Subgroup Splitting Theorem). Let N be a normal
vector subgroup of a topological group G such that the following three conditions
are satisfied:

(i) G/N is compact.
(ii) N has a tubular neighborhood.
(iii) There is a feebly complete (see 3.29) real topological vector space n and an

isomorphism of topological groups expN : n→ N .
Then G contains a compact subgroup K such that the function (n, k) 7→ nk:N ×
K → G is a homeomorphism.

If G is a linear Lie group, then (ii), (iii) are automatically satisfied.

Proof. If G is a linear Lie group, then 5.33(ii) secures (ii); by Lemma 5.69, the
vector subgroup N is a Lie subgroup and then n = L(N) is a completely normable
and thus certainly a feebly complete topological vector space (cf. chain of impli-
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cations preceding 3.30). Hence (iii) will be satisfied, too. Let σ:G/N → G be a
cross section according to Theorem 5.70 which we can apply by (i) and (ii). If
g ∈ G then σ(Nhg) and σ(Nh)g are in the same coset Ngh. Hence there is an
n ∈ N such that σ(Nh)g = nσ(Nhg). If ξ = Nh we write Nhg = ξ·g. Then
σ(ξ·g)−1σ(ξ)g = σ(ξ·g)−1nσ(ξ·g) ∈ N . Define δ:G/N ×G→ N by

δ(ξ, g) = σ(ξ·g)−1σ(ξ)g.

Then δ has the following properties:
(a) δ is continuous,
(b) δ(ξ, n) = n for all (ξ, n) ∈ G/N ×N .
(c) δ(ξ, gh) = δ(ξ·g, h)(h−1δ(ξ, g)h) for all ξ ∈ G/N , g, h ∈ G.

Indeed, (a) is clear, and for a proof of (b) let ξ = Nh, then ξ·n = Nhn = hNn =
hN = Nh since N is normal. The assertion then is a consequence of the definition
of δ. For (c) compute that, on the one hand, σ(ξ·gh)δ(ξ, gh) = σ(ξ)gh, and that
σ(ξ)gh = σ(ξ·g)δ(ξ, g)h = σ(ξ·g)h(h−1δ(ξ, g)h) = σ(ξ.gh)δ(ξ·g, h)(h−1δ(ξ, g)h)
on the other.

Now we let dξ denote Haar measure on G/N and define

ψ:G→ N, ψ(g) = expN

∫
G

exp−1
N δ(ξ, g) dξ.

The integral exists by (iii) and 3.30. Then by (b), n ∈ N implies

ψ(n) = expN

∫
G

exp−1
N δ(ξ, n) dξ = expN

∫
G

exp−1
N ndξ = n

because Haar measure is normalized. In particular, ψ
(
ψ(g)

)
= ψ(g). From (c) we

deduce

exp−1
N ψ(gh) =

∫
G

exp−1
N δ(ξ, gh) dξ

=

∫
G

exp−1
N δ(ξ·g, h) dξ +

∫
G

Ad(h)−1 exp−1
N δ(ξ, g) dξ

= exp−1
N ψ(h) + Ad(h)−1 exp−1

N ψ(g)

since ξ·g = ξ(Ng) and Haar measure is invariant. Thus

(∀g, h ∈ G) ψ(gh) = ψ(h)
(
h−1ψ(g)h

)
.

From taking g = h = 1 it follows that ψ(1) = 1. Then h = g−1 yields ψ(g−1) =
gψ(g)−1g−1.

We observe, that K = ψ−1(1) is a closed subgroup. Moreover, ψ
(
ψ(g)−1g) =

ψ(g)g−1ψ
(
ψ(g)−1

)
g = 1, whence ψ(g)−1g ∈ K. The function

g 7→ (ψ(g), ψ(g)−1g):G→ N ×K inverts the function

(n, k) 7→ nk:N ×K → G

which therefore is a homeomorphism. ut
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We notice that the construction of the function ψ which provided us with
the conclusion of the theorem was obtained via the averaging operator again.
We systematically dealt with it in Chapter 3. The averaging concept is one of
the most powerful and versatile tools in the theory of compact groups. Another
example which is interesting in our context is the following exercise:

Exercise E5.25. Prove the following proposition.

Assume that the topological group G has a normal vector subgroup N satisfying
5.71(i), (iii) and assume further that for two compact subgroups K1 and K2 the
map (n, k) 7→ nk : N ×Kj → G is a homeomorphism for j = 1, 2. Then K1 and
K2 are conjugate.

[Hint. The assumption provides isomorphisms πj :G/N → Kj and then ξ 7→
π2(ξ)−1π1(ξ):G/N → G has its image in N and thus defines a continuous function
ϕ:G/N → n such that expN ϕ(ξ) = π2(ξ)−1π1(ξ). Compute

(∗) ϕ(ξη) = ϕ(η) + Ad
(
π1(η)−1

)
ϕ(ξ).

Now defineX ∈ n byX =
∫
G/N

ϕ(ξ) dξ and integrate with respect to Haar measure

on G/N on both sides of (∗) with respect to ξ. Get X = ϕ(η) + Ad
(
π1(η)−1

)
(X).

Set n = expX and verify π2(η) = nπ1(η)n−1 for all η ∈ G/N .] ut

We have seen that in the circumstances of the theorem we have a homeomor-
phism

µ:N ×K → G, µ(n, k) = nk.

It is not in general a morphism of groups. Of course we can transport the group
structure of G to N ×K and ask which group structure on N ×K would make µ
an isomorphism. Let us denote this group multiplication by(

(n, k), (n′, k′)
)
7→ (n, k)∗(n′, k′): (N ×K)× (N × k)→ (N ×K).

Then

µ
(
(n, k)∗(n′, k′)

)
= µ(n, k)µ(n′, k′) = nkn′k′ = n(kn′k−1)kk′ = µ

(
n(kn′k−1), kk′

)
.

Thus the multiplication

(n, k)∗(n′, k′) = (nIk(n′)), kk′
)
, Ig(x) = gxg−1

makes the product space N × K a topological group such that µ becomes an
isomorphism.

Group theory has long since prepared for this contingency with the concept of
a semidirect product, which we recall in the following.

Let N and H be topological groups and assume that H acts on N automor-
phically; i.e. there is a morphism of groups α:H → N such that

(h, n) 7→ h·n def
= α(h)(n):H ×N → N

is continuous.
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Exercise E5.26. Show that in these circumstances the product space N ×H is a
topological group with respect to the multiplication (n, h)(n′, h′) = (n(h·n′), hh′),
identity (1N , 1H), and inversion (n, h)−1 =

(
h−1·(n−1), h−1). ut

Definition 5.72. The topological group constructed in E5.26 is called the semidi-
rect product of N with H and is written N oα H. ut

Exercise E5.27. Prove the following assertion.

Let G be a topological group, N a normal subgroup, and H a subgroup such that
G = NH and N ∩H = {1}. Then H acts automorphically on N via inner auto-
morphisms:

(h, n) 7→ h·n = hnh−1 = Ih(n), Ig(x) = gxg−1,

and

µ:N oI H → G, µ(n, h) = nh

is a bijective morphism of topological groups. If G is locally compact and if N and
H are closed and σ-compact, i.e. are countable unions of compact subsets, then µ
is an isomorphism of topological groups. The latter conclusion is certainly true if
G is a compact group and N and H are closed.

[Hint. The verification of the first assertion is straightforward. The last one fol-
lows from the Open Mapping Theorem for Locally Compact Groups, Appendix 1,
EA1.21.] ut

Notably in the case of compact groups, the idea of a semidirect product will
have many interesting applications as we shall begin to see in Chapter 6 (Lemma
6.37ff., notably Theorem 6.41).

Notice that for any normal subgroup N of a topological group G and any
subgroup H the semidirect product N oI H and the morphism of topological
groups

µ:N oI H → G, µ(n, h) = nh

is well defined. If N is a normal subgroup of a topological group G such that there
is a subgroup H such that µ:NoIH → G is an isomorphism of topological groups
we shall say that N is a semidirect factor. Now Theorem 5.71 can be rephrased in
the following fashion (with an addition originating from Exercise E5.25).

Corollary 5.73. Any normal vector subgroup N of a linear Lie group G such that
G/N is compact is a semidirect factor (and all cofactors are conjugate). ut

We observe that this is nontrivial even in the case thatN is central and therefore
N is a direct factor. Indeed even if G is abelian and additively written, knowing
from Appendix 1, A1.36 that N as a divisible subgroup is a direct summand does
not say at all that N is a direct summand in the sense of abelian topological
groups, i.e. that there is a subgroup H such that (n, h) 7→ n + h:N ⊕H → G is
an isomorphism of topological groups.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



5. Linear Lie Groups 215

Of course there is more general group theory in the function ψ which we pro-
duced in the proof of Theorem 5.71. Let us look at it in an exercise!

Exercise E5.28. Prove the following assertions.
(i) Let G be a topological group and ϕ:G→ G an endomorphism of topological

groups. If ϕ2 = ϕ, then
µ: kerϕoI imϕ→ G

is an isomorphism of topological groups, i.e. kerϕ is a direct summand.
(ii) Let G be a topological group and ψ:G → G a crossed endomorphism, i.e.

assume that is satisfies

(∀g h ∈ G) ψ(gh) = ψ(h)
(
h−1ψ(g)h

)
= ψ(h)Ih

(
ψ(g)

)
.

Write kerψ = ψ−1(1). Then

µ: imψ oI kerψ → G

is an isomorphism of topological groups, i.e. imψ is a semidirect factor. ut

Corollary 5.73 has more applications than meet the eye. Let us state and prove
a lemma and a proposition of independent interest.

Lemma 5.74. Assume that q:G → H is a quotient map from a locally compact
group G onto a compact space H = {gS | g ∈ G} for some closed subgroup S. Then
there is a compact symmetric identity neighborhood C of G such that q(C) = H.

Proof. Let U be a compact identity neighborhood in G. If V is the interior of U ,
since q is open, q(gV ) is an open subset of H for each g ∈ G. As H is compact
and q is surjective, there are finitely many elements g1, . . . , gn ∈ G such that

H = q(g1U) ∪ · · · ∪ q(gnU). The set C1
def
= g1U ∪ · · · ∪ gnU is a compact identity

neighborhood of G such that q(C1) = H and C
def
= C1 ∪ C−1

1 is a symmetric
compact identity neighborhood with q(C) = H. ut

We shall say that a topological group G is compactly generated if G has a
compact subspace C such that G = 〈C〉. By Corollary A4.26
every connected locally compact group is compactly generated. Indeed, every con-
nected topological group is generated by each identity neighborhood.

Proposition 5.75. Let G be a compactly generated locally compact group and H
a closed subgroup such that the factor space G/H = {gH | g ∈ G} is compact, then
the following conclusions hold.

(i) There is a compact symmetric identity neighborhood C of G and a finitely
generated subgroup F of H such that G = FC.

(ii) H is compactly generated.

Proof. (i) AsG is compactly generated, in view of Lemma 5.74, we find a compact
symmetric identity neighborhood C of G generating G such that CH = G. Let U
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denote the interior of C. Since C is compact, so is C2 = CC and there is a finite
subset E of H such that C2 ⊆ EU ⊆ EC. Let F denote the subgroup generated
by E. Note F ⊆ H. Then

(1) C2 ⊆ FC.

We choose the abbreviation Cn = C · · ·C︸ ︷︷ ︸
n factors

and claim

(n) Cn+1 ⊆ FC.

For n = 1 this is already established. Assume (n) and note that this implies
Cn+2 ⊆ FCC ⊆ FFC = FC in view of (1). This shows (n+ 1). By induction, the
claim is proved. We obtain

G =
⋃
n∈N

Cn ⊆ FC and F ⊆ H.

(ii) If h ∈ H, then h = fc with f ∈ F , c ∈ C, whence c = hf−1 ∈ H ∩C. Thus
H is generated by (C ∩H) ∪ E. This completes the proof. ut

Exercise E5.29. Prove the “Closed Graph Theorem for Compact Range Spaces”.

A function f :X → Y from a Hausdorff space X into a compact Hausdorff space
Y is continuous if and only if the graph {

(
x, f(x)

)
| x ∈ X} is closed in X × Y .

[Hint. Assume f is continuous. Then the graph is the inverse image of the diagonal
in Y × Y under the continuous map f × idY

Assume the graph graphf is closed. Let x ∈ X and let U be the filter of

neighborhoods of x. Then F def
= {f(U) | U ∈ U} is a filter basis in the compact

space Y . Let y be any point in its intersection. Let U be a neighborhood of x in X
and V a neighborhood of y in Y . Then V ∩ f(U) 6= Ø, i.e. (U × V )∩ graphf 6= Ø.

Since graphf is closed, (x, y) ∈ graphf , i.e. y = f(x). Thus
⋂
U∈U f(U) = {f(x)}.

Apply compactness of Y once more to conclude that for each neighborhood V of
f(x) there is a U ∈ U such that f(U) ⊆ V .] ut

The Finite Discrete Center Theorem

Theorem 5.76. Let G be a connected Hausdorff topological group and Z a discrete
(hence closed) central subgroup such that the following conditions are satisfied:

(a) G/Z is compact.
(b) (G/Z)′, the algebraic commutator subgroup of G/Z, is dense in G/Z.

Then Z is finite.

Proof. Since Z is discrete, G and G/Z are locally isomorphic; in particular, the
group G is locally compact by (a). Since it is connected, it is also compactly gen-
erated. From Proposition 5.75(ii) Z is compactly generated. Thus, being discrete,
Z is a finitely generated abelian group. By the Fundamental Theorem of Finitely
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Generated Abelian Groups, Appendix 1, A1.11, the group Z is of the form is a
direct product EZ1 of a finite abelian subgroup and a free abelian group Z1

∼= Zn,
n = 0, 1, . . . We must show n = 0.

In order to simplify notation it is no loss of generality to assume, for the pur-
poses of the proof, that Z ∼= Zn. Then there is an algebraic and topological em-
bedding j:Z → E into the additive group of a euclidean vector space E = Rn and
E/j(Z) ∼= Tn. In particular, E/j(Z) is compact.

The direct product G × E has a discrete subgroup ∆ = {
(
z,−j(z)

)
| z ∈ Z}.

The group Γ
def
= G×E

∆ contains a subgroup G∗
def
= G×j(Z)

∆ isomorphic to G under

g 7→
(
{g} × j(Z)

)
)∆ and a central subgroup N

def
= Z×E

∆ isomorphic to E under
v 7→ (Z × {v})∆. Let U be a closed symmetric identity neighborhood of G such

that U2 ∩ Z = {1} and define C = (U×{1})∆
∆ . Then

ν:N × C → NC, ν
(
(z, v)∆, (u, 0)∆

)
=
(
uz, v

)
∆,

is surjective, continuous and open. Whenever (u1z1, v1)∆ = ν
(
(z1, v1)∆, (u1, 0)∆

)
=
(
(z2, v2)∆, (u2, 0)∆

)
=
(
u2z2, v2

)
∆, then (u−1

2 u1z
−1
2 z1, v1 − v2) ∈ ∆, i.e. firstly,

u−1
2 u1z

−1
2 z1 ∈ Z, hence u−1

2 u1 ∈ U2 ∩ Z = {1} and thus u1 = u2, and, secondly
v1− v2 = −j(z−1

2 z1), i.e. v1− v2 = j(z1)− j(z2), and thus v1− j(z1) = v2− j(z2),
i.e. (z1, v1)∆ = (z2, v2)∆. Hence ν is a homeomorphism and N has a tubular
neighborhood in Γ.

Further note that Γ/N ∼= G×E
Z×E = NG∗/N ∼= G∗/(N ∩G∗) ∼= G/Z. By hypoth-

esis (a) the factor group G/Z is compact. Hence Γ/N is compact, and thus, by
Corollary 5.73, N is a semidirect factor in Γ. Thus Γ contains a compact subgroup
K = S/∆ ∼= Γ/N ∼= G/Z, ∆ ⊆ S ⊆ G × E such that Γ = NK, semidirectly, i.e.
Γ ∼= NoIK and Γ/(N∩G∗) ∼= N

N∩G∗oιK where ι:K → Aut
(
N/(N∩G∗)

)
is given

by ι(k)
(
n(N ∩G∗)

)
= knk−1

(
n(N ∩G∗)

)
. Note that N

N∩G∗
∼= Z×E

Z×j(Z)
∼= E

j(Z) . The

image of G∗/(N ∩ G∗) in N
N∩G∗ oι K is the graph of a morphism γ:K → N

N∩G∗ .
Since K ∼= E/j(Z) is compact, the graph of γ compact. Therefore, γ contin-
uous by the Closed Graph Theorem for Compact Range Spaces (E5.29 above).
Correspondingly, this gives us a continuous morphism γ′:G/Z → E/j(Z). Since
the range is abelian, the commutator group (G/Z)′ is contained in the kernel
ker γ′. Since (G/Z)′ is dense by hypothesis (b) the morphism γ′ is constant. Hence
γ:K → N

N∩G∗ is constant. This means that the image of G∗

N∩G∗ in N
N∩G∗ oι K is

{1}×K. Hence G∗ = (N ∩G∗)K. Since G∗ is connected, N ∩G∗ ∼= Z discrete, and
(n, k) 7→ nk: (N ∩ G∗) ×K → (N ∩ G∗)N is a homeomorphism, we get G∗ = K,
and thus Z ∼= N ∩G∗ = {1}. ut

This gives us at once the following result.

Theorem 5.77. Let G be a connected compact Lie group with dense commutator
group. Then the fundamental group π1(G) is finite (See Appendix 2, A2.17ff.), and

the universal covering group G̃ of G is compact.
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Proof. Let p̃: G̃ → G denote the universal covering morphism (A2.21). Then

Z
def
= ker p̃ is isomorphic to π1(G). Theorem 5.76 applies to G̃ and Z with G ∼= G̃/Z

and yields that Z is finite. As a consequence G̃ is compact. (See Exercise E5.29
below.) ut

Exercise E5.30. Prove the following.

Let G be a topological group and N a compact normal subgroup. If G/N is compact,
then G is compact.

[Hint. Consider an open cover U of G. For each g ∈ G find finitely many U1, . . . , Un
covering Ng. Show that there is an open subset Wg of G such that WgN = Wg

and Wg ⊆ U1∪· · ·∪Un. Use compactness of G/N to cover G/N with finitely many
Wgj/N , j = 1, . . . , n.] ut

Exercise E5.31. Show that the 3-dimensional linear Lie group Sl(2,R) has a
fundamental group isomorphic to Z.

[Hint. Verify that Sl(2,R) is homeomorphic to the product space of SO(2) ∼= S1

and the space of all matrices

(
a b
0 a−1

)
, a > 0, b ∈ R which is homeomorphic to

R2.] ut

Theorem 5.78 (The Supplement Theorem). Let G and H be connected linear Lie
groups and q:G → H a quotient morphism of topological groups with kernel N .
Assume that g contains a subalgebra a such that g is algebraically and topologically
the vector space direct sum n⊕ a.

(i) Let S be a simply connected (see Appendix 2) topological group and f :S → H
a morphism of topological groups. Then there exists a unique morphism fa:S → G
of topological groups such that f = q ◦ fa and that f(S) = 〈expG a〉.

S
fa−−−−−−−−−→ G

f

y yq
H −−−−−−−−−→

id
H

(ii) Assume that H is compact and that H ′ is dense in H. Then A
def
= 〈expG a〉

is a compact Lie subgroup of G and q|A:A → H is a covering morphism with
kernel N ∩A.

(iii) Under the assumptions of (ii) define ι:A → Aut(N) by ι(a)(n) = ana−1.
Then the semidirect product N oι A is defined and the morphism µ:N oι A→ G,
µ(n,A) = na is surjective, open, and has the discrete kernel

{(d−1, d) | d ∈ N ∩A} ∼= N ∩A.

In particular, G = NA ∼= NoιA
D .

Proof. (i) The morphism L(q): g → h has kernel n = L(N) by 5.50. Since the
function q is a quotient morphism, it is open. Since expG: g→ G and expH : h→ H
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are local homeomorphisms at zero (5.41(i)(e)) the morphism L(q) of completely
normable Lie algebras is open at 0 and is, therefore open and thus a quotient
morphism. Since a is algebraically and topologically a direct summand, L(q)|a:
a→ h is an isomorphism of completely normable Lie algebras.

Let B be an open convex symmetric neighborhood of 0 in g such that the
Campbell–Hausdorff multiplication ∗:B × B → g is defined and that expG |B:
B → W is a homeomorphism onto an identity neighborhood of G. Accordingly,
let C be an open convex symmetric neighborhood of 0 in h such that firstly, ∗ is
defined on C × C, secondly, expH |C implements a homeomorphism of C onto an

open identity neighborhood V of H, and thirdly,
(
L(q)|a

)−1
(C) ⊆ B. Now let U

be any identity neighborhood of S such that f(U) ⊆ V . Define ϕ:U → G by

ϕ(x) = expG(L(q)|a)−1(expH |C)−1f(x), x ∈ U.

If x, y, xy ∈ U we set

X = (expH |C)−1f(x), Y = (expH |C)−1f(y), and

X ′ = (L(q)|a)−1(X), Y ′ = (L(q)|a)−1(Y ).

Then expH(X ∗ Y ) = f(x)f(y) = f(xy), expG(X ′ ∗ Y ′) = ϕ(x)ϕ(y). From the
commuting of the diagrams

g
L(q)−−−−−−−−→ h

expG

y yexpH

G −−−−−−−−→
q

H

restricting to

B
L(q)|B−−−−−−−−→ C

expG |B
y yexpH |C

W −−−−−−−−→
q|W

V

we conclude L(q)(X ′ ∗ Y ′) = X ∗ Y and thus (L(q)|a)−1(X ∗ Y ) = X ′ ∗ Y ′. Hence
ϕ(xy) = expG(X ′ ∗ Y ′). Thus ϕ(xy) = ϕ(x)ϕ(y). Now the Extension Theorem
A2.26, A2.27 applies and yields a unique extension fa:S → G such that for x ∈ U
we have q

(
fa(x)

)
= q
(

exp(L(q)|a)−1(expH |C)−1f(x) = expH
(
(expH |C)−1f(x)

)
= f(x). Since the identity neighborhood U generates the connected group S, we
conclude q ◦ fa = f .

Furthermore, C ′
def
= (L(q)|a)−1(C) is a zero neighborhood in a and fa(U) =

ϕ(U) = expG C
′. Therefore fa(S) = 〈expH(C ′)〉 = 〈exp a〉 (since exp a ⊆ 〈expC ′〉).

This completes the proof of (i).
(ii) We apply (i) to the universal covering morphism f :S → H (see Ap-

pendix 2). Under the assumptions of (ii), the universal covering group S is com-
pact by 5.77. Then A = 〈expG a〉 = fa(S) is compact as a continuous image
of S. As a compact subgroup of a linear Lie group, A is a linear Lie group
by 5.33. Since f implements a local isomorphism by 5.68, the function ϕ =
(expG |B) ◦ (L(q)|B)−1 ◦ (expH |C) ◦ f |U :U → A is a local homeomorphism at
1. Hence the corestriction fa:S → A which extends ϕ is a local homeomorphism
at 1. Then f = (q|A) ◦ fa shows that q|A:A → H is a local homeomorphism and
therefore has a discrete kernel. Thus it is a covering morphism by A2.3(iii). Since
N = ker q we have ker q|A = N ∩A.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



220 5. Linear Lie Groups

(iii) The function (a, n) 7→ ι(a)(n) = ana−1:A × N → N is continuous.
Thus the semidirect product is defined. It is straightforward to see that µ is a
morphism which has the asserted kernel. It remains to observe that µ is surjec-
tive and open. Since H is connected, openness suffices. Now γ:Bn × Ba → G,
γ(X,Y ) = X ∗ Y for sufficiently small zero neighborhoods of n and a, respec-
tively, has derivative γ′(0, 0) given by γ′(0, 0)(X,Y ) = X + Y , and g = n ⊕ a
is a vector space direct sum, algebraically and topologically. Hence γ′(0, 0) is an
isomorphism of completely normable vector spaces and by the Theorem of the
Local Inverse, γ is a local homeomorphism at (0, 0). For (X,Y ) ∈ Bn×Ba we note
µ(expN X, expA Y ) = expG(X ∗ Y ) and recall expN = expG |n, expA = expG |a.
Since the exponential functions are local homeomorphisms at zero it follows that
µ is a local homeomorphism at (1, 1) and since a morphism is open if it is open at
the identity, this suffices. ut

We note that in the case that g is finite dimensional, for a subalgebra a of
G to satisfy the hypotheses of Theorem 5.78 it suffices that n ∩ a = {0} and
g = n+ a. The extension fa of ϕ could have been obtained by invoking the Lifting
Homomorphisms Theorem II of Appendix 2, A2.33 instead of directly calling on
A2.26.

We shall show later that in the circumstances of 5.78(ii) we even have A = exp a
(see 6.30(26)).

Postscript

There are many texts on the theory of Lie groups and Lie algebras; the most ency-
clopedic is the work of Bourbaki, extending over almost two decades; its untimely
termination came before the travail was really complete.

However, Bourbaki is not a text for students; it builds on much of what Bour-
baki has accumulated in his other volumes and aspires to the greatest possible
generality.

We choose a different approach, and indeed an approach which is different from
other texts. (The closest is a textbook of 1991 in German by J. Hilgert and K.-H.
Neeb [153]; but these authors abandoned this approach in their later book of 2012
in English [154] in favor of a more comprehensive approach.) The approach here
has been advocated by K. H. Hofmann for some time [164, 165, 166].

The present approach has two principal characteristics. Firstly, it emphasizes
linear Lie Groups (cf. also [111]). This is perfectly sufficient for the theory of com-
pact groups, since all compact Lie groups are linear. Secondly, much in line with
the philosophy in the sources [164, 165, 166], it focuses on the exponential func-
tion rather than the analytic structure (which in passing is introduced, too). This
works extremely well in the context of linear Lie groups based on the exponential
function of Banach algebras with identity.

It is perhaps noteworthy that we get by in this chapter without squeezing the
theory of the Campbell–Hausdorff series down to the point at which it yields that
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all homogeneous summands Hn(x, y) are Lie polynomials which requires consid-
erable additional machinery, either by a more systematic build-up or by invoking
technical trickery.

As long as possible we retain a level of generality which requires only in isolated
points (exemplified by certain results involving information on endomorphisms of
finite dimensional vector spaces such as 5.45 or by the Commutator Subgroup
Theorem 5.62) that the Lie groups treated are finite dimensional. All examples,
which interest us, are.

In order to attach a Lie algebra L(G) directly to a topological group G we
consider it as the space Hom(R, ·) of one parameter subgroups. This secures auto-
matically relevant functorial properties. If G is a linear Lie group we endow this
space with an addition and a Lie bracket.

A test for any presentation of Lie theory is the problem of associating with a
given subalgebra h of the Lie algebra L(G) of a group G a subgroup of G, because
often there is no closed subgroup H of G having h as its Lie algebra L(H). Our
approach achieves this association without needing the machinery of immersed
manifolds or the integration of distributions on manifolds. We take for H the
subgroup 〈exp h〉 generated by the image of h under the exponential function and
endow it with enough additional structure in an elementary fashion to allow us to
recover h from H.

We have seen that a quotient group of a linear Lie group (even modulo a
discrete normal subgroup) is not necessarily a linear Lie group. We illustrated
that in some detail by the three dimensional Heisenberg group, a quotient of which
yields the classical example of a Lie group without faithful linear representation
(5.67). Our discussion incorporates a famous elementary but highly elegant proof
due to Wielandt that the operators P and Q in the quantum mechanics of one
free particle in one dimension cannot be bounded [374]. The fact that the class of
linear Lie groups is not closed under the formation of quotient groups does not
concern us in the context of compact groups. We shall show in the next chapter
that the class of compact Lie groups is closed under the formation of quotients (cf.
6.7 below).

The section on the Topological Splitting of Vector Subgroups (5.69ff.) produces
a global topological cross section for a vector subgroup 5.70 (which is not easily
accessible in the literature). The main application is the Vector Subgroup Splitting
Theorem 5.71. This is to be found in Bourbaki [38], p. 74 and elsewhere. Our proof
differs from Bourbaki’s because Bourbaki gets by without a topological cross sec-
tion and pays with extra technical complications. Our proof makes the Averaging
Operator more explicit and follows a general scheme proposed in [195]. The access
from this circle of ideas to the finiteness of the fundamental group of a connected
compact Lie group with dense commutator group 5.77 is pioneered by Bourbaki
[38], p. 78.

It is consistent with the general direction of this book that many results we
present on the structure of linear Lie groups involve compact groups without always
being directly theorems on compact groups. Representatives are van der Waerden’s
Continuity Theorem 5.64 and its corollaries, the Vector Subgroup Splitting The-
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orem 5.71, the Finite Discrete Theorem 5.76, and the Supplement Theorem 5.78.
Corollary 5.66 persists for compact connected groups which are not necessarily Lie
groups [344].

This book is about compact groups, and all compact Lie groups are linear
Lie groups. By restricting our attention to linear Lie groups we have been able
to proceed with minimum background, namely, about Banach algebras. It would
require some extra effort to discuss Lie groups in general. But it is not a giant step
in the spirit of our presentation as outlined below.

A real Lie group is a topological group G for which there is a completely
normable Lie algebra g, an open ball B around zero in g such that B ∗ B is
defined, and a homeomorphism e:B → V onto an open identity neighborhood of
G such that e(X ∗ Y ) = e(X)e(Y ) for X, Y ∈ B. Each topological group which is
locally isomorphic to a linear Lie group clearly is a Lie group. On each Lie group
there is a unique exponential function exp: g→ G extending e and classifying the
one parameter subgroups as the functions t 7→ exp t·X, X ∈ g. The ideas expressed
in Corollary 5.34 through Exercise E5.11 and the subsequent comment then verify
that every such group is in fact analytic. Conversely, one can show that every
analytic finite dimensional group is locally isomorphic to a linear Lie group. In
contrast with the situation in linear Lie groups, the class of Lie groups is closed
under the formation of quotients. We shall prove this for compact Lie groups in
the next chapter, and the proof is similar for the general Lie group case.

References for this Chapter—Additional Reading

[4], [28], [34], [38], [39], [36], [41], [43], [44], [58], [87], [88], [94], [101], [111], [134],
[141], [153], [154], [155], [164], [165], [166], [195], [229], [237], [242], [263], [282],
[299], [307], [308], [309], [331], [344], [353], [354], [360], [366], [374].
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Chapter 6

Compact Lie Groups

This chapter is devoted to an exposition of the structure of compact Lie groups,
which were defined in 2.41. We apply our knowledge of linear Lie groups, which
were defined in 5.32, to the special case of compact Lie groups. From 2.40 and 2.41
we recall that every compact Lie group is a compact subgroup of the multiplicative
group of some Banach algebra. Proposition 5.33 tells us that every compact Lie
group is a linear Lie group. Thus the entire machinery of linear Lie groups prepared
in Chapter 5 is available for the investigation of the structure of compact Lie
groups.

In Chapter 5 we saw that the algebraic commutator subgroup of a Lie group
G, obtained as a quotient of a connected linear Lie group modulo a discrete cen-
tral subgroup, is not necessarily closed. This obstruction is shown to vanish for
compact Lie groups G, where the commutator subgroup is closed (irrespective of
the connectedness of G). Indeed it is remarkable that every element of the com-
mutator subgroup of a connected compact Lie group is a commutator. Among the
structural results we establish is the classic which says that a connected compact
Lie group is almost the direct product of the identity component of its center and
its commutator subgroup and the less classical result that the commutator sub-
group of a connected compact Lie group is a semidirect factor. The second uses
basic facts on maximal tori of a compact Lie group and their Lie algebras which
we develop fully. This is at the heart of a study of the root space decomposition
of the Lie algebra of a compact Lie group and of the automorphism group of a
compact Lie group. We also use them to show that every connected compact Lie
group contains a dense subgroup generated by 2 elements. Our techniques for the
root space decomposition of the Lie algebra of a compact Lie group largely avoid
complexification but rather use complex structures derived from the adjoint rep-
resentation. The preliminaries were derived in Chapter 3. Maximal tori also play
a significant role in our discussion of the cohomological structure of a connected
compact Lie group. Clearly, one of the lead motives in the study of connected
compact Lie groups is that of the maximal torus subgroups.

Prerequisites. In its main body this chapter demands no prerequisites beyond
those in the previous chapters. However, in an exercise near the end of the chap-
ter we refer to some literature on the Hausdorff–Banach–Tarski Paradox for the
verification that two rotations of euclidean three space which we specifically cite
generate a free subgroup of SO(3), and in another exercise we make reference to
measure theory on manifolds. In the last section on the cohomology of compact Lie
groups basic cohomology theory is required; this is inherent even in the formula-
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224 6. Compact Lie Groups

tion of the main results. At the end of that section the information from algebraic
topology needed is more sophisticated.

Compact Lie Algebras

We must begin this section by introducing a terrible misnomer. Unfortunately it
has become current in the subject area.

Definition 6.1. A compact Lie algebra is a real Lie algebra which is isomorphic
to the Lie algebra of a compact Lie group. ut

Of course, a compact Lie algebra is not a compact topological space. As the Lie
algebra of a linear Lie group it has a natural topology, but unless it is singleton
(in which case the Lie group whose Lie algebra it is must be finite), this topology
is never a compact one.

Proposition 6.2. The Lie algebra g of a compact Lie group G is finite dimensional
and supports a scalar product (• | •) such that

(1) (Ad(g)X | Ad(g)Y ) = (X | Y ) for all X,Y ∈ g, g ∈ G,

(2) ([X,Y ] | Z) = (X | [Y, Z]) for all X,Y, Z ∈ g.

Proof. Since g is the Lie algebra of a compact Lie group G, by Theorem 5.41(ii),
the topological vector space g is locally homeomorphic to G. Hence it is locally
compact and thus finite dimensional. In particular, it is a finite dimensional real
Hilbert space. By Theorem 5.44, g is a G-module with respect to the adjoint
representation, that is with a module action given by gX = Ad(g)(X). By Weyl’s
Trick 2.10, g is an orthogonal G-module, that is there is a scalar product (• | •)
such that (1) holds.

Now let X, Y , and Z be arbitrary members of g. Consider the analytic function
f :R → R given by f(t) =

(
Ad(exp t·Y )(X) | Ad(exp t·Y )(Z)

)
. Note f(t) =

(et· adYX | et· adY Z) by Theorem 5.44. In view of (1) this function is constant.
Hence its derivative vanishes: 0 =

(
et· adY ad(Y )(X) | et· adY Z

)
+
(
et· adYX |

et· adY ad(Y )(Z)
)
. Setting t = 0 we obtain 0 = ([Y,X] | Z) + (X | [Y,Z]). This

proves (2). ut

Exercise E6.1. Let G denote a linear Lie group with Lie algebra g, and let
F : g× g→ R denote a symmetric bilinear form. Then the condition

(1′) F (Ad(g)X,Ad(g)Y ) = F (X,Y ) for all X,Y ∈ g, g ∈ G

implies condition

(2′) F ([X,Y ], Z) = F (X, [Y,Z]) for all X,Y, Z ∈ g.

If G is connected, then both conditions are equivalent.
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6. Compact Lie Groups 225

The form F defined by F (X,Y ) = tr adX adY satisfies (2′).

[Hint. The proof of (1′)⇒(2′) is a straightforward generalization of the proof of
(1)⇒(2) in 6.2. For the converse consider X, Y, Z ∈ g and define f :R → R by
f(t) = F (Ad(exp t·Y )X,Ad(exp t·Y )Z). Verify with the aid of (2′) that f ′(t) = 0
for all t ∈ R. Conclude that f(t) = F (X,Y ) for all t. Now note that (1′) holds for
all g ∈ exp(g). Invoke 5.41(iii) to prove the assertion.

The last assertion is verified straightforwardly.] ut

Bilinear maps satisfying (2′) are called invariant. An example familiar from
elementary linear algebra is the ordinary euclidean scalar product on R3 which is
invariant with respect to the “vector product” (x, y) 7→ x × y which endows R3

with a Lie algebra structure isomorphic to that of so(3).
If H is a Hilbert space with a scalar product ( · | · ) then a continuous linear

operator T :H → H is called skew symmetric if K = R, respectively, skew hermitian
if K = C, if (Tx | y) = −(x | Ty) for all x, y ∈ H; i.e. if T ∗ = −T . If T ∗ = −T and
E is a T -invariant closed subspace, then E⊥ is also T -invariant: Indeed, x ∈ E⊥
iff (x | y) = 0 for all y ∈ E and thus (Tx | y) = −(x | Ty) = 0 for all y ∈ E
if TE ⊆ E. Thus T is semisimple (in the sense of the remarks made preceding
E5.18).

Definition 6.3. (i) A Hilbert Lie algebra is a Lie algebra g over K with a contin-
uous Lie bracket (x, y) 7→ [x, y]: g × g → g and a positive definite inner product
(• | •) such that g is a Hilbert space with respect to it and that (2) is satisfied.
Equivalently, a Lie algebra g which is also a Hilbert space is a Hilbert Lie-algebra
if (adX)∗ = − adX for all of its elements X. Since the ground field is real this
says that every adX is skew symmetric.

(ii) An automorphism of a Hilbert Lie algebra g is an automorphism of the
Lie algebra and an isometry relative to the inner product. Thus the group of
automorphisms of g is Aut g∩U(g) (cf. 1.6(ii)). Which we shall write Aut g∩O(g).

(iii) A Lie algebra will be called semisimple if it has no nondegenerate abelian
ideals. ut

In any finite dimensional Lie algebra g, the Lie bracket is continuous. We also
note that for a Hilbert Lie algebra every adX, being skew symmetric is semisimple,
and every one of its automorphisms, being orthogonal, is semisimple, too.

We can rephrase Proposition 6.2 as saying that every compact Lie algebra is a
finite dimensional real Hilbert Lie algebra. We shall see shortly, that every finite
dimensional real Hilbert Lie algebra is a compact Lie algebra (see 6.6 below).

A Lie algebra g is called simple if its only ideals are {0} and g, and if dim g > 1.
As announced in Definition 5.56 we shall abbreviate the commutator algebra [g, g]
by g′.

Theorem 6.4. Assume that g is a Hilbert Lie algebra and z its center. Then the
following conclusions hold:
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226 6. Compact Lie Groups

(i) If i E g, then the orthogonal complement i⊥ is a closed ideal such that
[i, i⊥] = {0}, and if i is closed (which is automatically the case if dim i <∞), then
g is the orthogonal direct sum i⊕ i⊥.

(ii) If i, j E g, [j, j] = j, and [i, j] = {0} (e.g. if i ∩ j = {0}), then (i | j) = {0};
that is if two ideals annihilate each other and one has a dense commutator algebra,
they are orthogonal.

(iii) If k E i E g and i or k is closed (which is always satisfied in the finite
dimensional case) then k E g.

(iv) If i E g is abelian, then i ⊆ z. In particular, a one-dimensional vector
subspace is an ideal if and only if it is contained in z. Also, g is semisimple if and
only if z = {0}, i.e. if it is centerfree.

(v) The orthogonal complement [g, g]⊥ of the commutator algebra is the center z.
In particular, g is the orthogonal direct sum of z and the closure of the commutator
algebra [g, g]. If g is finite dimensional, then g = z⊕g′. The algebra g is semisimple
if and only if it has a dense commutator algebra.

(vi) If g is finite dimensional, then g is the orthogonal direct sum of the center
z and a unique family S of simple ideals s1, . . . , sn and g′ = s1 ⊕ · · · ⊕ sn.

(vii) If g is finite dimensional and i E g then i is an orthogonal direct sum of
a vector subspace of z and a unique subfamily sm1

, . . . , smk of S.
(viii) If g is finite dimensional, then g′′ = g′.
(ix) If g is finite dimensional and semisimple, there is an invariant inner prod-

uct 〈 · | · 〉 given by

(∀X, Y ∈ g) 〈X | Y 〉 = − tr(adX adY ).

On an arbitrary finite dimensional Hilbert Lie algebra g one finds invariant inner
products ( · | · ) by prescribing an arbitrary inner product ( · | · )z on z(g) and defin-
ing (X | Y ) = (Xz | Yz)z− tr(adX adY ), where X 7→ Xz denotes the projection of
g onto z(g) with g′ as kernel.

(x) If g is finite dimensional and semisimple, then g has an invariant inner
product such that all Lie algebra automorphisms are Hilbert Lie algebra automor-
phisms, i.e. are automatically unitary (respectively, orthogonal) relative to this
inner product. Such an inner product is given by (X | Y ) = − tr adX adY .

Proof. (i) Let y ∈ g and x ∈ i⊥. Then for any z ∈ i we have [y, z] ∈ i and thus
([x, y] | z) = (x | [y, z]) = 0. Hence [x, y] ∈ i⊥, and i⊥ is an ideal. As a consequence,
[i, i⊥] ⊆ i ∩ i⊥ = {0}.

(ii) If i, j E g then i ∩ j = {0} implies [i, j] ⊆ i ∩ j = {0}. If [i, j] = {0} while [j, j]
is dense in j, then {0} = ({0} | j) = ([i, j] | j) = (i | [j, j]) is dense in (i | j). Thus i
and j are orthogonal.

(iii) If k E i, then [k, i⊥] ⊆ [i, i⊥] = {0}, and thus [k, i⊕ i⊥] ⊆ k + {0} = k. If i is
closed, then i+ i⊥ = g by (i), and therefore k is an ideal of g. If k is closed then the
density of i + i⊥ in g and the continuity of the Lie bracket allows us to conclude
k E g.

(iv) If [i, i] = {0} then [i, g] = [i, i ⊕ i⊥] = [i, i] + [i, i⊥] ⊆ [i, i] = {0}. If i is a
one-dimensional vector subspace, then i = K·x and [i, i] = K·[x, x] = {0}, so the
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6. Compact Lie Groups 227

preceding applies. By 6.1(iii) g is semisimple iff it has no nondegenerate ideals and
thus, in the present case, iff z = {0}.

(v) If x ∈ [g, g]⊥, then (x | [y, z]) = 0 for all y, z ∈ g. But then ([x, y] | z) = 0
for all y, z ∈ g and this means [x, y] = 0 for all y ∈ g which is saying x ∈ z. Tracing
this argument backwards and using the continuity of the Lie bracket we also see
that any central element is orthogonal to [g, g]. The remainder is immediate.

(vi) Assume that g is finite dimensional. We can invoke (i) and (iii) to write
g as an orthogonal direct sum i1 ⊕ · · · ⊕ ip of ideals such that ij does not have
any ideals other than {0} and ij . If ij is one-dimensional then ij ⊆ z by (iv). If
dim ij > 1, then ij is simple, since it cannot contain any nontrivial ideal by (iii).
Hence ij = [ij , ij ] by (v). In particular, ij ⊆ [g, g]. If c denotes the sum of all the
one-dimensional ideals among the ij and s = s1⊕· · ·⊕sN the orthogonal sum of all
simple ideals among them, then c ⊆ z and s ⊆ [g, g]. Then g = c⊕s ⊆ z⊕ [g, g] = g.
It follows that s = [g, g] and c = z. The uniqueness of the set {s1, . . . , sn} of simple
ideals follows from (vii) below.

(vii) Let i denote any ideal of g. Then i is the orthogonal direct sum of its center
z(i) and its commutator algebra [i, i] by (v). Then (iii) and (iv) imply z(i) = z ∩ i,
and [i, i] ⊆ [g, g]. Since the orthogonal projection of g onto any ideal is a morphism
of Lie algebras by (i), the projection of i into any simple ideal s is an ideal, hence is
zero or all of s. Assume that i projects onto s. Now s∩i is an ideal of s. If it were {0}
then s ⊥ i by (ii) as [s, s] = s. But then i could not map onto s under the orthogonal
projection. Hence s∩i = s, that is s ⊆ i. Thus i contains all simple ideals onto which
it projects orthogonally. In particular, the orthogonal projection pj of i into sj is
sj∩i. Thus

(
i∩z(g)

)
⊕(i∩s1) · · ·⊕(i∩sn) ⊆ i = z(i)⊕[i, i] ⊆

(
i∩z(g)

)
⊕p1⊕· · ·⊕pn.

The relations i ∩ sk = pk now imply equality throughout, and the assertion is
proved.

(viii) By (vi) we have g′ = s1 ⊕ · · · ⊕ sn with simple ideals sj which satisfy
s′j = sj by simplicity. Since [sj , sk] = {0} for j 6= k we have g′′ = s′1 ⊕ · · · ⊕ s′n =
s1 ⊕ · · · ⊕ sn = g′.

(ix) Notice first, that on any finite dimensional Lie algebra g, the function
(X,Y ) 7→ tr adX adY : g×g→ K is bilinear and invariant; indeed tr ad[X,Y ] adZ
= tr adX adY adZ − tr adY adX adZ = tr adX adY adZ − tr adX adZ adY =
tr adX ad[Y,Z] as trϕψ = trψϕ. By (vi) above, g = s1 ⊕ · · · ⊕ sn with simple
ideals sj . Therefore, if on each sj the function (X,Y ) 7→ − tr adX adY is an inner
product, the assertion follows. Thus without losing generality we assume that g
is simple and show that tr adX adX < 0 for all nonzero X ∈ g. Since g has
an invariant inner product ( · | · ), the vector space endomorphism adX satisfies
(adX)∗ = − adX with the adjoint operator with respect to ( · | · ). Hence its
eigenvalues λ1, . . . , λn (not all necessarily distinct) are purely imaginary. Then
tr adX adX =

∑n
j=1 λ

2
j < 0 if at least one of the λj is nonzero; since adX is

semisimple, this holds if adX 6= 0. Now adX = 0 means that [X, g] = {0}, i.e.
X ∈ z(g). Since g is semisimple, z(g) = {0} and so this is tantamount to X = 0.
Therefore tr adX adX < 0 iff X 6= 0, which proves the claim.

If g is an arbitrary finite dimensional Hilbert Lie algebra, then g = z(g)⊕ g′ by
(v) above. If X ∈ g and X 7→ Xg′ denotes the projection of g onto g′ with z(g) as
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228 6. Compact Lie Groups

kernel, then adX = adXg′ , and thus tr adX adY = tr adXg′ adYg′ . Furthermore,
g′′ = g′ by (viii), whence g′ is semisimple. On an abelian Lie algebra, every bilinear
form is trivially invariant. Thus the remainder of (ix) follows from (ix).

(x) By (ix) we may assume that (X | Y ) = − tr adX adY . Let α be an endo-
morphism of the Lie algebra g. Then α[X,Y ] = [αX,αY ], i.e. α◦adX = ad(αX)◦
α. If α is invertible, we conclude tr ad(αX) ad(αY ) = tr(α(adX)α−1α(adY )α−1 =
tr adX adY . This proves the claim. ut

We now have (up to the classification of simple real finite dimensional Hilbert
Lie algebras) a complete structure theory for finite dimensional real Hilbert Lie
algebras and turn towards a proof of the fact that every such Lie algebra is the
Lie algebra of a compact Lie group. Once this is shown, we know that a finite
dimensional real Lie algebra is a compact Lie algebra if and only if it is a Hilbert
Lie algebra.

The bilinear form (X,Y ) 7→ tr adX adY : g×g→ K on a finite dimensional Lie
algebra is called the Cartan–Killing form.

In the following proposition we use a piece of technical notation which we
specify now. If g = a⊕ b for vector spaces and T is a vector space endomorphism
of a we shall denote by Tg: g→ g the endomorphism given by Tg(a⊕ b) = Ta.

Proposition 6.5. Assume that g is a real Hilbert Lie algebra. Then

(i) its automorphism group G def
= Aut g ∩ O(g) is a linear Lie group with Lie

algebra L(G) = Der g ∩ o(g), the completely normable Lie algebra of all skew-
symmetric derivations of g. If dim g <∞. Then G and G0 are compact Lie groups.

(ii) Each automorphism in G respects z and [g, g] and each derivation respects
z(g) as well as each closed ideal i satisfying [i, i] = i, in particular [g, g]. Any
derivation satisfies

(3) (∀X ∈ g) [D, adX] = ad(DX)

and if D is skew symmetric, then Dv ⊆ v implies Dv⊥ ⊆ v⊥.
(iii) Each of

(
o(z)

)
g

and ad g are closed ideals of L(G), and their intersection

is trivial. If dim g <∞, then

(4) L(G) =
(
o(z)

)
g
⊕ ad g.

Now assume that dim g is finite and thus that G and G0 are compact Lie groups
by (i). Then the following conclusions hold.

(iv) If g is semisimple, i.e. if z = {0}, then L(G) = L(G0) = ad g ∼= g.
(v) Any derivation of a semisimple finite dimensional Hilbert Lie algebra is

inner.

Proof. (i) In E5.10 we noted that O(g) is a linear Lie group with L
(

O(g)
)

= o(g).If
dim g <∞ then O(g) is a compact Lie group. In Theorem 5.43 we saw that Aut g
is a linear Lie group with Lie algebra L(Aut g) = Der g. Now Proposition 5.51(i)
proves L(G) = L(G0) = Der g ∩ o(g). If dim g < ∞, the group G, as a closed
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subgroup of the compact Lie group O(g), is a compact Lie group and so is its
closed subgroup G0.

(ii) The ideals z and [g, g] are characteristic, i.e. are preserved by any (algebraic)
automorphism by their very definition; thus they and the closure of [g, g] are
preserved by any continuous automorphism.

Now let D be any continuous derivation. If X ∈ z and Y ∈ g, then [DX,Y ] =
−[X,DY ] + D[X,Y ] = −0 + D0 = 0. Thus Dz ⊆ z. Now assume that i E g and
[i, i] = i. Then Di = D[i, i] ⊆ D[i, i] ⊆ [Di, i] + [i, Di] ⊆ i + i = i.

We compute [D, adX](Y ) = D[X,Y ] − [X,DY ] = [DX,Y ] + [X,DY ] −
[X,DY ] = [DX,Y ] =

(
ad(DX)

)
(Y ). If X ∈ v⊥ and D is skew symmetric, then

(DX | v) = −(X | Dv) ⊆ −(X | v) = {0}.
(iii) Relation (3) shows that ad g and thus ad g is an ideal of Der g and hence of

L(G) (by (i)). If D and D′ are derivations and D annihilates g′, then [D,D′]g′ =
D(D′g′) +D′(Dg′) = {0} since D′g′ ⊆ g′ by (ii). We have g = z⊕ g′ by 6.4(v) and
so o(z)g is the set of all elements in L(G) annihilating g′. Thus we see that o(z)g
is an ideal of L(G).

We write X = X1 ⊕ X2 with X1 ∈ z and X2 ∈ [g, g]. Then adX = adX1 +
adX2 = adX2, whence ad g = ad g′. Since (ad g)(z) = {0} we have ad g ⊆ Der(g′)g
whence o(g)g ∩ ad g = {0}. Hence o(g) ⊕ ad g is a direct sum of closed ideals of
L(G).

Now assume that g is finite dimensional. Then O(g) is a compact Lie group and
so is G as a closed subgroup. Hence L(G) is a finite dimensional Hilbert Lie algebra
by 6.2. We have seen ad g = ad[g, g] = [ad g, ad g] ⊆ L(G)′. Let D ∈ (ad g)⊥. Then
[D, adX] = 0 by 6.4(i) and ad(DX) = [D, adX] = 0 by (3). Hence Dg ⊆ z
and thus Dg′ = {0} since D respects the decomposition g = z ⊕ g′ by (ii). Thus
D ∈ o(z)g. In other words, (ad g′)⊥ ⊆ o(z). But [o(z), ad g] = {0} by what we saw
in the first part of this section of the proof. Further, ad g = [ad g, ad g]. Hence
o(z) ⊆ (ad g)⊥ by 6.4(ii). Therefore, o(z)g = (ad g)⊥ and thus L(G) = o(z)g⊕ ad g,
as asserted.

(iv) Assume that g = g′. Then z = ker ad = {0} and thus g ∼= ad g = L(G) by
(4).

(v) Assume g = g′ again. By (4), any skew symmetric derivation is in Der(g)∩
o(g) = L(G) = ad g. It remains to show that every derivation is skew symmetric.
By Theorem 6.4(ix) we may assume that the inner product on g′ is the nega-
tive of the Cartan– Killing form (X,Y ) 7→ − tr adX adY . Let D be a deriva-
tion of g. Then D[X,Z] = [DX,Z] + [X,DZ]. Thus

(
ad(DX)

)
(Z) = [DX,Z] =

(D ◦ adX)(Z) −
(
(adX) ◦ D

)
(Z). Therefore tr ad(DX) adY = trD adX adY −

tr(adX)D adY = adX adY trD − tr(adX)D adY = − tr adX ad(DY ). This
shows that D is skew symmetric and finishes the proof. ut

A compact group G is called a simple connected compact Lie group if it is a
connected compact Lie group such that every closed proper normal subgroup is
discrete. Some authors call such groups quasisimple; they make this distinction
since in abstract group theory a group is called simple if it has no nonsingleton
proper normal subgroups. If N is a closed normal subgroup of a connected linear
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Lie group G, then L(N) E L(G) is an ideal by 5.49. The relation L(N) = {0} is
equivalent to N0 = 〈expL(N)〉 = {1} and thus to the discreteness of N . Hence
a connected compact Lie group G is simple if and only if its Lie algebra L(G)
is simple. This remark accounts for a terminology that has been widely used in
Lie theory even though it is at variance with terminology used in abstract group
theory. In Theorem 9.90 below we shall offer further clarification of this issue.

Now we are ready for the

Characterisation of Compact Lie Algebras

Theorem 6.6. Let g be a finite dimensional real Lie algebra. Then the following
conditions are equivalent:

(i) g is a compact Lie algebra; i.e. there is a compact Lie group G with g ∼= L(G).
(ii) g is a Hilbert Lie algebra with respect to a suitable inner product.

(iii) There is a connected linear Lie group G ∼= Rm×G1×· · ·×Gn, for connected
simple compact Lie groups Gk, k = 1, . . . , n, such that g ∼= L(G).

(iv) There is a simply connected linear Lie group G ∼= Rm × S1 × · · · × Sn, for
simply connected simple compact Lie groups Sk, such that g ∼= L(G). The
Lie group G is unique up to isomorphism.

Proof. The implication (i)⇒(ii) was established in 6.2. The implication (iii)⇒(i)
is clear because Tm ×G1 × · · · ×Gn is a compact Lie group locally isomorphic to
Rm ×G1 × · · · ×Gn and therefore having a Lie algebra isomorphic to g.

We show that (ii) implies (iii) and thus complete the proof of the equivalence of
(i), (ii) and (iii). By 6.4(v,vii), g = z⊕ g1⊕· · ·⊕ gn with a unique family of simple
ideals gk of g. Then the additive group of z is isomorphic to Rm for some m and
Rm is a linear Lie group (see E5.10(ii) 2). By 6.5(iv) for each k = 1, . . . , n there
is a connected compact Lie group Gk with L(Gk) = gk. By remarks preceding
this theorem, the simplicity of L(Gk) ∼= gk implies that Gk is a simple connected
compact Lie group. Now by 5.51(ii) the product Rm × G1 × · · · × Gn is a linear
Lie group whose Lie algebra is (isomorphic to) L(Rm) × L(G1) × · · · × L(Gn) ∼=
z⊕ g1 ⊕ · · · ⊕ gn = g.

The proof of (iv)⇒(i) is again trivial. We show (iii)⇒(iv): By Appendix 2,
A2.21 and by Theorem 5.77, the group Gk has a compact universal covering
group Sk. Since Sk and Gk are locally isomorphic and Gk has no small sub-
groups, the group Sk has no small subgroups and thus is a compact Lie group
by our introductory discussion and definition. The covering morphism Sk → Gk
induces an isomorphism L(Sk) → L(Gk) = gk. Then by 5.51(ii) the product
Rm × S1 × · · · × Sn is a linear Lie group whose Lie algebra is (isomorphic to)
L(Rm) × L(S1) × · · · × L(Sn) ∼= z ⊕ g1 ⊕ · · · ⊕ gn = g. The uniqueness of G is a
consequence of the fact that two locally isomorphic simply connected topological
groups are isomorphic (see Appendix 2, A2.29). ut

Exercise E6.2. Prove the following proposition.
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(a) Let G be a compact Lie group. Then the adjoint representation Ad:G→ G def
=

Aut(g) ∩ O(g) is the composition j ◦ f of a surjective morphism f :G → Ad(G)
and an inclusion morphism j: Ad(G) → G of compact Lie groups. The kernel
of f is Z(G0, G), the centralizer of the identity component in G. Accordingly,
ad = L(Ad) = L(j) ◦ L(f), where L(f): g→ ad g = L

(
Ad(G)

)
is the corestriction

of ad: g→ L(G) = Der g ∩ o(g) to its image and has the center z(g) as its kernel,
and where L(j): ad g→ L(G) is the inclusion.

If G is semisimple, then the kernel of f is discrete.

(b) For each element x in a compact Lie algebra g the following relation holds

z(x, g)⊥ = [x, g].

[Hint. (a) Consider 5.44.
(b) Let g be a finite-dimensional vector space and κ a nondegenerate bilinear

form. For an endomorphism ϕ of g let ϕ∗ denote the adjoint defined by

(∀x, y ∈ g) κ(ϕ∗(x), y) = κ(x, ϕ(y)).

Then y ∈ kerϕ iff (∀x ∈ g) κ(x, ϕ(y)) = 0 iff (∀x ∈ g) κ(ϕ∗(x), y) = 0 iff
y ∈ im(ϕ∗)⊥. Equivalently,

(∗) (kerϕ∗)⊥ = imϕ.

Recall that a nondegenerate bilinear form κ on a finite-dimensional Lie algebra
is called invariant if (adx)∗ = − adx for all x ∈ g. In that case, for ϕ = adx,
relation (∗) reads

(∀x ∈ g) z(x, g)⊥ = [x, g].

Theorem 6.6 now implies assertion (b).] ut

As a first consequence we shall show, in order to fulfill a promise given in the
previous chapter in the context of Example 5.67, that quotients of compact Lie
groups are compact Lie groups.

Theorem 6.7. (i) A quotient of a compact Lie group is a compact Lie group. A
continuous homomorphic image of a compact Lie group is a compact Lie group.

(ii) Conversely, if G is a compact group with a closed normal subgroup N such
that both N and G/N are Lie groups, then G is a Lie group.

Proof. (i) By 1.10(iv), a continuous homomorphic image of a compact group is
(isomorphic to) a quotient group. Thus the second assertion follows from the first.
Now let G be a compact Lie group and N a closed normal subgroup. We shall
show that G/N has no small subgroups, and by 2.40 this will establish the claim.

Reduction 1. The identity component N0 of N is characteristic in N , hence
normal in G. The morphism gN0 7→ gN : G/N0 → G/N maps a basic open
identity neighborhood UN0/N0 (where U is an identity neighborhood in G onto
an identity neighborhood UN/N and is therefore open. The induced bijective
morphism (G/N0)/(N/N0) → G/N is, therefore, an isomorphism of topological
groups. The closed subgroup N of G is a compact Lie group (since, like G, it
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does not have any small subgroups), and thus N0 is open in N and so N/N0 is
discrete in G/N0. Hence G/N and G/N0 are locally isomorphic by Lemma 5.68. It
therefore suffices to show that G/N0 has no small subgroups. Therefore we shall
henceforth assume that N is connected.

Reduction 2. We have N = N0 ⊆ G0, and G0 is open in G by 5.41(iii). Therefore
G0/N is open in G/N . It suffices to show that G0/N has no small subgroups. We
shall therefore assume that G is connected, too.

Proof of the nonexistence of small subgroups in G/N : By Theorem 6.4(i) we
have g = n ⊕ n⊥. In the Lie algebra g let B be a ball around 0 (with respect
to some Banach algebra containing g and G) such that B ∗ B is defined and
that B is mapped homeomorphically onto an identity neighborhood of G by exp.
Furthermore, by the Fundamental Theorem 5.31(ii) we may assume that B is
chosen so small that

(5) exp−1N ∩B = n ∩B.

The analytic function

α: (B ∩ n)⊕ (B ∩ n⊥)→ B ∗B, α(X + Y )
def
= X ∗ Y = X + Y +

1

2
·[X,Y ] + · · · ,

has the derivative idg at 0 and the Theorem of the Local Inverse applies, securing
the existence of open balls B1 and B2 around 0 in B ∩ n and B ∩ n⊥, respectively
such that α maps B1 ⊕ B2 homeomorphically onto an open neighborhood B1 ∗
B2 ⊆ B of 0 in g. Then B1 ∗ B2 is a neighborhood of 0 in G by the claim. As
a consequence, for any ball B0 around 0 in B2 the set (expB0)N = N(expB0)
contains (expB0)(expB2) = exp(B0 ∗B2) and thus is an identity neighborhood in

G. Take B0 so small that B0 ∗ B0 ∗ B0 ∗ B0 ⊆ B2. Then V
def
= (expB0)N/N and

W
def
=
(

exp(B0 ∗B0)
)
N/N are identity neighborhoods in G/N . Assume cN = dN

with c = expX, d = expY with X, Y ∈ B0 ∗B0. Then Z
def
= (−Y ) ∗X ∈ [(−B0) ∗

(−B0)] ∗ [B0 ∗ B0] ⊆ B2, and d−1c = (exp−Y )(expX) = expZ ∈ (expB2) ∩ N ,
i.e. Z ∈ B2 ∩ exp−1N ⊆ n⊥ ∩ (B ∩ exp−1N) ⊆ n⊥ ∩ n = {0} by (5) above. Thus
Z = 0 and therefore c = d. Thus

(6) µ
def
= (X 7→ (expX)N):B0 ∗B0 →W ⊆ G/N is a bijection.

Now let N 6= γ ∈ V . Then there is a unique c expX ∈ C, 0 6= X ∈ B0 such
that γ = cN . There is a smallest natural number n such that (n − 1)·X ∈ B0

but n·X =
(
(n − 1)·X

)
∗X ∈ B0 ∗ B0 \ B0. Suppose γn ∈ V , then γn = cnN =

(expn·X)N = µ(n·X) ∈ W . From (6) we would have to conclude that n·X ∈ B0

which is not the case. Thus γn /∈ V . This means that V does not contain any
subgroups other than the singleton one, and thus our proof of (i) is completed.

(ii) We must show that G has no small subgroups. First let V be an open
identity neighborhood of G such that V N = V and that V/N is an identity
neighborhood of G/N which contains no nontrivial subgroup. Next let U ⊆ G
be an identity neighborhood of G such that U ∩N does not contain a nontrivial
subgroup of N . Then U∩V is indeed an identity neighborhood of G not containing
any nontrivial subgroup of G. ut
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Exercise E6.3. Analyze the proof of Theorem 6.7 and distill a proof of the fol-
lowing statement: Let G be a linear Lie group with a closed normal subgroup N
such that there is a closed Lie subalgebra h such that g = n ⊕ h algebraically and
topologically, then G/N has no small subgroups. In the finite dimensional case, it
suffices to know that g = n⊕ h algebraically. ut

In order to pursue further applications of Theorem 6.4 to compact Lie groups we
shall require a blend of the Lie theoretical methods just introduced with the repre-
sentation theory discussed in Chapter 2. The relevant tools in Chapter 2 contained
simple complex Hilbert G-modules E. Equivalently, we shall consider irreducible
representations π:G → U into the group U = {ϕ ∈ Gl(E) | ϕϕ∗ = ϕ∗ϕ = 1} of
isometries of a finite dimensional Hilbert space E (with (ϕx | y) = (x | ϕ∗y). Cf.
Exercise E5.10.). If K = R then U is the group O(E) of orthogonal transforma-
tions, and if K = C, then U is the group U(E) of unitary transformations of E.
The group U is a compact Lie group with Lie algebra u, the Lie algebra of skew
hermitian endomorphisms ϕ of the Hilbert space E, that is those endomorphisms
which satisfy ϕ∗ = −ϕ.

Recall that for any finite dimensional K-vector space E, the Lie algebra of
all endomorphisms of E is denoted by gl(E). The map (ϕ,ψ) 7→ trϕψ∗: gl(E) ×
gl(E) → C is a real bilinear form, conjugate linear in the second argument if
K = C. If g ∈ Gl(E), and if Ad(g)(ϕ) = g·ϕ = gϕg−1 is the action by in-
ner automorphisms, then for g ∈ U we have g−1 = g∗ and thus (g·ϕ | g·ψ) =
tr gϕg∗(gψg∗)∗ = tr g(ϕψ∗)g−1 = trϕψ = (ϕ | ψ). Hence this scalar product is
invariant under the action of U. From E6.1 we note ([ϕ,ψ], ρ) = (ϕ, [ψ, ρ]) for

all ϕ, ψ, ρ ∈ u
def
= {ϕ ∈ gl(E) | ϕ∗ = −ϕ}. Moreover, trϕϕ∗ ≥ 0, and if ϕ is

diagonalisable, then trϕϕ∗ = 0 implies ϕ = 0. In particular, on the subalgebra u
the definition (ϕ | ψ) = trϕψ∗ yields a scalar product making u into a Hilbert Lie
algebra, providing us with an example for Theorem 6.4.

Exercise E6.4. In the case K = C, the center Z of U is S1· idE and thus the center
of u = u(E) is z(u) = iR· idE . Recall that SU(E) (respectively, su(E)) denotes the
Lie group of automorphisms ϕ ∈ U with detϕ = 1 (respectively, the Lie algebra
of endomorphisms ϕ ∈ u with tr(ϕ) = 0). Then [u, u] = su(E). (Cf. E5.9),

In the case K = R we have U = O(E), u = o(E), Z = {1,−1}· idE and
z(u) = {0}, [u, u] = u.

[Hint. K = C (the case of most interest here): The vector space E is a simple
U-module (since U acts transitively on the unit sphere of E), and thus, by Lemma
2.30, the center Z of U is the set U∩C· idE = S1. idE . (Cf. Example 1.2(ii).) From
Proposition 5.54(iv) it follows that z = L(Z) = iR· idE .

K = R: The commutant C = HomO(E)(E,E) of O(E) is a division ring over R.

Take 0 6= ϕ ∈ C and let 0 6= λ ∈ C be an eigenvalue of ϕ. Then so is λ because
K = R. Then ϕ2 − |λ|2· idE = (ϕ − λ· idE)(ϕ + λ· idE) ∈ C has a nonzero kernel,
hence vanishes as E is a simple O(E)-module. Thus ϕ2 = |λ|2· idE . Since ϕ is
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orthogonal, |λ|2 = 1. Hence λ = ±1, and ϕ∓ λ· idE ∈ C has nonzero kernel, hence
is zero. It follows that z = 0.

Now u is a Hilbert Lie algebra with respect to the scalar product given by
(ϕ | ψ) = trϕψ∗. Then u = z(u)⊕[u, u] as a direct orthogonal sum by Theorem 6.4.
We claim that iR· idE is orthogonal to su(E), for if ϕ ∈ su(E), then trϕ = 0, and

(it· idE | ϕ) = tr
(
(it· idE)ϕ∗

)
= tr(ϕ(−it)· idE)∗ = it trϕ = 0.

Thus su(E) ⊆ z(u)⊥ = [u, u], and since su(E) is a real hyperplane in u, equality
follows.] ut

Lemma 6.8. (i) Let Z denote the center of U(E) for a finite dimensional complex
Hilbert space E. The function (z, s) 7→ zs:Z × SU(E) → U(E) is a surjective
morphism µ whose kernel is isomorphic to Z ∩ SU(E).

(ii) Z = S1· idE, and

Z ∩ SU(E) = {e2πik/n· idE | k = 0, . . . , n− 1} ∼= Z(n), n = dimE.

The algebraic commutator group U′ of U is SU(E).

Proof. (i) First observe, that for ϕ ∈ U(E) we have |detϕ|2 = detϕdetϕ =
detϕ detϕ∗ = detϕϕ∗ = det 1 = 1, that is detϕ = eit for some t ∈ R. Hence
det e−it/n·ϕ = 1, i.e. e−it/n·ϕ ∈ SU(E) and ϕ = (eit/n· idE)(e−it/n·ϕ), where
eit/n· idE ∈ Z. Thus µ is surjective. Clearly, µ is a morphism of topological groups,
and (z, s) ∈ kerµ iff z = s−1. This element is obviously in Z ∩ SU(E). We note
that z 7→ (z−1, z):Z ∩ SU(E)→ kerµ is an isomorphism.

(ii) The first assertion of (ii) was observed in E6.2. For the second, we note
that det e2πit· idE = 1 iff t = k

n .
Finally, consider g, h ∈ U, then det comm(g, h) = 1 and thus U′ ⊆ SU(E). Now

we recall from Exercise E1.2 that S3 ∼= SU(2). In the quaternionic unit sphere
we quickly calculate ietji−1e−tj = etij(−i)e−tj = e−2tj . Any unit quaternion in
R·i + R·j + R·k can be conjugated into j, since conjugation by an element of S3

acts as rotation on this copy of R3 and all rotations are so obtained. Hence every
unit quaternion is conjugate to one of the form e−2tj and hence is a commutator
by the preceding. If dimE ≥ 2 then an element g in SU(E) is diagonalisable, i.e.
is of the form

diag(λ1, . . . , λn)
def
=

λ1 . . . 0
...

. . .
...

0 . . . λn

 , |λm| = 1, m = 1, . . . , n, λ1 · · ·λn = 1.

If we write

gk = diag(1, . . . , λk, . . . , 1, λ
−1
k ), k = 1, . . . , n− 1,

then g = g1 · · · gn−1, and each gk is a member of a subgroup isomorphic to SU(2) ∼=
S3 and thus is a commutator by the preceding remarks. Hence g is a member of
the commutator subgroup of SU(n) (and then of U(n)). ut
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Exercise E6.5. (i) Establish the conclusions of Lemma 6.8 via alternative routes.
(ii) Prove Gl(E)′ = Sl(E).

[Hint. An example of an alternative route is the Commutator Subgroup Theorem
5.60 in conjunction with Exercise E6.4 above.] ut

Now we proceed to utilize this explicit information (which we could have es-
tablished much earlier) on arbitrary compact groups. This turns out to be very
important in the sequel.

Proposition 6.9. In any compact Lie group G, the intersection of the center Z(G)
and the closure G′ of the algebraic commutator group G′ is finite.

Proof. Let G be a connected compact Lie group. By Corollary 2.40 there is
a faithful unitary representation π:G → U(E) on a finite dimensional complex
Hilbert space E. By Corollary 2.25, E is the orthogonal direct sum of simple G-
modules E1 ⊕ · · · ⊕ En, and there are representations πk:G → U(Ek) such that
π(g) = π1(g)⊕· · ·⊕πn(g). For each j ∈ {1, . . . , n} and each z ∈ Z = Z(G), we find

πj(z) = χj(z)· idEj ∈ Z
(

U(Ej)
)

by Lemma 2.30 with a suitable character χj ∈ Ẑ
of Z. Furthermore, since any morphism maps commutators into commutators, we
find πj(G

′) ⊆ U(Ej)
′ = SU(Ej) in view of Lemma 6.8 above. But SU(Ej) is closed,

and thus G′ is also mapped into SU(Ej). Recall from 2.6(ii) or 6.8(ii) above that
S1· idEj ∩SU(Ej) = {c· idEj | cdimEj = 1}. It follows that the intersection of the
group Z

(
U(E1)

)
⊕ · · · ⊕Z

(
U(En)

)
with SU(E1)⊕ · · · ⊕ SU(En) is finite (and, of

course, discrete). Since π = π1 ⊕ · · · ⊕ πn is faithful, this completes the proof. ut

The Commutator Subgroup of a Compact Lie Group

Proposition 6.9 motivates us to look more carefully at the commutator group of a
compact Lie group. Recall from Proposition 2.42 that a compact connected abelian
Lie group is isomorphic to Tm for some natural number m. For a natural number
n, the function t 7→ n·t : Tn → Tn is an endomorphism the kernel of which is
Tm[n] = {t ∈ Tm : n·t = 0} ∼= Z(n)m, a characteristic subgroup of Tm. Before we
get to the next result, a decisive (but not conclusive!) theorem on the commutator
group of a compact Lie group, we establish a primarily group theoretical result:

Theorem 6.10. (Structure of Compact Lie Groups with Abelian Identity Com-
ponent). Let G be a compact Lie group such that G0 is abelian. Then the following
conclusions hold.

(i) There is a finite subgroup E of G such that G = G0E = EG0 and G0 ∩E =
G0[n], n = |G/G0|, is normal in G.

(ii) The group comm(G,G0) is a closed connected subgroup of G0. In particular,
it is a torus.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



236 6. Compact Lie Groups

(iii) G0 is the product of comm(G,G0) and Z0(G), the identity component of
the center of G, and the intersection of the two torus groups is finite. The order
of every element in this intersection divides |G/G0|.

(iv) G′ = comm(G,G0)E′. In particular, G′ is closed, and comm(G,G0) =
(G′)0.

(v) The Lie algebra g of G is an E-module under the adjoint action. If E
contains an element h such that Ad(h) leaves no nonzero vector of geff fixed, then
every element of comm(G,G0) is a commutator.

Proof. We denote the finite quotient group G/G0 by F and select a function
σ:F → G such that σ(gG0) ∈ gG0 for all g ∈ G. The group G operates on F
via g·(hG0) = ghG0. Since the element gσ(ξ) is contained in g·ξ, we have gσ(ξ) ∈
σ(g·ξ)G0. Thus there is a unique element x ∈ G0 such that gσ(ξ) = σ(g·ξ)x.

Then the element γ(g, ξ)
def
= gσ(ξ)σ(g·ξ)−1 = σ(g·ξ)xσ(g·ξ)−1 is in G0 since G0 is

normal, and we have

(7) gσ(ξ) = γ(g, ξ)σ(g·ξ) for g ∈ G, ξ ∈ F.

For g, h ∈ G and ξ ∈ F we compute γ(gh, ξ)σ(gh·ξ) = ghσ(ξ) = gγ(h, ξ)σ(h·ξ) =(
gγ(h, ξ)g−1

)
gσ(h·ξ) =

(
gγ(h, ξ)g−1

)
γ(g, h·ξ)σ(gh·ξ). If we write Ig(x) = gxg−1

for g ∈ G and x ∈ G0 we obtain

(8) γ(gh, ξ) = Ig
(
γ(h, ξ)

)
γ(g, h·ξ) for g, h ∈ G, ξ ∈ F.

Since G0 is abelian and F is finite we can define a continuous function ϕ:G→ G0

by

(9) ϕ(g) =
∏
ξ∈F

γ(g, ξ) for g ∈ G.

Now (8) implies that ϕ satisfies the following functional equation:

(10) ϕ(gh) = Ig
(
ϕ(h)

)
·ϕ(g) for g, h ∈ G.

If x ∈ G0, and ξ = gG0 then x·ξ = xgG0 = xG0g = G0g = gG0 = ξ whence
xσ(ξ) = γ(x, ξ)σ(x·ξ) implies γ(x, ξ) = x and therefore

(11) ϕ(x) = xn for x ∈ G0, n = |G/G0|.

In particular, ϕ(1) = 1 and thus (10) implies

(12) ϕ(g−1) = Ig
(
ϕ(g)

)−1
for g ∈ G.

From (10) and (12) we conclude that E
def
= ϕ−1(1) is a subgroup. Now G0 is

isomorphic to Tm for some m by 2.42. By (11) we know that G0[n] = E ∩ G0,
and since G0

∼= Tm we have E ∩ G0
∼= Z(n)m. The group G0 is divisible. Hence

ϕ(G0) = G0 and ϕ:G → G0 is surjective. Let g ∈ G. Then, since G0 is divisible,
there is an x ∈ G0 such that xn = ϕ(g). We set e = x−1g and use (10) and
(12) to perform, recalling the commutativity of G0 the following computation:
ϕ(e) = Ix−1ϕ(g)ϕ(x−1) = ϕ(g)ϕ(x)−1 = ϕ(g)x−n = 1. Hence e ∈ E and g =
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ex ∈ EG0 = G0E. Finally let x ∈ E ∩ G0. Then 1 = ϕ(x) = xn. The function
µn:G0 → G0, µ(x) = xn is an endomorphism. From G0

∼= Tm we conclude that
kerµ ∼= Z(n)m. Hence E ∩G0 ⊆ kerµ is finite. Since E/(E ∩G0) ∼= EG0/G0 = F
we deduce that E is finite. The normalizer of E ∩ G0 contains E as well as G0.
Hence the normalizer contains EG0 = G and thus E ∩ G0 is normal. (This also
follows from the fact that G0[n] is a characteristic subgroup of G0.)

(ii) The restriction of the adjoint representation Ad:G → Aut g of Theo-
rem 5.44 to E yields a representation π:E → Aut(g). If g ∈ G and X ∈ g then
comm(g, expX) = g(expX)g−1(expX)−1 = exp

(
Ad(g)X −X

)
. Since

G0
∼= Tm

by 2.42, we have G0 = exp g and comm(G,G0) = 〈exp
(

Ad(g)X − X
)
| g ∈ G,

X ∈ g〉 = exp span{Ad(g)X −X | g ∈ G, X ∈ g} as exp : g → G0 is a morphism
because of the commutativity of G0. By (i), every g ∈ G is of the form g = eg0

with e ∈ E and g0 ∈ G0. Also Ad(g0)X = X for X ∈ g, whence Ad(g)X −X =
Ad(e)X −X = π(e)X −X. We have span{π(e)X −X | e ∈ E, X ∈ g} = geff for
the E-module g in the sense of Definition 4.4. Thus

(13) comm(G,G0) = exp geff .

An element is in the torus Z0(G) if and only if it is of the form expX such
that exp t·X ∈ Z(G) for all t ∈ R which means that for every g ∈ G we have
exp t·X = g(exp t·X)g−1 = exp t·Ad(g)X for all g ∈ G, t ∈ R. This is equivalent
to Ad(g)X = X for all g ∈ G, and in our present situation this translates into
X ∈ gfix for the fixed point E-module g via π. Thus

Z0(G) = exp gfix.

We let D
def
= ker expG, then G0 = exp g ∼= g/D, and thus the compactness of G0

implies

(14) g = spanD.

Note that Ad(G) leaves D invariant. While it is clear that Z0(G) is closed in G0

it is not a priori clear that comm(G,G0) is closed. We have to prove this next.
Theorem 4.4 told us how to compute gfix and geff and that g = geff ⊕gfix. We have
to consider the averaging operator PE : g→ g. Recall n = |E|. Then

(15) PE(X) =
1

n

∑
e∈E

e·X.

We set QE
def
= 1−PE and note Q2

E = QE , kerPE = imQE . From 4.4(iii) we know
that

(16) geff = QE(g), gfix = PE(g).

Now (15) and (16) implies

(17) D1
def
= n·QE(D) ⊆ geff ∩D, D2

def
= n·PE(D) ⊆ gfix ∩D.
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Also, (16) and (14) yields

(18)
geff = imQE = n·QE(g) =n·QE(spanD) = span

(
(n·QE)(D)

)
= spanD1,

gfix = imPE = n·PE(g) =n·PE(spanD) = span
(
(n·PE)(D)

)
= spanD2.

Thus geff/D1 is compact. Hence the quotient geff/(geff ∩D) is compact, too. Ap-
plying the bijective morphism

X + (geff ∩D) 7→ X +D : geff/(geff ∩D)→ (geff +D)/D

we get that comm(G,G0) = exp geff
∼= (geff + D)/geff is compact, too. (Cf. also

Appendix A1.12(iii).)
(iii) We can utilize D2 similarly. In both cases, the relevant conclusion is that

rank(geff ∩D) = dimR geff , and rank(gfix ∩D) = dimR gfix.

It follows from g = geff ⊕ gfix that D′
def
= (geff ∩ D) ⊕ (gfix ∩ D) ⊆ D has rank

dimR g, whence D/D′ is finite. Since D1 ⊕D2 ⊆ D′ from (17), we conclude that
n·D ⊆ D1⊕D2 ⊆ D′. We record comm(G,G0)×Z0(G) = (exp geff)× (exp gfix) ∼=

geff

(geff∩D) ×
gfix

gfix∩D
∼= g/D′. The homomorphism g/D′ → comm(G,G0) × Z0(G)

µ→
G0, µ(c, z) = cz is given by X+D 7→ expGX and thus factors through the quotient

map g/D′ → g/D. Set ∆
def
= comm(G,G0) ∩ Z0(G); then there is a commutative

diagram of exact rows

{0} → D/D′
incl−−−→ g/D′

quot−−−→ g/D → {0}
∼=
y ∼=

y y∼=
{1} → ∆ −−−→

δ
comm(G,G0)× Z0(G) −−−→

µ
G0 → {1},

δ(z) = (z, z−1). Since n·D ⊆ D′ we conclude that d ∈ comm(G,G0) ∩ Z0(G)
implies dn = 1.

(iv) Clearly, the group comm(G,G0)E′ is contained in G′. Set G/ comm(G,G0)
def
= Γ. Then G0/ comm(G,G0) is open and connected in Γ and thus is the identity
component Γ0. It follows that comm(Γ,Γ0) = {1}. Hence Γ0 is central. Let Φ =

comm(G,G0)E/ comm(G,G0). Then Φ′ = comm(G,G0)E′

comm(G,G0) , and Γ = Γ0Φ. Therefore

Γ′ = Φ′ and G′ = comm(G,G0)E′. By (ii) above, comm(G,G0) is closed, hence
compact, and E′ is finite, hence G′ = comm(G,G0)E′ is compact and thus closed.
Since G0 is connected, the set {ghg−1h−1 | g ∈ G, h ∈ G0} =

⋃
g∈G{Ig(h)h−1 |

h ∈ G0} is connected, and thus the subgroup comm(G,G0) generated by this set
is connected. Hence comm(G,G0) ⊆ (G′)0. As G′ = comm(G,G0)E′ we note that
(G′)0/ comm(G,G0) is a connected subgroup of G′/ comm(G,G0) ∼= E′/

(
E′ ∩

comm(G,G0)
)
, a finite group. Hence it is singleton and (G′)0 = comm(G,G0)

follows.
(v) In the proof of (ii) in (13) we noted that comm(G,G0) = exp geff where

geff = span{π(e)X − X|e ∈ E,X ∈ g}. Now if h ∈ E is such that π(h) fixes no
nonzero vector X ∈ geff , then π(h)|geff − idgeff

: geff → geff is bijective and so

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



6. Compact Lie Groups 239

for each Y ∈ geff there is an X ∈ geff such that expY = exp(Ad(h)X − X) =
comm(h, expX). ut

The proof of (i) yields an exact sequence with n = |G/G0|, mdimG0:

1→ Z(n)m → E → G/G0 → 1, and| E| = nm+1.

We remark that the existence of the group E is interesting in itself, and we shall
later generalize this fact to all compact Lie groups. For a proof of (ii) and the
closedness of the commutator group part (i) can be avoided by noting that G0 is
in the kernel of the adjoint representation and that, as a consequence, the adjoint
representation induces a representation π0:G/G0 → Gl(g). The proof of (ii) can
be carried out almost verbatim with G/G0 replacing E and π0 replacing π.

The Closedness of the Commutator Subgroup

Theorem 6.11. The algebraic commutator subgroup of a compact Lie group is
closed.

Proof. Let G be a compact Lie group. We shall show first that (G0)′ is closed. Set
H = (G0)′, and define Z to be the center of G0. Then Z∩H is finite by Lemma 6.9
and therefore

(20) z ∩ h = {0}.

By Proposition 5.59 we have (G0)′ = 〈exp g′〉 ⊆ H and thus

(21) g′ ⊆ h.

Now Theorem 6.4(v) yields

(22) g = z⊕ g′.

Now (20), (21) and (22) imply g′ = h, whence (G0)′ = 〈exp g′〉 = 〈exp h〉. But H
is a linear Lie group by Proposition 5.33, whence H = 〈exp h〉 by 5.41(iii). Hence
(G0)′ = H which we claimed.

Now (G0)′ is a characteristic subgroup of G0 and hence is normal on G. The

group Γ
def
= G/(G0)′ is a compact Lie group by Theorem 6.7. The abelian subgroup

G0/(G0)′ is open and connected in Γ and thus is the identity component Γ0 which
is isomorphic to a torus Tm by 2.42. Clearly (G0)′ ⊆ G′, so G′ is the full inverse
image under the quotient homomorphism G→ Γ of the commutator subgroup Γ′.
It therefore suffices to observe that Theorem 6.10(iii) applies to Γ and shows that
Γ′ is closed in Γ. ut

In the preceding proof we used Theorem 6.7 saying that quotients of compact
Lie groups are compact Lie groups. In this particular instance there is an alterna-
tive route: From G0 = Z0(G)(G0)′ we get G0/(G0)′ ∼= Z0(G)/(Z0(G) ∩ (G0)′ and
this quotient is the quotient of a torus modulo a discrete subgroup which is again
a torus. This argument, too, allows us to conclude that Γ is a compact Lie group.
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Corollary 6.12. (i) If G is a compact Lie group and h is a subalgebra of L(G)

such that h′ = h, then H
def
= 〈exp h〉 is closed and L(H) = h. Moreover, H ′ = H.

(ii) A connected compact Lie group G satisfies G′′ = G′.

Proof. (i) We may assume that G = H. Then by 5.62 g′ ⊆ h E g. Then 6.4(viii)
implies g′ = g′′ ⊆ h′ ⊆ g′, whence h = h′ = g′. By Theorem 6.11 G′ is closed and
since H is connected, G = H is connected, too. Hence G′ is connected and thus
G′ = 〈exp g′〉 by 5.60. Thus H = 〈exp h〉 = 〈exp g′〉 = G′ is closed. The relation
L(H) = h follows from the Recovery of Subalgebras 5.52(iii). Finally, H ′ = exp h′

by 5.60 and H ′ is closed by 6.11. Then H ′ = exp h′ = exp h = H.
(ii) By 6.4(viii) we have g′′ = g′. Then we can apply (i) with h = g′ and G′ = H.

ut

Exercise E5.19 shows that 6.12 fails if h 6= h′.

The issue of the closedness of the commutator subgroup of an arbitrary compact
group is by no means settled to our satisfaction at this point of our discourse.
We should bear in mind that, in general, the commutator group of a compact
group need not be closed as is discussed in the following exercise. First define the
commutator degree of a group P to be the smallest natural number n such that
every element c of the commutator subgroup P ′ can be expressed in the form

c = comm(p1, q1) · · · comm(pm, qm), with pj , qj ∈ P, 1 ≤ j ≤ m ≤ n.

Exercise E6.6. (i) Fix a prime number p 6= 2. Let Vn denote an n-dimensional

vector space over GF(p) and define a finite p-group Pn = Vn ⊕
∧2

Vn with the
multiplication (x, v)(y, w) =

(
x + y, v + w + 2−1·(x ∧ y)

)
. Then the commutator

degree of Pn is ≥ (n− 1)/4. Set G =
∏
n∈N Pn. Then G′ 6= G′.

(ii) Let n be a natural number ≥ 2 and let E = {1,−1}n for the multiplicative

group {1,−1} of integers. We identify E with its character group Ê by setting, for
χ = (α1, . . . , αn), and e = (a1, . . . , an) in E,

〈χ, e〉 = 〈(α1, . . . , αn), (a1, . . . , an)〉 =
n∏

m=1

αman ∈ {1,−1} ∈ S1.

Let T
def
= TÊ\{1} and let E act on T as follows:

t·(xχ)
χ∈Ê\{1} = (〈χ, t〉·xχ)

χ∈Ê\{1} ∈ T.

Let ϕ:E → AutT be the associated morphism and define Pn = T oϕ E. Then Pn
is a metabelian Lie group and the commutator degree of Pn is ≥ 2n−1.

Set G =
∏∞
n=2 Pn. Then G is a metabelian compact group in which

G′ = comm(G,G0) is not closed.
(iii) Dan Segal [322] proposes a more systematic approach to (ii) above: Let

E be any finite abelian group and Z[E] the discrete integral group ring of E. Then
the additive group of Z[E] is free abelian on n generators, and so the ground ring
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extension A
def
= Z[E] ⊗Z T of the Z-module T, as abelian group, is isomorphic to

Tn and thus carries the structure of an n-dimensional torus. The group E ⊆ Z(E)
acts on the (commutative) ring Z[E] by multiplication and thus on A as a group
of automorphisms. Hence P = A o E is a compact metabelian group. If d is
the cardinality of a minimal generating subset of E, then Segal shows that the
commutator degree of P is d.

Let En, n ∈ N, be any sequence of finite abelian groups such that the sequence
of cardinalities dn of a minimal generating set of En is unbounded. Set Pn =
(Z(En) ⊗Z T) o En and form G =

∏
n∈N Pn. Then G is a metabelian compact

group whose commutator subgroup is not closed.

[Hint. (i) Show comm
(
(x, v), (y, w)

)
= (0, x ∧ y) and P ′n = {0} ⊕

∧2
Vn. The

set Sn = {x ∧ y | x, y ∈ Vn} is closed under scalar multiplication and contains

at most p2n elements while P ′n
∼=
∧2

Vn contains p(
n
2) elements. Now

∧2
Vn =

Sn + · · ·+ Sn︸ ︷︷ ︸
k times

, whence n(n−1)
2 ≤ k·2n and thus k ≥ (n − 1)/4. Hence there are

elements in the commutator group of Pn which are products of no fewer than
(n− 1)/4 commutators. Use this to exhibit an element of G′ which is not a finite
product of commutators.

(ii) Let π:E → Gl(t) the representation of E associated with ϕ on the Lie
algebra t = L(T ). Then the matrix of π(e) − idt is diagonal with the diagonal

entries dχ, χ ∈ Ê \ {1}, where

dχ =

{
0 for 〈χ, e〉 = 1,
−2 for 〈χ, e〉 = −1.

Now let

N(e) = card{χ ∈ Ê \ {1} : 〈χ, e〉 = 1}.

Then dim im(π(e)− idt) = 2n − 1−N(e). The annihilator of e 6= 1 in the GF(2)-
vector space E is a hyperplane and thus has dimension n−1 and therefore contains
2n−1 elements. Hence N(e) = 2n−1 − 1. Therefore

dim im(π(e)− idt) = 2n − 1−N(e) = 2n − 1− (2n−1 − 1) = 2n−1.

As a consequence, the sum of M subspaces of the form im(π(e) − idt) has a
dimension ≤M ·2n−1. In order that this sum is equal to t, we have to have 2n−1 ≤
M ·2n−1, that is,

M ≥ 2n − 1

2n−1
= 2n−1 − 1

2n−1
.

and so M ≥ 2n−1 since M is a natural number and 1/2n−1 ≤ 1/2 < 1.
Recalling the proof of part (ii) of 6.10 we conclude that this means that every

element of G′n is the product of no fewer than 2n−1 commutators.
The rest of the claim follows as in (i) above.

Since (i) and (ii) suffice for the main objective of the Exercise, we may leave
the details of (iii) to the reader.] ut
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Lemma 6.13. A totally disconnected normal subgroup of a connected topological
group is central.

Proof. Exercise E6.7. ut

Exercise E6.7. Prove Lemma 6.13.

[Hint. Cf. A4.27] ut

If n is an ideal of a compact Lie algebra g, then Theorem 6.4 shows that
g = n⊕ n⊥ with n⊥ ∼= g/n. Now g/n is centerfree, i.e. semisimple, if and only if z,
the center of g is contained in n. If g = L(G) for a compact Lie group and N is a
closed normal subgroup, then n = L(N) is an ideal of g which contains the center
iff an only if G/N is equal to its commutator group.

Proposition 6.14. Let G denote a connected compact Lie group. Then the fol-
lowing conclusions hold:

(i) Assume that n E g and that z ⊆ n. Then there are closed normal subgroups
N E G and S E G such that L(N) = n and L(G) = L(N)⊕ L(S) and G = NS.

(ii) The function (n, s) 7→ ns:N × S → G is a homomorphism with a discrete
kernel D isomorphic to N ∩ S. In particular, G ∼= N×S

D .

Proof. (i) We define s = n⊥. Then g = n⊕ s and since z ⊆ n, we have s′ = s from
Theorem 6.4(vii). By 6.4(i), the two ideals n and s are orthogonal. After 6.12 the

group S
def
= 〈exp s〉 is closed, connected and normal in G. Let π:G→ O(s) denote

the representation given by π(g)(X) = Ad(g)(X), X ∈ s. From Theorem 5.44 we
deduce that the corresponding morphism of Lie algebras L(π): g → o(s) is given
by L(π)(Y )(X) = ad(Y )(X) = [Y,X]. The kernel of L(π) is the set of all Y ∈ g
with [Y,X] = 0 for all X ∈ s, i.e. kerL(π) = z(s, g) = n in view of s′ = s.

Set N
def
= (kerπ)0. Then N is a closed connected normal subgroup of G and is,

therefore, a Lie subgroup (cf. 5.33(iv)). By 5.51 we know L(N) = kerL(π) = n.
We have L(S) = s by the Recovery of Subalgebras 5.52(iii). From 5.51 we get

L(N ∩ S) = L(N) ∩ L(S) = n ∩ s = {0}. Thus the compact Lie group N ∩ S is
discrete by 5.41(iv). Since the discrete group N ∩ S is normal, it is central in G
by 6.13. As NS is a closed subgroup we find L(N) + L(S) = g, whence G ⊆ NS.

(ii) If n ∈ N and s ∈ S, then comm(n, s) = nsn−1s−1 ∈ N ∩ S. Since S is
connected, it follows that comm(n, S) ⊆ (N ∩S)0 = {1}. Thus comm(N,S) ⊆ {1}
and therefore (n, s) 7→ ns:N × S → G is a well-defined morphism of compact Lie
groups with image NS. An element (n, s) is in its kernel D iff n = s−1 ∈ N ∩ S.
Thus n 7→ (n, n−1):N ∩ S → D is an isomorphism and the remainder of (ii)
follows. ut
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The Structure Theorem for Compact Lie Groups

The Structure Theorem for compact Lie groups

Theorem 6.15. Let G be a compact Lie group, L(G) its Lie algebra, Z(G) its cen-
ter, Z0(G) the identity component of the center, and G′ the commutator subgroup
of G. Let g = gfix ⊕ geff denote the standard decomposition of the Lie algebra of
G as the adjoint G-module (cf. Theorem 3.36(vi)). Then the following conclusions
hold:

(i) gfix = L
(
Z(G)

)
⊆ z(g) and [g, g] ⊆ geff = L(G′).

(ii) g = L
(
Z(G)

)
⊕ L(G′).

(iii) G0 = Z0(G)(G′)0 ⊆ Z(G)G′ and Z(G) ∩ G′ is finite. In other words, G0

is isomorphic to the identity component of the group

Z(G)×G′

∆
, ∆ ∼= Z(G) ∩G′.

(iv) The subgroup Z0(G) is a torus, G0 = Z0(G)(G′)0, and Z0(G) ∩ (G′)0 is
finite. In other words, G0 is isomorphic to the group

Z0(G)× (G′)0

Ω
, Ω ∼= Z0(G) ∩ (G′)0.

Proof. (i) Firstly, let us abbreviate Ad(g)(X) by gX for X ∈ g and note that X
generates a one-parameter subgroup of Z(G) if and only if exp t·X = g exp t·Xg−1

= exp t·gX for all t ∈ R. This is equivalent to gX = X and thus gfix = L
(
Z(G)

)
. By

5.54(iv) we have z(g) = z(L(G0) = L
(
Z(G0)

)
. Since Z(G) ∩G0 ⊆ Z(G0) we have

L
(
Z(G)

)
⊆ L

(
Z(G0)

)
= z(g). Secondly, (G′)0 ⊆ G′ whence g′ = L

(
(G′)0) ⊆ L(G′)

in view of 5.60. Next let us show geff ⊆ L(G′). We note that for all X ∈ B ∩ g−1B
for an open ball B around 0 in g with B ∗ B defined we have t·(gX − X) =
limn( tn ·gX∗

−t
n ·X) for all |t| ≤ 1 by the Recovery of Addition 5.10. Hence Theorem

6.11 stating the closedness of the commutator group of G yields

exp t·(gX −X) = lim
(
(exp t

n ·gX)(exp −tn ·X)
)n

= lim
(
g(exp t

n ·X)g−1(exp t
n ·X)−1

)n ∈ G′ = G′

for all |t| ≤ 1. We conclude that gX − X ∈ L(G′) for all X ∈ B ∩ g−1B and
thus for all X ∈ g since g is spanned by B ∩ g−1B. But g ∈ G was arbitrary. It
follows that geff ⊆ L(G′). Now, on the one hand, g is the orthogonal direct sum
of gfix = L

(
Z(G)

)
and geff by Theorem 4.8, and geff ⊆ L(G′) on the other. But

L
(
Z(G)

)
∩ L(G′) = L

(
Z(G) ∩ G′

)
= {0} by Lemma 6.9 and Theorem 6.11. This

implies geff = L(G′) as asserted.
(ii) This follows at once from (i) and Theorem 3.36.
(iii) Note G0 = 〈exp g〉. Further, g = L

(
Z(G)

)
⊕ L(G′), and L

(
Z(G)

)
⊆ z(g).

Thus exp g ⊆ 〈expL
(
Z(G)

)
〉〈expL(G′)〉 = Z0(G)(G′)0 ⊆ Z(G)G′. By Lemma

6.9 and Theorem 6.11 the intersection of Z(G) and G′ is finite. Now we consider
the surjective morphism µ:Z(G) × G′ → Z(G)G′ of compact groups given by
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µ(z, g) = zg. An element (z, g) ∈ Z(G) × G′ is in kerµ if and only if zg = 1,
i.e. z = g−1. In other words, kerµ = {(z−1, z) | z ∈ Z(G) ∩ G′}. The morphism
δ:Z(G) ∩ G′ → Z(G) × G′ given by δ(z) = (z−1, z) is therefore an isomorphism
onto kerµ. The assertion now follows from the Canonical Decomposition Theorem
of morphisms.

(iv) is proved in the same manner as (iii); recall from 2.42(ii) that a connected
compact abelian Lie group is a torus. The small adjustments required can be safely
left to the reader. ut

The inequalities in Part (i) of the preceding theorem may indeed be proper as
is illustrated by the continuous dihedral group G = T o {1,−1}.

A frequently used corollary of Theorem 6.15 is the structure theorem for con-
nected compact Lie groups:

The First Structure Theorem for Connected Compact Lie Groups

Corollary 6.16. Let G denote a connected compact Lie group, Z0 the identity
component of its center, and G′ the algebraic commutator subgroup of G. Then G′

is a closed Lie subgroup and G = Z0G
′ and Z0 ∩ G′ is finite. More specifically,

there exists an exact sequence

{1} → Z0 ∩G′
δ→ Z0 ×G′

µ→ G→ {1},

where δ(z) = (z−1, z) and µ(z, g) = zg. In other words, G is the factor group of the
direct product Z0 ×G′ modulo a finite central subgroup ∆ isomorphic to Z0 ∩G′:

G ∼=
Z0 ×G′

∆
, ∆ ∼= Z0 ∩G′,

where Z0 is a torus.

Proof. This is an immediate consequence of Theorem 6.15. ut

Theorem 6.4 has not yet been completely exploited insofar as it gives us pre-
cise information on the structure of the commutator algebra [g, g] which is an
orthogonal direct sum of simple ideals the set of which is uniquely determined.

Definition 6.17. (i) A connected compact Lie group G is called simple if every
proper normal subgroup is discrete (hence central by 6.13).

(ii) It is called semisimple if {1} is the only connected central proper subgroup.ut

Let us repeat that the definition of a simple connected compact Lie group de-
viates somewhat from the use of the term “simple group” in the algebraic theory
of groups where simplicity means the absence of nontrivial normal subgroups; in
our context simplicity means the absence of nontrivial connected compact nor-
mal subgroups. Therefore, as we pointed out before, simple connected compact
Lie groups are occasionally called quasisimple in order to distinguish them from
abstract simple groups.
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The Commutator Subgroup of a Connected Compact Lie Group

Theorem 6.18. (i) If G is a connected compact Lie group, then G′ is a semisimple
connected compact Lie group and there are simple normal connected compact Lie
subgroups S1, . . . , Sn of G such that the morphism of compact groups

(23) µ:S1 × · · · × Sn → G′, µ(s1, . . . , sn) = s1 · · · sn

is surjective and has a finite central kernel isomorphic to a discrete central subgroup
∆ of S1 × · · · × Sn. In particular,

(24) G′ ∼=
S1 × · · · × Sn

∆
.

The set {S1, . . . , Sn} is uniquely determined by these properties.
(ii) The quotient morphism µ:S1 × · · · × Sn → G′ induces an isomorphism

L(µ): s1 ⊕ · · · ⊕ sn → g.
(iii) For each connected compact normal subgroup N of G′ there is a unique set

{m1, . . . ,mk}, 1 ≤ m1 < · · · < mk ≤ n such that

N = Sm1
· · ·Smk = µ(H1×· · ·×Hn), Hj =

{
Smp if j = mp for p ∈ {1, . . . , k},
{1} otherwise.

Proof. Note that By 5.49 and 6.4(iii), a connected compact subgroup N of G′ is
normal in G if and only if it is normal in G′.

(i) We know L(G′) = [g, g] = s1 ⊕ · · · ⊕ sn with a uniquely determined set
of simple ideals sj . (Theorem 6.4 and Theorem 6.11.) If A is a connected central
subgroup of G′ then so is A, and L(A) is a central ideal of g′ (cf. 5.54(iv)). But {0}
is the only such by what we just observed. Hence A is singleton (cf. 5.41(iii)) and
thus A is singleton. Therefore G′, being closed by 6.11, is a semisimple connected
compact Lie group.

From Proposition 6.14 we deduce the existence of a closed connected normal
subgroup N with L(N) = s1⊕· · ·⊕sn−1 and of a closed connected normal subgroup
Sn with L(Sn) = sn.

Proceeding by induction we find closed connected normal Lie subgroups Sj
with L(Sj) = sj for j = 1, . . . , n−1. The map µ in (23) is a well-defined morphism
of compact groups. The Lie algebra of its image is s1 + · · · + sn = [g, g] and this
image, therefore, agrees with G′ on account of L(G′) = [g, g]. Its kernel kerµ is
a Lie subgroup. Since L(µ): s1 × · · · × sn → [g, g] is given by L(µ)(X1, . . . , Xn) =
X1 + · · ·+Xn, we know that L(µ) is an isomorphism and thus has zero kernel.

From Proposition 5.41(iii) it follows that ∆ is discrete. From Proposition 6.14
we know that it must be central. Now conclusion (24) is a consequence, and the
uniqueness of the set {S1, . . . , Sn} of the groups Sj follows from the uniqueness of
the set {s1, . . . , sn} of their Lie algebras.

(ii) This is a reformulation of the fact that L(µ): s1 × · · · × sn → s1 ⊕ · · · ⊕ sn
is an isomorphism.

(iii) We assume that N is a closed connected normal subgroup of G′. Then
N = 〈expL(N)〉 and L(N) is an ideal in g′ by 5.49. Then L(N) = sm1

⊕ · · · ⊕ smk

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



246 6. Compact Lie Groups

for certain 1 ≤ m1 < · · · < mk ≤ n by 6.4(vii). We conclude that N = Sm1
· · ·Smk .

Consider the Lie group Gk = {1} × · · · × Sk × · · · × {1} ∼= Sk. Then µ(Gk) = Sk
and N = µ(Gm1 · · ·Gmk) = µ(H1 × · · · ×Hn). ut

Theorem 6.19. Every connected compact Lie group is the quotient of the direct
product of a torus and a finite set of simple connected compact Lie groups modulo
a finite central subgroup.

Proof. Exercise E6.8. ut

Exercise E6.8. Prove Theorem 6.19. ut

Maximal Tori

As we shall see in this subsection, the maximal connected compact abelian sub-
groups of compact Lie groups are crucial building blocks. We start off with a few
very simple observations:

Lemma 6.20. (i) Every connected abelian group A ⊆ G of a compact group G
(in particular, every subgroup of the form expR·X, X ∈ L(G) for a compact Lie
group) is contained in a maximal connected abelian subgroup T which is compact.

(ii) Every abelian Lie subalgebra a ⊆ g of a Lie algebra g (in particular ev-
ery one-dimensional subalgebra R·X, X ∈ g), is contained in a maximal abelian
subalgebra t.

(iii) If T is a maximal connected compact abelian subgroup of a compact Lie
group G, then L(T ) is a maximal abelian subalgebra of g.

(iv) If t is a maximal abelian subalgebra of the Lie algebra g of a compact Lie
group G, then exp t is a maximal connected compact abelian subgroup of G.

Proof. (i) The set of all connected abelian subgroups of a topological group G
containing a connected abelian subgroup A is inductive: The union of a tower
is a connected abelian subgroup containing A. Hence by Zorn’s Lemma there are
maximal ones, say T . Then T is connected and abelian, so by maximality T = T . If
G is compact, this means the maximal connected abelian subgroups are compact.

(ii) The proof follows again with the aid of Zorn’s Lemma.
(iii) Assume that T is a maximal connected compact subgroup ofG and that a is

an abelian subalgebra of g with L(T ) ⊆ a. We must show that a ⊆ L(T ). Now exp a
is a connected compact abelian subgroup of G containing expL(T ) and thus T by
5.41(iii). From the maximality of T we get T = exp a. Hence a ⊆ L(exp a) = L(T ).

(iv) Assume that t is a maximal abelian subalgebra of g and that A is a con-
nected closed subgroup of G containing exp t. We claim A = exp t which will show
that exp t is a maximal connected abelian subgroup (and is closed). Now exp t is an
abelian Lie subgroup (see 5.33(iii)), and t ⊆ L(exp t) ⊆ L(A). By the maximality
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of t we have L(A) = t and thus expL(A) = exp t. But A is a compact Lie group
(see 5.33(iii)) and is abelian, whence A = expL(A) by 5.41(iii). Thus A = exp t as
asserted. ut

For finite dimensional Lie algebras g the Axiom of Choice is not required for
a proof of (ii): Every ascending chain of abelian subalgebras containing a will
terminate after a finite number of members since dim g < ∞. The last member
will be maximal abelian and contain a. (iii) and (iv) do not require the Axiom of
Choice.

Lemma 6.21. (i) A maximal connected abelian subgroup of a compact Lie group
is a torus.

(ii) Let g be a compact Lie algebra and t a maximal abelian subalgebra. Then t
is its own normalizer and its own centralizer.

(iii) In a compact Lie group G a maximal connected abelian subgroup T is open
in its normalizer N(T,G) and thus has finite index in it. The centralizer Z(T,G0)
of T in the identity component is T itself.

(iv) If T is a maximal connected abelian subgroup of a compact Lie group G,
then there is a finite group E such that N(T,G) = TE and T ∩ E E N(T,G).
Moreover, T ∩ E = T [w], w = |N(T,G)/T |, and E/(E ∩ T ) ∼= N(T,G)/T .

Proof. (i) is immediate from 2.42.
For a proof of (ii) write n(t, g) = t⊕ s with s = t⊥∩n(t, g). Then [t, s] = {0} by

Theorem 6.4(i). Assume now that t 6= n(t, g) and pick any nonzero X ∈ s. Then
[t, X] = {0}, and thus t ⊕ R·X is abelian in contradiction with the maximality
of t. Since t ⊆ z(t, g) ⊆ n(t, g) = t we also have t = z(t, g).

(iii) By 5.54(i)(24) we have L
(
N(T,G)

)
= n(L(T ), g). By 6.20(iii) L(T ) is

a maximal abelian subalgebra. Then n(L(T ), g) = L(T ) by (ii) above. Thus
N(T,G)0 = T , and since N(T,G) is a Lie group, T is open in N(T,G). Thus
N(T,G)/T is discrete and compact, hence finite.

(iv) By (iii) we have N(T,G)0 = T . The assertion then follows from Theorem
6.10(i). ut

Exercise E6.9. (a) In view of the remarks following 6.20, formulate a proof of
6.20(i) for a compact Lie group G not using the Axiom of Choice.

(b) Verify the details of the construction described in the following discussion.
(i) One constructs examples for the possible N(T,G) as follows. Let F be

a finite group with an abelian normal subgroup A; then F/A acts on A via
(fA)·a = faf−1. Assume that we have an injective morphism a 7→ a+:A → T
into a torus T (additively written) such that F/A acts on T so that (fA) • a+ =(
(fA)·a

)
+

. Form the semidirect product T o F with multiplication (v, f)(w, g) =

(v + (fA) • w, fg). The subset N = {(−a+, a) | a ∈ A} is a subgroup isomorphic
to A. Since (0, f)(v, g)(0, f)−1 = ((fA)•v, (fA)·g) we have (0, f)(a+, a)(0, f)−1 =
((fA)·a)+, (fA)·a). Thus N is normal and we can form G = ToF

N . Then G0 =
T×A
N
∼= T and with W = A+×F

N
∼= F we have G = G0W = WG0 and G0 ∩W =
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A+×A
N
∼= A. This does not and cannot assert, that G0 fails to split as a semidirect

factor, but there are certainly examples where it does not. Take a prime p and let
F be the Heisenberg group of all matrices 1 x z

0 1 y
0 0 1

 , x, y, z ∈ GF(p).

Let T = T and take A the center of F and A+ = 1
pZ/Z with trivial actions

everywhere. The resulting group does not split and the intersection of G0 and W
cannot be removed, no matter how W is chosen.

(ii) Consider the following special case: Take F = Pn of Exercise E6.6 and let

A be the center and commutator subgroup
∧2

Vn ∼= Z(p)(
n
2). Let T = T(n2), let the

action of F/A be trivial. Then G0 ∩W ∼=
∧2

Vn is the commutator group G′; it is
contained in G0, there are elements in it which are products of no fewer than n−1

4
commutators (see E6.6). ut

This example shows that there are compact Lie groups G such that not every
element of G′ ∩G0 is itself a commutator. This is to be seen in contrast with the
Commutator Theorem for Connected Compact Lie Groups 6.55 below.

Definition 6.22. (i) If G is a compact group, let T (G) denote the set of all
maximal connected abelian subgroups of G and if g is a Lie algebra we write T(g)
for the maximal abelian Lie subalgebras of g.

(ii) For a compact Lie group G, a member of T (G) is called a maximal torus.
For a compact Lie algebra g a member of T(g) is called a Cartan subalgebra.

(iii) For a maximal torus T of a compact Lie group G, the finite factor group
N(T,G)/T is called the Weyl group of G with respect to T and is writtenW(T,G).

ut

One can define the concept of a Cartan subalgebra for any finite dimensional
Lie algebra whatsoever as follows. A subalgebra of a finite dimensional Lie algebra
is called a Cartan subalgebra if it is nilpotent and agrees with its own normalizer.
In view of 6.21(ii), for compact Lie algebras this concept agrees with the one
introduced in 6.22(ii).

Notice from 6.21(iv) that the group N(T,G) contains a finite group E such
that W(T,G) ∼= E/(E ∩ T ).

Proposition 6.23. For a compact Lie group G, the functions T 7→ L(T ) : T (G)→
T(g) and t 7→ exp t : T(g) → T (G) are well-defined bijections which are inverses
of each other.

Proof. This is immediate from Lemma 6.20. ut

Lemma 6.24. Every Cartan subalgebra t of a compact Lie algebra g contains an
element Y such that t = z(Y, g).
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Proof. By 6.6 there is a connected compact Lie group G such that g = L(G).

Let t be a Cartan subalgebra. Then T
def
= exp t is a maximal torus by 6.20(iii). By

1.24(v), the torus T contains an element t such that the group 〈t〉 generated by it
is dense in T . Since exp: t→ T is surjective we find a Y such that t = expY . Now
Z(t, G) = Z(〈t〉, G) = Z(T,G) and t ⊆ L

(
Z(T,G)

)
⊆ L

(
N(T,G)) = n(t, g) = t

by 5.54(i)(24) and 6.21(ii). Since t ∈ expR·Y ⊆ T we also have Z(expR·Y,G) =
Z(T,G) and thus t = L

(
Z(expR·Y,G)

)
= z(Y, g) by 5.54(ii)(25). ut

Lemma 6.25 (Hunt’s Lemma [208]). Let G be a compact Lie group, and X and Y
two arbitrary elements of its Lie algebra g. Then there is an element g ∈ G such
that [Ad(g)X,Y ] = 0.

Proof. We consider on g an invariant scalar product according to 6.2 and note that
the continuous real valued function g 7→ (Ad(g)(X) | Y ) : G→ R on the compact
space G attains a minimum in, say g ∈ G. We take an arbitrary Z ∈ g and define
f :R → R by f(t) =

((
et· adZ) Ad(g)(X) | Y

)
= (Ad

(
(expG t·Z)g

)
(X) | Y ). Then

f attains its minimal value for t = 0. Hence

0 = f ′(0) =
(
(adZ) Ad(g)(X) | Y

)
=
(
[Ad(g)(X), Y ] | Z

)
by 6.2(2). Since Z was arbitrary and the scalar product is nondegenerate, the
relation [Ad(g)(X), Y ] = 0 follows. ut

Lemma 6.26. Let G be a compact Lie group and t a Cartan subalgebra. For any
X ∈ g there is a g ∈ G such that Ad(g)X ∈ t.

Proof. By Lemma 6.24 there is a Y ∈ t such that t = z(Y, g). By Lemma 6.25 we
find a g ∈ G such that [Ad(g)(X), Y ] = 0, i.e. that Ad(g)(X) ∈ z(Y, g) = t. ut

The Transitivity Theorem

Theorem 6.27. A compact Lie group G operates transitively on T (G) and T(g)
such that the functions of Proposition 6.23 are equivariant. Further, for any t ∈
T(g) we have

(25) g =
⋃
g∈G

Ad(g)t.

Proof. Clearly G acts on the left on T (G) via g • T = gTg−1 and on T(g) via
g • t = Ad(g)(t). Because g(exp t)g−1 = exp Ad(g)(t) and L(gTg−1) = Ad(g)L(T )
by 5.44 the two functions of Proposition 6.23 are equivariant.

Let t1, t2 ∈ T(g). By Lemma 6.21(ii) there are elements Yj such that tj =
z(Yj , g) for j = 1, 2. By 6.23 there is a g ∈ G such that Ad(g)Y1 ∈ z(Y2, g) = t2.
Then t2 ⊆ z(Ad(g)Y1, g) = Ad(g)z(Y1, g) = Ad(g)t1. Because of the maximality
of t2 we have t2 = g • t1. Thus the operation of G on T(g) is transitive. Since
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as G-sets, T (G) and T(g) are isomorphic by what we saw in the first part of the
proof, the action of G on T (G) is transitive, too.

The last assertion of the theorem is a direct consequence of Lemma 6.26. ut

Definition 6.28. By the commutativity of the torus T , the function (g, t) 7→
gtg−1:G×T → G is constant on the sets gT ×{t}, (g, t) ∈ G×T and thus factors
through G/T × T , G/T = {gT | g ∈ G}.

We shall denote the continuous function which associates with (gT, t) the
unique element gtg−1 by ω:G/T × T → G. ut

For compact groups, the map ω:G/T ×T → G is almost as important as is the
exponential function expG: g→ G.

Lemma 6.29. Let G be a compact Lie group with a maximal torus T and consider
the following continuous functions:

(i) exp: g→ G, and
(ii) ω:G/T × T → G.

Then both have the set expG g = im expG as image.
In particular, im expG is a compact subset of G.

Proof. We compute ω(G/T × T ) =
⋃
g∈G gTg

−1 =
⋃
g∈G expG Ad(g)t =

expG
⋃
g∈G Ad(g)t = expG g by (25) in the Transitivity Theorem 6.27. ut

The central theorem in this area now is the following

The Maximal Torus Theorem

Theorem 6.30. Let G be a compact Lie group with Lie algebra L(G) = g. Then

(26) G0 = exp g.

Let T be any maximal torus of G. Then

(27) G0 =
⋃
g∈G

gTg−1.

Proof. By Lemma 6.29 the conditions (26) and (27) are equivalent and are also
equivalent to the following condition

(∗) exp g is open in G

which in turn is equivalent to

(∗∗) (∀X ∈ g) exp g =
⋃
g∈G

gTg−1 is a neighborhood of expX in G.

We shall prove this by induction on the dimension of g proceeding as follows. We
suppose that the assertion is false and that G is a counterexample with minimal
dim g, and we shall derive a contradiction. (“Principle of the smallest criminal”)
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Firstly, dim g > 1 since dim g = 1 would mean that G0 is a circle group, whence
G could not be a counterexample to (26). Obviously there is no loss in generality
to assume that G is connected.

As G is a counterexample to (∗∗), there is an X ∈ g such that x
def
= expX

is a boundary point of exp g in G, since exp g is closed in G by Lemma 6.26. By

6.27(25), we may assume that X ∈ t
def
= L(T ) and thus x ∈ T . Now S

def
= Z(x,G)0

is a connected linear Lie subgroup of G and T ⊆ S. If dimL(S) < dimL(G),
then the compact Lie group S is not a counterexample to the theorem. Hence
S = exp z(X, g) =

⋃
s∈S sTs

−1. The automorphism Adx of the Hilbert Lie algebra
g is orthogonal by 6.2(1) and hence is semisimple (see also the remarks following
6.3). Then Proposition 5.55 shows that

⋃
g∈G gSg

−1 is a neighborhood of x in G.
Thus ⋃

g∈G
gTg−1 =

⋃
g∈G

g
( ⋃
s∈S

sTs−1
)
g−1 =

⋃
g∈G

gSg−1

is a neighborhood of x in G. This contradicts our assumption that x is a boundary
point of exp g. Hence dimL(S) = dimL(G) and thus L(S) = L(G) and so S = G0,
that is, x ∈ Z(G). Let Y ∈ L(G). Then by Theorem 6.27(25) again, there is an
h ∈ G such that Y ∈ Ad(h)t and expY ∈ hTh−1. As x ∈ Z(G) we have x =
hxh−1 ∈ hTh−1 and thus x expY ∈ hTh−1 ⊆ exp g. Since exp g is a neighborhood
of 1, the translate x exp g is a neighborhood of x, but this again contradicts our
assumption that x is a boundary point of exp g. ut

This theorem has several direct and important consequences.

Corollary 6.31. (i) If H is a closed subgroup of a compact Lie group G, then
H0 = expL(H).

(ii) If h is a subalgebra of g with h′ = h, then exp h is a closed Lie subgroup
with L(exp h) = h.

(iii) In particular, for a connected compact group G, G′ = exp g′.

Proof. (i) H0 is a connected compact Lie group with Lie algebra L(H), and so
the first assertion is obvious from 6.30.

(ii) If h = h′ ≤ g, then H
def
= 〈exp h〉 is a closed subgroup with L(H) = h by

6.12. The claim then follows from (i).
(iii) We have g′′ = g′ by 6.4(viii). Thus (ii) applies to g′ and shows that exp g′

is a closed subgroup. But then exp g′ = 〈exp g′〉 = G′ by 5.60. ut

For connected compact Lie groups, this in fact provides a second proof for
the closedness of the commutator groups (cf. the Closedness of the Commutator
Subgroup 6.11).

Corollary 6.32. Let G be a compact Lie group.
(i) For each g ∈ G0 the following statements hold.

T
(
Z(g,G)

)
= {T ∈ T (G) | g ∈ T},(28a)
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Z(g,G)0 =
⋃
{T | T ∈ T (G) and g ∈ T}.(28b)

(ii) The center of a connected compact Lie group is contained in every maximal
torus. More precisely,

(29) Z(G) =
⋂
{T | T ∈ T (G)}.

(I) For each X ∈ g we have

T(z(X, g)) = {t ∈ T(g) | X ∈ t},(28aL)

z(X, g) =
⋃
{t | t ∈ T(g) and X ∈ t}.(28bL)

(II) The center of a compact Lie algebra is contained in every Cartan subalge-
bra. More precisely,

(29L) z(g) =
⋂
{t | t ∈ T(g)}.

(iii) For each g ∈ G0 the following statement holds.

(28c) L
(
Z(g,G)

)
=

⋃
X∈g, expX=g

z(X, g).

Proof. (i) First we show (28a). If g ∈ T ∈ T (G), then T ∈ Z(g,G), and T
is maximal connected abelian in G hence in Z(g,G). Thus the right hand side
of (28a) is contained in the left hand side. Conversely, let T be a maximal torus
of Z(g,G). Let A be a maximal torus of G containing g; such an A exists by the
Maximal Torus Theorem 6.30. Then A ⊆ Z(g,G) and A, being maximal connected
abelian in G is maximal connected abelian in Z(g,G). Then by the Transitivity
Theorem 6.27 applied to Z(g,G), there is a z ∈ Z(g,G) such that T = zAz−1,
whence T ∈ T (G); moreover, g = zgz−1 ∈ T . Hence T is a member of the right
hand side of (28a). Thus (28a) is proved.

For a proof of (28b), let T ∈ T (G) with g ∈ T . Then T ∈ T
(
Z(g,G)

)
and then

Z(g,G)0 =
⋃

z∈Z(g,G)0

zTz−1 =
⋃
T (Z(g,G)0).

Now (28a) implies (28b).
(ii) Assume thatG is connected. Let z ∈ Z(G). This is equivalent to Z(z,G) =

G. Then by (28a) every maximal torus of G contains z. It remains to show that
the right hand side of (29) is contained in the center. Thus let z ∈

⋂
T (G) and

let g ∈ G be arbitrary. According to 6.30 there is a T ∈ T (G) containing g. By
hypothesis, z ∈ T . As T is abelian, g and z commute. Thus z ∈ Z(G).

The proofs of (I) and (II) rest on the Transitivity Theorem 6.27 in place of the
Maximal Torus Theorem 6.30 and follow otherwise exactly the same lines as the
proofs of (i) and (ii).

(iii) From (28b) we deduce L
(
Z(g,G)

)
=
⋃
{t | t ∈ T(g) and g ∈ exp t}. Now

a Cartan subalgebra t satisfies g ∈ exp t if and only there is an X ∈ t such that
g = expX if and only if there is an X ∈ g such that t ∈ T

(
z(X, g)

)
such that
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g = expX. Since z(X, g) =
⋃
{t ∈ T

(
z(X, g)

)
by the Transitivity Theorem 6.27

applied to z(X, g), equation (28c) follows. ut

Some comments are in order. Statements (I) and (II) are the Lie algebra analogs
of the Lie group Statements (i) and (ii), respectively, and their proof is easier
because the proof of 1.27 is easier than the proof of 1.30. However, (I) and (II) are
not the “infinitesimal versions” of (i) and (ii). While it is true that g ∈ G0 is always
of the form g = expX for some X ∈ g by 1.30, and z(X, g) = L

(
Z(expR·X,G)

)
⊆

L
(
Z(g,G)

)
by 5.53(25), in general z(X, g) 6= L

(
Z(X,G)

)
. E.g. if G = S3, the

group of unit quaternions, then g = −1 is in the center, whence Z(g,G) = G. But
in g = R.i + R·j + R·k, the element X = i (or any element in the unit ball of g)
satisfies expπ·X = eπi = −1 and z(X, g) = R.X 6= g.

In Exercise E6.10(iv) below we shall see that the centralizer of an element in a
connected compact Lie group need not be connected; this remark is pertinent to
(28b) above.

Corollary 6.33. Let G be a connected compact Lie group. Then the following
assertions hold.

(i) If S is a torus subgroup of G then Z(S,G) =
⋃
{T ∈ T (G) | S ⊆ T}. In

particular, the centralizer of a torus subgroup of G is connected.
(ii) Each maximal torus T of G is its own centralizer Z(T,G).
(iii) Each maximal torus of G is a maximal abelian subgroup.
(iv) There are connected compact groups containing abelian subgroups which

are not contained in any torus.

Proof. (i) Clearly the right hand side is contained in the left one. Conversely, let
g ∈ Z(S,G). Then S ⊆ Z(g,G). Since S is connected, S ⊆ Z(g,G)0. By 6.30 we
find a maximal torus Tg of G containing g. Then also Tg ⊆ Z(g,G)0. Now S is
contained in a maximal torus T of Z(g,G). By the Transitivity Theorem 6.27, the
groups T and Tg are conjugate in Z(g,G). Hence T ∈ T (G) and S ⊆ T .

(ii) By (i), Z(T,G) is the union of all maximal tori containing T ; but T is the
only one of these, whence Z(T,G) = T .

(iii) Let T ∈ T (G) and T ⊆ A for an abelian subgroup A of G. Then A ⊆
Z(T,G); but Z(T,G) = T by (ii). Hence A = T .

(iv) For an example that maximal abelian groups may not be connected take
G = SO(3) and A the subgroup of all diagonal matrices in SO(3). Then A ∼= Z(2)2

is a maximal abelian subgroup. (Exercise E6.10.) ut

Exercise E6.10. Verify the details of the example G = SO(3) with A being the
set of all

diag(x1, x2, x3) =

x1 0 0
0 x2 0
0 0 x3

 ∈ SO(3), xj ∈ {1,−1}, x1x2x3 = 1.

Show:
(i) A ∼= Z(2)2.
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(ii) The group T of all  cos 2πt sin 2πt 0
− sin 2πt cos 2πt 0

0 0 1

 , t ∈ R

is a maximal torus.
(iii) Two different maximal tori intersect in {1}.
(iv) N(T,G) = T ∪ diag(1,−1,−1)T = Z(diag(−1,−1, 1), G).
(v) A is maximal abelian. ut

We note that the maximal torus T of G = SO(3) contains an element g
def
=

diag(−1,−1, 1) whose centralizer is Z(g,G) = N(T,G), a group which is not
connected.

Corollary 6.34. If S and T are maximal tori of a compact Lie group G, then the
Weyl groups W(S,G) and W(T,G) are isomorphic.

Proof. By the Maximal Torus Theorem 6.30 there is a g ∈ G such that the
inner automorphism Ig:G → G, Ig(x) = gxg−1 maps S onto T . It then maps
N(S,G) onto N(T,G) and thus induces an isomorphism Jg:W(S,G)→W(T,G),
Ig(nS) = Ig(nS) = Ig(n)T . ut

In view of this fact one is also justified to speak in many circumstances of the
Weyl group of G. For each n ∈ N(T,G) the vector space automorphism Ad(n)|t
of t is orthogonal with respect to any invariant inner product on t (see 6.2). Thus
n 7→ Ad(n)|t:N(T,G) → O(t) is a well-defined morphism, whose kernel is the
centralizer Z(T,G); indeed if Ad(n)|t = idt then n(expX)n−1 = exp Ad(n)X =
expX for all X ∈ t. Since T = exp t, this means that the element n is in the
centralizer of T in G.

We shall presently use a very simple remark on group actions.

Lemma (Frattini Argument). Let a group Γ act on a set M and assume that a
subgroup Ω acts transitively. Then Γ = ΩΓx = ΓxΩ, where Γx = {g ∈ Γ | g·x = x}
is the isotropy subgroup at x.

Proof. For each g ∈ Γ, since Ω·x = M , there are elements h, h′ ∈ Ω such that
g·x = h·x and g−1·x = h′·x. Then h−1g, gh′ ∈ Γx, whence g ∈ ΩΓx and g ∈ ΓxΩ.ut

The first part of the following corollary illustrates this procedure.

Corollary 6.35. Assume that G is a compact Lie group G and G1 a normal
subgroup. Let T ∈ T (G1). Then G = G1N(T,G), and, in particular, the following
conclusions hold:

(30) G = G0N(T,G).
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(31)
G/G0

∼= N(T,G)/(N(T,G) ∩G0) = N(T,G)/N(T,G0)
∼=W(T,G)/W(T,G0).

Moreover, the representation

ρ:W(T,G)→ O(t), ρ(nT ) = Ad(n)|t,

maps W(T,G0) faithfully into O(t).

Proof. Since G1 is normal, every inner automorphism leaves G1 invariant. We
apply the Frattini Argument with Γ = G acting on M = T (G)1 under inner auto-
morphisms with Ω = G1 operating transitively by the Transitivity Theorem 6.27.
For T ∈ T (G), the isotropy group at T is ΓT = N(T,G). Thus G = G1N(T,G)
by the preceding Lemma. We can apply this in particular to the normal subgroup
G0 and get (30).

Assertion (31) follows from the definitions and the standard isomorphy theo-
rems for groups.

Lastly, ker ρ = Z(T,G)/T by the remarks preceding the corollary. However,
W(T,G0) = N(T,G0)/T . Accordingly, ker

(
ρ|W(T,G0)

)
= Z(T,G0)/T = T/T =

{1}. ut

It follows that we may viewW(T,G)/ ker ρ as a subgroup of O(t), in particular,
W(T,G0) may be considered as a subgroup of O(t).

The present information also yields a quick proof of a preliminary version of
Lee’s Theorem on supplements for the identity component [238]. The final version
will be shown below in 6.74.

Theorem 6.36. Every compact Lie group contains a finite group E such that
G = G0E = EG0. If T is a maximal torus, E may be chosen so that E ⊆ N(T,G)
and E ∩G0 = E ∩N(T,G0). The order of each element in E ∩T divides the order
of the Weyl group of G.

Proof. Let T ∈ T (G). By 6.21(iv) there is a finite group E such that N(T,G) =
TE = ET . Since T ⊆ G0, the assertion follows at once from 6.35. ut

We conclude this section with another application of the Frattini Argument.
This exercise requires knowledge of the Sylow Theorems for finite groups, notably
this information ([209], p. 33ff.): If G is a finite group of order pnm for a prime p
not dividing m then G contains subgroups of order pn, the Sylow subgroups of G,
and all of them are conjugate.

Exercise E6.11. Prove the following fact:

Let G1 be a finite normal subgroup of a group G and P a Sylow subgroup of G1.
Then G = G1N(P,G).

[Hint. Apply the Frattini Argument with G acting under inner automorphisms on
the set of Sylow subgroups of G1 conjugate to P .] ut
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The Second Structure Theorem for Connected Compact
Lie Groups

We have seen previously in 6.16 that a connected compact Lie group G is almost
a direct product of a connected central torus group Z0(G) and a semisimple Lie
group. The example of U(n) shows that one cannot do better. However, one can do
better in one regard, if one renounces the requirement that the product decomposi-
tion be direct. There is a semidirect decomposition available which is topologically
clean (while algebraically being a bit less comfortable). We discuss this as our next
topic.

The first step is a lemma on the decomposition of groups. To begin with, we
secure some terminology. If N is a closed normal subgroup of a compact group G
then every closed subgroup A of G with G = NA and N ∩ A = {1} is called a
semidirect cofactor of N . If N has a semidirect cofactor A, then according to a
general group theoretical formalism, N×A is a compact topological group relative
to the multiplication (m, a)(n, b) = (m(Ian), ab) with Ian = ana−1, called NoIA,
and (m, a) 7→ ma:NoIA→ G is an isomorphism of compact groups. Any cofactor
of N is isomorphic to G/N . If A is a semidirect cofactor of N , then any conjugate
gAg−1 is a cofactor, too. For a subgroup A of G let us denote with cls(A) the set
{gAg−1 | g ∈ G} of conjugate subgroups. We let C(N) denote the set of cofactors
of N in G and Cconj(N) the set of conjugacy classes; so cls: C(N) → Cconj(N) is
the orbit map of the action of G under inner automorphisms.

We say that a function f :H → N between topological groups is a 1-cocycle if
there is a continuous action (h, n) 7→ h·n:H × N → N (see Definition 1.9) such
that every n 7→ h·n is an automorphism of n and such that the following functional
equation is satisfied:

f(h1h2) =
(
h1·f(h2)

)
f(h1).

An action of the type we need here is also called an automorphic action. If the
action is constant and N is abelian, the 1-cocycle is a homomorphism. We have
encountered cocycles in the proof of Theorem 6.10. Let Z1(H,N) denote the set
of all cocycles f :H → N . If N and H are subgroups of G and H is in the nor-
malizer of N , acting on N under inner automorphisms, let j:N ∩H → N be the
inclusion morphism and let Z1

N∩H(H,N) denote the set of cocycles f :H → N with
f |(N ∩H) = j. Using this notation we formulate the group theoretical background
of our discussion in the following proposition.

Proposition 6.37. (i) Assume that G is a compact group, N a compact normal
subgroup, and H a compact subgroup such that G = NH. The group H acts on N
automorphically via h·n = hnh−1. The following conditions are equivalent:

(1) There is a compact subgroup A such that G = NA and N ∩A = {1}, that is
G is a semidirect product of N and A.

(2) The inclusion function j:N ∩H → N extends to a 1-cocycle f :H → N with
respect to the action of H on N .
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(ii) The function

Φ:Z1
N∩H(H,N)→ C(N), Φ(f) = {f(z)−1z | z ∈ H},

is a bijection.
(iii) The kernel of the morphism µ:N oI H → G is kerµ = {(h−1, h) | h ∈

N ∩ H}, the function κ:N ∩ H → kerµ, κ(h) = (h−1, h) is an isomorphism
satisfying κ(xhx−1) = (1, x)κ(h)(1, x)−1 for all x ∈ H. The group N ∩ H is
normal in H.

(iv) Assume that N and H are compact groups and that ι: H → Aut N is a
morphism of groups defining an action h·n = ι(h)(n) such that (h, n) 7→ h·n: H×
N → N is continuous. If D E H a normal subgroup of H, and if f : D → N is a
cocycle satisfying f(h·d) = h·f(d) for h ∈ H, d ∈ D. Then K = {(f(d)−1, d) | d ∈
D} is a normal subgroup of H oι N such that Γ

def
= (N oι H)/D is the product of

the normal subgroup (N oι {1})D/D ∼= N and the subgroup ({1}oι H)/D ∼= H,
whose intersection is (D oι D)/D ∼= D.

Proof. (i) First we show (1)⇒(2). Every g ∈ G decomposes uniquely and con-
tinuously into a product na with n ∈ N and a ∈ A. In particular, each h ∈ H
defines a unique element f(h) ∈ N and a ϕ(h) ∈ A such that h = f(h)ϕ(h). If
h ∈ N ∩ H, then ϕ(h) = 1 and thus f(h) = h. Also, f(h1h2)ϕ(h1h2) = h1h2 =
h1f(h2)ϕ(h2) =

(
h1·f(h2)

)
h1ϕ(h2) =

(
h1·f(h2)

)
f(h1)ϕ(h1)ϕ(h2). Then f is the

desired cocycle.
(2)⇒(1) Assume that f is a 1-cocycle with respect to the action of H on

N . We define p:H → G by p(h) = f(h)−1h. Then p is continuous. We note
p(h1h2) = {

(
h1·f(h2)

)
f(h1)}−1h1h2 = f(h1)−1h1f(h2)−1h−1

1 h1h2 = p(h1)p(h2).
Thus p is an endomorphism. We set A = p(H). Clearly, Np(h) = Nh, whence
NA = NH = G. Also g ∈ N ∩A means the existence of an h ∈ H with f(h)−1h =
p(h) = g ∈ N . Then h = f(h)g ∈ N and thus f(h) = h by assumption. This
implies g = 1. The proof of (i) is complete.

(ii) Let f ∈ Z1
N∩H(H,N). We saw that the set A = {f(z)−1z | z ∈ H} is a

cofactor of N and that every cofactor arises in this way. Hence the function Φ is
well-defined and is surjective. In order to see its injectivity, let fj ∈ Z1

N∩H(H,N),
j = 1, 2 be two cocycles such that Φ(f1) = Φ(f2). Write A = Φ(f1). Define
the morphisms ϕj :H → A by h = fj(h)ϕj(h). Since the product G = NA is
semidirect, we have a projection p:G → A such that every element g ∈ G is
uniquely written as g = np(g) with n ∈ N . Accordingly, ϕ1(h) = p(h) = ϕ2(h) for
h ∈ H. It follows that f1 = f2. This completes the proof.

(iii) It is straightforward to verify that µ is a morphism. (Cf. Definition 5.72
and Exercise E5.72.) An element (n, h) ∈ N oI H is in kerµ iff 1 = µ(n, h) =
nh iff n = h−1 ∈ N ∩ H. The function κ is the inverse of the restriction and
corestriction kerµ → N ∩ H of the projection p:N oI H → H and thus is an
isomorphism of groups. The relation κ(xhx−1) = (1, x)κ(h)(1, x)−1 for all x ∈ H
is straightforward. The group N ∩ H is normal in H since it is the image of the
normal subgroup kerµ of N oI H under the surjective morphism p.

(iv) All assertions made are based on straightforward calculations. ut
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The preceding proposition exhibits the role of cocycles in group theory; Parts
(iii) and (iv) illustrate the circumstances, under which groups G arise which are
the product of a normal subgroup N and a subgroup H. In the light of these
observations one should review the construction of Exercise E6.9(b).

If G = NH and H centralizes N , then f :H → N is a cocycle iff h 7→ f(h)−1

is a morphism; so the issue is whether the inclusion morphism of N ∩ H → N
extends to a morphism H → N ; this is an important special case as we shall
see presently. Note that N ∩H is central in H. If N and G/N are abelian, then
any morphism f :H → N annihilates the commutator group and H ′ ⊆ N ; if f
induces the identity on N ∩H, then H ′ = {1}. In other words, if H is a nilpotent
group of class 2 and H ′ can be identified with a nontrivial subgroup of N then
N ×H/{(d−1, d) | d ∈ H ′} is a nilpotent group of class 2 in which N cannot be
a direct factor; this at once gives examples of compact Lie groups G in which the
identity component is a torus which is not a direct factor (cf. Exercise E6.9(b)(ii)).

The simplest case in which 6.37(i) applies is that of a compact abelian group.

Lemma 6.38. Let T and H be closed abelian subgroups of a compact group such
that T is a torus group and T and H commute elementwise. Then there exists a
closed subgroup K ⊆ TH such that (t, k) 7→ tk:T ×K → TH is an isomorphism
of compact abelian groups. In particular, TK is a direct product and equals TH.

Proof. By the preceding Lemma 6.37 it suffices to extend the inclusion morphism
T ∩ H → T to a homomorphism H → T . Since T ∼= TM for some set M this is
accomplished by the Extension Theorem for Characters 2.33(ii). ut

This conclusion carries much further as the following proposition shows:

Proposition 6.39. Assume that G is a compact group, H a closed abelian subgroup
and N a normal subgroup of G such that G = NH and that H ∩ N is contained
in a torus subgroup T of N which commutes elementwise with H. Then there is a
closed abelian subgroup A such that G is the semidirect product AN = NA of the
normal subgroup N with the not necessarily normal subgroup A ∼= G/N .

Proof. The set TH is a compact subgroup of G to which Lemma 6.38 applies.
Hence there is a closed abelian subgroup A such that A ∩ T = {1}. Note NA =
NTA = NTH = NH = G. In order to complete the proof we have to show that
N ∩ A = {1}. Now a ∈ N ∩ A implies a ∈ N ∩ TA = N ∩ TH. Hence a = th ∈ A
with t ∈ T ⊆ N and h ∈ H. Thus h = t−1a ∈ H ∩ N ⊆ T by hypothesis. Hence
a = th ∈ T ∩A = {1}. This is what we had to show. ut

The main applications in the context of compact Lie groups leads us to the
Second Structure Theorem for Connected Compact Lie Groups. Let G be a com-
pact Lie group, take an abelian subgroup Z satisfying Z(G)0 ⊆ Z ⊆ Z((G′)0, G),

and set G1
def
= (G′)0Z. The commutator subgroup G′ is closed by 6.11. By Corol-

lary 6.32(ii) to the Maximal Torus Theorem, the subgroup D = Z ∩ (G′)0 is
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contained in the center of (G′)0. Then D is contained in some maximal torus T of
(G′)0 which we fix. We recall from 6.15(iii) that G0 ⊆ (G′)0Z(G)0 ⊆ G1, i.e. G1

is substantial from our point of view.
ForD = N∩H,H,N ⊆ G we define HomD(H,N) to be the set of all morphisms

f :H → N which agree on D with the inclusion j:D → N . If it happens that H and
N commute elementwise and the action of H on N is by inner automorphisms, and
if H happens to be commutative, then for f ∈ Z1(H,N) we have f(xy) = f(yx) =
(yf(x)y−1)f(y) = f(x)f(y). In particular, in these circumstances, Z1

D(H,N) =
HomD(H,N).

Corollary 6.40. Let G be a compact Lie group with the subgroup G1 ⊇ G0 defined
as in the preceding paragraphs, and let C

(
(G′)0

)
denote the set of cofactors of (G′)0

in G1. Then the following conclusions hold:
(i) (G′)0 has a semidirect cofactor in G1, i.e. G1 = (G′)0A, (G′)0 ∩A = {1}.
(ii) The function

Φ: HomD(Z, (G′)0)→ C(G′), Φ(f) = {f(z)−1z | z ∈ Z},

is a bijection.

Proof. (i) We apply Proposition 6.39 with H = Z and N = (G′)0. Then H∩N =
D is central in (G′)0 and by 6.32(ii), there is a torus subgroup T of (G′)0 containing
D. The group T ⊆ (G′)0 clearly commutes elementwise with Z ⊆ Z((G′)0, G).
Hence Proposition 6.39 proves the assertion.

(ii) By a remark preceding this corollary, Z1
D(H,N) = HomD(H,N). Then

the assertion directly follows from 6.37. ut

Examples arise in the situation we described in 6.10, notably in 6.10(iii),
6.10(iv). But now we consider a connected compact Lie group G. Then G′ is
connected and Z(G′, G) = Z(G) is the center. We let Z0 denote the identity
component Z0(G) of the center of G and set D = Z0 ∩G′.

The Second Structure Theorem for Connected

Compact Lie Groups

Theorem 6.41. (i) For a connected compact Lie group G the commutator subgroup
G′ has a semidirect cofactor isomorphic to G/G′.

(ii) Let C(G′) denote the set of cofactors of G′. Then

Φ: HomD(Z0(G), G′)→ C(G′), Φ(f) = {f(z)−1z | z ∈ Z0(G)},

is a bijection.
(iii) Let T be a maximal torus of G′ and i:T → G′ the inclusion morphism

and HomD(Z0(G), i): HomD(Z0(G), T )→ HomD(Z0(G), G′) the induced injection.
Then the composition

HomD(Z0(G), T )
HomD(Z0(G),i)−−−−−−−−−→ HomD(Z0(G), G′)

Φ→ C(G′) cls→ Cconj(G
′)

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



260 6. Compact Lie Groups

is surjective. Thus every cofactor for G′ is conjugate to one that is generated by
an f ∈ HomD(Z0(G), T ).

Proof. (i) We note that G = Z0G
′ by the First Structure Theorem 6.16. Hence

Part (i) is an immediate consequence of 6.40.
(ii) Let f ∈ HomD(Z0, G

′). Since Z0 is central, f is in particular a 1-cocycle.
Hence by Lemma 6.37 the set A = {f(z)−1z | z ∈ Z0} is a cofactor of G′ and
thus the function Φ is well-defined. By Lemma 6.37, Φ is surjective. In order to see
injectivity, let fj ∈ HomD(Z0, G

′), j = 1, 2 be two morphisms such that Φ(f1) =
Φ(f2). Write A = Φ(f1). Define the morphisms ϕj :Z0 → A by z = fj(z)ϕj(z).
Since the product G = G′A is semidirect, we have a projection p:G→ A such that
every element g ∈ G is uniquely written as g = g′p(g) with g ∈ G′. Accordingly,
ϕ1(z) = p(z) = ϕ2(z) for z ∈ Z0. It follows that f1 = f2. This completes the proof.

(iii) Let A ∈ Cconj(G
′). By (ii) there is an f ∈ HomD(Z0(G), G′) such that

Φ(f) = A. The image f
(
Z0(G)

)
is a connected abelian subgroup of G′ and there-

fore, by the Transitivity Theorem 6.27, there is a g ∈ G′ such that gf
(
Z0(G)

)
g−1 ⊆

T . Then the function g·f given by (g·f)(z) = gf(z)g−1 belongs to HomD(Z0, T )
and Φ(g·f) = {(gf(z)−1g−1z | z ∈ Z0(G)} = g{f(z)−1z | z ∈ Z0(G)}g−1 =
gAg−1 ∈ cls(A) in view of the centrality of Z0(G). ut

If f ∈ HomD(Z0(G), T ) and g ∈ Z
(
f
(
Z0(G)

)
, G′), then the morphism g·f

is contained in HomD(Z0(G), T ) and the cofactors generated by f and g·f are
conjugate. The set HomD(Z0(G), T ) is rich by the injectivity of T in the category
of compact abelian groups (see Appendix 1, A1.35 and compare the proof of 6.38
above). Notice that even if D = Z0(G)∩G′ = Z0(G)∩T = {1}, i.e. if G is a direct
product of G′ and Z0(G) and if Z0(G) 6= {1} there are numerous nonnormal
cofactors for G′.

It is a constructive exercise to contemplate the difference between the First
Structure Theorem 6.16 for connected compact Lie groups and the second one in
6.41. The decomposition given in Theorem 6.16 is algebraically clean and canoni-
cal, but is defective topologically, since the direct decomposition is available only
in the covering group Z0 × G′ of G. The decomposition G = G′A ∼= G′ oI A of
6.41 is topologically clean. Algebraically it is satisfactory, but the product is only
semidirect and A is not unique, not even up to conjugation in general. However,
we have some control over the possible complements through 6.41(ii).

Compact Abelian Lie Groups and their Linear Actions

We have discussed compact abelian groups and their duality in Chapters 1
and 2, and their general representation theory was discussed at the end of Chapter
3. Now that the aspects of Lie groups are added we have to review some of the
facts accumulated earlier.
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Let T denote a torus and exp = expT : t → T its exponential function. It is a
homomorphism of abelian topological groups. Let k = K(T ) be its kernel. Thus we
have an exact sequence of abelian groups

0−−→k
incl−−→ t

expT−−→ T −−→0.

In the context of general representation theory, it was natural to choose the
complex ground field, but in the context of Lie groups, the ground field of reals
is appropriate. For an abelian topological group, a character is in the first place a
continuous homomorphism from it into the circle group. The circle group G has
three different guises:

(i) R/Z, preferred from the view point of the structure theory of abelian groups
and duality theory (cf. Chapters 1, 2 above and 7 and Appendix 1),

(ii) S1, the multiplicative group of complex numbers of norm 1, preferred in
representation theory and harmonic analysis (cf. Chapters 2, 3, and 4), and

(iii) SO(2), the group of matrices(
cos t − sin t
sin t cos t

)
, t ∈ R

preferred in the theory of real representations and in the context of (real)
Lie groups.

The Lie algebras g coming along with these variants are the following.
(i) Take R with exp:R→ R/Z being the quotient map;
(ii) set A = C, S1 ⊆ A−1 = C \ {0}, and g = iR with exp ir = eir; and

(iii) set A = M(2,R), the algebra of real 2×2-matrices, SO(2) ⊆ A−1 = Gl(2,R),

g = R·I = so(2), I =

(
0 −1
1 0

)
, exp r·I = er·I .

For our present discussion we opt for alternative (iii). However, as the Lie algebra
of the circle group SO(2) we shall choose R with the exponential function

exp = expSO(2):R→ SO(2), exp r = er·I = 1+r·I−r
2

2!
1−+ · · · = cos r·1+sin r·I.

For each character χ:T → SO(2) from the functoriality of L (5.42) we have a
commutative diagram

(&)

k
L(χ)|k−−−−→ 2πZ

incl

y yincl

t
L(χ)−−−−→ R

expT

y yexpSO(2)

T −−−−→
χ

SO(2).

Let t∗
def
= Hom(t,R) denote the vector space dual of t. We define k∗

def
= {ω ∈ t∗ |

ω(k) ⊆ 2πZ}. If for ω ∈ k∗ we let ω′
def
= ω|k: k → 2πZ denote the restriction and

corestriction, then

ω 7→ ω′: k∗ → Hom(k, 2πZ)
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is an isomorphism of abelian groups.

Lemma 6.42. The functions

T̂
χ7→L(χ)−−−−−−→ k∗

ω 7→ω′−−−−−−→ Hom(k, 2πZ)

are isomorphisms of abelian groups.

Proof. The injectivity of χ 7→ L(χ) follows from 5.42. If ω ∈ k∗, then a character
χ:T → SO(2) is well-defined by χ(expT X) = expSO(2) ω(X) such that L(χ) = ω.
Thus the first of the two maps is an isomorphism. We have observed above that
the second one is an isomorphism, too. ut

By this lemma we have several manifestations of the character group T̂ . If some
inner product on t is arbitrarily given and fixed, another manifestation of it exists
in t. Recall that a character χ of T right now is a morphism χ:T → SO(2). We

let 1 be the identity of SO(2) and I =

(
0 −1
1 0

)
.

Lemma 6.43. Assume that on the Lie algebra t of a torus group T we are given
an inner product ( · | · ) making t into a real Hilbert space. Then

(i) there exist, firstly, a discrete subgroup ∆ ⊆ t and, secondly, an isomorphism

α: T̂ → ∆, both depending on ( · | · ) such that

(∀χ ∈ T̂ , X ∈ t) (α(χ) | X) = L(χ)(X), and

χ(expX) = expSO(2) L(χ)(X)

= e(α(χ)|X)I = cos(α(χ) | X)·1 + sin(α(χ) | X)·I.

(ii) ∆ = {X ∈ t | (X | k) ⊆ 2πZ}.
(iii) The equality ∆ = k holds if and only if

(∀D1 ∈ t, D2 ∈ k)
(
(D1 | D2) ∈ 2πZ

)
⇔ (D1 ∈ k).

(iv) Let e1, . . . , en be a set of free generators of k and define an inner product
〈 · | · 〉 on t by 〈

∑n
j=1 xj ·ej |

∑n
j=1 yj ·ej〉 = 2π

∑n
j=1 xjyj Then, with respect to

this inner product, ∆ = k.

Proof. (i) Given the inner product ( · | · ), the function ϕ: t→ t∗ given uniquely

by ϕ(X)(Y ) = 〈X | Y 〉 is an isomorphism of vector spaces. We set ∆
def
= ϕ−1(k∗)

and define α: T̂ → ∆ by α(χ) = ϕ−1
(
L(χ)

)
i.e. by the commutative diagram

T̂
α−−→ ∆

incl−−→ t

χ7→L(χ)

y ϕ|k∗
y yϕ

k∗ −−→
idk

k∗ −−→
incl

t∗.
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Then α is clearly an isomorphism and (α(χ) | X) = (ϕ−1
(
L(χ)

)
| X) = L(χ)(X).

Then the equations expressing χ(expT X) follow from the definition of L(χ) in the
commuting diagram (&) preceding 6.42.

(ii) For χ ∈ T̂ we have (α(χ) | k) = L(χ)(k) ⊆ 2πZ by (&). Conversely, assume
that (X | k) ⊆ 2πZ, then Y 7→ e(X|Y )·I : t→ SO(2) vanishes on k and thus induces
a character χ:T → SO(2) such that χ(expT Y ) = e(X|Y )·I . Then X = α(χ).

(iii) By (ii), the inclusion ∆ ⊆ k holds iff every D ∈ t such that (D | k) ⊆ 2πZ
is contained in k.

The relation k ⊆ ∆ means that (k | k) ⊆ 2πZ by (ii).
(iv) By (iii) X =

∑n
j=1 xj ·ej ∈ ∆ iff for all j = 1, . . . , n, we have 2πxj =

〈X | ej〉 ∈ 2πZ iff for all j we have xj ∈ Z iff X ∈ k. ut

We shall call ∆ the lattice associated with the inner product ( · | · )
With respect to a basis e1, . . . , er of ∆ and therefore of t let a = a1·e1+· · ·+ar·er

and assume that the elements a1, . . . , ar of the rational vector space R are linearly
independent over Q. Then a⊥ = {x1·e1 + · · ·+ xr·er | a1x1 + · · ·+ arxr = 0} does

not contain any element of ∆ except 0. If we set ∆+ def
= {D ∈ ∆ : (D | a) > 0},

then ∆+ is a subsemigroup of ∆ such that ∆ = ∆+ ∪ {0} ∪ −∆+. It is incidental
to our present purposes that the relation D ≺ D′ iff D′ −D ∈ ∆+ is a total order
on ∆. But we note that each orbit of the action of S0 = {1,−1} ⊆ R on ∆ by
multiplication contains exactly one element of ∆+ while each orbit on ∆ \ {0}
has two elements. By these remarks and Lemma 6.43 we classify all real simple T -
modules according to 3.56 in terms of the elements of ∆+. Indeed we can deal with
arbitrary real representations of T as follows. Let E be a real Hilbert T -module
according to Definition 2.11. By the splitting of fixed points (3.36) there exists a
canonical orthogonal decomposition E = Efix⊕Eeff . Let ( · | · ) be an inner product
on t and let ∆ the associated lattice in t. We apply Proposition 3.57 and choose
the cross section χ 7→ χε for T̂ → T̂R judiciously. With the aid of Lemma 6.43
above we can do this in such a fashion that (α(χε) | a) > 0 for all isomorphy

classes ε ∈ T̂R of real simple nontrivial T -modules. Thus ε 7→ α(χε) : T̂R → ∆+ is
a bijection. We may therefore use ∆+ as an index set for the equivalence classes of
nontrivial real irreducible representations of T and write ED for Eε iff D = α(χε).
Of course, there is considerable arbitrariness in the choice of the indexing of the set
T̂R by ∆+, but this choice is practical. Now there is a unique orthogonal Hilbert
space sum decomposition

Eeff =
⊕
D∈∆+

ED

into isotypic components.

The set R+ def
= {D ∈ ∆+ | ED 6= {0}} is called a set of positive weights and

R = R+ ∪ −R+ the set of real weights. Note that this set is canonically attached
to the T -module Eeff and to the invariant inner product ( · | · ) on t. We shall refer
to the decomposition

E = Efix ⊕
⊕
D∈R+

ED
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as the weight decomposition of E of the T -module E (associated with a choice of
positive weights).

Proposition 6.44. For a real Hilbert T -module E there is a real orthogonal vector
space automorphism I:Eeff → Eeff satisfying I2 = − idEeff

such that for each X ∈ t
and v ∈ ED, D ∈ R+,

(expX)v = cos(X | D)·v + sin(X | D)·Iv,

and that (v | Iv) = 0 for all v ∈ Eeff . Moreover,

I|ED = πE
(

exp(
π

2‖D‖2
·D)
)
|ED

for some D ∈ t with the representation πE of T on E. In particular, I:Eeff → Eeff

is T -equivariant.

Proof. We recall that for each character χ of T we have χ1(expX) = cos(α(χ) |
X) and χ2(expX) = sin(α(χ) | X). Then the proposition follows directly from
Proposition 3.57. If v =

∑
D∈∆+ vD ∈ Eeff with vD ∈ ED and g = expX, X ∈ t,

then

g(Iv) =
∑
D∈∆+

exp(X +
π

2‖D‖2
·D)vD = I(gv). ut

Action of a Maximal Torus on the Lie Algebra

We apply this to the following situation. Let G denote a compact Lie group and
T a maximal torus. By 6.2 and 6.3, g is a Hilbert Lie algebra with respect to
some invariant inner product ( · | · ) which we fix. Let ∆ ⊆ t be the lattice associ-
ated with the restriction of this inner product to t. Then Ad |T :T → Aut(g) is a
representation of T on the Hilbert Lie algebra g. By 6.21(ii) we know that

gfix = {Y ∈ g | (∀X ∈ t)eadXY = Ad(X)Y = Y } = z(t, g) = t.

The set R ⊆ ∆ ⊆ t of weights (respectively, a set R+ ⊆ R of positive weights) of
this representation is called the the set of real roots (respectively, a set of positive
roots of g) with respect to the Cartan algebra t (and a choice of an invariant
inner product ( · | · ) on g). This is a fair description since each Cartan algebra
t of g determines a unique maximal torus T = exp t and each maximal torus T
determines a unique Cartan subalgebra. It is clear that R+ = Ø if and only if
geff = {0} iff g = t iff g is abelian. We now simply apply Proposition 6.44 with
E = g and πE = Ad and obtain what is called the real root space decomposition
of g as follows:

g = t⊕
⊕
D∈R+

gD,
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where for D ∈ R+ the Ad(T )-invariant subspace gD is the isotypic component of
E for the irreducible representation associated with the root D and where

geff =
⊕
D∈R+

gD.

Proposition 6.45. For each compact Lie group G and a maximal torus T , a fixed
invariant inner product ( · | · ) on g and a set R+ of positive roots there is an
orthogonal vector space automorphism I of

⊕
D∈R+ gD with I2 = − id, commuting

elementwise with the action of Ad(T ) = ead t on this vector subspace such that

I|gD = e
ad
(

π
2‖D‖2

·D
)∣∣∣∣ gD where I satisfies the following relation for all Y ∈ gD:

(#) eadXY = cos(X | D)·Y + sin(X | D)·IY.

(i) For Y ∈
⊕

D∈R+ gD,

(A) Y ∈ gD ⇔ (∀X ∈ t) [X,Y ] = (X | D)·IY.

(ii) The following relation holds

(B) (∀Y ∈ gD) [Y, IY ] = ‖Y ‖2·D,

and R.D + R·Y + R·IY is a subalgebra and R ⊆ g′.
(iii) t⊕ R·Y ⊕ R·IY is a subalgebra with center D⊥t = {X ∈ t | (X | D) = 0}.
(iv) Assume that G is connected and center free, i.e. that G may be identified

with ead g. Then g is semisimple, i.e. z(g) = {0}, g′ = g, and t = spanRR
+.

Further assume, using 6.4(x), that (X | Y ) = − 1
4π tr adX adY . Let ∆ be

the lattice associated to the restriction of this inner product to t according to
6.43, and set k = ker expT . Then k ⊆ ∆ = spanZR

+, and ∆/k is finite. The
relation between ∆ and k is as follows:

X ∈ k⇔ (X | ∆) ⊆ 2πZ,
X ∈ ∆⇔ (k | X) ⊆ 2πZ.

Proof. (i) The first assertion follows directly from 6.44. As to (A), set ϕ(t) =
et· adXY ; then [X,Y ] = d

dt

∣∣
t=0

ϕ(t). Thus if Y ∈ gD then ϕ(t) = cos t(X | D)·Y +
sin t(X | D)·IY by (#) and thus

[X,Y ] = ϕ′(0) = (X | D)·IY.

Conversely, assume [X,Y ] = (X | D)·IY for all X ∈ t. Since I: geff → geff is
T -equivariant by 6.44, we have

(
(adX) ◦ I

)
|geff =

(
I ◦ (adX)

)
|geff . We claim that

(adX)nY =
(
(X | D)·I

)n
Y for n ∈ N, Y ∈ geff . By assumption this is true for

n = 1. Assume that the equation holds for n. Then

(adX)n+1Y = (adX)
(
(X | D)·I

)n
Y =

(
(X | D)·I

)n
[X,Y ]Y =

(
(X | D)·I

)n+1
Y.
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This proves the claim by induction. Thus eadXY = e(X|D)·IY , and thus Y ∈ gD

by definition of gD as the isotypic component for the irreducible representation of
T corresponding to D.

(ii) We consider Y1 ∈ g, Y2 ∈ gD and try to obtain information on [Y1, Y2].
For this purpose we first compute the inner product (X | [Y1, Y2]) with an element
X ∈ t and then the bracket [X, [Y1, Y2]]. Using (A) above, we compute

(∀X ∈ t) ([Y1, Y2] | X) = (Y1 | [Y2, X])

= −(X | D)(Y1 | IY2) = −
(
(Y1 | IY2)·D | X

)
.

Thus ([Y1, Y2] + (Y1 | IY2)·D | t) = {0}; i.e.

(∗) [Y1, Y2] + (Y1 | IY2)·D ∈ t⊥ =
⊕
C∈R+

gC .

Now we also take Y1 ∈ gD and use (A) again to calculate

(∗∗)
(∀X ∈ t)

[
X, [Y1, Y2]

]
=
[
[X,Y1], Y2

]
+
[
Y1, [X,Y2]

]
= (X | D)·([IY1, Y2] + [Y1, IY2]).

A special case is of interest here: Y2 = IY1; then [IY1, Y2] = 0 = [Y1, IY2] whence[
X, [Y, IY ]

]
= 0 for all X ∈ t, Y ∈ gD. Then [Y, IY ] ∈ z(t, g). Since z(t, g) = t

by 6.21(ii), we have [Y, IY ] ∈ t. Then (∗) above implies [Y, IY ] = −(Y |I2Y )·D =
‖Y ‖2·D. Thus (B) is proved. Then (A) and (B) together imply that D, Y, IY span
a subalgebra. This completes the proof of (ii). Statement (iii) is an immediate
consequence of (i) and (ii).

(iv) Since G is centerfree, Ad(T ) acts faithfully on geff and so for X ∈ t we
have X ∈ k iff expX = 1 iff eadX = idg iff eadX |gD = e(X|D)·I |gD = idgD for
all D ∈ R+ iff (X | D) ∈ 2πZ for all D ∈ R+. This means that the characters

χD ∈ T̂ , χD(expX) = e(X|D)·I for D ∈ R+ separate points. Thus, when ∆ is
identified with the character group of T according to 6.43, the subgroup spanZR

+

separates points. Hence by 2.33(i) the equality ∆ = spanZR
+ follows.

With this information we now know that X ∈ k iff (∆ | X) ⊆ 2πZ. The
analogous characterisation of ∆ was already given in 6.43(ii). The containment
k ⊆ ∆ will follow below.

We let PD: g→ gD denote the orthogonal projection and write ID = I◦PD with
I as in 6.44. The linear form ωD ∈ t∗ = HomR(t,R) given by [X,Y ] = ωD(X)·IY
for Y ∈ gD satisfies ωD(X) = (D | X) by 6.45(A) but is independent of ( · | · ).
Note that

(∗) ωD(k) ⊆ 2πZ.

Then

(∀X ∈ t) adX =
∑
D∈R+

ωD(X)·ID,

(∀X, X ′ ∈ t) adX adX ′ = −
∑
D∈R+

ωD(X)ωD(X ′)·PD.
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Since dim gD = 2 by (ii) above we have trPD = 2 and thus

(∀X, X ′ ∈ t) (X | X ′) = − 1

4π
tr adX adX ′ =

1

2π

∑
D∈R+

ωD(X)ωD(X ′).

Then (∗) implies (k | k) ⊆ 2πZ. Since ∆ = {X ∈ t | (X | k) ⊆ 2πZ} by what we
saw above, k ⊆ ∆.

Since spanR ∆ = spanRR
+ = t by (vi) above, the relation k ⊆ ∆ implies that

∆/k is finite. ut

The proof of the very last part provided additional information, notably the
following. If ωD(X) = (D | X), then ωD ∈ t∗ = HomR(t,R) does not depend on
the choice of ( · | · ) and for X, X ′ ∈ t we have

(C) (X | X ′) =
1

2π

∑
D∈R+

ωD(X)ωD(X ′)

In particular,

(∀D1, D2 ∈ R+) (D1 | D2) =
1

2π

∑
D∈R+

ωD(D1)ωD(D2).

A different proof of some of the results of 6.45(iv) may be outlined as follows.
Let g be semisimple and set (X | Y ) = − 1

4π tr adX adY (cf. 6.4(ix)). Recall

k
def
= ker(Ad ◦ expG)|t = {D ∈ t | eadD = idg}.

Then we claim (k | k) ⊆ 2πZ and k ⊆ ∆. Indeed recall that for D ∈ t we have
D ∈ k iff eadD = idg. Since adD is semisimple, verify that for D ∈ t this implies
Spec adD ⊆ 2πiZ. Let gC = gC,1⊕· · ·⊕gC,n be the joint eigenspace decomposition
of the semisimple abelian family adC t of vector space endomorphisms of the com-
plexification gC of g. Let D1, D2, X ∈ t. Then adDj(X) = λj1·X1 + · · ·+ λj2·Xn

for j = 1, 2 and trC adD1 adD2 =
∑n
m=1 λ1mλ2m. If λjm ∈ 2πiZ for all j =

1, 2, m = 1, . . . , then since ( · | · ) is defined in terms of a trace of the reals,
(D1 | D2) ∈ 2πZ. By Lemma 6.43(ii), an element of t is in ∆ if (X | k) ⊆ 2πZ. We
know (k | k) ⊆ 2πZ; hence k ⊆ ∆. This proves the claim.

In order to identify the Lie algebra which emerged in 6.45(ii) we let H denote

the skew field of quaternions; then s3 def
= R·i + R·j + R·k is a Lie subalgebra of

(H, [·, ·]). We let Z(3) = Z/3Z as usual denote the group of integers 0, 1, 2 modulo 3.
We retain the hypotheses and the notation of Proposition 6.45.

Proposition 6.46. (I) Let D ∈ R+ be such that gD 6= {0} and pick a nonzero

Y ∈ gD. Set gD
def
= R·D + R·Y + R·IY . We find a basis Eν , ν ∈ Z(3) such that

the following relations hold.

(†) E0 =
1

‖D‖2
·D, E1 =

1

‖D‖·‖Y ‖
·Y, and E2 =

1

‖D‖·‖Y ‖
·IY,
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(‡) (∀ν ∈ Z(3)) [Eν , Eν+1] = Eν+2.

Define linear maps ϕ: gD → so(3), ψ: gD → su(2) and ρ: gD → s3 by

ϕ(E0) =

 0 0 0
0 0 −1
0 1 0

 ,

ψ(E0) = 1
2

(
i 0
0 −i

)
ρ(E0) = 1

2 i,

ϕ(E1) =

 0 0 1
0 0 0
−1 0 0

 ,

ψ(E1) = 1
2

(
0 i
i 0

)
,

ρ(E1) = 1
2j,

ϕ(E2) =

 0 −1 0
1 0 0
0 0 0

 ,

ψ(E2) = 1
2

(
0 −1
1 0

)
, and

ρ(E2) = 1
2k.

Then ϕ, ψ and ρ secure the following isomorphisms:

gD ∼= so(3) ∼= su(2) ∼= s3.

Let (gD)C = C⊗gD denote the complexification of gD and identify 1⊗gD and gD.
Set

(∗) H = − 2i

‖D‖2
·D, P± =

1

‖D‖·‖Y ‖
·(−i·Y ∓ IY ).

Then

(∗∗) [H,P+] = 2P+, [H,P−] = −2P−, and [P+, P−] = H.

Moreover, the linear map Ψ: (gD)C → sl(2,C) given by

Ψ(H) =

(
1 0
0 −1

)
, Ψ(P+) =

(
0 1
0 0

)
, and Ψ(P−) =

(
0 0
1 0

)
is an isomorphism.

(II) Assume that D′ ∈ R+ and 0 6= Y ′ ∈ gD
′

are elements such that R·D =
R·D′. Then the adjoint representation of T induces isomorphic T -module struc-
tures on R·Y + R·IY and R·Y ′ + R·IY ′.

(III) For all D ∈ R, with E0 = 1
‖D‖2 ·D, the following statement holds

(∀D′ ∈ R) 2
(D | D′)
(D | D)

= 2(E0 | D′) ∈ Z.

(IV) Set GD = expG gD. Then GD is a closed subgroup of G with the following
properties.

(i) L(GD) = gD,
(ii) GD ∼= SO(3) or GD ∼= S3 ∼= SU(2),

(iii) Ad(GD)|gD ∼= SO(3).
(iv) There is a surjective homomorphism Φ:GD → SO(3) with a discrete central

kernel such that L(Φ) = ϕ: gD → so(3).
(v) expG(t⊕R·E1⊕R·E2) is the closed subgroup TGD in which T is a maximal

torus and expG tD, tD
def
= D⊥t , is the identity component of its center.
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Proof. (I) We pick any nonzero element Y ∈ gD. Then gD = span{D,Y, IY } is a
subalgebra by Proposition 6.45(ii). Let us consider positive numbers λν , ν ∈ Z(3)
and set E0 = λ0·D, E2 = λ1·Y , and E2 = λ2·IY . Then Condition (A) yields

[E0, E1] = λ0λ1·[D,Y ] = ‖D‖2λ0λ1λ
−1
2 ·E2, and

[E2, E0] = −λ0λ2·[D, IY ] = ‖D‖2λ0λ2λ
−1
1 ·E1,

while Condition (B) gives

[E1, E2] = λ1λ2·[Y, IY ] = λ1λ2‖Y ‖2·D = λ1λ2‖Y ‖2λ−1
0 ·E0

= λ−1
0 λ1λ2‖Y ‖2·E0.

Now condition (‡) holds iff we can solve the equations

‖D‖2λ0λ1 = λ2,

‖Y ‖2λ1λ2 = λ0,

‖D‖2λ2λ0 = λ1.

with positive numbers λν . The first and the third equation are equivalent to the
first equation plus λ1/λ2 = λ2/λ1, i.e. λ2

1 = λ2
2, which holds for nonnegative λj

iff λ1 = λ2. The first equation then yields λ0 = ‖D‖−2, and the second one gives
λ2

1 = λ0

‖Y ‖2 = (‖D‖2‖Y ‖2)−1, and these values for λν > 0 solve the equations

uniquely. Thus

λ0 =
1

‖D‖2
and λ1 = λ2 =

1

‖D‖·‖Y ‖
,

are the unique positive numbers yielding (‡), and with these numbers we obtain
(†). We verify quickly that ϕ, ψ, and ρ are the required Lie algebra isomorphisms.

The verification of the claims regarding H and P± is elementary; it is helped
by considering the isomorphism ψ: gD → su(2) and following the computations in
terms of 2× 2 complex matrices inside sl(2C).

(II) We set

(†′) E′0 =
1

‖D′‖
·D′, E′1 =

1

‖D′‖·‖Y ′‖
·Y ′, and E′2 =

1

‖D′‖·‖Y ′‖
·IY ′.

Then (‡′) holds, i.e. (‡) with E′ν replacing Eν . Further, E0 and E′0 are unit vectors
in the one dimensional subspace R·D = R·D′ of t and thus E′0 = E0 or E′0 = −E0.
In the latter case we set E′′0 = −E′0 = E0, E′′1 = E′2, and E′′2 = E′′1 . Then the
E′′ν satisfy (‡′′). Thus we may and will assume now that E′0 = E0 holds. Now
we define a function α: t ⊕ R·Y ⊕ R·IY → t ⊕ R·Y ′ ⊕ R·IY ′ by α|t = idt and
α(E1) = E′1, α(E2) = E′2. Then α is a vector space isomorphism which is a Lie
algebra isomorphism because of (‡) and (‡′) and the fact that D⊥t = (D′)⊥t

and [D⊥t ,R·Y + R·IY ] = [D⊥t ,R·Y ′ + R·IY ′] = {0}. For X ∈ D⊥t we have
[X,Eν ] = [X,E′ν ] = 0, whence α ◦ adX = adX ◦ α, and α[E0, Eν ] = αE−ν =
E′−ν = [E′0, E

′
ν ] = [E0, αEν ] by (‡) and (‡′), whence α ◦ adE0 = adE0 ◦ α.

Thus α ◦ adX = adX ◦ α for all X ∈ t. It follows that α ◦ Ad(expX) = α ◦
eadX = eadX ◦ α = Ad(expX) ◦ α. Thus α is a module isomorphism and induces,
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in particular, a T -module isomorphism from R·Y + R·IY = R·E1 + R·E2 onto
R·Y ′ + R·IY ′ = R·E′1 + R·E′2.

(III) Let gC = g⊕i·g be the complexification of g to which we extend the inner
product to a symmetric bilinear nondegenerate form in the obvious way. Then gC is
a complex Lie algebra and a complex T -module via Ad(g)C(c⊗X) = c⊗Ad(g)(X),
X ∈ g. We make reference to the information contained in 3.54–3.57 and to 6.45.
For each D ∈ ∆ let χD:T → S1 ⊆ C× be the character given uniquely by

(∀X ∈ t) χD(expT ) = e(X|D)i.

Then χ−D = χD. For a character χ ∈ Hom(T, S1) of T we let (gC)χ denote the
isotypic component of all Z ∈ gC satisfying Ad(t)C(Z) = χ(t)·Z. For D ∈ ∆ we

shall write gDC
def
= (gC)χD . Thus for Z ∈ gC we have

Z ∈ gDC ⇔
(
(∀X ∈ t) Ad(expX)C(Z) = e(X|D)i·Z, and

⇔
(
(∀X ∈ tC) [X,D] = (X | D)i·Z.(1)

We observe

(∀D ∈ R+) gD ⊕ i·gD = gDC ⊕ g−DC ,

and the gDC are the isotypic components of (gC)eff while t ⊕ i·t is the isotypic
component (gC)fix. Since dimR gD = 2 we have dimC g±DC = 1.

If Z ∈ gD
′

C for D′ ∈ R, then the definition of H and (1) imply

(2) [H,Z] = (H | D′)i·Z = −2
(D | D′)
(D | D)

·Z.

Thus the root spaces gD
′

C happen to be the (one-dimensional) eigenspaces of adH
on gC. The claim will therefore be proved if we note that all eigenvalues of adH
are integral. This information follows from the elementary representation theory
of sl(2,C) (see Exercise E6.12(i) below.)

(IV) Now we turn to the group generated by gD. Since gD ∼= so(3) and so(3)′ =

so(3), Corollary 6.31(ii) applies to show that GD
def
= exp gD is a closed subgroup

with L(GD) = gD. By E5.12, the compact Lie groups with a Lie algebra isomor-
phic to so(3) are isomorphic to SO(3) or S3 ∼= SU(2). This establishes the existence
of GD and the validity of (i) and (ii). The subgroup Ad(GD)|gD of the orthogonal
group O(gD) on gD ∼= R3 is connected, hence is contained in O(gD)0 = SO(gD).
The Lie algebra ad gD|gD = L(Ad(GD)|gD) is isomorphic to gD ∼= so(gD). Hence
L(Ad(GD)|gD) = so(gD) and Ad(GD)|gD = SO(gD) ∼= SO(3). Thus (iii) is
proved. For a proof of (iv) we define a vector space automorphism L: gD → R3 by
L(Ej) = ej , e0 = (1, 0, 0), e1 = (0, 1, 0), and e2 = (0, 0, 1), and Φ:GD → SO(3) ⊆
Hom(R3,R3) by Φ(g) = L◦(Ad(g)|gD)◦L−1. Then Φ(exp t·Ej)(v) = Let· adEjL−1v
and differentiation at t = 0 yields L(Φ)(Ej)(ek) = L([Ej , Ek]) = ϕ(Ej)(ek) by the
definition of ϕ. Hence L(Φ) = ϕ. Thus L(ϕ) is an isomorphism and hence Φ
implements a local isomorphism by 5.42. This proves (iv). The proof of (v) is a
consequence of 6.45(iii). ut
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Exercise E6.12. Prove the following assertions:

(i) Set L = sl(2,C) and define

H =

(
1 0
0 −1

)
, P+ =

(
0 1,
0 0

)
, P=

(
0 0,
1 0

)
.

Let V denote a finite dimensional complex vector space, and consider the Lie alge-
bra gl(V ) of endomorphisms with the bracket [α, β] = αβ − βα. Let π:L → gl(V )
be a representation, i.e. a morphism of K-Lie algebras). For λ ∈ K define Vλ =
{v ∈ V | π(H)(v) = λ·v} and assume that we know V =

⊕
λ∈C Vλ. Then

(±) (∀λ ∈ C, ) π(P±)(Vλ) ⊆ Vλ±2.

For λ ∈ C with Vλ 6= {0} let

µλ = max
{
m ∈ Z | Vλ+2m 6= {0}

}
.

For 0 6= v ∈ Vλ+2µ, set vp = 1
p! ·π(P−)p(v) for p = 0, 1, . . . . Then

π(H)(vp) = (λ+ 2µ− 2p)·vp,(H)

π(P+)(vp) = (λ+ 2µ− p+ 1)·vp−1,(+)

π(P−)(vp) = (p+ 1)·vp+1.(−)

Let ν = max{n ∈ Z | vm+1 = 0, vm 6= 0}. Then λ = ν − 2µ. In particular, all
λ ∈ C for which Vλ 6= {0} are integers.

(ii) Let G be a compact Lie group, T a maximal torus of G, and R ⊆ t a set of real
roots with respect to some invariant inner product ( · | · ) on g. Fix a set R+ of
positive roots and let B+ be the basis attached to R+. Let Dj ∈ R, j = 1, 2. Then

[gD1

C , gD2

C ] = {0} or [gD1

C , gD2

C ] = gD1+D2

C .

[Hint. (i) For a proof of (±), argue

π(H)π(P±)(v) = π([H,P±])(v) + π(P±)π(H)(v) = ±2π(P±)(v) + λ·π(P±)v.

Recursively, (±) proves (H) and (−) is a consequence of the definition of vp.
Assertion (+) is proved by induction. Using the definition of vp, equations (H)
and (−), set v−1 = 0 and calculate

pπ(P+)(vp) = π(P+)π(P−)(vp−1) = π([P+, P−])(vp−1) + π(P−)π(P+)(vp−1)

=
(
λ+ 2µ− 2(p− 1)

)
·vp−1 + (λ+ 2µ− p+ 2)π(P−)(vp−2)

= (λ+ 2µ− 2p− 2)·vp−1 + (p− 1)(λ+ 2µ− p+ 2)·vp−1

= p(λ+ 2µ− p+ 1)·vp−1.

By the definition of ν note that 0 = π(P−)(vν+1) = (λ + 2µ − ν)·vν , whence
λ+ 2µ− ν = 0.

(ii) Let Dj ∈ R, j = 1, 2 and Zj ∈ g
Dj
C ; pick any X ∈ t. Then

Ad(expX)C[Y1, Y2] = [Ad(expX)C(Y1),Ad(expX)C(Y2)]

= [e(X|D1)i·Y1, e
(X|D2)i·Y2] = e(X|D1+D2)i·[Y1, Y2].
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Therefore, [gD1

C , gD2

C ] ⊆ gD1+D2

C . We have

dimC gD1+D2

C =
{

1 if D1 +D2 ∈ R,
0 otherwise.

This implies (ii).] ut

For more information on the representations of sl(2,C), consult any source on
complex Lie algebras (e.g. [207]).

We remain in the circumstances, and continue the notation, of the preceding
discussions. For a D ∈ R+ and any 0 6= Y ∈ gD we set

E0 =
1

‖D‖
·D, E1 =

1

‖D‖·‖Y ‖
·Y, and E2 =

1

‖D‖·‖Y ‖
·IY

as in 6.46. In the following proposition we use the techniques just developed in
order to attach yet another element of structure to D.

Proposition 6.47. For D ∈ R+ set nD
def
= expπE1. Then nD ∈ N(T,G0) ∩GD

and thus

σD
def
= Ad(nD)|t = eπ adE1 |t

is well-defined and

(σ) σD(X) = X − 2(X | D)

‖D‖2
·D.

In other words, σD is the unique reflection of t leaving the hyperplane tD of t
elementwise fixed and satisfies σD(D) = −D.

Finally, if GD ∼= S3 then GD contains a unique element zD ∈ Z(GD) of order 2
corresponding to −1 ∈ S3, and

n2
D = exp

2π

‖D‖2
·D =

{
1 if GD ∼= SO(3),
zD if GD ∼= SU(2).

In particular, n2
D ∈ T and n4

D = 1.

Proof. By definition, nD ∈ GD ⊆ G0. We refer to explicit information we have on
SO(3) (see E6.10). We know from 6.46(iv) that there is a surjective homomorphism
Φ:GD = exp gD → SO(3) with discrete kernel such that Φ(exp t·Ej) = etϕ(Ej),
j = 1, 2, 3, where ϕ = L(Φ) =:L(GD) = gD → so(3) maps Eν as follows:

ϕ(E0) =

 0 0 0
0 0 −1
0 1 0

 , ϕ(E1) =

 0 0 1
0 0 0
−1 0 0

 , ϕ(E2) =

 0 −1 0
1 0 0
0 0 0

 .
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Hence

Φ(exp t·E0) = exp t·

 0 0 0
0 0 −1
0 1 0

 =

 1 0 0
0 cos t − sin t
0 sin t cos t

 , and

Φ(expπ·E1) = expπ

 0 0 1
0 0 0
−1 0 0

 =

−1 0 0
0 0 0
0 0 −1

 , whence

Φ(exp t·eπ adE1E0) = Φ((expπE1)(exp t·E0)(expπE1)−1)

=

 1 0 0
0 cos t sin t
0 − sin t cos t


= Φ(exp−t·E0).

Thus the function t 7→ exp(t·eπ adE1E0) exp t·E0 : R → GD maps R continuously
into the center of GD which has one or two elements (cf. 6.46(iv)) and thus is
constant. Since for t = 0 the value 1 ∈ GD results, we conclude exp(t·eπ adE1E0) =
exp t·E0 for all t ∈ R and thus

σD(E0) = Ad(nD)(E0) = eπ adE1(E0) = −E0.

Hence σD(D) = −D. As [tD, gD] = {0} by 6.47(iii), E0 ∈ gD, and σD = eπ· adE0 |t,
we conclude σD|tD = idtD . It follows that σD is the orthogonal reflection of t
at the hyperplane D⊥t whose explicit elementary formula is given in (σ). Since
Ad(nD)(t) = t we have nDTn

−1
D = nD(exp t)n−1

D = exp Ad(nD)(t) = exp t =
T . Hence nD ∈ N(T,G0). Also Φ(n2

D) = Ad(n2
D)|t = σ2

D = idt. Thus n2
D ∈

Z(T,G0) = T . Hence n2
D ∈ T ∩ GD = expR·D. Also n2

D ∈ ker Φ = Z(GD)
by 6.46(iv). By the Transitivity Theorem 6.27 applied to gD ∼= so(3) (where
Ad
(

SO(3)
)

acts on so(3) as the rotation group), there is a g ∈ GD such that
Ad(g)(E1) = E0. Then, since n2

D is central in GD we have n2
D = gn2

Dg
−1 =

exp 2πAd(g)(E1) = exp 2πE0 = exp 2π
‖D‖2 ·D by the definition of E0. If GD ∼=

SO(3), then n2
D = exp 2πE0 = 1, if GD ∼= SU(2) ∼= S3, then n2

D in S3 corresponds
to the element −1. Thus nD has order 4 in this case. ut

All groups GD are connected and thus contained in G0. Their global structure
is readily elucidated.

Corollary 6.48. Let G be a compact Lie group, T a maximal torus and g =
t⊕
⊕

D∈R+ gD the root decomposition of g with respect to t. Then for each D ∈ R+

let gD and tD be defined as in Proposition 6.47. Then there are connected compact

subgroups GD
def
= expG gD (as in Proposition 6.46), and TD = expG tD such that

tD
def
= L(TD) = D⊥t and that TGD = TDGD is isomorphic to (TD×GD)/F where

F is a finite central subgroup of the product isomorphic to TD ∩GD ⊆ Z(GD).
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Proof. For each D ∈ R+, the results of Proposition 6.46 apply to t+gD = tD⊕gD
with tD = z(t+ gD) and gD = span{E0, E1, E2}. Then gD = (t+ gD)′. We proved
in 6.46 that GD is a closed subgroup such that TGD is a closed subgroup with
L(TGD) = t+gD and that expG tD = TD is the identity component of the center of
TGD and GD = (TGD)′. The remainder follows from the First Structure Theorem
for Connected Compact Lie Groups 6.16. ut

From the action of T on g we derived the information that G, when noncommu-
tative, contains many copies of SO(3) or SU(2) and that g contains many copies of
so(3). We further elucidate some of the structure of g by refining the information
we have and continue the notation introduced in this subsection.

Theorem 6.49. Let G be a compact Lie group. Assume that its Lie algebra g =
L(G) is nonabelian, and fix an invariant inner product ( · | · ) on g. Then for any
D ∈ R+ the following statements hold.

(i) For all X ∈ R+ there is at most one D ∈ R+ ∩ R·X.

(ii) If D ∈ R+, then dim gD = 2, and gD
def
= R·D ⊕ gD ∼= so(3).

(iii) t ⊕ gD is a subalgebra with center tD
def
= D⊥t = {X ∈ t | (X | D) = 0} =

z(gD, t) and thus is isomorphic to Rr−1 ⊕ so(3), r = dim t.
(iv) tD = z(Y, t) for each nonzero Y ∈ gD.
(v) z(g) = (R+)⊥t =

⋂
D∈R+ tD.

(vi) t ∩ g′ = spanR+ and g′ = spanR+ ⊕ geff .
(vii) If r = dim t = 1, i.e. if the maximal torus subgroups of G are circles, then G

is isomorphic to S1, SO(3) or SU(2).

Proof. (i) Let D,D′ ∈ R+, D′ = r·D. We take 0 6= Y ∈ gD and 0 6= Y ′ ∈
gD
′
. Then by 6.46(II) the simple T -modules R·Y ⊕ R·IY and R·Y ′ ⊕ R·IY are

isomorphic. Since the T -modules gD and gD
′

are isotypic components, they agree,
and this implies D′ = D (cf. 6.44 and 6.45).

(ii) Let D ∈ R+. We claim that t ⊕ gD is a subalgebra. For a proof, since
[t, gD] ⊆ gD, we must show that

(∗∗∗) [gD, gD] ⊆ t + gD.

To prove this, we consider, for C ∈ R+, the orthogonal projection PC of g onto
gC . Assume that C is R-linearly independent from D and let Yj ∈ gD, j = 1, 2.
Since adX and I commute with PC we have

(∀X ∈ t) PC
[
X, [Y1, Y2]

]
=
[
X,PC [Y1, Y2]

]
= (X | C)·IPC [Y1, Y2].

From this and from equation (∗∗) in the proof of 6.45, in view of I2 = − idg, we
conclude

(∀X ∈ t) (X | C)·PC [Y1, Y2] = −(X | D)·IPC([IY1, Y2] + [Y1, IY2]).

There are two cases possible:
Case 1. Both sides are zero for all X. Considering the left hand side and taking
X = C we get (C | C) = ‖C‖2 6= 0; thus PC [Y1, Y2] = 0.
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Case 2. The vectors v1 = PC [Y1, Y2] and v2 = IPC([IY1, Y2]+[Y1, IY2]) are nonzero
but linearly dependent, say, v1 = r·v2 for a nonzero r ∈ R. Then (∀X ∈ t) (X |
C) = (X | D)r = (X | r·D) whence C = r·D, contrary to our supposition that
D and C are linearly independent. Thus Case 1 is the only possible one. This
completes the proof of (∗∗∗). In view of the action of t on gD by 6.45(A) we
know that the Hilbert Lie algebra t⊕ gD has center (a) z(t⊕ gD) = D⊥t . Also by

6.45(A,B) we have (b) gD
def
= R·gD ⊆ (t⊕gD)′. By 6.4(v), the algebra t⊕gD is the

ideal direct sum z(t⊕gD)⊕ (t⊕gD)′. Because of (a) and (b) we get gD = (t⊕gD)′.
In particular, gD is a semisimple subalgebra with Cartan subalgebra R·D. The set
T(g)D of Cartan subalgebras is the set of one dimensional vector subspaces, and
by the Transitivity Theorem 6.27, the group Ad(GD) operates transitively on this
set. Consequently, for a nonzero element Y ∈ gD, the vector space R·Y is a Cartan
subalgebra of gD and thus

(Z) (∀0 6= Y ∈ gD) z(Y, gD) = R·Y.

In order to complete the proof of (ii), in view of 6.46 it now suffices to show that
dim gD = 2. Suppose it is not true. Then there exists a nonzero Z ∈ {Y, IY }⊥ ∩
gD. Since I|gD is an orthogonal linear map, IZ ∈ {Y, IY }⊥ ∩ gD and thus
(Y | IZ) = 0. We apply (∗) (in the proof of 6.45) with Y1 = Y and Y2 = Z,
and get [Y,Z] ∈ t⊥ = gD. Then [D, [Y, Z]] = ‖D‖2·I[Y, Z] by 6.45(A). But I|gD =
Ad
(

exp( π
2‖D‖2 ·D)

)
|gD by 6.45. Since Ad(g) is an automorphism of g for all g ∈ G,

the vector space involution I of gD agrees on gD with an automorphism of g. Hence
we have I[Y,Z] = [IY, IZ], whence [Y,Z] = −I2[Y,Z] = −[I2Y, I2Z] = −[Y,Z],
and thus [Y,Z] = 0. Hence Z ∈ z(Y, gD) = R·Y , contradicting the assumption that
Y ⊥ Y . This contradiction shows that dim gD = 2 as asserted.

(iii) From the proof of (ii) we know that t⊕gD = D⊥t⊕gD with D⊥t as center
and that gD = R·D ⊕ R·Y ⊕ R·IY for any nonzero Y ∈ gD. But then gD ∼= so(3)
by 9.46.

(iv) We know that tD ⊆ z(Y, t). Conversely, if X ∈ z(Y, t), then[
X, [X, IY ]

]
= (X | D)·[X, I2Y ] = −(X | D)·[X,Y ] = 0.

The kernel of the morphism adX|R·Y ⊕ R·IY is zero. Since [X, IY ] is a scalar
multiple of Y it follows that [X, IY ] = 0. Thus X ∈ z(gD, t) = tD.

(v) Clearly z(g) ⊆ z(Y, t) for all Y ∈ gD, D ∈ R+. Conversely, let X ∈
t ∩ (R+)⊥. Then 0 = [X,Y ] for all Y ∈ gD, D ∈ R+ by (iii). Thus {0} = [X, geff ].
Trivially {0} = [X, t] = [X, gfix]. Thus {0} = [X, gfix ⊕ geff ] = [X, g]. Hence
X ∈ z(g).

(vi) Quite generally, we have spanR+ = (R+)⊥⊥ = (z(g)⊕ geff)⊥ by (v). But
(z(g)⊕ geff)⊥ = z(g)⊥ ∩ g⊥eff = g′ ∩ t by 6.4.

(vii) Assume dim t = 1. If t = g, then G ∼= S1. Assume that t 6= g. Then
R 6= Ø. By (i) above and in view of dim t = 1 we have R = {D,−D} for a nonzero
D, and R+ = {D}. Then g = t⊕ gD by 6.45. By (ii) this implies g = gD ∼= so(3).
Hence G ∼= SO(3) or G ∼= SU(2) ∼= S3 by E5.12. ut
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The Weyl Group Revisited

We recall the notation of Proposition 6.47 and defineWσ(T,G) to be the subgroup
of the Weyl group W(T,G) generated by all elements nDT ∈ N(T,G0)/T . In the
end we will show that Wσ(T,G) = W(T,G) (see 6.52 below), but the proof will
require a considerable amount of additional work.

We let W ⊆ O(t) be the faithful (cf. 6.35) image of Wσ(T,G) under the ad-
joint representation on t, i.e. the group generated by all orthogonal reflections at
hyperplanes hD = D⊥, D ∈ R. Since the Weyl group is finite, Wσ(T,G) and thus
the subgroup W of O(t) is finite.

With the notation just introduced, we may quickly draw the following conclu-
sions from Proposition 6.47 above.

Corollary 6.50. In the circumstances of Proposition 6.49 and with the preceding
conventions

(i) z(g) = R⊥t = tfix, the fixed point module of t as a W(T,G)-module, and
(ii) t ∩ z(g)⊥ = t ∩ g′ = spanR.

(iii) t = z(g) ⊕ spanR, and this direct sum representation is a W(T,G)-module
decomposition.

Proof. (i) From 6.49(v) we know that z(g) = R⊥t . The set R⊥t is the intersection
of all hyperplanes tD = D⊥ ∩ t, D ∈ R. Hence it is the precise set of vectors fixed
by all σD, D ∈ R and thus equals the precise set of fixed points of W. On the
other hand z(g) ⊆ tfix by the definition of the action of W(T,G) via the adjoint
representation of N(T,G).

(ii) By Theorem 6.4(v) z(g)⊥ = g′. Hence z(g)⊥t = g′∩ t. By the duality theory
of finite dimensional Hilbert spaces we have spanR = R⊥t⊥t = z(g)⊥t by (i) above.

(iii) By the general annihilator mechanism of Hilbert spaces applied to t we
have t = R⊥t ⊕ R⊥t⊥t = z(g) ⊕ spanR. Since z(G) is a W(T,G)-submodule of t
and the Weyl group acts orthogonally, spanR = z(g)⊥ is a submodule, too. ut

The finiteness of W places strong restrictions on the geometry of R. It is not
surprising that we have to look more closely at the geometric structure which is
introduced on t by the set of finite hyperplanes tD, D ∈ R+ and the group W
generated by the reflections in these hyperplanes. This allows us to detour into
the area of basic euclidean geometry for a while; we will not return to compact
Lie groups before Theorem 6.52.

Therefore, in the following paragraphs we consider a finite dimensional vector
space t with a positive definite bilinear symmetric form ( · | · ) and a finite system
of vectors R+ ⊆ t such that
(W0) (∀D ∈ R+) R+ ∩ R·D = {D}.
(W1) (∃a ∈ t)(∀D ∈ R+) (a | D) > 0.
(W2) The group Wσ generated by the orthogonal reflections σD with the fixed

point set D⊥, D ∈ R+ is finite.
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If these conditions are satisfied we shall call R+ a positive set of vectors generat-
ing the reflection group Wσ or a positive generating set for short if the group is
understood.

Notice that on this level of generality, the length of the vectors D in R+ plays

a subordinate role: the relevant ingredients are the hyperplanes tD
def
= D⊥ in t.

We also observe right away that for a Cartan subalgebra t of the Lie algebra of
a compact Lie group any system of positive roots R+ as defined in comments
preceding Proposition 6.45 is a positive set of vectors generating a reflection group
W after 6.49 and the subsequent remarks. Later we shall even see that W leaves
the set R+ ∪ −R+ invariant (cf. 6.59(v)ff.). As soon as this is the case, then even
in the general geometric setting, the vectors of R+ themselves and their lengths
enter the picture significantly.

The union S of the finitely many hyperplanes tD, D ∈ R+ is a closed subset
of t whose complement is an open subset. Each connected component is the in-
tersection of finitely many open half-spaces and is called a Weyl chamber. For a
better understanding of the Weyl chambers as geometric objects, let us briefly
review some facts concerning convex cones. A convex cone C in a real vector space
E is a subset such that C + C ⊆ C and ]0,∞[ · C ⊆ C. A convex cone is indeed
convex. Each open or closed half-space bounded by a hyperplane through the ori-
gin is a convex cone. Intersections of convex cones are convex cones. Hence each
Weyl chamber is an open convex cone.

The set C ∩ −C is either empty or the largest vector subspace contained in
C. In this case it is called the edge of C. A convex cone C is called pointed if its
closure has a zero edge, i.e. if C ∩ −C = {0}.

A face F of a convex cone C is a subset which is a convex cone in some unique
hyperplane tD for D ∈ R+. We call the interior of an r − 1 dimensional F with
respect to the hyperplane tD it generates the algebraic interior of F and denote it
by algintF ; note that the points are not inner points of C with respect to t. Since
algintF is dense in F , the union of the algebraic interiors of the r− 1 dimensional
maximal faces is dense in ∂C.

We set z = (R+)⊥ and recall from 6.49(v, vi) that z = z(g) if t is the Cartan
subalgebra of a compact Lie algebra g and that spanR+ = t ∩ g′.

In the present discussion we need elementary facts on finite orthogonal groups
on the euclidean plane, i.e. on cyclic rotation groups and dihedral groups generated
by reflections.

Exercise E6.13. The Geometric Dihedral Groups. Recall the concepts of (ori-
ented) angles between half-lines and lines introduced in Exercise E1.6(iv). Prove
the facts claimed in the following discussion.

If u is any unit vector in the euclidean plane E and L = u⊥ is the line perpen-
dicular to it, then the element σu ∈ O(2), σu(X) = X − 2(X | u)·u depends on
L only and is the reflection about L whose precise fixed point set is L. We recall
that (X | u) = ‖X‖ cos

(
ang(R+·X.R+·u)

)
. Recall that an involution in a group
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is an element of order two. Every involution σ ∈ O(2) is a reflection about its line
of fixed points.

Let W ⊆ O(2) be a finite group of orthogonal automorphisms of R2. The
following conclusions hold:

(i) If W ⊆ SO(2) then W is cyclic of order n and consists of rotations by the
angles { 2πm

n + 2πZ | m = 0, 1, . . . , n− 1}.
(ii) If W 6⊆ SO(2), then W∗

def
= W ∩ SO(2) is a proper normal subgroup of

index 2 in W which is cyclic of order n, and for any σ ∈ W \ SO(2), σ2 = idE
and the productW =W∗{idE , σ} is semidirect. The involution σ is an orthogonal
reflection about a line L = Efix({idE , σ}.

For n = 3, 4, . . . the group Z(n) = Z/nZ has exactly one involutive automor-
phism g 7→ −g and there is a semidirect product

D(n)
def
= Z(n) o {idZ(n),− idZ(n)}.

There exists an isomorphism ϕ:D(n) → W. The group D(n) (and any group
isomorphic to it) is called a dihedral group of order 2n.

(iii) Let L1 and L2 be two different lines such that ang(L1, L2) = π
n + πZ,

and let σ(j) be the reflection about Lj . Then σ(2)σ(1) is a rotation by the angle
2π
n +2πZ. The group generated by σ(j), j = 1, 2, is a dihedral group whose normal

subgroup of index two is a rotation group of order n. Notice that the angle between
the lines is half of the angle of the rotation which generates W∗.

(iv) Assume that (H1, H2) is a pair of half lines and that σ(j) is the reflection

about Lj
def
= R·Hj , j = 1, 2. Let C be the interior of the closed convex hull of

H1∪H2. If none of the linesW·Lj , Lj = R·Hj meets C, thenW = 〈σ(1), σ(2)〉 is a
dihedral group of order 2n for some natural number n and ang(L1, L2) = π

n + πZ.
(v) With the notation of (iv), let Dj , j = 1, 2 be two vectors in E such that

the oriented angles ang(R+·D1, H1) and ang(H2,R+·D2) between half lines are π
2

(modulo 2π) for j = 1, 2. Let R denote the finite set of vectors W∗(D1) ∪̇W∗(D2).
Then W leaves each of the disjoint orbits W∗(Dj) and, in particular R, invariant.

Let D ∈ R, further H
def
= D⊥ the line perpendicular to D, and σD ∈ W the

reflection about H. Then the following conditions are equivalent:
(1) n = 2, 3, 4, 6 where the order of W is 2n.
(2) ang(H1, H2) = π

n (modulo π), n = 2, 3, 4, 6.
(3) For any pair (D,D′) ∈ R × R, the (oriented) angle ang(R+·D,R+·D′) is a

multiple of 2π
n + 2πZ.

(4) For any pair (D,D′) ∈ R × R, the number 2(D|D′)
(D|D) = 2( 1

‖D‖2 ·D,D
′) is an

integer.
(5) R ⊆ spanZ{D1, D2}.

[Hint for (v). By the preceding sections, (1), (2), and (3) are equivalent. Since
2(D|D′)
(D|D) = 2‖D′‖ cos

(
ang(R+·D,R+, D′)

)
, (3) is seen to be equivalent to (4).

Assume (4). Then for j, k = 1, 2 we have σjDk ∈ ∆
def
= spanZ{D1, D2}. Thus

σj(∆) ⊆ ∆. Hence ∆ is invariant under W. Hence R = W{D1, D2} ⊆ ∆. Thus
(4) implies (5). Assume (5) and let (D,D′) ∈ R × R. Then applying a trans-
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formation of W we may assume D = Dj , j = 1 or j = 2, say D = D1. Then
2(D1|D′)
(D1|D1) D1 = σD1(D′)−D′ ∈ ∆. Then 2(D1|D′)

(D1|D1) D1 = m1·D1 +m2·D2 for mj ∈ Z.

Since D1 and D2 are linearly independent, n2 = 0 and m1 = 2(D1|D′)
(D1|D1) D1. The case

D = D2 is analogous. Hence (4) follows.] ut

We define the subset B+ of R+ by

(BAS) B+ = B+(R+)
def
= {D ∈ R+ | D⊥ ∩ C is a face of C}.

The importance of this set will appear presently.

Proposition 6.51. Let t be a finite dimensional vector space with a positive defi-
nite bilinear symmetric form ( · | · ) and a R+ ⊆ t a positive set of vectors generat-

ing the finite reflection group W. Let z
def
= (R+)⊥. Then the following conclusions

hold.
(i) Each Weyl chamber C is of the form z ⊕ (C ∩ spanR+). Likewise C =

z⊕ (C ∩ spanR+).
(ii) Each C ∩ spanR+ is pointed.

(iii) Let C be a Weyl chamber and WC the subgroup of W generated by {σD |
D ∈ B+}. Then WC acts transitively on the set of Weyl chambers. In par-
ticular, W acts transitively on the Weyl chambers.

(iv) The set

C(R+) = {X ∈ t | (∀D ∈ R+) (D | X) < 0}

is a Weyl chamber. If C is a Weyl chamber, then

R+(C) = {D ∈ R+ ∪ −R+ | (∀X ∈ C) (D | X) < 0}

is a positive set of vectors generating the reflection group W.

(v) If D1, D2 ∈ B+, then the subgroup V = V(σD1 , σD2)
def
= 〈σD1 , σD2〉 of WC

is dihedral of order 2n where ang(R+·D1,R+·D2) = π − π
n modulo 2πZ. In

particular, (D1 | D2) ≤ 0. Further,

R·(R+ ∩ spanR{D1, D2}) = R·(V(D1) ∪ V(D2)
)
.

(vi) B+ is a basis of spanRR
+ and R+ ⊆

∑
D∈B+ R+·D.

(vii) There is a bijective function j 7→ Dj : {1, . . . , r} → B+ such that the fixed
point set of σD1

· · ·σDr is z.
(viii) For every D ∈ R+ there is an element δ ∈ WC , and a real number r > 0

such that r·δ(D) ∈ B+.

Assume now for the remainder of the proposition that WC(R+) ⊆ R+ ∪ −R+.
Then

(ix) for every D ∈ R+ then the orbit WC(D) meets B+,
(x) if D1, D2 ∈ B+, then (R+ ∪−R+) ∩ spanR{D1, D2} = V(±D1) ∪ V(±D2)

)
,

and
(xi) the following statements are equivalent:
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(1) For any pair (D1, D2) ∈ B+ ×B+,

2(D1 | D2)

(D1 | D1)
= 2(

1

‖D1‖2
·D1, D2) ∈ Z.

(2) For any pair (D1, D2) ∈ B+ ×B+, with V = V(σD1 , σD2),

V(D1) ∪ V(D2) ⊆ spanZ{D1, D2}.

(2′) For any pair (D1, D2) ∈ B+ ×B+,

(R+ ∪R+) ∩ spanR{D1, D2} ⊆ spanZ{D1, D2}.

(3) R+ ∪ −R+ ⊆ spanZB
+.

(4) spanZ(B+) = spanZ(R+).
(5) R+ ⊆

∑
D∈B+ Z+·D, where Z+ denotes the set of nonnegative integers.

Proof. (i) The closure C is the intersection of finitely many closed half-spaces
bounded by hyperplanes hD for certain D ∈ R. Since z = (R+)⊥ is contained in
each tR then z ⊆ C. Since translations with elements X ∈ z ⊆ C ∩ −C leave the
interior intC = C invariant, we have C = z+C. Since z⊥ = (R+)⊥⊥ = spanRR

+,
we have t = z(g) ⊕ spanR. Hence every X ∈ C is uniquely of the form X1 ⊕X2

with X1 ∈ z(g) and X2 ∈ spanRR
+. Hence X2 = −X1 +X ∈ z +C = C and thus

X2 ∈ C ∩ span+
R R. The same argument applies to the closure of C.

(ii) We project everything orthogonally along z into z⊥ = spanRR
+ and show

the claim for spanRR
+ in place of t. In other words we assume that z = {0} and

show that each Weyl chamber is pointed. Let RC ⊆ R∗ denote the set of those
elements D of R∗ for which tD is generated by an (r − 1)-dimensional face of C.

Then E
def
=
⋂
D∈RC tD is the edge of C. If D ∈ RC , then E ⊆ tD. But σD leaves

tD, hence E elementwise fixed. Thus σDC has the same edge E. Thus all Weyl
chambers adjacent to C have the same edge. The same holds for Weyl chambers
adjacent to these. Proceeding recursively we find that all Weyl chambers have the
same edge E. Thus E =

⋂
D∈R tD = (R∗)⊥ = z by definition of z. But we assumed

z = {0} and thus E = {0}.
(iii) We prove the claim in several steps. If dim t = 1, then there are two Weyl

chambers which are permuted by W ; thus the assertion is true in this case. We
therefore assume now that dim t > 1.

Let C be a Weyl chamber and C def
= {ωC | ω ∈ WC} its orbit under WC . If

C ′ ∈ C and D′ ∈ R+ is such that tD′ ∩ C ′ is a maximal face of C ′, then we claim

σD′ ∈ WC . Indeed let γ ∈ WC be such that C ′ = γ(C); then D∗
def
= γ−1(D′) is

such that tD∗∩C is a maximal face of C. Hence there is a D ∈ B+ with tD = tD∗ =
γ−1tD′ . By definition of WC we have σD ∈ WC . Therefore, σD′ = δσDδ

−1 ∈ WC ;
this proves the claim.

Now let U =
⋃
C be the union of the WC-orbit of C. We have to show that it

contains all Weyl chambers. Suppose that this fails. Then there is a Weyl chamber
C ′ with U ∩ C ′ = Ø. We pick points u ∈ U and v ∈ C ′. Denote the straight line
segment connecting u and v by [u, v]. Let S denote the finite union of hyperplanes
tD, D ∈ R+. Then S meets [u, v] in a finite set since u, v /∈ S. Each of the points
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d ∈ [u, v] ∩ S is contained in an r − 1 dimensional bounding face F ⊆ tD of some
Weyl chamber. Since algintF is open dense in F with respect to tD, by displacing
u and v slightly we may assume that

(a) each d ∈ [u, v] ∩ S is contained in the algebraic interior algintF of some
(r − 1)-dimensional face F of a Weyl chamber with d ∈ F .

The complement [u, v]\S is a finite union of intervals each belonging to some Weyl
chamber, some pertaining to U , others being disjoint from U . There is no loss in
generality if we assume that

(b) [u, v] ∩ S = {d}, further [u, d[⊆ αC, α ∈ WC , and ]d, v] ⊆ C ′.
From (a) and (b) above, d is contained in algintF of a bounding face of the Weyl
chamber αC for an α ∈ WC . Then there is a unique D ∈ R+ such that tD contains
algintF . But then σD(αC)∩C ′ 6= Ø, and σD ∈ WC by the claim we proved above.
Since the collection of Weyl chambers is a partition of t \ S we have C ′ = σDωC.
Thus C ′ ∈ C. This is a contradiction which finishes the proof of Claim (iii).

(iv) For D ∈ R+ let HD be the open half-space {X ∈ t | (D | X) > 0}.
Then C(R+)

def
=
⋂
D∈R+ HD is an open convex cone. If D ∈ R, then D ∈ R+ or

−D ∈ R+, and the hyperplane tD = {X ∈ t | (D | X) = 0} is the bounding
hyperplane of one of the half-spaces HD′ , D

′ ∈ R+ and thus fails to meet C. By
(W1) there is an a ∈ t such that R+ = {D ∈ R | (D | a) > 0}. Then a ∈ C(R+)
and thus C(R+) 6= Ø. Then C(R+) is the required Weyl chamber.

If C is a Weyl chamber then by (iii) there is a γ ∈ W with C = γ
(
C(R+)

)
.

The group W permutes the hyperplanes D⊥, D ∈ R+ and, accordingly, the set
H of half-lines ±R+·D perpendicular to these. A vector 0 6= D ∈

⋃
H satis-

fies (D | a) > 0 iff
(
γ(D) | γ(a)

)
> 0. Thus D ∈ R+ ∪ −R+ is in R+(C) iff(

D | γ(a)
)
> 0. It follows that this set of vectors is a positive set of vectors

generating the reflection group W.
By (i) and (ii) it is no loss of generality for the proof of the remaining assertions

to assume that z = {0}, that spanR R+ = t, and that C is pointed. We will do
that.

(v) V is generated by the reflection σD1
and the rotation γ

def
= σD2

σD1
. Let n

be the order of γ. The fixed point set Vfix is D⊥t
1 ∩D

⊥t
2 and the effective set is the

two dimensional space t2
def
= Veff = spanR{D1, D2}. Then γ induces in the plane

t2 a rotation by the angle 2π
n . Consider the orthogonal projection p: t → t2. The

maximal faces Fi
def
= D⊥t

i ∩C of C, i = 1, 2 yield closed half-lines Li = p(Fi) which

bound the “quadrant” C2
def
= p(C). The hyperplanes ν(D⊥i ), i = 1, 2, ν ∈ V do not

meet C. Hence the lines µ(R·Li), i = 1, 2, µ ∈ V|t2 do not meet the open quadrant
intC2. The group V|t2 is generated by the reflections σ(i) = σDi |t2 about the lines
R·Li. It follows from the elementary theory of finite subgroups of the orthogonal
group O(2) (see Exercise E6.13 above) of the plane that the oriented angle between
the lines L1 and L2 is π

n (modulo π) where n > 1 (see Exercise E6.13 above), and
that V|t2 is a dihedral group of order 2n. Then the oriented angle between the
half-lines R+·D1 and R+·D2 then is 2π − π − π

n = π − 1
n ·π (modulo 2π). Since

n > 1 this angle is in the interval
[
π
2 , π

[
and thus (D1 | D2) ≤ 0.
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An element of D ∈ R+ is in spanR{D1, D2} iff D⊥1 ∩ D⊥2 ⊆ D⊥. Since D⊥

does not meet any of the Weyl chambers γ(C), γ ∈ V, it follows that D⊥ agrees
with γ1(D⊥1 ) for some γ1 ∈ V or with some γ2(D⊥2 ) for some γ2 ∈ V. Equivalently,
D ∈ V(R·D1)∪V(R·D2). Conversely, γj ·Dj ∈ R·(R+∩spanR{D1, D2}) as V leaves
R·R+ invariant.

(vi) Since B+ ⊆ R+ we have spanRB
+ ⊆ spanRR

+. The intersection of
the maximal faces of a closed convex cone is its edge; indeed the edge is the
intersection of all faces and every face is the intersection of maximal ones. The
edge of C is {0} by our assumption. Hence {0} = (B+)⊥t ⊇ (R+)⊥t = {0}. Hence
spanRB

+ = spanRR
+ and we have to show that B+ is a linearly independent set.

Thus assume that rD ∈ R, D ∈ B+ are such that
∑
D∈B+ rD·D = 0. We have to

show that rD = 0 for all D ∈ B+. Then, in view of (D1 | D2) ≤ 0, for different Di

from B+ we have

0 =
∥∥∥∑

D∈B+
rD·D

∥∥∥2

=
(∑

D∈B+
rD·D

∣∣∣ ∑
D∈B+

rD·D
)

=
∑

D∈B+
r2
D(D | D) +

∑
D1,D2∈B+,D1 6=D2

rD1
rD2

(D1 | D2)

≥
∑

D∈B+
|rD|2(D | D) +

∑
D1,D2∈B+,D1 6=D2

|rD1 |·|rD2 |(D1 | D2)

=
(∑

D∈B+
|rD|·D

∣∣∣ ∑
D∈B+

|rD|·D
)

=
∥∥∥∑

D∈B+
|rD|·D

∥∥∥2

≥ 0.

Thus
∑
D∈B+ |rD|·D = 0. Now

0 = (a |
∑
D∈B+

|rD|·D) =
∑
D∈B+

|rD|·(a | D) and (a | D) > 0

by (W1). This implies |rD| = 0 for all D ∈ B+ and this shows that B+ is a linearly
independent set.

Since a D ∈ R+ is in B+ iff D⊥ is a maximal face of C, we have X ∈ C iff
(∀D ∈ B+) (X | D) > 0. The closed convex hull

∑
D∈B+ R+·D of

⋃
D∈B+ R+·D

is therefore the set of all Y ∈ t such that (∀X ∈ C) (Y | C) ≥ 0. By (iv) we know
X ∈ C iff (∀D ∈ R+) (X | D) > 0. Thus the closed convex hull of

⋃
D∈R+ R+·D

is the same set and therefore agrees with
∑
D∈B+ R+·D. In particular this set

contains R+. This finishes the proof of (vi).
(vii) By (i) we may assume z = {0} and then must show that j 7→ Dj may

be chosen such that σD1
· · ·σDr has no nonzero fixed points.

The proof passes through a bit of elementary graph theory. We consider a finite
graph Γ whose vertices are the elements of B+ and whose edges consist of those
two element sets {D,D′} with (D | D′) < 0. This is tantamount to saying that
σD and σD′ don’t commute. We prove a few facts about this graph; the notation
we use is intuitive enough so as to be understood.

(a) Γ has no closed paths: If (D1, . . . , Dp), p > 2, is a closed path then set
Ej = ‖Dj‖−1·Dj and Ep+1 = E1. If X = E1 + · · · + Ep, then we obtain 0 ≤
(X|X) = p+ 2

∑
i<j(Ei | Ej). But (Ei | Ej) ≤ − cos π

nij
< − 1

2 for all i 6= j (with
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integers nij > 2) by the proof of (v) above and the definition of the graph. All this

adds up to the contradiction 0 ≤ p+ p(p− 1)·−1
2 = (2−p)p

2 .
(b) Γ has a terminal vertex: find a maximal chain in Γ. Both of its ends must

be terminal vertices.
(c) Assume cardB+ ≥ 2. Then B+ = B1 ∪̇ B2, B1 6= Ø 6= B2 such that if

D 6= D′ in B+ both belong to Bi for i = 1 or i = 2, then D and D′ are not linked:
we prove this by induction on the number r of vertices. For r = 1, 2 everything is
clear. Assume the claim holds for r− 1, r > 2. Let D be a terminal vertex. By the
induction hypothesis write Γ \ {D} = B′1 ∪̇ B′2 with the properties stated. Since
D is terminal it is linked with at most one other vertex; if it is, we may assume
that this vertex belongs to B′1. We set B1 = B′1 and B2 = B′2 ∪ {D}. The sets Bi,
i = 1, 2 are as required.

Now, we choose j 7→ Dj : {1, . . . , r} → B+ such that {D1, . . . , Dq} = B1 and
{Dq+1, . . . , Dr} = B2. Let t(i) = spanRBi for i = 1, 2 and set γ1 = σD1

· · ·σDq
and γ2 = σDq+1 · · ·σDr . Then the D ∈ B1 are orthogonal and γ1 is an orthogonal
transformation such that γ1|t(1) = − idt(1) and γ1|t(1)⊥ = idt(1)⊥ . Analogous
conclusions hold for γ2 and t(2). Assume that X ∈ t satisfies γ1γ2(X) = X. Then
γ2(X) = γ−1

1 (X) = γ1(X). Let Y = X − γ1(X) = X − γ2(X). Then γi(Y ) = −Y
for i = 1, 2. If Y = Y ′ + Y ′′ with Y ′ ∈ t(1) and Y ′′ ∈ t(1)⊥, then −Y1 − Y2 =
−Y = γ1(Y ) = −Y1 + Y2. Thus Y2 = 0 and Y ∈ t(1). Similarly, Y ∈ t(2). Hence
Y ∈ t(1)∩ t(2) = {0}. Thus X = γ1(X) = γ2(X). Then X is in the fixed point set

t(i)⊥ of γi for both i = 1 and i = 2. Hence X ∈ t(1)⊥∩t(2)⊥ =
(
t(1)+t(2)

)⊥
= {0}.

This proves the claim.
(viii) Let D ∈ R+. Then there is a Weyl chamber C such that tD ∩ C is a

face of C. By (iii) above, there is a γ ∈ WC such that C = γ−1
(
C(R+)

)
. Then

the hyperplane γ(tD) = tγ(D) intersects C in a face. Hence there is a D′ ∈ B+

such that tγ(D) = tD′ . Thus R·γ(D) = R·D′. Hence there is a nonzero t ∈ R
with t·γ(D) = D′. If t > 0 we are done with r = t and δ = γ. If not, we note
t·γ(D) = |t|·σD′γ(D); now we set r = |t|, δ = σD′γ.

(ix) Retain the notation of the proof of (viii) above. (a) If W(R+) ⊆ R+ ∪
−R+, then δ(D) ∈ R+·D′ ∩ (R+ ∪ −R+) = R·D ∩ R+ = {D′} by (W0), whence
δ(D) = D′.

(x) is a consequence of the last part of (v) and (W0).
(xi) We first note that the equivalence of (1) and (2) follows from (v) and

basic facts about dihedral groups (cf. Exercise E6.13(v)). By (b) above V(±D1)∪
V(±D2) = (R+∪R+)∩ spanR{D1, D2}; this establishes the equivalence of (2) and
(2′).

Trivially, (2′) and (3) are equivalent and (4) implies (3). We show (2) im-

plies (4). Let 〈B+〉 denote the subgroup spanZB
+ generated by B+ in ∆

def
=

〈R+〉 = spanZR
+. By (2), for each D ∈ B+, the reflection σD maps B+ into

〈B+〉. Hence WC(〈B+〉) ⊆ 〈B+〉. By the first part of (ix) above, R+ ⊆ WC(B+).
Hence ∆ ⊆ 〈B+〉 ⊆ ∆. Trivially, (5) implies (4). Assume (4). We know that
R+ ⊆

∑
D∈B+ R+·D from (vi). Also, by (4), R+ ⊆

∑
D∈B+ Z·D. Hence R+ ⊆∑

D∈B+ Z+·D. ut
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The set B+ will be called the basis attached to the set R+. We note from
6.51(xi) that the finer geometric properties of the sets R+ and B+ are determined
by the behavior of two basis vectors from B+. If R+ is the system of positive roots
for a compact Lie group, then the equivalent conditions of 6.51(xi) are satisfied by
6.46(III).

Let now t be a Cartan subalgebra of the Lie algebra g of a compact connected
Lie group G, and let W(T,G) = N(T,G)/T be the Weyl group of G with respect
to T . Define

Autt(g) = {α ∈ Aut g ∩O(g) | α(t) = t}.

Then Autt(g) is, in particular, a closed subgroup of O(g). We recall that by 6.4(x)
Aut(g) ⊆ O(g) if g is semisimple. Notice that an adjoint morphism Ad(g) ∈
Aut(g) with g ∈ G is in Autt(g) if and only if g ∈ N(T,G). Thus Autt(g)|t
contains Ad

(
N(T,G)

)
|t and by Corollary 6.35, the subgroup Ad(N(T,G)|t of O(t)

is naturally isomorphic to the Weyl group W(T,G). Let R+ be a set of positive
roots with respect to t and B+ ⊆ R+ the unique basis of t defined by (BAS) for
R+ discussed in Proposition 6.51, and let, for each basis root D ∈ B+, an element
nD ∈ N(t, G) be selected according to Proposition 6.47. These notions prepare us
for the following theorem:

The Role of the Weyl Group for Compact Connected Lie Groups

Theorem 6.52. Let t be a Cartan subalgebra of the Lie algebra g of a compact
connected Lie group G, and W(T,G) = N(T,G)/T the Weyl group of G with
respect to T . Then the following conclusions hold.

(i) W(T,G) is generated by the set {nDT | D ∈ B+} of involutions and acts
simply transitively on the set of Weyl chambers.

(ii) There is at least one element n ∈ N(T,G) such that the fixed point set of
Ad(n)|t is z(g).

(iii) Autt(g) acts on R = R+∪−R+ and permutes the root spaces gD according
to

γ(gD) = gγD, and

(∀X ∈ t, Y ∈ gD) [X, γY ] = (X | γY )·I(γY ),

[γY, I(γY )] = (γY | γY )·γD = (Y | Y )·γD.

In particular, the Weyl group W(T,G) acts on R = R+ ∪ −R+.
(iv) Autt(g) acts on the set of subalgebras gD = R·D ⊕ gD ∼= so(3) such that

γ(gD) = gγD.
(v) If B+ = B+(R+) is the basis attached to the set R+ of positive roots then

the W(T,G) orbit of every D ∈ R+ meets B+.
(vi) Every element in R+ is an integral nonnegative linear combination of

elements in B+.

Proof. (i) Let C be the Weyl chamber C(R+). We now let WC be the group of
orthogonal transformations of t generated by the reflections σD in the hyperplanes
tD = D⊥t , D ∈ B+ for a basis attached to a positive root system R+. We set
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WC = {Ad(n)|t ∈ O(t) | n ∈ N(T,G), Ad(n)(C) = C}. We shall show that WC is
singleton. This will in fact complete the proof as follows. Applying 6.51(iii) we see
that the groupWC acts transitively on the set C of all Weyl chambers; then by the
Frattini Argument (preceding Lemma 6.35), {Ad(n)|t | n ∈ N(T,G)} = WCWC .
Thus WC = {idt} will show at the same time that the action of the Weyl group
W(T,G) on t is by the group generated by the set of reflections σD, D ∈ B+

and that this action is simply transitive. Since the linear action of W(T,G) on t
is faithful, and since σD = Ad(nD)|t, the Weyl group is generated by the set of
involutions {nDT | D ∈ B+}.

In order to prove WC = {idt}, let t(C) denote the fixed point vector space
in t of the linear group WC on t which leaves the closed cone C invariant. By
Theorem 3.38 on the linear action of compact groups on cones applied to the
group WC , we conclude that t(C) meets the interior C of C. Let X ∈ C ∩ t(C).
and set T (C) = exp t(C). Let NC = {n ∈ N(T,G0) | Ad(n)C = C}, then WC =

Ad(NC)|t. Then NC ⊆ Z(T (C), G0). Now G1
def
= Z(T (C), G0) is a closed subgroup

of G0 containing T , and thus g1 = L(G1) is, in particular, a T -submodule of g
containing T . As a consequence, we have a subset R+

1 ⊆ R+ such that

g1 = t⊕
⊕
D∈R+

1

gD ⊆ t⊕
⊕
D∈R+

gD.

We claim that R+
1 = Ø, i.e. g1 = t. Suppose the contrary holds. Then we would

have a D ∈ R+
1 and then a nonzero Y ∈ gD. Accordingly, [X,Y ] = (X | D)·IY

for X ∈ t by 6.45(ii)(A). Now Y ∈ g1 = L
(
Z(T (C), G0)

)
= z(t(C), g), and thus

X ∈ t(C) implies [X,Y ] = 0. Therefore (X | D) = 0 and thus X ∈ tD = D⊥t .
However, X ∈ C and C ∩ tD = Ø by the definition of a Weyl chamber. This
contradiction proves the claim R+

1 = Ø. Now L
(
Z(T (C), G0)

)
= t and since

Z(T (C), G0) is connected by Corollary 6.33(i) we conclude Z(T (C), G0)0 = T and
thus NC ⊆ T . This shows that WC = Ad(NC)|t = {idt} and thus concludes the
proof of (i).

(ii) We apply 6.51(vii) with W = {Ad(n)|t | n ∈ N(T,G)}. Since z(g) =
t ∩ (R+)⊥ by 6.50(i), assertion (ii) follows at once.

(iii) and (iv) Let γ ∈ Autt g and recall γ adZ = ad(γZ)γ. Recall from 6.45

that I|gD is e
π

2(D|D)
adD

∣∣∣ gD. Hence, since γ is orthogonal by the definition of

Autt(g), for YD ∈ gD, we have

γ(IYD) = γe
π

2(D|D)
adDγ−1γ(YD)

= e
π

2(D|D)
ad γDγ(YD) = e

π
2(γD|γD)

ad γDγ(YD)

= Iγ(YD).

For X ∈ t set X ′ = γ−1X. Then

[X, γY ] = γ[X ′, Y ] = (X ′ | D)·γIDY = (γX ′ | γD)·IγD(γY ) = (X | γD)·IγD(γY ).

Similarly, [γY, I(γY )] = γ[Y, IY ] = (Y | Y )·γD = (γY | γY )·γD. Thus γ permutes
R+ ∪ −R+ and the root spaces; specifically, γ(gD) = gγ(D).
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All inner automorphisms Ad(n) with n ∈ N(T,G) belong to Autt(g) hence the
preceding applies with γ = Ad(n).

(iv) This follows from (iii) above and 6.51(ix)
(v) By (iii) above, 6.51(xi) applies. From 6.46(III) we know that 6.51(xi)(1) is

satisfied. Hence 6.51(xi)(3) holds and this is our assertion. ut

Since the Exercise E6.13 on Geometric Dihedral Groups applies to the situation
of Theorem 6.52 we observe in passing that the oriented angle ang(R+·D,R+·D′)
between any two rootsD, D′ ∈ R is a multiple of 2π

n modulo 2π where n = 2, 3, 4, 6.

In the wake of Theorem 6.52 let W∗(T,G)
def
= 〈nD | D ∈ B+〉 ⊆ N(T,G) be

the subgroup generated by the elements nD ∈ N(T,G) of order 2 or 4, selected,
one for each basis root D ∈ B+, as in Proposition 6.47. Then Part (i) of Theorem
6.52 implies

N(T,G) = TW∗(T,G) and W(T,G) ∼=
W∗(T,G)

W∗(T,G) ∩ T
.

Without further information, however, it is not clear whether the countable group
W∗ = W∗(T,G) in fact is finite. As we observed in the paragraph preceding
Proposition 6.23, our Theorem 6.10(i) implies the existence of a finite subgroup E
of N(T,G) such that

N(T,G) = TE and W(T,G) ∼=
E

T [n]
, n = |W(T,G)|,

where T ∩ E = T [n] with the understanding that

T [n] = {t ∈ T : tn = 1}.

Exactly how E andW∗ are related is also not clear on the basis of the information
we provided here.

However, let us assume for the moment, that additional information is available
on so-called Coxeter groups , that is, groups W generated by a set S of elements
s ∈ W such that s2 = 1 and that W is free subject only to the conditions s2 = 1
for s ∈ S and (ss′)m(s,s′) = 1 for all pairs (s, s′) ∈ S × S for which ss′ has finite
order m(s, s′). (See Bourbaki, [42], IV, §1, no 3, Definition 3.) The elements nDT
and nD′T satisfy such relations by Proposition 6.51(v). Based on information of
Coxeter groups, in [43], Exercice 12 for IX, §4, Bourbaki provides the following
information (and more):

Bourbaki’s Lemma on W∗. If G is a simply connected compact (hence semi-
simple) Lie group, then

W∗(T,G) ∩ T = T [2].

The smallest example illustrating this situation is the group S3 of unit quater-
nions with T = S1 = expiR and W∗(T,G) = {±1,±i,±j,±k} the 8 element
“quaternion group”.

Notice that T [2] is what in Definition A1.20 we call the 2-socle of T . We have
rank2(T [2]) = dimT . If the center Z of the simply connected compact group G has
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2-rank rank2(Z) < dimT = rank(G), then for the semisimple Lie group G
def
= G/Z

the group N(T ,G) is not the semidirect product of T and W∗(T ,G). There are
only rare exceptions to this general case, such as G = SO(3). (Cf. Exercise E6.10.)
Thus, in general, a maximal torus T of a nonabelian compact connected Lie group
G does not split as a semidirect normal factor in its normalizer N(T,G).

The Commutator Subgroup of Connected Compact
Lie Groups

Recall the set R of real roots of of g with respect to the Cartan algebra t.

Lemma 6.53. There is an element n ∈ N(T,G) such that Ad(n)|t− idt has kernel
z(g) and Ad(n)|t− idt | spanR is a vector space automorphism of spanR.

Proof. By Theorem 6.52(ii) there in an n ∈ N(T,G) such that Ad(n)|t has the pre-
cise fixed point set z(g). Obviously, this n satisfies the requirements since Ad(n)|t
is an orthogonal transformation and t ∩ z(g)⊥ = spanRR

+ by 6.50(ii). ut

Recall that for two subgroups A and B of a group G we write

comm(A,B)
def
= 〈aba−1b−1 | a ∈ A, b ∈ B〉.

For the following proposition also recall from Theorem 6.30(26) that for a
compact connected Lie group G we have G = exp g and that, therefore, there is
an X ∈ g such that n = expX for the element n ∈ N(T,G) in Lemma 6.52.

Proposition 6.54. Let T be a maximal torus of a connected semisimple compact
Lie group. Then

(i) T = {ntn−1t−1 | n ∈ N(T,G), t ∈ T} = comm
(
N(T,G), T

)
. In particular,

every element of T is a commutator in the normalizer N(T,G).
(ii) There is a Z ∈ g such that t ⊆ [Z, g]. In particular, every element of t is a

bracket in g.
(iii) Let t′ be any Cartan subalgebra of g containing Z, then t and t′ are orthogonal

to each other.

Proof. By Lemma 6.53 there is an element n ∈ N(T,G) such that Ad(n)|t − idt

is a vector space automorphism of t.
(i) If g ∈ T , then there is an X ∈ t with g = expX and after the preceding

Lemma 6.53, there is a Y ∈ t and an n ∈ N(T,G) such thatX = Ad(n)Y −Y . Then
g = expX = exp Ad(n)Y exp−Y = n(expY )n−1(expY )−1 = comm(n, expY ).
Hence every element of the maximal torus is a commutator comm(n, t) with t ∈ T ,
n ∈ N(T,G). (ii) Let Z ∈ g be such that n = expn. In view of Theorem 5.44(i)(20)

we can write the linear endomorphism L
def
= Ad(n)− idg of the vector space g as

(1) L = eadZ − idg .
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Equation (1) may be expressed equivalently as

(2) L = adZ ◦ F, where F = (idg +
∞∑
m=2

1

m!
(adZ)m−1),

and from (2) and Lemma 6.53 we obtain t = L(t) = [Z,F (t)] ⊆ [Z, g].
(iii) By E6.2(b) we have [Z, g] = z(Z, g)⊥. From Corollary 6.32(28bL) we record

that

z(Z, g) =
⋃
{t′|t′ ∈ T(g) and Z ∈ t′}.

Accordingly,

z(Z, g)⊥ =
⋂
{t′⊥|t′ ∈ T(g) and Z ∈ t′}.

Thus by (ii) above t ⊆ [Z, g] = z(Z, g)⊥ ⊆ t′
⊥

for each Cartan subalgebra t′

containing Z. ut

Among other things we see that the orthogonality of Cartan subalgebras is not
a rare ocurrence in a compact Lie algebra.

A remarkable consequence of these facts is the following theorem.

Gotô’s Commutator Theorem for Connected Compact Lie Groups

Theorem 6.55 ([127]). Let G be a compact Lie group. Then every element of
(G0)′ = exp g′ is a commutator, and every element of g′ is a bracket.

Proof. We may assume that G = G0. Then G′ = exp g′ by 6.31(iii) and this is a
compact group. It suffices to prove the theorem for G′. Thus we assume for the
remainder of the proof that G is connected and semisimple; i.e. G′ = G = G0.
Let T be a maximal torus. Then by 6.54, for each s ∈ T there is an n ∈ N(T,G)
and a t ∈ T such that s = comm(n, t). By the Maximal Torus Theorem 6.30(27),
every element of G is conjugate to an element in the maximal torus T . Hence every
element of G is a commutator.

From Theorem 6.27 we know g =
⋃
g∈G Ad(g)t and so g ⊆

⋃
g∈G[Ad(g)Z, g],

that is, every element of g is a bracket. ut

According to this theorem, for a connected compact Lie group G, the function
(g, h) 7→ comm(g, h):G×G→ G has the image G′. This gives a new proof of the
closedness of the commutator group of a connected compact Lie group (see the
first part of the proof of 6.11). The information here, however, is much sharper
than that of 6.11 in the connected case. On the other hand, the methods and
the information involved in 6.55 cannot lead to a proof of the closedness of the
commutator group of a (not necessarily connected) compact Lie group. Indeed
in 6.10 and its proof we saw that it requires effort to get the closedness of the
commutator group even in the case that G0 is abelian (and thus, in particular, has
no nontrivial commutators at all).
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Corollary 6.56. Every element in a connected compact semisimple Lie group is
a commutator. ut

On the Automorphism Group of a Compact Lie Group

Let Aut(G) as usual denote the group of automorphisms of the compact group G
and Inn(G) the compact normal subgroup of all inner automorphisms Ig, Ig(x) =
gxg−1. We have considered automorphism groups of linear Lie groups only in
passing and merely as abstract groups (e.g. in Theorem 5.42(iv) and in Exercise
E5.15 following Theorem 5.44). On the other hand, we have studied the auto-
morphism group of a Lie algebra as a linear Lie group in detail (see 5.43), but
gave the special case of the automorphism group of a compact Lie algebra only
cursory attention (see 6.5). Now we expand in two directions: firstly, we provide
more detailed information on the structure of Aut g for a compact Lie algebra g,
and, secondly, we consider the automorphism group Aut(G) of a compact group
as a topological group in its own right. For this purpose we must endow Aut(G)
with a group topology; this requires a certain effort in its own right. We shall then
systematically extend the subject foreshadowed in Exercise E5.15 and look more
closely at the relation of AutG and Aut g if G is a compact Lie group. We eluci-
date the structure of Aut(G) by identifying its identity component as a compact
Lie group isomorphic to G0/

(
G0 ∩ Z(G)

)
. If G is connected, it is isomorphic to

G/Z(G) ∼= G′/Z(G′) and is therefore semisimple.

We begin the first step by considering a compact Lie algebra g and focusing on
its automorphism group.

Lemma 6.57. Let g be a compact Lie algebra and write g = z(g) ⊕ g′ and g′ =
g1⊕· · ·⊕gk with isotypic components gj, each being a finite orthogonal ideal direct
sum of simple modules each isomorphic to a simple module sj, when j 6= j′ implies
sj 6∼= sj′ . Then the functions

η: Aut g→ Aut z(g)×Aut(g′), η(α) = (α|z(g), α|g′),
ζ: Aut g′ → Aut(g1)× · · · ×Aut(gk), ζ(α) = (α|g1, . . . , α|gk),

are isomorphisms. Thus

Aut g ∼= Gl
(
z(g)

)
×Aut g′ ∼= Gl

(
z(g)

)
×Aut(g1)× · · · ×Aut(gk).

Proof. From Theorem 6.4 we know that g = z(g) ⊕ g′ and g′ = g1 ⊕ · · · ⊕ gk is
an orthogonal ideal direct sum where the ideals z(g) and gj , j = 1, . . . , k are fully
characteristic (in the sense that even every endomorphism of g maps each of them
into itself). Hence each α ∈ Aut g induces an automorphism on each of these ideals.
Thus α 7→ (α|z(g), α|g1, . . . , α|gk): Aut g → Aut z(g) × Aut(g1) × · · · × Aut(gk) is
well-defined and has as inverse morphism the assignment (αz(g), αg1

, . . . , αgk) 7→ α,
where α(Xz(g) +Xg1

+ · · ·+Xgk) = αz(g)(Xz(g)) + αg1
(Xg1

) + · · ·+ αgk(Xgk). ut
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Before we go into the next lemma, let us recall some general group theoretical
concepts. LetA be a group and let Sn denote the group of permutations (bijections)
of {1, . . . , n}. The elements of An we consider as functions α: {1, . . . , n} → A with
componentwise multiplication αβ(j) = α(j)β(j). Then Sn operates on An by
σ·α = α ◦ σ−1. The function s:Sn → Aut(An), s(σ)(α) = σ·α is a morphism,
and the semidirect product An os Sn is called the wreath product of A and Sn.
The multiplication in the wreath product is given by (α, σ)(β, τ) = (α(σ·β), στ) =
(α(β ◦σ−1), στ). If A is the automorphism group of an object g (in some set-based
category), then we consider the elements of gn as functions g: {1, . . . , n} → g.

The group Aut(gn) contains a subgroup N isomorphic to Aut(g)n containing
all elements α̃ so that α̃(g)(j) = α(j)

(
g(j)

)
for α ∈ Aut(g)n. It also contains

a subgroup H isomorphic to Sn consisting of elements σ̃ such that such that
σ̃(g) = g ◦ σ−1 for each σ ∈ Sn. Now

(
σ̃ ◦ α̃ ◦ σ̃−1

)
(g)(j) = σ̃(h)(j) = h

(
σ−1(j)

)
with h =

(
α̃ ◦ σ̃−1

)
(g) = α̃

(
σ̃−1(g)

)
= α̃(g ◦ σ), i.e. h(k) = α(k)

(
g(σ(k))

)
. Then

h
(
σ−1(j)

)
= α

(
σ−1(j))

(
g(j)

)
= (α ◦ σ−1)˜(g)(j) = (σ·α)˜(g)(j). This shows that

H is in the normalizer of N . An automorphism of Aut(gn) is of the form α̃ = σ̃
iff α(j)

(
g(j)

)
= g

(
σ−1(j)

)
for all g and all j; appropriately specializing g we see

that only the identity automorphism satisfies this condition. Therefore NH is a
semidirect product and thus the morphism (α̃, σ̃) 7→ α̃ ◦ σ̃ : N oI H → N ◦H is
an isomorphism. We have seen, however, that I

σ̃
(α̃) = σ̃ ◦ α̃ ◦ σ̃−1 = s(σ)(α)˜,

and thus (α, σ) 7→ (α̃, σ̃): Aut(g)n os Sn → N oI H is an isomorphism. Hence the
function Φ: Aut(g)n os Sn → Aut(gn), Φ(α, σ) = α̃ ◦ σ̃ is an injective morphism.

Lemma 6.58. Assume that g = sn for a simple compact Lie algebra s. Then the
function Φ: Aut(s)n os Sn → Aut(g), is an isomorphism; i.e. Aut(g) is a wreath
product of Aut(s) and Sn.

Proof. After the preceding remarks we have to show that Φ is surjective. Thus
let α ∈ Aut g. Let coprj : s → g (where coprj(s) = (s1, . . . , sn), sj = s and sk = 1
otherwise) and prj : g→ s be the j-th coprojection, respectively, projection and set

αjk
def
= prj ◦α coprk. By the simplicity of s, the morphism αjk: s→ s is either the

constant morphism 0 or is an automorphism. We claim that there is a bijection
σ ∈ Sn such that

(∗) αjk

{∈ Aut s if j = σ(k),
= 0 otherwise.

Indeed, for each k ∈ {1, . . . , n} the isomorphic copy coprk(s) of s is an ideal. By
6.4(vi), the automorphism α permutes the set {coprj(s) | j = 1, . . . , n}
of ideals. Hence there is a unique σ(k) ∈ {1, . . . , n} such that coprσ(k)(s) =
(α ◦ coprk)(s). According to 6.4 we have a unique decomposition g = coprσ(k)⊕nk
with a semisimple ideal nj = coprσ(n)(s)

⊥. The projection prj maps the sum-
mand coprj(s) isomorphically onto s and maps all summands coprj′(s) trivially for
j′ 6= j. Thus (∗) follows. Now define β ∈ (Aut s)n, β: {1, . . . , n} → Aut s by β(k) =
αj,σ−1(j). We write the elements of g = sn as functions X: {1, . . . , n} → s and
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compute α(X)(j) = prj
(
α(X)

)
= αjσ−1(j)

(
X(σ−1(j))

)
= β(j)

(
X(σ−1(j))

)
=

β(j)
(
σ̃(X)(j)

)
= β̃

(
σ̃(X)

)
(j) = (β̃ ◦ σ̃)(X)(j), and thus α = β̃ ◦ σ̃ = Φ(β, σ). ut

If g is a compact Lie algebra, then ad: g→ Der g is a representation with kernel
z(g). In view of 6.4, ad maps g′ isomorphically onto ad g. Hence (ad g)′ = ad g.
If an invariant inner product of g is chosen, then ad g consists of skew symmetric
automorphisms with respect to this inner product and thus ad g ⊆ o(g). Now o(g)
is the Lie algebra of the compact Lie group O(g). Thus by Corollary 6.31(ii), the
subspace ead g ⊆ O(g) is a compact subgroup with L(ead g) = ad g ∼= g′. Let us
write

Inn g
def
= ead g

and call this compact Lie group the group of inner automorphisms of g.
If G is a connected compact Lie group and g its Lie algebra, then AdG ⊆

Aut g is exactly the connected compact subgroup whose Lie algebra is ad g and
AdG ∼= G/Z(G) ∼= Inn(G) (cf. the Adjoint Representation Theorem 5.44), and
thus Inn(G) ∼= AdG = ead g = Inn g. This justifies the notation. However, if
G = T o {idT,− idT} (the group of orthogonal transformations of the euclidean
plane), then Z(G) = {(Z, idT), ( 1

2 +Z, idT)} has order 2 and Inn(G) ∼= G/Z(G) ∼= G
while Inn g = {idg}.

The factor group Aut g/ Inn g is, not entirely appropriately, called the group of
outer automorphisms, at any rate we shall write

Out g
def
= Aut g/ Inn g.

We note ad g = adg g
′ = {adgX | X ∈ g′}, adgX: g → g, and adg g

′ ∼= ad g′ =

{adg′ X | X ∈ g′}, adg′ X: g′ → g′. Thus Inn g = ead g = eadg g′ ∼= eadg′ g
′

=
Inn(g′) ⊆ Aut(g′), and the isomorphism η of 6.57 maps Inn g onto {idz(g)× Inn(g′).

Lemmas 6.57 and 6.58 boil the determination of Aut g for a compact Lie algebra
g down to knowing Aut g for a simple compact Lie algebra g. Let us assume
now that g is a simple compact Lie algebra given the inner product (X,Y ) 7→
(X | Y ) = − tr adX adY . (See 6.4(ix).) From 6.4(x) we know that Aut g ⊆ O(g)
and that it is, therefore, a compact Lie group. We continue the notation of 6.5
and note that L(Aut g) = Der g = ad g in this case by 6.5, whence Inn g = ead g =
(Aut g)0; therefore we record

G def
= Aut g ⊆ O(g) and Out(g) = G/G0.

Since G is a compact Lie group, the group Out(g) is finite; we might refer to it as
the outer automorphism group. If g = so(3) ∼= (R3,×) with the vector product on
euclidean 3-space, then G = Aut g ∼= Aut(R3,×) = SO(3).

Let t be a Cartan subalgebra of g and set Autt g = {α ∈ G | α(t) = t}. Fix a
Weyl chamber C ⊆ t; then C is a pointed convex cone since g is simple and thus
z(g) = C ∩−C = {0}. Set AutC g = {α ∈ Autt g | α(C) = C} and T = ead t ⊆ G;
then L(T) = t, and T is a maximal torus of G. Let

k
def
= ker expT = {X ∈ t | expTX = expGX = eadX = idg}.
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Then k is a point lattice in t isomorphic to Zr, r = dim t. Let us denote by Aut k
the set of those linear automorphisms of t inducing an automorphism of k. Then
Autt g|t ⊆ O(t) ∩ Aut k; thus γ 7→ γ|t: Autt g → Autt g|t is a surjective morphism
onto a finite group whose kernel is N(T,G).

We now recall (from 6.45ff) the root space decomposition

g = t⊕
⊕
D∈R+

gD.

For X ∈ t and Y ∈ gD we have [X,Y ] = (X | D)·IDY , whence eadXY =

e(X|D)IDY , and [Y, IDY ] = (Y | Y )·D, where ID = e
π

2(D|D)
· adD

∣∣∣ gD. In partic-

ular,
X ∈ k⇔ (∀D ∈ R+) (X | D) ∈ 4Z.

After 6.51(iv) we may and will assume that the Weyl chamber C was picked in
such a fashion that (X | D) > 0 for all X ∈ C and all D ∈ R+. If this choice is
made, then a vector D ∈ R+ ∪ −R+ is in R+ if and only if (X | D) > 0 for all
X ∈ C.

Proposition 6.59. Assume that g is a compact semisimple Lie algebra.
(i) L(G) = Der g ⊆ o(g), and Der g = ad g ∼= g.
(ii) The Lie algebra of G may be identified with g in such a way that the

exponential function of G may be written expG: g → G, expGX = eadX , and
G0 = expG g = ead g = Ad(G).

(iii) With the identifications of (ii), the adjoint representation agrees with the
natural action of G = Aut g on g, i.e. for γ ∈ G and X ∈ g, Ad(γ)(X) = γ(X),
and if γ = eadY , then γ(X) = eadYX.

(iv) G = G0·AutC(g) and G0 ∩ AutC(g) = T. In particular, T =
(

AutC(g)
)

0
and Out(g) ∼= AutC(g)/T.

(v) The group AutC(g), when acting on t, leaves R+ and B+ invariant.

Proof. (i) is a direct consequence of preceding remarks and 6.5.
(ii) By 5.43, the exponential function EG: Der(g) → G is given by EG(X) =

idg +X + 1
2! ·X

2 + · · · , X ∈ Der(g) ⊆ gl(g). The map ad: g → Der g is an iso-
morphism by 6.5. We may therefore consider g as the Lie algebra of G and the
exponential function to be the composition

g
ad→ Der(g)

E→ G, expG = EG ◦ ad, expGX = eadX .

(iii) Let γ ∈ G and X ∈ g. Then γ[X,Y ] = [γX, γY ] whence γ ◦ adX =

ad(γX)◦γ. Therefore expG Ad(γ)(X) = γ(expGX)γ−1 = γeadXγ−1 = eγ◦adX◦γ−1

= ead(γX) = expG(γX); since this holds for all t·X in place of X with t ∈ R, we
conclude Ad(γ)(X) = γ(X) and thus Ad(γ) = γ. The remainder now follows from
5.44.

(iv) The group G0 acts transitively on the set T(g) of Cartan algebras under
its natural action by (iii) above and the Transitivity Theorem 6.27. The stability
group of this action by definition is Autt(g). Hence the Frattini Argument (pre-
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ceding 6.35) shows G = G0·Autt g. The group Autt(g) acts on the set C of Weyl
chambers with stability group AutC(t), and the subgroup Ad

(
N(T,G0)

)
acts

simply transitively by 6.52. So by the Frattini Argument once more, Autt(g) =
Ad
(
N(T,G0)

)
·AutC(t) ⊆ G0·AutC(t). Hence G = G0·AutC(t) follows. One

notes that γ ∈ G0 ∩ AutC g means that γ ∈ N(T,G0) and that the morphism
Ad(γ)|t induced by γ on t (cf. (iii) above!) fixes C as a whole. Since the action
of Ad

(
N(T,G0)

)
on C is simply transitive by 6.52 we have γ = eadX with some

X ∈ t, i.e. γ ∈ T. Clearly
(

AutC(g)
)

0
⊆ G0 ∩ AutC(g) = T ⊆

(
AutC(g)

)
0
, so

equality holds. Now Out(g) = G/G0 = G0 AutC g/G0
∼= AutC g/(G0 ∩ AutC g) =

AutC g/T.
(v) Now we prove that γ(C) = C implies γ(R+) = R+. We have

(∀X ∈ C, D ∈ R+) (X | D) > 0.

Then γ ∈ AutC g and X ∈ C implies X ′
def
= γ−1X ∈ C and thus

(∀D ∈ R+) (X | γD) = (γX ′ | γD) = (X ′ | D) > 0.

Hence

(∀X ∈ C, D ∈ R+) (X | γD) > 0.

Since for D ∈ R+ ∪ −R+ we have D ∈ R+ iff (X | D) > 0 for all X ∈ C, we
conclude that γR+ = R+. The elements D′ ∈ R+ are unique nonnegative real
linear combinations D′ =

∑
D∈B+ rD·D; the relation D′ ∈ B+ means that exactly

one of the rD is nonzero (and 1). Thus the invariance of R+ under AutC(g) implies
the invariance of B+ under this group. ut

We know from 6.10(i) that we get a finite subgroup E ⊆ AutC(t) such that
AutC(g) = TE and γ ∈ E ∩T implies γ|Out g| = id. Since T ⊆ G0, we then have
G = G0 AutC g = G0E.

However, in the present situation we can do better and choose the group E ⊆
G so that E ∩ G0 = {1}. This requires a little bit of preparation because we
have to pick the supplementary subgroup E judiciously. For this purpose we fix
a semisimple compact Lie algebra g with the canonical inner product given by
(X | Y ) = − tr adX adY (see 6.4.(ix)) and abbreviate AutC g by A. The group A
acts orthogonally on g (cf. 6.4(x)). Moreover, A leaves both R+ and B+ invariant
by 6.59(v).

Set r = dim t and write

(S1)r
def
=

{ ∑
D∈B+

YD | (∀D ∈ B+) (YD | YD) = 1

}
.

Since {Y ∈ gD | (Y | Y ) = 1} ⊆ gD is a one-sphere by 6.49(ii), the subspace (S1)r

of the 2r-dimensional vector space
⊕

D∈B+ gD is an r-torus.
If Y =

∑
D∈B+ YD ∈ (S1)r and α ∈ A, then for each D ∈ B+ we have αD ∈ B+

and Y ′αD
def
= αYD ∈ gαD by 6.59(v). Also (Y ′αD | Y ′αY ) = (αYD | αYD) = (YD |
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YD) = 1. Thus

αY =
∑
D∈B+

α(YD) =
∑
D∈B+

Y ′αD =
∑

αD∈B+

Y ′αD =
∑
D∈B+

Y ′D ∈ (S1)r.

Hence A acts on (S1)r.
The r-dimensional torus group T = ead g ⊆ A is the identity component T of

A by 6.59(iv). By 6.45 and the fact that g may be viewed as the Lie algebra of G
(see 6.59(ii)) it acts on (S1)r via

eadX(
∑
D∈B+

YD) =
∑
D∈B+

cos(X | D)·YD + sin(X|D)·IYD =
∑
D∈B+

e(X|D)·IYD.

Since B+ is a basis of t by 6.51(iv), the function X 7→
(
(X | D)

)
D∈B+ : t → Rr

is an isomorphism of vector spaces. Hence the function t → {z ∈ C : |z| = 1}r
mapping X to (e(X|D)i)D∈B+ is surjective and thus

(∗) (∀Y =
∑
D∈B+

YD ∈ (S1)r) X 7→
∑
D∈B+

e(X|D)·IYD: t→ (S1)r is surjective.

Let X ∈ t. The relation eadX ·Y = Y for all Y ∈ (S)r is equivalent to

(∗∗) (∀D ∈ B+) (X | D) ∈ 2πiZ.

By 6.52(vii), every D′ ∈ R+ is an integral linear combination
∑
D∈B+

nD·D. Hence

(∗∗) implies (X | D′) =
∑
D∈B+ nD(X | D) ∈ 2πiZ. Thus e(X|D′)·I(YD′) = YD′

for all YD′ ∈ gD
′
. In view of g = t⊕

⊕
D∈R+ gD this implies that eadX = idg ∈ A.

We conclude that for all Y ∈ (S1)r the function

(†) α 7→ α(Y ): T→ (S1)r is a homeomorphism,

being surjective by (∗) and injective by what we just saw. In particular, T operates
transitively on (S1)r ⊆

∑
D∈B+ gD.

Lemma 6.60 (K.-H. Neeb). Let g be a compact semisimple Lie algebra and con-
tinue the notation just introduced. Fix an element Y ∈ (S1)r and let AY be the
isotropy group at Y of the group A = AutC g acting on (S1)r. Then the following
statements hold.

(i) AutC g = TAY and T ∩ AY = {idg}, i.e. AutC g is a semidirect product of
the normal torus T and the subgroup AY ∼= Out g;

(ii) Aut g = (Aut g)0·AutC g and (Aut g)0 ∩ AutC g = {idg}, i.e. Aut g is
a semidirect product of its identity component with the group AY isomorphic to
Out g.

Proof. (ii) will be a consequence of (i) in view of 6.59(iv).
We prove (i). We apply the Frattini Argument (see Lemma preceding 6.35)

on the group A acting on (S1)r and the normal subgroup T = A0 which acts
transitively on (S1)r by (†) above. Then A = TAY . Now assume that α ∈ T∩AY .
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Since α ∈ T we have α = eadX for some X ∈ t. Since α ∈ AY we have αY = Y ,
and that implies α = idg by (†) above. ut

We can now summarize the salient points of our discussion of Aut g in the
following theorem.

The Automorphism Group of a Compact Lie Algebra

Theorem 6.61. Let g be a compact Lie algebra. Then g = z(g)⊕ g′,
g′ = g1 ⊕ · · · ⊕ gk with gj ∼= s

nj
j , sj simple, sj 6∼= sj′ for j 6= j′, nj ∈ N.

Accordingly

Aut g ∼= Aut z(g)×Aut(g′) = Gl
(
z(g)

)
×Aut g′,(i)

Gl
(
z(g)

)
= Sl

(
z(g)

)
o
(
R× Z(2)

)
,(ii)

Aut g′ ∼= Aut g1 × · · · ×Aut gk,(iii)

Aut gj ∼= (Aut sj)
nj o Snj , j = 1, . . . , k,(iv)

Aut sj ∼= ead sj o Out(sj), j = 1, . . . , k.(v)

In particular, there is a finite subgroup F ⊆ Aut g such that

Aut g ∼= (Aut g)0 o F ∼=
(

Sl
(
z(g)

)
o Z(2)

)
× (Inn(g′) o Out(g′)

)
(vi)

= Inn(g′) o
(

Gl(z(g)
)
×Out(g′)

)
= Inn(g) o Out(g).

The factor Gl
(
z(g)

)
is the only noncompact one if g is not semisimple. For a given

Cartan subalgebra t of g a complementary semidirect factor for (Aut g)0 may be
chosen so that all of its elements α satisfy α(t) = t.

Proof. We collect the content of the preceding lemmas and note that only the
assertion on the semidirect splitting in (v) and (vi) has yet to be proved. We
note that a Cartan subalgebra t is obtained as z(g) ⊕ t1 ⊕ · · · ⊕ tk with a Cartan
subalgebra tj of gj , where gj ∼= s

nj
j in such a way that tj ∼= tj1 × · · · × tjnj

with Cartan subalgebras tjp of sj . Further we note that Gl
(
z(g)

)
is a semidirect

product of a Sl(z(g)
)

and the multiplicative group of nonzero real numbers which
is isomorphic to R × Z(2). We now observe that it suffices to prove the assertion
for the case that g = sn. By 6.59 we have Aut sn ∼= An o Sn where A = Aut s.
By 6.60 we have A = NE with a normal subgroup N ∼=

(
Aut g)0

∼= ead s and
where E is a semidirect complement isomorphic to Out s which we may choose to
leave a Cartan subalgebra t of s invariant. Now N0 = Nn is characteristic, hence

normal in An o Sn. The subgroup E
def
= En of An is invariant under the action of

Sn which operates by permuting the factors of An. Hence F
def
= E o Sn is a finite

subgroup meeting N0 trivially and satisfying An o Sn = N0F and this product
is semidirect as asserted in (∗). However, F so far respects the Cartan subalgebra

tn. Now let t∗
def
= t1 × · · · × tn be an arbitrary Cartan subalgebra of sn. Then by

the Transitivity Theorem 6.27, there are elements Xj ∈ sj such that eadXj tj = t.
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Let γ ∈ Aut sn be defined by γ = ead(X1,...,Xn) and let ϕ ∈ F . Then

(γ−1 ◦ϕ ◦ γ)(t1× · · ·× tn) = (γ−1 ◦ϕ)(t× · · ·× t) = γ−1(t× · · ·× t) = t1× · · ·× tn.

Hence γ−1Fγ is a semidirect complement for N0 respecting t∗. This establishes
(v) and (vi).

If g is not semisimple, then z(g) ∼= Rm with m > 0 and Gl
(
z(g)

)
= Gl(m,R),

and this group is not compact. Since all (Aut sj)0 = ead gj are connected compact
Lie groups, all other factors are finite extensions of compact Lie groups and are
therefore compact. ut

Remark 6.61a. Looking at the very explicit description of the automorphism
group Aut(g) of a compact Lie algebra in Theorem 6.61 we notice that the one item
that was not detailed was the group Out(s) of outer automorphisms of a simple
compact Lie group. The information on these belongs to the subject of classification
of simple compact Lie algebras via their Dynkin diagrams; we do not deal with
this issue here because there are numerous sources one can consult on this subject
[4], [42], [43], [111], [158], [282], [296], [332], [353], [354]. The isomorphy classes of
simple compact Lie algebras are in bijective correspondence with the isomorphy
classes of complex simple Lie algebras ([43], p. 16ff.) and these are in bijective
correspondence to isomorphy classes of root systems, and these are in bijective
correspondence to Dynkin diagrams [42]. An enormous amount of cataloging and
tabulating is present in this area. The group Out(g) is isomorphic to the isomorphy
group of the Dynkin diagram corresponding to g. These groups are either trivial,
or of order two, and in one case isomorphic to the six element group S3. Suffice it
to say at this point that the entries Out(si) are quite small in general. ut

The second major step in this section deals with the automorphism group of
compact Lie groups. We first have to discuss function space topologies. (More of
this will follow in Chapter 7 for abelian topological groups.) For a topological space
K let C(K,G) denote the set of all continuous functions f :K → G. We define a
topology on C(K,G) as follows: Let U be the set of all identity neighborhoods of
G. For f0 ∈ C(K,G) we set W (U ; f0) = {f ∈ C(K,G) | (∀k ∈ K) f(k) = Uf0(k)}.
Let O be the set of all subsets V ⊆ C(K,G) such that for every f0 ∈ V there is a
U ∈ U such that W (U ; f0) ⊆ V .

Exercise E6.14. Prove the following statement:

O is a Hausdorff topology on C(K,G) such that each f ∈ C(K,G) has a neigh-
borhood basis {W (U ; f) | U ∈ U}.
[Hint. In order to prove the last statement, for a given U0 ∈ U pick a U ∈ U such
that U2 ⊆ U . Let f ∈ W (U ; f0); then f ′ ∈ W (U ; f) implies f ′(k) ∈ Uf(k) ∈
UUf0(k) ⊆ U0f0(k) for all k ∈ K, whence W (U ; f) ⊆W (U0; f0).] ut

The topology we constructed is called the topology of uniform convergence on
C(K,G). Now let K = G.
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Lemma 6.62. For a compact group, the composition

(f1, f2) 7→ f1 ◦ f2:C(G,G)× C(G,G)→ C(G,G)

is continuous with respect to the topology of uniform convergence and thus makes
C(G,G) into a topological semigroup.

Proof. Let U0 ∈ U be the set of identity neighborhoods of G and let fj ∈ C(G,G),
j = 1, 2. Pick U1 ∈ U such that U2

1 ⊆ U0 and select U ∈ U such that U ⊆ U1 and
f1(Ux) ⊆ U1f(x) for all x ∈ G. (This choice is possible since G is compact: f1

is uniformly continuous.) Consider f ′j ∈ W (U ; fj), j = 1, 2, and let g ∈ G. Then

(f ′1 ◦ f ′2)(g) = f ′1
(
f ′2(g)

)
∈ f ′1

(
Uf2(g)

)
. Now f ′1(h) ∈ Uf1(h) for all h = uf2(g),

u ∈ U since f ′1 ∈ W (U ; f1). Thus (f ′1 ◦ f ′2)(g) ∈ Uf1

(
Uf2(g)

)
⊆ U1U1f1

(
f2(g)

)
⊆

U0(f1 ◦ f2)(g), whence f ′1 ◦ f ′2 ∈W (U0; f1 ◦ f2). ut

For a compact group we endow Aut(G) with the topology O1 induced by
the topology of uniform convergence of C(G,G). Consider the opposite group
Aut(G)op, i.e. the group defined on Aut(G) with multiplication α ∗ β = β ◦ α.
Then J : Aut(G)→ Aut(G)op, J(g) = g−1, is an isomorphism of groups. Multipli-
cation of Aut(G)op is continuous with respect toO1. LetO2 be the unique topology
on Aut(G) making J a homeomorphism. Now let O∨ = O1 ∨ O2 be the common
refinement of the two topologies. Then AutG has a continuous multiplication and
a continuous inversion α 7→ α−1 with respect to O∨ and therefore is a topological
group. We shall consider AutG as a topological group equipped with the topology
O∨.

Now let G be a compact Lie group. The Lie algebra functor L gives a morphism
LG: Aut(G)→ Aut(g), LG(α) = L(α) which is uniquely determined by the validity
of the equation α(expGX) = expG LG(α)(X) for all X ∈ g. Recall that Aut g is a
linear Lie group (cf. 5.43) which inherits its topology from the (finite dimensional)
Banach algebra Hom(g, g) of all linear self-maps of g. In the following theorem we
shall consider two technical hypotheses on G:

(#) There is a system of coset representatives {1, g1, . . . , gm} such that G =
G0∪G0g1∪· · ·∪G0gm and that for arbitrarily small identity neighborhoods
U1 of G the set LG{α ∈ Aut(G) | α(gi) ∈ U1gi, i = 1, . . . ,m} is open in
imLG.

(##) If π: G̃→ G is the universal covering then kerπ is a characteristic subgroup
of Z(G).

Condition (#) controls the behavior of the morphism LG off the identity compo-
nent. If G is connected, then it holds trivially. Condition (##) secures that an

automorphism of G̃ pushes down to an automorphism of G. It is automatically
satisfied if G is simply connected, or if G is centerfree, or if Z(G̃) is cyclic. Here,
as we did in the case of Lie algebras, we call a group centerfree if its center is
singleton.

By 6.6, the simply connected covering group of a connected compact Lie group
G is isomorphic to G̃ = Rp×S1×· · ·×Sq for simply connected simple compact Lie

groups Si, i = 1, . . . , q . If ker q ⊆ Rp×Z(S1)×· · ·×Z(Sq) = Z(G̃) is characteristic
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in Z(G̃), then necessarily p = 0 and thus G̃ and G are semisimple. We may identify

L(G̃) with g so that

g = L(G̃)
idg−−−−−−−−−→ g

exp
G̃

y yexpG

G̃ −−−−−−−−−→
π

G

commutes where π is the covering morphism. The lifting α 7→ α̃: AutG → Aut G̃
is injective and LG(α) = L

G̃
(α̃). However, every automorphism ϕ: G̃ → G̃ maps

the finite center Z(G̃) bijectively. Hence if kerπ is characteristic in Z(G̃), then
ϕ preserves kerπ and thus induces an automorphism of G. Consequently (##)

implies that the lifting α 7→ α̃: Aut(G)→ Aut(G̃) is bijective.

The Topological Automorphism Group of a Compact Lie Group

Theorem 6.63. Assume that G is a compact Lie group G and consider the
homomorphism of groups LG: Aut(G) → Aut g; then the following conclusions
hold.

(i) kerLG = {α ∈ Aut(G) | α|G0 = idG0
} and there is a commutative diagram

Aut(G)
LG−−−−−−−−−→ Aut g

quot

y incl

x
Aut(G)/ kerLG −−−−−−−−−→

L′
G

imLG,

where L′G is the isomorphism of groups given by L′G(α kerLG) = LG(α). If G is
connected, LG is injective.

(ii) The map LG is a morphism of topological groups.
(iii) imLG is closed in Aut g. In particular, imLG is a linear Lie group.
(iv) If (#) holds, then LG is open onto its image, and the corestriction L′G :

Aut(G)→ im(LG) of LG is an isomorphism of topological groups. In particular, if
G is connected, LG is an isomorphism onto its image and Aut(G) is a linear Lie
group. If G is simply connected, then LG is an isomorphism of topological groups.

(v) If G is connected and (##) holds, then G is semisimple and the morphism
LG: AutG→ Aut g is an isomorphism of compact Lie groups.

(vi) If G is a semisimple connected compact Lie group, then the adjoint group

Ad(G) ∼= G/Z(G), the simply connected covering group G̃, and the Lie algebra g
have isomorphic automorphism groups containing a closed subgroup isomorphic to
the automorphism group of G, and all of these groups are compact Lie groups.

Proof. We need some general preparation before we go into proving (i)–(iv). If U
is an identity neighborhood of G, then the relation α ∈ W (U ; idG) is equivalent
to expG LG(α)(X) = α(expGX) ∈ U expGX by the definition of W (U ; idG) and
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since expG: g→ G is surjective by the Maximal Torus Theorem 6.30. Thus

(∗)
W (U ; idG) = {α ∈ Aut(G) | (∀X ∈ g) expG LG(α)(X) ∈ U expGX}

=
⋂
X∈g
{α ∈ Aut(G) | expG LG(α)(X) ∈ U expGX}.

We fix once and for all an open ball B around 0 in g such that B ∗B is defined and
contained in a ball B′ around 0 for which exp |B′:B′ → V is a homeomorphism
onto an identity neighborhood of G so that B′ is the 0-component of exp−1

G (V )

(see 5.41). If C is any ball around 0 contained in B, then U
def
= expG C is an

identity neighborhood of G and for X ∈ B we have U expGX = expG C expGX =
expG(C ∗X). Thus (∗) entails

(†) W (U ; idG) ⊆
⋂
X∈B
{α ∈ Aut(G) | expG LG(α)(X) ∈ expG(C ∗X)}.

If for all X ∈ B, expG LG(α)(X) ∈ expG(C ∗ X), then expG LG(α)(B) ⊆
expG(C ∗X) ⊆ expGB

′, and so LG(α)(B) is in the 0-component of exp−1
G expGB

′

which is B′. Thus L(α)(B) ⊆ B′, and then upon applying (expG |B′)−1 to
expG L(α)(X) ∈ expG(C ∗ X), we get LG(α)(X) ∈ C ∗ X. Conversely, this last
relation in turn implies expG LG(α) ⊆ expG(C ∗X) = U expGX. Hence

Step 1. If U = expG C for any open ball around 0 in g contained in B, then

(‡) W (U ; idG) ⊆
⋂
X∈B
{α ∈ Aut(G) | LG(α)(X) ∈ C ∗X}.

Next let U1 be an identity neighborhood such that U2
1 ⊆ U = expG C and

that U1 is invariant under all inner automorphisms (according to 1.12). Let m be
such that (expB G)m = G0 and choose an invariant identity neighborhood U ′ of
G which satisfies (U ′)m ⊆ U1. Pick a ball C ′ around 0 so that expC ′ ⊆ U ′. Now
assume (∀X ∈ B)LG(α)(X) ∈ C ′ ∗ X and let g ∈ G0. Then there are elements
Xj ∈ B, j = 1, . . . ,m such that g = expGX1 · · · expGXm. Now

α(g) = expG L(α)(X1) · · · expG L(α)(Xm) ⊆ expC(C ′ ∗X1) · · · expG(C ′ ∗Xm)

= expG C
′ expGX1 · · · expG C

′ expGXm ⊆ U ′ expGX1 · · ·U ′ expGXm

= (U ′)m expGX1 · · · expGXm ⊆ U1g.

Write G = G0 ∪G0g1 ∪ . . . ∪G0gk for a system of representatives of the cosets of
G0. If α(gi) ∈ U1gi for i = 1, . . . , k and g ∈ G, then we represent g uniquely as
g = g0 or g = g0gi with g0 ∈ G0 and i ∈ {1, . . . ,m} and note α(g) = α(g0)α(gi) ⊆
U1α(g0)U1α(gi) = U1U1α(g0)α(gi) ⊆ Uα(g), using the invariance of U1. Therefore,
α ∈W (U ; idG). Thus

Step 2. If {1, g1, . . . , gm} is a system of coset representatives for G/G0 then for
U = expG C with any open ball C around 0 in g contained in B there is an open
ball C ′ around 0 and an identity neighborhood U1 in G such that

(††)
⋂
X∈B

i=1,...,m

{α ∈ Aut(G) | LG(α)(X) ∈ C ′ ∗X and α(gi) ∈ U1gi} ⊆W (U ; idG).
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Now we shall prove assertions (i)–(iv).
Conclusion (i) is immediate: LG(α) = idg iff α|G0. The remainder is simply the

Canonical Decomposition of a Morphism.
Now we prove Conclusion (ii). We must show that LG is continuous at idG. For

this purpose let D be an open ball around 0. Then we let C be a ball around 0
contained in B so small that (C ∗X)−X ⊆ D for all X ∈ B (which is possible by
the compactness of B). Now we define the identity neighborhood U of G as expG C.
Then by Step 1 and (†), the relation α ∈W (U ; idG) implies LG(α)(X) ∈ C ∗X ⊆
D+X for all X ∈ B. Hence (LG(α)− idG)(X) ∈ D for all X ∈ B. This shows that
LG: (Aut(G),O1)→ Aut g is continuous. Then, a fortiori, LG: Aut(G)→ Aut g is
continuous with respect to O∨. Thus we see that LG is a morphism of topological
groups.

Proof of (iii). Let ϕ ∈ Aut g. Then by 5.42(iii) there are open identity neigh-
borhoods U and V of G, respectively, and a continuous map Φ:U1 → U2 such that
Φ(xy) = Φ(x)Φ(y) whenever x, y, xy ∈ U1 and that, for appropriately chosen 0
neighborhoods B1 and B2 of g, the following diagram commutes:

B1
ϕ|B1−−−−−−−−−→ B2

expG |B1

y yexpG |B2

U1 −−−−−−−−−→
Φ

U2.

Now assume that ϕ ∈ imLG. Then there is a sequence αn ∈ Aut(G) such that
ϕ = limn LG(αn) in the linear Lie group Aut g, and this convergence is uniform on
each ball around zero in g. The function expG ◦ϕ: g → G satisfies expG ϕ(X) =
limn expG LG(αn)(X) = limn αn(expGX). For every g ∈ G0, by the Maximal
Torus Theorem 6.30, we have some Xg ∈ g with g = expGXg and the pointwise

limit α(g)
def
= limn αn(g) exists for all g, giving a function α:G0 → G0 such that

α(g) = expG ϕ(Xg) (irrespective of the selection of Xg). Since α is the pointwise
limit of a sequence of automorphisms αn|G0 of G, it is a group homomorphism.
If X ∈ B1 and g = expGX ∈ U1, then Φ(g) = Φ(expGX) = expG ϕ(X) = α(g).
Thus α agrees with the continuous function Φ on U1. Thus α is continuous at 1 and
therefore is a morphisms of topological groups. The relation α ◦ expG = expG ◦ϕ
shows that ϕ = L(α).

The same arguments show that a morphism α′:G → G of topological groups
is defined by α′(g) = limn α

−1
n (g), and that ϕ−1 = L(α′). Then L(α ◦ α′) =

L(α) ◦ L(α′) = ϕ ◦ ϕ−1 = idg since L is a functor. Thus α ◦ α′ agrees with idG
on some identity neighborhood of G and consequently on all of G0. The same
holds for α′ ◦ α. Thus α′ = α−1 and α ∈ Aut(G0). We shall now show that α is
in fact the restriction to G0 of an automorphism α∗ of G. Since G is a compact
space, GG is compact in the product topology. Hence the sequence (αn)n∈N in GG

has a convergent subnet (αn(j))j∈J in GG. Let α∗ ∈ GG be its limit. Then α∗ is a
homomorphism of groups and α∗|G0 = α. SinceG0 is open inG and α is continuous
and open, α∗ is continuous and open. Let us write G = G0g1 ∪ . . . ∪G0gk with a
system of representatives of the cosets of G0. Then limj∈J G0αn(j)(gm) exists for
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eachm = 1, . . . , k in the finite setG/G0 and therefore is eventually constant. Hence
there is a j0 ∈ J such that G0α(gm) = G0αn(j)(gm) for all m = 1, . . . , k and all
j > j0. Take any j > j0; then G = G0αn(j)(g1)∪· · ·∪G0αn(j)(gk) since αn(j) is an
automorphism of G. Hence α∗ is surjective and thus induces an automorphism of
G/G0 because this factor group is finite. Since α∗|G0 = α we have kerα∗ ∩G0 =
{1}, and thus kerα = {1} since α induces a bijection of G/G0. Hence, finally,
α∗ ∈ Aut(G) and LG(α∗) = L(α) = ϕ. Thus ϕ ∈ imLG and therefore imLG is
a closed subgroup of the linear Lie group Aut g and consequently is a linear Lie
group (see 5.53(iii)).

(iv) Next we show that LG is open onto its image. Let C be any ball around 0

in G contained in B and set U
def
= expG C. We have to show that LG

(
W (U ; idG)

)
is an identity neighborhood of imLG. Now by Step 2 there is an open ball C ′

around 0 in g and an identity neighborhood U1 in G such that (††) holds. Let D′

be an open ball around 0 so that D′ + X ⊆ C ′ ∗ X for all X ∈ B (which exists

by the compactness of B). Now set W ′
def
= {ϕ ∈ Aut g | (ϕ − idg)(B) ⊆ D′};

then W ′ is an identity neighborhood of Aut g. Set W∗
def
= {α ∈ Aut(G) | α(gi) ∈

U1gi, i = 1, . . . ,m}. For any ϕ ∈ W ′ ∩ LG(W∗) there is an α ∈ Aut(G) such that
ϕ = LG(α), that for all X ∈ B we have LG(α)(X) = ϕ(X) ∈ D′ + X ⊆ C ′ ∗X,
and that α(gi) ∈ U1gi for i = 1, . . . , n. Then (††) implies that α ∈ W (U ; idG).

This proves that W ′′
def
= W ′ ∩LG(W∗) ⊆ LG

(
W (U ; idG)

)
and thus W ′′ ∩W ′′−1 ⊆

LG
(
W (U ; idG) ∩W (U ; idG)−1

)
. Now if Condition (#) holds, this establishes the

claim that LG is open onto its image.
If G is connected, then (#) is satisfied and thus in view of (i), the morphism

LG implements an isomorphism of topological groups Aut(G)→ im(LG). By The-
orem 5.33(iv), every compact Lie group is a linear Lie group and thus Theorem
5.42 applies and shows that every automorphism ϕ: g → g gives rise to a local
isomorphism f :U1 → U2 between identity neighborhoods U1 and U2 of G such
that there are zero neighborhoods B1 and B2 of g satisfying f(B1) = B2 and that
expG:Bj → Uj are homeomorphisms for j = 1, 2 and the following diagram is
commutative:

B1
ϕ|B1−−−−−−−−−→ B2

expG |B1

y yexpG |B2

U1 −−−−−−−−−→
f

U2.

Now assume that G is simply connected. Then by Corollary A2.26 there is a
morphism F1:G→ G such that F |U1 = f . Likewise there is a F2:G→ G such that
F |U2 = f−1. Then F2 ◦ F1|U1 = idU1

. Since G is connected and thus generated
by U1 by Proposition 4.25(iii), we conclude that F2 is the inverse of F1. Then F1

is an isomorphism and the diagram above shows that LG(F1) = L(G)(F1) = ϕ.
Therefore imLG = Aut g and thus LG is an isomorphism.

(v) If G is simply connected , then LG is an isomorphism of topological groups

by (iv) above. If G is semisimple and connected, then G̃ is compact by 5.77.

Hence L
G̃

: Aut(G̃)→ Aut g is an isomorphism by what we just remarked. By the
observations preceding the theorem, Condition (#) implies that the lifting α 7→
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α̃ : Aut(G) → Aut(G̃) is bijective. Thus LG: Aut(G) → Aut(g) is bijective and
hence an isomorphism of topological groups by (ii) and (iv). From Theorem 6.4(x)
we know that the closed subgroup Aut g of Gl(g) is contained in the orthogonal
group O(g) with respect to some inner product on g, namely, the one given by
(X | Y ) = − tr adX adY . Since O(g) is compact, Aut g is compact.

(vi) If G is a semisimple compact Lie group, by what we just saw, Aut(G̃),
Aut

(
G/Z(G)

)
, and Aut g are isomorphic compact Lie groups, and by (i) through

(iv), Aut(G) is isomorphic to a closed subgroup of Aut(g) and therefore is a com-
pact Lie group. ut

We reiterate what the preceding theorem achieves: Aut g is a subgroup of the
group of units of a finite dimensional Banach algebra and is a matrix group,
inheriting its topology and its linear structure from Hom(g, g) ∼= Mn(R), n =
dim g. Chapter 5 said a lot about linear Lie groups of the form Aut g in general
and Theorem 6.61 gives us detailed information about this group if g is a compact
Lie algebra. But Aut(G) is a function space with a function space topology. The
preceding theorem links the two and establishes the fact that, at least for connected
compact Lie groups G, the topological group Aut(G) can be regarded as a closed
subgroup of Aut g. One should not think, however, that the linear Lie group Aut(G)
is compact in general as we shall observe in the following exercise.

Exercise E6.15. Prove the following statements:

(i) If G = Tp, then g = z(g) = Rp and Aut(G) ∼= Aut(Ĝ) ∼= Aut(Zp) = Gl(p,Z)
with the discrete topology.

(ii) If G is connected and semisimple, Aut(G) is compact; e.g. if G = SO(3),

then G̃ ∼= SU(2) and g ∼= (R3,×) where × is the vector product. Then Aut(G) ∼=
Aut(G̃) ∼= Aut g = SO(3).

[Hint. (i) Use information from Chapters 1 and 2, on the duality of compact and

discrete abelian groups to verify that f 7→ f̂ : Hom(G,G) → Hom(Ĝ, Ĝ), f̂(χ) =
χ ◦ f , is a bijective morphism of abelian groups mapping Aut(G) isomorphically

onto Aut Ĝ. The topology of uniform convergence of Hom(G,G) is discrete, since
G has an identity neighborhood which contains no subgroup except the singleton
one. (In a systematic way, we shall investigate such matters in Chapter 7 where
we deal with the duality of locally compact abelian groups.) The discrete group
Gl(p,Z) is compact for p < 2 only.

(ii) Apply 6.63(vi).] ut

Condition (#) is rather technical and may be difficult to verify in special in-
stances. At the moment, the best we have in terms of sufficient conditions is that
G is connected. We do need more information on the structure of Aut(G).

For a compact group let ι:G → Inn(G) be the morphism given by ι(g) = Ig.
Its kernel is the center Z(G) of G and thus it induces an isomorphism of compact
groups G/Z(G) → Inn(G). Note that Ad:G → Aut(g) is represented in the form
Ad = LG ◦ ι.
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The connected open subgroup G0Z(G)/Z(G) of G/Z(G) is the identity com-
ponent

(
G/Z(G)

)
0
. Hence ι(G0) = Inn(G)0. We write

Inn0(G) = ι(G0) = Inn(G)0.

Lemma 6.64. The restriction morphism ρG: Aut(G) → Aut(G0), ρ(α)α|G0 and
the induced mapping morphism σG: Aut(G)→ Aut(G/G0), σ0(α)(gG0) = α(g)G0

are continuous and the following conclusions hold:
(i) ker ρG = {α ∈ Aut(G) | α|G0 = idG0}, and

kerσG = {α ∈ Aut(G) | (∀g ∈ G)α(g) ∈ gG0}.
(ii) Inn0(G) ⊆ Aut(G)0 ⊆ kerσG.

(iii) ρG induces an exact sequence

{1} → Z(G0)/
(
Z(G0) ∩ Z(G)

)
→ Inn0(G)

ρG| Inn0(G)−−−−−−−−−→ Inn(G0)→ {1}.

Proof. The continuity of ρG and σG follows directly from the definition of the
topology of uniform convergence and the topology defined on the automorphism
groups. Conclusion (i) is straightforward from the definition of ρG and σG. For
a proof of the exactness of (ii) note that due to the continuity of σG we have
σG(Aut(G)0) ⊆ Aut(G/G0)0 = {G0}. Thus Aut(G)0 ⊆ kerσG. Next we prove
(iii). Let α ∈ ker ρG| Inn0(G). Then there is a g ∈ G0 such that Ig|G0 = idG0 .
This means g ∈ Z(G0). Thus ker(ρG| Inn0(G)) = ι

(
Z(G0)) ∼= Z(G0)Z(G)/Z(G) ∼=

Z(G0)/
(
Z(G0) ∩ Z(G)

)
. On the other hand, let β ∈ Inn(G0). Then there is a

g ∈ G0 such that β(x) = gxg−1 for all x ∈ G0. Set α = Ig = ι(g) ∈ Aut(G). Then
α ∈ Inn0(G) by the definition of Inn0(G) and ρG(α) = α|G0 = β. ut

The next theorem will actually show that Aut(G)0 = Inn0(G) and, accordingly,
Aut(G0)0 = Inn(G0).

Remarkably, in its proof we shall (again) be confronted with the need to argue
at one point along the lines of homological algebra. We shall therefore first recall
some concepts and establish a lemma. If a group Γ acts on an additively written
abelian topological group A via (ξ, a) 7→ ξ·a : Γ × A → A such that a 7→ ξ·a is
an automorphism of the topological group A we shall say that A is a Γ-module. A
function Φ: Γ→ A is called a 1-cocycle if it is continuous and satisfies

(‡) (∀ξ, η ∈ Γ) Φ(ξη) = Φ(ξ) + ξ·Φ(η)

(cf. definition preceding 6.37). It is called a 1-coboundary if

(‡‡) (∃a ∈ A)(∀ξ ∈ Γ) Φ(ξ) = ξ·a− a.

A quick calculation shows that every 1-coboundary is a 1-cocycle. Let Z1 =
Z1(Γ, A) be the additive group under pointwise addition of all 1-cocycles and
B1 = B1(Γ, A) the subgroup of all 1-coboundary. We say that the quotient group
H1 = H1(Γ, A) is the first cohomology group of the Γ-module A.
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Lemma 6.65. Let A be an additively written compact abelian Lie group, which
is a Γ-module for a finite group Γ. Then its first cohomology group H1(Γ, A) is
finite.

Proof. For each Φ ∈ Z1 we define an element zΦ ∈ A by

−zΦ
def
=
∑
ξ∈Γ

Φ(ξ).

Forming in the equation (‡) on both sides the sum over all η we get for each ξ ∈ Γ
the equation −zΦ = N ·Φ(ξ)− ξ·zΦ, N = card Γ; i.e.

(∀ξ ∈ Γ) N ·Φ(ξ) = −zΦ + ξ·zΦ = ξ·zΦ − zΦ.

Thus N ·Z1 ⊆ B1; hence N ·H1 = {0}, i.e. the order of every element in H1 divides
N ; we will briefly say that H1 has exponent dividing N .

The finite product AΓ is a compact abelian Lie group; the subgroup Z1 is a
closed subgroup in view of the definition of cocycles in (‡) above. Hence Z1 is a
compact abelian Lie group. Every compact abelian Lie group is of the form Tr⊕E
with a finite abelian group E (see 2.42(i)). Let div(Z1) be the largest divisible
subgroup of Z1 (cf. Appendix 1, A1.31). Since div(Tr ⊕ E) = Tr, it follows that
Z1/div(Z1) is finite. Since H1 has exponent N we conclude div(H1) = {1}. The
surjective homomorphism Z1 → H1 therefore annihilates div(Z1) and thus induces
a surjective morphism from the finite abelian group Z1/div(Z1) onto H1. Hence
H1 is finite as asserted. ut

Iwasawa’s Automorphism Group Theorem for Lie Groups

Theorem 6.66. Let G be a compact Lie group. Then
(i) Aut(G)0 = Inn0(G) (Iwasawa [217]).
(ii) Inn0(G) is a compact Lie group isomorphic to G0/(Z(G)∩G0). If Z0(G0) ⊆

Z(G), which is trivially the case if G is connected, then Inn0(G) is isomorphic to
(G0)′/

(
Z(G)∩(G0)′

)
and is, therefore, a semisimple connected compact Lie group.

If G is connected, Inn0(G) ∼= G′/(Z(G) ∩G′).

Proof. Let us prove the simple observation (ii) first. By definition of ι and Inn0(G),
the kernel of ι is Z(G), and the group Inn0(G) is the image ι(G0) of the compact Lie
group G0 under the morphism ι; it is, therefore, a compact Lie group by 6.7. Now
G0 = Z0(G0)(G0)′ by 6.16. Thus if we assume that Z0(G0) ⊆ Z(G) = ker ι then
Inn0(G) = ι(G0) = ι

(
(G0)′

)
(G0)′Z(G)/Z(G) ∼= (G0)′/

(
(G0)′∩Z(G)

)
, as asserted.

Since this group agrees with its commutator group, by 6.16, it is semisimple. If G
is connected, then G = G0 and the notation simplifies.

Now we shall prove (i) in several steps.
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Step 1. Assume thatG is connected and semisimple. By 6.5(iv), L(Aut g) = ad g,
whence

(Aut g)0 = expAut g L(Aut g) since Aut g is compact by 6.58(vi)

= ead g = Ad(expG g′) = Ad(G) (by 5.44).

Thus, if G is connected and semisimple,

(∗) (Aut g)0 = Ad(G).

Further Inn(G) ⊆ Aut(G)0 whence LG
(

Inn(G)
)
⊆ LG(

(
Aut(G)

)
0
) ⊆ (Aut g)0 =

Adg(G) by (∗). Since Adg(G) = LG
(
ι(G)

)
= LG

(
Inn(G)

)
, we have LG

(
Inn(G)

)
= LG(Aut(G)0), and since LG is an embedding if G is connected, we get

(∗∗) Inn(G) = Aut(G)0 and LG
(

Inn(G)
)

=
(

Aut g
)

0
.

Step 2. Assume that G is connected. Since g is a finite dimensional real Hilbert
Lie algebra we know from Lemma 6.57 that η: Aut g→ Aut z(g)× Aut g′, η(α) =
(α|z(g), α|g′) is an isomorphism whose inverse is given by η−1(α, β)(Xz + Xg′) =
α(Xz)+β(X ′g). Hence Aut g ∼= Gl(z)×Aut g′. We note that η embeds LG

(
Aut(G)

)
into

LG
(

Aut(G)
)
|z(g)× LG

(
Aut(G)

)
|g′.

If we have a characteristic connected compact subgroup H of G such as H = Z0(G)
or H = G′, then by 6.4 we have an orthogonal decomposition g = h⊕h⊥ and there
is a commutative diagram

Aut(G)
α7→α|H−−−−−−−−−→ Aut(H)

LG

y yLH

Aut(g) −−−−−−−−−→
α7→α|g

Aut(h).

In particular, LG
(

Aut(G)
)
|h = LH

(
Aut(G)|H

)
⊆ Aut(h). Hence η gives an em-

bedding

LG
(

Aut(G)
)
→ LZ0(G)

(
Aut(G)|Z0(G)

)
× LG′

(
Aut(G)|G′

)
⊆ LZ0(G)

(
Aut(Z0(G))

)
× LG′

(
Aut(G′)

)
.

Now Aut
(
Z0(G)

) ∼= Gl(p,Z) with p = dim z; this is a discrete group. By Step 1
we have Aut(G′)0 = Inn(G′). Further

LG
(

Inn(G)
)
|z(g) = {idz(g)} and LG

(
Inn(G)

)
|g′ = LG′

(
Inn(G′)

)
.
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Thus

η
(
LG(Inn(G))

)
= {idz(g)} × LG′

(
Inn(G′)

)
= {idz(g)} × (Aut g′)0 by (∗∗) above

⊇ {idz(g)} × LG′(Aut(G′)0)|g′

= LZ0(G)

(
Aut(G)0|Z0(G)

)
× LG′(Aut(G′)0)|g′

(since Aut
(
Z0(G)

)
is discrete)

= LG
(

Aut(G)
)
|z(g)× LG′(Aut(G′)0)|g′ ⊇ η

(
LG(Aut(G)0)

)
.

Since η ◦ LG is an embedding, Inn(G) = Aut(G)0 follows.

Step 3. In the terminology of Lemma 6.64 we write

Aut∗(G) = ker ρG ∩ kerσG

= {α ∈ Aut(G) | (∀g ∈ G0)α(g) = g and (∀g ∈ G)α(g) ∈ gG0}.

From Lemma 6.64(iii) and Step 2 above we have exact sequences

{1} → Aut∗(G) ∩Aut(G)0
incl−−−−→ Aut(G)0

ρG|Aut(G)0−−−−−−−→ Inn(G0)→ {1},

{1} → Z(G0) ∩ Z(G)
incl−−−−→ Inn0(G)

ρG| Inn0(G)−−−−−−→ Inn(G0)→ {1}.

It follows that Aut(G)0 = Inn0(G)·(Aut∗(G)∩Aut(G)0

)
. The left side is connected,

thus in order to show (i) it suffices to show that Inn0(G) is the identity component
of the right hand side. This is the case iff Aut∗(G)∩ Inn0(G) is open in Aut∗(G)∩
Aut(G)0, i.e. iff

(
Aut∗(G)∩Aut(G)0

)
/
(

Aut∗(G)∩Inn0(G)
)

is discrete. Therefore,

in order to prove (i) it now suffices to show that Aut∗(G)/
(

Aut∗(G) ∩ Inn0(G)
)

is finite, hence discrete. This we will show in the remainder of the proof.

Step 4. From here on it is convenient to abbreviate the finite group G/G0 by
Γ and the abelian group Z(G0) by A. For any α ∈ Aut∗(G) and g′ ∈ gG0 =
G0g write g′ = gg0 for some g0 ∈ G0. Then α(g′) = α(g)α(g0) = α(g)g0 and

the element ϕ(g)
def
= gα(g)−1 is contained in G0. Thus ϕ(g′) = gg0g

−1
0 α(g)−1 =

gα(g)−1 = ϕ(g). Hence we get a function Φα: Γ→ G0 such that, writing π:G→ Γ
for the quotient morphism, we have ϕ = Φα ◦ π and Φα

(
π(g)

)
= gα(g)−1, i.e.

g = Φα
(
π(g)

)
α(g). Then Φα

(
π(gh)

)
α(gh) = gh = Φα

(
π(g)

)
α(g)Φα

(
π(h)

)
α(h)

whence

(†) (∀g, h ∈ G) Φα
(
π(gh)

)
= Φα

(
π(g)

)(
α(g)Φα

(
π(h)

)
α(g)−1

)
.

In particular, for all ξ ∈ Γ and x ∈ G0, we compute

α(g)xΦα(ξ)x−1α(g)−1 = α(gx)Φα(ξ)α(gx)−1

= Φα
(
π(gx)

)−1
Φα(π(g)ξ) = Φα

(
π(g)

)−1
Φα(π(g)ξ)

= α(g)Φα(ξ)α(g)−1

whence

(∀ξ ∈ Γ, x ∈ G0)xΦα(ξ) = Φα(ξ)x.
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Thus im Φα ⊆ Z(G0) = A, and since α(g) = gg0 for some g0 ∈ G0 we have
α(g)Φα(ξ)α(g)−1 = gΦα(ξ)g−1, and this element depends (for fixed ξ) on gG0

only. Thus for z ∈ Z(G0) and ξ = gG0 we set Iξ(z) = gzg−1, unambiguously.
Then Φ = Φα satisfies the following condition

(‡) (∀ξ, η ∈ Γ) Φ(ξη) = Φ(ξ)Iξ
(
Φ(η)

)
,

i.e. Φα is a 1-cocycle. If α ∈ Aut∗(G)∩ Inn0(G), then α = Iz for some z ∈ G0, and
since Iz|G0 = idG0 iff z ∈ A, we have Φα(ξ) = gα(g)−1 = gzg−1z−1. Under these
circumstances

(‡‡) (∃z ∈ A)(∀ξ ∈ Γ) Φα(ξ) = Iξ(z)z
−1,

i.e. Φα is a 1-coboundary. Since g = Φα
(
π(g)

)
α(g) for all α ∈ Aut∗(G), the

function

α 7→ Φα: Aut∗(G)→ Z1
(
Γ, A

)
is a bijection mapping Aut∗(G) ∩ Inn0(G) to B1

(
Γ, A

)
. Thus we have an isomor-

phism

Aut∗(G)/(Aut∗(G) ∩ Inn0(G)
) ∼= Z1

(
Γ, A

)
B1
(
Γ, A

) = H1(Γ, A
)
.

Therefore, we have to argue that H1
(
Γ, A

)
is finite. But that is the content of

Lemma 6.65. The application of this lemma completes the proof the theorem. ut

Note that in the group G = O(2), the semidirect product of the circle group

SO(2) with the two element group

{(
±1 0
0 1

)}
, we have Z0(G0) = G0 = SO(2),

but Z(G) =

{
±
(

1 0
0 1

)}
. Thus Z0(G0) 6⊆ Z(G) and indeed Aut(G)0 = Inn0(G)

is a circle group.
It may serve a useful purpose to depict some of the groups we discussed in

a diagram. Recall ρG: Aut(G) → Aut(G0), ρG(α) = α|G0 and σG: Aut(G) →
Aut(G/G0), σ(α)(gG0) = α(g)G0. We make the following definitions.

Aut#(G)
def
= ker ρG = {α ∈ Aut(G) | α|G0 = idG0

},

Aut∗(G)
def
= ker ρG ∩ kerσG = {α ∈ Aut#(G) | (∀g ∈ G)α(g) ∈ gG0},

G1 def
= ker ρG/(ker ρG ∩ kerσG)

bij−−→σG(ker ρ) ⊆ Aut(G/G0) finite,

H1 = H1
(
G/G0, Z(G0)

)
finite.
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6.67. Diagram. There is a commutative diagram:

Aut(G̃0)
L
G̃0−−−→∼=

Aut g

•̃

x xincl

Aut(G0)
LG0−−−→∼=

imLG0

incl

x xincl

Aut#(G)
incl−−−→ Aut(G)

ρG−−−→ Aut(G)|G0
LG|ρG(AutG)
−−−−−−−−−→∼=

imLG

G1

{x incl

x incl

x xincl

Aut∗(G) Inn(G) −−−−−−→
ρG| Inn(G)

Inn(G)|G0
LG0
|ρG(InnG)

−−−−−−−−−→∼=
Ad(G)

H1

{x xincl incl

x xincl

Aut∗(G) ∩ Inn0(G) −−−→
incl

Inn0(G)=
Aut(G)0

−−−−−−−→
ρG| Inn0(G)

Inn(G0)
LG0
| Inn(G0)

−−−−−−−−→∼=
Ad(G0)=

ead g=ead g′

From 6.61 we recall Aut g ∼= ead g′ o (Gl
(
z(g)

)
× Out g). Let us write Aut g =

eadg g′D with a semidirect cofactor ∼= Gl
(
z(g)

)
×Out g.

Lemma 6.68. Let P be a semidirect product of a normal subgroup N and a
subgroup H and let f : Γ → P be a group homomorphism. Assume that M is a
normal subgroup of Γ such that N = f(M). Set S = f−1(H). Then G = MS and
M ∩ S ⊆ ker f ⊆ f−1(N) ∩ S.

Proof. Let g ∈ G. Then there are n ∈ N and an h ∈ H such that f(g) = nh.
Since N = f(M) there is an m ∈ M such that n = f(m). Set s = m−1g. Then
f(s) = f(m−1g) = n−1nh = h ∈ H, i.e. s ∈ S. Hence G = MS. Now let d ∈M∩S.
Then f(d) ∈ f(M)∩ f(S) ⊆ N ∩H = {1} whence d ∈ ker f . Conversely, d ∈ ker f
implies d ∈ f−1({1}) = f−1(N ∩H) = f−1(N) ∩ f−1(H). ut

Corollary 6.69. (i) For a compact Lie group G, the compact Lie subgroup
Aut(G)0 = Inn0(G) of Aut(G) is open and is isomorphic to G0/

(
G0 ∩ Z(G)

)
.

(ii) The subgroup Aut(G)0·Aut#(G) is a compact open normal Lie subgroup of
Aut(G) and

Aut(G)/
(

Aut(G)0·Aut#(G)
) ∼= (Aut(G)|G0)/ Inn(G0) ∼= imLG/Ad(G0).

(iii) The group Aut(G) contains a closed subgroup S such that Aut(G) = Inn0(G)S
and Inn0(G) ∩ S ⊆ Aut#(G) ⊆

(
Inn0(G) Aut#(G)

)
∩ S.

Proof. We first prove (i) and (ii). From Theorem 6.63 we know that Aut(G0) is a
linear Lie group, and from Theorem 6.66 that Inn(G0) is its identity component,
which is therefore open in Aut(G0). This implies that ρ−1

G

(
Inn(G0)

)
is open in

Aut(G). In order to show that Inn0(G) is open in Aut(G) it therefore suffices to
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show that it is open in ρ−1
G

(
Inn(G0)

)
. Since ρG

(
Inn0(G)

)
= Inn(G0), we have

ρ−1
G

(
Inn(G0)

)
= Inn0(G)· ker ρG = Inn0(G)·Aut#(G).

Now

Inn0(G)·Aut#(G)/ Inn0(G) = Aut#(G)/
(

Aut#(G) ∩ Inn0(G)
)

= Aut#(G)/
(

Aut∗(G) ∩ Inn0(G)
)
.

As is seen from Diagram 6.67, this group is an extension of the finite group H1

by the finite group G1 and therefore is finite. It follows that ρ−1
G

(
Inn(G0)

)
has

Inn0(G) as a compact closed normal subgroup of finite index and is, therefore
a compact group in which Inn0(G) is open. Moreover, Aut(G)/ρ−1

(
Inn(G0)

) ∼=
ρG
(

Aut(G)
)
/ Inn(G0).

Finally we prove (iii). We apply Lemma 6.68 with Γ = Aut(G), P = Aut(G̃0),
N = Inn(G0), and f = ρG. Indeed since Aut g = Inn g o Out g by Theorem

6.61(iii), in view of Diagram 6.67 above we also have P = Aut(G̃0) = Inn(G0)oH
with a suitable subgroup H of P . We let S = ρ−1

G Inn(G0). The final assertion of
the corollary now follows from Lemma 6.68 in view of the fact that ρG

(
Inn0(G)

)
=

Inn(G0) implies ρ−1
G

(
Inn0(G)

)
= Inn0(G) ker ρG. ut

Note that Aut(G) is a Lie group since Aut(G)0 is a Lie group (see Postscript
to Chapter 5).

Definition 6.70. Let G be a compact group and T a maximal torus. Define
AutT (G) to be the set of all α ∈ Aut(G) such that α(T ) = T . Let C be a Weyl
chamber of t = L(T ). Set AutC(G) = {α ∈ AutT (G) | L(α)(C) = C}. ut

Notice that

AutT (G) ∩ Inn0(G) = {Ig | g ∈ G0, Ig(T )T = T} = ι
(
N(T,G)

)
and that Aut#(G) ⊆ AutT (G) for all T .

Proposition 6.71. For a compact Lie group G and a maximal torus T , the fol-
lowing statements hold.

(i) Aut(G) = Inn0(G)·AutT (G) and Inn0(G) ∩ AutT (G) = InnT (G) =
ι
(
N(T,G0)

) ∼= N(T,G0)Z(G)/Z(G) ∼= N(T,G0)/
(
N(T,G0) ∩ Z(G)

)
.

(ii) AutT (G) = ι
(
N(T,G0)

)
·AutC(G) and ι

(
N(T,G)

)
∩AutC(G) = ι(T ).

(iii) Aut(G) = Inn0(G)·AutC(G) and Inn0(G) ∩AutC(G) = ι(T ).
(iv) ι(T ) is an open subgroup of AutC(G) and AutC(G)0 = ι(T ).

Proof. In this proof, we use the Frattini Argument (preceding Corollary 6.35)
several times.

(i) The group Aut(G) acts on the set T (G) of maximal tori of G. The subgroup
Inn0(G) acts transitively by the Transitivity Theorem 6.27 (applied to the identity
component G0). The isotropy group of Aut(G) at T is AutT (G). Thus the Frattini
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Argument shows Aut(G) = Inn0(G)·AutT (G). An automorphism α of G is in
Inn0(G) ∩AutT (G) iff there is a g ∈ G0 such that α = Ig and T = α(T ) = gTg−1

iff for some g ∈ N(T,G0) we have α = ι(g). Since ker ι = Z(G) the remainder
follows from the canonical decomposition of the morphism ι|N(T,G0):N(T,G0)→
ι
(
N(T,G0)

)
.

(ii) The group AutT (G) acts on t via (α,X) 7→ L(α)(X) : AutT (G) × t → t.
Accordingly, it acts on the set C of Weyl chambers via (α,C) 7→ L

(
α(C)

)
:

AutT (G) × C → C. By 6.52, the subgroup ι
(
N(T,G0)

)
acts transitively on C.

The Frattini Argument now shows AutT (G) = ι
(
N(T,G0)

)
·AutC(G). Now α ∈

Aut(G) is in ι
(
N(T,G0)

)
∩ AutC(G) if there is a g ∈ N(T,G0) such that C =

α(C) = L(α)(C) = Ad(g)(C). SinceW(T,G) acts simply transitively on C by 6.52,
we conclude g ∈ T . Then Ad(g)|t = idt.

(iii) By (i) and (ii) we have

Aut(G) = Inn0(G)·AutT (G)

= Inn0(G)·ι
(
N(T,G0)

)
·AutC(G) = Inn0(G)·AutC(G).

Finally, α ∈ Aut(G) is contained in Inn0(G) ∩ AutC(G) iff α = Ig for some
g ∈ N(T,G0) and C = L(α)(C) = Ad(g)(C), and this holds iff α = Ig with
g ∈ T by 6.52.

(iv) The group ι(T ) ⊆ Aut(G) contains exactly the inner automorphisms ι(t) =
It, t ∈ T , and these morphisms fix T elementwise. Since G0 ⊆ Z(T,G) we have
ι(T ) = Inn0(G) ∩ AutC(G) ⊆ AutC(G). From (iii) we obtain AutC(G)/ι(T ) =
Aut(G)/

(
Inn0(G) ∩AutC(G)

) ∼= Aut(G)/ Inn0(G), and from Iwasawa’s Theorem
6.66 we know that this group is discrete. Hence ι(T ) ⊆ AutC(G)0 ⊆ ι(T ). ut

Corollary 6.72. The automorphism group Aut(G) of a compact Lie group G is a
product of the identity component Aut(G)0 = Inn0(G) and a subgroup AutC(G) ⊆
AutT (G) containing ι(T ) as an open connected subgroup. ut

If G = T2, then G = T and Aut(G) = AutT (G) = AutC(G) ∼= Gl(2,Z).
If G = SO(3) then Aut(G) ∼= Aut g ∼= Aut(R3,×), where × denotes the vector
product on R3. We may take T to be the group of rotations with the z-axis as
axis. We consider g as (R3,×) with t = R·(0, 0, 1) and then identify Aut(G) with
SO(3). Thus ι(T ) gets identified with the T . Then AutT (G) = T ·D where D
is the group of diagonal matrices diag(±1,±1,±1) of determinant 1. We may
take C = R+·(0, 0, 1) = {0} × {0} × [0,∞[. Then AutC(G) = T ·D1 where D1 =
{diag(1, 1, 1),diag(−1,−1, 1)}.

Corollary 6.72 applies, in particular, to the case that G is connected. Then
the situation becomes even clearer. Diagram 6.67 above reduces to a much more

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



6. Compact Lie Groups 311

compact one as follows:

Aut(G̃)
L
G̃−−→∼=

Aut g

•̃

x xincl

Aut(G)
LG−−→∼=

imLG

incl

x xincl

Inn(G)
LG| Inn(G)−−−−−−→∼=

Ad(G)=
ead g .

For an arbitrary compact Lie group G we write

Out(G)
def
= Aut(G)/ Inn(G).

Structure of the automorphism group of a compact Lie group

Theorem 6.73. Let G be a connected compact Lie group. Then Inn(G) = Inn0(G)
is a compact open subgroup of Aut(G), and for a given maximal torus T there is

a discrete subgroup D of AutG contained in N(T,Aut(G))
def
= {α ∈ Aut(G) |

α(T ) = T} such that

Aut(G) = Inn(G)·D, Inn(G) ∩D = {1}.

Thus

Aut(G) ∼= Inn(G) o Out(G) ∼= ead g′ o
Aut(G)

ead g′
.

Proof. We apply Lemma 6.68 with Γ = Aut(G), P = Aut g, N = Inn g =
Ad(G), H a semidirect complement according to 6.61(viii), which we may choose
in N(t,Aut g) = {α ∈ Aut g | α(t) = t}. We further take f = LG: Γ → P . Set
D = f−1(H). We claim f−1

(
N(t,Aut g)

)
= N(ι(T ),AutG): indeed α ∈ Aut(G)

is in the left hand side iff LG(α)(t) = t iff α(T ) = T . Since G is connected, the
morphism f = LG is injective, and thus the theorem follows from 6.68 in view of
the fact that Ad(G) is open in Aut g and thus Inn(G) is open in Aut(G). ut

From Diagram 6.67 we see that for not necessarily connected groups G, the
morphism f is the composition of ρG: Aut(G)→ Aut(G)|G0 and an injective map.
Thus f is injective if and only if ρG = (α 7→ α|G0) is injective. If this holds, the
conclusions of the theorem persist.

This structure theorem now allows us to sharpen the preliminary version of
Lee’s Theorem 6.36.
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Dong Hoon Lee’s Supplement Theorem for Lie groups

Theorem 6.74. Let G be a topological group such that G0 is a compact Lie group
and let T be an arbitrary maximal torus of G0. Then

(I) N(T,G) ⊆ G contains a closed subgroup S such that G = (G0)′S and
(G0)′ ∩ S ⊆ Z

(
(G0)′).

(II) If G is a compact Lie group, or if G0 is semisimple, then N(T,G) ⊆ G
contains a finite subgroup E such that G = G0E and that G0 ∩ E ⊆ Z(G0). The
finite subgroup G0 ∩ E of G is normal in G.

Proof. (I) We consider the homomorphism f :G → Aut(G0), f(g)(x) = gxg−1,
which maps (G0)′ onto the identity component Inn(G0) = Aut(G0)0. By 6.73 this
open subgroup is a semidirect factor of Aut(G0). LetH be a semidirect complement

contained in N
(
T,Aut(G0)

)
. Then by Lemma 6.68 the closed subgroup S

def
=

f−1(H) satisfies G = (G0)′S and (G0)′ ∩ S ⊆ ker f = Z(G0, G). Moreover, s ∈
S implies f(s) ∈ N

(
T,Aut(G)

)
, i.e. sTs−1 = T and thus s ∈ N(T,G). Since

(G0)′ ∩ Z(G0, G) = Z
(
(G0)′

)
we have (G0)′ ∩ S ⊆ Z

(
(G0)′

)
. This proves (I).

For a proof of (II) we note that Inn(G0) = f(G0) ⊆ Aut(G0)0 and apply
Lemma 6.68 to f :G → Aut(G0) again, this time with M = G0 instead of M =
(G0)′. This yields G0 ∩ S ⊆ ker f = Z(G0, G), i.e. S0 ⊆ G0 ∩ S ⊆ Z(G0). Since
Z(G0) ⊆ ker f ⊆ S we get S0 = Z(G0)0. If G0 is semisimple, then (I) and (II)
have equivalent conclusions. If G is a compact Lie group, then S is a Lie group
and Theorem 6.10 applies to S and yields a finite subgroup E ⊆ S ⊆ N(T,G) such
that S = S0E and the order of each element of E ∩ Z(G0)0 divides |S/Z(G0)0|.
Now G = G0S = G0Z(G0)0E = G0E and G0 ∩ E ⊆ G0 ∩ S = Z(G0).

The centralizer and thus the normalizer of G0 ∩ E contains G0, and the nor-
malizer also contains E. Hence G0 ∩ E is normal in G0E = G. ut

The proof yielded also that x ∈ Z(G0)0 ∩E implies x|S/Z(G0)0| = 1. The group
S in 6.74 is a Lie group with a torus as identity component S0; such groups were
discussed in Theorem 6.10.

We shall call the subgroup E of Theorem 6.74 as Lee supplement and also
observe that the normality of the finite group G0 ∩ E in G implies its normality
in G0; it is therefore necessarily central in G0 by 6.13.

Sandwich Theorem for Compact Lie Groups

Corollary 6.75. For any compact Lie group G, there is a finite subgroup E of G
providing a “sandwich situation”

G0 oι E
µ→ G→ G/(G0 ∩ E) ∼=

G0

G0 ∩ E
o

E

G0 ∩ E

with ι:E → Aut(G0) defined by ι(e)(g0) = eg0e
−1, µ:G0 oι E → G by µ(g0, e) =

g0e, and where the morphism G → G/(G0 ∩ E) is the quotient map. Both mor-
phisms are surjective and have kernels isomorphic to G0 ∩ E.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



6. Compact Lie Groups 313

Proof. We let T be an arbitrary maximal torus of G and let E be as in Lee’s
Supplement Theorem 6.74(II). The quotient group G/(G0∩E) then is a semidirect
product of G/(G0 ∩E) and E/(G0 ∩E). The semidirect product G0 oι E and the
morphism µ are well-defined and surjective; the kernel of µ consists of all (e−1, e)
with e ∈ G0∩E. Thus e 7→ (e−1, e) : G0∩E → kerµ therefore is an isomorphism.ut

In the sense of these previous results, each compact Lie group comes close to
splitting over its component.

In Exercise E6.9(b) we saw that these results cannot be improved in the sense
that one might be able to eliminate the intersection G0∩E. A ready-made example
is the subgroup S1·{±1,±i,±j,±k} ⊆ S3.

Let us emphasize from Proposition 6.37 what, in Lee’s Supplement Theorem
6.74, is the precise obstruction to the splitting of G0. Recall that for a subgroup E
of G and D = G0 ∩ E we let Z1

D(E,G0) denote the set of all cocycles f :E → G0

which agree on D with the inclusion map D → G0.

Remark 6.75a. Let G be a compact Lie group and E a finite subgroup such

that G = G0E and D
def
= G0 ∩ E ⊆ Z(G0) as in Theorem 6.74. Then G ∼=

G0 o G/G0, i.e. the set C(G0) of semidirect cofactors of G0 is not empty if and
only if Z1

D(E,G0) 6= Ø. The function

Φ:Z1
D(E,G0)→ C(G0), Φ(f) = {f(e)−1e | e ∈ E},

is a bijection.

Proof. This follows at once from Proposition 6.37. ut

Covering Groups of Disconnected Compact Lie Groups

Assume that N is a connected compact Lie group and H a topological group for
which there is a morphism of topological groups f :H → AutN . Let Ñ be the
universal covering group and pN : Ñ → N is the universal covering morphism. We
consider the morphisms LN : Aut(N) → AutL(N) and LÑ : Aut(Ñ) → AutL(Ñ)

of Theorem 6.63. The morphism L(pN ):L(Ñ) → L(N) is an isomorphism of

Lie algebras, which induces an isomorphism ιN : AutL(Ñ) → L(N), ιN (α) =

L(pN )−1◦α◦L(pM ), and LÑ : Aut(Ñ)→ AutL(Ñ) is an isomorphism by Theorem
6.63(iv).

We now recall that we have an injective morphism

ηN = L−1

Ñ
◦ ι−1

N ◦ LN : AutN → Aut Ñ ,

ηN (β) = β̃, filling in correctly in the commuting diagram

Aut Ñ
LÑ−−−−−−−−−→ AutL(Ñ)

ηN

x yιN
AutN

LN−−−−−−−−−→ AutL(N).
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We define F
def
= ηN ◦ f :H → Aut Ñ ; in other words, for h ∈ H we have

F (h) = f̃(h) and there is a commuting diagram

Ñ
F (h)−−−−−−−−−→ Ñ

pN

y ypN
N −−−−−−−−−→

f(h)
N.

Accordingly, for each ñ ∈ Ñ we obtain

(∗) pN
(
F (h)(ñ)

)
= f(h)

(
pN (ñ)

)
.

We shall call F the lifting of f and construct two semidirect products:

P̃
def
= Ñ oF H,

P
def
=N of H

and define ψf : P̃ → P by ψf
(
(ñ, h)

)
= (pN (ñ), h). Then formula (∗) permits us to

compute
ψf
(
(ñ1, h1)(ñ2, h2)

)
= ψf

(
(ñ1F (h1)(ñ2), h1h1)

)
= (pN

(
ñ1F (h1)(ñ2)

)
, h1h2) =

(pN (ñ1)f(h)
(
pN (ñ2)

)
, h1h2) = (pN (ñ1), h1)(pN (ñ2), h2) =

ψf
(
(ñ1, h1)

)
ψf
(
(ñ2, h2)

)
. That is, ψf is a morphism of topological groups with the

discrete kernel ker pN × {1} ∼= ker pN ∼= π1(N).
For a compact Lie group G let us call a finite subgroup E as described in Dong

Hoon Lee’s Supplement Theorem 6.74 and in the Sandwich Theorem 6.75 a Lee
supplement (for G0 in G). We recall that there is an exact sequence

1→ G0 ∩ E−−→E−−→G/G0 → 1,

and G0 ∩ E is central in G0.
We fix the following notation: Let f :E → Aut(G0) be the morphism defined

by f(h)(g) = hgh−1. Let F :E → Aut(G̃0) be the lifting of f and µ:G0 of E → G

the morphism given by µ(g0, e) = g0e. Finally we set G̃
def
= G̃0 oF E and define

Φ: G̃→ G to be the morphism defined by Φ = µ ◦ ψf , Φ(g̃0, e) = pG0
(g̃0)e.

Corollary 6.76. Let G be a compact Lie group and E a Lee supplement. Then
(i) G̃0 is the universal covering group of G0 and Φ is a surjective morphism

inducing on the identity components the universal covering morphism.
(ii) Its kernel ker Φ is a discrete normal finitely generated abelian subgroup of G̃

for which there is an exact sequence

(1) 1→ π1(G0)−−→K−−→G0 ∩ E → 1.

(iii) G̃/G̃0
∼= E and there is an exact sequence

(2) 1→ G0 ∩ E−−→G̃/G̃0−−→G/G0 → 1.

Proof. (i) It is clear from the construction that G̃0 = G̃0×{1} and that Φ imple-
ments the universal covering on the components, and induces a local isomorphism.
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The finite group G0 ∩E is contained in the center of G0 and therefore is abelian.
We have kerµ = {(g0, e) ∈ G0 × E : e = g−1

0 } ∼= G0 ∩ E = Z(G0) ∩ E, and

kerµ ⊆ (Z(G0) ∩ E)2. Therefore ker Φ = {(g̃0, e) : e = pN (g̃0)−1} ⊆ Z(G̃0) ∩ E.

In particular, K is abelian. The morphism ψf : G̃ → G0 of E maps maps K
onto kerµ ∼= G0 ∩ E, and K contains kerψf = ker pG0

× {1} ∼= π1(G0). Thus
K/ kerψf ∼= G0 ∩ E. This amounts to the existence of the exact sequence (1).

(ii) The group ker pG0
∼= π1(G0) is central in G̃0 and thus is finitely generated

abelian. Thus K is a finitely generated abelian group.
(iii) This is immediate from the construction and the comments preceding the

Corollary. ut

We remark that according to the Sandwich Theorem 6.75, the covering con-
struction of semidirect products also applies to the group G/(G0∩E), yielding for

this group a “covering group” of the form G̃0 oG/G0. This is the kind of covering
group which one would näıvely want for G but cannot get in general because of
the obstruction G0 ∩ E.

Let L be a connected compact Lie group and F a finite group with a central
subgroup C. Assume that there is an injective morphism κ:C → Z(L). Set D =
{(κ(c)−1, c) : c ∈ C} ⊆ L × F . Set G = (L × E)/D. Then G0 = (L × C)/D ∼= L,
E = (κ(C × F )/D ∼= F . Then G = G0E and G0 ∩ E = (κ(C)× C)/D ∼= C. Here
G0 ∩ E ⊆ Z(G) and K is abelian. Example: Let p 6= 2 be a prime, L = R/pZ,
F = (Z/pZ)2 × Z/pZ such that (v, ξ)(w, η) =

(
v + w, ξ + η + 1/2 det(v, w)

)
, and

C = {0} × Z/pZ; we let κ(0, n + pZ) = n + pZ. Then G′ = G0 ∩ E and thus G0

does not split. We have G̃ = R × F , but there is no group H with H0
∼= R and

H/H0
∼= G/G0 with a surjective morphism H → G inducing a universal covering

H0 → G0 and an isomorphism H/H0 → G/G0.
Let X be a finite set and S the group of permutations on X acting on the

right. Then S acts on the groups (R/4Z)X and (Z/4Z)X on the left as a group

of automorphisms. Let F
def
= (Z/4Z)X o S and let F act on (R/4Z)X as a group

of automorphisms via S. In Γ
def
= (R/4Z)X o ((R/4Z)X o S) let D be the normal

subgroup of all
(
−(2nx+4Z)x∈X , ((2nx+4Z)x∈X , 1)

)
, nx ∈ Z. Then let G = Γ/D;

then G/G0
∼= (Z/2Z)X o S, E ∼= (Z/4Z)X o S and G0∩E ∼= (Z/2Z)X . The group

G̃
def
= RX o ((R/4Z)C o S) is mapped onto G via Φ and ker Φ is not central.

Auerbach’s Generation Theorem

The information accumulated on the action of a maximal torus on the Lie algebra
of a compact group allows us to gather structural information on the generation
of a Lie group.

Lemma 6.77. Let g = t ⊕ geff , geff =
⊕

D∈R+ gD the root decomposition of the
Lie algebra of a compact Lie group G with respect to a maximal torus T . Then geff

is a cyclic T -module (cf. 4.16) and the set of generators is a dense open set in geff .
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Proof. By 6.45, the isotypic components gD of geff are simple real T -modules
since their dimension is two and I|gD = Ad(exp π

2‖D‖2 ·D). Hence 4.25 applies and

proves the assertion. ut

Proposition 6.78. Assume that g is the Lie algebra of a compact Lie group G,
and that T is a maximal torus. It acts on g under the adjoint action. Let R+ denote
a set of positive roots with respect to t and P the T -averaging operator which is the
orthogonal projection of g onto t (cf. 3.32). For D, D′ ∈ R+ set tD = t ∩D⊥ and
tDD′ = t ∩ (D −D′)⊥. Assume that the pair (X,Y ) ∈ t× g satisfies the following
conditions:

(i) X ∈ t \ (
⋃
D∈R+ tD ∪

⋃
D,D′∈R+ tDD′), and

(ii) (1− P )(Y ) is a generator of the cyclic T -module geff .
Then the Lie subalgebra 〈X, Y 〉 generated in g by X and Y is R·X + R·PY + g′.
In particular, if g is semisimple, i.e. g′ = g, then 〈X, Y 〉 = g.

The set of all (X,Y ) ∈ t× g satisfying (i) and (ii) above is open and dense in
t× g.

The set

CT
def
= {Y ∈ g | Spec adY ∩ (2πiZ \ {0}) = Ø and Y satisfies Condition (ii)}

is open dense in g and DT (G)
def
= exp CT is open dense in G.

Proof. The assertion is true if g is abelian. We therefore assume that g′ 6= {0}.
We abbreviate 〈X, Y 〉 by h. Then R·X ⊆ h, and TX

def
= expR·X ⊆ T is contained

in the closed subgroup {g ∈ G | Ad(g)h ⊆ h}. Thus TX acts on h under the
adjoint action of G. By 6.45(ii)(∗) we have Ad(exp r·X)YD = er· adXYD =
cos r(X | D)·YD + sin r(X | D)·IYD. Since (X | D) 6= 0 for all roots D by (i),
then gD is a cyclic TX -module. Each gD is a simple TX -module and for D 6= D′

in R+ the TX -modules gD and gD
′

are not isomorphic since (X | D) 6= (X | D′)
by (i). Thus g = t ⊕

⊕
D∈R+ gD is the isotypic decomposition of the TX -module

g. Accordingly, the isotypic decomposition of the TX -submodule h is

(∗) h = (t ∩ h)⊕
⊕
D∈R+

(gD ∩ h).

We write Y in the form Y = Y0 +
∑
D∈R+ YD with Y0 ∈ t and a YD ∈ gD for all

positive roots D. By (∗) we have Y0 and YD in h for all D ∈ R+. Since (1−P )(Y )
is a generator of geff all elements YD are nonzero. Then by 4.25, the TX -module
geff =

⊕
D∈R+ gD is cyclic generated by

∑
D∈R+ YD = (1−P )(Y ). But h is a TX -

module containing Y . Hence R·Y0 ⊕ geff ⊆ h. Any Lie algebra containing YD and
IYD contains gD and thus D (see 6.46 and 6.49). Hence h contains spanR+ and
thus contains spanR+⊕ geff = g′ (see 6.49(vi)). As a consequence, R·X +R·PY +
g′ ⊆ h. For the converse inclusion we may now note that h/g′ = 〈X,Y 〉/g′ ⊆
(R·X + R·Y + g′)/g′ whence h = R·X + R·Y + g′ Since Y = PY + (1− P )Y with
(1− P )Y ∈ geff ⊆ g′, the relation h = R·X + R·PY + g′ follows.

If g = g′, then X, PY ∈ g′, and we conclude h = g.
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The set of all X ∈ t satisfying (i) is open dense in t, and since Y satisfies (ii) iff
YD 6= 0 for all D ∈ R+, the set of all Y ∈ g satisfying (ii) is open and dense in g.

Finally, the set of all Y ∈ g such that Spec adY ∩ (2πiZ \ {0}) = Ø is open
and dense in g, and by 5.41(v) for any such Y there is an open neighborhood of
Y mapped homeomorphically onto an open neighborhood of expG Y under expG.
Thus CT is a still open and dense in g and since expG is open at any of its points,
its image DT (G) under expG is open and dense in G. ut

Remark 6.79. Assume the hypotheses of 6.78 and the additional one that g is
semisimple. Then

(a) the set Γ(g)
def
= {(X,Y ) ∈ g×g | 〈X,Y 〉 = g} is a dense open subset of g×g,

and
(b) for each Cartan subalgebra t of g the set Γ(g)∩ (t× g) is open dense in t× g.

Proof. First we abbreviate Γ(g) by Γ and fix a Cartan subalgebra t of g and claim
that Γ is open in g×g (irrespective of any assumption on the Lie algebra g) and that
Γ ∩ (t× g) is open in t× g. By 6.78, there exists at least one (X,Y ) ∈ Γ ∩ (t× g).
Consider one of these pairs (X,Y ) and set n = dim g. Then there are n Lie
monomials pj(U, V ), j = 1, . . . , n, such as U , V , [U, V ],

[
U, [U, V ]

]
,
[
V, [V,U ]

]
, . . . ,

such that p1(X,Y ), . . . , pn(X,Y ) are linearly independent. This means exactly
that p1(X,Y )∧· · ·∧pn(X,Y ) ∈

∧n
g ∼= R is nonzero. (In coordinates with respect

to some basis of g this means that the determinant of the matrix formed by the
components of the vectors pj(X,Y ) is nonzero.) Since the function δ: g×g→

∧n
g,

δ(U, V ) = p1(U, V )∧· · ·∧pn(U, V ) is continuous, the set δ−1(
∧n

g\{0}) is an open
subset of g × g containing (X,Y ). This proves the claim. (In fact the argument
shows that the set is open in the Zariski topology and therefore is dense; but we
shall give a separate argument for the density.)

Secondly we claim that Γ is dense. By 6.78, the set Γ∩ (t× g) is dense in t× g.
This completes the proof of (b). The group Ad(G) acts on g×g via Ad(g)·(U, V ) =
(Ad(g)(U),Ad(g)(V )) and the set Γ is invariant under this action. Now Ad(g)·

(
Γ∩

(t×g)
)

= Γ∩
(

Ad(g)(t×g)
)

is dense in Ad(g)t×g. Thus the set
⋃
g∈G Ad(g)·

(
Γ∩(t×

g)
)
, which is contained in Γ, is dense in

⋃
g∈G(Ad(g)(t)×g) =

(⋃
g∈G Ad(g)(t)

)
×g.

But by the Transitivity Theorem 6.27, this last set is g × g. Hence Γ is dense in
g× g as asserted in (a). ut

Thus two randomly chosen elements X and Y of a semisimple compact Lie
algebra have a very good chance of generating it. Remark 6.79 makes this statement
precise.

We say that a subset M ⊆ G is a generating set of G if G = 〈M〉. The following
lemma generalizes 1.24.

Lemma 6.80. If G = Rn/Zn is a torus, then the set g(G) of generators of G
is a dense set whose complement is the union of the countable family S(G) of all
closed proper subgroups and has Haar measure 0.
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Proof. Exercise E6.16. ut

Exercise E6.16. Prove Lemma 6.80.

[Hint. It is clear that g fails to be a generator iff 〈g〉 ∈ S(G). Thus it remains to
show that S(G) is countable. The pullback along the quotient morphism Rn →
Rn/Zn provides a bijection from this set to the set SZ(Rn) of all closed subgroups
of Rn containing Zn. The closed subgroups of Rn are classified in Appendix 1,
Theorem A1.12. Indeed, if S is a closed subgroup of Rn, then there is a basis
e1, . . . , en and there are natural numbers p, q such that

S = R·e1 ⊕ · · · ⊕ R·ep ⊕ Z·ep+1 ⊕ · · · ⊕ Z·ep+q.

We note p+ q = n. Set

S0 = R·e1 ⊕ · · · ⊕ R·ep.

If Rn is identified with L(G), then S0 gets identified with L(S/Zn), and thus the
identity component of S/Zn in G, being (S0 + Zn)/Zn ∼= S0/(S0 ∩ Zn), is a p-
dimensional torus. This is the case iff the e1, . . . , ep may be chosen in Zn. There
are countably many possibilities to do this. Once S0 is fixed, Rn/(S0 + Zn) is an
n− p-torus T , and the image of S in T is discrete. In order to see that a torus can
contain only a countable set of discrete subgroups, let us go back to S and assume
now that p = 0. Then S = Z·e1 ⊕ · · · ⊕ Z·en and Zn ⊆ S. Then the Elementary
Divisor Theorem A1.10 shows that there are natural numbers m1| · · · |mn such that
m1·e1, . . . ,mn·en is a basis of Zn. Thus S ⊆ Qn. Thus there are only countably
many possibilities for S in this case, too.

So the set of generators is the complement of a meager set in the sense of Baire
category theory. Moreover, it is of Haar measure 0 since each proper closed sub-
group of G is of lower dimension than that of G and therefore has Haar measure 0.
The proof of this last statement in 6.80 pertaining to the Haar measure requires
enough Haar measure theory to conclude that each proper subtorus of a torus has
Haar measure 0. In order to see this in an elementary fashion one shows first that
every subtorus is a direct factor. (We shall have very appropriate ways of seeing
that in Chapter 8 below, see e.g. 8.78.) Then the issue is that Tp × {0}q has mea-
sure zero in Tp+q. Since Haar measure on Tn agrees with Lebesgue measure, we
may invoke Lebesgue measure theory for this conclusion.] ut

Lemma 6.81. Let G be a connected compact Lie group. Then there is a dense
subset D(G) of G with the following properties.

(i) G \D(G) is a countable union of nowhere dense compact subsets.
(ii) D(G) is invariant under all inner automorphisms.

(iii) For every maximal torus T the set g(T ) of generators of T is precisely D(G)∩
T .

(iv) For every g ∈ D(G) the subgroup 〈g〉 is a maximal torus.
(v) If S and T are maximal tori and S ∩ T ∩D(G) 6= Ø, then T = S. Thus the

sets T ∩D(G), T ∈ T(G) partition D(G).
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(vi) If X ∈ g satisfies expGX ∈ T ∩D(G) for some T ∈ T(G), then X ∈ t, and
X satisfies Condition 6.78(i).

Proof. We fix a maximal torus T of G. By Lemma 6.80 above, g(T ) = T \C, C =⋃
S(T ), where S(T ) is the countable set of proper subgroups of T . We note that

any automorphism of T permutes the set S(T ) and thus leaves the nowhere dense

meager set C invariant. Define D(G) = G \ C(G) where C(G)
def
=
⋃
g∈G gCg

−1 =⋃
H∈S(T )KH , where KH =

⋃
g∈G gHg

−1 is a compact subset invariant under inner
automorphisms. We claim that KH is nowhere dense.

Indeed, if k is an inner point of KH , then by the Transitivity Theorem 6.27 we
may assume that k is an inner point of T ∩ KH in T , i.e. that there is an open
set V of T with k ∈ V ⊆ T ∩ HK . However, T ∩ KH =

⋃
g∈G(T ∩ gHg−1) ⊆⋃

H′∈S(T )H
′ = C, whence V ⊆ C. But C is nowhere dense in T , and this contra-

diction proves the claim. Thus D(G) is the complement of the meager set C(G)
and thus is dense in G. Obviously, C(G) and D(G) are invariant under inner au-
tomorphisms. If S and T are maximal tori then either S = T or S ∩ T ∈ S(T )
whence S ∩ T ⊆ C ⊆ C(G). Hence

C(G) ∩ T = C and D(G) ∩ T = g(T ).

Thus Statements (i), (ii), and (iii) are proved.
Now let g ∈ D(G). Then by the Maximal Torus Theorem 6.30 we find a maximal

torus S containing g. Then g ∈ S ∩D(G) = g(S) by (iii) and thus 〈g〉 = S. This
proves (iv), and (v) is an immediate consequence.

Finally we prove (vi). Let expGX ∈ T ∩D(G). The connected abelian subgroup
expR·X is contained in some maximal connected abelian subgroup S ∈ T(G) and

then X ∈ s
def
= L(S). But now expX ∈ S ∩ T ∩D(G). Then (v) implies S = T and

thus X ∈ t.
Using the notation of 6.78 we note that exp tD and exp tD,D′ are closed sub-

groups of T = exp t as kernels and equalizers of representations of T . Hence
expG(

⋃
D∈R+ tD ∪

⋃
D,D′∈R+ tDD′) ⊆ C. But expGX /∈ C. Thus we have X /∈

exp−1 C ⊇ (
⋃
D∈R+ tD ∪

⋃
D,D′∈R+ tDD′). This is 6.78(i). ut

Auerbach’s Generation Theorem

Theorem 6.82. Let G be a connected compact Lie group. Then the set Γ(G)
def
=

{(g, h) ∈ G×G | 〈g, h〉 = G} is dense in G×G.
For every maximal torus T , the set Γ(G) contains the set (D(G)∩T )×

(
D(G)∩

DT (G)
)

where D(G) is as in 6.81 and DT (G) is the dense open subset of G intro-
duced in 6.78. In particular, the complement of (T ×G) \Γ(G) is contained in the
countable union of closed nowhere dense subsets of T ×G.

Proof. Let T be a maximal torus of G. By 6.81 the set D(G) is dense and its com-
plement is meager, and the set D(G)∩T is dense in T with a meager complement.
By 6.78 the set DT is open dense in G. Thus Γ(G) contains T × G. Since T was
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arbitrary, by the Maximal Torus Theorem 6.30 it follows that Γ(G) contains G×G.
It therefore suffices now to show that (g, h) ∈

(
D(G)∩ T

)
×
(
D(G)∩DT (G)

)
im-

plies that H
def
= 〈g, h〉 = G. By 6.30 and the definition of DT (G) we find elements

(X,Y ) ∈ t×CT such that expGX = g and expG Y = h. Since expGX = g ∈ g(T ),
by 6.81(vi), the element X belongs to t and satisfies Condition (i) of 6.78, and since
Y ∈ CT , the element Y satisfies Condition (ii) of 6.78. Thus Proposition 6.78 shows
that g′ ⊆ 〈X,Y 〉. Since g ∈ D(G)∩T , by 6.81(iv, v) we conclude that T = 〈g〉 ⊆ H,
whence t ⊆ h. Thus g = t + g′ ⊆ h = h. Therefore G ⊆ H which shows G = H.
This completes the proof of the theorem. ut

The theorem gives us some information on the location of the pairs (g, h) which
have to generate a dense subgroup. It gives us no information on the algebraic
structure of these groups. There is a method in the spirit of universal algebra
which, together with certain information pertaining to compact Lie groups, will
tell us that there are plenty of pairs among these which generate free subgroups.

The elements of the free group F (ξ, η) in two generators are 1, and monomials
w(ξ, η) of the form ξn1ηn2 · · · ξnj , ξn1ηn2 · · · ηnj , ηn1ξn2 · · · ξnj , or ηn1ξn2 · · · ξnj ,
with j = 1, 2, . . . , nj ∈ Z\{0}, the multiplication being implemented by associative
juxtaposition and the obvious rules such as 1γ = γ1 = γ for all γ ∈ F (ξ, η),
ξ0 = η0 = 1, and ξmξn = ξm+n, ηmηn = ηm+n. The monomials w(ξ, η) are
sometimes called words; the identity 1 is the empty word. A homomorphism of
groups ϕ:F (ξ, η) → G is uniquely determined by the elements g = ϕ(ξ) and
h = ϕ(η). If w(ξ, η) ∈ F (ξ, η) is a word, then we write w(g, h) = ϕ

(
w(ξ, η)

)
; e.g. if

w(ξ, η) = ξη, then w(g, h) = gh. The relations w(ξ, η) ∈ kerϕ and w(g, h) = 1 are
equivalent. Thus each word w(ξ, η) yields a function w:G×G→ G. The subgroup
〈g, h〉 of G is free in two generators iff for every nonempty word w(ξ, η) we have
w(g, h) 6= 1. We shall write

(W) U
(
w(ξ, η)

) def
= w−1(G \ {1}) = {(g, h) ∈ G×G | w(g, h) 6= 1}.

Lemma 6.83. Let G be a connected linear Lie group. For each nonempty word
w(ξ, η) ∈ F (ξ, η), the subset U

(
w(ξ, η)

)
is either empty or open dense.

Proof. The continuity of w:G×G→ G and the fact that in a Hausdorff space G,
the set G \ {1} is open show that the set U

(
w(ξ, η)

)
is open. We assume that it is

nonempty and prove its density by showing that for every nonempty open subset
W of G×G, the set w(W ) fails to be {1}. Suppose the contrary and assume that
the closed set w−1(1) = {(g, h) ∈ G × G | w(g, h) = 1} has nonempty interior.
By 5.36 every linear Lie group is an analytic group. Hence w:G × G → G is an
analytic function between analytic manifolds (cf. paragraph following 5.34). The
constant function e:G×G→ G with value 1 is trivially analytic. The two analytic
functions w and e agree on some nonempty open subset of the connected analytic
manifold G; therefore they agree. But w = e means U

(
w(ξ, η)

)
= Ø, contrary to

our assumption. This contradiction proves the lemma. ut
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We should make some remarks about the status of the prerequisites we made
in the proof of the last lemma. In Chapter 5 we stated that we would not uti-
lize the analyticity of a linear Lie group which we proved in 5.36; but we used it
now. Secondly, we used the fact that two analytic functions on a connected ana-
lytic manifold agree if they agree on some nonempty open subset. In E5.5(iii) we
proved this for analytic functions between open subsets of Banach spaces. But the
definition of an analytic manifold (given in the paragraph preceding 5.35) permits
readily a proof of the more general fact we used here.

Recall (e.g. from the discussion in Chapter 2 preceding Theorem 2.3) that a
Baire space X is a topological space in which for every meager set M (i.e. a count-
able union of nowhere dense closed sets) the interior of M is empty (cf. References
cited there). Every locally compact Hausdorff space and every completely metriz-
able space is a Baire space; we shall use here only the fact that a locally compact
Hausdorff space is a Baire space.

Lemma 6.84. For a finite dimensional connected linear Lie group G, the following
statements are equivalent:

(1) G contains a free group on two generators.
(2) There is a dense subset D of G × G such that (g, h) ∈ D implies that the

subgroup 〈g, h〉 is free and that (G×G) \D is meager.

Proof. Trivially (2)⇒(1). Assume (1). Then there is a free subgroup 〈g, h〉 of two
generators. Then w(g, h) 6= 1 for all w(ξ, η) ∈ F (ξ, η) \ {1}. Thus none of the
countably many open sets U

(
w(ξ, η)

)
is empty. Hence by Lemma 6.83 all of these

sets are dense. Hence

D
def
=
⋂

16=w(ξ,η)∈F (ξ,η) U
(
w(ξ, η)

)
is dense in G×G since G×G is a Baire space. ut

The preceding lemmas remain intact for Lie groups that are not necessarily
linear.

Lemma 6.85. The groups SO(3) and SU(2) both contain a free group on two
generators.

Proof. If SO(3) contains a free group 〈g, h〉 and p: SU(2) → SO(3) is a covering

morphism, then 〈g̃, h̃〉 is free in SU(2) for any g̃ and h̃ with p(g̃) = g and p(h̃) = h.
It therefore suffices to exhibit a nonabelian free group of rotations of the euclidean
space R3. This is a classical task which we outline in Exercise E6.17. ut
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Exercise E6.17. Show that the following rotations by an angle of arccos 1
3 gen-

erate a free group in SO(3): 1
3

√
8

3 0

−
√

8
3

1
3 0

0 0 1

 ,

 1 0 0
0 1

3

√
8

3

0 −
√

8
3

1
3

 .

(For details cf. [368].) ut

The context of the preceding exercise is that of the so-called Hausdorff–Banach–
Tarski Paradox for which [368] is a comprehensive reference. Hausdorff shows in
[137], p. 469ff that SO(3) contains a rotation a of order 2 and a rotation b of order
3 which generate a subgroup isomorphic with the coproduct Z(2) ∗ Z(3) in the
category of groups (i.e. a product in the opposite category: see Appendix A3.43);
such a coproduct is called a free product. The elements g = ab and h = ab2 then
generate a free group. The free product Z(2) ∗ Z(3), incidentally, is isomorphic
to the group PSl(2,Z) of all fractional linear transformations z 7→ az+b

cz+d of the

Riemann Sphere with det

∣∣∣∣ a b
c d

∣∣∣∣ = 1 and a, b, c, d ∈ Z (see e.g. [339], p. 187,

188). In particular this implies that SO(3) contains an algebraic copy of PSl(2,Z).

Proposition 6.86. Let G be a nonabelian connected compact Lie group. Then the
set Φ(G) of all pairs (g, h) ∈ G×G such that 〈g, h〉 is free is dense in G×G and
its complement is meager.

Proof. By 6.48, the group G contains a copy of SO(3) or SU(2). Then by Lemma
6.85 it contains a nonabelian free group of two generators. Then Lemma 6.84
completes the proof. ut

The following exercise demands some extra prerequisites from advanced real
analysis.

Exercise E6.18. Prove the following complement of Proposition 6.86:

The complement of Φ(G) has Haar measure zero in G×G.

[Hint. Let (g, h) ∈ Φ(G); find open neighborhoods U and U ′ of 0 in g such that
(X,Y ) 7→ (g expGX,h expG Y ) is a homeomorphism α:U × U → V onto an open
neighborhood V of (g, h) in G×G, that X 7→ gh(expGX) is a homeomorphism of
β:U ′ →W onto an open neighborhood W of gh in G, and that

µ:G×G→ G,

µ(x, y) = xy, maps V into W . Pick dim g linearly independent functionals ωj : g→
G. Then each (ωj |U1) ◦ β−1 ◦ µ ◦ α:U × R is analytic. (Cf. 5.34ff.).

Show that, in view of this argument, it suffices to know that (i) the inverse
image of any singleton under an analytic function f :O → R of a connected open
subset O of Rm is either O or a Lebesgue zero set, and (ii) the exponential function
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of a compact Lie group G maps any bounded Lebesgue measure zero set of g to a
Haar measure zero set of G.

For a proof of (i) note that for m = 1 each f−1(r) without interior points is
discrete, and that we have

λn
(
f−1(r)

)
=

∫ ∞
−∞

λn−1({(x1, . . . , xn − 1) ∈ Rn−1 | f(x1, . . . , xn) = r}) dλ.

Use induction. For a proof of (ii) use the fact that the normalized Haar integral
on a compact Lie group is integration with respect to a unique invariant volume
form of integral 1.] ut

The following theorem finally generalizes information given in Auerbach’s Gen-
eration Theorem 6.82.

The Generation Theorem Revisited

Corollary 6.87. Let G be a nonabelian connected compact Lie group and let

Ω(G) = {(g, h) ∈ G×G | 〈g, h〉 is nonabelian free and dense in G}.

Then Ω(G) is dense in G×G.
For every maximal torus T , the set (T × G) ∩ Ω(G) is dense with a meager

complement in T ×G.

Proof. As in the proof of 6.82, it suffices to prove the second part. If 〈g, h〉 is
one of them, then there is an x ∈ G such that xgx−1 ∈ T and 〈xgx−1, xhx−1〉 =
x〈g, h〉x−1 is free. Thus (T × G) ∩ U

(
w(ξ, η)

)
is open dense in T × G. With the

notation and the information in the proof of 6.82 and with

D =
⋂

16=w(ξ,η)∈F (ξ,η) U
(
w(ξ, η)

)
we get from the Baire Category Theorem that

B
def
=
((
D(G) ∩ T

)
×
(
D(G) ∩DT (G)

))
∩D

is dense in T × G and has a meager set as complement. By Theorem 6.82 and
Lemma 6.84 however, B ⊆ Ω. This completes the proof of the corollary. ut

The Topology of Connected Compact Lie Groups

We shall explore the rudiments of a cohomology theory of connected compact
Lie groups enough so that we shall be able to determine when a compact Lie
group is a sphere. Indeed we consider a connected compact Lie group G, fix a
field K of characteristic 0 such as Q, R, or C, and denote by H(G) the graded
cohomology group H∗(G,K) = H0(G,K) ⊕ · · · ⊕ Hn(G,K) with n = dimG.
Since the underlying space is a compact manifold, the Alexander–Čech–Spanier–
Wallace cohomology agrees with singular cohomology, and in the case of K = R
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other options are available from the analytic structure of G as a manifold. However,
for an understanding of the basic features of the cohomology of a compact group
we do not have to go into the mechanics of cohomology theory; we need to record
that it provides a contravariant functor

H:CTOP→ AB∗K
from the category of compact spaces and continuous functions to the category of
graded K vector spaces such that H(M) is a finite dimensional vector space for
a compact manifold M , that we have a natural isomorphism between the graded
vector spaces H(X × Y ) and H(X) ⊗∗ H(Y ); this is the content of the Künneth
Theorem (cf. [338]), and that

Hm(Sn,K) ∼=
{
K if m = 0 or m = n,
{0} otherwise.

We have introduced in Appendix 3 the concept of a connected graded commuta-
tive Hopf algebra (Definition A3.65 and the paragraph preceding A3.69). A very
important and typical example is the exterior algebra

∧
V over a graded vector

space V = V 1 ⊕ V 2 ⊕ · · · ⊕ V N with the homogeneous components V j . The exte-
rior algebra has a canonical comultiplication

∧
V → (

∧
V ) ⊗∗ (

∧
V ) ∼=

∧
(V ⊕V )

induced by the diagonal morphism V → V ⊕ V of graded vector spaces. For the
details concerning graded Hopf algebras we refer to the last section of Appendix 3.
We explain there the importance, for any graded Hopf algebra A, of the graded
vector subspace P (A) of A of all primitive elements x ∈ A which are character-
ized by the equation cA(x) = x ⊗ 1 + 1 ⊗ x with the comultiplication cA of A.
Finally, in the Appendix we proved purely algebraic characterisation theorems for
graded commutative Hopf algebras which allowed us to establish, using only very
basic properties of cohomology, in Theorem A3.90 the Hopf–Samelson Theorem
which describes the cohomology Hopf algebra of a connected compact monoid G
under the hypothesis that dimK H(G) <∞. This applies at once to the case of a
compact Lie group and gives us, via specialization, the following result.

The Hopf–Samelson Theorem for Connected Compact Lie Groups

Theorem 6.88. Let G be a connected compact Lie group G. Let H(G) = K ⊕
H1(G,K) ⊕ · · · ⊕ Hn(G,K) denote the cohomology Hopf algebra of G and let
P
(
H(G)

)
denote the graded vector subspace of primitive elements of the Hopf

algebra H(G). Then the following conclusions hold:
(i) There is a natural isomorphism of graded Hopf algebras

H(G) ∼=
∧
P
(
H(G)

)
.

(ii) The graded vector space P
(
H(G)

)
of primitive elements of H(G) has only

odd dimensional nonvanishing homogeneous components and determines

H(G) ∼=
∧
P
(
H(G)

)1 ⊗∧P
(
H(G)

)3 ⊗ · · · ⊗∧P
(
H(G)

)2N−1

uniquely and functorially.
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(iii) Define d2j−1
def
= dimP

(
H(G)

)2j−1
, j = 1, 2, . . . , N and define S to be the

product of spheres

S
def
= (S1)d1 × (S3)d3 × · · · × (S2N−1)d2N−1 .

Then the graded commutative K-algebras H(G) and H(S) are isomorphic.
(iv) dimG = d1 + 3d3 + · · ·+ (2N − 1)d2N−1. ut

The Hopf–Samelson Theorem associates with a compact Lie group contravari-
antly functorially the graded vector space P

(
H(G)

)
from which the entire coho-

mology can be completely reconstituted.

Let G be an n-dimensional connected compact Lie group. For any natural
number m define the power function πm:G → G by πm(x) = xm. On a K-vector
space V let σm = σVm denote the scalar multiplication given by σm(v) = m·v for
v ∈ V .

Example 6.89. Let T ∼= Tr be an r-dimensional torus group, r ∈ N0, then the
following statements hold:

(i) All homogeneous primitive elements of H(T ) have degree 1 and

P
(
H(T )

)m ∼= {K ⊗ T̂ if m = 1,
{0} otherwise.

(ii) H(T ) ∼=
∧

(K ⊗ T̂ ).

(iii) The endomorphism induced on Hr(T ) by x 7→ xm is Hr(πTm) = σ
Hr(T )
mr ,

i.e. if ξ ∈ Hr(T ) then Hr(πTm)(ξ) = mr·ξ.

Proof. By Theorem 6.88 we have H(T ) ∼=
∧
P
(
H(T )

)
naturally. Thus (i) implies

(ii). In order to determine dimK P
(
H(T )

)m
we note that H(S1) = K⊕H1(S) with

H1(S) ∼= K. Then H
(
(S1)r) ∼=

⊗r
H(S1) ∼=

∧
Kr. Hence dimK P

(
H(T )

)
= r, i.e.

on the full subcategory F of finitely generated free abelian groups, the assignment
F 7→ P

(
H(F̂ )

)
is a functor into AB∗K , the category of graded K-vector spaces,

with

dimK P
(
H(F̂ )

)m
=
{

rankF if m = 1,
0 otherwise.

Thus this function is naturally isomorphic to

F 7→
⊕
m∈N0

V m, V m =

{
K ⊗ F if m = 1,
{0} otherwise.

Accordingly, P
(
H(T )

)1 ∼= P
(
H(T )

) ∼= K ⊗ T̂ and P
(
H(T )

)m
= {0} for m > 1.

(iii) By passing to the dual we have π̂Tm = πT̂m. Since T̂ may be identified with Z,
the morphism πZ

m is simply multiplication with the integer m. Now
∧r

(K ⊗ πZr
m )

is multiplication with the determinant of the scalar multiplication by m on the
r-dimensional vector space K ⊗ Zr and therefore is scalar multiplication with mr.

ut
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Lemma 6.90. Assume that G is an n-dimensional connected compact Lie group.
The K-linear function H(πm):H(G)→ H(G) maps P

(
H(G)

)
into itself, and

H(πm)|P
(
H(G)

)
= σ

P
(
H(G)

)
m ,(i)

Hn(πm) = σ
Hn(G)
mq with q = d1 + d3 + · · ·+ d2N−1,(ii)

dimK P
(
H(G)

)
= logm e, where σH

n(G)
e = Hn(πm).(iii)

Proof. (i) Let ∆m:G → Gm denote the diagonal map, ∆m(x) = (x, . . . , x),
and ∇m:Gm → G the multiplication, ∇m(x1, . . . , xm) = x1 · · ·xm. Then πm =
∇m ◦∆m. Now

µm =
( m⊗

H(G)
∼=−−→H(Gm)

H(∆n)−−−→H(G)
)

is the algebra multiplication given by µm(h1 ⊗ · · · ⊗ hm) = h1 · · ·hm by the
definition of the algebra multiplication in H(G) (cf. Appendix 3, A3.67(ii), A3.70).
The algebra morphism

cm =
(
H(G)

H(∇m)−−−→H(Gm)
∼=−−→

m⊗
H(G)

)
by the definition of the comultiplication and its associativity is recursively given

by c1 = c, ck+1 = (ck ⊗ idH(G)) ◦ c:H(G)→
(⊗k

H(G)
)
⊗ H(G) ∼=

⊗k+1
H(G).

Now let x ∈ P
(
H(G)

)
. We claim that

cm(x) = x ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗ x ⊗ 1 ⊗ · · · ⊗ 1 + · · ·+ 1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ x.

Indeed, this is readily verified by induction. Now µm(x ⊗ 1 ⊗ 1 ⊗ · · · ⊗ 1) =
x·1·1 · · · 1 = x, etc. Hence

H(πm)(x) = H(∆m)H(∇m)(x) = µm
(
cm(x)

)
= m·x = σP (H(G))

m (x).

In particular, H(πm) maps P
(
H(G)

)
into itself.

(ii) If V is a q-dimensional vector space, then dimK

∧q
V =

(
q
q

)
= 1, and if

ϕ:V → V is a morphism, then
(
(
∧q

)(ϕ)
)
(v) = detϕ·v. We apply this to V =

P
(
H(G)

)2j−1
and ϕ = H(πm)|V . Thus

∧
(ϕ)(v) = detϕ·v = md2j−1 . Therefore

N⊗
j=1

d2j−1∧
H(πm)|P

(
H(G)

)2j−1
= σmd1 ·md3 ···md2N−1 = σmq .

(iii) follows from the preceding results. ut

Recall that the rank of a connected compact Lie group G is the dimension of a
maximal torus. In order to make further progress we consider again the map

ω:
G

T
× T → G, ω(gT, t) = gtg−1

of Lemma 6.29 which we used heavily in the proof of the Maximal Torus Theorem;
the surjectivity of this map is equivalent to the statement that every element of
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G lies in a conjugate of T . Some of the new information we will now uncover is
of independent interest; here we will use it mainly to derive information on the
degree of the power map.

We shall shortly show that the function ω induces a surjective linear map in
top cohomology:

Lemma 6.91. For an n-dimensional connected compact Lie group G,

Hn(ω):Hn(G)→ Hn(GT × T ) is an isomorphism.

However before we prove 6.91 after 6.98 below, we shall draw conclusions which
show the significance of this lemma.

Lemma 6.92. If r is the rank of a connected compact Lie group G of dimension

n, then for any m ∈ N we have Hn(πm) = σ
Hn(G)
mr for cohomology over a field K

of characteristic 0.

Proof. Let ω: GT × T → G be as above, given by ω(gT, t) = gtg−1. Set n = dimG.
For g ∈ G and t ∈ T and for any natural number m we have g

(
πm(t)

)
g−1 =

gtmg−1 = (gtg−1)m = πm(gtg−1). In other words, ω
(
gT, πm(t)

)
= πm

(
ω(gT, t)

)
;

in other words, the following diagram is commutative:

(∗)

G
T × T

ω−−→ G

idG
T

×πTm
y yπGm

G
T × T −−→

ω
G.

This entails a commutative diagram of graded commutative K-algebras

(∗∗)
H(G)

H(ω)−−→ H(GT ×G)
∼=←−−− H(GT ) ⊗∗ H(T )

H(πGm)

y H(GT ×π
T
m)
y id

H(GT )
⊗∗H(πTm)

y
H(G) −−→

H(ω)
H(GT × T ) ←−−−∼= H(GT ) ⊗∗ H(T ).

Now we claim that

Hk(T ) = {0} for k = r + 1, r + 2, . . . ,(1)

Hk(GT ) = {0} for k = n− r + 1, n− r + 2, . . . .(2)

Indeed T is an r-dimensional compact manifold, and G/T is an n− r-dimensional
compact manifold by the Tubular Neighborhood Theorem 5.33. Then (1) and
(2) follow from [96], p. 314, Theorem 6.8(i). (For homology see also [89], p. 260,
Proposition 3.3., [49], p. 344, Theorem 7.8).

Given (1) and (2) we see that the homogeneous component of degree n in
H(GT ) ⊗∗ H(T ) is Hn−r(GT ,K) ⊗ Hr(T,K). From diagram (∗∗) we then derive
the following commuting diagram by singling out the homogeneous components of
degree n = dimG:
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(∗∗∗)
Hn(G)

Hn(ω)−−−→ Hn(GT × T )
∼=←−−− Hn−r(GT ,K) ⊗ Hr(T,K)

Hn(πGm)

y Hn(idG
T

×πTm)

y id
Hn−r(GT ,K)

⊗Hr(πTm)
y

Hn(G) −−−→
Hn(ω)

Hn(GT × T ) ←−−−∼= Hn−r(GT ,K) ⊗ Hr(T,K).

From Example 6.89(iii) we have Hr(πTm) = σ
Hr(T )
mr . Then diagram (∗∗∗) proves

our assertion in view of (1), (2), and Lemma 6.91. ut

Hopf’s Rank Theorem

Theorem 6.93. The rank of G agrees with dimK P
(
H(G,K)

)
for any field K of

characteristic 0.
There is a K-vector space isomorphism K ⊗ T̂ ∼= P

(
H(G)

)
for any maximal

torus T of G.

Proof. This follows from Lemmas 6.90 and 6.92. ut

In particular this means that the rank of G is a topological invariant: two
homeomorphic connected compact Lie groups have the same rank. In fact, a better
statement is still true. Two spaces X and Y are called homotopy equivalent if there
are continuous maps f :X → Y and g:Y → X such that fg is homotopic to idY
and gf is homotopic to idX . (Cf. Appendix 3, Example A3.3.7, Exercise EA3.1ff.)
The cohomology functor has the property that for two homotopic maps ϕ and ϕ′

we have H(ϕ) = H(ϕ′). Hence two homotopy equivalent connected compact Lie
groups have the same rank.

Hopf’s Theorem on the Cohomology of Lie Groups

Corollary 6.94. The cohomology of a connected compact Lie group G over a
field of characteristic 0 is that of a product of r odd dimensional spheres, where
r = rankG.

Proof. This follows at once from Theorem 6.88 and Theorem 6.93. ut

In particular, no space which is homotopy equivalent to a product of spheres
one of which is even dimensional can carry a Lie group structure.

With very little extra effort we can now prove a theorem which has been known
since the early history of global Lie group theory when it was observed as a conse-
quence of the classification of simple compact Lie groups and the structure theorem
for Lie groups. The proof based on the results of Hopf and Samelson elucidates,
however, the deeper reasons why the theorem holds.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



6. Compact Lie Groups 329

The Sphere Theorem for Connected Compact Lie Groups

Theorem 6.95. If G is a connected compact Lie group on a sphere then G ∼=
S1 ∼= SO(2) or G ∼= S3 ∼= SU(2).

Proof. From 6.88 and the hypothesis that G is homeomorphic to a sphere we
conclude q = dimK P

(
H(G)

)
= 1. By 6.93 this implies rankG = dimT = q = 1.

Then 6.49(vii) implies G ∼= S1 or G ∼= SO(3) or G ∼= S3 ∼= SU(2). The space
SO(3) is not simply connected (having S3 as universal covering) and so cannot be
a sphere. Hence the assertion is proved. ut

We finally must prove Lemma 6.91; the remainder of this section is devoted to
this proof.

The Weyl group W def
= N(T,G)/T operates on G

T × T via nT ·(gT, s) =
(gn−1T, nsn−1). This action is free, i.e. all isotropy groups are trivial: Indeed
nT ·(gT, s) = (gT, s), iff gn−1T = gT and nsn−1 = s iff n ∈ T iff nT = T , the iden-

tity of W. We set M
def
=
(
G
T × T

)
/W and note that the orbit map q: GT × T →M

is a covering map (see Appendix 2, Definition A2.1, Examples A2.3(iii)).
We observe that ω

(
nT ·(gT, s)

)
= ω(gn−1T, nsn−1) = gn−1(nsn−1)ng−1 =

ω(gT, s). Hence we have a unique continuous map Ω:M → G such that the fol-
lowing diagram commutes.

(†)

G

T × T
ω−−→ G

q

y yidG

M −−→
Ω

G.

We note that W·(gT, s) ⊆ ω−1ω(gT, s).
The map Ω is far from being a covering; since ω−1(1) = G

T × {1}, the set

Ω−1(1) = q
(
ω−1(1)

)
= (GT × {1})/W ∼= G/N(T,G) is a submanifold (which, in

the case of G = SO(3) is the real projective plane) while in other points Ω induces
a very strong form of local homeomorphism, as the following lemma will show.

Lemma 6.96. Let t ∈ T be a generator, i.e. T = 〈t〉 and set m
def
= W·(T, t) ∈M .

There is an open neighborhood U of m in M which satisfies
(a) Ω−1Ω(U) = U , and
(b) Ω|U :U → W , W = Ω(U), is a homeomorphism onto an open neighborhood

of t in G.

Proof. We proceed in steps.

Step 1. ω−1
(
ω(T, t)

)
=W·(T, t) = m.

Proof of Step 1. The relation ω(gT, s) = ω(T, t) is equivalent to t = gsg−1 ∈
gTg−1. This implies T = 〈t〉 ⊆ gTg−1 which, by the maximality of T , is equivalent
to T = gTg−1, i.e. to g ∈ N(T,G). Then (gT, s) = (gT, g−1tg) = g−1T ·(T, t). Thus
the left side is contained in the right side; the converse inclusion is always true by
the preceding remarks.
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Step 2. The function ω maps a suitable open neighborhood of (T, t) homeomor-
phically onto an open neighborhood of t.
Proof of Step 2. We have g = t⊕ t+ with an orthogonal complement t+ of t in g.

By the Tubular Neighborhood Theorem for Subgroups 5.33(ii) and its proof
there is an open neighborhood V of 0 in t+ such that

τ :V × T → (expV )T, τ(X, t) = (expX)t

is a homeomorphism onto an open neighborhood of T in G.
Since T = 〈t〉, the centralizer of t in G agrees with the centralizer of T in G,

and the latter is T by 6.21(iii). Then 5.45 and 5.55 show that there is an open
neighborhood U+ of 0 contained in t+ with U+ ⊆ V , an open neighborhood U0

of 0 in t, and an open neighborhood Wt of t in G such that the function

Ψ:U+ ⊕ U0 →Wt, Ψ(Y ⊕ Z) = (expY )t expZ(exp−Y )

is a homeomorphism.
Let U∗ = (expU+)T/T ⊆ G

T and U∗t = t expT (U0). Then p:U+ → U∗,
p(Y ) = (expY )T and e:U0 → tU∗0 , e(Z) = t expZ are homeomorphisms. Then
the function

Ψ ◦ (p−1 × e−1):U∗ × U∗t →Wt

is given as follows: Let gT ∈ U∗, say gT = p(Y ), and s ∈ U∗t , say s = e(Z) =
t expZ; then Ψ

(
p−1(gT ), e−1(s)

)
= Ψ(Y ⊕ Z) = (expY )t(expZ)(exp−Y ) =

gsg−1 = ω(gT, s). Hence

ω|U∗ × U∗0 :U∗ × U∗t →Wt

is the required homeomorphism.

Step 3. There is an open neighborhood U of m in M which is mapped homeo-
morphically under Ω.
Proof of Step 3. Since U∗ is homeomorphic to U+ and U∗0 to U0, the neighbor-
hood U∗ × U∗0 of (T, t) has arbitrarily small open neighborhoods. Let U1 be one
of them which is so small that

(
nT, (gT, s)

)
7→ nT ·(gT, s) : W × U1 → W·U1 is

a homeomorphism. (Cf. A2.3(iii).) Then q maps U1 homeomorphically onto the
open neighborhood U = q(U1) of m ∈ M and then Ω maps U homeomorphically

to W
def
= ω(U1)

Step 4. The neighborhood U of m in M may be chosen so small, that Ω−1(W ) =
U .
Proof of Step 4. By Step 1, the set Ω−1(t) is the singleton {m}. The open neigh-
borhood U is mapped homeomorphically under Ω onto W . Hence w ∈ W implies
Ω−1(w) ∩ U is singleton. Suppose the claim of Step 4 is false. Then for every V
from the neighborhood filter U of m in M there is a pair (mV ,m

′
V ) ∈ V × (M \U)

such that Ω(mV ) = Ω(m′V ). Then m = limV ∈U mV . Since M \ U is compact, the
net (mV )V ∈U has a subnet converging to m′ ∈ M \ U ; then Ω(m′) = Ω(m). This
contradicts Ω−1Ω(m) = {m} and thus proves the claim of Step 4 and thereby the
lemma. ut
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We extract information from this lemma which is of independent interest.

Proposition 6.97. Let G be an n-dimensional connected compact Lie group, T a
maximal torus and t ∈ T an element with T = 〈t〉. Let the Weyl group W act on
G
T × T via nT ·(gT, t) = (gn−1, ntn−1). Then

(i) t has a neighborhood D homeomorphic to a closed n-cell such that Ct
def
=

ω−1(D) ⊆ G
T × T has the following properties:

(a) Ct is invariant under the action of W.
(b) The component C of (T, t) in Ct is mapped homeomorphically onto D

by ω|C:C → D.
(c) The function (γ, c) 7→ γ(c) :W×C → Ct is an equivariant homeomor-

phism, where W acts on W × Ct via γ·(γ′, c) = (γγ′, c).
(d) (∀(γ, c) ∈ W × C)ω(γ·c) = ω(c).

(ii) ω−1(1) = G
T × {1} ∼= G/T .

Proof. (i) Let U ⊆ M be as in Lemma 6.96. Since p: GT × T → M is a covering
map we may assume that U is so small that it is a component of p−1(U). Let C∗ be

a closed n-cell neighborhood of W·(T, t) contained in U and set D
def
= Ω(C∗). Now

Ct = p−1(C∗) and the assertions now follow from the fact that p is a covering with
W as Poincaré group (cf. A2.17) and from Lemma 6.96 and the remarks preceding
it.

(ii) is straightforward and was observed above. ut

With additional input from basic algebraic topology we can do the following
exercise.

Exercise E6.19. Prove the following proposition.

For a connected compact Lie group G with a maximal torus T , the quotient space
G/T is a simply connected orientable manifold.

[Hint. By 6.31(ii), Z(G) ⊆ T . Since
(
G/Z(G)

)
/((T/Z(G)

) ∼= G/T we may assume

that G is semisimple centerfree. Then let G̃ the universal covering group of G; then
G ∼= G̃/Z(G̃). Now G/T ∼= (G̃/Z(G)

)
/
(
T ∗/Z(G̃)

) ∼= G̃/T ∗ where T ∗ is a maximal

torus of G̃ mapping onto T under the universal covering. Hence we may assume
that G is semisimple and simply connected. In particular, π1(G) = {1} by EA2.6.
The coset map q:G → G/T is a fibration by the Tubular Neighborhood Theo-
rem 5.33(ii) (see [338], p. 66, p. 96, Theorem 13). The exact homotopy sequence
of q (see [338], p. 377, Theorem 10) yields an exact sequence

π1(G)
π1(q)−−→π1(G/T )→ π0(T ),

in which the ends are singleton, π0(T ) being the group of pathcomponents of T .
Hence π1(G/T ) is singleton. Thus G/T is simply connected. A simply connected
compact manifold is orientable (see e.g. [89], p. 255, 2.12). ] ut
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In the following lemma we must use more cohomology theory in the area of
compact manifolds than we have used so far, or in the appendix. However, most
of the information we use is on the level of properties shared by all cohomology
theories. We therefore will refer to the book by Eilenberg and Steenrod [96].

If (X,Y ) is a pair of compact spaces with Y ⊆ X, then (X,Y ) is called a
relative n-cell if X \ Y is homeomorphic to Rn.

Lemma 6.98. (i) If (M,N) is a pair of compact spaces and a relative n-cell and
M is a manifold with Hn(M,K) 6= {0}, then the inclusion j: (M,Ø) → (M,N)
induces an isomorphism Hn(j):Hn(M,N ;K)→ Hn(M,K).

(ii) Let (Mi, Ni), i = 1, 2 denote pairs of compact spaces, Ni ⊆ Mi such that
(M1, N1) is a relative n-cell, that Hn(Mi,K) 6= {0}, and that a continuous function
f :M1 →M2 maps N1 into N2 and maps M1 \N1 homeomorphically onto M2 \N2.
Then Hn(f,K):Hn(M2,K)→ Hn(M1,K) is an isomorphism.

Proof. (i) By [96], p. 314, Theorem 6.8(ii), Hn(j) is surjective. Since K is a field
both Hn(M,N ;K) and Hn(M,K) 6= {0} are one-dimensional K-vector spaces,
Hn(j) is an isomorphism.

(ii) Consider the commutative diagram

Hn(M2, N2)
jM2−−→ Hn(M2)

Hn(f)

y yHn(f)

Hn(M1, N1) −−→
jM1

Hn(M1).

The horizontal maps are isomorphisms by (i) above, the left vertical map is an
isomorphism by [96], p. 266, Theorem 5.4. Hence the right vertical map is an
isomorphism as asserted. ut

Finally, we finish the missing proof of Lemma 6.91. The manifolds G
T × T

and G are orientable. Hence Hn(G,K) and Hn(GT × T ) are both nonzero ([96],
p. 314, 6.8; [49], p. 347, 7.14). Proposition 6.97 allows us to apply 6.98(ii)
with M1 = G

T × T , N1 = M1 \ intC, M2 = G, and N2 = G \ intC. Then by

Lemma 6.97(ii), Hn(ω,K):Hn(G,K) → Hn(GT × T,K) is an isomorphism. Thus
Lemma 6.91 is proved.

Exercise E6.20. Prove the following statement.

A continuous function f :M → G between two connected compact manifolds is
surjective if there is a point m ∈ M such that the following two conditions are
satisfied:

(i) f−1
(
f(m)

)
= {m}.

(ii) There are open neighborhoods U of m and V of f(m) such that f |U :U → V
is a homeomorphism.

[Hint. Assume the contrary, pick an open n-cell W in G \ f(M) and consider
j:G

(
= (G,Ø)

)
→ (G,G\W ) and k:G\W

(
= (G\W,Ø)

)
→ G

(
= (G,Ø)

)
. Then

H(k) ◦H(j) = H(jk) = 0; observe
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Hn(G,G \W )
Hn(j)−−−→ Hn(G)

Hn(k)−−−→ Hn(G \W )

Hn(f ′)

y Hn(f)

y yHn(f ′′)

Hn(M) −−→
id

Hn(M) −−→
id

Hn(M)

and derive a contradiction.] ut

Exercise E6.20 provides us with a proof of the surjectivity of the function
Ω:M → G and thus an alternative proof of the surjectivity of the function
ω: GT × T → G which was at the root of the Maximal Torus Theorem 6.30. How-
ever, a considerable body of information on algebraic topology enters this present
approach.

Postscript

The existence of an invariant scalar product on the Lie algebra of a compact Lie
group causes us to call such Lie algebras Hilbert Lie algebras. Their structure is
very quickly derived and is at the heart of the first basic structure theorems. We
prove at an early stage that the class of compact Lie groups is closed under the
formation of quotients, and under the passage to algebraic commutator subgroups;
this latter fact, despite it being a clean group theoretical statement, appears not to
be well known or widely used. The fact that the quotient of a compact Lie group,
i.e. a compact group without small subgroups is of the same type is not trivial. In
fact it is shown in [265] that a quotient group of a topological group with no small
subgroups can have small subgroups.

The approach to the maximal torus theory is the one presented by Bourbaki
[43]; it avoids the use of such tools as cohomology or degree theory or Stokes’
Theorem all of which have been used at this point by one author or another. The
Lie algebra version (which we call the Transitivity Theorem) is fairly direct, and
on the group level, Bourbaki’s proof has the advantage, in our opinion, of being
intimately group theoretical while not being devoid of geometric arguments. We
prepared for this proof in Chapter 5 by providing Proposition 5.55 which used the
Open Mapping Theorem and was proved on the level of our discussion of linear
Lie groups in Chapter 5.

Inspired by Scheerer’s Theorem [319] that the commutator subgroup of a con-
nected compact Lie group is a topological factor we present Theorem 6.41 which
says that it is indeed a semidirect factor—which was proved in [167]. Applications
of this Theorem 6.41 appear e.g. in [179].

There is a considerable literature on the structure of compact semisimple Lie
algebras g and their root space decomposition g = t ⊕

⊕
D∈R gD with respect to

the Lie algebra t of a maximal torus. We are not exhaustive in this respect. While
usually the route leads through the complexification gC of g we stay in the real
domain and use the complex structure already present on geff =

⊕
D∈R gD which

we have seen in Chapter 3 (cf. 3.54ff.). Thus our approach is not the usual one.
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We deal with the Weyl group in Theorem 6.52 in an unconventional fashion. In
general we do not delve into matters involving the classification of complex simple
Lie algebras or, what amounts to the same, simple compact real Lie algebras;
there are many sources accessible for this material. The geometry of root systems
and Weyl groups is excellently treated in one of the Bourbaki volumes [42]; what
makes this highly recommended reading is the fact that, in contrast with the
other volumes of the series on “Groupes et algèbres de Lie” this one is completely
self contained and largely accessible on a comparatively elementary level; this
commentary certainly does not apply to the chapter on compact Lie groups [43].
With our Theorem 6.52 and the developments leading up to it we have shown
that what we called the real root system R of a compact Lie group with respect
to a maximal torus is a root system in the technical sense of the literature on the
subject [42]. Thus the reader who wishes to apply the information on the complete
classification of root systems to the classification of compact Lie groups is poised
to do so at that point.

The structure theory of the automorphism groups of compact Lie algebras and
compact Lie groups is presented rather fully—with the caveat mentioned above
that we do not go into the classification of the automorphism groups of simple
complex or simple compact Lie algebras. The theory of the automorphism group
Aut(G) of a general compact Lie group G, notably the identification in Theo-
rem 6.67 of the identity component Aut(G)0 as the group of inner automorphisms
x 7→ gxg−1:G→ G with g ∈ G0, is due to Iwasawa [217]; the overall presentation
here is a bit different.

Lee’s Theorem 6.74 [238] that a compact Lie group G contains a finite group
E such that G = G0E and that G0∩E is central in the component G0 deserves to
be better known. In its full power it requires the information that for a semisim-
ple real compact Lie algebra g, the group Aut g of automorphisms splits over its
identity component ead g (6.60); the proof we give here follows a suggestion by
Karl-Hermann Neeb. Lee’s Theorem will be generalized in Chapter 9 to arbitrary
compact groups. The fact that for a compact group G the groups G and G0×G/G0

are homeomorphic (trivial in the case of Lie groups but not trivial in the general
case) will be discussed in Chapter 10.

The classical sources [16, 235] show that every connected compact Lie group
can be topological generated by two elements. Indeed Auerbach’s Generation The-
orem 6.71 says that the set of ordered pairs (g, h) such that the subgroup 〈g, h〉
is dense in the connected compact Lie group G is dense in G × G. One might
ask whether the subgroup generated by {g, h} is a free group. The existence of
an abundance of free subgroups in a Lie group belongs to universal topological
algebra, as one notices in [273] and [106]. The special question for compact Lie
groups requires classical information belonging to the vicinity of the Hausdorff–
Banach–Tarski paradox because it needs the existence of one free subgroup of the
rotation group of euclidean 3-space. A good source book for this topic is [368]. In
this chapter it was proved that if S is the set of ordered pairs (g, h) satisfying the
two conditions: (i) 〈g, h〉 is dense in the connected compact Lie group G, and (ii)
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the subgroup generated by {g, h} is a free group, then S is dense in G×G. Indeed
more precise statements were given in 6.88.

There is a vast literature on the topology of compact Lie groups [29, 314]. We
opted for presenting enough cohomology to prove Hopf’s Theorem on the coho-
mology of compact Lie groups and to derive from it the classification Theorem 6.95
of compact Lie groups on spheres which says that the only spheres which admit
a Lie group structure are S1 and S3—this theorem is presented primarily as an
example of how information on cohomology works. Naturally this demands more
background knowledge from the reader; but we have tried to keep at least the
ideas rather self-contained by presenting the necessary tools and functorial argu-
ments for the understanding of Hopf algebras in Appendix 3. In the proof of Hopf’s
Rank Theorem 6.95 we have employed an additional share of basic cohomology.
An alternative tool is the rank of a differentiable map , which we have not used
here.

In Chapter 9 we shall generalize most of the structural results accumulated here
to compact groups, but the generalisation will not always be straightforward—
in contrast with what is sometimes believed. For a general structure theory of
compact groups it will be necessary to address the special case of compact abelian
groups in considerable detail, and this we do in the next two chapters.

References for this Chapter—Additional Reading

[4], [16], [29], [42], [43], [46], [48], [49], [55], [58], [89], [96], [101], [106], [111], [137],
[155], [209], [158], [167], [169], [170], [179], [181], [196], [201], [205], [207], [217],
[230], [235], [238], [245], [247], [259], [265], [273], [282], [295], [296], [312], [314],
[313], [319], [338], [339], [352], [353], [354], [368].
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Chapter 7

Duality for Abelian Topological Groups

By the end of Chapter 2 we had the full power of the Pontryagin Duality Theo-
rem for compact abelian groups and for discrete abelian groups. Locally compact
abelian groups are much closer to compact abelian groups than is apparent at first
sight. We deal in a very low key fashion with the locally compact abelian groups Rn
in Appendix 1. These locally compact groups are the basis of most of analysis. In
this chapter we prove the Pontryagin Duality Theorem for locally compact abelian
groups and derive a structure theory of locally compact abelian groups in terms
of their main ingredients, namely, vector groups Rn, compact abelian groups, and
discrete abelian groups. This then reduces a more detailed structure theory for
locally compact abelian groups to a structure theory of compact abelian groups
which is produced in the next chapter.

One of the main tools we again use is the exponential function as in Chapters 5
and 6. We will apply this tool now to abelian topological groups where it will be
immediately clear that the Lie algebra L(G) = Hom(R, G), i.e. the space of all
one-parameter subgroups of G according to 5.7, is a topological vector space. But
even for compact abelian groups G, the functor L takes us outside of the cate-
gory of locally compact abelian groups. This motivates us to derive the apparatus
of duality in sufficient generality. In the category TAB of all abelian topological
groups the fact, known to us for compact or discrete abelian groups, that G is

canonically isomorphic to its double dual
̂̂
G fails in general. Yet for certain cat-

egories of topological vector spaces relevant to the exponential map of compact
groups, important features of duality theory apply. Thus in this chapter we work
in categories of abelian topological groups which properly contain the category of
locally compact abelian groups. In the next chapter we apply it to compact abelian
groups.

The exponential function plays a significant part in the literature on Lie groups.
In the preceding Chapters 5 and 6 we saw how effective it is in the context of linear
Lie groups and compact Lie groups. We show now that it is an equally powerful
tool for the analysis of the structure of locally compact abelian groups in this
chapter. It will remain a Leitmotiv in the subsequent ones.

Prerequisites. We will use some topological vector space theory; for this pur-
pose we have collected the required background information on weakly complete
topological vector spaces in Appendix 7. In this fashion we are keeping matters
self-contained. As we progress into more advanced chapters, the demands on the
reader’s maturity and willingness to accept abstract reasoning increases. In this
chapter, functorial thinking and category theoretical concepts become overt, and it
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7. Duality for Abelian Topological Groups 337

may be time to consult Appendix 3 which was expressly written to accommodate
a framework for reasoning such as duality theory in its full bloom.

The Compact Open Topology and Hom-Groups

In Chapter 1, 1.15, we introduced the character group of a discrete abelian group
A as Â = Hom(A,T) and gave it the topology of pointwise convergence. In 1.22
we considered a compact abelian group G and introduced its character group
Ĝ = Hom(G,T) giving it the discrete topology. In Chapter 5 we started a dis-
cussion of the exponential function and introduced in 5.7, for a topological group
G, the space L(G) = Hom(R, G) and gave it the topology of uniform convergence
on compact subsets of R. We now more systematically consider Hom(G,H) for
abelian topological groups G and H and overview the possible topologies which
are reasonable for these groups.

For the record we formulate the basic characterisation of group topologies on
abelian groups.

Exercise E7.1. Prove the following facts.

(i) If G is an abelian Hausdorff topological group, then the filter of identity
neighborhoods U of G satisfies the following conditions:

(1) Every U in U contains a V such that V − V ⊆ U .
(2)

⋂
U = {0}.

(3) A subset W of G is open if and only if for every g ∈ W there is a U ∈ U
such that g + U ⊆W .

(ii) If G is an abelian group and U a filter of subsets satisfying (1) and (2),
then the set

O(G) = {W ⊆ G | (∀w ∈W )(∃U ∈ U) w + U ⊆W}

is a Hausdorff topology on G relative to which G is an abelian Hausdorff topological
group with U as the neighborhood filter of 0. ut

If necessary, to avoid confusion, we shall write U(G) for the filter of identity
neighborhoods of G.

In this chapter all topological groups considered are assumed
to be Hausdorff unless the contrary is stated explicitly.

In the following proposition we shall consider a set G endowed with a family
of subsets C satisfying the following conditions:

(a) C is directed; i.e. for C1, C2 in C there is a C3 ∈ C with C1 ∪ C2 ⊆ C3.
(b)

⋃
C = G.

Let H denote an abelian topological group. We let U denote the filter of its identity
neighborhoods. For C ⊆ G and U ⊆ H, set

W (C,U) = {f ∈ HG | f(C) ⊆ U}.
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Proposition 7.1. Given these data,
(i) the relations C ⊆ D and U ⊆ V imply W (D,U) ⊆W (C, V ).
(ii) For C1, C2 ∈ C, U ∈ U ,

W (C1 ∪ C2, U) = W (C1, U) ∩W (C2, U).

(iii) For C ∈ C and U, V ∈ U

W (C,U ∩ V ) = W (C,U) ∩W (C, V ).

(iv) W (C, V )−W (C, V ) ⊆W (C, V − V ).

The set UC of all subsets of HG containing some set W (C,U), C ∈ C, U ∈ U is
a filter defining on HG the structure of an abelian Hausdorff topological group with
a topology OC which is finer than or equal to the topology of pointwise convergence.

Proof. The properties (i), (ii), (iii) and (iv) are straightforward from the defi-
nitions. On account of W (C1 ∪ C2, U1 ∩ U2) ⊆ W (C1, U1) ∩W (C2, U2) and hy-
pothesis (a), the set UC is a filter. From (iv) one readily deduces that it satisfies
condition E7.1(1). If f ∈

⋂
UC then f(C) ⊆ U for all C ∈ C and U ∈ U . Hence

f(C) ⊆
⋂
U = {0} by E7.1(2). Now hypothesis (b) implies f = 0. Hence UC

satisfies E7.1(2). It follows from E7.1(ii) that HG is an abelian topological group
with respect to a topology OC for which the W (C,U) form a basis of the identity
neighborhoods.

If Cfin is the collection of all finite subsets of G, then this collection satisfies
conditions (a) and (b), and the group topology OCfin defined according to our
construction is exactly the topology of pointwise convergence, i.e. the product
topology of HG. If F is any finite subset of G, then by hypothesis (b) there is a
finite family C1, . . . , Cn ∈ C such that F ⊆ C1∪· · ·∪Cn and by hypothesis (a) there
is a C ∈ C with C1 ∪ · · · ∪ Cn ⊆ C, and thus F ⊆ C. Hence W (C,U) ⊆ W (F,U)
and thus UCfin ⊆ UC . Hence OCfin ⊆ OC . ut

The topology OC is called the topology of uniform convergence on the sets of
C. If G is a topological space and C is the set of all compact subsets of G, then it
is called the topology of uniform convergence on compact sets or the compact open
topology.

The construction which associates with (G, C) and an abelian topological group
H the abelian topological group HG has certain functorial properties which are
often used.

Proposition 7.2. Let G and H be sets equipped with families C, respectively, D
of subsets satisfying (a) and (b) preceding Proposition 7.1. Assume that S and T
are abelian topological groups and f :S → T is a morphism of abelian topological
groups; assume further that g:G→ H is a function such that for each C ∈ C there
is D ∈ D with g(C) ⊆ D. Then

(i) the function fG:SG → TG given by fG(ϕ) = f ◦ϕ is a morphism of abelian
topological groups with respect to the topologies of uniform convergence on
the sets of the family C, and
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(ii) the function Sg:SH → SG given by Sg(ψ) = ψ◦g is a morphism of topological
groups with respect to the topologies of uniform convergence on the sets of
the families D and C, respectively.

Proof. (i) Clearly fG is a morphism of abelian groups. Assume that C ∈ C and
V ∈ U(T ). Since f is continuous at 0 we find a U ∈ U(S) with f(U) ⊆ V . Then
ϕ(C) ⊆ U implies f

(
ϕ(C)

)
⊆ f(U) ⊆ V , whence fG

(
W (C,U)

)
⊆W (C, V ). Thus

fG is continuous at 0 and, being a morphism of abelian groups, is then a morphism
of abelian topological groups.

(ii) Again one observes readily that Sg is a morphism of abelian groups. If
C ∈ C and U ∈ U(G) we find D ∈ D with g(C) ⊆ D, whence ψ(D) ⊆ U implies
ψ
(
g(C)

)
⊆ ψ(D) ⊆ U . Thus Sg

(
W (D,U)

)
⊆ W (C,U). Hence the morphism of

abelian groups Sg is continuous at 0 and thus a morphism of abelian topological
groups. ut

If G and H are abelian topological groups we shall denote with Hom(G,H)
the abelian group of all continuous homomorphisms from G to H with the group
structure inherited from HG. We shall always equip Hom(G,H) with the topology
of uniform convergence on the compact sets of G unless something is explicitly
stated to the contrary.

Proposition 7.3. For any abelian topological group G and any morphism f :S →
T of abelian topological groups there are morphisms of abelian topological groups

Hom(G, f): Hom(G,S)→ Hom(G,T ), Hom(G, f)(ϕ) = f ◦ ϕ,

Hom(f,G): Hom(T,G)→ Hom(S,G), Hom(f,G)(ϕ) = ϕ ◦ f.

Proof. This is immediate from Proposition 7.2. ut

The following definition is crucial for duality theory. We shall no longer hesitate
to use the concept of a category rigorously. For all material used on categories and
functors we refer to Appendix 3.

Definition 7.4. (i) If G is an abelian topological group, then the abelian topo-
logical group

Ĝ = Hom(G,T)

is called the character group or the dual group of G. The elements of the character
group are called characters.

(ii) If f :G→ H is a morphism of abelian topological groups, then the morphism
of abelian topological groups

f̂ : Ĥ → Ĝ, f̂ = Hom(f,T)

is called the adjoint morphism of f .
(iii) For a compact subset C of G and an identity neighborhood U of T we shall

write VG(C,U)
def
= W (C,U) ∩ Ĝ or simply V (C,U) if no confusion is likely. ut

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



340 7. Duality for Abelian Topological Groups

We first hasten to show that Definition 7.4(i) extends Definitions 1.15 and
1.22 correctly. We shall also prove that the character group of the additive group
of a real topological vector space is its topological dual (with the compact open
topology) thereby linking character theory with vector space duality.

Proposition 7.5. (i) The character group of a discrete abelian group is compact,
and the character group of a compact abelian group is discrete.

(ii) Assume that E1 and E2 are R-vector spaces such that the underlying addi-
tive groups are topological groups and that all functions r 7→ r·v:R→ Ej, v ∈ Ej,
j = 1, 2 are continuous. Then every morphism f :E1 → E2 of abelian topological
groups is linear.

(iii) Let E be a real topological vector space and E′ = HomR(E,R) the space
of all continuous linear forms E → R endowed with the compact open topology.
Then E′ = Hom(E,R) (in the sense of topological Hom-groups), and if q:R → T
is the quotient morphism, then Hom(E, q):E′ = Hom(E,R)→ Hom(E,T) = Ê is
an isomorphism of topological vector spaces.

Proof. (i) IfG is discrete, then the topology of compact convergence is the topology

of pointwise convergence and Ĝ = Hom(G,T) ⊆ TG has the topology inherited
from the product topology of TG which is compact, by the Theorem of Tychonoff.
But since G is discrete, Hom(G,T) is the group of all algebraic group morphisms

G→ T and is, therefore, closed in TG. Hence Ĝ is a compact abelian group.
Now let G be compact and U the neighborhood

(]
− 1

3 ,
1
3

[
+ Z

)
/Z of zero in T.

Then {0} is the only subgroup of T contained in U . Then any morphism f :G→ T
contained in W (G,U) satisfies f(G) ⊆ U for a subgroup f(G) of T and must,

therefore, vanish. Hence {0} = W (G,U) is an identity neighborhood. Hence Ĝ is
discrete.

(ii) Let f :E1 → E2 be additive. If m ∈ N, n ∈ Z, then m·f( nm ·v) = f(n·v) =
n·f(v), whence f( nm ·v) = m

n ·f(v). Thus f is Q-linear, i.e. r·f(v) = f(r·v) for
r ∈ Q. By the continuity of all r 7→ r·v and the continuity of f we get the desired
R-linearity.

(iii) Each continuous linear form E → R is trivially a member of Hom(E,R).
Conversely, every member f of Hom(E,R) is R-linear by (iii). It follows that

E′ = Hom(E,R). Now Hom(E, q):E′ → Ê is a morphism of topological groups by
7.3.

The additive topological group of E as that of a real topological vector space
is simply connected (see A2.6, A2.9, A2.10(i)). Hence every character χ:E → T
has a unique lifting χ̃:E → R such that

Hom(E, q)(χ̃) = q ◦ χ̃ = χ

(see Appendix 2, A2.32). Thus χ 7→ χ̃: Ê → E′ is an inverse of Hom(E, q). It
remains to be verified that it is continuous. Let C be a compact subset of E and
U = ]−ε, ε[ ⊆ R with 0 < ε ≤ 1

4 . Now D·C is compact connected and contains
C. Consider χ ∈ VE

(
D·C, q(U)

)
. Then χ̃(D·C) is a connected subset of q−1(q(U))
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containing 0. The component of 0 in q−1
(
q(U)

)
= U +Z is U . Hence χ̃(D·C) ⊆ U .

Thus χ̃ ∈ VE(D·C,U) ⊆ VR(C,U). This proves the continuity of χ 7→ χ̃: Ê → E′.
This completes the proof. ut

Instead of A2.32 we could have used the Extending Local Homomorphisms
Theorem A2.26. But the full power of either A2.26 or A2.32 from Appendix 2 is
not absolutely needed in the proof of 7.5(iii). The content of the following exercise,
whose proof can be patterned after that of 5.8 will serve as a more elementary
replacement.

Exercise E7.2. Verify the following statement.

Let E denote a real vector space and K a subset which absorbs E (i.e. satisfies⋃
n∈N nK = E) and is balanced (i.e. satisfies [−1, 1]·K = K). If f :K → G is a

function into a group such that r, s, r+ s ∈ K implies f(r+ s) = f(r) + f(s) then
there is a unique extension F :E → G to a morphism of groups with F |K = f . ut

Local Compactness and Duality of Abelian
Topological Groups

With each abelian topological group we now associate a natural homomorphism

η = ηG:G → ̂̂
G. Indeed if we set η(g)(χ) = χ(g) for g ∈ G and χ ∈ Ĝ, then

clearly η(g): Ĝ → T is a morphism of abelian groups for each g; it is continuous

with respect to the topology of pointwise convergence on Ĝ. Since the topology of
Ĝ (namely, the topology of uniform convergence on compact sets) is finer than or
equal to the topology of pointwise convergence, η(g) =

(
χ 7→ χ(g)

)
is continuous

and thus is a character. Hence η:G → ̂̂
G is a well-defined function and is also

readily seen to be a morphism of abelian groups. The function (χ, g) 7→ χ(g) is
continuous in each variable separately. However, we now must determine conditions
under which the two functions relevant for duality are continuous:

(†) the evaluation function (χ, g) 7→ χ(g): Ĝ×G→ T,

(‡) the evaluation morphism ηG:G→ ̂̂
G, ηG(g)(χ) = χ(g).

A set C in a topological group G is called precompact if for each identity
neighborhood U there is a finite subset F ⊆ G such that C ⊆ FU . Every compact
subset is clearly precompact. If G is the additive group Q of rational numbers
with the order topology (i.e. the topology induced by the natural topology of
R), then [−1, 1] is a precompact identity neighborhood of G which is not compact.
Clearly every subset K ⊆ G whose closure is compact is precompact; the preceding
example shows that the converse fails. If K is a precompact subset of G and
f :G → H is a morphism of abelian topological groups, then f(K) is precompact
in H.

Proposition 7.6. Let G and T be abelian topological groups and K ⊆ Hom(G,T ).
Then each of the following conditions implies the next:
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(1) K is compact.
(2) K is precompact.
(3) For each compact subset C of G and each U ∈ U(T ) there is an M ∈ U(G)

such that K(C ∩M) ⊆ U .
(4) The topology of K agrees with the topology induced from the product topology

TG, that is the topology of pointwise convergence.
Consider the following conditions:

(i) K(x) is compact for all x ∈ G.
(ii) K(x) is compact for all x ∈ G.

(iii) K is closed in TG in the product topology, i.e. the topology of pointwise
convergence.

Then (1)⇒(i)⇒(ii) and (1)⇒(iii). Conversely, conditions (4), (ii), and (iii)
together imply (1).

Finally, if T is compact, then (3) implies (2)

Proof. As we remarked above, it is clear that (1) implies (2).
(2)⇒(3) We shall abbreviate

VG(C,U) = WG(C,U) ∩Hom(G,T ).

Assume U ∈ U(T ) and let C be an arbitrary compact subset of G. Pick U ′ ∈ U(T )
such that U ′+U ′ ⊆ U . Since K is precompact there is a finite set F ⊆ K such that
K ⊆ F + VG(C,U ′). Since each κ ∈ F is continuous, we find an Mκ ∈ U(G) such
that κ(Mκ) ⊆ U ′. Set M =

⋂
κ∈F Mκ. Then K(M ∩ C) ⊆

(
F + VG(C,U ′)

)
(M ∩

C) ⊆ F (M) + VG(C,U ′)(C) ⊆ U ′ + U ′ ⊆ U .
(3)⇒(4) Let f ∈ K. Since the compact open topology on K is finer than

or equal to the topology of pointwise convergence, we have to show the reverse
containment. Thus for each f ∈ K and for each basic neighborhood VG(C,U), C
compact in G, U ∈ U(T ) we must find a finite set F ⊆ K and a zero neighborhood
N ∈ U(T ) such that (f + VG(F,N)) ∩ K ⊆ f + VG(C,U). Select N ∈ U(T ) in
such a fashion that N +N +N ⊆ U . By (3) and by the continuity of f , for each
c ∈ C we find an Mc ∈ U(G) such that K((C − c) ∩Mc) ⊆ N and f(Mc) ⊆ −N .
Since C is compact, there is a finite set F ⊆ C such that C ⊆

⋃
x∈F x + Mx.

Let κ ∈
(
(f + VG(F,N)

)
∩ K, say κ = f + ϕ with ϕ(F ) ⊆ N . We must show

ϕ ∈ VG(C,U). If c ∈ C, then there is an x ∈ F such that c = x+m with m ∈Mx.
Then κ(m) = κ(c − x) ∈ N by the definition of Mx. Now ϕ(c) = −f(c) + κ(c) =
−f(c)+κ(m)+κ(x) = f(x−c)+κ(m)+ϕ(x) ∈ N+N+N ⊆ U . Thus ϕ ∈ VG(C,U),
and this is what we had to show.

If K is compact, since evaluation is continuous, K(x) is compact for each
x ∈ G. Then trivially K(x) is compact for all x ∈ G. Also, since the compact
open topology is finer than the topology of pointwise convergence, K is compact
and hence closed in TG in the latter topology.

Now we assume that K(x) is compact for each x ∈ G and that K is closed

in TG. Then P
def
=
∏
x∈GK(x) is compact by the Theorem of Tychonoff, and the

closed subset K ⊆ P is compact in the topology of pointwise convergence. Now
(4) clearly implies (1).
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If T is compact, then (ii) is automatic and each subset K ⊆ TG is precompact.
Since (3) implies (4), we conclude that K is precompact in the topology induced
from the compact open topology. ut

This result is a version of Ascoli’s Theorem (see e.g. [34], Chap 10., §2, no 4
and no 5, notably Théorème 2).

As a consequence of this proposition, a hom-group of the form Hom(G,T )
can be shown to be locally compact if and only if there exists a closed identity
neighborhood U of T , and a compact subset C of G such that VG(C,U) is closed
in TG and satisfies condition (3) of Proposition 7.6. The following key theorem
shows that for T = T one can verify this condition.

Since compactness is built into the definition of the compact open topology and
therefore into the definition of a character group it does not come as a complete
surprise, that local compactness is connected with these questions. In fact a certain
bigger class of topological spaces plays a role. We recall that a space X is said to
be a k-space if a set U ⊆ X is open if and only if for each compact subset K ⊆ X
the set U ∩ K is open in K. A function f :X → Y from a Hausdorff k-space to
a topological space is continuous if and only if f |K:K → Y is continuous for
each compact subset K of X. All locally compact Hausdorff spaces and all first
countable spaces are k-spaces (because if every neighborhood filter has a countable
basis, then the open sets are determined by sequences and the underlying subspace
of a convergent sequence plus its limit is compact).

Duality and Local Compactness

Theorem 7.7. Let G be an abelian topological group. We set U1
def
= ([− 1

4 ,
1
4 ] +

Z)/Z ∈ U(T) and consider the evaluation morphism ηG:G→ ̂̂
G, ηG(g)(χ) = χ(g),

and the evaluation function evG: Ĝ×G→ T, evG(χ, g) = χ(g). Now the following
statements hold.

(i) If N is any neighborhood of 0 in G, then the subspace VG(N,U1)
def
=

W (N,U1)∩ Ĝ is compact. If N is compact, then this set is a 0-neighborhood of Ĝ.

(ii) If G is locally compact then the character group Ĝ is locally compact.

(iii) If the underlying space of G is a k-space, then ηG:G→ ̂̂
G is continuous.

(iv) For every compact subspace K of G, the restriction

evG |(Ĝ×K): Ĝ×K → T

is continuous. If G is locally compact, then ηG and evG are continuous.

(v) If evG: Ĝ×G→ T is continuous, then Ĝ and
̂̂
G are locally compact.

(vi) Assume that ηG:G→ ̂̂
G is an isomorphism of topological groups. Then the

following conditions are equivalent:
(a) G is locally compact.

(b) evG: Ĝ×G→ T is continuous.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



344 7. Duality for Abelian Topological Groups

Proof. (i) We set

Un = {t ∈ T | (∀k = 1, . . . , n) k·t ∈ U1}.

If 1
4 > ε > 0 and n > 1/4ε > 1 then we claim Un ⊆ (]− ε, ε[+Z)/Z. Proof of this

claim: If t = x+ Z ∈ Un, then we may assume 0 ≤ x ≤ 1
4 and we have

(∗) {x, 2·x, 3·x, . . . , n·x} ⊆
[
−1

4
,

1

4

]
+ Z.

Set m = max{k | x, 2·x, . . . , k·x ≤ 1
4}. Then 1

4 < (m+ 1)·x. We assert that n ≤ m.
Suppose, on the contrary, that m < n. Then m + 1 ≤ n and thus (m + 1)·x ∈
[− 1

4 ,
1
4 ]+Z by (∗). Hence 3

4 = 1− 1
4 ≤ (m+1)·x. Hence 1

4 ≥ x = (m+1)·x−m·x ≥
3
4 −

1
4 = 1

2 , a contradiction. Hence n ≤ m, as asserted, and thus n·x ≤ 1
4 , whence

0 ≤ x ≤ 1
4n < ε and, therefore, t = x + Z ∈ ( ] − ε, ε[ +Z)/Z, and this proves the

claim. Now we know that {Un | n ∈ N} is a basis for U(T).

Lemma A. Assume that N is a zero neighborhood of G. Then for each n ∈ N
there is an identity neighborhood Vn of G such that

(∗∗) VG(N,U1)
def
= Ĝ ∩W (N,U1) ⊆

⋂
n∈N

W (Vn, Un).

Proof of Lemma A. For n ∈ N we find a neighborhood Vn of 0 in G such that
Vn + · · ·+ Vn︸ ︷︷ ︸

n times

⊆ N . If now χ ∈ Ĝ ∩W (N,U1) then for all k = 1, 2, . . . , n we have

k·χ(Vn) = χ(k·Vn) ⊆ χ(Vn + · · ·+ Vn︸ ︷︷ ︸
n times

) ⊆ χ(N) ⊆ U1,

whence χ(Vn) ⊆ Un by the definition of Un which proves (∗∗).

Lemma A gives us two pieces of information. Firstly, we claim that VG(N,U1)
is closed in TG. Let Gd denote the discrete group underlying G. A morphism
of groups between topological groups is continuous if it is continuous at the
identity element. Since all f ∈

⋂
n∈NW (Vn, Un) are continuous at 0, we have

Hom(Gd,T) ∩
⋂
n∈NW (Vn, Un) ⊆ Ĝ. If cl Ĝ denotes the closure of Ĝ in TG in the

topology of pointwise convergence, then we note from (∗∗) that cl Ĝ∩W (N,U1) ⊆
Hom(Gd,T) ∩

⋂
n∈NW (Vn, Un) ⊆ Ĝ. (In fact, equality holds.) Since U1 is closed

in T, the set W (N,U1) is closed in the topology of pointwise convergence in TG.

Therefore the set Ĝ∩W (N,U1) = cl Ĝ∩W (N,U1) is closed in TG in the product
topology as asserted.

Secondly, we claim that condition (3) of Proposition 7.6 is satisfied for K =
VG(N,U1). Let C be a compact subset of G and U ∈ U(T). Find an n ∈ N such
that Un ⊆ U . Set M = Vn ⊆ N . By Lemma A we have VG(N,U1) ⊆ VG(Vn, Un).
Then

K(C ∩M) ⊆ VG(N,U1)(Vn) ⊆ VG(Vn, Un)(Vn) ⊆ Un ⊆ U,

which proves 7.6(3). Hence, by 7.6, the set VG(N,U1) is compact.
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Finally, if N is compact, then by the definition of the compact open topology,
the compact set VG(N,U1) is a 0-neighborhood of Ĝ. This completes the proof of
(i).

(ii) By Proposition 7.1 and Definition 7.4, the topology of Ĝ is Hausdorff.
Hence it suffices to show that every point has one compact neighborhood. Since
Ĝ is homogeneous as an abelian topological group it suffices to show that one of
the basic 0-neighborhoods W (C,U) ∩ Ĝ is compact. This is what we did in (i).

(iii) It is worthwhile to be pedestrian at this point. Let us therefore go through
several steps.

Step (iii)1. For each zero-neighborhood V of
̂̂
G and each compact subspace C of

G containing 0 we have a zero neighborhood M of G such that ηG(M ∩ C) ⊆ V .

Proof. Let V
Ĝ

(K,U) be a basic zero neighborhood of
̂̂
G contained in V with a

compact set K in Ĝ and with U ∈ U(T). By Proposition 7.6, for each compact
subset C of G, we find a zero neighborhood M in G such that ηG(M ∩ C)(K) =

K(M ∩ C) ⊆ U , i.e. such that ηG(M ∩ C)(K) ⊆ W (K,U) ∩ ̂̂G = V
Ĝ

(K,U) ⊆ V .
This finishes Step 1.

Next consider a function f :X → Y between Hausdorff spaces. Let x0 ∈ X and
let K denote the set of all compact subspaces of X containing x0, U the set of all
open neighborhoods of x0, and V the set of all open neighborhoods of f(x0). Next
consider the following five conditions:

(A) f is continuous at x0.

(B) (∀V ∈ V)(∃U ∈ U) f(U) ⊆ V .

(C) (∀V ∈ V)(∀K ∈ K)(∃UK ∈ U) f(UK ∩K) ⊆ V .

(D) (∀K ∈ K) f |K:K → Y is continuous.

(E) (∀V ∈ V)(∀K ∈ K) f−1(V ) ∩K is a neighborhood of x0 in K.

Then clearly (A)⇔(B)⇒(C)⇔(D)⇔(E), and if x0 has a compact neighborhood
in X, then all are equivalent.

Step (iii)2. Assume that X is a Hausdorff k-space and Y a Hausdorff space.
Assume that f :X → Y satisfies (C) at all points x0 of X. Then f is continuous.

Proof. Let V be open in Y . Then the hypothesis on f and (E) imply that f−1(V )∩
K is open in K for all compact subsets K of X. Since X is a k-space, f−1(V ) is
open. Step 2 is proved.

Step (iii)3. Let G and H be topological groups and assume that the underlying
space of G is a k-space. Let f :G → H be an algebraic homomorphism which
satisfies (C) at one point. Then f is continuous.

Proof. If f satisfies (C) at one point, it satisfies (C) at all points since left trans-
lations are continuous. Hence f is continuous by Step 2. This completes the proof
of Step 3.
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Step (iii)4. Proof of Assertion (iii). By Step 1, the algebraic homomorphism ηG
satisfies (C) at 0. Hence it is continuous by Step 3.

(iv) Again we go through several steps.

Step (iv)1. Let X be an arbitrary subset of G. The evaluation function

evG: Ĝ×G→ T, evG(χ, g) = χ(g)

has a continuous restriction

evG |(Ĝ×X): Ĝ×X → T

if and only if
(∗) for each g0 ∈ X, and U ∈ U(T) there is a compact subset C ⊆ G and zero

neighborhoods M ∈ U(G), N ∈ U(T) such that VG(C,N)
(
M∩(X−g0)

)
⊆ U .

Proof. The evaluation function evG is separately continuous and bilinear (i.e. it is
a morphism of abelian topological groups in each argument if the other argument
is fixed). The difference

χ(g)− χ0(g0) = (χ− χ0)(g − g0) + χ0(g − g0) + (χ− χ0)(g0),

is small if all summands on the right side are small; the second summand can
be made small by taking g close to g0 by the continuity of χ0, the last one can
be made small by taking χ close enough to χ0 by the continuity of ηG(g0). Thus

evG |Ĝ×X is continuous at (χ0, g0) ∈ Ĝ×X if and only if evG |
(
Ĝ× (X − g0)

)
is

continuous at (0, 0) and this is the case if and only if (∗) holds. This proves Step 1.

The following is straightforward:

Step (iv)2. The following statements are equivalent for N, U ⊆ T, C,M ⊆ G:

(a) VG(C,N)
(
M ∩ (X − g0)

)
⊆ U.

(b) ((∀χ ∈ Hom(G,T)
)

(χ(C) ⊆ N)⇒ (χ
(
M ∩ (X − g0)

)
⊆ U.

(c) VG(C,N) ⊆W (M ∩ (X − g0), U).

(d) VG(C,N) ⊆ VG(M ∩ (X − g0), U).

Step (iv)3. Let K an arbitrary compact subset of an abelian topological group G.
Then

evG |(Ĝ×K): Ĝ×K → T

is continuous.

Proof. Let g0 ∈ K and U ∈ U(T). Set C = K − g0, N = U and M = G. Then
Step 2(d) holds trivially and Condition (∗) of Step 1 is satisfied. This completes
the proof of Step 3 and thus the first part of Assertion (iv).

Step (iv)4. If G is locally compact then the functions ηG and evG are continuous.
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Proof. Regarding ηG: every locally compact space is a k-space. Hence (iii) above
proves the claim.

Regarding evG: every point (χ, g) ∈ Ĝ × G has a neighborhood of the form

Ĝ × K with a compact neighborhood K of g. Then Step 3 shows that evG is
continuous at (χ, g).

(v) Assume that evG: Ĝ × G → T is continuous. Then there is a zero neigh-

borhood U of Ĝ and a zero neighborhood N of G such that evG(U × N) ⊆ U1.

This implies that U ⊆ VG(N,U1). Thus VG(N,U1) is a zero neighborhood of Ĝ,

which by (i) is compact in Ĝ. Thus Ĝ is locally compact. It then follows from (ii)

that
̂̂
G is locally compact, too.

(vi) If G is locally compact, then evG is continuous by (iv). Assume now

that ηG:G → ̂̂
G is an isomorphism algebraically and topologically and that evG

is continuous. Then
̂̂
G is locally compact by (v). Then G ∼= ̂̂

G implies that G is
locally compact. ut

We have seen in particular, that the evaluation morphism ηG is a morphism
of abelian topological groups whenever the abelian topological group G is locally
compact or satisfies the first axiom of countability. For Proposition (iii) of Theorem
7.7 see Banaszczyk [18], p. 133, 14.4. The equivalence of 7.7(v) was shown by
Martin-Peinador [253] only recently. The quintessence of this section is that we
should expect a duality theory for abelian topological groups to be perfect in
all aspects at best within the full category of locally compact abelian groups.
We shall confirm this in the course of this chapter. Nevertheless we shall see other
categories of abelian topological groups for which duality is of interest even though
their objects in general fail to be locally compact.

It is reasonable in view of our predominant interest in locally compact abelian
groups that we wish to endow Ĝ = Hom(G,T) once and for all with one particular
topology which we choose to be the compact open one. If we were interested
in a very general theory of duality we would be well advised to allow a greater
flexibility in choosing, on an abelian topological group A a family C, and thus a
group topology OC |TAB(A,T) on the character group TAB(A,T) ⊆ TA, according

to Proposition 7.1. For instance, on the abelian topological group A = Ĝ of all
continuous characters of an abelian topological group G, it is quite reasonable
to consider the set Ce of all equicontinuous subsets, i.e. subsets K ⊆ TAB(G,T)
satisfying

(U ∈ U(T)
)(
∃M ∈ U(G)

)
K(M) ⊆ U.

This family satisfies conditions (a) and (b) preceding Proposition 7.1. The virtue

of the topology OCe on the double dual TAB(Ĝ,T), called the topology of uniform
convergence on equicontinuous sets, has the advantage that the evaluation mor-
phism ηG:G→ (TAB(Ĝ,T),OCe) is continuous. In view of the last conclusion of 7.6
every member of Ce is precompact. Therefore, if every closed precompact subset of
G is compact, then OCe is contained in the compact open topology. In so far as ηG
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should be continuous, the topology of uniform convergence on equicontinuous sets
is the correct one on a double dual; the fortunate fact for locally compact groups
G, established in 7.7, is that the topologies of uniform convergence on compact
sets and that on equicontinuous sets agree.

Basic Functorial Aspects of Duality

Definitions 7.8. The category of all abelian topological groups and morphisms
of abelian topological groups will be denoted by TAB and the full subcategory (cf.
Appendix 3, EA3.10(i)) of all locally compact abelian groups is denoted by LCA.
The full subcategory of compact abelian groups is written CAB and the category of
(discrete) abelian groups AB. The category of K-vector spaces and linear maps will
be denoted by ABK and the category of topological K-vector spaces and continuous
linear maps by TABK. We let TABη, respectively, ABD denote the full subcategory

of TAB of all abelian topological groups G such that ηG:G→ ̂̂
G is a morphism of

abelian topological groups, respectively, is an isomorphism of abelian topological
groups. We say that an abelian topological group is reflexive or has duality if it is

contained in ABD. We shall call G semireflexive if ηG:G→ ̂̂
G is bijective. ut

An abelian topological group therefore is semireflexive if and only if every
character of Ĝ is an evaluation.

In Appendix 4, A4.21 shows there are semireflexive abelian topological groups
which are not reflexive.

We know from 1.37 and 2.32 that AB and CAB are contained in ABD. We will
show later that LCA ⊆ ABD (Theorem 7.63 below). Theorems that show that
certain abelian topological groups G belong to ABD are called duality theorems.

Here is a straightforward exercise:

Exercise E7.3. Show that η̂G ◦ ηĜ = id
Ĝ

. ut

Next we record quickly that the character group is a functor (cf. Appendix 3,
A3.17).

Proposition 7.9. (i) If f :A→ B is a morphism of abelian topological groups with

dense image, then f̂ : B̂ → Â is injective.
(ii) Assume that ηG and η

Ĝ
are continuous. If ηG or η

Ĝ
has a dense image,

then Ĝ is reflexive.
(iii) The assignment ·̂ : TAB → TABop is a functor, i.e. ·̂ : TAB → TAB is a

contravariant functor, mapping ABD into itself, and exchanging CAB and AB.

Proof. (i) Let χ ∈ B̂. Then f̂(χ) = 0 means that for all a ∈ A we have χ
(
f(a)

)
=

f̂(χ)(a) = 0. Since B = f(A) we conclude χ = 0.
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(ii) The following diagram is commutative. (Exercise E7.3.)

Ĝ
id−−→ Ĝ

η
Ĝ

y xη̂Ĝ̂̂
G −−→

id

̂̂̂
G

If ηG has a dense image, by (i), η̂G is injective. Because η̂G ◦ ηĜ = id
Ĝ

the mor-
phism η̂G is an injective retraction. Hence it is an isomorphism. (See Appendix 3,
A3.13(iii).) Hence the coretraction η

Ĝ
is an isomorphism, too.

If η
Ĝ

has dense image, then id ̂̂̂
G

η
Ĝ

= η
Ĝ

= η
Ĝ
η̂GηĜ and this relation implies

that the continuous functions id
Ĝ

and η
Ĝ
η̂G agree on a dense set of their domain

and thus are equal, since all spaces considered are assumed to be Hausdorff. Thus
η̂G = η−1

Ĝ
.

(iii) In order to show that ·̂ is a functor, we have to show that îdG = id
Ĝ

of

any abelian topological group G, and that for morphisms G
f→ H

g→ K we have

ĝf = f̂ ĝ. But this is straightforward.
It has been observed in 7.5(i) and (ii) that the functor ·̂ exchanges CAB and

AB. We must show that it preserves ABD. So take G in ABD. Then ηG:G→ ̂̂
G is

an isomorphism. Then η
Ĝ

is an isomorphism by E7.3.

Thus Ĝ is in ABD. ut

Proposition 7.10. (i) Let G, H, and T be abelian topological groups. Then
σ: Hom(G×H,T )→ Hom(G,T )×Hom(H,T ), σ(Φ) = (Φ1,Φ2), Φ1(g) = Φ(g, 0),
Φ2(h) = Φ(0, h), and ρ: Hom(G,T )×Hom(H,T )→ Hom(G×H,T ), ρ(ϕ,ψ)(g, h)
= ϕ(g) + ψ(h) are inverse morphisms of abelian topological groups.

(ii) The function αG,H : Ĝ×H → Ĝ × Ĥ, α(χ) = (χ1, χ2), χ1(g) = χ(g, 0),
χ2(h) = χ(0, h), is an isomorphism of abelian topological groups whose inverse is
given by α−1

G,H(χ1, χ2)(g, h) =
(
χ1(g), χ2(h)

)
.

(iii) There is an isomorphism α
Ĝ,Ĥ
◦ α̂G,H

−1
:
̂̂
G×H → ̂̂

G× ̂̂H of abelian topo-

logical groups. Define η′G,H :G×H →̂̂
G×Ĥ by η′G,H(g, h)(χ1, χ2) = χ1(g)+χ2(h).

Then the following diagram is commutative:

G×H idG×H←−−− G×H idG×H−−−→ G×H
ηG×H

y η′G,H

y yηG×ηH
̂̂
G×H ←−−−

α̂G,H

̂̂
G×Ĥ −−→

α
Ĝ,Ĥ

̂̂
G× ̂̂H.

(iv) ABD is closed under the formation of finite products; that is finite products
of reflexive abelian topological groups are reflexive.
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Proof. (i) The verification of the assertions is a straightforward exercise. (E7.4
below). (ii) is an immediate consequence of (i). Also the verification of (iii) is
straightforward. Now (iii) directly implies (iv). ut

Exercise E7.4. Fill in the details of the proof of 7.10. ut

The functor ·̂ has functorial and universal properties as we will record now.

Proposition 7.11. (i) Assume that f :A→ B is a morphism of abelian topological
groups. Then the diagram

A
ηA−−→ ̂̂

A

f

y ŷ̂f
B −−→

ηB

̂̂
B

is commutative.
In particular, η: idTABη → ̂̂· is a natural transformation from the inclusion

functor TABη → TAB to the self-functor ̂̂· of TABη (see Appendix 3, A3.31).
(ii) For each pair of abelian topological groups G and H and for each morphism

f :G → Ĥ there is a unique morphism of abelian groups f ′:H → Ĝ such that
f̂ ′ ◦ ηG = f . In fact, for h ∈ H and g ∈ G we have f ′(h)(g) = f(g)(h). If

ηH :H → ̂̂
H is continuous, then f ′ is continuous. If the underlying space of H is

a k-space, in particular if it is locally compact, then ηH is continuous.

TABη TABη

G
ηG−−→ ̂̂

G Ĝ

f

y yf̂ ′ xf ′
Ĥ −−→

id
Ĥ

Ĥ H

(iii) For abelian topological groups G and H in the category TABη, the function

f 7→ f ′: Hom(G, Ĥ) → Hom(H, Ĝ) is an isomorphism of abelian groups whose
inverse is given by exchanging the roles of G and H. If G and H are locally
compact, then f 7→ f ′ is continuous.

(iv) The functor ·̂ : LCAop → LCA is adjoint to ·̂ : LCA → LCAop. In
particular, the contravariant functor ·̂ : LCA → LCA transforms colimits into
limits.

Proof. (i) The first claim is a straightforward exercise from the definitions. (E7.10.)

(ii) We attempt to define a function f ′:H → Ĝ by f ′(h)(g) = f(g)(h). This
attempt is successful as soon as we know that for each h ∈ H the function f ′(h) =

(g 7→ f(g)(h):G → T is continuous. However, χ 7→ χ(h): Ĥ → T is continuous
by the definition of the compact open topology; then the continuity of f and the
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continuity of χ 7→ χ(h) guarantees the continuity of f ′(h). It is straightforward
that f ′ is a morphism of abelian groups.

Now we compute
(
f̂η(h)

)
(g) = f̂

(
η(h)

)
(g) = η(h)

(
f(g)

)
= f(g)(h) = f ′(h)(g)

whence f ′ = f̂ ◦ ηH . Thus if ηH is continuous, i.e. if H is in TABη, then f ′ is

continuous, i.e. f ′ ∈ Hom(H, Ĝ). By 7.7(iii), if H is a k-space then this condition
is satisfied. This holds, in particular, if H is locally compact.

The symmetry in the relation of f and f ′ suggests the analogous computation(
f̂ ′η(g)

)
(h) = f̂ ′

(
η(g)

)
(h) = η(g)

(
f ′(h)

)
= f ′(h)(g) = f(g)(h). Hence f̂ ′ ◦ ηG =

f . If f ′′:H → Ĝ satisfies f̂ ′′ ◦ ηG = f , then the preceding computation shows
f(g)(h) = η(g)

(
f ′′(h)

)
= · · · = f ′′(g)(h), and so f ′ is indeed uniquely determined

by the universal property.
(iii) It is clear that f 7→ f ′ is a morphism of abelian groups and that it has

an inverse morphism obtained by exchanging the roles of G and H. It therefore
remains to observe its continuity—since the continuity of its inverse then follows
by the same argument. Let V

(
KH , V (CG, U)

)
denote a basic 0-neighborhood of

Hom(H, Ĝ). Then we must find a 0-neighborhood V
(
KG, V (CH , U

′)
)

such that

f ∈ V
(
KG, V (CH , U

′)
)
, i.e. f(KG)(CH) ⊆ U ′ implies f ′ ∈ V

(
KH , V (CG, U

′)
)
, i.e.

f(CG)(KH) = f ′(KH)(CG) ⊆ U . It clearly suffices to take KG = CG, CH = KH ,
and U ′ = U .

(iv) By (iii) the function f 7→ f ′:LCA(G, Ĥ) → LCAop(Ĝ,H) is a natural
bijection. The assertion on the adjunction then follows from Appendix 3, A3.35.
Now left adjoints preserve limits (see Appendix 3, A3.52). Since ·̂ is contravariant,
the asserted transformation rule follows. ut

Exercise E7.10. Prove 7.11(i). (Cf. Exercise E1.15). ut

The Annihilator Mechanism

Definition 7.12. (i) If H is a subset of an abelian topological group G, then

(∗) H⊥ = {χ ∈ Ĝ | (∀g ∈ H) 〈χ, g〉 = 0 }

is called the annihilator of H in Ĝ. If A is a subset of Ĝ, we also write

(∗∗) A⊥ = { g ∈ G | (∀χ ∈ A) 〈χ, g〉 = 0 }

and A⊥ is called the annihilator of A in G.
(ii) We shall say that a pair (G,H) consisting of a topological group G and a

subgroup H has enough compact sets if for each compact subset K of G/H there
is a compact subset C of G such that (CH)/H ⊇ K. ut

Note that, in Definition 7.12(i), H⊥ (or A⊥) have a unique meaning only when
it is known in which group it is being considered as a subgroup. There is potential
confusion in using the symbol ( · )⊥ as in both (∗) and (∗∗). But the context will
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make clear which is meant. Therefore we have to specify where the annihilator is
taken in order to avoid having to write an additional argument.

Annihilators are closed subgroups. Also it is clear that H 7→ H⊥ reverses con-
tainment. The annihilator is a very effective tool. Its full power becomes apparent
for locally compact abelian topological groups, but certain aspects are more gen-
eral and come in handy for proofs of duality theorems.

We also record that the notation (·)⊥ has already been used in the context of
orthogonal complements in a Hilbert space. No confusion should result.

Exercise E7.11. (i) Prove the following proposition.

Let f :X → Y be a continuous open surjective function between locally compact
spaces. Then for each compact set K in Y there is a compact set C such that
f(C) ⊇ K.

[Hint. By the surjectivity of f (and the Axiom of Choice) there is a function
σ:K → X with f

(
σ(k)

)
= k for k ∈ K. By the local compactness of X, for

each k ∈ K there is a compact neighborhood Uk of σ(k) in X. The image under
f of the interior of Uk is an open neighborhood of k in Y since f is open. The
compactness of K allows us to find k1, . . . , kn ∈ K such that K ⊆ V1 ∪ · · · ∪ Vn.
Set C = U1 ∪ · · · ∪ Un; use the continuity of f .]

(ii) Verify that each of the following conditions is sufficient to ensure that a
pair (G,H) as in 7.12(ii) has enough compact sets.

(a) G is locally compact.

(b) H is compact.

(c) There is a continuous function σ:G/H → G such that σ(ξ) ∈ ξ for all
ξ ∈ G/H. ut

Assume that H ⊆ G is a subgroup of the abelian topological group G, and let
H⊥ be its annihilator in Ĝ. Let q:G→ G/H denote the quotient morphism. Then

the morphism Hom(q,T): Ĝ/H = Hom(G/H,T) → Hom(G,T) = Ĝ has H⊥ as

its image and thus defines a morphism λG,H : Ĝ/H → H⊥ of abelian topological
groups.

Lemma 7.13. For a subgroup H of an abelian Hausdorff topological group G,

(i) the annihilator H⊥ of H in Ĝ is a closed subgroup, and H
⊥

= H⊥.

(ii) The morphism of abelian topological groups λG,H : Ĝ/H → H⊥ is bijective.
The following formulae apply.

λG,H(χ)(g) = χ(g +H),(
λG,H

)−1
(χ)(g +H) = χ(g).

(iii) If the pair (G,H) has enough compact sets, λG,H is an isomorphism of topo-
logical groups.
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(iv) Let j:H → H be the inclusion morphism. Then the restriction morphism

ĵ: Ĥ → Ĥ, ĵ(χ) = χ|H is bijective.

Proof. (i) We have

H⊥ = {χ ∈ Hom(G,T) ⊆ TG | (∀h ∈ H)χ(h) = 0},

and thus H⊥ is closed in Hom(G,T) with respect to the topology of pointwise
convergence which is contained in the compact open topology. Hence H⊥ is closed
in Ĝ. Since T is Hausdorff, for each χ ∈ Ĥ the kernel χ−1(0) is closed. Thus if

χ(H) = {0} then also χ(H) = {0}. Thus H⊥ ⊆ H
⊥

. The reverse inclusion is
trivial.

(ii) The function α:H⊥ → Ĝ/H given by α(χ)(g+H) = χ(g) for each charac-
ter χ ∈ H⊥ of G vanishing on H is a well-defined algebraic homomorphism, which
is an inverse of λG,H . Thus λG,H is a bijective morphism of topological groups.

(iii) Assume now that (G,H) has enough compact sets. We claim that α is a

character; i.e. that it is continuous. Let an identity neighborhood V (C,U) in Ĝ/H
be given, where C is compact in G/H and U is a zero neighborhood of T. Pick a
compact set C ′ in G such that (C ′ + H)/H ⊇ C. If χ ∈ H⊥ satisfies χ(C ′) ⊆ U ,
then α(χ)(C) ⊆ α(χ)

(
(C ′ + H)/H

)
= χ(C ′) ⊆ U . Thus α

(
V (C ′, U)

)
⊆ V (C,U),

which proves the claim.

(iv) Clearly, since G is a Hausdorff space, ĵ is injective. We must show that
every character χ of H extends to a character of H. Now χ is uniformly continuous
since for each identity neighborhood V in T) there is an identity neighborhood U
in G with χ(U) ⊆ V and thus χ(g+V ) ⊆ χ(g) +U . Let h ∈ H. If U is the filter of

zero neighborhoods of H then {χ
(
(h+ U) ∩H

)
| U ∈ U} is a filter basis of closed

subsets of the compact space T. Hence it has a nonempty intersection Φ(h) ⊆ T.
Let V be a closed zero neighborhood of T; find a zero neighborhood U of H such
that χ

(
(U−U)∩H

)
⊆ V . If h1, h2 ∈ (h+U)∩H then χ(h2−h1) ⊆ V . We conclude

that Φ(h2) − Φ(h1) ⊆ V for all V . Hence Φ(h) = {χ′(h)} for a unique element
χ′(h) agreeing with χ(h) if h ∈ H. It is then readily checked that χ′:H → T is a
continuous extension of χ. ut

The proof of (iv) could have been abbreviated by using the apparatus of Cauchy
filters and completeness.

Note that even though G is a Hausdorff topological group, the factor group
G/H is Hausdorff if and only if H is closed. Thus, in contrast with our convention
that all topological groups are assumed to be Hausdorff, the factor groups G/H
occurring in the present discussion fail to be Hausdorff if H fails to be closed.
Since T is Hausdorff, every character of G vanishing on H also vanishes on H.
Hence the natural morphism q:G/H → G/H, q(gH) = gH induces a bijection

q̂: Ĝ/H → Ĝ/H. This is implicit in 7.13(i), but may be useful to realize the full
implication of what 7.13 says.
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The situation is best illustrated in the following combination of Hasse diagrams:

G {0}∣∣∣ ∣∣∣ }
∼= Ĝ/H ∼= Ĝ/H

H H
⊥∣∣∣ ∣∣∣ }

are equal

H H⊥∣∣∣ ∣∣∣
{0} Ĝ.

It will be very helpful throughout in the context of annihilator arguments to
have the Hasse diagrams above in mind.

It is a useful exercise to note that for any subset A of Ĝ the annihilator A⊥ =⋂
χ∈A kerχ is always a closed subgroup of G. Also, if f is in the closure in TG of

A (in the topology of pointwise convergence), then f(A⊥) = {0}. In particular, if

χ ∈ A in Ĝ, then χ(A⊥) = {0}. Thus A⊥ ⊆ A⊥ whence A⊥ = A
⊥

.

Definition 7.14. If G is a semireflexive abelian topological group, for g ∈ G and
χ ∈ Ĝ we write 〈g, χ〉 = 〈χ, g〉 = χ(g) = ηG(g)(χ), thereby emphasizing that G

and Ĝ play largely interchangeable roles, and thereby identifying G and
̂̂
G via ηG

as groups. ut

We should keep the following in mind. If G is a semireflexive abelian topological
group and if we consider G as the character group of Ĝ by evaluation, even if we
assume ηG to be continuous, the topology we are given on G may be properly

finer than the natural topology on
̂̂
G, i.e. the compact open topology when G is

regarded as the set of characters on Ĝ.

Lemma 7.15. Assume that G is a semireflexive abelian topological group, and

that G and
̂̂
G are identified as abelian groups. Let H be an arbitrary subset of G.

(i) If H ⊆ G, then H⊥⊥⊥ = H⊥.
(ii) 〈H〉 ⊆ H⊥⊥, and if H⊥ (via λ

G,〈H〉) separates the points of G/〈H〉, equality

holds.

Proof. (i) For all χ ∈ H⊥ and h ∈ H we have 〈χ, h〉 = 0. Hence H ⊆ H⊥⊥. Since
{·}⊥ is containment reversing, (H⊥⊥)⊥ ⊆ H⊥. Applying the same reasoning to
H⊥ in place of H we get H⊥ ⊆ (H⊥)⊥⊥.

(ii) Since H⊥⊥ is a closed subgroup of G and contains H, it contains 〈H〉.
By 7.13, H⊥ may be identified with the character group of G/〈H〉 in such a way
that 〈χ, g + 〈H〉〉 = 〈χ, g〉 = χ(g) for g ∈ G and χ ∈ H⊥. Let g ∈ H⊥⊥. Then
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〈χ, g + 〈H〉〉 = χ(g) = 0 for all χ ∈ H⊥. If the characters of G/〈H〉 separate the
points, this implies g + 〈H〉 = 0; i.e. g ∈ 〈H〉. ut

Proposition 7.16 (The Separation Theorem). Let G be a semireflexive abelian

topological group and let A be a subgroup of the character group Ĝ. Consider the
following conditions:

(1) A is dense in Ĝ.

(2) A⊥ = {0} in G.

(3) A⊥⊥ = Ĝ.

(4) A separates the points of G.

Then (1)⇒(2)⇔(3)⇔(4) and if the characters of Ĝ/A separate points (e.g. if the
characters on all factor groups of G modulo closed subgroups separate points), all
four conditions are equivalent.

Proof. We continue to identify G and
̂̂
G as groups.

(1)⇒(2) If g ∈ G then the set {χ ∈ Ĝ | 〈χ, g〉 = 0} is a closed subgroup S of

Ĝ. If 〈α, g〉 = 0 for all α ∈ A, then A ⊆ S and by (1) we conclude S = Ĝ. Thus
g = 0 since G is semireflexive.

(2)⇔ (3) In view of 7.15(i), this is trivial since {0G}⊥ = Ĝ.

(2)⇔(4) is clear from the definitions.

(2)⇒(1) g ∈ A⊥ implies 0 = 〈g, χ〉 = χ(g) for all χ ∈ A. By (2) this implies

g = 0. Thus A⊥ = {0}. This means that every character of Ĝ vanishing on A

is zero. Thus all characters on Ĝ/A vanish. But if the characters of this group

separate the points, then it is singleton and thus Ĝ = A. ut

The relation between density in the dual and separating points is reminiscent
of the Stone–Weierstraß Approximation Theorem (see e.g. [34]).

We continue to let H be a subgroup of the abelian topological group G. Let
j:H → G denote the inclusion morphism. Then the adjoint ĵ: Ĝ → Ĥ of j given
by ĵ(χ) = χ|H has precisely the kernel H⊥. It thus induces an injective morphism
of topological groups

κG,H : Ĝ/H⊥ → Ĥ, κG,H(χ+H⊥) = χ|H.

Let ηHG :H → (H⊥)⊥ denote the morphism induced by ηG:G→ ̂̂
G, where (H⊥)⊥

is the annihilator of H⊥ ⊆ Ĝ in
̂̂
G. We will abbreviate Ĝ/H⊥ by Γ, and we will

use the following hypotheses as we progress with the material:

(a) The pair (G,H) has enough compact sets (cf. Definition 7.12(ii)).

(b) G is semireflexive.

(B) G is reflexive.

(c) The characters of G/H separate points.
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(c∗) ηHG :H → (H⊥)⊥ is bijective.

(d) Γ is reflexive.

(e) H is reflexive.

(f) H is in TABη, i.e. ηH :H → ̂̂
H is continuous.

Notice right away that each of the hypotheses (c) and (c∗) implies that H is closed.
For abelian topological groups A and B in the category TABη we recall from

7.11(ii), (iii) the isomorphism

f 7→ f ′: Hom(A, B̂)→ Hom(B, Â), f ′(b)(a) = f(a)(b), a ∈ A, b ∈ B.

We shall have two main applications of the tools provided in the following
lemma. One of these will be to a duality between certain classes of topological
vector spaces and to locally compact abelian groups. In the case of the latter which
is our main concern, all of the hypotheses (a)–(f) are automatically satisfied. In
the former case, however, special effort will still be required to verify the required
hypotheses.

The Annihilator Mechanism

Lemma 7.17. Let H be a closed subgroup of an abelian topological group G and
Γ = Ĝ/H⊥. Define morphisms of abelian topological groups

λG,H : Ĝ/H → H⊥, λG,H(χ)(g) = χ(g +H),

κG,H : Ĝ/H⊥ → Ĥ, κG,H(χ+H⊥) = χ|H,

and (cf. 7.11(ii))

κ′G,H :H → Γ̂, κ′G,H(h)(χ+H⊥) = χ(h).

The definition of λ also yields a morphism

λ
Ĝ,H⊥

: Γ̂→ (H⊥)⊥ ⊆ ̂̂
G, λ

Ĝ,H⊥
(Ω)(χ) = Ω(χ+H⊥) for Ω ∈ Γ̂, χ ∈ Ĝ.

Let ηHG :H → (H⊥)⊥ denote the morphism induced by ηG:G → ̂̂
G, where (H⊥)⊥

is the annihilator of H⊥ ⊆ Ĝ in
̂̂
G.

Then the following conclusions hold.
(i) The morphism of abelian topological groups λG,H is bijective. If hypothesis

(a) holds it is an isomorphism.

(ii) κG,H maps Γ bijectively and continuously onto Ĝ|H ⊆ Ĥ and

(∗) λ
Ĝ,H⊥

◦ κ′G,H = ηHG .
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G {0}∣∣∣ ∣∣∣ }
←∼= Ĝ/H

H H⊥∣∣∣ ∣∣∣ }
Γ
→∼= Ĝ|H

{0} Ĝ.

(The symbols
←∼= and

→∼= represent the continuous algebraic isomorphisms λG,H ,

respectively, Ĝ/H⊥ → Ĝ|H.)
(iii) If hypothesis (b) holds, and if, for a subset M of G, the characters separate

the points of G/〈M〉, then 〈M〉 = M⊥⊥, where M⊥⊥ denotes the annihilator of

M⊥ ⊆ Ĝ in G. In particular, (b) and (c) imply (c∗).
(iv) If hypotheses (b), (c∗), and (f) hold, then the morphism of abelian group

κ′G,H :H → Γ̂ is continuous and bijective.

(v) If hypotheses (B), (c∗), and (f) hold, then (ηHG )−1λ
Ĝ,H⊥

: Γ̂ → H is an

isomorphism.
(vi) If hypotheses (B), (c), (d), and (f) hold, then κG,H : Γ → Ĥ is an iso-

morphism. If hypotheses (B), (c), (e), and (f) hold, then (κG,H)̂ :
̂̂
H → Γ̂ is an

isomorphism.

Proof. (i) is Lemma 7.13.

(ii) The image of κG,H is Ĝ|H, the subgroup of all those characters of H which
are restrictions of characters of G. The surjectivity of κG,H thus is equivalent to
the statement that every character of H extends to a character to G which is a
rather strong property.

In order to prove (∗) let h ∈ H and χ ∈ Ĝ. Then we compute, abbreviating
λ
Ĝ,H⊥

by λ and κ′G,H by κ′ and using the definitions of these maps, that

(λ ◦ κ′)(h)(χ) = λ
(
κ′(h)

)
(χ) = κ′(h)(χ+H⊥) = χ(h) = ηHG (h)(χ),

and this proves (∗).
(iii) is Lemma 7.15(ii).
(iv) By (c∗) the morphism ηHG :H → (H⊥)⊥ is bijective. By (i) above, the mor-

phism λ
Ĝ,H⊥

: (Ĝ/H⊥)̂ → (H⊥)⊥ is a bijective morphism of abelian topological

groups. By 7.11(ii) hypothesis (f) implies that κ′G,H is continuous, and (∗) shows
that κ′G,H is bijective.

(v) If ηG:G→ ̂̂
G is an isomorphism of abelian topological groups by (B), then it

restricts and corestricts to an isomorphism ηHG :H → (H⊥)⊥ of abelian topological
groups; i.e. (c∗) holds. By (B) and (c∗) conclusion (iv) applies and shows that
κ′G,H is bijective. Then (∗) and (iv) prove that κ′G,H and (ηHG )−1λ

Ĝ,H⊥
are inverse

isomorphisms of each other.
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(vi) From 7.11(ii) we get a commutative diagram

Γ
ηΓ−−→ ̂̂

Γ Γ̂

κG,H

y y(κ′G,H)̂ xκ′G,H
Ĥ −−→

id
Ĥ

Ĥ, H.

We have just established that under the assumption of (B), (c), and (f) the mor-
phism κ′G,H is an isomorphism which yields that (κ′G,H)̂ is an isomorphism. From
(e) we get that ηΓ is an isomorphism. This suffices for κG,H to be an isomorphism.

If (B), (c), (e), and (f) hold we consider the commutative diagram

H
ηH−−→ ̂̂

H Ĥ

κ′G,H

y y(κG,H)̂ xκG,H
Γ̂ −−→

id
Γ̂

Γ̂ Γ

From (d) we get that η
Ĥ

is an isomorphism. By (v) above, κ′G,H is an isomorphism.
It then follows that (κG,H)̂ is an isomorphism. ut

Let us summarize for a closed subgroup H of G the conclusions in the following
diagram:

G {0}

Ĥ⊥ ∼=

{ ∣∣∣ ∣∣∣ }
←∼= Ĝ/H

H H⊥

(Ĝ/H⊥)̂ ∼=

{ ∣∣∣ ∣∣∣ }
∼= Ĥ

{0} Ĝ.

Hypotheses which suffice for the establishing of various isomorphism are as follows,

where
→∼= means the existence of a bijective morphism of abelian topological groups:

for Ĝ/H
→∼= H⊥ without extra hypothesis,

for Ĝ/H ∼= H⊥ hypothesis (a),

for H
→∼= (Ĝ/H⊥)̂ hypotheses (b), (c∗), and (f),

for H
→∼= (Ĝ/H⊥)̂ hypotheses (b), (c), and (f),

for H ∼= (Ĝ/H⊥)̂ hypotheses (B), (c∗), and (f),

for H ∼= (Ĝ/H⊥)̂ hypotheses (B), (c), and (f),

for Ĝ/H⊥ ∼= Ĥ hypotheses (B), (c), (d), and (f),

for Ĥ⊥ ∼= G/H hypothesis (a) and G/H is reflexive.

We observe that in parts (i) and (ii) we need not assume that H is closed. If H is
not closed, then G/H is not Hausdorff. But T is Hausdorff, and so every continuous
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character vanishing on H vanishes on H. The quotient map G/H → G/H induces
a bijection on the topologies of the two spaces and thus yields an isomorphism

Ĝ/H → Ĝ/H.

Hypothesis (b) allows us to think of G as the character group of Ĝ at least
group theoretically (while the given topology of the group G, when considered as

a function space on Ĝ, may be finer than the topology of uniform convergence
on equicontinuous sets of Ĝ and thus, in most instances, finer that the compact-
open topology). Hypothesis (c) is used only to secure that H = H⊥⊥ (i.e. (c∗))

under these circumstances. Hypothesis (B) that G “is” the character group of Ĝ
is, so to speak, the general hypothesis under which we work. If G is reflexive and
H⊥⊥ = H, then H “is” the character group of Ĝ/H⊥. The hardest thing to get is

that Ĝ/H⊥ “is” the character group of H; it appears to require strong information

on Ĝ/H⊥ itself. But this is a powerful conclusion because it entails, among other
things that every character of H extends to one on G and this, of itself, asks a lot.

Banasczcyk [18] calls an abelian topological group G strongly reflexive if every

closed subgroup and every Hausdorff quotient group of G and of Ĝ is reflexive.
Such a group will automatically satisfy all hypotheses of 7.17 except (a). 17.1.2 of
[18] points out that all countable products of locally compact abelian groups are
strongly reflexive. On the other hand, every infinite dimensional Banach space is
an example of a reflexive but not strongly reflexive abelian topological group. We
will see in due course that all locally compact abelian groups are strongly reflexive
in this sense (and satisfy property (a)).

Corollary 7.18. Assume that G is an abelian topological group and that H1 ⊆
H2 ⊆ G are closed subgroups such that the bijective morphism

(λ) λG,H1 : (G/H1)̂ → H⊥1

is an isomorphism. (Cf. 7.17(i).) Then
(
λG,H1

)−1
:H⊥1 → (G/H1)̂ and the injec-

tive morphism

(κ) κG/H1,H2/H1
: (G/H1)̂/(H2/H1)⊥ → (H2/H1)̂

implement an injective morphism of abelian topological groups

(κ∗) κ∗:H⊥1 /H
⊥
2 → (H2/H1)̂

with image (G/H1)̂|H2/H1.
Assume that G/H1 and H⊥1 /H

⊥
2 are reflexive, the characters of G/H2 separate

points, and H2/H1 is in TABη. Then κ∗ is an isomorphism of abelian topological
groups.
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G {0}∣∣∣ ∣∣∣
H2 H⊥2∣∣∣ Ĥ2/H1

∼=

{ ∣∣∣
H1∣∣∣∣∣
{0}

H⊥1∣∣∣∣∣̂
G


∼= Ĝ/H1

Proof. By condition (λ) we may in a natural fashion identify (G/H1)̂ with H⊥1 .
The morphism κ∗ is an isomorphism if κG/H1,H2/H1

is an isomorphism. The claim
then follows from the Annihilator Mechanism 7.17(vi). The Hasse diagrams help
to visualize the situation. ut

The results in the Annihilator Mechanism Lemma 7.17 can also be expressed
in terms of exact sequences:

Corollary 7.19. Assume that

0→ H
j→ G

q→ Q→ 0

is an exact sequence of abelian topological groups where j is an embedding mor-
phism and q is a quotient morphism. Assume that G, Q, and Ĝ/(ker q)⊥ are re-
flexive. Then the dual sequence

0→ Q̂
q̂→ Ĝ

ĵ→ Ĥ → 0

is exact. Further Ĥ ∼= Ĝ/H⊥, and there is a bijective morphism of abelian topo-

logical groups Q̂→ H⊥; and if the pair (G,H) has enough compact sets, then it is
an isomorphism of topological groups. ut

One may rephrase this by saying the contravariant duality functor G 7→ Ĝ is
exact, under the given hypotheses.

Theorem 7.20 (The Extension Theorem for Characters). Let H be a closed sub-
group of an abelian topological group G such that the following hypotheses are
satisfied:

(I) G is reflexive.
(II) ηH is continuous; i.e. H belongs to TABη.

(III) The characters of G/H separate points.

(IV) Ĝ/H⊥ is reflexive.
Then the following conclusions hold.
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(i) Every character, i.e. continuous morphism H → T, extends to a character
of G.

(ii) The restriction homomorphism χ 7→ χ|H: Ĝ → Ĥ; i.e. the adjoint of the
inclusion H → G, is surjective.

Proof. Clearly, (i) and (ii) are equivalent statements. But conclusion (ii) is a
consequence of the fact that κG,H is a bijective morphism by the Annihilator
Mechanism 7.17(vi). ut

The terminology introduced in the following definition will facilitate communi-
cation in subsequent discussions.

Definition 7.21. We shall say that an abelian topological group G has sufficient
duality if it is reflexive and if for all closed subgroups H of G the characters of
G/H separate the points and Ĝ/H⊥ is reflexive, too. ut

For an abelian topological group G, let Lat(G) denote the lattice of closed
subgroups of G. Since the intersection of any family of closed subgroups is a closed
subgroup, every subset of Lat(G) has a greatest lower bound; i.e. Lat(G) is a
complete lattice (see e.g. [122], p. 1f). As in every complete lattice, the least upper
bound of a family {Hj | j ∈ J} of closed subgroups is the greatest lower bound of
the set of its upper bounds, i.e. the intersection of all closed subgroups containing
all of the Hj . Since this group contains

∑
j∈J Hj =

〈⋃
j∈J Hj

〉
, this least upper

bound can also be described as
∑
j∈J Hj .

Corollary 7.22. Let G be an abelian topological group with sufficient duality.
Then

H 7→ H⊥: Lat(G)→ Lat(Ĝ)

is an antitone (i.e. order reversing) function which is involutive (i.e. satisfies
H⊥⊥ = H). It maps Lat(G) isomorphically onto the sublattice of all subgroups

S of Ĝ satisfying S = S⊥⊥. If Ĝ also has sufficient duality, then it is a lattice
anti-isomorphism.

Proof. As observed in the beginning, H 7→ H⊥ reverses the order, and because
H = H⊥⊥ by the Annihilator Mechanism Lemma 7.17, and by 7.15, its image
is exactly the set of all closed subgroups S satisfying S = S⊥⊥. If Ĝ also has
sufficient duality, by 7.17 this is satisfied for all closed subgroups S. ut

Proposition 7.23. Assume that G is an abelian topological group with sufficient
duality and {Hj | j ∈ J} is a family of subgroups. Let D =

⋂
j∈J Hj and H =∑

j∈J Hj, then

(i) H⊥ =
⋂
j∈J H

⊥
j ,

and if Ĝ also has sufficient duality, then

(ii) D⊥ =
∑
j∈J H

⊥
j .
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Proof. (i) A character is in H⊥ if and only if it vanishes on every Hj , i.e. if and
only if it is contained in every H⊥j if and only if it is in

⋂
j∈J H

⊥
j .

(ii) Since D is the greatest lower bound in Lat(G) of the family {Hj | j ∈ J}
by 7.21 we know that D⊥ is the least upper bound of the family of all Hj

⊥
=

H⊥⊥⊥j = H⊥j , j ∈ J . This least upper bound, however, is
∑
j∈J H

⊥
j . ut

Let us remark in conclusion of the section, that the formalism of duality for
abelian topological groups based on character groups endowed with the compact
open topology is rather general, but has, on a level of great generality some delicate
points. Is the function (χ, g) 7→ χ(g):G × Ĝ → T continuous? Is the evaluation

map ηG:G → ̂̂
G continuous? Is it bijective? Is it an isomorphism of topological

groups? To what extent does the annihilator mechanism for subgroups function?
These questions have motivated many authors to write on this subject. We have
collected what we need and what appears feasible to present within the bounds of
our overall objective which is the structure of compact groups. The next section
illustrates some of the issues raised; it is still preliminary to our core subject;
but for an understanding of the exponential function for locally compact abelian
groups we need an understanding of the duality theory for certain topological
vector spaces [317].

Character Groups of Topological Vector Spaces

For topological vector spaces the study of vector space duals turned out to be
eminently fruitful. We want to make the connection between character theory and
vector space duality. A first step was already taken in 7.5(iii) where we saw that

the character group Ê of the additive group of a real topological vector space
E may be identified with its topological dual E′ given the topology of uniform
convergence on compact sets. The material we have in this section is adequate for
our purposes, but a comprehensive treatment can be found in Appendix 7.

Let us recall some basic introductory facts on topological vector spaces in an
exercise. We shall in this section, as in earlier chapters, denote the real or complex
ground field by K. We set D = {z ∈ K : |z| ≤ 1}. A subset U in a K-vector space
is called balanced if D·U = U . It is called absorbing if

(∀v ∈ E)(∃r > 0)(∀t ∈ K) (|t| > r)⇒ (v ∈ t·U).

A balanced set is absorbing if every vector is contained in a multiple of the set.

Recall that a topological vector space over K = R or K = C (or over any
topological field K, for that matter) is an abelian topological group E with a
continuous vector space scalar multiplication (t, v) 7→ t·v:K× E → E.

Exercise E7.12. Show that the filter of zero neighborhoods U in a topological
vector space satisfies
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(0)
⋂
U = {0}.

(i) (∀U ∈ U)(∃V ∈ U) V − V ⊆ U .
(ii) (∀U ∈ U)(∃V ∈ U) D·V ⊆ U .

(iii) Every U ∈ U is absorbing.
Conversely show that, if a filter U satisfies (i), (ii), (iii), then the set O of all

subsets U of E such that for v ∈ U there is a W ∈ U with v +W ⊆ U is a vector
space topology whose filter of identity neighborhoods in U . If it also satisfies (0),
then O is a Hausdorff topology. (We shall always assume that.) ut

We call an abelian topological group G locally precompact if there is a precom-
pact identity neighborhood.

Proposition 7.24. (i) On a one-dimensional K-vector space E, outside the indis-
crete topology {Ø, E} there is only one vector space topology. For each 0 6= v ∈ E
the map r 7→ r·v:K→ E is an isomorphism of topological vector spaces.

(ii) A locally compact subgroup H of a Hausdorff topological group G is a closed
subset.

(iii) A finite dimensional K-vector space admits one and only one vector space
topology. If E is a K-vector space with dimE = n and E → Kn is an isomorphism
then it is an isomorphism of topological vector spaces where Kn has the product
topology.

(iv) A locally precompact topological vector space over K is finite dimensional.

Proof. Exercise E7.13. ut

Exercise E7.13. Prove Proposition 7.24.

[Hint. See Appendix 7, Proposition 7.2.] ut

For a vector space E over K we shall denote the set of all finite dimensional
vector subspaces by Fin(E). For a topological vector space E over K we denote
the set of cofinite dimensional closed vector subspaces (i.e. closed vector subspaces
M with dimE/M <∞) by Cofin(E).

A topological vector space E over K is called locally convex if every zero neigh-
borhood contains a convex one. Now let E be any real vector space and let B(E)
denote the set of all balanced, absorbing and convex subsets of E. Let us observe
that there are plenty of those, in fact enough to allow only 0 in their intersection.
Let F be a basis of E and ρ:F → ]0,∞[ any function. Then the set

U(F ; ρ) = {
∑
e∈F

re·e : |re| < ρ(e)}

is balanced, absorbing and convex. We call it a box neighborhood with respect to
F . The box neighborhoods with respect to a single basis already intersect in 0.
Thus the filter of all supersets of sets from B(E) satisfies (0), (i), (ii), and (iii) of
E7.12. If we set

O(E) = {W ⊆ E | (∀w ∈W )
(
∃U ∈ B(E)

)
w + U ⊆W},
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then O(E) is a locally convex vector space topology. From its definition it is
immediate that it contains every other locally convex vector space topology. It
is clearly an algebraic invariant in so far as it depends only on the vector space
structure of E. A convex subset U of E belongs to O(E) if and only if for every
u ∈ U and every x ∈ E the set {r ∈ R | u + r·x ∈ U} is an open interval of R
containing 0. It follows that a convex subset U of E belongs to O(E) if and only
if for each finite dimensional vector subspace F and each v ∈ E the intersection
F ∩ (U − v) is open in F (in the unique vector space topology of F ).

Let us record some of the basic properties of O(E).

Proposition 7.25. Let E be an arbitrary vector space over K.
(i) If E1 and E2 are vector spaces and T :E1 → E2 is a linear map, and E2

is a locally convex topological vector space then T is continuous for the topology
O(E1).

In particular, every algebraic linear form E → K is O(E)-continuous; i.e. the
algebraic dual E∗ = HomK(E,K) is the underlying vector space of the topological
dual E′ = Hom(E,K) (which is considered to carry the compact open topology). If

K = R then E′ ∼= Ê.
(ii) Every vector subspace of E is O(E)-closed and is a direct summand alge-

braically and topologically. Moreover, the topology induced on each vector subspace
is its finest locally convex topology.

(iii) Let F be a linearly independent subset of E. Then there is a zero neigh-
borhood U ∈ O(E) such that {v + U | v ∈ F} is a disjoint open cover of F . In
particular, any linearly independent subset of

(
E,O(E)

)
is discrete.

(iv) If C is an O(E)-precompact subset, then spanK(C) is finite dimensional.

Proof. See Appendix 7, Proposition 7.3. ut

We shall call the topology O(E) the finest locally convex topology on E.
Our main interest will be with vector spaces dual to those we just discussed.

Their topology was determined by the finite dimensional vector subspaces. Dually
we may consider vector space topologies which are determined by the cofinite
dimensional closed vector subspaces.

Let E be a topological vector space. Then for M, N ∈ Cofin(E) with N ⊆M ,
there is a canonical quotient map qMN :E/N → E/M . Since Cofin(E) is a filter
basis, there is an inverse system and, in the category of topological vector spaces,
there is a projective limit E? = limM∈Cofin(E)E/M , the vector subspace of all
(vM +M)M∈Cofin(E) ∈

∏
M∈Cofin(E)E/M such that N ⊆M implies vN−vM ∈M .

The function γE :E → E?, γE(v) = (v+M)M∈Cofin(E) is a morphism of topological
vector spaces which is injective if and only if

⋂
Cofin(E) = {0}.

Lemma 7.26. For a topological K-vector space E, the following statements are
equivalent:

(1) There is a set J and an isomorphism of topological vector spaces E → KJ .
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(2) There exists a K-vector space P such that E = P ∗ = Hom(P,K) ⊆ KP with
the topologgy of pointwise convergence on P ∗.

(3) The evaluation map ev:E → E′
∗
, ev(v)(f) = f(x) is an isomorphism of

topological vector spaces.
(4) The function γE :E → E? = ECofin(E) is an isomorphism of topological vector

spaces.
(5) E is isomorphic to a closed vector subspace of KX for some set X.

Definition 7.27. The topology O?(E) on E making γE :E → E? a topological
embedding is called the weak topology on E. We shall call a topological vector
space E weakly complete if γE :E → E? is an isomorphism of topological vector
spaces. ut

The weak topology on a K-vector space is the smallest topology making all
linear functionals f :E → K continuous. All finite dimensional vector spaces are
weakly complete. On a weakly complete topological vector space, the continuous
functionals separate points. In this book we do not talk about Cauchy filters on
topological groups (let alone uniform spaces) and therefore we do not deal with
the concept of completeness in the technical sense. Our definition in terms of the
projective limit (which we do need in the context of compact groups and which
we have at our disposal since Chapter 1) replaces the completeness in the weak
topology as the name of a “weakly complete vector space” suggests.

Recall from 7.25(i) that the algebraic dual E∗ of a K-vector space E is at the
same time the topological dual E′ of all continuous linear functionals on E when
E is endowed with the finest locally convex topology. On the basis of just linear
algebra one always has the weak ∗-topology on E∗, i.e. the topology of pointwise
convergence induced by the natural inclusion E∗ → KE . The first item in the
following lemma will show that this topology agrees with the topology of uniform
convergence on compact sets which is the topology we consider in order to have,
in the case of K = R, the isomorphism E′ ∼= Ê according to 7.5.

Lemma 7.28. Let E be a K-vector space endowed with its finest locally convex
vector space topology. Then

(i) the compact open topology on E′ is the weak∗-topology, i.e. the topology of
pointwise convergence.

(ii) Every continuous linear functional Ω:E′ → K is of the form ω 7→ ω(x) :
E′ → K for a unique x ∈ E.

(iii) F 7→ F⊥: Fin(E)→ Cofin(E′) is an order reversing bijection.
(iv) E′ is weakly complete.

Proof. For the proof of (i), (ii), and (iii) see Appendix 7, Lemma A7.4. By (i) we
have E′ = E∗ with the topology of pointwise convergence on E∗. Thus E′ satisfies
7.26(ii) and therefore is weakly complete by Definition 7.27. ut
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Let E be a locally convex topological vector space over K and E′ its topological
dual. If ηE :E → E′′, ηE(x)(ω) = ω(x), denotes the evaluation morphism, then for

each subset H ⊂ E we set H◦
def
= {ω ∈ E′ : |ω(H)| ⊆ [0, 1]} =

⋂
h∈H ηE(h)−1B1

with B1 = {r ∈ K : |r| ≤ 1} and call this set the polar of H in E′. Similarly for

a subset Ω ⊆ E′ we define the polar of Ω in E to be Ω◦
def
= {x ∈ E : |Ω(x)| ⊆

[0, 1]} =
⋂
ω∈Ω ω

−1(B1). Again as in the case of annihilators of subsets of abelian
topological groups one must specify where the polars are taken. Polars are always
closed.

Lemma 7.29 (The Bipolar Lemma). Let E be a locally convex vector space and
U be a convex balanced subset of E. Let Ω be a convex balanced subset of E′. Then

(i) U◦◦ = U , and
(ii) if E is semireflexive, Ω◦◦ = Ω.

Proof. See Appendix 7, Lemma A7.5. ut

Now we focus onf the case K = R.

Theorem 7.30. (Duality of Real Vector Spaces) Let E be a real vector space
and endow it with its finest locally convex vector space topology, and let V be a
weakly complete real topological vector space. Then

(i) E is reflexive; i.e. ηE :E → ̂̂
E is an isomorphism of topological vector spaces.

Thus E belongs to ABD.
(ii) V is reflexive; i.e. ηV :V → ̂̂

V is an isomorphism of topological vector spaces,
and thus V belongs to ABD.

(iii) The contravariant functor ·̂ : ABD → ABD exchanges the full subcate-
gory of real vector spaces (given the finest locally convex topology) and the full
subcategory of weakly complete vector spaces.

(iv) Every closed vector subspace V1 of V is algebraically and topologically
a direct summand; that is there is a closed vector subspace V2 of V such that
(x, y) 7→ x+y : V1×V2 → V is an isomorphism of topological vector spaces. Every
surjective morphism of weakly complete vector spaces f :V → W splits; i.e. there
is a morphism σ:W → V such that f ◦ σ = idW .

(v) For every closed vector subspace H of E, the relation H⊥⊥ = H ∼=
(E′/H⊥)̂ holds and E′/H⊥ is isomorphic to Ĥ. The map F 7→ F⊥ is an an-
tiisomorphism of the complete lattice of vector subspaces of E onto the lattice of
closed vector subspaces of E′.

Proof. For the proof see Appendix 7, Theorem A7.10 and Theorem A7.11. ut

By the Theorem of Alaoglu, Banach and Bourbaki ([40, 317]), a subset of E′

is compact if and only if it is closed and bounded (i.e. is absorbed by each zero
neighborhood). We have used here Proposition 7.6 instead, which belongs to the
same class of theorems pertaining to the Ascoli Theorem.
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Notice that we have not specified the nature of the map A 7→ A⊥ from the
complete lattice of all closed subgroups of E into the complete lattice of closed
subgroups of E′

The real topological vector spaces of the form V = E′ and their additive groups
Ê, i.e. the weakly complete real topological vector spaces are in bijective corre-
spondence with the real vector spaces E. In this sense they are purely algebraic
entities, and the cardinal dimE is their only isomorphy invariant. We shall use
these real topological vector spaces in the context of the exponential function of
locally compact abelian groups.

Real vector spaces and weakly complete vector spaces have a perfect annihilator
mechanism for closed vector subgroups. But so far we are lacking information on
closed subgroups. Considering its dual, at the very least we need information on
the closed subgroups of a vector group in its finest locally convex vector space
topology. The following result is a generalisation of the Fundamental Theorem on
Closed subgroups of Rn (Appendix 1, A1.12). We recall that an abelian group is
ℵ1-free if and only if each countable subgroup is free. (See Appendix 1, A1.6.173).

Proposition 7.31. Let E be a real vector space with its finest locally convex
vector space topology and let H be a closed subgroup. Let H0 denote the largest
vector subspace of H, let E1 be a vector space complement of H0 in spanRH and

E2 a vector space complement of spanRH in E. Set A
def
= H ∩ E1. Then

(i) E1, E2 are closed vector subspaces and A is closed subgroup such that

E = H0 ⊕ E1 ⊕ E2

H = H0 ⊕A
algebraically and topologically,

algebraically and topologically.

(ii) A is an ℵ1-free totally arcwise disconnected subgroup.
In particular, every countable closed subgroup A of E is free.

For the remaining conclusions assume that H/H0 is countable.
(iii) The characters of E/H separate points.
(vi) The characters of H separate points.

(v) If H⊥ ∈ Ê is the annihilator of H in Ê, then H⊥⊥ = H.

(vi) If ηH :H → ̂̂
H is continuous, then H ∼= (Ê/H⊥)̂.

Proof. (i) The subgroup generated by the union of all vector subspaces of H is a
vector subspace H0, clearly the largest vector subspace of H. By 7.25(iii) we have
spanRH = H0⊕H1 and E = spanRH⊕E2 with a closed vector subspaces E1 and
E2, algebraically and topologically. Thus the morphism

(h0, e1, e2) 7→ h0 + e1 + e2:H0 × E1 × E2 → E

is an isomorphism of topological vector spaces. By the modular law, H = H0 ⊕A
where A = H ∩ E1. Hence the isomorphism

(h0, e1) 7→ h0 + e1:H0 ×A→ H

is an isomorphism of abelian topological groups.
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We notice that E/H ∼= E1/A×E2. In order to determine the structure of A in
E1 and to prove that the characters of E/A separate points it suffices to show that
the characters of E1/A separate points. Hence we simplify notation by assuming
henceforth that H has no vector subspaces and linearly spans E.

(ii) We have to show that H = A is ℵ1-free. Let A1 be a finite rank subgroup

of A. Then F
def
= spanRA1 is a finite dimensional vector subspace. Thus A ∩ F

is a closed subgroup of F without any nontrivial vector subspaces. Hence it is
discrete and free by Appendix 1, A1.12. Thus A is ℵ1-free by Definition A1.63.
By Appendix 1, A1.64, every countable subgroup of A is free. If C is any arc in A
then, being compact, it lies in a finite dimensional vector subspace F (see 7.25(iv)).
Since A ∩ F is discrete, C is singleton.

(iii) Assume that A countable, that E = spanRA, and that x ∈ E \A. It suf-
fices to show that the characters of E/A separate the points. By (ii) the subgroup
A is free. With the aid of the Axiom of Choice we find a Z-basis B of A. Then B
is an R-basis of E. Then there is a finite subset Bx ⊆ B such that x =

∑
b∈F rb·b.

We define Ex = spanRBx and Ex = spanR(B \ Bx). Then Ax = Ex ∩ A and
Ax = Ex ∩ A are closed subgroups. If a ∈ A. Then a =

∑
b∈B sb·b with sb ∈ Z.

Set ax =
∑
b∈Bx sb·b and ax =

∑
b∈Bx sb·b. Then a = ax + ax and, since B ⊆ A,

we have ax ∈ Ax and ax ∈ Ax. Thus the isomorphism of topological vector spaces
(ex, e

x) 7→ ex + ex:Ex × Ex → E induces an isomorphism of abelian topological
groups

(ax, a
x) 7→ ax + ax:Ax ×Ax → A.

Notice that x ∈ Ex \ Ax. If we find a character χ:Ex → T with χ(x) 6= 0 we are
done because χ extends to a character of E vanishing on Ex. But Ex ∼= Rn and Ax
is a closed subgroup. Hence Ex/Ax ∼= Rm1 × Tm2 by Appendix 1, A1.12. But the
characters of Rm1 × Tm2 separate points because characters of R and T separate
points. This completes the proof.

(iv) Let x ∈ X proceed as in the proof of (iii) and find x ∈ Ax. It suffices
to observe that the characters of Ax separate points. But Ax is isomorphic to a
closed subgroup of Rn and thus is isomorphic to Rp1 ×Zp2 by Appendix 1, A1.12.

(v) This is a consequence of (iii) and 7.15(ii).
(vi) This is a consequence of 7.17(v). ut

Example 7.32. The group A = ZN of all functions N→ Z is an ℵ1-free subgroup
of the vector space E = RN of all real valued function s in the finest locally convex
topology. Now A is not a Whitehead group and thus is not free by Appendix 1,

Example A1.65. Clearly, A does not contain any vector subspaces. Clearly U
def
=]

− 1
2 ,

1
2

[N ∈ O(RN) and U ∩ ZN = {0}, whence ZN is discrete, and thus is in
particular closed. The real span spanRA is properly smaller than E. ut

Later we will discover that the domain, L(G), of the exponential function of
a (locally) compact abelian group is a weakly complete vector space. (7.35(vii),
7.66.) Its kernel is a closed subgroup; therefore we are interested in clarifying the
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role of closed subgroups in weakly complete vector spaces. We use the Duality of
Real Vector Spaces (7.30) in the process.

Theorem 7.33 (Subgroups of a Weakly Complete Real Vector Space). Let V
be a real weakly complete vector space and let S be a closed subgroup satisfying
S = S⊥⊥. Then

(i) there are unique closed vector subspaces S0, the maximal vector subspace
contained in S, and VS, the closed span spanR S of S in V . Furthermore there are
a generally nonunique closed vector subspaces V1 ⊇ S0 and V2 such that

V = S0 ⊕ V1 ⊕ V2

VS = S0 ⊕ V1

S = S0 ⊕ V1 ∩ S

algebraically and topologically,

algebraically and topologically, and

algebraically and topologically.

(ii) The largest vector subspace contained in V1 ∩ S is {0}, and the closed span
spanR(V1 ∩ S) is V1. Moreover, (V1 ∩ S)⊥⊥ = V1 ∩ S.

(iii) λV,S : V̂/S → S⊥ is a bijective morphism of abelian topological groups, and

λ
V̂ ,S⊥

: (V̂ /S⊥)̂ → S is a bijective morphism of topological abelian groups.

(iv) Assume that S0 = {0} and that VS = V . Then S⊥ is ℵ1-free.

Proof. (i) By 7.30, every closed vector subspace of a weakly complete vector
space is algebraically and topologically a direct summand. Hence V = VS ⊕ V2

for some closed vector subspaces V2. Likewise, VS = S0 ⊕ V1. Thus we have an
isomorphism of vector spaces (s0, v1, v2) 7→ s0 + v1 + v2:S0 × V1 × V2 → V . Since
S = S0 + (V1 ∩ S) by the modular law we know that this isomorphism induces an
isomorphism (s0, v1) 7→ s0 + v1:S0 × (V1 ∩ S)→ S.

(ii) The assertions follow from (i) above and from the fact that passing to the
character groups on direct products is implemented factorwise by Proposition 7.10.

(iii) Then V̂ is a vector space with its finest locally convex topology and S⊥

is a closed subgroup of V̂ such that S⊥⊥ = S by hypothesis. Then 7.17(i) applies
and proves the claims on the morphisms λ.

(iv) Parts (i) and (ii) of the proposition have reduced the general case to the
case assumed here. Since spanR S = V the largest vector subspace of S⊥ is zero.
Then Proposition 7.31 shows that S⊥ is ℵ1-free. ut

Not all technical ramifications of Theorem 7.34 will be used later; however, the
domain of the exponential function expG:L(G) → G of a locally compact group
(Theorem 7.66 below) is a vector space of the type of V in 7.33, and its kernel
K(G) is an ℵ1-free totally arcwise disconnected closed subgroup of L(G), a special
instance of a subgroup of the type of the subgroup S of V in 7.33.

Before we conclude the excursion into vector groups, we point out how dual
vector spaces arise in the context of hom-groups. The following proposition will
be applied to the exponential function, and it largely motivates the preceding
discussion.
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Proposition 7.34. (i) For each abelian topological group G there exists a real
locally convex topological vector space R ⊗ G and a unique morphism of abelian
topological groups ιG:G → R ⊗ G such that for each morphism f :G → V into a
real locally convex topological vector space there is a unique continuous linear map
f ′:R ⊗ G→ V such that f = f ′ ◦ ιG.

TAB LocConvVect

G
ηG−−→ R ⊗ G R ⊗ G

f

y yf ′ yf ′
V −−→

idV
V V

(ii) spanR
(
ιG(G)

)
= R ⊗ G.

(iii) Assume that G is a discrete abelian group, Then the topological vector
space R ⊗ G may be identified with the tensor product R ⊗ G (as in Appendix 1,
A1.44) equipped with the finest locally convex vector space topology, and ιG with
the function given by ιG(g) = 1⊗ g.

Proof. Exercise E7.14. ut

Exercise E7.14. Prove Proposition 7.34.

[Hint. (i) The existence of R ⊗ G in general follows from the Adjoint Functor
Existence Theorem in Appendix 3, A3.30. (The solution set condition mentioned
in Appendix 3, A3.58 is readily verified here.)

(ii) Note that the corestriction ιG:G→ spanG
(
ιG(G)

)
has the universal prop-

erty and apply the uniqueness assertion in the universal property.
(iii) Verify that g 7→ 1⊗g:G→ R⊗G has the universal property if G is discrete

and if the abelian group R⊗G is made into a real vector space equipped with the
scalar multiplication characterized by r·(s ⊗ g) = rs ⊗ g and is given the finest
locally convex topology.] ut

Alternative existence proofs for R ⊗ G can be given (see [140]).
Motivated by the discrete situation, which is later of primary interest to us, we

will write ιG(g) = 1 ⊗ g in the general case.

Proposition 7.35. (i) For any abelian topological group G the hom-group V
def
=

Hom(G,R) with the compact open topology is a real topological vector space with
respect to the scalar multiplication given by (r·f)(g) = rf(g) for r ∈ R, g ∈ G.

(ii) The morphism Hom(ιG,R): (R ⊗ G)′ = Hom(R ⊗ G,R) → Hom(G,R),
Hom(ιG,R)(F ) = F ◦ιG, is a continuous isomorphism of abelian groups. Its inverse
is f 7→ f ′: Hom(G,R) → (R ⊗ G)′. This morphism is continuous if (R ⊗ G)′ is
given the weak ∗-topology, i.e. the topology of pointwise convergence.

(iii) Assume that the following hypothesis is satisfied:
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(∗) The topology of the locally convex vector space R ⊗ G agrees with the finest
locally convex vector space topology.

Then V = Hom(G,R) is naturally isomorphic with the dual (R ⊗ G)′ with the
compact open topology and thus is naturally isomorphic to the character group
(R ⊗ G)̂.

(iv) If (∗) holds then V is a weakly complete vector space, and the dual of V is
naturally isomorphic with E = R ⊗ G.

(v) The group Hom(G,Z) may be identified with the subgroup S of all ω ∈ V =
Hom(G,R) with ω(G) ⊆ Z.

a) Under the hypothesis (∗), Hom(G,Z) is the annihilator in V ∼= Ê of A
def
=

1 ⊗ G. Consequently, A ⊆ S⊥.
b) S satisfies S = S⊥⊥.

c) λV,S : V̂/S → S⊥ is a bijective morphism of abelian topological groups.

d) If the largest vector subspace of A = 1 ⊗ G is denoted by A0 then (A0)⊥ =
spanR S, is the smallest closed real vector subspace of Hom(G,R) containing
S = Hom(G,Z). Moreover, A0 is also the largest vector subspace contained
in S⊥.

e) If A/A0 is countable, then S⊥ = A = 1 ⊗ G.

(vi) Assume that G = E ⊕H where E is the additive group of a vector space
having the finest locally convex vector space topology and where H is an abelian
topological group having an open compact subgroup C. Then G satisfies (∗). Ac-
cordingly, Hom(G,R) is a weakly complete vector space with dual R ⊗ G.

Proof. (i) Since Hom(G,R) is a vector subspace of the topological vector space
C(G,R) of continuous functions given the compact open topology, clearly V is a
real topological vector space.

(ii) The fact that the morphisms of abelian groups Hom(ιG,R) and f 7→ f ′

are inverses of each other is equivalent to the universal property of R ⊗ G in
7.34. The continuity of Hom(ιG,R) with respect to the compact open topologies is

straightforward with the continuity of ιG; indeed let W
def
= W (C,Uε), Uε = ]−ε, ε[

be a basic zero neighborhood of V with a compact subset C of G. Then K
def
= ιG(C)

is compact in R ⊗ G, and if f ∈ W (K,Uε) implies that
(

Hom(ιG,R)(f)
)
(C) =

f
(
ιG(C)

)
= f(K) ∈ Uε, i.e. Hom(ιG,R)(f) ∈ W . For a proof of the continuity

of f 7→ f ′ with respect to the topology of pointwise convergence on (R ⊗ R)′

let g ∈ G be arbitrary. Then f 7→ f(g):V → R is continuous since the compact
open topology is finer than (or equal to) the topology of pointwise convergence
on V = Hom(G,R). But f(g) = f ′

(
ιG(g)

)
, and every element x ∈ R ⊗ G is a

finite linear combination of elements ιG(g) by 7.34(ii). Hence f 7→ f ′(x):V → R
is continuous for each x ∈ R ⊗ G. This proves the asserted continuity of f 7→ f ′.

(iii) If E
def
= R ⊗ G has the finest locally convex topology, then on V =

Hom(R ⊗ G,R) = E′ the compact open topology agrees with the topology of

pointwise convergence by 7.28(i). But then V ∼= Ê by 7.5(iii).
(iv) follows from (iii), 7.28, and 7.30.
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(v) The first assertion is straightforward. Proof of a). Assuming (∗) we have seen
that the morphism Hom(ιG,R) identifies Hom(G,R) with E′ = Hom(E,R), E =

R ⊗ G. It identifies S = Hom(G,Z) with Hom(A,Z), where A
def
= ι(G) = 1 ⊗ G.

Now we compute A⊥. By definition, A⊥ in the character group Ê of E is the set of
characters χ:E → T = R/Z vanishing on A. We have identified Ê = Hom(E,R/Z)
canonically with E′ = Hom(E,R) via Hom(E, expR): Hom(E,R)→ Hom(E,R/Z).
Under this identification, a linear functional ω:E → R gets identified with a charac-
ter χ = expR ◦ω which vanishes on A exactly if ω maps A into Z. Hence the annihi-
lator A⊥ in E′ = Hom(A,R) is exactly Hom(A,Z). Re-identifying Hom(A,R) with
Hom(G,R) we see that the annihilator A⊥ in Hom(G,R) is exactly Hom(G,Z).
By 7.15(ii) we get A ⊆ S⊥. Proof of b). The relation S = S⊥⊥ now follows
from 7.15(i). Claim c) follows from 7.33(iii). Proof of d). This is a consequence
of 7.30(v). Proof of e). Assume that A/A0 is countable. Then 7.31(v) shows that
A = A⊥⊥ = Hom(G,Z)⊥ = S⊥ in R ⊗ G.

(vi) We have R ⊗ G = (R ⊗ E) ⊕ (R ⊗ H). Thus G satisfies (∗) if each of
the groups E and H does. In the case of E this is trivial because R ⊗ E may
be identified with E. In the case of H, the open compact subgroup C is in the
kernel of the morphism ιG because its range is a real topological vector space.
If we take the algebraic tensor product R ⊗ (H/C) (in the sense of Appendix 1,
A1.44) and equip it with the natural scalar multiplication uniquely determined
by r·

(
s ⊗ (h + C)

)
= rs ⊗ (h + C), and give it the finest locally convex vector

space topology, then ιG:H → R⊗ (H/C), ιG(h) = 1⊗ (h+ C) is readily verified
to have the universal property. Since universal objects are unique (up to natural
isomorphism) this shows R ⊗ H ∼= R⊗ (H/C) and verifies (∗). ut

The main application of 7.35 will be made in 7.66. There the abelian topological
group G of 7.35 will be the (locally compact) character group of a given locally
compact abelian group.

We notice that all discrete groups G, and all real vector spaces with the finest
locally convex vector space topology satisfy hypothesis (∗).

The Exponential Function

The exponential function has served us well in our theory of linear Lie groups.
However, it is also of considerable importance for compact and locally compact
abelian groups in general. We therefore take up this theme time and again. In this
section we emphasize the environment of abelian topological groups.

In Definition 5.7, for a topological group G, we introduced the space L(G) =
Hom(R, G) of all one-parameter groups given the topology of uniform convergence
on compact sets and equipped with a scalar multiplication given by r·X(t) =
X(rt). In 5.39 we defined the exponential function of G by

expG:L(G)→ G, expG(X) = X(1).
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In the case of an abelian topological group G, the situation improves instantly.

Proposition 7.36. If G is an abelian topological group, then L(G) is a topolog-
ical vector space with respect to pointwise addition and the topology of uniform
convergence on compact sets.

Proof. The set C(M,G) of all continuous functions from a locally compact space
M to a topological group G is a group under pointwise operation given by
(X+Y )(t) = X(t)+X(t) (where G is written additively). This group is topological
with respect to the topology of uniform convergence on compact sets; the filter
of identity neighborhoods for this topology is generated by the sets W (C,U) =
{f ∈ C(M,G) | f(C) ⊆ U}, where C ranges through the compact sets of M and U
through the identity neighborhoods of G. We have L(G

)
= Hom(R, G) ⊆ C(R, G),

and since G is abelian, L(G) is a subgroup. It is readily verified that the definition
of scalar multiplication endows this additive group with a vector space scalar mul-
tiplication which is separately continuous in each variable. If V (C,U) is a basic
identity neighborhood of Hom(R, G) with an open identity neighborhood U of G
and C = [−r, r], say, then the function (r,X) 7→ r·X maps ]− 1, 1[×V (C,U) into
V (C,U), for if |r| < 1 and X(C) ⊆ U , then (r·X)(C) = X(Cr) ⊆ X(C) ⊆ U .
Hence scalar multiplication is jointly continuous at (0, 0); this together with sep-
arate continuity of scalar multiplication implies that it is jointly continuous. ut

In accordance with discussions in Chapter 5 we shall call the vector space L(G)
the Lie algebra of G even when there is no nonzero Lie bracket present.

Exercise E7.15. Prove the following remark.

Assume that G and H are abelian topological groups and that f :G → H is a
morphism of topological groups. Then the morphism L(f) = Hom(R, f):L(G) →
L(H) given by L(f)(X) = f ◦ X introduced in 5.42 is a morphism of topological
vector spaces. ut

The difference between Theorem 5.42 and the following proposition is that
there the groups were linear Lie groups whereas here they need not be, and that
here the groups are commutative whereas there they were not necessarily abelian.

Proposition 7.37. (i) If f :G → H is a morphism of abelian topological groups,
then there is a commutative diagram

L(G)
L(f)−−→ L(H)

expG

y yexpH

G −−→
f

H.

(ii) If f induces a local isomorphism, then L(f) is an isomorphism of topological
vector spaces.
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Proof. (i) This is immediate from the definitions since

expH L(f)(X) =
(
L(f)(X)

)
(1) =

(
f ◦X

)
(1) = f

(
X(1)

)
= f

(
expGX

)
.

(ii) We shall first show that L(f) is bijective. Assume that Y :R→ H is given.
We know that there are open identity neighborhoods U and V in G and H, respec-
tively, such that (f |U):U → V is a homeomorphism. Now let I be an open symmet-
ric interval around 0 in R such that Y (I) ⊆ V . Then r 7→ (f |U)−1Y (r): I → G is a
local morphism which, by Lemma 5.8, extends uniquely to a morphism X:R→ G
so that f

(
X(r)

)
= Y (r) for all r ∈ I, and then, since I generates R for all r ∈ R.

Thus L(f) is bijective. Now let U1 denote an open zero neighborhood of G con-
tained in U . Then since f |U is a homeomorphism, V1 = f(U1) is an open zero
neighborhood of H. Let C denote any compact subset of R. Then V (C,U1) is a
basic open zero neighborhood of L(G) and V (C, V1) is a basic open 0-neighborhood
of L(H). Also,

L(f)(V (C,U1)
)

= V (C, V1).

Thus L(f) is continuous and open. ut

We note in passing that 7.37(i) can be expressed in category theoretical lan-
guage. Let I:TABR → TAB be the forgetful functor (see Appendix 3, A3.19) of
the category of real topological vector spaces to the category of abelian topological
groups, L:TAB → TABR the Lie algebra functor, and idTAB the identity functor
from the category TAB to itself. Then exp: I ◦ L→ idTAB is a natural transforma-
tion.

In the following we call two morphisms fj :Aj → B, j = 1, 2 in a category
equivalent if we are given a natural isomorphism α:A1 → A2 such that f1 = f2 ◦α.
(This language can be easily made technically compatible with the language used
in category theory for natural transformations. Cf. Appendix 3, A3.31.)

Proposition 7.38. (i) If {Gj | j ∈ J} is a family of topological groups and
P =

∏
j∈J Gj, then L(P ) ∼=

∏
j∈J L(Gj) and expP :L(P )→

∏
j∈J Gj is equivalent

to
∏
j∈J expGj :

∏
j∈J L(Gj)→

∏
j∈J Gj in a natural way.

(ii) If K = ker f for a morphism f :G → H of topological groups then
L(K) ∼= kerL(f), and expker f :L(ker f) → ker f is equivalent to the function
expG | kerL(f): kerL(f)→ ker f in a natural way.

(iii) If f1, f2:G→ H are two morphisms of topological groups and j:E → G is
their equalizer, i.e. the inclusion map of the subgroup E = {g ∈ G | f1(g) = f2(g)},
then L(j):L(E) → L(G) is the equalizer of L(f1), L(f2), and expE :L(E) → E is
equivalent to expG |L(E):L(E)→ E in a natural way.

(iv) If G is the projective limit limGj of a projective system fjk:Gk → Gj
of topological groups, then L(G) is the projective limit limL(Gj) of the projective
system

L(fjk):L(Gk)→ L(Gj),
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and explimj∈J Gj :L(limj∈J Gj)→ limj∈J Gj is equivalent to

lim
j∈J

expGj : lim
j∈J

L(Gj)→ lim
j∈J

Gj

in a natural way.
(v) Let incl:G0 → G denote the inclusion morphism of the identity component.

Then L(incl):L(G0)→ L(G) is an isomorphism. In other words, L(G0) = L(G).

Proof. Exercise E7.16. ut

Exercise E7.16. Prove Proposition 7.38.

[Hint. (i) Each morphism X:R →
∏
j∈J Gj is uniquely of the form X(r) =(

Xj(r)
)
j∈J with Xj ∈ L(Gj). (ii) f ◦X is in the kernel of L(f) iff X(R) ⊆ ker f

iff X corestricts to a one-parameter group of kerG. (iii) A one-parameter sub-
group X:R→ G is in the equalizer E iff L(f1)(X)(r) = (f1

(
X(r)

)
= f2

(
X(r)

)
=

L(f2)(X)(r) for all r ∈ R, i.e. iff L(f1)(X) = L(f2)(X). (iv) Use (i) and (iii)
to verify that X:R →

∏
j∈J Gj , X(r) =

(
Xj(r)

)
j∈J has its image in limGj iff

Xj = fjk ◦Xk for j ≤ k iff X ∈ limL(Gj). (v) is straightforward.] ut

We remark that we have formulated 7.38 in such a fashion that it remains valid
when L = Hom(R, ·) is considered as a functor from the category of arbitrary
topological groups to the category of pointed spaces. In light of Appendix 3 we
then observe that L is a covariant Hom-functor from the category of topological
groups into the category of pointed topological spaces, and that it is limit preserv-
ing because it preserves products and equalizers (see Appendix 3, A3.50ff.). The
restriction of L to the category TAB of abelian topological groups allows its range
category to be the category TABR of real topological vector spaces.

Example 7.39. (i) If G is a totally arcwise disconnected topological group (i.e.
G has singleton arc components) then L(G) = {0}. This applies, in particular, to
totally disconnected groups.

(ii) If G is an abelian linear Lie group (cf. E5.18) then L(G) agrees with the
Lie algebra of G considered in Chapter 5.

In particular, if G = Rm × Tn ×D with a discrete abelian group D according
to E5.18, then L(G) ∼= Rm × Rn × {0}.

(iii)

L
(

lim(T p← T p← · · ·)
)

= lim(R p← R p← · · ·) = R. ut

Exercise E7.17. Let G be the additive topological group underlying the Banach
space L1([0, 1], λ) for Lebesgue measure λ. Define ht(f) for t ∈ [0, 1] and an L1-
function by

ht(f)(x) =
{
f(x) for 0 ≤ x ≤ t,
0 for t < x

where f is an L1-function on the unit interval. Show that this definition is
compatible with passage f 7→ [f ] to classes modulo null-functions and thus

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



376 7. Duality for Abelian Topological Groups

yields a bounded linear operator on G. The continuous function (t, [f ]) 7→ [ht(f)]:
[0, 1]×G→ G is a homotopic contraction. Consider the closed subgroup H of all
[f ] with L1-functions f such that f(t) ∈ Z almost everywhere. Then ht(H) ⊆ H.
Hence H is a closed contractible, hence arcwise connected subgroup of G. Now G is
a linear Lie group. We may identify L(G) and G. Since H allows no one-parameter
subgroups, L(H) = {0}. Thus, while G, as the additive group of a Banach space,
is a linear Lie group by E5.10(ii)2), the closed arcwise connected subgroup H is
not a linear Lie group. ut

Exercise E7.18. (i) Let q:G→ H be a surjective morphism between finite dimen-
sional abelian linear Lie groups, inducing a local isomorphism such that ker q is
finitely generated free. We may identify the Lie algebras of G and H and write E ∼=
Rn with expG:E → G inducing a local isomorphism and q◦expG = expH :E → H.
Then FH = ker expH is a finitely generated free subgroup of E and FG = ker expG
is a pure subgroup of FH and there is a subgroup F ′ of FH such that FH = F ′⊕FG
and which is mapped isomorphically onto G0 ∩ ker q by expG. Let E′ = spanR F

′,
EG = spanR FG and find a vector space ER such that E = ER ⊕ E′ ⊕ EG. Then

G ∼= ER ⊕ E′ ⊕
EG
FG
⊕D,

where D is a discrete group D ∼= G/G0 such that ker q is isomorphic to F ′ ⊕D′v
with a free subgroup of D, and where EG/FG is a torus group whose dimension
equals rankFG. Also,

H ∼= ER ⊕
E′

F ′
⊕ EG
FG
⊕ D

D′
,

where (E′/F ′) ⊕ (EG/FG) is a torus group of dimension rank(G0 ∩ ker q) +
rankFG = rankFH .

(ii) If H is compact, then ER = 0 and D/D′ is finite. ut

The exponential function of abelian groups can be reinterpreted in a useful
fashion for reflexive groups. From 7.11, for each pair of abelian topological groups
in TABη, we have an isomorphism of abelian topological groups

αG,H : Hom(G, Ĥ)→ Hom(H, Ĝ), αG,H(f)(h)(g) = f(g)(h),

given that G and H are locally compact. By 7.5(iii) there is an isomorphism

ρ:R→ R̂, ρ(r)(s) = rs+ Z ∈ T.

We let G be a reflexive group. Then ηG:G→ ̂̂
G is an isomorphism and we obtain

an isomorphism εG: Hom(Ĝ,R) → L(G) defined by the following commutative
diagram

Hom(Ĝ,R)
εG−−→ L(G) = Hom(R, G)

Hom(G,ρ)

y L(ηG)

y yHom(R,ηG)

Hom(Ĝ, R̂) −−→
α
Ĝ,R

L(
̂̂
G) = Hom(R, ̂̂G).
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Now α−1

Ĝ,R
= αR,Ĝ, and, setting eG = ε−1

G we get

eG = Hom(Ĝ, ρ)−1 ◦ αR,Ĝ ◦ L(ηG), and Hom(Ĝ, ρ) ◦ eG = αR,Ĝ ◦ L(ηG),

in a diagram:

L(G)
eG−−→ Hom(Ĝ,R)

L(ηG)

y yHom(G,ρ)

Hom(R, ̂̂G) −−→
α

R,Ĝ

Hom(Ĝ, R̂),

and in formulae

(∗)
(
(ρ ◦ eG)(X)

)
(χ)(r) = χ

(
X(r)

)
= χ(exp r·X) for X ∈ L(G), χ ∈ Ĝ, r ∈ R.

We may use (∗) as a definition on arbitrary abelian topological groups and formu-
late the following proposition.

Later we shall prove that all locally compact abelian groups are reflexive. (See
7.63.)

Proposition 7.40. Assume that G is a locally compact abelian group. Then
(i) formulae (∗) defines a natural morphism of abelian topological groups eG:

L(G) → Hom(Ĝ,R) and then (by 7.5(ii)) a continuous linear map between topo-
logical vector spaces. If G is also reflexive, then eG is an isomorphism of real
topological vector spaces.

(ii) The quotient morphism expT:R→ T induces a commutative diagram

L(G)
eG−−→ Hom(Ĝ,R)

expG

y yHom(Ĝ,expT)

G −−→
ηG

̂̂
G = Hom(Ĝ,T).

(iii) For G reflexive, the exact sequence

0→ Z incl−−→ R expT−−→ T→ 0

gives rise to a commutative diagram with exact rows:

0 → Hom(Ĝ,Z)
Hom(Ĝ, incl)−−−−−−−→ Hom(Ĝ,R)

Hom(Ĝ, expT )−−−−−−−−→ Hom(Ĝ,T)x α
T,Ĝ

x eG

x xηG
0 → Hom(T, G) −−−−−−−→

Hom(expT, G)
L(G) −−→

expG
G.

Proof. Exercise E7.19. ut

Exercise E7.19. Prove Proposition 7.40.
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[Hint. (i) Show first that eG is continuous and then verify for each morphism
f :G→ H, the commutativity of the diagram

L(G)
eG−−→ Hom(Ĝ,R)

L(f)

y yHom(f̂ ,R)

L(H)
eH−−→ Hom(Ĥ,R).

(ii) Proceed straightforwardly.
(iii) The vertical maps are all isomorphisms. The top row is exact because

Hom(Ĝ,Z) can be identified with a subgroup of Hom(Ĝ,R) so as to be exactly the

kernel of Hom(Ĝ, expR). Compare Appendix 1, A1.49 and A1.55, but notice that
the appendix deals with discrete abelian groups.] ut

Let f :G→ H be a surjective morphism of topological groups. Is

L(f):L(G)→ L(H)

surjective? In other words: does the functor L preserve surjectivity? The answer
is obviously negative, as the example of the identity map from the additive group
of real numbers Rd with the discrete topology to the group R shows. In general,
this fails to be true even for quotient morphisms between connected abelian linear
Lie groups in the absence of countability assumptions as we have already seen in a
somewhat tricky example following the proof of Theorem 5.52 on the Recovery of
Subalgebras. The problem is one of lifting one-parameter groups: If Y :R → H is
a one-parameter group of H, can we find a one-parameter group X:R → G such
that Y = f ◦X?

Thus an only slightly more special question is the following. Assume that
f :G → R is a quotient morphism of abelian topological groups: Is L

(
f):L(G) →

L(R) = R surjective, i.e. is L(f) a nonzero linear functional?

L(G)
L(f)−−→ L(R) = R

expG

y yexpR=idR

G −−→
f

R.

Writing the exponential function of R as the identity, we would then find an
X ∈ L(G) \ kerL(f) such that L(G) = R·X ⊕ kerL(f). Upon proper scaling of
X we would then have f(exp t·X) = t, and f would be a retraction with t 7→
exp t·X:R → G as the coretraction. In other words, if we set N = ker f , then
the surjectivity of L(f) is tantamount to a decomposition G = N ⊕ E with E =
expR·X such that (k, e) 7→ k + e:N × E → G is an isomorphism of topological
groups.

In the following lemma we need not assume commutativity. It is of independent
interest.
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Lemma 7.41. Assume that G is a locally compact group such that every identity
neighborhood contains a compact subgroup K such that G/K is a linear Lie group.
Then the following conclusions hold.

(i) If f :G → R is a quotient morphism, then there is a morphism σ:R → G
such that fσ = idR, i.e. f splits.

(ii) If N is a closed normal subgroup of G and X:R → G/N a one parame-

ter subgroup, then there is a one parameter subgroup X̃:R → G such that
X̃(r)N = X(r) for r ∈ R, i.e. the one parameter groups of G/N lift to one
parameter groups of G.

(iii) The quotient morphism q:G → G/N induces a surjective morphism
L(q):L(G)→ L(G/N).

Proof. We prove (i) is several steps.

(a) Assume first that G itself is a linear Lie group. We may write L(R) = R
and expR = idR:L(R)→ R. Then f induces a morphism L(f):L(G)→ L(R) such
that the following diagram is commutative (cf. 5.42):

L(G)
L(f)−−→ L(R) = R

expG

y L(expR)

y yidR

G −−→
f

R = R.

Since the morphism f is open it maps the open component G0 onto an open
subset of R, and thus onto R. Therefore L(f) is surjective. Since every surjective
linear map between finite dimensional vector spaces splits, there is a linear map
s:L(R) = R→ L(G) such that L(f) ◦ s = idR. Then σ = expG ◦ s:R→ G satisfies
f ◦ σ = f ◦ expG ◦ s = L(f) ◦ s = idR.

(b) Let K be a compact subgroup of G0 such that G0/K is a linear Lie group.
Then f(K) is a compact subgroup of R and thus is {0}. Hence K ⊆ ker f and there
are quotient morphisms qK :G → G/K and fK :G/K → R such that fK ◦ qK =
f . By (a) there is a morphism σK :R → G/K such that fK ◦ σK = idR. Let
CK = q−1

K

(
σK(R)

)
. Then f |CK :CK → R satisfies f |CK =

(
fK |(CK/K)

)
◦ qK |CK

where σK =
(
fK |(CK/K)

)−1
. Thus fK |(CK/K) is an isomorphism and f |CK is

a quotient morphism. In particular, since K is compact, for every compact subset
M ⊆ R the set (f |CK)−1(M) is compact. This is exactly saying that f |CK :CK →
R is a proper morphism.

(c) Now let C denote the family of all closed subgroups C such that f |C:C → R
is a surjective proper morphism. By (b) and our hypothesis, C 6= Ø. If {Cj | j ∈ J}
is a filter basis in C then for each compact subset M ∈ R we have f−1(M)∩Cj =
(f |Cj)−1(M) 6= Ø, and the family {f−1(M)∩Cj | j ∈ J} is a filter basis of compact
sets and thus has nonempty intersection. Thus C =

⋂
j∈J Cj is a closed subgroup

satisfying f(C) = R; moreover (f |C)−1(M) = f−1(M)∩C =
⋂
j∈J(f |Cj)−1(M) is

compact. Hence f |C:C → R is a surjective proper morphism. Thus C is inductive
and we find a minimal element E ∈ C. We claim that E ∩ ker f = {0}. In view
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of our hypothesis we find a filter basis N of compact subgroups of E converging
to 0 such that E/K is a linear Lie group for all K ∈ N . Now let K ∈ N . We
apply (b) with E in place of G and f |E in place of f . We thus find a subgroup
CK ⊆ E, CK ∈ C, CK ∩ ker f = K. By the minimality of E we conclude CK = E.
Thus E ∩ ker f = K for all K ∈ N . Thus the filter basis N is singleton and since
it converges to 0, we have E ∩ ker f = {0}. Thus the surjective proper morphism
f |E:E → R is injective and thus is an isomorphism. Let j:E → G denote the

inclusion. Then the morphism σ
def
= j ◦ (f |E)−1:R→ G satisfies f ◦ σ = idR.

Now a proof of (ii) is a relatively easy exercise. Indeed let q:G→ G/N denote
the quotient map and consider a one parameter subgroup X:R→ G/N . Form the
pull back (cf. Appendix 3, A3.43(iii))

P
f−−→ R

ξ

y yX
G −−→

q
G/N,

P = {(g, r) ∈ G × R | q(g) = X(r)}, f(g, r) = r, ξ(g, r) = g. We claim that f is
open. Indeed a basic identity neighborhood of P is given by P ∩ (U × V ) where U
is an identity neighborhood of G and V an identity neighborhood of R. Then q(U)
is an identity neighborhood of G/N and f

(
P ∩ (U × V )

)
= {v | v ∈ V, X(v) ∈

q(U)} = X−1q(U) ∩ V . This is an identify neighborhood of R which proves the
claim. Now by Part (i) of the lemma we find a cross section morphism σ:R → P

such that f ◦ σ = idR. Set X̃ = ξ ◦ σ. Then q ◦ X̃ = q ◦ ξ ◦ σ = X ◦ f ◦ σ = X.
Assertion (iii) is nothing but a reformulation of (ii) if view of the equations

L(G) = Hom(R, G), L(G/N) = Hom(R, G/N), and L(q) = Hom(R, q). ut

We shall see a little later in 7.54 that each locally compact abelian group G
has arbitrarily small compact subgroups K such that G/K is a linear Lie group.
An immediate consequence is the following:

Lemma 7.42. Assume that G is a locally compact abelian group such that every
identity neighborhood contains a compact subgroup K such that G/K is a linear Lie
group. Assume further that f :G→ Rn is a quotient morphism. Then G = N ⊕E
with a vector group E ∼= Rn mapping isomorphically onto Rn by f .

Proof. We identify L(Rn) with Rn under expRn . By Lemma 7.41, the morphism
of vector spaces L(f):L(G)→ Rn is surjective. There is a morphism of topological

vector spaces σ:Rn → L(G) such that L(f) ◦ σ = idRn . Then E
def
= exp

(
σ(Rn)

)
satisfies the requirement. ut
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Weil’s Lemma and Compactly Generated Abelian Groups

The basic ingredients of a group are its cyclic subgroups. In the case of topological
groups one wants to know the structure of the closures of cyclic subgroups; these
are usually called monothetic subgroups. For locally compact groups one knows
precisely what monothetic groups look like. An important first step is the following
result whose proof is elementary but not trivial.

Proposition 7.43 (Weil’s Lemma). Let g be an arbitrary element in a locally
compact topological group G and assume that the cyclic subgroup generated by g
is dense in G. Then G is either compact or isomorphic to the discrete group Z.
Moreover, in the first case, {g, g2, g3, . . .} is dense in G.

Proof. Assume that G is not isomorphic to Z. We show that G is compact.
Step 1. We claim that N.g is dense in G. Let U be nonempty and open in G.

Then since Z·g is dense in G there is an integer n such that n·g ∈ U . Let V denote
a symmetric 0-neighborhood with n·g + V ⊆ U . If we had some natural number
N such that {n ∈ Z | |n| > N and n·g ∈ V } = Ø then Z·g∩V = (Z∩ [−N,N ])·g,
and Z·g would be discrete and isomorphic to Z contrary to our assumption. Hence
for any n ∈ N there is some m ∈ N with |n| < m and m·g ∈ V . Then m + n ∈ N
and (m+ n)·g ∈ n·g + V ⊆ U . So N·g is dense in G.

Step 2. Let C denote a compact symmetric 0-neighborhood. We show that there
is a finite subset E ⊆ N with G ⊆ E·g+C. This will finish the proof. If x ∈ G and
U is an open symmetric 0-neighborhood contained in C, then by Step 1 there is an
n ∈ N such that n·g ∈ x+U , whence x ∈ n·g−U = n·g+U . ThusG ⊆ N·g+C. Since
C is compact there is a finite subset E = {1, . . . , k} of N such that C ⊆ E·g + U .
Now let h ∈ G be arbitrary and set m = min{n ∈ N | n·g ∈ h + U }. Then
m·g−h ∈ V ⊆ C ⊆ E·g+U and thus there is an e ∈ E such that m·g−h ∈ e·g+U ,
i.e. (m− e)·g ∈ h+U . Because of the minimality of m, the integer m− e must be
nonpositive. Hence m ≤ e ≤ k, and h ∈ m·g − V = m·g + V ⊆ E + C. ut

Definition 7.44. For a topological group G we write

comp(G)
def
= {g ∈ G: 〈g〉 is compact}

and call an element of this set a compact element. ut

Corollary 7.45. If G is a locally compact abelian group then the set comp(G) is a
subgroup, and for each element g in the complement G\comp(G), the subgroup 〈g〉
which it generates is discrete and isomorphic to Z. Moreover, 〈g〉∩comp(G) = {0}.

Proof. If g, h ∈ comp(G) then C
def
= 〈g〉 + 〈h〉 is compact as a continuous image

of the compact group 〈g〉 × 〈h〉 under the continuous homomorphism (x, y) 7→
x + y. Now g − h ∈ C and thus 〈g − h〉 is compact; i.e. g − h ∈ comp(G). So
comp(G) is a subgroup of G. The assertions on 〈g〉 follow from 7.43. Finally, if
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n·g ∈ comp(G) \ {0}, then 〈n·g〉 is compact on the one hand and discrete infinite
on the other which is impossible. ut

If G is a discrete abelian group, then comp(G) = tor(G) (cf. Appendix 1,
A1.16).

Proposition 7.46. (i) If G is a locally compact group and N a compact normal
subgroup, then comp(G) contains N and comp(G)/N = comp(G/N).

(ii) For two locally compact groups G and H,

comp(G×H) = comp(G)× comp(H).

Proof. Exercise E7.20. ut

Exercise E7.20. Prove Proposition 7.46. ut

Definition 7.47. A topological group is said to be compactly generated if there is
a compact subset K such that

G =
∞⋃
n=1

(K ∪K−1)n. ut

In 1.28(i) and E1.11 we introduced the compact ring Zp of p-adic integers.
In E1.16 we have also defined the ring 1

p∞Z and the locally compact ring Qp
containing Zp as an open and 1

p∞Z as a dense subring.

Remark 7.48. (i) A discrete group is compactly generated if and only if it is
finitely generated.

(ii) Every compact group is compactly generated.
(iii) Assume that G is a locally compact group such that G/G0 is compact.

Then G is compactly generated.
(iv) Every connected locally compact group is compactly generated.
(v) The identity component of every locally compact group is the intersection

of open compactly generated subgroups.
(vi) The additive group Qp of p-adic rationals is not compactly generated.

Proof. (i) and (ii) are trivial.
(iii) By Lemma 5.73, there is a symmetric compact identity neighborhood C

in G such that C + G0 = G. The identity neighborhood C ∩ G0 of G0 generates
G0 by Corollary A4.26. Hence C generates G.

(iv) follows from (iii).
(v) By E1.13(iii), in every locally compact group G, the identity component is

the intersection of open subgroups H (of course containing G0) such that H/G0

is compact. By (iii) above, such groups H are compactly generated.
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(vi) If a group is the union of its compact open subgroups and is not compact,
then it is not compactly generated, for any compact subset is contained in some
open compact subgroup. ut

The preceding remark shows, in particular, that every locally compact abelian
group G has an open compactly generated subgroup H. Accordingly the quotient
G/H is a discrete abelian group and thus a purely algebraic object. In this sense,
the compactly generated locally compact abelian groups, modulo extension theory,
carry the bulk of the structure theory of locally compact abelian groups.

With a compactly generated locally compact abelian group G we can associate
a set of free subgroups of G as follows. Let F(G) be the set of all finitely generated
free subgroups F of G satisfying the following two conditions:

(a) There is a compact subset C of G such that G = F + C.
(b) F ∩ comp(G) = {0}.

Lemma 7.49. Let G be a compactly generated locally compact abelian group. Then
there is a compact subset C of G and a finitely generated subgroup F1 such that
G = F1 + C.

Proof. This follows at once from 5.75(i) (with H = G). ut

Lemma 7.50. If G is a compactly generated locally compact abelian group, then
F(G) 6= Ø.

Proof. Lemma 7.49 provides us with a compact subset C of G and a finitely
generated subgroup F1 of G such that G = F1 +C. By the Fundamental Theorem
of Finitely Generated Abelian Groups A1.11, the group F1 is a direct sum of a
finitely generated free group and a finite group M . Then M + C is compact and
we may replace C by C +M and assume that F1 is free. If g ∈ F1 and there is a

natural number n such that n·g ∈ P def
= F1 ∩ comp(G), then 〈g〉 is compact since

A
def
= 〈n·g〉 is compact and the compact group A ∪ (g +A) ∪ · · · ∪ ((n− 1)·g +A)

contains 〈g〉 and is contained in 〈g〉. It follows that g ∈ P and thus P is a pure
subgroup of F1. Then F1 = F ⊕ P for some free subgroup F by Appendix 1,
A1.24(ii). Now P is finitely generated, say, P = 〈p1, . . . , pk〉. Since pj ∈ comp(G)

we have P ⊆ 〈p1〉 + · · · + 〈pk〉, and thus P is compact. Hence G = F + P + C.
Since P + C is compact, this shows that F ∈ F(G). ut

Now we can define for any compactly generated locally compact abelian group
G the following canonically associated concepts:

m(G) = min{rankF | F ∈ F(G)},
M(G) = {F ∈ F(G) | rankF = m(G)}.

Let us look at some simple examples to understand better what has been said.

Examples 7.51. (i) IfG = Zn⊕K for a compact abelian groupK, thenm(G) = n.
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(ii) Assume G = R then R = Z + [0, 1] and m(G) = 1. For every ε > 0,
G = (Z⊕

√
2Z) + [0, ε], and Z⊕

√
2Z is free of rank 2.

Proof. Exercise E7.21. ut

Exercise E7.21. Prove 7.51.

[Hint. (i) Obviously, m(G) ≤ n. If G = F + C with C compact we may assume
that K ⊆ C. Now G/K ∼= Zn is a discrete group in which (F + K)/K + C/K
with a finite C/K and (F + K)/K is finitely generated. As a subgroup of a free
group the latter group is free. Argue that its rank has to be at least n. Complete
the proof.

(ii) Since R is not compact,m(G) > 0. Because R = Z+[0, 1] we havem(G) ≤ 1.
For the second part note that Z +

√
2Z is dense in R.] ut

In particular, the example of R shows that finitely generated free subgroups
need not be discrete.

Lemma 7.52. Let G be a compactly generated locally compact abelian group. Then
each member of M(G) is discrete.

Proof. We prove the claim by induction with respect to m(G). For this purpose
suppose that G is a counterexample with minimal m(G) and we shall derive a
contradiction. If m(G) = 0, then F in M(G) is singleton and therefore discrete.
But G is a counterexample to the claim; therefore m(G) > 0. Assume that G is
written F +C with F ∈M(G) and some compact subset C of G and that F is not
discrete. We must derive a contradiction. (We note that F is a counterexample,
since F ∈M(F ).) Let us write F = F1 +F2 with a rank one pure subgroup F1 and
a pure subgroup F2 of rank m(G)− 1. Set H = F 2. We claim that F1 ∩H = {0}.
If not, then for a generator f of F1 and some natural number n > 0 we would have
n·f ∈ H. Then G = H + {f, 2·f, . . . , (n− 1)·f} = F2 +C + {f, 2·f, . . . , (n− 1)·f},
whence m(G) ≤ rank(F2) = m(G)− 1, which is a contradiction.

Now F1 is mapped faithfully (and densely) into G/H. Hence, by Weil’s
Lemma 7.43, we have two cases: Case A: G/H is compact, or Case B: G/H is
isomorphic to Z. Assume Case A. Then H is compactly generated and G = H+K
for some compact subset K of G by E7.11 or [38], Chap. VII, §3, no 2, Lemme 3.
Assume Case B. Then G/H ∼= Z. In particular, H is open in G and G = F1 ⊕H
algebraically and topologically. But then H ∼= G/F1 is compactly generated.

Thus H is compactly generated in either case. But m(H) ≤ rankF2 = m(G)−1.
Hence H is not a counterexample. If H = F ′ +C ′ with F ′ ∈ F(H) and rankF ′ =
m(H), then F ′ is discrete. In Case A, G = H + K = F ′ + C ′ + K, whence
m(G) ≤ rankF ′ = m(H) ≤ m(G) − 1 which is a contradiction. In Case B, G =
(F1 ⊕ F ′) + C ′ with a discrete free group F1 ⊕ F ′ of rank m(G). Hence m(H) =
rankF ′ = m(G) − 1 = rankF2. Therefore F2 ∈ M(H) and thus F2 is discrete,
whence H = F2 = F2. Hence F = F1 ⊕ F2 algebraically and topologically, whence
F is discrete in contradiction to our assumption. ut
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Reducing Locally Compact Abelian Groups to Compact
Abelian Groups

Theorem 7.53 (The Reduction Theorem). Let G be a compactly generated locally
compact abelian group. Then there is a discrete, hence closed, subgroup F ∼= Zn,
n a nonnegative integer, such that G/F is compact.

Proof. Let F ∈M(G). Then F is a free group of rank m(G) which is discrete by
Lemma 7.52. Hence F is closed. By the definition of M(G) we have G = F + C
for a compact C. Therefore G/F is compact. ut

Corollary 7.54. Let G be a locally compact abelian group. Then for each identity
neighborhood U there is a compact subgroup N contained in U such that G/N ∼=
Rm × Tn ×D, m and n nonnegative integers, for a discrete abelian group D. In
particular, G/N is a linear Lie group.

Proof. Let G1 be a compactly generated open subgroup of G according to 7.48(v).
Find a discrete finitely generated free group F ∈ M(G1) such that G1/F is com-
pact by Theorem 7.53. Choose a symmetric compact identity neighborhood V
in G1 so small that V + V + V ⊆ U ∩

(
G \ (F \ {0})

)
. The identity neighbor-

hood V ′
def
= (V + F )/F of this compact group contains a compact subgroup,

say M/F , such that K
def
= G1/M ∼= (G1/F )/(M/F ) is a compact Lie group. Then

M ⊆ V +F . If x, y ∈ F , then the relation z ∈ V +x∩V +y implies z = u+x = u′+y
for suitable elements u, u′ ∈ V , whence y − x = −u′ − u ∈ (V + V ) ∩ F = {0}.
Hence x = y. Thus M is contained in the disjoint union of the sets V + x, x ∈ F .
Set N = M ∩ V . We claim that N = M ∩ (V + V ). Indeed let m ∈M ∩ (V + V ).
Then either m ∈ N or m ∈M \N . But (V +V )∩ (M \N) = Ø. Since m ∈ V +V ,
the relation m ∈ N follows. In particular N + N ⊆ M ∩ (V + V ) = N . Hence N
is a compact subgroup. Furthermore let m ∈M . Then m = u+ x with u ∈ V and
x ∈ F . Then u = m−x ∈M∩(V+V ) = N . HenceM = N+F and sinceN∩F = Ø,
this sum is algebraically direct, and then also topologically because N is compact
and F is discrete. Now K = G1/M ∼= G1/(N ⊕ F ) ∼= (G1/N)/(N ⊕ F )/N . Set

L
def
= G1/N and let q:L→ K be the quotient morphism whose kernel (N ⊕ F )/N

is a discrete free group of rank m(G1). In particular, q induces a local isomor-
phism, and K ∼= Tp⊕E with a finite group E by 2.42. We claim that the identity
component L0 is a quotient of Rp modulo a discrete subgroup. One may use E7.2
to prove this claim. An argument using covering groups proceeds as follows.

The underlying space of L is a topological manifold (cf. Appendix A2.15 and
the preceding paragraph) and so is the open identity component L0. The image
q(L0) is open and connected in K, and thus agrees with K0

∼= Tp. The univer-

sal covering p̃: L̃0 → L0 (see Appendix A2.21), when followed by the covering

(q|L0):L0 → K0
∼= Tp is a universal covering of Tp. Hence L̃0 = Rp up to isomor-

phism (Appendix A2.22(i) together with the uniqueness statement in A2.28). This
establishes the claim that L0 is a quotient group of Rp modulo a discrete subgroup.
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Then L0 is isomorphic to Rm×Tn (see Appendix A1.12(ii)). Now L0 is a divisible
subgroup of G/N . Hence G/N contains a subgroup D such that G/N = L0 ⊕D
algebraically (see Appendix A1.36). Since L0 is open, G/N and L0 × D are iso-
morphic as topological groups. Thus G/N ∼= Rm × Tn ×D. By E5.18 all of these
groups are linear Lie groups. ut

Corollary 7.55. In a locally compact abelian group G the subgroup comp(G) is
closed.

Proof. By 7.54 we find a compact subgroup N such that G/N ∼= Rm × Tn × D
for a discrete group D. By E7.20(ii) we have

comp(G/N) ∼= comp(Rm)× comp(Tn)× comp(D) = {0} × Tn × torD

and thus comp(G/N) is closed. By E7.20(i) we know that comp(G) contains
N . Hence comp(G) is the full inverse image of the closed subset comp(G)/N =
comp(G/N) of G/N in G. The closedness of comp(G) follows. ut

Exercise E7.22. Consider the linear Lie group G of 3× 3-matrices

M(x, y, t)
def
=

 cos t − sin t x
sin t cos t y

0 0 1

 , x, y, t ∈ R.

Show (i) G′ is the set of all M(x, y, 0), x, , y ∈ R and is isomorphic to R2. Accord-
ingly, G/G′ ∼= S1 ∼= T.

(ii) G is homeomorphic to R2 × T.
(iii) comp(G) = (G \G′) ∪ {1}. In particular, G = comp(G). ut

The group in Exercise E7.22 is the group of rigid motions of the euclidean plane.
Such a motion is either a translation or a rotation around a suitable center. The
group is metabelian; i.e. its commutator group is abelian. But the set of compact
elements is dense. Corollary 7.55 is therefore a strictly abelian phenomenon.

Corollary 7.56. A locally compact abelian group without nonsingleton compact
subgroups is isomorphic to Rn×D, for some nonnegative integer n and a discrete
torsion-free subgroup D. ut

We are now able to prove the principal structure theorem for locally compact
abelian groups. For a full exploitation of the information it provides, recall the
fully characteristic closed subgroup comp(G) of Definition 7.44 and Corollary 7.55
and let us define the subgroup G1 of G by G0 + comp(G).
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A Major Structure Theorem

The Vector Group Splitting Theorem

Theorem 7.57. (i) Every locally compact abelian group G is algebraically and
topologically of the form G = E⊕H for a subgroup E ∼= Rn and a locally compact
abelian subgroup H which has the following properties

(a) H contains a compact subgroup which is open in H.
(b) Every compact subgroup of G is contained in H.
(c) H contains comp(G).
(d) H0 = (comp(G))0 = comp(G0) is the unique maximal compact connected

subgroup of G.
(e) The subgroup G1 is an open, hence closed, fully charactersistic subgroup

which is isomorphic to E ⊕ comp(G).
(f) G/G1 is a discrete torsion-free group and G1 is the smallest open subgroup

with this property.
(ii) Every compactly generated locally compact abelian group is isomorphic to

a direct product Rm ×K × Zn for a compact abelian group K and nonnegative
integers m and n.

(iii) Every connected locally compact abelian group is a direct sum, algebraically
and topologically, of a finite dimensional vector group and a unique maximal com-
pact subgroup.

(iv) The lattice of closed subgroups of G contains the following key lattice
diagram of closed subgroups:

G

@@
@@

@@
@@

}}
}}
}}
}}

G1

@@
@@

@@
@@

||
||
||
||

H

��
��
��
��

G0

BB
BB

BB
BB

~~
~~
~~
~~

C

~~
~~
~~
~~

E

AA
AA

AA
AA

C0

{{
{{
{{
{{

0

C = comp(G), G1 = G0 + C = E ⊕ C.

Proof. (i) First we prove (a) by noting that Corollary 7.54 gives us a compact
subgroup N of G and subgroups E′ and H of G containing N such that G/N =
E′/N ⊕ H/N , that E′/N ∼= Rn, and that H/N has a compact open subgroup
K/N . Then K is a compact open subgroup of H. Now G/H ∼= (G/N)/(H/N) ∼=
E′/N ∼= Rn. By 7.54, G has arbitrarily small compact subgroups M such that
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G/M is a linear Lie group. Now 7.42 applies and shows that G = E ⊕ H with
E ∼= Rn and H containing an open and compact subgroup.

For a proof of (b) let C be a compact subgroup of G and p:G → E the
projection onto E with kernel H. Then p(C) is a compact subgroup of E ∼= Rn.
Since R, and thus Rn, has no nonsingleton compact subgroups we have p(C) = {0}
and thus C ∈ ker p = H.

Condition (c) follows immediately from (b) and the definition of comp(G) in
7.44.

For a proof of (d) we recall from (a) that H has compact open subgroups
implying that H0 is compact. Thus H0 ⊆ comp(G), and since (comp(G))0 ⊆ H0

the equality H0 = (comp(G))0 follows. Since G = E⊕H is the product of E ∼= Rn
and H we have G0 = E ⊕H0, whence H0 = comp(G0).

In order to prove (e) we let K be a compact and open subgroup of H according
to (a). Then E ⊕ K on the one hand is open in E ⊕ H = G and on the other
is contained in G0 + comp(G) = G1, and so G1 is open in G. Since G0 and
comp(G) are fully characterstic subgroups of G, so is G1 = G0 + comp(G). The
sum E+comp(G) is direct algebraically and topologically by (c) since G = E⊕H.
Clearly, E ⊕ comp(G) ⊆ G0 + comp(G) = G1 and

G1 = G0 + comp(G) = (E + (comp(G))0) + comp(G) = E + comp(G)
in view of (d). Thus G1 = E ⊕ comp(G).

For a proof of (f), since G1 is open in G by (e) and

G

G1
=

E ⊕H
E ⊕ comp(G)

∼=
H

comp(G)
,

we know that G/G1 is discrete and torsion-free by 7.45. If U is an open subgroup of
G, then E ⊆ U and so U = E⊕(H∩U) by the modular law. If G/U is torsion-free,
then H/(H ∩ U) is torsion-free and so ∼= (G) ⊆ U . Hence G1 = E+ ∼= (G) ⊆ U .
Thus G1 is indeed minimal with the properties stated in (e).

(ii) By (i) we may assume that G contains an open compact subgroup C.
Now G/C is a discrete compactly generated, hence finitely generated group. Thus
G/C ∼= E × Zn with a finite group E and a nonnegative integer n by the Fun-
damental Theorem of Finitely Generated Abelian Groups (Appendix 1, A1.11).
The full inverse image K of E in G is a maximal compact subgroup such that
G/K ∼= Zn. Then, algebraically, G = K ⊕ F with F ∼= Zn by Appendix 1, A1.15.
Since K is open, then map (k, f) 7→ k+f :K×F → G is an isomorphism of abelian
topological groups.

(iii) This follows from 7.48(iv) and (ii) above, and
(iv) is the summary in a diagram of the information accumulated in (i), (ii)

and (iii). ut

The direct summand E is not uniquely determined in general. But dimE is
uniquely determined because it is the dimension of the identity component of
G/ comp(G) ∼= E×D with a discrete group D. We call this number the vector rank

and write vrank(G)
def
= dimE. The summand H in Theorem 7.57 is not uniquely
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determined either. However, the subgroups G0, comp(G), comp(G0) = (comp(G))0

and G1 = G0 + comp(G) = E ⊕ comp(G) are canonically determined.

A further splitting of the direct summand H is not to be expected; e.g. H = Qp
does not split a compact open subgroup K, because each of them is of the form
pnZp for some n ∈ Z, and H/K ∼= Z(p∞) (cf. E1.16) which is a torsion group,
while Qp is torsion-free.

Corollary 7.58. (i) If G is a locally compact abelian group, then there is a unique
maximal compact connected subgroup

(
comp(G)

)
0

= comp(G0).

(ii) Let C be a compact abelian group and G = Rn×C. Then K
def
= {0}×C is the

unique largest compact subgroup, and for each morphism f :Rn → C the subgroup

graph(f)
def
= {

(
v, f(v)

)
| v ∈ Rn} is isomorphic to Rn and G = graph(f) ⊕ K

algebraically and topologically.
The map f 7→ graph(f) from Hom(Rn, C) to the set of complements of K in

G is surjective.
(iii) For a locally compact abelian group, the following statements are equivalent:

(a) G is a linear Lie group.
(b) There are nonnegative integers m and n and a discrete abelian group D such

that G ∼= Rm × Tn ×D.
(c) G has no small subgroups.

Proof. (i) Applying Theorem 7.57 to comp(G) we find that comp(G) has an open
compact subgroup C. Thus the identity component

(
comp(G)

)
0
, being contained

in C is clearly compact, and is the unique largest compact connected subgroup
contained in G. The two containments making up the relation

(
comp(G)

)
0

=
comp(G0) are easily seen to hold.

(ii) Let pr1:G → Rn and pr2:G → C denote the projections. The following
functions are inverse morphisms of each other:

v 7→
(
v, f(v)

)
:Rn → graph(f)

pr1 | graph(f): graph(f)→ Rn,

as are the following ones:((
v, f(v)

)
, (0, c)

)
7→ (v, f(v) + c): graph(f)×K → G

g 7→
((

pr1(g), f
(

pr1(g)
))
,
(
0,−f

(
pr1(g)

)
+ pr2(g)

))
:G→ graph(f)×K.

This shows G ∼= graph(f)⊕K.

If G = E ⊕ K, then p
def
= (pr1 |E):E → Rn is an isomorphism. Set f =

pr2 ◦ p−1:Rn → C. Then E = graph(f).
(iii) For the equivalence of (a) and (b) see E5.18(i); the implication (b)⇒(c)

is clear. We show (c) implies (b). If G has no small subgroups, by 7.57 there is an
open subgroup which is isomorphic to Rm×C with a compact group without small
subgroups. Then C is a compact (hence linear) Lie group by 2.41. Therefore the
identity component of G is of the form Rm × Tn (cf. E5.18(i) again) and divisible
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and open in G. It is therefore a direct summand, algebraically (see A1.36) and
topologically (since it is open). This proves (b). ut

Corollary 7.59. Let G be a locally compact abelian group. Then L(G) = V ⊕
Lcomp(G) where

V ∼= Rvrank(G) and Lcomp(G) = L(H) = L(comp(G)) = L(comp(G)0).

Proof. Since L preserves products by 7.38(i), from Theorem 7.57 we derive L(G) =

L(E)⊕L(H). Clearly V
def
= L(E) is a vrank(G)-dimensional real vector space, and

L(H) = L(H0) = L(comp(G)0). ut

Note that Lcomp(G) is a uniquely determined cofinite dimensional vector sub-
space of L(G); the complement is not uniquely determined. We have

dimL(G)/Lcomp(G) = vrank(G).

The Duality Theorem

In this section we shall prove that every locally compact abelian group is reflexive
(see Definition 7.8). We shall utilize the Annihilator Mechanism 7.17.

Lemma 7.62. If H is a compact open subgroup of G. Then H⊥ is a compact open
subgroup of Ĝ and κG,H : Ĝ/H⊥ → Ĥ is an isomorphism of topological groups.

G {0}∣∣∣ ∣∣∣
H H⊥∣∣∣ ∣∣∣ }

∼= Ĥ

{0} Ĝ.

Proof. Firstly, since H is open, G/H is discrete, and thus its character group

is compact by 7.5(i). Now H⊥ ∼= Ĝ/H by 7.17(i). Hence H⊥ is compact. Fur-
thermore, let U1 be the zero neighborhood

]
− 1

4 ,
1
4

[
+ Z in T. Then U1 does not

contain any nontrivial subgroups and thus the zero neighborhood V
Ĝ

(H,U1) of Ĝ

is exactly H⊥. Thus H⊥ is open.
If χ:H → T is a character on H then by the injectivity of T (cf. A1.34, A1.35)

it extends to an algebraic character χ̃:G→ T. But since H is open, the extension
χ̃ is continuous and thus is a character. Clearly κG,H(χ̃) = χ̃|H = χ. Thus κG,H
is bijective. Since the domain Ĝ/H⊥ and the range Ĥ are both discrete, κG,H is
trivially an isomorphism of abelian topological groups. ut
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We have all the ingredients to prove the duality theorem. Certain aspects of
the proof were anticipated in the proof of 2.32.

The Pontryagin–van Kampen Duality Theorem

Theorem 7.63. Every locally compact abelian group is reflexive; that is for ev-

ery locally compact abelian group G the evaluation morphism ηG:G → ̂̂
G is an

isomorphism of topological groups.

Proof. By Proposition 7.10(iv) a direct product G × H of abelian topological
groups is reflexive if each of the factors is reflexive. (The converse holds, too.)
Since R is reflexive, the group Rn is reflexive. Thus from the Vector Group Splitting
Theorem 7.57 we obtain that all locally compact abelian groups are reflexive if we
can show that a locally compact group G with an open compact subgroup H is
reflexive. Thus we assume, for the remainder of the proof, that G has a compact
open subgroup H. From 7.62 we know that H⊥ is a compact open subgroup of Ĝ.

Firstly, we shall show that the characters of G separate points, which will prove
the injectivity of ηG. By 1.21, the characters of the discrete abelian group G/H
separate the points; hence for every g /∈ H, by 7.62 there is a character χ of G
with χ(g) 6= 0.

Now any character χ from the subgroup H⊥ ⊆ Ĝ of characters vanishing on
H induces a character χ′ on the discrete group G/H via χ′(g + H) = χ(g), and

if χ′ is a character of G/H we get a character χ ∈ Ĝ via χ(g) = χ′(g +H). Thus

χ 7→ χ′:H⊥ → Ĝ/H is an isomorphism. By 2.31, the characters of the compact
group H separate the points. Hence by 7.62, for every h ∈ H there is a character
χ of G such that χ(g) 6= 0. Hence the characters of G separate points and ηG is
injective.

Secondly, we claim that ηG(H) = H⊥⊥ in
̂̂
G. Because ηG(h)(χ) = χ(h) = 0 for

all χ ∈ H⊥ and h ∈ H the left side is contained in the right one. On the other

hand, an Ω ∈ ̂̂G is in H⊥⊥ iff it vanishes on H⊥ and thus induces a character of
Ĝ/H⊥. Every such corresponds to a character of Ĥ when Ĝ/H⊥ is identified with

Ĥ via κG,H in 7.62. But every character of Ĥ is an evaluation ηH(h) by 2.32. Thus
Ω = ηG(hΩ) for some hΩ ∈ H. This establishes the claim.

Thirdly, we claim that ηG is surjective. Let Γ = ηG(G) ⊆ ̂̂
G. By 7.62 applied

to Ĝ we know that H⊥⊥ is compact open in
̂̂
G. Thus by what we just finished

showing, ηG(H) = H⊥⊥ is open in
̂̂
G and therefore Γ is open and closed in

̂̂
G. We

want to show that Γ =
̂̂
G; this means

̂̂
G/Γ = {0}. For this we show that every

character f on
̂̂
G vanishing on Γ is zero. But since f vanishes on H⊥⊥, by what

we have seen in the proof of the second claim above, there is a χ ∈ H⊥ such that
f(Ω) = Ω(χ). As f annihilates Γ we note χ(g) = ηG(g)(χ) = f

(
ηG(g)

)
= 0 for all

g ∈ G. Hence χ = 0 and thus f = 0.
We have therefore also shown that ηG is surjective. Since ηG maps the open

compact subgroup H isomorphically onto the open closed subgroup ηG(H) =
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H⊥⊥ of
̂̂
G, the morphism ηG is also open and thus is an isomorphism of abelian

topological groups. ut

With the duality theorem available, the Annihilator Mechanism now functions
for all locally compact abelian groups and all closed subgroups without additional
hypothesis. Just for the record we repeat information presented in 7.17, 7.18, 7.19,
7.20, 7.22, 7.23.

The Annihilator Mechanism

Theorem 7.64. Assume that G is a locally compact abelian group and H is a
subgroup. Define morphisms of abelian topological groups

λG,H : Ĝ/H → H⊥, λG,H(χ)(g) = χ(g +H),

and

κG,H : Ĝ/H⊥ → Ĥ, κG,H(χ+H⊥) = χ|H.

Then the following conclusions hold:
(i) λG,H and κG,H are isomorphisms of abelian topological groups.

G {0}

Ĥ⊥ ∼=

{ ∣∣∣ ∣∣∣ }
∼= Ĝ/H

H H⊥

̂̂
G/H⊥ ∼=

{ ∣∣∣ ∣∣∣ }
∼= Ĥ

{0} Ĝ.

(ii) Moreover, assume that H1 ⊆ H2 ⊆ G are closed subgroups. Then

κG/H1,H2/H1
: Ĝ/H1/(H2/H1)⊥ → Ĥ2/H1

implements via the isomorphism λG,H1 : Ĝ/H1 → H⊥1 an isomorphism of abelian

topological groups κ′:H⊥1 /H
⊥
2 → Ĝ/H1|H2/H1 = (H2/H1)̂.
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G {0}∣∣∣ ∣∣∣
H2 H⊥2∣∣∣ (H2/H1)̂ ∼= { ∣∣∣
H1∣∣∣∣∣
{0}

H⊥1∣∣∣∣∣̂
G


∼= Ĝ/H1

(iii) Assume that S is a subset of G. Then S⊥⊥ is the smallest closed subgroup
〈S〉 containing S.

(iv) Assume that H is a closed subgroup of G. Then H⊥⊥ = H.
(v) The function H 7→ H⊥ maps the lattice of closed subgroups of G antiiso-

morphically onto the lattice of closed subgroups of Ĝ.
(vi) Assume that

0→ H
j→ G

q→ Q→ 0

is an exact sequence of locally compact abelian groups where j is an embedding
morphism and q is a quotient morphism. Then the dual sequence

0→ Q̂
q̂→ Ĝ

ĵ→ Ĥ → 0

is exact, where q̂ is an embedding and ĵ is a quotient morphism. Further Q̂ ∼= H⊥,
and Ĥ ∼= Ĝ/H⊥.

(vii) Assume that {Hj | j ∈ J} is a family of subgroups of G. Let D =
⋂
j∈J Hj

and H =
∑
j∈J Hj, then

(a) H⊥ =
⋂
j∈J H

⊥
j ,

(b) D⊥ =
∑
j∈J H

⊥
j .

(viii) Every character of a subgroup H of G extends to a character of G. ut

Exercise E7.23. Determine all Hausdorff quotient groups of Tn for n ∈ N. (Cf.
Exercise E2.9.) ut

The following is a sharpening of 7.64(vi).

Proposition 7.65. Let f :G1 → G2 be a morphism of locally compact abelian
groups and denote by f̂ : Ĝ2 → Ĝ1 its adjoint. Then

(i) (im f)⊥ = ker f̂ .

(ii) (ker f̂)⊥ = im f .

In particular, f has a dense image if and only if f̂ is injective, and f is injective
if and only if f̂ has dense image.
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Proof. The relation χ ∈ (im f)⊥ means χ
(
f(g)

)
= 0 for all g ∈ G which is

equivalent to
(
f̂(χ)

)
(g) = 0 for all g ∈ G and this is tantamount to f̂(χ) = 0

which says χ ∈ ker f̂ .
(ii) By Theorem 7.64(iii) we know im f = (im f)⊥⊥. Hence (ii) follows from (i)

by applying (·)⊥.
The final conclusions are consequences in view of the fact that the roles of f

and f̂ may be exchanged by duality. ut

Before we formulate and prove the major general results around the exponential
function exp:L(G)→ G of a locally compact abelian group, we recall some of the
background facts which were discussed earlier in the chapter, notably in 7.35 and
7.40. Let q:R → T denote the quotient map given by q(r) = r + Z, and let
ν:R → L(T) be the natural isomorphism given by ν(r)(s) = rs + Z. We have
L(G) = Hom(R, G), and expX = X(1). The adjoint of the exponential function

is εG
def
= êxpG: Ĝ → L̂(G)

def
= Hom(L(G),T) given by εG(χ)(X) = χ(expGX) =

expT
(
L(χ)(X)

)
.

L(G)
L(χ)−−→ L(T)

ν←−−− R
expG

y yexpT

yq
G −−→

χ
T idT←−−− T.

We also recall that the morphism q induces an isomorphism

q∗ = Hom(L(G), q):L′(G)
def
= Hom(L(G),R)→ Hom(L(G),T) = L̂(G),

q∗(ω) = q ◦ ω for ω ∈ L′(G) whose inverse is given by (q∗)−1(γ) = ν−1L(γ):

L
(
L(G)

) L(γ)−−→ L(T)
ν←−−− R

expL(G)

y yexpT

yq
L(G)

γ−−→ T idT←−−− T,

where expL(G):L
(
L(G)

)
→ L(G) is an isomorphism of topological vector spaces.

Thus we also have an isomorphism ιG:L(G)̂ → L′(G) = Hom(L(G),R) given
by ιG(χ)(X) = ν−1L(χ)(X).

Let us calculate the annihilator εG(Ĝ)⊥ of the subgroup εG(Ĝ) of L̂(G) in
L(G). Indeed by definition an element X:R → G in L(G) is in this annihilator

iff 0 = εG(χ)(X) = χ(expGX) for all χ ∈ Ĝ. Since the characters of a locally
compact abelian group separate the points, this is equivalent to expGX = 0, i.e.
to X ∈ ker expG. Thus

εG(Ĝ)⊥ = K(G)
def
= ker expG

for any locally compact abelian group G.
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Recall that for any locally compact abelian group G the characteristic group
comp(G)0 is the largest compact connected subgroup and that by 7.59 we have
Lcomp(G) = L(comp(G)0).

The Exponential Function for Locally Compact Abelian Groups

Theorem 7.66. Assume that G is a locally compact abelian group, say, G =
E ⊕H, where E ∼= Rn and comp(G) is open in H according to 7.57.

(i) L(G) = L(E) ⊕ Lcomp(G) ∼= Rn ⊕ L(comp(G)0) (see Corollary 7.59) is a
weakly complete topological vector space (see Definition 7.32) with dual

L′(G) ∼= R ⊗ Ĝ ∼= Rn ⊕ (R⊗ (comp(G)0)̂) .

(ii) The kernel K(G) of expG:L(G)→ G consists of all one-parameter subgroups
X:R → G such that X(1) = 0, equivalently X(Z) = {0}. It satisfies K(G) ∼=
Hom(Ĝ,Z) and is a closed subgroup of the weakly complete topological vector space
Lcomp(G) satisfying K(G)⊥⊥ = K(G). The morphism of abelian topological groups
λL(comp(G)0),K(G):L

(
comp(G)0

)
/K(G)→ K(G)⊥ (in R⊗(comp(G)0)̂) is bijective.

The topological group K(G) is totally disconnected.
Give R ⊗

(
comp(G)0

)̂ the finest locally convex vector space topology; then
this topological vector space is the dual of Lcomp(G). Denote the subgroup 1 ⊗
(comp(G)0)̂ by A. Let A0 denote the largest vector subspace of A. Then A =
A0 ⊕ A1 algebraically and topologically with an ℵ1- free closed subgroup A1. The

annihilator (A0)⊥ is spanR
(

Hom(Ĝ,Z)
) ∼= spanR

(
K(G)

)
in Hom(Ĝ,R) ∼= L(G),

and A0 is also the largest vector subspace of K(G)⊥ ⊇ A. If the group A/A0
∼= A1

is countable then it is free and K(G)⊥ = A.

Alternatively, if εG: Ĝ→ L̂(G) ∼= L′(G) is the adjoint of the exponential func-
tion then (im εG)⊥ = K(G), and K(G)⊥ = im εG.

We consider the exact sequence 0→ Z j→ R p→ T = R/Z→ 0. Then there is a
commutative diagram whose rows are exact and whose vertical maps are isomor-
phisms:

0 → Hom(Ĝ,Z)
Hom(Ĝ,j)−−−−−→ Hom(Ĝ,R)

Hom(Ĝ,p)−−−−−→ Hom(Ĝ,T)

∼=
x eG

x xηG
0 → K(G)

incl−−→ L(G)
expG−−→ G

ρ

y idL(G)

y yσ
0 → Hom(T, G) −−−−−→

Hom(p,G)
Hom(R, G) −−−−−→

Hom(j,G)
Hom(Z, G),

where σ(g)(n) = n·g and where ρ(X):T→ G is the morphism induced by X:R→
G with X(Z) = {0}.

There is an exact sequence

0→ K(G)
incl−−−→ L(G)

expG−−−→ expG L(G)→ 0
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(where expG is identified with its corestriction to its image). Equivalently, expG in-
duces a bijective morphism of abelian topological groups L(G)/K(G)→ expG L(G).

(iii) If f :G → H is a quotient morphism of locally compact abelian groups,
then L(f):L(G)→ L(H) is surjective. If K = ker f , then the following commuting
diagram has exact rows

(∗)

0→ L(K)
L(incl)−−−→ L(G)

L(f)−−−→ L(H) → 0

expK

y expG

y yexpH

0→ K
incl−−−→ G

f−−−→ H → 0.

The top row is split exact; i.e. there is a continuous linear map σ:L(H) → L(G)
such that L(f) ◦ σ = idL(H). In particular, L(f) is open.

(iv) For each identity neighborhood U of G there is a compact subgroup K of
G and a finite dimensional vector subspace F of L(G) such that

(a) the morphism ψ:K × F → G, ψ(k,X) = k + expGX is open and has a
discrete kernel, thus implementing a local isomorphism, and

(b) there is an open identity neighborhood V in F such that K + expV ⊆ U and
ψ|(K × V ):K × V → K + expV is a homeomorphism.

Proof. By the Vector Group Splitting Theorem 7.57, we may indeed write G =
E⊕H in the form explained in the first sentence of the theorem. Its character group
Ĝ is locally compact by 7.7(ii), and Ĝ = H⊥ ⊕ E⊥ ∼= Ê × Ĥ by the Annihilator
Mechanism 7.64. Since H has an open compact subgroup K, H/K is discrete and

by the annihilator mechanism, K⊥ ∼= Ĥ/K is compact, and since Ĝ/K⊥ ∼= K̂ is
discrete, K⊥ is open.

(i) By the Duality Theorem 7.63 and Proposition 7.40, the natural morphism

eG:L(G) → Hom(Ĝ,R) is an isomorphism of topological groups. We shall ap-

ply Theorem 7.35 to the character group Ĝ. By the preceding remarks the hy-
potheses of Proposition 7.35(vii) are then satisfied. Hence by 7.35(vii), Hom(Ĝ,R)

and thus L(G) are weakly completely vector spaces whose dual is R ⊗ Ĝ (see
7.35(iii)). Since L(G) = L(G0) and G0 = E⊕comp(G)0 with a compact connected
group comp(G)0 = comp(G0) (see 7.58). The dual of L(G) (see 7.30) thus sat-

isfies L(G)′ ∼= E′ × L
(

comp(G)0

)′
. Now L

(
comp(G)0

)′ ∼= R ⊗
(

comp(G)
)̂ =

R⊗
(

comp(G)
)̂ since

(
comp(G)

)̂ is discrete and thus 7.34(iii) applies.
(ii) We apply Proposition 7.35 with the discrete group comp(G)0̂ in place

of G. Then K(G), naturally identifiable with Hom(Ĝ,Z), is the annihilator A⊥

of A in L(comp(G)0) by 7.35(v)a). From 7.33 we get the continuous bijective
morphism λL(comp(G)0),K(G):L

(
comp(G)0

)
/K(G)→ K(G)⊥ as asserted. The topo-

logical group Hom(Ĝ,Z) is a subgroup of ZĜ and thus is totally disconnected.
Hence K(G) is totally disconnected.

By 7.31(i), the group A is algebraically and topologically a direct product of
A0 and an ℵ1-free group A1. By 7.35(v)d) the annihilator (A0)⊥ is

spanR
(

Hom(Ĝ,Z)
) ∼= spanR

(
K(G)

)
in Hom(Ĝ,R) ∼= L(G),
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and A0 is the largest vector subspace of K(G)⊥. If A/A0
∼= A1 is countable, it is

free, and then K(G)⊥ in R ⊗ Ĝ is A by 7.35(v)e).
The commutativity of the diagram derived from the morphisms j:Z→ R and

p:R → T is straightforward from the definitions. The exactness of the top and
bottom row are standard homological algebra (cf. Appendix 1, A1.55). Since the
vertical maps are isomorphisms, the exactness of the middle row follows. The
assertion concerning the exact sequence involving expG is a simple application of
the canonical decomposition theorem for homomorphisms.

(iii) By 7.54, G has arbitrarily small compact subgroups K such that G/K is
a linear Lie group. Then the surjectivity of L(f):L(G) → L(H) follows directly
from 7.41(iii).

Finally, by 7.30(iv) the existence of σ follows. Thus L(f) is a continuous lin-

ear retraction. Retractions are quotient maps; indeed if V ⊆ L(H) and U
def
=

L(f)−1(V ) is open in L(G), then V = σ−1U is open. But quotient morphisms of
topological groups are always open.

Proof of (iv). Let U be an open identity neighborhood of G. By 7.54 there
is a compact subgroup K contained in U and a quotient homomorphism q:G →
H = Rm × Tn × A with a discrete abelian group A and ker q = K. Let j:K →
G denote the inclusion morphism. We note L(H) ∼= Rm × Rn and apply (iii)
above. In particular, we have the diagram (∗) and the cross section morphism
σ:L(H) → L(G) with L(q)σ = idL(H). We define ϕ:K × L(H) → G, ϕ(k,X) =

k+expG σ(X). Then q
(
ϕ(k,X)

)
= q
(

expG σ(X)
)

= expH
(
L(q)σ(X)

)
= expH X.

Since expH L(H) = H0 is open in H in the present situation, and since imϕ
contains K = ker q, we know that imϕ = q−1(H0) is an open subgroup G1 of G.
The corestriction ϕ1:K × L(H)→ G1 is a quotient morphism since K × L(H) ∼=
K×Rm+n is a countable union of compact subsets (see Appendix 1, EA1.21). We
note that (k,X) ∈ kerϕ iff k = expG−σ(X). Thus kerϕ = {(expG−σ(X), X) |
X ∈ L(H), expG σ(X) ∈ K}. Thus the projection pr2:K × L(H) → L(H) maps

kerϕ isomorphically onto the closed subgroup D
def
= σ−1 exp−1

G K of L(H). Assume
that R·X ⊆ D, then expH R·X = expH L(q)σR·X = q(expG σR·X) ⊆ q(K) = {0}.
This shows X = 0. Hence D does not contain any nondegenerate vector subspaces
and is therefore discrete (see Appendix 1, A1.12). Thus kerϕ is discrete and ϕ
implements a local isomorphism. Since K ⊆ U is compact, there is an open identity
neighborhood V in L(H) such that ϕ|(K×V ) maps K×V homeomorphically onto
an open identity neighborhood of G1 and hence of G, and thus K + expV ⊆ U . ut

The fact that any group of the form expGW with a closed vector subspace W of
L(G) should be compact, as is the case e.g. when W = L(G) = Rn and K(G) ∼= Zn,

is a relatively rare occurrence. Later we shall verify that G`
def
= expG spanR K(G)

is locally connected (8.35).
If G is the group of real numbers with the discrete topology and H = R, and

if f :G → H is the identity function, then f is a surjective morphism of locally
compact abelian groups, but L(G) = {0} and L(H) ∼= R. Thus L(f) = 0 and this
morphism is not surjective. Thus L does not preserve surjectivity.
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Conclusion (iv) tells us much about the local structure ofG; there are arbitrarily
small open identity neighborhoods homeomorphic to K×V where K is a compact
subgroup of G and V is homeomorphic to Rn for some n.

The Identity Component

Recall from Theorem 1.34 and the subsequent Exercise E1.13(iii) that in a lo-
cally compact group G, the identity component G0 is the intersection of all open
subgroups.

From 7.55 we also recall that in a locally compact abelian group G the subgroup
comp(G) of all compact elements is closed.

The role of G0 and comp(G) is elucidated by the Vector Group Splitting Theo-
rem 7.57ff. even before we finally had the full Duality Theorem 7.63. Given a locally
compact abelian group G, we naturally want to apply the Vector Space Splitting
Theorem to Ĝ and obtain, in particular, the key lattice diagram of 7.57(iv) of Ĝ

involving Ĝ0 and comp(Ĝ) on the one hand, and we are equally eager to apply
the Annihilator Mechanism 7.64 to the closed subgroups of the group G in its key
lattice diagram of 7.57(iv). We should obtain two new sets of information for G
from both processes.

However, the following theorem will show us that both processes yield the same
information on the two subgroup lattices of of G, respectively, Ĝ:

Theorem 7.67. For a locally compact abelian group G we have

(1)
(

comp(G)
)⊥

= Ĝ0 and (G0)⊥ = comp(Ĝ), and

(2) (G1)⊥ = comp((Ĝ)0) and comp(G0)⊥ = (Ĝ)1.

Proof. Since G0 is closed we have G⊥⊥0 = G0 by the Annihilator Mechanism
Theorem 7.64. Hence, by duality, the second assertion follows from the first which
we prove now.

Let K denote the set of all compact subgroups ofG. Then comp(G) =
∑
K∈KK.

Thus
(

comp(G)
)⊥

=
⋂
K∈KK

⊥ by Proposition 7.23(i). Since K is compact, its

character group, K̂, which is isomorphic to Ĝ/K⊥ by the Annihilator Mechanism

Theorem 7.64, is discrete. Hence K⊥ is an open subgroup of Ĝ. Thus
(
comp(G)

)⊥
being an intersection of open subgroups contains Ĝ0. Conversely, if U is an open
subgroup of Ĝ, then the character group of the discrete group Ĝ/U is compact
and is isomorphic to U⊥ again by Theorem 7.64. Hence U⊥ ∈ K. But U , being

open is also closed, and thus U⊥⊥ = U by 7.17(iii). Hence
(

comp(G)
)⊥

is the

intersection of all open subgroups and thus agrees with Ĝ0 by E1.13(iii) (following
Theorem 1.34). Thus the first part of (1) is proved.
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In order to prove the first part of assertion (2) we recall that G1, by Theorem
7.57(i)(f), is the unique smallest open subgroup U such that G/U is torsion-free.
Hence by the Annihilator Mechanism 7.64 and duality, (G1)⊥ is the unique largest

compact subgroup C = U⊥ of Ĝ such that C = U⊥, being isomorphic to the
character group of G/U , is compact connected. That is, (G1)⊥ is the unique largest

compact connected subgroup of Ĝ, and that is comp(G0). ut

The Annihilator Mechanism “reflects” the center of the key lattice diagram of
7.57(iv) consisting of the characteristic subgroups G0, comp(G), G0 ∩ comp(G) =
comp(G)0, and G1 = G0 + comp(G). It also “reflects” the noncharacteristic sub-
groups E = EG and H = HG: every possible HG is the annihilator (E

Ĝ
)⊥ of some

maximal vector subgroup E
Ĝ

of Ĝ, yielding

G = EG ⊕ (E
Ĝ

)⊥.

There are several direct consequences of the preceding Theorem 7.67:

Corollary 7.68. For a locally compact abelian group G and its character group Ĝ
the following statements are equivalent:

(1) G has no nontrivial compact subgroups.

(2) Ĝ is connected.
Also, the following statements are equivalent:

(i) For every element g ∈ G the cyclic subgroup Z·g is not isomorphic to Z as
a topological group.

(ii) Ĝ is totally disconnected.

Proof. Condition (1) means comp(G) = {0}, hence Ĝ = Ĝ0 by Theorem 7.67.
This is (2).

Next we recall Weil’s Lemma 7.43 and note that, consequently, (i) means

comp(G) = G, and thus Ĝ0 = {0} by Theorem 7.67, which is (ii). ut

Corollary 7.69. For a compact abelian group G,
(i) the annihilator (G0)⊥ of the identity component in the discrete group Ĝ is

tor Ĝ, the torsion subgroup, and
(ii) Ĝ0 = Ĝ/ tor(Ĝ).

(iii) A closed subgroup D of G is totally disconnected if and only if Ĝ/D⊥ is a

torsion group if and only if for each χ ∈ Ĝ there is a natural number n such that
n·χ ∈ D⊥.

Proof. (i) We apply Theorem 7.67 by noticing that in a discrete abelian group A
we have comp(A) = torA.

(ii) This follows from (i) by the Annihilator Mechanism 7.64(i).

(iii) By the Annihilator Mechanism Theorem 7.64(i) we have D̂ ∼= Ĝ/D⊥. Thus

by (i) above D0 = {0} iff Ĝ/D⊥ is a torsion group. ut
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Corollary 7.70. A compact abelian group G is connected if and only if its charac-
ter group is torsion-free, and it is totally disconnected if and only if its character
group is a torsion group. ut

Theorem 7.71. For a locally compact abelian group G the identity component
G0 agrees with expG L(G). In particular, if Ga is the arc component of 0 in G,
then G0 = Ga, and G is totally disconnected if and only if G is totally arcwise
disconnected.

Proof. As a real topological vector space, L(G) = L(G0) is arcwise connected,

hence connected. Thus expL(G) ⊆ Ga ⊆ G0 and therefore H
def
= expL(G) is

a closed connected subgroup, whence H ⊆ G0. Suppose now that contrary to
the claim, H 6= G0. Then G0/H is a nondegenerate locally compact connected
abelian group. By Corollary 7.54, there is a closed subgroup N of G0 containing
H such that G0/N is a nondegenerate connected linear Lie group and thus is
isomorphic to Rm × Tn with m + n > 0. The quotient morphism f :G0 → G0/N
gives a surjective morphism L(f):L(G0) → L(G0/N) ∼= Rm+n. If X ∈ L(G0),
then X(R) = expR·X ⊆ H ⊆ N , whence f

(
X(R)

)
= {0} and thus L(f)(X) =

f ◦X = 0. Hence {0} = imL(f) ∼= Rm+n. Therefore m + n = 0, a contradiction.
This shows H = G0 which is what we had to prove. ut

In the next chapter in Theorem 8.30 we shall show that expG L(G) is indeed
equal to Ga, the arc component of the identity.

Corollary 7.72. A locally compact abelian group is not totally disconnected if and
only if it has a nontrivial one-parameter subgroup. ut

Corollary 7.73. If f :G → H is a quotient morphism of locally compact abelian
groups, then f(G0) = H0. Hence if G is totally disconnected then H is totally
disconnected.

If G is a compact abelian group then f(G0) = H0.

Proof. From 7.66(iii) we know that L(f):L(G) → L(H) is surjective. Then

f(G0) = f(expL(G)) = f
(

expL(G)
)

= expL(f)
(
L(G)

)
= expH L(H) = H0

by 7.71. Further if G is totally disconnected, then H0 is singleton by the preceding
and the claim follows.

If G is compact, the G0, being closed, is compact. Hence the image f(G0) is
compact and therefore closed. From the preceding we get f(G0) = H0. ut

The example of idT:Td → T with the discrete circle group Td shows that 7.73
fails for surjective morphisms of locally compact groups, even if H is compact.

We have seen in Chapter I, Exercise E1.11, that there are quotient homomor-
phisms f :G → H of locally compact abelian groups for which f(G0) 6= H0, even
when H is compact and f has a discrete kernel. and we shall return to this point
in Chapter 8 (see Example 8.31).
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The Weight of Locally Compact Abelian Groups

For the weight w(X) of a topological space X refer to Appendix A4, A4.7ff. We
now want to estimate the weight of a hom-group Hom(A,B). For this purpose it is
sensible to give an alternative definition of the compact open topology. This may
be of independent interest as a complement to the developments at the beginning
of the chapter beginning with 7.1.

Proposition 7.74. Let A and B be abelian topological groups, O(B) a basis for the
topology on B, and K(A) be a set of compact subsets of A satisfying the following
condition: (∗) If C is compact in A then for each c ∈ C and each neighborhood U
of c there is a C ′ ∈ K(A) such that C ′ ⊆ U and C ∩ C ′ is a neighborhood of c in
C.

For C ∈ K(A) and U ∈ O(B) set W (C,U) = {f ∈ Hom(A,B) | f(C) ⊆ U}.
Then

{W (C,U) | (C,U) ∈ K(A)×O(B)}

is a subbasis for the compact open topology of Hom(A,B).

Proof. Let U denote the open identity neighborhoods of B. By the definition
following 7.1, the compact open topology has a basis of sets of the form f+W (C,U)
with f ∈ Hom(A,B), C compact in A and U ∈ U .

Claim (a) If f ∈ W (C,U) for (C,U) ∈ K(A) × O(B), then there is a V ∈ U
such that

f +W (C, V ) ⊆W (C,U).

Claim (b) For f ∈ Hom(A,B), and C compact in A and U ∈ U there are
finitely many elements (Cj , Uj) ∈ K(A)×O(B), j = 1, . . . , n such that

f ∈W (C1, U1) ∩ · · · ∩W (Cn, Un) ⊆ f +W (C,U).

A proof of these claims will establish the proposition.
Proof of Claim (a). Since f ∈W (C,U), the compact space f(C) ⊆ U . We assert

that there is an open identity neighborhood V in B such that f(C) + V ⊆ U .
Indeed for each c ∈ C there is a V (c) ∈ U such that f(c) + V (c) + V (c) ⊆ U .
By the compactness of C we find c1, . . . , cN ∈ C such that

f(C) ⊆
(
f(c1) + V (c1)

)
∪ · · · ∪

(
f(cN ) + V (cN )

)
.

Set V = V (c1) ∩ · · · ∩ V (cN ) ∈ U . Let c ∈ C. Then there is a j ∈ {1, . . . , N} such
that f(c) ∈ f(cj) + V (cj); hence f(c) + V ⊆ f(cj) + V (cj) + V (cj) ⊆ U , which
proves the assertion. Now let ϕ ∈ W (C, V ). Then (f + ϕ)(C) ⊆ f(C) + ϕ(C) ⊆
f(C) + V ⊆ U . Hence f +W (C, V ) ⊆W (C,U) as claimed in (a).

Proof of Claim (b). Select V ∈ U so that V − V ⊆ U . For each c ∈ C, there is
an open set V (c) ∈ O(B) such that f(c) ∈ V (c) ⊆ f(c) + V , and by continuity of
f and hypothesis (∗) there is a C(c) ∈ K(A) such that C(c)∩C is a neighborhood
of c in C and that f

(
C(c)

)
⊆ V (c). By the compactness of C there are elements

c1, . . . , cn ∈ C, such that with Cj = C(cj) we have C ⊆ C1 ∪ · · · ∪ Cn. Set
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Vj = V (cj). Then f ∈ W (Cj , Vj) for j = 1, . . . , n. Now let ϕ ∈ W (Cj , Vj) for
all j = 1, . . . , n. We shall prove that ϕ ∈ f + W (C,U). Now let c ∈ C. Then
there is a j such that c ∈ Cj . Then (ϕ − f)(c) ∈ ϕ(Cj) − f(Cj) ⊆ Vj − Vj ⊆
(f(c) + V )− (f(c) + V ) ⊆ U which shows ϕ− f ∈W (C,U) as we had to prove.ut

The simplest example of K(A) is the set of all compact subsets of A and the
simplest example of O(B) is the topology of B.

Corollary 7.75. Assume that A and B are abelian topological groups at least one
of which is infinite. If A is locally compact, then

w(Hom(A,B)) ≤ max{w(A), w(B)}.

Proof. Let O(A) be a basis for the topology of A of cardinality w(A) and O(B)
a basis for the topology of B of cardinality w(B). Let K(A) be the set of all sets
of the form V such that V ∈ O(A) and V is compact; since A is locally compact,
K(A) satisfies condition (∗) of 7.74. By 7.74, the set of all W (C,U), as (C,U)
ranges through K(A) × O(B) is a subbasis B for the compact open topology of
Hom(A,B). Thus cardB ≤ w(A)w(B) = max{w(A), w(B)} since at least one of
the two cardinals is infinite. By Lemma A4.8, it follows that w

(
Hom(A,B)

)
≤

max{w(A), w(B)}. ut

For any group H and any subgroup K we write (H : K)
def
= card(H/K) and

call this cardinal the index of K in H.

Theorem 7.76 (The Weight of Locally Compact Abelian Groups). (i) Let G be

a locally compact abelian group. Then w(G) = w(Ĝ).
(ii) If G is a compact abelian group and A its discrete character group, then

w(G) = cardA.
(iii) If G ∼= Rn × H with a compact open subgroup K of H, according to the

Vector Group Splitting Theorem 7.57, then

w(G) =

{
cardG if G is finite,
max{ℵ0, card K̂, (H : K)} otherwise.

Proof. (i) If G is finite, then Ĝ ∼= G by 1.18, and the assertion is clear. We now
assume that G is infinite, whence w(G) ≥ ℵ0. Also w(T) = ℵ0 ≤ w(G). Similarly,

w(T) ≤ w(Ĝ). As Ĝ = Hom(G,T) and
̂̂
G = Hom(Ĝ,T), by Corollary 7.75 we have

w(Ĝ) ≤ max{w(G), w(T)} = w(G), and similarly w(
̂̂
G) ≤ w(Ĝ). By Duality 7.63,̂̂

G ∼= G. Hence w(G) = w(Ĝ).
(ii) is a special case of (i).
(iii) If K is a compact open subgroup of H, then H is the disjoint sum of

cosets K + g, each homeomorphic to K. Then w(H) = card(H/K)w(K) = (H :

K) card K̂ by(ii). If G is finite, w(G) = cardG. If G is infinite, at least one of the
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groups Rn, K, or H/K is infinite. The assertion then follows from the preceding
calculation of w(H) and w(Rn) = 0 if n = 0 and w(Rn) = ℵ0 for n > 0 in view of
w(G) = max{w(Rn), w(H)} by A4.9. ut

Proposition 7.77. Let G be an infinite compact abelian group and assume ℵ0 ≤
ℵ < w(G). Then G has a closed subgroup M with w(M) = ℵ. .

In particular, every compact abelian group has an infinite closed metric sub-
group.

Proof. By the Annihilator Mechanism Theorem 7.64, for a subgroup H of G
and its annihilator H⊥ in Ĝ, one has Ĥ ∼= Ĝ/H⊥ and thus by Theorem 7.76,

w(H) = card Ĥ = card Ĝ/H⊥. Since card Ĝ = w(G), we have card Ĝ > ℵ.
The Corollary is therefore equivalent to the result recorded in Exercise EA1.12

in Appendix 1. ut

Exercise E7.24. Prove that the conclusions of Proposition 7.77 remain intact for
infinite locally compact abelian groups. ut

[Hint. Use the Vector Group Splitting Theorem 7.57, or check [144].]

Postscript

Our aim in this book is to expose the structure of compact groups; we have dis-
cussed compact Lie groups and have seen that compact abelian Lie groups are
an important ingredient in structure theorems. We therefore need a general struc-
ture theory of compact abelian groups for which we paved the way as early as
Chapters 1 and 2 by establishing the duality between compact abelian groups and
discrete abelian groups.

The four primary results in this chapter are the Vector Group Splitting The-
orem 7.57, the Pontryagin–van Kampen Duality Theorem 7.63, the Annihilator
Mechanism 7.17 and 7.64, and the Exponential Function for Locally Compact
Abelian Groups 7.66. The first one of these essentially reduces the study of the
structure of locally compact abelian groups to the investigation of the structure
of compact abelian groups, which is the topic of Chapter 8. The Pontryagin–van
Kampen Duality Theorem for compact abelian groups shows that questions on
the structure of compact abelian groups reduce to purely algebraic questions on
their dual groups which are (discrete) abelian groups. But the full power of this
reduction is possible only because of the Annihilator Mechanism which provides
a precise containment reversing correspondence between the lattice of closed sub-
groups of a compact abelian group and the lattice of all subgroups of its character
group. The last of the primary results deals with the exponential function and to
a large part determines the flavor of this chapter. Our theorem on the relation
between duality and local compactness (7.7) gives internal mathematical reasons
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why the category of locally compact abelian groups is the primary concern of
duality theory based on the compact open topology on character groups.

In Chapters 5 and 6 we saw the effectiveness of the exponential function. Our
strategy is to carry forth the tool of the exponential function into the study of
abelian topological groups. Since the Lie algebra of many a compact abelian group
is an infinite dimensional topological vector space which cannot be locally compact,
we are forced to examine a class of abelian topological groups that is wide enough
to include these vector spaces.

Our presentation therefore aims from the very beginning to encompass more
than compact abelian groups, more than discrete abelian groups, and indeed more
than the classical domain of locally compact abelian groups. It is then natural
that we adopt, in this chapter, a category theoretical stance towards duality. Since
the work of Kaplan in the forties, many authors have made excursions outside the
realm of locally compact abelian groups; the theory of locally convex topological
vector spaces and their duality theory added an incentive to do so. Since, in the
end, the structure theory of compact groups is our goal, we chose to be general
and selective at the same time. The generality has the added advantage, that it
brings out the contours of certain arguments such as those involving the Annihi-
lator Mechanism more sharply than a conventional treatment restricted to locally
compact abelian groups would have.

Our treatment of the character theory of real topological vector spaces therefore
does not go as far as some of the literature, but on the other hand provides
another example of a full duality between two abelian categories, namely, the
category of all real topological vector spaces endowed with their finest locally
convex topology and the category of what we call weakly complete topological
vector spaces. This duality is needed since the domain, L(G), of the exponential
function of any compact abelian group, G, is drawn from the pool of objects of
this latter category. The theory of weakly complete vector spaces and their duality
is treated in a more detailed fashion in Appendix A7. We have referred to that
material for some of the proofs in this chapter.

The topological structure of the domain of the exponential function of a com-
pact abelian group is more complex than that of the Lie algebra of a linear Lie
group. But its algebraic structure is much simpler. In order to recognize that it is
a vector space, no particular argument such as the recovery of addition (cf. 5.41)
is needed, and the Lie bracket does not play any role. We recall that finite dimen-
sional abelian linear Lie groups were classified in E5.18 (following the discussion
of the center of a linear Lie group in 5.54) with the result that a finite dimensional
abelian linear Lie group is a product of a copy of Rn, a finite dimensional torus Tm,
and some discrete abelian group D. In the more general circumstance, we show
in the Vector Group Splitting Theorem that every locally compact abelian group
is a direct product of a group isomorphic to Rn, and a group possessing an open
compact subgroup. This specifically reduces the study of the exponential function
of a locally compact abelian group largely to the investigation of the exponential
function of a compact abelian group.
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Important structural invariants of the vector space L(G) are the kernel K(G) of
the exponential function expG:L(G)→ G and the closure spanR K(G) of its linear
span. They are discussed in this chapter and the next one. Once the importance
of this remark is accepted one realizes that the duality theory of our vector space
categories will also have to deal with closed additive subgroups of the vector spaces
in question, and not only with closed vector subspaces. This requires that the full
power of the Annihilator Mechanism be available for the duality between weakly
complete topological real vector spaces and real vector spaces. The establishing of
this machinery necessitates some technical complications.

We utilize information on the exponential function in the Vector Group Split-
ting Theorem 7.57 which precedes and is used in the proof of the Pontryagin–van
Kampen Duality Theorem for locally compact abelian groups. Other proofs of the
Duality Theorem are in the literature, but since we are interested in the structure
theory of compact and locally compact abelian groups this approach suits our
goals. In particular, we shall use the Vector Group Splitting Theorem time and
again.

The theorem on the Exponential Function for Locally Compact Abelian
Groups 7.66 is a test case for basic techniques of general Lie theory as applied
to non-Lie groups. It provides the link between the duality theory of locally com-
pact abelian groups and the duality theory of weakly complete vector spaces. It is
not entirely obvious that the identity component G0 of a locally compact abelian
group is the closure expG L(G) of the image of the exponential function; i.e. that
every point in G0 can be approximated by points on one-parameter groups. We
prove this in our discussion of the identity component (Theorems 7.67 and 7.71).
Apart from the characterisation of the identity component via duality in 7.67,
this is the link between connectivity and the exponential function in locally com-
pact abelian groups. Theorem 7.66 on the exponential function for locally compact
abelian groups is the first part of a sequence of three major results in Chapter 8,
namely,
—Theorem 8.30 showing that the image of the exponential function is the arc
component of the identity,
—Theorem 8.41 showing that, for a compact abelian group, G, the closure of
the image of spanK(G) under the exponential function is the locally connected
component of the identity, i.e. the closed subgroup which is at the same time the
smallest closed subgroup containing all torus subgroups and the largest closed
locally connected subgroup, and
—Theorem 8.62 showing that the kernel of the exponential function is algebraically
isomorphic to the first homotopy group π1(G) and describing all homotopy groups
of the space underlying G.
Relatively little of the information contained in these theorems is to be found in
textbooks.

Finally, one notices that locally compact abelian groups can be very large
in some sense. Accordingly, various cardinal invariants are used to measure the
size of a locally compact abelian group. Most of these are topological invariants
of the underlying space. One of them is the weight underlying the space of a
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406 7. Duality for Abelian Topological Groups

locally compact abelian group. It is a traditional result that the weight of the
character group of a locally compact abelian group is that of the original group.
This is contained in Theorem 7.76, whose proof necessitates that we go back to
the definition of the compact open topology and present the definition of this
topology in terms of spaces of continuous functions between spaces (rather than
between groups). Weight is a coarse, but useful cardinal invariant as is exemplified
in Proposition 7.77. We shall present other cardinal invariants (such as dimension,
density, and generating degree) in subsequent chapters.

References for this Chapter—Additional Reading

[15], [18], [34], [40], [53], [83], [113], [114], [115], [122], [131], [140], [144], [147],
[150], [211], [225], [226], [227], [228], [230], [241], [253], [266], [278], [279], [281],
[290], [295], [303], [304], [306], [317], [362], [364], [371].
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Chapter 8

Compact Abelian Groups

Compact abelian groups form the most important class of abelian topological
groups, as is evidenced by the considerable literature on them and their applica-
tions. This chapter is devoted to describing their structure in detail.

As well as being important in its own right, an understanding of the structure of
compact abelian groups is essential for the task of describing the structure of com-
pact not necessarily abelian groups. In Chapter 6 we saw that compact connected
Lie groups decompose in various ways into abelian and semisimple components.
We shall see later, in Chapter 9, that such decompositions persist for compact
non-Lie groups.

In Appendix 1 we have a presentation of basic features of the structure theory of
discrete abelian groups. We exploit this here using the duality theory in Chapter 7
to establish the structure theory of compact abelian groups.

The material in this chapter is organized in five parts, specifically,

Part 1: Aspects of the Algebraic Structure,

Part 2: Aspects of the Point Set Topological Structure,

Part 3: Aspects of Algebraic Topology—Homotopy,

Part 4: Aspects of Homological Algebra,

Part 5: Aspects of Algebraic Topology—Cohomology

Part 6: Aspects of Set Theory—Arc Components and Borel sets.

Prerequisites. Beyond the prerequisites required in the previous chapters it is
now desirable that the reader have had some acquaintance with homotopy and
cohomology. At two points we encounter the axiomatics of set theory and such
notions as independence of axioms from ZFC, at another point we meet commu-
tative C∗-algebras. We will have to refer to Borel subsets of a space and to the
utilisation of Lusin spaces.

Our presentation of dimension theory of locally compact abelian groups is
meant to give even the uninitiated reader a good grasp of it. But a complete un-
derstanding of dimension theory of topological groups would require more than a
passing acquaintance with the various concepts of dimension of topological spaces.
The section on the cohomology of the space underlying a compact abelian group
requires, aside from some knowledge of Čech cohomology, a certain routine in
functorial reasoning.
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408 8. Compact Abelian Groups

Part 1: Aspects of the Algebraic Structure

Divisibility, Torsion, Connectivity

Torsion and divisibility of abelian groups are expressed in terms of the endomor-
phisms

µn = {x 7→ n·x}:G→ G

given by n·x = x+ · · ·+ x︸ ︷︷ ︸
n times

. We will analyze the question of torsion and divisibility

in the context of compact abelian groups using the Annihilator Mechanism. First
some notation is in order.

Definition 8.1. For an abelian topological group G we shall write

(1) nG = imµn = {n·x | x ∈ G} and G[n] = kerµn = {x ∈ G | n·x = 0},

(2) DIV(G) =
⋂
n∈N

nG.

ut
Furthermore we note from Appendix 1

(3) tor(G) =
⋃
n∈N

G[n],

(4) div(G) =
⋃
{H | H is a divisible subgroup},

(5) Div(G) =
⋂
n∈N

nG = {g ∈ G | (∀n ∈ N)(∃x ∈ G) n·x = g}.

The torsion subgroup, tor(G), of all elements of finite order is the union of all
the kernels, G[n], of the endomorphisms µn. Notice that these form a directed
family, because G[m] +G[n] ⊆ G[mn].

We observe that for every m ∈ N, trivially,
⋂
n∈N nG ⊆

⋂
n∈NmnG. As mnG ⊆

mG ∩ nG, the family {nG | n ∈ N} is a filter basis. We conclude that the reverse
inclusion, holds, too, and thus

(6) (∀m ∈ N)
⋂
n∈N

mnG =
⋂
n∈N

nG = Div(G).

Obviously we have
Div(G) ⊆ DIV(G).

Proposition 8.2. (i) If G is a compact abelian group or a discrete abelian group,
then DivG = DIVG.

(ii) If G is a compact abelian group or a discrete torsion-free abelian group,
then divG = DivG.
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8. Compact Abelian Groups 409

Proof. (i) In both cases nG is closed for all n ∈ N. Hence DIVG = DivG.
(ii) Assume first that G is discrete torsion-free. Then µm is injective and thus

maps nG bijectively onto mnG. Hence µm
(

Div(G)
)

=
⋂
n∈N mnG. It follows from

(6) that Div(G) is divisible and thus is contained in div(G).
Secondly, assume that G is compact. If F is any filter basis of compact subsets

of G and f :G→ G any continuous self-map, then f(
⋂
F) =

⋂
F∈F f(F ). (Indeed

the left side is trivially contained in the right side, and if y is an element of

the right side, then for each F ∈ F the set XF
def
= f−1(y) ∩ F is nonempty

compact. The set {XF : F ∈ F} is a filter basis of compact sets and thus has
an element x ∈

⋂
F in its intersection. Then f(x) = y and thus y is in the left

side.) Applying this with F = {nG | n ∈ N} and f = µm, we again obtain
µm(

⋂
n∈N nG) =

⋂
n∈NmnG, whence Div(G) is divisible as in (i) above. Once

more we conclude Div(G) ⊆ div(G). ut

Proposition 8.3. In a locally compact abelian group G, the following conclusions
hold:

(i) (nG)⊥ = Ĝ[n], G[n] = (nĜ)⊥, and nG = (Ĝ[n])⊥.

(ii) DIV(G) = (tor Ĝ)⊥, and (DIVG)⊥ = tor Ĝ.

Proof. If µ
(G)
n :G → G is multiplication with n, then we have 〈χ, µ(G)

n (g)〉 =

〈χ, n·g〉 = 〈n·χ, g〉 = 〈µ(Ĝ)
n (χ), g〉 and thus µ

(Ĝ)
n =

(
µ

(G)
n

)̂. Then (i) follows from
Proposition 7.65. For a proof of (ii) we compute

DIVG =
⋂
n∈N

nG =
⋂
n∈N

(
Ĝ[n]

)⊥
=
( ⋃
n∈N

Ĝ[n]
)⊥

= (tor Ĝ)⊥.

The remainder then follows from 7.64(iii). ut

We are now well prepared for a crucial structure theorem for compact abelian
groups through which the property of connectivity is expressed in purely algebraic
terms.

Divisibility and Connectivity in Compact Abelian Groups

Theorem 8.4. Let G denote a compact abelian group, G0 its identity component,
and Ga its identity arc component. Then

(7) G0 = Div(G) = div(G) = (tor Ĝ)⊥ = expL(G) = Ga and G⊥0 = tor Ĝ,

(8) torG
⊥

= (torG)⊥ = Div Ĝ, (Div Ĝ)⊥ = torG.

Proof. (7) is a consequence of Corollary 7.69, Theorem 7.71, Propositions 8.2 and
8.3. ut
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410 8. Compact Abelian Groups

This theorem says that there is a two-fold algebraic way to describe connectivity
in a compact abelian group. The first way expresses the fact that the connected
component of the identity is precisely the largest divisible subgroup, and the second
says that its annihilator is the torsion subgroup of the dual. But there are also two
topological ways to describe it. Namely, it is the largest topologically connected
subset containing 0 and the closure of the arc component Ga of 0. This calls for
a description of the arc component Ga and its “index” G0/Ga in the connected
component; we will discuss this later in 8.33.

Let us recall that for an abelian group A and a set X, the group A(X) is the
direct sum of X copies of A, that is the subgroup of all (ax)x∈X ∈ AX with ax = 0
for all but a finite number of the elements x ∈ X. Let P denote the set of all prime
numbers.

Corollary 8.5. For a compact abelian group G, the following conditions are all
equivalent:

(i) G is connected.
(ii) G is divisible.

(iii) Ĝ is torsion-free.
(iv) Each nonempty open subset of G contains a point on a one parameter sub-

group.
(v) Each nonempty open subset of G contains a point on an arc emanating from

0.
Also, the following statements are equivalent:

(a) G is totally disconnected.
(b) DivG = {0}.
(c) Ĝ is a torsion group.
(d) G has no nondegenerate one parameter subgroups.
(e) G is totally arcwise disconnected.

Finally, the following conditions are also equivalent:
(1) G is torsion-free.

(2) Ĝ is divisible.

(3) There is a family of sets {Xp | p ∈ {0} ∪ P} such that Ĝ ∼= Q(X0) ⊕⊕
p∈P Z(p∞)(Xp).

(4) There is a family of sets {Xp | p ∈ {0}∪P} such that G ∼= (Q̂)X×
∏
x∈P ZXpp .

Proof. The equivalences of the first and the second group are immediate con-
sequences of Theorem 8.4. We prove the equivalences of the third group. The
equivalence of conditions (3) and (4) is a consequence of Proposition 1.17 and
the Duality Theorem 2.32 (or, more generally, 7.63). The equivalence of (2) and
(3) is the Structure Theorem for Divisible Abelian Groups in Appendix 1, A1.42.

Finally, (1) means torG = {0}, and thus Ĝ = {0}⊥ = (torG)⊥ = Div Ĝ by Propo-

sitions 8.2(i) and 8.3(ii) applied to Ĝ in place of G and by duality. But DivA = A
for an abelian group A is tantamount to the divisibility of A. Thus (1) and (2) are
equivalent, too. ut
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8. Compact Abelian Groups 411

Corollary 8.6. A compact abelian group G has no nondegenerate torsion-free
direct factors if and only if Ĝ is reduced.

Proof. The abelian group Ĝ is reduced if and only if it has no nondegenerate
divisible direct summand (see A1.42). By duality, this is equivalent to the absence
of nondegenerate direct factors with divisible character group. By the equivalences
of the last group in 8.5, this proves the claim. ut

Definitions 8.7. (i) A compact abelian group is called a compact p-group if its
character group is a p-group. A locally compact abelian group G is called a p-group,
if it is a union of compact p-groups.

(ii) Let A be a torsion group. Then A =
⊕

p∈P Ap with the p-primary com-

ponents (or p-Sylow subgroups) of A according to Appendix 1, A1.19. If G = Â

we set Gp =
(⊕

p6=q∈P Aq

)⊥
. We call Gp the p-primary component or the p-Sylow

subgroup of G. ut

The last part of the nomenclature needs justification which we give next.

Corollary 8.8. (i) The p-primary component Gp of a compact totally disconnected

group is a compact p-group whose character group is the p-Sylow subgroup (Ĝ)p of
the character group (up to natural isomorphism).

(ii) A totally disconnected compact abelian group G is the product
∏
p∈P Gp of

its p-primary components.
(iii) A compact abelian group is totally disconnected if and only if it is a direct

product of p-groups.

Proof. Assertion (i) follows from the Annihilator Mechanism 7.64:

G {0}(
(Gp)

⊥)̂ ∼=

{ ∣∣∣ ∣∣∣ }
∼= Ĝ/Gp

Gp
⊕

p6=q∈P(Ĝ)p(
Ĝ/(Gp)

⊥)̂ ∼=

{ ∣∣∣ ∣∣∣ }
∼= Ĝp

{0} Ĝ.

(ii) Since products are dual to direct sums according to Proposition 1.17, this
is a consequence of the splitting of torsion groups into their primary components
(Appendix 1, A1.19).

(iii) If the group G is totally disconnected, it is a product of p-groups by (ii),
and if, conversely, it is a product of p-groups, then it is totally disconnected, since
every p-group is totally disconnected by its very definition (8.7(i)) combined with
the second group of equivalences in 8.5. ut
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412 8. Compact Abelian Groups

Corollary 8.9. (i) A compact connected abelian group is torsion-free if and only

if it is isomorphic to (Q̂)X for some set X.
(ii) A compact abelian group G has a dense torsion group if and only if its

character group has no divisible elements, i.e. if and only if Div Ĝ = {0}. A com-
pact connected abelian group has a dense torsion group if and only if its character
group is a reduced torsion-free group.

(iii) A compact abelian group G is a torsion group if and only if it is a finite
product of totally disconnected compact p-groups Gp each of which has bounded
exponent (that is pn(p)·Gp = {0} for some natural number n(p)).

Proof. (i) is a consequence of the third group of equivalent statements of Corol-
lary 8.5.

(ii) By the Annihilator Mechanism 7.64(ii), the torsion group torG of G is dense
in G if and only if G = (torG)⊥⊥ which in turn is equivalent to (torG)⊥ = {0}.
By Propositions 8.2(i) and 8.3(ii) this is the case if and only if Div Ĝ = {0}. This

proves the first assertion. If G is also connected, then Ĝ is torsion-free by Propo-
sition 8.5. But in a torsion-free group A one has DivA = divA by Proposi-
tion 8.2(ii). Hence it has no divisible elements if and only if it is reduced. The
second assertion follows.

(iii) It is clear that a finite product of p-groups of bounded exponent is a torsion
group. We have to prove the converse. From 8.1(3) we have G =

⋃
n∈NG[n]. By

the Baire Category Theorem, there is an n such that G[n] has interior points and
thus is an open closed subgroup of finite index. It readily follows that G has finite
exponent that is, G ⊆ G[N ] for some N ∈ N. This implies the assertion. ut

Exercise E8.1. Show that the additive groups R and T support uncountably
many compact group topologies. Show that the compact abelian groups on R are
all isomorphic as compact abelian groups. The groups on T fall into two isomorphy
classes of compact abelian groups. (Compare Exercise E5.21.) ut

Exercise E8.2. (i) Describe the structure of R̂d, where Rd is the additive group
of real numbers endowed with the discrete topology.

(ii) Describe the structure of T̂d, where Td is the additive group of real numbers
modulo 1 endowed with the discrete topology. ut

Exercise E8.3. Prove the following variation of Proposition 7.77:
Let G be an infinite compact abelian group and let ℵ be an infinite cardinal

satisfying ℵ ≤ w(G0) < w(G). Then there is a closed connected subgroup H with
w(H) = ℵ. ut

[Hint. Follow the proof of Proposition 7.77 and note that H is connected iff

Ĝ/H⊥ is torsion free by Corollary 8.5. Then Exercise E1.12 in Appendix 1 proves
the assertion by duality.] ut
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Exercise E8.4. Show that an abelian p-group of bounded exponent is a direct
sum of cyclic groups. Deduce the following result:

A compact abelian p-group is a direct product of cyclic groups of bounded order.
ut

Exercise E8.5. Show that a nondegenerate free abelian group cannot support a
compact group topology. Deduce that the only locally compact group topology on
a free abelian group is the discrete one.

[Hint. Any connected subgroup is divisible hence trivial. Also, every subgroup of
a free abelian group is a free abelian group (A1.9).] ut

We notice that dealing with a dense torsion group in a compact abelian group
is easier than dealing with the hypothesis that G be a torsion group itself. From
the above it is clear that the structure of compact abelian torsion groups is rather
special. In some sense, the conditions of compactness and torsion are not very
compatible. We recall from Corollary 8.9(ii) that G has a dense torsion group iff

Ĝ has no divisible elements, and if G is also connected, then this is the case iff Ĝ
is a reduced torsion free group.

Corollary 8.10. In a compact abelian group G, the identity component G0 is a
direct factor if and only if the torsion subgroup of Ĝ is a direct summand.

Proof. Since G⊥0 = tor Ĝ by Theorem 8.4, the claim follows from duality (see
1.17). ut

Example 8.11. Let ∇ denote the abelian group whose properties are described
in Appendix 1, Theorem A1.32. Let G be its compact character group. Then G
has the following properties:

(i) G has no nondegenerate torsion-free direct factor.
(ii) Set T = torG. Then T ∼=

∏∞
n=2 Z(n) and G/T is a circle group.

(iii) G0
∼= Q̂ and G0 is torsion-free divisible.

(iv) G0 is not a direct factor.
(v) G0 ∩ T ∼=

∏
p prime Zp, and G = G0 + T .

Proof. (i) Since ∇ is reduced by A1.32(vi), the group G has no torsion-free direct
summands by 8.6.

(ii) By 8.2(i), DIV∇ = Div∇ and by 8.3(ii), torG = (DIV∇)⊥. By A1.32(iii),
(vi), Div∇ ∼= Z, and by A1.32(v) ∇/Div∇ ∼=

⊕∞
n=2 Z(n). Duality then proves

(ii).
(iii) By A1.32(ii), (iv), ∇/ tor∇ ∼= Q. Thus G0 = (tor∇)⊥ is isomorphic to the

character group of Q by the annihilator mechanism. Then it is torsion-free and
divisible by 8.9 and 8.5 (first group of equivalences).

(iv) By A1.32(vii), tor∇ is not a direct summand of ∇. The assertion (iv) then
follows from 8.10.
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(v) By the Annihilator Mechanism, by G0 = (tor∇)⊥, and by T = Div(∇)⊥

the group G0 ∩ T is the annihilator of Div(∇) ⊕ tor∇ and is thus isomorphic to
the character group of ∇/(Div(∇) ⊕ tor∇) ∼= Q/Z =

⊕
p prime Z(p∞) by A1.32

(see the second of the diagrams illustrating some aspects of the subgroup lattice
of ∇).

Similarly, the annihilator of G0 +T is tor∇∩Div(∇) = {0}. By the annihilator
mechanism, this shows G = G0 + T . ut

Compact Abelian Groups as Factor Groups

The concept of dimension of a topological space is notoriously delicate. We shall
see that for compact abelian groups, and for compact groups in general, topological
dimension is a very lucid idea. In the present section we shall provide a structure
theorem which will allow us to discuss dimension in a very self-contained and
convincing fashion in the next section.

We begin here with one concept in dimension theory which is not controversial.

Definition 8.12. A topological space X is said to be zero-dimensional or to satisfy
dimX = 0 if its topology has a basis consisting of open closed sets. ut

Exercise E8.6. Let X be a locally compact Hausdorff space. Then the following
are equivalent.

(i) dimX = 0.
(ii) X is totally disconnected.

[Hint. The implication (i)⇒(ii) is true for any topological T0-space. Indeed let C
be a component of X, and suppose that c1 6= c2 in C. Since X is a T0-space there
is an open set U in X containing one of c1 and c2 but not the other, say c1 ∈ U
and c2 /∈ U . By (i) there is an open closed neighborhood V of c1 contained in U .
Then c2 ∈ X \ V . Thus C is decomposed into a disjoint union (C ∩ V ) ∪̇ (C \ V )
of nonempty open subsets in contradiction with the connectivity of C.

For a proof of (ii)⇒(i) we first observe that it is sufficient to prove the claim for
all compact spaces; for if x ∈ X, let U be an open set and C a compact set such
that x ∈ U ⊆ C. If the implication (ii)⇒(i) holds for compact spaces, then there
is an open closed neighborhood V of x in C which is contained in U . Then the
set V , on the one hand, is open in U , hence in X, and on the other, being closed
and contained in the compact Hausdorff space C, it is compact, and thus closed
in the Hausdorff space X. Thus x has arbitrarily small open closed neighborhoods
in X.

Thus we may and shall assume now that X is compact. In Exercise E1.12(i)
we showed that, in a compact Hausdorff space, the connectivity relation is the
intersection of all equivalence relations with open compact equivalence classes.
Condition (ii) means that the binary relation of connectivity is equality. Let x ∈ X
and U an open neighborhood of x. Let B denote the set of all R(x) where R
ranges through the set R of all binary relations with open compact classes. We
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know
⋂
R∈∩RR(x) = {x}. We claim that there is an R ∈ R such that R(x) ⊆ U .

Suppose not, then {R(x)\U : R ∈ R} is a filter basis of compact sets; then there is
a point y in its intersection. Now y ∈

⋂
R(x) = {x} on the one hand and y ∈ X \U

on the other, a contradiction. We have shown that x has arbitrarily small open
closed neighborhoods, which establishes (ii) as x was arbitrary.] ut

This piece of information is sometimes called Vedenissoff’s Theorem [363].

Our first step is to find compact subgroups of dimension 0 in a compact abelian
group. We begin by considering a compact abelian group G and its character group
A = Ĝ. A closed subgroup D of G is zero-dimensional iff it is totally disconnected
iff A/D⊥ = Ĝ/D⊥ is a torsion group by 7.69(ii). Thus we aim for finding subgroups
F of an abelian group A such that A/F is a torsion group.

Recall that a subset X ⊆ A is free if the subgroup 〈X 〉 generated by X in A is
free. In other words,

∑
x∈X nx·x = 0 implies nx = 0 for all x ∈ X . The collection

F of all free subsets of A containing a given free subset X0 (e.g. the empty set)
is clearly inductive with respect to ⊆, and thus, by Zorn’s Lemma, there exists a
maximal free subset X in A containing X0.

Lemma 8.13. Let F = 〈X 〉 be the free abelian group generated by a free subset X
of A. Then the following statements are equivalent:

(i) X is maximal in F .
(ii) A/F is a torsion group.

(iii) The inclusion j:F → A induces an isomorphism Q⊗ j:Q⊗ F → Q⊗A.
If these conditions are satisfied, then cardX = rankA.

Proof. (i)⇒(ii) Let a ∈ A and assume (i). We claim that there is an n 6= 0 with
n·a ∈ F . If not, then Z·a is a free group with Z·a∩F = {0}. But then Z·a+F is a
direct sum and is free, since m·a+

∑
x∈X nx·x = 0 implies m·a = −

∑
x∈X nx·x ∈

Z·a ∩ F = {0} and thus m = 0 and, consequently nx = 0 for all x ∈ X as F is
free. But this contradicts the maximality of X .

(ii)⇒(iii) The exact sequence

0→ F
j→ A→ A/F → 0

remains exact when the functor Q⊗ {·} is applied by Appendix 1, A1.45(v). But
since A/F is a torsion group by (ii), we know that Q⊗(A/F ) = {0} (see A1.46(ii).
Thus

0→ Q⊗ F Q⊗j−→ Q⊗A→ 0

is exact which is (iii).
(iii)⇒(i) If X ′ is a free subset properly containing X and F ′ = 〈X ′〉 then F ′/F

is a nonzero free group. By tensoring the exact sequence 0→ F → F ′ → F ′/F → 0
we obtain the exact sequence

0→ Q⊗ F → Q⊗ F ′ → Q⊗ (F ′/F )→ 0
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(by A1.45(v) again) in which Q⊗ (F ′/F ) is not zero. Hence Q⊗F → Q⊗F ′ is not
surjective. Since the inclusion F ′ → A induces an injective morphism Q ⊗ F ′ →
Q ⊗ A (in view of A1.45(v)), the injective morphism Q ⊗ F → Q ⊗ A cannot be
surjective.

If these equivalent conditions are satisfied, then cardX = dimQ Q⊗A and this
last cardinal is the rank of A by Definition A1.59. ut

For easy reference we formalize the widely known concept of a torus or torus
group. For these groups we have an intuitively clear concept of dimension:

Definition 8.14. A topological group G is called a torus if there is a set X 6= Ø
such that G ∼= TX . We shall write dimG = cardX . ut

By duality, G is a torus iff it is a nonsingleton compact abelian group whose
character group is free. The dimension of a torus is the rank of its character group.
We call G a finite extension of a torus if G0 is a torus and G/G0 is finite. We write
dimG = dimG0.

If G0 is a torus then it is divisible. Hence it is algebraically a direct summand
(see Appendix 1, A1.36). If it is also an open subgroup, then it is an algebraic and
topological direct summand because in a complementary subgroup C the singleton
{0} = G0∩C is open, whence C is discrete. Hence a finite extension of a torus G is
isomorphic as a compact abelian group to G0 ×G/G0. An abelian group A is the
character group of a finite extension of a torus group if and only if it is the direct
sum of a finite abelian group and a free abelian group. If B is a subgroup, then
torB = B ∩ torA and B is an extension of torB by B/ torB ∼= (B+ torA)/ torA
which is free as a subgroup of the free group A/ torA (see A1.9). Thus B is a
direct sum of torB and a free abelian group (see A1.15) and thus is the character
group of a finite extension of a torus. By duality this says that every factor group
of a finite extension of a torus is a finite extension of a torus.

The following proposition now secures the existence of compact zero-dimen-
sional subgroups with nice factor groups.

Proposition 8.15. Let G be a compact abelian group with closed subgroups D1 ⊆
G1 ⊆ G such that dimD1 = 0 (e.g. D1 = {0}) and G/G1 is a finite extension
of a torus (e.g. G1 = G). Then there is a closed subgroup D with the following
properties.

(i) D1 ⊆ D ⊆ G1.

(ii) dimD = 0.

(iii) G/D is a finite extension of a torus.

The set D[D1, G1] of subgroups satisfying (i), (ii), and (iii) is a sup-semilatt-
ice; i.e. it is closed under the formation of finite sums. The set of subgroups D
satisfying (i) and (ii) is a lattice, i.e. is also closed under finite intersections.

Every D ∈ D[D1, G1] satisfies rank Ĝ = rank(D⊥) = dim(G/D), and G/D ∼=
Trank Ĝ × E with a finite abelian group E.
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If D ∈ D[D1, G1], then there is a finite extension D̃ of D such that

(iii′) G/D̃ is a torus.

Proof. Let the closed subgroup G2 be defined such that G1 ⊆ G2 ⊆ G and
that G2/G1 is the identity component (G/G1)0 of G/G1. Then G/G2 is finite and
G2/G1 is a torus. If we construct D so that (i), (ii), and (iii) are satisfied with G2 in
place of G, then G/D will still be a finite extension of a torus. So we may simplify

our notation by assuming that G/G1 is a torus. Then the group (G1)⊥ ∼= Ĝ/G1

(see 7.64(i)) is free. Hence it has a free generating set F0 ⊆ (G1)⊥ ⊆ (D1)⊥ (see
7.64(v)). Let F be a maximal free subset of (D1)⊥ containing F0 and set E = 〈F 〉.
Since D1 is totally disconnected, Ĝ/(D1)⊥ ∼= D̂1 (see 7.64(i)) is a torsion group

(see 7.69(ii)). By 8.13, (D1)⊥/E is a torsion group. Hence Ĝ/E, being an extension
of a torsion group by a torsion group is a torsion group. Hence F is a maximal free

subset of Ĝ by 8.13. We set D
def
= E⊥. Then (i) follows from 7.64(v). Since Ĝ/E

is a torsion group, D ∼= (Ĝ/E)̂ (see 7.64(i)) is totally disconnected (see 7.69(ii)).

This proves (ii). Since E ∼= Ĝ/D (see 7.64(i)) is free, G/D is a torus. Thus (iii) is
established.

Now let C and D be two subgroups satisfying (i), (ii), (iii). Then obviously
D ∩ C and D + C satisfy (i). The group C ×D is compact totally disconnected,
and m:C × D → C + D, m(c, d) = c + d is a surjective morphism of compact
groups. Then C + D is totally disconnected by 7.73. Hence dim(C + D) = 0.
Trivially, C ∩D is totally disconnected and thus C +D and C ∩D satisfy (ii).

We have (C ∩D)⊥ = C⊥ + D⊥ and (C + D)⊥ = C⊥ ∩D⊥ by 7.64(v). Since
each of the groups C⊥ and D⊥ is a free extension of a finite group, the group
(C+D)⊥ = C⊥∩D⊥, as a subgroup of C⊥, is of the same type. Hence G/(C+D)
is a finite extension of a torus. Thus C +D satisfies (iii).

Let D ∈ D[D1, G1]. Then Ĝ/D⊥ ∼= D̂ is a torsion group since D is totally
disconnected and D⊥ is a direct sum of a finite abelian group E and a free abelian
group F since G/D is finite extension of a torus. Then 8.13 applies and shows

that dimG/D = dim(G/D)0 = rankF = dimQ⊗ F = dimQ⊗ Ĝ = rank Ĝ. As a

consequence, G/D ∼= Trank Ĝ × E.
Finally let D ∈ D[D1, G1]. Then G/D = E ⊕ T with a finite group E and a

torus T . Let D̃ denote the full inverse image of E under the quotient morphism
G→ G/D. Then G/D̃ ∼= T is a torus group. ut

The preceding proposition yields the following
Corollary 8.15a. Every compact abelian group G contains a compact totally
disconnected subgroup ∆ such that G/∆ is a torus whose dimension is rank Ĝ. ut

Let B be any abelian group and π:F → B a surjective morphism of abelian

groups from a free group (see A1.8). Then the group A
def
= F ×B is the sum of the

two free groups F1
def
= F × {0} and F2

def
=
{(
x, π(x)

)
: x ∈ F

}
; it is free, however,
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only if B is free. If we set G = Â, Dj = F⊥j then D1 ∩ D2 = {0} and G/Dj is
a torus for j = 1, 2. But if B is not free, then G is not a torus even though it is
a subdirect product of the tori G/Dj , j = 1, 2; that is a closed subgroup of the
torus G/D1 ×G/D2 projecting onto each of the factors.

Lemma 8.16. Let A be an abelian group containing a free subgroup F such that
A/F is finite. Then A = torA ⊕ F̃ with the finite torsion group of A and a free

group F̃ such that A/(F̃∩F ) is finite. In fact, F̃ contains a subgroup F ∗ isomorphic

to F and |A/F̃ | divides |A/F ∗| = |A/F |.

Proof. The torsion group torA of A meets the torsion-free group F trivially; hence
it is mapped faithfully into the quotient groupA/F which is finite. Hence it is finite.
Set A′ = A/ torA. Then A′ is torsion-free (see Appendix 1, A1.17(i)). The image

F ′
def
= (F + torA)/ torA ∼= F/(F ∩ torA) ∼= F is free and A′/F ′ ∼= A/(F + torA)

is a homomorphic image of A/F and is therefore finite. Let {ej | j ∈ J} be a free
generating set of F . Then the elements e′j = ej + torA in A′ form a free basis of
F ′. Let a′1, . . . , a

′
n be elements of A′ such that A′ = Z·a′1 + · · ·+ Z·a′n + F ′. Since

A′/F ′ is finite and A′ is torsion-free, for each i = 1, . . . , n there is an integer ki
and a finite subset Ii ⊆ J such that ki·a′i =

∑
j∈Ii mij ·e′j for suitable integers mij .

The set I
def
=
⋃n
i=1 Ii ⊆ J is finite. The subgroup F ′1

def
= 〈a′1, . . . , a′n; e′j , j ∈ I〉 is

finitely generated and torsion-free, hence it is free by the Fundamental Theorem of

Finitely Generated Abelian Groups (A1.11). We claim that the free group F ′2
def
=

〈e′j | j ∈ J \ I〉 meets F ′1 trivially. Indeed, Q⊗F ′1 = Q⊗ 〈e′j | j ∈ I〉 and Q⊗F ′2 =
Q⊗〈e′j | j ∈ J \I〉, and these two vector spaces contain the isomorphic copies of F ′1
and F ′2 in Q⊗F ′, respectively and intersect in zero, since {1⊗e′j | j ∈ J} is a basis
of Q⊗F ′. Thus A′ = F ′1⊕F ′2 is free. Let P be the full inverse image of F ′1 in A and
F2 = 〈ej | j ∈ J \ I〉 ⊆ F . Since torA ⊆ P is finite and P/ torA ∼= F ′1 is finitely
generated, P itself is finitely generated. Also, A = P ⊕ F2 and F = (F ∩ P )⊕ F2.
Moreover, P/(F ∩ P ) ∼= A/F is finite.

In the finitely generated subgroup P we can write P = torP⊕F3 with a finitely
generated free group F3. The projection of P onto the second summand maps F∩P
isomorphically onto a subgroup F4 ⊆ F3. We set F̃

def
= F3⊕F2 and F ∗

def
= F4⊕F2.

Then F ∗ ∼= (F∩P )⊕F2 = F , and F2 ⊆ F∩F ∗. Also, A/F ∗ ∼= P/F4 is an extension
of (F +F ∗)/F ∗ ∼= F/(F ∩F ∗) ∼= (P ∩F )/(F ∩F4) ∼= F4/(F ∩F4) by A/(F +F ∗)
while A/F ∼= P/(P∩F ) is an extension of (F+F ∗)/F ∼= F ∗/(F∩F ∗) ∼= F4/(F∩F4)
by A/(F + F ∗). Thus |A/F | = |A/F ∗|. ut

Corollary 8.17. Retain the hypotheses of Proposition 8.15. Assume that D ∈
D[D1, G1] and that D′ is a compact open subgroup of D containing D1. Then

D′ ∈ D[D1, G1]. In particular, G/D ∼= Trank Ĝ × E and G/D′ ∼= Trank Ĝ × E′ for
some finite groups E and E′.

Proof. Conditions (i) and (ii) of 8.15 are clearly satisfied by D′. We must show
that G/D′ is a finite extension of a torus. Since D⊥ is a finite extension of a free
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group, also (D′)⊥ is a finite extension of a free group by Lemma 8.16 and thus,
by Lemma 8.16, a direct sum of a free group and a finite group. Thus also (iii) of
8.15 is satisfied. ut

The relevance of the preceding Corollary 8.17 becomes particularly clear in the
case D1 = {0} and G1 = G. Then we may rephrase 8.17 as in Corollary 8.18 below.

Recall that we say that a set of subgroups of a topological group contains
arbitrarily small members if every identity neighborhood contains a member of
the set.

Corollary 8.18. In any compact abelian group G there are arbitrarily small
0-dimensional compact subgroups D ∈ D[{0}, G]; for each such D, the factor group
G/D is a finite extension of a torus.

In a compact connected abelian group G there are arbitrarily small 0-dimens-
ional compact subgroups such that G/D is a torus.

Proof. Let U be a neighborhood of 0 in G. Let D0 ∈ D[{0}, G]. Then D0 contains
a compact open subgroup D which is contained in U since D0 is compact totally
disconnected. (Cf. 1.34.) By 8.17 we have D ∈ D[{0}, G], and this is the first
assertion. The second follows because the connectivity of G entails the connectivity
of G/D. ut

Corollary 8.19. Assume the hypotheses of Proposition 8.15 and consider a D ∈
D[D1, G1]. Set T = G/D and write p:G → T for the quotient morphism and
let q:T → TX ⊕ E with E ∼= T/T0 denote any isomorphism whose existence is
guaranteed by the fact that T is a finite extension of a torus. Then L(p):L(G)→
L(T ) is an isomorphism and if L(TX ) is identified with RX , then L(q):L(T )→ RX
is an isomorphism, whence L(qp):L(G)→ RX is an isomorphism.

Proof. By 7.66(iii), the morphism L(f):L(G)→ L(T ) is surjective and open and
has a kernel isomorphic to L(D). Since D is totally disconnected, L(D) = {0}
by 7.72. Hence L(f) is injective and is, therefore, an isomorphism of topological
vector spaces. We may identify L(T) = Hom(R,T) (by E5.9) with R and L(TX )
with L(T)X by 7.38(i). The remainder follows. ut

For the following result recall from 8.15 that every compact abelian group con-
tains a 0-dimensional compact subgroup ∆ such that G/∆ is a torus of dimension
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rank Ĝ.

G {0}

Trank Ĝ ∼=

{ ∣∣∣ ∣∣∣ }
∼= Z(rank Ĝ)

∆ ∆⊥

0-dimensional

{ ∣∣∣ ∣∣∣ }
∼= Ĝ|∆, torsion

{0} Ĝ.

The Resolution Theorem for Compact Abelian Groups

Theorem 8.20. Assume that G is a compact abelian group and that ∆ is any
compact totally disconnected subgroup such that G/∆ is a torus. Let p:G→ G/∆
denote the quotient map. Then the homomorphism

ϕ: ∆× L(G)→ G, ϕ(d,X) = d expX

satisfies the following conditions:
(i) ϕ is continuous, surjective and open, i.e. is a quotient morphism. There is

a compact subset C of L(G) such that ϕ(∆× C) = G.

(ii) The kernel K
def
= kerϕ ⊆ ∆×L(G) is mapped algebraically and topologically

isomorphically onto D
def
= exp−1

G (∆) = ker(p ◦ expG) under the projection ∆ ×
L(G)→ L(G). Further, D is a closed totally disconnected subgroup of L(G) whose

annihilator D⊥ in E(G)
def
= R ⊗ Ĝ ∼= L̂(G) (according to 7.66(ii)) is an ℵ1-free

closed subgroup of the locally convex topological vector space E(G). In particular,
D does not contain any nonzero vector spaces.

(iii) The identity component of ∆ × L(G) is {0} × L(G) and agrees with the
arc component of 0. Moreover, ϕ({0} ×L(G)) = expL(G) is dense in the identity
component G0 of G.

The intersection K∩
(
{0}×L(G)

)
is of the form {0}×K(G) where K(G)

def
= ker expG

and the morphism ϕ factors through the quotient morphism

∆× L(G)→ ∆× (L(G)/K(G))

with a quotient morphism

Φ: ∆× (L(G)/K(G))→ G, Φ(d,X + K(G)) = d expX

(iv) The character group of ∆×L(G) may be identified with ∆̂×E(G), E(G)
def
=

R ⊗ Ĝ, equipped with the finest locally convex topology (see 7.66(ii)), in such a
fashion that

〈(δ, r ⊗ χ), (d,X)〉 = δ(d) + χ
(
X(r)

)
, δ ∈ ∆̂, d ∈ ∆, r ∈ R, χ ∈ Ĝ, X ∈ L(G).

With this identification,

kerϕ =
{

(δ, r ⊗ χ) |
(
∀X ∈ L(G)

)
δ
(
X(1)

)
= −χ

(
X(r)

)
, X(1) ∈ ∆

}⊥
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and ϕ̂: Ĝ→ ∆̂× E(G) is given by

ϕ̂(χ) = (χ|∆, 1⊗ χ).

∆× L(G) {0}

G ∼=

{ ∣∣∣ ∣∣∣ }
∼= Ĝ

K ∼= D K⊥

totally
disconnected

{ ∣∣∣ ∣∣∣
{0} ∆̂⊕ E(G).

The group (kerϕ)⊥ in ∆̂⊕ E(G) is algebraically isomorphic to the discrete group

Ĝ, and there is a bijective morphism from
(
∆̂⊕E(G)

)
/(kerϕ)⊥ onto the character

group of D.

Proof. Clearly, ϕ: ∆ × L(G) → G defined by ϕ(d,X) = d expX = dX(1) is

a well-defined continuous homomorphism. The torus T
def
= G/∆ is isomorphic

to Trank Ĝ by 8.15. We note that expT :L(T ) → T is equivalent to the function

qrank Ĝ:Rrank Ĝ → Trank Ĝ with the quotient morphism q:R → R/Z. Hence expT
is a quotient morphism, mapping some compact subset C of L(T ) onto T . Let
p:G→ T denote the quotient morphism. The morphism L(p):L(G)→ L(T ) is an
isomorphism of topological vector spaces by 8.19. As a consequence p ◦ expG =
expT ◦L(p) is surjective and open, and ϕ(∆× C) = ∆ expG(C) = p−1 expT (C) =
G.

Proof of (i). (a) The surjectivity of ϕ: from p(expG L(G)) = T and ∆ = ker p
we conclude ∆ expL(G) = (ker p) expL(G) = G. Thus ϕ is surjective.

(b) The openness of ϕ: we have to show that a basic zero neighborhood V of
∆ × L(G) is mapped onto a zero neighborhood of G. Now ∆ × L(G) has a basis
of zero neighborhoods of the form Ω × U with Ω a compact open subgroup of ∆
and U a zero neighborhood of L(G). We write ϕΩ: Ω × L(G) → G, ϕΩ(d,X) =
d expGX, and denote by pΩ:G→ G/Ω the quotient morphism. Then pΩ ◦ expG =
expG/Ω ◦L(pΩ) is open since L(pΩ) is an isomorphism by 8.19, and since expG/Ω
is open, being equivalent to the map (rx)x∈X 7→

(
(rx + Z)x∈X , 0

)
:RX → TX ×E.

Thus the set pΩ(ϕ({0} × U)) = pΩ(expG U) is a zero neighborhood of G/Ω. Then
ϕΩ(Ω× U) = ΩϕΩ({0} × U) = p−1

Ω pΩ

(
ϕΩ({0} × U)

)
is a zero neighborhood of G.

But ΩϕΩ({0} × U) = Ω expG(U) = ϕ(Ω × U). This shows that the image of the
basic zero neighborhood Ω×U of ∆×L(G) under ϕ is a zero neighborhood of G.
Hence ϕ is open.

Proof of (ii). We have kerϕ = {(d,X) ∈ ∆ × L(G) : d expX = 1}. The map
X 7→ (exp−X,X) : D → kerϕ is therefore bijective. This morphism has inverse
(d,X) 7→ X: kerϕ→ D, the restriction of the projection prL(G): ∆×L(G)→ L(G).
Hence it is an algebraic and topological isomorphism. It follows thatK ⊆ ∆×K(G),
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K(G) = ker expG. By 7.67(ii), the group K(G) is totally disconnected. Hence K =
kerϕ and consequently D are totally disconnected. Since D = ker(p ◦ expG) the
assertions about D follow from 7.66(ii).

Proof of (iii). Since {0} is the identity component of ∆, clearly {0} × L(G)
is the identity component of ∆ × L(G). Since ϕ

(
{0} × L(G)

)
= expG L(G) the

closure of this set is G0 by 7.71. The remainder of (iii) is straightforward from the
definitions.

Proof of (iv). From 7.10 we know that the character group of ∆ × L(G) may

be canonically identified with ∆̂× L̂(G) under the evaluation map given by

〈(δ, ω), (d,X)〉 = δ(d) + ω(X).

The character group of L(G) has been identified in 7.35(i) (and 7.66(ii)) as R⊗ Ĝ.

The isomorphism χ 7→ χ̃ : (R ⊗ Ĝ)̂ → (R ⊗ Ĝ)′ of 7.5, the map ι: Ĝ → R ⊗ Ĝ,

ι(g) = 1⊗g, and the isomorphism Hom(Ĝ,R)→ Hom(R, G) = L(G) of 7.11 (with
the identification of R with its character group) give the isomorphism α

(R⊗ Ĝ)̂ → (R⊗ Ĝ)′ = Hom(R⊗ Ĝ,R)→ Hom(Ĝ,R)→ Hom(R, G) = L(G),

α(r ⊗ χ)(s) = χ̃(rs) with inverse α−1(X)(r ⊗ χ) = χ
(
X(r)

)
. This gives the iden-

tification of
(
∆× L(G)

)̂ which we claimed.
The topological vector space L(G) is weakly complete by 7.64(i) and thus is

reflexive by 7.30. Hence ∆×L(G) is reflexive by 7.10. Now the hypotheses (a), (B),
and (c) of the Annihilator Mechanism 7.17 are satisfied for the group ∆ × L(G)
and the subgroup K with

(
∆ × L(G)

)
/K ∼= G; then 7.17(i) shows that there

is an isomorphism G → (K⊥)̂, and 7.17(ii), (iii) show that there is a bijective

continuous morphism
(
(∆̂⊕ E(G))/(kerϕ)⊥

)̂ → K(G). ut

Part 2: Aspects of the Point Set Topological Structure

Topological Dimension of Compact Abelian Groups

In the previous section we dealt with dimension zero in the process of proving
the Resolution Theorem 8.20. We shall now address the question of arbitrary
topological dimension in the context of compact abelian groups.

Proposition 8.21. Let G be a compact abelian group and U an arbitrary identity
neighborhood. Then U contains a compact subset homeomorphic to

[−1, 1]rank Ĝ.

Proof. By Corollary 8.18 we find a ∆ ∈ D[{0}, G] such that ∆ is contained in
the interior of U . Since ∆ is compact, there is an identity neighborhood V0 such

that V0∆ ⊆ U . If we set V
def
= V0∆, then V is an identity neighborhood satisfying
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V∆ = V ⊆ U . Set p:G→ T
def
= G/∆. Then L(p):L(G)→ L(T ) is an isomorphism

by 8.19.
We recall from 8.15 that the subgroup ∆⊥ ∼= T̂ of Ĝ is of the form F ⊕E with

a free group F and a finite group E and that F is generated by a maximal free set
(εj)j∈J such that cardJ = rank Ĝ. Then T0 = E⊥/∆ ∼= F̂ is a torus isomorphic
to TJ . Define ρ0:RJ → Hom(F,R) by ρ0((rj)j∈J)(

∑
j∈J sj ·εj) =

∑
j∈J εj(rjsj).

Then ρ0 is an isomorphism of topological groups, and since

Hom(F,R) ∼= Hom(R, T0) = L(T0) = L(T )

by 7.11(iii) we have an isomorphism of topological groups ρ:RJ → L(T ). More-

over, if we write F =
⊕

j∈J Z·εj and, accordingly, T0 =
∏
j∈J Ẑ·εj

σ→ TJ , then

exp′ = σ expT0
ρ:RJ → TJ has the kernel ZJ . It follows that N

def
= ker expT L(p) =

ker(p expG) maps isomorphically onto ZJ under ρ−1L(p). Now p(V ) is an iden-
tity neighborhood of T ∼= TJ × E. Then we find an 1

2 > r > 0 so that Sr =
L(p)−1ρ([−r, r]J) satisfies S2r∩N = {0} and p(expG Sr) = expT L(p)(Sr) ⊆ p(V ).
Then p expG maps Sr homeomorphically into T and then a fortiori expG maps Sr
homeomorphically into G. But V = V∆ = p−1p(V ) ⊆ U . Hence expG Sr ⊆ U ,
and e = expG |Sr:Sr → U is a homeomorphism onto the image. Since Sr can be
trivially rescaled to become homeomorphic to [−1, 1]J , the proposition is proved.ut

Note that we constructed a homeomorphism ε from [−1, 1]rank Ĝ ⊆ Rrank Ĝ into
U so that ε(0) = 0 and ε(−x) = −ε(x).

The proof of the following theorem will twice use the fact that if a compact
topological m-cell is contained in Rn, then m ≤ n. This is true by whatever
topological dimension theory applies to compact subsets of Rn, e.g. small inductive
dimension. We shall call this fact, with a little license, “invariance of domain”. (See
e.g. [103], p. 4, 1.1.2, and p. 73ff., 1.8.3.)

Characterisation of Finite Dimensional Compact Abelian Groups

Theorem 8.22. The following conditions are equivalent for a compact abelian
group G and a natural number n:

(1) rank Ĝ = dimQ Q⊗ Ĝ = n.
(2) There is an exact sequence

0→ tor(Ĝ)→ Ĝ→ Qn → E → 0

with the torsion subgroup tor(Ĝ) and some torsion group E.
(3) There is an exact sequence

0→ Zn → Ĝ→ E → 0

for some torsion group E.
(4) There is a compact zero-dimensional subgroup Z of (Q̂)n and an exact se-

quence

0→ Z → (Q̂)n → G→ G/G0 → 0,
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where G0 is the identity component of G.
(5) There is a compact zero-dimensional subgroup ∆ of G and an exact sequence

0→ ∆→ G→ Tn → 0.

(6) dimL(G) = n.
(7) There is a compact zero-dimensional subgroup ∆ of G and quotient homo-

morphism ϕ: ∆×Rn → G which has a discrete kernel. In particular, ϕ yields
a local isomorphism of ∆×Rn and G and is a covering map in the sense of
Appendix 2, A2.1

(8) The identity of G has a neighborhood basis each member of which is homeo-
morphic to D × [0, 1]n for some 0-dimensional compact space D.

(9) The identity of G has a basis of open neighborhoods each member of which
is homeomorphic to D × Rn for some 0-dimensional compact space D.

(10) rank Ĝ0 = n.

Proof. By Appendix A1, A1.59, for any abelian group we define rankA =
dimQ Q ⊗ A = dimQ Q ⊗ (A/ torA). For the implication (1)⇒(2) see Appendix

1, A1.45. If (2) holds, then there is an injection of j: Ĝ/ tor Ĝ→ Qn which induces

an injection Q ⊗ (Ĝ/ tor Ĝ) → Q ⊗ Qn ∼= Qn whose cokernel is Q ⊗ (Qn/ im j) ∼=
Q⊗E = {0} by A1.45(v). Hence Q⊗ Ĝ ∼= Q⊗ (Ĝ/ tor Ĝ) ∼= Qn. Thus rank Ĝ = n.
Therefore (1) and (2) are equivalent.

Next let X be a free set in Ĝ and F = 〈X 〉. By 8.13 this set is a maximal

free set iff Ĝ/F is a torsion group iff the inclusion j:F → Ĝ induces an isomor-

phism Q⊗ j:Q⊗ F → Q⊗ Ĝ. If this is the case, cardX= rankF= dimQ Q⊗ F=

dimQ Q⊗ Ĝ = rank Ĝ. These remarks prove that (3) and (1) are equivalent state-
ments.

By 7.69, (G0)⊥ = tor Ĝ and thus by the Annihilator Mechanism 7.64(vi), Con-
ditions (4) and (2) are equivalent, and, similarly, (5) is equivalent to (3).

Since G is compact and thus Ĝ is discrete, in the terminology of Theorem 7.66
on the Exponential Function of Locally Compact Abelian Groups, the dual L(G)′

of L(G) is R ⊗ Ĝ = R⊗Ĝ = R⊗Q⊗Ĝ. Hence dimR L(G)′ = dimQ Q⊗Ĝ = rank Ĝ.
As a consequence (1) and (6) are equivalent.
(6)⇒(7) By (6) we have L(G) ∼= Rn. By the Resolution Theorem for Compact

Abelian Groups 8.20 we obtain the quotient morphism ϕ: ∆×Rn → G as asserted,
because kerϕ ∼= exp−1(∆) and this closed subgroup of L(G) ∼= Rn does not contain
vector subgroups, hence is discrete (see Appendix A1, A.1.12(i)).

The implications (7)⇒(8)⇒(9) are immediate.
(9)⇒(6) Let U be an identity neighborhood of G and h:D × Rn → U a

homeomorphism for a compact 0-dimensional space D.
We recall from the last part of the proof of Proposition 8.21 that there is a

subset Sr in L(G) which is homeomorphic to [−1, 1]rank Ĝ, such that the restriction
e = expG |Sr:Sr → U maps Sr homeomorphically into U . Then h−1e:Sr → D×Rn
is a homeomorphism onto the image. If (d, c) = h−1(1), then h({d} × Rn) is the
connected component of 1 in U , and thus h−1e(Sr) is a homeomorphic copy of Sr
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contained in the euclidean n-space {d} × Rn. But Sr is homeomorphic to [−r, r]J
hence to [−1, 1]J . Since [−1, 1]J contains [−1, 1]m for m = 0, 1, 2, . . . , card J , this
entails cardJ ≤ n by the invariance of domain.

Thus n′
def
= dimL(G) = cardJ ≤ n. Then by “(6) implies (9),” there are iden-

tity neighborhoods homeomorphic to D′×Rn′ for a totally disconnected compact
space D′. Thus, by hypothesis (9), some compact n-cell must be contained in Rn′ ,
and this implies n ≤ n′ by invariance of domain. Thus dimL(G) = n which we
had to show.

(1)⇔(10) Since Ĝ0
∼= Ĝ/ tor(Ĝ) by 7.69(ii), by A1.45(iv) we have

rank Ĝ0 = dimQ Q⊗
(
Ĝ/ tor(Ĝ)

)
= dimQ Q⊗ Ĝ = rank Ĝ. ut

Clearly, the equivalence of (1) and (10) allows us to write down equivalent
conditions (2′), . . . , (9′) which arise from (2), . . . , (9) by replacing G by G0.

Definitions 8.23. Let G be a compact abelian group. Then we set dimG =
rank Ĝ = dimQ Q⊗ Ĝ and call this cardinal the dimension of G. If dimG is finite,
then G is called finite dimensional and otherwise infinite dimensional. ut

Corollary 8.24. (i) If for a compact abelian group G there is a natural number n
such that the equivalent conditions of Theorem 8.22 are satisfied, then

n = dimG = dimG0.

(ii) If no such number exists, then dimG = w(G0).
(iii) Any finite dimensional compact connected abelian group satisfies the second

axiom of countability (and is, therefore, metrizable).
(iv) If G is a compact abelian group and D a totally disconnected closed sub-

group, then dimG/D = dimG.
(v) A compact abelian group contains a cube IdimG, I = [0, 1].

Proof. (i) is a restatement of Definition 8.23.

We prove (ii). In this case, rank Ĝ = rank(Ĝ/ tor Ĝ) = rank Ĝ0 is infinite.

Then rank Ĝ0 = dimQ Q ⊗ Ĝ0 = card(Q ⊗ Ĝ0) = card Ĝ0 since the cardinality of
an infinite dimensional rational vector space is the cardinality of any basis and
thus of any generating set. By Theorem 7.77, however, card Ĝ0 = w(G0).

(iii) Since G is connected, Ĝ is torsion-free by 7.70. Hence Ĝ is isomorphic to

a subgroup of the rational vector space Q⊗ Ĝ which is finite dimensional because
dimG <∞. Thus Ĝ is countable, and so w(G) = 1 or w(G) = ℵ0. (A topological
group is metrizable iff the filter of identity neighborhoods has a countable basis,
see A4.16)

(iv) By the Annihilator Mechanism 7.64, Ĝ/D⊥ is isomorphic to the character
group of the totally disconnected compact group D and is, therefore, a torsion
group. Hence Q ⊗ (Ĝ/D⊥) = {0} by A1.46. Then the inclusion map j:D⊥ → Ĝ

induces an isomorphism Q⊗ j:Q⊗D⊥ → Q⊗ Ĝ by A1.45(v). By the Annihilator
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Mechanism 7.64 again, D⊥ ∼= (G/D)̂. Hence rank(G/D)̂ = dimQ Q ⊗ D⊥ =

dimQ Q⊗ Ĝ = rank Ĝ and thus dimG/D = dimG.

(v) By Proposition 8.21, G contains a cube Irank Ĝ. By Definition 8.23, rank Ĝ =
dimG. ut

8.25. Scholium. Assume that DIM is a function defined on the class C of all
locally compact spaces with values in {0, 1, 2, . . . ;∞} such that the following con-
ditions are satisfied.
(Da) If f :X → Y is a covering map (see Appendix 2, A2.1) for X, Y ∈ C then

DIMX = DIMY . In particular, DIMX = DIMY if X and Y are homeo-
morphic.

(Db) If X = Rn or X = [0, 1]n for n ∈ N then DIMX = n. (The Euclidean
Fundamental Theorem.)

(Dc) For every paracompact space Y ∈ C and each closed subspace X of Y the
relation DIMX ≤ DIMY holds. (The Closed Subspace Theorem.)

(Dd) Assume that X is the underlying space of a compact group whose
topology has a basis of compact open sets, and assume that Y = Rn. Then
DIM(X × Y ) ≤ n. (The Special Product Theorem.)

Then for any compact abelian group G,

DIM(G) =
{

dimG if dimG is finite,
∞ otherwise.

and, more generally, for any locally compact abelian group G with largest compact
connected characteristic subgroup K = (compG)0 and vector rank n (see Theorem
7.57 and subsequent remarks)

(DIM) DIM(G) =
{
n+ dimK if dimK is finite,
∞ otherwise.

Proof. First assume that G is a compact abelian group. If dimG is infinite, then
by 8.21, the space G contains a cube homeomorphic to [0, 1]dimG and thus a cube
homeomorphic to [0, 1]n for n = 1, 2, . . . . Hence DIMG = ∞ by the Euclidean
Fundamental Theorem (Db) and the Closed Subspace Theorem (Dc).

If, however, dimG is a finite number n, then the Characterisation Theorem 8.21
applies and by 8.21(7) there is a covering morphism ϕ: ∆×Rn → G with a compact
zero-dimensional group ∆ and with a kernel isomorphic to Zn, n = 0, 1, . . . Then
DIMG = DIM(∆ × Rn) = n by (Da). Now {0} × Rn is a closed subspace of the
paracompact space ∆×Rn, whence DIM({0}×Rn) ≤ DIM(∆×Rn) by the Closed
Subspace Theorem (Dc). By the Euclidean Fundamental Theorem (Db) we have
DIM({0}×Rn) = n. Thus n ≤ DIM(∆×Rn). From the Special Product Theorem
(Dd) we get DIM(∆× Rn) ≤ n. Thus DIMG = DIM(∆× Rn) = n.

Now assume that G is a locally compact abelian group. Then by the Vector
Group Splitting Theorem 7.57, there is an open subgroup U = E ⊕ C with a
compact group C and E ∼= Rn. Let σ:G/U → G be a cross section for the quotient
map with σ(U) = 0. Then the projection map f :G =

⋃
ξ∈G/U

(
U + σ(ξ

)
) → U ,

f((u + σ(ξ)
)

= u is a covering map. By Condition (Da), DIM(G) = DIM(U).
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Thus we know DIMG = DIM(Rn × C) and by (Da), applied to the covering map
f :Rn×C → Tn×C, f

(
(rj)j=1,...,n, c

)
=
(
(rj+Z)j=1,...,n, c

)
, we get DIM(Rn×C) =

DIM
(
(R/Z)n × C

)
. Now dim

(
(R/Z)n × C

)
= rank

(
(R/Z)n × C

)̂ = rank(Zn ×
Ĉ) = n + rank Ĉ = n + dimC = n + dimC0 = n + dimK since C0 = K. By the
first part of the proof

DIM
(
Tn × C

)
=
{

dim(Tn × C) if dim(Tn × C) <∞
∞ otherwise.

It follows that
DIMG =

{
n+ dimC if dimC <∞
∞ otherwise. ut

One expects that any “reasonable” dimension function should satisfy the condi-
tions (Da)–(Dd) on the class of locally compact spaces. In the following we discuss
what is on record on topological dimension theory. Its intricate nature of course
prevents us here from being self-contained; we must refer to the literature for the
details. We hope that in light of these circumstances the reader will appreciate the
value of Theorem 8.22 and the Scholium 8.25 for an understanding of the concept
of topological dimension for spaces underlying locally compact abelian groups.

There are several viable concepts of topological dimension. We mention the
following:

(1) small inductive dimension indX or Menger–Urysohn dimension ([103], p. 3),

(2) large inductive dimension IndX or Brouwer–Čech dimension ([103], p. 52),

(3) Lebesgue covering dimension cdimX or Čech–Lebesgue dimension ([103],
p. 54),

(4) cohomological dimension over a given coefficient group ([103], p. 95),

(5) sheaf theoretical dimension dimLX over a ground ring L ([46], p. 74).

—We need not distinguish between (4) and (5); for locally compact spaces relative
cohomology H∗(X,A;G) for a closed subspace A of a locally compact space is nat-
urally isomorphic to H∗c (X \ A;G) with cohomology with compact support. The
definitions (see [103], p. 95, [46], p. 73) then show that the sheaf theoretical con-
cept of dimension is the more modern generalisation of cohomological dimension,
certainly on the class C of locally compact spaces. Also, on paracompact spaces,
cohomological dimension over the ring of integers agrees with cdim. (See e.g. [275],
p. 206, 36-15 and p. 210, 37-7.)

The definition of the various dimensions show directly that (Db) is trivially
satisfied. The dimensions ind, cdim, dimL are defined locally and thus satisfy
(Da). (The sheaf theoretical concept is particularly suitable for this situation as is
seen e.g. from [46], p. 143. For cdim see e.g. [286], p. 196, 3.4.) The large inductive
dimension is not defined locally, but a local version loc Ind has been defined (see
[286], p. 188ff.). It is shown that loc Ind and Ind agree at least on the class of
so-called weakly paracompact totally normal spaces ([286], p. 197) which compact
abelian group spaces fail to be as soon as their weight is uncountable.
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—All these dimensions satisfy the Euclidean Fundamental Theorem (Dc) (see e.g.
([103], p. 73, p. 95, [46], p. 144.)

—The Closed Subspace Theorem (Dd) holds for dimLX on the class of locally
compact spaces X ([46], p. 74, 15.8) and for ind even on the class of regular spaces
([103], p. 4, 1.1.2 (where it holds even for all subspaces). It is satisfied by the
covering dimension cdimX on the class of normal spaces X ([103], p. 209, 3.1.4),
hence for all paracompact spaces. The large inductive dimension IndX satisfies
the Closed Subspace Theorem for normal spaces X ([103], p. 170, 2.2.1).

—The Special Product Theorem (De) is satisfied (in more general form)

◦ by sheaf dimension: ([46], p. 143, 7.3),

◦ by covering dimension: ([103], p. 236, 3.2.14),

◦ by small and large inductive dimension: by the subsequent lemma on dimen-
sions.

Dimension Lemma. Let G be a compact totally disconnected group and Y a
closed subset of some euclidean space. Then ind(G× Y ) ≤ Ind(G× Y ) ≤ IndY =
indY .

Proof. For the first inequality, see e.g. [103], p. 52, 1.6.3, and for the last equality
see [103], p. 53, 1.6.4. We prove the inequality by induction on n. There is no loss
in generality in assuming Y compact. Let IndY = indY ≤ n+1. Let A be a closed
subspace of G×Y and V a neighborhood of A in G×Y . For each a = (a′, a′′) ∈ A
we find a compact open identity neighborhood Na of G and an open neighborhood
Ua of a′′ in Y such that Naa

′ × Ua ⊆ V and that Ind ∂Ua = ind ∂Ua ≤ n.
Since A is compact, there is a finite sequence of points a1, . . . , an such that A ⊆⋃n
j=1Naja

′
j × Uaj . Since all Na are compact open subgroups, N

def
=
⋂n
j=1Naj is a

compact open subgroup and each Naj is a finite union of cosets modulo N . Hence
we can write

A ⊆ (Ng1 × U ′1) ∪ · · · ∪ (Ngq × U ′q) ⊆ V

for open subsets U ′j of Y with ind ∂U ′j ≤ n and a family of cosets Ngj such that Ngj
and Ngk are either disjoint or agree. Renumber the gj so that Ng1, . . . , Ngp is a
maximal collection of disjoint cosets among these. Set Um =

⋃
{U ′j : Ngj = Ngm},

m = 1, . . . , p. Then ∂Um ⊆
⋃
{∂U ′j : Ngj = Ngm} and

(∗) A ⊆W def
= (Ng1 × U1) ∪̇ · · · ∪̇ (Ngp × Up) ⊆ V.

By the Subspace Theorem for ind (see e.g. [103] p. 4, 1.1.2) and the Sum Theorem
for ind on separable metric spaces (see e.g. [103], p. 42, 1.5.3), we obtain ind ∂Um =
Ind ∂Um ≤ n for m = 1, . . . , p. Now

∂W = (Ng1 × ∂U1) ∪̇ · · · ∪̇ (Ngp × ∂Up) ⊆ V

since each Ngj has empty boundary. By the induction hypothesis, Ind(Ngj ×
∂Uj) ≤ n. Now the (trivial) Sum Theorem for finitely many disjoint open subsets
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sets shows that Ind ∂W ≤ n. Hence by definition (see e.g. [103], p. 52) we conclude
IndG× Y ≤ n+ 1. ut

We conclude that ind, loc Ind, cdim and dimL satisfy all conditions (D0)–(De)
for all ground rings L. By the Scholium 8.25 it thus follows that they all agree with
the unique dimension DIM defined on the class of locally compact group spaces
by (DIM).

Corollary 8.26. On the class of spaces underlying locally compact abelian groups,
small inductive dimension, local large inductive dimension, Lebesgue covering di-
mension, cohomological dimension, and sheaf theoretical dimension (for any ground

ring) all agree and when finite, take the value dimG = rank Ĝ = dimG0. The
dimension of a locally compact abelian group is a topological invariant; i.e. two
homeomorphic locally compact abelian groups have the same dimension. ut

We shall prove later that for arbitrary compact groups, topological dimension
behaves as well as it does for compact abelian groups, and indeed this remains true
for locally compact groups in general (although we shall not address this degree
of generality in this book).

With the approach we have chosen, it remains open whether large inductive
dimension also agrees on locally compact abelian groups. This is the case as was
shown by Pasynkov [284] using a projective limit argument. What we are lacking
here is an argument which would show that Ind fulfils condition (Da) and that
could be verified if a Sum Theorem for countable families of closed subsets were
available on the spaces we consider.

There are other numerical functions on classes of spaces such as e.g. the Haus-
dorff dimension of metric spaces. This one is not a topological dimension function
at all, and the issue of such “dimensions” is an entirely different matter.

The dimension function dim which we have introduced in Definition 8.23 on
the class of all compact abelian groups takes its values in the class of all cardinal
numbers, and every cardinal number ℵ occurs as a dimension since dimTℵ =
rankZ(ℵ) = dimQ Q⊗ Z(ℵ) = dimQ Q(ℵ) = ℵ.

Arc Connectivity

For a pointed space (X,x0) let C0(I, X) denote the set of arcs γ: I = [0, 1] → X
with γ(0) = x0. We shall call these arcs pointed arcs.

Definition 8.27. A continuous function p:E → B between pointed spaces is said
to have arc lifting if for any γ ∈ C0(I, B) there is a γ̃ ∈ C0(I, E) such that p◦γ̃ = γ,
in other words if C0(I, p):C0(I, E)→ C0(I, B) is surjective. ut
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The interval I is simply connected (see Appendix A2, A2.8(iii)). Hence in view
of A2.6, every covering of pointed spaces has arc lifting.

Lemma 8.28. (i) Assume that pj :Ej → Bj, j ∈ J is a family of pointed spaces

with arc lifting. Then the product p
def
=
∏
j∈J pj :

∏
j∈J Ej →

∏
j∈J Bj has arc

lifting.
(ii) Every product of pointed covering maps has arc lifting.

Proof. (i) Let γ: I →
∏
j∈J Bj be a pointed arc. Then γj

def
= prj ◦ γ: I → Bj is a

pointed arc which has a lifting γ̃j : I → Ej by hypothesis. Then γ̃(r) = (γj(r))j∈J
defines a pointed lifting γ̃ ∈ C0(I,

∏
j∈J Ej) of γ.

(ii) is an immediate consequence of (i) in view of the fact that every covering
map has arc lifting. ut

Example 8.29. The exponential function expT :L(T )→ T of every torus has arc
lifting.

Proof. Each torus T is (isomorphic to) a product TJ of circles and expT:L(T)→ T
is equivalent to the covering R→ T. The exponential function of a product is the
product of the exponential functions of the factors (see 7.38), so the claim follows
from 8.28. ut

For a topological space X one frequently denotes the set of all arc components
by π0(X). For any topological group G, the arc component Ga of the identity is
clearly a fully characteristic subgroup; i.e. it is mapped into itself by all (continuous)
endomorphisms. In particular, it is a normal subgroup.

Hence π0(G) = G/Ga is a group and is, therefore, a more sensible concept
than it is for spaces without additional structure. Since Ga, in contrast with the
connected component of the identity, is not closed in general, the quotient topology
on π0(G) is not Hausdorff. One therefore is not eager to consider this topology,
and we shall regard π0(G) as a group (without topology).

The Arc Component of a Locally Compact Abelian Group

Theorem 8.30. (i) The exponential function expG:L(G) → G of a locally com-
pact abelian group has arc lifting.

(ii) The arc component Ga of the identity in a locally compact abelian group
G is expL(G). In other words, the sequence L(G)−−−→

expG
G−−−→

p
π0(G)→ 0, p(g) =

g + expG L(G) is exact.
(iii) If G is a compact abelian group, then there is a natural isomorphism of

abelian groups αG:π0(G)→ Ext(Ĝ,Z) and thus there is an exact sequence

(exp) 0→ K(G)→ L(G)
expG−−−→G αGp−−−→Ext(Ĝ,Z)→ 0

where K(G) = ker expG.
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If G is a locally compact abelian group, such that G/G0 is compact, then
π0(G) ∼= Ext((compG)̂,Z).

(iv) A compact abelian group G is arcwise connected if and only if Ĝ is a

Whitehead group, i.e. satisfies Ext(Ĝ,Z) = {0} (Appendix 1, Definition A1.63).
(v) If f :G→ H is a quotient morphism of locally compact abelian groups, then

f(Ga) = Ha.

Proof. (i) A product of two functions has arc lifting if each one has arc lifting. By
the Vector Group Splitting Theorem 7.57, G = E⊕H with a vector group E ∼= Rn
and a group H possessing a compact open subgroup. By 7.38 the exponential
function of G may be written expE × expH :L(E) × L(H) → E × H. Then expE
is an isomorphism and thus has arc lifting. The morphism expH :L(H) → H has
arc lifting iff its corestriction L(H)→ H0 has arc lifting since each pointed arc of
H maps into H0, as does expH . But H0 is compact by 7.57. It therefore suffices
now to prove arc lifting for a compact abelian group G. We let ∆ ∈ D[{0}, G] (see

8.15 and 8.20). Then T
def
= G/∆ is a finite extension of a torus T0 and the quotient

morphism p:G→ T yields an isomorphism L(p):L(G)→ L(T ) by 8.19.
Now let γ ∈ C0(I, G). Then p◦γ ∈ C0(I, T ). Since T0 has arc lifting by 8.29 and

the connected image of p ◦ γ is in T0 there is a γ∗ ∈ C0

(
I,L(T )

)
with expT ◦ γ∗ =

p ◦ γ. Set γ̃ = L(p)−1 ◦ γ∗ ∈ C0

(
I,L(G)

)
. Then p ◦ expG ◦ γ̃ = expT ◦L(p) ◦ γ̃ =

expT ◦ γ∗ = p ◦ γ. The arc δ ∈ C0(I, G) defined by δ(r) = γ(r)−1 expG
(
γ̃(r)

)
satisfies p

(
δ(r)

)
= 0 for all r ∈ I. Hence δ(I) is a connected subspace of the

subgroup ker p = ∆ which is totally disconnected. Hence δ(I) is singleton whence
δ is constant, and thus γ = expG ◦ γ̃. Thus γ̃ is the required lifting of γ across
expG. This proves (i).

(ii) Trivially expG L(G) ⊆ Ga. Now let g ∈ Ga. Then there is a γ ∈ C0(I, G)
with γ(1) = g. Let γ̃ ∈ C0

(
I,L(G)

)
according to (ii) above and set X = γ̃(1).

Then expGX = (expG ◦ γ̃)(1) = γ(1) = g. Hence g ∈ expG L(G).
(iii) By the Vector Group Splitting Theorem G = E ⊕H as in (i) above. Now

Ga = E ⊕ Ha since E is arcwise connected, whence G/Ga ∼= H/Ha. If G/G0

is compact, then G = E ⊕ comp(G) and comp(G) is compact. Assertion (iii) will
therefore be proved if we prove it for compact G which we shall assume henceforth.
Let j:Z→ R the inclusion and q:R→ T denote the quotient homomorphism. From
the homological algebra of abelian groups (see Appendix 1, A1.56), we know the
exact sequence

Hom(Ĝ,R)
Hom(Ĝ,q)−−−−−→ Hom(Ĝ,T)

δ→ Ext(Ĝ,Z)→ 0.

From 7.66 we recall the commutative diagram

Hom(Ĝ,R)
Hom(Ĝ,q)−−−−−→ Hom(Ĝ,T)

eG

x xηG
L(G) −−−→

expG
G.
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By (ii), the cokernel G/ expG L(G) of expG is π0(G). Thus we get an isomorphism

αG:π0(G)→ Ext(Ĝ,Z) and a commuting diagram with exact rows

L(G)
expG−−−→ G −−−→ π0(G) → 0

eG

y ηG

y yαG
Hom(Ĝ,R) −−−−−→

Hom(Ĝ,q)

Hom(Ĝ,T) −−−→
δ

Ext(Ĝ,Z) → 0.

(iv) is a direct consequence of (iii).
For a proof of (v) we take h ∈ Ha. Then by (ii) above there is a Y ∈ L(H) such

that expH Y = h. Now we invoke Theorem 7.66(iii) in which we saw that for a
quotient morphism f the morphism L(f):L(G)→ L(H) is surjective. Hence there
is an X ∈ L(G) such that L(f)(X) = Y . Set g = expGX. Then f(g) = f(expX) =
expH L(f)(X) = expH Y = h. HenceHa ⊆ f(Ga). The reverse inclusion is trivial.ut

Notice that in Part (iii) of the theorem the assumption that G/G0 be compact
is no real restriction of generality, because every locally compact abelian group has
an open subgroup U isomorphic to Rn×H with a compact group H by 7.57. Thus
π0(G) is an extension of the group Ext(Ĥ,Z) with the discrete group G/U . Any
discrete group D satisfies π0(D) = D. The portion of a locally compact abelian
group relevant for the arc component Ga is anyhow the identity component G0,
and G0 is always a product of a vector group with a compact group.

Since products of arcwise connected spaces are arcwise connected, every group
of the form Rm × Tn for arbitrary cardinals m and n is arcwise connected. The
fact that tori are arcwise connected is recovered from 8.30(iv) in view of the fact
that free abelian groups, being projective, are Whitehead groups. In the section on
metric compact abelian groups below we shall see more about the converse: What
arcwise connected compact abelian groups do we know?

Theorem 8.30 complements Theorem 7.66 on the exponential function of a
locally compact abelian group and a compact abelian group. The exact sequence
(exp) appeared in 7.66 for the first time but without a precise identification of the
cokernel of expG, i.e. without the two rightmost arrows.

In 7.73 we noted that in the circumstances of Theorem 8.30 f(G0) = H0.

Example 8.31. Let H be the one dimensional group Q̂. The exact sequence
0→ Z→ Q→ Q/Z→ 0 gives us an exact sequence 0→ ∆→ H → T→ 0 where

∆ is the annihilator of Z in H = Q̂. Thus ∆ is a compact totally disconnected
subgroup of H such that H/∆ is a torus. We apply the Resolution Theorem 8.20
and look at 8.22(7); we see that we have a quotient and even covering morphism

ϕ:G
def
= ∆×R→ H. We noticeG0 = Ga = {0}×R andH0 = H. Thus f(G0) 6= H0.

ut

The example shows that this phenomenon is quite prevalent. In fact, let H be
a finite dimensional compact connected but not arcwise connected group. Then
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any morphism ϕ: ∆ × L(H) → H such as arises in the Resolution Theorem gives

a locally compact abelian group G
def
= ∆ × L(H) (it is here that the finiteness of

the dimension is used!) such that ϕ(G0) = expG L(H) 6= H = H0 by 8.30 because
H is not arcwise connected.

In the following corollary we are referring to the fact that with each space X
there is (functorially) associated the space Xα on X with the canonical arcwise
connected topology (see Appendix 4, A4.1 and A4.2).

Corollary 8.32. Let G be a compact abelian group and ∆ a totally disconnected
compact subgroup such that G/∆ is a torus. As in the Resolution Theorem 8.20,
we let

ϕ: ∆× L(G)→ G, ϕ(d,X) = d expX.

and
Φ: ∆× (L(G)/K(G))→ G, Φ(d,X + K(G)) = d expX.

Then the following conclusions hold:
(i) ϕ and Φ have arc lifting, and if ∆d is the discrete space on the set underlying

∆ and Lred(G) = (L(G)/K(G))α, then

ϕα: ∆d × L(G)→ Gα, ϕα(d,X) = d expX

is a quotient map, and

Φα: ∆d × Lred(G)→ Gα, Φα(d,X + K(G)) = d expX

is a covering map.
(ii) Let

Π = {d ∈ ∆ :
(
∃X ∈ L(G)

)
d expX = 0}.

Then Gα ∼= (∆d/Π)× Lred(G) with ∆d/Π ∼= Ext(Ĝ,Z) and (Ga)α = Lred(G).

Proof. (i) By 8.30(i), the exponential function expG:L(G)→ G has arc lifting. If
j:L(G)→ ∆×L(G) is the coretraction given by j(X) = (0, X), then ϕ◦j = expG.
If γ ∈ C0(I, G) is a pointed arc in G, and if γ̃ ∈ C0

(
I,L(G)

)
is a lifting of it across

expG, then j ◦ γ̃ ∈ C0

(
I,∆ × L(G)

)
is a lifting of it across ϕ. Since expG has

arc lifting, it follows that X + K(G) 7→ expGX:L(G)/K(G) → G has arc lifting.
As before it follows that Φ has arc lifting. By the Resolution Theorem 8.20 the
function ϕ is a quotient morphism and thus Φ is a quotient morphism. Now A4.6
applies and shows that

ϕα:
(
∆× L(G)

)α → Gα

and
Φα:

(
∆× L(G)/K(G)

)α → Gα

are quotient morphisms. We note
(
∆ × L(G)

)α
= ∆α × L(G)α = ∆d × L(G) by

A2.35, similarly
(
∆ × L(G)/K(G)

)α
= ∆d × (Lred(G))

)α
. In order to see that Φ

is a covering map, it now suffices to show that ker Φ is discrete. However, ker Φ ∩(
{0}×Lred(G)

)
= {(0,0)}, and thus the projection onto the first factor maps ker Φ
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injectively into the discrete group ∆d. Hence ker Φ itself is discrete. The proof is
now complete.

(ii) If we set Π = pr1(kerϕ) with the projection onto the first factor of
∆d × L(G), then we can write ker Φ = {

(
d, α(d)

)
: d ∈ Π} and thereby define a

morphism µ: Π→ Lred(G) of abelian groups into a divisible group, which extends

to a morphism µ: ∆d → Lred(G). Then ∆′
def
= {

(
d, µ(d)

)
: d ∈ ∆} is a complement

for {0}×Lred(G) containing ker Φ. Then Gα ∼=
(
∆d×L(G)

)
/K(G) ∼= (∆′/ ker Φ)×

Lred(G) ∼= (∆d/Π)×Lred(G). By Theorem 8.30(iii) we have G/Ga ∼= Ext(Ĝ,Z) as

abelian groups. Hence ∆d/Π ∼= Ext(Ĝ,Z). ut

If the compact abelian group G is finite dimensional, then the group Lred(G) =
(L(G)/K(G))α is more easily understood. Indeed L(G) ∼= Rn with n = dimG by
Theorem 8.22(vi) and then L(G)/K(G) ∼= Rp × Tq with n = p + q (see Appendix
A1, A1.12(ii)). Thus this space is locally arcwise connected and then agrees with
Lred(G). Therefore we have

Corollary 8.33. Let ∆ be a totally disconnected compact subgroup of the finite
dimensional compact abelian group G such that G/∆ is a torus. Let

Π = {d ∈ ∆ :
(
∃X ∈ L(G)

)
d expX = 0}.

Then Gα ∼= (∆d/Π) × L(G)/K(G) with ∆d/Π ∼= Ext(Ĝ,Z) and (Ga)α ∼= Rp × Tq
and with p+ q = dimG. ut

For more information on arc components see Part 6 of this Chapter under “Arc
Components and Borel Sets”. (Numbers 8.86–8.99.)

Local Connectivity

Recall that a topological space is locally connected if its topology has a basis of
connected open sets. An equivalent formulation states that every point has arbi-
trarily small connected open neighborhoods. In a locally connected space, every
connected component is open. In other words, a locally connected space is the
disjoint union of open closed subsets each of which is connected and locally con-
nected. The image of a locally connected space under an open continuous map
is locally connected. Finite products of locally connected spaces are locally con-
nected. Conversely, since the projections of a product onto its factors are open
and continuous, the local connectivity of a product entails the local connectivity
of the factors.

Proposition 8.34. Let G be a locally compact abelian group. Then the following
statements are equivalent.

(1) G is locally connected.
(2) The identity component G0 is open and locally connected.
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(3) G is isomorphic to a group Rn×K×D for n ∈ {0, 1, 2, . . .}, K is a connected
locally connected compact group, and D is a discrete group.

Proof. (1)⇒(2) If G is locally connected, then the identity component is open
and locally connected.

(2)⇒(3) By the Vector Group Splitting Theorem 7.57 we have G0 = E ⊕K
with a subgroup E ∼= Rn and the maximal compact connected subgroup K =(

comp(G)
)

0
of G. Since G0 is locally connected, K is locally connected. As a

compact connected group K is divisible by Theorem 8.4. Since Rn is divisible,
the subgroup G0 is divisible, and thus there is a subgroup D such that G is a
direct sum of G0 and D by Appendix 1, A1.36. But as G0 is open, the subset
{0} = D∩G0 is open in D, i.e. D is discrete, and the idempotent endomorphism p
of G with image D and kernel G0 is continuous. Hence (g, d) 7→ g+d:G0×D → G
has the continuous inverse x 7→

(
x − p(x), p(x)

)
. Thus G = G0 ⊕D algebraically

and topologically. Thus G = E ⊕K ⊕D and E ∼= Rn.
(3)⇒(1) Since the three factors Rn, K and D are locally connected, so is their

product. ut

After this proposition it is clear that local connectivity of locally compact
abelian groups will be completely understood if it is understood for compact con-
nected groups.

The following lemma is technical but it isolates the essential features on which
the proof of the subsequent theorem rests.

Lemma 8.35 (The Local Structure of Locally Compact Abelian Groups). Assume
that P is a property of topological spaces satisfying the following conditions.

(a) P is preserved under continuous maps.
(b) If an identity neighborhood U of a compact group H has property P then

the underlying space of the subgroup 〈U〉 generated by U in H has property P.
(c) If K is a compact space having property P, then K × Rn has property P

for n = 0, 1, . . . .
Then for a locally compact abelian group G, the following statements are equivalent.

(1) G has arbitrarily small open identity neighborhoods with property P.
(2) For each identity neighborhood U there is a compact subgroup N of G with

property P and a finite dimensional vector subspace F of L(G) such that for
some connected identity neighborhood V in F the function (n,X) 7→ n expX:
N × F→ G maps N × V homeomorphically onto an open identity neighbor-
hood contained in U .

(3) There is a filter basis N of compact subgroups N possessing property P such
that

⋂
N = {1} and for each N ∈ N , the quotient G/N is a (finite dimen-

sional) linear Lie group.

Proof. (1)⇒(2) Assume (1) and let U be an identity neighborhood; we must find
N and F so that (2) holds. Using 7.66(iv) we choose a compact subgroup K and a
finite dimensional vector subspace F of L(G), together with an open euclidean ball

V in F around 0 such that W
def
= K expV ⊆ U and (n, x) 7→ n expX:K×V →W
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is a homeomorphism onto an open neighborhood of the identity in G. By (i), the
zero neighborhood W contains an open neighborhood U ′ having property P. The
projection pr1:W → K onto the first factor in the product K expV is continuous
and open. Hence pr1(U ′) is an identity neighborhood of K, which, because of

hypothesis (a) has property P. Then the subgroup N
def
= 〈pr1(U ′)〉 has property P

by hypothesis (b). Thus W ′
def
= N expV is an open identity neighborhood in the

product W = K expV and thus in G. Since W ⊆ U we also have W ′ ⊆ U and this
proves assertion (2).

(2)⇒(3) Let N denote the set of all compact subgroups occurring in (2).
In the circumstances of (2), the morphism ψ:N × F → G, ψ(n,X) = n expX
has a discrete kernel D projecting onto a discrete subgroup of F under the second
projection (cf. proof of 7.66(iv)). Thus (N×{0})D/(N×{0}) is the discrete kernel
of the morphism Ψ: (N×F)/(N×{0})→ G/N , Ψ

(
(n,X)+(N×{0})

)
= ψ(n,X).

Thus G/N is locally isomorphic to the linear Lie group F ∼= (N ×{0})/(N ×{0}).
and is, therefore, a linear Lie group by E5.18. Since N ⊆ U where U was an
arbitrary identity neighborhood of G we have

⋂
N = {1}.

Finally assume that N1 and N2 are in N . The morphism g 7→ (gN1, gN2) :
G→ G/N1 ×G/N2 has the kernel N1 ∩N2. Thus we have an injective morphism
G/(N1 ∩N2)→ G/N1 ×G/N2. The linear Lie group G/N1 ×G/N2 has no small
subgroups; hence the locally compact abelian G/(N1∩N2) has no small subgroups.
By 7.58(ii) it is therefore a linear Lie group. By 7.66(iv) we find a compact subgroup
K ⊆ N1 ∩ N2 and a finite vector subspace FK of L(G) and an open morphism

ψK :GK
def
= K × FK → G with discrete kernel, implementing a local isomorphism.

Since G satisfies condition (2), also the locally isomorphic group GK satisfies
condition (2). Moreover we may identify L(GK) and L(G) via L(ψK). Let U be
an identity neighborhood. By Condition (2) applied to GK we pick an identity
neighborhood UK of GK in ψ−1

K (U) and a compact subgroup NK of GK with
property P, such that the conclusion of (2) holds with GK is place of G and with
a suitable finite dimensional vector subspace F of L(GK) = L(G). Now K ×{0} is
the unique maximal compact subgroup of GK by 7.58(ii). Hence NK is necessarily
of the form N ×{0} with N ⊆ K. But then (2) is satisfied with the given U , N , F
and G and thus N ∈ N . Since N ⊆ N1 ∩ N2 we have shown that N is a filter
basis.

(3)⇒(1) Let N ∈ N . Then the quotient morphism f :G → H
def
= G/N has a

finite dimensional linear Lie group as image. Hence there is a morphism σ:L(H)→
L(G) with L(f)◦σ = idL(H) by 7.66(iii). Now let W be an open convex symmetric
0 neighborhood of L(H) which is mapped homeomorphically onto an open identity
neighborhood V of H. Let s:V → G be defined by s = expG ◦σ ◦ (expH |W )−1.
Let h ∈ V and set Y = (expH |W )−1h and X = σ(Y ) so that expH Y = h
and L(f)(X) = Y . Then f

(
s(h)

)
= f

(
expG(σ(expH |W )−1(h)))

)
= f(expGX) =

expH L(f)(X) = expH = Y = h. Set U = Ns(V ). We claim U = f−1(V ). Indeed,
firstly, f(U) = f(N)f(s(V ) = V , giving U ⊆ f−1(V ). Secondly, for g ∈ f−1(V ) we
set n = g−s(f(g)) and get f(n) = f(g)−f(g) = 0, i.e. n ∈ N ; thus g = ns

(
f(g)

)
∈

Ns(V ), and the claim is established. Thus U is an identity neighborhood of G, and
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the function (n, v) 7→ n+ s(v):N ×V → U is a homeomorphism with inverse u 7→
(u−s

(
f(u)

)
, f(u)). By hypothesis (c), the space N×V and thus the homeomorphic

space U has property P by (a). ut

The properties P = “being connected” and P = “being arcwise connected”
are the ones that interest us; they satisfy hypotheses (a), (b), (c) of Lemma 8.35.
For an easy formulation of the following result, we shall call an abelian group A
super-ℵ1-free if it is torsion-free and for every finite subset F the pure subgroup [F ]
generated by F (cf. A1.25) is free and A/[F ] is a Whitehead group (cf. A1.63(ii)).

Recall from 7.57 and 7.58 that a locally compact connected abelian group G
is isomorphic to Rn × compG for some n and the maximal compact subgroup
compG.

Characterisation of Local Connectivity

Theorem 8.36. (i) For a connected locally compact abelian group G, the following
conditions are equivalent.

(1) G is locally connected, respectively, locally arcwise connected.
(2) For each identity neighborhood U there is a closed connected, respectively,

arcwise connected subgroup N and a finite dimensional vector subspace F of
L(G) such that for some connected identity neighborhood V in F the function
(n,X) 7→ n expX:N × F→ G maps N × V homeomorphically onto an open
identity neighborhood contained in U .

(3) G has arbitrarily small connected, respectively, arcwise connected compact
subgroups N such that G/N is a finite dimensional linear Lie group.

(4) (compG)̂ is ℵ1-free, respectively, (compG)̂ is super-ℵ1-free.
(5) Every nondegenerate homomorphic image of compG whose topology has a

countable basis is a (possibly infinite dimensional) torus, respectively, every
nondegenerate homomorphic image of compG whose topology has a count-
able basis is a (possibly infinite dimensional) torus and the kernel of the
homomorphism is arcwise connected.

(6) Every finite dimensional quotient group is a torus, respectively, every finite
dimensional quotient group is a torus and the kernel of the quotient map is
arcwise connected.

(ii) A connected locally arcwise connected topological group is arcwise connected.
There is a compact connected locally connected abelian group which is not arcwise
connected and is a fortiori not locally arcwise connected.

(iii) Every arcwise connected locally compact abelian group is locally connected.

(iv) For a compact connected abelian group G, the following statements are
equivalent:

(1) There are arbitrarily small compact connected subgroups N for which there
is a finite dimensional torus subgroup TN of G such that (n, t) 7→ n + t :
N × TN → G is an isomorphism of topological groups.

(2) The character group Ĝ is the directed union of finitely generated free split
subgroups.
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(3) Ĝ is an S-group (see Definition A1.63(iii)).

Proof. (i) The equivalence of (1), (2), and (3) in both cases is a consequence of
Lemma 8.35.

Since G ∼= Rn× compG and Rn is locally arcwise connected, for the remainder
of the proof it is no loss of generality to assume G = compG, i.e. to assume that
G is a compact connected abelian group.

(3)⇔(4) In (3) we state that the compact connected group G has arbitrarily
small connected compact subgroups N such that G/N is a compact connected
Lie group, i.e. a torus by 2.42(ii). By the Annihilator Mechanism 7.64 this means

that Ĝ is the directed union of subgroups N⊥ such that N⊥ ∼= (G/N)̂ is finitely

generated free and that Ĝ/N⊥ ∼= N̂ is torsion-free by 8.5.

G {0}

N̂⊥ ∼=

{ ∣∣∣ ∣∣∣ }
∼= Ĝ/N

N N⊥

(Ĝ/N⊥)̂ ∼=

{ ∣∣∣ ∣∣∣ }
∼= N̂

{0} Ĝ.

Thus N⊥ is pure in Ĝ (see A1.24). Therefore (3) is equivalent to saying that Ĝ
is the directed union of pure finitely generated free subgroups. But this means
exactly that Ĝ is ℵ1-free. (See A1.63.)

The case of local arcwise connectivity is treated in the same fashion except
that here we know that the groups N are arcwise connected. By the Annihilator
Mechanism and 8.30(iv) this is tantamount to saying that Ĝ/N⊥ is a Whitehead

group. This means precisely that Ĝ is super-ℵ1-free.
(4)⇔(5) By A1.64, the group Ĝ is ℵ1-free if and only if every countable sub-

group of Ĝ is free. By the Annihilator Mechanism 7.64, a subgroup A of Ĝ is
countable if and only if the quotient group G/A⊥ ∼= Â is the character group
of a countable discrete abelian group. By the Weight Theorem 7.76 we have
w(G/A⊥) = w(A) = cardA ≤ ℵ0. Since Ĝ is torsion-free, these cardinals are actu-
ally equal unless A is singleton. Since every homomorphic image of G is isomorphic
to a quotient G/A⊥ for some subgroup of A by the Annihilator Mechanism, the
equivalence of (4) and (5) follows.

(4)⇔(6) We apply duality like in the proof of (4)⇔(5), denote the character
group of (compG)̂ by A, and observe that (6) is equivalent to

(6̂) Every finite rank subgroup F of A is free, respectively, every finite rank
subgroup F is free and A/F is a Whitehead group.

We note the following facts from Appendix 1:
Fact 1. By Definition A1.63 an abelian torsion free group A is ℵ1-free iff every

finite rank pure subgroup is free.
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Fact 2. By A1.25, in a torsion free group A every finite rank subgroup F is
contained in a pure subgroup [F ] of the same rank.

Fact 3. By A1.9, any subgroup of a free abelian group is free.
If every finite rank subgroup of A is free, then trivially, A is ℵ1-free by Fact

1. Conversely, if A is ℵ1-free and F is a finite rank subgroup, then [F ] is free by
Facts 1 and 2. Then by Fact 3, F is free. Thus the first part of (6̂) is equivalent to
the first part of (4) and the second part of (6̂) is equivalent to the second part of
(4).

(ii) In any locally arcwise connected topological space, the arc components are
open; hence, being equivalence classes, they are also closed. Thus any connected
locally arcwise connected space is arcwise connected. Hence the first assertion of
(ii) follows.

Let G
def
= ẐN. Then G is a compact connected locally connected group which

is not arcwise connected. Indeed, by A1.65 we know that Ĝ ∼= ZN is ℵ1-free, but
that Ext(ZN,Z) 6= {0}. Let Ga denote the arc component of the identity. Then

π0(G) = G/Ga ∼= Ext(Ĝ,Z) 6= {0} by 8.30.
(iii) Again because G ∼= Rn × compG for a connected locally compact abelian

group we may assume that G is a compact arcwise connected group. Now let H be
a continuous homomorphic image of G and assume that H has a countable basis;
then H is also arcwise connected and thus has a countable Whitehead group as
character group by Theorem 8.30. Hence by A1.62 Ĥ is free. Therefore H is a
torus. Now by (5) above we conclude that G is locally connected.

(iv) See [193]. ut

A locally compact abelian group is said to be strongly locally connected if its
identity component is open and its unique maximal compact connected subgroup
satisfies the equivalent conditions of Theorem 8.36(iv).

In particular, a compact connected abelian group is strongly locally connected if
and only if its character group is an S-group.

If G is the character group of the discrete group ZN, then according to Example
A1.64, G is a strongly locally connected and connected but not arcwise connected
compact abelian group. According to Proposition A1.66(ii), there is a compact
connected, locally connected, but not strongly locally connected group H of weight
2ℵ0 containing G such that H/G is a circle group. The group G has a metric torus
group quotient which is not a homomorphic retract.

The property of being strongly locally connected has a remarkable characteri-
sation in terms of the exponential function.

Characterisation of Strong Local Connectivity

Theorem 8.36bis. For a compact connected abelian group G and its zero arc-
component Ga, the following conditions are equivalent:

(1) G is strongly locally connected.
(2) The exponential function expG:L(G)→ G is open onto its image.
(3) Ga is locally arcwise connected.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



440 8. Compact Abelian Groups

(4) Ĝ is an S-group, that is, every finite rank pure subgroup of Ĝ is free and is
a direct summand.

Proof. See [193]. ut

As one by-product of this theorem and the example of G = ẐNd above based
on Example A1.65, we get the following example:

Example. The uncountable product V
def
= RR has a closed totally disconnected

algebraically free subgroup K of countable rank such that the quotient V/K is
incomplete and its completion G is a compact connected and strongly locally
connected abelian group of continuum weight.

In passing we observe the following result one encounters in researching this
question and finds to be of independent interest:

Proposition. Let G be a compact connected group, F a maximal rank free sub-
group of Ĝ, ∆ the annihilator of F in G (so that ∆̂ ∼= Ĝ/F ). Then there is an
exact sequence

0→ π1(G)→ ZrankF → ∆→ π0(G)→ 0.

Proof. Apply the Snake Lemma [245] to

0 0y y
K(G)

K(p)−−→ ZrankF

inc

y yinc

0 −−→ L(G)
L(p)−−→ RrankF −−→ 0y expG

y yexpTrankF

0 −−→ ∆ −−→
inc

G −−→
p

TrankF −−→ 0
∼=
y y y

Ext( ĜF ,Z) −−→ π0(G) −−→ 0y y
0 0. ut

A Hausdorff topological group is metric if and only if if and only if the filter
of its identity neighborhoods has a countable basis (cf. A4.16). We shall address
metric compact abelian groups in greater detail in the next section.

We recall that a torus is a product of circles. For a topological group G let
T (G) denote the set of all torus subgroups of G.
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Proposition 8.37. (i) Every compact abelian group G contains a characteristic
arcwise connected subgroup

GT =
〈⋃
T (G)

〉
=
⋃
T (G).

(ii) The union of all finite dimensional torus subgroups is exp spanR K(G) and
is dense in GT .

Proof. (i) We claim that the collection T (G) of all torus subgroups of a compact
abelian group G is directed, i.e. the product of two torus subgroups is a torus.
Indeed the family T (Ĝ) of all subgroups T of Ĝ such that Ĝ/T is free is a filter
basis by the remarks preceding Appendix 1, Lemma A1.27. The claim is simply
the dual of this fact.

As a consequence of the claim the union of all torus subgroups is a group,
and it is obviously arcwise connected and mapped into itself by all continuous
endomorphisms of G.

(ii) Let g = expX with X =
∑N
j=1 rj ·Xj , rj ∈ R, Xj ∈ K(G) = ker expG. The

finite dimensional real vector space V
def
= R·X1 + · · ·+R·XN is the real span of the

closed subgroup D
def
= V ∩ K(G) which does not contain a vector subspace. Hence

by the Theorem on Closed Subgroups of Rn in Appendix 1, A1.12 there is a basis
Y1, . . . , Yn of V such that V = R·Y1⊕· · ·⊕R·Yn and V ∩K(G) = Z·Y1⊕· · ·⊕Z·Yn.
Hence e:Rn → expG V , e(r1, . . . , rn) = expG(r1·Y1 + · · · + rn·Y1) yields an exact
sequence

0→ Zn incl−−→Rn e−−→ expG V → 0,

whence expG V
∼= Rn/Zn is a finite dimensional torus containing g.

Conversely, let T be a finite dimensional torus in G. Then L(T ) ⊆ L(G) with
an obvious identification of Hom(R, T ) with a vector subspace of Hom(R, G). Since
T ∼= Rn/Zn, we have L(T ) = spanR K(T ) ⊆ spanR K(G). Hence T = expT L(T ) ⊆
expG spanR K(G).

Since for any set J , the torus TJ is the closure of the union of the family of
all finite partial products it follows that the union of all finite dimensional tori is
dense in GT . ut

Proposition 8.37 implies that the smallest closed subgroup

G`
def
=
⋃
T (G)

of G containing all torus subgroups of G is a fully characteristic closed connected
subgroup of G. (Recall that a subgroup of a topological group is fully characteristic
if it is mapped into itself by all continuous endomorphisms.)

As is pointed out in Appendix 1, in the paragraph preceding A1.27, each abelian
group A contains a characteristic subgroup K∞(A) which is the intersection of all
subgroups K such that A/K is free.
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Theorem 8.38 (Characteristic Locally Connected Subgroup). In every abelian
topological group G with compact identity component G0, the fully characteristic
subgroup G` is the unique smallest closed subgroup containing all torus subgroups,
and it is locally connected. If G is locally compact, then the annihilator of G` in
Ĝ is K∞(Ĝ).

There exists an example of a locally connected connected compact abelian group
G such that G/G` is a circle.

Proof. Since GT is arcwise connected, we have GT ⊆ Ga ⊆ G0. We assume that
G0 is compact. It is therefore no loss of generality for the proof to assume that
G is compact so that duality theory becomes available. By Proposition A1.66,
the discrete abelian group Ĝ contains a characteristic pure subgroup K∞(Ĝ) such

that Ĝ/K∞(Ĝ) is ℵ1-free. The group K∞(Ĝ) is the intersection of the kernels of

all morphisms Ĝ→ Z. By duality (see 7.64(v)), the annihilator K∞(Ĝ)⊥ is exactly
the smallest closed subgroup of G containing all torus subgroups and is therefore
exactly G`.

Since G` ∼=
(
Ĝ/K∞(Ĝ)

)̂ by the Annihilator Mechanism 7.64, we know that
the character group of G` is ℵ1-free. Therefore, G` is locally connected by The-
orem 8.35. By A1.66(ii) there exists an example A of an ℵ1-free group A such
that K∞(A) ∼= Z. Dually, this yields a compact, connected and locally connected

example G = Â such that G/G` ∼= K∞(A)̂ ∼= T. ut

In the example constructed in 8.36(ii), we have G` = G and we see that G`
need not be a torus. On the other hand, Theorem 8.38 says, in particular, that
the closure G` of the union GT of all torus subgroups of G is locally connected—a
fact which is not at all obvious a priori.

Corollary 8.39. Let G be a connected locally compact abelian group. Then G
contains connected locally connected subgroups of the form H = E ⊕

(
comp(G)

)
`

for a vector subgroup E, where
(
comp(G)

)
`

contains all torus subgroups and maps
onto G/comp(G).

Proof. Exercise E8.7. ut

Exercise E8.7. Prove 8.39.

[Hint. By the Vector Group Splitting Theorem 7.57 we have G = E ⊕ comp(G)
with the maximal compact subgroup comp(G) and some vector subgroup E. Then
E⊕

(
comp(G)

)
`

is locally connected, contains all torus subgroups, and maps onto
G/ comp(G).] ut

Notice that in the locally compact but noncompact case, there may be no
unique maximal locally connected connected closed subgroup. For example, let
G = R× Q̂ with the discrete group Q of rationals. Then comp(G) = {0} × Q̂ and(

comp(G)
)
`

is singleton. Let X ∈ L(Q̂). Then E = {(r, exp r·X) | r ∈ R} and
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R×{0} are both maximal locally connected connected closed subgroups which are
different if X 6= 0.

Despite this remark, for locally compact abelian groups we fix the following
notation:

Definition 8.40. In a locally compact abelian group G in which G0 is compact,
G` is called the locally connected component (of the identity) of G. ut

An attentive reader may have noticed that a group by the name of G` was
introduced in the Exponential Function for Locally Compact Abelian Groups
Theorem 7.66. We have to make sure at this time that both definitions agree.
Theorem 8.41(ii) below will prove this.

We recall that K(G) denotes the kernel ker expG of the exponential function and

that it is isomorphic to Hom(Ĝ,Z). Further recall the adjoint ε: Ĝ→ L̂(G) ∼= L′(G)

of the exponential map, and that L′(G) ∼= R ⊗ Ĝ with the finest locally convex
topology (as was pointed out in remarks preceding 7.35). By 7.66, K(G) is the

annihilator of 1⊗ Ĝ ⊆ R⊗ Ĝ and K(G)⊥ = (1⊗ Ĝ)⊥⊥.

The Locally Connected Component of a Compact Abelian Group

Theorem 8.41. Let G be a compact abelian group. Then the locally connected
component G` has the following properties.

(i) L(G`) = spanR K(G).

(ii) The annihilator G`
⊥ of G` in Ĝ is

K∞(Ĝ) =
⋂
{ker f | f ∈ Hom(Ĝ,Z)} =

⋂
{kerF | F ∈ Hom(Ĝ,R), F (Ĝ) ⊆ Z}.

Therefore Ĝ` ∼= Ĝ/K∞(Ĝ).

(iii) Let R ⊗ Ĝ ∼= Hom(L(G),R) ∼=
(
L(G)

)̂ be the vector space dual L′(G)
of L(G) (see 7.66(i)) and let (K(G)⊥)0 denote the largest vector subspace of the

group K(G)⊥ ⊆ R ⊗ Ĝ which is also the largest vector subspace of 1⊗ Ĝ. Then
K(G)⊥/(K(G)⊥)0 is the image of the character group of L(G`)/K(G) under a con-
tinuous bijective morphism, and is an ℵ1-free group.

The factor group 1⊗ Ĝ/
(
K(G)⊥

)
0

contains densely an algebraically isomorphic

copy of Ĝ`.
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L(G) {0}

{0}∣∣∣
tor Ĝ∣∣∣ ∣∣∣ ∣∣∣

L(G`) = spanR K(G)
(
K(G)⊥

)
0

K∞(Ĝ)∣∣∣ ∣∣∣ }
← Ĝ` ∼=

{ ∣∣∣
K(G)∣∣∣
{0}

1⊗ Ĝ∣∣∣
R⊗ Ĝ

Ĝ

(iv) The union of all finite dimensional torus subgroups is dense in G if and
only if the group GT is dense in G if and only if G is connected and spanK(G) is
dense in L(G).

Proof. (i) and (ii). Let us recall that for a compact abelian group G we have

an isomorphism X 7→ X̂:L(G) = Hom(R, G) → Hom(Ĝ,R) where R̂ is identi-
fied in the obvious fashion with R, and that, under this isomorphism, K(G) =

ker exp is mapped to Hom(Ĝ,Z), identified in the obvious way with a subgroup of

Hom(Ĝ,R) (see 7.66). Now we note that L(G`) = Hom(R, G`) ∼= Hom(Ĝ`,R) ∼=
Hom(

(
Ĝ/K∞(Ĝ)

)
,R). In other words, if we identify L(G`) with a vector subspace

of L(G) we have

L(G`) = {X ∈ L(G) : X̂(K∞(Ĝ)) = {0}}.

Now

K∞(Ĝ) =
⋂
{ker f | f ∈ Hom(Ĝ,Z)}

= {χ ∈ Ĝ |
(
∀X̂ ∈ Hom(Ĝ,R)

)
(im X̂ ⊆ Z)⇒(X̂(χ) = 0)}

= {χ ∈ Ĝ |
(
∀X ∈ K(G)

)
(X̂(χ) = 0)}.

Remembering that X̂(χ) ∈ R is to be considered as an element of R̂ via 〈X̂(χ), r〉 =

X̂(χ)r + Z ∈ T for all r ∈ R, we see that X̂(χ) = 0 means that χ(expG r·X) =

χ
(
X(r)

)
= 〈X̂(χ), r〉 = 0 for all r ∈ R. We also recall the commutative diagram

(involving the quotient morphism q:R→ T)

(∗)

L(G)
L(χ)−−→ L(T ) ∼= R

expG

y expT

y yq
G −−→

χ
T = T.
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This means that χ(expG r·X) = expT
(
r·L(χ)(X)

)
. Now r·L(χ)(X) ∈ ker expT for

all r ∈ R holds iff L(χ)(X) = 0. Thus

(†) K∞(Ĝ) = {χ ∈ Ĝ |
(
∀X ∈ K(G)

)
L(χ)(X) = 0}.

From G` = K∞(Ĝ)⊥ =
⋂
χ∈K∞(Ĝ)

kerχ we conclude

(‡) L(G`) =
⋂

χ∈K∞(Ĝ)

L(kerχ) =
⋂

χ∈K∞(Ĝ)

kerL(χ)

since L commutes with the formation of intersections and kernels by 7.38.
From (†) and (‡) we derive that

L(G`) = {X ∈ L(G) |
(
∀χ ∈ Ĝ, Y ∈ K(G)

) (
L(χ)(Y ) = 0

)
⇒
(
L(χ)(X) = 0

)
}.

The dual L′(G) = Hom(L(G),R)
( ∼= R ⊗ Ĝ

)
is the linear span of the set

{L(χ) ∈ L′(G) | χ ∈ Ĝ}
( ∼= 1 ⊗ Ĝ

)
. Hence L(G`) consists of all X ∈ L(G)

such that for all ω ∈ L(G)′ which are in the vector space annihilator K(G)⊥

we have ω(X) = 0. Thus L(G`) = K(G)⊥⊥ in the sense of annihilators of re-
flexive topological vector spaces. But K(G)⊥⊥ = spanR K(G) by the Annihilator
Mechanism for subsets of locally convex topological vector spaces (cf. 7.35). Thus
L(G`) = spanR K(G) as asserted. In Theorem 7.66(ii) we noted that the char-

acter group of spanR K(G)/K(G) is the ℵ1-free group 1⊗ Ĝ/spanR K(G)
⊥

. This
concludes the proofs of the assertions concerning L(G) and L′(G)

By the Annihilator Mechanism for Locally Compact Groups 7.64, since the
annihilator of G` in Ĝ is K∞(Ĝ) by 8.38, we have Ĝ` ∼= Ĝ/K∞(Ĝ).

(iii) By 7.33(iii) there is a bijective morphism from the character group of

spanR K(G)/K(G) onto the ℵ1-free group K(G)⊥

(K(G)⊥)0
.

We shall now prove that R⊗ Ĝ/1⊗ Ĝ contains a dense isomorphic copy of Ĝ`.

For this purpose we consider the map ε: Ĝ → R ⊗ Ĝ given by ε(χ) = 1 ⊗ χ. We

recall that its kernel is tor Ĝ. (Cf. Appendix 1. A1.45(iii).) It is no loss of generality

to assume that G is connected, i.e. that tor Ĝ = {0}. In that case, the image ε(Ĝ)

is an algebraically isomorphic copy of Ĝ in R ⊗ Ĝ. It is dense in ε(Ĝ) ∼= 1⊗ Ĝ.

So we induce a morphism ε′: Ĝ → 1⊗ Ĝ/V where V = (1⊗ Ĝ)0 is the largest

vector subspace contained in 1⊗ Ĝ ⊆ R ⊗ Ĝ and where ε′(χ) = 1 ⊗ χ + V . We
would like to show that ε′ is injective. We note that V is divisible, and since
a closed abelian divisible subgroup of the topological vector space R ⊗ Ĝ is a

real vector subspace, V is the unique largest divisible subgroup of 1⊗ Ĝ. Since

1⊗ Ĝ/V is ℵ1-free, on the one hand we have K∞(1⊗ Ĝ) ⊆ V ; since V is divisible,

the reverse inclusion holds on the other. Hence V = K∞(1⊗ Ĝ). We claim that

V ∩ (1 ⊗ Ĝ) = 1 ⊗ K∞(Ĝ) = K∞(1 ⊗ Ĝ). By the definition of K∞(A) (as the
intersection of all kerϕ, ϕ ∈ Hom(A,Z) clearly the right side is in the left one.

Now let 1 ⊗ χ ∈ (1 ⊗ Ĝ) \ K∞(1 ⊗ Ĝ). Then there is a morphism of abelian
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groups ϕ: 1 ⊗ G → Z such that ϕ(1 ⊗ χ) 6= 0. It extends in a unique fashion to

an R-linear map Φ:R ⊗ Ĝ → R. This map is continuous by 7.25(i). Hence the

subgroup Φ−1(Z) is closed and thus, containing 1 ⊗ Ĝ, it contains 1⊗ Ĝ. This

means that ϕ: 1⊗ Ĝ→ Z extends continuously to a morphism ϕ: 1⊗ Ĝ→ Z. Now

ϕ ∈ Hom(1⊗ Ĝ,Z) and ϕ(1⊗χ) = ϕ(1⊗χ) 6= 0. Hence 1⊗χ 6= K∞(1⊗ Ĝ) = V .

This proves the claim. But now ε′: Ĝ→ 1⊗ Ĝ/V is injective as asserted.

(iv) By 8.37(ii), the union GT of all tori in G is dense in G if and only if the
union exp spanR K(G) of all finite dimensional tori in G is dense in G.

By definition, G` = GT and thus GT is dense in G iff G` = G. This implies
L(G`) = L(G), and this condition implies G` = expG` L(G`) = expG L(G) = G0. If
G is connected then this implies G` = G. Thus GT is dense in G iff L(G`) = L(G).
By (i) above L(G`) = spanR K(G). This proves the assertion. ut

Theorem 8.41 may be viewed as another complement to Theorem 7.66 on the
exponential function. It clarifies rather explicitly the nature of the locally con-
nected component G` in its relation to the exponential function and its kernel.

For further clarification of the locally connected component we now assume

G = G` and L(G) = spanR K(G), and, correspondingly, (1⊗ Ĝ)0 = {0}.

Corollary 8.42. The exponential function defines a canonical decomposition dia-
gram

L(G`)
expG`−−−→ G`

quot

y xincl

L(G`)/K(G) −−→
e

expG` L(G`).

Consider the following conditions.
(i) L(G`)/K(G) is compact,
(ii) G` is arcwise connected, and expG` is open,

(iii) 1⊗ Ĝ` is discrete.
Then (i)⇔(ii)⇒(iii), and if L(G`)/K(G) is reflexive, these conditions are all equiv-
alent.

Proof. (i)⇔(ii) If (i) is satisfied, then e is an isomorphism of abelian topological
groups. Hence expG L(G`) is compact on the one hand, but is also dense in G`
by 7.71. Hence expG is surjective and open. By 8.32, the group G` is arcwise
connected.

Conversely, if (ii) holds, then expG L(G`) = G` and e:L(G`)/K(G)→ G` is an
isomorphism of abelian topological groups. Hence (i) follows.

(i)⇒(iii) We apply the Annihilator Mechanism 7.17 with R ⊗ Ĝ in place of

G and 1⊗ Ĝ` in place of H. Then L(G`) and K(G) take on the roles of Ĝ and
H⊥ in 7.17, respectively, and since L(G`)/K(G) is compact, this group is reflexive.
The characters of (R⊗G`)/1⊗G` separate the points (see 7.33(ii) or directly in
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the proof of 7.33 the verification that the characters of E/H separate the points).
Thus by 7.17(iv) there is an isomorphism of topological groups (L(G`)/K(G))̂ →
1⊗ Ĝ`. Since the character group of a compact group is discrete, (iii) is established.

(iii)⇒(i) Now assume that 1 ⊗ Ĝ` is discrete. Then by 7.17(i) there is a

bijective morphism
(
L(G`)/K(G)

)̂ → 1 ⊗ Ĝ`. It follows that the factor group
L(G`)/K(G) has a discrete character group. If it is reflexive, it is compact. ut

Compact Metric Abelian Groups

We know exactly when a topological group admits a left invariant metric which
defines the topology (see Appendix 4, A4.16). We apply this in the compact situ-
ation.

Proposition 8.43. For a compact group G, the following statements are equiva-
lent.

(i) The topology of G has a countable basis.
(ii) The filter of identity neighborhoods has a countable basis.

(iii) The topology of G is defined by a biinvariant metric.
(iv) The topology of G is defined by a metric.

Proof. A compact metric space always has a countable basis for its topology; thus
(iv)⇒(i) trivially, (iii)⇒(iv) and (i)⇒(ii). The implication (ii)⇒(iii) is proved in
Appendix 4, A4.19. ut

Definition 8.44. A compact group satisfying the equivalent conditions of 8.43
will be called a compact metric group. ut

Compact metric abelian groups have certain special properties which we discuss
in this section.

Theorem 8.45 (Characterisation of Compact Metric Abelian Groups). For a
compact abelian group, the following statements are equivalent.

(i) G is a compact metric group.

(ii) Ĝ is countable.
(iii) G is isomorphic to a subgroup of the torus Tℵ0 .

(iv) G is isomorphic to a quotient group of (Q̂)ℵ0 ×
∏
p prime(Zp)ℵ0 .

Proof. (i)⇔(ii) By 8.43, (i) is equivalent to w(G) ≤ ℵ0. By the Weight of Locally

Compact Abelian Groups Theorem 7.76 this in turn is equivalent to card Ĝ =
w(Ĝ) ≤ ℵ0.

(ii)⇔(iii) Condition (iii) by duality is equivalent to Ĝ is a homomorphic image

of a free group Z(ℵ), i.e. to the statement that Ĝ is the homomorphic image
of a countable free group. Using A1.8 we see that is clearly equivalent to (ii).
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(Alternatively, use the fact that every compact abelian group is a subgroup of a
torus and then apply Proposition A4.20(i).)

(ii)⇔(iv) Every abelian group A is a subgroup of a divisible abelian group D
such that A is countable if and only if D is countable. (See Appendix 1, A1.33.) By
the Structure Theorem for Divisible Abelian Groups A1.42(ii), a divisible group
is countable if and only if it is a subgroup of the countable divisible group Q(ℵ0)⊕⊕

p prime Z(p∞). The asserted equivalence is thus established by duality. ut

Connectivity in Compact Metric Abelian Groups

Theorem 8.46. (i) Let G be a compact abelian group and assume that the locally
connected component G` (see Definition 8.40 and Theorem 8.41) is metric. This
is the case, in particular, if G is metric. Then G` is a torus and there is a closed
subgroup H such that G = G` ⊕H algebraically and topologically.

(ii) The group H does not contain any nondegenerate torus groups, i.e.
H` = {0}.

(iii) The following statements are equivalent for a compact metric abelian group:
(1) G = G`.
(2) G is a torus.
(3) G is arcwise connected.
(4) G is connected and locally connected.
(5) The linear span of the kernel K(G) of the exponential function of G is dense

in L(G).

Proof. (i), (ii) By definition, G` = K∞(Ĝ)⊥. By hypothesis G` is metric, whence

Ĝ/K∞(Ĝ) ∼= Ĝ` is countable by the Annihilator Mechanism 7.64 and 8.45. Then

Appendix 1, A1.66 applies and shows that Ĝ = F ⊕K∞(Ĝ) with a countable free

summand F and K∞(Ĝ) has no nontrivial free quotient groups. Now let H = F⊥.
Then all assertions of (i) and (ii) follow by duality.

(iii) By (i) the equivalence of (1) and (2) is clear, and (2)⇒(3) is trivial. By

8.30(iv), Condition (3) means exactly that Ĝ is a Whitehead group.
By Theorem A1.62 from Appendix 1 we know that a countable group is a

Whitehead group if and only if it is free. Thus (3) is equivalent to saying that Ĝ
is free and that, by duality, is (2).

By Theorem 8.35 we know that (4) is equivalent to the statement that Ĝ is
ℵ1-free. By Proposition A1.64 of the Appendix, an abelian group is ℵ1-free if and
only if every countable subgroup is free. Since Ĝ is countable this shows that (4)

is equivalent to the freeness of Ĝ and thus to (2).
By 8.37, conditions (1) and (5) are equivalent. ut

Let us say that a compact group is torus free iff G` = {0}. Then we can
formulate the following corollaries.
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Corollary 8.47. (i) A compact metric abelian group is algebraically and topolog-
ically the direct sum of a characteristic maximal torus and a torus free compact
subgroup.

(ii) For a compact metric abelian group G, the following conditions are equiv-
alent:

(1) G is torus free.

(2) Hom(Ĝ,Z) = {0}.
(3) The exponential function expG:L(G)→ G is injective.
(4) K(G) = {0}.
(5) K∞(Ĝ) = Ĝ. ut

In light of the beautiful results in 8.46 on connectivity in metric compact groups
it is now high time to face the question in what measure the hypothesis of metriz-
ability is necessary for their validity. A good deal of information is available quite
generally in such theorems as 8.30, 8.35, 8.40. In combination with 8.46, the fol-
lowing proposition is a reasonable statement, and one might well ask, whether it
is true.

Torus Proposition. A compact arcwise connected abelian group is a torus.

For metric groups this is true as 8.46 shows. Due to a theorem proved by Shelah
[329] the quest for verifying the Torus Proposition which was rather intensive in
the sixties and early seventies takes the following surprising turn. For the set
theoretical axioms mentioned here we refer to Appendix 1.

The Undecidability of the Torus Proposition

Theorem 8.48. (i) Assume that the axioms of ZFC, Zermelo–Fraenkel Set Theory
with the Axiom of Choice, and the Diamond Principle � are valid. Then every
compact arcwise connected abelian group is a torus.

(ii) Assume the axioms of ZFC, Martin’s Axiom, and ℵ1 < 2ℵ0 . Then given
any uncountable cardinal ℵ there exists a compact arcwise connected abelian group
G of weight w(G) = ℵ which is not a torus.

(iii) If ZFC is consistent, then ZFC + Torus Proposition and ZFC + ¬Torus
Proposition are consistent; i.e. the Torus Proposition is undecidable in ZFC.

Proof. Let G be a compact connected abelian group. Then by 8.30, G is arc-
wise connected iff Ĝ is a Whitehead group, i.e. satisfies Ext(Ĝ,Z) = {0}. On the

other hand, G is a torus iff Ĝ is free. Thus the Torus Proposition is equivalent
to Proposition W of the Section on Whitehead’s Problem in Appendix 1, further,
by duality, (i) is equivalent to Theorem A1.67, and (ii) is equivalent to Theorem
A1.69, while (iii) is equivalent to Theorem A1.70. ut

Torus groups are the natural examples of arcwise connected locally connected
groups. A quotient of a torus group is a torus group. Any group of dimension ℵ1

which is a Whitehead group but not a torus group (8.48(ii)) has the property that
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all quotients of properly smaller dimension (namely, ℵ0) are tori. Some remarkable
facts arise if the dimension (or, for these large groups, the weight) is a singular
cardinal, i.e. one whose cofinality is properly smaller (see Appendix 1, discussion
preceding A1.67).

Exercise E8.8. Prove the following assertion.

If G is a compact abelian group whose weight is a singular cardinal, and if each
quotient of properly smaller weight is a torus, then G is a torus.

[Hint. Dualize Shelah’s Singular Compactness Theorem A1.82.] ut

We conclude the section by remarking that a finite dimensional connected com-
pact abelian group is always metric.

Theorem 8.49. For a finite dimensional compact abelian group G the following
conditions are equivalent:

(i) G is metric.
(ii) G/G0 is metric.

In particular, a finite dimensional compact connected abelian group is always met-
ric.

Proof. Assume that dimG = n <∞. Then by 8.22

n = rank Ĝ = rank Ĝ/ tor Ĝ = rank Ĝ0.

Thus the torsion-free group Ĝ0 is isomorphic to a subgroup of Qn and is therefore
countable. Thus G0 is metric by 8.45.

(i)⇒(ii) If G is metric then it satisfies the first axiom of countability. Then
G/G0, as a continuous open image of G, satisfies the first axiom of countability.
Hence G/G0 is metric by A4.16.

(ii)⇒(i) If G/G0 is metric, then tor Ĝ ∼= (G/G0)̂ is countable by 8.45. If

Ĝ/ tor Ĝ ∼= Ĝ0 is countable and tor Ĝ is countable, then Ĝ is countable and thus
G is metric. ut

Part 3: Aspects of Algebraic Topology—Homotopy

Free Compact Abelian Groups

The study of free objects in the category of compact abelian groups turns out
to be especially rich. As in other contexts, every object is a quotient of a free
object, for example in the category of groups or in the category of abelian groups
(see A1.8). In this case it will follow immediately from the definition that every
compact abelian group is a quotient group of a free compact abelian group.

In the investigations of this section we need some function spaces. Let us denote
by C0(X,G), for a topological space X with base point x0 and an abelian topolog-
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ical group G, the group of all continuous functions f :X → G with f(x0) = 0. This
space is a topological group with respect to the pointwise group operations and
the topology of uniform convergence. If C0(X,G)0 denotes, as usual, the identity
component of C0(X,G) we set

[X,G]
def
=

C0(X,G)

C0(X,G)0
.

Exercise E8.9. Verify the following proposition.

(i) If G is a linear Lie group, then C0(X,G) is a linear Lie group with

L
(
C0(X,G)

)
= C0

(
X,L(G)

)
, and

expC0(X,G) = C0(X, expG):C0

(
X,L(G)

)
→ C0(X,G).

(ii) The morphism C0(X, q):C0(X,R) → C0(X,T) may be identified with the ex-
ponential function of the linear Lie group C0(X,T).

[Hint. For (i). Let A be a Banach algebra containing G as a closed subgroup of A−1

(cf. Chapter 5). Then C(X,A) is a Banach algebra and its exponential function
is given as follows. Let f :X → A be an element of C(X,A), then ef (x) = ef(x).
If we identify L(G) with a closed Lie subalgebra of A (with the Lie bracket) then
each f ∈ C0(X,L(G)) yields a function er·f (x) = er·f(x) ∈ G for all r. Deduce
that the exponential function is correctly defined and satisfies the requirements of
5.32. Part (ii) is straightforward.] ut

Let G be a linear Lie group. Since the identity component C0(X,G)0 of the
linear Lie group C0(X,G) is the arc component of the identity, two functions
f, f ′:X → T in the same coset modulo C0(X,T) are connected by an arc. If
X is a compact space, then this means precisely that they are homotopic. Thus
[X,T] = C0(X,T)/C0(X,T)0 = π0

(
C0(X,T)

)
is the group of all homotopy classes

of maps f :X → T, also called Bruschlinsky group of X. Since in a linear Lie group
the connected component of the identity is open, it follows that [X,G] is a discrete
abelian group in the quotient topology.

As usual we consider the standard exact sequence

0→ Z j→ R q→ T→ 0.

It induces a sequence

(∗) {0} → C0(X,Z)
C0(X,j)−−−−→ C0(X,R)

C0(X,q)−−−−→ C0(X,T)
quot−−−→ [X,T]→ {0}.

Proposition 8.50. (i) For any compact pointed topological space X, the sequence
(∗) is exact.

(ii) C0(X,T) contains a discrete and torsion-free subgroup B[X,T] ∼= [X,T]
such that

C0(X,T) = C0(X,T)0 ⊕B[X,T]
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algebraically and topologically. The identity component C0(X,T)0 is the image of

the Banach space C0(X,R) under C0(X, q) and is isomorphic to C0(X,R)
C0(X,Z) .

(iii) If X is a compact connected pointed space, then C0(X,T) is isomorphic to
C0(X,R)× [X,T], and [X,T] is discrete and torsion-free.

Proof. (i) Exactness at C0(X,Z) and C0(X,R) is immediate, but exactness at
C0(X,T) needs comment. For a proof of exactness there we have to show that the
image imC0(X, p) is the path component C0(X,T)a of 0. Since C0(X,R) is a topo-
logical R-vector space, its continuous image imC0(X, q) is arcwise connected hence
is contained in C0(X,T)a. Conversely, an element f ∈ C0(X,T)a is homotopic to
0. Let cone(X) denote the cone

(
[0, 1]×X

)
/
(
{0} ×X

)
(i.e. the compact arcwise

connected space obtained from [0, 1] × X upon collapsing the compact subspace
{0}×X to a point), and let i:X → cone(X) be defined by i(x) = class(1, x), where
class(r, x) is the equivalence class of the element (r, x) ∈ [0, 1] × X in the cone.
Saying that f is homotopic to zero is tantamount to saying that there exists a
continuous function F : cone(X)→ T with f = F ◦ i. Since cone(X) is contractible

and hence simply connected, we have a lifting F̃ : cone(X) → R across q:R → T
with q ◦ F̃ = F (see A2.9).

Then set ϕ = F̃ ◦ i:X → R. Then C0(X, q)(ϕ) = q ◦ F̃ ◦ i = F ◦ i = f . Thus
f ∈ imC0(X, q). This proves the claim

C0(X,T)a = imC0(X, q).

(ii) If we identify C0(X,Z) in the obvious fashion with a subgroup of C0(X,R),
then this subgroup is discrete, because the set of all functions f :X → R in
C0(X,R) with ‖f‖ = sup{|f(x)| : x ∈ X} ≤ 1

2 meets C0(X,Z) in {0}. By the
exactness of (∗) we know that imC0(X, q) ∼= C0(X,R)/C0(X,Z). As a quotient of
the R-vector space C0(X,R), this group is divisible, and hence splits in C0(X,T)
by Proposition A1.36. Since C0(X,T)0 is open, the splitting is also topological.

It remains to show that C0(X,T)/C0(X,T)0 is torsion-free. Let f :X → T be
a continuous base point preserving map such that for some nonnegative integer
n one has n·f ∈ C0(X,T)0. By 8.50 there is an F :X → R such that n.f = qF .
Set g = 1

n .F . Then n·(f − qg) = 0 and f + C0(X,T)0 = (f − qg) + C0(X,T)0.
We assume henceforth that n·f = 0 in C0(X,T). Thus f ∈ C0

(
X, 1

nZ/Z
)
. Let

C(n)
def
=
(

1
nZ
)
/Z. For z ∈ C(n) let Uz = f−1(z). Then X is the disjoint sum of

the compact open sets Uz and f =
∑
z∈C(n) fz where

fz(x) =
{
z if x ∈ Uz,
0 otherwise.

Now we define Fz:X → R for z = m/n+ Z, m = 0, . . . , n− 1 by

Fz(x) =
{
m/n if x ∈ Uz,
0 otherwise.

Then fz = q ◦Fz, and if F =
∑
z∈C(n) Fz, then f = q ◦F . Thus f ∈ q ◦C0(X,R) =

C0(X,T)0 (by the preceding results). Thus f + C0(X,T)0 = 0.
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(iii) If X is also connected, then C0(X,Z) = {0}, and the assertion follows from
(ii). ut

In algebraic topology one proves that [X,T] is naturally isomorphic to the Čech
cohomology group H1(X,Z). The space K(Z, 1) underlying T has the property
that

πn(K(Z, 1),Z) =

{
Z for n = 1, and
{0} otherwise.

It is a very simple Eilenberg–MacLane space (see e.g. [338], p. 424ff., p. 428, The-
orem 10. For the fact that this isomorphism continues to be valid for Čech coho-
mology on paracompact spaces, see [206]).

Exercise E8.10. Show that

π1(S1) = [S1,T] ∼= Z.

The isomorphism may be implemented by the function ϕ:Z→ [K(Z, 1),T], ϕ(n) =
µn + C0(K(Z, 1),T)0, µn:T→ T, µn(t) = n·t.
[Hint. Each function f ∈ C0([0, 1],T) f(0) = 0 has a unique lifting to a continuous

function f̃ : [0, 1]→ R since [0, 1] is simply connected. (See A2.7.) Let p: [0, 1]→ T
be given by p(t) = t+ Z. Then we have maps

f 7→ f̃◦p:C0(T,T)→ C0([0, 1],R), and

f 7→ (f̃◦p)(1):C0(T,T)→ Z.

Show that they are morphisms of abelian topological groups and that the second
one induces an isomorphism [T,T]→ Z whose inverse is given by ϕ:Z→ [T,T].

Alternatively, for each member f ∈ C0(S1,S1) find f1 homotopic to f in
C0(C \ {0},C) and define w:C0(S1,S1)→ Z by the winding number

w(f) =
1

2πi

∫
path f

dz

z
=

∫ 1

0

f ′(e2πit)e−2πit dt.

Show that both approaches yield the same result on piecewise differentiable closed
curves. For a more detailed discussion see A2.6] ut

Free abelian groups are treated in Appendix 1, A1.4ff. If we accept the phi-
losophy that free objects should be defined in terms of their universal property,
then the issue of free compact abelian groups is defined rather straightforwardly
as follows:

Definition 8.51. LetX denote an arbitrary topological space with a base point x0.
We say that F (X) is a free compact abelian group over X if it is a compact abelian
group and there is a continuous base point preserving function εX :X → F (X) such
that for every continuous function f :X → G into a compact abelian group with
f(x0) = 0, there is a unique morphism of compact abelian groups f ′:F (X) → G
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such that f = f ′ ◦ εX . We shall also say that F (X) is a free compact abelian group
with respect to the universal map εX :X → F (X).

Proposition 8.52. (i) Assume that ε
(j)
X :X → F (j)(X), j = 1, 2 are universal

maps for free compact abelian groups over X. Then there is a unique isomorphism
f :F (1)(X)→ F (2)(X) such that ε(2) = f ◦ ε(1).

(ii) Let F (X) be a free compact abelian group over X with respect to the uni-

versal map εX :X → F (X). Set X ′
def
= εX(X). Then the subgroup 〈X ′〉 is dense in

F (X) and is, as an abelian group, the free abelian group over the set X ′.

Proof. (i) By the universal property there is a morphism f :F (1)(X) → F (2)(X)

such that fε
(1)
X = ε

(2)
X . Similarly, there is a morphism g:F (2)(X)→ F (1)(X) such

that gε
(2)
X = ε

(1)
X . Then fgε

(2)
X = ε

(2)
X = idF (2)(X) ε

(2)
X . The uniqueness in the

universal property of ε
(2)
X shows fg = id. Exchanging roles yields gf = id. Hence

g = f−1 and thus f is an isomorphism.
(ii) Set G = 〈X ′〉. Then the corestriction ε′:X → G is readily seen to have the

universal property. Thus by (i) there is a unique isomorphism f :G→ F (X) such
that fε′ = εX . Thus f |X ′:X ′ → X ′ is the identity. Hence f and the inclusion
G→ F (X) agree on G. Since f is an isomorphism, G = F (X) follows.

Now we prove that 〈X ′〉 is free over X ′. For this purpose we invoke the following

Lemma. Let C be a completely regular Hausdorff space with base point c0 and
(c0, c1, . . . , cn) a sequence of different points cj ∈ C. Let

Ij = {(r1, . . . , rn) ∈ [0, 1]n | rk = 0 for k 6= j} ⊆ [0, 1]n.

Then there is a continuous function f :C →
⊔n
j=1 Ij such that f(c0) = (0, . . . , 0)

and f(cj) = (e1, . . . , en) with ej = 1 and ek = 0 otherwise.

The proof of this lemma is a simple exercise in point set topology based on the
definition of complete regularity.

We apply this with C = X ′. Let t1, . . . , tn ∈ T be n elements such that
〈t1, . . . , tn〉 is a free abelian group of rank n. Such groups exist (see Appendix 1,
A1.43(ii)). Since T is arcwise connected, there is a continuous base point preserv-
ing function Φ:

⊔n
j=1 Ij → T such that Φ

(
f(cj)

)
= tj . By the universal property

of F (X) the continuous function Φ ◦ f ◦ εX :X → T uniquely provides a morphism
of compact abelian groups ϕ:F (X) → T such that ϕ ◦ εX = Φ ◦ f ◦ εX . Since
X ′ = εX(X) we have ϕ|X ′ = Φ ◦ f . In particular, ϕ restricts to a homomorphism
of 〈c1, . . . , cn〉 → 〈t1, . . . , tn〉 mapping cj to tj . This proves that {c1, . . . , cn} is a
free subset of F (X). Hence 〈X ′〉 is free. ut

The appropriate general background for the concept of a free compact abelian
group is that of adjoint functors which we discuss in Appendix 3, A3.28, A3.29. The
existence of free compact abelian groups can be secured by the general existence
theorem for adjoints (see A3.60). But we opt for a direct construction in the present
context.
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Theorem 8.53 (Construction of Free Compact Abelian Groups). Let X be any
pointed topological space and let C0(X,T)d denote the abelian group of all continu-
ous base point preserving functions X → T equipped with pointwise multiplication
and the discrete topology. Set F (X) = C0(X,T)d̂ and define εX :X → F (X) by
εX(x)(f) = f(x) for all f ∈ C0(X,T). Then

(i) F (X) is the free compact abelian group over X with respect to the universal
map εX .

(ii) F (X) ∼=
(
C0(X,R)d/C0(X,Z)

)̂ × [X,T]̂.
If X is connected, then

F (X) ∼=
(
C0(X,R)d

)̂ × [X,T]̂.
(iii) For each compact space X and each abelian group G, the function f 7→

f ◦ εX : Hom(F (X), G)→ C0(X,G) is a bijective morphism of topological groups.

Proof. (i) Let f :X → G be a continuous base point preserving map into a compact

abelian group G. We define a function ϕ: Ĝ → C(X,T) by ϕ(χ)(x) = 〈χ, f(x)〉.
This is a morphism of abelian groups. Let f ′ = ϕ̂:F (X)→ G be its adjoint. Then

(f ′ ◦ εX)(x) = f ′
(
εX(x)

)
= ϕ̂

(
εX(x)

)
, and thus for each χ ∈ Ĝ we have

〈χ, ϕ̂
(
εX(x)

)
〉 = 〈ϕ(χ), εX(x)〉 = εX(x)

(
ϕ(χ)

)
= ϕ(χ)(x) = 〈χ, f(x)〉

in view of the definition of εX(x) and of ϕ(χ). Since the characters of G separate
the points, we conclude f ′

(
εX(x)

)
= f(x), that is f = f ′ ◦ εX . This secures the

existence of the desired morphism f ′. Its uniqueness is seen as follows. Assume
that f ′ ◦ εX = f ′′ ◦ εX . We claim f ′ = f ′′. Set f∗ = f ′′ − f ′, then 0 = f∗

(
(εX(x)

)
for all x ∈ X. But we claim that F (X) is the smallest closed subgroup containing
εX(X), and if this is so, we conclude f∗ = 0 and thus f ′ = f ′′ as asserted.

Now an element f ∈ C(X,T) is in the annihilator A
def
=
(
εX(X)

)⊥
if and only if

0 = 〈εX(x), f〉 = f(x) for all x ∈ X, and this means f = 0. Hence A = {0} and
thus F (X) = A⊥ is indeed the smallest subgroup of F (X) containing εX(X) by
7.64(iii).

(ii) This is an immediate consequence of 8.50 and duality.

(iii) The universal property shows that α
def
= (f 7→ f ◦ εX) is an isomorphism

of abelian groups. It remains to show its continuity. Let V be an identity neigh-
borhood of C0(X,G). Then there is an identity neighborhood U of G such that

W (X,U) ⊆ V . Since X is compact, the subset C
def
= εX(X) of F (X) is compact.

Then W (C,U) is an identity neighborhood of Hom(F (X), G) in the compact open
topology, and α

(
W (C,U)

)
⊆W (X,U) ⊆ V . This proves continuity of α. ut

Homotopy of Compact Abelian Groups

For a topological group G we shall denote by |G| the topological space underlying
G; e.g. |T| = K(Z, 1) is the one-sphere. In what follows we shall need information
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on [|G|,T] for compact abelian groups G. For a compact abelian group G let N
denote the filter basis of compact subgroups such that G/N is a Lie group. Recall
from 2.34 that G = limN∈N G/N .

Lemma 8.54. For a compact abelian group G and N ∈ N let CN0 (|G|,T) denote
the subgroup of all f ∈ C0(|G|,T) which are constant on cosets g +N . Then

C0(|G|,T) =
⋃
N∈N

CN0 (|G|,T).

Proof. We consider the commutative C∗-algebra C(|G|,C) and let CN (|G|,C)
denote the C∗-subalgebra of all complex valued continuous functions on |G| which
are constant on cosets g + N . Let A =

⋃
N∈N C

N (|G|,C). Then A is involutive
and separates points. Hence the Theorem of Stone and Weierstraß (cf. [34], X.39,
Proposition 7, or [331], p. 161.) implies A = C(|G|,C). Since the group C(|G|,C)−1

of units is open,

A−1 = A ∩ C(|G|,C)−1 is dense in C(|G|,C)−1.

Now A−1 =
⋃
N∈N C

N (|G|,C)−1. If X is a compact space, then C(X,C)−1 =
C(X,C \ {0}). Let P = ]0,∞[ denote the multiplicative group of positive real
numbers, and for 0 6= z ∈ C set ρ(z) = z

|z| . Then the polar decomposition z 7→(
|z|, ρ(z)

)
: C\{0} = P×S1 is an isomorphism of multiplicative abelian topological

groups whose inverse is (r, c) 7→ rc. Accordingly. C(X,C)−1 = C(X,P )×C(X,S1)
via f(x) = |f(x)|·ρ

(
f(x)

)
. We conclude that⋃

N∈N
CN (X,S1) =

⋃
N∈N

ρ
(
CN (|G|,C \ {0})

)
= ρ(A−1)

is dense in ρ
(
C(|G|,C \ {0})

)
= C(|G|,S1). Thus

(∗) C(|G|,T) =
⋃
N∈N

CN (|G|,T).

If X is a compact pointed space, let K ⊆ C(X,T) denote the subgroup of all
constant functions. Then f 7→ f(x0):K → T is an isomorphism. Let constt:X → T
denote the constant function with value t. Then

f 7→ (f(x0), f − constf(x0)):C(X,T)→ T× C0(X,T)

is an isomorphism with inverse (t, f) 7→ constt +f . Applying the projection
C(|G|,T)→ C0(|G|,T) to (∗) we get the claim of the lemma. ut

Exercise E8.11. The previous lemma holds more generally. Define the concept
of a projective limit for compact pointed spaces, modelled after 1.27. Adjust the
proof of the previous lemma to show the following result.
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Lemma 8.55. Let X = limj∈J Xj be a projective limit of compact pointed spaces.
The limit maps fj :X → Xj give morphisms C0(fj ,T):C0(Xj ,T) → C0(X,T).

Then C0(X,T) =
⋃
j∈J imC0(fj ,T). ut

Proposition 8.56. Let X be a topological space and G a compact abelian group.
Then there are isomorphisms of topological groups

αX,G:C0(X,G)→ Hom
(
Ĝ, C0(X,T)

)
, αX,G(f)(χ)(x) = χ

(
f(x)

)
.

and

ρX,G: [X,G]→ Hom(Ĝ, [X,T]).

Proof. Since Ĝ is discrete, and f 7→ χ◦f :C0(X,G)→ C0(X,T) is continuous, αX,G
is continuous. Its inverse morphism is given by ηG

(
α−1
X,G(ψ)(x)

)
(χ) = ψ(χ)(x)

for x ∈ X, and χ ∈ Ĝ. If A = Ĝ, then this morphism can be represented by
β: Hom

(
A,C0(X,T)

)
→ C0(X, Â), β(ψ)(x)(a) = ψ(a)(x). Since Â has the topol-

ogy of pointwise convergence and ψ 7→ ψ(a): Hom
(
A,C0(X,T)

)
→ C0(X,T) is

continuous, β and thus α−1
X,G is continuous.

Next we prove the following

Claim. For a compact abelian group G and any compact connected space X,
the identity component of Hom(Ĝ, C0(X,T)) is Hom

(
Ĝ, C0(X,T)0

)
and

Hom
(
Ĝ, C0(X,R)

)
→ Hom

(
Ĝ, C0(X,T)

)
→ Hom(Ĝ, [X,T])→ 0

is exact.

For a proof we recall from Proposition 8.50 that C0(X,T) = C0(X,T)0⊕B[X,T]
algebraically and topologically. Thus

Hom
(
Ĝ, C0(X,T)

) ∼= Hom
(
Ĝ, C0(X,T)0

)
⊕Hom(Ĝ, B[X,T])

algebraically and topologically. From 8.50 we know that q:R → T induces an
isomorphism C0(X,R) → C0(X,T). But Hom

(
Ĝ, C0(X,R)

)
is a real topologi-

cal vector space and thus is connected, and Hom(Ĝ, [X,T]) ⊆ [X,T]Ĝ is totally
disconnected. Then the assertions of the claim follow.

From the claim we get a commutative diagram

C0(X,G)0
(αX,G)0−−−−→ Hom

(
Ĝ, C0(X,T)0

)
incl

y yHom(Ĝ,incl)

C0(X,G)
αX,G−−−→ Hom

(
Ĝ, C0(X,T)

)
quot

y yHom(Ĝ,quot)

[X,G] −−−→
ρX,G

Hom(Ĝ, [X,T])
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in which ρX,G is induced upon passing to quotients. Since αX,G and (αX,G)0 are
isomorphisms, so is ρX,G. ut

Theorem 8.57 (Theorem on [T, G] and [G,T]). (i) Let G be a locally compact
abelian group. The composition of functions

Hom(T, G)
incl−−−→ C0(|T|, G)

quot−−−→ [|T|, G] = π1(G)

is an isomorphism; that is every homotopy class of continuous base point preserving
functions T → G contains exactly one homomorphism, adjoint to a morphism
Ĝ→ Z.

(ii) Assume that G is compact and connected. Then the composition of functions

Ĝ = Hom(G,T)
incl−−−→ C0(|G|,T)

quot−−−→ [|G|,T]

is an isomorphism; that is every homotopy class of continuous base point pre-
serving continuous functions G → T contains exactly one character of G and
C0(|G|,T) = Hom(|G|,T)⊕C0(|G|,T)0, algebraically and topologically, C0(|G|,T)0
∼= C0(|G|,R).

Proof. First we recall that G = E ⊕H with E ∼= Rn and H possessing a compact
open subgroup by the Vector Group Splitting Theorem 7.57. Then Hom(T, G) =
Hom(T, E) ⊕ Hom(T, H) and C0(X,G) = C0(X,E) ⊕ C0(X,H) for all pointed
topological spaces X. Also, the inclusion comp(G)0 → H induces an isomor-
phism Hom

(
T, comp(G)0

)
→ Hom(T, H) and, provided X is connected, also an

isomorphism C0

(
X, comp(G)0

)
→ C0(X,H). If X is connected, then [X,G] =

[X,E] ⊕ [X,H] = [X, comp(G)0]. Taking X = S1 we see that it is no loss of
generality to assume that G is compact connected which we will do from now on.

By 8.56 we have isomorphisms of topological groups

αX,G:C0(X,G)→ Hom
(
Ĝ, C0(X,T)

)
, αX,G(f)(χ)(x) = χ

(
f(x)

)
.

and

ρX,G: [X,G]→ Hom(Ĝ, [X,T]).

Now we let X = |T|. Then there is an injective morphism Φ:Z → C0(|T|,T),
Φ(n) = µn, µn(t) = n·t. Then the quotient map quot:C0(|T|,T)→ [|T|,T] gives an

isomorphism ϕ
def
= quot ◦Φ:Z→ [|T|,T], ϕ(n) = µn+C0(|T|,T)0, µn ∈ C0(|T|,T),

µn(t) = n·t (See Exercise E8.10.)

Let f :T→ G be a morphism. Then f̂ : Ĝ→ Z is given by f̂(χ) = n iff χf = µn.
Thus there is a commutative diagram

Hom(T, G)
incl−−−→ C0(|T|, G)

quot−−−→ [|T|, G]

f 7→f̂

y α|T|,G

y yρ|T|,G
Hom(Ĝ,Z)

Hom(Ĝ,Φ)−−−−−→ Hom
(
Ĝ, C0(|T|,T)

) Hom(Ĝ,quot)−−−−−−−→ Hom(Ĝ, [|T|,T]).
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Since ϕ = quot ◦ Φ is an isomorphism, the lower row represents an isomorphism.
Hence the top row represents an isomorphism, too. This completes the proof of
the first part.

(ii) We consider the natural inclusion map

incl: Ĝ = Hom(G,T)→ C0(|G|,T)

and the quotient map p:C0(|G|,T)→ [|G|,T]. The composition will be denoted

αG: Hom(G,T) = Ĝ→ [|G|,T], αG(χ) = χ+ C0(|G|,T).

If χ ∈ Ĝ is such that α(χ) = 0, then incl(χ) ∈ C0(|G|,T)0 by 8.50(ii). Thus there
is a χ̃:G → R with χ = q ◦ χ̃. Set ϕ(g1, g2) = χ̃(g1 + g2) − χ̃(g1) − χ̃(g2)

)
for

g1, g2 ∈ G. Then q
(
ϕ(g1, g2)

)
= 0; i.e. imϕ ⊆ ker q = Z. Thus ϕ:G × G → Z is

a continuous function of a connected space into a discrete space and is, therefore,
constant. Since all maps are base point preserving, its value is 0. Hence χ̃:G→ R
is a morphism. But G is compact and the only compact subgroup of R is {0}.
Hence χ̃ = 0 and, therefore, χ = 0. Thus im incl ∩ C0(|G|,R) = {0} and therefore
α is injective.

We must now show that αG is surjective. Now C0(|G|,R) is open in C0(|G|,T).
It therefore suffices to show that C0(|G|,T)0) + Hom(G,T) is dense in C0(|G|,T).
Let τN :G → G/N , N ∈ N ranges through all quotient morphisms of G onto Lie

groups. Further αTn : T̂n
∼=→ [|Tn|,T] is equivalent to αnT: T̂n → [|T|,T]n, and since

αT is an isomorphism by Exercise E8.10 we conclude that αTn is an isomorphism.
We consider the commutative diagram

̂̂
G/N

αG/N−−−→ [|G/N |,T]

τ̂N

y y[|τN |,T]

Ĝ −−−→
αG

[|G|,T].

Since G/N ∼= Tn for some n, and αTn is an isomorphism as we have just
observed, the top map is an isomorphism. Thus imαG contains the images of all
maps [|τN |,T]. Another way of saying this is⋃

N∈N
CN0 (|G|,T) ⊆ C0(|G|,T) + Hom(G,T).

By Lemma 8.54 we have

C0(|G|,T) =
⋃
N∈N

CN0 (|G|,T).

Hence C0(|G|,T) + Hom(G,T) is dense in C0(|G|,T) which we had to show. ut

Comparing 8.57(ii) with 8.50(ii) we observe that, in the case of X = |G| we do
have a canonical complement for C0(X,T)0 in C0(X,T).
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Theorem 8.58 (Torsion-Free Abelian Groups as [X,T]). Let A be a discrete
torsion-free abelian group. Then there is a compact connected topological space
X such that A ∼= [X,T]. The space X may be chosen to be the underlying space of
a compact abelian group, and in this class of spaces, X is uniquely determined by
[X,T] up to homeomorphism. In fact, if G is any compact connected abelian group

such that [|G|,T] ∼= A, then G ∼= Â.

Proof. We set G = Â and obtain a compact connected abelian group. Let X = |G|
denote the space underlying G. By 8.56 the composition

A ∼= Ĝ
incl−−−→ C0(X,T)

quot−−−→ [X,T]

is an isomorphism. Thus [X,T] ∼= A.
Let Y = |H| be a compact connected abelian group such that [Y,T] ∼= A.

Then Ĥ → C0(Y,T)→ [Y,T] is an isomorphism by 8.56. Hence Ĥ ∼= A ∼= Ĝ, and
therefore H ∼= G. ut

A compact connected abelian group is completely determined (up to isomor-
phism) by the topology of its underlying space as we shall formulate now. This
is in striking contrast with other categories, e.g. that of Banach spaces where
all infinite dimensional separable Banach spaces are homeomorphic ([23], p. 231,
Corollary 9.1).

Theorem 8.59. If compact connected abelian groups G1 and G2 are homeomorphic
then they are isomorphic as topological groups.

Proof. The abelian group [X,T] is a topological invariant of the compact connected
pointed space X. The assertion therefore follows from 8.58. ut

For example, an abelian topological group homeomorphic to a torus is a torus
of the same dimension.

Definition 8.60. For compact pointed spaces X and Y let X∧Y denote the space

(X × Y )/
(
(X × {y0}) ∪ ({x0} × Y )

)
,

with the class(X × {y0}) ∪ ({x0} × Y ) as base point. For a compact space Y , the
space S1∧Y is called the suspension ΣY of Y . (See e.g. [338], p. 41.) The recursive
definition Sn+1 = ΣSn, n = 0, 1, 2, . . . gives the sequence of the n-spheres, and we
define

πn(Y ) = [Sn, Y ], n = 0, 2, . . . . ut

For compact spaces X and Y , the function

F :C0(X ∧ Y,T)→ C0

(
X,C0(Y,T)

)
,

F (ϕ)(x)(y) = ϕ
(
class(x, y)

)
is a homeomorphism with inverse given by

F−1(f)
(
class(x, y)

)
= f(x)(y).
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Proposition 8.61. Let G be a compact abelian group. Then the following conclu-
sions hold.

(i) If X and Y are compact connected spaces, then [X ∧ Y,G] = 0.
(ii) [Σ(X), G] = {0} for every compact connected space X.

(iii) πn(G) = 0 for n = 2, 3, . . . .

Proof. (i) We note that for two compact connected pointed spaces X and Y the
group C0

(
X,C0(Y,T)

)
is naturally isomorphic to C0

(
X,C0(Y,R)

)
×C0(X, [Y,T]) ∼=

C0

(
X,C0(Y,R)

)
since [Y,T] is discrete by Proposition 2.92 and X is connected.

This group is a topological R-vector space and is, therefore, contractible.
Hence C0(X ∧ Y,T) is a real topological vector space and

thus [X ∧ Y,T] = C0(X ∧ Y,T)/C0(X ∧ Y,T)0 = {0}.
By 8.60(ii) we then have [X ∧ Y,G] ∼= Hom(Ĝ, [X ∧ Y,T]) = {0}.
(ii) As Σ(X) = S1 ∧X, part (ii) is a special case of (i).
(iii) For n = 2, 3, . . . we have Sn = Σ(Sn−1). Thus (iii) is a special case of (ii).ut

Exponential Function and Homotopy

The Exponential Function and Homotopy

Theorem 8.62. (i) For every locally compact abelian group G there is an exact
sequence of abelian groups

0→ π1(G)→ L(G)
expG−−−→ G→ π0(G)→ 0.

(ii) If G is compact, then there are natural isomorphisms

πn(G) ∼=

Ext(Ĝ,Z), for n = 0,

Hom(Ĝ,Z), for n = 1,
0, for n ≥ 2.

If G is locally compact, this formula remains intact for n ≥ 1, and if G/G0 is
compact it remains also intact for n = 0.

Proof. For all locally compact abelian groups, the exactness of the sequence

0→ Hom(T, G)→ L(G)
exp−→ G→ π0(G)→ 0

(with π0(G) ∼= Ext((compG)̂,Z) if G/G0 is compact) was established in 7.66
and 8.30. By the Vector Group Splitting Theorem 7.57 we have G = E ⊕H such
that E ∼= Rn and H has an open compact subgroup. Then for each compact con-
nected pointed space X one gets [X,G] = [X,E] ⊕ [X,H] = [X, comp(G)0] =
Hom((comp(G)0)̂, [X,T]). From 8.57 and 8.61(iii) we now get the homotopy
groups as claimed. ut
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This theorem complements information on the exponential function of locally
compact abelian groups given in Theorems 7.66, 8.30, and 8.41.

Notice, in particular, that the fundamental group π1(G) ∼= Hom(Ĝ,Z) of a
locally compact abelian group G is always torsion-free and agrees with the funda-
mental group of the maximal connected compact subgroup. In fact more is true:
the entire homotopy of G is supported by torG. Notice that G/torG is the largest
torsion-free quotient of G.

Corollary 8.63. If G is a compact connected abelian group, then the inclusion
torG→ G induces an isomorphism π1(torG)→ π1(G).

Proof. A divisible element of Ĝ must have a trivial image in Z under any mor-
phism Ĝ → Z. Hence the quotient map Ĝ → Ĝ/Div(Ĝ) induces an isomorphism

Hom(Ĝ/Div(Ĝ),Z) → Hom(Ĝ,Z). By Propositions 8.2(i) and 8.3(ii), we know
torG = (DIVG)⊥ = (DivG)⊥ and by the Annihilator Mechanism 7.64, accord-

ingly (torG)̂ ∼= Ĝ/Div(Ĝ). Then the corollary follows from Theorem 8.62. ut

Naturally, the question arises: Which abelian groups are of the form Hom(A,Z)
for a discrete abelian group A which we may assume to be torsion free? The entire
last chapter of the book by Eklof and Mekler [99] (Chapter 14, “Dual Groups,”
pp. 420–452 is devoted to this issue.

The Fine Structure of Free Compact Abelian Groups

A free compact abelian group over a space X arises from dualizing the exact
sequence

(9) 0→ C0(X,Z)d
C0(X,j)−−−−→ C0(X,R)d

C0(X,q)−−−−→ C0(X,T)d
quot−−−→ [X,T]→ 0

where all groups are equipped with the discrete topology.
As the group Z is discrete, any function f ∈ C0(X,Z) is locally constant.

Definition 8.64. Let A denote an abelian group. For any pointed topological
space X we set

H̃0(X,A) = C0(X,Ad)d,

the group of locally constant basepoint preserving functions into A with pointwise
addition. ut

In algebraic topology, C0(X,Z)d is denoted H̃0(X,Z) and called the zeroth
reduced Čech cohomology group. (See [338], p. 168, p. 309.) In the light of an
earlier remark, we may rewrite (9) as

(10) 0→ H̃0(X,Z)→ C0(X,R)d → C0(X,T)d → H1(X,Z)→ 0.

For the following we define the reduced weight w0(Y ) of a topological space to
be the weight w(Y ) if w(Y ) is infinite and w(Y )− 1 if w(Y ) is finite.
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Lemma 8.65. For any nonsingleton compact space X,

C0(X,R)d
C0(X,Z)d

∼= H̃0(X,Q/Z)⊕Q(w(X)ℵ0 ),

H̃0(X,Q/Z) =
⊕

p prime

Z(p∞)(w0(X/conn)),

where X/conn is the totally disconnected compact space of connected components,
and

card[X,T]ℵ0 ≤ w(X)ℵ0 .

Proof. The abelian group D
def
= C0(X,R)d

C0(X,Z)d
is a homomorphic image of a divisible

group and is, therefore, divisible. By the Structure Theorem for Divisible Groups
A1.42 we know that

D = QrankD ⊕
⊕

p prime

Z(p∞)rankp(D).

We have to determine the ranks of D.
First we identify the torsion group torD. From 8.1 recall that D[n] =

{d ∈ D | n·d = 0}. Now an element f + C0(X,Z) ∈ D[n] iff n·f ∈ C0(X,Z)
iff f ∈ C0

(
X, 1

nZ
)
. We again write C(n) =

(
1
nZ
)
/Z and conclude

D[n] ∼= C0

(
X,C(n)

)
.

It follows that

torD =
⋃
n∈N

D[n] ∼=
⋃
n∈N

C0

(
X,C(n)

)
= C0(X, (Q/Z)d) = H̃0(X,Q/Z).

The p-primary component Dp is C0

(
X,Z(p∞)

)
= H̃0(X,Z(p∞). It remains to

determine the ranks.
Now rank(D) = dimQ Q⊗D. The exact sequence

0→ C0(X,Z)→ C0(X,R)→ D → 0

remains exact when it is tensored with Q by A1.45(v):

0→ Q⊗ C0(X,Z)→ Q⊗ C0(X,R)→ Q⊗D → 0.

As C0(X,R) is a Q-vector space, Q⊗ C0(X,R) ∼= C0(X,R). Since all elements in
C0(X,Z) are locally constant and thus take finitely many values, Q⊗C0(X,Z) ∼=
C0(X,Qd), and Q⊗ C0(X, inclZ→R) = C0(X, inclQ→R). Thus

Q⊗D ∼=
C0(X,R)

C0(X,Qd)
.

By A4.9, cardC0(X,R) = w(X)ℵ0 and

cardC0(X,Qd) =

{
ℵn0 = ℵ0 if card(X/conn) = n+ 1,
w(X/conn) if card(X/conn) is infinite.
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Thus card(Q ⊗ D) = w(X)ℵ0 . For infinite dimensional rational vector spaces di-
mension and cardinality agree. Thus this cardinal is rankD.

Now let p be a prime number. Then rankpD is the GF(p)-dimension of the
socle of C0(X,Z(p∞)d) ∼= C0(X/conn,Z(p∞)d). By A4.9 again,

cardC0(X,Z(p∞)d) =

{
ℵn0 = ℵ0 if card(X/conn)X = n+ 1,
w(X/conn) if card(X/conn) is infinite.

We conclude

rankp(D) = w0(X/conn).

Finally, [X,T] is a quotient group of C0(X,T). Thus

card[X,T] ≤ cardC0(X,T) = w(X)ℵ0

by A4.9. The desired estimate then follows. ut

Corollary 8.66. Let X be a nonsingleton compact pointed space. Then

C0(X,T)d = Q(w(X)ℵ0 ) ⊕
⊕

p prime

Z(p∞)(w0(X/conn)) ⊕ [X,T].

Proof. We have C0(X,T) ∼= C0(X,R)
C0(X,Z) ⊕ [X,T] by 8.50. Then 8.65 proves the claim.

ut

The Structure of Free Compact Abelian Groups

Theorem 8.67. Let X be a nonsingleton compact space. Then

F (X) ∼= Q̂w(X)ℵ0 ×
∏

p prime

Zw0(X/conn)
p × [X,T]̂.

Proof. This follows at once from 8.66. ut

As an example, F (S1) ∼= Q̂2ℵ0 × T. This group contains a circle group which
is not a free compact abelian group. Thus not all closed subgroups or even closed
connected subgroups of a free compact abelian group are free compact abelian
groups. But we shall see that the identity component of a free compact abelian
group is a free compact abelian group (8.72).

Theorem 8.67 shows, in particular, that for a nonsingleton compact pointed
space X the weight of the free compact abelian group F (X) is at least 2ℵ0 and so

F (X) is not metrizable by 8.43. Also, cardF (X) ≥ 2(2ℵ0 ).
If X is a connected compact pointed spaces which is cohomologically trivial in

dimension one, i.e. satisfies [X,T] = {0} then

F (X) ∼= Q̂w(X)ℵ0
.
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Thus in such a case, the structure of F (X) is completely determined by the weight
of X. So the free compact abelian groups over [0, 1]n, n = 1, 2, . . . , ω, or over Sn,
n = 2, 3, . . . are all isomorphic as topological groups.

Exercise E8.12. Determine those compact connected torsion-free abelian groups
G for which G ∼= F (|G|). Show that there is a proper class with this property. ut

For compact pointed spaces X and Y let X t Y denote (X ∪̇ Y )/{x0, y0}, the
disjoint sum space with base points glued together.

Lemma 8.68. For compact pointed spaces X and Y the relation

F (X t Y ) = F (X)× F (Y )

holds.

Proof. Exercise E8.13. ut

Exercise E8.13. Prove 8.68.

[Hint. One way to prove the assertion is to observe, that finite products in the
category of compact abelian groups are finite coproducts (with appropriate def-
inition of coprojections) and that left adjoint functors preserve coproducts. (See
Appendix 3, A3.52.)]

Exercise E8.14. Prove the following statement:

If X is a compact totally disconnected space, then [X,T] = 0.

[Hint. We must show that every base point preserving continuous function f :X →
T lifts across q:R → T. (See Appendix 2 for liftings and covering maps.) The
pull-back

E
f ′−−−→ R

p

y yq
X

f−−−→ T
gives a covering p:E → X. Cover X by finitely many disjoint open sets over each
of which the covering is trivial. Use this to construct a continuous cross section

s:X → E for p. Then F
def
= f ′ ◦ s is the required lifting.] ut

The Freeness Criterion

Theorem 8.69. Let G be a compact abelian group and write Ĝ = D ⊕ A with
D = div Ĝ and a reduced group A. Then the following statements are equivalent:

(i) G is free; i.e. there is a compact space X such that G ∼= F (X).
(ii) The following conditions are satisfied:

(a) A is torsion-free,
(b) the cardinals rankpD agree for all primes,
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(c) (rankD)ℵ0 = rankD, and
(d) max{rank2D, (cardA)ℵ0} ≤ rankD.

Proof. Assume G ∼= F (X) for a compact space X. By Theorem 8.67 we have

G ∼= Q̂w(X)ℵ0 ×
∏

p prime

Zw0(X/conn)
p × [X,T]̂.

Then

D ∼= Q(w(X)ℵ0 ) ⊕
⊕

p prime

Z(p∞)(w0(X/conn)) ⊕ div[X,T]

and A ∼= [X,T]/div[X,T]. Then (a) follows from 8.50(ii) and the fact that div[X,T]
is direct summand of [X,T]. Next, (b) follows from rankpD = w0(X/conn) for all p,

and since (rankD)ℵ0 =
(
w(X)ℵ0

)ℵ0
= w(X)ℵ0 = rankD, we have (c). By 8.65(iii)

we know (card[X,T])ℵ0 ≤ w(X)ℵ0 ≤ rankD; then a fortiori (cardA)ℵ0 ≤ rankD,
and so (d) holds.

Conversely assume that (ii) holds. Let

Y =

{
{0, 1, . . . , rank2D} if rank2D is finite,
{0, 1}rank2(D) otherwise

where we consider {0, . . . rank2D} as a discrete space with base point 0. We define

X = [0, 1]rankD t Y t |Â|. Then F (X) ∼= F ([0, 1]rankD)× F (Y )× F (|Â|) by 8.68.

Since K
def
= [0, 1]rankD is a contractible space of weight max{ℵ0, rankD} (see

EA4.3) we have

F̂ (K) ∼= C0(K,T)d ∼= C0(K,R)d ∼= Q(w(K)ℵ0 )

= Q(max{ℵ0
ℵ0 ,(rankD)ℵ0}) = Q(rankD)

because of (c), and thus 2 ≤ rankD.
Similarly, Y is a totally disconnected compact space of weight rank2D. By

E8.14 the group [Y,T] is singleton. Thus F̂ (Y ) =

C0(Y,T) = Q(w(Y )ℵ0 ) ⊕
⊕

p prime

Z(p∞)(w0(Y )) = Q(rank2 D) ⊕
⊕

p prime

Z(p∞)(rank2 D).

Finally, since A is torsion-free and thus Â is connected, we have F (|Â|)̂ =

C0(|Â|,T) = Hom(Â,T) ⊕ C0(|A|,T)0
∼= A ⊕ C0(|A|,R) = A ⊕ Q(w(Â)ℵ0 ) = A ⊕

Q
(

(cardA)ℵ0

)
using 8.57(ii) and 7.76(ii).

Putting things together we have

F (X)̂ = Q(a) ⊕
⊕

p prime

Z(p∞)rank2 D ⊕A,

where

(11) a = rankD + rank2D + (cardA)ℵ0 ,
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By (d) we conclude a = rankD. But then Ĝ ∼= F̂ (X) and thus G ∼= F (X). ut

We note that freeness of compact abelian groups is not guaranteed by a linear
independence condition as in the case of abelian groups; it is an existence problem
and is, therefore, more complicated.

Corollary 8.70. Let G be a compact abelian group and assume G ∼= F (X) for
some compact pointed space X. Then the following conditions are equivalent:

(i) X is connected.
(ii) G is connected.

Proof. (i)⇒(ii) If X is connected, then C0(X,T) ∼= C0(X,R)⊕ [X,T] by 8.50(iii)
and thus the abelian group C0(X,T)d is torsion-free. Hence its character group
F (X) is connected.

(ii)⇒(i) If G is connected, then the character group C0(X,T)d of F (X) ∼= G
is torsion-free. Hence w0(X/conn) = 0 by 8.67. Hence X is connected. ut

For compact and connected abelian groups it is easier to recognize freeness. The
following is a direct consequence of 8.69 and the fact that G is connected iff Ĝ is
torsion-free.

Corollary 8.71. A compact connected abelian group G is a free compact abelian
group if and only if the maximal divisible subgroup div Ĝ has infinite cardinality ℵ
satisfying ℵℵ0 = ℵ and if card(Ĝ/div Ĝ) ≤ ℵ. ut

Corollary 8.72. The identity component of a free compact abelian group is a free
compact abelian group. ut

Also, the following result is readily proved from the main theorem:

Corollary 8.73. If G is a free compact abelian group, then G/tor(G) is a free
compact abelian group.

Proof. We recall that the annihilator of tor(G) in Ĝ is div Ĝ (see 8.4(8)). By the

Annihilator Mechanism 7.64, the character group of G1
def
= G/torG is div Ĝ. Now

D = div Ĝ satisfies the conditions (a)–(d) of 8.69(ii). But D1
def
= div

(
Ĝ1

)
and

Ĝ1 = D1 ⊕ A1, then D1
∼= D and A1 = {0}. Thus Ĝ1 satisfies (a)–(d) of 8.69(ii).

Hence G1 is a free compact abelian group by 8.69. ut

If we apply Theorem 8.62 to G = F (X) we get the canonical exact sequence

0→ π1

(
F (X)

)
→ L

(
F (X)

)expF (X)−−−−→F (X)→ π0

(
F (X)

)
→ 0.

The following proposition clarifies the entries in this sequence.

Proposition 8.74. Let X be a compact pointed space. Then
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(i) L
(
F (X)

) ∼= Hom(C0(X,T),R) and L′
(
F (X)

) ∼= C0(X,R)
C0(X,Qd) ⊕ (Q⊗ [X,T]).

(ii) K
(
F (X)

)
= ker expF (X)

∼= π1

(
F (X)

) ∼= Hom([X,T],Z).

(iii) π0

(
F (X)

)
= F (X)/F (X)a = Ext

(
C0(X,T),Z

)
∼= Qw(X)ℵ0 ⊕

∏
p prime Z

w0(X/conn)
p ⊕ Ext([X,T],Z).

Proof. (i) We compute L
(
F (X)

)
= Hom

(
R, F (X)

) ∼= Hom(C0(X,T), R) since
F (X) and C0(X,T) are character groups of each other. From 7.66 we know that
the dual L′

(
F (X)

)
of L

(
F (X)

)
is Q⊗C0(X,T). Since tensoring with Q preserves

exactness,we have an exact sequence

0→ Q⊗ C0(X,Z)→ Q⊗ C0(X,R)→ Q⊗ C0(X,T)→ Q⊗ [X,T]→ 0.

We have noted earlier that Q ⊗ C0(X,Z) ∼= C0(X,Qd) and Q ⊗ C0(X,R) ∼=
C0(X,R). Thus the kernel of Q ⊗ C0(X,T) → Q ⊗ [X,T] is C0(X,R)

C0(X,Qd) . The di-

rect sum C0(X,T) = C0(X,T)0 ⊕ B[X,T] gives a direct sum Q ⊗ C0(X,T) =(
Q⊗ C0(X,T)0

)
⊕
(
Q⊗ [X,T]

)
. We conclude that Q⊗ C0(X,T)0

∼= C0(X,R)
C0(X,Qd) .

(iii) If A is any abelian torsion group, then Hom(A,R) = 0 and thus the

sequence 0→ Hom(A,T)→ Ext(A,Z)→ 0 is exact and shows that Â ∼= Ext(A,Z)
algebraically. The group Hom(Q,Q/Z) is torsion-free and divisible, hence a Q-
vector space. Because of Q/Z =

⊕
p′ Z(p∞) its cardinality is 2ℵ0 and then so

is its dimension. The group Hom(Q,Q) is isomorphic to Q. The exact sequence
Hom(Q,Q) → Hom(Q,Q/Z) → Ext(Q,Z) → 0 then shows that Ext(Q,Z) ∼=
Q2ℵ0 ∼= Qℵ0 . The functor Hom(−, A) on the category of abelian groups transforms
direct sums into direct products. The exact sequence

0→ Hom(−,Z)→ Hom(−,R)→ Hom(−,T)→ Ext(−,Z)→ 0

then shows that Ext(−,Z) transforms direct sums into direct products. The for-

mula C0(X,T) = Q(w(X)ℵ0 )⊕
⊕

p prime Z(p∞)

(
w0(X/conn)

)
⊕ [X,T] from 8.66 then

proves the claim in view of Ext(Q,Z) ∼= Qℵ0 and Ext(Z(p∞),Z) ∼= Zp.

Example 8.75. Let X = {x0, x}, x 6= x0. Then C0(X,T)d = Td, F (X) = T̂d. The

morphism ι:Z → F (X) = (Ẑ)d̂, ι(n)(χ) = χ(n), i.e. the adjoint of the identity
morphism Td → T is a dense injection. Note that ι(1) = εX(x).

The group F (X) has weight cardT = 2ℵ0 . Thus F (X) is not metric. (In fact
no nontrivial free compact group is metric as we observed in a comment following
Theorem 8.67.) On the other hand, since ι(Z) = 〈ι(1)〉 is dense, F (X) is separable.

A compact abelian group contains a dense cyclic group if and only if its charac-
ter group can be homomorphically injected into the circle group Td. A torsion-free

abelian group can be embedded into Td ∼= Q/Z ⊕ Q(2ℵ0 ) if and only if and only
if its rank does not exceed the cardinality of the continuum. Hence a compact
connected abelian group is topologically generated by one element if and only if
its weight does not exceed 2ℵ0 . ut
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F ({x0, x})) is also called the universal monothetic compact group. Its homo-
morphic images are called monothetic compact groups.

Part 4: Aspects of Homological Algebra

Injective, Projective, and Free Compact Abelian Groups

In many categories relevant for homological algebra—such as the category of
abelian groups—projective and injective objects play an important role. We have
formulated and worked with these concepts in the category of discrete abelian
groups in Appendix 1. We proceed to introduce the corresponding ideas for the
category of compact abelian groups.

Definitions 8.76. (a) A compact abelian group I is called injective if for any
injective morphism of compact abelian groups f :A → B and each morphism
j:A → I of compact abelian groups there is a morphism j′:B → I such that
j = j′f .

I
idI−−−→ I

j

x xj′
A −−−→

f
B

(b) A compact abelian group P is called projective if for any surjective mor-
phism of compact abelian groups f :A → B and each morphism p:P → B of
compact abelian groups there is a morphism p′:P → A such that p = fp′.

P
idP−−−→ P

p′
y yp
A −−−→

f
B ut

Lemma 8.77. Let f :G → H denote a morphism of compact abelian groups and
f̂ : Ĥ → Ĝ its adjoint. Then f is injective if and only if f̂ is surjective and f is
surjective if and only if f̂ is injective.

Proof. This follows at once from Proposition 7.65, since in the categories of discrete
and of compact abelian groups im f̂ and im f , respectively, are closed. ut

After this lemma it is clear that projectivity and injectivity in the categories
of discrete abelian groups and compact abelian groups are dual properties.

Characterizations of injective objects and projective objects in the category of
compact abelian groups are now readily available via duality:

Theorem 8.78 (Projective and Injective Compact Abelian Groups). (i) A compact
abelian group is projective if and only if it is torsion free if and only if it is of the
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form Q̂X×
∏
p∈P ZXpp for the set P of prime numbers and suitable sets X and Xp,

p ∈ P. In particular, a compact connected abelian group is projective if and only
if it is isomorphic to Q̂X for some set X.

(ii) A compact abelian group is injective if and only if it is a torus, i.e. is
isomorphic to TX for some set X.

Proof. (i) A compact abelian group G is projective if and only if its character

group Ĝ is injective, as follows readily from the definition and the duality of
the category of compact abelian groups and that of discrete abelian groups. By
Proposition A1.35, Ĝ is injective if and only if it is divisible. This is the case if
and only if G is torsion-free and is of the form asserted.

(ii) A compact abelian group G is injective if and only if its character group

Ĝ is projective. This is the case if and only if Ĝ is free abelian in view of Propo-
sition A1.14; that is if and only if there is a set X such that Ĝ ∼= Z(X) by Propo-
sition A1.6. Duality implies that this is the case if and only if G ∼= TX . ut

In the category of discrete abelian groups, an object is free if and only if it
is projective. This is not generally the case in the category of compact abelian
groups. It depends on topological properties of the space X whether it is true or
not.

Proposition 8.79. Let X be any pointed topological space. Then the free compact
abelian group F (X) is projective if and only if [X,T] is divisible.

Proof. We have seen in 8.78(i) that a compact abelian group G is projective if
and only if its character group is divisible. The character group of a free com-
pact abelian group F (X) over a compact space X is (C0(X,T)0)d ⊕ B[X,T] by
Proposition 8.50(i) and Theorem 8.53. Hence the maximal divisible subgroup of
this group is div

(
C0(X,T)d

)
= (C0(X,T)0)d⊕div[X,T]. Thus F (X) is projective

if and only if [X,T] is divisible. ut

Recall for a better understanding of this fact that [X,T] ∼= H1(X,Z) if X is
paracompact.

Exercise E8.15(i). Show that F (S1) is not projective. ut

We note that the group [X,T] is certainly divisible if it is zero, and this, in
turn, is certainly the case if X is contractible. Thus for all cubes C = [0, 1]J the
group F (C) is projective.

Definitions 8.80. For a compact abelian group G we define

P(G) = (Q⊗ Ĝ)̂.
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The exact sequence

(1) 0→ tor Ĝ
incl−−−→ Ĝ

ι
Ĝ−−−→ Q⊗ Ĝ→ T → 0, T =

Q⊗ Ĝ
1⊗ Ĝ

,

where ιA:A→ Q⊗A is given by ιA(a) = 1⊗ a, and where T is a divisible torsion
group, gives rise to a dual exact sequence of compact abelian groups

(2) 0→ ∆(G)
incl−−−→ P(G)

EG−−−→ G
quot−−−→ G/G0 → 0,

with the adjoint EG:P(G) → G of ι
Ĝ

: Ĝ → Q ⊗ Ĝ, is called the characteristic
sequence of G. We shall also call P(G) the projective cover of G and EG the
projective covering morphism. ut

Since the character group Q⊗Ĝ of P(G) is divisible and torsion-free, P(G) is a
torsion-free projective compact abelian group. We record that ∆(G), as the charac-

ter group of T and annihilator in P(G) = (Q⊗Ĝ)̂ of 1⊗Ĝ, is a torsion-free totally
disconnected subgroup of P(G). In view of 8.8, it is of the form

∏
p prime ∆p(G)

where ∆p(G) ∼= Zrpp where rp = rankp T .
We also point out that the projective covering morphism EG:P(G)→ G is not

a covering map in the sense of Appendix 2 because its kernel ∆(G) is never discrete
unless G is torsion-free projective (in which case it is singleton). It is, however,
totally disconnected. Secondly, EG is surjective if and only if G is connected. In
that case,

0→ ∆(G)→ P(G)→ G→ 0

is what in homological algebra is called a projective resolution in the category of
compact abelian groups, and it is a canonical one.

Exercise E8.15(ii). Prove the following statement:

Proposition. Every element in a compact connected abelian group is contained
in a connected compact monothetic subgroup.

[Hint. Let G be a compact connected abelian group and let g ∈ G. Since G is
connected, EG:P(G) → G is surjective. Thus we find an x ∈ P(G) such that
EG(x) = g. Since P(G), having a torsion-free and divisible character group, is a
divisible and torsion free abelian group, the smallest pure subgroup

[x] = {y ∈ P(G) : (∃n ∈ N)n·y ∈ 〈x〉}

containing x (see Proposition A1.25) is isomorphic to Q. Then [x] is divisible as
well (see Theorem 8.4) and hence is connected by 8.4. Since its density is ℵ0 we
know from Theorem 12.25 below that it is monothetic. Therefore EG([x]) is a
compact connected monothetic group containing g = EG(x).] ut
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The projective cover P(G) is, algebraically, a Q-vector space. We point out a
certain parallel of the characteristic sequence to the exponential sequence

0 → ∆(G)
incl−−−→ P(G)

EG−−−→ G → G/G0 → 0,

0 → K(G)
incl−−−→ L(G)

expG−−−→ G → G/Ga → 0.

Here L(G) is a weakly complete topological R-vector space, K(G) ∼= Hom(Ĝ,Z)
is a totally disconnected subgroup algebraically isomorphic to π1(G), which is the

annihilator in L(G) of the subgroup 1 ⊗ Ĝ of its dual R ⊗ Ĝ (in the finest lo-

cally convex topology). Also 0 → Z → Q → Q/Z → 0 yields Ĝ ∼= Z ⊗ Ĝ →
Q ⊗ Ĝ → (Q/Z) ⊗ Ĝ → 0 exact, whence ∆̂(G) ∼= T ∼= (Q/Z) ⊗ Ĝ. Then

∆(G) ∼= Hom
(
(Q/Z) ⊗ Ĝ,T) ∼= Hom(Q/Z,Hom(Ĝ,T)) = Hom(Q/Z, G) which

again illustrates a certain parallel to K(G) ∼= Hom(T, G) ∼= π1(G) (algebraically).
Further, the cokernel of expG is G/Ga, the quotient group modulo the arc com-
ponent.

Proposition 8.81. Let G be a compact abelian group. Then

L(EG):L
(
P(G)

)
→ L(G)

is an isomorphism, expP(G):L
(
P(G)

)
→ P(G) is injective, and π0

(
P(G)

) ∼=
Ext(Q⊗ Ĝ,Z) ∼= Qℵ0· rank Ĝ. In particular, there is an exact sequence

0→ L(G)→ P(G)→ Qℵ0· rank Ĝ → 0.

Also, there are isomorphisms

L(G) ∼= RdimG and P(G) ∼= Q̂dimG.

Proof. We recall from 7.66 the natural isomorphism eG:L(G) = Hom(R, G) →
Hom(Ĝ,R), eG(X)(χ) = L(χ)(X) ∈ R = L(T). Then there is a commutative
diagram

L(P(G)
) L(EG)−−−→ L(G)

eP(G)

y yeG
Hom(Q⊗ Ĝ,R)

Hom(ι
Ĝ
,R)

−−−−−−→ Hom(Ĝ,R),

where P̂(G) and Q⊗ Ĝ are identified via duality. Since Hom(ι
Ĝ
,R) is an isomor-

phism of topological vector spaces, so is L(EG).

The kernel of expP(G):L
(
P(G)

)
→ P(G) is isomorphic to Hom(Q ⊗ Ĝ,Z)

by 7.66. But this last group is zero since Q ⊗ Ĝ is divisible. Hence expP(G) is

injective. From Theorem 8.30 we know that the cokernel of expP(G) is π0

(
P(G)

) ∼=
Ext(Q ⊗ Ĝ,Z). Now rank Ĝ = dimQ(Q ⊗ Ĝ) and thus Q ⊗ Ĝ ∼= Q(rank Ĝ). But
Ext(−,Z) transforms direct sums into direct products. (Cf. proof of 8.74.) Also

recall that Ext(Q,Z) ∼= Q2ℵ0
= Qℵ0 . Thus Ext(Q ⊗ Ĝ,Z) ∼= Ext(Q,Z)rank Ĝ =

(Qℵ0)rank Ĝ = Qℵ0· rank Ĝ.
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Finally, L(G) ∼= Hom(Ĝ, R) ∼= Rrank Ĝ = RdimG in view of Theorem 7.66 and

Definition 8.23. Likewise, P(G) = (Q⊗ Ĝ)̂ ∼= (Q(rank Ĝ))̂ ∼= Q̂rank Ĝ = QdimG. ut

Let X be a compact connected pointed space. Then

C0(X,T)d = (C0(X,T)0)d ⊕B[X,T]

and the group underlying the component is isomorphic to (C0(X,R)0)d and ten-
soring with Q produces an isomorphic group. Thus we get an exact sequence

0→ C0(X,T)d
ι−−−→ Q⊗ C0(X,T)d →

Q⊗ [X,T]

1⊗ [X,T]
→ 0

where 1⊗ [X,T] ∼= [X,T] since [X,T] is torsion-free.

Proposition 8.82. Let X be a compact connected pointed space. Then the char-
acteristic sequence of F (X) is

0→ ∆
(
F (X)

)
→ P

(
F (X)

) EG−−−→ F (X)→ 0,

and the character group of ∆
(
F (X)

)
is given by the exact sequence

0→ [X,T]
ι[X,T]−−−→ Q⊗ [X,T]→ ∆

(
F (X)

)̂ → 0. ut

This gives, in the case of a connected compact pointed space X, a projective
resolution of F (X) which illustrates once again how far, in general, the free com-
pact abelian group F (X) is from being projective, i.e. from the projective covering
morphism EG being an isomorphism.

Part 5: Aspects of Algebraic Topology—Cohomology

Cohomology of Compact Abelian Groups

We use in this section firstly the cohomology groups of compact spaces in the sense
of Čech, Alexander and Wallace. (Cf. e.g. [338].) We have noted before that for a
compact space X we have H0(X,Z) ∼= C(X,Z) and H1(X,Z) ∼= [X,T].

Let G be a compact abelian group and set X = |G|. Then H0(X,Z) ∼=
C(|G/G0|,Z) is the group of locally constant Z-valued functions on X = |G|.
By 8.58 we know that for connected G we have H1(X,Z) ∼= Ĝ. If X is a totally
disconnected compact space, then H0(X,Z) = C(X,Z), the commutative ring of
continuous functions from the space X into the discrete group Z. (See [338], p. 168,
p. 309. This is consistent with what we said in 8.64.) Notice that due to the dis-
creteness of Z a function X → Z is continuous if and only if it is locally constant.
A Hopf algebra (see Appendix 3, A3.65) is a commutative ring R endowed with
a coassociative ring morphism R → R ⊗ R and a coidentity R → Z (where the
coassociativity and coidentity properties are obtained from the diagrams defining
associativity and the identity property by reversing arrows; see also [198] or [338]).
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The exterior algebra
∧
A over an abelian group is a Hopf algebra in a natural fash-

ion due to a natural isomorphism
∧

(A⊕B)→ (
∧
A)⊗ (

∧
B) and the morphism

of graded rings
∧
A→

∧
(A⊕A) induced by the diagonal morphism A→ A⊕A.

(In fact, a Hopf algebra has more structure. It is a group object in the monoidal
symmetric category (AB,⊗); but it would lead us too far at this point to go into
these details.) For a compact spaces X, Y , the Künneth Theorem (see [338]), for
any commutative ring R provides an exact sequence

0→ H∗(X,R)⊗H∗(Y,R)
αXY−−−→ H∗(X × Y,R)

→ Tor
(
H∗(X,R), H∗(Y,R)

)
→ 0,

with a natural injective morphism αXY of graded abelian groups. If G is a compact
group, then from the diagram

G
d→ G×G m→ G

with the diagonal map d and the multiplication map m, by applying the con-
travariant functor H∗(·, R), we obtain a diagram

H∗(G,R)
H∗(m,R)−−−−−→ H∗(G×G,R)

H∗(d,R)−−−−→ H∗(G,R).

The morphism αGG ◦ H∗(d,R):H∗(G,R) ⊗ H∗(G,R) → H∗(G,R) endows the
abelian group H∗(G,R) with the structure of a graded ring. (The group structure
of G is not needed for this insight; this maintains for every compact space G.) If
Tor

(
H∗(G,R), H∗(G,R)

)
= {0} (which is the case e.g. if R is a field) then αGG is

an isomorphism, and α−1
GG ◦H∗(m,R):H∗(G,R)→ H∗(G,R)⊗H∗(G,R) endows

H∗(G,R) with the structure of a Hopf algebra. We shall prove in this section the
following result.

The Space Cohomology of Compact Connected Abelian Groups

Theorem 8.83. Let X be the underlying space of a compact connected abelian
group G. Then H∗(X,Z) ∼=

∧
Ĝ as graded Hopf algebras.

Proof. The proof will require some basic category theory and some cohomology
theory. A discussion of this topic is found in greater detail in [198]. We prove
this assertion by a functorial argument. (The reader may consult [198] for further
references.) We consider the category ABtf of torsion-free abelian groups, and the
category AB∗ of graded abelian groups A0⊕A1⊕A2⊕· · · and gradation preserving
morphisms of abelian groups. If H is a compact group then |H| denotes the space
underlying H. We consider two functors Fj :ABtf → AB∗, j = 1, 2 given by

F1(A) = H∗(|Â|,Z),

F2(A) =
∧
A.

We proceed through several steps.

Step 1. F1(Z) ∼= F2(Z). Indeed |Ẑ| ∼= S1, whence

F1(Z) = H∗(S1,Z) = H0(S1,Z)⊕H1(S1,Z) = Z⊕ Z
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in view of H∗(S1,Z) ∼= [S1,T] = π1(S1) = Z. On the other hand, F2(Z) =
∧0 Z⊕∧1 Z = Z⊕ Z since rankZ = 1.

Step 2. Both F1 and F2 preserve directed colimits. The functor X 7→ H∗(X,Z)
from the category of compact spaces and continuous maps to the category of
graded abelian groups transforms projective limits of compact spaces into direct
limits of graded abelian groups; this a fundamental property of Čech cohomology
(see [338]). From this fact and the definition of F1 we get the assertion for F1.

The functor
∧

:AB→ AR from the category of abelian groups into the category
of graded anticommutative rings is left adjoint to the grounding functor R =
R0⊕R1⊕R2⊕· · · 7→ R1, i.e. AB(A,R1) ∼= AR(

∧
A,R) (cf. Appendix 3, A3.29ff.).

Since left adjoints preserve colimits (see A3.52), the functor
∧

preserves colimits.
The inclusion functor ABtf → AB and the forgetful functor AR → AB∗ preserve
directed colimits. Hence F2 preserved directed colimits.

Step 3. Both functors F1 and F2 transform ⊕ into ⊗. If A and B are (discrete)

abelian groups, then (A ⊕ B)̂ ∼= Â × B̂, naturally. If B ∼= Z, then F1(B) =

H∗(|B̂|,Z) = H∗(S1,Z) = Z ⊕ Z is torsion-free. Hence Tor
(
R,H∗(|B̂|,Z)

)
=

{0} for any graded abelian group R. Hence α|Â|,|B̂|:H
∗(|Â|,Z) ⊗ H∗(|B̂|,Z) →

H∗(|Â× B̂|,Z) is an isomorphism. Since the tensor product of torsion-free groups

is torsion-free, H∗(|Â × B̂|,Z) = F1(A ⊕ B) is torsion-free if H∗(|Â|,Z) = F1(A)
is torsion-free. Hence by induction with respect to rank, it follows that F1(A)
is torsion-free for a finitely generated free abelian group A. Since every torsion-
free group is the direct union of all finitely generated subgroups and since F1

preserves directed colimits by Step 2 above, F1(A) is torsion-free for all torsion-
free abelian groups A. Hence Tor(H∗(|A|,Z), R) = {0} for all graded abelian
groups R. Thus for any pair of torsion-free abelian groups A and B the morphism
α|Â,B̂|:F1(A)⊗F1(B) = H∗(|A|,Z)⊗H∗(|B|,Z)→ H∗(|Â×B̂|,Z) = F1(A⊕B) is

an isomorphism and thus F1(A⊕B) = (F1A)⊗ (F1B). The functor
∧

:AB→ AB∗
generally satisfies

∧
(A⊕B) = (

∧
A)⊗ (

∧
B).

Step 4. Assume that we are now given two functors Fj :ABtf → AB∗, j = 1, 2
which satisfy the following properties.
(1) There is an isomorphism β:F1(Z)→ F2(Z).
(2) For each pair A, B of objects of ABtf there is a natural isomorphism

π
(j)
AB :Fj(A⊕B)→ (FjA)⊗ (FjB).

(3) The functors Fj , j = 1, 2 preserve direct colimits. Then there is a natural
isomorphism ε:F1 → F2.

First we note that the subcategory ABfin of finitely generated free groups in ABtf

is codense in the sense that every object of ABtf is a direct colimit of objects; in
fact this happens canonically because every torsion-free A determines uniquely the
directed set F(A) of finitely generated subgroups, and A = colimF(A) =

⋃
F(A).

Then any natural isomorphism ε:F1|ABfin → F2|ABfin extends to a natural iso-
morphism ε:F1 → F2. (In view of the fact that Fj preserve colimits by (3), this
is an exercise in diagram chasing and the universal property of the colimit.)
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Thus the problem is reduced to showing that on the category of finitely gen-
erated free abelian groups, two functors which satisfy (1) and (2) are naturally
isomorphic. Since every category is equivalent to its skeleton (cf. Appendix 3, Ex-
ercise EA3.10), it suffices to prove this on the full subcategory containing the set
of objects {Zn | n = 0, 1, 2, . . .}.

For A = Zn we have a natural isomorphism ϕ
(j)
A :Fj(A) →

⊗n
Fj(Z) arising

from an iterated application of natural isomorphisms ϕ
(j)
AB given by (2). Define

εA:F1(A) → F2(A) by ϕ(2) ◦
⊗n

β ◦ ϕ(1)
A . This defines a family of isomorphisms.

It remains to show that ε is natural. Thus let λ:Zn → Zm be a morphism. Then
λ is determined by an m× n matrix of integers such that

λ(x1, . . . , xn) =
( n∑
k=1

a1kxk, . . . ,

n∑
k=1

amkxk

)
, xi ∈ Z, i = 1, . . . , n.

Now we get multilinear maps

(ξ1, . . . , ξn)→
n∑
k=1

a1kξk ⊗ · · · ⊗
n∑
k=1

amkξk : Fj(Z)n →
m⊗
Fj(Z), j = 1, 2,

ξi ∈ F1(Z), i = 1, . . . , n. The universal property the tensor product then yields a
morphism

Tjλ :
n⊕
Fj(Z)→

m⊕
Fj(Z), j = 1, 2,

determined by

ξ1 ⊗ · · · ⊗ ξn 7→
n∑
k=1

a1kξk ⊗ · · · ⊗
n∑
k=1

amkξk.

We must show that the diagram

F1A
εA−−−→ F2A

F1λ

y yF2λ

F1B −−−→
εB

F2B

commutes. In view of the definition of ε (after some diagram chasing) this comes
down to showing that the following diagram commutes.

⊗n
F1Z

⊗nβ−−−→
⊗n

F2Z

T1λ

y yT2λ⊗m
F1Z −−−→

⊗mβ

⊗m
F2Z.
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But

(T2λ ◦
n⊗
β)(ξ1 ⊗ · · · ⊗ ξn) = T2

(
β(ξ1)⊗ · · · ⊗ β(ξn)

)
=

n∑
k=1

a1kβ(ξk)⊗ · · · ⊗
n∑
k=1

amkβ(ξk) =
m⊗
β
( n∑
k=1

a1kξk ⊗ · · · ⊗
n∑
k=1

amkξk

)
=
( m⊗

β ◦ T1

)
(ξ1 ⊗ · · · ⊗ ξn).

This proves the asserted commuting of the diagram. Step 4 is complete.

Step 5. The diagram A
d→ A⊕A m→ A with the diagonal map d and the addition

m of A gives a commuting diagram of AB∗-morphisms

F1(A)
F1d−−−→ F1(A⊕A)

F1m−−−→ F1(A)

εA

y εA⊕A

y yεA
F2(A) −−−→

F2d
F2(A⊕A) −−−→

F2m
F2(A).

Since we have natural isomorphisms π
(j)
AA:Fj(A ⊕ B) → (FjA) ⊗ (FjB), and the

multiplication of Fj(A) is given by

(Fjm) ◦
(
π

(j)
AA

)−1
: (FjA)⊗ (FjA)→ FjA

while the comultiplication is given by

π
(j)
AA ◦ (Fjd):FjA→ (FjA)⊗ (FjA),

the morphism ε is a natural isomorphism of Hopf algebras. (One checks that it
preserves identities and coidentities correctly.)

Step 5 completes the proof of the theorem. ut

Corollary 8.84 (The Space Cohomology of Compact Abelian Groups). Let X be
the underlying space of a compact abelian group G. Then

H∗(X,Z) ∼= C(|G/G0|,Z)⊗
∧
Ĝ0
∼=

∧
C(|G/G0|,Z)

C(|G/G0|,Z)⊗ Ĝ0

as graded rings.

Proof. Firstly, we shall see in Corollary 10.38, that for any compact group G, the
spaces G and G/G0 × G0 are homeomorphic. It then follows from the Künneth
Theorem [338] that there is an exact sequence

0→ H∗(G/G0,Z)⊗H∗(G0,Z)
α→ H∗(G/G0 ×G0,Z)

→ Tor
(
H∗(G/G0,Z), H∗(G0,Z)

)
→ 0,

with a morphism α = αG/G0,G0
which is natural in G/G0 and G0. Since H∗(G0,Z)

is torsion-free by Theorem 8.83, the torsion term in the exact sequences vanishes.
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Therefore α is a natural isomorphism. Thus in view of Theorem 8.83 we get a
natural isomorphy

H∗(G,Z) ∼= H∗(G/G0,Z)⊗Z
∧
Ĝ0.

Since G/G0 is totally disconnected, H∗(G/G0,Z) = H0(G/G0,Z) ∼= C(|G/G0|,Z)
as rings.

If A is an abelian group, and R a commutative ring, then the ground ring
extension R ⊗

∧
A of the Hopf algebra

∧
A is isomorphic to the Hopf algebra∧

R(R ⊗ A), the exterior algebra of R-modules of the R-module R ⊗ A. (Indeed,
the universal property of

∧
R associates with the inclusion map R⊗ incl:R⊗A→

R⊗
∧

ZA a morphism of R-modules
∧
R(R⊗A)→ R⊗

∧
ZA which is inverted by the

morphism R⊗
∧
A→

∧
R(R⊗A) obtained the natural map j:

∧
A→

∧
R(R⊗A)

from the universal property of ⊗ via the bilinear map (r, x) 7→ r·j(x):R×
∧
A→∧

R(R⊗A).) Thus we have

H∗(G,Z) ∼=
∧

C(|G/G0|,Z)

C(|G/G0|,Z)⊗ Ĝ0,

for a natural isomorphism of graded rings. This is the assertion of the corollary. ut

We have made it a point that the isomorphism in 8.84 is not an isomorphism of
Hopf algebras but of graded rings. This is due to the fact that we used a topological
splitting of G into a product of G0 and G/G0.

We further notice that Corollary 8.84 implies that G is finite dimensional if
and only if the rank of the abelian group H∗(X,Z) is finite.

Since Tor(H∗(X,Z),Q) = {0} as Q is torsion-free, the universal coefficient
formula gives us a natural isomorphism H∗(X,Z)⊗Q→ H∗(X,Q). (See [338].)

Corollary 8.85. Let X be the underlying space of a compact connected abelian

group G and assume that n
def
= dimG = rank Ĝ <∞. Then

rankHm(X,Z) = dimQ Q⊗Hm(X,Z) = dimQH
m(X,Q) =

(
n

m

)
for m = 0, 1, 2, . . . .

In particular, Hm(Tn,Z) = Z(nm).

Proof. This follows straightforwardly from the preceding. ut

Let K denote any field of characteristic 0. Then the universal coefficient formula
and Theorem 8.83 yield a graded Hopf algebra isomorphism

(∗) H∗(G,K) ∼= K ⊗
∧
Ĝ ∼=

∧
K

(K ⊗ Ĝ)

for any compact connected abelian group G. If, in addition, G is a compact Lie
group, i.e. a torus, then this corollary agrees with the Hopf–Samelson Theorem for
Connected Compact Lie Groups 6.88.
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Since H∗(G,Z) is a torsion-free abelian group by 8.83 as Ĝ is torsion-free by
8.5, we have Tor(H∗(G,Z),K) = 0 for any abelian group K. Thus the formula (∗)
above remains intact for any commutative ring K with identity.

Part 6: Aspects of Set Theory

Arc Components and Borel Sets

Definition 8.86. A subset B of a space X is a Borel subset if and only if it belongs
to the smallest σ-algebra of sets containing the open subsets of X. ut

Lemma 8.87. Assume that X and Y are topological spaces and B ⊆ X. Assume
that y0 ∈ Y is such that {y0} is a Borel subset of Y . Then a subset B ⊂ X is a
Borel subset if and only if B × Y is a Borel subset of X × Y .

Proof. The projection p:X × Y → X is continuous. Hence if B is a Borel subset
then B×Y = p−1(B) is a Borel subset of X ×Y . The function x 7→ (x, y0) : X →
X ×{y0} is a homeomorphism, and thus B is a Borel subset of X iff B×{y0} is a
Borel subset of X×{y0}. Since {y0} is a Borel subset of Y , the set X×{y0}, being
full inverse image of the Borel subset {y0} in Y under the projection X × Y → Y
is a Borel subset in X × Y . Hence B is a Borel subset of X iff B × {y0} is a
Borel subset of X × Y . Now assume that B × Y is a Borel subset of X × Y . Then
B×{y0} = (B×Y )∩(X×{y0}), as the intersection of two Borel subsets of X×Y ,
is a Borel subset of X × Y , and thus B is a Borel subset of X. ut

Now consider a compact connected abelian group A. The union of all circle
subgroups is contained in a unique fully characteristic smallest closed subgroup
A`, containing all torus groups, called the locally connected component of A by
Definition 8.40. We now refer to Theorem 8.46, and summarize:

Lemma 8.88. Let A be a compact connected abelian group and assume that its
locally connected component A` is metric. Then

(i) A` is a torus (i.e., a product of circle groups).
(ii) There is a closed connected subgroup H of A such that A ∼= A`×H. Moreover,

exp:L(H)→ H is injective. ut

Lemma 8.89. Let A be a compact connected abelian group and T a torus subgroup
(i.e. a product of circle groups). Then the following conditions are equivalent.

(i) Aa is a Borel subset of A.
(ii) (A/T )a is a Borel subset.

Proof. From Theorem 8.78 we know that A ∼= T × A/T . Now (T × A/T )a =
T × (A/T )a. The assertion now follows from Lemma 8.87. ut
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Lusin spaces

Here we refer particularly to [34], Chapter 9, which also appeared separately as
Bourbaki, N., Topologie générale, Chap. 9, Utilisation des nombres réels, Hermann,
Paris, 19582.

A Polish space is a completely metrizable second countable space (cf. loc. cit.,
§6 no 1, Déf. 1.). This applies to second countable locally compact groups. We use
the following characterisation of

([34], §6, no 4, Déf. 6.): A metrizable space is a Lusin space if and only if it is
a bijective continuous image of a zero dimensional Polish space. What is relevant
is

Lemma 8.90. R is a Lusin space.

Proof. It is argued in Bourbaki, loc. cit. §6, no 4, Lemme 2, that a metric space
which is a countable disjoint union of Lusin spaces is a Lusin space. Now R is a
countable disjoint union of singleton sets containing rational points and the set
of irrationals. The latter one is a zero dimensional Polish space, hence is a Lusin
space. Therefore R is a Lusin space. ut

Since a countable product of zero dimensional Polish spaces is a zero dimen-
sional Polish space we conclude at once:

Lemma 8.91. A countable product of Lusin spaces is a Lusin space. ut

Hence Rn, n ∈ N and RN are Lusin spaces.

Lemma 8.92. If A is a metrizable compact abelian group, then L(A) is a Lusin
space.

Proof. As a topological vector space, L(A) is isomorphic to one of the vector spaces

Rn, n ∈ N or RN. (Cf. Definition 5.7 and Proposition 7.36: L(A) ∼= Hom(Â,R) ∼=
RF where F is a maximal free subset of the countable character group Â.) ut

Proposition 8.93. Every bijective continuous image of a Polish space is a Lusin
space.

Proof. See [34], §6, no 4, Proposition 12. ut

Theorem 8.94. The identity arc component Aa of a compact connected metric
abelian group A is a Borel subset.

Proof. By Lemma 8.88 A is isomorphic to the direct product of the torus A` and
a metric compact subgroup H for which exp:L(H) → H is injective. Now L(H)
is a Lusin space by Lemma 8.92. But then Ha = expH L(H) is the bijective image
of the Lusin space L(H) and thus is a Lusin space by Proposition 8.93. Then by
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[34], §6, no 7, Théorème 3, (A/A`)a ∼= Ha is a Borel subset of A/A`. Hence Aa is
a Borel subset of A by Proposition 8.93. ut

Note that all arc components are homeomorphic since A is homogeneous.
Let us now consider the following two propositions.

The Borel Set Proposition. In any compact abelian group, the arc compo-
nents are Borel subsets.

The Anti-Borel Set Proposition. There exists a compact abelian group G
of weight w(G) = ℵ1 such that Ga is not a Borel set.

We shall argue that there is a model of set theory in which the Generalized
Continuum Hypothesis and the Axiom of Choice hold and in which the Anti-Borel
Set Proposition holds.

We do not know whether in a constructible universe the arc components of all
compact abelian groups are Borel sets. A proof of this fact would show that the
Borel Set Proposition is undecidable in ZFC.

It appears to be very hard to determine that a given subset of a topological
space is not a Borel subset. In a compact group there is a classical trick that
provides a sufficient condition.

Proposition 8.97. Let C be a subgroup of a compact group G such that the set
G/C of cosets gC is countably infinite. Then C is not Haar measurable and thus
is not a Borel subset.

Proof. Let m be normalized Haar measure on G and suppose that C is Haar
measurable. Let g1, g2, . . . be a sequence of elements such that {gnC : n ∈ N} is
an enumeration of G/C. Then for each natural number N , using the invariance of
m, we have

N ·m(C) =
N∑
n=1

m(gnC) = m(g1C ∪ · · · ∪ gNC) ≤ m(G) = 1.

Hence m(C) ≤ 1/N for all N = 1, 2, . . . and thus m(C) = 0. But then 1 = m(G) =
m(
⋃
n∈N gnC) =

∑
n∈Nm(gnC) = 0: a contradiction which completes the proof. ut

From 8.30 we know that for any compact abelian group G and its character
group A the (abstract) factor group G/Ga is isomorphic to Ext(A,Z).

Thus Theorem 8.30 and Proposition 8.97 motivate us to formulate the following
statement:

The Countability Proposition. There is an abelian group such that
Ext(A,Z) is countably infinite.

By Theorem 8.30 and Proposition 8.97, the Countability Proposition implies
the Anti-Borel Set Proposition.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



482 8. Compact Abelian Groups

The authors are indebted to Laszlo Fuchs who reported the following fact.
The Countability Proposition is undecidable in ZFC.
Indeed, first of all, if A is countable, but not free, then Ext(A,Z) is uncountable.

For higher cardinalities, in Gödel’s constructible universe it is either 0 or its
torsion free part is uncountable (see e.g. the book [99], Chapter XII, in particular,
Corollary 2.5).

On the other hand Shelah [330] has shown that even if the Generalized Con-
tinuum Hypothesis is assumed, for every countable divisible group D there is a
model of set theory in which there is an abelian group A of cardinality ℵ1 such
that Ext(A,Z) ∼= D.

Shelah’s proof starts with any model V of ZFC+GCH, and he shows that it
has an extension by forcing in which, for a suitable A, the group Ext(A,Z) is an
arbitrarily prescribed countable divisible group.

In particular:

Theorem 8.99. There is a model of set theory in which there is a compact abelian
group G of weight ℵ1 = 2ℵ0 such that arc component factor group is algebraically
isomorphic to Q and hence has arc components which fail to be Borel subsets. ut

In the article [171] the theory is carried out for locally compact groups in place
of compact groups. Given some standard structural information on locally compact
groups, the generality is not much greater than that which we have presented in
this section.

Postscript

While it is true that, in the face of duality, the structure of compact abelian groups
can be thought of as purely in the realm of algebra, the questions which interest
topological group theorists emphasize geometric aspects. The relevant geometry
here concerns the various levels of connectivity. Specifically, we examine topological
connectivity, arcwise connectivity, local connectivity, simple connectivity, homo-
topy and cohomology. It is, for example, remarkable that the underlying topology
of a compact connected abelian group completely determines its structure as a
topological group (8.59).

Topological connectivity of a compact abelian group is intimately tied up with
group theoretical properties such as torsion and divisibility (8.4). As a consequence,
a compact abelian group is connected if and only if it is divisible if and only if its
character group is torsion-free.

Arcwise connectivity in a compact abelian group G is exposed in Theorem 8.30.
The relevant fact here is that the arc component Ga of the identity is the image
of the exponential function [86]. In other words, an element can be reached by an
arc from the origin if and only if it can be reached by a one-parameter subgroup.

Local connectivity and arcwise connectivity are linked in the classical theory
of metric spaces in so far as connected locally connected complete metric spaces
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are arcwise connected (see e.g. [101], p. 377, 6.3.14). This is reflected in Theorem
8.46 where it is noted that a compact connected metric group is locally connected
if and only if it is arcwise connected if and only if it is a (finite or infinite) dimen-
sional torus. In the absence of metrizability things are infinitely more complex.
There is always a smallest closed subgroup containing all torus subgroups which is
locally connected and which we call the locally connected component; we discuss
it in Theorem 8.41. There are connected locally connected compact abelian groups
which are not arcwise connected (8.36). One might reasonably conjecture that the
Torus Proposition holds which says that every arcwise connected compact abelian
group is a torus (statement preceding 8.48)—however, it turns out, amazingly, that
this proposition or its negation may be adjoined to Zermelo–Fraenkel Set Theory
plus Axiom of Choice without creating a contradiction (8.48). This is based on
a theorem by Shelah [329], an exposition of which is given by Fuchs, reproduced
in Appendix 1. A good reference for set theory is [221]. We saw in Theorem 8.94
that the identity arc component of a compact metric abelian group is a Borel sub-
set and in Theorem 8.99 that there is a model of Zermelo–Fraenkel set theory in
which the Axiom of Choice and the Generalized Continuum Theory hold and in
which there is a compact abelian group of weight ℵ1 such that π0(G) = G/Ga is
isomorphic to Q. Therefore, Ga cannot be a Borel subset (see Proposition 8.97).
This provides yet another example in which the issue of arc connectedness leads
us into subtle issues of set theory.

There is a very strong form of local connectivity of compact abelian groups
described in Theorem 8.36bis. A compact connected group G has this property
iff its character group Ĝ is a torsion free group in which every finite rank pure
subgroup is free and is a direct summand. Remarkably, this is equivalent to saying
that the exponential function maps L(G) openly onto the arc component Ga.
Therefore L(G)/K(G) ∼= Ga where K(G) = ker exp ∼= π1(G), and this also provides
a striking example of a quotient group of a complete topological vector space L(G)
which is incomplete and indeed has a compact completion. More information is to
be found in [193].

The fundamental group π1(G) of a compact abelian group, G, is a measure
of how far G is from being simply connected. The group π1(G), and all other
homotopy groups of G, are completely calculated in Theorem 8.62 ([8], [104]).
Their close connection with the exponential function emerges there.
A lot of information is available about the question which torsion free abelian
groups arise as group π1(G) for a compact connected abelian group G; but its
presentation here would have required a substantial extension of our Appendix 1
on abelian groups. We therefore refer the interested reader to [99], Chapter 14, pp.
420–452.

The cohomology of a compact pointed space X is encountered in our presenta-
tion in the form of the group [X,T] of homotopy classes of continuous base point
preserving functions X → T into the circle. This group is known from algebraic
topology to be naturally isomorphic to the first Čech–Alexander–Wallace coho-
mology group H1(X,Z). The key is that for a compact connected abelian group,
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G, there is a natural isomorphism Ĝ→ [G,T] which arises out of the fact that ev-
ery homotopy class of continuous base point preserving functions G→ T contains
exactly one character (Theorem 8.57). This yields the previously mentioned result
that the topology of G completely determines G as a topological group. The first
cohomology suffices to yield the complete integral cohomology ring (and indeed
Hopf algebra) of G with the aid of functorial arguments (see [198]).

A powerful instrument in analyzing the local structure of a compact abelian
group, G, is a surprisingly general theorem which we call the Resolution Theo-
rem 8.20, and which says that every compact abelian group G is a quotient group
of a direct product of a compact totally disconnected subgroup of G and a weakly
complete topological vector space, namely, the Lie algebra L(G). This theorem
becomes particularly lucid whenever the quotient map is a covering map as is the
case whenever G is finite dimensional.

This calls for a discussion of the somewhat frustrating topic of topological
dimension where a plethora of definitions exist. Happily, these coincide for locally
compact groups [284]. Our approach in this chapter is to extract the key features
of a well behaved, and algebraically defined dimension function on the class of
locally compact abelian groups whose characteristic properties are satisfied by the
various dimension functions (8.25 and 8.26).

A pervasive theme in any abelian category is homological algebra involving a
classification of injectives, projectives, and free objects. The first two are easily
dealt with via duality. Free compact abelian groups F (X) over compact spaces X
are more complicated and more interesting. They are defined in the usual categor-
ical manner. But we have a complete description of the fine structure in Theorems
8.67 and 8.69. These results link the structure of F (X) in a transparent fashion
with the geometry of the generating space X. Indeed, F (X) is completely deter-
mined by the weight, w(X), of X, the weight, w(X/conn), of the space of connected
components of X, and the group [X,T] ∼= H1(X,Z).

We studied the cohomology of compact Lie groups in Chapter 6 (cf. 6.88ff.),
at least for ground fields of characteristic 0. This required a fairly complete the-
ory of graded commutative Hopf algebras over fields of characteristic 0 which we
presented in Appendix 3 (cf. A3.65ff.). The reader will find a fairly self-contained
approach to the space cohomology of compact connected abelian groups as the last
item of the present chapter. In so far as we deal here with commutative groups,
on the one hand we are in a more special situation than we were in Chapter 6; on
the other hand, we have no restriction to Lie groups here and have a complete co-
homology theory over Z rather than a field of characteristic zero; all other ground
rings can be treated from here via the universal coefficient theory of cohomology
when needed. For a compact connected abelian group G, the character group Ĝ
emerges precisely as the subgroup of primitive elements of the cohomology Hopf
algebra H∗(G,Z) (cf. A3.71).

We have encountered one of the standard graded Hopf algebras, namely, the
exterior algebra

∧
A for a torsion-free abelian group as the space cohomology of

a compact connected abelian group G = Â. The Hopf algebra structure of the
exterior algebra is discussed in Appendix 3, see A3.67. Another standard Hopf
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algebra is the symmetric (or polynomial) algebra SA over a torsion-free abelian
group A. For reasons that would become clear through the identification of this
Hopf algebra in terms of algebraic topology one makes the assumption in this
case that the elements of a inside SA are homogeneous of degree two, so that
all nonzero homogeneous elements have even degree. This Hopf algebra turns out
to be the Čech cohomology Hopf algebra of the classifying space B(G) of the

compact connected abelian group G = Â. For the details we refer to [198]. On the
subcategory of compact abelian Lie groups, Čech cohomology agrees with singular
cohomology; however, on arbitrary compact groups they disagree. Some general
information on the singular cohomology of a compact connected abelian group
may be found in [198], p. 209.

References for this Chapter—Additional Reading

[8], [15], [23], [34], [46], [86], [100], [101], [103], [104], [109], [114], [115], [143], [147],
[168], [171], [178], [198], [206], [210], [221], [230], [275], [276], [284], [286], [193],
[264], [329], [330], [331], [338], [359], [363].
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Chapter 9

The Structure of Compact Groups

In this chapter we present impressive and powerful theorems which describe the
structure of compact groups. For example, every compact connected group G is
a semidirect product of its commutator subgroup G′ and an abelian topological
subgroup isomorphic to G/G′. So, in particular, G is homeomorphic to the prod-
uct of these two groups. Now G/G′ is, of course, a compact connected abelian
group, and the structure of such groups is known from Chapter 8. So it emerges
that compact abelian groups are not simply examples of compact groups but basic
ingredients of the structure of all compact groups. The group G′ is a semisimple
compact connected group. We will see that such groups are almost products of
compact connected simple simply connected compact Lie groups. To be more pre-
cise, they are quotients of such groups with the kernels being central and totally
disconnected. If we add to this the topological splitting Theorem 10.37, which we
shall prove in the next chapter, we obtain: If H is any compact group, then it is
homeomorphic to the product of three groups: H/H0, (H0)′ and H0/(H0)′. The
first of these factors is a compact totally disconnected group and such groups are
known to be homeomorphic to a product of two-point discrete spaces.

The second principal structure theorem for compact groups reduces in the con-
nected case to: If G is a compact connected group, then it is topologically isomor-
phic to the quotient group of the direct product Z0(G) × G′ obtained by factoring
out a central totally disconnected compact group isomorphic to Z0(G) ∩ G′. And,
as noted above, G′ can be expressed as a quotient group of a product of compact
simple simply connected Lie groups with totally disconnected central kernel.

The third result we highlight here is the fact that compact connected groups
have maximal pro-tori and the behavior and importance of these exactly parallels
that of maximal tori in compact connected Lie groups.

The fourth result shows that the commutator group G′ of a compact connected
group is a semidirect factor, so that G ∼= G′ o (G/G′) with a compact connected
abelian group G/G′ whose structure we discussed extensively in Chapter 8. The
fifth major structure theorem shows that every compact group G contains a totally
disconnected group D such that G = G0D and G0 ∩D is normal in G and central
in G0, we can even pick D in the normalizer of a preassigned maximal pro-torus.

These basic structure theorems are then applied to a theory of the fine structure
of a compact group. Among many other things, we shall see structure theorems
for the automorphism group of a compact group.

Prerequisites. This chapter requires no prerequisites beyond those in previous chap-
ters, but familiarity with Chapter 2, Chapter 6 (which in turn rests on Chapter 5)
and Chapter 8 (which requires Chapter 7) is essential.
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Part 1: The Fundamental Structure Theorems of
Compact Groups

Approximating Compact Groups by Compact Lie Groups

Historically questions about compact groups were answered in each case by seeking
a reduction to the case of compact Lie groups. This can be avoided by using the
structure theorems which we shall develop later in this chapter. The key lemma
in avoiding the repeated use of projective limits is presented here.

For a topological group G let N (G) denote the set of all closed normal sub-
groups N of G such that G/N is a Lie group. Since the one element group G/G
is a Lie group, trivially G ∈ N (G). In Chapter 2 we proved that every compact
group is a strict projective limit of compact Lie groups (Corollary 2.43). By 1.33
this means that each compact group G is the projective limit of all compact Lie
group quotients G/N . We shall use the following conclusions from this basic result.

Lemma 9.1. Let G be a compact group. Then
(i) N (G) is closed under finite intersections. In particular, N (G) is a filter

basis.
(ii)

⋂
N (G) = {1}.

(iii) If H is a closed subgroup of G then
⋂
N∈N (G)HN = H.

Proof. (i) If M,N ∈ N (G), then f :G/(M ∩N)→G/M ×G/N , f(g(M ∩N)) =

(gM, gN) is injective. Since G/M × G/N is a compact Lie group, so is L
def
=

f
(
G/(M∩N)

)
. Since G is compact, so are G/(M∩N) and L, and the corestriction

of f to G/(M ∩N)→ L is a homeomorphism. Hence G/(M ∩N) is a compact Lie
group.

(ii) By 2.39 and 1.33, G is a strict projective limit G = limN∈N (G)G/N . In
particular, this implies that the quotient maps G → G/N , N ∈ N (G) separate
the points. This is equivalent to (iii).

(iii) Let g ∈
⋂
N∈N (G)HN . Then for all N ∈ N (G) one has g ∈ HN , i.e.

Hg ∩ N 6= Ø. Then {Hg ∩ N | N ∈ N (G)} is a filter basis of compact sets and
then (iii) implies Hg ∩ {1} = Hg ∩

⋂
N (G) =

⋂
N∈N (G)(Hg ∩ N) 6= Ø. Hence

1 ∈ Hg; i.e. g ∈ H. ut

Exercise E9.1. Formulate a sufficient condition for (ii) to be satisfied in an
arbitrary topological group. Find sufficient conditions for (i) to be satisfied.

A filter basis F on a topological space G is said to converge to g ∈ G, written
g = limF , if for every neighborhood U of g there is an F ∈ F such that F ⊆ U .
Assume that N (G) is a filter basis and that G = limN∈N (G)G/N . Prove

(iv) 1 = limN (G). ut

For more details on matters discussed in 9.1 and E9.1 see e.g. [194].
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The Closedness of Commutator Subgroups

It is a remarkable fact that each element of the commutator subgroup of a compact
connected group is a commutator, and it is an eminently useful consequence that
the commutator subgroup is closed. Indeed one of the major results of this chapter
will imply that every compact connected group G is homeomorphic to G′×G/G′.

Gotô’s Commutator Subgroup Theorem for a

Compact Connected Group

Theorem 9.2. Let G be a compact connected group. Then the function (g, h) 7→
ghg−1h−1:G×G→ G′ is surjective; that is every element of G′ is a commutator.

In particular, the algebraic commutator subgroup G′ of a compact connected
group is closed and thus is a compact connected group.

Proof. Let g ∈ G′. The function comm:G × G → G′, comm(x, y) = xyx−1y−1

is continuous. Hence for each N ∈ N (G), the set CN
def
= {(x, y) ∈ G × G |

comm(x, y) ∈ gN} is closed in G×G and thus compact. If N ⊆M in N (G), then
CN ⊆ CM . Now we apply Theorem 6.55 and conclude that for N ∈ N the element
gN in the algebraic commutator group G′N/N = (G/N)′ of the connected Lie
group G/N is a commutator. Thus there are elements xN, yN ∈ G/N such that
comm(x, y)N = xyx−1y−1N = (xN)(yN)(xN)−1(yN)−1 = gN . Hence (x, y) ∈
CN . Thus {CN | N ∈ N (G)} is a filter basis of compact subsets of G × G and
therefore there is an element (x, y) ∈

⋂
N∈N (G) CN . Then comm(x, y) ∈ gN for

all N ∈ N (G). But now we invoke 9.1(ii) and conclude
⋂
N∈N (G) gN = {g}.

Thus g = comm(x, y). This proves the first assertion. The second is an immediate
consequence because G′ = comm(G×G) is compact as the continuous image of a
compact space. ut

It is not true that the commutator subgroup of a compact group has to be
closed. Indeed, Exercise E6.6 provides an example of a compact totally discon-
nected group whose commutator subgroup fails to be closed. Note however that
we saw in Theorem 6.11 that the commutator subgroup of a compact Lie group is
always closed.

The theorem above allows us to formulate a necessary and sufficient condition
for the commutator subgroup of an arbitrary compact group to be closed.

Corollary 9.3. For a compact group G, the algebraic commutator subgroup G′

is closed if and only if the algebraic commutator group (G/(G0)′)′ is closed in
G/(G0)′.

Proof. The group (G0)′ is contained in G′ and compact by 9.2. Since a subgroup H
containing (G0)′ is closed if and only if H/(G0)′ is closed in G/(G0)′, the assertion
follows. ut
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From 6.10 we recall that an interesting characteristic subgroup of a com-
pact group G is the group comm(G,G0) algebraically generated by the elements
xyx−1y−1, x ∈ G, y ∈ G0. In 6.10 it was shown that this group is closed if G is a
compact Lie group. We show in the following exercise, that it need not be closed
in general.

Exercise E9.2. Review the circumstances in which the algebraic commutator
subgroup is closed. (See Proposition 6.10, Theorem 6.11, Exercise E6.6, Theorem
6.18, Exercise E6.9, Theorem 6.55, Corollary 6.56, Theorem 9.2, Corollary 9.3. ut

Semisimple Compact Connected Groups

The first proposition in this section has the noteworthy result that every com-
pact connected group G satisfies G′′ = G′. We call a compact connected group
semisimple if the commutator subgroup is the whole group. In particular then
the commutator subgroup of each compact connected group is semisimple. This
section is devoted to a complete description of semisimple groups. This will be
done by exposing the rather clear-cut structure of simply connected semisimple
compact groups.

Proposition 9.4. Let G be a compact connected group. Then G′′ = G′.

Proof. From 9.2 we know that G′ and G′′ are compact connected groups if G is
compact connected. If N ∈ N (G), then G′′N/N = (G/N)′′ = (G/N)′ = G′N/N
by 6.14(ii). Thus G′ ⊆ G′′N . Since N ∈ N (G) was arbitrary, 9.1(iii) proves G′ ⊆
G′′ which proves the claim since G′′ ⊆ G′ is always true. ut

The 8 element quaternion group G = {±1,±i,±j,±k} has the 2 element com-
mutator group G′ = {1,−1} while G′′ = {1}. Thus 9.4 fails at once in the discon-
nected case.

Definition 9.5. A compact connected group G is called semisimple if G = G′. ut

Corollary 6.16 shows that this definition agrees for compact connected Lie
groups with Definition 6.17(ii).

Corollary 9.6. The commutator subgroup of every compact connected group is
semisimple.

Proof. This follows from Proposition 9.4 and Definition 9.5. ut

There is a profoundly interesting link between semisimple compact connected
groups and simple connectivity. To expose this we need a sequence of technical
lemmas.
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Lemma 9.7. (i) Let g be a finite dimensional Lie algebra and assume that g =
n⊕ i = n⊕ j for ideals n, i, and j of which i and j are semisimple. Then i = j.

(ii) Consider a diagram of morphisms of finite dimensional Lie algebras

s
id−−−→ s

id−−−→ s

α

y β

y yγ
a −−−→

ϕ
b −−−→

ψ
c,

and assume the following hypotheses:
(a) b is compact and s′ = s.
(b) imα and imβ are ideals.
(c) γ is an isomorphism.
(d) The right square commutes, i.e. γ = ψβ.
(e) The outside rectangle commutes, i.e. γ = ψϕα.
(f) ϕ is surjective.

Then the left square commutes; i.e. β = ϕα.

Proof. (i) The assumption implies n′⊕ i = n′⊕ i′ = g′ = n′⊕ j′ = n′⊕ j, where n′ is
semisimple, too, by 6.4(vi), (vii). Again by 6.4(vi), (vii) we have g′ = s1⊕· · ·⊕sn for
a unique family {s1, · · · , sn} of simple ideals, and n′ is a sum of a unique subfamily,
say {s1, . . . , sk} (after renaming, if necessary). Then once more by 6.4(vii) we have
i = sk+1 ⊕ · · · ⊕ sn = j.

(ii) By (c) and (d) b = kerψ⊕β(s). By (c) and (e) we have b = kerψ⊕(ϕα)(s).
By (f) and (b), both (ϕα)(s) and β(s) are ideals of b. By (a), Part (i) of the Lemma
applies and shows that (ϕα)(s) = β(s). Denote this ideal of β(s) by i. Then by (c)
and (d) the map ψ|i: i→ c is an isomorphism. It now follows from (d) and (e) that
for each s ∈ s we have ϕ

(
α(s)

)
= (ϕ|i)−1γ(s) = β(s). ut

Lemma 9.8. Consider a diagram of morphisms of compact connected Lie groups

S
id−−−→ S

id−−−→ S

α∗

y β∗

y yγ∗
A −−−→

ϕ∗
B −−−→

ψ∗
C,

and assume the following hypotheses:
(a) S is semisimple.
(b) imL(α∗) and imL(β∗) are ideals of L(B).
(c) γ∗ is a covering homomorphism.
(d) The right square commutes; i.e. γ∗ = ψ∗β∗.
(e) The outside square commutes; i.e. γ∗ = ψ∗ϕ∗α∗.
(f) ϕ∗ is surjective.

Then the left square commutes; i.e. γ∗ = ϕ∗α∗.

Proof. We set a = L(A), b = L(B), c = L(C), s = L(S), and L(ξ∗) = ξ for
all morphisms in the diagram. Now the hypotheses of Lemma 9.7(ii) are satis-
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fied and show L(ϕ∗α∗) = ϕα = β = L(β∗). Let X ∈ s. Then (ϕ∗α∗)(expX) =

expB L(ϕ∗α∗)(X) expB L(β∗)(X) = β∗(expX). Thus the set E
def
= {s ∈ S |

(ϕ∗α∗)(s) = β∗(s)} is a closed subgroup of S containing the identity neighbor-
hood expS s of S. Since the group S is connected, it is generated by expS s and
thus ϕ∗α∗ = β∗ as asserted. (In fact, Theorem 6.30 shows that expS s = S.) ut

Lemma 9.9. Let J be a directed set and assume that {fjk:Gk → Gj | (j, k) ∈
J × J, j ≤ k} and {Fjk:Hk → Hj | (j, k) ∈ J × J, j ≤ k} are two projective
systems of compact groups and let G and H be their limits, respectively, with limit
projections fj :G→ Gj and Fj :H → Hj. Assume further that for each j ∈ J there
is a morphism ωj :Gj → Hj such that

Gj
fjk←−−− Gk

ωj

y yωk
Hj ←−−−

Fjk
Hk

commutes for all j ≤ k. Then there is a unique morphism ω:G→ H such that

Gj
fj←−−− G

ωj

y yω
Hj ←−−−

Fj
H

is commutative for all j ∈ J .

Proof. There is a morphism ω:
∏
j∈J Gj →

∏
j∈J Hj given by ω

(
(gj)j∈J

)
=(

ωj(gj)
)
j∈J . Recall that (gj)j∈J ∈ G = limj∈J Gj iff fjk(gk) = gj . Hence the

hypotheses imply that ω(G) ⊆ H. The restriction and corestriction ω:G → H of
ω satisfies the requirements. ut

The preceding lemma is but one instance of a much more general category theo-
retical fact expressing the functoriality of the formation of a limit (cf. Appendix 3,
A3.41ff., notably A3.42) .

Lemma 9.10. Let G = limj∈J Gj be the limit of a strict projective system {fjk:
Gk → Gj | j, k ∈ J, j ≤ k} of connected Lie groups (see 1.32, 1.33) and assume

that G is semisimple . For each j ∈ J let πj : G̃j → Gj denote the universal covering

morphisms. Then there is a strict projective system {f̃jk: G̃k → G̃j | j, k ∈ J,

j ≤ k}. Let G̃ denote its limit and f̃j : G̃→ G̃j its limit morphisms. Then there is

a morphism π: G̃→ G such that the following diagram commutes.

G̃j
f̃jk←−−− G̃k

f̃k←−−− G̃

πj

y yπk yπ
Gj ←−−−

fjk
Gk ←−−−

fk
G.
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The morphism π is surjective and has a totally disconnected central kernel.

Proof. Let j ≤ k be in J . Since G̃k is simply connected, the morphism fjkπk: G̃k →
Gj has a unique lifting f̃jk: G̃j → G̃k across the covering πj : G̃j → Gj . This gives

the commuting left square of the diagram. The image of f̃jk is open and then

agrees with G̃j because this range is connected; i.e. f̃jk is surjective. If i ≤ j ≤ k
in J we get a commutative diagram

G̃i
f̃ij←−−− G̃j

f̃jk←−−− G̃k

πi

y yπj yπk
Gi ←−−−

fij
Gj ←−−−

fjk
Gk.

Then f̃ij ◦ f̃jk is the unique lifting of fij ◦ fjk = fik and therefore agrees with

f̃ik. Hence {f̃jk: G̃k → G̃j | j, k ∈ J, j ≤ k} is a strict projective system with a

projective limit G̃. Now Lemma 9.9 applies and yields a unique morphism π: G̃→
G such that fj ◦ π = πj ◦ f̃j . This completes the proof.

We show that π is surjective. Let g ∈ G. For each j ∈ J , we abbreviate
f̃−1
j

[
π−1
j

(
fj(g)

)]
by Cj . This set is compact and nonempty since πj is surjective

as a covering map and f̃j is surjective as a limit projection in a strict projective

limit (see 1.31). If j ≤ k and x ∈ Ck then πj f̃j(x) = πj f̃jkf̃k(x) = fjkπkf̃k(x) =
fjkfk(g) = fj(g), implying x ∈ Cj . Thus Ck ⊆ Cj . Therefore {Cj | j ∈ J} is

a filter basis of compact subsets of G̃ having an element g̃ in its intersection.
Then fjπ(g̃) = πj f̃j(g̃) = fj(g) for all j ∈ J and that implies π(g̃) = g. We
finally show that kerπ is totally disconnected and thus central. For each j ∈ J ,
f̃j(kerπ) ⊆ kerπj . Since kerπj is discrete as the kernel of a covering morphism,

we have f̃j
(
(kerπ)0

)
= {1}. Since the f̃j separate points, (kerπ)0 = {1} follows.

Lemma 6.13 shows that kerπ is central in G̃. ut

The following is, in addition to the role it plays in our proof, of independent
interest. We shall illustrate that in Proposition 9.12. We use here the important
fact that the universal covering group (cf. Appendix 2, A2.19) of a semisimple
compact connected Lie group is likewise compact (5.77).

Lemma 9.11. Assume that G = limj∈J Gj is the limit of a strict projective system
{fjk:Gk → Gj | j, k ∈ J, j ≤ k} of compact connected Lie groups. Let fj :G →
Gj denote the limit morphisms. Assume that for some i ∈ J the group Gi is a

semisimple Lie group. Let πi: G̃i → Gi be the universal covering morphism. Then
G̃i is compact and there is a unique morphism f ′i : G̃i → G with a normal image
such that πi = fi ◦ f ′i .

The group G∗i
def
= f ′i(G̃i) is a compact normal Lie subgroup of G. The corestric-

tion of f ′i is a universal covering morphism G̃i → G∗i and qi|G∗i :G∗i → Gi is a
covering homomorphism.
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If Gi is simply connected, then

G ∼= Gi ×H, H = ker fi.

Proof. Let j ∈ J , i ≤ j. By 6.4, the Lie algebra gj of Gj is the direct sum
of the kernel of kerL(fij) and its orthogonal complement. Then the hypotheses
of the Supplement Theorem 5.78(ii) are satisfied and give a unique morphism

πji: G̃i → Gj such that fij ◦ πji = πi and

gj = L(ker fij)⊕ L
(
πji(G̃i)

)
,

where ⊕ denotes the direct sum of ideals in the compact Lie algebra gj and where

L
(
πji(G̃i)

)
is a semisimple ideal. For i ≤ j ≤ k in J we obtain a commutative

diagram

G̃i
id←−−− G̃i

id←−−− G̃i
id←−−− G̃i

πii=πi

y yπji yπki
Gi ←−−−

fij
Gj ←−−−

fjk
Gk ←−−−

fk
G.

Lemma 9.8 implies and yields πji = fjk ◦ πki. By Lemma 9.9 (or more directly
by the universal property of the limit A3.41) we get a unique fill-in morphism

f ′i : G̃i → G. Since the images of all πji, j ∈ J , are normal, the image of f ′i is
normal.

By 5.77, G̃i is a compact group which is locally isomorphic to the compact Lie
group Gi. Hence it has no small subgroups and is therefore a compact Lie group by
Definition 2.41. The image G∗i is a quotient of G̃j and is thus a compact Lie group

by 6.7. Since π = fif
′
i , the kernel ker f ′i of the morphism G̃i → G∗i is contained in

the kernel of πi which is finite by 5.77. Hence it is a universal covering as G̃i is
simply connected. The kernel of the morphism fi|G∗i is a homomorphic image of
kerπi and is therefore finite. Since it is surjective in view of the surjectivity of πi,
it is a covering morphism.

The last assertion, pertaining to the case that Gi is simply connected, follows.
We take G̃i = Gi and see that fi:G → Gi is a homomorphic retraction with
coretraction f ′i :Gi → G such that im f ′i is normal. ut

Exercise E9.3. Fill in the details of the last step in the proof of 9.11. ut

Proposition 9.12. Let G be a compact connected group and N a compact nor-
mal subgroup such that G/N is a semisimple compact Lie group. Then G has a
semisimple compact normal Lie subgroup G∗, and there is a universal covering

morphism G̃/N → G∗ from the universal covering of G/N such that the quotient
morphism q:G→ G/N induces a covering morphism q|G∗:G∗ → G/N .

In particular, if G/N is simply connected, then

G ∼= G/N ×H, H = ker q.
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Proof. This is a consequence of Lemma 9.11. Let J = N (G) and Gj = G/M
for j = M ∈ N (G) with the obvious bonding morphisms and let i = N . Then
G ∼= limM∈N (G)G/M and the proposition follows from 9.11. ut

Every compact group is a strict projective limit of compact Lie groups. How-
ever, a compact group, even a compact connected abelian group, does not have to
be a product of compact Lie groups. In the light of this remark, the next lemma
is attractive.

Lemma 9.13. Let G = limj∈J Gj be the limit of a strict projective system {fjk:
Gk → Gj | j, k ∈ J, j ≤ k} of simply connected semisimple compact Lie groups.
Then G∼=

∏
a∈A Sa for a family of simple simply connected compact Lie groups Sa.

Proof. We apply Lemma 9.11 and note that for each i ∈ J we may take G̃i = Gi
and πi = idGi . Then there is a unique morphism f ′i :Gi → G with a normal
image such that fi ◦ f ′i = idGi . Now we set f ′kj :Gj → Gk, f ′kj = fkf

′
j . Then

fjkf
′
kj = fjkfkf

′
j = fjf

′
j = idGj , and f ′kf

′
kj = f ′kfkf

′
j = f ′j , and the image of f ′kj

is normal. Thus Gk is the direct product of the normal subgroups f ′jk(Gj) and
ker fjk.

By 6.6, the simply connected compact semisimple Lie group Gj is isomorphic to∏
α∈Aj Sα for a unique family {Hα | α ∈ Aj} of simply connected simple compact

normal Lie subgroups Hα of Gj . Every connected closed normal subgroup of Gj
is isomorphic to a partial product

∏
α∈AHα, A ⊆ Aj (see 6.4(vii), 5.49). Hence

we may write Gj =
∏
α∈Aj Hα for all j ∈ J . We know that Gj “is” a partial

product of Gk, but we want to express this formally because of the set theoretical
technicalities involved in infinite families.

Firstly, we consider the elements σ ∈ Hj as functions Aj →
⋃
α∈Aj Sα. (The

notation of writing σ as an Aj-tuple
(
σ(α)

)
α∈Aj

is entirely equivalent.) Secondly,

we may and shall assume that all Aj are disjoint (which we certainly may, otherwise
we replace Aj by Aj×{j}, an isomorphic set). Now we note that for j ≤ k there is
an injective function ιkj :Aj → Ak and isomorphisms ζα:Gιkj(α) → Gα for α ∈ Aj
such that for σi ∈ Hi we have fjk(σk)(α) = ζα(σk

(
ιkj(α)

)
for α ∈ Ak and

f ′kj(σj)(β) =

{
ζ−1
α

(
σ(β)

)
if ιkj(α) = β,

1 otherwise

for β ∈ Ak.
We note that for j = k the ζα are identity maps and that

(∗)
(∀i ≤ j ≤ i, j ∈ J) ιki = ιkjιji,

(∀j ∈ J) ιjj = idAj .

Now we consider the disjoint union A def
=
⋃
j∈J Aj and define a subset R ⊆ A× A

by

R= {(α, β) ∈ A× A | (∃i, j, k ∈ J) i, j ≤ k, α ∈ Ai, β ∈ Aj , and ιki(α) = ιkj(β)}.
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By its very definition, the relation R is symmetric, and by (∗) we see that R is
reflexive and, by using the directedness of J , we verify that R is transitive. Thus R
is an equivalence relation. We set A = A/R. For (α, β) ∈ R we have isomorphisms
ζα:Hα → Hιki(α) and ζβ :Hβ → Hιkj(β) = Hιki(α). Thus for each a ∈ A we find a
compact simply connected simple Lie group Sa and isomorphisms λα:Ga → Gα
for α ∈ a such that ζαλα = λιki(α).

Now set P =
∏
a∈A Sa. We define pj :P → Gj , pj((sx)x∈A)(α) = λα(sa) for

α ∈ a∩Aj . For j ≤ k in J we note that ιkj(α) ∈ a∩Ak and compute pj((sx)x∈Aj ) =
λα(sa) = ξαλιkj(α)(sa) = fjkpk((sx)x∈A). Thus pj is in essence the projection of P
onto a partial product

∏
a∈A, a∩Aj 6=Ø Sa

∼=
∏
α∈Aj Hα, and these projections are

compatible with the bonding maps fjk. By the universal property of the limit there
is a unique morphism µ:P → G such that pj = fjµ. We claim that µ is surjective.
Indeed, if g = (gj)j∈J ∈ G we note that gj = (σj(α))α∈Aj ∈ Gj =

∏
α∈Aj Hα

such that for j ≤ k we have gj = fjk(gk), i.e. fjk(σk)(α) = ξα
(
σk(ιkj(α)

)
for

σk ∈ Gk, α ∈ Aj . For a ∈ A we find j ∈ J and a unique α ∈ a∩Aj ; define sa ∈ Sa
by sa = λ−1

α (σj(α)). Let α ∈ a ∩ Aj ; then pj((sx)x∈A)(α) = λα(sa) = σj(α),
i.e. pj

(
sx)x∈A

)
= gj = fj

(
(gi)i∈J

)
. Thus µ

(
(sx)x∈A

)
= g. Since the pj separate

the points of P , the morphism µ is injective. Hence it is an isomorphism. This
completes the proof of the lemma. ut

The following observation is an important link between the structure theory
of compact groups and simple connectivity. It requires information on simple con-
nectivity from Appendix 2. At a later stage we shall see that the restriction to Lie
groups in part (iii) below is unnecessary (see 9.29).

Theorem 9.14. (i) Let {Sj | j ∈ J} be a family of topological groups, and assume
that each Sj satisfies the following hypotheses:

(a) There are arbitrarily small open arcwise connected identity neighborhoods.
(b) There is at least one open identity neighborhood in which every loop at 1 is

contractible.
(c) Sj is simply connected.

Then
∏
j∈J Sj is simply connected.

(ii) If {Sj | j ∈ J} is a family of simply connected linear Lie groups, then∏
j∈J Sj is simply connected.
(iii) The product of a family of simply connected compact Lie groups is simply

connected.

Proof. (i) We note that due to the connectedness of Sj (see (c)) every identity
neighborhood U generates Sj . In particular, if U is arcwise connected (see (a)),
then (U ∪ U−1)n is arcwise connected, and thus Sj =

⋃∞
n=1(U ∪ U−1)n is arcwise

connected. Therefore by hypotheses (a), (b), and (c), A2.11(iii) of Appendix 2
applies and proves the claim.

(ii) It suffices after (i) to convince ourselves that a linear Lie group satisfies
hypotheses (a) and (b). But by Definition 5.32 of a linear Lie group, there are
arbitrarily small identity neighborhoods homeomorphic to an open ball in a Banach
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space. Now any convex set in a topological vector space is arcwise connected and
has the property that every loop at every point is contractible in it to this point
(see A2.11). This secures the hypotheses of (i) and then (i) establishes the claim.

(iii) is a special case of (ii). ut

The proof of Theorem 9.14 is simple given the information provided in
Appendix 2 on simple connectedness. In particular it is shown there in Exam-
ple A2.11(iii) that the product of any family of arcwise connected, locally arcwise
connected, locally arcwise simply connected spaces is simply connected. That ma-
terial is specifically provided for the application in 9.14. Our approach to simple
connectivity in Appendix A2 otherwise is rather free of arc connectivity, a caution
which is indicated to us in the context of compact groups that arc connectivity in
compact groups is not a prevalent, and certainly a delicate, property (as we have
seen in 8.30, 8.45, and 8.48). In the present chapter it becomes evident that in the
case of semisimple compact connected groups, arc connectivity is not a problem.
(see also 9.19 and 9.50 below).

Example 9.15. Let G = SO(3)N and G̃ = SU(2)N. Let q: SU(2) → SO(3) the

universal covering (cf. E1.2, E5.12). Then π = qN: G̃→ G is a surjective morphism

from the simply connected compact group G̃ with kernel Z
(

SU(2)
)N ∼= Z(2)N. The

group G has fundamental group π1(G) ∼= Z(2)N but does not possess a universal
covering group. It is not locally simply connected (cf. the definition preceding
Lemma A2.12), and therefore the hypotheses of the Existence of the Universal
Covering Theorem A2.14 are not satisfied. ut

In view of Example 9.15, note that a compact connected semisimple group G
will not necessarily have a universal covering f : G̃→ G. We aim to show, however,
that for any compact connected semisimple group G there is a simply connected
semisimple compact group G̃ and a natural morphism πG: G̃ → G with a totally
disconnected kernel and that this will have to serve as a substitute for a universal
covering.

Lemma 9.16. (i) Let (X,x0) be a simply connected pointed space and G a compact
group with a totally disconnected normal subgroup D. If f : (X,x0) → G/D is a
continuous map of pointed spaces and q:G → G/D the quotient morphism, then
there is a unique continuous lifting of pointed spaces F : (X,x0)→ G.

(ii) If X is a simply connected topological group then the lifting F is a morphism
of groups.

Proof. Let N ∈ G. Then q induces a quotient morphism qN :G/N → G/ND ∼=
(G/N)/(ND/N), qN (gN) = gND, of compact Lie groups whose kernel ND/N is
a totally disconnected compact Lie group and thus a finite group. Consequently
qN is a covering map. Since (X,x0) is simply connected then by the very definition
A2.6 the continuous map of pointed spaces x 7→ f(x)ND: (X,x0) → G/ND has
a unique lifting FN : (X,x0) → G/N . If M ⊆ N in N (G), then qM

(
FM (x)

)
N =
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qN
(
FN (x)

)
, that is FM (x) ⊆ FN (x). Thus {FN (x) | N ∈ N (G)} is a filter basis

of compact sets and thus has an element F (x) in it which is as representative of
each FN (x), i.e. F (x)N = FN (x). Now q

(
F (x)

)
N = F (x)ND. Thus q

(
F (x)

)
∈⋂

N∈N (G) F (x)DN = F (x)
⋂
N∈N (G)DN = F (x)D by 9.1(iii). Thus F is a lifting.

Let U be an identity neighborhood of G. Then there is an N ∈ N (G) and an open
identity neighborhood V of G such that V = V N ⊆ U . Since FN :X → G/N is
continuous there is a neighborhood W of x such that FN (W ) ⊆ F (x)U/N . Then
F (W ) ⊆ F (x)U . Thus F is continuous and is, therefore, the required lifting.

(ii) If X is a group and N ∈ N (G) then FN :X → G/N is a morphism of
topological groups by A2.32. Hence F (x)F (y) ∈ F (x)F (y)N = FN (x)FN (y) =
FN (xy) = F (xy)N . By 9.1(ii) the relation F (x)F (y) = F (xy) follows. ut

Lemma 9.17. Assume that G is a semisimple connected compact group and that
there is a simply connected semisimple compact group G̃ and a surjective morphism
πG: G̃→ G with totally disconnected kernel.

(i) If f :S → G is a morphism for some simply connected compact group S,

then there is a lifting morphism ϕ:S → G̃ such that πGϕ = f . If f is a quotient
morphism with totally disconnected kernel ker f , then ϕ is an isomorphism.

(ii) If f :G→ H is any morphism of compact connected semisimple groups, and

if πH : H̃ → H is a quotient morphism with totally disconnected kernel then there
is a unique morphism f̃ : G̃→ H̃ so that the following diagram is commutative:

G̃
f̃−−−→ H̃

πG

y yπH
G

f−−−→ H.

Proof. (i) By Lemma 9.16 there is a unique morphism ϕ:S → G̃ of topological
groups such that πGϕ = f . If f has a totally disconnected kernel then by 9.16

there is a unique morphism ψ: G̃ → S such that fψ = πG. Then π(ϕψ) = fψ =
π = π id

G̃
. The uniqueness of the lifting yields ϕψ = id

G̃
. Completely analogously

we get ψϕ = idS . Thus ψ = ϕ−1.
(ii) is a consequence of (i). ut

Lemma 9.18. Let f :G → H be a surjective morphism of compact groups. Then
f(G0) = H0.

Proof. Clearly f(G0) ⊆ H0. Since f maps f−1(H0) onto H0, it is no loss of
generality to assume that H is connected and then to show that f(G0) = H. For
a proof let U be any open subgroup of G. Then since f is a quotient morphism
by 1.10(iii), f(U) is open in H, and thus f(U) = H. Let U denote the filter basis
of all open, hence closed subgroups of G. By E1.13(iii),

⋂
U = H. If h ∈ H, then

{f−1(h) ∩ U | U ∈ U} is a filterbasis of compact sets. Let gh ∈
⋂
U = G0 be an

element in its intersection. Then f(gh) = h. Hence f(G0) = H. ut
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An alternative proof may be instructive. Since f is surjective, f(G0) is a closed
normal subgroup of H contained in H0. Thus there is a morphism F :G/G0 →
H/f(G0), F (gG0) = f(g)f(G0) = f(gG0), and F is surjective. But G/G0 is
totally disconnected, and so H0/f(G0) is a connected compact group which is
the totally disconnected compact group F−1

(
H/f(G0)

)
. But quotients of totally

disconnected compact groups are totally disconnected by E1.13. Thus H0/f(G0)
is singleton and thus f(G0) = H0.

As we did in Chapter 6 we shall call a group G centerfree if its center Z(G) is
a singleton.

If
∏
j∈J Gj is a product of groups, we shall say that a subgroup∏

j∈J
Hj , Hj =

{
Gj if j ∈ I,
{1} otherwise

is a partial product with respect to the index set I ⊆ J . Such a partial product is
clearly isomorphic to

∏
j∈I Gj .

At long last, we are able to give a complete description of the structure of
semisimple compact connected groups. We fix some notation. We let S denote a
set of simple compact Lie algebras containing for each simple compact Lie algebra
exactly one member isomorphic to it and pick once and for all for each s ∈ S a
simple simply connected Lie group S[s] and a simple centerfree compact connected
Lie group R[s] = S[s]/Z(S[s]) with L(S[s]) ∼= L(R[s]) ∼= s. The groups S[s] and R[s]

are unique up to a natural isomorphism.

The Structure of Semisimple Compact Connected Groups

Theorem 9.19. Assume that G is a semisimple compact connected group.
(i) There is a simply connected semisimple compact group G̃ and a natural

surjective morphism πG: G̃ → G with a totally disconnected kernel. If f :G → H
is a morphism of semisimple compact connected groups, then there is a unique
morphism f̃ : G̃→ H̃ such that the following diagram is commutative:

G̃
f̃−−−→ H̃

πG

y yπH
G −−−→

f
H.

Up to a natural isomorphism, G̃ is uniquely determined. If C is a compact con-

nected normal subgroup of G, then C̃
def
=
(
π−1
G (C)

)
0

is a compact connected normal

subgroup of G̃ mapping onto C with a totally disconnected kernel under the restric-
tion of πG.

(ii) There is a family {Sj | j ∈ J} of simple simply connected compact Lie
groups Sj such that

G̃ ∼=
∏
j∈J

Sj .
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The center Z(G) is totally disconnected. Each compact connected normal subgroup
of
∏
j∈J Sj is isomorphic to a partial product

C̃ =
∏
j∈J

Gj , Gj =

{
Sj if j ∈ I,
{1} otherwise

for a unique subset I ⊆ J .
In particular, every compact connected normal subgroup of G is of the form

πG(C̃) for a suitable I ⊆ J .

(iii) The prescription ·̃ is a functor; i.e. ĩdG = id
G̃

and f̃f ′ = f̃ f̃ ′.

(iv) Set Rj
def
= Sj/Z(Sj). Then

∏
j∈J Rj is a compact connected centerfree

group which is isomorphic to G/Z(G).

G ∼=



G̃ ∼=
∏
j∈J Sj∣∣∣∣∣

}
∼=
∏
j∈J Rj

Z(G̃) ∼=
∏
j∈J Z(Sj)∣∣∣∣∣

}
∼= Z(G)

D∣∣∣∣∣
{1}

Any compact normal subgroup of
∏
j∈J Rj is connected and is a partial product

isomorphic to
∏
j∈I Rj for a unique subset I of J .

(v) The family {Sj | j ∈ J} is uniquely determined in the following sense:
Let J be the set of all closed connected normal Lie subgroups of G which are
simple Lie groups. For each j ∈ J select a universal covering morphism pj :Sj → j

according to A2.20 and 5.77. Then {Sj | j ∈ J} is such that G̃ ∼=
∏
j∈J Sj, and if

{S∗k | k ∈ J∗} is another such family, then there is a bijection β: J → J∗ and a
family of isomorphisms αj :Sj → S∗β(j).

(vi) For each s ∈ S there are fully characteristic subgroups G̃s of G̃ and Gs of
G, respectively, and a unique cardinal ℵ(s, G) such that

(a) J is the disjoint union of subsets Js each of cardinality card Js = ℵ(s, G),
s ∈ S.

(b) G̃s
∼= S

ℵ(s,G)
[s] .

(c) G̃ ∼=
∏

s∈S G̃s.

(d) Gs = πG(G̃s).
(e) G is generated by the union of the Gs, s ∈ S and there is a surjective mor-

phism ω:
∏

s∈S Gs → G for a totally disconnected central kernel.
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(f) There is a surjective morphism ω′:G →
∏

s∈S R
ℵ(s,G)
s such that kerω′ =

Z(G).

Proof. (i) and (ii) From Chapter 2 (see 2.43, cf. also Lemma 9.1 above) we
know that G = limN∈N (G)G/N for the strict projective system {fNM = (gM 7→
gN):G/M → G/N | N, M ∈ N (G), M ⊆ N}. Since G′ = G we know (G/N)′ =
G′N/N = G/N . Hence all G/N are semisimple. Now Lemma 9.10 provides us

with a compact connected group G̃ which is the limit of a strict projective system
{f̃NM : G̃M → G̃N | N, N ∈ N (G), M ⊆ N} and with a surjective morphism

πG: G̃→ G with totally disconnected kernel such that the following diagram com-
mutes:

G̃N
f̃NM←−−− G̃M

f̃M←−−− G̃

πN

y yπM yπ
G/N ←−−−

fNM
GM ←−−−

fM
G.

Now from Lemma 9.13 we draw the conclusion that there is a family {Sj | j ∈ J}
of simple simply connected compact Lie groups Sj such that G̃ =

∏
j∈J Sj . Thus

we have the desired surjective morphism f :
∏
j∈J Sj → G with a totally discon-

nected central kernel D. The isomorphy theorem shows that G ∼=
∏
j∈J Sj/D.

Since Z(
∏
j∈J Sj) =

∏
j∈J Z(Sj) and all Z(Sj) are finite, Z(

∏
j∈J Sj) is totally

disconnected, i.e. has a basis of compact open identity neighborhoods, and thus
Z(G) ∼= Z(

∏
j∈J Sj)/D has a basis of compact open identity neighborhoods and

thus is totally disconnected, too.
From Lemma 9.17 we get that G̃ is unique in the sense that for πG: G̃ → G

and π∗G: G̃∗ → G with the same properties we obtain an isomorphism ϕ: G̃ → G̃∗

such that π∗Gϕ = πG. Further for any morphism f :G→ H of semisimple compact

connected groups we find a unique f̃ : G̃→ H̃ such that πH f̃ = fπG.
Let C be a compact connected normal subgroup of G. Since πG is surjective,

πG
(
π−1
G (C)

)
= C. If we set C̃

def
=
(
π−1
G (C)

)
0
, then Lemma 18 shows that πG(C̃) =

C. We note that kerπG|C̃ = C̃ ∩ kerπG is totally disconnected.

Finally let C̃ be a compact connected normal subgroup of P
def
=
∏
j∈J Sj . Let

F ⊆ J and set

PF =
∏
j∈J

Gj , Gj =

{
Sj if j ∈ F ,
{1} otherwise.

Let pF :P → PF be the projection. Now assume that F is finite. Then by 6.18(iii)

there is a finite subset IF ⊆ F such that pF (C̃) = PIF . If F1 and F2 are finite,
then the uniqueness in 6.18(iii) allows us to conclude that IF1∪F2

= IF1
∪ IF2

.

Define I =
⋂
{IF | F ⊆ J finite}. Then clearly pF (C̃) = pF (PI) for all finite

subsets F ⊆ J . Since the projections pF , F ⊆ J finite, separate the points of P
we conclude C̃ = PI .

This completes the proof of parts (i) and (ii) of the theorem.
(iii) Exercise E9.4.
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(iv) Let S be a compact connected semisimple group and Z its center. As
S/Z is semisimple, the center Z(S/Z) = N/Z is totally disconnected. Hence N
is totally disconnected since Z is totally disconnected. Then N is central by 6.13
and thus N ⊆ Z. Hence S/Z is centerfree. Thus all groups Rj are centerfree and
then

∏
j∈J Rj is centerfree. The center of

∏
j∈J Sj is

∏
j∈J Z(Sj). Hence D ⊆∏

j∈J Z(Sj). Since
(∏

j∈J Z(Sj)
)
/D = Z

(
(
∏
j∈J Sj)/D

) ∼= Z(G), the isomorphy
theorem shows that

∏
j∈J Rj

∼= G/Z(G).

Now let N be a compact normal subgroup of P
def
=
∏
j∈J Rj . Then the identity

component N0 by (ii) above is a partial product

PI
def
=
∏
j∈J

Gj , Gj =

{
Rj if j ∈ J ,
{1} otherwise

for some I ⊆ J . Then P/N ∼= PJ\I , and N/N0 is a totally disconnected nor-
mal, hence central subgroup of the connected group P/N (cf. 6.13). But PJ\I is
centerfree. Thus N = N0. Thus assertion (iv) is proved completely.

(v) By (ii) we know that there is a family {S∗k | k ∈ J∗} and a quotient

morphism π:P
def
=
∏
k∈J∗ S

∗
k → G with totally disconnected kernel. Consider the

partial products

S̃k =
∏
i∈J∗

Gi, Gi =

{
S∗k for i = k,
{1} otherwise.

Then π(S̃k) ∈ J and we set β: J∗ → J , β(k) = π(S̃k).

Claim: β is injective. Assume β(k1) = β(k2). Then π(S̃k1
) = π(S̃k2

). Denote

this group by H. The map π restricts to universal coverings pm: S̃km → H, m =

1, 2. Then there is a unique morphism ϕ: S̃k1 → S̃k2 such that p1 = p2ϕ. Then

π((g−1ϕ(g)
)

= p1(g)−1p2ϕ(g) = 1 for all g ∈ S̃k1
. Thus g 7→ g−1ϕ(g):Sk1

→ kerϕ
is a continuous function from a connected space into a totally disconnected one
and is, therefore constant. Thus ϕ(g) = g for all g ∈ S̃k1 which implies k2 = k1.

Claim: β is surjective. Let S be a simple compact connected normal subgroup
of G. Set H = π−1(S). Then H is a compact normal subgroup of

∏
k∈J∗ S

∗
k

containing kerπ ⊆
∏
k∈J∗ Z(S∗k). Since the compact connected subgroup H0 of

H is characteristic, it is normal in the product, too. Then π(H0) is a connected
compact normal subgroup of S and then is either S or singleton. Suppose the
latter. Then S is a quotient of H/H0, a totally disconnected and normal subgroup
of the connected group P/H0, and is therefore central (6.13). Hence H/H0 is
abelian and thus S is abelian. This is false and thus the supposition S = {1} is
refuted. Therefore π|H0:H0 → S is a morphism with totally disconnected kernel.
The composition

H̃0 −−−→ H0
π|H0−−−→ S

is a surjective morphism with totally disconnected kernel and by the proof of the
injectivity of β the product representation of H̃0 contains only one factor. Hence
H0 itself is a simple compact Lie group.
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Claim: There is a k ∈ J∗ such that H0 = S̃∗k . Since H0 is a compact Lie group
there is an identity neighborhood U of P such that H0 ∩ U does not contain any
subgroup other than {1}. Then by the definition of the product topology on P
there is a finite subset I∗ of J∗ such that the partial product

N
def
=
∏
i∈J∗

Gi, Gi =

{
{1} for i ∈ I∗,
S∗i otherwise

is contained in U . Then the projection P →
∏
i∈I∗ S

∗
i maps H0 faithfully. From

6.18(iii) and the simplicity of H0 we conclude that there is a k ∈ I∗ such that

H0N = S̃kN . Since we may choose N arbitrarily small, 9.1(iii) shows H0 = S̃k.

The restriction of the projection P → S∗k to S̃k is an isomorphism whose inverse

we denote by ιk:S∗k → S̃k. The morphism γk:S∗k → β(k), γk = (π|S̃k) ◦ ιk is a
universal covering. Hence there is a unique morphism αk:S∗k → Sβ(k) such that
γk = pk ◦ αk. Since pk is likewise a universal covering, αk is an isomorphism.

(vi) The proof of (vi) will be straightforward from the definitions that we are
about to make. Indeed, by (ii) and (vi) there is a unique family {Sj | j ∈ J} of

simply connected simple groups Sj such that G̃ =
∏
j∈J Sj . Define Js = {j ∈

J | L(Sj) ∼= s} and ℵ(s, G) = cardJs. Then (a) is automatic. Next we set

G̃s =
∏
j∈Js Sj considered in the obvious fashion as a subgroup of G̃. Taking

for S any simply connected compact simple group with L(S) ∼= s we have (b)

and (c). Finally we set Gs = πG(G̃s). This makes (d) automatic, and since G̃ is

generated topologically by the union of the G̃s, the group G is generated by the
union of the Gs. This establishes the first part of (e). There is an obvious mor-

phism α: G̃ =
∏

s∈S G̃s →
∏

s∈S Gs defined in a componentwise fashion. Its kernel∏
s∈S ker(πG|G̃s) is contained in the kernel of πG. Hence πG factors as πG = ω ◦α

with a unique ω.
Conclusion (f) follows from (iv) in view of the fact that for j ∈ Js we have

Rj ∼= Rs and thus
∏
j∈J Rj

∼=
∏

s∈S R
ℵ(s,G)
s . ut

The fully characteristic subgroups G̃s of G̃ and Gs of G are called the isotypic
components of G̃, respectively, G of type s.

Exercise E9.4. Prove the functoriality of G 7→ G̃.

[Hint. Diagram chasing and uniqueness of the lifting.] ut

Theorem 9.19 provides the first example of what we call a “Sandwich Theo-
rem.” It “sandwiches” the group G between two product groups by two surjective
morphisms with totally disconnected central kernels.
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The Sandwich Theorem for Semisimple Compact Connected Groups

Corollary 9.20. Let G be a semisimple compact connected group. Then there is
a family {Sj | j ∈ J} of simple simply connected compact Lie groups and there are
surjective morphisms f and q of compact groups∏

j∈J Sj
f−−−→ G

q−−−→
∏
j∈J Sj/Z(Sj)

∼=
y idG

y y∼=∏
s∈S S

ℵ(s,G)
[s] −−−→ G −−−→

∏
s∈S R

ℵ(s,G)
[s] ,

such that qf :
∏
j∈J Sj →

∏
j∈J Sj/Z(Sj) is the product

∏
j∈J pj of the quotient

morphisms pj :Sj → Sj/Z(Sj).

Proof. This is a reformulation of 9.19(iv). ut

Exercise E9.5. Verify the following facts.

In the circumstances of Theorem 9.19 and Corollary 9.20, the cardinal numbers
card J and ℵ(s, G), s ∈ S are isomorphy invariants of G. Assume that J is infi-
nite. Then card J = w(G), where w(G) is the weight of G. Further, G contains a
subspace homeomorphic to [0, 1]card J .

G is sandwiched between the group
∏

s∈S G̃s and the group
∏

s∈S Gs where

Gs
def
=
∏
j∈Js Rj

∼= R
ℵ(s,G)
s , Rj = Sj/Z(Sj).

Show that every semisimple connected compact group is a dyadic space, i.e. a
quotient space of a space {0, 1}I for some set I.

[Hint. See Exercise EA4.3 in Appendix 4 for the weight of a product.
Use Alexandroff’s Theorem which says that every compact metric space is

dyadic (see Lemma A4.31).] ut

The Levi–Mal’cev Structure Theorem for Compact Groups

For an optimal understanding of the main structure theorems on compact groups
it helps to recall the concept of a semidirect product which was discussed in Defi-
nition 5.72 and the subsequent Exercise E5.27. For compact groups we can readily
say the following.

Lemma 9.21 (Mayer-Vietoris). Let G be a topological group, N a compact normal
subgroup, and H a compact subgroup. Then NH is a compact subgroup of G. The
morphism ι:H → AutN , ι(h)(n) = hnh−1 defines a semidirect product N oι H,
and there is a surjective morphism µ:N oιH → G whose image in NH, and there
is an injective morphism δ:N ∩ H → N oι H, δ(d) = (d−1, d) whose image is
kerµ. The sequence of morphisms of topological groups

(MV) {1} → N ∩H δ→ N oι H
µ→ G→ {1}
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is exact at all terms with the possible exception of G; it is exact everywhere if and

only if G = NH. There is an isomorphism NH ∼= NoιH
D with D

def
= kerµ = im δ ∼=

N ∩H.

Proof. The function (h, n) 7→ ι(h)(n) = hnh−1:H × N → N is continuous, and
thus N oι H is a well-defined semidirect product. It is straightforward to verify
that µ and δ are morphisms with the asserted properties. ut

We shall sometimes call the map µ the Mayer-Vietoris morphism.

Exercise E9.6. Prove the following proposition.

Let Z denote a central subgroup of a compact group G and H a compact subgroup.
Then there is a sequence

{1} → Z ∩H δ→ Z ×H µ→ ZH → {1}.

In particular, ZH ∼= Z×H
D , where D = {(d−1, d) | d ∈ Z ∩H} ∼= Z ∩H. ut

If G is a compact group, then its identity component G0 equals Z0(G)(G′)0,
where Z0(G) is the identity component of the center Z(G), and the intersection
Z0(G) ∩ (G′)0 is trivial in the sense that it is totally disconnected [179].

The Structure Theorem for Compact Groups

Theorem 9.23. (i) Let G be a compact group with center Z(G) and closed com-
mutator group G′. Then Z(G)G′ contains G0 and the intersection Z(G) ∩ G′ is
totally disconnected.

(ii) There is an exact sequence

(MV) {1} → Z0(G) ∩ (G′)0
δ−−−→ Z0(G)× (G′)0

µ−−−→ G0 → {1}.

(iii) Set GA = G/G′ and define ζ:Z(G) → GA by ζ(g) = gG′, θ:GA →
G/(Z(G)G′) by θ(gG′) = gZ(G)G′. Then (GA)0

∼= G0G′/G′ = Z0(G)G′/G′ ∼=
Z0(G)/(Z0(G) ∩G′), and there are exact sequences of compact abelian groups

(A)

(B)

0 → Z0(G) ∩G′ incl−−−→ Z0(G)
ζ|Z0(G)−−−−→ GA −−−→ GA/(GA)0 → 0,

0 → Z(G) ∩G′ −−−→
incl

Z(G) −−−→
ζ

GA −−−→
θ

G/(Z(G)G′) → 0.

The sequence (A) is the characteristic sequence of GA in the sense of Defini-
tion 8.80 if and only if Z0(G) is torsion-free if and only if the character group(
Z0(G)

)̂ is divisible.

Proof. (i) For N ∈ N (G) let ZN denote the full inverse image of the center
Z(G/N) of the Lie group G/N , that is, N ⊆ ZN and ZN/N = Z(G/N). It
follows from the Structure Theorem on Compact Lie Groups 6.15 that G0N/N ⊆
(G/N)0 ⊆ Z(G/N)(G/N)′, that is, G0 ⊆ ZNG′, since (G/N)′ = G′N/N . For each
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g ∈ G0 we therefore find elements zN ∈ ZN , gN ∈ G′ such that g = zNgN , i.e.
gg−1
N = zN ∈ gG′ ∩ ZN . If N ⊆ M in N (G) then ZN ⊆ ZM . Hence {gG′ ∩ ZN |

N ∈ N (G)} is a filter basis of compact sets. Let x ∈
⋂
N∈N (G) gG

′∩ZN = gG′∩Z,

Z =
⋂
N∈N (G) ZN . Thus g ∈ ZG′.

We claim that Z = Z(G). Clearly Z(G) ⊆ ZN for all N ∈ N (G) whence
Z(G) ⊆ Z. Now let z ∈ Z and g ∈ G. Then comm(z, g)N = comm(xN, gN) ∈
comm(ZN/N,G/N) = comm

(
Z(G/N), G/N)

)
= {N}. Hence comm(z, g) ∈ N .

Thus comm(z, g) ∈
⋂
N (G) = {1} by 9.1(ii). Since g was arbitrary, z ∈ Z(G).

We now claim that Z(G)∩G′ is totally disconnected. For a proof let C denote
the identity component of Z(G)∩G′ and take N ∈ N (G). Then (G/N)′ = (G/N)′

by Theorem 6.11, and (Z(G)∩G′)N/N ⊆ Z(G/N)∩ (G/N)′ = Z(G/N)∩ (G/N)′,
and this latter group is finite by 6.15(iii). Hence

(
(Z(G)∩G′)N/N

)
0

= {N}. Thus

(Z(G) ∩ G′)0 ⊆ N . Hence (Z(G) ∩ G′)0 ⊆
⋂
N (G) = {1} by 9.1(ii). Therefore

Z(G) ∩G′ is totally disconnected as asserted.

(ii) The function µ:P
def
= Z(G) × G′ → Z(G)G′, µ(z, g) = zg is a sur-

jective morphism of compact groups. Since G0 ⊆ Z(G)G′, Lemma 9.18 yields
G0 = µ(Z0(G)∩ (G′)0. The remainder then is a consequence of the Mayer-Vietoris
Formalism 9.21.

(iii) We note that Corollary 7.73 and (i) above imply

(GA)0 = (G/G′)0 = G0G′/G′ = Z0(G)G′/G′ ∼= Z0(G)/(Z0(G) ∩G′).

This shows, in particular, exactness of (A) at GA. Exactness at the other places
of (A) is obvious. Then exactness of (B) is clear.

Finally, the exact sequence (A) is the characteristic sequence of GA by 8.80 if
and only there is an isomorphism α such that the diagram

P(GA)
EG−−−→ GA

α

y yidGA

Z0(G) −−−→
ζ0

GA

is commutative, where EG is the adjoint of the morphism ι
ĜA

: ĜA → Q ⊗ ĜA,

ι(χ) = 1 ⊗ χ, and where ζ0 = ζ|Z0(G). Since im(ζ0) = (GA)0 by the exactness

of (A), the kernel of ζ̂0 is tor ĜA = ker ιGA (see 7.65, 8.4(7), and A1.45); and

since ker(ζ0) is totally disconnected by the exactness of (A), the cokernel of ζ̂0
is a torsion group; this means that ζ̂0(ĜA) is a pure subgroup of the torsion-free
abelian group

(
Z0(G)

)̂ (see 8.5[(i)⇔(iii)] and A1.24). Thus α exists if and only if(
Z0(G)

)̂ is divisible. By 8.5[(1)⇔(2)] this the case iff Z0(G) itself is torsion-free.
ut

The characteristic sequence of GA occurring in 9.23(iii)(A) will be of consid-
erable significance for the structure of free compact groups, see Chapter 11 (cf.
11.11, 11.14, 11.16).
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For the following major structure theorem recall from 9.6, that for a connected
compact group G, the closed commutator subgroup G′ is semisimple. Then from
the Theorem on the Structure of Semisimple Connected Compact Groups 9.19,
there is a family {Sj | j ∈ J} of simple simply connected compact Lie groups,
unique up to isomorphism and permutation of the members, and a natural mor-

phism πG: G̃′
def
=
∏
j∈J Sj → G′ with totally disconnected central kernel.

The Levi–Mal’cev Structure Theorem for Connected

Compact Groups

Theorem 9.24. Let G be a connected compact group. Then the subgroup ∆
def
=

Z0(G) ∩G′ is totally disconnected central and G = Z0(G)G′. In particular,
(i) there is an exact sequence

(MV) {1} → ∆
δ→ Z0(G)×G′ µ→ G→ {1}.

In particular, G ∼=
Z0(G)×G′

∆1
, ∆1

∼= ∆.

(ii) There is a family {Sj | j ∈ J} of simple simply connected compact Lie
groups and there is a totally disconnected central subgroup D of Z0(G)×

∏
j∈J Sj

such that

G ∼=
Z0(G)×

∏
j∈J Sj

D
.

(iii) There is a totally disconnected central subgroup C of G such that

G/C ∼=
Z0(G)

∆
×
∏
j∈J

Rj , Rj =
Sj

Z(Sj)
.

(iv) The entire situation is captured in the following Hasse diagram:

G ∼=



Z0(G)×
∏
j∈J Sj∣∣∣∣∣

}
∼=

∏
j∈J Sj/Z(Sj)

Z0(G)×
∏
j∈J Z(Sj)∣∣∣∣∣

}
∼= Z(G)

D∣∣∣∣∣
{1}.
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Proof. If G is connected, then G′ = G′ by Theorem 9.2. Hence (i) is an immediate
consequence of 9.23.

(ii) By 9.6, G′ is semisimple. From 9.19(ii) we get the family {Sj | j ∈ J}
and the canonical surjective morphism πG:

∏
j∈J Sj → G′ with central totally

disconnected kernel. We define µG:Z0(G) × G̃′ → G by µG(z, s) = zπG(s), s =
(sj)j∈J . This morphism is clearly surjective, and an element (z, s) is in its kernel
iff z−1 = π(s) in Z0(G) ∩ G′. Thus the map s → (πG(s)−1, s):πG(∆) → kerµG
is an isomorphism. Since kerπG is totally disconnected by 9.19 and ∆ is totally
disconnected by (i) we conclude that (kerµG)0 is singleton and thus kerµG is
totally disconnected (and hence central by 6.13).

Finally, the morphism α: Z0(G)
∆ → G/G′, α(z∆) = zG′ is an isomorphism of

compact groups by (i). We also note that G/Z(G) ∼= G′/∆ = G′/Z(G′) by (i).
Then from 9.19(iv) we have a surjective morphism β:G →

∏
j∈J Sj/Z(Sj) such

that βµG(1, (sj)j∈J) = (sjZ(Sj))j∈J . Now set νG(g) =
(
α−1(gG′), β(g)

)
. Then

with s = (sj)j∈J ∈
∏
j∈J Sj we have νGµG(z, s) = ν(zs) =

(
z∆, (sjZ(Sj)j∈J

)
in view of the definition of β. In particular, ν is surjective. Since µ−1 ker νG =
ker(νGµG) is totally disconnected and µG is surjective, ker νG is totally discon-
nected, too. ut

The proof of Theorem 9.24 yields the following information. For a connected
compact group G, we shall set

G∗
def
= Z0(G) ×

∏
j∈J Sj ,

G∗
def
= Z0(G)

∆ ×
∏
j∈J

Sj
Z(Sj)

.

The Sandwich Theorem for Compact Connected Groups

Corollary 9.25. Let G be a connected compact group. Then there are morphisms

µG : G∗ → G, µG(z, s) = zπG(s), s = (sj)j∈J ,

νG : G → G∗, νG(g) = (z, (sjZ(Sj))j∈J , g = zπG
(
(sj)j∈J

)
both with totally disconnected central kernels, satisfying

νGµG(z, (sj)j∈J) =
(
z∆, (sjZ(Sj)

)
j∈J . ut

We derived the classical result 9.24 on connected compact groups from Theorem
9.23. At first pass it may seem as if, conversely, Theorem 9.23 might be a conse-
quence of 9.24. This is not so. The example G = Toα Z(2), α(n+ 2Z)(t) = −1n·t
shows that Z(G) = {(0, 0), ( 1

2 + Z, 0)} showing that Z0(G) is trivial and G′ = G0

while Z(G0) = G0 and (G0)′ is trivial.
The Structure Theorem 9.24 describes the structure of a compact connected

group G in terms of the Z0(G) and G′. The first component is a compact con-
nected abelian group, and we discussed these in Chapter 8. The second component
is a semisimple connected compact group whose structure we elucidated in this
chapter. The subgroups Z0(G) and G′ are fully characteristic, i.e. each of them

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



508 9. The Structure of Compact Groups

is mapped into itself by all continuous endomorphisms. In fact, as we shall show
now, they are preserved under morphisms.

Proposition 9.26. (First Theorem on Morphisms of Compact Groups). (i) If
f :G→ H is a morphism of compact groups, then f(G0) ⊆ H0, and if f is surjec-
tive, equality holds.

(ii) If f :G→ H is a morphism of compact groups, then

(†) f(G′) ⊆ H ′.

If f is surjective then

(‡) f
(
Z(G0)

)
⊆ Z(H0), f

(
Z0(G0)

)
= Z0(H0) and f(G′) = H ′.

(iii) If f :G → H is a morphism of connected compact groups then there is a

morphism f∗ = f |Z0(G)× f̃ |G′:G∗ → H∗ involved in the commutative diagram

(∗)
G∗

f∗−−−→ H∗

µG

y yµH
G −−−→

f
H.

Proof. (i) follows from Lemma 9.18.

(ii) Let g = [g1, g2] be a commutator in G. Then f(g) = [f(g1), f(g2)] ∈ H ′.
Thus (†) is an immediate consequence.

If f is surjective, then every commutator of H is the image of a commutator
of G and thus f(G′) = H ′. Also, f(G0) = H0 by (i) above. Hence in order to
prove the statements about the centers, it is no loss of generality to assume that
G is connected which we will do. Even then the remainder is a bit more difficult.
Once we have established f

(
Z(G)

)
= Z(H), then f

(
Z0(G)

)
= Z0(H) follows from

(i) above. Now we prove Z(H) = f
(
Z(G)

)
. We write C

def
= f

(
Z(G)

)
. Since C is

central, we have C ⊆ Z(H) and we must show equality. The morphism f induces
a surjection F :G/Z(G) → H/C, F

(
gZ(G)

)
= f(g)C. By Theorem 9.24 we know

that Γ
def
=
(
G/Z(G)

) ∼= G′/Z(G′) is semisimple and centerfree. Hence by 9.19(iv)
we may write Γ =

∏
j∈J Rj with a family of centerfree simple compact connected

Lie groups Rj . Suppose now that Z(H/C) 6= {1}. Then D
def
= F−1

(
Z(H/C)

)
is

a disconnected closed normal subgroup of Γ; let N be its identity component. By
9.19(ii) and (iii), N is a partial product of Γ isomorphic to

∏
j∈I Rj for some I ⊆ J .

It follows that D/N is isomorphic to a nondegenerate discrete normal and hence
central subgroup of a partial product isomorphic to

∏
j∈J\I Rj . However, since all

Rj are centerfree, this product is centerfree and thus this is a contradiction. This
proves that Z(H/C) is singleton. This in turn implies that C = Z(H) and this is
what we had to show.

(iii) In order to show that f(G̃′) = H̃ ′, write S = f̃(H̃ ′) and K = kerπH . Then

πH(S) = πH
(
f̃(H̃ ′)

)
= f

(
πG(G̃′)

)
= f(G′) = H ′. Thus SK = H̃. Now H̃/S is
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semisimple as a homomorphic image of the semisimple compact connected group
H̃. But K is central, hence abelian. Thus H̃/S ∼= K/(S ∩ K) is abelian. Hence

H̃/S is singleton, i.e. H̃ = S. The remainder of (iii) is then clear. ut

We shall improve the result in 9.26(ii) by showing later in 9.47(iii) that for
any surjective morphism f :G → H between (not necessarily connected) compact
groups the equality f

(
Z0(G)

)
= Z0(H) holds.

A surjective morphism f :G → H between groups obviously maps the cen-
ter Z(G) into the center Z(H). In general f

(
Z(G)

)
6= Z(H) even if G is finite.

Consider for instance the 8-element quaternion group G = {±1,±i,±j,±k} whose

center is Z(G) = {±1}. The quotient map f :G→ H
def
= G/Z(G) satisfies f

(
Z(G)

)
= {1} 6= Z(H) = H. However, in 9.28 we will show that f

(
Z(G)

)
= Z(H) if G is a

compact connected group and f is continuous. The proof of this useful proposition
is less obvious than one might think at first glance. More specifically, for a group
G and a normal subgroup we have trivially Z(G)N/N ⊆ Z(G/N). The normal
subgroup M = {x ∈ G | (∀g ∈ G) comm(x, g) ∈ N} contains N and satisfies
M/N = Z(G/N). In general to Z(G)N 6= M even if N = Z(G) as the example
above indicates.

Lemma 9.27. If N is a normal subgroup of G and G/NZ(G) is centerfree, then
Z(G/N) = NZ(G)/N .

Proof. Note NZ(G) ⊆M and that M/NZ(G) is central in G/NZ(G). Since this
group is centerfree we conclude M ⊆ NZ(G). This proves the lemma. ut

Theorem 9.28. (Second Theorem on Morphisms of Compact Groups). Let f :G→
H be a surjective morphism of compact connected groups. Then f maps the center
Z(G) of G onto the center Z(H) of H.

Proof. Firstly, by Lemma 9.27, the assertion is true for the natural morphisms

µG:Z0(G)× G̃′ → G since the kernel of µ is contained in the center Z0(G)×Z(G̃′)

of its domain and since
(
Z0(G) × G̃′

)
/
(
Z0(G) × Z(G̃′)

) ∼= G̃′/Z(G̃′) is centerfree

by 9.19. By 9.26 we have f
(
Z0(G)

)
= Z0(H) and f(G′) = H ′.

Consider the diagram (∗) in 9.26. We have seen that both vertical maps map
the center onto the center. The bottom map therefore maps the center onto the
center if that is true for the top map. The top function, however, maps the center
onto the center if f̃

(
Z(G̃′)

)
= Z(H̃ ′).

It therefore suffices to prove the theorem for compact semisimple simply con-
nected groups. Assume that f :G→ H is a surjective morphism between semisim-
ple, simply connected compact connected groups. Then H is a direct product∏
j∈J Sj of simple simply connected compact Lie groups. Hence H contains normal

subgroups SN =
∏
j∈F Sj × {1} and N = {1} ×

∏
j∈J\F Sj such that H = SNN ,

a direct product, as F ranges through the finite subsets of J . Indeed, N (H) has a
basis B of subgroups of the form N and the subgroups SN are semisimple simply
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connected compact Lie group. Let pN :H → SN denote the projection. Then by
Lemma 9.12, the morphism pN :G → H/N splits, i.e. may be viewed as a projec-
tion of G ∼= SN ×M onto SN . But Z(SN ×M) = Z(SN ) × Z(M), and thus the
projection maps the center onto the center of Z(SN ). Hence pNf

(
Z(G)

)
= Z(SN ),

i.e. f
(
Z(G)

)
N = Z(SN )N . Applying 9.1(iii) we find that the intersection of the

left hand sides as N ranges through B is f
(
Z(G)

)
, while the intersection of the

right hand sides is Z(H). This completes the proof. ut

The results 9.19 and 9.24 illustrate how the structure theory of compact con-
nected groups falls into two parts—in a technical sense. We did not deal with
simple connectivity for compact abelian groups in Chapter 8. The reason, as we
shall now show, is that there are no simply connected compact abelian groups
(while there are many compact connected abelian groups in which every loop at
the identity element is contractible; in Theorem 8.62 we classified those).

Compact Groups and Simple Connectivity

Theorem 9.29. (i) Every simply connected compact group is semisimple. In
particular, each simply connected compact abelian group is singleton.

(ii) Any simply connected compact group is isomorphic to a product
∏
j∈J Sj

for a family of simply connected simple compact Lie groups Sj.

(iii) The product of any family of simply connected compact groups is simply
connected.

Proof. (i) Assume that G is simply connected. The morphism µG:Z0(G)×G̃′ → G
has a totally disconnected kernel. Hence by Lemma 9.17, the identity idG:G→ G
has a unique lifting; i.e. there is a unique cross section morphism σ:G→ Z0(G)×G̃′
such that µGσ = idG. Let D = kerµG and H = σ(G). Then Z0(G) × G̃′ is the
semidirect product DoιH (cf. Lemma 9.21). Since D is totally disconnected and

Z0(G) × G̃′ is connected, D = {1} follows. Hence G ∼= Z0(G) × G̃′. Since each
factor of a simply connected product space is simply connected (see A2.8(iv)), it
follows that Z0(G) is simply connected. We must show that Z0(G) is singleton.
Thus for the remainder of the proof of (i) we assume that G is abelian.

We claim that a simply connected compact (additively written) abelian groupG
is singleton. Suppose not. Then by 2.31 there is a nonconstant character χ:G→ T.
The quotient morphism q:R→ T, q(r) = r+Z is a covering of T (see A2.3). Since
G is simply connected, there is a unique lifting χ̃:G → R with χ(0) = 0. Then χ̃
is a morphism by A2.32. Then χ̃(G) is a compact subgroup of R and is therefore
{0}. Then χ = q ◦ χ̃ is constant, too, and this is a contradiction to our assumption.

(ii) follows immediately from (i) and Theorem 9.19.

(iii) If {Sj | j ∈ J} is a family of simply connected compact groups, then each
Sj is a product of a family of simple simply connected compact Lie groups by

(ii) above. Hence S
def
=
∏
j∈J Sj is a product of some (generally larger) family of

compact simply connected Lie groups. Then S is simply connected by 9.14(iii). ut
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Maximal Connected Abelian Subgroups

If A is a connected abelian subgroup of a topological group G, then the set of all
connected abelian subgroups of G containing A is inductive; thus A is contained
in a maximal connected abelian subgroup M . Since M is connected and abelian,
M = M . In a compact Lie group the maximal connected abelian subgroups are
the maximal tori, and we have seen in Chapter 6 how important these were. Their
analog for arbitrary compact groups is just as crucial.

Definitions 9.30. A pro-torus is a compact connected abelian group. If G is a
compact group, then any maximal connected abelian subgroup of G is called a
maximal pro-torus.

If T is a maximal connected abelian subgroup of G, and N(T,G) the normalizer
of T in G, setW(G,T ) = N(T,G)/T and call this group the Weyl group of G with
respect to T . ut

Obviously, a maximal connected abelian subgroup T is closed, as T is abelian
and connected and contains T . By 6.62, an element g ∈ G is in N(T,G) iff gTg−1 ⊆
T iff (∀t ∈ T ) gtg−1 ∈ T . Hence N(T,G) is closed andW(G,T ) is a compact group.

Every compact connected abelian group, by 2.35, is a projective limit of finite
dimensional tori. This accounts for the terminology1.

Lemma 9.31. Let f :G→ H be a surjective morphism of compact groups and let
A ⊆ G be a pro-torus. Then the following statements are equivalent:

(i) f(A) = f(S) for any maximal pro-torus S of G containing A.
(ii) f(A) is a maximal pro-torus of H.

Proof. (i)⇒(ii) Let T be a maximal pro-torus ofH containing f(A). The restriction
of f to f−1(T ) has T as image since f is surjective. As surjective morphisms of
compact groups map components onto components (7.72) f maps the identity
component C of f−1(T ) onto T . If S is a maximal pro-torus containing A, then
f(S) = f(A) ⊆ T the pro-torus S is contained in C and then also maximal in
C. Since T is abelian, f(C ′) = {1}. By Theorem 9.24 we have C = Z0(C)C ′ we
have T = f(C) = f

(
Z0(C)

)
f(C ′) = f

(
Z0(C)

)
. But Z0(C) is contained in each

maximal pro-torus of C. Thus T = f
(
Z0(C)

)
⊆ f(A) ⊆ T . Hence f(A) is maximal

as asserted.

1 A note on terminology and orthography may be in order. As a matter of principle we

do not separate a prefix from the root of a word by a hyphen. We write, e.g. nonequal

etc.; here we follow Webster rather than Oxford. We deviate from this practise in the

particular instance of the pro-torus. Indeed this aid to reading the word correctly is

required as ‘proto’. . . is also a prefix occurring in such words as “prototype, Protore-

naissance, . . .” The word ‘walrus,’ German ‘Walross’ (of Scandinavian origin meaning

something like whale-horse) shows that ‘rus’ (German ‘Ross’) is a word meaning horse

(which is of the same root). Writing protorus may suggest to the reader that we talk

about a primeval primitive horse.
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(ii)⇒(i) Let S be any maximal pro-torus containing A. Then f(A) ⊆ f(S).
Since f(S) is a pro-torus and f(A) is maximal, equality follows. ut

Theorem 9.32 will show the astonishing fact that maximal pro-tori in compact
groups behave exactly like maximal tori do in Lie groups.

The Maximal Pro-Torus Theorem for Compact Connected Groups

Theorem 9.32. Assume that G is a compact connected group.
(i) The maximal pro-tori of G are conjugate.
(ii) If T is a maximal pro-torus of G, then G =

⋃
g∈G gTg

−1.
(iii) Let g ∈ G. Then Z(g,G)0 = {x ∈ G | xg = gx}0 is the union of all

maximal pro-tori which contain g.
(iv) The center Z(G) is the intersection of all maximal pro-tori.
(v) Let S be a connected abelian subgroup of G. Then

Z(S,G) =
⋃
{T | T is a maximal pro-torus of G such that S ⊆ T}.

In particular, the centralizer of a connected abelian subgroup of G is connected.
(vi) Each maximal pro-torus T of G is its own centralizer Z(T,G).
(vii) Each maximal pro-torus of G is a maximal abelian subgroup.

Proof. (i) Let T1 and T2 be two maximal pro-tori of G. Let N ∈ N (G) and
define CN = {g ∈ G | gT1g

−1N = T2N}. Then N ⊆ M in N (G) implies CM ⊆
CN . We claim that CN 6= Ø. By 9.31, TjN/N is a maximal torus of G/N for
j = 1, 2. Hence by the Transitivity Theorem 6.27 there is a gN ∈ G/N such
that (gN)(T1N/N)(gN)−1 = T2N/N , and then gT1g

−1N = T2N . Hence g ∈ CN
as asserted. This implies gT1g

−1 ⊆ T2N and g−1T2g ⊆ T1N . Now let g be in
the intersection of the filter basis of compact sets CN . Then gT1g

−1 ⊆ T2N for
all N ∈ N (G). Then gT1g

−1 ⊆ T2 and g−1T2g ⊆ T1 by 9.1(iii). We conclude
gT1g

−1 = T2.
(ii) Let N ∈ N (G) and x ∈ G. By 9.31, the torus TN/N is maximal in G/N . By

the Maximal Torus Theorem 6.30 there is a g such that xN ∈ (gN)(TN/N)(gN)−1,
that is, g−1xg ∈ TN . Thus the set FN = {g ∈ G | g−1xg ∈ TN} is not empty, and
the FN for a filter basis of compact sets containing an element g in its intersection.
Then g−1xg ∈ TN , i.e. Tg−1xg ∩N 6= Ø for all N ∈ N (G). Forming intersections
and observing 9.1(iii) we again conclude 1 ∈ Tg−1xg. Thus x ∈ gTg−1.

Proof of (iii) through (vii): Exercise E9.7. ut

Exercise E9.7. Prove 9.25(iii) through (vii).

[Hint. (a) Show that, after 9.32(i) and (ii) and after replacing the word “torus” by
the word “pro-torus,” the proofs of 6.32 and 6.33 apply almost verbatim to the
present more general situation.] ut

Recall from E6.10 following 6.33 that the converse of 9.32(vii) fails even in
compact connected Lie groups.
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Corollary 9.33. Let T be a maximal pro-torus of a compact group G. Then

G = G0N(T,G), and

G/G0
∼= N(T,G)/(N(T,G) ∩G0) = N(T,G)/N(T,G0).

Proof. Exercise E9.8. ut

Exercise E9.8. Prove 9.33.

[Hint. Use 9.25 in order to apply the proofs of 6.33(i), (ii) to prove (i) and (ii),
respectively, and the proof of 6.35 to prove (iii).] ut

Proposition 9.34. Let T be a maximal pro-torus of a compact group G. Then
N(T,G)0 = T .

Proof. Let M ∈ N (G). Recall from 9.9 that TN/N is a maximal torus of G/N .
Then N(TN/N,G/N)0 = TN/N . Since

gN ∈ N(TN/N,G/N) iff (gN)(TN/N)(gN)−1 = TN/N iff gTg−1 ⊆ TN

we know that g ∈ N(T,G) implies gN ∈ N(TN/T,G/N). It now follows that
N(T,G)0 ⊆ TM for all M ∈ N (G). Then N(T,G)0 ⊆ T by 9.1(iv). ut

Theorem 9.35 (Divisibility in Compact Groups). For a compact group G the
following conditions are equivalent:

(i) G is divisible, i.e. for each g ∈ G and each natural number n there is an
x ∈ G such that xn = g.

(ii) G is connected.

Proof. (ii)⇒(i) Every compact connected abelian group (such as T in Theorem
9.32) is divisible by 8.5. The divisibility of G now follows from 9.32(ii).

(i)⇒(ii) Let g ∈ G and assume that G is divisible. Recursively we find, using
divisibility of G, a sequence of elements x1 = g, xn, n = 2, . . . such that xnn = xn−1.
Then we have a unique morphism of groups f :Q → G such that f(1) = g and
f( 1

n! ) = xn. Now A = f(Q) is a compact abelian group which is divisible (since
the closure of a divisible subgroup of a compact group is divisible: Exercise E9.9).
Hence by 8.5, A is connected. Hence g ∈ G0. Since g ∈ G was arbitrary, G = G0.ut

Exercise E9.9. Prove the following assertion.

The closure of a divisible subgroup of a compact group is divisible. ut

The Structure of Maximal Pro-tori in Compact Connected Groups

Theorem 9.36. Let G be a compact connected group and

µG:G∗
def
= Z0(G)× G̃′ → G, G̃′ =

∏
j∈J

Sj
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the morphism given by µG(z, g) = zπG(g), where all Sj are simply connected simple
compact Lie groups.

(i) Let Tj be a maximal torus of Sj. Then T ∗
def
= Z0(G)×

∏
j∈J Tj is a maximal

pro-torus of G∗, and every maximal pro-torus of G∗ is so obtained.
(ii) T = µG(T ∗) is a maximal pro-torus of G, and every maximal pro-torus of

G is of this form with a suitable T ∗.
(iii) N(T ∗, G∗) = Z0(G)×

∏
j∈J N(Tj , Sj), and

W(G∗, T ∗) ∼=W(G,T ) ∼=
∏
j∈J
W(Sj , Tj).

(iv) The homogeneous space G/T is homeomorphic to G∗/T ∗ ∼=
∏
j∈J Sj/Tj.

(v) If G is a semisimple compact connected group, then any maximal pro-torus
T is a torus, i.e. a product of circle groups.

(vi) w(G) = w(T ).
(vii) The homogeneous space G/T is simply connected.
(viii) For any infinite cardinal ℵ < w(G) there is closed connected abelian

subgroup of G of weight ℵ.
(ix) Every element of G is contained in a connected monothetic subgroup.

Proof. (i) Let T# be a connected abelian group containing T ∗. The projection
of T# into Z0(G) is surjective. The projection of T# into Sj is abelian, connected,
and contains Tj , hence agrees with Tj . So T# ⊆ Z0(G)×

∏
j∈J Tj = T ∗ ⊆ T#.

(ii) After Lemma 9.31 this is a consequence of (i).
(iii) An element g = (z, (sj)j∈J) ∈ G∗ is in the normalizer of T ∗ iff gT ∗g−1 ⊆

T ∗ iff sjTjs
−1
j = Tj for all j ∈ J iff z ∈ Z0(G) and sj ∈ N(Tj , Sj). This shows the

asserted structure of N(T ∗, G∗). Then

W(G∗, T ∗) =
Z0 ×

∏
j∈J N(Tj , Sj)

Z0 ×
∏
j∈J Tj

∼=
∏
j∈J

N(Tj , Sj)/Tj =
∏
j∈J
W(Sj , Tj).

Let g ∈ G. Then g = µG(g∗) for some g∗ ∈ G∗. Now g ∈ N(T,G) iff µ(g∗T ∗(g∗)−1)
= gTg−1 ⊆ T = mu(T ∗) iff g∗T ∗(g∗)−1 ⊆ T ∗ kerµG = T ∗ (since kerµG ⊆
Z(G∗) ⊆ T ∗ by 9.25(iv)). This is the case iff g∗ ∈ N(T ∗, G∗). Thus, recalling that
kerµG ⊆ T ∗ we get

W(G,T ) =
N(T,G)

T
=
µG
(
N(T ∗, G∗)

)
µG(T ∗)

∼=
N(T ∗, G∗)

T ∗
=W(G∗, T ∗) ∼=

∏
j∈J
W(Sj , Tj).

(iv) Consider the continuous map τ :G∗/T ∗ → G/T , τ(gT ∗) = µG(g)T .
Since µG is surjective, τ is surjective. The relation µG(gT ∗) = µG(hT ∗) means
µG(h−1g)T = T , i.e. µG(h−1g) ∈ T , i.e. h−1g ∈ µ−1

G (T ) = T ∗ kerµG. Since
kerµG ⊆ T ∗ by 9.32(iv), we have T ∗ = µ−1

G (T ). We conclude that µG(gT ∗) =
µG(hT ∗) implies gT ∗ = hT ∗. Thus µG is bijective and therefore a homeomor-
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phism. However,
G∗

T ∗
=
Z0(G)×

∏
j∈J Sj

Z0(G)×
∏
j∈J Tj

∼=
∏
j∈J

Sj
Tj
.

(v) If G is semisimple then Z0(G) = {1}, G = G′, and µG = πG: G̃ → G.
Then T = πG(T ∗) and T ∗ =

∏
j∈J Tj As a product of tori, T ∗ is itself a torus.

Quotients of tori are tori (since dually subgroups of free abelian groups are free).
Thus T is a torus. All other pro-tori are conjugate to T by the Maximal Pro-Torus
Theorem 9.10 and thus they are tori.

(vi) The relation w(T ) ≤ w(G) ≤ w(G∗) is trivial. Since T ∼= T ∗/D for a
totally disconnected group D we have an exact sequence

0→ T̂
(µG|T∗)̂−−−−−→ T̂ ∗ → D̂ → 0.

Since D is totally disconnected, D̂ is a torsion group (see 8.5). Hence T̂ is iso-

morphic to a pure subgroup of the torsion-free group T̂ ∗ (see A1.24). Hence

Q⊗T̂ ∼= Q⊗T̂ ∗ and thus w(T ) = card T̂ = card(Q⊗T̂ ) = card(Q⊗T̂ ∗) = card T̂ ∗ =
w(T ∗). (See 7.76(ii).) It suffices now to verify w(G∗) ≤ w(T ∗). Since w(G∗) =
w(Z0(G))+

∑
j∈J w(Sj) by EA4.34 and similarly w(T ∗) = w(Z0(G))+

∑
j∈J w(Tj),

and since w(Tj) = ℵ0 = w(Sj) the relation w(G∗) = w(T ∗) follows. This completes
the proof.

(vii) By (iv) above, the space G/T is homeomorphic to
∏
j∈J Sj/Tj ; by E6.19

(following 6.97), each of the manifolds Sj/Tj is simply connected and orientable.
Then G/T is simply connected by A2.11(iii) of Appendix 2.
(viii) Let T again be a maximal pro-torus of G. Then w(T ) = w(G) by (vi).

Then the claim follows from Exercise E8.3.
(ix) Every element is contained in a maximal pro-torus of G by Theorem

9.32(ii). Then the claim follows from Exercise E8.15(ii) preceding 8.81. ut

The proof of E6.19 which we used in part (vii), invokes various facts from
algebraic topology for which we had to refer to outside support.

The following Exercise shows that part (viii) of Theorem 9.36 has a considerable
generalisation

Exercise E9.10. Prove the following assertion:

Proposition. Let ℵ be an infinite cardinal such that ℵ < w(G) for a compact
connected group G. Then G contains a closed connected and normal subgroup N
such that w(N) = ℵ.

[Hint. Following the Levi-Mal’cev Structure Theorem for Compact Connected
Groups (Theorem 9.24) we have G = G′Z0(G) where the algebraic commutator
subgroup G′ is a characteristic compact (see Theorem 9.2) connected semisimple
(see Corollary 9.6 and Theorem 9.19ff.) subgroup, and the identity component of
the center Z0(G) is a characteristic compact connected abelian subgroup.

Case 1. w(G′) ≤ ℵ. Then w(G) = w(Z0(G)), and by Corollary 1.3, Z0(G)
contains a connected closed subgroup N of weight ℵ; since it is central, it is normal.
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Case 2. w(G′) > ℵ. If we find a compact connected normal subgroup N of G′,
we are done, since the normalizer of N contains both G′ and the central subgroup
Z0(G), hence all of G = G′Z0(G). Thus it is no loss of generality to assume that
G = G′ is a compact connected semisimple group.

Case 2a. G =
∏
j∈J Gj for a family of compact connected (simple) Lie groups.

Then w(Gj) = ℵ0, and ℵ < w(G) = max{ℵ0, card J} (see EA4.3.). Since ℵ is
infinite and smaller than w(G), we have w(G) = card J . Then we find a subset
I ⊆ J such that card I = ℵ, and set N =

∏
i∈I Gi. Then w(N) = card I = ℵ.

Case 2b. By the Sandwich Theorem for Semisimple Compact Connected Groups
(Corollary 9.20) there is a family of simply connected compact simple Lie groups
Sj with center Z(Sj) and there are surjective morphisms∏

j∈J
Sj

f−−−→G q−−−→
∏
j∈J

Sj/Z(Sj)

such that qf is the product
∏
j∈J pj of the quotient morphisms pj :Sj → Sj/Z(Sj).

Now both products
∏
j∈J Sj and

∏
j∈J Sj/Z(Sj) have the same weight cardJ

which agrees with the weight of the sandwiched group G. Define I as in Case
2a and set N = f(

∏
i∈I Si) and note that q(N) =

∏
i∈I Si/Z(Si). Hence N is

sandwiched between two products with weight card I = ℵ and hence has weight
ℵ. This proves the existence of the asserted N in the last case.]

In the proof of the following proposition we need a lemma on compact Lie
algebras

Lemma 9.37. Let g = s1⊕· · ·⊕sn be a direct sum of simple compact Lie algebras
and tk be a Cartan subalgebra in sk for k = 1, . . . , n. Write t = t1 ⊕ · · · ⊕ tn.
Assume h is a subdirect sum of g containing t, that is t ⊆ h ⊆ g and for each
coordinate projection pk: g→ sk, k = 1, . . . , n, the relation sk = pk(h) holds. Then
h = g.

Proof. The algebra t is a Cartan algebra of h. Since each direct summand sk is
simple and the coordinate projection pk:G→ sk of g is surjective, the center of h
is annihilated by pk. Since the pk, k = 1, . . . , n separate the points, the center of
the compact Lie algebra h is zero and thus h is semisimple.

First assume that all sk are isomorphic to s. Then all simple factors of h must
be isomorphic to s since h is a subdirect product of g. Now g ∼= sn and h ∼= sm

with m ≤ n. But isotypic semisimple Lie algebras are uniquely determined by
their rank, that is, the dimension of their Cartan subalgebras. Since g and h have
the common Cartan algebra t, we conclude m = n and thus dim h = dim g, which
implies h = g.

Now let the sk be arbitrary. We represent g as a direct sum of isotypic ideals
i1 ⊕ · · · ⊕ ip (that is, ideals each of which is a sum of isomorphic simple ideals) of
different type. Then the projection πk: g→ ik maps h onto ik by the preceding part
of the proof. This implies that the semisimple algebra h contains an ideal jk ∼= ik.
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Since the simple components of different ik are not isomorphic, the ideals jk form
a direct sum in h. Hence dim g =

∑p
k=1 dim ik =

∑p
k=1 dim jk ≤ dim h ≤ dim g.

Hence dim h = dim g, and thus h = g finally follows. ut

Theorem 9.38 (Generating Compact Connected Groups). Let G be a compact
connected group and T a maximal pro-torus, then there is an element g ∈ G such
that G is topologically generated by T ∪ {g}, that is G = 〈T ∪ {g}〉.

If the weight of G does not exceed 2ℵ0 , then G = 〈t, g〉 for suitable elements
g, t ∈ G.

Proof. In view of the fact that G = Z0(G)G′ by the Structure Theorem 9.24 and
that Z0(G) is contained in every maximal pro-torus, it suffices to consider the case
that G is semisimple. As G is a quotient of a direct product of a family of simple
compact Lie groups by 9.14, it suffices to assume that G itself is such a product.
Thus we have G =

∏
j∈J Sj and a maximal pro-torus T =

∏
j∈J Tj with a maximal

torus Tj of Lj for each j ∈ J .
By Auerbach’s Generation Theorem 6.51, there are elements gj and hj such that

Sj is topologically generated by {gj , hj}. Every element is contained in a maximal
torus and the maximal tori are conjugate. Hence we may assume that hj ∈ Tj .
Thus G is topologically generated by Tj ∪{gj}. We set g = (gj)j∈J and claim that
G is topologically generated by T ∪ {g}. We now prove this claim. The group H
topologically generated by T ∪ {g} in G contains T and is a subdirect product of
G =

∏
j∈J Sj ; i.e. T ⊆ H ⊆ G and for each coordinate projection pj :G → Sj ,

j ∈ J , we have Sj = pj(H). For any subset F ⊆ J let pF :G →
∏
j∈J Sj be the

partial projection. Assume momentarily that pF (H) = pF (G) for all finite subsets
F of J . Then H is dense in G by the definition of the product topology, and since
H is compact, H = G follows.

It suffices, therefore, to verify the claim H = G if J is finite. The Lie algebras
g of G and h of H, however, satisfy the hypotheses of Lemma 9.37. Hence g = h
by 9.37. Thus H is open in G, and since G is connected, G = H follows. The last
remark of the proposition follows from the preceding and from Example 8.75, since
according to 8.75 we have T = 〈t〉 iff w(T ) ≤ 2ℵ0 . ut

The Splitting Structure Theorem

In contrast with the Levi–Mal’cev Structure Theorem 9.24, the principal structure
theorem [30, 319, 167] presented below in 9.39 expresses a semidirect splitting of a
connected compact group over its (semisimple) commutator group. In a number of
respects, certainly from the purely topologically point of view, this decomposition
is superior to the Levi–Mal’cev decomposition. It has no natural generalisation to
noncompact locally compact groups or even to linear Lie groups.

We recall the concept of a semidirect product from 5.72ff and from 9.21 above.
If N is a closed normal subgroup of a compact group G and H a closed subgroup
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such that N ∩H = {1} and NH = G then we call N a semidirect factor and H a
cofactor. (See also the general remarks preceding Lemma 6.37.)

The Borel–Scheerer–Hofmann Splitting Theorem

Theorem 9.39. (i) Let G be a compact connected group. Then G′ is a semidirect
factor. In other words, there is a compact connected abelian subgroup A of G such
that

(g, a) 7→ ga:G′ oι A→ G, ι(a)(g) = aga−1

is an isomorphism of compact groups.
Fix a maximal pro-torus T of G′ and let HomZ0∩G′(Z0(G), T ) denote the set

of morphisms from Z0(G) to T restricting on Z0(G)∩G′ to the identity. Then for
each f ∈ HomZ0(G)∩G′(Z0(G), T ) the set

Af = {f(z)−1z | z ∈ Z0(G)}

is a cofactor to G′, and every cofactor is conjugate to one of these.
(ii) Each maximal pro-torus T of G is isomorphic to TG′ × A for a maximal

torus TG′ of G′ and A ∼= G/G′ ∼= Z0(G)/(Z0(G) ∩G′).

Proof. (i) Let T be a maximal pro-torus of G′; then T is a torus by 9.36(v). The
central group Z0(G) ∩ G′ is contained in T by the Maximal Pro-Torus Theorem
9.32(iv) and thus equals Z0(G) ∩ T . Since T is injective in the category of com-
pact abelian groups by 8.78(ii), the identity morphism Z0(G) ∩ T → T extends
to a morphism Z0(G) → T whose coextension to G′ we write f :Z0(G) → G′.
We apply Lemma 6.37 with N = G′, H = Z0(G) with the trivial automorphic
action of H on N since H is central. The group Af = {f(z)−1z | z ∈ Z0(G)}
is a cofactor, and all cofactors arise from morphisms f :Z0(G) → G′ extend-
ing the identity map of Z0(G) ∩ G′ in this fashion by 6.37. If f :Z0(G) → G′

is one such morphism then f
(
Z0(G)

)
is a pro-torus and thus is contained in

a maximal pro-torus T ∗. By the Maximal Pro-Torus Theorem 9.32(i) there is
a g ∈ G such that gT ∗g−1 = T . Then ϕ(z) = gf(z)g−1 defines morphism
ϕ ∈ HomZ0(G)∩G′(Z0(G), G′), and gAfg

−1 = Aϕ.
(ii) The group Z0(G)T is a maximal pro-torus by 9.31 since it is a homomorphic

image of the maximal pro-torus Z0(G)×T under the surjective morphism (z, g) 7→
zg:Z0(G)×G′ → G. We can write Z0(G)T = TAf by (i), and (t, a) 7→ ta:T×Af →
Z0(G)T is an isomorphism. ut

Supplementing the Identity Component

We shall see later (cf. Corollary 10.37 below) that each compact group G contains
a compact totally disconnected subset D such that (g0, d) 7→ g0d:G0 × D → G
is a homeomorphism. We also know that in general, D cannot be chosen to be
a subgroup not even in the case that G is a nilpotent Lie group of class 2 (see
Example E6.9) and not even in the case that G is abelian (see Example 8.11). It is
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therefore a useful fact that in any case, a totally disconnected subgroup D can be
found which supplements G0, and, notably, that it can be found such that G0 ∩D
is pleasant.

Lemma 9.40. Let G be a compact group and S a closed subgroup. Assume that
a set C of closed subgroups of G is closed under the intersection of subsets which
are totally ordered under inclusion. Then the subset CS of all H ∈ C satisfying
SH = G contains minimal elements.

Proof. We show that (CS ,⊇) is inductive. Let T ⊆ CS be a totally ordered subset.

Then C
def
=
⋂
T is a compact subgroup contained in C as C is closed under the

intersection of chains. We must show SC = G. Let g ∈ G. Then g ∈ SH for all
H ∈ T since T ⊆ CS . Equivalently, Sg∩H 6= Ø. Thus {Sg∩H | H ∈ T } is a filter
basis of compact sets and there is an x ∈

⋂
H∈T Sg∩H = Sg∩

⋂
H∈T H = Sg∩C

whence g ∈ SC. Hence CS is down-inductive as asserted, and thus, by Zorn’s
Lemma, contains minimal elements. ut

Dong Hoon Lee’s Supplement Theorem for compact Groups

Theorem 9.41. Let G be a compact group and T an arbitrary maximal pro-torus
of G. Then the following conclusions hold.

(I) N(T,G) ⊆ G contains a compact subgroup S such that G =
(
(G0)′

)
S and

that (G0)′ ∩ S ⊆ Z((G0)′).

(II) There is a compact subgroup D with the following properties:
(i) G = G0D,

(ii) G0 ∩D is normal in G,
(ii)′ G0 ∩D ⊆ Z(G0),
(iii) D ⊆ N(T,G), and
(iv) D is totally disconnected.

Proof. First we note that (ii) and (ii)′ are equivalent, as long as (i) and (iv)
hold: By (ii) and (iv), G0 ∩ D is a totally disconnected normal subgroup of the
connected group G0 and is therefore central in G0 by 6.13. Conversely as was noted
towards the end of the proof of 6.74, if (ii)′ holds then the centralizer and thus the
normalizer of G0 ∩D contains G0, and as G0 is normal in G, the normalizer also
contains D. Hence G0 ∩D is normal in G0D = G by (i).

We prove the theorem by a number of reductions.

(a) If G0 is abelian, then T = G0 and (I) is trivially satisfied with S = G.
We claim that (II) holds. We need to find a subgroup D satisfying (i) and (iv);
then (ii) is true since now G0 and D are in the normalizer of G0 ∩D, and (iii) is
trivial. By Lemma 9.40 there is a minimal closed subgroup D such that G = G0D.
Let N be a compact normal subgroup of D such that D/N is a Lie group. Then
(D/N)0 = D0N/N by 9.18, and since D0 ⊆ G0, this group is abelian. Now by
Theorem 6.10(i) there is a closed subgroup DN of D containing N such that
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D/N = (D0N/N)(DN/N) = D0DN/N and DN/N is finite. Hence G = G0D =
G0D0DN = G0DN . Thus by the minimality of D we have D0DN = D = DN .
Hence D0 ⊆ DN , and since DN/N is discrete, this implies D0 ⊆ N . This holds
for all N ∈ N (G) (cf. paragraph preceding 9.1), and thus by 9.1 we conclude
D0 = {1}. Therefore D is totally disconnected and (II) is proved in this case.

(b) We now show that the theorem is true if it is true whenever Z(G0) = {1}.
Indeed set Z

def
= Z(G0) note that (G/Z)0 = G0/Z by 9.26(i), and Z(G0/Z) =

Z(G0)/Z(G0) = {1} by 9.23(ii). Thus the theorem applies to G by hypothesis.
By 9.32(iv) we have Z ⊆ T , and T/Z is a maximal torus of G/Z by 9.31. Note
that G0 = (G0)′Z Hence we find a closed subgroup S of G containing the group

Z such that S/Z ⊆ N(T/Z,G/Z), G/Z =
(
(G/Z)0

)′
(S/Z) = (G0/Z)′(S/Z) =(

(G0)′Z/Z
)
(S/Z) = (G0)′S/Z, and

(
(G0)′ ∩ S

)
/
(
(G0)′ ∩ Z

) ∼= (
(G0)′ ∩ S)Z/Z =(

(G0)′Z ∩ S)/Z = G0

Z ∩
S
Z = (G/Z)0 ∩ (S/Z) = Z((G0/Z)′) = {Z}, because

G0/Z(G0) is centerfree by 9.24(iv). Hence S ⊆ N(T,G), G = (G0)′S, and (G0)′ ∩
S ⊆ (G0)′ ∩ Z ⊆ Z

(
(G0)′

)
. Then the group S satisfies the conclusions of (I).

Now S0 ⊆ G0 ∩ Z = Z is abelian. We apply (a) to S and find a totally
disconnected subgroup D ⊆ S ⊆ N(T,G) such that S = S0D. Then G = (G0)′S ⊆
G0S = G0S0D = G0D ⊆ G and G0 ∩D ⊆ G0 ∩ S = Z(G0). Hence (I) is proved.
This completes the proof of reduction (b).

We now assume that Z(G0) = {1}, i.e. that G0 is a compact connected center-
free (hence semisimple) group. Accordingly, (I) and (II) are equivalent assertions.
We may restrict out attention to (I). By 9.19(iv), the group G0 is isomorphic to a
product

∏
j∈J Rj for a family of simple connected compact centerfree groups Rj .

The maximal pro-torus T corresponds to a subgroup
∏
j∈J Tj for a maximal torus

Tj of Rj by 9.36.

(c) We let S be the set of all compact subgroups S of G such that
(i) G = G0S,
(ii) G0 ∩ S E G,

(iii) (∀s ∈ S)sTs−1 ⊆ T (G0 ∩ S),
are satisfied. This set is not empty because it contains G.

The members of S have rather special properties which we explore first. Indeed
let S ∈ S. Then G0 ∩S E G0 by (ii) above. Hence G0 ∩S is connected by 9.19(iv)
and thus is contained in S0 ⊆ G0 ∩ S and therefore

(1) S0 = G0 ∩ S E G.

In particular, S0 is isomorphic to a partial product of G0
∼=
∏
j∈J Rj . Hence

(2) Z(S0) = {1}.

Since S0
∼=
∏
j∈I Rj there is a unique subgroup G1 ⊆ G0 which is a partial product

isomorphic to
∏
j∈J\I Rj and is such that G = G1S0 is a direct product. For every

automorphism α of G0 the subgroup α(G1) is a connected normal subgroup of
G0, hence is a partial product. Also G0, being the direct product of the partial
products G1 and S0, is the direct product of the partial products α(G1) and α(S0).
Thus if α(S0) = S0, then α(G1) = G1 by the way that normal subgroups of G0
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are uniquely determined according to 9.19(iv). Applying this to the restrictions of
inner automorphisms of G to G0, the normality of S0 implies the normality of G1.
Now G = G0S = G1S0S = G1S and G1 ∩ S ⊆ G1 ∩ (G0 ∩ S) = G1 ∩ S0 = {1}.
Hence

(3) G = G1S ∼= G1 o S, G0 = G1S0
∼= G1 × S0.

Since the maximal torus T ⊆ S0 is isomorphic to
∏
j∈J Tj ⊆

∏
j∈J Rj

∼= G0,

moreover G1
∼=
∏
j∈J\I Rj and S0

∼=
∏
j∈I Rj , we find a maximal torus T1

def
=

(T ∩ G1) ∼=
∏
j∈J\I Tj of G1 and a maximal torus S0 ∩ T ∼=

∏
j∈I Tj of S0 such

that

(4)
T = T1(T ∩ S0) ∼= T1 × (T ∩ S0), T ∩ S0 = T ∩ S, and

T (G0 ∩ S) = TS0 = T1S0
∼= T1 × S0.

From (iii) and (4) we see that s ∈ S implies

sT1s
−1 ⊆ sTs−1 ∩ sG1s

−1 = T (G0 ∩ S) ∩G1 = T1S0 ∩G1 = T1.

Hence

(5) S ⊆ N(T1, G).

We claim that S contains minimal elements. By Lemma 9.40 it suffices to show
that the set of all closed subgroups S satisfying (ii) and (iii) is closed under the

intersection of chains. Let T be such a chain and let S
def
=
⋂
T . Obviously, S

satisfies (ii). We claim that S satisfies (iii). For each t ∈ T , s ∈ S and R ∈ T
we have s ∈ R and thus by (iii)R there are elements tR ∈ T and nR ∈ G0 ∩ R
such that sts−1 = tRnR. If (t, n) is the limit of some converging subnet of the net(
(tR, nR)

)
R∈T on the compact space T × G, then t ∈ T and n ∈ G0 ∩ R for all

R ∈ T and thus sts−1 = tn ∈ T (G0 ∩S). Hence (iii) is satisfied. Thus 9.40 applies
and shows that there is a minimal element S satisfying (i), (ii), and (iii). We claim
that G0∩S = {1}; a proof of this claim will indeed finish the proof of the theorem.

Suppose that the claim is false. Then we find a closed normal subgroup M of
G such that G/M is a Lie group and

(6) M ∩ S0 = M ∩G0 ∩ S 6= G0 ∩ S

by 9.1(ii). We set N
def
= M ∩S0. Then N E G by (1), and S0/N = S0/(S0 ∩M) =

S0M/M is a Lie group. Since T ∩ S = T ∩ S0 is a maximal pro-torus of S by (4)
above, by 9.31, (T ∩ S)/N is a maximal torus of S/N .

We apply Lee’s Theorem for Lie groups 6.74(I) to S/N and find a subgroup SN
of S containingN such that firstly, S0SN/N = (S0/N)(SN/N) = (S/N)0(SN/N) =
S/N (by 9.26(i)), secondly, (S0 ∩ SN )/N = (S0/N) ∩ (SN/N) ⊆ Z(S0/N) =
Z(S0)N/N = {N} by 9.26(ii) and (2) above, and thirdly, (∀s ∈ SN ) s(T ∩S)s−1 ⊆
(T ∩ S)(S0 ∩ SN ). Hence S = S0SN and G0 ∩ SN = S0 ∩ SN = N E G. Fur-
ther, by (5) above, (∀s ∈ SN ) sT1s

−1 ⊆ T1. Hence for all s ∈ SN we have
sTs−1 = sT1s

−1s(T ∩ S)s−1 ⊆ T1(T ∩ S)(S0 ∩ SN ) ⊆ T (G0 ∩ SN ). Thus SN
satisfies (i), (ii), and (iii) above and SN ⊆ S. The minimality of S now implies
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SN = S and thus G0 ∩M = N = G0 ∩ SN = G0 ∩ S, contradicting (5) above.
This contradiction proves G0 ∩ S = {1} and thereby completes the proof of the
theorem. ut

Note that the result for Lie groups was invoked in Section (a) and the very last
paragraph of the proof.

Through 9.11 and 9.41 the supplementation of G0 in G by a compact totally
disconnected group takes place in N(T,G) and therefore is largely a matter of
compact groups with abelian identity component.

The Mayer-Vietoris formalism 9.4 now allows us the formulation of a sandwich
theorem as follows.

Sandwich Theorem for Compact Groups

Corollary 9.42. For any compact group G, there is a compact totally disconnected
subgroup D of G providing a “sandwich situation”

G0 oι D
µ→ G→ G/(G0 ∩D) ∼=

G0

G0 ∩D
o

D

G0 ∩D
with ι:D → Aut(G0) defined by ι(d)(g0) = dg0d

−1, µ:G0 oι D → G by µ(g0, d) =
g0d, and where the morphism G → G/(G0 ∩ D) is the quotient map. Both mor-
phisms are surjective and have kernels isomorphic to the totally disconnected abel-
ian group G0 ∩D.

Proof. Exercise E9.11. ut

Exercise E9.11. Prove Corollary 9.42.

[Hint. The proof follows from 9.41 in exactly the same fashion as Corollary 6.75
was proved from 6.74; what was the finite group E there is the totally disconnected
compact group D here.] ut

Again this corollary shows that a compact group is nearly a semidirect product
of G0 and G/G0. This is not exactly true. Indeed, the example of the compact

abelian group G
def
= ∇̂ of 8.11 shows that even in the abelian case a clean splitting

of the identity component is not possible. Moreover, in Exercise E6.9(ii) we have
seen a noncommutative Lie group in which a semidirect splitting of the identity
component is impossible.

Corollary 9.43. Let G be a compact group and T a maximal pro-torus. Then there
is a compact totally disconnected subgroup D of N(T,G) such that G0 ∩D E G,
and a surjective morphism of compact groups

ν: (Z0(G0)× (̃G0)′) oα D → G, θ(z, g, d) = zπG(g)d

for a suitable automorphic action of D on (Z0(G0) × (̃G0)′). The kernel of ν is
isomorphic to the totally disconnected subgroup D ∩N(T,G0).
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Proof. By 9.4 there is a surjective morphism µ:G0oιD → G given by µ(n, d) = nd,
where ι(d)(n) = dnd−1. By Proposition 9.25, there is a natural µG:Z0(G0) ×
(̃G0)′ → G0, µG(z, g) = zπG(g). Now any endomorphism respects the fully char-
acteristic subgroups Z0(G0) and (G0)′. This applies, in particular, to the restric-
tion of the inner automorphisms ι(d), d ∈ D. By 9.19(iii), every ι(d)|(G0)′ lifts to

a unique automorphism ι̃(d): (̃G0)′ → (̃G0)′. The function (d, g) 7→ ι̃(d)(g):D ×
(̃G0)′ → (̃G0)′ is continuous as is easily verified. Then we define

α:D → Aut(Z0(G0)× (̃G0)′) by α(d)(z, g) =
(
dzd−1, ι̃(d)(g)

)
.

Then (d, z, g) 7→ α(d)(z, g):D × Z0(G0) × (̃G0)′ → Z0(G0) × (̃G0)′ is continuous.
Thus the semidirect product in the corollary is defined, and θ is a morphism. ut

Part 2: The Structure Theorems for the Exponential
Function

The Exponential Function of Compact Groups

We now return to the theme of the exponential function and determine the Lie
algebra of a compact group and its exponential function. The power of this tool
will become evident.

Definition 9.44. A weakly complete Lie algebra g is a weakly complete topological
vector space (see 7.27) together with a continuous Lie bracket [·, ·]: g×g→ g. (See
5.12.) A morphism of weakly complete Lie algebras is a continuous linear map
f : g→ h between weakly complete Lie algebras which preserves Lie brackets. ut

The category of weakly complete Lie algebras defined in 9.44 is closed under
the formation of arbitrary products and pull-backs, and is therefore closed under
all limits. (See Appendix 3, A3.48, A3.49.)

Recall that in 5.7 we defined, for any topological group G, the topological space
L(G) = Hom(R, G) with the compact open topology. By Proposition 7.38(iii), L(·)
preserves projective limits. In particular, let {fjk:Gk → Gj | j ≤ k, j, k ∈ J} be
a projective system of compact Lie groups with limit G. Then {L(fjk):L(Gk) →
L(Gj) | j ≤ k, j, k ∈ J} is a projective system of finite dimensional compact
Lie algebras and Lie algebra morphisms and L(G) may be regarded as its limit;
indeed if (Xj)j∈J ∈ limj∈J L(Gj) with fjk ◦ Xk = L(fjk)(Xk) = Xj for j ≤ k,
then

(
Xj(t)

)
j∈J ∈ G and t 7→

(
Xj(t)

)
j∈J is in L(G). All elements of L(G) are

so obtained. Since all L(Gjk) are finite dimensional Lie algebras, L(G) is firstly
a weakly complete vector space and secondly a Lie algebra with a continuous
Lie bracket [·, ·]:L(G) × L(G) → L(G) and thirdly a G-module from an adjoint
action via Ad:G→ AutL(G), g(expX)g−1 = exp Ad(g)X. We claim that indeed
αG:G× L(G)→ L(G), αG(g,X) = Ad(g)(X) is continuous. Indeed the diagram
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G× L(G)
αG−−−→ G

qN×L(qN )

y yqN
G/N × L(G/N) −−−→

αG/N
G/N

is commutative for all N ∈ N (G), the vertical maps are limit maps; the horizontal
maps are to be considered inside that category of pointed spaces and base point
preserving continuous maps, and the maps αG/N are the adjoint action map of
compact Lie groups which are continuous. Thus αG is a unique fill-in map for the
limit G = limN∈N (G)G/N in the category of pointed Hausdorff spaces according
to Appendix 3, A3.43. In particular we see, recalling also the Definition 5.39 of
the exponential function of any topological group,

Proposition 9.45. If G is a compact group, then L(G) = Hom(R, G) is a weakly
complete Lie algebra and a weakly complete G-module in a unique fashion such
that each quotient map qN :G → G/N for N ∈ N (G) induces a morphism of
weakly complete Lie algebras L(qN ):L(G)→ L(G/N) and G-modules with respect
to adjoint actions.

The function L(G)→ G which assigns to a one-parameter subgroup X:R→ G
the element X(1) ∈ G is the exponential function expG:L(G)→ G of the compact
group G. ut

As a consequence of the duality Theorem 7.30 for real vector spaces, by the
Theorem of Alaoglu, Banach, and Bourbaki ([4, 31]), a subset of L(G) is weakly
compact if and only if it is closed and bounded, and it is precompact if it is
bounded. The topology of L(G) is the topology of uniform convergence on compact
sets of its dual according to 7.30. Compact subsets of the dual are contained in
finite dimensional subspaces by 7.25(iv). Thus the topology of L(G) agrees with
the topology of pointwise convergence on the dual, i.e. with the weak topology.
Condition 3.29 for feeble completeness is therefore satisfied by L(G). TheG-module
theory of Chapter 4 therefore becomes available to us. In particular, by 3.52, the
submodule L(G)fin of almost invariant elements is algebraically the direct sum of

summands Rε(G,R) ∗L(G), ε ∈ Ĝ. In particular, if we set L(G)fix = {X ∈ L(G) |
(∀g ∈ G) Ad(g)X = X}, then L(G)fix is the trivial isotypic component obtained
by applying the averaging operator

PG:L(G)→ L(G), PGX =

∫
G

Ad(g)(X) dg,

see 3.22f., notably Theorem 3.36.
We shall presently give a fairly explicit description of L(G) and the exponential

function expG:L(G)→ G.

Proposition 9.46. For a compact group G, the following conditions are equivalent.
(i) G is totally disconnected.
(ii) Each maximal pro-torus of G is singleton.
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(iii) G has no nondegenerate one-parameter subgroup.
(iv) L(G) = {0}.

Proof. By the definition of L(G) as Hom(R, G), conditions (iii) and (iv) are clearly
equivalent. Every nondegenerate one-parameter subgroup is contained in a max-
imal pro-torus, and every nonsingleton compact connected abelian group T has
non-degenerate one-parameter subgroups by 7.71. Thus (ii) and (iii) are equivalent
conditions. Clearly (i) implies (ii). By the Maximal Pro-Torus Theorem 9.32(ii),
if all maximal pro-tori are singleton, then G0 is singleton. Hence (ii) implies (i).ut

We are now in a position to use our knowledge of the exponential function to
prove that if f :G → H is a surjective morphism between compact groups then
f
(
Z0(G)

)
= Z0(H).

Proposition 9.47. (i) Let f :G→ H be a surjective morphism of compact groups.
Then f induces a morphism of weakly complete Lie algebras L(f):L(G)→ L(H),

L(f)(X) = f ◦X. Let j:N → G denote the inclusion morphism of N
def
= ker f into

G. Then we have a commuting diagram of exact sequences

0 → L(K)
L(j)−−−→ L(G)

L(f)−−−→ L(H) → 0

expK

y expG

y yexpH

0 → K −−−→
j

G −−−→
f

H → 0.

As a sequence of morphisms of weakly complete vector spaces, the top row splits,
i.e. there is a morphism of weakly complete vector spaces σ:L(H) → L(G) such
that L(f) ◦ σ = idL(H). In particular, L(f) is a quotient morphism and therefore
surjective and open.

(ii) L(f)
(
L(G))fix

)
= L(H)fix.

(iii) (Third Theorem on Morphisms of Compact Groups) f
(
Z0(G)

)
= Z0(H).

Proof. (i) We know that L(·) = Hom(R, ·) is a limit preserving functor from the
category of topological groups and continuous group morphisms into the category
of pointed spaces (see 5.7 and 7.36ff. for the abelian case; see also Appendix 3,
A3.23,) and from what we have recorded in Proposition 9.47, the prescription L(·)
induces a functor from the category of compact groups and morphisms of compact
groups to the category of weakly complete Lie algebras and continuous Lie algebra
morphisms. The relation L(ker f) = kerL(f) is readily verified (cf. 5.50 for linear
Lie groups and 7.38(iii) for topological groups).

We claim that the surjectivity of f implies the surjectivity of L(f). Indeed,
let Y :R → H be a one parameter subgroup of H. Then the subgroup Y (R) of
H is connected and abelian and is therefore contained in a maximal pro-torus T
of H, abelian subgroup of H. Hence by 9.31, there is a maximal pro-torus S of
G such that f(S) = T . Now f |S:S → T is a surjective morphism of compact
abelian groups. Then L(f |S):L(S) → L(T ) is surjective by 7.66(iii). Hence there
is an X ∈ L(S) ⊆ L(G) such that L(f)(X) = L(f |S)(X) = Y . Thus L(f) is
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surjective, and the top sequence in the diagram is exact. The splitting now follows
from 7.30(iv).

(ii) The morphism of topological vector spaces L(f) is equivariant; that is
L(f)

(
Ad(g)X

)
= Ad

(
f(g)

)(
L(X)

)
. Therefore it maps L(G)fix into L(H)fix. We

may therefore define a restriction and corestriction L(f)fix to these trivial modules,
respectively, and obtain a commutative diagram

L(G)
L(f)−−−→ L(H)

PG

y yPH
L(G)fix −−−→

L(f)fix

L(H)fix.

Now L(f) is surjective by (i). The averaging operator PH is a linear retraction
and is therefore surjective. Hence L(f)fix ◦ PG = PH ◦ L(G) is surjective. This
implies that L(f)fix is surjective. This completes the proof of (ii).

(iii) The subgroup Z0(G) is the identity component of the center of G, i.e.
the fixed point set of all inner automorphisms Ig:G → G, Ig(x) = gxg−1. So
L
(
Z0(G)

)
= {X ∈ L(G) | (∀t ∈ R) Ig(exp t·X) = exp t·X}. But

exp t·Ad(g)(X) = Ig(exp t·X),

whence
L
(
Z0(G)

)
= L(G)fix.

From (ii) we get

(†) expH L(H)fix = expH L(f)
(
L(G)fix

)
= f(expG L(G)fix.

The groups Z(G) and Z(H) and thus the subgroups Z0(G) and Z0(H) are abelian.
Hence from 7.71 we deduce Z0(G) = expG L(G)fix and Z0(H) = expH L(H)fix. But
if S is any subset of G then S is compact and thus f(S) is compact, containing
f(S) densely. Thus f(S) = f(S). Applying this with S = expG L(G)fix, from (†)
we obtain assertion (iii). ut

Notice that, among other things, 9.47(iii) is a considerable sharpening of the
same assertion proved in 9.26(ii) when G was connected.

Corollary 9.48. Let f :G→ H be a surjective morphism of compact groups, and
L(f):L(G) → L(H), L(f)(X) = f ◦ X the morphism induced between the Lie
algebras. Then the following conditions are equivalent.

(i) ker f is totally disconnected.
(ii) L(f) is an isomorphism of weakly complete topological Lie algebras.

(iii) L(f) is injective, i.e. kerL(f) = {0}.

Proof. (i)⇒(ii) By 9.47, kerL(f) = L(ker f) = {0} since ker f is totally discon-
nected. Hence L(f) is injective. Also by 9.47, L(f) is surjective and open, and thus
L(f) is an isomorphism of topological vector spaces.

Trivially, (ii) implies (iii), and by Proposition 9.46, (iii) implies (i). ut
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The Exponential Function of a Compact Connected Group

Theorem 9.49. Let G be a compact connected group and µG:G∗
def
= Z0(G) ×∏

j∈J Sj → G the surjective morphism of 9.25. Set z = L
(
Z0(G)

)
and sj = L(Sj),

j ∈ J . Then

(i) the morphism L(µG): g
def
= z×

∏
j∈J sj → L(G) is an isomorphism of weakly

complete Lie algebras and the following diagram is commutative:

z×
∏
j∈J sj = g

L(µG)−−−→ L(G)

expZ0(G)×
∏

j∈J
expSj

y yexpG

Z0(G)×
∏
j∈J Sj −−−→

µG
G.

(ii) For each j ∈ J , let tj be a Cartan subalgebra of sj, and t∗
def
= z×

∏
j∈J tj.

Let Tj = expSj tj be a maximal torus of Sj and set T ∗
def
= Z0(G) ×

∏
j∈J Tj and

T = µG(T ∗). Then T is a maximal pro-torus of G and L(µG)|t∗: t∗ → t is an
isomorphism of weakly complete Lie algebras. Further G′ ⊆ expL(G), and expG is
surjective if and only if expG |T : t→ T is surjective.

(iii) G′ is always contained in the image of the exponential function.

Proof. (i) By 9.48 the morphism L(µG) is an isomorphism of weakly complete Lie
algebras. It suffices, therefore, to determine the Lie algebra and the exponential
function of G∗. This is accomplished by the fact that the functor L preserves
products by 7.38(i).

(ii) Each expj : sj → Sj is surjective by the Maximal Torus Theorem 6.30 and
its Corollary 6.31. From Theorem 9.36 we know that T ∗ and T are maximal pro-
tori of G∗ and G, respectively. Thus the diagram above shows that t∗ and t may
be identified as the common Lie algebra of T ∗ and T , and that

G′ = µG({1} ×
∏
j∈J

Sj) ⊆ im(expG).

If expG(t) = T , then exp Ad(g)(t) = gTg−1 for all g ∈ G and the Maximal
Pro-Torus Theorem 9.32(ii) now shows that G ⊆ im(expG). Conversely, assume
that expG is surjective. Then expG/G′ : g/g

′ → G/G′ is surjective. By the Borel–
Scheerer–Hofmann Splitting Theorem 9.39 there is a closed connected abelian
subgroup A of T such that (t, a) 7→ T1 × A → T , T1 = µG({1} ×

∏
j∈J Tj) is an

isomorphism and that a 7→ aG′:A→ G/G′ is an isomorphism. Thus expA: a→ A
is surjective where expA = expG |a. Since expT1

: t1 → T1 is surjective regardless,
expT : t1 ⊕ a→ T , expT (Xt1 ⊕Xa) = (expGXt1)(expGXa) ∈ T1A is surjective.

(iii) follows from (i) and the fact that G′ = µG({1} ×
∏
j∈J Sj). ut

We draw attention to the fact that the surjectivity of the exponential function
of a compact group turns out, in the final evaluation, to be an issue on compact
connected abelian groups about which we have accumulated a considerable body
of information in Chapter 8.
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In the following corollary we retain the notation of Theorem 9.49.

The Classification of Connected Normal Subgroups

Corollary 9.50. For a closed connected subgroup H of G, the set L(H) is a closed
subalgebra of L(G) and the following conditions are equivalent:

(i) H is normal.
(ii) L(H) is an ideal of L(G).

(iii) There is a closed vector subspace c of z and a subset I ⊆ J such that L(H) =

L(µG)
(
c×

∏
j∈J sj(I)

)
where sj(I) =

{
sj if j ∈ I,
{0} otherwise.

(iv) There is a closed connected subgroup C ⊆ Z0(G) and a subset I ⊆ J such
that H = µG(C ×

∏
j∈J Sj(I)

)
= CS where S = πG′

(∏
j∈J Sj(I)

)
with

Sj(I) =

{
Sj if j ∈ I,
{1} otherwise.

Proof. Since L(H) = {X ∈ L(G) | X(R) ⊆ H} and H is closed, L(H) is closed in
the topology of pointwise convergence and then certainly in the finer topology of
uniform convergence on compact sets.

(i)⇒(ii) If the subgroup H is normal then it is a kernel of the quotient map
p:G→ G/N and then L(H) = kerL(p) by 9.46 above and thus L(H) is an ideal.

(ii)⇒(iii) Assume that L(H) is an ideal of L(G). Now let i be an ideal of
g = z ×

∏
j∈J sj . Let pz: g → z(g) = z × {0} and pg′ : g → g′ = {0} ×

∏
j∈J sj

denote the projections. Then j
def
= pj(i)⊕ pg′ is an ideal of g. We claim i = j. For a

proof it is no loss of generality to assume j = g and to assume that pz and pg′ are
surjective. Then pg′([i, i]) = [pg′(i), pg′(i)] = [g′, g′] = g′. But also i′ = [i, i] ⊆ g′.
But pg′ |g′: g′ → g′ is the identity of g′. We conclude that g′ = i′ ⊆ i. Then
i = i + g′ = p−1

z pz(i) = p−1
z (z × {0}) = g. This proves the claim. Thus any ideal i

of g is of the form c× s with an ideal s E
∏
j∈J sj .

If prj :
∏
i∈J si → sj denotes the projection, prj(s) is an ideal of the simple

algebra sj and thus is either {0} or sj . Now set I = {j ∈ J | prj(s) = sj}. Let

t =
∏
j∈J

sj(I), sj(I) =

{
sj if j ∈ I,
{0} otherwise.

Then t is an ideal containing s such that prj(s) = prj(t) for all j ∈ J . Let F denote
the directed set of all finite subsets F ⊆ J and set

tF = {(sj)j∈J ∈ t | (∀k ∈ J \ F ) sk = 1}.

Then (s + tF )/tF is an ideal of t/tF and the projections into the simple factors
of these finite dimensional Hilbert Lie algebras agree. By 6.4(vii) the two agree.
Hence t = s + tF for all F ∈ F . An element t = (tj)j∈J ∈ t is in

⋂
F∈F (s + tF ) iff

for each F ∈ F there is an element sF =
(
sj(F )

)
j∈J ∈ s such that tj = sj(F ) for

all j ∈ F . Thus t = limF∈F sF ∈ s since s is closed. Thus t = s. Hence i = c× t as
asserted.
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(iii)⇒(iv) Set C = expZ0(G) c ⊆ Z0(G) and

S∗ =
∏
j∈J

Sj(I), Sj(I) =

{
Sj if j ∈ I,
{1} otherwise.

Then C×S∗ is compact connected normal in Z0(G)×
∏
j∈J Sj . Set S = µG({1}×

S∗) = πG′(S
∗). Then µG(C × S∗) = CS is a compact connected subgroup of G in

which
expG L(H) = (L(µG) ◦ expG)

(
c×

∏
j∈J

sj(I)
)

=
(
µG ◦ (expZ0(G)×

∏
j∈J

expSj )
)(
c×

∏
j∈J

sj(I)
)

is dense. Since H = expH L(H) by 7.71, we have H = CS.
(iv) trivially implies (i). Therefore the proof is complete. ut

Next we generalize the Resolution Theorem 8.20 for compact abelian groups
to the nonabelian case. We recall from Theorem 8.20 and the discussion which
preceded it, notably from 8.15ff., that every compact abelian group A contains
for a given totally disconnected subgroup D1 at least one totally disconnected
subgroup D containing D1 such that A/D is a torus.

The Resolution Theorem for Compact Connected Groups

Theorem 9.51. Assume that G is a compact connected group and that ∆ is any
compact totally disconnected subgroup of Z0(G) containing Z0(G) ∩ G′ such that
Z0(G)/∆ is a torus. Write L(G) = z×g′, g′ =

∏
j∈J sj as in 9.48 so that X ∈ L(G)

is of the form X =
(
Xz, X

′), Xz ∈ z, X ′ = (Xj)j∈J , Xj ∈ sj. Let πG: G̃′ → G′

be as in 9.19, G̃′ =
∏
j∈J Sj with simple simply connected compact Lie groups Sj.

Then the following conclusions hold.
(i) The function

ϕ1: ∆× z×
∏
j∈J

Sj → G, ϕ1(d,Xz, g
′) = d(expXz)µG(g′)

is a quotient morphism whose kernel {(d,Xz, z) | d expXz = πG(z)−1, πG(z) ∈
Z0(G) ∩G′} is totally disconnected.

(ii) The function

ϕ2: ∆× z×
∏
j∈J

sj → G, ϕ2(d,X) = d expX

is surjective and open at 0.

Proof. (i) The function ϕ: ∆ × z → Z0(G) given by ϕ(d,Xz) = d expXz is a
quotient morphism whose properties were described in detail in Theorem 8.20. The
map ϕ0: ∆×z×G̃′ → Z0(G)×G̃′, ϕ0(d,Xz, g

′) = d expXz, g
′) is therefore a quotient
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morphism whose kernel K×{1}, K = kerϕ is isomorphic to {Xz ∈ z | expXz ∈ ∆},
and this subset is mapped bijectively and continuously onto D ⊇ Z0(G)∩G′. The

morphism µG:Z0(G)× G̃′ → G is a quotient morphism with kernel {(πG(z)−1, z) |
z ∈ π−1

G (Z0(G) ∩ G′)}. Thus ϕ1 = µG ◦ ϕ0 is a quotient morphism whose kernel
ϕ−1

0 (kerπG) = {(d,Xz, z) | d expXz = πG(z)−1 | πG(z) ∈ Z0(G) ∩ G′} is totally
disconnected since π−1

G (Z0(G) ∩ G′) ⊆
∏
j∈J Z(Sj) is totally disconnected and

kerϕ is totally disconnected.
(ii) The function expj : sj → Sj is surjective by 6.31 and a local homeomor-

phism at 1. The filter of identity neighborhoods of
∏
j∈J Sj has a basis of identity

neighborhoods of the form
∏
j∈J Vj where all Vj are identity neighborhoods of Sj

which for all but a finite number of indices j agree with Sj . The zero neighbor-
hoods of the weakly complete Lie algebra

∏
j∈J sj are of the form

∏
j∈J Uj where

all Uj are zero neighborhoods of sj which for all but a finite number of indices j
agree with sj and otherwise are mapped homeomorphically onto an identity neigh-
borhood of Sj by expSj . It then follows that

∏
j∈J expSj :

∏
j∈J sj →

∏
j∈J Sj is

surjective and open at zero. Since ϕ2 = ϕ1 ◦({1}×{0}×
∏
j∈J expSj ) the assertion

follows. ut

The Dimension of Compact Groups

We expand the dimension theory for compact abelian groups of Chapter 8, 8.28ff.
to the general situation. We shall show in the next chapter (in 10.38) that a
compact group G is always homeomorphic to G0 × G/G0. As far as dimension is
concerned, we may therefore concentrate on G0 which we shall do in the follow-
ing. We recall from 9.2 and 9.19 and that for a compact connected group G the
commutator group is a quotient of a product

∏
j∈J Si of a unique family of simple

simply connected compact Lie groups Sj . The cardinal cardJ , in particular, is an
isomorphy invariant by 9.19(v) (see also E9.5). We shall write

ℵ(G) = cardJ =
∑
s∈S
ℵ(s, G).

The Structure of Finite Dimensional Compact Groups

Theorem 9.52. For a compact connected group G the following conditions are
equivalent.

(i) rank(G/G′)̂ <∞ and ℵ(G) <∞.
(ii) rankZ0(G)̂ <∞, and ℵ(G) <∞.

(iii) Z0(G) is finite dimensional and G′ is a compact Lie group.
(iv) G′ is a compact Lie group and G/G′ is a finite dimensional compact abelian

group.
(v) There are simple normal compact Lie subgroups S1, . . . , Sk and a totally dis-

connected subgroup ∆ satisfying Z0(G) ∩ G′ ⊆ ∆ ⊆ Z0(G) and Z0(G)/∆ ∼=
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Tm such that z = L
(
Z0(G)

) ∼= Rm and that there is a covering homomor-
phism

ϕ: ∆× z× S1 × · · · × Sk → G, ϕ(d,Xz, s1, . . . , sk) = d(expXz)s1 · · · sk.

(vi) dimL(G) < ∞. In particular, if these conditions are satisfied, then G is
locally isomorphic to ∆× Rm × S1 × · · · × Sk.

A nonsingleton finite dimensional compact connected group has weight ℵ0 and
cardinality 2ℵ0 . In particular, it is metrizable.

Proof. Since G = Z0G
′ by 9.24(i), we have G/G′ ∼= Z0/(Z0 ∩ G′). From 8.23

we recall dimZ0(G) = rank(Z0(G)̂ and dimG/G′ = rank(G/G′)̂. The com-
pact group Z0 ∩G′ is totally disconnected; hence by 8.24(iv) we have dimG/G′ =
dimZ0/(Z0 ∩ G′) = dimZ0. Therefore (i) is equivalent to (ii). The following dia-
grams illustrate the situation.

Z0 {0}
G/G′ ∼=

{ ∣∣∣ ∣∣∣
Z0 ∩G′ (Z0 ∩G′)⊥ ∼= (G/G′)̂∣∣∣ ∣∣∣
{0} Ẑ0.

By 9.24, 9.19 we know that ℵ(G) is finite if and only if G′ is a compact Lie
group. This shows that (i) through (iv) are equivalent.

Assume (i). Then by 9.19 we have G̃′ = S̃1 × · · · × Sk with k = ℵ(G) and with

universal covering groups S̃j of normal simple subgroups Sj , j = 1, . . . , k. Hence

G̃′ is a compact Lie group and therefore the locally isomorphic quotient G′ is a
compact Lie group. The group Z0(G) is a finite dimensional compact connected
abelian group by 8.22. The morphism ϕ is a quotient morphism by 9.51, the kernel
{(d,Xz, z) | d expXz = z−1 ∈ Z0 ∩G′} is discrete because {(d,Xz) | d expXz = 1}
is discrete and isomorphic to a discrete subgroup of z ∼= Rn and because Z0 ∩ G′
is discrete. This proves (v).

Assume (v). Since kerϕ is discrete and ϕ is surjective,

L(ϕ):L(D × z× S1 × · · · × Sn)→ L(G)

is an isomorphism of weakly complete vector spaces by Proposition 9.47. The
projection p:D× z× S1 × · · · × Sn → z× S1 × · · · × Sn has a totally disconnected
kernel and is surjective. Thus L(p) is an isomorphism by 9.47. Hence dimL(G) =
dimL(z× S1 × · · · × Sn) = dim z + dimL(S1) + · · ·+ dimL(S1) <∞. Thus (vi) is
proved.

Finally assume (vi). By Theorem 9.48, L(G) ∼= L
(
Z0(G)

)
×
∏
j∈J L(S̃j) for

a family of simple simply connected compact Lie groups S̃j such that G̃′ ∼=∏
j∈J L(S̃j); the family is unique up to isomorphism by 9.19. Now dimL(G) <∞

by (iv). Hence dimL
(
Z0(G)

)
<∞ and ℵ(G) = cardJ <∞. By 8.22, dimL

(
Z0(G)

)
= rank

(
Z0(G)

)̂. Thus (i) is proved.
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Assume that G satisfies these conditions. Then the compact connected group
G it is a quotient group of some group ∆×Rm ×S1 × · · · ×Sk under a morphism
inducing a local isomorphism, where ∆ is a subgroup of Z0(G) whose character
group has finite rank, hence is a subgroup of Qn for some natural number n, and
where the groups Sj are simple connected compact Lie groups. The assertions on
the weight, the cardinality and the metrizability of G follow at once. (Cf. A4.16
for the metrizability of arbitrary topological groups.) ut

Let us notice that the proof of the equivalence of (i) and (ii) in the preceding
theorem shows that dimG/G′ = dimZ0(G).

Definition 9.53. (i) Let V be a weakly complete topological vector space. Its
dual V ′ is a real vector space (endowed with the finest locally convex topology)
by 7.30. The dimension dimR V

′ as a real vector space is a cardinal, and we shall
define

dimV = dimR V
′.

(ii) Assume the G is a compact group. Then we set

dimG = dimL(G) = dimR L(G)′. ut

9.54. Scholium. A) Assume that DIM is a function defined on the class C of
all locally compact spaces with values in {0, 1, . . . ;∞} such that the Conditions
(Da), . . . ,(Dd) of Scholium 8.25 are satisfied and that the following condition is
also satisfied which, for homogeneous spaces, is somewhat stronger than (Db).
(Db∗) If X admits a finite open cover each member of which is homeomorphic to

Rn, then DIMX = n.
Then for any compact group G,

DIM(G) =
{

dimG if dimG is finite,
∞ otherwise.

B) On the class of spaces underlying locally compact groups, small inductive
dimension, local large inductive dimension, Lebesgue covering dimension, coho-
mological dimension, and sheaf theoretical dimension (for any ground ring) all
agree and when finite, take the value dimG = dimG0 = dimR L(G). The dimen-
sion of a compact group is a topological invariant; i.e. two homeomorphic compact
groups have the same dimension.

Proof. A) By 9.38(ii) a maximal pro-torus of G is a direct product TA of a
maximal torus T of (G0)′ and an abelian group A ∼= G0/(G0)′ ∼= Z0(G)/(Z0(G)∩
(G0)′. Thus dimTA = dimT + dimA = dimT + dimZ0(G0) by 8.34(iv). Consider

πG0
: (̃G0)′ → (G0)′ be as in 9.19. We may write (̃G0)′ =

∏
j∈J Sj with a family

of simple simply connected compact Lie groups Sj , card J = ℵ(G). Let Tj be

a maximal torus of Sj . Then T̃
def
=
∏
j∈J Tj is a maximal pro-torus of G̃′ and

by 9.36(v) it is a torus. Also, πG(T̃ ) is a torus and maximal pro-torus of (G0)′ by
9.36. Since all maximal pro-tori are conjugate by the Maximal Pro-Torus Theorem
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9.31(i), we may assume that πG(T̃ ) agrees with T . The kernel K of πG0
is central

by 9.19 and the center of G̃′ is contained in T̃ by 9.31(iv). Since K is totally

disconnected, 8.24(iv) shows dimT = dim T̃ =
∏
j∈J dimTj ≥ card J = ℵ(G).

Thus dimTA ≥ ℵ(G) + dimZ0(G0). Then TA contains a subset homeomorphic

to [−1, 1]ℵ(G)+rank
(
Z0(G)

)̂ by Proposition 8.21. Thus if ℵ(G) or dimZ0(G0) is
infinite, then (Db) shows that DIM(G) =∞. We now assume that the conditions
of 9.52 are satisfied. By 9.52 there is a covering morphism

ϕ:G∗ → G0, G∗ = ∆× z× S1 × · · · × Sk, z = L
(
Z0(G)

)
,

ϕ(δ,X, s1, . . . , sk) = δ(expX)s1 · · · sk. Hence (Da) implies DIM(G) = DIM(G∗).
Since G∗ contains a subset homeomorphic to [−1, 1]dimR L(G) we have dimG =
dimR L(G) = dim[−1, 1]dimR L(G) ≤ DIM(G∗) = DIM(G) by (Db) and (Dc).

Now the compact Lie group S1 × · · · × Sk has an open identity neighborhood

V homeomorphic to ]−1, 1[
dimL((G0)′)

. Let D be a compact totally disconnected
subset of G such that (d, g) 7→ dg:D × G0 → G is a homeomorphism (see 6.81).
Then the function

Φ:D× (∆× z×S1×· · ·×Sk)→ G, Φ
(
d, (δ,X, s1, . . . , sn)

)
= dδ(expX)s1 · · · sk,

is a covering map. Then D × G∗ is covered by finitely many translates of the
identity neighborhood U = D × (∆ × z × V ). Note that L(G) = z ⊕ L((G0)′).
By (Dd) one has DIM(D × ∆ × [−1, 1]dimL(G)) ≤ dimL(G) = dimG. The new
postulate (Db∗) then implies DIM(G) = DIM(G∗) ≤ dimG. Thus dimG = DIMG
is proved.

B) All concepts of topological dimension which we discussed before we stated
Corollary 8.26 and for which we gave references to the literature, will assign to a
manifold of local euclidean dimension n the topological dimension n; they therefore
satisfy (Db∗). As a consequence of Part A), we can therefore formulate conclusion
B) as an extension of Corollary 8.26. ut

Theorem 9.55. (i) For a compact connected group G the following statements
are equivalent:

(1) G is finite dimensional
(2) The Lie algebra L(G) of G is the Lie algebra of a compact Lie group H.
(3) G′ is a Lie group and G/G′ is a finite dimensional compact connected abelian

group see (Theorem 8.22).
(4) G is the semidirect product G′ oι A, where the commutator group G′ is a

semisimple compact Lie group and A is a finite dimensional compact con-
nected abelian subgroup, and where ι(a)(g) = aga−1.

(5) G′ is a Lie group and Z0(G) is a finite dimensional compact connected abelian
group.

(ii) (Cf. [196], p. 302, 2.12) The n-th Čech cohomology group of an n-dimens-
ional compact group G with integral coefficients in dimension n is torsion free and
has rank w(G/G0).

(iii) Let G be finite dimensional. Then the following statements are equivalent
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(1) G is a Lie group.
(2) G/G0 is finite and G0/(G0)′ is a Lie group.
(3) G/G0 is finite and Hn(|G0|,Z) is cyclic for Čech cohomology in dimension

n = dimG of the space underlying the identity component.
(iv) If the dimension of a compact connected group G does not exceed 2 then

G is abelian and its character group is a subgroup of Q2.

Proof. (i) (1)⇐⇒ (2): By Theorem 9.24, in view of 9.52 und 9.54, G is finite
dimensional if and only if G is locally isomorphic to a group ∆×Rm×S1×· · ·×Sk
for a totally disconnected compact abelian group ∆ and simple compact connected
Lie groups S1, . . . , Sn. This is the case if and only if the Lie algebra L(G) is
isomorphic to z ⊕ s1 ⊕ · · · ⊕ sn for an m-dimensional abelian Lie algebra z and
simple compact Lie algebras sk, k = 1, . . . , n. Finally L(G) is of this form if and
only if it is the Lie algebra of the compact Lie group Tm × S1 × · · · × Sn.

(2)⇐⇒ (3): This is immediate by Theorem 9.52.
(3) ⇐⇒ (4): This follows from the Borel-Scheerer-Hofmann Splitting Theo-

rem 9.39.
(3)⇐⇒ (5): By Theorem 9.24, G = Z0(G)G′. If (3) or (6) holds, then G′ is a

semisimple Lie group and therefore has a finite center, thus Z0(G) ∩ G′ is finite.
Now G = Z0(G)G′ implies G/G′ ∼= Z0(G)/(Z0(G) ∩ G′); thus Z0(G) and G/G′

are locally isomorphic. Hence if one of these two groups is finite dimensional, the
other one is finite dimensional as well.

(ii) In Corollary 10.38 we shall see that G and G0×G/G0 are homeomorphic
groups and thus have the same cohomology. Recall that |G| denoted the space
underlying G. As we noted in the introduction to Part 5, Aspects of Algebraic
Topology—Cohomology (following Proposition 8.82), H0(|G|,Z) ∼= C(|G/G0|Z),
the group of locally constant Z-valued functions on |G|, while Hn(|G/G0|,Z) = {0}
for n ≥ 1. From the Künneth Theorem (cf. [338], p. 360, E5)it then follows
that Hn(|G|,Z) = Hn(|G0|,Z) for n ≥ 1. By (i)(5) above, we must compute
Hn(|(G0)′| × |A|;Z)G. with a closed abelian subgroup A isomorphic to G0/(G0)′.

From 8.83 we know that H∗(A,Z) ∼=
∧
Â as graded Hopf algebras, and if q =

dimA, then Hq(A,Z) =
∧q

Â. If p = dim(G0)′, then (G0) being a compact ori-
entable manifold, yields Hp(|(G0)′|,Z) ∼= Z and Hp′(|(G0)′|,Z) = {0} for p′ > p
(see [96], p. 315, 6.8(iv)). By the Künneth Theorem, (cf. [338], p. 360, E5), since∧
A is torsion free by the torsion freeness of Â (cf. 8.5) and n = p+ q we have

Hn(|G0|,Z) ∼= Hp(|(G0)′|,Z)⊗Hq(A,Z) ∼=
q∧
Â.

This abelian group is a torsion free group of rank 1. Also, rankC(|G/G0|,Z) =
w(G/G0). (See e.g. Theorem A4.9(ii), and note that for infinite rank torsion free
abelian groups rank and cardinality agree.) Hence rankHn(|G|,Z) = w(|G/G0|).

(iii) (1)⇐⇒ (2): If G is a Lie group, then G/G0 is discrete, and thus finite by
compactness and A ∼= G0/(G0)′ is a Lie group by Corollary 2.40, Definition 2.41
and Proposition 5.33(iii). Conversely, assume that G/G0 is finite and A is a Lie
group. Then G0 is open and each maximal pro-torus T is a product of a maximal
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torus T(G0)′ of (G0)′ and A by Theorem 9.93(ii). Hence T is a Lie group. Then the
closed subgroup Z(G) of T according to Theorem 9.32(iv) is a Lie group. Then
Z0(G0)× (G0)′ is a Lie group and G0 is a quotient group by Theorem 9.24. So, by
Theorem 6.7, G0 is a Lie group.

(1)⇒(3): If G is a Lie group, then G/G0 is discrete and compact and there-
fore finite. Moreover, G0 is an orientable compact manifold and thus has cyclic
cohomology in the highest dimension (see [96], p. 315, 6.8(iv)).

(3)⇒(1): Assume now that

Hn(|G|,Z) = Hp(|(G0)′| ⊗
q∧
Â⊗ C(|G/G0|,Z)

is cyclic. Then
∧q

Â and C(G/G0,Z) are cyclic. In particular, G = G0, i.e. G is

connected. Let 0 6= e ∈
∧
Â be one of the two generators. Then there is a free set

e1, . . . , eq in Â such that e1 ∧ · · · ∧ eq = e. We claim that Â =
⊕q

m=1 Z·em. Indeed

let a =
∑q
m=1 qm·em with unique rational numbers qm be an element of Â. Then

a∧e2∧· · ·∧eq = q1·e, e1∧a∧· · ·∧eq = q2·e and so on, showing that qm ∈ Z for all

m and proving our claim. Thus Â is free and A ∼= G0/(G0)′ is a torus. Therefore
G is a Lie group by (ii) above. This completes the proof of (iii).

(iv) The dimension of a nonabelian compact Lie algebra is at least 3 by 6.53.
Then by (i) above, L(G) ∼= Rm with m ≤ 2. Now 9.52 implies that G is abelian

and that rank Ĝ ≤ 2. Thus Q⊗ Ĝ ∼= Q2 and since G is connected, Ĝ is torsion-free
by 8.5 and thus the natural morphism χ 7→ 1⊗ χ: Ĝ→ Q⊗ Ĝ is injective. ut

We shall say that a topological space X contains a cube Iℵ, for a cardinal ℵ,
where I = [0, 1] if there is a continuous injective map Iℵ → X.

Proposition 9.56. (i) Let G be a compact infinite dimensional group and T a

maximal pro-torus. Then dimG = dimT = rank T̂ .
(ii) Every compact group G contains a cube IdimG .

(iii) If a compact group contains a cube Iℵ for some cardinal ℵ, then ℵ ≤ dimG.

Proof. (i) By 9.49(ii) we may write L(G) = z×
∏
j∈J sj and L(T ) = z×

∏
j∈J tj .

Then by Definition 9.53 we have dimG = dimR L(G)′ = dimR(z′ ⊕
⊕
j ∈ Js′j) =

dimR z′ +
∑
j∈J dimR sj since dimR s′j = dim sj . Similarly, dimT = dimR z′ +∑

j∈J dimR tj . If J is finite, then dimR z′ is infinite since G is infinite dimensional.
Then dimG = dim z′ = dimT . If J is infinite, then dimR

∑
j∈J sj = cardJ and

similarly with tj in place of sj . Then dimG = dimR z′ + cardJ = dimT . This

completes the proof of dimG = dimT . The relation dimT = rank T̂ goes back to
Definition 8.23.

(ii) . If dimG < ∞, then G and Z0(G) × G′ are locally isomorphic. By
Corollary 8.24(v), Z0(G) contains a cube whose dimension is the linear dimension
of L

(
Z0(G)

)
. The Lie group G′ contains a cube whose dimension is the linear

dimension of L(G′). Hence Z0(G)×G′ and thereforeG contains a cube of dimension
dim

(
L
(
Z0(G)

))
+ dim

(
L(G′

)
= dimL(G) = dimG in view of Scholium 9.54(B).
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If dimG = ∞, then dimG = dimT and T contains a cube IdimT = IdimG by
Corollary 8.24(v).

(iii) We may assume that the cube Iℵ is contained in G0, and since dimG0 =
dimG by Scholium 9.54(B), we may and will assume that G is connected. First
assume that ℵ is finite. Then DIM Iℵ = ℵ by the Euclidean Fundamental Theorem
8.25(Db). Further, by the Closed Subspace Theorem 8.25(Dc), DIM Iℵ ≤ DIMG.
Thus ℵ ≤ dimG by 9.54(B). Next assume that ℵ is infinite. Then ℵ = w(Iℵ) by
Exercise EA4.3 following A4.8 in Appendix 4. Since the weight (see Definition
A4.7) is monotone we have w(Iℵ) ≤ w(G). By (i) above, we have dimG = dimT .
By 8.24(ii), dimT = w(T ). By Theorem 9.36, w(T ) = w(G), and so w(G) = dimG.
Hence ℵ ≤ dimG, as asserted. ut

The preceding Proposition shows the following proposition:
The set of cardinals ℵ such that G contains cube Iℵ contains a maximal one,

namely, dimG.
One can therefore define dimG as the sup of all cardinals ℵ such that G contains

a cube Iℵ and assert, that the sup is attained.
A considerable amount of additional information is available in [185] where the

dimension of quotient spaces of a compact group is discussed.

Locally Euclidean Compact Groups Are Compact
Lie Groups

A Hausdorff space G is locally euclidean if it is the union of a set of open subsets
U each of which is homeomorphic to an open subset of some space Rn (depending
on U and on positive dimension). A topological group is clearly locally euclidean
if there is an identity neighborhood which is homeomorphic to Rn. In particular,
such a group is locally connected and thus the identity component G0 is open. We
summarize these observation in the following result.

Hilbert’s Fifth Problem for Compact Groups

Theorem 9.57. A locally euclidean compact group is a compact Lie group.

Proof. Let G be a locally euclidean group with compact identity component. By
Scholium 9.54.B and the Euclidean Fundamental Theorem of Dimension Theory
8.25(Db) which is valid for all the dimension functions listed in 9.54.B above, we
conclude that G is finite dimensional. Hence Theorem 9.52 shows that G is locally
isomorphic to a group ∆ × Rm × S1 × · · · × Sk. This group is locally connected
if and only if the compact totally disconnected subgroup ∆ ⊆ Z0(G) is discrete.
Since Z0(G)/∆ ∼= Tm, we conclude that Z0(G), being locally isomorphic to Tm, is
a torus. By the Structure Theorem 9.24, G is a quotient of the group Z0(G)×G′
modulo a finite group and G′ is a compact Lie group of the form S1 × · · · × Sk
modulo a finite group by 9.52. Thus G0 is a compact Lie group. ut
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As a consequence of this theorem all information of Chapter 6 becomes available
for locally euclidean compact groups. It remains true, more generally, that a locally
euclidean topological group is a Lie group, but that is much harder to prove (see
[263] (1955) or [229], (1971)). There are several variants of the proof of 9.57. By
9.39, G0 is a semidirect product of the semisimple group (G0)′ and a connected
abelian group A isomorphic to G0/(G0)′. If either of the groups (G0)′ or A fails
to be finite dimensional, then it contains arbitrarily small subsets homeomorphic
to a cube [0, 1]N by 9.19, respectively, 8.21, and such a set cannot be contained
in a euclidean space. Thus it follows that G is finite dimensional in the sense of
9.52, and the argument continues from there. Thus no reference to topological
dimension theory need be made except for the fact that a euclidean cell cannot
contain a Hilbert cube [0, 1]N.

Topological Characterisation of Compact Matrix Groups

Corollary 9.58. A compact group is isomorphic (as a topological group) to a
group of matrices if and only if it is locally euclidean.

Proof. By 9.57, a compact group is a compact Lie group if and only if it is locally
euclidean, and by Definition 2.41 it is isomorphic to a group of matrices if it is a
compact Lie group. ut

Elementary Geometric Properties of Compact Groups

Corollary 9.59. (i) If the dimension of a locally euclidean compact connected
group is less than 3, then it is a one-torus or a two-torus.

(ii) The only group on a compact surface is the two torus.

(iii) The only compact connected groups which contain an open set homeomor-
phic to euclidean three-space are: the three-torus, the group SO(3) of rotations
of euclidean three-space, and the group SU(2) of isometries of two dimensional
complex Hilbert space.

(iv) (The Sphere Group Theorem) The only groups on a sphere are: the two
element group S0 = {1,−1}, the circle group S1, and the group S3 of quaternions
of norm one (∼= SU(2)).

(v) Let G be an n-dimensional compact connected group and assume that G has
a homeomorphic copy K contained in Rn+1. Then G is a Lie group and Rn+1 \K
has two components Ub and Uu where matters can be arranged so that Ub ∪K is
compact while Uu is unbounded.

Proof. (i) Let G be a compact connected group. If dimG < 3, then by 9.55(iv),
G0 is abelian. If G is, in addition, locally euclidean, then it is a compact Lie group
by 9.57 and is therefore a torus of dimension one or two.

(ii) follows from (i).
(iii) By 6.49(ii), (vii), the nonabelian compact connected three dimensional Lie

groups are (up to isomorphy) SO(3) and SU(3).
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(iv) The connected compact Lie groups on spheres were characterized in The-
orem 6.95; but by 9.57 we know that any group on a sphere is a compact Lie
group.

(v) By Alexander duality (see [338], p. 296, Theorem 16, we have Hn(K,Z) ∼=
H̃0(Rn+1\K,Z) ∼= Z(c), where c is the set of connected components of Rn+1\K and

where H̃∗ is reduced singular homology. By Theorem 9.55(ii) the rank of Hn(G,Z)

is one. Therefore, the rank of H̃0(Rn+1 \K,Z) is one, that is, card c = 2. Moreover,

H̃0(Rn+1 \ K,Z) is free. Hence Hn(G,Z) is cyclic and thus G is a Lie group by
Theorem 9.55(iii).

Now let Sn be the surface of a closed ball Bn+1 in Rn+1 containing K in its
interior. Then Sn ⊆ Rn+1 \ G; since Sn is connected, there is one of the two
components, say Uu which contains Sn+1. Let Ub denote the other of the two
members of c; then Ub∩Sn+1 = Ø and since Ub is connected, Ub is either contained
in Bn+1 \ Sn−1 or in Rn+1 \Bn+1. Since the boundary ∂Ub is contained in K and
K ⊆ Bn+1 \ Sn−1, we conclude that Ub ∪K ⊆ Bn+1, and that Ub ∪K is closed.
Hence Ub ∪K is compact, and, accordingly, Uu is unbounded. ut

In Exercise E1.11 preceding Proposition 1.31 we saw the example of the dyadic
solenoid giving us a 1-dimensional compact connected abelian group which is not
embeddable in a 2-manifold by the preceding theorem, but is embeddable in R3.

If we speak here of “elementary geometric properties” we do not imply that
the results listed here or their proofs are elementary, in fact they are not. Indeed
the proof of a result like 9.59(iv) is much less elementary than its formulation
might suggest. For Statement (v), see for instance [196], p. 303, 2.13. The present
statement and its proof are improved versions. For information on embedding n-
dimensional locally compact abelian groups into Rn+1, see [70], p. 73: Theorem of
Bognár, [25, 26, 27].

There is a construction which allows a compact n-dimensional Lie group to
bound a compact manifold, namely, the following (cf. [199]).

Construction. Let G a compact connected Lie group of dimension n, and H a
sphere subgroup, that is, H ∼= Z(2), T, or SU(2). On G×I let R be the equivalence
relation whose cosets R(g, t) are singleton for t > 0 and Hg × 0 for t = 0. Then

Mn+1 def
= (G × I)/R is a manifold (and a G-space with orbits (G × {t})/R and

with (G×{1})/R as boundary. If H is normal then Mn+1 is a compact topological
monoid.

If two copies of Mn+1 are glued together by identifying corresponding points
of the respective boundaries, one obtains a manifold Mn+1

2 of dimension n + 1
into which G is embedded in such a fashion that G has a neighborhood which is
homeomorphic to G× R.

Proof. We recall that I denotes the unit interval [0, 1] which may be equipped
with the natural multiplication of real numbers if required. We set I2 = [0, 2]. On
G × I2 we define the equivalence relation R2 whose cosets R2(g, t) are singleton
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if 0 < t < 2 and are gH × {t} if t ∈ {0, 1}. We define R
def
= R2 ∩ (G × I)2,

RG
def
= R2 ∩ (G× {1})2 and set

Mn+1
2 =(G× I2)/R2 ⊇ (G× {1})/RG ∼= G,

Mn+1 =(G× I)/R2 ⊇ (G× {1})/RG ∼= G.

The space G× I is a compact monoid. Both of these spaces are G spaces with
respect to the action(

g,R(g′, t)
)
7→ R(gg′, t) : G×Mn+1

2 →Mn+1
2 .

it is straightforward to verify that the action is well-defined and continuous and
that Mn+1 is invariant and that the orbit spaces are naturally homeomorphic to
I2, respectively, I. The orbits G·R(1, 0) and G·R(1, 2) are both homeomorphic to
G/H under the functions gH 7→ g·R(1, t) with t = 0, respectively t = 2.

Now we show that every point R(g, 0) (and, analogously, every point R(g, 2))
has an open neighborhood which is a manifold. For this purpose we pick a subset
U ∈ G containing 1 and being homeomorphic to an open m-cell, m = dimG/H,
such that the quotient map p:G → G/H, p(g) = gH maps U homeomorphically
onto on open neighborhood of p(1) = H. Such a set exists by the Tubular Neigh-
borhood Theorem for closed Subgroups 5.33(ii) (s. also the Local Cross Section
Theorem 10.34 below). Then (u, h) 7→ uh : U×U×H → UH is a homeomorphism
onto an open H-saturated neighborhood of 1 in G. Now we define

S
def
=

⋃
0≤t<1

H·R(1, t) = {R(h, t) : h ∈ H 0 ≤ t < 1}.

Then H·S = S, G·R(1, 0) ∩ S = {R(1, 0)}, and

(u, s) 7→ u·s : U × S → U ·S ⊆Mn+1 ⊆Mn+1
2

is a homeomorphism onto an open neighborhood of R(1, 0) in Mn+1.
Now S is an H space via the induced action such that the action is free with

the sole exception at R(1, 0) where the orbit is singleton. Thus S is the open
cone (H × [0, 1[)/(H × {0}) over H. Since H is a sphere S0, S1 or S3 the space is
homeomorphic to R, R2, or R4. Accordingly, U × S is homeomorphic to Rn+1.

This shows that Mn+1 \ ∂Mn+1 and Mn+1
2 are locally euclidean spaces of

dimension n + 1. If H is normal in G then R is a congruence and Mn+1 is a
compact monoid. ut

If S0 ∼= Z(2) is factored, we will in general arrive at a nonorientable manifold.
Notice that Mn+1 is a mapping cylinder for the quotient map G 7→ G/H (cf.

[338], p. 32). In particular, G/H and Mn+1 are homotopy equivalent.
We are not addressing here the problem of determining which of these manifolds

Mn+1
2 are spheres. We record that G = Tn is embeddable into Rn+1.
We notice that the Alexander Duality Theorem yields quite generally

(A) Hq(G,A) ∼= H̃n−q(Rn+1 \G,A)

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



540 9. The Structure of Compact Groups

for an arbitrary coefficient module A. Taking A = Q, from the topology of con-
nected compact Lie groups (6.88ff.) we know that

⊕n
q=0 H̃n−q(Rn+1 \ G,Q) ∼=∧

P
(
H(G,Q)

)
(s. the Hopf–Samelson Theorem 6.88), further P

(
H(G,Q)

) ∼= Q⊗T̂
for a maximal torus T (s. 6.93). Let r = dimT be the rank of G, let Vm denote the
graded vector space V 1

m+· · ·+V dmm where dm is the Q-dimension of the m-th homo-
geneous component of P

(
H(G,Q)

)
and where V 0

m, . . . , V
dm
m are one dimensional.

Then
n⊕
q=0

H̃n−q(Rn+1 \G,Q) ∼=
∧
V 1

1 ⊗
∧
V 2

1 ⊗ · · · ⊗
∧
V
d2N−1

2N−1 ,

where
∧
V kj = R ⊕ V kj , dim

∧
V kj = 2. Hence the reduced singular homology of

each of the two complements of G in Rn+1 is that of a product of odd dimensional
spheres. A first illustration is given by the 2-torus G = T2 sitting in R3; the interior
(that is, the bounded component of R3 \ T2) is homotopy equivalent to S1 as is
the exterior. We recall SU(2) ∼= S3⊆ H = R4 and note

H̃n
q (R4 \ S3) ∼=

{
Z if q = 0, 4,
{0} if q = 1, 2.

The general questions in the present context are

Problem A. Which compact connected Lie groups bound compact connected
manifolds?

Problem B. Which compact n-dimensional Lie groups can be embedded into
Rn+1?

Part 3: The Connectivity Structure of Compact Groups

Arc Connectivity

We shall see that the issue of arc connectivity reduces, via the structure theory
now available to us, to the abelian situation for which an extensive theory is at our
disposal through 8.27–8.33. For example, a compact connected group G is arcwise
connected if and only if G/G′ is arcwise connected.

Recall that Ga denotes the arc component of the identity in a topological group
and that π0(G) = G/Ga is the group of all arc components.

The Arc Component of a Compact Group

Theorem 9.60. Assume that G is a compact group.
(i) The arc component Ga of G is expL(G) and contains (G0)′. The sequence

g/g′
X+g′ 7→(expGX)(G0)′−−−−−−−−−−−−−→ G/(G0)′

p−−−→ π0(G)→ 0,

p(gG′) = gGa is exact.
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(ii) G is arcwise connected if and only if the exponential function is surjective
if and only if G is connected and the (compact connected) abelian group G/G′ is
arcwise connected.

(iii) For a connected compact group G, the arcwise connectivity of the identity
component Z0(G0) of the center is sufficient for the arcwise connectivity of G.

(iv) If f :G→ H is a surjective morphism of compact groups, then f(Ga) = Ha.
(v) Ga = G0.
(vi) An arcwise connected compact group is locally connected.
(vii) (The Borel Set Reduction Theorem) For a compact group G the following

statements are equivalent:
(1) The arc components of G are Borel sets.
(2) The arc component of the identity (G0/(G0)′)a in the compact connected

abelian group G0/(G0)′ is a Borel subset.
(viii) The arc components of a compact group G are Borel sets if G0/(G0)′ is

metric.

Proof. (i) From 9.48 we know that (G0)′ ⊆ exp g and that (G0)′ = µG({1} ×∏
j∈J Sj ⊆ G0. From the Borel–Scheerer–Hofmann Splitting Theorem 9.39 we

know that G0
∼= (G0)′oιA, A ∼= G0/(G0)′. The arc component of the identity in a

product of topological groups is the product of the identity arc components. Hence
Ga = (G0)′ oι Aa, and the quotient morphism p:G → G/(G0)′ satisfies p(Ga) =
(G/(G0)′)a and p−1

(
(G/(G0)′)a

)
= Ga. From the Arc Component Theorem 8.30

for (locally) compact abelian groups we deduce that Aa = exp a. (G/(G0)′)a =
expG/(G0)′ g/g

′ = (expG g)/(G0)′. Hence the full inverse image Ga of this group is
expG g.

Moreover,

π0(G) = G/Ga ∼=
G/(G0)′

Ga/(G0)′
∼=

G/(G0)′

exp g/(G0)′
.

(ii) is a consequence of (i).
(iii) By 9.24 we have G/G′ = Z0(G)/(Z0(G)∩G′). Hence the arcwise connect-

edness of Z0(G) implies that of G/G′ and thus that of G by (ii).
(iv) By (i)above, the arc component Ga of the identity in a compact group G

is expL(G). From 9.47 we conclude that

Ha = expH L(H) = (expH ◦L(f))
(
L(G)

)
= (f ◦ expG)

(
L(G)

)
= f(Ga).

(v) Clearly, Ga ⊆ G0, and thus we may assume that G is connected. By (i)
we have G′ ⊆ Ga. By (iv) we have (G/G′)a = Ga/G

′ and then Ga/G
′ is densely

contained in (G/G′)a and is compact; hence the two groups agree. Since G/G′ is
abelian, (i) and 7.71 entail Ga/G

′ = (G/G′)a = G/G′, and this implies Ga = G.
(vi) If G is an arbitrary connected compact group, then G is the semidirect

product of G′ and an abelian subgroup A ∼= G/G′ by 9.39. Since G′ is locally
connected and arcwise connected by the preceding remark, G is locally connected,
respectively, arcwise connected iff G/G′ is locally connected, respectively, arcwise
connected. Then by 8.36(iii) the arcwise connectivity of the compact group G
implies its local connectivity.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



542 9. The Structure of Compact Groups

(vii) The arc components of G are all homeomorphic to Ga; thus (i) amounts to
saying that Ga is a Borel set. Since Ga ⊆ G0 we may assume that G is connected.

As we have seen in the proof of (i), the arc component Ga is homeomorphic
to G′ ×Aa, and G′ is closed and arcwise connected. Hence by Lemma 8.86, Ga is
a Borel subset of G if and only if G′ × Aa is a Borel subset of G′ × A iff Aa is a
Borel subset of A.

(viii) By the Reduction Theorem (vii) above, the assertion is true if and only
if the arc component (G/G′)a is a Borel subset of G/G′. Since G/G′ is assumed
to be metric, the assertion follows from Theorem 8.94. ut

Of course there are numerous sufficient conditions which imply the hypothesis
that G/G′ is metric:

The Metrizability Supplement. For a compact group, each of the following
conditions implies the next:

(i) G is metric.
(ii) G0 is metric.

(iii) A maximal pro-torus T of G is metric.
(iv) The identity component Z0(G0) of the center of G0 is metric.
(v) The compact connected abelian group G/G′ is metric.

Proof. Since Z0(G0) ⊆ T ⊆ G0 ⊆ G, the first three implications are obvious.
For (iv)⇒(v) we refer to 9.23 or 9.24 and conclude that Z0(G0)/(Z0(G0) ∩K ′) ∼=
G0/(G0)′. Thus G0/(G0)′ is a homomorphic image of Z0(G0) and the implication
follows. ut

We should recall from Chapter 8, Part 6, Theorem 8.99 that there is a model
of set theory in which there is a compact connected abelian group of continuum
weight which has countably infinitely many arc components which are not Borel
sets.

We emphasize that the arcwise connectedness of Z0(G) is not necessary for
the arcwise nor the local connectedness of a compact group G. In fact, as we
show in the following proposition, any compact connected abelian group can be
the identity component of the center in an arcwise connected locally connected
compact group.

We recall from Chapter 8, 8.23 that for a compact abelian group A we define
the dimension by dimA = rank Â = dimQ Q⊗ Â.

Proposition 9.61. Let A be an arbitrary compact connected abelian group. Then
the following conclusions hold.

(i) There is a compact totally disconnected subgroup D of A such that A/D is
a torus isomorphic to TdimA.

(ii) There is a family {nj | j ∈ J} of natural numbers satisfying card J ≤
max{ℵ0, cardD} and an injective morphism j:D → S

def
=
∏
j∈J SU(nj).
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In particular, if A is metric, then J may be taken to be finite or N and S is
metric, too.

(iii) There is a compact arcwise connected locally connected group G with
w(G) = w(A) such that the identity component Z0(G) of its center is isomor-
phic to A and that the factor group G/G′ is isomorphic to TdimA. Specifically,

G ∼=
(∏

j∈J SU(nj)
)
o TdimA. If A is metric then G can be chosen to be

metric.

Proof. (i) We recall from 8.15 that there is a closed subgroup D ⊆ A such that
dimD = 0 and that A/D is a torus whose dimension is dimA.

(ii) The character group D̂ is a torsion group (see 8.5). Let F be the fam-

ily of finite subgroups; then D̂ =
⋃
F∈F F , a directed union, and cardF ≤

max{ℵ0, card D̂}. The universal property of the direct sum (coproduct) yields a

morphism Φ:
⊕

F∈F F → D̂ such that the diagram

F
coprF−−−→

⊕
E∈F E

idF

y yΦ

E −−−→
incl

D̂

commutes. Since the image im Φ contains all F ∈ F , it contains all of D̂ and the
morphism Φ is surjective. Dually we get an injective morphism D →

∏
F∈F F̂

which is simply Φ̂ if we identify
∏
F∈F F̂ with the character group of

⊕
F∈F F (cf.

1.17). We have a nonnatural isomorphism F ∼= F̂ (cf. 1.18). So by A1.11, each F̂
is a finite product of cyclic groups. Thus there is a family {nj | j ∈ J} of natural

numbers with cardJ ≤ max{ℵ0, cardF} = max{ℵ0, card D̂} ≤ max{ℵ0, card Â},
and an injective morphism

j′:D →
∏
j∈J

Z(nj).

If A is metric, then so is D and hence D̂ and F is countable. Thus J may be
chosen countable.

For n ∈ N let Z(n)
def
= Z

(
SU(n)

)
= {e2πm/n·1n | m = 0, . . . , n − 1}. Then

there is an isomorphism jn:Z(n)→ Z(n), and thus there is an injective morphism
of compact groups

j:D → S
def
=
∏
j∈J

SU(nj).

(iii) We assume A to be additively written and define ∆ ⊆ A × S to be the
subgroup of all pairs

(
−a, j(a)

)
∈ A×S. We set G = A×S

∆ . The center of A×S is
Z(A×S) = A×

∏
j∈J Z(nj). The center of G, accordingly, is Z(G) = Z(A×S)/∆,

and by 7.73, Z0(G) = (A×{1})∆
∆ = A×j(D)

∆
∼= A. Also G′ = {0}×S

∆ = D×S
∆
∼= S. Fur-

ther, Z0(G)/(Z0(G) ∩G′) ∼= G/G′ ∼= A×S
D×S

∼= A/D ∼= TdimA by (i). By the Borel–

Scheerer–Hofmann Theorem 9.39, G ∼= G′oG/G′ ∼= SoTdimA, and this group is,
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topologically, a product of connected Lie groups and is therefore arcwise connected
and locally connected. Clearly w(A) ≤ w(G) ≤ max{ℵ0· card J,w(TdimA)} ≤
w(A). (see Appendix 4, EA4.3). ut

A particular example may be instructive.

Exercise E9.12. Verify the details of the following special example:

Example 9.62. Let Zp = limZ(pn) be the group of p-adic integers (see 1.28(i)).
We may write Z ⊆ Zp with the integers forming a dense subgroup. We let Sp
denote the p-adic solenoid which may constructed as a factor group

Sp =
R× Zp

∆
, ∆ = {(n,−n) : n ∈ Z}.

The character group of Sp is 1
p∞Z, the additive group of all rational numbers which

can be written with a denominator pn. This group is countable but not free. Hence
by 8.45 and 8.46, the solenoid Sp is metric connected but not arcwise connected
and not locally connected. Moreover, Sp contains a copy Zp of Zp and Sp/Zp is
isomorphic to the circle group T.

Next let S be the semisimple compact connected group SU(p) × SU(p2) ×
SU(p3)× · · · . The center Z(n)

def
= Z

(
SU(n)

)
= {e2πm/n·1n | m = 0, . . . , n− 1} of

SU(n) is cyclic of order n. Let πn:Z(pn+1) → Z(pn) be the surjective morphism

given by πn(e2π/pn+1 ·1pn+1) = e2π/pn ·1pn . Define Cp = {(zn)n∈N ∈
∏
n∈N Z(pn) :

πn(zn+1) = zn} = limZ(pn). Then there is an isomorphism f :Zp → Cp. given by
f
(
(zn + pnZ)n∈N

)
=
(

exp(2πzn/p
n)
)
n∈N, zn ∈ Z.

Finally set

G =
Sp × S
D

, D = {
(
z−1, f(z)

)
: z ∈ Zp}.

Then G is a metric compact connected group and G′ = ({0} × S)D/D ∼= S,
while Z0(G) = (Sp × {1})D/D ∼= Sp. Thus Z0(G) is not arcwise connected and
not locally connected. But

G/G′ ∼= Z0(G)/(Z0(G) ∩G′) =
Sp × Cp
Zp × Cp

∼= Sp/Zp ∼= T

is a circle group and

G ∼= (SU(p)× SU(p2)× · · ·) o T. ut

The reduction of many structural features of a compact connected group to
those of a compact connected abelian group can take three avenues: one is through
Z0(G), one is through G/G′, one is through a maximal pro-torus T . Sometimes
the first is the one to take, but this example and the preceding discourse show
that this is by no means always so; for topological properties it is almost always
the second that leads to the conclusive answer. We have often seen the third one
lead to success, such as in the case of studying the exponential function (9.48).
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Local Connectivity

We shall exploit the knowledge accumulated on (locally) compact abelian groups
and local connectivity in Chapter 8.34 (see 8.34ff.). We begin by observing a gen-
eralisation of 8.37. Recall that for a topological group G we denote by T (G) the
set of all torus subgroups of G.

Proposition 9.63. Every compact group G contains a characteristic arcwise con-
nected subgroup

GT = 〈
⋃
T (G)〉 =

⋃
T (G).

Proof. Every automorphism of G permutes the maximal pro-torus subgroups and
thus leaves 〈

⋃
T (G)〉 invariant. This group is obviously contained in G0 and is

characteristic in G0. It is therefore no loss of generality if we assume that G is
connected, i.e. that G = G0. By 9.36(v), every maximal pro-torus of G′ is a torus
and thus is a member of T (G). By the Maximal Pro-Torus Theorem 9.31(i,ii), G′

is the union of its torus subgroups. Hence G′ ⊆ GT .
We claim that, in generalisation of the abelian situation in the proof of 8.37,

the arcwise connected subset
⋃
T (G) is a subgroup. This will complete the proof

of the theorem. This set is certainly closed under passing to inverses. Let t1 and
t2 be elements of this union. Then there are torus subgroups T1 and T2 of G such
that tj ∈ Tj , j = 1, 2. Then G′T1 und G′T2 are subgroups since G′ is normal, and
G′/G′Tj is a torus as a homomorphic image of a torus. As G/G′ is abelian, G′T1T2

is a subgroup of G which contains t1t2 and for which G′T1T2/G
′ is a torus as a

product of two tori G′Tj/G
′, j = 1, 2. Let T be a maximal pro-torus of G′T1T2.

By the Borel–Scheerer–Hofmann Splitting Theorem 9.38(ii) we have T ∼= T ′G × A
with a maximal torus T ′G and a pro-torus A ∼= G′T1T2/G

′ which is a torus, by
what we just saw. Hence T is a torus. By the Maximal Pro-Torus Theorem 9.31
again, all maximal pro-tori of the group G′T1T2 are tori and cover it. Hence t1t2
is contained in a torus and thus in

⋃
T (G). This proves the claim. ut

Note that in the abelian case 8.37 the collection T (G) was directed which
allowed a quick proof in that situation. The example of the smallest compact
connected nonabelian Lie group SO(3) shows that this fails miserably in the non-
abelian case. This accounts for the variance in the proofs here and there.

Proposition 9.63 implies that the smallest closed subgroup

G`
def
=
⋃
T (G) = GT

of G containing all torus subgroups of G is a fully characteristic closed connected
subgroup of G. We shall presently justify the following definition.

Definition 9.64. In a compact group G we call G` the locally connected component
(of the identity) of G. ut

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



546 9. The Structure of Compact Groups

The Locally Connected Component of a Compact Group

Theorem 9.65. In every compact group G the fully characteristic subgroup G` is
the unique smallest closed subgroup containing all torus groups and is of the form
(G0)′oιA`, where A` is isomorphic to the locally connected component component
(G0/(G0)′)` of the compact connected abelian group G0/(G0)′. The group G0 is
locally connected iff G0/(G0)′ is locally connected.

Proof. According to the Borel–Scheerer–Hofmann Splitting Theorem 9.38 we may
write G0 = (G0)′A ∼= (G0)′ oι A with a compact connected abelian group A ∼=
G/G′. By 9.63 we know (G0)′ ⊆ GT ⊆ G`. Then G` = (G0)′A` with A` = A∩G`.
Since then G` ∼= (G0)′ oι A` we know that G` is locally connected since (G0)′

is locally connected after the Structure Theorem of Compact Semisimple Groups
9.19 and A` is locally connected by the Theorem on the Largest Locally Connected
Subgroup of a Compact Abelian Group 8.38.

Finally since G0 = (G0)′ oι A by 9.38, and since (G0)′ is locally connected as
a consequence of Theorem 9.19(i), it follows that G0 is locally connected iff A is
locally connected. As A ∼= G0/(G0)′, the last assertion follows. ut

The structure of (G0)′ is known after Theorem 9.19 and that of A` was de-
scribed in detail in the Theorem on the Locally Connected Component of a Com-
pact Abelian Group 8.41. In particular, specific information on L(A`) and the
nature of the exponential function of A` ∼= (G0/(G0)′)` was given.

Corollary 9.66. (i) A compact group G is locally connected if G has finitely
many components and if the compact connected abelian group G0/(G0)′ is locally
connected if and only if every finite dimensional quotient group is a Lie group.

(ii) G is locally arcwise connected if and only if it has finitely many components
and G0/(G0)′ is locally arcwise connected if and only if the character group of
G0/(G0)′ is a S-group..

Proof. (i) A locally connected space has open components. Hence the local con-
nectivity of G implies that G0 is open and the compactness of G then implies that
G0 has finite index in G. Conversely, if G0 has finite index then it has inner points
(by the Baire Category Theorem, if for no other reason) and thus it is open; in this
circumstance G is locally connected if and only if G0 is locally connected. That,
however is the case if and only if G0/(G0)′ locally connected, by Theorem 9.65.

For a proof of the last equivalence, let G be a compact connected group, and
H = G/N a quotient group. By Theorem 9.52, H is finite dimensional iff H ′ =
G′N/N ∼= G′/(G′ ∩ N) is a compact Lie group and H/H ′ = (G/N)/(G′N/N) ∼=
G/G′N ∼= (G/G′)/(G′N/G′) is a finite dimensional compact connected abelian
group. Hence a finite dimensional quotient of G is a Lie group iff the induced
quotient of G/G′ is a torus.

Now a compact group G is locally connected iff G0 is open and locally con-
nected, that is, iff G0 has finite index in G and is locally connected. We saw that
G0 is locally connected iff G0/(G0)′ is locally connected, and this is the case by
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8.36(i) iff all of its finite dimensional quotients are Lie groups. By the preceding
paragraph this is the case iff all finite dimensional quotients of G are Lie groups.

(ii) (G0)′ is locally arcwise connected by 9.19, since (G0)′˜ is locally arcwise
connected. Hence if G0 has finite index and G0/(G0)′ is locally arcwise con-
nected, the group G, being isomorphic to a finite union of spaces homeomorphic
to G′0 × (G0/(G0)′ is locally arcwise connected. Conversely, if G is locally arcwise
connected, it is locally connected, and thus G0 has finite index by (i), and the
topological direct factor G0/(G0)′ of the locally arcwise connected space G0 is
locally arcwise connected, and by Theorem 8.36bis this is the case if the character
group is an S-group. ut

Corollary 9.67. Let G be a connected compact group. Then a sufficient condition
for G to be locally connected is that the identity component Z0(G) of the center is
locally connected. This condition is not necessary.

Proof. Assume that Z0(G) is locally connected. Then Z0(G)̂ is ℵ1-free by Theo-
rem 8.36 on the characterisation of local connectivity of (locally) compact abelian
groups. And the subgroup (Z0 ∩ G′)⊥ is likewise ℵ1-free. Thus G/G′ ∼=

(
(Z0 ∩

G′)⊥
)̂ is locally connected by 8.36. Therefore G is locally connected by 9.66.

Example 9.62 shows that there are compact connected locally connected metric
groups in which Z0(G) is not locally connected. ut

Connectivity properties are much simpler in metric compact groups.

Connectivity in Compact Metric Groups

Theorem 9.68. (i) Let G be a compact group and assume that the locally connected
component G` (see Definition 9.64 and Theorem 9.65) is metric. This is the case, in
particular, if G is metric. Then G` is a semidirect product of the metric semisimple
group (G0)′ and a metric torus, and there is a closed connected abelian torus free
subgroup H such that G0 = G`H ∼= G` o H.

(ii) The following statements are equivalent for a compact metric group:
(1) G = G`.
(2) G/G′ is a torus.
(3) G is arcwise connected.
(4) G is connected and locally connected.
(5) expG:L(G)→ G is surjective.

Proof. (i) Apply the Borel–Scheerer–Hofmann Splitting Theorem 9.38 and write
G0 = (G0)′A ∼= (G0)′ oι A with a closed connected abelian subgroup A ∼=
G0/(G0)′. By Theorem 9.61 we have G` = (G0)′A` and by Theorem 8.46 we
have A = A`H ∼= A` ×H with a torus free compact connected abelian group H.
Notice that G`∩H = {1} and G`H = G0. Since G` is characteristic, hence normal,
the function (g, h) 7→ gh:G` oι H → G0 is an isomorphism of compact groups.

(ii) The equivalence of (1) and (4) follows from 9.65. By Corollary 9.66 this
is tantamount to saying that G/G′ is locally connected. Since G now is metric,
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this is equivalent to (2) by 8.46. By 9.60(ii) we know that (2), (3) and (5) are
equivalent. ut

Proposition 9.69. A compact connected group G is torus free if and only if it is
abelian and the equivalent conditions of 8.47 are satisfied.

Proof. Assume that G is torus free. Then G′ is torus free. By 9.36(v) each maximal
pro-torus of G′ is a torus, hence is singleton. Then by the Maximal Pro-Torus
Theorem 9.32 the group G′ is singleton itself. ut

Compact Groups and Indecomposable Continua

Definition 9.70. A continuum is a compact connected space. It is called decom-
posable if it is the union of two proper subcontinua; otherwise, it is indecomposable.

ut

Indecomposable Group Continua

Theorem 9.71. For a nonsingleton compact group G the following statements
are equivalent:

(i) G is a compact connected abelian group of dimension one not isomorphic to
a circle.

(ii) The underlying space of G is an indecomposable continuum.

Proof. (i)⇒(ii). Assume that G is a compact connected group with dimG = 1
and that G is not isomorphic to a circle and suppose that G = C1 ∪ C2 with two
proper nonsingleton continua C1 and C2. We shall derive a contradiction. The
relation dimG = 1 is equivalent to dimQ Q⊗ Ĝ = rank Ĝ = 1 (8.22ff.). Since G is

connected, Ĝ is torsion-free (8.5) and thus the morphism χ 7→ 1⊗ χ: Ĝ→ Q⊗ Ĝ
maps Ĝ injectively. We may therefore assume that Ĝ is a subgroup of Q. It is
no loss of generality to assume that 1 ∈ Ĝ. Since G is not isomorphic to T, the
character group Ĝ is not isomorphic to Z ⊇ Ĝ. Let Ĝ = {g1 = 1, g2, . . .} be an

enumeration of the countable set Ĝ and choose recursively a sequence of natural
numbers n1 < n2 < n3 · · · such that n1 = 1 and that, firstly nj |nj+1 for j = 1, . . . ,
and, secondly, gj |nj . Then

∞⋃
j=1

1

nj
Z = Ĝ.

Dually this means that

lim(T
µn1←−−− T

µn2←−−− T
µn3←−−− · · ·) = G,

where µn(x + Z) = nx + Z. Let fm:L → T denote the limit projection onto the
n-th component. Since the limit projections separate the points and C1 and C2 are

proper subsets, there is an m such that C ′j
def
= fm(Cj) 6= T for both j = 1 and 2.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



9. The Structure of Compact Groups 549

Consider the limit map fm+1:G → T. Then fm = µnm+1
◦ fm+1 = nm+1·fm+1.

Since both Cj are continua, both continua C ′′j are closed intervals of the circle.

One of them must have length at least 1
2 , say C ′′1 . Then C ′1 = nm+1·C ′′1 has length

at least 1 since nm+1 ≥ 2. Thus C ′1 = T contradicting the choice of m by which
both C ′j were proper subcontinua. This contradiction completes this part of the
proof.

(ii)⇒(i) We observe that the circle is decomposable. Therefore we must prove
that dimG > 1 implies the decomposability of G. A nonsingleton totally discon-
nected compact space is decomposable. Thus, if G 6= G0, then G/G0 is decompos-
able and therefore G is decomposable. So we assume G to be connected.

(a) We preface the proof by the following remark. Assume that N is a compact
and connected normal subgroup N of G and that p:G → G/N is the quotient
morphism. If X ⊆ G/N is connected, then p−1(X) is connected. Thus, if G/N is
decomposable, then G is decomposable. We assume henceforth that G is indecom-
posable and dimG > 1 and aim for a contradiction.

(b) We apply this with N = Z0(G). Thus S
def
= G/Z0(G) ∼= G′/(Z0(G) ∩ G′)

is semisimple and indecomposable. We claim that S is singleton. Suppose this is
not true. Let π:

∏
j∈J Sj → S be a surjective morphism as guaranteed by 9.19.

Since S is not singleton, there is a k ∈ J and we can form P
def
=
∏
j∈J\{k} Sj .

Then P is connected and so M
def
= π(P ) is a connected normal subgroup of S, and

thus by (a) the quotient S/M is indecomposable. Let p:S → S/M be the quotient

morphism. Define ι:Sk →
∏
j∈J Sj by ι(s) = (sj)j∈J with sj =

{
s if j = k,
1 otherwise.

.

Then p◦π◦ι:Sk → S/M is surjective. Then its kernel is a proper subgroup, and by
the simplicity of Sj it has to be finite. Thus Sk → S/M is a covering morphism.
Hence S/M is a simple compact Lie group. Then dimS/M = dimSk > 2 by
6.53. So S/M is an at least 3-dimensional compact manifold and thus cannot
be indecomposable (e.g. since it contains a euclidean ball whose complement is
connected). This contradiction shows that S = G/Z0(G) is singleton, i.e. that G
is abelian.

(c) Assume now that G is abelian. Since G is connected, Ĝ is torsion-free.

Since dimG > 1 we have rank Ĝ ≥ 2. Hence we find a pure subgroup P of rank 2.
(Indeed let F be a free subgroup of maximal rank, write it in the form F1 ⊕ F2

with rankF1 = 2 and set P = {χ ∈ Ĝ : (∃n ∈ N)n·χ ∈ F1}.) Let C = P⊥,

the annihilator of P in G. Then Ĉ ∼= Ĝ/P and Ĝ/C ∼= P . Since P is pure, Ĝ/P

and thus Ĉ is torsion-free. Hence C is connected. In view of Part (a) of the proof
G/C is indecomposable Furthermore, rankP = 2 implies dimG/C = 2. In order
to complete the proof it therefore suffices to prove that a 2-dimensional compact
connected abelian group is decomposable. As dimG = 2, by Theorem 8.49, the
group G is metric. By 8.46(i,ii), G is torus free since G is clearly decomposable if
G contains a circle group as a factor.

Using Theorem 8.22(7), we obtain a compact zero-dimensional subgroup ∆ and
a closed ε-ball neighborhood B of the origin in L(G) ∼= R2 such that the covering
morphism ϕ: ∆ × R2 → G, ϕ(δ,X) = δ expX, maps ∆ × B homeomorphically
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onto an identity neighborhood W of G. We set D = exp−1 ∆ ⊆ L(G) and note
that expX = ϕ(δ, Y ) with δ ∈ ∆ means δ = exp(X − Y ) and thus X = Y + d
with d ∈ D. Thus exp:L(G) → G maps D + B bijectively and continuously onto
W ∩ expL(G). Let U = intB denote the manifold interior of B. By 8.20, the
closed subgroup D of L(G) ∼= R2 is a discrete lattice and therefore is countable.
Thus D + U is a countable disjoint union of open disks in the plane. Therefore

its complement E
def
= L(G) \ {D + U} is connected. By 7.71, the set expL(G) is

dense in G and the complement expL(G)\W = expE is dense in the complement

A
def
= G \ϕ(∆×U). Note that A is a compact subset of G since ϕ is an open map

and that ∆A = A. Also, A, being the closure of a connected set, is connected.
Every arc component of W is of the form δ expB, δ ∈ ∆, and its intersection with
A is δ exp ∂B

Let K1 be a proper compact open subgroup of ∆ and set K2 = ∆ \ K1. Set
C1 = A ∪ ϕ(K1 × B) and C2 = A ∪ ϕ(K2 × B). Since each arc component of the
compact set ϕ(Kj ×Bj), j = 1, 2 intersects the continuum A, each of the sets C1

and C2 is a continuum. Therefore, since C1, C2 are proper subcontinua of G and
G = C1 ∪ C2, the space G is decomposable as claimed. ut

The indecomposable compact groups described in Theorem 9.71 are tradition-
ally called solenoids or, historically more precisely the solenoids of Vietoris and
Van Dantzig. For compact metric abelian groups, Theorem 9.71 is due to Van
Heemert [359].

Part 4: Some Homological Algebra for Compact Groups

The Projective Cover of Connected Compact Groups

We observed in discussing the Theorem on Simple Connectivity in Compact
Groups 9.27 that there are no simply connected compact abelian groups let alone
the notion of a universal covering for connected compact abelian groups or even a
“covering” of the kind we found in 9.19 for semisimple connected compact groups.
However, we have already discussed in Chapter 8 a substitute for abelian compact
groups, namely, the projective cover. This section is devoted to extending that
concept. A natural setting for this is category theoretical. This strategy allows us
to extend some homological algebra from the abelian situation to the general one,
at least in the case of compact connected groups.

First we shall define the appropriate category to work in.

Lemma 9.72. Let G, H, and K be compact connected groups and ψ:G→ H, and
ϕ:H → K morphisms such that imψ is normal in H and imϕ is normal in K.
Then im(ϕ ◦ ψ) is normal in K.

Proof. By 9.26 we get a commutative diagram
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Z0(G)× G̃′ ψ|Z0(G)×f̃ |G′−−−−−−−−→ Z0(H)× H̃ ′ ϕ|Z0(H)×f̃ |H′−−−−−−−−→ Z0(K)× K̃ ′

µG

y µH

y yµK
G −−−−−−→

ψ
H −−−−−−→

ϕ
K.

We note µ−1
H

(
ψ(G′)

)
= (Z0(H) ∩H) × ψ̃(G̃′). Since the group ψ(G′) = ψ(G)′ is

characteristic in ψ(G) it is normal in H. Then µ−1
H

(
ψ(G′)

)
is normal in Z0(H)×H̃ ′.

Then the identity component {1}× ψ̃(H̃ ′) is normal, too and thus ψ̃(G̃′) is normal

in H̃ ′. By 9.19, H̃ ′ is a direct product of simple simply connected groups. Then by

9.50, ψ̃(G̃′) is a partial product. Similarly, ϕ̃(H̃ ′) is a partial product in K̃ ′. Since

the group ϕ̃ψ̃(G̃′) is normal in ϕ̃(H̃ ′) by 9.50, it is a partial product in ϕ̃(H̃ ′)

and thus is a partial product in K̃ ′. Hence it is normal in K̃ ′. Thus ϕψ(G′) =

µG
(
ϕ̃ψ̃(G̃′)

)
is normal in K ′. Since K = Z0(K)K ′ by 9.24, the group ϕψ(G′) is

normal. Since G = Z0(G)G′ and ϕψ
(
Z0(G)

)
⊆ Z0(K), the group ϕψ(G) is normal

in K. ut

The class of connected compact groups together with the class of morphisms
of compact connected groups with normal image form a category which we call
the category of compact connected groups and normal morphisms and denote it by
CN. We note that the category CN contains the category of all compact connected
abelian groups and their morphisms as a full subcategory.

In Appendix 3, A3.7 we explain the concepts of an isomorphism and of a
retraction in a category, in A3.9 that of a monomorphism, and in A3.11 that of
an epimorphism.

Proposition 9.73. Assume that f :A→ B is a morphism in CN.
(i) f is a monomorphism in CN if and only if ker f is totally disconnected.
(ii) f is an epimorphism if and only if f is surjective.
(iii) f is a retraction with totally disconnected kernel if and only if it is an

isomorphism.

Proof. (i) Exercise. [The proof given in A3.10 3) for the category of connected
Hausdorff topological groups works.]

(ii) If e:A→ B is an epimorphism in CN, then α:B → B/e(A) is a morphism
in CN since the compact subgroup e(A) of B is normal. If β:B → B/e(A) is the
constant morphism, then αe = βe. Since e is an epimorphism, α = β follows, and
this implies that B/e(A) is singleton; i.e. B = e(A). Thus e is surjective. The
converse is always true: A surjective morphism is epic (see A3.12).

(iii) By (i) a morphism in CN is a monic iff its kernel is totally disconnected.
Now in any category a monic retraction is an isomorphism. Indeed, let ρ be a
retraction. Then there is a σ such that ρσ = id. Then ρ id = ρ = ρσρ, and since ρ
is monic we conclude id = σρ. Hence σ and ρ are inverses of each other and ρ is
an isomorphism. ut
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We recall (e.g. from Appendix 1, A1.13 and the subsequent remark) that an
object P in a category is a projective if for every epimorphism e:A→ B and any
morphism p:P → B there is a morphism f :P → A such that p = e ◦ f .

We also recall from 8.80 that for a compact abelian group A we set P(A) =

(Q ⊗ Â)̂. The adjoint of χ 7→ 1 ⊗ χ: Â → Q ⊗ Â is called EA:P(A) → A. The

kernel ∆(A) ⊆ P(A) of EG is the dual of (Q⊗ Ĝ)/(1⊗ Ĝ).

Proposition 9.74. (i) A compact connected group P is projective in CN if and

only if P ∼= C×
∏
j∈J Sj for a compact abelian group C such that Ĉ is torsion-free

divisible and all Sj are simple simply connected compact Lie groups.
(ii) A closed connected normal subgroup of a projective in CN is a direct factor.
(iii) A closed connected normal subgroup of a projective in CN is a projective.

Proof. (i) First assume that e:A→ B is surjective in CN, and assume that P ∼=
C ×

∏
j∈J Sj with Ĉ torsion-free and divisible, and let p:P → B be a morphism.

We want to find a morphism f :P → A such that ef = p. We consider the diagram

A∗
e∗−−−−−−→ B∗

µA

y yµB
A −−−−−−→

e
B.

By hypothesis we know that µP :P ∗ → P is an isomorphism. Assume momentarily
that we find an F :P ∗ → A∗ such that e∗F = p∗ then we are done, because
f = µA ◦ F ◦ µ−1

P satisfies ef = eµAFµ
−1
P = µBe

∗Fµ−1
P = µBp

∗µ−1
P = p. It is

therefore no loss of generality if we assume henceforth that A = A∗, B = B∗, and
P ∗ = P . Our problem, due to the structure of the groups A∗ etc. (see 9.25) then
falls into two separate cases, one abelian, one semisimple and simply connected.
In the category of compact abelian groups, by 8.78, the group C is projective and
thus the desired morphism exists in the abelian case. Finally assume that A, B,
and P are compact, semisimple and simply connected. But then the surjective
morphism e:A → B splits, since by 9.49 the kernel of e is a partial product of
A =

∏
j∈J Sj . In other words, there is a morphism σ:B → A such that eσ = idB .

Then f = σp satisfies ef = eσp = p. This completes the proof of the first part.
Secondly, assume that P is projective in CN. The quotient map µG:P ∗ → P

is surjective and hence an epic. Thus there is a morphism f :P → P ∗ such that
fµP = idP . Hence P ∗ = (kerµG)f(P ) and the product is semidirect. Since P ∗ is
connected, kerµP is singleton. Thus µP is bijective and thus is an isomorphism
(due to compactness of P ∗) (cf. also 9.73(iii)). Hence P ∼= Z0(P )×

∏
j∈J Sj with

simple simply connected compact Lie groups Sj . Now Z0(G) is a retract of P in
CN, i.e. the codomain of a retraction in CN (see A3.7(b)). Now a retract of a
projective is always projective in any category (Exercise E9.13 below). Thus the
compact connected abelian group Z0(P ) is projective in the category CN. From
8.80 we have a surjective, hence epic morphism EG:P

(
Z0(G)

)
→ Z0(G) in CN.

Then EG is a retraction (see Exercise E9.13 below). Then EG is an isomorphism
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by 9.73(iii). Hence Z0(G) is of the form we asserted. This concludes the proof of
(i).

(ii) Let G be a closed connected normal subgroup of C ×
∏
j∈J Sj where Ĉ

is torsion-free and all Sj are compact simply connected simple Lie groups. By the
Classification Theorem of Connected Normal Subgroups 9.50 there is a connected
subgroup CG of C and a subset I ⊆ J such that G = CG ×

∏
j∈I Sj . Now ĈG

is divisible since CG is a quotient of Ĉ by the Annihilator Mechanism (see 7.64).

Then it is a direct summand of Ĉ (see A1.36). Hence CG is a direct factor of C
and assertion (ii) follows

(iii) By (ii), a compact connected subgroup of a projective is a direct factor
and hence is a homomorphic retract. In Exercise E9.13 below we see that retracts
of projectives are projective. Alternatively, the explicit form of a connected closed
normal subgroup of a projective we derived in the proof of (ii) shows by (i) that
the subgroup is projective. ut

One may rephrase part (iii) of 9.74 by saying that CN-subobjects of projectives
in CN are projectives. Instead of referring to a “projective G in the category CN”
we shall also say that G is a compact connected projective group.

Exercise E9.13. Let ρ:P → R be an epic in a category and assume that P is
projective. Then ρ is a retraction if and only if R is projective.

[Hint. First, assume that ρ is a retraction. This means that we have morphisms
π:P → R and σ:R → P such that πσ = idR. Given an epic e:A → B and a
morphism p:R → B, using the projectivity of P get an F :P → A such that
eF = pπ. Now check that f = Fσ:R→ A satisfies ef = p.

Secondly, assume that R is projective. Apply the definition of projectivity of
R to the epic ρ:P → R and the morphism idR:R→ R.] ut

We now extend the definition of P(·) from the category of compact connected
abelian groups to the category CN. We also recall for a connected compact semisim-
ple group G the unique morphism πG: G̃→ G of 9.19.

Definition 9.75. For a compact connected group G we define

P(G) = P
(
Z0(G)

)
× G̃′,

EG:P(G)→ G, EG(z, g) = EZ0(G)(z)πG′(g).

We call P(G) the projective cover of G and EG the projective covering morphism.
For s ∈ S according to the terminology of Theorem 9.14(vi) we shall now also

write Ps(G) in place of (G̃′)s and set Gs
def
= EG

(
Ps(G)

)
. The fully characteristic

subgroups Ps(G) of P(G) and Gs of G are called the isotypic components of type
s of P(G) and G, respectively. ut

The definition of the isotypic components extends our definition after Theorem
9.19 for the semisimple case.
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By 9.74, the group P(G) is indeed projective. This definition extends the respec-
tive definitions of 8.80 on the subcategory of compact connected abelian groups.

Theorem 9.76 (The Projective Cover). Assume that G is a compact connected
group.

(i) With the isotypic components Ps(G) ∼= P(Gs) of P(G) of type s the follow-
ing equation holds:

P(G) ∼= P
(
Z0(G)

)
×
∏
s∈S

Ps(G) ∼= Q̂dimZ0(G) ×
∏
s∈S

Ps(G).

(ii) The morphism EG is surjective and the kernel kerEG = {(z, g) ∈ P(G) |
EZ0(G)(z)

−1 = πG′(g) ∈ Z0(G) ∩G′} is isomorphic to a closed subgroup of

∆
(
Z0(G)

)
× Z(G̃′)

and thus is totally disconnected.
(iii) L(EG):L

(
P(G)

)
→ L(G) is an isomorphism of weakly complete vector

spaces.
The morphism EG:P(G)→ G is an isomorphism iff G is projective in CN.
(iv) For a morphism f :G → H in CN we have one and only one morphism

P(f):P(G)→ P(H) such that the diagram

P(G)
P(f)−−−−−−→ P(H)

EG

y yEH
G −−−−−−→

f
H

is commutative.
(v) The kernel of P(f) is always connected. Further, P(f) is injective if and

only if ker f is totally disconnected, P(f) is surjective if and only if f is surjective.
In particular, P(f) is an isomorphism if and only if ker f is totally disconnected
and f is surjective.

(vi) w(P(G)) = w(G).
(vii) P(G) and G are dyadic in the sense of Definition A4.30.

Proof. (i) is a consequence of Theorem 9.19(vi).
(ii) The image of EG is Z0(G)G′ = G by 9.24, and thus EG is surjective. The

kernel ∆(G) of EZ0(G) is dual to the torsion group (Q ⊗ Z0(G)̂)/(1 ⊗ Z0(G)̂)
(see 8.80). Since EG is the composition

P
(
Z0(G)

)
× G̃′

EZ0(G)×πG′−−−−−−−−→ Z0(G)×G′ (z,g)7→zg−−−−−−−−→ G,

the kernel of EG is E−1
Z0(G)(Z0(G)∩G′) = π−1

G′ (Z0(G)∩G′) is contained in ∆(G)×
Z(G̃′).

(iii) The fact that L(EG) is an isomorphism follows from 9.48.
If EG is an isomorphism then G is projective, trivially. Conversely, assume that

G is projective. Then Z0(G) ∩ G′ = {1}, and thus by 9.76(ii) for (z, g) ∈ kerEG,
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we have EZ0(G)(z) = 1 = πG′(g). By 9.74, Z0(G) is a projective abelian group
and thus EZ0(G) is an isomorphism. Similarly, G′ is projective and thus πG′ is
an isomorphism. It follows that z = g = 1. Hence kerEG = {1} and thus EG is
injective. From 9.76(ii) we conclude that EG is an isomorphism. (iv) We define

P(f) = P(f |Z0(G))× f̃ |G′:P
(
Z0(G)

)
× G̃′ → P

(
Z0(H)

)
× H̃ ′. Then the commu-

tativity of the diagram is immediate from the definitions. If ϕ:P(G)→ P(H) is a
morphism such that EHϕ = fEG = EHP(f), then g 7→ ϕ(g)−1P(f)(g):P(G) →
kerEH is a well-defined continuous function from a connected space into a totally
disconnected one and is therefore constant. Since for g = 1 it takes the value 1 we
conclude ϕ = P(f). Thus the diagram determines P(f) uniquely.

(v) By the definition of P(f) in the proof of (iv) above, kerP(f) is connected

iff kerP
(
f |Z0(G)

)
and ker f̃ |G′ are both connected, i.e. if the assertion holds for

abelian and for semisimple groups. If G and H are abelian, then P(f):P(G) →
P(H) is the dual of Q⊗ f̂ :Q⊗ Ĥ → Q⊗ Ĝ, and the character group of kerP(f)
is isomorphic to cokerQ⊗ f (cf. 7.65). Since Q⊗ f is a Q-linear map between Q-
vector spaces, this cokernel is a Q-vector space and thus is, in particular, torsion-
free. Hence kerP(f) is connected. Now assume that G and H are semisimple.
Since P(f) preserves isotypic components of type s ∈ S, we may assume that
for some simply connected compact Lie group S we have P(f):SX → SY with
a normal image. If pry:SY → S denotes the y-th projection we have kerP(f) =⋂
y∈Y ker(pry ◦P(f)). By Lemma 11.28 there is a function ξ:Y → X such that

ker(pry ◦P(f)) = SX\{ξ(y)} (identified with a partial product of SX). Conse-

quently, kerP(f) =
⋂
y∈Y S

X\{ξ(y)} = SX\{ξ(Y )}, and this product is connected.
This completes the proof of the assertion that P(f) is always connected.

Next we investigate the injectivity of P(f). By replacing f by the corestriction
to its image we may assume that f is surjective. Then ker f is totally disconnected
iff L(f) is an isomorphism (by 9.48) iff L

(
P(f)

)
is an isomorphism (by (iii) and

(iv)) iff ker
(
P(f)

)
is totally disconnected (by 9.48 again); since kerP(f) is always

connected, this is tantamount to the injectivity of P(f).
Finally, f is surjective iff f ◦ EG is surjective (by the surjectivity of EG) iff

EH ◦P(f) is surjective iff P(H) = im
(
P(f)

)
kerEH . If P(f) is surjective this is

satisfied; conversely, if this relation holds, then coker
(
P(f)

)
= P(H)/ im

(
P(f)

)
is totally disconnected as a quotient of kerEH . On the other hand, it is connected
as a quotient of P(H), which is connected. Hence this cokernel must be singleton,
which shows P(H) = im

(
P(f)

)
.

(iv) From 9.36(vi) we have w(T ) = w(G) for a maximal pro-torus. It suffices
therefore to compare the weights of T ∗ and T where T ∗ is a maximal pro-torus
of P(G) of mapping onto T under EG. So we recall that T ∼= T ∗/D where D is a
totally disconnected group (in fact D = kerEG because this kernel is central and

T ∗ contains the center of P(G)). Thus, by duality, T̂ is a subgroup of T̂ ∗ with a

torsion group as cokernel and is therefore isomorphic to a pure subgroup of T̂ ∗.
Then w(T ) = cardT = card(Q⊗ T̂ ) = card(Q⊗ T̂ ∗) = card T̂ ∗ = w(T ∗).
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(vii) By (i), P(G) is a product of a family of connected compact metric spaces
and thus is dyadic by Corollary A4.32. Since EG in Definition 9.75 is a continuous
surjective map, G is dyadic as well. ut

The information on the projective cover of compact abelian groups in 8.80 and
on the constructions of 9.19 and 9.25 are relevant for projective covers.

The projective cover has a functorial aspect which is exposed if we recall the
concept of a left adjoint functor as it is discussed in Appendix 3, A3.29.

Theorem 9.76bis. (The Projective Cover: Functorial Aspect) Let PCN denote
the full subcategory of CN containing all projective objects. Then P:CN → PCN
is left adjoint to the inclusion functor PCN→ CN.

Proof. In order to apply (the dual of) Theorem A3.28 of Appendix 3, we verify the
universal property: Let P be a projective. Then EP :P(P )→ P is an isomorphism
by 9.76(iii). If f :P → H is a morphism in CN, then we define f ′:P → P(H) by
f ′ = P(f) ◦ E−1

P . Then f = EH ◦ f ′. If f ′′:P → P(H) satisfies EH ◦ f ′′ = f =
EH ◦ f ′, then the continuous function F :P → P(H), F (p) = f ′′(p)f ′(p)−1, maps
the connected space P into the kernel of EG, which is totally disconnected by
9.76(ii); therefore F is constant. Because of f ′′(1) = 1 = f ′(1) the constant value
of F is 1, and thus f ′′ = f ′. Thus by A3.28, P extends to a functor, EG:G→ P(G)
is a natural transformation, namely, the back adjunction for the left adjoint P for
the inclusion functor. ut

In the spirit of Proposition A3.33 ff. in Appendix 3 we note that the assignment
f 7→ f ′ : CN(|P |, H) → PCN

(
P,P(H)

)
is a natural bijection (where |P | simply

denotes P considered as an object of CN).

Theorem 9.77. Let G be a compact group and M a compact normal subgroup such
that G/M is connected. Then there is a compact connected subgroup N , normal in
G0, such that G = MN and M ∩N is totally disconnected. Moreover,

(i) whenever there is an N with these properties then there is a surjective mor-
phism of compact connected groups M × N → G with totally disconnected
kernel and a surjective homomorphism p:G → N/(M ∩ N) such that the

composition N
i→ G

p→ N/(M ∩N) of the inclusion map i:N → G with p is
the quotient map.

(ii) The natural morphism n(M ∩N) 7→ nM :N/(M ∩N)→ G/M is an isomor-
phism.

(iii) If f :G→ H is a morphism of compact groups onto a connected group, then
there is a closed connected normal subgroup N of G0, such that f |N :N → H
is a surjective morphism with a totally disconnected kernel.

Proof. By 9.26(i), G0M/M = G/M and thus G0M = G. Hence G0/(G0 ∩M) =
G/M . We note that M0 ⊆ G0 ∩M and that (G0 ∩M)/M0 is totally disconnected.
Assume for the moment that the assertion of the theorem is true when M and
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G are connected. Then, applying the theorem to G0 and M0 we find a connected
normal subgroup N such that G0 = M0N and that M0∩N is totally disconnected.
Then G = G0M = MG0 = MM0N = MN and (M ∩ N)0 ⊆ M0 ∩ N , and thus
(M ∩N)0 is singleton, i.e. M ∩N is totally disconnected. Thus it is no restriction
of the generality if we assume that M and G are connected. This we shall do from
now on.

The identity component of M# def
= E−1

G (M) satisfies EG(M#) = M and is
a direct factor of P(G) by 9.74(ii). Hence there is a complementary factor N#

such that P(G) = M#N# and that this product is direct. Set N = EG(N).
Then G = MN . We claim that M ∩N is totally disconnected. Indeed the identity
component K# of E−1

G (M ∩N) maps onto (M ∩N)0 (cf. 9.18) on the one hand
and is contained in E−1

G (M)0 ∩ E−1
G (N)0 = M# ∩N# = {1} on the other. Thus

M ∩N = {1} and the claim is established.
(i) and (ii) The assertion about the surjective morphism M ×N → G is the

standard Mayer-Vietoris argument.
By the isomorphy theorem and the compactness of the groups involved, the

bijective morphism j:N/(M∩N)→ G/M , j
(
n(M∩N)

)
= nN , is an isomorphism.

Thus the quotient morphism q:G → G/M yields a surjective morphism p
def
=

j−1q:G→M/(M ∩N). If m ∈M , then p(m) = j−1(mM) = m(M ∩N).
(iii) We set M = ker f and apply the preceding results. ut

The concept of an injective in a category is opposite (or dual) to that of a
projective. The model of injectivity is that in the category of abelian groups which
we discussed in Appendix 1, A1.1.34. The category CN is not particularly com-
patible with the concept of injectives due to the somewhat scurrilous nature of its
monomorphisms (see 9.73(i)). From Exercise E9.13 we know that a monic with
an injective domain is a coretraction. A good candidate for an injective object
is T which is injective in the category of compact abelian groups. However, the
monic µ2:T → T, µ2(t + Z) = 2t + Z is not a coretraction. In many categories
it is therefore of some interest, to determine injectives relative to a given class of
monomorphisms. In CN we call an object I injective with respect to the class of
embeddings (or, equivalently, injective monomorphisms) if for any compact con-
nected group B and any connected compact normal subgroup A, each morphism
p:A→ I extends to a morphism f :B → I. Usually, considering relative injectives
increases the supply of injective objects. There are limits here, however.

Exercise E9.14. The group T is not even a relative injective in CN with respect
to embeddings.

[Hint. The inclusion morphism Z
(
U(2)

)
→ U(2) is not a coretraction.] ut

Nevertheless, we find some genuine injectives in the category CN.
Let ICN denote the full subcategory of injective objects on CN, set I(G) =

G/Z(G), and define qG:G→ I(G) to be the quotient morphism.
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Proposition 9.78. (i) A compact connected group G is injective in CN if and
only if it is centerfree.

(ii) The assignment I on objects extends to a functor I:CN → ICN which is
left adjoint to the inclusion functor.

Proof. (i) Firstly, we show that a centerfree member of CN is injective. By 9.24
and 9.19, G is centerfree iff it is isomorphic to

∏
j∈J Sj with connected simple

and centerfree compact Lie groups Sj . The product of (relative) injectives is a
(relative) injective in any category (Exercise E9.15 below). Hence it suffices to
prove that a simple simply connected compact Lie group S is an injective in CN.
Let A be a connected normal subgroup of B and p:A→ S a monomorphism. Then
p
(
Z(A)

)
= {1} since S is centerfree. Then p′:A/Z(A)→ S, p′

(
aZ(A)

)
= p(a) is a

morphism. Now e′:A/Z(A)→ B/Z(A) is injective, hence monic, and if we find a
morphism f ′:B/Z(A) → S with f ′e′ = p′ we are done because f :B → S, f(b) =
f ′
(
bZ(A)

)
is the one we want. Thus we assume from here on that A is centerfree.

But then we claim that A is a direct factor. Indeed from 9.51 we conclude that
there is a connected normal subgroup N such that B = AN and A ∩N is totally
disconnected. But A is centerfree and A∩N , being totally disconnected and normal
in A, is central in A (see 6.13). Hence A ∩N = {1} and thus the claim is proved.
Now let π:B → A be the projection with kernel N and set f = pπ.

Secondly we show that the centerfree members of CN are the only injectives.
Let G be injective. This means that every monic j:G → H in CN is a coretrac-
tion. In particular, G, whenever it is a normal subgroup of a compact connected
group H is a direct factor. Set H = G×G′

D , D = {(z−1, z) | z ∈ Z(G′)}. Then

G has the isomorphic copy G×Z(G′)
D which is a direct factor. By 9.51, the unique

normal cofactor is Z(G′)×G′
D . Hence {D} = G×Z(G′)

D ∩ Z(G′)×G′
D which means that

Z(G′)×Z′(G)
D is singleton. This is equivalent to Z(G′) = {1}; i.e. G′ is centerfree.

Then G = Z0(G)×G′ by 9.24. By (the dual of) Exercise E9.13, a coretract of an
injective is an injective. Hence Z0(G) is injective in CN. In particular, it is a direct
summand whenever it is a closed subgroup of a compact connected abelian group.
Hence its character group is a projective in the category of torsion-free abelian
groups. But then it is free (the proof of A1.14, (2)⇒(1) works in the subcategory
of torsion-free groups). Hence Z0(G) is a torus. If it were nonsingleton, it would
contain T as a factor which then would have to be injective by (the dual of) Ex-
ercise E9.13. But this is not the case by Exercise E9.14. Thus G = G′ and G is
centerfree since we saw G′ to be centerfree.

(ii) Again we apply Theorem A3.28 of Appendix 3. Let I be an injective object
of CN. Then I =

∏
j∈J Sj with a family of centerfree compact connected simple

Lie groups Sj by the proof of (i) above, and 9.23 and 9.19(v)(f). Assume that
f :G → I is a morphism in CN. Then by the definition of CN, the image f(G)
is a compact connected normal subgroup of I and thus, by Corollary 9.50, is
a partial product of I and thus is itself centerfree. By Theorem 9.28, we have
f
(
Z(G)

)
= Z

(
f(I)

)
= {1}. Hence Z(G) ⊆ ker f and thus f factors through the

quotient G/Z(G) = I(G), that is, there is a unique morphism f ′: I(G) → I such
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that f = f ′ ◦ qG. This is the universal property required by Theorem A3.28 of
Appendix 3 to prove the proposition. ut

The assignment f 7→ f ′ : CN(G, |I|) → ICN(I(G), I) is a natural bijection.
Trivially, a compact connected group G is injective in CN iff qG is an isomorphism.

Exercise E9.15. The product of a family of (relative) injectives is a (relative)
injective.

[Hint. Consider a family Ij , j ∈ J of (relative) injectives and a monomorphism
e:A→ B (in the prescribed class of monomorphisms). If p:A→

∏
j∈J Ij , by injec-

tivity of Ij there are morphisms fj :B → Ij such that prj p = fje. The universal
property of the product (A3.43) gives an f :B →

∏
j∈J Ij such that fj = prj f .

Verify fe = p.] ut

Corollary 9.79. Let G be a compact connected group. Then G/Z(G) is injective
in CN.

Proof. By 9.24 and 9.19, G/Z(G) is centerfree. The assertion then follows from
9.78. ut

Exercise E9.16. Let G be a compact connected group. Then there is a totally
disconnected central subgroup D such that G/D is the direct product of a torus and
a product of simple centerfree connected compact Lie groups. Specifically, G/D ∼=
TdimZ0(G) ×

∏
s∈S R

ℵ(s,G)
s .

[Hint. Apply Corollary 8.18 to the factor Z0(G)
∆ in Theorem 9.24(iii).] ut

Part 5: The Automorphism Group of Compact Groups

Lemma 9.80. Let G be a compact Lie group.
(i) The set of closed connected normal subgroups of G satisfies the ascending

chain condition.
(ii) If N is a closed normal subgroup of G and an automorphism α of G satisfies

α(N) ⊆ N then α(N) = N .

Proof. (i) Let N1 ⊆ N2 ⊆ · · · be an ascending chain of closed connected normal
subgroups. Then as the Lie algebra L(G) is finite dimensional, there is an i ∈ N
such that j ≥ i implies L(Nj) = L(Ni) and thus Nj = Ni as Ni = expL(Ni) for
all i as all Ni are connected.

(ii) Assume that α(N) ⊆ N for some closed normal subgroup N . Clearly
α(N0) ⊆ N0. Inductively, N0 ⊆ α−1(N0) ⊆ α−2(N0) ⊆ · · · . By (i) above there is
an i such that α−i−1(N0) = α−i(N0). Then α−1(N0) = N0, i.e. α(N0) = N0. Thus
α(N)0 = α(N0) = N0. Now N/N0 is finite and isomorphic to α(N)/α(N)0 =
α(N)/N0 ⊆ N/N0. We conclude α(N)/N0 = α(N)/α(N)0 = N/N0 and thus
α(N) = N . ut
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Exercise E9.17. Prove the following assertions.

(i) In a compact Lie group G, the set of all closed normal subgroups satisfies the
ascending chain condition modulo Z0(G0), i.e. for every chain N1 ⊆ N2 ⊆ · · · of
closed normal subgroups there is a j ∈ N such that k ≥ j implies Nj = NkZ0(G0).

(ii) The circle group G = R/Z has a properly ascending tower of finite subgroups
1
2Z/Z ⊆ · · · ⊆

1
2nZ/Z ⊆ · · · .

[Hint. (i) If {Ni | i ∈ N} is an ascending chain of closed normal subgroups,
then (Nj)0 is characteristic in Nj ; hence we know (Nj)0 E G. By 9.80(i) there
is an i such that (Ni+k)0 = (Ni)0. It suffices to show that the ascending chain
Ni+1/Ni = Ni+1/(Ni+1)0 ⊆ Ni+2/Ni = Ni+2/(Ni+2)0 ⊆ · · · of closed normal sub-
groups becomes stationary modulo Z0(G0)Ni/Ni = Z0(G0Ni/Ni) = Z0

(
(G/Ni)0

)
(cf. 9.26(i,ii)). In order to simplify notation we now assume that all Ni are dis-
crete normal subgroups and that Z0(G0) = {1}, i.e. that G0 is semisimple. Now
Ni ∩ G0 ⊆ Z(G0) by 6.13, and Z(G0) is finite as a discrete Lie group. Hence
Ni ∩ G0 is finite with bounded order. But Ni/(Ni ∩ G0) ∼= NiG0/G0 ⊆ G/G0 is
finite with bounded order, too, since G/G0 is finite. Hence all Ni are finite with
bounded order, and thus the chain N1 ⊆ · · · is stationary from some point on. The
verification of (ii) is immediate.] ut

Lemma 9.81. Let G be a compact group and M a closed subgroup. We set

N
(
M,Aut(G)

) def
= {α ∈ Aut(G) | α(M) = M}.

(i) Then there is a morphism νM :N(M,Aut(G)) → Aut(G/M) given by
νM (α)(gM) = α(g)M .

(ii) If M is normal and G/M is a Lie group, then {α ∈ Aut(G) | α(M) ⊆
M} = N

(
M,Aut(G)

)
and N

(
M,Aut(G)

)
is an open (and hence closed ) subgroup

of Aut(G).
(iii) Let N (G) denote the filter basis of all compact normal subgroups M of G

such that G/M is a Lie group as in 9.1. Then

Aut(G)0 ⊆
⋂

M∈N (G)

N
(
M,Aut(G)

)
.

Proof. The proof of (i) is Exercise E9.18 below.
(ii) We note from 9.80(ii) that α ∈ Aut(G) and α(M) ⊆M imply α(M) = M .

Hence {α ∈ Aut(G) | α(M) ⊆ M} = N
(
M,Aut(G)

)
. Clearly, N

(
M,Aut(G)

)
is a

subgroup of Aut(G). In order to show that it is open in Aut(G) it suffices to show
that a neighborhood of 1 in Aut(G) is contained in N

(
M,Aut(G)

)
. The identity

of the Lie group G/M has a neighborhood in which {1} is the only subgroup (cf.
2.41). Thus we find an open neighborhood U of 1 in G satisfying UM = MU = U
such that for any subgroup H of H the relation H ⊆ U implies H ⊆M . Now the
set V of all α ∈ Aut(G) such that α(x) ∈ Ux for all x ∈ G is a neighborhood of
the identity in Aut(G) (cf. the paragraphs preceding and following 6.62). If α ∈ V
then α(M) ⊆ UM = U whence α(M) ⊆ M and thus V ⊆ N

(
M,Aut(G)

)
. This

shows that N
(
M,Aut(G)

)
is open in Aut(G) and thus proves the assertion.
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(iii) is a direct consequence of (ii) above. ut

Exercise E9.18. Verify the details of 9.81(i).

[Hint. Check that νM is algebraically a well-defined homomorphism; verify that if
α is uniformly close to idG then νM (α) is uniformly close to idG/M .] ut

The Iwasawa Theory of Automorphism Groups

In Chapter 6 we discussed at length the structure of the automorphism group of
a compact Lie group. We now generalize some of those results to the study of the
automorphism group of arbitrary compact groups.

We are ready to generalize Iwasawa’s Theorem 6.66 and consider again the
morphism ι:G → Aut(G) ι(g)(x) = gxg−1. Then the kernel of ι is Z(G). We
recall that Inn0(G) = ι(G0); as the image ι(G0) of the compact group G0, this is
a compact group.

Iwasawa’s Automorphism Group Theorem for Compact Groups

Theorem 9.82. Let G be a compact group. Then
(i) Aut(G)0 = Inn0(G). (Iwasawa [217])
(ii) Inn0(G) is a compact group isomorphic to G0/

(
Z(G) ∩ G0). If Z0(G0) ⊆

Z(G), which is trivially the case if G is connected, then this group is a semisimple
connected compact group. If G is connected then

Aut(G)0
∼= Inn(G) ∼= G′/Z(G′).

Proof. The proof of (ii) is simple and is in fact almost verbatim the same as
that for 6.66(ii). We reproduce it only for easy reference: By our definitions,
Inn0(G) ∼= G0Z(G)/Z(G) ∼= G0/(Z(G) ∩ G0). Now G0 = Z0(G0)(G0)′ by 9.23.
Assume Z0(G0) ⊆ Z(G). Then Z0(G0) ⊆ ker ι and thus Inn0(G) = ι(G0) =
ι
(
(G0)′

)
= (G0)′Z(G)/Z(G) ∼= (G0)′/

(
(G0)′ ∩ Z(G)

)
, as asserted. By 9.26(ii) this

connected compact group is its own commutator group and then is semisimple by
9.6. If G is connected, then G = G0, Z(G) ∩G′ = Z(G′) (since Z(G′) as a totally
disconnected characteristic subgroup is central in the connected group G) and the
notation simplifies. Thus part (ii) is proved.

Since Inn0(G) is connected, for a proof of (i) we have to establish that
Aut(G)0 ⊆ Inn0(G).

By 9.81(iii), for each M ∈ N (G) we have Aut(G)0 ⊆ N
(
M,Aut(G)

)
. We

consider the morphism νM :N
(
M,Aut(G)

)
→ Aut(G/M) of 9.81(i) and note

νM (Aut(G)0) ⊆ Aut(G/M)0 = Inn0(G/M) by the continuity of νM and by 6.66(i).
Recall that (G/M)0 = G0M/M by 9.18 and that Inn0(G/M) = ιG/M (G0M/M)
Thus for each α ∈ Aut(G)0 there is a gM ∈ G0 such that νM (α) = ιG/N (gMM),
i.e. that α(x)M = νM (α)(xM) = ιG/M (gMM)(xM) = (gMM)(xM)(gMM)−1 =
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gMxg
−1
M M = ιG(gM )(x)M for all x ∈ G. Thus

(∀α ∈ Aut(G)0)(∀M ∈ N (G))(∃gM ∈ G0)(∀x ∈ G) α(x)−1ι(gM )(x) ∈M.

In the compact space G0, the net (gM )M∈N (G) has a convergent subnet (gM(j))j∈J ;
say g = limj∈J gM(j) ∈ G0. If M ∈ N (G) and j ∈ J is such that M(j) ⊆M , then

α(x)−1ι(gM(j))(x) ∈M(j) ⊆M.

Thus α(x)−1ι(g)(x) ∈ M for all M ∈ N (G). Now 9.1 implies α(x)−1ι(g)(x) = 1
for all x ∈ G. Hence α = ι(g). This shows Aut(G)0 ⊆ ι(G0) = Inn0(G). ut

Our next objective is to describe completely the automorphism group of a
compact connected group which is projective in CN.

First we introduce the topological group of permutations on a set X. Indeed let
P (X) denote the group of bijections σ:X → X, and for each subset Y ⊂ X write
PY (X) = {σ ∈ P (X) | (∀y ∈ Y )σ(y) = y}. Then PY (X) is a subgroup. If Y1 ⊆ Y2

then PY1
(X) ⊇ PY2

(X). If σ ∈ P (X), then τ ∈ Pσ(Y )(X) iff (∀y ∈ Y )τ
(
σ(y)

)
=

σ(y) iff (∀y ∈ Y ) (σ−1τσ)(y) = y iff σ−1τσ ∈ PY (X) iff τ ∈ σPY (X)σ−1. Hence

(1) Pσ(Y )(X) = σPY (X)σ−1.

Let Fin(X) denote the set of finite subsets of X; clearly Fin(X) is directed with
respect to ⊆. Now the filterbasis

{PF (X) | F ∈ Fin(X)}

is the basis of the filter of identity neighborhoods of a Hausdorff group topology
on P (X) (Exercise E9.19 below) and we shall henceforth assume that P (X) is
equipped with this topology. Every subgroup PF (X) is open and closed and thus
P (X) is totally disconnected; if X itself is finite, then P (X) is discrete.

Exercise E9.19. Prove the following fact.

Let G be a group and F a filterbasis of subgroups with
⋂
F = {1} such that for

each M ∈ F and each g ∈ G there is an N ∈ F such that gNg−1 ⊆ M . Then
there is a unique totally disconnected Hausdorff group topology on G such that F
is a basis for the filter of identity neighborhoods. All N ∈ F are open and closed
subgroups.

Let S be a simple connected compact Lie group. We define G = SX . In deter-
mining the automorphism group of G we shall use general techniques which we
introduced for dealing with the automorphism groups of isotypic semisimple Lie
algebras around 6.58.

The group Aut(G) contains a subgroup N which is algebraically isomorphic to(
Aut(S)

)X
and contains precisely the elements Ω̃ defined by Ω̃(g)(x) = Ω(x)

(
g(x)

)
for Ω ∈

(
Aut(S)

)X
. By Theorem 6.61(v)and 6.63(vi) we have

(2) Aut(S) = Inn(S)·E(S) ∼= ead s o Out(s),
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where Inn(G) ∼= ead s is a compact subgroup of Gl(s) and E(G) ∼= Out(s) is a finite

subgroup meeting Inn(G) trivially. In particular, Aut(S) and thus
(

Aut(S)
)X

is

compact. Hence, on order to see that the function Ω 7→ Ω̃ :
(

Aut(S)
)X → N is an

isomorphism of topological groups it suffices to understand that it is continuous.
If U = U−1 is a symmetric identity neighborhood of S, and F is a finite subset of
X then

(3) V (F,U)
def
= {g ∈ G = SX | g(F ) ⊆ U}

is an identity neighborhood of G, and every identity neighborhood contains one of
these. Set

(4)
W(F,U) = {α ∈ Aut(G) | (∀g ∈ G) α(g), α−1(g) ∈ V (F,U)g}

= {α ∈ Aut(G) | (∀g ∈ G, x ∈ F ) α(g)(x), α−1(g)(x) ∈ Ug(x)}.

These sets form a basis for the identity neighborhoods of Aut(G). Let

U∗ = {α ∈ Aut(S) | (∀s ∈ S) α(s), α−1(s) ∈ Us}.

Now the sets

(5)
V(F,U∗) = {Ω ∈

(
Aut(S)

)X | Ω(F ) ⊆ U∗}

= {Ω ∈
(

Aut(S)
)X | (∀x ∈ F, s ∈ S) Ω(x)(s), Ω(x)−1(s) ∈ Us}

form a basis of the identity neighborhoods of
(

Aut(S)
)X

. If Ω ∈ V(F,U∗) then x ∈
F and s ∈ S implies Ω̃(g)g−1(x) = Ω(x)

(
g(x)

)
g(x)−1 ∈ U and Ω̃−1(g)g−1(x) =

Ω(x)−1
(
g(x)

)
g(x)−1 ∈ U whence Ω̃ ∈ W(F,U). This shows the required continuity

of Ω 7→ Ω̃ :
(

Aut(S)
)X → N .

The group Aut(G) also contains the subgroup

H = {α ∈ Aut(G) |
(
∃σ ∈ P (X)

)
α(g) = g ◦ σ−1}.

For σ ∈ P (X) we set σ̃(g) = g ◦σ−1, thus defining a function σ 7→ σ̃ : P (X)→ H.
We claim that this function is an isomorphism of topological groups. From the
definitions is clear that it is algebraically an isomorphism of groups. We note that
for all identity neighborhoods U of S and all σ ∈ P (X), by (4) we have

(6) σ̃ ∈ W(F,U)⇔ (∀g ∈ G, x ∈ F ) g
(
σ(x)

)
, g
(
σ−1(x)

)
∈ Ug(x).

If a basic identity neighborhoodW(F,U) of Aut(G) is given according to (4), then
σ ∈ PF (X) implies trivially, via (6), that σ̃ ∈ W(F,U). Thus the morphism σ 7→ σ̃
is continuous, and we must show that it is open. For this purpose let PF (X) be
an identity neighborhood of P (X); it will suffice to show that there is an identity
neighborhood U of S such that PF (X)˜ contains W(F,U)∩H. Thus it suffices to
find a g:X → S such that

(7)
(
(∀x ∈ F ) g

(
σ(x)

)
, g
(
σ−1(x)

)
∈ Ug(x)

)
⇒ σ ∈ PF (X).
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We pick a function g:X → S which maps F injectively into S \ {1} and maps
X \ F to {1}. Then the set

E
def
= {g(x)g(y)−1 | x, y ∈ X, x 6= y, {x, y} ∩ F 6= Ø}

is finite and does not contain 1. Hence we find a symmetric identity neighborhood
U such that U ∩ E = Ø. Then g(y)g(x)−1 ∈ U iff g(y) = g(x) iff either both
x and y are outside F or else y = x. Accordingly, for any σ ∈ P (X) we have
g
(
σ(x)

)
g(x)−1 ∈ U iff either both σ(x) and x are outside F or else σ(x) = x iff

either both σ(x) and x are outside F or else σ−1(x) = x. Thus (7) is satisfied for
this g and we have completed the proof of our claim.

Now
(
σ̃ ◦ α̃ ◦ σ̃−1

)
(g)(x) = σ̃(h)(x) = h

(
σ−1(x)

)
with h =

(
α̃ ◦ σ̃−1

)
(g) =

α̃
(
σ̃−1(g)

)
= α̃(g ◦ σ), i.e. h(k) = α(k)

(
g(σ(k))

)
. Then

h
(
σ−1(x)

)
= α

(
σ−1(x)

)(
g(x)

)
= (α ◦ σ−1)˜(g)(x).

This shows that H is in the normalizer of N . An automorphism of Aut(G) is
of the form α̃ = σ̃ iff α(x)

(
g(x)

)
= g

(
σ−1(x)

)
for all g and all x; appropriately

specializing g we see that only the identity automorphism satisfies this condi-
tion. Therefore NH is algebraically a semidirect product and thus the morphism
(α̃, σ̃) 7→ α̃ ◦ σ̃ : N oI H → N ◦ H is an isomorphism of groups. We have
seen, however, that I

σ̃
(α̃) = σ̃ ◦ α ◦ σ̃−1 = (α ◦ σ−1)˜. Define the group ho-

momorphism Σ:P (X) → Aut
(
[Aut(S)]X

)
by Σ(σ)(Ω) = Ω ◦ σ−1 for σ:X → X,

Ω:X → Aut(S). If U is an identity neighborhood of S and F a finite subset of X,

then V (F,U∗) = {Ω ∈
(

Aut(S)
)X | Ω(F ) ⊆ U∗} is a basic identity neighborhood

of
(

Aut(S)
)X

. The function (σ,Ω) 7→ Ω ◦ σ−1:P (X)×
(

Aut(S)
)X → (

Aut(S)
)X

maps HF (X)× V (F,U∗) into V (F,U∗). Hence
(

Aut(S)
)X oΣ P (X) is a well de-

fined topological group and the function (α, σ) 7→ (α̃, σ̃): Aut(S)X oΣ P (X) →
N oI H is an isomorphism of groups. Hence the function Φ: Aut(S)X oΣ P (X)→
Aut(G), Φ(α, σ) = α̃ ◦ σ̃ is an injective morphism of topological groups.

Lemma 9.83. (i) The morphism of topological groups

Φ: Aut∗(G)
def
= Aut(S)X oΣ P (X)→ Aut(G)

is bijective.
(ii) Φ is an isomorphism of topological groups.
(iii) For each σ ∈ P (X), the automorphism

Σ(σ):
(

Aut(S)
)X → (

Aut(S)
)X

leaves E(S)X invariant (cf. (2)) and therefore induces an automorphism Σ′(σ) ∈
Aut(E(S)X).

(iv) D
def
= E(S)X os′ P (X) is a totally disconnected subgroup of Aut∗(G) and

Aut∗(G) is the semidirect product of Inn(G)X and D.
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Proof. (i) We have to prove the surjectivity of Φ. Thus let α be an automorphism
of G = P (X). We follow closely the pattern of the proof of 6.58. Define the
coprojection

coprx:S → G by coprx(s) = (sy)y∈X , sy =

{
s if y = x, and
1 otherwise;

we define the projection prx:G → S as usual and set αxy
def
= prx ◦α ◦ copry. By

the simplicity of S, the morphism αxy:S → S is either the constant endomorphism
cS or is an automorphism. We claim that there is a bijection σ ∈ Sn such that

(∗) αxy

{
∈ AutS if x = σ(y),
= cS otherwise.

Indeed, for each y ∈ X the isomorphic copy copry(S) of S is closed connected nor-
mal subgroup of G. By 9.19(ii), the automorphism α permutes the set
{coprx(S) | x ∈ X} of connected normal closed subgroups. Hence there is a unique
σ(y) ∈ X such that coprσ(y)(S) = (α ◦ copry)(S). The projection prx maps the
direct factor coprx(S) isomorphically onto S and maps all direct factors coprx′(S)
onto the singleton subgroup for x′ 6= x. Thus (∗) follows. Now define β ∈ (AutS)X ,
β:X → AutS by β(x) = αx,σ−1(x). Let g ∈ G, g:X → S, and compute

α(g)(x) = prx
(
α(g)

)
= αxσ−1(x)

(
g(σ−1(x))

)
= β(x)

(
g(σ−1(x))

)
= β(x)

(
σ̃(g)(x)

)
= β̃

(
σ̃(g)

)
(x) = (β̃ ◦ σ̃)(g)(x),

and thus α = β̃ ◦ σ̃ = Φ(β, σ). This proves the surjectivity of Φ.
(ii) In order to show that Φ is an isomorphism of topological groups, we must

show that the Mayer-Vietoris morphism µ:N o H → Aut(G), µ(Ω̃, σ̃) = Ω̃ ◦ σ̃ is
open. This can be accomplished by showing that

p
def
= κ−1 ◦ prH ◦µ−1: Aut(G)→ P (X), κ:P (X)→ H given by κ(σ) = σ̃,

is continuous. Let F be a finite subset of X. We must find a finite subset F ′

of X and a symmetric open identity neighborhood of S such that PF (X) ⊇
p
(
W(F ′, U)

)
. We take F ′ = F and select U according to (7) above. Then for

σ ∈ P (X) we have σ ∈ PF (X) if σ̃ ∈ W(F,U). From (i) we know that each

α ∈ Aut(G) is uniquely of the form α = Ω̃ ◦ σ̃ with Ω ∈
(

Aut(S)
)X

and σ =

p(α) ∈ P (X). Now α(g)(x) = Ω̃(g)
(
σ−1(x)

)
= Ω

(
σ−1(x)

)(
g(σ−1[x])

)
. Let F1 ⊇ F

and U1 be such that W(F1, U1)−1W(F1, U1) ⊆ W(F,U) and let α ∈ W(F1, U1).

Then for x ∈ F1 and g ∈ G we have Ω̃(g)(x) = Ω̃(g)
(
σ−1(x)

)
= α(g)(x) ∈ U1g,

and Ω̃(g)−1(x) = Ω̃(g)−1
(
σ−1(x)

)
= α(g)(x)−1 ∈ U1g. Hence Ω̃ ∈ W(F1, U1) and

therefore σ̃ = Ω̃−1α ∈ W(F1, U1)−1W(F1, U1) ⊆ W(F,U). Thus σ ∈ PF (X) by
(7). This proves the continuity of p and thus Claim (ii) is established.

(iii) Let Ω
def
=
(
ε(x)

)
x∈X ∈ E(S)X . Then from the definition of Σ(σ) it follows

that Σ(σ)(Ω) =
(
ε(σ−1(x))

)
x∈X ∈ E(S)X .
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(iv) From (iii) we note that D is well-defined. Since D is compact totally dis-
connected and P (X) is totally disconnected, it follows that D o P (X) is totally
disconnected. ut

We recall Inn(S) ∼= ead s ⊆ Gl(s) and summarize:

Proposition 9.84. Let X be a set and S a simply connected simple compact Lie
group. Set G = SX . Then

Aut(G) ∼= (ead s o Out s)X o P (X) = (ead s)X o
((

Out(s)
)X o P (X)

)
ut

Parallel to this result we state and prove a proposition on the automorphism
group of compact abelian groups. This requires that we deal at the same time with
the automorphism group of discrete abelian groups.

Proposition 9.85. (i) If A is a discrete abelian group, then the compact open
topology on Aut(A) is the standard group topology for automorphism groups; it is
induced on the subgroup Aut(A) of P (A) by the topology of P (A). The filter of
identity neighborhoods therefore has a basis consisting of the subgroups Aut(A) ∩
PF (A), F ∈ Fin(A). In particular, Aut(A) is totally disconnected.

(ii) If G is a compact abelian group, then α 7→ α̂ : Aut(G) → Aut(Ĝ) is an
isomorphism of topological groups. In particular, Aut(G) is totally disconnected.

Proof. (i) The refined compact open group topology on Aut(A) is given by the
basic identity neighborhoods

V (K,U) = {α ∈ Aut(A) | (∀x ∈ K)α(x)x−1, α−1(x)x−1 ∈ U},

where K ranges through the compact subsets of A and U through the open identity
neighborhoods of A (for compact groups cf. discussion preceding 6.63). As A is
discrete, a subset K is compact iff K is finite, and U = {1} is an open identity
neighborhood of A. Hence {V (F, {1}) | F ∈ Fin(X)} is a basis of the identity
neighborhoods of Aut(A). But V (F, {1}) = Aut(A)∩PF (A); therefore Aut(A) has
the subgroup topology induced from P (A). Since P (A) is totally disconnected (cf.
E9.19 and preceding discussion above), then so is Aut(A).

(ii) By 7.11(iii) for each pair of locally compact abelian groups A and B the

function δAB : Hom(A, B̂) → Hom(B, Â), δAB(f)(b)(a) = f(a)(b) is an isomor-
phism of topological abelian groups. By the Duality Theorem 7.63 (or, for compact

abelian groups A, by 2.32), the evaluation map ηA:A → ̂̂
A is an isomorphism of

topological abelian groups. Thus

Hom(A,A)
Hom(A,ηA)−−−−−−→ Hom(A,

̂̂
A)

δ
AÂ−−→ Hom(Â, Â)

gives an isomorphism of topological groups. We claim that it agrees with α 7→ α̂.
Let α ∈ Hom(A,A), χ ∈ Â, a ∈ A. Then(

δ
AÂ
◦Hom(A, ηA)

)
(α)(χ)(a) =

(
δ
AÂ

(ηA ◦ α)
)
(χ)(a)

= (ηA ◦ α)(a)(χ) = ηA
(
α(a)

)
(χ) = χ

(
α(a)

)
= α̂(χ)(a),
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and this proves the claim. Since Ĝ is discrete, Aut(G) ∼= Aut(Ĝ)) is totally dis-
connected. ut

We shall assume henceforth that for a discrete abelian group A, the group
Aut(A) has the topology induced from P (A), the topology of pointwise convergence.
If A is the additive group of a Q-vector space, then Aut(A) = Gl(A,Q) with the
topology of pointwise convergence. If A is a finitely generated group, then Aut(A)
is discrete.

Recall from the preamble to 9.19 that we let S denote a set of simple compact
Lie algebras containing for each simple compact Lie algebra exactly one member
isomorphic to it and pick once and for all for each s ∈ S a simple simply connected
compact Lie group S[s] whose Lie algebra is isomorphic to s.

The Automorphism Group of a Compact Projective Group

Theorem 9.86. Let G be a connected compact projective group, i.e. there are sets
X and Xs, s ∈ S such that

(1) G ∼= Q̂X ×
∏
s∈S

SXs

[s] ,

where S[s] is the simlpy connected simple compact Lie group with L
(
S[s]

) ∼= s. Let

(2) T ∼= Q̂X ×
∏
s∈S

TXs

[s] ,

be a maximal pro-torus with a maximal torus T[s] in each S[s]. Then

Aut(G) ∼= Aut(Q̂X)×
∏
s∈S

Aut(SXs

[s] ),(i)

Aut(Q̂X) ∼= Gl(Q(X),Q),(ii)

Aut
(
SXs

[s]

) ∼= Aut
(
S[s]

)Xs o P (Xs),(iii)

Aut
(
S[s]

)
=
[

Aut
(
S[s]

)]
0
Ds
∼= ead s o Out

(
S[s]

)
,(iv)

Ds ⊆ N
(
T[s],Aut

(
S[s]

)) def
= {α ∈ Aut

(
S[s]

)
| α(T[s]) = T[s]},

Aut(G) = Inn(G)D ∼= Inn(G) o Out(G), D ⊆ N
(
T,Aut(G)

)
,(v)

In particular, the totally disconnected subgroup D ⊆ N
(
T,Aut(G)

)
⊆ Aut(G) is

of the form

D ∼= Gl(Q(X))×
∏
s∈S

(
Out(s)Xs o P (Xs)

)
.(vi)

Proof. (i) We write

G = Q̂X ×
∏
s∈S

SXs

[s] ,(1′)
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and define subgroups

A = Q̂X ×
∏
s∈S
{1},

Ss = {0} ×
∏
s′∈S

S∗s′ , S∗s′ =

{
SXs

[s] if s′ = s,

{1} otherwise.

Then A ∼= Q̂X and Ss
∼= SXs

[s] , and each of A and Ss is a characteristic subgroup of

G and thus is invariant under any automorphism. Hence each α ∈ Aut(G) induces
unique automorphisms αA ∈ Aut(A) and αs ∈ Aut(Ss) such that

(2) f : Aut(G)→ Aut(A)×
∏
s∈S

Aut(Ss), f(α) = (αA, (αs)s∈S)

is an isomorphism of compact groups (Exercise E9.20 below). This proves (i).
(ii) It follows from Proposition 9.84 that

Aut(A) ∼= Aut((Q̂X)̂) = Aut(Q(X)) = Gl(Q(X),Q)

with the topology of pointwise convergence.
(iii) and (iv) follow directly from Proposition 9.84 above.
(v) and (vi) are consequences of 9.84 and (i) above. ut

Exercise E9.20. Verify the details of the claim that f in line (2) of the proof of
9.86(i) is an isomorphism.

[Hint. By what was said in the proof of 9.85(i), the function f is well-defined, is a
morphism, and is continuous as follows straightforwardly from the definition of the
topology of the automorphism groups via the topology of uniform convergence. In

order to verify the surjectivity of f , take β
def
= (α(A), (α(s))s∈S) ∈ Aut(A)×

∏
s∈S Ss

arbitrarily and define α:G→ G by

α(a, (ss)s∈S) = (α(A)(a),
(
α(s)(ss)

)
s∈S).

Then α ∈ Aut(G) and f(α) = β.] ut

The Automorphism Group of a Compact Connected Group

Corollary 9.87. Let G be a compact connected group. Then for a given maxi-
mal pro-torus T in G there is a totally disconnected closed subgroup D of AutG
contained in

N(T,Aut(G))
def
= {α ∈ Aut(G) | α(T ) = T}

such that
Aut(G) = Inn(G)·D, Inn(G) ∩D = {1}
Aut(G) ∼= Inn(G) o Out(G), Out(G) ∼= D.

The group Out(G) is totally disconnected, the group Inn(G) is compact, connected,
semisimple, centerfree and isomorphic to G′/Z(G′).
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Proof. The isomorphism Inn(G) ∼= G/Z(G) ∼= G′/Z(G′) is straightforward from
the definitions and was observed in 9.82(ii). From 9.82(i) we know that Inn(G)
is the identity component of Aut(G). Hence Out(G) = Aut(G)/ Inn(G) is totally
disconnected. It remains to prove the main assertion of the theorem.

By Theorem 9.76 on the projective cover, notably 9.76(iv), there is a homomor-
phism of groups f 7→ P(f): Aut(G)→ Aut

(
P(G)

)
. This homomorphism is contin-

uous (Exercise E9.21) and injective, since P(f) = idP(G) implies f ◦EG = EG (see
commutating diagram in 9.76(iv)) and EG is surjective. Also Aut(G)0 = Inn(G)
is mapped onto Aut

(
P(G)

)
0

= Inn
(
P(G)

)
by 9.19 and 9.82. But by the Struc-

ture Theorem of the Automorphism Group of Projective Groups 9.86(v) above,
the main assertion of the present theorem is true for the projective group P(G).
Hence it is true for G by Lemma 6.68. ut

Exercise E9.21. Prove the continuity of the function

f 7→ P(f) : Aut(G)→ Aut
(
P(G)

)
.

[Hint. Note that D
def
= kerEG is a totally disconnected compact subgroup of P(G);

then for every subgroup N ∈ N
(
P(G)

)
the groups G/N and DN/N ∼= D/(D∩N)

are Lie groups. As D is totally disconnected compact, DN/N is finite and we may
pick a finite subset DN such that 1 ∈ DN and (n, e) 7→ ne:N × DN → D is a
homeomorphism. Let U be an identity neighborhood of P(G). Then U contains
an open identity neighborhood W1 such that W1W1 ⊆ U ; pick an N ∈ N (D)
with N ⊆ W1 and set W = W1N . Then WN = NW = W ⊆ U ; moreover make
W so small that the sets W and W (DN \ {1}) are disjoint; this is possible since

DNN/N is finite. Now V
def
= EG(W ) is an identity neighborhood in G such that

V −1V ⊆W . EG(V ) is an identity neighborhood of G. If f(g)g−1 ∈ V for all g ∈ G
then P(f)(g̃)g̃−1 ∈WD = WND = WNDN = WDN = W ∪̇W (DN \{1}). Since
the set {P(f)(g̃)g̃−1 | g̃ ∈ P(G)} is connected, contains 1 and is contained in WD,
it is contained in W ⊆ U . Draw the final conclusion.] ut

Simple Compact Groups and the Countable Layer Theorem

The use of the word “simple” in group theory is a bit delicate whenever Lie groups
are involved as we pointed out in a paragraph preceding Theorem 6.6. We call a
Lie group G a simple connected compact Lie group iff its Lie algebra g = L(G) is
a simple Lie algebra. This is equivalent to saying that any proper closed normal
subgroup is discrete. We will use for groups in general the standard definition

Definition 9.88. (i) A group G is called a simple group iff {1} and G are the only
normal subgroups of G. A topological group G is called simple if the underlying
group is simple.

(ii) A compact group G is called strictly reductive if it is isomorphic to a carte-
sian product of simple compact groups. ut
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Thus a compact connected Lie group which is a simple compact group is always
a simple compact connected Lie group, but a simple connected compact Lie group
is not always a simple compact group, because it may have a nontrivial finite
central subgroup.

For further clarification the following central theorem of Yamabe-Gotô is useful;
for its proof we refer to appropriate literature.

Lemma 9.89. (H. Yamabe, M. Gotô) An arcwise connected subgroup of a Lie
group is analytic.

Proof. See [128], [41], Ch. III, §8, Exercice 4, p. 275, [153], p. 57ff., [154], p. 347ff.
ut

In particular, this theorem is true for linear and notably for compact Lie groups.
The proof requires the Brouwer Fixed Point Theorem.

Theorem 9.90. Let G be a compact group in which all closed normal subgroups
are trivial. Then all normal subgroups of G are trivial, that is, G is a simple group.

Proof. Let G be a compact group in which {1} and G are the only closed normal
subgroups. By Corollary 2.43 and Lemma 9.1, a compact group G has arbitrarily
small closed normal subgroups N ∈ N (G). It follows that G must be a Lie group.
The identity component G0 is a normal subgroup, so it is either singleton or the
whole group. In the first case G is discrete and we are done. In the second case G
is a compact connected Lie group in which every closed normal subgroup is trivial.
We now assume this case.

Let N be a nonsingleton normal subgroup of G; we must show that N = G.
Since the closure N is normal, it must be G and thus N is dense. If N is arcwise
totally disconnected, then N is central (because for each n ∈ N the continuous
function g 7→ gng−1n−1:G → N maps a connected space into an arcwise totally
disconnected one and is, therefore, constant; but the image contains he identity).
Then G = N is a nonsingleton compact connected abelian group. Its character
group is a torsion free nondegenerate abelian group by Corollary 8.5 which has
nontrivial subgroups. Thus by the Annihilator Mechanism 7.64, G has nontrivial
closed normal subgroups, which is not the case. Thus the identity arc component
Na of N is nontrivial, and as it is a characteristic subgroup of N , it is normal in
G. It suffices to show that Na = G; let us therefore assume that N is arcwise con-
nected. By the Yamabe-Gotô Lemma 9.89 above an arcwise connected subgroup
is analytic. Thus N is a dense analytic subgroup of G. By Proposition 5.62, a
dense analytic subgroup N of a (linear) Lie group G contains the the commutator
subgroup G′. By Gotô’s Commutator Theorem 6.55, the commutator subgroup G′

of a compact Lie group is closed. Thus G′ is either singleton or agrees with G;
the former case would again imply that G is abelian which is impossible. Thus
G = G′ ⊆ N ⊆ G, and this proves N = G which we wanted to show. ut

A relevant reference is [154], p. 356, Theorem 9.6.13.
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Now that we know that a simple compact group is either a centerfree simple
compact connected Lie group, or a discrete cyclic group of prime order, or a discrete
simple (nonabelian) finite group, and that a strictly reductive compact group is
a product of these we can present the following structure theorem of arbitrary
compact groups. (Recall that Z0(G0) denotes the identity component of the center
of the identity component G0 of G.)

Theorem 9.91. (Countable Layer Theorem) Any compact group G has a canon-
ical countable descending sequence G = Ω0(G) ⊇ · · · ⊇ Ωn(G) ⊇ · · · of closed
characteristic subgroups of G with the following two properties:

(1)
⋂∞
n=1 Ωn(G) = Z0(G0),

(2) Ωn−1(G)/Ωn(G) is a strictly reductive group for each n = 1, 2, . . ..

Proof. For a proof, we refer to [186]. ut

We shall apply the Countable Layer Theorem 9.91 in Chapter 12. In the lit-
erature we have applied the Countable Layer Theorem to showing that, in many
instances, a compact group G contains a closed abelian subgroup A such that
w(A) = w(G) (see [187]). The “Abelian Subgroup Conjecture”, saying that this
should hold for all compact groups is false as was shown by Herfort [142] by
pointing out that the free p-group over the one point compactification of an un-
countable discrete set is a counterexample. However, the following theorem out of
Zelmanov’s work [382] is a nontrivial result that was sought after for quite some
time:

Theorem 9.91a. Every infinite compact group contains an infinite abelian sub-
group. ut

The Structure of Compact FC-Groups

Definition 9.92. In a group G, the set F of elements g whose conjugacy class is
finite is called its FC-center . If F = G, then G is called an FC-group .

Exercise E9.22. Show that
(i) the FC-center of a group is a characteristic subgroup,
(ii) the FC-center of a compact group is an Fσ, that is, a countable union of

closed subsets. ut

By the structure theory of compact connected groups (see Theorem 9.23ff)
the identity component G0 of a compact FC-group G is abelian. Abbreviate the
centralizer Z(G0, G) of G0 by C. The action by inner automorphisms of G on G0

induces an action of the profinite group G/C on the compact connected abelian
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group G0 with finite orbits such that gC ∗g0 = gg0g
−1, g ∈ G, g0 ∈ G0, where each

function g0 7→ g∗g0 is an automorphism of G0. An action (g, x) 7→ g·x : G×X → X
of a topological group G on a topological group X such that each x 7→ g·x is an
automorphism of X is called an automorphic action

As is Proposition 7.36 and Theorem 7.66, let the Lie algebra g = L(G0) of G0

be defined as Hom(R, G0) ∼= Hom(Ĝ0,R). The Lie algebra g is a weakly complete
vector space, which is isomorphic as a topological vector space to the complete
locally convex space RI for a suitable set I whose cardinality is the rank of the
torsion-free abelian group Ĝ0.

There is a natural morphism AutG0 → Aut g: Indeed each automorphism α
of G0 induces an automorphism L(α) of g as follows: Let X:R → G0, t 7→ X(t),
be a member of g, then L(α)(X):R → G0 is defined by L(α)(X) = α ◦ X. An
element g ∈ G induces an inner automorphism Ig on G0 via Ig(x) = gxg−1 and
the function g 7→ Ig : G → Aut g factors through the quotient G → G/C giving
us a chain of representations

G→ G/C → AutG0 → Aut g,

whose composition yields a continuous representation

π:G/C → Aut g, π(gC)(X) = Ig ◦X, that is, π(gC)(X)(t) = gX(t)g−1.

We claim that the fact, that every element of G has finitely many conjugates,
implies for each X ∈ g that π(G/C)(X) ⊆ g is contained in a finite dimensional
vector subspace of g. That is, we maintain that the G/C-module g (see Definition
2.2) satisfies gfin = g. (See Definition 3.1.)

For an understanding of these facts and their proof below we recall that a
subgroup of a topological group is called monothetic if it contains a dense cyclic
subgroup. It is called solenoidal if it contains a dense one-parameter subgroup.

Lemma 9.93. Let Γ be a compact group acting automorphically on a compact
group G. Assume that all orbits of Γ on G are finite. Then the following conclusions
hold:

(i) For each monothetic subgroup M = 〈g〉 of G there is an open normal subgroup
Ω of Γ which fixes the elements of M elementwise, and the finite group Γ/Ω
acts on M with the same orbits as Γ.

(ii) The orbits of Γ on g = L(G) for the induced automorphic action of Γ on
L(G) are finite.

Proof. (i) Assume that A = 〈g〉 is a monothetic subgroup. If α ∈ Γ, then α ∈ Γg
means α·g = g, that is, g belongs to the fixed point subgroup Fix(α) of α. This is
equivalent to A ⊆ Fix(α), i.e., α ∈ Γa for all a ∈ A. So we have Γg ⊆ Γa for all
a ∈ A. Then the normal finite index subgroup Ωg =

⋂
γ∈Γ γΓgγ

−1 is contained in
all Γa, a ∈ A. This establishes (i) as the remainder is clear.

(ii) A compact abelian group A is monothetic if and only if there is a morphism
f :Z→ A with dense image, and in view of Pontryagin duality (see Chapters 7 and

8) this holds exactly when there is an injective morphism f̂ : Â → Ẑ ∼= T. In the
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same spirit a compact abelian group is solenoidal if and only if there is a morphism
f :R → A with dense image exactly when, in view of Pontryagin duality again,
there is an injective morphism f̂ : Â → R̂ ∼= R. As Â is discrete, this happens if
and only if Â is algebraically a subgroup of R. Now T has a subgroup algebraically
isomorphic to R (see Corollary A1.43). Thus if Â can be homomorphically injected
into R it can be homomorphically injected into T. Therefore

every solenoidal compact group is monothetic.

Thus let X ∈ g be a one-parameter subgroup of G. Then by (i), the image
X(R) is contained in a monothetic subgroup. Hence by (i) above there is an open
normal subgroup Ω of Γ such that each α ∈ Ω satisfies α·X(t) = X(t) for all t ∈ R.
Hence α·X = X in g with respect to the action of Γ induced on g = L(G). Hence
ΓX ⊇ Ω has finite index for the action of Γ on g. ut

Lemma 9.93(ii) completes the argument that the G-module g in the case of a
compact FC-group G satisfies gfin = g.

Now, using Exercise E4.8 here, we get the following result:

Lemma 9.94. Let G be a compact FC-group. Then the centralizer Z(G0, G) of
the identity component is open.

Proof. By Lemma 9.93 we can apply the results of Exercise E4.8 with Γ =
G/Z(G0, G) in place of G and the Γ-module g = L(G) = L(G0) in place of V . We
conclude that Γ is finite. This proves the assertion. ut

After Theorem 9.41 and Corollary 9.42 we can readily deduce the structure of
a central extension of a compact abelian group by a profinite group:

Proposition 9.95. Let G be a compact group such that G0 is central. Then there
is a profinite normal subgroup ∆ such that G = G0∆. In particular,

G ∼=
G0 ×∆

D
, D = {(g, g−1) : g ∈ G0 ∩∆}. ut

In order to pursue the structure of compact FC-groups further we cite Lemma
2.6, p. 1281 from the paper by Shalev [327], proved with the aid of the Baire
Category Theorem:

Lemma 9.96. (Shalev’s Lemma) If G is a profinite FC-group then its commutator
subgroup G′ is finite. ut

In order to exploit this information, we need a further lemma:

Lemma 9.97. If N is a compact nilpotent group of class ≤ 2 and N ′ is discrete,
then the center Z(N) has finite index in N .
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Proof. Since N is nilpotent of class at most 2, we have N ′ ⊆ Z(N). So for each
y ∈ N the function x 7→ [x, y] : N → N ′ is a morphism. Therefore, if we set
A = N/N ′ we have a continuous Z-bilinear map of abelian groups b:A×A→ N ′,
where b(xN ′, yN ′) = [x, y]. Since N ′ is discrete, {1} is a neighborhood of the
identity in N ′. On the other hand, b({1A} ×A) = {1}. So for each a ∈ A we have
open neighborhoods Ua of 1A and Va of a, respectively, such that b(Ua×Va) = {1}
As A is compact, we find a finite set F ⊆ A of elements such that A =

⋃
a∈F Va.

Let U =
⋂
a∈F Ua; then U is an identity neighborhood of A and b(U × A) = {1}.

Since b is bilinear, this implies b(〈U〉 × A) = {1}. Then the full inverse image
M of 〈U〉 in N under the quotient morphism N → A is an open subgroup of N
satisfying [M,N ] = {1} and is, therefore, central. Thus the center Z(N) of N is
open and so has finite index in N . ut

We remark that the proof of this lemma resembles that of Proposition 13.11,
p. 574 of [188]. From the preceding two pieces of information we derive

Proposition 9.98. Let G be a compact group whose commutator subgroup G′ is
finite, and let Z(G′, G) be the centralizer of G′ in G. Then the center of Z(G′, G)

is a characteristic abelian open subgroup AG
def
= Z(Z(G′, G)) of G.

Proof. Let f :G→ Aut(G′) denote the morphism defined by f(g)(x) = gxg−1 for
x ∈ G′. Since G′ is finite by Lemma 9.96, so is Aut G′. Hence f(G) is finite as

well and so G/ ker f ∼= f(G) is finite. If follows that the centralizer C
def
= Z(G′, G)

of G′ in G, being equal to ker f , has finite index in G and thus is open. The
center Z(G′) = G′ ∩C of G′ is finite abelian, and so the isomorphism C/Z(G′)→
G′C/G′ ⊆ G/G′ shows that the commutator subgroup C ′ ⊆ Z(G′) is a finite
subgroup of C. Since G′ ⊆ Z(Z(G′, G), G) = Z(C,G), the subgroup C ′ ⊆ G′ ∩ C
is central in C. Hence C is nilpotent of class at most two with a finite commutator
subgroup. Now Lemma 9.97 shows that Z(C) is open in C, and since C is open in
G we know that Z(C), a characteristic subgroup of G, is open in G. ut

By Lemma 9.96, this applies to all profinite FC-groups. Collecting our informa-
tion on compact FC-groups, we can establish the following main structure theorem
on the structure of compact FC-groups:

Theorem 9.99. (The Structure of Compact FC-groups) Let G be a compact group.
Then the following three statements are equivalent:

(1) G is an FC-group.
(2) G/Z(G) is finite, that is, G is center by finite.
(3) The commutator subgroup G′ of G is finite.

Proof. (1)⇒(2): By Lemma 9.94, Z(G0, G) is open and so by Proposition 9.95 there
is a profinite FC-group ∆ commuting elementwise with G0 such that Z(G0, G) =
G0∆. By Lemma 9.96 and Proposition 9.98, A∆ is an open characteristic abelian
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subgroup of ∆ whence A
def
= G0A∆ is an open characteristic abelian subgroup of

G0∆ = Z(G0, G). Since Z(G0, G) is normal in G, the subgroup A is normal in G.
Since A is open in Z(G0, G) and this latter group is open in G by Lemma 9.94,
A is an open normal subgroup of G. Thus G is an abelian by finite FC-group. We
claim that G is therefore a center by finite group: Indeed, let f :G/A→ Hom(A,A)
be defined by f(gA)(a) = gag−1a−1. For each coset γ = gA the image of f(γ) is
finite since G is an FC-group, and so Z(g,G) = ker f(γ) has finite index. Therefore
Z(G) =

⋂
γ∈G/A ker f(γ) has finite index, and this proves the claim.

(2)⇒(1): Since Z(G) ⊆ Z(g,G) for each g, by (2), the quotient G/Z(g,G) is
finite for all g. Hence G is an FC-group.

(1)⇒(3): Let G be an FC-group. By the equivalence of (1) and (2) we know
that G0, being contained in the open subgroup Z(G), is central. By Proposition
9.95, there is a profinite subgroup ∆ such that G = G0∆. Then [G,G] = [∆,∆].
Now by Lemma 9.96, [∆,∆] is finite.

(3)⇒(1): Set C(g) = {xgx−1 : x ∈ G}; then C(g)g−1 ⊆ G′, whence C(g) ∈ G′g.
Thus the finiteness of G′ implies that of C(g) for all g ∈ G. ut

In fact, a group G satisfying the equivalent conditions of Theorem 9.99 above is
what has been called a BFC-group, that is, an FC-group with all conjugacy classes
having a length bounded by a fixed number.

Let us remark that center by finite groups are subject to classical central exten-
sion theory. For instance, if Z(G) happens to be divisible by q = |G/Z(G)|, then
G = Z(G)E for a finite subgroup E such that Z(G)∩E equals {z ∈ Z(G) : zq = 1}.
(Cf. method of proof of Theorem 6.10(i).)

Theorem 9.99 might suggest to the reader that a compact FC-group is nec-
essarily a product of a finite subgroup and its center. However, this is definitely
not the case as the following comparatively simple example of a class 2 nilpotent
profinite pro-p-group indicates.

Example 9.100. Let H be the class 2 nilpotent compact group of all 3×3-matrices

M(a, b; z)
def
=

 1 a z
0 1 b
0 0 1

 ,

where a, b, z range through the ring Zp of p-adic integers. Let Z be the closed
central subgroup of H of all M(0, 0; pz) , z ∈ Zp. Then G = H/Z is a compact
nilpotent p-group of class 2 whose commutator group G′ = [H,H]/Z contains
all elements M(0, 0; z)Z and thus is isomorphic to Z(p) = Z/pZ. Its center Z(G)
consists of all elements M(a, b; z)Z with a, b ∈ pZp, z ∈ Zp, whence G/Z(G) ∼=
Z(p)2. The factor group G/G′ is isomorphic to Z2

p. The subgroup of all M(a, 0; 0),
a ∈ Zp, is isomorphic to Zp; it is topologically generated by M(1, 0; 0). By Theorem
9.99 again, this example yields a compact FC-group which is not the product
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of a central group with a finite group. The only nonsingleton finite subgroup is
G′ ∼= Z(p) ut

The Commutativity Degree of a Compact Group

We now aim to combine our Structure Theorem 9.99 for compact FC-groups with
the probability measure theory which we outlined in Appendix 5. Recall from the
discussion there that a Borel probability measure µ on a compact group respects
the members of a class C of Borel subgroups of G if µ(H) > 0 for H ∈ C implies
that H is open. Haar measure respects all Borel subgroups.

Theorem 9.101. Let G be a compact group and F its FC-center. Further let
µ1 and µ2 be two Borel probability measures on G and set P = µ1 × µ2 and

D
def
= {(g, h) ∈ G × G : [g, h] = 1}. Assume that µj respects closed subgroups for

j = 1, 2 and that, if G is not a Lie group, µ2 respects even Borel subgroups. Then
the following conditions are equivalent:

(1) P (D) > 0.
(2) F is open in G.
(3) The characteristic abelian subgroup Z(F ) is open in G.

Under these conditions, the centralizer Z(F,G) of F in G is open, and the finite

group Γ
def
= G/Z(F,G) is finite and acts effectively on F with the same orbits as G

under the well defined action γ·x = gxg−1 for (γ, x) ∈ Γ× F , g ∈ γ. The isotropy
group Γx at x ∈ F is Z(x,G)/Z(F,G), and the set Fγ of fixed points under the
action of γ is Z(g, F ) for any g ∈ γ.

Proof. (1)⇔(2): This is a part of Corollary A5.7.
(2)⇒(3): The FC-center F of G is an FC-group in its own right. Then Theorem

9.99 shows that Z(F ) is open in F . By (2), F is open in G. Then Z(F ) is open in
G, and this establishes (3).

The implication (3)⇒(2) is trivial.
Now assume that these conditions are satisfied. Then the open subgroup Z(F )

is contained in the centralizer Z(F,G) =
⋂
x∈F Z(x,G), which is the kernel of the

morphism G → AutF sending g ∈ G to x 7→ gxg−1. The homomorphism π: Γ =
G/Z(F,G) → AutF is therefore well-defined by π(γ)(x) = gxg−1, γ = gZ(F,G),
independently of the choice of the representative g ∈ γ. If x ∈ F and γ ∈ Γ, say
γ = gZ(F,G), then γ ∈ Γx iff γ·x = x iff gxg−1 = x iff g ∈ Z(x,G) regardless
of the choice of g ∈ γ. Thus Γγ = Z(x,G)/Z(F,G). Similarly, we have x ∈ Fγ iff
γ·x = x iff gxg−1 = x for g ∈ γ iff x ∈ Z(g, F ). ut

While it is reasonable to have this level of generality for the measures µ1 and µ2

(see for instance [203]), and then search for useful measures µ1 and µ2 respecting
closed subgroups, we shall specialize µ1 and µ2 at once to Haar measure. This
case represents the special class of examples in which P (E) is the probability
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that two randomly picked elements commute. In this situation one has called
P ({(x, y) ∈ G×G : [x, y] = 1}) the commutativity degree d(G) of G.

Here, by the Main Theorem 9.101, the finite group Γ = G/Z(F,G) acts effec-
tively on F so that its orbits are the G-conjugacy classes of elements of F and
that for the isotropy groups and fixed point sets we have

Γx = Z(x,G)/Z(F,G) and (∀g ∈ γ)Fγ = Z(g, F ).

In particular, if νF is Haar measure of F , for the closed subgroup Z(g, F ) of F
and g ∈ γ ∈ Γ we conclude

νF (Fγ) =

{
0 if Fγ has no inner points in F ,
|F/Z(g, F )|−1 if Fγ is open in F .

We now formulate and prove the following main result:

Probability that x and y commute in a compact group

Theorem 9.102. Let G be any compact group and denote by d(G) its commuta-
tivity degree.Then we have the following conclusions:

Part (i) The following conditions are equivalent:
(1) d(G) > 0.
(2) The center Z(F ) of the FC-center F of G is open in G.

Part (ii) Assume that these conditions of (i) are satisfied. Then there is a finite
set of elements g1, . . . , gn ∈ G, n ≤ |G/Z(F,G)|, such that

d(G) =
1

|G/F |·|G/Z(F,G)|
·
n∑
j=1

|F/Z(gj , F )|−1.

Part (iii) d(G) is always a rational number.

Proof. (i) follows directly from 9.101. For a proof of (ii) we let νG and νF be the
Haar measures of G and F , respectively, and recall from A5.7 that

d(G) = P (D) =

∫
x∈F

νG(Z(x,G))dνG(x) =

∫
x∈F
|G/Z(x,G)|−1dνG(x).

We note that the νG-measure of F is |G/F |−1; thus νF = |G/F |·(νG|F ). Hence

d(G) =
1

|G/F |
·
∫
F

|G/Z(x,G)|−1dνF (x).

Now

G/Z(x,G) ∼= (G/Z(F,G))/(Z(x,G)/Z(F,G)) = Γ/Γx,

and so, letting

EF = {(γ, x) ∈ Γ× F : γ·x = x}
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and P = νΓ × νF , by (∗) above, we get

d(G) =
1

|G/F |
·
∫
F

|Γ/Γx|−1dνF =
1

|G/F |
·
∫
F

νΓ(Γx)dνF =
P (EF )

|G/F |
.

Next we select a set {g1, . . . , gn} of elements of G such that the cosets gjZ(F,G)
are exactly those elements γ ∈ Γ whose fixed point set Fγ is open in F . Then
ΓgjZ(F,G) = Z(gj , F ) for all j = 1, . . . , n. We also recall Γ = G/Z(F,G) and apply
Lemma 2.5 to see that

P (EF ) =
1

|G/Z(F,G)|

n∑
j=1

|F/Z(gj , F )|−1.

Therefore

d(G) =
1

|G/F |·|G/Z(F,G)|
·
n∑
j=1

|F/Z(gj , F )|−1.

This is what we claimed.

Part (iii) is now an immediate consequence of (ii) as d(G) is trivially rational
if it is 0. ut

The main result says: If the probablity that two randomly picked elements com-
mute in a compact group is positive, then, no matter how small it is, the group is
almost abelian.

We draw attention to the fact that in 9.102(ii) the commutativity degree of G
is expressed in purely arithmetic terms via the group theoretical data F , Z(F,G),
and Z(gj , F ).

Postscript

This book is titled “The Structure of Compact Groups,” and it is in this chapter
that four principal structure theorems are proved: the Levi–Mal’cev Structure The-
orem 9.24, the Maximal Pro-Torus Theorem 9.32, the Borel–Scheerer–Hofmann
Splitting Structure Theorem 9.39, and the Dong Hoon Lee Supplement Theorem,
the last one in a generality that has not been published before. As was said in
the introduction to this chapter, these theorems are impressive and powerful. One
might in fact also count the Theorem on the Structure of Semisimple Compact
Connected Groups 9.19 among the basic structure theorems.

The basic structure theorems are used here to characterize connectedness, sim-
ple connectedness, local connectedness, local arcwise connectedness, arcwise con-
nectedness, and indecomposability for compact groups.

While the exponential function is a standard tool in Lie group theory, its use in
the study of general compact groups is not widespread. However, we see just how
powerful a tool it is for compact abelian groups in Chapter 8 and for general com-
pact groups in this chapter. The arc component of the identity in a compact group
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is identified as the image of the exponential function, and the identity component
is the closure of this subgroup.

The closedness of the commutator subgroup of a connected compact group—
indeed Gotô’s Theorem that each of its elements is a commutator is fundamen-
tal and rests on nontrivial arguments on compact Lie groups. The Levi–Mal’cev
Structure Theorem 9.24 for connected compact groups is a classic. Its basis 9.24(i)
states that G is nearly a direct product of the connected center Z0(G) and the
commutator subgroup G′. Its proof is relatively simple because it rests on the eas-
ily obtained structure of Hilbert Lie algebras which we exposed in Theorem 6.4.
That portion of the proof of the Levi–Mal’cev Theorem which causes a consider-
able amount of technical work is the structure of the Levi–Mal’cev complement G′

(see 9.19). The complications are partially caused by the fact that a finite direct
product G = G1 × G2 of compact groups can easily be internalized by writing
G = N1N2 with N1 = G1×{1} and N2 = {1}×G2, and by focusing on the simple
algebraic properties of N1 and N2. The case of an infinite product

∏
j∈J Gj is

not readily internalized, and if one claims that a given group is isomorphic to an
infinite product of this type, one is challenged to produce this cartesian product
externally. Secondly, the technical intricacies are evidenced by the fact that the
concepts of simple connectivity and of connected compact groups are a somewhat
delicate blend. Also, the fact that a semisimple compact Lie group has a compact
universal cover (see 5.76) is nontrivial and is proved in this book via the Vector
Group Splitting Theorem 5.71 which involves compact groups and is interesting
in its own right even though it is not a structure theorem on compact groups per
se. The fact that Corollary 5.66 persists for arbitrary compact connected groups
which are not necessarily Lie groups is treated in [344].

The Maximal Pro-Torus Theorem 9.32 is a direct extension of the Maximal
Torus Theorem 6.30 for compact Lie groups whose proof in Chapter 6 was not
trivial either. While the generalisation from the case of compact Lie groups to
arbitrary compact groups is not profound, in combination with the other structure
theorems, the Maximal Pro-Torus Theorem is amazingly effective. One application
is the proof of the Borel–Scheerer–Hofmann Theorem 9.39 on the splitting of the
commutator group of a connected compact group. This extremely useful theorem
first appeared in [167]. The topological splitting was first proved in [319]. For
connected compact Lie groups the topological decomposition over the commutator
subgroup was noted in [30]. Many of the particular results on the structure of
compact connected groups in the latter parts of this section rest on this theorem.
It is noteworthy that the characterisation theorems for arcwise connectivity and
for local connectivity rest on this theorem and not on the more classical Levi–
Mal’cev Structure Theorem which usually comes to mind first. Proposition 9.61
and Example 9.62 illustrate why the Levi–Mal’cev Theorem fails for such purposes.
Theorem 9.60 uses splitting in order to import the results of compact abelian group
theory into the general situation and to give a good description of arc connectivity
in compact connected groups. The reduction to the abelian situation is similarly
visible in the discussion of local connectivity in Theorem 9.65 and Corollary 9.66.
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In Proposition 9.55 we give practical characterisations for a compact group
to be finite dimensional, and in Proposition 9.56 we see that the dimension of
a compact group equals the least upper bound of the dimensions of the cubes
that can be embedded homeomorphically into them; this persists into transfinite
dimensions as we have used for compact groups. If an n-dimensional compact
group can be embedded topologically into Rn, then it is a Lie group, as we saw
in Theorem 9.59(v), and a subsequent construction shows how such embeddings
occur.

The concept of a projective in the category of compact connected groups and
normal morphisms (cf. text preceding 9.73) is not only of general interest in the
context of homological algebra and category theory but is quite relevant for the
structure theory of compact connected groups. Every compact connected group
is canonically a quotient of such a projective modulo a compact totally discon-
nected central subgroup, and the projectives are characterized by a countable set
of cardinals (cf. 9.19, 9.70 and 9.73). This is used in the structure theorems of
the topological automorphism group Aut(G) of compact connected groups (9.87)
and will be used intensively in later chapters (see 11.14(ii), 11.15, 11.16, 11.49,
11.51, 11.54). Given the theory of the projective cover it is easy to show that ev-
ery compact group is dyadic (9.76(vii)). The universal property of the projective
cover is exposed in Theorem 9.76bis. The structure of the automorphism group of
a compact Lie group was discussed at length in Chapter 6, but the theory of the
automorphism group of an arbitrary compact group is not a straightforward gen-
eralisation as the reader might have observed in this chapter. The role which the
Lie algebra played in the case of compact connected Lie groups and which allowed
us there to identify the automorphism group with a linear group, i.e. a “group
of matrices,” is taken over here by the projective cover of a compact connected
group. This material is new.

The injective objects in the category CN are less significant for the general
theory, but they are interesting in themselves (see 9.75).

The adjective “simple” as applied to compact groups is somewhat ambiguous
as we point out in the paragraph preceding Definition 9.88, where we distinguish
between a simple group and a simple topological group as a group having no
nontrivial closed normal subgroups. In the subsequent Theorem 9.90 we show that
for compact groups the two concepts agree.

With the clarification of the concept of a simple compact group it is also un-
ambiguously clear that a strictly reductive compact group is a product of simple
compact groups (9.88(ii)). This allows the formulation of the Countable Layer
Theorem 9.91 which is comparatively new, although predecessors have been ob-
served by Varopoulos [361]. We shall use this theorem in Chapter 12 below in our
dealing with cardinal invariants, and in Chapter 10, Theorem 10.40 for a proof
that all compact groups are dyadic, topologically.

In the theory of abstract infinite groups, groups whose conjugacy classes are
finite have an established position and are known under the name FC-groups.
A complete theory for compact FC-groups is relatively recent [202], although in
the context of profinite groups they have been looked at. In Theorem 9.99 we
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9. The Structure of Compact Groups 581

argue that infinite compact FC-groups are nearly abelian in a twofold sense. We
apply these insights to the question how likely it is that a randomly picked pair
of elements of a compact group commutes. In general this is not at all probable
in an infinite compact group unless it is almost commutative in a sense made
precise in Theorem 9.102. One finds a discourse on the historical background of
such questions in [202].

References for this Chapter—Additional Reading

[6], [25], [26], 27], [30], [70], [101], [142], [167], [179], [202], [203], [186], [187], [194],
[199], [216], [217], [229], [236], [263], [296], [319], [344], [361], [365], [359].
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Chapter 10

Compact Group Actions

A central aim of this chapter is to prove that in any compact group G the iden-
tity component G0 is topologically split; that is there exists a compact totally
disconnected subspace D of G such that the map (g, d) 7→ gd : G0 × D → G is
a homeomorphism; so the compact groups G and G0 ×G/G0 are homeomorphic.
This requires some basic transformation group theory, which we develop. The con-
cept of a principal fiber bundle is introduced here; it emerges in many branches of
mathematics and it does belong to a general structure theory. Our development
includes the fact that if G is a compact Lie group acting on a locally compact
space X with all isotropy groups conjugate, then X is a principal fiber bundle.

We have seen in the discourse around 1.9 through 1.12 that actions of a com-
pact group on a space help us to understand even very basic concepts. The first
part of the following discussion (through 10.32) can be followed on the level of
understanding of compact groups which we had at the end of Chapter I. After
this portion of the section, we do need substantial information about compact Lie
groups. We alert the reader when this point is reached.

The second part of the chapter deals with morphisms f :A→ B between com-
pact groups for which there is a continuous cross section s:B → A, f ◦ s = idB .
We call such morphisms topologically split. Considering a surjective morphism
f :A → B and asking whether it has a cross section is tantamount to considering
a compact normal subgroup N of A, the kernel of f and asking if there is a com-
pact subspace C of A such that (n, c) 7→ nc:N × C → G is a homeomorphism. In
traditional algebra such a C would be called a system of coset representatives, and
in abstract group theory it always exists (by the Axiom of Choice). Therefore the
issue of the existence of C does not arise in abstract group theory at all. We are
dealing in fact with the question whether a topologically split morphism is actually
split. An equivalent formulation of the question is this: If a compact normal sub-
group is topologically a direct factor, does there exist a compact subgroup which
is a cofactor? In abstract group theory this is not the case, since it would imply
that all normal subgroup are semidirect factors—which is false. It is remarkable
that, in fairly general circumstances, connected compact normal subgroups of con-
nected compact groups are indeed semidirect factors if they are merely topological
factors.

Prerequisites. This chapter demands no prerequisites beyond those in Chapter 1
and (later on) Chapter 6 on compact Lie groups, except in the last section. We
shall use the language of nets and the formalism of proper maps in some general
topology arguments. In the proof of the Tietze–Gleason Extension Theorem 10.33
we use the Tietze Extension Theorem, and in the proof of Theorem 10.39 on the
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existence of certain cross sections (a theorem which we shall not use later) we
shall use the fact that fiber bundles over contractible paracompact base spaces
are trivial. In the second part of the chapter, certain rudimentary facts on the
classification of simple compact connected Lie groups are used for the construction
of examples. We shall give references in the appropriate places.

A Preparation Involving Compact Semigroups

We begin with a technical lemma which we shall need and which is of independent
interest in the context of compact groups. The proof rests on some simple basic
facts on compact semigroups. (We encounter some compact semigroups in our
proof of the existence of Haar measure on a compact group in 2.8 and E5.1 in
Appendix 5.)

Lemma 10.1. (i) Let S be a closed subsemigroup of a compact group G; i.e. S is
a closed subset satisfying SS ⊆ S. Then S is a subgroup.

(ii) If H is a compact subgroup of G such that for some g ∈ G, gHg−1 ⊆ H,
then gHg−1 = H and g is in the normalizer N(H,G) of H in G.

Proof. (i) Let g ∈ S and set Cn = {gn, gn+1, . . .}. Then C =
⋂∞
n=1 Cn is a

compact commutative subsemigroup of G. Since gCn = Cn+1 (as x 7→ gx is a
homeomorphism) we have gC = C, hence gnC = C for n = 1, . . . . Thus the
compact group {t ∈ G | tC = C} contains C. Hence for a, b ∈ C there is an x ∈ C
such that ax = b. Therefore C is a group and thus contains the inverse g−1 of g
in G.

(ii) The assumption gHg−1 ⊆ H implies gnHg−n ⊆ gHg−1. The set S
def
=

{t ∈ G | tHt−1 ⊆ gHg−1} is a compact subsemigroup of G containing g. By (i),
S is a group and thus contains g−1. Hence g−1Hg ⊆ H; i.e. H ⊆ gHg−1. Thus
H = gHg−1. ut

Part (i) is also proved in Proposition A4.34. But in order to keep this chapter
self-contained we repeated a version of the proof. A comparison of the two proofs
may be a helpful exercise.

Orbits, Orbit Space, and Isotropy

Definitions 10.2. Let G be a compact group.
(i) A G-space X is a Hausdorff space together with an action (g, x) 7→ g·x:G×

X → X (see Definitions 1.9 and Proposition 1.10).
(ii) Let X/G denote the space of orbits G·x, x ∈ X, endowed with its quotient

topology. Then the continuous map p = pG,X :X → X/G, p(x) = G·x is called the
orbit map. ut
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Lemma 10.3. Let the compact group G act on a Hausdorff space X. Then the
following assertions hold.

(i) The orbit map p:X → X/G is continuous and open.
(ii) Every open neighborhood U of an orbit G·x contains an invariant neigh-

borhood U ′
def
=
⋂
g∈G g·U .

(iii) X/G is a Hausdorff space.
(iv) If C is a compact subspace of X/G then p−1

G,XC is a compact invariant
subspace of X.

Proof. Exercise E10.1. ut

Exercise E10.1. Prove 10.3.

[Hint. (i) For an open subset U of X, the set p−1
(
p(U)

)
is G·U =

⋃
g∈G g·U and

is, therefore, open in X.
(ii) Use the proofs of 1.11 as guide.
(iii) Assume that two orbits G·x and G·y are different and show, using their

compactness, that there are two disjoint open neighborhoods U of G·x and V of
G·y. Form U ′ ⊆ U and V ′ ⊆ V as in (ii) and show that p(U ′) and p(V ′) are
disjoint neighborhoods of G·x and G·y in X/G, respectively.

(iv) Let U denote an open cover of p−1(C). For each ξ ∈ C there is a finite
subset Fξ such that p−1(ξ) ⊆

⋃
Fξ. Set Vξ = {γ ∈ C | p−1(γ) ⊆

⋃
Fξ}. Form V ′ξ

according to (ii). Use the compactness of C to find finitely many ξ1, . . . , ξn such
that C ⊆ V ′ξ1 ∪ · · · ∪ V

′
ξn

. Finish by producing the required finite subcover of U .]ut

Recall that Gx
def
= {g ∈ G | g·x = x} is called the isotropy subgroup of G at x

or the stabilizer of G at x. (See the discussion preceding 1.9.)

Lemma 10.4. Assume that a group G acts on a set X. Then
(i) for all g ∈ G and all x ∈ X the equation Gg·x = gGxg

−1 holds. As a
consequence, the isotropy groups of the elements of an orbit range through the
entire conjugacy class of the isotropy group of a fixed point in this orbit.

(ii) The structure of an orbit G·x is determined by the bijective map

ωx:G/Gx → G·x, ωx(gGx) = g·x

which satisfies g1·ωx(g2Gx) = ωx(g1g2Gx) and is embedded in the commutative
diagram

G
g 7→g·x−−−→ X

quot

y xincl

G/Gx −−→
ωx

G·x.

(iii) If G is a compact group and X is a Hausdorff G-space, then all functions
in the diagram are continuous closed maps and ωx is a homeomorphism.

(iv) Let G be a compact group and X a Hausdorff G-space. Let dimG·x be
Lebesgue covering dimension if finite, and w(G·x) otherwise. Then G·x contains
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a cube homeomorphic to IdimG·x, I = [0, 1]. Moreover, if a homeomorphic copy of
Iℵ is contained in G·x, then ℵ ≤ dimG·x.

Proof. Exercise E10.2. ut

Exercise E10.2. Prove 10.4. Attention: part (iv) is a nontrivial task. This infor-
mation (and more) is contained in [185]. ut

A typical action of a compact group without stable isotropy (as defined in
10.5) is given by the action of the circle group G = S1 on the complex unit disc

X = D def
= {z ∈ C : |z| ≤ 1} by multiplication. Then

Gz =
{ {1} if z 6= 0,
G if z = 0.

The orbits are circles with the exception of the orbit of 0 which is singleton.
In view of 10.4 is readily understood why one says that two orbits G·x and

G·y have the same orbit type if Gx and Gy are conjugate. Indeed, if Gy = gGxg
−1

and if we write Ig(hGx) = ghGxg
−1 = ghg−1Gy, then we have a sequence of

homeomorphisms

G·x ω−1
x−−→ G/Gx

Ig−−→ G/Gy
ωy−−→ G·y.

Definitions 10.5. (i) We say that a group G acts freely on a set X if all isotropy
groups are singleton.

(ii) The group G is said to act with stable isotropy or to act with one single
orbit type if for two elements x, y ∈ X there is an element g ∈ G such that
Gx = gGyg

−1. If H is one of these isotropy groups we shall also say that G acts
with stable isotropy conjugate to H. ut

For a free action the functions g 7→ g·x:G → G·x are bijective for all x ∈ X.
A group acting freely obviously acts with stable isotropy. The latter concept is a
generalization of the former.

The function x 7→ Gx from the space X to the set of closed subgroups of G
has remarkable “continuity” properties as the following proposition shows. This
proposition is not used directly in later proofs. Its proof is technical but elementary.
Whatever is needed later in this direction will be provided independently.

Proposition 10.6 (Semicontinuity and Continuity of Isotropy). Assume that the
compact group G acts on the compact space X and let x ∈ X. Denote the filter of
neighborhoods of x by U . Then the following conclusions are valid.

(i)
⋂
U∈U

⋃
u∈U Gu ⊆ Gx. If G acts with stable isotropy, then equality holds.

(ii) For each identity neighborhood V of G there is a neighborhood U ∈ U of
x in X such that u ∈ U implies Gu ⊆ V Gx. If all isotropy groups are conjugate,
then there is a U ∈ U such that

(∀u ∈ U) Gu ⊆ V Gx and Gx ⊆ V Gu
holds.
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Proof. (i) For U ∈ U define

CU =
⋃
u∈U

Gu.

Note that {CU | U ∈ U} is a filter basis of compact sets. Assume g ∈
⋂
U∈U CU .

Then for each U ∈ U and each identity neighborhood V in G there is a u ∈ U and
gU,V ∈ Gu such that gU,V ∈ V −1g. Now gU,V ·u = u. Thus

g·u ∈ V gU,V ·u = V.u ⊆ V ·U.

Hence g·U ⊆ V ·U and since U and V were arbitrary, the continuity of the action
implies g·x = x; i.e. g ∈ Gx.

Now we assume that all isotropy groups are conjugate. For U ∈ U pick uU ∈ U .
By hypothesis, there is a gU ∈ G such that gUGxg

−1
U = GuU ⊆ CU . Define

ΓU
def
= {gU | U ∈ U}. Then {γhγ−1 | h ∈ Gx, γ ∈ ΓU} ⊆ CU ⊆ CV for U ⊆ V .

Since {ΓU | U ∈ U} is a filter basis of compact sets, there is an element g ∈
⋂
U∈U

in its intersection. We conclude gGxg
−1 ⊆ CU for all U ∈ U . Thus gGxg

−1 ⊆
C

def
=
⋂
U∈U CU ⊆ Gx by (i). From Lemma 1.40 we now derive Gx = gGxg

−1

which implies C = Gx, and this proves (i).
(ii) Let V be an open identity neighborhood of G, then V Gx is an open neigh-

borhood of Gx. We claim that (i) implies the existence of a U ∈ U such that
CU ⊆ V Gx which will prove the claim. Suppose that our claim is false. Then

KU
def
= CU \ V Gx is nonempty compact, and {KU | U ∈ U} is a filter basis of

compact sets. Its intersection therefore contains an element k. Then k /∈ V Gx and
k ∈

⋂
U∈U CU ⊆ Gx by (i). This is a contradiction.

Now we assume that all isotropy groups are conjugate. By hypothesis for each
u ∈ X there is a gu such that Gu = guGxg

−1
u . Thus in view of the first part of (ii),

in order to finish the proof of (ii) we have to find U ∈ U such that guGxg
−1
u ⊆ V Gx.

Suppose this is not the case. Then for each U ∈ U there is a uU ∈ U and a gU ∈ Gx
such that guU gUg

−1
uU /∈ V Gx. The net (guU , gU )U∈U in the compact space G×Gx

has a subnet which converges to an element (g, g′) ∈ G×Gx. (For the use of nets
see e.g. [230], p. 62ff.) Since V Gx is open, we conclude that

(∗) gg′g−1 /∈ V Gx.

But for U ⊆ V in U we have guU gUg
−1
uU ∈ GuU ⊆ CV . It follows that gg′g−1 ∈ CV

for all V ∈ U . Hence by (i) above,

(∗∗) gg′g−1 ∈
⋂
U∈U

CU ⊆ Gx.

But obviously (∗) and (∗∗) contradict each other. This completes the proof. ut

Proposition 10.7. Assume that the compact group G acts on the Hausdorff space

X with stable isotropy. For some x0 ∈ X write H
def
= Gx0

and let N denote the
normalizer N(H,G) = {g ∈ G | gHg−1 = H} of H in G. Set Y =

{
x ∈ X |

H·x = {x}
}

. Then the following conclusions hold:
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(i) Y is a closed subset of X invariant under the action of N .
(ii) For all y ∈ Y the relation Gy = H holds, and Y meets each orbit.

(iii) The compact group N/H acts on Y freely via nH∗y def
= n·x.

(iv) If y, g·y ∈ Y for g ∈ G, then g ∈ N . Further, Y ∩G·y = N ·y for all y ∈ Y .

Proof. (i) Since the subset Y of X is the intersection of the fixed point sets of
the family of maps x 7→ h·x for h ∈ H it is certainly closed in X. The group H is
normal in N . Thus n ∈ N , and h ∈ H imply n−1hn ∈ H, and if now y ∈ Y , then
h·(n·y) = n·(n−1hn)·y = n·y, since y is fixed by all elements of H by definition of
Y . Thus Y is invariant under the action of N

(ii) For all y ∈ Y we have H ⊆ Gy. Since all isotropy groups are conjugate,
Gy = g−1Hg for some g ∈ G. Thus gHg−1 ⊆ H. By Lemma 10.1, equality holds
and thus Gy = H for all y ∈ Y . If x ∈ X then by the stability of the isotropy there
is a g ∈ G such that Gg·x = gGxg

−1 = H. Hence g·x ∈ Y and thus Y meets every
orbit.

(iii) As a consequence of N ·Y = Y , the compact group N/H acts on Y via
nH∗x = n·x in such a fashion that nH is in the isotropy group (N/H)y at y iff
n·y = (nH)∗y = y iff n ∈ Gy = H; that is all isotropy groups of the action of
N/H on Y are trivial.

(iv) If y, g·y ∈ Y for some g ∈ G, then Gx = Gg·y = gHg−1. Since x ∈ Y we
have Gx = H. Hence g ∈ N . Since Y is invariant under N , clearly N ·y ⊆ Y ∩G·y.
Conversely, let x ∈ Y ∩G·y. Then x = g·y ∈ Y and thus g ∈ N by the preceding.
Hence x ∈ N ·y. ut

Equivariance and Cross Sections

Definitions 10.8. (i) If a group G acts on sets X and Y then a function f :X →
Y is called equivariant if f(gx) = gf(x) for all g ∈ G and x ∈ X.

(ii) Two actions of a topological groupG on topological spacesX, respectively,
Y , are called isomorphic if there is an equivariant homeomorphism f :X → Y . We
shall also call f an isomorphism of G-spaces in these circumstances. ut

Definitions 10.9. Assume that a compact group G acts on a Hausdorff space X.
A function σ:X/G → X is called a cross section if it is continuous and satis-
fies pG,X ◦ σ = idX/G. We say that the cross section passes through x ∈ X if

σ
(
pG,X(x)

)
= x. A subset S ⊆ X is called a cross section if it is closed and

X = G·S and (∀s ∈ S) S ∩G·s = {s}. ut

We note that two different things are given the same name. This use is unfor-
tunate, but it follows the tradition. (We observed a similar misnomer in the form
of a one parameter subgroup in a topological group (Definition 5.7) which is not a
“subgroup” in the usual sense, or in the form of a compact Lie algebra (Definition
6.1) which is not a compact space at all.)
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Notice that if the action of G on X has a cross section σ:X/G → X, then
for each g ∈ G the function ξ 7→ g·σ(ξ):X/G → X is likewise a cross section. In
particular, for each x ∈ X there is a cross section passing through x; indeed there
is a g ∈ G such that x = g·σ

(
pG,X(x)

)
.

The following theorem tells us that the two concepts of a cross section, at least
in the context of the action of a compact group are equivalent.

Definition 10.10. An action of a compact group G on a compact space X is called
trivial if there is a compact subgroup H of G and an equivariant homeomorphism
Ψ:G/H × X/G → X such that pG,X

(
Ψ(gH, ξ)

)
= ξ for all gH ∈ G/H and

ξ ∈ X/G. ut

A trivial action is always an action with stable isotropy.
Let S1 again denote the complex unit circle. The group G = {1,−1} acts on

X = S1 by multiplication (g, x) 7→ gx:G×X → X. This action is free (hence with
stable isotropy) but is not trivial.

The Cross Section Theorem

Theorem 10.11. Let the compact group G act on a Hausdorff space X. Con-
sider the following conditions.

(i) There is an equivariant continuous surjective function Φ:G × X/G → X
where the action on G × X/G is given by g·(g′, ξ) = (gg′, ξ) and where
Φ(g, ξ) ∈ ξ for all g ∈ G and ξ ∈ X/G.

(ii) There is a cross section σ:X/G→ X.

(iii) There is a cross section S ⊆ X.

(iv) The action is trivial.

(v) There is a closed subgroup H of G and there is a cross section S ⊆ X such
that Gs = H for all s ∈ S.

Then
(iv)⇔ (v) ⇒ (ii)⇔ (i) ⇒ (iii)

and if X is locally compact, then

(i)⇔ (ii)⇔ (iii).

Proof. Trivially (v) implies (i).
(iv)⇒(v) Assume (iv). By 10.10 we are given an equivariant homeomorphism

Ψ:G/H × X/G → X with Ψ(gH, ξ) ∈ ξ. The function σ:X/G → X, σ(ξ) =
Ψ(H, ξ) satisfies the requirements of (v).

(v)⇒(iv) The function Φ:G × X/G → X, Φ(g, ξ) = g·σ(ξ) is continuous.
Assume Φ(g1, ξ1) = Φ(g2, ξ2) implies ξ1 = p

(
g1·σ(ξ1)

)
= Φ(g1, ξ1) = Φ(g2, ξ2) =

p
(
g2·σ(ξ2)

)
= ξ2

def
= ξ. Then g1·σ(ξ) = g2·σ(ξ) implies g−1

2 g1 ∈ Gσ(ξ) = H.
Thus, if q:G → G/H is the quotient map given by q(g) = gH, the function Φ
factors through a unique bijective continuous function Ψ:G/H × X/G → X so
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that Φ
def
= Ψ ◦ (q × idX/G). Since Ψ(gH, ξ) = gσ(ξ) we have Ψ

(
g·(g′H, ξ)

)
=

Ψ(gg′H, ξ) = gg′·σ(ξ) = g·Ψ(g′H, ξ); i.e. Ψ is equivariant.
The projection pr2:G/H×X/G→ X/G is proper (see [33], p. 77, Corollaire 5).

Also, pr2 = pX,G ◦ ψ. Hence ψ is proper ([33], p. 73, Proposition 5d)) and thus
is closed ([33], p. 72, Proposition 1). Hence it is a homeomorphism. By Defini-
tion 10.10, (iv) follows.

(i)⇒(ii) If Φ:G×X/G→ X is an equivariant surjective continuous map, we
have a commutative diagram

G×X/G Φ−−→ X
prX/G

y ypG,X
X/G

ϕ−−→ X/G

with a continuous surjective map ϕ given by ϕ(ξ) = Φ(G×{ξ}). Set σ(ξ) = Φ(1, ξ).
Then G·σ(ξ) = G·Φ(1, ξ) = Φ(G× {ξ}) = ξ in view of the equivariance of Φ.

(ii)⇒(i) Define Φ:G×X/G→ G by Φ(g, ξ) = g·σ(ξ). Then Φ(g, ξ) ∈ G·σ(ξ) =
ξ and g·Φ(g′, ξ) = g·

(
g′·σ(ξ)

)
= gg′·σ(ξ) = Φ(gg′, ξ).

(ii)⇒(iii) Assume (ii); set S = σ(X/G). This set is a cross section.
Assume for the remainder of the proof that X is locally compact. Then X/G is a
locally compact Hausdorff space by 10.3(i), (iii).

(iii)⇒(ii) The restriction π
def
= p|S:S → X/G is continuous and bijective

by (iii). Define σ:X/G → X by σ(ξ) = π−1(ξ). Then the function σ satisfies
p ◦ σ = idX/G. If C is a compact neighborhood of G·x ∈ X/G, then Y = p−1(C)
is a compact G-space by 10.3(iv) and S ∩ Y is a compact cross section. Hence the
bijective continuous map π|(S ∩ Y ):S ∩ Y → C is a homeomorphism, and thus
ξ 7→ σ(ξ):C → S ∩ Y , being its inverse, is continuous. Since C is a neighborhood
of G·x, σ is continuous at G·x. Since G·x was an arbitrary element of X/G, σ is
continuous and thus is a cross section. ut

With the notation Y =
{
x ∈ X | H·x = {x}

}
of Proposition 10.7 we may

reformulate condition (v) as

(v′) The N(H,G)/H-space Y has a cross section. Thus under the hypotheses of
10.7, the G-space X is trivial if the N/H-space Y has a cross section.

In conditions (i), (ii), (iii) on isotropy nothing is assumed, while in conditions
(iv), (v) stable isotropy is built in; it is therefore no surprise that the five condi-
tions of Theorem 10.11 are not equivalent. However, we shall see that in general,
even if stable isotopy is guaranteed, the five conditions of Theorem 10.11 are not
equivalent. (see Example 10.17). The next section will shed additional light on the
question of equivalence of all five conditions.

Remark 10.12. Let the compact group G act on a Hausdorff space X. Then the
following conditions are equivalent:

(i) There is a cross section σ:X/G→ X.
(ii) There is a continuous retraction κ:X → X, κ2 = κ, such that κ(x) ∈ G·x.
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Proof. (i)⇒(ii) The function κ = σ ◦ pG,X satisfies the requirements.
(ii)⇒(i) For x, y ∈ X we have κ(x) = κ(y) iff there is a g ∈ G such that

y = g·x. Thus the canonical factorisation theorem for continuous functions yields
a continuous function σ:X/G→ X such that

X
κ−−→ X

pG,X

y ∥∥∥
X/G −−→

σ
X

commutes. Then σ is the required cross section. ut

Recall that an equivariant function ψ:X → Y of G-spaces induces a continuous
function ψ:X/G → Y/G, ψ(G·x) = G·ψ(x). We say that ψ is faithful on orbits,
if ψ|G.x:G·x → G·ψ(x) is injective for all x ∈ X. Notice that this map is auto-
matically surjective and thus bijective under these circumstances. If G is compact
then ψ|G·x is a homeomorphism.

Proposition 10.13. Let ψ:X → Y an equivariant function of G-spaces for a
topological group G. Then

(i) Gx ⊆ Gψ(x) and the following statements are equivalent:
(1) ψ|G·x:G·x→ G·ψ(x) is injective.
(2) Gx = Gψ(x).

(ii) If the action on Y is free then the action on X is free.
(iii) Assume that G is compact and that the equivariant continuous function

ψ:X → Y is faithful on orbits.
Assume firstly that X is locally compact and that τ :Y/G → Y is a cross sec-

tion. Then the function σ:X/G → X, σ(ξ) = (ψξ)
−1
(
σ
(
ψ(ξ)

))
is a cross section

satisfying (∗) ψ
(
σ(ξ)

)
= τ

(
ψ(ξ)

)
; i.e. the following diagram commutes:

X
ψ−−→ Y

σ

x xτ
X/G

ψ−−→ Y/G.

Assume secondly that ψ:X/G → Y/G has a cross section ψ∗, that Y is locally
compact and σ:X/G → X is a cross section. Then the function τ :Y/G → Y ,
τ = ψ ◦ σ ◦ ψ∗ is a cross section satisfying (∗) above.

(iv) Let G be a compact group acting on a locally compact Hausdorff space X
and let ψ:X → Y be an equivariant continuous map into a trivial G-space which
is faithful on orbits. Then X is a trivial G-space.

(v) Let G be a compact group acting on a locally compact Hausdorff space Y
and let ψ:X → Y be an equivariant surjective continuous map from a trivial G-
space which is faithful on orbits. Assume that ψ:X/G → Y/G has a continuous
cross section. Then Y is a trivial G-space.

Proof. (i) Let x ∈ Gx. Then g·ψ(x) = ψ(g·x) = ψ(x) and thus x ∈ Gψ(x).
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(1)⇒(2) Conversely, g ∈ Gψ(x) implies ψ(x) = g·psi(x) = ψ(g·x). Then (1)
implies g·x = x; i.e. g ∈ Gx. Thus (2) follows.

(2)⇒(1) Let ωx and ωψ(x) be defined as in 10.4, and define q:G/Gx →
G/Gψ(x) by q(gGx) = gGψ(x). Then the following diagram commutes:

G/Gx
ωx−−→ G·x

q

y yψ|Gx
G/Gψ(x) −−→

ωψ(x)

G·ψ(x) = ψ(G·x).

Thus ψ|Gx is injective iff q is injective, and that implies (2).
(ii) To say that the action on Y is free means that Gy = {1} for all y ∈ Y .

Then Gx ∈ Gψ(x) = {1} for all x ∈ X; i.e. the action on X is free.
(iii) The function is well defined; the identity (∗) and the relation σ(ξ) ∈ ξ

are consequences of the definition. We must show the continuity of σ. For this, for

each x ∈ X we show that for any net (ξj)j∈J converging to ξ
def
= G·x in X/G we

have σ(ξ) = limj∈J σ(ξj). Let C be a compact neighborhood of ξ ∈ X/G. Such
a neighborhood exists since X is locally compact by 10.3(i). Then X ′ = p−1

G,XC
is a compact neighborhood of G·x by 10.3(iv). Hence it suffices to show that any
relation x∗ = limj∈J σ(ξj) implies x∗ = σ(ξ). Now using (∗) and the continuity
of ψ, τ , and ψ′ we get ψ(x∗) = limj∈J ψ(σ(ξj)) = limj∈J τ

(
ψ′(ξj)

)
= τ

(
ψ′(ξ)

)
=

ψ(σ(ξ). Since ψ is injective on fibers this entails gH = f(b) and the continuity of
σ and thus assertion (iii) are proved.

(iv) follows from (iii) and the Cross Section Theorem 10.11.
(v) According to hypothesis let ψ∗:Y/G → X/G be a cross section for

ψ:X/G → Y/G. For any cross section σ:X/G → X define τ by ψ ◦ σ ◦ ψ∗ as
in (iii) above. Then τ is a cross section by (iii) above. Since X is a trivial G-space,
by the Cross Section Theorem 10.11 it has a cross section σ:X/G→ X such that
Gσ(ξ) = H for all ξ ∈ X/G. For such a cross section σ, Condition (i) above yields
Gτσ(η) = Gψ(σ(τ(η))) = Gσ(τ(η)) = H. Thus by the Cross Section Theorem 10.11
again, Y is trivial. ut

We observe in 10.13(iv) that something like a cross section for X/G→ Y/G is
necessary as the example in Exercise E10.3 shows.

Exercise E10.3. Verify the details of the following

Example. Let X be the 2-torus and S1-space (S1)2 with z·(z1, z2) = (zz1, z2)
and let the group Γ = {id, ε}, ε(z1, z2) = (−z1, z

−1
2 ) act on X. Then z·ε(z1, z2) =

z·(−z1, z
−1
2 ) = (−zz1, z

−1
2 ) = ε

(
z·(z1, z2)

)
. Thus the two actions commute, and

so the Klein bottle Y
def
= X/Γ is an S−1-space via z·(z1, z2)Γ = (zz1, z2)Γ. The

Γ-orbit map ψ:X → Y is equivariant and faithful on S1-orbits. But X is a trivial
S1 space and Y is not. The induced map ψ:X/S1 → Y/S1 is a double covering of
the circle. ut
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Triviality of an Action

A trivial action clearly allows cross sections and has stable isotropy. The converse
(in contrast to what is sometimes believed even in the literature) is not true. We
shall see examples in this section; they arise out of a canonical construct attached
to each action of a compact group with cross sections and stable isotropy and
which allows the formulation of a precise triviality criterion.

The first proposition formulates information which is attached canonically to
a pair (G,H) consisting of a topological group G and a closed subgroup H.

Proposition 10.14. Assume that G is a topological group. Let H be a closed
subgroup of G and N = N(H,G) its normalizer {g ∈ G | gHg−1 = H} in G.
Denote by P the set of all closed nonempty subsets of G and by C ⊆ P the class
{gHg−1 | g ∈ G} of conjugates of H. Then N(H,G) is closed and G acts on
G/N(H,G) by g·ξ = gg′N for ξ = g′N . The following conclusions hold.

(i) The group G acts on P by g·A def
= gAg−1 and C is an orbit of this action.

The isotropy group of this action at H is N , and the bijection β:G/N → C,
β(gN) = gHg−1 is a part of the commutative diagram

G
g 7→gHg−1

−−−−−→ P
quot

y xincl

G/N −−→
β

C.

(ii) The group Γ
def
= H o N with multiplication (h1, n1)(h2, n2) =

(h1n1h2n
−1
1 , n1n2) acts on the right of G × G via (g, x)·(h, n) = (gxhx−1, xn).

The orbit (g, x)·Γ of (g, x) is the set gxHx−1 × xN . The orbit space

X = X (G;H)
def
= (G×G)/Γ

is a Hausdorff space if H and N are compact. The group G acts on the left on
(G × G) via g·(g′, x) = (gg′, x), and this action commutes with that of Γ. Thus
the action of G on the left on G × G induces an action of G on X on the left as

follows. For g ∈ G and x = (g′, x)·Γ the set g·x def
= (gg′, x)·Γ is an element of X

depending only on g and x. Then the action (g,x) 7→ g·x : G × X → X has the
following properties.

(a) For x = (g, x)·Γ the isotropy group Gx is β(gxN) = gxH(gx)−1, and the
orbit G·x is {(g, x)·Γ | g ∈ G} and if G is compact, then it is homeomorphic
to G/(gx)H(gx)−1 and to G/H.

(b) The projection pr2:G×G→ G induces a continuous function p:X → G/N ,
p
(
(g, x)·Γ

)
= xN which is equivalent to the orbit map pG,X :X → X/G

in the sense that there is a homeomorphism θ:G/N → X/G, θ(xN) =
G·
(
(1, x)·Γ

)
= {(g, x)·Γ | g ∈ G} such that pG,X = θ ◦ p.

(c) The function γ:G/N → X , γ(xN) = (1, x)·Γ satisfies p ◦ γ = idG/N and
Gγ(xN) = β(xN) = xHx−1 for all x ∈ G.
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Proof. We note that g ∈ N iff gHg−1 ⊆ H and g−1Hg ∈ H iff (∀h ∈ H) ghg−1 ∈
H and g−1hg ∈ H. Since the functions g 7→ ghg−1, g−1hg:G→ G are continuous
and H is closed, it follows that N(H,G) is closed. The action of G on G/N is
clear. It is straightforward that G acts on P under conjugation, that the class of
conjugates of H is an orbit and that, by the very definition of the normalizer, the
isotropy group of this action at H is N(H,G). The function β is well defined and
the commutativity of the diagram is a consequence of 10.4(ii).

(ii) It is straightforward to verify that Γ acts on G×G on the right. An orbit
space of a compact group acting on a Hausdorff space is Hausdorff by 10.3(iii).
The verification that the left action of G on G × G by left multiplication on the
left factor commutes with the right action of Γ and induces a left action on X is
straightforward and is part of Exercise E10.4.

Property (a) An element g′ ∈ G is in the isotropy group Gx, x = (g, x)·Γ
of the action of G on X iff (g, x)·Γ = x = g′·x = (g′g, x)·Γ iff gxHx−1 × xN =
g′gxHx−1×xN iff gxHx−1g−1 = g′gxHx−1g−1 iff g′ ∈ (gx)H(gx)−1. Thus Gx =
(gx)H(gx)−1. Also, G·x = {(g′g, x)·Γ | g′ ∈ G} = {(g′, x)·Γ | g′ ∈ G}. By 10.4, if
G is compact, this orbit is homeomorphic to G/Gx and thus to G/(gx)H(gx)−1.
The automorphism y 7→ (gx)y(gx)−1:G→ G transforms G/H homeomorphically
to G/(gx)H(gx)−1.

Property (b) We have pr2

(
(g, x)Γ

)
= pr2(gxHx−1 × xN) = xN whence p is

well-defined as stated. Next we note that x1N = x2N implies (1, x1)·Γ = x1Hx
−1
1 ×

x1N = x2Hx
−1
2 ×x2N = (1, x2)·Γ. Thus θ is well defined. It has an inverse function

given by G·
(
(g, x)Γ

)
= {gxHx−1×xN | g ∈ G} 7→ xN and is therefore a bijection.

Since for x = (g′, x)Γ we have θ
(
p(x)

)
= θ(gN) = G·

(
(1, x) Γ

)
G·
(
(g′, x) Γ

)
= G·x.

Property (c) The verification of (c) is similarly straightforward. ut

Exercise E10.4. Fill in the straightforward details of the proof of 10.14 which
were omitted. ut

Definition 10.15. The G-space X (G,H) is called the G-space attached to the pair
(G,H). ut

We note from 10.14 that the G-space attached to (G,H) allows cross sections
and has stable isotropy. But is it trivial?

Theorem 10.16. (i) Let H be a closed subgroup of a compact group G and write

N
def
= N(H,G) for the normalizer of H in G. Let the topological group G act on

the compact product space

G/H ×G/N by g·(g′H, ξ) = (gg′H, ξ).

Then the following conditions are equivalent:
(1) There is an isomorphism of G-actions Φ:G/H × G/N → X . Notably, the

G-space X (G,H) is trivial.
(2) There is a continuous cross section σ:G/N → X such that Gσ(ξ) = H for

all ξ ∈ G/N .
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(3) There is continuous cross section ρ:G/N → G/H for the quotient map
π:G/H → G/N , π(gH) = gN ; i.e. ρ(ξ)N = ξ.

Each of the following conditions is sufficient for Condition (1) to hold:
(4) H is normal in G.
(5) H is its own normalizer.
(6) G is abelian.

(ii) Assume that Ω is a compact neighborhood of N in G/N and that ρ: Ω →
G/N is a continuous function such that ρ(ξ)N = ξ for ξ ∈ Ω. Then the G-space

XΩ(G,H)
def
= p−1

G,X (G,X)(Ω)

is trivial.

Proof. (i) The equivalence (1)⇔(2) follows from Theorem 10.11.
(2)⇒(3) We have two cross sections γ, σ:G/N → X . Thus for each ξ ∈ G/N

there is an element g ∈ G such that g·σ(ξ) = γ(ξ). If g′ ∈ G also satisfies g′·σ(ξ) =
γ(ξ), then g−1g′·σ(ξ) = σ(ξ), i.e. g−1g′ ∈ Gσ(ξ) = H; i.e. g′ ∈ gH. We set
ρ(ξ) = gH ∈ G/H. Since gHg−1 = gGσ(ξ)g

−1 = Gg·σ(ξ) = Gγ(ξ). On the other
hand, if ξ = xN , then γ(ξ) = (1, x)·Γ by (c), and then Gγ(ξ) = xHx−1 by (a). Thus

gHg−1 = xHx−1 and therefore x−1g ∈ N . Hence π
(
ρ(ξ)

)
= π(gH) = gN = xN =

ξ. Thus ρ is a cross section. The set {(ξ, g) ∈ G/N×G | g·σ(ξ) = γ(ξ)} is closed in
G×G/N by the continuity of all functions involved. By the compactness of G it
is compact. The group H acts on the right on G/N ×G by (ξ, g)·h = (ξ, gh). The
orbit space of this action is G/N×G/H and the subset {(ξ, gH) | g·σ(ξ) = γ(ξ)} is
compact as the continuous image of a compact set. However this set is the graph of
ρ:G/N → G/H. Since G/H is compact, the Closed Graph Theorem for Compact
Spaces E5.29 shows that ρ is continuous.
(3)⇒(1) This is a special case of Part (ii) of the theorem: take Ω = G/N .

(4)⇒(3) If (4) is satisfied, then N(H,G) = G and G/N(H,G) is singleton.
(5)⇒(3) If (5) is satisfied, then G/H → G/N(H,G) is the identity map.
(6)⇒(4) If G is abelian, the H is trivially normal.
(ii) The cross section ρ: Ω → G/H allows us to pick for each x ∈ G with

xN ∈ Ω an element τ(x) ∈ G such that τ(x)N = ρ(xN); since ρ is a cross section,
τ(x)N = xN ; i.e. τ(x) = xε(x) for some ε(x) ∈ N . (The functions ε:G→ N and
τ :G→ G determine each other, and neither exhibits any pleasant features at this
stage.) Note that

(∗) τ(x)Hτ(x)−1 = xε(x)Hε(x)−1x−1 = xHx−1.

We set U
def
= {x ∈ G | xN ∈ Ω}; then G× U is Γ-invariant and we define

ϕ:G×U → XΩ
def
= (G×U)/Γ, ϕ(g, x) = gτ(x)−1xHx−1×xN = (gτ(x)−1, x)·Γ.

We claim that for (h, n) ∈ H×N we have ϕ(gh, xn) = ϕ(g, x). Indeed, ϕ(gh, xn) =
ghτ(xn)−1(xn)H(xn)−1 × xnN . Then xnN = xN and (xn)H(xn)−1 = xHx−1

since n is in the normalizer of H.
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Also τ(xn)H = ρ(xnN) = ρ(xN) = τ(x)H, and thus there is some k ∈ H
such that τ(xn) = τ(x)k. Then ghτ(xn)−1(xn)H(xn)−1 = ghk−1τ(x)−1·xHx−1 =
gτ(x)−1(τ(x)hk−1τ(x)−1)·xHx−1 = gτ(x)−1·xHx−1 by (∗). This proves the claim.
Thus there is a well-defined function

Φ: GH × Ω→ XΩ, Φ(gH, xN) = (gτ(x)−1, x)·Γ = gτ(x)−1xHx−1 × xN

such that the following diagram is commutative.

G× U ϕ−−→ XΩ ⊆ X
quot

y ∥∥∥
G
H × Ω −−→

Φ
XΩ ⊆ X .

We consider an element h ∈ H and compute gxhx−1ρ(xN) = gxhx−1τ(x)H =
gxhx−1xε(x)H = gxhHε(x) = gxHε(x) = gxε(x)H = gτ(x)H = gρ(xN). There-
fore we can define a function Ψ:XΩ → G

H × Ω by Ψ
(
(g, x)·Γ

)
= Ψ(gxHx−1 ×

xN) = (gρ(xN), xN). We note ΦΨ((g.x)·Γ = Φ(gρ(xN), xN) = Φ(gτ(x)H,xN) =(
(gτ(x))τ(x)−1, x)·Γ = (g, x)·Γ. Also,

ΨΦ(gH, xN) = Ψ
(
gτ(x)−1, x)·Γ

)
=
(
(gτ(x)−1)ρ(xN), xN

)
=
(
(gτ(x)−1)τ(x)H,xN) = (gH, xN).

Hence Φ and Ψ are inverses of each other. The function ψ:G × Ω → G
H × Ω,

ψ(g, ξ) = (gρ(ξ), ξ) is continuous by the continuity of the cross section ρ. The
commutativity of the diagram

G× Ω
ψ−−→ G

H × Ω

quot

y ∥∥∥
G
H × Ω −−→

Ψ
X

shows the continuity of Ψ. Then the graph of Ψ is closed and thus the graph of
Φ is closed. Hence Φ is continuous by the Closed Graph Theorem for Compact
Spaces E5.29.

Since

g·Φ(g′H,xN) = g·
(
(g′τ(x)−1, x)·Γ

)
= (gg′τ(x)−1, xN)·Γ

= Φ(gg′H,xN) = Φ
(
g·(g′H,xN)

)
,

the homeomorphism Φ is equivariant. ut

Example 10.17. Let G be a compact connected nonabelian Lie group and T a

maximal torus. Let N
def
= N(T,G) be the normalizer of T in G; then W(T,G) =

N/T is the Weyl group (cf. 6.22), a nontrivial finite group. In particular, π:G/T →
G/N is a covering map with W(T,G) as group of covering transformations (see
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Appendix 2, A2.17). The simplest example is

G = SO(3), T =


 cos t − sin t 0

sin t cos t 0
0 0 1

∣∣∣∣∣∣ t ∈ R

 N = T ∪ diag(1,−1,−1)T.

(Cf. Example 6.10.) Here the quotient map G/T → G/N is a covering map whose
Poincaré group (see A2.17) W(T,G) = N/T operates simply transitively on the
fibers. It therefore cannot have a cross section (cf. A2.9). In the example of G =
SO(3) the space G/T may be identified with the 2-sphere S2 ⊆ R3, the boundary
of the unit ball in euclidean 3-space. Then G/N becomes identified with the space
S2/{1,−1} obtained by identifying antipodal points, i.e. with the real projective
plane. Thus G/H → G/N is a double covering in this case.

Now let X = X (G,T ) be the G-space attached to the pair (G,T ). This G-space
has the following properties:

(i) The orbit space X/G is homeomorphic to G/N .
(ii) The isotropy groups range through all conjugates of T , i.e. through all max-

imal tori.
(iii) There is a continuous cross section X/G→ X .
(iv) The action of G on X is not trivial, i.e. is not isomorphic to the action of G

on G/T ×G/N by g·(g′T, xN) = (gg′T, xN). ut

Thus there are compact G-spaces which allow cross sections and have stable
isotropy but which nevertheless are not trivial.

We now consider a compact group G acting on a Hausdorff space X with a cross
section σ:X/G → X and with stable isotropy. We set κ:X → X, κ = σ ◦ pG,X
and S

def
= κ(X). For some s0 ∈ S we set H = Gs0 . Our aim is to find a useful

connection between the given G-space X and the G-space X (G,H) attached to
(G,H). Since the isotropy is stable, for each s ∈ S there is a g ∈ G such that
Gs = gHg−1. The Axiom of Choice secures a function g(·):S → G such that

(∀s ∈ S) Gs = g(s)Gg(s)−1.

Define N = N(H,G) to be the normalizer of H in G. Then n ∈ N implies

(g(s)n)H(g(s)n)−1 = g(s)Hg(s)−1 = Gs. The coset µ(s)
def
= g(s)N ∈ G/N is

then determined independently of the choice of g and thus determines a function
µ:S → G/N . We define the function ν:X/G → N/H by ν(G·s) = g(s)N = µ(s),
s ∈ S. Then ν(G.x) = µ

(
σ(G·x)

)
.

The canonical bijection β:G/N → C of 10.14(ii) defines a unique compact
topology on C = {gHg−1 | g ∈ G} such that β is a homeomorphism.

Lemma 10.18. (i) The function s 7→ Gs:S → C is continuous.
(ii) µ:S → G/N is continuous.
(iii) ν:X/G→ G/N is continuous.
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Proof. (i) Let U be a neighborhood of g0Hg
−1
0 ∈ C. We claim that there is an

open identity neighborhood V in G such that the relation gHg−1 ⊆ V g0Hg
−1
0

implies gHg−1 ∈ U . By definition of the topology on C we may assume that U
is of the form β(g0WN/N) = {g0wHw

−1g−1
0 | w ∈ W} with an open identity

neighborhood W of G. Then gHg−1 ∈ U means exactly that there is a w ∈ W
such that (g−1

0 g)H(g−1
0 g)−1 = wHw−1 i.e. g−1

0 g ∈ WN . Suppose the claim is
false. By 1.12 there is a basis of identity neighborhoods V which are invariant
under inner automorphisms. Thus for every invariant identity neighborhood V
there is a gV ∈ G such that gVHg

−1
V ⊆ V g0Hg

−1
0 but g−1

0 gV /∈ WN . Since V is
invariant the first of these two properties is equivalent to (g−1

0 g)H(g−1
0 g)−1 ⊆ V H.

The net (g−1
0 gU )U∈U has a convergent subnet in the compact space G. Denote by

s ∈ G its limit. Since H is compact, V H is closed, and thus sHs−1 ⊆ V H,
for V ∈ N where N denotes the filter of identity neighborhoods of H. Thus
sHs−1 ⊆

⋂
V ∈N V H = H. Then Lemma 6.62 shows that β(sN) = sHs−1 = H.

On the other hand, since WN is open, we have s /∈ WN . Then sN /∈ WN/N
and therefore H = β(sN) /∈ β(WN/N) =

⋃
w∈W wHw−1, a contradiction which

proves the claim.
(ii) Since β

(
µ(s)

)
= Gs and β:G/N → C is a homeomorphism assertion (ii)

is a consequence of (i).
(iii) This is an immediate consequence of (ii) since s 7→ G·s:S → X/G and

ξ 7→ σ(ξ):X/G→ S are inverse homeomorphisms. ut

In the following we shall identify G/N with the orbit space X (G,H)/G as in
10.14(b). Now we define γ:G× S → G×G by γ(g, s) =

(
g, g(s)

)
and θ:G× S →

X (G,H) = G×G
Γ by

θ(g, s) =
(
g, g(s)

)
Γ = gg(s)Hg(s)−1 × g(s)N = gGs × µ(s).

If we set ϕ:G × S → X, ϕ(g, s) = g·s, then ϕ(g1, s1) = ϕ(g2, s2) means g1·s1 =

g2·s2, whence s1 = σ
(
pX,G(g1.s1)

)
= σ

(
pX,G(g2.s2)

)
= s2

def
= s and g−1

2 g1·s = s,

i.e. g−1
2 g1 ∈ Gs, equivalently g1Gs = g2G2. Hence θ(g1, s1) = g1Gs × µ(s) =

g2Gs × µ(s) = θ(g2, s2). Therefore, there is a unique function M :X → X (G,H)
such that M(g·s) = (g, g(s))·Γ = gGs × µ(s) (unambiguously) and that

G× S γ−−→ G×G
ϕ

y ypG,X(G,H)

X −−→
M

X (G,H)

commutes. In this situation we will apply the following lemma:

Lemma 10.19. Assume that A, B, C are topological spaces and that the function
f :A → C is the composition f = q ◦ γ of a function γ:A → B and a continuous
function q:B → C and assume that the following hypotheses are satisfied:

(a) B is compact,
(b) C is Hausdorff, and
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(c) for each net (xj)j∈J in A converging to x and each cluster point y of the net(
γ(xj)

)
j∈J the relation q(y) = f(x) holds.

Then f is continuous.

Proof. By the Closed Graph Theorem for Compact Spaces E5.29 it suffices to show

that the graph F
def
= {

(
x, f(x)

)
| x ∈ A} is closed in A× C. Let (x, z) ∈ F . Then

there is a net (xj)j∈J in A such that (x, z) = limj∈J
(
xj , f(xj)

)
. By (b) there is a

subnet (xjk)k∈K such that y = limk∈K γ(xjk) exists. Now (c) implies q(y) = f(x).
But using the continuity of q we also get z = limk∈K f(xjk) = q

(
limk∈K γ(xjk)

)
=

q(y). Hence z = f(x) and thus (x, z) ∈ F . ut

Lemma 10.20. θ:G× S → X (G,H) is continuous.

Proof. We want to apply Lemma 10.18 with A = G × S, B = G × G, C =
X (G,H) and f = θ, q = pX (G,H). Then (a) and (b) are satisfied and so we

must verify (c) in order to complete the proof. Let
(
(gj , sj)

)
j∈J be a net with

limit (g, s) in G × S and assume that there is a subnet
(
(gjk , sjk)

)
k∈K such

that (g′, g′′)
def
= limk∈K

(
gjk , g(sjk)

)
exists in G × G. Then clearly g′ = g, and

g(s)N = µ(s) = limk∈K µ(sjk) = limk∈K g(sjk)N = g′′N by the continuity
of µ (see 10.17(ii)). Then g(s)Hg(s)−1 = g′′H(g′′)−1 as N = N(H,G). Thus
pX (G,H)(g

′, g′′) = g′g′′H(g′′)−1×g′′N = gg(s)Hg(s)−1×g(s)NpX (G,H)

(
g, g(s)

)
=

θ(g, s). ut

For proper maps we refer e.g. to [33], p. 72ff.

Lemma 10.21. (i) ϕ:G× S → X is proper, hence closed.
(ii) M :X → X (G,H) is continuous.

Proof. (i) The composition κ ◦ ϕ:G × S → S agrees with the projection pr2:
G × S → S onto the second factor which is proper ([33], p. 77, Corollaire 5).
Hence ϕ is proper ([33], p. 73, Proposition 5d)) and thus is closed ([33], p. 72,
Proposition 1).

(ii) Let F be a closed subset of X (G,H). Then M−1(F ) = ϕ
(
θ−1(F )

)
since ϕ

is surjective. As θ is continuous, θ−1(F ) is closed, and since ϕ is closed, ϕ
(
θ−1(F )

)
is closed. ut

Lemma 10.22. The function M :X → X (G,H) is equivariant and is faithful on
orbits.

Proof. Let x ∈ X. Then x = g0·s with sκ(x) and g ∈ G entails g·x = gg0·x. Now
M(g·x) =

(
gg0, g(s)

)
·Γ = g·

[(
g0, g(s)

)
·Γ
]
g·M(x). Thus M is equivariant.

In order to show that M is faithful on G·x, by Proposition 10.13 we need
to show that Gx = GM(x). Let again x = g0·s. Then M(x) =

(
g0, g(s)

)
·Γ.
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By 10.13(a), GM(x) = g0g(s)Hg(s)−1g−1
0 = g0Gsg

−1
0 = Gg0·s = Gx in view

of 10.4(i). ut

We summarize the preceding results as follows:

Theorem 10.23 (The Test Morphism Theorem for G-Spaces). Let the compact
group G act on a Hausdorff space X with a cross section σ:X/G → X and with
all isotropy groups conjugate to H. Then there is an equivariant continuous func-
tion M :X → X (G,H) into the G-space attached to (G,H) which is faithful on
orbits. There is a continuous function ν:X/G → N(H,G)/H such that, with the
usual identification of the orbit space of X (G,H)/G with G/N(H,G), ν(G·s) =
g(s)N(H,G), s ∈ σ(X/G) and g(s) ∈ G any element such that Gs = g(s)Hg(s)−1.
Also, M(g·s) = (g, g(s))·Γ = gGs×g(s)N(H,G), unambiguously, and the following
diagram commutes

X
M−−→ X (G,H)

pG,X

y ypG,X(G,H)

X/G −−→
ν

G/N(H,G). ut

Notice that the right column of the diagram is determined by (G,H) alone. It
should be remembered that we constructed M and ν using a fixed cross section of
the G-space X.

Definition 10.24. Using the notation of Theorem 10.23 we define B(G,X) =
ν(X/G) ⊆ G/N(H,G) and E(G,X) = M(X). Let p:E(G,X) → B(G,X) be the
restriction of the orbit map pX (G,H):X (G,H)→ G/N(H,G) (with the identifica-
tion of the orbit space of X (G,H) with G/N(H,G) which we are using by 10.13(b).
We say that the sub-G-space E(G,X) of X (G,H) is the test G-space attached to
X (and the given cross section σ). ut

We are now ready for the second major result on cross sections and stable
isotropy.

Triviality Theorem for Actions

Theorem 10.25. Let G be a compact group and X a locally compact G-space
and assume that X admits a cross section σ:X/G → G and has stable isotropy,
i.e. each isotropy group Gx is conjugate to a closed subgroup H of G. Consider the
following conditions:

(i) X is a trivial G-space.
(ii) The test G-space E(G,X) attached to X and σ (see Definition 10.24) is

trivial.
Then (ii)⇒(i), and if the corestriction X/G→ B(G,X) of the function ν:X/G→
G/N(H,G) (see Theorem 10.23 and Definition 10.24) has a cross section, then
both conditions are equivalent.
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Proof. The theorem is a consequence of Theorem 10.23 and Proposition 10.13(iv)
and (v). ut

Corollary 10.26. Let G be a compact group and X a locally compact G-space
and assume that X admits a cross section and has stable isotropy with isotropy
groups conjugate to H ≤ G. Then X is trivial provided that the quotient map
G/H → G/N(H,G), gH 7→ gN(H,G) has a cross section. This is the case when H
is normal in G, for example if G is abelian, or if H agrees with its own normalizer,
or if the action is free.

Proof. Since E(G,X) is a sub-G-space of the G-space X (G,H) by Definition 10.24,
the G-space E(G,H) is trivial if X (G,H) is trivial. By Theorem 10.16 this is the
case if G/H → G/N(H,G) has a cross section. Sufficient conditions for this to
happen were also listed in 10.16. If the action is free, then H = {1}, and H, in
particular, is normal in G. ut

In order to prove an important local version of the Triviality Theorem for
Actions, we need a lemma. Recall that a subgroup N of a topological group has a
tubular neighborhood if there is subset C of G such that (c, n) 7→ cn : C×N → CN

is a homeomorphism onto a neighborhood of N in G. We set ΩC
def
= CN/N ⊆ G/N .

The Tubular Neighborhood Theorem for Subgroups of Linear Lie Groups 5.33(ii)
says that all closed subgroups of a linear Lie group have a tubular neighborhood.

Lemma 10.27. Let G be a topological group and assume that H is a closed sub-

group whose normalizer N
def
= N(H,G) has a tubular neighborhood in G. Then

the function ρ: ΩC → G/H, ρ(cN) = cH, c ∈ C is a well defined continuous local
cross section for G/H → G/N ; i.e. ρ satisfies ρ(cN) ⊆ cN .

Proof. We verify that ρ is a well-defined continuous map; it is then clear that it
is a local cross section since ρ(cN) ⊆ cN is trivial. Let µ:C × H → CH denote
the homeomorphism given by µ(c, h) = ch and p:C × H → C, p(c, h) = c. The
continuous function g 7→ p

(
µ−1(g)

)
:CN → C identifies elements c1n1 and c2n2

in CN if and only if c1 = c2 and thus factors uniquely through the quotient map
CN → Ω with a unique continuous function π: Ω→ C, π(cN) = c.

CN
p◦µ−1

−−−→ C

quot

y ∥∥∥
Ω = CN

N −−→
π

C.

Let q:C → G/H be the restriction of the quotient map g 7→ gH:G → G/H.
Obviously, q is continuous. Now ρ: Ω → G/H is the composition q ◦ π and is
therefore well-defined and continuous. ut
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We shall say that an action admits local cross sections if there is an open cover
U of X/G such that for each U ∈ U there is a continuous function σ:U → X such
that pG,X

(
σ(ξ)

)
= ξ for all ξ ∈ U .

Local Triviality Theorem for Actions

Theorem 10.28. Let G be a compact group and X a locally compact G-space and
assume that X admits local cross sections and has stable isotropy conjugate to H.
Assume that the normalizer N(H,G) of H in G has a tubular neighborhood in G.
Then for each x ∈ X the orbit G·x has an invariant neighborhood Y such that Y
is a trivial G-space.

Proof. Let x ∈ X. There is an open neighborhood U of G·x in X/G such that

the G-space Y
def
= p−1

G,X(U) is an open locally compact neighborhood of G·x and
has a cross section. For the proof it is therefore no loss of generality if we now
assume that X has a cross section σ:X/G→ X. The isotropy groups of points in
the orbit G·x range through the conjugacy class of H; we may and shall assume
that Gx = H. Let σ:X/G → X be a cross section. Then there is a g ∈ G such
that g·σ(G·x) = x. Then ξ 7→ g·σ(ξ):X/G→ X is a cross section passing through
x. We may and shall now assume that σ is a cross section of X with Gσ(G·x) =
H. We now consider the G-space X (G,H) attached to the pair (G,H) and the

continuous functions M :X → X (G,X) and ν:X/G → G/N , N
def
= N(H,G) of

Theorem 10.23 constructed with the use of σ. We note that with our choice of σ
we have ν(G·) = N ∈ G/N . By Lemma 10.27 we have a neighborhood ΩC of N
in G/N and a continuous function ρ: ΩC : Ω → G/N such that ρ(gN) ∈ gN . Let
Ω be a compact neighborhood of N in G/N which is contained in ΩC and set
X (G,H)Ω = p−1

G,X (G,H)(Ω) (recall the identification of the orbit space of X (G,H)

with G/N !). By Theorem 10.16(iii), the G-space X (G,H)Ω is trivial. Now W
def
=

ν−1(Ω) is a neighborhood of G.x in X/G. Set Y = p−1
G,X(W ). Then Y is a sub-

G-space of X which is a neighborhood of Y . Note that σ|W :W → Y is a cross
section and that the test G-space E(G, Y ) attached to Y and the cross section
σ|W is E(G, Y )∩E(G,X)∩X (G,H)Ω and thus is trivial. Hence by the Triviality
Theorem for Actions 10.25, the G-space Y is trivial. ut

This is the place to call on some terminology on fiber bundles.

Definitions 10.29. Consider a function p:E → B between topological spaces and
a topological space F .

(i) The map p:E → B is called a fiber bundle with fiber F if there is an open
cover {Uj | j ∈ J} of B such that for each j ∈ J there is a homeomorphism
hj :F × Uj → p−1(Uj) such that p

(
hj(f, u)

)
= u for all f ∈ F , u ∈ Uj .

(ii) Assume that, in addition, a topological group G acts on E and that F =
G/H for some closed subgroup H of G. Then p:E → B is called a principal fiber
bundle with fiber F if the sets p−1(b), b ∈ B are the orbits of the action and if, for
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the trivial action of G on F × Uj , the homeomorphism hj :F × Uj → p−1(U) may
be chosen equivariant. ut

For a discrete space F , Definitions 10.29(i) agrees with our definition of a
covering map in Appendix 2, A2.1. More information is to be found e.g. in [338],
p. 90ff.)

Corollary 10.30. Under the hypotheses of the Local Triviality Theorem for Ac-
tions 10.28 the orbit map pG,X :X → X/G is a principal fiber bundle with fiber
G/H. ut

The action of the Poincaré group Γ of a space X (see A2.17) possessing a

universal covering p̃: X̃ → X makes p̃ into a principal fiber bundle with fiber Γ in
the sense of 10.29.

Quotient Actions, Totally Disconnected G-Spaces

Proposition 10.31 (Passage to Quotients). Let N be a compact normal subgroup
of the compact group G and assume that G acts on a Hausdorff space X. Then N
acts on X and G/N acts on X/N by (gN)∗(N ·x) = N ·gx. Denote these actions
by α:G × X → X and β:G/N × X/N → X/N , the quotient homomorphism by
q:G→ G/N , and the orbit map of the action of N on X by π:X → X/N . Define
ι:X/G→ (X/N)/(G/N) by ι(G.x) = (G/N)∗(N ·x) = G·x/N . Then the following
conclusions hold.

(i) ι is a homeomorphism and the following diagrams are commutative.

G×X α−−→ X X
orbit map−−−−−→ X/G

q×π
y yπ π

y yι
G/N ×X/N −−→

β
X/N, X/N −−−−−→

orbit map
(X/N)/(G/N).

(ii) The isotropy groups satisfy the relation (G/N)N ·x = NGx/N for all x ∈ X.
(iii) If G acts freely, respectively, with stable isotropy on X, then G/N acts

freely, respectively with stable isotropy on X/N .

Proof. Exercise E10.5. ut

Exercise E10.5. Prove Proposition 10.31.

[Hint. (i) Verify the straightforward steps that are necessary. First show that the
element (gN)·(N ·x) = N ·gx is well defined, using normality and thus gN = Ng.
Verify that this defines an action and that the left diagram commutes. Check
continuity of the action. Verify the commutativity of the left hand diagram and
that ι is a homeomorphism.
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(ii) For x ∈ X the orbit G·x is G-equivariantly homeomorphic to the homo-
geneous space G/Gx via gGx 7→ g·x. In particular, this homeomorphism is N -
equivariant and thus induces a homeomorphism of orbit spaces γ: (G/Gx)/N →
(G·x)/N . Now (G/Gx)/N = {NgGx | g ∈ G} = (G/Gx)/(NGx/Gx) is homeo-
morphic to G/NGx and then to (G/N)/(NGx/N) in a G/N -equivariant fashion.
Also (G·x)/N is homeomorphic to (G/N)∗(N ·x) in a G/N -equivariant fashion
via δ: (G·x)/N → (G/N)∗(N ·x), δ

(
N ·(g·x)

)
= δ(Ng·x) = (gN)∗(N ·x). On the

other hand, this orbit is G/N -equivariantly homeomorphic to (G/N)/(G/N)N ·x.
Conclude (G/N)N ·x = NGx/N . Derive (iii) from (ii).] ut

Proposition 10.32. Assume that G is a compact group acting on a locally compact
totally disconnected space. Then the orbit space X/G is totally disconnected.

Proof. Exercise E10.6. ut

Exercise E10.6. Prove 10.32.

[Hint. Let V be an open neighborhood of G·x in X/G find a compact open neigh-
borhood U of x in X such that pG,X(U) ⊆ V . Note that G·U is open and compact
and that, therefore, pG,X(U) is an open and closed neighborhood of G.x in X/G.]

ut

This concludes the present section and that portion of the chapter which is
elementary in the sense that it uses only point set topology as prerequisites. In
the following sections Lie group theory will be applied.

Compact Lie Groups Acting on Locally Compact Spaces

In Theorem 6.7 we have observed that the quotient of a compact Lie group is
a compact Lie group. In itself, this was not simple even though we were able to
derive this at an early stage in this chapter. We will also use again the Tubular
Neighborhood Theorem for Subgroups of Linear Lie Groups 5.33(ii). However, this
information now allows us to complete a discussion of the action of compact groups
on topological spaces which we started at the end of Chapter I. In the following
result we also need the Tietze Extension Theorem which says that for a normal
Hausdorff space X, and a continuous function ϕ:Y → Rn for a closed subspace
Y of X there exists a continuous extension ϕ̃:X → Rn ([101], p. 69, 2.1.8, [230],
p. 115, p. 242).

Let us note that as an immediate consequence we obtain the following fact.

Extension Lemma. Let C be a compact subspace of a locally compact Hausdorff
space X and ϕ:C → Rn a continuous function. Then there exists a continuous
extension ϕ̃:X → Rn.
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Proof. Recall that the one point compactification X ∪ {∞} of a locally com-
pact Hausdorff space is Hausdorff. Thus it is a normal space, and thus the Tietze
Extension Theorem yields an extension ϕ̃:X ∪ {∞} → Rn, and the restriction
ϕ̃|X:X → Rn is the required extension. ut

We recall that for the action of a compact group G on a space X we denote by
p = pG,X :X → X/G the orbit projection given by p(x) = G·x. For the definition
of a trivial action check Definitions 10.10.

Proposition 10.33. (The Tietze–Gleason Extension Theorem). Let G be a com-
pact Lie group. Assume that G acts on a locally compact space X and assume
that for some x ∈ X the isotropy group Gx = {g ∈ G | g·x = x} at x is trivial; i.e.
Gx = {1}. Then there is a compact neighborhood U of p(x), p = pG,X , such that

the action of G on X ′
def
= p−1(U) is trivial.

Proof. By 2.40 we may assume that there is a finite dimensional real Banach
space such that the Banach algebra A = Hom(V, V ) containing G in its group of
units. Since Gx = {1}, the map g 7→ g·x:G → G·x yields a continuous function
ϕ:G·x→ A mapping G·x homeomorphically onto G. The Extension Lemma gives
us a continuous extension Φ:X → A. Now we define

Ψ:X → A, Ψ(x) =

∫
G

gΦ(g−1.x) dg

with Haar measure dg on G and the integral for vector valued functions. (Since
A is finite dimensional this amounts to a simple extension of scalar integration.
But we do have a general theory in Chapter 3, see 3.30, 3.31. In fact, Ψ is
obtained by applying to Φ the averaging operator, see 3.32ff.) Now g′Ψ(x) =∫
G
g′gΦ

(
(g′g)−1·(g′·x)

)
dg = Ψ(g′·x) by the invariance of Haar integral. Hence Ψ

is equivariant. By the Tubular Neighborhood Theorem for Subgroups 5.33(ii) there
is a compact neighborhood A′ of G in A−1 which satisfies GA′ = A′ and on which
G acts trivially. Let X ′ = Ψ−1(A′). Then X ′ is a G-invariant neighborhood of G·x
which, by Lemma 10.3(iv), is compact. By Proposition 10.13(iv), the action of G
on X ′ is trivial. ut

In this proof, once more, the averaging operator (see 3.32ff.) turns up as an
extremely useful device.

We now are ready for a core theorem on the action of compact Lie groups.
Recall from Definitions 10.5(ii) that G is said to act with stable isotropy if all
isotropy groups are conjugate.

The Local Cross Section Theorem for Compact Lie Group Actions

Theorem 10.34. Let G be a compact Lie group acting on a locally compact
space X with stable isotropy conjugate to H ≤ G. Then every point of X has a
G-invariant neighborhood on which G acts trivially. In particular, X is a principal
fiber bundle with fiber G/H.
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Proof. Let x ∈ X, set H = Gx and consider N
def
= N(H,G). Define Y =

{
y ∈ X |

H·y = {y}
}

. Then Y is an N -invariant closed, hence locally compact subspace
of X containing x and meets each orbit by 6.72(i), (ii). As a closed subgroup of
G, the group N is a compact Lie group. The factor group N/H of a compact
Lie group is a compact Lie group by Theorem 6.7. By 10.7(iii) the compact Lie
group N/H acts freely on Y . Abbreviate pG,X by p. Then by the Tietze–Gleason
Extension Theorem 10.33 there is a compact neighborhood U of p(x) in X/G,
such that N/H acts trivially on p−1(U) ∩ Y . By Lemma 10.3(iv) the G-space
p−1(U) ⊆ X is compact and thus is a compact G-space with a cross section. Now
the Local Triviality Theorem for Actions 10.28 shows that the action of G is trivial
on some compact invariant neighborhood Y of the orbit G·x in p−1(U). Then Y is
an invariant neighborhood of G·x in X and a trivial G-space and thus the theorem
is proved. ut

Triviality Theorems for Compact Group Actions

We now utilize the information that compact groups are projective limits of com-
pact Lie groups in order to secure global cross sections for compact group actions
under special assumptions on the orbit space.

Global Triviality Theorem for Totally Disconnected Base Spaces

Theorem 10.35. Let G be a compact group acting on a compact space X with
stable isotropy such that the orbit space X/G is totally disconnected; i.e. that every
connected component of X is contained in an orbit. Then the action is trivial.

Proof. By Theorem 10.11 we have to produce a cross section S ⊆ X such that
Gs = Gt for all s, t ∈ S.

We let N denote the filter basis of all compact normal subgroups N of G and
let Z denote the set of all pairs (Y,N) such that N ∈ N and Y is a compact subset
of X such that the following conditions are satisfied:

(a) p(Y ) = X/G where p = pG,X is the orbit projection,
(b) N ·Y = Y ,
(c) for all y, y′ ∈ Y with y′ ∈ G·y we have y′ ∈ N ·y, and
(d) for all y, y′ ∈ Y we have GyN = Gy′N .

Certainly (X,G) is one such pair. We write (Y1, N1) ≤ (Y2, N2) iff Y2 ⊆ Y1 and
N2 ⊆ N1. If (Yj , Nj)j∈J is a directed family for some directed sets J , we define
Y =

⋂
j∈J Yj and N =

⋂
j∈J Nj . Clearly N is a compact normal subgroup and Y is

a compact subspace. We show that (a) is satisfied: for each x ∈ X, the set Yj ∩G·x
is not empty, hence the intersection of the filter basis Y ∩G·x =

⋂
j∈J(Yj ∩G·x) is

not empty. Hence p(Y ) = X/G. We next claim that (b) is satisfied. The relation
n ∈ N implies n ∈ Nj for all j and thus y ∈ Y ⊆ Yj implies n·y ∈ Nj ·Yj ⊆ Yj
for all j ∈ J . Hence n·y ∈

⋂
j∈J Yj = Y . Finally we verify (c). Let y, y′ ∈ Y such

that y′ ∈ G·y. For each j ∈ J by (c) for (Yj , Nj) there is an element nj ∈ Nj
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such that y′ = nj ·y. In the compact space G, the net (nj)j∈J has a convergent
subnet with a limit n. Since j ≤ k implies nk ∈ Nk ⊆ Nj we see that n ∈ Nj
for all j ∈ J and thus n ∈

⋂
j∈J Nj = N . Since the continuity of the action and

the relations y′ = nj ·y imply y′ = n·y we have verified (c) for (Y,N). Finally we
verify (d). Assume that y, y′ ∈ Y . We must show that Gy ⊆ Gy′N , for then by
symmetry, Gy′ ⊆ GyN and the desired equality GyN = Gy′N will follow. Now for
each j ∈ J we have GyNj = Gy′Nj . Thus Gy ⊆

⋂
j∈J Gy′Nj . We claim that the

last intersection is Gy′N ; it is clear that this set is contained in the intersection;
conversely let g ∈

⋂
j∈J Gy′Nj ; then for each j ∈ J there are elements gj ∈ Gy′

and nj ∈ Nj such that g = gjnj . Some subnet of
(
(gj , nj)

)
j∈J converges in the

compact space Gy′ ×G to an element (g′, n) ∈ Gy′ ×N (since n ∈ Nj for each j).
Thus g = g′n ∈ Gy′N as we had to show.

Therefore (Y,N) ∈ Z. Consequently Z is inductive with respect to ≤ and
therefore has maximal elements. Let (S,N) be a maximal element.

We shall now show that N = {1}. If that is accomplished, then S is a cross
section because (c) for (S,N) implies Y ∩ G·y = {y} for all y ∈ Y , and isotropy
on S is constant.

We may simplify our notation and assume for the remainder of the proof that
(X,G) is itself maximal in Z; we must show that G is singleton.

Now let N be a normal subgroup of G such that G/N is a Lie group. Then G/N
acts on X/N with stable isotropy by 10.31(iii). Thus each point N ·x of X/N has
a G/N invariant neighborhood U on which G/N acts trivially by The Local Cross
Section Theorem for Compact Lie Group Actions 10.34. Now we use the hypothesis
that X/G is totally disconnected and that (X/N)/(G/N) is homeomorphic to X/G
by 10.31(i). Accordingly we formulate a statement to which we refer back at a later
point:

(†) The orbit space space (X/N)/(G/N) is totally disconnected for any closed
normal subgroup N of G such that G/N is a Lie group.

Thus we may assume that U is the inverse image of a compact open set in
(X/N)/(G/N) and so is compact and open itself. Since X/N is compact we may
then assume that X/N is a finite disjoint union of G/N -invariant compact open
sets on which G/N acts trivially; that is on each of these sets, there is a cross
section with constant isotropy, and since each is open and closed, there is a cross
section for G/N acting on X/N whose isotropy is constant on each of the disjoint
open sets U1, . . . , Uk forming a cover of (X/N)/(G/N), say GmN on Um with Gm
conjugate to H for a fixed representative H of the isotropy of G on X (cf. 10.31(ii)).
Let Sm ⊆ X/N be the cross section above Um. We find elements gm such that
gmGmg

−1
m = H. If s = gmN ·s′ for s′ ∈ Sm, then h ∈ H implies the existence of a

g ∈ Gm such that gmgg
−1
m = h and thus hN ·s = gmgg

−1
m N ·gmN ·s′ = gmgN ·s′ =

gmN ·s′ = s. Hence gmN ·Sm is a cross section above Um with constant isotropy

HN/N . Therefore SN
def
=
⋃k
m=1 gmN ·Sm is a global cross section for the action of

G/N on X/N with isotropy (G/N)s = HN/N for all s ∈ SN . In other words

(††) The action of the Lie group G/N on X/N is trivial.
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Then (SN , N) ∈ Z. By the maximality of (X,G) in Z we conclude SN = X and
G = N . But from Corollary 2.43 we know that the family of compact normal
subgroups N such that G/N is a Lie group intersects in {1}. Thus G = {1} which
is what we had to show. ut

Corollary 10.36. Let G be a compact group and H a closed subgroup. Then there
is a G0-equivariant homeomorphism

G0

G0 ∩H
× G

G0H
→ G

H
,

where G0 acts on G0/(G0 ∩ H) and on G/H by multiplication on the left. The
space G/G0H is totally disconnected compact.

Proof. Set X = G/H. Since G acts transitively on X, all connected components
are homeomorphic under actions from G. Since the quotient map G → G/H is
continuous, open and closed, clopen sets go to clopen sets. The intersection of all

clopen neighborhoods of 1 in G is G0. Since G is compact, X0
def
= G0H/H is the

intersection of all clopen neighborhoods of H in X and thus is the component of
H in X.

The group G0 acts on X under the restriction of the action of G on X. The
orbit of H ∈ X is G0·H = G0H/H = X0. The element g0 ∈ G0 is in the isotropy
group (G0)gH iff g0gH = gH iff g0 ∈ gHg−1 ∩ G0 = g(H ∩ G0)g−1. Thus this
action has stable isotropy, and the orbit space is X/G0 = {G0gH/H = gG0H : g ∈
G} = G/G0H, a compact totally disconnected space. Hence by Theorem 10.35, the
action is trivial, that is, X is G0-equivariantly homeomorphic to G0

G0∩H ×
G

G0H
. ut

Corollary 10.37. Let X be a compact group and G a closed subgroup, not neces-
sarily normal, but containing X0. Then there is a closed subset S ⊆ X such that
m:G× S → X, m(g, s) = gs is a homeomorphism.

Proof. This follows from 10.36 above. ut

This result has an important application to the structure theory of compact
groups; in fact this is one of the main motivations for us to present the basics of
compact group actions in this chapter.

Splitting the Component of Compact Groups

Corollary 10.38. Every compact group G contains a compact totally disconnected
subspace D such that (g, d) 7→ gd : G0 ×D → G is a homeomorphism.

The groups G and G0 ×G/G0 are homeomorphic.

Proof. This follows immediately from 10.37. ut

Exercise E10.7. Prove the following corollary of 10.38:
Let G be an arbitrary compact group. Then the following conclusions hold:
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(i) The weight of G is calculated as follows:

w(G) = max{w(G0), w(G/G0)}.

(ii) There is a profinite subgroup D of G such that

w(G) = max{w(G0), w(D)}.

[Hint. In view of Exercise EA4.3 in the Appendix, (i) follows from Corollary 10.38
above.

For (ii) we obtain the existence of D from Lee’s Supplement Theorem 9.41
so that G = G0D. Hence G/G0

∼= D/(G0 ∩ D), and so w(G/G0) = w(D/(G0 ∩
D)) ≤ w(D). Then from (i) above we conclude w(G) = max{w(G0), w(G/G0)} ≤
max{w(G0), w(D)} ≤ w(G), hence (ii).] ut

We saw in the Borel–Scheerer–Hofmann Splitting Theorem 9.39 that the iden-
tity component G0 of G is the semidirect product of the commutator subgroup
(G0)′ by an abelian subgroup isomorphic to G0/(G0)′. The preceding corollary
will then yield the following noteworthy result.

The Topological Decomposition of Compact Groups

Corollary 10.39. For any compact group G, the compact groups G and (G0)′ ×
G0/(G0)′ ×G/G0 are homeomorphic. ut

Dyadicity of Compact Groups

Theorem 10.40. Each compact group G with infinitely many components is
homeomorphic to a product of G0 and a Cantor cube. Every infinite compact group
is dyadic.

Proof. (a) First we show that an infinite totally disconnected compact group G is
a Cantor cube, topologically. We apply the Countable Layer Theorem 9.91 to G
and obtain an inverse system

{1} = G/Ω0
p1←−−G/Ω1

p2←−−G/Ω2
p3←−− · · ·

where ker pn ∼= Ωn−1/Ωn is a strictly reductive totally disconnected group, that
is, a product of groups of prime order or (nonabelian) finite simple groups. All
groups G/Ωn−1 are totally disconnected. Thus, by Corollary 10.37, the hypothesis
of Lemma A4.33 in Appendix 4 is satisfied, and thus we conclude that G and∏∞
n=1 Ωn−1/Ωn are homeomorphic. Since each factor is itself a product of a family

of finite sets, and G is infinite, G is homeomorphic to a product of an infinite
family of finite sets. By Corollary A4.32, G is a Cantor cube.

(b) By Corollary 10.38 and (a) above, if G has infinitely many components,
then G is homeomorphic to G0 ×Z(2)w(G/G0), where w(Z(2)w(G/G0)) = w(G/G0)
by Exercise EA4.3 following A4.8.
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(c) G0 is dyadic by Theorem 9.76(vii). Then G0 × Z(2)w(G/G0) is dyadic by
A4.32 if G/G0 is infinite. There remains the case that G/G0 is finite. Let G0 be a
continuous image of a Cantor cube C. Then G, being homeomorphic to G×G/G0

is a continuous image of C ×G/G0 and this space is a Cantor cube by Corollary
A4.32. ut

Theorem 10.35 on Global Triviality Theorem for Totally Disconnected Base
Spaces has an analog for contractible base spaces. Its proof requires information
from the theory of fibrations. It is appropriate to mention it here because the
methods of proof are very close to those used for the case of totally disconnected
base spaces, given certain information on fibrations. We recall that a topological
space T is called contractible if the identity map T → T is homotopic to a constant
self-map T → T , that is, there is a continuous function F :T × [0, 1]→ T such that
(∀x ∈ T )F (x, 0) = x and (∃c ∈ T )(∀x ∈ T )F (x, 1) = c.

Global Triviality Theorem for Contractible Base Spaces

Theorem 10.41. Let G be a compact group acting with stable isotropy conjugate
to H on a compact space X such that X/G is contractible. Then the action is
trivial.

Proof. As in the proof of Theorem 10.35, we consider any compact normal sub-
group N of G and use the hypothesis that X/G is contractible. We recall that
(X/N)/(G/N) is homeomorphic to X/G by 10.31(i) and conclude that, in partic-
ular for the case that G/N is a compact Lie group, we have:

(‡) The orbit space (X/N)/(G/N) is contractible, for any closed normal sub-
group N of G such that G/N is a Lie group.

The Local Cross Section Theorem for Compact Lie Group Actions 10.34 shows
that for a compact Lie group G/N , a compact space X/N on which G/N acts
with stable isotropy conjugate to HN/N is a (locally trivial) fiber bundle. If the
orbit space (X/N)/(G/N) is contractible, then the action is trivial by [342], p. 53,
Corollary 11.6:

(‡‡) The action of the Lie group G/N on X/N is trivial.

Now we inspect the proof of Theorem 10.35. We observe that it applies here when
we replace statements (†) and (††) in that proof by the statements (‡) and (‡‡)
here and that it therefore shows that the action of G on X is trivial. ut

The proof (†) ⇒(††) in the proof of 10.35 was done directly and in a self-
contained fashion, while in the proof of Theorem 10.40 we invoked Steenrod’s
book [342] as a standard source for proving (‡) ⇒(‡‡).

Example 10.17 yields a plenitude of actions of a compact connected Lie group
on a compact manifold with stable isotropy (which is therefore locally trivial by
10.34) and with a global cross section but which are not trivial.
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We remark that we encountered another global cross section theorem in the
form of the Topological Splitting Theorem for Vector Subgroups 5.70.

Exercise E10.8. Recall the definition of a principal fiber bundle in Definition
10.29 and prove the following immediate consequence of Theorem 10.41.

Proposition. (Actions of compact groups with orbits having contractible neigh-
borhoods in the orbit space) Let G be a compact group acting with stable isotropy
on a compact space X such that every point in X/G has a contractible neighbor-
hood. Then the orbit map p:X → X/G is a principal fiber bundle with fiber G/H.

[Hint. Let U be a contractible neighborhood of some orbit in X/G. Then Theorem

10.41 applies to XU
def
= p−1(U) and shows that p|XU : XU → U is a trivial G-space;

according to Definition 10.29 this established the claim.] ut

The triviality results for actions proved in the preceding sections call for a
definition singling out a particular class of surjective morphisms between compact
groups.

Split Morphisms

Definitions 10.42. A morphism of compact groups f :A→ B is said to be topolog-
ically split or is said to split topologically if there is a continuous function σ:B → A
preserving identity elements and satisfying σf = idA. Also we shall say that σ is
a continuous cross section for f . A morphism f :A → B is called split or is said
to split or to split algebraically if there is a morphism s:B → A of compact groups
such that fs = idA. ut

A morphism f :A → B is topologically split if and only if there is a compact
subspace X of A such that the map (n, h) 7→ nh:N × X → A, N = ker f , is a
homeomorphism. Then X is homeomorphic to B under f |X:X → B and A is
topologically a product of N and B. Thus the groups A and N × B are homeo-
morphic.

Likewise, f :A → B is split if and only there is a compact subgroup H ∼= B
in A such that A is the semidirect product NH; we shall review this situation in
greater detail in the last section of this chapter below.

Notice that topologically split morphisms are surjective. They are not as rare
as one might think at first:

Remark. Assume that f :A→ B is a surjective morphism such that B is totally
disconnected. Then f is topologically split.

Proof. The group H
def
= f−1({1}) contains the identity component A0 of A. Then

Corollary 10.37 proves the claim. ut
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On the other hand we recall that there are even abelian compact groups such
that the quotient morphism G → G/G0 modulo the identity component is not
split (see Example 8.11), while it is topologically split by the preceding remarks.

Homological algebra has emphasized the significance of projectivity and we have
discussed versions of this idea in Chapters 8 and 9 and in Appendix 1. We want
to understand projectivity for the category of compact groups, and this section
presents an additional contribution to this topic.

Let us begin with a closer look at the relationship of freeness and projectivity
in the categories most familiar, e.g. that of [abelian] groups. In Appendix 1, A1.14
we show, using the Axiom of Choice that a free abelian group is projective. We saw
in Chapter 8 that this fails in general in the category of compact abelian groups
(see 8.79). What we use in the case of abelian groups is that for a surjective
morphism e:A → B there is a function, i.e. a morphism in the category of sets,
s:B → A which is a cross section, i.e. satisfies e ◦ s = idB . However, a continuous
surjective morphism e:A→ B in the category of compact abelian groups, is not in
general topologically split, i.e. we do not find a continuous cross section s:B → A.
Indeed we saw throughout this chapter that the existence of continuous cross
sections is a delicate matter. It is the defect of morphisms failing to be split which
accounts for free compact abelian groups failing to be projective in the sense of
the basic definition of projectivity. One quick remedy would be that we focus, in
the definition of projectivity, on topologically split morphisms e:A→ B.

Let us formulate the appropriate category theoretical language

Definition 10.43. Let E denote a class of epics in a category C. An object P in C
is called an E-projective if for each f :A→ B from E and each morphism µ:P → B
there is a ν:P → A such that µ = fν. ut

This generalizes the definition of a projective object which we obtain if E is the
class of all epics.

Exercise E10.9. Prove the following remark.

Any morphism f :A→ P from E to an E-projective P is a retraction; i.e. there is
a morphism g:G→ A with fg = idP .

The connection with free objects FX we shall take up in the next chapter on
free compact groups; but here, in a chapter on compact group actions and cross
sections, we pursue the topic on split morphisms further to prepare the ground for
that discussion since we shall take for E the class of split morphisms in CN.

We shall now investigate circumstances under which semidirect product decom-
positions are respected by morphisms. If G = NH is a semidirect product with
normal factor N and cofactor H we shall also refer to these data as a semidirect
splitting of G.
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Proposition 10.44. If G1 is a connected normal subgroup of G2 and G′1A1 is a
semidirect splitting of G1, then there is a closed subgroup A2 in G2 containing A1

such that G′2A2 is a semidirect splitting of G2.

Proof. There is a morphism c1:Z0(G1)→ G′1 extending the identity onG′1∩Z0(G1)
such that A1 = {c1(z)−1z | z ∈ Z0(G1) }. Let D = G′2∩Z0(G2) and let dz = d′z′ ∈
DZ0(G1) with d, d′ ∈ D, z, z′ ∈ Z0(G1). We notice that G′2 ∩ G1 = G′1: This is
true for Lie groups where it is readily verified on the Lie algebra level; it follows
by approximation in the general case. Therefore, c1(z′)c1(z)−1 = c1(z′z−1) =

c1(d′
−1
d). Since

d′
−1
d = z′z−1 ∈ D ∩ Z0(G1)

= G′2 ∩ Z0(G2) ∩ Z0(G1) = G′2 ∩G1 ∩ Z0(G1)

= G1
′ ∩ Z0(G1),

we have d′
−1
d = c(d′

−1
d) = c1(z′)c1(z)−1, i.e. dc1(z) = d′c1(z′). Hence c extends

to a morphism c:DZ0(G1) → G′1 via c(dz) = dc(z) and c(d) = d for d ∈ D.
Now let T be any maximal torus of G2 containing c1

(
Z0(G1)

)
. Since all maximal

tori of G2 contain D, we have im c ⊆ T . Since T as a maximal pro-torus in a
semisimple compact connected group is a torus by 9.36(v) and since T is injective
in the category of compact abelian groups by Theorem 8.78(ii), the corestriction
c:DZ0(G1)→ T extends to a morphism c2:Z0(G2)→ T ⊆ G′2 which agrees with
the identity on D. Now A2 = {c2(z)−1z | z ∈ Z0(G2) } is the desired group. ut

Proposition 10.45. If f :G1 → G2 is a surjective morphism of compact con-
nected groups, then for every semidirect decomposition G2 = G′2A2 of G2 there
is a semidirect decomposition G1 = G′1A1 of G1 with f(A1) = A2. (Of course,
f(G′1) = G′2 is automatic.)

Proof. Let N = G′1 ∩ kerf . If G/N decomposes semidirectly into

(G′1/N)(A/N) with f(A) = A2,

then A = A0N . As a normal subgroup of the semisimple compact connected
group G′1, the group N is of the form N0Z with some compact abelian totally
disconnected group Z which is central in G1 and a semisimple compact connected
group N0.

We write A0 = N0Z0(A0) and have A = N0ZZ0(A0) with an abelian group
ZZ0(A0) which is central in A. Then we find an abelian compact group A∗ in A
such that A = N0A

∗ is semidirect. Let A1 be the identity component of A∗. Now
N = N0(N ∩ A∗) semidirectly, and A = NA1 semidirectly. Now G = G′1A1 and
G′1 ∩ A1 ⊆ G′1 ∩ A ∩ A1 = N ∩ A1 = {1}. Hence G1 is decomposed semidirectly
in the form G′1A1 and f(A1) = f(NA1) = f(A) = A2. Thus we may assume from
here on that G1 ∩ ker f = {1}, i.e., that f |G′1:G′1 → G′2 is an isomorphism.
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Now let A1 = f−1(A2). If g ∈ G′1∩A1, then f(g) ∈ f(G′1)∩f(A1) = G′2∩A2 =
{1}. Hence g ∈ G1 ∩ ker f = {1}, and thus G = G′1A1 is a semidirect product and
f(A1) = A2. ut

Our preceding results allow us to draw the following conclusion on topologically
split morphisms of compact connected groups.

Proposition 10.46. For a morphism f :G1 → G2 of compact connected groups
the following conditions are equivalent.

(1) f splits topologically.
(2) The semisimple part

f ′:G′1 → G′2, f ′(g) = g

and the abelian part

F :G1/G
′
1 → G2/G

′
2, F (gG′1) = f(g)G′2

both split topologically.

Proof. (2)⇒(1) A topological split morphism is surjective. Thus (2) implies
that f ′ and F are surjective. Let g2 ∈ G2. Then the surjectivity of F implies the
existence of a g1 ∈ G1 such that f(g1)G′2 = F (g1G

′
1) = g2G

′
2, i.e., f(g2) = f(g1)g′2

for some g′2 ∈ G′2. Then the surjectivity of f ′ implies the existence of an f ′1 ∈ G′1
such that f(g′1) = g′2. then f(g2) = f(g1)f(g′2) ∈ f(G1). Thus f is surjective
and we may apply Proposition 10.45 to get Borel–Scheerer–Hofmann splittings
Gj = G′jAj , j = 1, 2 such that f(A1) ⊆ f(A2). Then by (2), (f |G′1):G′1 → G′2 and
(f |A1):A1 → A2 are topologically split, and then f is topologically split.

(1)⇒(2) We have semidirect decompositions Gj = G′j o Aj , j = 1, 2, with
f(A1) = A2 by Proposition 10.45. Let σ:G2 → G1 denote a topological cross
section for f . Define σ′:G′2 → G′1 and α:A2 → A1 by σ′(g) = prG′1 σ(g) for g ∈ G2

and α(a) = prA1
σ(a) for a ∈ A2. Then fσ′(g) = f prG′1 σ(g) = prG′2 fσ(a) =

prG′2(g) = g and fα(a) = f prA1
σ(a) = prA2

fσ(a) = prA2
(a) = a. Hence σ′ and

α are the desired topological cross sections. ut

The situation unfortunately is more complicated for splitting in the group
sense. Assume that f :G1 → G2 is a split morphism of compact groups with a
homomorphic cross section s:G2 → G1. Then s(G′2) ⊆ G′1, and the restriction
f ′:G′1 → G′2 and corestriction s′:G′2 → G′1 satisfy f ′s′ = idG2

. Hence f ′ splits. We
let F :G1/G

′
1 → G2/G

′
2 and S:G2/G

′
2 → G1/G

′
1 be the induced morphisms. Then

FS = idG2/G′2
and thus F splits, too. So this direction is simple.

However, the converse may be false. In order to understand more clearly what
happens we prove a lemma:

Lemma 10.47. Let N denote a semisimple compact connected normal subgroup
of a compact connected group G. There is a unique compact connected normal
subgroup M such that G′ = NM and N ∩M is totally disconnected and central
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in G. Let Z(M) and Z(N) be the centers of M and N , respectively, and write
∆ = Z0 ∩G′. Then

(i) the following conditions are equivalent:
(1) G is a semidirect product NB, N ∩B = {1}.
(2) There is a morphism α:MZ0 → N extending the inclusion map Z(N) ∩

Z(M)∆.

(ii) If α exists as in (2) and is surjective, then

M ∩N ∩ Z0 = Z(M) ∩ Z(N) ∩∆ = {1}.

Proof. The existence of M follows from Theorem 9.74. We note that N ∩ (MZ0)
is totally disconnected in view of the structure theory, and so is central. Hence
N ∩ (MZ0) ⊆ Z(N) ∩ Z(MZ0) = Z(N) ∩ Z(M)Z0. If n = mz with n ∈ N ,
m ∈ M , and z ∈ Z0, then z = m−1n ∈ MN ∩ Z0 = G′ ∩ Z0 = ∆. Thus
N ∩ (MZ0) ⊆ Z(N) ∩ Z(M)∆, and the reverse inclusion is trivial, so equality
holds. The equivalence of (1) and (2) is now simply a consequence of Lemma 6.37.
Thus (i) is proved. For a proof of (ii) note that the surjective morphism α:MZ0 →
N must map Z0 to the identity. Hence α(M ∩ Z0) = {1}. On the other hand,
α(m) = m for m ∈ Z(N) ∩ Z(M)∆ by (2). Hence (ii) follows. ut

Example 10.48. There is a connected compact Lie group G with the following
properties:

(i) G/G′ ∼= T = R/Z.
(ii) There is a compact connected normal subgroup N contained in G′ such that

N is a semidirect factor in G′ but not in G.
(iii) If f :G→ G/N denotes the quotient morphism, then f ′ splits and the induced

morphism G/G′ → (G/N)/(G/N)′ is an isomorphism.
(iv) f splits topologically but not algebraically.
(v) The smallest example G of this kind has dimension 7 with dimG/N = 4.

Proof. Let L denote a simple simply connected Lie group with cyclic center Z of
order n with generator z. Denote with t ∈ T an element of order n. In the group
L×L×T consider the central subgroup D generated by the elements (z, z, 0) and
(1, z, t). Set G = (L×L×T)/D. Then G′ = (L×L×{0})D/D ∼= (L×L)/{(c, c) |
c ∈ Z } contains the normal subgroups N = (L × {1} × {0})D/D ∼= L and M =
({1} × L× {0})D/D ∼= L, and the subgroup C = {(d, d, 0) | d ∈ L }D/D ∼= L/Z.
We claim that G′ is the semidirect product of N and H. Clearly NC = G′. In order
to show N ∩ C = {1} consider (u, v, w)D ∈ N ∩ C. Then (u, v, w) ∈ (L × {1} ×
{0})D ∩ {(d, d, 0) | d ∈ L }D = {(x, zm, p·t) | x ∈ L, m, p ∈ Z} ∩ {(d, dzp, p·t) |
d ∈ L, p ∈ Z} = D which proves the claim.

Also
N ∩ Z0 = (L× {1} × {0})D/D ∩ ({1} × {1} × T)D/D

= (L× Z × Z·t ∩ Z × Z × T)/D

= (Z × Z × Z·t)/D ∼= Z.

Thus N ∩MZ0 ⊇ N ∩ Z0 6= {1} if Z 6= {1}.
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Likewise

M ∩ Z0 =
(
({1} × L× {0})D/D ∩ ({1} × {1} × T)D

)
/D

=
(
Z × L× Z·t ∩ Z× Z × T

)
/D

= (Z × Z × Z·t)/D = N ∩ Z0.

Thus M ∩N ∩ Z0
∼= Z 6= {1}.

If we let f :G → G/N denote the quotient morphism, then f ′:G′ → G′/N
splits by the preceding discussion. Now G/G′ ∼= (G/N)/(G′/N) = (G/N)/(G/N)′

by the first isomorphy theorem. In particular, f splits topologically since G = G′A
semidirectly with a suitable abelian group A ∼= G/G′ by the Borel–Scheerer–
Hofmann Splitting Theorem 10.39, and thus topologically G = N × C ×A.

However, N does not admit a semidirect group complement in G. For a proof
we note that by Lemma 10.47 all subgroups of G complementary to N are classified
by a morphism α:MZ0 → N ∼= L extending the identity map of N ∩MZ0

∼= Z.
Then α cannot be constant if Z 6= {1}. In this case α is necessarily surjective.
Hence by Lemma 10.47(ii) we have M ∩M ∩ Z0 = {1}, a contradiction.

The smallest example is given by L = SU(2) with Z = {1,−1} of order 2. In
this case dimG = 3 + 3 + 1 = 7. ut

This example shows, in particular, that there are morphisms which are topo-
logically split but are not split. One might surmise that this may not occur with
morphisms between semisimple groups. However this is not the case as the follow-
ing example illustrates:

Example 10.49. There is a surjective morphism f :G1 → G2 of semisimple isotyp-
ical compact connected Lie groups which splits topologically but not algebraically.
One example is given by G2 = PSU(6) and G1 locally isomorphic to SU(6)2.

Proof. We let L again denote a simple simply connected Lie group with nontrivial
cyclic center Z. We consider ∆ = {(za, z) | z ∈ Z} ⊆ L2 with a natural number a.
We set G1 = L2/∆, G2 = L/Z. We let f :G1 → G2 denote the morphism induced
by the projection p:L2 → L onto the last component. The kernel N then equals
(L× {1})∆/∆ = (L× Z)/∆ ∼= Z. The unique supplementary normal subgroup is
M = ({1} × L)∆/∆ = (Za × L)/∆ ∼= L/Z[a] where Z[a] = {x ∈ Z | xa = 1 }.
Moreover, N ∩M = (Za × Z)/∆ ∼= Z/Z[a]. By Lemma 6.37, the complements
for N in G1 are characterized by morphisms α:M → N extending the inclusion
N ∩ M → N . Since N ∩ M is nontrivial if Z[a] 6= Z, any such morphism is
nontrivial. But a nontrivial morphism L/Z[a] → L must be an isomorphism, and
Z[a] = {1}. Hence if {1} 6= Z[a] 6= Z, such an α cannot exist. Whenever the
order of Z is not a prime, a number a with this property exists. An example is
L = SU(6).

On the other hand let us consider the continuous function σ̃:L → L2 given
by σ̃(v) = (va, v). Then p ◦ σ̃ = idL. Also, if z ∈ Z, then σ̃(zv) =

(
(zv)a, zv

)
=

(va, v)(za, z) ∈ σ̃(v)∆ since z is central. Hence σ̃ induces a base point preserving
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continuous function σ:G2 → G1 given by σ(vD) = (va, v)∆ which is a continuous
cross section for f . ut

In view of Exercise E10.9, the group G2 is an example of a compact connected
group which is not E-projective for the class E of split morphisms.

However, the abelian situation is radically different:

Proposition 10.50. A topologically split morphism f :A → B of compact con-
nected abelian groups splits.

Proof. Let σ:B → A denote the topological cross section. We denote with
H∗(X) = H∗(X,Z) the integral Čech cohomology of a compact space X. The
relation fσ = idB induces the relation

H∗(σ)H∗(f) = H∗(fσ) = H∗(idB) = idH∗(B):H
∗(B)→ H∗(A)

in Čech-cohomology over the integers. We specialize to dimension one and obtain
a split exact sequence

0→ kerH1(σ)
incl−→ H1(B)

σ∗−→
←−
f∗

H1(A)→ 0

with the notation ϕ∗ = H1(ϕ), designating a morphism of discrete torsion-free
abelian groups . The dual is a split sequence of compact connected abelian groups

(†) 0→ H1(A)̂ σ̂∗−→
←−
f̂∗

H1(B)̂ încl−→
(

kerH1(σ)
)̂ → 0.

There is, however, a natural isomorphism Ĝ → H1(G) between the character
group of a compact connected group and its first integral cohomology group. (See
8.57(ii), 8.83. Further details are to be found in [198].) Consequently, by Pontryagin
duality, there is a natural isomorphism H1(A)̂ → A and H1(B)̂ → B by which
H1(f)̂ becomes identified with f :A→ B. The split exact sequence (†) therefore
proves the proposition. ut

Before we generalize this result, we need a reduction:

Lemma 10.51. (i) If f :A → B is a surjective morphism of compact groups and
A1 is a subgroup of A with f(A1) = B, then f splits [topologically ] if f |A1:A1 → B
splits [topologically ].

(ii) If f :A → B is a morphism of compact groups onto a connected group
and f0:A0 → B denotes the restriction, then f0 splits topologically if f splits
topologically and f splits if f0 splits.

Proof. (i) Let K = ker f . It suffices to find a compact subgroup [subspace] H of
A such that A = KH and (k, h) 7→ kh:K × H → A is a homeomorphism, for
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then f |H:H → B is an isomorphism [homeomorphism] and s = j(f |H)−1:B →
A with the inclusion j:H → A is the required homomorphic [continuous] cross
section. Now let H ⊆ A1 denote a [topological] complement for K∩A1 in A1; then
K ∩H = (K ∩ A1) ∩H = {1} and f(A1) = B implies KH = A. Thus kh = k′h′

implies k′
−1
k = h′h−1 ∈ H ∩ K = {1}, i. e., k = k′ and h = h′. Hence H is a

[topological] complement for K in A.
(ii) If f splits topologically, then any base point preserving cross section σ:B →

A maps B into A0, whence f0 splits topologically. The second assertion follows
from (i) above. ut

Lemma 10.52. If f :G1 → G2 is a morphism with a topological base point preserv-
ing cross section σ:G2 → G1 and if H2 is any subgroup of G2, then the restriction
and corestriction f−1(H2)→ H2 is a topologically split morphism.

Proof. Since σ is a base point preserving cross section of f we know that σ(H2) ⊆
f−1(H2). Hence σ restricts and corestricts to a base point preserving map H2 →
f−1(H2) which is a cross section for the morphism f−1(H2)→ H2 induced by f .ut

Theorem 10.53. (i) A topologically split morphism from a compact group f :G1 →
G2 onto a connected abelian group splits.

(ii) If f :G1 → G2 is any topologically split morphism of compact groups and T
is a connected abelian subgroup of G2 then the restriction and corestriction T1 → T ,
T1 = f−1(T ) splits. Moreover, if S is any maximal connected abelian subgroup of
T1, then the restriction S → T splits.

Proof. By Lemma 10.52(ii) it is no loss of generality to assume that G1 is con-
nected. Then by 9.39, the group G1 is a semidirect product G′A with an abelian
group A with f(A) = G2 since f is surjective and G2 is abelian. As the induced
morphism f |A:A → G2 is equivalent to the induced morphism G1/G

′
1 → G2/G

′
2

and thus splits topologically by Proposition 10.46, it splits by Proposition 10.50.
Hence there is a compact subgroup B of A such that A = (N ∩A)B is direct with
N = ker f . Now NB = N(N ∩ A)B = NA = G and N ∩ B = N ∩ A ∩ B = {1}.
Hence NB is a semidirect decomposition and the inverse of the isomorphism
f |B:B → G2 produces the required homomorphic cross section.

(ii) By Lemma 10.52, the restriction and corestriction T1 → T is topologically
split. Hence it splits by (i). Thus T1 = NA with N = ker f and an abelian group
A ∼= T . Let S be a maximal connected abelian subgroup of T1 containing A. Then
S = (S ∩N)A is a direct decomposition, and thus the induced morphism S → T
splits. Since all maximal connected abelian subgroups of T1 are conjugate, the
assertion follows. ut

In the remainder of the section we shall prove that the topological splitting of a
morphism of compact connected groups f :A→ B reduces to the topological split-
ting of the isotypical components Psf0:PsA0 → PsB. Moreover we shall precisely
describe the topological and the algebraic splitting of the isotypical components.
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Throughout the following discussion we let σ:B → A denote a continuous cross
section for f .

Since the abelian case is settled, we now turn to the general semisimple case.

Proposition 10.54. Let f :A → B be a topologically split homomorphism with
a continuous cross section σ:B → A, and assume that A = A′ and B = B′ are
semisimple. Then there is a continuous base point preserving map ϕ:P(B)→ P(A)
such that

(i) P(fσ) = idP(B).
(ii) στB = τAϕ.

(iii) ϕ(tx) = ϕ(t)ϕ(x) for all x ∈ P(B), t ∈ ker τB, and there is a commuting
diagram of exact sequences

0 → ∆B
incl−−−−−−−−−→ P(B)

τB−−−−−−−−−→ B → 0

ψ

y yϕ yσ
0 → ∆A

incl−−−−−−−−−→ P(A)
τA−−−−−−−−−→ A → 0

where ∆X = ker τX and where ψ = ϕ|∆B is the restriction and corestriction
of ϕ.

(vi) The morphism π = P(f)|∆A → ∆B splits and πψ = id∆B
. In particular ∆A

is a direct product (kerπ)(imψ).

Proof. (i) Recall from 9.19 that for s ∈ S we picked a simple simply connected
Lie group Ss with L(Ss) ∼= s and set Rs = Ss/Z(Ss). Let qa:A′ → A/Z(A) denote
the natural homomorphism a 7→ aZ(A). Then πA = qAτA:P(A) → A/Z(A) is
equivalent to the morphism ∏

s∈S
S
ℵ(s,A)
s →

∏
s∈S

R
ℵ(s,A)
s

induced by the universal covering morphisms pj :Ss → Rs for j ∈ J in the ap-
propriate simultaneous index set for both products. We identify πA with this
morphism

∏
j∈J pj and consider the continuous base point preserving function

ψ = qAστB :P(B) → A/Z(A) with the topological cross section σ:B → A. As a
product of simply connected spaces Ls, the space P(B) is simply connected. Hence
every morphism ψj = pjψ:P(B) → Ss lifts uniquely to a base point preserving
map ϕj :P(B) → Ls satisfying pjϕj = ψj . Hence there is a unique base point
preserving map ϕ:P(B)→ P(A) with πAϕ = ψ. Now we compute

πB
(
P(f)

)
ϕ =

(
f/Z(A)

)
πAϕ =

(
f/Z(A)

)
ψ

=
(
f/Z(A)

)
qAστB = qBfστ

′
B

= qBτB = πB .

Thus g 7→ g−1
(
P(f)

)
ϕ(g):P(B)→ B/Z(B) is a base point preserving continuous

function mapping the connected space P(B) into the totally disconnected kernel
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kerπB = Z(B). Hence it is constant. Thus(
P(f)

)
ϕ = idP(B) .

(ii) The base point preserving continuous maps α
def
= τAϕ and β

def
= στB satisfy

qAα = ψ = qAβ by the definition of ϕ. Hence g 7→ α(g)−1β(g):PB → ker qA =
Z(A) is a well defined base point preserving map from a connected space into a
totally disconnected one and is therefore constant. Hence

τAϕ = στB .

(iii) The relation τAϕ(tx) = στB(tx) = στB(x) = τAϕ(x) shows that

ϕ(tx)ϕ(x)−1 ∈ ker τA = ∆A.

For each fixed t ∈ ∆B the continuous base point preserving function

x 7→ ϕ(tx)ϕ(x)−1 : P(B)→ ∆A

from a connected space to a totally disconnected one is necessarily constant. The
base point 1 is mapped to ϕ(t1)ϕ(1)−1 = ϕ(t). Thus ϕ(tx)ϕ(x)−1 = ϕ(t) = ψ(t)
for all t ∈ ∆B and x ∈ P(B). Hence (iii) is proved.

(vi) The relation P(f) ◦ ϕ = idP(B) implies π ◦ ψ = id∆B
by simple restriction

and corestriction. Thus ∆A = (kerπ)(imψ) is a semidirect product decomposition.
But ∆A is central in PA, and thus we have a direct product decomposition. ut

Lemma 10.55. For a topologically split morphism f :A→ B of compact connected
groups there is a continuous cross section ϕs:Ps

(
P(B)

)
→ Ps

(
P(A)

)
for the

isotypic s-component Ps(f) and a continuous cross section σs:Ps(B) → Ps(A)
for the s component Ps(f):Ps(A)→ Ps(B) such that σs

(
Ps(τB)

)
=
(
Ps(τA)

)
ϕs.

Proof. The morphism P(f):P(A) → P(B) respects the isotypic s-components
and may be uniquely written in the form∏

s∈S
fs:
∏
s∈S

S
ℵ(s,A)
s →

∏
s∈S

S
ℵ(s,B)
s .

If coprs:S
ℵ(s,B)
s → PB is the natural embedding then

ϕs
def
= prs ϕ coprs:L

ℵ(s,B) → Lℵ(s,A)

is a well defined base point preserving continuous map and

Ps(f)ϕs = id:Lℵ(s,B) → Lℵ(s,B)

as we see from the commutative diagram

Lℵ(s,B) ϕs−−−−−−−−−→ Lℵ(s,A) Ps(f)−−−−−−−−−→ Lℵ(s,B)

coprs

y xprs

xprs∏
s∈S L

ℵ(s,B) ϕ−−−−−−−−−→
∏

s∈S L
ℵ(s,A) f−−−−−−−−−→

∏
s∈S L

ℵ(s,B).
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We now abbreviate As = Ps(A) = τA(S
ℵ(s,B)
s ) and Bs accordingly so that

Ps(f) = Ps(f):As → Bs. Let jA:As → A denote the inclusion. We define σ′s =

σjB :Bs → A and let τB,s:S
ℵ(s,B)
s → Bs denote the corestriction of τB◦coprs. Then

σ′sτB,s = στB copr
(B)
s = τAϕ copr

(B)
s = τA copr

(A)
s ϕs = jAτA,sϕs, and this shows

that the image of σ′s is contained in As. Hence there is a well defined corestriction
σs:Bs → As such that

σsτB,s = τA,sϕs and jAσs = σjB ,

where the second equation follows from jAσsτB,s = σ′sτB,s = σjBτB,s and the
surjectivity of τB,s. Now

jbfsσsτB,s = fjAσsτB,s = fσjBτB,s = jBτB,s,

and thus the surjectivity of τB,s and injectivity of jB show

fsσs = idBs
. ut

We now concentrate on topologically split morphisms of isotypical groups.

Lemma 10.56. Let χ:LY → LU denote a morphism. Then the morphism χ ∈
Hom(LY , LU ) is characterized by a partial function ν:V → Y , V ∈ U and a

function α:V → AutL, (αu)u∈V ∈ (AutL)V which determine χ
def
= χν,α according

to

(∗) χ
(
(ay)y∈Y

)
= (bu)u∈U with bu =

{
αu(aν(u)) if u ∈ V ,
1 if u ∈ U \ V .

Each one of these induces a morphism ZY → ZU by restriction and corestriction.

Proof. For each u ∈ U the composition pru ◦χ:LY → L is either the constant
morphism 0 or else there is a unique element ν(u) ∈ Y and an automorphism
αu:L→ L such that αu = pru ◦χ ◦ coprν(u). In a diagram:

LY
χ−−−−−−−−−→ LU

coprν(u)

x ypru

L −−−−−−−−−→
αu

L.

Let us set V = {u ∈ U | pru ◦χ 6= 0 }. Then (∗) holds. ut

Proposition 10.57. (i) Let f :A → B be a surjective morphism of isotypical
compact connected groups. Then P(A) = LX and P(B) = LY with a simple simply
connected Lie group L with Lie algebra s and sets X = ℵ(s, A) and Y = ℵ(s, B)
such that X is a disjoint union U ∪̇ Y such that we can write P(A) = LU × LY
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and have exact sequences

0 → ∆A
incl−−−−−−−−−→ LU × LY τA−−−−−−−−−→ A → 0

0 → ∆B
incl−−−−−−−−−→ LY

τB−−−−−−−−−→ B → 0.

There is a family (αy)y∈Y ∈ (AutL)Y and a bijection ρ:Y → Y such that

P(f)
(
(gu)u∈U , (gy)y∈Y

)
= (αygρ(y))y∈Y

def
= f2

(
(gu)y∈Y

)
and P(f)(∆A) ⊆ ∆B.

(ii) f has a homomorphic cross section s:B → A if and only if there is a subset
V ⊆ U , a function (α′u)u∈V ∈ (AutL)V and a function ν:V → Y such that(

P(s)
)(

(gy)y∈Y
)

=
(
χν,α′

(
(gy)y∈Y

)
, α−1

ρ−1(y)(gρ−1(y)

)
y∈Y

)
= (hu)u∈Y ,

with

hu =

{
α′u(gν(u)) if u ∈ V ,
0 if u ∈ U \ V ,

defines a homomorphic cross section for Pf , and that
(
P(s)

)
(∆B) ⊆ ∆A.

(iii) f has a continuous cross section σ:B → A if and only if there is a
continuous base point preserving function κ:LY → LU such that the function
ϕ:LY → LU × LY defined by ϕ(x) =

(
κ(x), f−1

2 (x)
)

satisfies ϕ
(
∆B

)
= ∆A.

Proof. (i) Since A = As and B = Bs are isotypic the abbreviations L = Ss and
ℵ(s, A) = X, ℵ(s, B) = Y yield PA = LX and P(B) = LY . If Z is the finite center
of L, then δA ⊆ ZX and δB ⊆ ZY . Every surjective morphism from a projective
object splits. Hence we now write X = U ∪̇ Y and LX = LU × LY where LU =
kerPf and thus, writing the elements of PA as pairs (a1, a2) ∈ LU ×LY , we have
P(f)(a1, a2) = f2(a2) with an isomorphism f2:LY → LY which by Lemma 10.56,
is necessarily of the form (ay)y∈Y 7→

(
αy(aρ(y))

)
y∈Y with a bijection ρ of Y and

automorphisms αy of L. It is clear from the naturality of τ that Pf(∆A) ⊆ ∆B .
Note that f−1

2

(
(by)y∈Y

)
=
(
α−1
ρ−1(y)hρ−1(y)

)
(ii) If s:B → A is a homomorphic cross section for f , then P(s) is a homomor-

phic cross section for P(f). If
(
P(s)

)
(x) = (a1, a2) then x =

(
P(f)

)(
P(s)

)
(x) =(

P(f)
)
(a1, a2) = f2(a2), whence a2 = f−1

2 (x). Also, a1 = χ(x) for some morphism

χ:LY → LU . It follows from Lemma 10.56 that
(
P(s)

)
(∆B) ⊆ ∆A. It is clear that

any morphism x 7→
(
χ(x), f−1

2 (x)
)

respecting the ∆ will be a morphism Ps for a
homomorphic cross section s:B → A for f .

(iii) Assume that f has a continuous cross section. By Proposition 10.55 there
is a continuous cross section ϕ for P(f). Then as in the proof of (ii) we conclude
that ϕ(x) =

(
κ(x), f−1

2 (x)
)

with a base point preserving continuous function
κ:LY → LU .

From 3.11 we know ϕ(tx) = ϕ(t)ϕ(x) for t ∈ ∆B and x ∈ LY , and this yields(
κ(tx), f−1

2 (tx)
)

= ϕ(tx) = ϕ(t)ϕ(x)

=
(
κ(t), f−1

2 (t)
)(
κ(x), f−1

2 (x)
)

=
(
κ(t)κ(x), f−1

2 (tx)
)
.
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Thus

(∗∗) κ(tx) = κ(t)κ(x) for all t ∈ ∆B ⊆ ZY and x ∈ LY ,

where (
κ(t), f−1

2 (t)
)
∈ ∆A for all t ∈ ∆B .

Conversely, any base point preserving continuous map which is of the form
x 7→

(
κ(x), f−1

2 (x)
)

and respects the ∆’s will be the ϕ for a continuous cross
section σ:B → A for f . This completes the proof. ut

If f has a continuous cross section, then the group ∆A ⊆ ZU × ZY is a direct
product of the subgroups kerπ = ∆A ∩ (LU × {1}) and imψ = {

(
κ(x), f−1

2 (x)
)
|

x ∈ ∆B }.

The problem of converting a topological splitting of a morphism of isotypic
groups into an algebraic splitting, after 10.57, is the following:

For a continuous function κ:LY → LU satisfying (∗∗) find a partial function
ν:V → Y , V ⊆ U and a function α:V → Aut(L) such that κ|∆B = χν,α|∆B.

Our Example 10.48 shows that this is not always possible. We shall now render
this example more precise. Let Y and U be singleton. Let ∆B be a central subgroup
of L and set B = L/∆B . Let a denote a natural number and define κ:L →
L by κ(x) = xa. Then (6) is satisfied. Set ∆A = {

(
κ(z), z

)
| z ∈ ∆B} and

A = (L × L)/∆A. The projection L × L → L onto the second factor induces a
topologically split morphism f :A → B. In order for it to be split we must find a
morphism χ:L→ L with

(†) χ(z) = κ(z) = za for z ∈ ∆B .

We shall now search for groups L for which there is a natural number a such
that (†) can be satisfied for suitable endomorphism χ of L. If ∆a

B = {1}, then the
constant χ will satisfy (†). If za = z, for all z, i. e., ∆a−1

B = {1}, then χ = idL
satisfies (†). We now look for those L such that for each nonconstant endomorphism
χ 6= idL there is a natural number a > 1 such that (†) is satisfied. Then χ must
be an isomorphism because of the simplicity of L. In particular, z 7→ za has
to be a nonidentity automorphism of ∆B . The automorphisms induced on the
center of a simple simply connected Lie group are known and catalogued (see e. g.
[353]). They come from automorphisms of the Dynkin diagram; if the center is
nontrivial the automorphism groups induced on the center have order 2 or are (in
the case D4) isomorphic to S3. Thus we now inspect the list whether we find outer
automorphisms χ of L which on the center induce a map of the form z 7→ za.

Type An−1 represented by L = SU(n), ∆B
∼= Z(n), χ(z) = z−1 = za with

a ≡ −1 (mod n). If n > 3 then we always find natural numbers a > 1 with a 6≡ −1
(mod n).

Types B and C have no outer automorphisms.
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Type Dn, n = 4, 5 . . . represented by Spin(n),

∆B
∼=
{
Z(2)2 if n ≡ 0 (mod 2),
Z(4) if n ≡ 1 (mod 2).

In the first case, the outer automorphisms χ do not satisfy (†) for any a. In the
second case χ(z) = z3 for any outer automorphism. If a = 2 then (†) is not
satisfied.

Types G2, F4, E7, E8 have no outer automorphisms. The compact simply con-
nected form L of E6 has a center ∆B

∼= Z(3) and thus has outer nontrivial auto-
morphisms χ with χ(z) = z2.

These remarks allow the following observation:

Example 10.58. Assume that G is a simple connected but not simply connected
compact Lie group which is not isomorphic to SO(3), PSU(3), E6/Z, SO(2m) or a
double covering of SO(2m). Then there is a topologically split morphism f :A→ G
with A locally isomorphic to G2 such that f does not split. ut

We summarize:

Theorem 10.59. Let f :A → B be a topologically split morphism of compact
groups and let B be connected. Let f0:A0 → B denote the restriction to the identity
component of A. Then

(i) f0 is topologically split.
(ii) The induced morphism F :A0/A

′
0 → B/B′ is split.

(iii) Each isotypic s-component
(
Ps(f0)

)
:Ps(A0)→ Ps(B) is topologically split.

The morphism f ′:A′ → B′ induced on the commutator groups is topologically
split.

The conditions (i), (ii), and (iii) do not imply that f is split. In particular, a
topologically split morphism between isotypic compact connected semisimple groups
need not be split. Its splitting and topological splitting is characterized in Proposi-
tion 10.57 in terms of the projective cover.
(iv) Assume that T is any connected abelian subgroup of B. Then the homomor-

phism f−1(T )→ T induced by f splits, as does its restriction to any maximal
connected abelian subgroup of f−1(T ).

Proof. This is just a summary of what was discussed before. ut

Actions of Compact Groups and Acyclicity

Let R be a commutative ring with identity, which we fix for no other purpose than
to have a general coefficient ring for cohomology of compact spaces. Most of the
time we take R = Z (as e.g. in Theorem 8.83ff.) or any field such as R = Q (as in
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624 10. Compact Group Actions

Theorems 6.88ff. or A3.90ff.) or R = GF(2). In this subsection we envisage again
Čech cohomology theory over the coefficient ring R on topological spaces, notably
on compact spaces. According to historical preferences this topology is also called
Alexander-Spanier-Wallace cohomology.

Definition 10.60. A compact space X is called acyclic over R (or simply acyclic
if the coefficient ring R is understood) iff it is nonempty and its cohomology
H∗(X,R) is isomorphic to that of a singleton space, that is, iff

Hn(X,R) =

{
R if n = 0,
{0} if n > 0. ut

Now we recall the Strong Homotopy Axiom for Čech cohomology. Cohomology
will be Čech cohomology over R. A good overview of the topic can be found in
[340].

Proposition 10.61. (Generalized Homotopy Axiom) Let X be a compact space
and C a compact connected space. For two points c1, c2 ∈ C set ej :X → X × C,
ej(x) = (x, cj) for j = 1, 2. Then H∗(e1) = H∗(e2) : H∗(X × C)→ H∗(X). ut

The more classical version has C = I = [0, 1], the unit interval and c1 = 0,
c1 = 1.

One says that two continuous functions fj :X → Y , j = 1, 2 are weakly ho-
motopic, if there is a compact connected space C with two points cj ∈ C and a
continuous function F :X × C → Y such that fj(x) = F (x, cj), j = 1, 2. If this is
true with C = I, c1 = 0, c2 = 1, then f1 and f2 are said to be homotopic.

Corollary 10.62. If f1, f2:X → Y are two weakly homotopic continuous functions
between compact spaces, then H∗(f1) = H∗(f2):H∗(Y )→ H∗(X).

Proof. Exercise. ut

Exercise E10.10. Prove Corollary 10.61.

[Hint. From the definition of weak homotopy we have a compact connected space
and a continuous function F :X × C → Y such that fj(x) = F (x, cj), x ∈ X,
j = 1, 2. Define ej :X → X × C by ej(x) = (x, cj). Then fj = F ◦ ej and thus
H∗(fj)=H

∗(ej)◦H∗(F ). Since H∗(e1)=H∗(e2) by 10.61, the assertion follows.] ut

Recall that a space X is called contractible respectively, weakly contractible
(to a point x ∈ X) if the identity map of X and the constant self-map of X
with value x are homotopic, respectively, weakly homotopic. The required function
F :X × C → X is called a contraction, respectively, weak contraction.

The following then is immediate from the definitions:
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Proposition 10.63. Every compact weakly contractible space is acyclic over any
coefficient ring. ut

Fixed Points of Compact Abelian Group Actions

Now we record an impressive result on group actions (see [197], Theorem 3.21 or
[162], Proposition 1.10).

The Fixed Point Theorem for Compact Abelian Group Actions

Theorem 10.64. Let G be a compact connected abelian group acting on a compact
space X which is acyclic over Q. Then the subspace F of fixed points and the orbit
space X/G are acyclic. ut

In particular, such a group action has a fixed point, and the fixed point set is
connected. In the absence of connectivity this result fails due to counterxamples.
(For more information see e.g. [271], p. 91f.)

The first corollary concerns the structure theory of compact groups.

Corollary 10.65. Let G be a compact connected group and H a closed subgroup
such that the quotient space G/H is acyclic over Q, then H contains a maximal
connected compact abelian subgroup of G.

Proof. Let T be a maximal pro-torus of G (see Theorem 9.32). Then T is a compact
connected abelian group acting on the rationally acyclic space G/H via t·gH =
tgH. By Theorem 10.64, there is a fixed point, say g−1H, that is tg−1H = g−1H
for all t ∈ T . Then gTg−1 ⊆ H, and that is the assertion according to Theorem
9.32(i). ut

One uses the expression that a closed subgroup H of a compact connected
group G containing a maximal pro-torus has maximal rank.

Corollary 10.66. If G and H satisfy the hypotheses of Corollary 10.65, then H
contains the center Z(G) of G.

Proof. This follows from Corollary 10.65 and and Theorem 9.32(iv). ut

The deeper structure theory of compact connected monoids demands significant
applications of the Fixed Point Theorem.

Corollary 10.67. Let S be a compact connected topological monoid with zero
element 0 and let T be a compact connected abelian group of units, that is, invertible
elements. Then the centralizer Z(T,G) is a closed connected submonoid containing
T and 0.
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Proof. A compact connected monoid with zero 0 is weakly contractible to 0 via
its multiplication S × S → S as weak contraction. Now T acts on S under inner
automorphisms: t·s = tst−1. The centralizer Z(T, S) is precisely the fixed point
set of this action. Then Theorem 10.64 proves the claim. ut

The existence of a zero element is no essential sacrifice of generality for a
nongroup compact monoid, because every such has a closed minimal ideal which
we may collapse to a single point thereby obtaining a monoid with zero element.
For the minimal idealM(S) of a compact semigroup see the paragraph preceding
Proposition A4.34. For the general theory of compact semigroups see for instance
[197] and [56].

In the theory of compact monoids, Corollary 10.67 is an essential tool in the
proof of a fundamental theorem:

Theorem 10.68. Every compact connected monoid S contains a connected
abelian submonoid A meeting the minimal ideal M(S), that is, A contains 1 and
points of M(S). ut

For a proof and the significance of 10.68 we refer to [197].

Transitive Actions of Compact Groups

Assume that a compact group G acts transitively on a Hausdorff space X. For an
element x ∈ X let Gx again denote the isotropy group {g ∈ G : g·x = x}. We write

H
def
= Gx. Transitivity of the action means X = G·x. Thus Lemma 10.4 shows that

there is an equivariant homeomorphism gH 7→ g·x : G/H → X. Conversely, if H is
any closed subgroup of G, then G acts transitively on the compact space G/H so
that H is the isotropy subgroup at the point H ∈ G/H. Accordingly, the theory of
transitive actions of a compact group is completely equivalent to structure theory
of the quotient spaces together with the multiplication of G on the left of G/H.

In the present context we discuss what happens if G/H is acyclic. Recalling
Example E6.10, we consider the matrices

M(t, e) =

 cos 2πt sin 2πt 0
sin 2πt cos 2πt 0

0 0 1

 1 0 0
0 e 0
0 0 e

 ∈ SO(3), t ∈ [0, 1[, e = ±1,

and define T = {M(t, e) : t ∈ [0, 1[, e = 1}, H = N
(
T, SO(3)

)
= {M(t, e) :

t ∈ [0, 1[, e = ±1}. Then G/T is homeomorphic to the 2-sphere S2 which is a 2

sheeted universal covering space of X
def
= G/H which is the real projective plane

PR2 obtained from S2 by identifying antipodal points. We have

Hn(X,Q) =

{
Q if n = 0,
{0} otherwise,
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Hn(X,GF(2)) =

{
GF(2) if n = 0, 1, 2,
{0} otherwise.

Thus X is rationally acyclic but is not contractible. As we noted above, acyclic-
ity over every coefficient ring is a consequence of the assumption that G/H is
(weakly) contractible. In that case, in particular, G/H is connected. The quo-
tient function g 7→ gH : G → G/H maps components onto components. Hence
G/H = G0H/H ∼= G0/(G0 ∩ H). We may therefore assume that G is itself con-

nected. If N is a closed normal subgroup of G, then G/N
H/N

∼= G/H. Thus we may

assume that H does not contain any nontrivial normal subgroups of G. Then G
is a compact connected centerfree group according to Corollary 10.67. Hence by
Theorem 9.24 there is a family of centerfree simple compact connected Lie groups
Gj , j ∈ J such that G =

∏
j∈J Gj .

On the basis of these results, A. Borel shows the following result which one
finds proved in [197], pp. 308–310.

Theorem 10.69. [A. Borel, 1964-65] Let G be a compact connected group with
a closed subgroup H such that G/H is rationally acyclic and that H contains no
nondegenerate normal subgroup of G. Then there exists

(i) a family of centerfree simple connected groups Gj, j ∈ J ,
(ii) for each j ∈ J a closed subgroup Hj of Gj and a maximal torus Tj of Gj

such that
(a) G =

∏
j∈J Gj and H =

∏
j∈J Hj,

(b) (∀j ∈ J)Tj ⊆ Hj,
(c) (∀j ∈ J)Hi = (Hj)0·N(Tj , Gj) for the normalizer N(Tj , Gj) of Tj in Gj,

and, finally, that
(c) G/H is homeomorphic to ∏

j∈J

Gj
(Hj)0·N(Tj , Gj)

.

In particular, a rationally acyclic quotient space of a compact connected group is
a product of compact manifolds. ut

Now, a product of compact manifolds cannot be acyclic modulo 2. One therefore
obtains the following result.

A. Borel’s Degeneracy Theorem

Theorem 10.70. Let H be a closed subgroup of a compact group such that G/H
is acyclic over Q and GF(2). Then H = G. ut

For an alternate proof see [257] (2011).

Corollary 10.71. A (weakly) contractible quotient of a compact group is single-
ton.

In particular, a contractible compact group is a point. ut
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Szenthe’s Theory of Transitive Actions of Compact Groups

We are finally led to a recasting of Janoś Szenthe’s far reaching theory on transitive
actions of compact (and locally compact) groups on locally contractible space. We
discuss a modern version of his theory.

1. Finite Dimensional Quotient Spaces

Accordingly we shall discuss pairs consisting of a compact group G and closed
subgroup H, giving rise to a quotient space X = G/H.

Lemma 10.72. There is a totally disconnected subspace D ⊆ G and D homeo-
morphic to G/(G0H) such that

(d, x) 7→ dx : D ×G0H → G

and
(d, xH) 7→ dxH : D × (G0H/H)→ G/H

are natural homeomorphisms. Also

g(G0 ∩H) 7→ gH :
G0

G0 ∩H
→ G0H/H

is a natural homeomorphism.

Proof. The quotient space of G/G0H is compact totally disconnected. Thus the
action of the compact group G0H on G by multiplication has a totally disconnected
orbit space. Now Theorem 10.35 applies and shows that G is homeomorphic to D×
G0H with a totally disconnected compact space D (homeomorphic to G/(G0H))
in such a fashion that the action of G0H is by multiplication on the second factor
on the right. Therefore G/H is naturally homeomorphic to D ×G0H/H.

The last homeomorphism is standard. ut

This Lemma shows that X = G/H and the connected component X0 =
G0H/H ∼= G0/(G0 ∩H) of the point x0 = H in X differ only by a totally discon-
nected compact topological factor.

The following conclusion is straightforward from Lemma 10.72:

Lemma 10.73. The following conditions are equivalent:
(1) X is locally connected.
(2) G0H has finite index in G.
(3) X0 is open.
(4) X and G0/(G0 ∩H) are locally homeomorphic.

Proof. By Lemma 10.72, assertion (1) holds if and only if D ∼= G/(G0H) is finite,
iff (2) holds, and G/(G0H) is finite iff X0 = G0H/H is open in X, i.e., (2) ⇐⇒
(3). By Lemma 10.72, X0 and G0/(G0 ∩ H) are homeomorphic. Thus (4) holds
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iff X and X0 are locally homeomorphic. Since X is homeomorphic to X0 ×D by
10.72, we conclude that this holds iff X0 is open in X. ut

For the moment, we shall be primarily interested here in the case that the
dimension of X is finite. It was shown in 8.25 and 9.54, that a few axioms on
a function DIM on the class of compact spaces taking values in {0, 1, 2, . . . ,∞}
characterize it uniquely on the class of the underlying spaces of compact groups,
and that it agrees on these with, say, the Lebesgue covering dimension. Such a
function was called an admissible dimension, and it was shown that for a com-
pact group G we have DIMG = dimR L(G) where L(G) is the Lie algebra of G
(see Scholium 9.54), and where dimR is the dimension of a weakly complete real
topological vector space, agreeing with the linear dimension of the dual L(G)′.

We denote by NH
def
=
⋂
g∈G gHg

−1 the largest normal subgroup of G contained
in H. The function

gH 7→ (gNH)·(H/NH) : G/H → G/NH
H/NH

is a natural homeomorphism.

Now we shall extend the discussion of dimension to quotient spaces X = G/H.
Our paper [185] was devoted to the dimension theory of quotient spaces X = G/H
on the basis of the theory provided in this book, and we quote the following result
from it.

Proposition 10.74. Let G be a compact group and H a closed subgroup and let
X = G/H. Denote by DIM any admissible dimension function on the class of
compact spaces. Assume that DIMX < ∞. Then we have the following conclu-
sions:

(i) DIMX = dimR L(G)/L(H) = dimL(G0)/L(H0).
(ii) Both G/NH and H/NN are finite dimensional compact groups and G/H ∼=

G/NH
H/NN

.

(iii) Assume that G is connected and NH = {1}. Then G contains a totally
disconnected central subgroup D such that G/D is a Lie group, and the base
point x0 = H of G/H has a neighborhood homeomorphic to

D × L(G)

L(H)
.

Proof. For the proofs we refer to [185], 1.11, and 3.1. ut

We shall find the following corollary relevant:

Corollary 10.75. Let G be a compact group and H a closed subgroup, and set
G/H = X. Then the following conditions are equivalent:

(1) X is locally euclidean.

(1′) G/NH
H/NH

is locally euclidean.
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(2) G/NH is a Lie group.
(3) X is finite dimensional and locally connected.

Proof. Since

gH 7→ (gNH)·(H/NH) : G/H → G/NH
H/NH

is a natural homeomorphism, (1) is equivalent to (1′). For proving the equivalence
of (1) and (2) it is therefore no loss of generality to assume NH = {1}; then (2) is
saying that G is a Lie group.

The implication (2) ⇒(1) is clear: Indeed if G is a Lie group, so is H (see
Proposition 5.33(iii)). We apply Proposition 10.74(iii) to G0 and G0 ∩ H); if G0

is a Lie group, the space D is finite and thus G0/(G0 ∩ H) is locally euclidean;
accordingly, G0H/H is locally euclidean. But G0 and so G0H is open since G is a
Lie group. Thus G0H/H is open in G/H and so G/H is locally eulidean.

Proof of (1)⇒(2): First assume that G is connected. Again we invoke Propo-
sition 10.74(iii): We know that X is locally euclidean, and so D is necessarily
finite, and since G/D is a Lie group, G is a Lie group. Now allow G to be dis-
connected. Since X is locally euclidean, so is X0

∼= G0/(G0 ∩H). Hence by what
we just saw, G0 is a Lie group. Then L(G0) = L(G) is finite dimensional. Let
ϕ:H → Aut(L(G0)) be the linear representation obtained by restricting the ad-

joint representation Ad:G→ Aut(L(G)). Set Z
def
= Z(H,G0). Then Z = kerϕ and

so H/Z ∼= im p is a Lie group. The normalizer of Z in G contains G0 and H, and
thus the open subgroup G0H. It therefore has finite index in G. Thus the largest
normal subgroup NZ of G, being a finite intersection of conjugates of Z, has finite
index in Z. Since H does not contain any nontrivial normal subgroups of G, we
know that Z has finite order. Since H/Z is a Lie group, H is a Lie group, and
so G0H is a Lie group which has finite index in G. Thus G is a Lie group which
proves (2).

Trivially (1) implies (3). Now assume (3). Then we are in the situation of Propo-
sition 10.73 with X0 open. By Proposition 10.74(iii), X0 is locally homeomorphic
to ∆× (L(G0))/(L(G0 ∩H)) for a totally disconnected normal subgroup ∆ of G0.
Since this space is locally connected, it follows that ∆ is finite and the space is
locally euclidean. Thus X0 and therefore X is locally euclidean. ut

In particular, under these circumstances X = G/H is locally euclidean if and
only if it is a real analytic manifold.

We would like a topological condition on X which is implied by being locally
euclidean. An example of such a condition is that X has an open set which is
contractible to a point. We want to exploit this idea.

2. Piecewise Contractible Spaces

We abbreviate the unit interval [0, 1] by I.
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Definition 10.76. A subset U of a topological space X will be called X-contract-
ible, or contractible in X, if there is a continuous function

(t, u) 7→ ft(u) : I× U → X

such that f0 is the inclusion map inclX,U of U into X and f1 is a constant function
of U into X. A space is contractible if it is contractible in itself. A topological space
X will be called piecewise contractible if it has an X-contractible open subset. ut

An X-contractible set is nonempty, and any nonempty subset of an X-contract-
ible set is X-contractible.

If D is the closed complex unit disc and U is the punctured disc D \ {0}, then
U is D-contractible (to 0), yet is not contractible.

Exercise E10.10. (i) If a product X × Y is piecewise contractible, then X is
piecewise contractible.

(ii) A homogeneous space X is piecewise contractible iff X has an open cover
consisting of X-contractible sets.

(iii) If x is any point in a piecewise contractible homogeneous space X, then
all sufficiently small neighborhoods of x are X-contractible.

(iv) If X is a piecewise contractible homogeneous space and V is any open and
closed subset of X, then V is piecewise contractible.

[Hint. The proof of (i) is straightforward. The proofs of (ii) and (iii) are easy from
the definitions. Proof of (iv): Assume that the nonempty open set U is contractible
in X. By homogeneity we may assume that V ∩ U 6= Ø. Let ht:U → X be a
homotopy contracting U to u. Since V is open and closed, v ∈ V ∩ U implies
that the connected subspace hI(u) is contained in V . By definition of ht, it is also
contained in U . Thus hI(V ∩ U) ⊆ V ∩ U and so V ∩ U is contractible to a point
in V ∩ U . Thus V is piecewise contractible.] ut

Exercise E10.11. If X = G/H is piecewise contractible, for a topological group
G and a closed subgroup H, then the component X0 of H ∈ X is open and closed
in X and therefore is piecewise contractible.

[Hint. Due to the homogeneity of X we may assume that some open set U is
contractible to x0 = H ∈ X. Then U is contained in the arc component Xa of x0

inX. SinceXa ⊆ X0, this means thatX0 is open, hence closed, in the homogeneous
space X. Now by Exercise E10.10(iv) above, X0 is piecewise contractible.] ut

For showing that X is locally euclidean, it therefore suffices to show that X0

is locally euclidean.
If G is compact, then G0H/H = X0. From G0/(G0∩H) ∼= G0H/H ⊆ G/H we

know that G/H is piecewise contractible iff G0/(G0∩H) is piecewise contractible;
likewise G0/(G0 ∩H) is locally euclidean if X is locally euclidean.

Thus for an eventual proof that piecewise contractibility implies that X is
locally euclidean, we need only consider connected compact groups G which we
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may assume in most of the remainder of the discussion of the case of compact
groups G.

The following lemma is a technical step used in the next partial result.

Lemma 10.77. If H/H0 is finite and G/H is piecewise contractible then G/H0

is piecewise contractible.

Proof. The quotient map G/H0 → G/H is a finite covering. If U = UH is an
open subset of G such that U/H is contractible in G/H to a point, we may assume
that U/H is evenly covered, that is, U is a disjoint union U ′ ∪ U ′h2 ∪ · · · ∪ U ′hn
with 1 ∈ U ′ = U ′H0. Then U ′H/H ∼= U/H is contractible in G/H, and by the
homotopy lifting property of coverings, U ′/H0 can be homotopically contracted
in G/H0 to a finite set contained in a fiber of the covering. Then there is an
open subset U ′′ of U ′ containing 1 and satisfying U ′′H0 = U ′′ such that U ′′/H0 is
contractible to a point in G/H0. ut

We recall from Theorem 9.2, that the algebraic commutator subgroup G′ of a
connected compact group G is closed. The structure of G′ is known from Proposi-
tion 9.4 through Corollary 9.20. In particular, G′ is finite dimensional if and only
if it is a Lie group.

Lemma 10.78. Let G be a finite dimensional connected compact group, H a
closed subgroup, and assume that X = G/H is piecewise contractible. Then G/H
is locally euclidean.

Proof. Since (G/NH)′ = G′NH/NH is finite dimensional if G′ is finite dimensional
we may assume that H does not contain any nondegenerate normal subgroup of
G and show that G is a Lie group.

By the Levi-Mal’cev Theorem for compact connected groups Theorem 9.24
the centralizer Z(G′, G) is central in G. The representation π of H into Aut(G′)
by inner automorphisms has the kernel Z(G′, H) = Z(G′, G) ∩ H = Z(G) ∩ H,
and since this group is normal in G, and since H does not contain nondegenerate
normal subgroups of G, it must be singleton. So we know that π is injective and
thus that H is a Lie group since G′ and so AutG′ is a Lie group. Hence G′H is a
Lie group.

From the Borel-Hofmann-Scheerer Splitting Theorem 9.39 we know that we
can write G = G′ o A with a compact connected abelian group A. The projection
of G′H0 into A is a connected Lie subgroup of A, that is, a torus. Hence it splits as
a direct factor of A (see Theorem 8.78(ii)). That is, there is a closed subgroup B
of A such that we can write G = G′H0×B. Accordingly, G/H0

∼= (G′H0/H0)×B.
Recall that H is a Lie group. Thus H/H0 is finite. By Lemma 10.77, G/H0 is

piecewise contractible. Then by Exercise E10.10(i) the group B is piecewise con-
tractible. Therefore the arc component of the identity is open; since B is connected
it is arcwise connected. Since the subgroup B of G is finite dimensional, by 8.22,
its torsion-free character group B̂ is of finite rank and thus is countable. Since B
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is arcwise connected, B̂ is a Whitehead group (see 8.30(iv)). A countable White-
head group is free by Pontryagin’s Theorem (see A1.62). Thus B is a torus as the
character group of a free abelian group of finite rank. Hence G = G′H0 × B is a
Lie group as we had to show. ut

3. Piecewise Contractibility of Quotient Spaces

The following concept is not used in our discussion of compact groups but is widely
used in the literature:

Definition 10.79. A space X is called locally contractible if for all points x∈X and
every neighborhood V of x there is a V -contractible neighborhood U of x in V . ut

Any locally euclidean space is locally contractible. A locally contractible space is
locally arcwise connected and piecewise contractible. On the other hand, it is easy
to envisage contractible but not locally arcwise connected continua in the plane;
these will be piecewise contractible but not locally contractible (for instance: the
union of straight lines in the unit square [0, 1] × [0, 1] connecting v = ( 1

2 , 1) and
the points (c, 0) as c ranges through the standard Cantor set in the unit interval
[0, 1] (see paragraph following Example 1.19); this space is called the Cantor fan
and is compact contractible, but locally connected at no point different from v.)

Our main goal is a proof of the following theorem:

Szenthe’s Theorem Revisited

Theorem 10.80. Let G be a compact group, H a closed subgroup, NH the largest
normal subgroup of H. Set X = G/H. Then the following statements are equiva-
lent:

(1) X is piecewise contractible.
(2) X is locally contractible.
(3) X is locally connected and finite dimensional.
(4) X is locally euclidean.
(5) X is a real analytic finite dimensional manifold.
(6) X is the quotient space of a Lie group modulo a closed subgroup.
(7) G/NH is a Lie group.

After our preparations, what is missing is (1)⇒(4), that is, we must prove

Theorem A. If the quotient space X = G/H is piecewise contractible for a
compact group G and a closed subgroup H, then it is locally euclidean.

Exercise E10.12. Prove that Theorem A and the information already provided
would complete the proof of the Theorem 10.80. ut

The background and history of this result is interesting in its own right, and
we shall comment on it in the Postscript to this chapter. Notice that even the case
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that H = {1} and X = G is of interest for the structure theory of compact groups
as it is discussed in this book:

A compact group G is piecewise contractible iff it is locally contractible iff it is
locally euclidean iff it is a Lie group.

Hilbert’s Fifth Problem for compact groups was discussed in Theorem 9.57, and
local connectedness, which is much weaker than local contractibility was analyzed
in various places (cf. 8.36, 9.66, 9.68).

4. The Homotopy Theoretical Backgrouns

Our proof of Theorem A is based on some basic results on homotopy theory and
fibrations.

Definition 10.81. We say that a map q:E → B has the homotopy lifting property,
if for any space U , any homotopy

(x, t) 7→ ht(x) : U × I→ B

and for any continuous function f :U → E such that q◦f = h0, there is a homotopy

(x, t) 7→ h̃ : U × I→ E

such that p ◦ h̃ = h, that is,

(1) (∀t ∈ I)
U

h̃t−−−−−−−−−→ E
idU

y yp
U −−−−−−−−−→

ht
B

commutes.

Frequently a map with the homotopy lifting property is called a fibration. ut

Exercise E10.13. (i) Let p:E → B be a fibration and x ∈ E. Then p maps the
arc component of x onto the arc component of p(x) in B.

(ii) If, for a topological group G and a closed subgroup H, the quotient map
p:G → X = G/H is a fibration, then the arc component Xa of x0 = H in X is
GaH/H.

[Hint. (i) Clearly arc components are mapped into arc components. Conversely,
let f : I→ B be an arc with f(0) = p(x). Then the homotopy lifting property of p

yields an arc f̃ : I→ E such that p ◦ f̃ = f .
(ii) This follows immediately from (i) above.] ut

Lemma 10.82. (The Homotopy Lifting Theorem of Madison-Mostert-Skljarenko).
For a compact group G, the map p:G → G/H is a fibration with the homotopy
lifting property.

Proof. See [249], Theorem 2. ut
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Corollary 10.83. (i) Let Ga denote the arc component of 1 in the compact group
G. Then the arc component Xa of x0 = H ∈ X = G/H is GaH/H.

(ii) If X is piecewise contractible, then G0H is open and closed in G and
G0/(G0 ∩H) is piecewise contractible.

Proof. (i) The claim follows immediately from Exercise E10.13 and Lemma 10.82.
(ii) By Exercise E2.2,X0 = Xa is open and closed inX. By (i) above,GaH/H =

Xa = X0. Since G is compact, X0 = G0H/H. Thus GaH is open and closed in G,
and so G0H ⊆ GaH ⊆ G0H. Now the natural map G0/(G0 ∩H)→ G0H/H is a
homeomorphism and G0H/H = X0 is piecewise contractible by Exercise E10.11,
the assertion follows. ut

Recall that Ga is dense in G0 by Theorem 9.60(v).
After Corollary 10.83(ii), in showing that the piecewise contractibility of G/H

makes it locally euclidean, it will be no loss of generality to assume that G is
connected.

Definition 10.84. We shall call a self-homotopy (x, t) 7→ ht(x) : A× I→ A of a
space A a compression if h0 = idX and h1 is not surjective. We shall call a space
X incompressible if it does not support any compression. ut

Madison [249] calls such spaces irreducible, but we hesitate to adopt this ter-
minology.

Lemma 10.85. (The Madison Incompressibility Theorem) If G is a compact
group, then G is incompressible.

Proof. In [249], Theorem 1, this is proved for connected G. By Corollary 10.38, an
arbitrary compact group G is homeomorphic to G0 × G/G0. A self-homotopy of
a product projects to a self-homotopy of a factor. The totally disconnected space
G/G0 has no self-homotopy except the constant one. Thus a self-homotopy of G
leaves each component invariant, and each component is homeomorphic to G0.
But G0 does not allow any compression by Madison’s Theorem. Hence G does not
allow any compression. ut

In [249], Madison proves Lemma 10.85 more generally for “limit manifolds”.
Every compact connected group is a limit manifold. He applies his results to argue
that for a compact group G and a closed subgroup H, the quotient space G/H, if
it is connected, is incompressible. See also [176].

Later we shall use the following corollary:

Lemma 10.86. Let K be a compact group and R ⊆ S closed subgroups of K with
quotient maps q:K → K/R and r:K → K/S. Let F :K/R → K/S be defined by
F (kR) = kS. Assume that there is a homotopy

(ξ, t) 7→ ht(ξ) : K/R× I→ K/S
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such that h0 = F . Then h1 is surjective.

Proof. Then by Lemma 10.82 we get a lifting

(g, t) 7→ H̃t(k) : K × I→ K,

such that the following diagram commutes

K
H̃t−−−−−−−−−→ K

q

y yr
K/R −−−−−−−−−→

ht
K/S

and H̃0 = idK . Suppose that h1 is not surjective. Then H̃1(K) being contained in
r−1
(
h1(K/R)

)
is a proper subset of K. But this contradicts the Incompressibility

Theorem 10.85. ut

This Lemma was also proved in [176] (see Corollary 1.9).

5. The Proof of Theorem A for compact groups

We assume throughout this subsection that

G is a compact connected group and H a closed subgroup such that X = G/H
is piecewise contractible.

Since G/H is piecewise contractible, there is an open subset U ⊆ G such that
1 ∈ U = UH and that there is a homotopy

(ξ, t)7→ft(ξ) : U/H→G/H, f0 = inclG/H,U/H

and

f1(U/H)) = {ξo}, ξ0 = H ∈ G/H.

With the aid of Wallace’s Lemma (see e.g. Proposition A4.29) let us find a
closed normal subgroup N of G such that

(a) NH ⊆ U , and
(b) G/N is a Lie group.

If we define kt = ft|NH/H, then

(∗) (ξ, t) 7→ kt(ξ) : NH/H × I→ G/H

is a homotopy such that

k0 = inclG/H,NH/H and k1(NH/H) = {ξ0}, ξ0 = H ∈ G/H.

We conclude from Theorem 9.77(iii) the following consequence:

Lemma 10.87. Let f :G → C be a surjective morphism of compact connected
groups. Then there is a connected closed normal subgroup Γ of G such that f |Γ :
Γ→ C is a surjective morphism with a totally disconnected kernel. ut
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We apply this lemma with C = G/N and the quotient morphism. Hence there
is a closed connected normal subgroup Γ of G such that NΓ/N = G/N , that is,
NΓ = G and we have a morphism F :G→ N/(N ∩ Γ) ∼= G/Γ. Also, Γ/(Γ ∩N) is
a Lie group, while Γ ∩N is totally disconnected. This implies dim Γ <∞.

Lemma 10.88. ΓH = G.

Proof. The quotient morphism F :G → N/(N ∩ Γ) induces a surjective map
f :G/H → N/(N ∩ ΓH) 6= {1}, and the following diagram commutes:

G
F−−−−−−−−−→ N

N∩Γ

p

y yquot

G
H −−−−−−−−−→

f

N
N∩ΓH.

We note that f |NH : NHH → N
N∩ΓH is the natural quotient map via N

N∩H . Now we
apply Lemma 10.86 with K = N , R = N∩H, q:N → N/(N∩H) the quotient map,
S = N ∩ΓH and r:N → N/(N ∩ΓH) the quotient map; moreover, let X = G/H
and let f :X → N/(N ∩ ΓH) be as above; finally, define ht:N/(N ∩ H) × I →
N/(N ∩ ΓH) as the composition

N

N ∩H
∼=−→ NH

H

kt−→ G

H

f−→ N

N ∩ ΓH
with kt as in (∗).

Then Lemma 10.86 implies N ∩ ΓH = N , that is, N ⊆ ΓH. In view of G = NΓ
this means G = ΓH as asserted. ut

Now ΓH = G implies G/H ∼= Γ/(Γ∩H), and dim Γ <∞. Therefore we are left
to deal with the finite dimensional case. But in this direction we have Lemma 10.78.
If dimG <∞ then dimG′ <∞. Then Lemma 10.78 shows that G/H ∼= Γ/(Γ∩H)
is locally euclidean. This completes the proof of Theorem A and thus the proof of
Theorem 10.80 for compact groups. ut

6. The reduction of the case of locally compact groups
to the case of compact ones

Since we got that far with the case of compact group actions, let us comment that,
given certain pieces of information on the structure of locally compact groups, it
is not hard to generalize the main result to the action of locally compact groups
where, admittedly we allow a slightly stronger hypothesis of contractibility on
the quotient space. Thus let us consider a locally compact group G and a closed
subgroup H; again we write X = G/H.

Let us first argue, that it is no loss to assume that G is almost connected, that
is, that the factor group G/G0 of G modulo the identity component is compact.
Recall thatG contains an open almost connected subgroupG1 (see e.g. [263]). Then
G1H/H is open, hence closed in the homogeneous space X = G/H and therefore is
piecewise contractible if X has this property (see Exercise E10.10(iv). The natural
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bijective continuous map G1/(G1 ∩ H) → G1H/H is a homeomorphism by the
Open Mapping Theorem, since G1H/H is locally compact, and thus a Baire space
and G1 is σ-compact. (We are dealing with a special case of the Open Mapping
Theorem in Exercise EA1.21.)

Thus we now assume that G/G0 is almost connected. Locally compact almost
connected groups are pro-Lie groups (see [263], p. 157). In [217], p. 547, Theorem
11, Iwasawa proved

Iwasawa’s Local Splitting Theorem. Let G be a locally compact connected
pro-Lie group. Then G has arbitrarily small neighborhoods which are of the form
NC such that N is a compact normal subgroup and C is an open n-cell which is
a local Lie group commuting elementwise with N and is such that (n, c) 7→ NC :
N × C → NC is a homeomorphism. ut

In such sources as [126], [185], [189] and [190] we find the basis for the following
result:

Theorem 10.89. Let G be a locally compact group. Then there exists an open,
almost connected subgroup G1 such that for every identity neighborhood U there is
a compact normal subgroup N of G1 contained in U ∩ G1, a (simply) connected
Lie group L, and an open and continuous surjective morphism ϕ:N × L → G1

with discrete kernel such that ϕ(n, 1) = n for all n ∈ N . ut

Lemma 10.90. (The Reduction Lemma) Let G be a locally compact almost con-
nected group and H a closed subgroup. Then G contains arbitrarily small compact
normal subgroups N such that the following conditions hold:

(i) If G/H is locally contractible then N/(N ∩H) is piecewise contractible.
(ii) If N/(N ∩H) is locally euclidean, then G/H is locally euclidean.

Proof. We let ϕ:N × L → G be a morphism whose existence is guaranteed by
Theorem 10.89, and set G2 = N × L and H2 = ϕ−1(H). Now G2/H2 is naturally
homeomorphic to G1H/H ∼= G1/(H∩G), an open quotient subspace of G/H. Thus
if we prove the Lemma for (G2, H2) in place of (G,H) we are done. Therefore we
may and will assume G = NL for a compact normal subgroup N and a normal

Lie subgroup L such that the product is direct. Since N is compact, G∗
def
= NH is

closed, and N/(N ∩H) ∼= G∗/H. Let HL
def
= G∗ ∩ L be the projection of G∗ (and

H) into L. Then HL is a Lie subgroup of L and G/G∗ ∼= L/HL is a Lie group
quotient.

The following diagram describes the situation:

N × L = G∣∣∣ }
∼= L/HL

N ×HL = G∗∣∣∣ }
∼= G∗/H

H


∼= G/H
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Since L is a Lie group, the quotient map G → G/G∗ ∼= L/HL is a locally trivial
principal bundle. In particular, the identity in G has a neighborhood homeomor-
phic to G∗ × B where B is a cell homeomorphic to RdimG/G2 . Accordingly, G/H
has an open neighborhood W of G∗/H homeomorphic to (G∗/H)×B.

Now we prove (i) and assume that G/H is locally contractible. Then we find
an open neighborhood U of H in G/H that is contractible in W/H. Accordingly,
G∗/H is piecewise contractible by Exercise E10.10(i). Since G∗/H ∼= N/(N ∩H),
assertion (i) is proved.

Now we prove (ii). Assume that N/(N ∩ H) is a manifold. Then G∗/H ∼=
N/(N ∩ H) is a manifold. Since G/H is locally homeomorphic to (G∗/H) × B,
we conclude that G/H is a manifold. This establishes claim (ii) and concludes the
proof of the lemma. ut

As a consequence of the Reduction Lemma 10.90 and Theorem A (see Main
Theorem 10.80) we have the following:

Theorem 10.91. Let G be a locally compact group with a closed subgroup H. If
the quotient space G/H is locally contractible, then G/H is locally euclidean. ut

Corollary 10.92. Let G be a locally compact group with a closed subgroup H
such that the quotient space G/H is locally contractible. Then there is an almost
connected open subgroup G1 of G such that H contains a normal subgroup M of
G1 for which G1/M is a Lie group. In particular,

G1H/H ∼= G1/(G1 ∩H) ∼=
G1/M

(G1 ∩H)/M

is a Lie group quotient and an open submanifold of G/H.

Proof. We let G1 and ϕ:N × L → G1 be as in Theorem 10.89. Then G1/N is a
Lie group and by Lemma 10.90, N/(N ∩H) is a manifold. Let M be the largest
normal subgroup of N contained in N ∩ H. Then by Theorem 10.80, N/M is a
Lie group. Since G1 = ϕ(N ×L), the group M = ϕ(M ×L) is normal in G1. Since
G1/N and N/M are Lie groups, G1/M is a Lie group. This was the first part of
the assertion and the rest is straightforward. ut

The special case H = {1} is still of interest. As an immediate consequence we
have the following result:

Corollary 10.93. A locally compact locally contractible group is a Lie group. ut

Postscript

For a compact Lie group G it is trivial that the two Lie groups G and G0×G/G0 are
homeomorphic. However, in the case of an arbitrary compact group G, in contrast
with the Lie group case, it is not trivial to decide, whether topologically G is a direct
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product of G0 with a subspace homeomorphic to G/G0. However, we have seen in
this chapter that this is true. Therefore, even though transformation group theory
does not belong to the structure theory of compact groups in the strict sense of the
word, it is appropriate to look at some basic facets of its foundations. These include
the Cross Section Theorem 10.11, elucidating the presence of a cross section, the
Triviality Theorem 10.25 and the perhaps even more important Local Triviality
Theorem for Compact Actions 10.28 giving an apparatus for deciding whether an
action having stable isotropy and a cross section is actually a trivial action. All of
this background is provided with a purely point set topological background and
could have been treated in Chapter I as far as background knowledge is concerned.
For other crucial parts, compact Lie group theory is needed. This applies to the
Local Cross Section Theorem for Compact Lie Group Actions stating that a locally
compact G-space with stable isotropy for a compact Lie group G is a principal fiber
bundle. We actually need this theorem for a proof of the two global cross section
theorems we prove in this section; one of these, the Global Triviality Theorem for
Totally Disconnected Base Spaces 10.35 is the key to the topological splitting of
the identity component in a compact group mentioned above. A second triviality
theorem is formulated and proved as well: The Global Triviality Theorem for
Contractible Base Spaces. Its proof is largely parallel to that of the former theorem.
We have already seen other cross section theorems in a preceding chapter (5.70).

A significant motivation for the presentation in this chapter is that of stable
isotropy. If we had been satisfied with proving the structure result on splitting
topologically the identity component in a compact group, we would have gotten
by with a theory of free actions in which the technical complications on triviality
theorems which we discussed in the section are not necessary. However, in view of
fiber bundle theory and the theory of compact transformation groups in general,
the hypothesis of stable isotropy is natural. There appear to be gaps in the litera-
ture, one example is [196], p. 317, where in 1.12 the triviality of certain actions with
stable isotropy is asserted but where only the existence of a global cross section is
proved. The device of the G-space X (G,H) which we attached to a compact group
G and a closed subgroup H is original in this text as is the equivariant mapping
M :X → X (G,H) from a G-space X with stable isotropy conjugated to H to this
device (Theorem 10.23).

In Chapters 6 and 9 we saw how important semidirect decompositions are in
the structure theory of compact groups. Semidirect products of compact groups
can be looked at in terms of split morphisms (see 10.41). A weaker form of split
morphisms is that of topologically split morphisms (10.41). In structural terms
this means the following. Let G be a compact group and N a compact normal
subgroup. The statement that the quotient morphism G → G/N is topologically
split is equivalent to the existence of a compact subspace C of G such that the
map (n, c) 7→ nc:N × C → G is a homeomorphism, i.e. to the fact that N is
topologically a direct factor. This issue clearly belongs to the more general question
of cross sections for compact group actions and thus we have treated this topic
here, although some of this material could have been included in Chapter 9. Our
treatment of topologically split morphisms includes the result that a topologically
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split morphism of a compact group onto a compact connected abelian group is
always split, and a precise characterization of topologically split morphisms of
isotypical semisimple compact connected groups. By 9.19 these groups are the
building blocks from which arbitrary compact semisimple groups are constructed.
These results are taken from [183] and are published in a book here for the first
time.

The survey of the action of compact groups and acyclicity covers material
belonging to compact transformation group theory and the application of coho-
mology. While most of it dates to the sixties and seventies, recent interest was
stirred by the discovery in 2011 by Sergey Antonyan [9] that the original proof of
the much used Theorem 10.80, dating back to 1974, contains a serious gap. Still,
for some of the results recorded in this subsection, we have to refer to original
sources. The original record is known to specialists from tenuously connected ori-
gins like [197]. Such matters have recently attracted renewed attention by A. Adel
George Michael, who contributed novel proofs [257].

The cohomology theory applied to transformation groups uses two functors
E and B from the categories of topological groups (in our case compact groups
only) to the categories of k-spaces (see the paragraph preceding Theorem 7.7).
For a compact group G, the k-space E(G) is contractible and contains G. More-
over, for two compact groups G1 and G2 the topological spaces E(G1 × G2) and
E(G1)×E(G2) are naturally isomorphic, that is, the functor E is multiplicative in
the sense of Definition A3.66. In particular, E(G) is a topological group by Propo-
sition A3.68. Under these circumstances, E(G) is called a universal space. Since G

is a subgroup of E(G), we can pass to the quotient space B(G)
def
= E(G)/G which

is called a classifying space of G. The theory of E and B has been studied exten-
sively in the context of both fibration and of transformation group theory. For a
compact group G the Čech cohomology H∗(B(G), R) has been studied and used
as a useful version of what has been called the algebraic cohomology theory. For
instance, if G is a compact connected abelian group, then the Čech cohomology
algebra H∗(B(G),Z) is the polynomial algebra generated by the abelian group Ĝ,
the character group of G, contained in the homogeneous component H2(B(G),Z)
of degree 2 (up to natural isomorphism). This was proved by Hofmann and Mostert
in [198], see p. 206, Theorem 1.9, and is parallel to what we see in the cohomology
algebra H∗(G,Z) of a compact connected abelian group in Theorem 8.83 in Chap-
ter 8 above. The existence of E(G) and B(G) was not yet available to A. Borel in
his famous thèse “Sur la cohomologie des espaces fibrés principaux et des espaces
homogènes de groups de Lie compacts” (Ann. of Math. 57 (1953), 115–207), the
results of which enter into the proof of his Acyclicity Theorem 10.69, nor when
he organized the Princeton Seminar on Transformation Groups [31], so one had
to use the artificial limit arguments still present in the proof of Theorem 10.69 in
about 1964-65 as presented in [197], pp. 308f. or in pp. 321ff. for the proof of the
Fixed Point Theorem for Compact Abelian Group Actions 10.64. A proof of this
theorem using E(G) and B(G) is presented in [162], pp. 15–27, a source that is
not easily available.
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The proof valididating Szenthe’s Local Contractibility Theorem 10.80 (respec-
tively, its locally compact version 10.91) is recent. This proof belongs to the circuit
of ideas of Hilbert’s Fifth Problem [263]. In 1900, David Hilbert asked whether a
locally euclidean topological group supports the structure of a Lie group. By the
middle of the century, this was settled affirmatively by Gleason, Montgomery, and
Zippin [263]. In 1974, Szenthe realized that it suffices to know that the underly-
ing space is locally contractible. In 2009, Hofmann and Neeb [200] observed that
the hypothesis of local contractibility caused a pro-Lie group to be a Lie group
(modelled on a locally convex topological vector space), which recovers Szenthe’s
version on the basis of the solution to Hilbert’s Fifth Problem.

The information on the “linearization of dimension theory” for quotient spaces
of compact groups contained in Proposition 10.74 is from the authors’ article [185].

Janoś Szenthe’s influential paper [347] was published in 1974, containing in
essence the stronger Theorems 10.80 and 10.91. Clearly belonging to the circle
of ideas of Hilbert’s Fifth Problem (see e.g. [217], [263]) it was overdue some 20
years after the solution of this problem. The statement provided a result which
was needed and applied in various areas, notably in the domain of topological
geometry, (see e.g. [311]).

We have seen that the essential aspect of the problem pertains to compact
groups and thus has its place in this book as well. Concerning this aspect, it is
relevant to point out that, in his 1954 textbook [295], §47, Satz 74 and Satz 57
(p. 121), L. S. Pontryagin showed the equivalence of the statements (3), (4), and
(7) of our central Theorem 10.80.

While Szenthe’s important result remained unproved, and Antonyan demoted
it to the status of a conjecture in 2011, by the end of 2012 several proofs were
proposed: one by A. A. George Michael [121], one by Sergey Antonyan himself in
collaboration wit Dobrowolski [11], and one by K. H. Hofmann and L. Kramer
[172], a variant of which is presented here. An essential portion of the homotopy
theory of compact quotient groups such as Lemma 10.86 was already treated by
K. H. Hofmann and M. W. Mislove in 1975 [176]; this lemmas was also used in
[11].

It had been discovered in the mid-nineties in the circuit of [311] and was
recorded by Bickel [24] in 1995, that Szenthe’s method of approximating a locally
compact group G by Lie groups forces G to be metric, that is, first countable. Thus
apart from the gap in Szenthe’s proof discovered by Antonyan there is a second
problem limiting the applicability of his original version. Szenthe’s approach to ap-
proximating a compact group by Lie groups is in all likelihood a misinterpretation
of a method introduced by Pontryagin (see [295]); a correct interpretation however
reemerged in some recent literature such as [11]. In the end, Szenthe’s vision laid
down in [347] and its many applications are confirmed and corroborated.
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Chapter 11

The Structure of Free Compact Groups

In Chapter 8 we completely described the structure of free compact abelian groups.
For example we showed that if X is an infinite compact connected metric space,
then the dual group of the free compact abelian group on X, which we shall now
call FabX (in order to distinguish it from the free compact group on X, called
FX) is topologically isomorphic to the direct sum H1(X,Z) ⊕ G, where G is a
rational vector space of dimension 2ℵ0 and H1(X,Z) ∼= [X,S1] denotes the first
Alexander–Spanier cohomology group.

In this chapter we describe the structure of the free compact group FX on
X. We begin by investigating its center ZFX and by determining how far it is
from the free compact abelian group FabX ∼= FX/(FX)′, where F ′X denotes the
commutator subgroup of FX. We prove the powerful result that for X any infinite
compact connected space, FX is topologically isomorphic to FabX × F ′X if and
only if H1(X,Z) is a divisible group. So, for example if H1(X,Z) = {0} or more
particularly if X is a contractible space, then FX is topologically isomorphic to
FabX × F ′X.

For any infinite compact space X, we show that the center ZFX is always
contained in the identity component F0X and F0X is a semidirect factor of FX.

The identity component of the center of the free compact group is shown to be
naturally isomorphic to the projective cover of the free compact abelian group. The
weight w(FX) of any free compact group FX is shown to be equal to (w(X))ℵ0 .

We will be able to clarify to a large extent (although inconclusively) the struc-
ture of the commutator group F ′X of a free compact group if X is connected; its
projective cover will be completely described. In the process we invent the concept
of a free semisimple compact group and the free compact group FSX with respect
to a given simple compact connected Lie group S.

In the last section of this chapter we examine relative projectivity in the cate-
gory of compact groups.

Prerequisites. In this chapter we shall more frequently use category theoretical
concepts than before. Whatever we use is presented in Appendix 3.

The Category Theoretical Background

We begin with the definition of a free compact group on a pointed space.

Definition 11.1. A free compact group on a topological space X with base point
x0 is a compact topological group, FX, together with a continuous function
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eX :X → FX mapping x0 to the identity 1 of FX such that the following uni-
versal property is satisfied: For every base point preserving continuous function
f :X → G into a compact topological group G (with 1 as its base point) there is
a unique continuous group morphism f ′:FX → G satisfying f = f ′eX . ut

We recall that all topological spaces and topological groups we consider are
assumed to be Hausdorff unless explicitly stated otherwise. If TOP0 denotes the
category of Hausdorff topological spaces with base points and base point preserving
maps, and if KG is the category of compact groups, then F :TOP0 → KG is the
left adjoint of the grounding functor | |:KG → TOP0 associating with a compact
group its underlying space |G| with base point 1. (See Appendix 3, A3.29ff.)

Our primary interest will be with connected spaces X; under these circum-
stances FX will be connected. Some of the results do pertain to the general situ-
ation.

To bring our strategy into focus we now proceed to some category theoretical
remarks and then to general observations on the structure of compact connected
groups.

Several adjoint situations are nearby. Firstly, denote by KTOP0 the category of
compact spaces with base points and base point preserving continuous functions.

Lemma 11.2. The inclusion functor KTOP0 → TOP0 has a left adjoint β:
TOP0 → KTOP0, called the Stone–Čech compactification. The functor β is a re-
traction; i.e. if X is a compact Hausdorff space, then βX and X are naturally
isomorphic.

Proof. Exercise E11.1. ut

Exercise E11.1. Prove the existence of the Stone–Čech compactification.

[Hint. Verify the hypotheses of the Adjoint Functor Existence Theorem A3.60.
Prove the claim that β is a retraction either by establishing the appropriate cate-
gory theoretical lemma or by a simple direct argument, verifying the characteristic
universal property.] ut

Lemma 11.3 ([179], 1.4.2). The functor F :TOP0 → KG factors through β. In fact,
if bX :X → βX is the front adjunction or unit of the Stone–Čech compactification
(see Appendix 3, A3.37), then there is a commutative diagram

X
eX−−−−→ FX

bX

y yF (bX)

βX −−−−→
eβX

F (βX)

such that F (bX) is an isomorphism and eβX is a homeomorphic embedding.
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Proof. By the universal property of β, the function eX :X → FX factors uniquely
through bX ; that is there is a unique map fX :βX → FX such that

X
bX−−−−→ βX

idX

y yfX
X −−−−→

eX
FX

commutes. By the universal property 11.1 of FX there is a unique morphism of
compact groups (fX)′:F (βX)→ FX such that

βX
eβX−−−−→ F (βX)

fX

y y(fX)′

FX −−−−→
idFX

FX

commutes. Then

idFX eX = fXbX = (fX)′eβXbX = (fX)′
(
F (bX)

)
eX =

(
(fX)′F (bX)

)
eX .

So by the uniqueness property in 11.1 we get (fX)′ ◦F (bX) = idFX . Since bX and
F (bX) are epic we conclude that F (bX) is an isomorphism. Since the continuous
base point preserving functions f :βX → T from C0(βX,T) separate points, there
is a continuous base point preserving injection βX → TC0(βX,T) into a compact
(abelian) group, ξ 7→

(
f(ξ)

)
f∈C(βX,T)

. By compactness of βX it is an embedding

and by the universal property of FX in 11.1 it factors through eβ . Hence eβX is
an embedding. ut

Exercise E11.2. Prove the corresponding lemma for the free compact abelian
group FabX in place of FX.

[Hint. The proof of 11.3 applies verbatim.] ut

After Lemma 11.3, without loss of generality, we can and shall restrict our
attention to pointed compact spaces. Further, we shall regard X as a subspace of
FX.

Lemma 11.4. (i) If G′ denotes the commutator subgroup of the compact group, G,

then the functor G 7→ GA
def
= G/G′ is left adjoint to the inclusion functor KAB→

KG of the category of abelian groups into the category of compact groups. The

group FabX
def
= FX/(FX)′ is naturally isomorphic to the free compact abelian

group on the space X (see Definition 8.51).
(ii) If G0 denotes the identity component of the compact group, G, then the

functor G 7→ G/G0 is left adjoint to the inclusion functor KZG → KG of the
category of compact 0-dimensional groups into the category of compact groups.
The functor X 7→ FX/F0X:TOP0 → KZG, F0X = (FX)0, is left adjoint to the
forgetful functor from the category of compact totally disconnected groups into the
category of pointed topological spaces.
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Proof. (i) is Exercise E11.3 and (ii) is Exercise E11.4. ut

Exercise E11.3. Prove 11.4.

[Hint. Verify the universal property A3.28 for the commutator factor group functor
and for the functor X 7→ FabX = FX/F ′X.] ut

Exercise E11.4. Prove 11.5.

[Hint. Verify the universal property A3.28 for the component factor group functor
and for the functor X 7→ FX/F0X.] ut

The group FX/F0X is called the free compact zero-dimensional group on X or
the free profinite group on X and is denoted FzX (see Theorem 1.34).

For a compact space X, let X/ conn be the zero-dimensional space of all compo-
nents of X. Then X 7→ X/ conn extends to a functor from the category of compact
spaces to the category of compact totally disconnected spaces, and this functor is
left adjoint to the inclusion functor. Indeed, the quotient map γX :X → X/ conn is
readily seen to satisfy the required universal property: For each continuous func-
tion f :X → Y into a compact totally disconnected space Y there is a unique
continuous map f ′:X/ conn→ Y such that f = f ′γX . (Cf. A3.28ff.)

Proposition 11.5. For a compact space X, the natural map γX :X → X/ conn
induces an isomorphism FzγX :FzX → Fz(X/ conn).

Proof. Let ηX :X → FzX be the front adjunction. Since FzX is a zero-dimensional
space, ηX factors through γX :X → X/ conn; that is there is a continuous function
ϕ: / conn→ FzX such that ηX = ϕγX . By the universal property of Fz(X/ conn)
there is a unique morphism ϕ′:Fz(X/ conn)→ Fz(X/ conn) such that ϕ′γX/ conn =
ϕ. Now ηX = ϕγX = ϕ′ηX/ connγX = ϕ′(FγX)ηX . By the uniqueness in the
universal property, this implies ϕ′(FγX) = id and since FγX is surjective, this
proves the claim. ut

For free profinite groups there is a rather detailed theory largely due to Mel’ni-
kov [254, 255, 256, 379]. We shall frequently, but by no means exclusively, be
concerned in this chapter with the opposite situation, namely, that of a connected
pointed space X. If X is connected, then FzX = {1}.

We accepted the existence of the free compact group FX on a compact space
X on the basis of category theoretical principles such as the Adjoint Functor
Existence Theorem (see A3.29ff.). It serves a useful purpose to give a more or less
explicit construction of FX; it will at any rate be explicit enough to allow us to
compute the weight of FX as soon as we have a little more information on the
center. Moreover, this construction does give us a certain idea about the way by
which X is embedded into FX; in spirit this way is not entirely dissimilar to the
route taken in the abelian situation.
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Proposition 11.6. Let X be a compact pointed space.
(i) Let P be a compact group and e:X → P a continuous function of pointed

spaces such that for every continuous function of pointed spaces f :X → U(n)
into a unitary group there is a function f ′:F → U(n) such that f = f ′ ◦ e,
then FX

def
= 〈e(X)〉 together with the corestriction eX :X → FX of e is the

free compact group on X.
(ii) Let C0

(
X,U(n)

)
the set of all continuous and base point preserving func-

tions X → U(n). Set G =
∏∞
n=1 U(n)C0(X,U(n)). We define e:X → G as

follows. Let x ∈ X, and define an element en(x):C
(
X,U(n)

)
→ U(n) of

U(n)C0(X,U(n)) by en(x)(f) = f(x). Finally define e(x) =
(
en(x)

)
n∈N. Then

e:X → G has the universal property of (i) above.
(iii) The weight w(FX) of the free compact group on X is estimated above by

w(FX) ≤ w(X)ℵ0 .

Proof. (i) Let H be a compact group and f :X → H a base point preserving
continuous function. By Corollary 2.29, we may assume that H ⊆

∏
j∈J U(nj) for

a family {nj | j ∈ J} of natural numbers. For each j ∈ J the restriction of the j-th
projection prj |H:H → U(nj) gives a continuous function (prj |H)◦f :X → U(nj).
By hypothesis there is a morphism f ′j :G → U(nj) such that (prj |H) ◦ f = f ′j ◦ e
holds. Let ψ′:G→

∏
j∈J U(nj) be defined by ψ′(g) =

(
f ′j(g)

)
j∈J . Let x ∈ X. Then

ψ′
(
e(x)

)
=
(
f ′j
(
e(x)

))
j∈J =

(
prj |H

(
f(x)

))
j∈J ∈ H ⊆

∏
j∈J U(nj). Hence we can

set FX
def
= 〈e(X)〉, let eX :X → FX be defined as the corestriction of e, and define

f ′:FX → H by f ′(g) = ψ′(g). Then f = f ′ ◦ eX . Moreover, if f ′′:FX → H also

satisfies f = f ′′ ◦ eX , consider the equalizer E
def
= {g ∈ FX | f ′(g) = f ′′(g)}. Then

E is a closed subsemigroup containing e(x) for all x ∈ X. Since FX = 〈e(X)〉
we conclude E = FX. Thus f ′′ = f ′. Thus FX has the universal property which
after 1.1 is characteristic for the free compact group on X.

(ii) Let f :X → U(m) be a base point preserving continuous function. Then

f ∈ C0

(
X,U(m)

)
. Let prf :G

def
=
∏∞
n=1 U(n)C0(X,U(n)

)
be the projection onto

U(n) determined by the index f ; i.e. if ϕn ∈ U(n)C0(X,U(n)) then prf
(
(ϕn)n∈N

)
=

ϕn(f). Accordingly, f ′
def
= prf :G → U(n) satisfies f ′

(
e(x)

)
= prf

((
en(x)

)
n∈N =

en(x)(f) = f(x).
(iii) By Theorem A4.9 of Appendix 4, cardC0

(
X,U(n)

)
= w(X)ℵ0 . Then,

again by Appendix 4, notably Exercise EA4.3, w(G) = w(
∏∞
n=1 U(n)C0(X,U(n)

)
) =∑∞

n=1 cardC0

(
X,U(n)

)
= w(X)ℵ0 . By (i) and (ii) we have FX ⊆ G, and thus

w(FX) ≤ w(X)ℵ0 . ut

Chapter 8 contains a complete description of the free compact abelian group. In
the case of a connected pointed space X, resulting in a compact connected group
FX, we have a good insight into the general structure of FX due to the structure
theorems in Chapter 9. In particular, we know F ′X = F ′X from Theorem 9.2
and FX = ZFX·F ′X with a totally disconnected central group ZFX ∩ F ′X
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11. The Structure of Free Compact Groups 649

from Theorems 9.23 and 9.24 and FX ∼= F ′X o FabX from Theorem 9.39. We
are therefore challenged to determine the building blocks F ′X and ZFX ∩ F ′X.
Specifically, we are faced quite generally with the extension problems

0→ F0X → FX → FzX → 0,

0→ F ′X → FX −→ FabX → 0.

We shall address the first one in the next section and deal with the second one
later.

Splitting the Identity Component

Let G0 denote the identity component of the topological group G. From the The-
orem on Splitting the Components of Compact Groups 10.37 we know that

For any compact group G the quotient morphism p:G → G/G0 has a continuous
cross section σ:G/G0 → G,

that is a continuous map satisfying p ◦ σ = idG/G0
. This was an immediate con-

sequence of the Global Cross Section Theorem for Totally Disconnected Base
Spaces 10.35. From Lee’s Theorem for Compact Groups 9.41 we know that G
always contains a compact zero-dimensional subgroup D such that G = G0D
while, in general, G0 ∩D is not singleton. Neither of these important results says
that G0 is a semidirect factor. In fact this is not even true in the abelian case
as we saw in Example 8.11(iv). It is therefore interesting to observe that G0 is a
semidirect factor whenever G is a free compact group.

The Component Splitting Theorem for Free Compact Groups

Theorem 11.7. The identity component F0X of any free compact group FX
is a semidirect factor. More specifically, there are closed totally disconnected sub-
groups D of FX with FX = (FX)0D, and every such group D contains a totally
disconnected closed subgroup T ∼= FzX of FX such that the function (c, t) 7→
ct: (FX)0 o T → FX is an isomorphism of compact groups.

Proof. By Lee’s Theorem 9.41, FX contains a compact zero-dimensional subgroup
D such that FX = (FX)0D. The surjective morphism

π:D → FzX, π(d) = dF0X ∈ FzX = FX/F0X

allows a topological cross section σ:FzX → D by the Cross Section Theorem 10.35.
Thus the canonical map ε:X → FzX, ε(x) = eX(x)F0X gives a map σ ◦ε:X → D
which, by the universal property of FzX, factors through a morphism λ:FzX → D
satisfying π ◦ λ = idFzX . Then λ(FzX) is the required group T . ut

Here the extension problem of F0X by FzX is comparatively simple. Every rep-
resentation FX = F0X·D ∼= F0XoFsX provides us with a projection pr0:FX →

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



650 11. The Structure of Free Compact Groups

F0/X, pr0(gd) = g, g ∈ F0X, d ∈ D. The continuous function pr0 ◦ eX :X → F0X
gives us a morphism p:FX → F0X such that p◦eX = pr1 ◦ eX . We know p(F0X) =
F0X from 9.26(i) and thus FX = F0X·D1 with D1 = ker p E FX. The method of
proof of Theorem 11.7 will produce a totally disconnected subgroup D2 ≤ D1 such
that FX = F0X·D2, F0X ∩D2 = {1}. This seems to get us back to the point we
were in 11.7. Except that we know that the group generated by the conjugates ofD2

is contained in D1, and D1 6= FX, because D1 = FX implies F0X ∩ ker p = F0X,
while cardX > 1 implies {1} 6= F0X ∼= F0X/ ker(p|F0X) = F0X/(F0X ∩ ker p).

The Center of a Free Compact Group

We consider a compact group G and recall GA = G/G′ and the morphisms
ζ:Z(G)→ GA, ζ(g) = gG′, ζ0:Z0(G)→ GA, ζ0 = ζ|G0. Then by Theorem 9.23(iii)
there is an exact sequence

(A) 0→ Z0(G) ∩G′ → Z0
ζ0→ GA → GA/(GA)0 → 0.

Thus, roughly speaking, the identity component Z0(G) of the center of any com-
pact group, G, differs from the abelianization GA = G/G′ of G just by groups of
dimension zero. After the next proposition we shall prove that the center of a free
compact group is contained in the identity component.

Proposition 11.8. Let G be a compact group and assume that Z(G) ⊆ G0. Then
(i) Z(G)G′ = G0G′; that is (GA)z = G/Z(G)G′. The identity component can

be written G0 = Z(G)(G0 ∩G′).
(ii) Z(G) = Z0(G)(Z(G) ∩G′).

That is we have a lattice diagram

b
b
b
b
b
b
b

"
"
"

"

"
"

"
"

b
b
b
b
b

.

.

.

.

.Z0 ∩G′

Z0

Z

Z ∩G′

0

In particular, Zz(G) = (Z ∩G′)/(Z0(G) ∩G′).
(iii) Let ζ:Z(G) → GA be given by ζ(z) = zG′. In the character group Ẑ(G)

of Z(G) we have Z0(G)⊥ = tor Ẑ(G), (Z(G)∩G′)⊥ = ζ̂(G) and (Z0(G)∩G′)⊥ =
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ζ̂(G0). Thus the dual diagram to that in (ii) is

b
b
b
b
b

"
"

"
"

"
"

"
"

b
b
b
b
b
b
b

.

.

.
.

.

0

ζ̂(G0)

Ẑ

(ζ|Z0)(G0)

tor Ẑ

Proof. (i) By Theorem 9.23, we have G0 ⊆ Z(G)G′. By hypothesis, Z(G)G′ ⊆
G0G′, so G0G′ = Z(G)G′. Hence (GA)0 = (Z(G)G′)/G′ by Theorem 9.23(iii), and
this implies (GA)z = GA/(GA)0 = (G/G′)/(Z(G)G′)/G′ ∼= G/(Z(G)G′). Clearly
Z(G) ⊆ G0 implies Z(G)(G0 ∩ G′) ⊆ G0. The relation G0 ⊆ Z(G)G′ implies the
reverse inclusion.

(ii) Clearly, Z0(G)(Z(G) ∩ G′) ⊆ Z(G). Now let z ∈ Z(G). Then z ∈ G0 ⊆
Z0(G)G′ by 9.23(i). Hence, z = z0g with z0 ∈ Z0(G), g ∈ G′, whence g = zz−1

0 ∈
Z(G)∩G′ and thus z ∈ Z0(G)(Z(G)∩G′). Trivially, Z0(G)∩G′ = Z0(G)∩(Z(G)∩
G′).

(iii) The annihilator of Z0(G) in the character group Ẑ(G) of Z(G) is torZ(G)
by Theorem 8.4(7). Since Z(G) ∩G′ = ker ζ by 9.23(iii)(B), we have

(Z(G) ∩G′)⊥ = (ker ζ)⊥ = im ζ̂ = ζ(G)

by 7.65. Similarly, by 9.23(A)(iii)(A) we note Z0(G) ∩G′ = ker ζ0, ζ0 = ζ|Z0(G),
whence

(Z0(G) ∩G′)⊥ =
(

ker(ζ0)
)⊥

= im(ζ̂0) = ζ(G0). ut

The following result appears in [174]. Its proof is completely self-contained from
first principles. The work of Mel’nikov [254] contains a more general result for a
more special class of spaces, namely, one point compactifications of discrete spaces.

Theorem 11.9. Let X be a compact pointed space with at least three points. Then
the center Z of the free compact group FX is contained in the identity component
F0X.

Proof. First we note that it suffices to show that the center of the free compact
zero-dimensional group FzX is singleton; for ZF0X/F0X is contained in the center
of FzX. The proof of this claim is by contradiction. We suppose that FzX contains
a central element z0 6= 1. Then we find a finite quotient q:FX → G with z =
q(z0) 6= 0. If we denote q(e(X) by Y , then Y is a generating set of G. The next
step utilizes a familiar lifting technique based on the universal property of FzX.

Claim 1. Let E be a finite group and p:E → G a quotient morphism. If
s:Y → E is any function satisfying ps = idY , then there is a unique morphism
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Q:FX → E with pQ = q. The subgroup imQ of E is generated by s(Y ) and
centralizes Q(z0).

Proof of Claim 1. By the universal property, the function sqe:X → E deter-
mines a unique morphism Q:FX → E with Qe = sqe. Then pQe = psqe = qe,
and by the uniqueness aspect of the universal property, pQ = q follows. Since
FX is topologically generated by e(X) and since E is discrete, the group imQ is
generated by Q(e(X)) = sqe(X) = s(Y ). Since z0 is central in FX, the element
z = Q(z0) is central in imQ. This completes the proof of Claim 1.

Our objective is to obtain a contradiction by choosing the parameters E and
s. For this purpose we consider a finite-dimensional vector space M over a finite
field K and assume that G operates linearly on M on the left. Then M is a G-
and a K(G)-module, where K(G) is the group ring of G over K. We take for
E the semidirect product E = M × G; that is the cartesian product with the
multiplication (m, g)(n, h) = (m+ gn, h). The first application results from taking
M = K(G) with multiplication on the left as action.

Claim 2. For each y ∈ Y there is a natural number a with ya = z.
Proof of Claim 2. We apply Claim 1 with E = K(G)×sG, and p = pr2:E →

G; furthermore we take s:Y → E to be defined by s(Y ) = (1, y) for all y ∈ Y .
If we write Q(z0) = (c, z) and recall that (c, z) is centralized by imQ, hence in
particular commutes with all elements (1, y), we obtain (1+yp, yz) = (1, y)(c, z) =
(c, z)(1, y) = (c+ z, zy), whence 1 + yc = c+ z. This may be written as

(1) 1− z = (1− y)c for all y ∈ Y.

In the group ring K(G) the element c is of the form
∑
rg · g with rg = r(g) ∈ K

and the summation extended over all g ∈ G. One observes that the relations (1)
then are equivalent to the equations

(2)

(i) r(y−1) = r(1)− 1,

(ii) r(y−1z) = r(z) + 1,

(iii) r(y−1g) = r(g) for all g 6= 1, y ∈ Y.

Suppose now that the claim is false. Then we would find a y ∈ Y such that
no power of y equals z. We consider the coefficients r(g) for g in the cyclic
subgroup{1, y−1, y−2, . . . , y−n+1}, where n is the order of y. From (2)(i) and (iii),
we conclude inductively that r(y−m) = r(1) − 1 for m = 1, . . . , n and thus arrive
at the contradiction r(1) = r(y−n) = r(1)− 1. This proves Claim 2.

In order to conclude with a contradiction, after Claim 2 it suffices to find a
finite quotient map Q:FX → H such that Q(z0) is contained in the subgroup
generated by some y ∈ Q(e(X)).

Claim 3. The group FX is nonabelian and q:FX → G is a nonabelian finite
quotient with z = q(z0) 6= 1. Apply Claim 1 with E = K(G) ×s G and p =
pr2:E → G and with s:Y → E defined by s(y) = (0, y) for all y ∈ Y with the
exception of one u ∈ Y for which we define s(u) = (u, u). Then H = imQ is a
finite quotient of FX with the property that for at least one generator Q(e(X))
of H the element Q(z0) is not in the subgroup generated by Q(e(X)).
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Proof of Claim 3. Since FX is nonabelian, there are finite nonabelian quo-
tients G of the required sort. Moreover, the generating set Y has to contain,
outside 1 and u, at least one other element v. Suppose now, by way of con-
tradiction, that Q(z0) = (c, z) equals s(v)a = (0, v)a for some natural num-
ber a. By Claim 1, then (u, u) = s(u) commutes with (c, z) = (0, va), whence
(u, uva) = (u, u)(0, va) = (0, va)(u, u) = (vau, vau). This implies vau = u and
thus va = 1, which yields z = 1 in contradiction with the choice of q. Thus any x
with e(x) = v satisfies the conclusion of Claim 3.

By the remark preceding Claim 3, and since X has at least three points and
FX is therefore nonabelian, the proof of the theorem is now complete. ut

By Proposition 11.8, we now obtain the following result.

Theorem 11.10. For any compact space X, the following conclusions hold:
(i) Z(FX)F ′X = F0XF ′X; that is (FabX)z = FX/Z(FX)F ′X. Further

F0X = Z(FX)(F0X ∩ F ′X).
(ii) Z(FX) = Z0(FX)(Z(FX) ∩ F ′X). In particular,

Zz(FX) = (Z(FX) ∩ F ′X)/(Z0(FX) ∩ F ′X).

(iii) Let ζ:Z(FX) → FabX be given by ζ(z) = zF ′X. In the character group

Ẑ(FX) of Z(FX) we have Z0(FX)⊥ = tor Ẑ(FX), (Z(FX) ∩ F ′X)⊥ = ζ̂(FX)

and (Z0(FX) ∩ F ′X)⊥ = ζ̂(F0X). ut

We shall now aim for precise information on Z0(FX) and Z0(FX)∩F ′X. Recall
that U(1) = S1 is the circle group {z ∈ C : |z| = 1}. In the following proposition,
let pn: U(1)→ U(1) be the endomorphism given by pn(z) = zn.

Proposition 11.11. For a compact group G the following conditions are equiva-
lent.

(i) The exact sequence (A) is the characteristic sequence of GA.
(ii) The group

(
Z0(G)

)̂ is divisible.
(ii)′ The group Z0(G) is torsion-free.

(iii) For each χ ∈ im ζ̂0 ⊆
(
Z0(G)

)̂ and each natural number, n, the element

has an n-th root in
(
Z0(G)

)̂.

(iii)′ The subgroup ζ̂0(ĜA) of
(
Z0(G)

)̂ is pure.
(iv) For each continuous morphism ψ:G → U(1) and each natural number, n,

there is a character ϕ:Z0(G) → U(1) such that the following diagram is
commutative:

Z0(G)
Φ−−−−→ U(1)

incl

y ypn
G −−−−→

ψ
U(1).

Proof. The equivalence of (i), (ii), and (ii)′ was proved in 9.23(iii).
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Trivially, (ii) implies (iii).
For the equivalence of (iii) and (iii)′ see A1.24.

We now show that (iii)′ implies (ii). Let χ ∈ Ẑ0 and let n be a natural number.

By (iii)′ there is a natural number m such that χm ∈ im ζ̂0. By Condition (iii),
there is a ϕ ∈

(
Z0(G)

)̂ such that ϕmn = χm. Since
(
Z0(G)

)̂ is torsion-free,
ϕn = χ follows.

Now we show that the conditions (iii) and (iv) are equivalent. If q:G→ GA =
G/G′ denotes the quotient map, then every ψ:G→ U(1) factors uniquely through
q, since U(1) is abelian. Because q ◦ incl = ζ with incl:Z0(G)→ G, condition (iv)
is equivalent to saying that for every character χ:GA → U(1) and every natural
number n there is a character ϕ ∈ Z0(G) such that χ◦ζ0 = ϕn. But this statement
is exactly condition (iii). ut

Proposition 11.12. The conditions (i) through (iv) of Proposition 11.11 are im-
plied by the following condition
(iii)∗ For each χ ∈ im ζ̂ ⊆

(
Z(G)

)̂ and each natural number, n, the element has

an n-th root in
(
Z(G)

)̂.
This condition is in turn implied by

(v) For every morphism ψ:G → U(1) and each natural number n, there is an
irreducible representation π:G → U(n) such that ψ(g) = detπ(g) for all
g ∈ G.

Proof. (iii)∗ implies (iii). We abbreviate
(
Z0(G)

)̂ by B, and
(
Z(G)

)̂ by A.

Then the inclusion j:Z0(G) → Z(G) gives a quotient morphism q = ĵ:A → B

with kernel torA. Set I
def
= im ζ̂ ⊆ A. Then q(I) = im(ζ ◦ j)̂ = im(ĵ ◦ ζ̂) = im ζ̂0.

Then Condition (iii)∗ says I ∈ Div(A) (see A1.29). Now q
(

Div(A)
)
⊆ Div(B).

Hence q(I) ⊆ Div(B) which is exactly (iii).
Exactly as in the proof of the equivalence of (iii) and (iv) in 11.11 we see that

(iii)∗ is equivalent to
(iv)∗ For each continuous morphism ψ:G → U(1) and each natural number, n,

there is a character ϕ:Z(G) → U(1) such that the following diagram is
commutative:

Z(G)
Φ−−−−→ U(1)

incl

y ypn
G −−−−→

ψ
U(1).

Now we show that (v) implies (iv)∗. This will prove the proposition. Assume that
a morphism ψ:G→ U(1) and a natural number n are given. Let π:G→ U(n) be
the irreducible representation according to (v). If g ∈ Z, then by the irreducibility
of π and Schur’s Lemma, π(g) is of the form ϕ(g)En with the n×n identity matrix
En and a complex number ϕ(g). Now ϕ:Z → U(1) is a character, and for g ∈ Z
we have detϕ(g) = ϕ(g)n, as asserted in (iv). ut
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The situation of condition (v) is illustrated in the following diagram:

Z(G)
π|Z(G)−−−−→ U(1)

incl

y ydiag

G
π−−−−→ U(n)

idG

y ydet

G
ψ−−−−→ U(1)

with pn = det ◦diag, diag(z) = z·En.
In reference to the proof of (iii)∗⇒(iii) in 11.12 we note in passing that the

surjective homomorphism p:∇ → Q of A1.32 has tor∇ as kernel by A1.32(iv), but
p(Div∇) = Z by A1.32(vi) while Div(Q) = Q.

We now verify condition (v) of Proposition 11.12 for the free compact group
G = FX.

Lemma 11.13. Let G = FX be the free compact group on a compact space X
with a base point and at least two further distinct points a and b. Then condition
(v) of Proposition 11.12 is satisfied.

Proof. Assume that ψ:FX → U(1) is given. For each n = 1, 2, . . . we have to
produce an irreducible representation π:FX → U(n) such that ψ(g) = detπ(g)
for all g ∈ FX. Since FX = 〈X〉 (by the uniqueness of the universal property, since
〈X〉 has the universal property of 11.1) it suffices to find π so that detπ(x) = ψ(x)
for all x ∈ X.

Now let s: U(1)→ U(n) be defined by s(z) = diag(z, 1, . . . , 1). Thus (i) det s(z)
= z. By 6.51, the group SU(n) is topologically generated by two elements g and
h. Since X is compact there is a continuous function from X into [−1, 1] with
a going to a, the base point to 0, and b to 1. Now SU(n) is path-connected (cf.
E1.2 for SU(2) and E6.5 for the fact that every element of SU(n) is contained
in a subgroup isomorphic to SU(2)). Thus there is a continuous function from

[−1, 1] to SU(n) sending −1 to gs
(
ψ(a)

)−1
, 0 to 1, and 1 to hs

(
ψ(b)

)−1
. Hence

there is a continuous function f0:X → SU(n) such that (ii) f0(a) = gs(ψ(a))−1,
f0(b) = hs(ψ(b))−1. Now let f(x) = f0(x)s(ψ(x)). Then (iii) det f(x) = ψ(x) by
(i), and (iv) f(a) = g, f(b) = h by (ii). By the universal property of F , there is
a representation π:FX → U(x) with (v) π|X = f . Then π(FX) contains SU(n),
since {f(a), f(b)} topologically generates SU(n). Hence π is irreducible. By (iii)
and (iv), however, det ◦π and ψ agree on X, which was to be shown. ut

The Center of a Free Compact Group

Theorem 11.14. (i) Let X be an arbitrary compact pointed space X. If cardX 6=
2, then the center Z(FX) of the free compact group FX on X is contained in the
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identity component F0X of FX, and if cardX = 2 then Z(FX) = FX is the
universal compact monothetic group (Example 8.75).

Irrespective of cardinality, the following sequence is the characteristic sequence
of the free compact abelian group, FabX:

0→ Z0(FX) ∩ F ′X → Z0(FX)
ζ→ FabX → (FabX)z → 0,

where Z0(FX) is the identity component of the center of FX, where F ′X de-
notes the commutator subgroup of FX, where FabX = FX/F ′X and (FabX)z =
FabX/(FabX)0, and where ζ(g) = gF ′X.

(ii) Assume that X is connected. Let πF ′X : F̃ ′X → F ′X denote the natural
morphism of the Structure Theorem for Semisimple Compact Connected Groups
9.19 with a unique simply connected compact domain F̃ ′X and a totally discon-
nected central kernel. Then Z0(FX)× F̃ ′X is the projective cover P(FX) of FX
and the projective covering morphism is given by

EFX :Z0(FX)× F̃ ′X → FX, EFX(z, g) = zπF ′X(g).

Its kernel is isomorphic to a closed subgroup of Z(F̃ ′X), and

L(EG):L
(
Z0(FX)

)
× L(F̃ ′X)→ L(FX),

L(ζ):L
(
Z0(FX)

)
→ L(FabX)

are isomorphisms of weakly complete vector spaces.

Proof. (i) If X has at least three points, then by Theorem 11.10, Proposi-
tions 11.11 and 11.12 together with Lemma 11.13 the proof is completed. If X
has one point, then all groups in sight are singleton, and the assertion is true
by default. There remains the case of two points. Then FX is abelian and thus
agrees with the free compact abelian group FabX. In this case, F ′X = {0} and
Z(FX) = FX, whence Z0(FX) = (FabX)0, and the sequence in question becomes

(∗) 0→ (FabX)0 → FabX → (FabX)z → 0.

Its dual sequence is 0→ Q/Z→ (R/Z)d → (R/Q)d ∼= Rd → 0 which is equivalent
to

0→ torTd → Td
ιTd−−−−→ Q⊗ Td → 0.

Thus (∗) is the characteristic sequence of FabX by 8.80. (Cf. 8.75.)
(ii) By (ii) we have P

(
Z0(FX)

)
= Z0(FX). Then the assertion is an imme-

diate consequence of Definition 9.72 and Theorem 9.73 where we apply 9.73(iii)
first to FX and, secondly, to FabX. ut

In Chapter 8 we have a complete structure theory of FabX and all terms of the
characteristic sequence of FabX in 8.82 for a compact and connected X. (For an
arbitrary compact space X, see [179], 2.2.4.) Now we have obtained the characteris-
tic sequence of FabX starting from the free compact group FX. The isomorphisms
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on the Lie algebras will give us a complete description of the Lie algebra of a free
compact group.

Theorem 11.14 gives, in particular,

Corollary 11.15 (The Connected Center of a Free Compact Group). For any
compact space X, the identity component Z0(FX) of the center of FX is (naturally

isomorphic to) the projective cover P(FabX) = (Q⊗ F̂abX)̂ of FabX (according
to 8.80), and the morphism ζ:Z0(FX) → FabX, ζ(g) = gF ′X is (equivalent to)
the projective covering morphism EFabX :P(FabX)→ FabX.

The group Z0(FX) ∩ F ′X is naturally isomorphic to ∆(FabX) = kerEFab
.

Proof. This is a consequence of 11.14 and Definition 8.80 and the observations
following 8.80. ut

These results concern compact abelian groups. So one wishes to identify them
in terms of their character groups.

Corollary 11.16. The character groups of the terms of the characteristic sequence
of FabX in Theorem 11.14 are given by

F̂abX ∼=
C0(X,R)d
C0(X,Z)d

⊕H1(X,Z),(i)

C0(X,R)

C0(X,Z)
∼= H̃0(X,Q/Z)⊕Q(w(X)ℵ0 ).(ii)

tor(F̂abX) ∼= H̃0(X,Q/Z) ∼=
⊕

p prime

Z(p∞)

(
w0(X/conn)

)
,(iii)

(
(FabX)z

)̂ ∼= tor(F̂abX),(iii)
′

Z0(FX)̂ ∼= Q(ω(X)ℵ0 ),(iv)

(Z0(FX) ∩ F ′X)̂ ∼= Q⊗H1(X,Z)

1⊗H1(X,Z)
∼= (Q/Z)⊗H1(X,Z).(v)

Proof. (i) was shown in 8.50 and (ii),(iii) in 8.65. Relation (iii)′ is a consequence
of 7.69(ii). For a proof of (iv) we note from 11.15 that Z0(FX) ∼= P(FabX). The

character group of P(FabX) is Q⊗ F̂abX by 8.80. By (i) and (ii) this group is iso-

morphic to Q(w(X)ℵ0 )⊕
(
Q⊗H1(X,Z)

)
. Now [X,T] ∼= H1(X,Z) is a quotient group

of C0(X,T) whose cardinality is w(X)ℵ0 . Thus the cardinality of Q ⊗ H1(X,Z)

does not exceed that of Q(w(X)ℵ0
. Hence Q(w(X)ℵ0 )⊕

(
Q⊗H1(X,Z)

) ∼= Q(w(X)ℵ0 ).
The assertion (iv) follows.

(v) By 11.15 above, Z0(FX) ∩ F ′X = ∆(FX) = kerEFabX . By 8.80, the

character group of ∆(FabX) is coker ι
F̂abX

∼= Q⊗F̂abX

1⊗F̂abX
∼= Q⊗H1(X,Z)

1⊗H1(X,Z) (in view of

(ii)). (Cf. 8.82.) This proves the first isomorphy. A proof of the second requires a
generalisation of some information on the tensor product which we presented in
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A1.45. Indeed, if we tensor the exact sequence

0→ Z→ Q→ Q/Z→ 0

by H1(X,Z), then

Z⊗H1(X,Z) ∼= H1(X,Z)→ Q⊗H1(X,Z)→ (Q/Z)⊗H1(X,Z)→ 0

remains exact. ut

We now have enough information to compute the weight of a free compact
group on a compact connected pointed space.

Weight of a Free Compact Group

Theorem 11.17. Let X be a compact connected space. Then

w(FX) = w(X)ℵ0 .

Proof. By 11.6 we have w(FX) ≤ w(X)ℵ0 . From Corollary 11.16(iv) we know

that Z0(FX) ∼= Q̂w(X)ℵ0
. Thus w(X)ℵ0 = w(Q̂w(X)ℵ0

) = w
(
Z0(FX)

)
≤ w(FX).

From both estimates we get the desired equality. ut

Theorem 11.18. Let X be a compact pointed space. Then F0X is a direct product
of Z0(FX) and (F0XF ′X) if and only if H1(X,Z)/ tor

(
H1(X,Z)

)
is divisible.

Proof. We observe that H1(X,Z)/ tor
(
H1(X,Z)

)
is divisible if and only if the

map ιH(X,Z):H
1(X,Z)→ Q⊗H1(X,Z) is surjective. By 11.16(v) this is equivalent

to Z0(FX) ∩ F ′X = {1}. Now F0(X) = Z0(FX)(F ′X)0 by 11.10(i). ut

The most striking consequence is the following.

Free Compact Group Direct Product Theorem

Theorem 11.19. Let X be a compact connected pointed space. Then the free
compact group is the direct product of the free compact abelian group FabX and its
commutator subgroup F ′X if and only if H1(X,Z) is divisible.

Proof. Since X is connected, F0X = FX. Then the commutator subgroup F ′X is
closed by 9.2. Thus the divisibility of H1(X,Z) is equivalent to FX being the direct
product of the two characteristic closed subgroups Z0(FX) and F ′X. But this
implies that Z0(FX) ∼= FX/F ′X = FabX. Conversely, FX ∼= FabX × F ′X, then
the connected compact factor FabX × {1} is contained in the identity component
of the center, and since the center of F ′X is totally disconnected by 9.19 and 9.24,
it agrees with the identity component of the center. ut

Corollary 11.20. If X is a compact connected space such that H1(X,Z) ∼=
[X,T] = {0}, then FX ∼= FabX × F ′X. ut
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Notice that every contractible space certainly satisfies [X,T] = {0}.

We have not fully exploited Lemma 11.13. Now we utilize this lemma for a
proof of the following result:

Theorem 11.21. Let X be a compact space and let ζ:ZFX → FabX be again
defined by ζ(g) = gF ′X. Then tor

(
Z(G)

)
⊆ Z(G) ∩ F ′X. Moreover, if X is

connected, then equality holds, i.e. tor
(
Z(G)

)
= Z(FX) ∩ F ′X.

Proof. A character χ:Z → U(1) of Z is in ζ̂(FabX) if and only if there is a mor-
phism ψ:FX → U(1) such that χ = ψ|Z(G). Condition (v) of Proposition 11.12

applied to G = FX states that every element of ζ̂(FabX) is a divisible element

in Ẑ(G). Thus ζ̂(FabX) ⊆ div(Ẑ(G)). By the exactness of the characteristic se-
quence of FabX in Theorem 11.14 on the center of the free compact group, we have

ζ̂(FabX) ⊆ (Z(G)∩F ′X)⊥. Consequently, we have (Z(G)∩F ′X)⊥ ⊆ div
(
Ẑ(G)

)
.

Passing to annihilators we get
(

div Ẑ(G)
)⊥ ⊆ (Z(G) ∩ F ′X)⊥⊥ = Z(G) ∩ F ′X

by 7.64(iv). By 8.4(8)
(

div Ẑ(G)
)⊥

= torZ(G). This proves the first part of the
theorem.

Now assume that X is connected. Then FX is connected and F ′X is a semisim-
ple closed characteristic subgroup. By the Structure Theorem of Semisimple Con-
nected Compact Groups 9.19 there is a quotient morphism with totally discon-
nected central kernel π : S → F ′X, where S =

∏
j∈J Sj and the Sj are simple

Figure 11.1: The free compact group and its center
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simply connected compact Lie groups. Since the center of a semisimple compact
Lie group is finite, Z(S) has a dense torsion subgroup. Consequently, Z(F ′X) =
Z(FX) ∩ F ′X has a dense torsion subgroup. Thus Z(G) ∩ F ′X ⊆ torZ(G). Since
the converse containment has been proved in the first part of the proof, the theorem
is proved. ut

We have summarized all of our results on the center of a free compact group
on a compact pointed space X in the lattice diagram shown in the figure on the
previous page.

The Commutator Subgroup of a Free Compact Group

So far we know little about F ′X. This section is devoted to the structure theory
of this portion of the free compact group. For compact connected spaces X, this
group is a semisimple compact connected group, and by Theorem 9.19 one has
general information on the structure of such groups. The approach we take is to
investigate the basic “molecules” from which F ′X is made up. Simple compact
Lie groups serve as an index set for these molecules. (A simple Lie group is by
definition nonsingleton.) We shall therefore fix a compact connected simple Lie
group G and define a new type of free compact group as follows

Definitions 11.22. (i) A basepoint preserving function f :X → G from a pointed
space into a topological group is said to be essential if it is basepoint preserving
and G is topologically generated by f(X), that is G is the smallest closed subgroup
containing f(X).

(ii) For any compact group G, and any compact pointed space X, the essential
G-free compact group FGX (if it exists) is a compact group together with a natural

map e
(G)
X :X → FGX such that for every essential function f :X → G mapping the

basepoint of X to the identity of G there is a unique continuous homomorphism
f ′:FGX → G such that f = f ′ ◦ eX . If no confusion is possible we shall simply

write eX in place of e
(G)
X .

(iii) The free semisimple compact connected group on a pointed space X is a
compact connected semisimple group FssX together with a base point preserving
continuous function iX :X → FssX such that for every base point preserving es-
sential continuous function f :X → S into a compact connected semisimple group
S there is a unique morphism f ′:FssX → S such that f = f ′ ◦ iX . ut

Notice that FGX = {1} if cardX ≤ 2 and G is nonabelian, since one needs
at least 2 nonidentity elements to topologically generate a nonabelian compact
group. However, we shall see that for connected compact simple Lie groups G
and spaces X with at least 3 points, eX is an embedding so that f ′ is simply a
homomorphic extension of a continuous function on the subspace X of FGX (after
natural identification).

We shall abbreviate F ′0X
def
= ((FX)′0) and Z0FX

def
=
(
Z
(
(FX)0

))
0
.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



11. The Structure of Free Compact Groups 661

Proposition 11.23. For a compact connected pointed space X the free semi-
simple compact connected group exists and equals F ′X/(Z0(FX)∩F ′X). There is
a commutative diagram

X
eX−−−−→ FX

idFX−−−−→ FX

idX

y y yquot

X −−−−→
iX

FssX =
F ′0X

Z0FX∩F ′X
j−−−−→ FX/Z0(FX)

with an isomorphism j.

Proof. Let f :X → S be an essential base point preserving continuous map into
a semisimple compact connected group. By the universal property 11.1 of the free
compact group FX there is a unique morphism f∗:FX → S such that f = f∗◦eX .

Since f is essential, S = 〈f(X)〉 = 〈f∗
(
eX(X)

)
〉 = f∗

(
〈eX(X)〉

)
= f∗(FX).

Thus f∗ is surjective. Hence by 9.26(iii) we have f∗
(
Z0(FX)

)
= Z0(S). Since

S is semisimple compact connected, Z0(S) = {1} (see 9.19(ii)). Thus there is a
unique morphism f ′:FX/Z0(FX) → S such that f

(
gZ0(FX)

)
= f∗(g). Thus

FX/Z0(FX) has the universal property of FssX which characterizes it uniquely
up to natural isomorphism. Since FX = Z0(FX)F ′X, the morphism

j:F ′X/(Z0(FX) ∩ F ′X)→ FX/Z0(FX), j
(
g(Z0(FX) ∩ F ′X)

)
= gZ0(FX),

is an isomorphism. ut

This proposition is the reason why we shall restrict our attention to essential
functions in the present context.

We shall give a complete structure theory of FGX and the way X is embedded
into FGX and shall see that, remarkably, if X contains at least 4 points outside the

basepoint, the structure of FGX is that of the power Gw(X)ℵ0
where w(X) denotes

the weight of X.

1. Homomorphically simple groups.

Definition 11.24. A compact group G will be called homomorphically simple if
each endomorphism of G is either constant or an automorphism.

Lemma 11.25. If f :G → G is an endomorphism of a connected Lie group G
with finite fundamental group π1(G), and if the morphism L(f) induced on the Lie
algebra is an isomorphism then f is an isomorphism.

Proof. Since L(f) is an isomorphism, the morphism f̃ : G̃→ G̃ induced by f on the

simply connected covering group G̃ of G is an isomorphism. If p: G̃ → G denotes
the covering morphism then pf̃ = fp by the definition of the lifting f̃ . If K = ker f
then f̃(K) ⊆ K follows. Now K ∼= π1(G), whence K is finite by hypothesis. Since

f̃ is an isomorphism this implies that f̃ |K:K → K is an isomorphism, and, since p
is in particular a quotient morphism, this entails that f :G→ G is an isomorphism,
too. ut
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662 11. The Structure of Free Compact Groups

It may be of interest to note in passing that a surjective endomorphism f :G→
G of a connected Lie group is an open mapping as a consequence of the Open
Mapping Theorem EA1.21 as G, like any connected locally compact group is a
countable union of compact subsets. Hence the endomorphism L(f):L(G)→ L(G)
of Lie algebras is surjective and thus is an isomorphism as a morphism between
finite dimensional vector spaces.

Lemma 11.26. (i) Every compact connected simple group and every finite simple
group is homomorphically simple.

(ii) Conversely, a connected homomorphically simple compact Lie group is
semisimple or singleton.

Proof. (i) Assume that G is a compact connected simple group and f :G → G a
nonconstant endomorphism. Then L(f):L(G) → L(G) is a nonzero morphism of
simple Lie algebras and is, therefore an isomorphism. Since G is a simple connected
compact Lie group, π1(L) is finite by Theorem 5.77. Hence Lemma 1.2 applies and
shows that f must be an isomorphism. This proves the claim in the first case, and
the second case is trivial.

(ii) Let G denote a connected nonsingleton homomorphically simple compact
Lie group. If G is not semisimple, then G/G′ is a nondegenerate torus, hence
there is nontrivial character χ:G → T onto the circle group. Now let X:T →
G be any morphism with a finite nontrivial kernel; such morphisms exist since
every nondiscrete compact Lie group has circle subgroups. Then f = X ◦ χ is a
nonconstant endomorphism which is not injective. ut

The proof of Lemma 11.26 is rather direct, but not elementary. It is instructive
to note that a covering morphism T→ T in general is by no means an isomorphism
even though it induces an isomorphism R ∼= L(T)→ L(T) ∼= R.

A homomorphically simple compact Lie group G may not be simple.

Example 11.27. Let Z ∼= Z(7) denote the center of SU(7) with generator z. Define
the subgroup D of Z × Z by D = {(z, z3): z ∈ Z}. Then G =

(
SU(7)× SU(7)

)
/D

is homomorphically simple but not simple.

Proof. G is the product of two elementwise commuting subgroups

A =
(
SU(7)× {1}

)
D/D and B =

(
{1} × SU(7)

)
D/D.

A nonconstant endomorphism f of G induces an isomorphism L(f)—in which case
it is an isomorphism by Lemma 1.2— or has L(A) or L(B) as kernel. In the first case

ker f is locally isomorphic to A; but G/A ∼= B/(A ∩ B) ∼= SU(7)/Z
def
= PSU(7).

Since PSU(7) is centerfree, A = ker f and im f ∼= PSU(7). However, the Lie
subgroups of G which are locally isomorphic to SU(7) but are different from A, B
and G are all of the form Sα = {

(
g, α(g)

)
D | g ∈ SU(7)} for an automorphism

α ∈ Aut
(

SU(7)
)
. If K is the kernel of the morphism g 7→

(
g, α(g)

)
: SU(7)→ Sα,

then Sα ∼= SU(7)/K. But k ∈ K if and only if
(
k, α(k)

)
∈ D, that is if there is a
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z ∈ Z such that
(
k, α(k)

)
= (z, z3). This means k ∈ Z with α(k) = k3. Now an

automorphism α of SU(7) either fixes every element of Z or else is of order 2, and
thus α(k) = k−1. Therefore k ∈ K if and only if k is in Z and satisfies k = k3 or
k−1 = k3, that is k2 = 1 or k4 = 1. In both cases we conclude k = 1. Thus all
subgroups of G which are locally isomorphic to SU(7) are isomorphic to SU(7),
hence cannot be the image of f . Analogously, kerL(f) = L(B) is impossible, too.
Hence any nonconstant endomorphism of G is an automorphism. ut

It is an instructive exercise to show that, for instance, the group(
SU(2)× SU(2)

)
/D with the diagonal D of the center Z × Z

is not homomorphically simple. (Note that all nonnormal Lie subgroups of this
group which are locally isomorphic to SU(2) are isomorphic to SO(3).)

Lemma 11.28. Let G be a connected homomorphically simple compact Lie group
and J any set. Then any nonconstant morphism GJ → G is a projection followed
by an automorphism of G.

Proof. Let f :GJ → G be any morphism. Since G is a Lie group there is an
identity neighborhood V in G containing no subgroup other than {1}. Then any
subgroup of GJ contained in the identity neighborhood f−1(V ) is in the kernel of
f . By the definition of the product topology on GJ , there is a cofinite subset I of
J such that the partial product GI (identified with the obvious subgroup of GJ)
is annihilated by f . Hence f factors through the projection GJ → GJ\I . We may
therefore assume that J is finite. If the kernel N of f meets any of the factors G
inside GJ , it must contain this factor since the restriction of f to this factor is
either constant or an isomorphism. Now L(N) is an ideal in L(GJ) = g1⊕· · ·⊕gn
with gj ∼= L(G). Since G is semisimple by Lemma 11.26(ii), L(G) = s1 ⊕ · · · ⊕ sp
with simple ideals sk, whence gj = sj1⊕· · ·⊕sjp with sjk ∼= sk. Now the ideal L(N)
is a sum of the sjk and if it contains sjk then it contains gj . It follows that L(N)
is a sum of the gj . Consequently, L(f):L(G)J → L(G) is a projection, whence
f :GJ → G is a projection. ut

2. The G-free compact group over X.

The concept of subdirect products belongs to universal algebra, we have used it
for Lie algebras in 9.37. We formulate it for the category of compact groups in
which we work.

Definition 11.29. A closed subgroup S of a product P =
∏
j∈J Gj of a family of

compact groups is called a subdirect product of this family if Gj = prj(S) for each
projection prj :P → Gj . ut

Typically, the diagonal in any power GJ of a compact group G is a subdirect
product and is itself isomorphic to G. For any given family, the subdirect prod-
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664 11. The Structure of Free Compact Groups

ucts are of a great diversity. Accordingly, the usefulness of this concept depends
significantly on the family whose subdirect products we consider. For instance,
every compact connected abelian group is a subdirect product of a family of circle

groups T; indeed the evaluation injection G → TĜ\{0} defines such a subdirect
product. This information cannot be of much value. The situation is different with
subdirect products of powers of simple compact connected groups. One might con-
jecture that a subdirect product inside a power of a simple connected compact Lie
group is itself isomorphic to a power of this group. Some examples are instructive:

Example 11.30. Let G be a simple connected compact Lie group with nontrivial
center Z. Let D denote the diagonal in Gn for n > 1. Then S = DZn ⊆ Gn is a
subdirect product in Gn which is not isomorphic to Gm. ut

This shows that without connectivity assumptions on S the conjecture is false.
The following example is more interesting:

Example 11.31. Let S be a simple group with center 〈z, z′〉, where 〈z〉 ∼= 〈z′〉 ∼=
Z(2) such that there is an automorphism α̃ ∈ Aut(S) with z′ = α̃(z). Such groups
exist, for instance S = Spin(2m) with m > 2. Now we consider the quotient

morphisms π:S → S/〈z〉 and π′:S → G
def
= S/〈z′〉. Then α̃ induces an isomorphism

α:S/〈z〉 → G. Define δ:S → G2 by δ(g) =
(
α
(
π(g)

)
, π′(g)

)
. Then δ(S) is a

subdirect product in G2. ut

This example shows that a simply connected simple compact Lie group may
be a subdirect product in a power of simple Lie groups which are not simply
connected. Hence the conjecture is invalid unless further hypotheses on the global
geometry of G are imposed. On the infinitesimal level, however, the conjecture is
true:

Remark 11.32. In the category of finite dimensional real Lie algebras and Lie
algebra morphisms, a subdirect product s inside a finite power gn = g1⊕ · · · ⊕ gn,
gj ∼= g of a simple algebra g is isomorphic to a power of g. If s is subdirect in gn

then there is an ideal n of gn so that g is the semidirect sum of n and s.

Proof. Since the projections onto the simple factors separate the points, the radical
of s must be zero. Hence s is semisimple, that is, is isomorphic to a direct sum
s1 ⊕ · · · ⊕ sm of simple ideals, and every ideal of s is a sum of a subset of these
summands. Since the homomorphisms onto g separate points, sj ∼= g follows for all
j = 1, . . . ,m ≤ n. Reorder indices so that sj projects faithfully onto the summand
gj , j = 1, . . . ,m. Then n =

∑n
m+1 gk is the required ideal. ut

Remark 11.33. Let G denote a connected simple compact Lie group and n a
natural number. If S ⊆ Gn is a subdirect product, and if S is connected, then
S ∼= Gm for some m = 1, . . . , n, provided that G is centerfree.
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Proof. By the preceding remarks, L(S) ∼= L(G)m. Hence S and Gm are locally
isomorphic. If G is centerfree, then so are Gm and S since the surjective morphisms
S → G separate points. The isomorphy of L(S) and L(Gm) then implies the
isomorphy of S and Gm. ut

In the following exercise we shall generalize this remark. However, we shall
not need it for the pursuit of our main objective. In this line we shall find that
sometimes other information may allow us to conclude that a subdirect product
of a power of a simple group is itself a power of this group.

Exercise E11.5. Prove the following generalisation of Remark 11.33.

Let G be a connected simple compact Lie group which is centerfree and J an
arbitrary set. If S is a subdirect product in GJ and if S is connected, then there is
a surjective function σ: J → I and a function j 7→ αj : J → Aut(G) such that the
morphism

ϕ:GI → GJ , ϕ
(
(xi)i∈I

)
=
(
αj(xσ(j))

)
j∈J

maps GI isomorphically onto S.

[Hint. We write δ:S → GJ for the inclusion and define a binary relation ∼ on J by
writing j ∼ k if and only if there is an α ∈ Aut(G) such that α ◦ prj ◦ δ = prk ◦ δ.
One observes at once that ∼ is an equivalence relation. This allows us to set I =
J/∼ and to define σ: J → I as the quotient map. For each i ∈ I let Gi = Gσ

−1(i)

with projections prji:Gi → G for j ∈ i, and let Si denote the projection of S
into the partial product Gi with δi:Si → Gi the inclusion. Then Si is a subdirect
product in Gi since S is a subdirect product in GJ .

We claim that each morphism prji ◦ δi : Si → L with j ∈ i is an isomorphism;
that is Si behaves in Gi like a diagonal. Indeed by the definition of ∼, for each
k ∈ i we know k ∼ j, and thus there is a βk ∈ Aut(G) such that prk ◦ δ =
βk◦prj ◦ δ. The morphism ψj :L→ Gi defined by ψj(x) =

(
β−1
k (x)

)
k∈I is injective.

Further, if (xk)k∈i ∈ Si, then xk = βk(xj) for all k ∈ i and ψj
(
prji{(xk)k∈i}

)
=

ψj(xj) =
(
β−1
k (xj)

)
k∈i = (xk)k∈i. Since prji(Si) = G, the image of ψ is Si, and

its corestriction to this image is an inverse of prji ◦ δi. This proves the claim.
In particular, each Si is isomorphic to G. In other words, there is an isomor-

phism γi:L→ Si. For each j ∈ J we define

αj :G→ G, αj = prjσ(j) ◦ γσ(j).

The map ϕ:GI → given by

ϕ
(
(xi)i∈I

)
=
(
αj(xσ(j)

)
j∈J =

(
prjσ(j){γσ(j)(xσ(j))}

)
j∈J

is clearly an injective morphism of compact groups. Hence it is an isomorphism
onto its image.

We claim that this image is S. A proof of this claim will finish the proof of
the proposition. Firstly, we observe that imϕ =

∏
i∈I Si where we have identified

GJ and
∏
i∈I Gi in the obvious fashion. Clearly S ⊆

∏
i∈I Si, and we have to
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show equality. This product is subdirect by the definition of Si and each Si is
isomorphic to G. If i 6= i′ in I, then there is no isomorphism ρ:Si → Si′ such
that pri′ |S = ρ ◦ pri |S, for such a ρ would give us for j ∈ i and j′ ∈ i′ an
α ∈ Aut(G) given by α = (prji |Si)−1ρ(prj′i′) such that prj′ |S = prj′i′(pri′ |S) =
prj′i′ ρ(pri |S) = α prji(pri |S) = α(prj |S), and this would imply j ∼ j′, that is
i = i′ contrary to the assumption.

Hence in order to prove our last claim, in simplified notation, we have to prove
that for a subdirect product S ⊆ GJ we have S = GJ if the relation ∼ on J is
equality. Let E denote any finite subset of J and SE the projection of S into GE .
Then SE is a subdirect product of GE and the relation ∼ on E is likewise trivial.
If these circumstances imply SE = GE for all finite subsets E of J , then S = GJ

follows, since GJ is the projective limit of its projections onto all finite partial
products.

Therefore it suffices to prove the claim when J is finite. We suppose that
the claim is false and derive a contradiction. Let us suppose that S ⊆ Gn is a
counterexample to the claim with a minimal natural number n. Evidently, n ≥ 2.
The projection S∗ into Gn−1 (after identifying Gn with Gn−1 × G) satisfies all
hypotheses and cannot be a counterexample. Thus S∗ = Gn−1. If we denote by
F ∼= G the subgroup {1} ×G in Gn−1 ×G, then we have an exact sequence

1→ S ∩ F → S
π→ Gn−1 → 1.

Since S ∼= Gm for some m by Lemma 2.5, m ≥ n − 1. If m = n, then dimS =
dimGn and S = G contrary to our supposition. Thus S ∼= Gn−1. Accordingly,
L(π) is an isomorphism and thus π a covering morphism. Now Lemma 1.2 implies
that π is an isomorphism and thus S ∩ F = {1}. Now S ⊆ Gn−1 × G is the
graph of a morphism θ:Gn−1 → G and since S is subdirect, θ is surjective. We
use Lemmas 1.3 and 1.5 to conclude, that θ is a projection of Gn−1 followed by
an automorphism α of G; let us say that the projection maps onto the last factor
of Gn−1. This means that S = {

(
1, . . . , 1, s, α(s)

)
| s ∈ G} ⊆ Gn. If p:Gn → G

is the projection of Gn onto the next to last factor and q the projection on the
last factor, then α ◦ p|S = q|S in violation of our assumption. This contradiction
completes the proof.] ut

Exercise E11.6. Prove the following observation:

If S ⊆ P =
∏
j∈J Gj is a subdirect product of compact connected semisimple groups

Gj, then so is the identity component S0 of S.

[Hint. If prj :P → Gj is the projection, then Nj = prj(S0) is a normal subgroup
of Gj . If Nj 6= Gj , then Nj is contained in the finite center Zj of Gj . Then the
surjective projection prj |S:S → Gj gives us a surjective morphism S/S0 → Gj/Zj .
Since S/S0 is compact zero dimensional, the image of this map is a zero dimensional
subgroup of a compact Lie group hence is finite. But if Gj/Zj is infinite since
Nj 6= Gj . This contradiction shows that Nj = Gj .] ut
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Definition 11.34. Let X be a pointed compact space and G any compact group.
We denote by E(X,G) the set of all essential functions f :X → G. The evaluation
map evX :X → GE(X,G) is given by evX(x)(f) = f(x) for f ∈ E(X,G).

Lemma 11.35. For any essential function f :X → G there is a morphism f ′:
GE(X,G) → G of compact groups such that f = f ′ ◦ evX .

Proof. In view of the definition of the product topology, that is the topology
of simple convergence on GE(X,G), the function evX is continuous, and if f ∈
E(X,G), then f(x) = evX(x)(f) = (prf ◦ evX)(x) and thus f ′ = prf :GE(X,G) →
G satisfies the requirement. ut

Lemma 11.36. If G is an arcwise connected compact nonsingleton group whose
weight is at most 2ℵ0 , and if X contains at least 4 points then the evaluation map
evX :X → GE(X,G) is a topological embedding of the compact pointed space X.

Proof. The base point preserving functions of C0(X, [−1, 1]) separate the points of
X. Thus the evaluation map η:X → GC0(X,[−1,1]) is injective. If the compact group
G is a compact connected group whose weight does not exceed the cardinality of
the continuum, then it is topologically generated by two points a and b (see 9.38).

Since G is arcwise connected by hypothesis, there is a homeomorphism h of
the interval [−1, 1] into G with h(0) = 1, h(−1) = a and h(1) = b. Since X
contains at least four points x0 = basepoint, x1, x2, and x, the set C∗(X, [−1, 1])
of functions f with f(x0) = 0, f(x1) = −1, f(x2) = 1 still separates the points
of X. The homeomorphism h induces an injection C0(X,h) of C∗(X, [−1, 1]) into
C0(X,G) such that all functions f in the image satisfy a, b ∈ f(X) and thus
are essential. Hence we have an embedding of C∗(X, I) into E(X,G). This shows
that the functions of E(X,G) separate the points of X. Hence the evaluation
evX :X → GE(X,G) is injective. Since X is compact and GE(X,G) Hausdorff, it is
an embedding. ut

This information now readily allows us a first identification of the essential
G-free compact group.

Proposition 11.37. Let X be any compact pointed space and G any compact
group. Let FGX denote the compact subgroup generated by evX(X) in GE(X,G)

and eX :X → FGX the essential map obtained by corestricting evX . Then FGX
is the essential G-free compact group over X and eX the universal mapping of X
into it. Moreover, the following statement holds:
(i4) If G is arcwise connected and of weight at most 2ℵ0 and if X has at least 4

points, then eX is a topological embedding.

Proof. Lemma 11.35 secures the universal property, including uniqueness, and
Lemma 11.36 establishes that eX is a topological embedding. ut

Corollary 11.38. The group FGX is a subdirect product in GE(X,G).
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Proof. If f ∈ E(X,G), then prf (FGX) is the subgroup topologically generated by
f(X) in G, hence is G. ut

We now proceed to describe this subdirect product FGX accurately if G is a
homomorphically simple compact Lie group. We begin with the observation that
the automorphism group AutG acts on the set E(X,G) on the left by

(α, f) 7→ α ◦ f : AutG× E(X,G)→ E(X,G).

We shall denote the orbit space E(X,G)/AutG by A(X,G) and write [f ] for the
orbit {α ◦ f | α ∈ AutG}.

For two functions f, f ′ ∈ E(X,G) we shall write f ∼ f ′ if and only if there
is an automorphism α ∈ AutG such that prf ′ |FXG = prf |FGX, and this is
tantamount to prf ′ ◦ evX = α ◦ prf ◦ evX , that is to f ′ = α ◦ f . Thus f ∼ f ′ is
equivalent to [f ] = [f ′]. Hence ∼ is none other than the orbit equivalence of the
action of AutG on E(X,G).

For each F ∈ A(X,G) we select a function sF ∈ F ⊆ E(X,G). Thus [sF ] = F
and f ∼ s[f ]. Hence for each f ∈ A(X,G) there is at least one αf ∈ AutG such
that

(1) f = αf ◦ s[f ].

We define εX :X → GA(X,G) by

(2) εX(x)(F ) = sF (x).

Then (1) implies(
f(x)

)
f∈E = evX(x) = αevX(x) ◦ s[εX(x)] =

(
αf{s[f ](x)}

)
f∈E .

If we define

(3) ϕX :GA(X,G) → GE(X,G), ϕX
(
gF
)
F∈A(X,G)

=
(
αf (g[f ])

)
f∈E(X,G)

then

(4) evX = ϕX ◦ εX .

In particular, εX :X → GA(X,G) is an embedding whenever evX is an embedding.
Now assume that f :X → G is an essential map. Set f∗:GA(X,G) → G,

f∗
(
(gF )F∈A(X,G)

)
= αf (g[f ]). Then

f∗
(
εX(x)

)
= f∗

{(
(sF (x)

)
F∈A(X,G)

} = αf
(
s[f ](x)

)
= f(x)

in view of (2) and (1). We notice that the following diagram is commutative.

X
εX−−−−→ GA(X,G) ϕX−−−−→ GE(X,G)

f

y yf∗ yf ′
G −−−−→

idG
G −−−−→

idG
G
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Now assume that µj :G
A(X,G) → G, j = 1, 2 are two morphisms such that

µ1 ◦ εX = µ2 ◦ εX . At this point we assume that G is homomorphically simple;
then Lemma 11.28 implies that there are automorphisms βj ∈ AutG, j = 1, 2 such
that µj = βj ◦ prFj . Now βj prFj

(
εX(x)

)
= βj

(
sFj (x)

)
by (2). Hence sF2

◦ evX =

(β−1
2 β1)sF1

◦ evX and this implies sF1
∼ sF2

. Thus F1 = [sF1
] = [sF2

] = F2. But
now, setting F = F1, via (2) we find sF = εX(F ) = prF εX = (β−1

2 β1) prF evX =
(β−1

2 β1)sF . Since sF ∈ E(X,G), the subset sF (X) topologically generates G. Thus
β1 = β2 follows, and we have µ1 = µ2. Therefore, the following universal property
of GA(X,G) is proved.

Lemma 11.39. Let G be a connected homomorphically simple compact Lie group,
further X a compact pointed space, and εX :X → GA(X,G) the function defined
by (2). Then for each essential function f :X → G there is a unique morphism
f∗:GA(X,G) → G such that f = f∗ ◦ εX . Moreover:
(i4) If X has at least 4 points, then εX is an embedding. ut

Hence GA(X,G) is in fact the essential G-free compact group over X. This
immediately entails the following principal result for whose formulation we use
the continuous function εX :X → GA(X,G) of (2) and the injective morphism
ϕX :GA(X,G) → GE(X,G) of (3).

Theorem 11.40. Let G be a connected homomorphically simple compact Lie
group and X a compact pointed space. Then ϕX corestricts to an isomorphism
ϕX :GA(G,X) → FGX such that ϕX ◦ εX = eX . Moreover, the following statement
is true:
(i4) If X has at least 4 points, then εX is an embedding. ut

We now apply the information contained in this theorem to compute the weight
w(FGX) of the essential G-free compact group.

Lemma 11.41. If G is a connected nonsingleton compact Lie group and X a
compact pointed space with at least 4 points, then cardE(X,G) = w(X)ℵ0 .

Proof. If C0(X,G) denotes the set of basepoint preserving continuous functions
X → G, then E(X,G) ⊆ C0(X,G). Now cardC0(X,G) = w(X)ℵ0 (see Ap-
pendix 4, A4.9). Thus cardE(G,X) ≤ w(X)ℵ0 . We have seen in Theorem 6.51
that G is topologically generated by two points a and b. We noted in the proof
of Lemma 11.36 that there is a homeomorphism h from the interval [−1, 1] into
G which induces an injection of C∗(X, [−1, 1]) into E(X,G) such that all func-
tions f in the image satisfy a, b ∈ f(X) and thus are essential. Hence we have
an embedding of C∗(X, [−1, 1]) into E(X,G) where C∗(X, [−1, 1]) denotes the
set of functions f :X → [−1, 1] with f(x0) = 0, f(x1) = −1, f(x2) = 1. Hence
cardC∗(X, [−1, 1]) ≤ cardE(X,G). Let 8 denote the figure 8 obtained by collaps-
ing in [−1, 1] the points −1, 0 and 1 into one point and X∗ the space obtained
from X by collapsing x0, x1, and x2 into the basepoint. Then there is a surjection
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C∗(X, [−1, 1]) onto C0(X∗,8) and thus

cardC∗(X, [−1, 1]) ≥ cardC0(X∗,8)w(X∗)
ℵ0 = w(X)ℵ0 ,

if X has at least 5 points, and thus X∗ has at least 2 points. However, if X has
4 points, then X∗ has 1 point, and therefore cardC0(X∗,8) = card 8 = 2ℵ0 =
(cardX)ℵ0 = w(X)ℵ0 . Hence w(X)ℵ0 ≤ cardE(X,G). ut

Lemma 11.42. If X is a compact space with at least 4 points, then

cardA(X,G) = w(X)ℵ0 .

Proof. Since the orbit map is a surjective function E(X,G) → A(X,G) we have
cardA(X,G) ≤ cardE(X,G) = w(X)ℵ0 . Now AutG is a compact Lie group
and contains all inner automorphisms of G, whence card(AutG) = 2ℵ0 . The
orbits [f ] therefore have at most continuum cardinality. Thus cardE(X,G) ≤
max{2ℵ0 , cardA(X,G)}. We finish the proof by showing that 2ℵ0 ≤ cardA(X,G)
because then w(X)ℵ0 = cardE(X,G) ≤ cardA(X,G). Now AutG is a finite ex-
tension of the group InnG of inner automorphisms, and G has a continuum of
conjugacy classes, hence a continuum of AutG-orbits F . Let x ∈ X be any point
different from the basepoint x0. Now for each AutG-orbit F on G there is an
fF ∈ E(X,G) such that fF (x) ∈ F . Then {[fF ] | F ∈ G/AutG} is a subset
of A(X,G) of continuum cardinality, whence cardA(X,G) ≥ 2ℵ0 , which we as-
serted. ut

Proposition 11.43. Let G be a compact connected homomorphically simple
compact Lie group and X a compact pointed space with at least 4 points. Then
w(FGX) = w(X)ℵ0 .

Proof. We have w(FGX) = w(GA(X,G)) = cardA(X,G) = w(X)ℵ0 by Lem-
ma 11.42. ut

Remark 11.44. For each infinite cardinal ℵν there is a compact connected semi-
simple group G containing a subset Y not containing 1 with the following proper-
ties:

(a) G = 〈Y 〉 and Y is discrete and closed in G \ {1},
(b) cardY = ℵν , and
(c) w(G) = (ℵν)ℵ0 = (cardY )ℵ0 .

Proof. Let X = D∪̇{∞} be the one point compactification of a discrete space D of
cardinality ℵν based at∞, set G = FSO(3)X and define Y = eX(X)\{1}. But then
G is topologically generated by Y and 11.36 shows that Y is homeomorphic to D,
whence Y is discrete and Y = Y ∪{1}. Thus (a) holds. Also cardY = cardD = ℵν ,
whence (b) is satisfied. From Proposition 11.43 we know w(G) = w(X)ℵ0 = ℵℵ0

ν .
ut
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We observe that in the preceding construction, G may contain a subset Y ′

satisfying (a) with Y ′ in place of Y and
(b′) cardY ′ < ℵν .

Indeed, let ν = 0. Then w(FSO(3)X) = w(Y )ℵ0 = ℵℵ0
0 = 2ℵ0 . But by 9.38, G is

generated by two elements a and b different from 1 and so Y ′ = {a, b} satisfies (a)
and cardY ′ ≤ 2 < ℵ0.

From 11.26 we know that every connected simple compact Lie group is ho-
momorphically simple. So from Theorem 11.40 and Proposition 11.43 we get the
following result for whose formulation we must recall definitions preceding 11.39,
notably that of A(X,G) = E(X,G)/AutG and the projection ϕ:GE(X,G) →
GA(X,G). Essential G-free groups were defined in 11.22(ii).

The Structure of Essential S-Free Compact Groups

Theorem 11.45. Let S be a connected simple compact Lie group and X a compact
pointed space. Then the essential S-free compact group FS(X) is SA(X,S) with a
suitable natural function eX :X → SA(X,S) such that the following diagram is
commutative:

X
eX−−−−→ SE(X,S), eX(x)(f) = f(x),

idS

y yϕ
X −−−−→

εX
FSX = SA(X,S).

Moreover, the following statement holds:
(i4) If X has at least 4 points, then εX is an embedding, and the cardinality of

A(X,G) and the weight of FSX both equal w(X)ℵ0 . ut

Note that as a compact group, FSX has two structural invariants which de-
termine the structure up to an isomorphism of compact groups, namely, S and
w(X)ℵ0 = w(FSX). It is instructive to pause for a moment and to consider the

universal covering morphism p: S̃ → S with the simply connected universal cover-

ing group (which is compact by 9.19). Then FS̃X = S̃A(X,S̃) and FSX = SA(X,S).

Remark 11.46. There is a unique surjective morphism FpX:F
S̃
X → FSX such

that the following diagram is commutative.

X
ε
(S̃)

X−−−−→ FS̃X
idF

S̃
X

−−−−→ FS̃X

idX

y FpX

y y(prF ◦ e
(S)

X
)′

X −−−−→
ε
(S)

X

FSX −−−−→
prF

S, F ∈ A(X,S).

Let πFSX : F̃SX → FSX denote the natural morphism of Theorem 9.19. Then there

is a morphism F̃pX:FS̃X → F̃SX such that FpX = pFSX ◦ F̃pX.
If X is simply connected, the map

E(X, p):E(X, S̃)→ E(X,S), E(X, p)(f) = f ◦ p
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is bijective, and if the unique lifting assignment α 7→ α̃: Aut(S) → Aut(S̃) is

surjective, we may identify A(X, S̃) and A(X,S) in which case FpX: S̃A(X,S) →
SA(X,S) is calculated componentwise as FpX

(
(sF )F∈A(X,S)

)
=
(
p(sF )

)
F∈A(X,S)

and F̃pX is an isomorphism.

Proof. For each F ∈ A(X,S), the universal property of ε
(S̃)
X :X → FS̃X yields a

unique morphism (prF ◦ ε(S)X )′:FS̃X → S such that the outside of the diagram
commutes. Then the universal property of the product (see A3.41 and A3.43)

provides the fill-in morphism FpX:F
S̃
X → FSX. Since e

(S)
X is essential, this fill-in

is surjective.
If X is simply connected, then by the very Definition A2.6 of simple connectiv-

ity, every continuous base point preserving map f ∈ E(X,S) has a unique lifting

to a base point preserving continuous map f̃ :X → S̃ such that p ◦ f̃ = f and that
f 7→ f̃ and p∗:E(X, S̃) → E(X,S), p∗(f ′) = p ◦ (f ′), are inverses of each other.
Moreover, the map p∗ is equivariant in the following sense. By hypothesis, every
automorphism of S̃ is the lifting of exactly one automorphism α ∈ AutS; then one
has p∗(α̃ ◦ f ′) = α ◦ (p ◦ f ′). This allows us to identify A(X, S̃) = E(X, S̃)/Aut(S̃)
and A(X,S) = E(X,S)/Aut(S) and the assertion follows. ut

We note that if X is not simply connected, the morphism FpX is no longer
obtained in a very obvious fashion on the level of the products. In particular,
the morphism FsX:FS̃X → FSX in general is not equivalent to the “covering”

πFSX : F̃SX → FSX of 9.19.

Example 11.47. Let S = SO(3) and let X be the space underlying S. Then

S̃ ∼= SU(2) ∼= S3, and the identity map j:X → S is in E(X,S) but does not

lift to an element in E(X, S̃). Since every automorphism of S̃ fixes necessarily

the 2-element center (even elementwise), the map α 7→ α̃: AutS → Aut S̃ is an

isomorphism. The function pr[j] ◦ ε
(S)
X = pr[j] ◦FpX ◦ ε

(S̃)
X does not factor through

any projection of a factor of FS̃X = AA(X,S̃). Hence F̃pX:FS̃X → F̃SX cannot
be an isomorphism and thus kerFpX is not totally disconnected. ut

Equipped with this information we shall now have another look at the structure
of F ′X the commutator subgroup of the free compact group FX. The formulation
of the following theorem is facilitated by the terminology which we introduce in
the following definition.

Definition 11.48. A morphism κ:G→ H of compact groups is said to be nearly
split, respectively, nearly normally split, if G contains a closed subgroup N , re-
spectively, closed normal subgroup N such that the restriction κ|N :N → H is
surjective and that ker(κ|N) = N ∩ kerκ is totally disconnected. ut
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We notice that G = (kerκ)N , that (kerκ)∩N is totally disconnected, and that
there is an exact sequence

{1} → ker(κ|N)
d−−−−→ kerκo N

m−−−−→ G→ {1},

d(k) = (k−1, k), m(k, n) = kn. From 9.74 we know that a morphism κ:G → H
is nearly split if H is connected and that the near factor N is normal in G0.
If f :G → H is nearly split then the isomorphism q:N/ ker(f |N) → G/ ker f ,
q(n ker(f |N) = n ker f permits a factorisation of f as follows: Firstly, the canonical
decomposition of f |N :N → H provides an isomorphism f :N/ ker(f |N) → H,
f(n ker(f |N)) = f(n). Secondly, there is a commutative diagram

G
f−−−−→ H

quot

y xf
G/ ker f −−−−→

q−1
N/ ker(f |N).

We shall write f :G→ N/ ker(f |N), f(g)q−1(gN) and thus have f = f ◦ f ,

G
f

−−−−→ G/ ker(f |N)
f−−−−→ H.

We shall call this the natural decomposition of the nearly split morphism f . As
in Theorem 9.19 we let S be a system of representatives for the class of simple
compact Lie algebras. We consider a simple connected compact Lie group S and
let s be that element in S which satisfies s ∼= L(S). We recall that S[s] denotes a
simply connected compact simple group whose Lie algebra is s. There is a covering
morphism fS :S[s] → S. We recall that FX is abelian if cardX ≤ 2 and thus has
no essential morphisms onto a simple connected compact Lie group. With the
notation that we chose we obtain the following sandwich theorem.

Theorem 11.49. Let X be a compact space containing at least 2 points and S a
simple connected compact Lie group. Consider the natural morphisms κS :FX →
FSX = SA(X,S). Then there is a normal closed connected semisimple subgroup

ΦS(X) of FX such that the restriction ρS
def
= κS |ΦS(X): ΦS(X) → SA(X,S) is

surjective and has a totally disconnected kernel; i.e. κS is nearly normally split.

Moreover, the projective cover P
(
ΦS(X)

)
may be identified with S

A(X,S)
[s] such

that the composition

S
A(X,S)
[s]

EΦS(X)−−−−→ ΦS(X)
ρS−−−−→ SA(X,S)

is f
A(X,S)
S :S

A(X,S)
[s] → SA(X,S).

Proof. The universal property of FX gives us a natural surjective morphism
κS :FX → FSX such that
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X
εX−−−−→ FX

idX

y yκS
X −−−−→

ε
(S)

X

FSX

is commutative. By Theorem 9.74, there is a connected normal subgroup ΦS(X)

of F0X
def
= (FX)0 such that ρS

def
= κS |ΦS(X): ΦS(X)→ SA(X,S) is surjective and

has a totally disconnected kernel. By the preceding remarks we have for κS :FX →
SA(X,S) a natural decomposition

FX
κS−−−−→ ΦS(X)/ ker ρS

κS−−−−→ SA(X,S).

Then from the functorial properties of the projective cover of connected compact
groups there is a commutative diagram

P(ΦS(X))
P(ρS)−−−−→ P(SA(X,S))

α−−−−→ S
A(X,S)
[s]

EΦS(X)

y E
SA(X,S)

y yfA(X,S)

S

ΦS(X)
ρS−−−−→ SA(X,S) = SA(X,S)

with an isomorphism α. Since ρS is surjective so is P(ρS); since ρS has a totally
disconnected kernel, P(ρS) is injective and thus is an isomorphism (see 9.73).
Therefore, we have a sandwich situation

S
A(X,S)
[s]

EΦS(X)◦P(ρS)−1◦α−1

−−−−−−−−−−−−−→ ΦS(X)
ρS−−−−→ SA(X,S).

It remains to show that ΦS(X) is fully characteristic in F0X and therefore normal
in FX.

We write F0X = (FX)0 and F ′0X
def
=
(
(FX)0)′. Let P(F ′0X) = F̃ ′0X =

∏
j∈J Sj

with simply connected simple compact Lie groups Sj according to Theorem 9.19(ii)

and EF0X :P(F0X) = P
(
Z0(F0X)

)
×F̃ ′0X → F0X the projective cover of Theorem

11.14(ii). We have

P(F0X) = P
(
ΦS(X)

)
×K, K = kerEF0X ◦ (κS |F0)

and indeed this decomposition defines ΦS(X) in the first place as projection of the
first factor in this decomposition. We notice that EF0X(K) = ker(κS |FX) = F0X∩
κS . Thus the subgroup EF0X(K) of F0X is normal in FX, i.e. it is invariant under
all automorphisms α of F0X which are restrictions Ig|F0X of inner automorphisms
Ig of FX, g ∈ FX. In the projective group P(F0X), however, any automorphism
which fixes the factor K as a whole fixes the unique normal complementary factor
P
(
ΦS(X)

)
as a whole (cf. 9.50). This applies, in particular, to the automorphism

P(α) of P(F0X). But then P(α)
(
P
(
ΦS(X)

))
= P

(
ΦS(X)

)
implies gΦS(X)g−1 =

α
(
ΦS(X)

)
= ΦS(X) for all g ∈ G and thus ΦS(X) is normal in FX. ut
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We recall from 9.19 that S describes a set of representatives of all compact
simple Lie algebras and that every compact connected semisimple group G deter-
mines for each s a unique cardinal number ℵ(s, G) such that P(S) = G̃ = G ∼=∏

s∈S S
ℵ(s,G)
[s] where S[s] is a representative of the class of isomorphic simply con-

nected simple groups with Lie algebra isomorphic to s. By Theorem 9.19(iv), and
Theorem 11.14(ii), the projective cover of the identity component F0X of the free
compact group FX on a compact pointed space X is

(P) PF0X ∼= Z0(F0X)×
∏
s∈S

S
ℵ(s,F ′0X)

[s] .

Thus the structure of PF0X is known if the cardinals ℵ(s, F ′0X) are known.

The projective cover S
A(S,X)
[s] , s ∼= L(S) of ΦS(X) may be identified with a

subproduct of Ps(FX) ∼= S
ℵ(s,F ′0X)

[s] . (cf. 9.73(i)). Hence

cardA(S,X) = w(S
A(X,S)
[s] ) ≤ w(S

ℵ(s,F ′0X)

[s] ) = ℵ(s, F ′0X).

Also, w(S[s]
ℵ(s,F ′0X)) = w

((
S[s]/Z(S[s])

)ℵ(s,F ′0X)) ≤ w(F ′0X) (9.20), and w(F ′0X) ≤
w(FX) = w(X)ℵ0 by 11.6(iii). Hence cardA(X,S) ≤ ℵ(s, F ′0X) ≤ w(X)ℵ0 . Thus
we have

Corollary 11.50. In the circumstances of Theorem 11.49 the common projective

cover of ΦS(X) and FSX is isomorphic to S
A(X,S)
[s] . In particular, cardA(X,S) ≤

ℵ(s, FX) ≤ w(X)ℵ0 for s ∼= L(S). If X has at least 4 points then ℵ(s, F ′0X) =
w(X)ℵ0 . ut

The group S is simply connected if and only if fS :S[s] → S is an isomorphism

if and only if fS :S
A(X,S)
[s] → SA(X,S) is an isomorphism. Then Theorem 11.49(ii)

yields at once the following corollary.

Corollary 11.51. In the circumstances of Theorem 11.49, if S is simply connected,
then ΦS(X) ∼= SA(X,S) = FSX ∼= P(FSX). ut

The group S is centerfree if and only if fS :S[s] → S has kernel Z(S[s]) (cf. 26(ii))

if and only if fS :S
A(X,S)
[s] → SA(X,S) has kernel Z(S[s])

A(X,S). Assuming that S is

centerfree, let FsX denote the isotypic component of F ′0X of type s according to
Theorem 9.19 and a subsequent Definition. Then there is a sandwich situation

S
ℵ(s,F ′0X)

[s] = P(FsX)
EFsX−−−−→ FsX

ω′s−−−−→ Sℵ(s,F ′0X)

according to 9.19(vi) or 9.20, and ω′s induces an isomorphism qs:FsX/Z(FsX)→
Sℵ(s,F ′0X).

Theorem 11.52. Assume that X is connected. If S is a centerfree connected
simple compact Lie group then the restriction of κS :FX → FSX to FsX induces
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an isomorphism FsX/Z(FsX) ∼= FSX; that is we have a sandwich situation

S
w(X)ℵ0

[s] = P(FsX)
EFsX−−−−→ FsX → FSX ∼= Sw(X)ℵ0

,

i.e. two surjective morphisms whose composition is f
w(X)ℵ0

S .

Proof. The center Z(FsX) is characteristic, hence normal in FX and thus is
central in FX since it is totally disconnected (cf. 6.13). Therefore Z(FsX) =
FsX ∩ Z(FX). By 9.74 there is a compact central subgroup Ks of FsX such
that there is a surjective morphism FX → FsX/Ks. Hence there is a surjective
morphism rs:FX → FsX/Z(FsX) such that rs|FsX:FsX → FsX/Z(FsX) is the
quotient map. This yields, via 11.1, an essential continuous map

X
εX−−−−→ FX

qsrs−−−−→ Sℵ(s,F ′X).

Hence the universal property of FSX gives us a natural surjective morphism
αs:FSX → Sℵ(s,F ′X) such that the following diagram commutes:

X
ε
(S)

X−−−−→ FSX = SA(X,S)

εX

y yαs

FX −−−−→
rs

FsX/Z(FsX) −−−−→
qs

Sℵ(X,F ′X).

The morphism κS :FX → FSX = SA(X,S) of 11.49 annihilates the center
Z(FX) (since SA(X,S) is centerfree) and all FtX with s 6= t ∈ S. Thus, by 9.19 and
9.24, κS |FsX:FsX → FSX is surjective and factors through a surjective morphism
βs:FsX/Z(FsX)→ FSX such that the following diagram is commutative:

FX
qs−−−−→ Fs/Z(FsX)

κS

y βs

y
FSX −−−−→

idFSX
FSX.

Since ε
(S)
X = κS ◦ εX the two diagrams taken together yield ε

(S)
X = βsαsε

(S)
X .

The uniqueness in 11.22 gives idFSX = βsαs. The surjectivity of α then shows
βs = α−1

s . ut

Corollary 11.53. If X is connected compact and S is centerfree then ΦS(X) =
FsX.

Proof. By Theorem 11.52 the restriction κ′
def
= (κS |FsX):FsX → FSX has the

kernel Z(FsX). By Theorem 11.49, κ′
(
ΦS(X)

)
= FSX. The groups FsX and

ΦS(X) ≤ FSX are connected and FsX = ΦS(X)Z(FsX). Since Z(FsX) is totally
disconnected we conclude ΦS(X) = (FsX)0 = FSX. ut

Theorem 11.54. Let X be a compact pointed space with at least 4 points, then
the projective cover P(F0X) of the identity component F0X of the free compact
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group on X is isomorphic to (
Q̂×

∏
s∈S

S[s]

)w(X)ℵ0

.

The projective cover P(F ′0X) of the commutator group F ′0X =
(
(FX)0

)′
of the

identity component of the free compact group on X is isomorphic to(∏
s∈S

S[s]

)w(X)ℵ0

.

Proof. By 9.73(i) we have

P(F0X) = P
(
Z0(FX)

)
×
∏
s∈S

Ps(FX).

By 11.15, the group Z0(FX) is projective and thus agrees with P
(
Z0(FX)

)
. From

11.16(iv) and duality we conclude P
(
Z0(FX)

) ∼= Qw(X)ℵ0
. From Corollary 11.50

we derive Ps(FX) = P(FsX) ∼= S
w(X)ℵ0

[s] . This completes the proof of the theorem,

since by the definition of the projective cover we have
(
P(G)

)′
= P(G′). ut

Freeness Versus Projectivity

We have noted the relationship between freeness and projectivity in the category
of abelian groups in Appendix 1 and analyzed the more complex situation in the
category of compact abelian groups in Chapter 8. Let us carefully review the issue
of projectivity once more in category theoretical terms. Assume that U : C → B is
a faithful “grounding functor.” In our concrete situation C would be the category
of [abelian] groups and B the category of sets with the forgetful functor U . We
say that a morphism f :A→ B in C is B-split if there is a morphism σ:UB → UA
in B such that (Uf)σ = idUB . Trivially, the retraction Uf is epic and since U is
faithful, f is epic. Let E denote the class of B-split morphisms. If C is the category
of [abelian] groups and B the category of sets, and if the axiom of choice applies,
then every surjective morphism is B-split. Now the general background for our
initial discussion is the following:

Proposition 11.55. Assume that F :B → C is left adjoint. Then FX is E-
projective for the class E of B-split morphisms.

Proof. Let ηX :X → UFX denote the front adjunction and set

α = σ(Uµ)ηX :X → UA.
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678 11. The Structure of Free Compact Groups

The universal property of adjoints yields a unique morphism ν:FX → A such that
α = (Uν)ηX . Now we have

(Uµ)ηX = (Uf)σ(Uµ)ηX = (Uf)α = (Uf)(Uν)ηX = U(fν)ηX .

The uniqueness in the universal property of the adjoint now yields µ = fν. This
proves the proposition. ut

The following diagrams may be helpful:

X
ηX- FX

α

?

�
�
�	

Uν
?

Uµ

UA �
σ UB

idUA
? ?

idB

UA -
Uf

UB

FX

�
�
�	

ν
?

p

A -
f

B

We note that retracts of E-projectives are E-projective. Indeed if we have mor-
phisms π:P → Q and ρ:Q → P with πρ = idQ, and if P is E-projective, then
Q is also an E- projective; for if µ′:Q → B is given, we set µ = µ′π, apply
Proposition 10.44 to get a ν:FX → A with fν = µ = µ′π and obtain ν′ =
νρ:Q → B such that fν′ = µ′πρ = µ′. It then follows from Proposition 11.44
that any retract of a free C-object FX is an E-projective. On the other hand,
by a fundamental property of adjoints, for every object C of C we have the back
adjunction εC :FUC → C which is E-split since (UεC)ηUC = idUC . Hence if C is
an E-projective, then there is a ν:C → FUC such that εCν = idC . Thus every
E-projective is a retract of a free object. We summarize:

Corollary 11.56. Let F :B → C denote a left adjoint of a faithful grounding
functor U : C → B. An object P of the category C is an E-projective for the class of
B-split epics if and only if it is a retract of a free object FX. ut

We are interested in the following application: Let C = CG denote the category
of compact groups and B the category of pointed spaces and base point preserving
maps. Then the B-split morphisms f :A → B are exactly the split morphisms of
compact groups as introduced in Definition 10.41.

After these remarks, for compact groups, we have to consider two kinds of
projectives: (i) The E-projectives for the class of topologically split morphisms,
and (ii) the projectives, period.

We have a pretty good idea of the latter after Chapter 9 (see in particular
9.70ff.). Our understanding of the E-projectives, however, depends in large measure
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11. The Structure of Free Compact Groups 679

on our understanding of topologically split morphisms. Thus category theoretical
considerations led to an internal problem on the structure of compact groups and
their morphisms, namely, the study of topologically split and split morphisms
which we presented in Chapter 10 on compact group actions and cross sections.
We shall now exploit the insights gathered there.

Theorem 11.57. Every compact connected abelian group is an E-projective for
the class of topologically split epics in the category CG of compact groups. In
particular, every such group is a homomorphic retract of a free compact abelian
group.

Proof. Assume that P is any compact connected abelian group and f :P → B
a morphism of compact groups. Let e:A → B be a topologically split morphism.
Then e1: e−1

(
f(P )

)
→ f(P ) is a topologically split morphism by Lemma 10.52.

Hence it splits by Theorem 10.53(i). If s: f(P ) → e−1
(
f(P )

)
is a homomorphic

cross section for e1, then F :P → A, F (g) = s
(
f(p)

)
satisfies ef = f . This proves

that P is an E-projective. The last assertion is a consequence of Corollary 11.56.ut

Proposition 11.58. There is a connected compact Lie group L with L/L′ ∼= T
which is not E-projective for the class of topologically split morphisms.

Proof. We let G be the group of Example 10.48 and N compact connected normal
subgroup of 10.48(ii). Then the quotient morphism f :G → L splits topologically

but not algebraically. Hence the group L
def
= G/N is not an E-projective since an

E-morphism onto an E-projective splits algebraically. ut

Proposition 11.59. Let G be simple connected but not simply connected compact
Lie group which is not isomorphic to SO(3), PSU(3), E6/Z, SO(2m) or a double
covering of SO(2m). Then G is not E-projective for the class of topologically split
morphisms.

Proof. By Example 10.58 there is a topologically split morphism f :A → G with
A locally isomorphic to G2 such that f does not split. If G were E-projective, then
f would have to be split, which it is not. ut

It is an open question whether an E-projective simple compact Lie group has to
be simply connected. This is still possible after 11.59. But our methods in 10.58,
notably the choice of κ:L→ L, κ(g) = ga, will not carry us further than stated in
Example 10.58 and Proposition 11.59 above.
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Postscript

In this chapter we have presented the structure theory of free compact groups
which has been developed since 1979 when the authors of this book began their
joint study of these groups. Much of this material has appeared in the papers [178],
[179], [180], [182] and [183].

While we presented, in Chapter 8, a complete description of the structure of free
compact abelian groups, the state of knowledge of the structure of free compact
groups is not complete. Nevertheless the known structural results are substantial
and some are surprising.

The Schreier subgroup theorem for (algebraic) free groups says that every sub-
group of a free group is a free group. Hence the free group on an infinite set X
is never isomorphic to the direct product of the free abelian group on X and the
commutator subgroup of the free group. So it is indeed surprising and interesting
to find that an analog is true for free compact groups. The Free Compact Group
Direct Product Theorem 11.19 says that for any compact connected pointed space
X the free compact group is the direct product of the free compact abelian group
FabX and its commutator subgroup F ′X if and only if H1(X,Z) is divisible. So,
for example if H1(X,Z) = {0} or more particularly if X is a contractible space,
then FX is topologically isomorphic to FabX × F ′X.

The Component Splitting Theorem 11.14 is another surprising result. It says
that the identity component F0X of any free compact group FX is a semidirect
factor of FX. And the Center Theorem 11.14 says that if cardX 6= 2 then the
center Z(FX) of FX is contained in the identity component F0X of FX.

Corollary 11.15 says that for any compact space X, the identity component
Z0(FX) of the center of FX is naturally isomorphic to the projective cover of

FabX, that is to (Q ⊗ F̂abX)̂. Theorem 11.54 describes the projective cover of
the identity component of FX.

Theorem 11.17 shows that if X is a compact connected space the weight w(FX)
of FX equals (w(X))ℵ0 .

For connected compact groups there is a certain tendency for topologically split
morphisms to be split. This is correct (although nontrivial) for compact abelian
groups. As a consequence, we saw that every compact connected abelian group is
an E-projective in the category of compact groups. This is in contrast with the
rather special structure of the abelian connected projectives which are exactly
the duals of rational vector groups. In the context of free compact groups, E-
projectivity of all compact connected abelian groups implies that every such group
is a homomorphic retract of some free compact group according to Corollary 11.57.
For semisimple compact Lie groups there are topologically split morphisms which
are not split. The examples discussed in Chapter 10 are rather instructive. Perhaps
they tell the story even better than the theorems. The obstruction seems to be in
the first homotopy, but this is not sufficient to explain everything. In particular
we saw that for a simple connected compact Lie group G to be E-projective it is
necessary that the fundamental group π1(G) be trivial or has exponent 2 or 3. In
particular, this means that a simple connected compact Lie group which is not
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simply connected and whose fundamental group does not have exponent 2 or 3
cannot be a homomorphic retract of a free compact group.

References for this Chapter—Additional Reading

[38], [174], [178], [179], [180], [182], [183], [254], [256], [379].
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Chapter 12

Cardinal Invariants of Compact Groups

Compact groups may be very large. What this means precisely can be described
only in terms of cardinal invariants. We have encountered several cardinal in-
variants associated with compact groups; examples are the weight w(G), first in-
troduced for locally compact abelian groups in Chapter 7, notably 7.75 (see also
Appendix 4, A4.7ff.), and the (fine) dimension dim(G), first discussed in Chapter 8
for compact abelian groups and then for arbitrary compact groups in Chapter 9,
notably 9.53ff. The theory of free compact groups allows us now to pursue the
topic of cardinal invariants further. None of these invariants is restricted to com-
pact groups; they extend, notably, to locally compact groups. But on the class of
compact groups we are in a position to be very explicit.

Prerequisites. This chapter rests, in spirit and content, on Chapter 11 and therefore
invokes the prerequisites for that chapter. In one place (the proof of Lemma 12.10)
we use a theorem of Varopoulos [361], for whose proof we refer to the original
source.

Suitable sets

Definition 12.1. A subset X of a topological group is called suitable if
(i) G is the smallest closed subgroup of G containing X; that is, X topologically

generates G.
(ii) The identity element 1 /∈ X and X is discrete and closed in G \ {1}; that is

1 is the only possible accumulation point of X in G. ut

Observe that in a compact group, if X is suitable, then X ∪ {1} is compact.
Indeed, X ∪ {1} is the one-point-compactification of the discrete space X.

The result that every compact group has a suitable set, is not a priori clear,
but its proof is our first main objective.

The following simple remark will be helpful.

Lemma 12.2. Let G be a Hausdorff space and A a closed subset. For a relatively
compact subset X of G contained in G \A the following conditions are equivalent:

(1) X is discrete and closed in G \A.
(2) For each open subset U of G containing A the set X \ U is finite.

Proof. Exercise E12.1. ut
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Exercise E12.1. Prove Lemma 12.2. ut

Lemma 12.3. If G is a Hausdorff topological group which is the product NH of
two subgroups N and H each of which has a suitable set, then G has a suitable
set.

Proof. If X and Y are suitable sets of N and H, respectively, then X ∪ Y is
discrete and closed in G \ {1} and generates G topologically, hence is a suitable
set of G. ut

Of course, this lemma generalizes to the case of any finite number of subgroups.

Lemma 12.4. Let f :G → H be a morphism of topological groups with dense
image. If G has a relatively compact suitable set X, then H has a suitable set
f(X) \ {1}.

Proof. Let X be a relatively compact suitable set of G and set Y = f(X) \
{1}. Since X topologically generates G and f(G) is dense in H, the subset Y
topologically generates H. Also, since X ∪ {1} is compact, the set Y ∪ {1} is
compact. In order to show that Y is suitable, we verify condition (2) of Lemma 12.2.

Let V denote an open neighborhood of 1 in H. Then U
def
= f−1(V ) is an open

neighborhood of 1 in G. Now f(G \ U) = H \ V . But X \ U is finite as X is
suitable, and so Y \ V = f(X \ U) is finite. Hence Y is suitable. ut

Lemma 12.5. Let f :G → H be a surjective morphism of compact groups and Y
a suitable set of H. Let C = f−1(Y ) and note Y = Y ∪ 1H . Then the function
f |C:C → Y has a continuous base point preserving cross section σ:Y → C, i.e. a
continuous function such that f

(
σ(y)

)
= y for all y ∈ Y and σ(1H) = 1G. The set

X
def
= σ(Y ) is discrete and closed in G \ {1}.

Proof. The compact group K
def
= ker f acts on the compact space C via (k, c) 7→ kc.

Let π:C → C/K
def
= {Kc | c ∈ C} be the orbit map. The map fC :C/K → Y ,

fC(cK) = f(c) is a unique homeomorphism such that f |C = fC ◦ π. The space
Y is compact and totally disconnected; indeed the only accumulation point is 1H .
Now we apply the Global Cross Section Theorem for Totally Disconnected Base
Spaces 10.35 and find the desired cross section σ:Y → C for which we may assume
σ(1H) = 1G (for if not, then y 7→ σ(1H)−1σ(y):Y → C is a cross section of the
desired kind).

Then X = σ(Y ) is contained in G \K ⊆ G \ {1G} and since X = X ∪ {1} is
homeomorphic to Y under the map f |X:X → Y (whose inverse is the corestriction
of σ to its image), X is closed and discrete in G \ {1G}. ut

Proposition 12.6. Let f :G → H be a surjective morphism of compact groups
and assume that G is connected and ker f is totally disconnected. Then for each
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684 12. Cardinal Invariants of Compact Groups

suitable set Y in H there is a suitable set X in G such that f |X:X → Y is a
homeomorphism.

Proof. Let Y be a suitable set of H. By Lemma 12.5, there is a subset X of G\{1}
which has 1 as its only point of accumulation and is such that f |X:X → Y is a

homeomorphism. We claim that X is suitable in G, i.e. that G1
def
= 〈X〉 is G. Now

f(G1) = 〈f(X)〉 = 〈Y 〉 = H. We write D
def
= ker f and note that f(G1) = H

implies G = G1D. But G/G1
∼= D/(G1 ∩D) is totally disconnected as a quotient

of a totally disconnected compact group. On the other hand, since G is connected,
G/G1 is connected. Hence G/G1 is singleton, i.e. G1 = G. ut

Lemma 12.7. Every direct product of any family of topological groups with suitable
sets has a suitable set.

Proof. Let {Gj | j ∈ J} be a family of topological groups, each with a suitable set
Xj and let P be the direct product of the Gj . Now let ej :Gj → P be defined by

ej(g) = (gk)k∈J , gk =
{
g if k = j,
1 otherwise.

Then X =
⋃
j∈J ej(Xj) is the required suitable set of P as is readily verified with

the aid of Lemma 12.2. ut

Lemma 12.8. Every connected compact group G has a suitable set.

Proof. Let EG:P(G)→ G be the projective covering morphism according to 9.72.
If P(G) has a suitable set, then G has a suitable set by Lemma 12.4. Thus we may

assume that G is projective in CN. Then G = Q̂I ×
∏
j∈J Sj with a set I and a

family of simple simply connected compact Lie groups Sj by 9.70(i). The group

Q̂ is monothetic by 8.75 and therefore has a suitable one element set. Each Sj is
generated by two elements by 6.51 and thus has a two element suitable set. Now
Lemma 12.7 shows that G has a suitable set. ut

By Lee’s Theorem 9.41, any compact group is the product of G0 and some
totally disconnected subgroup D. Then, in view of Lemmas 12.3 and 12.8, in order
to show that every compact group has a suitable set it now suffices to show that
the claim is true for totally disconnected groups.

Therefore we now have to deal with the case of totally disconnected compact
groups. Douady [91] reports on a proof of Tate that every compact totally discon-
nected group has a suitable set. This proof is extremely condensed. We give here
a different proof which depends on the Countable Layer Theorem 9.91

Lemma 12.9. Assume that G is compact and that there is a descending series of
compact groups G = G1 . G2 . · · · . Gn . · · · such that

(i)
⋂
Gn = {1}.

(ii) For each n = 1, 2, . . . , the quotient group Gn/Gn+1 has a suitable set.
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(iii) For each n = 1, 2, . . . , there is a compact subspace Yn ⊆ Gn containing 1
such that (y, g) 7→ yg : Yn ×Gn+1 −→ Gn is a homeomorphism.

Then G has a suitable set.

Proof. For n = 1, 2, . . . let Xn ⊆ Yn be such that (XnGn+1)/Gn+1 is suitable in
Gn/Gn+1. Then for every x ∈ Xn, the set xGn+1 is isolated in XnGn+1/Gn+1,
hence in G/Gn+1, and so {x} is isolated in Xn. Moreover, if g ∈ Xn \ Xn, then
gGn+1 ∈ (XnGn+1 ∪ Gn+1)/Gn+1, whence g ∈ XnGn+1 ∪ Gn+1. But since each
point of Xn is isolated, we may conclude that g ∈ Xn ∪ Gn+1. Because g /∈ Xn,
we finally have g ∈ Gn+1. On the other hand, we know g ∈ Xn ⊆ Yn and thus
g ∈ Yn ∩Gn+1 = {1}. Therefore g = 1 and Xn is discrete in G \ {1}. Now the set
Zn = X1 ∪ · · · ∪Xn is discrete in G. We set X =

⋃∞
n=1Xn =

⋃∞
n=1 Zn. Let U ⊆ G

be open and contain 1. Since
⋂∞
n=1Gn = {1}, by the compactness of G, we find an

n such that Gn+1 ⊆ U . Now X \U ⊆ (Zn ∪Gn+1) \U = Zn \U is finite. Hence X
is discrete G\{1} by Lemma 1.2. Finally, we claim that X topologically generates
G. Indeed, let H be the closed subgroup topologically generated by X. Further,
let N be an arbitrary compact normal subgroup such that G/N is a Lie group.
Since Lie groups satisfy the descending chain condition, we find an n such that
Gn+1 ⊆ N . Since XkGk+1/Gk+1 topologically generates Gk/Gk+1, we conclude
that Gn−j/N ⊆ HN/N, j = 1, . . . , n − 1 and thus that G ⊆ HN . Since N was
arbitrary and G = limG/N , we have G = H as we had claimed. ut

Lemma 12.10. Every totally disconnected compact group G has a suitable set.

Proof. By the Countable Layer Theorem 9.91 there is a sequence G = G0 .
G1 . · · · .Gn . · · · with

⋂
Gn = {1} and such that Gn/Gn+1 is a direct product of

finite simple groups. Hence Gn/Gn+1 has a suitable set by Lemma 12.7. Condition
12.9(iii) is satisfied by 10.37. The assertion now follows from the preceding Lemma
12.9. ut

Suitable Set Theorem

Theorem 12.11. Every compact group G has a suitable set.

Proof. By Lee’s Theorem 9.41 there is a compact totally disconnected subgroup
D in G such that G = G0D. The assertion now follows from Lemmas 12.10, 12.8,
and 12.3. ut

An alternative proof would have been to use 12.8, 12.10 and the Countable
Layer Theorem 9.91 directly. Further alternative proofs not using the structure
theory of compact groups were given by Dikranjan and Shakhmatov, see [84] and
[326].

Our concern in this book is with compact groups. However, we mention that
it is also known that every locally compact group has a suitable set [181] as
does every metrizable topological group and every countable topological group
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[73]. But not all topological groups have suitable sets (see [73] and also work of
D. Dikranjan, O. G. Okunev, M. Tkachenko and V. V. Tkachuk).

The following proposition shows that, for compact connected groups, the ques-
tion of suitable sets is largely an issue of suitable sets of compact connected abelian
groups.

Proposition 12.12. Let G be a compact connected group and T a maximal pro-
torus in G. If X is a suitable set of T , then there is a g ∈ G such that X ∪ {g} is
a suitable set of G. If w(G) ≤ 2ℵ0 , then we may assume cardX = 1.

Proof. From Proposition 9.38 it follows that there is a g ∈ G such that G =
〈T ∪ {g}〉. Since X ∪ {g} is discrete and closed in G \ {1}, the assertion follows.ut

Definition 12.13. For an infinite cardinal n let Dn denote a discrete space of
cardinality n and let n∗ denote the pointed compact space obtained as the one point
compactification of Dn, the base point being∞. For a finite number n = 1, 2 . . . let
Dn = {1, . . . , n,∞} with base point∞ and set D0 = {∞}. Let β∗n for infinite n be
the Stone–Čech compactification of Dn, the base point being a point in Dn and for
finite n the space n∗ = {1, . . . , n,∞} with base point ∞. We define F [n] = F (n∗)
and F [[n]] = F (β∗n), the free compact group on the pointed space n∗, respectively,
β∗n. For a finite cardinal n = 0, 1, 2, . . . we set F [n] = F [[n]] ∼= F{0, 1, 2, . . . , n}
(with 0 as base point). We let F0[n] denote the identity component of F [n] and
Fab[n] the free compact abelian group F [n]/F ′[n] on n∗. The compact groups
F [[n]], F0[[n]], Fab[[n]] are defined analogously. ut

We note F [0] = F [[0]] = {1}, F [1] = F [[1]] = C0({∞, 0},T)d̂ = T̂d the
universal monothetic group.

Corollary 12.14. For every compact group G there are cardinals m and n for
which there are surjective morphisms p:F [m]→ G and q:F [[n]]→ G. If the group
G is connected then G = p(F0[m]) = q(F0[[n]]). If it also satisfies w(G) ≤ 2ℵ0 then
there is a surjective morphism p:F0[2]→ G.

Proof. (a) By Theorem 12.13, G has a suitable set X. By its very definition,
there is a cardinal m = cardX and a continuous map of pointed spaces p0:m∗ →
X ∪ {1}. Now by the universal property of the free compact group F [m], there
is a unique morphism of compact groups p:F [m] → G such that p|m∗ = p0. The
image p(F [m]) is a closed subgroup of G containing X, but since G = 〈X〉 we have
G = p(F [m]). Thus p is surjective. From 9.18 we know that G0 = f(F0[m]). If G
is connected and satisfies w(G) ≤ 2ℵ0 then G has suitable sets of 2 elements or
less by 12.13.

(b) Let Y be the pointed space obtained by considering the discrete topology on
any dense subset of G containing 1 as the base point. The inclusion map Y → G
extends to a continuous function q0:βY → G which is surjective since q0(Y ) is
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dense in G, and the universal property of F (βY ) yields a surjective morphism
q:F (βY )→ G which we may write as q:F [[n]]→ G for n = cardY . ut

Generating Rank and Density

Our Theorem 12.11 enables us to introduce a new cardinal invariant for com-
pact groups representing a kind of rank. (For profinite groups, this cardinal was
formulated by Mel’nikov [254].)

Definitions 12.15. (i) For a compact group G we set

s(G) = min{ℵ | there is a suitable set X with cardX = ℵ}.

We call s(G) the generating rank of G. A suitable set X of G with cardX = s(G)
will be called a special generating subset.

(ii) Let G be a topological space. The density of G is defined as

d(G) = min{ℵ | there is a dense subset X of G with cardX = ℵ}. ut

The obvious fact that the density and the weight are purely topological in-
variants has some immediate consequences for compact groups on the basis of
information we already have. Indeed, by Corollary 10.38 and Theorem 10.40 and
its proof,

(a) a compact group G is homeomorphic to G0 ×G/G0 and,
(b) in the case G0 does not have finite index in G, the factor group G/G0 is

homeomorphic to Z(2)w(G/G0).
(c) For the case of a finite G, trivially, d(G) = card(G) = w(G).

These facts allow some immediate conclusions as follows:

Lemma 12.15a. (i) For any infinite compact group G, its density and its weight
satisfy

(∗) d(G) = max{d(G0), d(G/G0)}, and

(∗∗) w(G) = max{w(G0), w(G/G0)}.

(ii) If G/G0 is finite, then d(G) = d(G0), w(G) = w(G0).

(iii) If G is totally disconnected, there is an infinite cardinal n such that

d(G) = d(Z(2)n) and w(G) = w(Z(2)n) = n

Proof. All of these statements are immediate consequences of the preceding cita-
tions. ut
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Proposition 12.16. Let G be a topological group and X a suitable subset. Then
the following conclusions hold:

(i) cardX ≤ w(G).
(ii) d(G) ≤ max{ℵ0, cardX}.

(iii) s(G) ≤ w(G).
(iv) If s(G) is infinite, then d(G) ≤ s(G) ≤ w(G).
(v) If s(G) = w(G), then cardX = w(G). In particular, all suitable sets have

the same cardinality.

Proof. Let 〈X〉 denote the subgroup generated by X and note firstly, that by
Definitions 12.1 and 12.15, we trivially have

(∗) s(G) ≤ cardX and d(G) ≤ card〈X〉.

(i) Let B be a basis of the topology of G of cardinality w(G). Since X is
discrete in G \ {1}, for every element x ∈ X there is an element U(x) ∈ B with
U(x) ∩ S = {x}. Then x 7→ U(x) : S → B is an injective function and thus
cardS ≤ cardB = w(G).

(ii) As 〈X〉 =
⋃
n=1(X∪X−1)n, and so card〈X〉≤ℵ0· cardX= max{ℵ0, cardX},

Claim (ii) follows from (∗).
(iii) The claim follows from (∗) and (i).
(iv) If s(G) is infinite so is cardX by (∗), whence d(G) ≤ cardX by (ii). Then,

taking for X a special generating set, we have s(G) = cardX and derive the claim,
using (i).

(v) If s(G) = w(G), then (∗) and (i) imply the claim. ut

Item (v) will become relevant for profinite groups in Proposition 12.28 below.
In view of 12.15 we note right away that s(G) is the smallest cardinal n for

which there is a surjective morphism F [n] → G. If G is compact connected, re-
spectively, compact abelian, respectively, compact connected abelian group then
s(G) is the smallest cardinal n for which there is a surjective morphism F0[n]→ G,
respectively, Fab[n]→ G, respectively, (Fab[n])0 → G.

If D is a dense subset of G of cardinality d(G) containing 1, then we obtain a
surjective morphism F [[d(G)]]→ G. Conversely, if we have a surjective morphism
q:F [[n]]→ G, F [[n]] = F

(
β(Dd)

)
for the discrete pointed space Dd of cardinality

n, then the subgroup 〈q(Dd)〉 is dense in G and

card〈q(Dd))〉 =

{
cardG if G is finite,
ℵ0· cardDd = ℵ0·n if G is infinite.

Thus, for an infinite compact group G, the cardinal d(G) is the smallest infinite
cardinal n such that there is a surjective morphism F [[n]]→ G. For a finite group
G we have, trivially, d(G) = w(G) = cardG, and the number s(G) is what it is:
the smallest natural number n such that G has a generating set of n elements.

If X is a completely regular Hausdorff space, then X is dense in the Stone–Čech
compactification βX. If D is dense in X and cardD = d(X), then D is dense in
βX, whence d(βX) ≤ d(X). The space X is open in βX iff it is locally compact;
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if it is, then for each dense D in βX with cardD = d(βX), the set D ∩ X is
dense in X, whence d(X) ≤ card(D ∩ X) ≤ cardD ≤ d(βX). Thus in this case
d(X) = d(βX).

If B is a compact totally disconnected space then every basis closed under finite
intersections and finite unions contains the set CO(B) of compact open subsets of
B. If B is infinite, this implies w(B) = card CO(B). If B = βX for a discrete space
X, then the function A 7→ A from the set of subsets of X to the set of compact
open subsets of B is a bijection. Hence w(B) = 2cardX if X is infinite. Thus we
record d(βX) = cardX and w(βX) = 2cardX in this case.

Let X be an arbitrary completely regular Hausdorff pointed space. Then we
may write X ⊆ βX ⊆ F (βX) (see 11.1 and 11.3). We notice that w(n∗) =
w(β∗n) = n+ 1 if n is finite, and w(n∗) = n and w(β∗n) = 2n if n is infinite.

If G is a compact abelian group, then every surjective morphism F [n] → G
factors through a surjective morphism Fab[n] → G, and every surjective mor-
phism F [[n]]→ G factors through a surjective morphism Fab[[n]]→ G. Note that
(2n)ℵ0 = 2nℵ0 = 2max{n,ℵ0}. By the Structure Theorem of Free Compact Abelian
Groups 8.67 we have (assuming n infinite in the case of Fab[[n]])

Fab[n] ∼= Q̂w(n∗)ℵ0 ×
∏

p prime

Zw0(n∗)
p

∼= Q̂(n+1)ℵ0 ×
∏

p prime

Znp ,

Fab[[n]] ∼= Q̂w(β∗n)ℵ0 ×
∏

p prime

Zw0(β∗n)
p

∼= Q̂2n ×
∏

p prime

Z2n

p

∼=
(
Q̂×

∏
p prime

Zp
)2n

.

Further,

w(Fab[n]) = (n+ 1)ℵ0 , card〈n∗〉 = max{ℵ0, n},

w(Fab[[n]]) = 2max{n,ℵ0}, card〈Dn〉 = max{ℵ0, n},
where Dn ⊆ β∗n is as in the definition of β∗n, having cardinality n+ 1.

We shall now clarify the generating rank and the density of compact abelian
groups and for this purpose must now recall the definition of the rank and the
p-rank of an abelian group for a prime number p: see Appendix 1, Definitions
following A1.7 and A1.21.

We begin by introducing a function from the class of cardinals to itself which
provides a convenient terminology.

Definition 12.16a. For any cardinal n we set

log n =


n if n ≤ ℵ0,
ℵ0 if ℵ0 < n < 2ℵ0 ,
min{m : n ≤ 2m} if 2ℵ0 ≤ n.

Notice that m < 2m and so logm ≤ m for all cardinals and that the interval
[m, 2m] contains 2logm. The Generalized Continuum Hypothesis postulates that
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[m, 2m] = {m, 2m}. We shall not use it here. However, for any cardinal n of the
form n = 2m we have m ≤ log n ≤ m, that is,

(∀m) log 2m = m < 2m.

In particular, for the cardinality c
def
= 2ℵ0 of the continuum we have

log c = ℵ0 < c.

For the following we need the subsequent lemma:

Lemma 12.17a. (i) Let G be a compact totally disconnected group, Then d(G) =
logw(G)

(ii) If G is an arbitrary compact group whose identity component satisfies
d(G0) = logw(G0), then G itself satisfies d(G) = logw(G).

Proof. (i) If G is finite, the assertion is true by the definition of log . Now as-
sume that G is totally disconnected and infinite. Then we may assume by Lemma
12.15a(iii) that G = Z(2)m for an infinite cardinal m = w(G). Then d(G) is the
smallest possible dimension n of GF(2)-vector spaces of a dense vector subspace
V ⊆ Z(2)m, V ∼= Z(2)(n). By duality this is equivalent to Z(2)(m) being alge-

braically isomorphic to an m-dimensional GF(2)-vector subspace of V̂ , which is a

compact abelian group of exponent 2, that is, V̂ ∼= Z(2)n for a smallest possible

infinite cardinal n = w(V̂ ). Since we know that dimGF (2) Z(2)n = 2n we have

n = min{n′ : m ≤ 2n
′
} = logm.

That is d(G) = logw(G), which we had to show in this case.

(ii) Let G be an arbitrary infinite compact group such that d(G0) = logw(G0).
Then by (i) above,

d(G) = max{d(G0), d(G/G0)} = max{logw(G0), logw(G/G0)}

= log (max{w(G0), w(G/G0)}) since log is nondecreasing = logw(G)

by Lemma 12.15a(**). So the lemma is proved. ut

Proposition 12.17. (i) For a compact abelian group G

dimG = rank Ĝ,

w(G) = card Ĝ,

s(G) = min{n | rank Ĝ ≤ (n+ 1)ℵ0 and (∀p prime) rankp Ĝ ≤ n},
d(G) = max{d(G0), d(G/G0)}.

(ii) For a nonsingleton compact connected abelian group G, the generating rank
s(G) is the smallest cardinal n such that the following relation holds:

dimG ≤ (n+ 1)ℵ0 =

{
2ℵ0 for n = 1,
nℵ0 for n > 1.
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(iii) For the density of an arbitrary compact abelian group we have

d(G) = logw(G).

Proof. (i) The statement on the weight we know since 7.76(ii); it is recorded here
for the sake of completeness. By the preceding remarks and duality, s(G) is the

smallest of all cardinals n such that Ĝ is isomorphic to a subgroup of

∆
def
= Q((n+1)ℵ0 ) ⊕

⊕
p prime

Z(p∞)(n).

By a remark following Appendix 1, A1.39, by the Structure Theorem of Divisi-
ble Abelian Groups A1.42, and by A1.36(ii), the divisible hull DA of an abelian
group A is uniquely characterized by the cardinals rankDA = rankA, rankpDA =

rankpA. Since Ĝ is embeddable into ∆ iff D
Ĝ

is embeddable into ∆, the assertion
follows.

The formula for the density was observed in equation (∗) in Lemma 12.15a(i).

(ii) We remember that rank Ĝ= dimG. For a connected G we have rankp Ĝ= 0,
and thus (ii) follows from (i) for s(G).

(iii) We still have to show that for a nonsingleton compact abelian group G we
have d(G) = logw(G).

Firstly, if G is finite, the claim follows trivially from log n = n for finite n.
Secondly, assume that G is connected. We know that w(G) = card Ĝ from (i),

and we have observed that d(G) is the smallest cardinal n such that G is a quotient

of
(
Q̂ ×

∏
p prime Zp

)2n
. But since G is connected, d(G) is the smallest cardinal

n such that G is quotient of Q̂2n , and dually this means that Ĝ is isomorphic to
subgroup of Q(2n) where rank Ĝ = w(G); this is equivalent to saying that d(G) = n
is the smallest cardinal such that w(G) ≤ 2n, that is d(G) = logw(G) as asserted.

Thirdly, if G is any compact abelian group, we have d(G0) = logw(G0) by
what we just saw. So the claim follows from Lemma 12.17a(ii). ut

We record a special case as an example

Example. For an arbitrary cardinal n set G = Fab[[n]]. Then

w(G) = w(G0) = 2max{n,ℵ0},(1)

s(G) = s(G0) =
{ℵ0 if n is finite,
n if n is infinite.

(2)

d(G) = d(G0) =

{
cardG if n is finite,
min{m | 2n ≤ mℵ0} if n is infinite,

}
≤ 2n(3)

Lemma 12.18. Let f :G→ H be a surjective morphism of compact groups. Then
s(H) ≤ s(G) and d(H) ≤ d(G).
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Proof. (a) Let X be a suitable set of G with cardX. By 12.4, the image H has
a suitable set f(X) \ {1}. Clearly, s(H) ≤ card(f(X) \ {1}) ≤ cardX.

(b) The assertion on the densities is straightforward. ut

Proposition 12.19. (i) Let f :G→ H be a surjective morphism of compact groups.
Then s(H) ≤ s(G) ≤ s(ker f) + s(H).

(ii) If, in addition, G is connected and ker f is totally disconnected, then s(G) =
s(H).

(iii) If G is connected and ker f is totally disconnected, then w(G) = w(H).

Proof. (i) By Lemma 12.18 we have s(H) ≤ s(G). We must show s(G) ≤ s(ker f)+
s(H). Let Y be a special generating set of H. Then cardY = s(H). By Lemma 12.5
there is a subset X of G \ {1} which is closed and discrete in G \ {1} and mapped
bijectively onto Y by f . Let Z be a special generating set of ker f . Then X ∪ Z
is discrete and closed in G and 〈X ∪ Z〉 contains ker f and maps onto H under
f , hence is G. Thus X ∪ Z is suitable in G and therefore s(G) ≤ card(X ∪ Z) ≤
cardX + cardZ = s(Y ) + s(ker f).

(ii) If G is connected and ker f is totally disconnected, then 12.6 applies and
shows that X as constructed in (i) is suitable in G. Hence s(G) ≤ cardX =
cardY = s(H).

(iii) A totally disconnected normal subgroup of a connected group is central
(see A4.26). Thus the center of G is contained in every maximal connected abelian
subgroup T of G (see 9.32(iv)). Thus N ⊆ T . We know w(G) = w(Y ) (and
w(G/N) = w(T/N) by 9.63(iv). Thus the claim is reduced to the case that G is

commutative. Now w(G) = |G| and w(G/N) = |Ĝ/N | by 7.75. The annihilator

mechanism of duality provides Ĝ/N ∼= N⊥ and N̂ ∼= Ĝ/N⊥ (see Theorem 7.20).

Moreover, Ĝ is torsion free and N̂ is a torsion group (see 8.5). Thus, the claim is
equivalent to the following assertion on abelian groups.

Let B be a subgroup of a torsionfree abelian group A such that A/B is a torsion
group. Then |B| = |A|.

The fact that A/B is a torsion group is equivalent to saying that the pure
subgroup [B] generated by B is A (see A1.25). Since |B| = |[B]| this implies
|B| = |A|. ut

The Cardinal Invariants of Connected Compact Groups

In this section we describe what we may call the Descent Procedure, namely the
procedure to read off all cardinal invariants at least for infinite dimensional com-
pact connected groups G from those of a maximal pro-torus T . In other words, in
the realm of compact connected groups, for cardinal invariants, the abelian theory
suffices.
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Lemma 12.21. For a compact connected group G with a maximal pro-torus T the
relation s(G) ≤ s(T ) + 1 holds. If s(T ) is infinite, then s(G) ≤ s(T ) = min{n |
dimT ≤ nℵ0}.

Proof. This is a consequence of 12.12 and 12.17(ii) above. ut

Theorem 12.22. Let G be a compact connected group and T a maximal pro-torus.
If w(G) ≤ 2ℵ0 then

s(G) =

{
s(T ) = 1 if G is abelian,
s(T ) + 1 = 2 if G is nonabelian.

If w(G) > 2ℵ0 , then

s(G) = s(T ) = min{n | w(G) ≤ nℵ0}.

Proof. Assume w(G) ≤ 2ℵ0 . If G is abelian, i.e. G = T , then G, being connected,
is monothetic. Hence s(G) = s(T ) = 1. If G is nonabelian, then s(T ) = 1 and
s(G) = 2 by 9.38.

Now assume w(G) > 2ℵ0 . After 12.21 we must show s(T ) ≤ s(G). By 9.52, the
group G cannot be finite dimensional. Then from 9.56 we know dimG = dimT and
from 9.36(vi) we have w(G) = w(T ). Further w(T ) = card T̂ = rank(T̂ ), the last

equality holding because card T̂ = w(T ) = w(G) ≥ 2ℵ0 . Since rank(T̂ ) = dimT ,
putting everything together, we have dimG = w(G) in our situation. By 12.16 we
have s(T ) = min{n | dimT ≤ nℵ0}, i.e. by the preceding remark s(T ) = min{n |
w(G) ≤ nℵ0}. Therefore we must show that

(∗) w(G) ≤ s(G)ℵ0 .

By a remark following 12.16, s(G) is the smallest cardinal n for which there is
a surjective morphism of compact groups F0[n] → G. Thus in order to prove (∗)
we must show that (for 2ℵ0 < w(G))

(∗∗) (∀n)
(
(∃π surjective) π:F0[n]→ G

)
⇒ (w(G) ≤ nℵ0).

Because 2ℵ0 < w(G) ≤ w(F0[n]), the cardinal n is necessarily infinite. Hence from
Theorem 11.54 we know w(F0[n]) = nℵ0 . Therefore, w(G) ≤ nℵ0 is in fact the
same as w(G) ≤ w(F0[n]) which is a consequence of the existence of a surjective
morphism π:F0[n]→ G. Thus (∗∗) is satisfied and the theorem is proved. ut

In 9.36(vi) we proved the equality w(T ) = w(G) for a compact connected group
and any maximal pro-torus T in G. We did not have the concept of a density at
that stage. For the following results we need a lemma which could have been
discussed in the context of the Maximal Pro-Torus Theorem 9.32.

Lemma 12.23. Let G be a compact connected group, T a maximal pro-torus and
S a closed subgroup of T such that G =

⋃
g∈G gSg

−1. Then S = T .
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Proof. (a) We first show that the lemma is true if it holds for compact Lie groups.
Assume that S 6= T . Then by 9.1(iii) there is an N ∈ N (G) such that SN 6=
T . Assuming that the lemma is true for compact Lie groups, we get G/N 6=⋃
g∈G(gN)(SN/N)S(gN)−1. But this implies that

⋃
g∈G gSg

−1 ⊆
⋃
g∈G gSNg

−1

6= G. This proves our first claim.
(b) Now assume that G is a compact Lie group. We find an element t in T such

that T = 〈t〉 (see 1.24(v), 8.75ff.). Because G =
⋃
g∈G gSg

−1 there are elements

s ∈ S and g ∈ G such that t = gsg−1. Then s = g−1tg. Being a generator of
a maximal torus is a property which is preserved under automorphisms, notably
under inner automorphisms. Thus 〈s〉 is a maximal torus of G. On the other hand
〈s〉 ⊆ S ⊆ T . This implies 〈s〉 = T and thus S = T . ut

Theorem 12.24. For a compact connected group G and a maximal pro-torus T
the equality d(T ) = d(G) holds.

Proof. We assume thatG is not singleton. Then T is not singleton (see 9.32). Hence
d(T ) ≥ ℵ0. Let X be a dense subset of T with cardX = d(T ). By 9.38 there is a
g ∈ G such that 〈X ∪ {g}〉 = 〈T ∪ {g}〉 = G. Now card〈X ∪ {g}〉 = ℵ0·(cardX +
1) = cardX since cardX is infinite. Hence d(G) ≤ card〈X∪{g}〉 = cardX = d(T ).

Now let D be a dense subgroup of G with cardinality d(G). We construct recur-
sively an ascending sequence D1, D2, . . . of subgroups as follows. First, using the
Maximal Pro-Torus Theorem 9.32 and the Axiom of Choice, we select a function
γ:G→ G such that x ∈ γ(x)Tγ(x)−1. Then we set D1 = D and

Dn+1 = 〈Dn ∪ γ(Dn) ∪
⋃
d∈Dn γ(d)(Dn)γ(d)−1〉 ≤ G.

Since D1 ⊆ D2 ⊆ · · · and ℵ0 ≤ D1, we have

cardDn ≤ cardDn+1 ≤ ℵ0·
(

cardDn + cardDn card(Dn)2
)

= cardDn.

Now we set D̃ =
⋃∞
n=1Dn. Since γ(Dn) ⊆ Dn+1 we have

γ(D̃) ⊆ D̃.

We claim
(i) card D̃ = cardD = d(G),

(ii) D̃ = G,

(iii) D̃ =
⋃
d∈D̃ d(T ∩ D̃)d−1.

The proofs of (i) and (ii) are clear. The right side of (iii) is contained in the left

side. If g ∈ D̃, then there is an n such that g ∈ Dn. Now g ∈ γ(g)Tγ(g)−1

and γ(g) ∈ D̃. Then g ∈ D̃ = γ(g)D̃γ(g)−1, and thus g ∈ γ(g)(T ∩ D̃)γ(g)−1.

Hence g ∈
⋃
d∈D̃ d(T ∩ D̃)d−1. Now set S = 〈T ∩ D̃〉. Then by (iii) we have

D̃ ⊆
⋂
g∈G gSg

−1 and the right side, being the continuous image of G × S under

(g, s) 7→ gsg−1 is compact. By (ii), the group D̃ is dense in G. Hence

G =
⋃
g∈G

gSg−1.
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By Lemma 12.19 this implies S = T . Thus T has a dense subset T∩D̃ of cardinality
card(T ∩ D̃) ≤ card D̃ = d(G) by (i). Hence d(T ) ≤ d(G). ut

Cardinal Invariants of Connected Compact Groups

Theorem 12.25. Let G be a nonsingleton compact connected group. Then

w(G) = max{ℵ0,dimG}, d(G) =

{
ℵ0 if dimG <∞,
min{n | dimG ≤ 2n} if dimG ≥ ℵ0;

s(G) =

 1 if dimG ≤ 2ℵ0 and G is abelian,
2 if dimG ≤ 2ℵ0 and G is not abelian,
min{n | dimG ≤ nℵ0} if dimG > 2ℵ0 .

In particular, a compact connected abelian group is separable, that is, has a count-
able dense subset, if and only if it is monothetic.

Proof. Assume that G is connected and nonsingleton. We have w(G) = w(T ) by
Theorem 9.36(vi), further s(G) = 1, respectively, s(T ) = 2 if w(G) ≤ 2ℵ0 and G
is abelian, respectively, not abelian. Otherwise s(G) = s(T ) by Theorem 12.22;
finally d(G) = d(T ) by Theorem 12.24. It therefore suffices to verify the assertion
for a compact connected abelian group G with w(G) > 2ℵ0 .

Since G is connected, Ĝ is torsion-free. By 7.76(ii), w(G) = card Ĝ. By 8.26,

dimG = rank Ĝ. If A is an abelian torsion-free group with rankA ≥ ℵ0, then
rankA = cardA. Hence we have 2ℵ0 < w(G) = card Ĝ = rank Ĝ = dimG. From
12.22 we obtain the calculation of s(G), from 12.24 and 12.17 the calculation of
d(G).

Finally, let G be nonsingleton compact connected abelian and have density ℵ0.
Then dimG ≤ 2ℵ0 and so s(G) = 1, that is, G is monothetic. Conversely, if G is
monothetic, it contains a dense copy of a cyclic group which must be Z since G is
nonsingleton connected; thus G is separable. ut

This theorem shows that for compact connected groups the invariant dimG
is the most useful; for large compact groups all the others are expressible in an
explicit way through dimG. For finite dimensional compact groups, it discriminates
between groups which cannot be distinguished by the other cardinal invariants.
For very large compact connected groups, i.e. compact connected groups whose
weight exceeds the cardinality of the continuum, dimension and weight agree.
This is relevant because the weight is a very robust and well-behaved cardinal.
The theorem also illustrates once more the observation we made repeatedly that
many structural features of a compact connected group G can be described in
terms of associated compact connected abelian groups, here again in terms of the
maximal pro-torus groups T .
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Cardinal Invariants in the Absence of Connectivity

Let us record and summarize the behavior of our cardinal invariants under surjec-
tive homomorphisms, i.e. under passing to quotients.

Proposition 12.26. Assume that f :G→ H is a surjective morphism of compact
groups. Then the inequalities dimH ≤ dimG, w(H) ≤ w(G), s(H) ≤ s(G), and
d(H) ≤ d(G) hold.

If G is connected and ker f is totally disconnected, then equality holds in all
cases.

Proof. Exercise E12.2. ut

Exercise E12.2. Prove 12.26.

[Hint. For the generating rank s(·) refer to 12.4, 12.5, and 12.20. For dimension
recall the definition and note that by 9.47, L(f):L(G)→ L(H) is surjective.] ut

In the absence of connectivity, a few observations are in order. By 10.38 we
note that G and G0 ×G/G0 are homeomorphic whence

w(G) = max{w(G0), w(G/G0)} and d(G) = max{d(G0), d(G/G0)}.

Thus the computation of the topological cardinal invariants is completely reduced
to the calculation of these for totally disconnected groups.

Proposition 12.27. For any compact group G the estimates s(G) ≤ w(G) ≤
s(G)ℵ0 hold.

Proof. The first estimate was noted in 12.16, and we must prove the second. There
is a surjective homomorphism F [s(G)]→ G. Hence w(G) ≤ w(F [s(G)]) ≤ s(G)ℵ0

by 11.6(iii). ut

Proposition 12.28. Let G be an infinite totally disconnected compact, that is, a
profinite group. Then the following conclusions hold:

(i) w(G) = max{ℵ0, s(G)}.
(ii) If S is any infinite suitable subset of G, then cardS = w(G). In particular,

all infinite suitable subsets of G have the same cardinality, namely, the weight
of G.

Proof. (i) From 12.16 we know that always s(G) ≤ w(G). We must show that for
an infinite generating rank s(G), the reverse inequality holds. For this purpose let
F be the free group on a special generating set D of G of cardinality s(G) and let
ϕ:F → G denote the algebraic homomorphism uniquely defined by ϕ(x) = x for
x ∈ D. Let Nfin(F ) be the filter basis of normal subgroups of F with finite index
such that D \ N is finite. We note

⋂
N∈Nfin(F )N = {1}. Then the finite factor

groups F/N , N ∈ Nfin(F ) form, together with the obvious quotient maps F/N →
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F/M for M ⊆ N in Nfin(F ), an inverse system. Let F ∗ = limN∈Nfin(F ) F/N ⊆∏
N∈Nfin(F ) F/N and let j:F → F ∗ be the natural homomorphism defined by

j(x) = (xN)N∈Nfin(F ). Its kernel is ker j =
⋂
N∈Nfin(F )N = {1}. Let pN :F ∗ →

F/N denote the limit maps. Then N∗
def
= ker pN = j(N) is such that pN induces

an isomorphism F ∗/N∗ → F/N . Let M be a compact open normal subgroup of
G. Then D \M is finite; thus ϕ−1(M) ∈ Nfin(F ), and ϕ induces an isomorphism
F/ϕ−1(M) → G/M . Hence we have a morphism γM :F ∗ → G/M with kernel
ϕ−1(M)∗ inducing an isomorphism F ∗/ϕ−1(M)∗ → G/M such that γM

(
j(x)

)
=

ϕ(x)M for x ∈ F . If M ⊇ M ′ then the natural morphism πMM ′ :G/M
′ → G/M

satisfies γM = πMM ′ ◦ γM ′ . Then, since G ∼= limM∈N (G)G/M , by the universal
property of the limit, there is a morphism of compact groups γ:F ∗ → G with
γM (ξ) = γ(ξ)M ∈ G/M for all ξ ∈ F ∗. Then γ ◦ j = ϕ and thus D = ϕ(D) ⊆
γ(F ∗). Since G = 〈D〉 we conclude that γ is surjective. Hence w(G) ≤ w(F ∗). Now
w(F ∗) = w(limN∈Nfin(F ) F/N) ≤ w(

∏
N∈Nfin(F ) F/N) = cardNfin(F ) by EA4.3.

But cardNfin(F ) = cardD = s(G). Thus w(G) ≤ s(G).
(ii) Now let S be an arbitrary suitable subset of G. If w(G) is uncountable then

s(G) = w(G) by (i) above. Thus 12.16(v) implies the claim. Now assume that
w(G) = ℵ0. Then 12.16(i) implies ℵ0 ≤ cardS ≤ w(G) = ℵ0, and the claim is true
in this case as well. ut

In fact, if we set X = D∪{1} ⊆ G, then in the form of F ∗ we have constructed
the group F (X)/F (X)0, the free compact zero-dimensional group on X. If we
let βD denote the pointed space with a base point in D, in order to construct
F (βD)/F (βD)0 in an analogous fashion in place of Nfin(F ) we would have had to
consider the filter basis of all normal subgroups of finite index in F . The cardinality
of this filterbasis is 2cardD = 2s(G).

Comparing the cases of connected groups in Theorem 12.25 and of totally
disconnected groups in 12.28 we notice that the bound for the weight in terms of
the generating rank is lower in the totally disconnected situation.

Proposition 12.29. Let G be a compact group. Then s(G) ≤ s(G0) + s(G/G0).
If s(G/G0) is infinite, then s(G) ≤ min{n | dimG ≤ nℵ0}+ w(G/G0).

Proof. The first assertion arises from 12.20(i). The second then follows from 12.25
and 12.28 above. ut

Proposition 12.30. Let G be a compact group with w(G) ≤ 2ℵ0 . Then the fol-
lowing cases can occur:

(i) s(G) = 0 if G = {1}.
(ii) s(G) = 1 if G is monothetic, in particular, if G is connected and abelian.

(iii) s(G) = 2 if G is connected and nonabelian.
(iv) max{ℵ0, s(G)} = w(G/G0) if G has infinitely many components.
(v) s(G/G0) ≤ s(G) ≤ s(G/G0) + 2 if G has at least 2, but finitely many com-

ponents.
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Proof. (iv) From Proposition 12.29 we know s(G) ≤ s(G0) + s(G/G0). If G/G0

is infinite, then max{ℵ0, s(G/G0)} = w(G/G0) by Lemma 12.28. By (i)–(iii), as-
sertion (iv) follows. Finally, in order to prove (v), let 2 ≤ card(G/G0) < ℵ0. Then
(v) follows from (ii), (iii) above and Lemma 12.29. ut

Exercise E12.3. Prove the following piece of information:
Let G be a profinite group of uncountable weight and let ℵ < w(G) be an infinite

cardinal. Then there is a closed subgroup H such that w(H) = ℵ.

[Hint. Let T be a suitable subset of G with cardT = w(G) according to Proposition
12.28. Then T contains a subset S of cardinality ℵ. We set H = 〈S〉. Now S is
discrete inH\{1} since T is discrete inG\{1}. Hence S is an infinite suitable subset
of the profinite group H. Hence, by Proposition 12.16(v), w(H) = card(S) = ℵ
follows.] ut

Theorem 12.31. Let ℵ be an infinite cardinal and G a compact group such that
ℵ < w(G). Then there is a closed subgroup H such that w(H) = ℵ, and if G is
connected, H may be chosen normal and connected.

Proof. Let G0 denote the identity component of G. The case that w(G) = w(G0)
is handled in Exercise E9.10. So we assume w(G0) < w(G). By Exercise E10.7(ii)
we may assume that G is totally disconnected, that is, profinite. Then Exercise
E12.3 proves the assertion of the theorem. ut

The Relation of Density and Weight

Theorem 12.31a. For a compact group G, its topological invariants density and
weight are linked by the equation

(#) d(G) = logw(G).

Proof. By Theorem 12.25, equation (#) holds if G is connected. By Lemma
12.17a(ii) then the assertion of the theorem follows. ut

In view of the somewhat difficult concept of density, this theorem provides
seemingly simple, yet tricky consequences, for instance the following:

Corollary 12.31b. In a compact group G, the density of a subgroup of G never
exceeds the density of G itself.

Proof. It is a well understood property of the weight, that the weight of a closed
subgroup of a topological group never exceeds that of the group itself. The assertion
is then an immediate consequence of Theorem 12.31a. ut

It was proved by Gerald Itzkowitz in [216] that a subgroup of a compact sepa-
rable group is separable. For a survey of such results see [240]
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On the Location of Special Generating Sets

We shall discuss particular locations of special generating subsets of a compact
group. Notably we shall prove the following assertion:

(A) If G is a compact connected group, then the arc component of the identity
Ga = expL(G) in G contains a special generating subset of G.

The proof will proceed through several reductions. Until further notice, G will
always denote a compact connected group.

Lemma 12.32. (i) Assume that (A) is true for all abelian groups G. Then (A) is
true in general.

(ii) Statement (A) is true for all abelian G with w(G) ≤ 2ℵ0 .

Proof. Proof of (i): Let G be a compact connected nonabelian group and T a
maximal pro-torus (cf. 9.30ff.) By hypothesis, we can find a special generating
subset X of T in Ta. By Proposition 12.12, there is a g ∈ G such that X ∪{g} is a
suitable subset of G. Since G is the union of the conjugates of T by the Maximal
Pro-Torus Theorem 9.32, there is an h ∈ G such that g ∈ hTh−1. Clearly G is
topologically generated by T ∪ hTh−1 and thus by Y = X ∪ hXh−1. Since X is
suitable so is Y by Lemma 12.2. Also, Y ⊆ Ta∪hTah−1 ⊆ Ga. If ℵ0 ≤ w(G) ≤ 2ℵ0 ,
then cardX = 1 by Proposition 9.38. Thus, since G is not abelian, cardY = 2 =
s(G) and so Y is special. If 2ℵ0 < w(G), then ℵ0 ≤ cardX by 9.38. Then, again
by 9.38, ℵ0 ≤ s(G) ≤ cardX + 1 = cardX ≤ cardY = cardX = s(G), and hence
Y is special. This completes the proof of part (i) of the lemma.

Proof of Part (ii): After Lemma 12.31, the task is reduced to the abelian case.
All compact connected abelian groups of weight not exceeding the cardinality of the
continuum are monothetic. Hence we must show that each connected monothetic
G has a generator in Ga. Now the hypothesis that G is connected monothetic
means that Ĝ is torsion-free and of rank ≤ 2ℵ0 . Let T denote R/Z and p:R → T
the quotient homomorphism. The group T is algebraically isomorphic to Q/Z⊕R.

Hence there is an injective morphism, j: Ĝ → R such that p ◦ j: Ĝ → T remains

injective. Hence the dual ĵ ◦ p̂:Z → G =
̂̂
G has dense image and factors through

p̂:Z→ R. Thus ĵp̂(1) is a generator of the arc component of the identity. ut

Let us consider the following assertion

(B) Let G be a compact connected abelian group with w(G) > 2ℵ0 . There is a
suitable set Y of L(G) with Y ∪ {0} compact and s(L(G)) ≤ cardY = s(G).

Before we prove Assertion (B) in several steps, we observe, that it will finish the
proof of Assertion (A), the main result of this section. Indeed, let Y be a suitable
set of L(G). The fact that the exponential function is a morphism with dense
image, implies that expY topologically and algebraically generated G. In order to
show that expY is suitable, we verify condition (2) of Lemma 12.2. Let V denote

an open neighborhood of 1 in G. Then U
def
= exp−1(V ) is an open neighborhood
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of 0 in L(G). Then X \U is finite as X is relatively compact suitable in L(G) (cf.
12.2), and so exp(Y ) \ V = exp(X \ U) is finite. Hence expY is a suitable set of
G contained in Ga = expL(G) and s(G) ≤ card(expY ) ≤ cardY = s(G). This
establishes Claim (A).

The proof of Claim (B) requires several further lemmas and is the bulk of the
argument.

The first of these lemmas is proved by diagram chasing.

Lemma 12.33 (Diagram Lemma). Consider the commutative diagram of abelian
groups with exact columns. If the first two rows are exact, then the third row is
exact.

0 0 0y y y
0 → A1

α1−−→ B1
β1−−→ C1 → 0

π1

y ρ1

y yσ1

0 → A2
α2−−→ B2

β2−−→ C2 → 0

π2

y ρ2

y yσ2

0 → A3
α3−−→ B3

β3−−→ C3 → 0y y y
0 0 0. ut

If X is a pointed compact space and K ∈ {Z,R,T}, we shall write C0(X,K) for
the abelian group of all base point preserving continuous functions under pointwise
addition. Further, if A is a subgroup of K ∈ {Z,R,T,Q,Q/Z}, then Cfin(X,A) will
denote the subgroup of C0(X,K) consisting of all functions taking only finitely
many values in A. Finally, [X,T] is the group of all homotopy classes of continuous
base point preserving functions X → T. We recall [X,T] ∼= H1(X,Z).

Lemma 12.34. For a compact pointed space X such that [X,T] = 0 we have

C0(X,R)/Cfin(X,Q) ∼= C0(X,T)/Cfin(X,Q/Z).

Proof. The exact sequence

0→ Z j→ R p→ T→ 0

induces an exact sequence

0→ C0(X,Z)
j∗→ C0(X,R)

p∗→ C0(X,T)→ [X,T]→ 0.

We now assume that [X,T] = {0}. We set B∗ = C0(X,R)/Cfin(X,Q) and
B = C0(X,T)/Cfin(X,Q/Z). Then we have a commutative diagram with exact
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columns whose first two rows are exact:

0 0 0
↓ ↓ ↓

0 → Cfin(X,Z) → Cfin(X,Q) → Cfin(X,Q/Z) → 0
↓ ↓ ↓

0 → C0(X,Z) → C0(X,R) → C0(X,T) → 0
↓ ↓ ↓
0 → B∗ → B → 0

↓ ↓
0 0.

By the Diagram Lemma 12.33, the assertion follows. ut

Lemma 12.35. Let X denote a compact space. Then, as rational vector spaces,
C0(X,R) ∼= C0(X,R)/Cfin(X,Q).

Proof. Write R = Q⊕E for a suitable Q-vector space complement E for Q in R.
Then Cfin(X,Q)∩Cfin(X,E) = {0} and thus there is a vector space complement F
of Cfin(X,Q) in C0(X,R) containing Cfin(X,E). We note that E ∼= Q(c) and thus
Cfin(X,E) ∼= Cfin(X,Q)(c), and F contains a vector subspace V ∼= Cfin(X,Q)(c).
We write F = V ⊕W. Therefore,

C0(X,R) ∼= Cfin(X,Q)⊕F = Cfin(X,Q)⊕ V ⊕W ∼= V ⊕W = F .

Since F ∼= C0(X,R)/Cfin(X,Q) the assertion follows. ut

Lemma 12.36. (i) If X is a compact pointed space such that dimR C0(X,R) ≥ c
then, for every subgroup A of C0(X,R), there is an injective R-linear map R⊗ZA→
C0(X,R).

(ii) If X is a compact pointed space with w(X) > 2ℵ0 then dimR C0(X,R) > 2ℵ0

and so Part (i) applies.

Proof. (i) The inclusion j:A → C0(X,R) induces an injective R linear map
idR⊗Zj:R ⊗Z A → R ⊗Z C0(X,R) because R is torsion free. The assertion will
be proved if we show that the R-vector spaces R ⊗Z C0(X,R) and C0(X,R) are
isomorphic. For this it suffices to show that their R-dimensions are equal.

Let S denote a set. Then, as Q-vector spaces, R(S) ∼= (Q(c))(S) ∼= Q(c·S). Thus
cardR(S) = c· cardS. If V is a real vector space, then

(∗) cardV = c·dimR V

and if dimR V ≥ c, then dimR V = cardV .
Now

R⊗Z C0(X,R) ∼= R(dimQ C0(X,R)) = R(cardC0(X,R))

because dimQ C0(X,R) is infinite. Further, cardC0(X,R) = w(X)ℵ0 (Appendix 4).

Thus R ⊗Z C0(X,R) ∼= R(w(X)ℵ0 ). Hence dimR R ⊗Z C0(X,R) = w(X)ℵ0 and
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cardC0(X,R) = w(X)ℵ0 . Since dimR C0(X,R) was assumed to be ≥ c we conclude

dimR C0(X,R) = w(X)ℵ0 .

This gives the desired equality of dimensions.
(ii) For infinite X we know cardC0(X,R) = w(X)ℵ0 . Thus w(X) > c implies

cardC0(X,R) > c. If dimC0(X,R) ≤ c, then

cardC0(X,R) = c·dimR C0(X,R) ≤ c.

Therefore dimR C0(X,R) > c, as asserted. ut

Lemma 12.37. Let A denote an abelian torsion group, B a torsion-free abelian
group and C a torsion-free subgroup of A⊕B. Then the projection p:A⊕B → B
maps C injectively into B.

Proof. Since ker p = A we have ker(p|C) = A ∩C. As A is a torsion group and C
is torsion-free we have A ∩ C = {0}. Thus p|C is injective. ut

Lemma 12.38. Let A be a subgroup of C0(X,T) for a compact space X with
w(X) > 2ℵ0 and with [X,T] = 0. Then there is an injective linear map R⊗Z A→
C0(X,R).

Proof. Since [X,T] = 0 the group C0(X,T) is a quotient of C0(X,R) and thus
is divisible. Hence its torsion subgroup Cfin(X,Q/Z) is a direct summand. Thus
Lemma 12.37 applies and shows that A is isomorphic to a subgroup of the fac-
tor group C0(X,T)/Cfin(X,Q/Z). This latter group is isomorphic to C0(X,R) by
Lemmas 12.34 and 12.35. Thus A is isomorphic to a subgroup of C0(X,R). But
then Lemma 12.36 applies and proves the claim. ut

Lemma 12.39. Let E be a real topological vector space and X a subset of E
such that E is the closed linear span of X. Then as an additive topological group,
E = 〈X ∪

√
2X〉. If X is discrete and closed in E \ {0}, then X ∪

√
2X is suitable.

Proof. For each x ∈ X, the group 〈X ∪
√

2X〉 contains R·x = 〈Z +
√

2X〉, hence
it contains the linear span of X.

If X is discrete, then X ∪
√

2X is discrete, and if X is closed in E \ {0} then
so is X ∪

√
2X. ut

Lemma 12.40. Let V be a real vector space and V ∗ the algebraic dual with the
topology of pointwise convergence. Denote by (V ∗)′ the topological dual of V ∗. Then
e:V → (V ∗)′, e(v)(α) = α(v) is an isomorphism of R-vector spaces.

Proof. This is a consequence of 7.5(iii) and the Duality Theorem of Real Vector
Spaces 7.30. ut

Exercise E12.4. Give a direct proof of Lemma 12.40.
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[Hint. Since V ∗ separates the points of V , clearly e is injective. Let Ω:V ∗ → R
be a continuous linear functional. Let U = Ω−1(] − 1, 1[). Then by the definition
of the topology of pointwise convergence on V ∗, there are vectors v1, . . . , vn ∈ V
and there is an ε > 0 such that |α(vj)| < ε, j = 1, . . . , n, implies α ∈ U ; that is
|Ω(α)| < 1. Let F denote the span of the vj and A = F⊥ the vector space of all
α ∈ V ∗ vanishing on all vj . Then Ω(A) is a vector subspace contained in ]−1, 1[
and is, therefore {0}. Thus Ω induces a linear functional ω on V ∗/A ∼= F ∗; that
is ω ∈ F ∗∗. Hence, by the duality of finite dimensional vector spaces, there is a
w ∈ F such that ω(α+A) = α(w). It follows that Ω(α) = α(w) and thus Ω = e(w).
Thus e is surjective, too.] ut

Lemma 12.41. The closed R-linear span of η(X ′) is C0(X ′,R).

Proof. Set E = 〈R·η(X ′)〉, the closed R-linear span of η(X ′) in C0(X ′,R)∗. We
claim that E = C0(X ′,R)∗. If not, then there is a nonzero continuous linear
functional Ω:C0(X ′,R)∗ → R vanishing on E by the Hahn–Banach Theorem. Now
we apply Lemma 12.40 with V = C0(X ′,R) and find that there is an f ∈ C0(X ′,R)
such that Ω(α) = α(f). Hence E(f) = {0}. In particular, f(x) = η(x)(f) = 0 for
all x ∈ X ′. Thus f = 0 and therefore Ω = 0, a contradiction. Thus E = C0(X ′,R)
is proved. ut

Now we are ready for a proof of Assertion (B). Thus we consider a compact
connected abelian group G with weight w(G) > 2ℵ0 . We know that s(G)ℵ0 =
w(G)ℵ0 . If we had s(G) ≤ 2ℵ0 , then

w(G) ≤ w(G)ℵ0 = s(G)ℵ0 ≤ (2ℵ0)ℵ0 = 2ℵ0 ,

in contradiction to our hypothesis. Thus G contains a special subset X of cardi-
nality s(G) > 2ℵ0 such that X ′ = X ∪ {1} is compact. For infinite suitable sets X
we have w(X ′) = cardX. Thus w(X ′) > 2ℵ0 . Since the pointed space X ′ is gen-
erating, the natural morphism f :FX ′ → G from the free compact abelian group
FX ′ on X ′ to G satisfying f(x) = x for x ∈ X is surjective. Hence f̂ : Ĝ → F̂X ′

is injective. But F̂X ′ ∼= C0(X ′,T). By Lemma 12.38 we thus have an injective

R-linear map j:R⊗Z Ĝ→ C0(X ′,R). Its dual HomR(j,R): HomR(C0(X ′,R),R)→
Hom(R⊗ZĜ,R) is a surjective continuous R-linear map between topological vector

spaces. But HomR(R ⊗Z Ĝ,R) ∼= Hom(Ĝ,R) ∼= L(G). Thus we have produced a
continuous surjective R-vector space morphism j∗:C0(X ′,R)∗ → L(G), where E∗

denotes the algebraic dual of a real vector space E endowed with the topology of
pointwise convergence. The natural map η:X ′ → C0(X ′,R)∗, η(x)(f) = f(x) is
a topological embedding since the continuous functions on a compact space sepa-
rate the points, since the topology of C0(X ′,R)∗ is that of pointwise convergence,
and since X ′ is compact. By Lemma 12.2 we know that Z = j∗(η(X ′) \ {0})
is discrete and closed in L(G) \ {0} and is such that Z ∪ {0} is compact. By
Lemma 12.41, the closed R-linear span of η(X ′) is C0(X ′,R). Hence the closed
R-linear span of Z is L(G). Then by Lemma 12.39, the set Y = Z ∪

√
2Z is

suitable in L(G). By Lemma 12.2 we know that expY is suitable in G. Hence

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use
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s(G) ≤ card(expY ) ≤ cardY ≤ cardX = s(G). So expY is a special subset of G.
Since Y is a suitable set of L(G) we have s(L(G)) ≤ cardY = s(G).

This completes the proofs of Assertion (B). Thus we have proved the following
theorem.

Theorem 12.42 (Special Generating Sets in Connected Compact Groups). The
arc component Ga of the identity in a compact connected group G contains a special
generating subset of G. ut

Postscript

Cardinal invariants of topological spaces have a long standing tradition in general
topology and in topological group theory (see e.g. [67], [68], [70]); examples are the
weight, density, and various topological dimensions. In topological group theory
other invariants emerge that take the group structure into account. An example
is the generating rank s(G) which was introduced by the authors in [181]. They
showed it to be applicable to compact groups by proving that suitable sets exist
in every locally compact group. This extended earlier work by Mel’nikov [254]
on profinite groups. In [73] suitable sets are shown to exist for all metrizable
groups and all countable topological groups. There is also work of D. Dikranjan,
O. G. Okunev, D. Shakhmatov, M. Tkachenko and V. V. Tkachuk on the existence
and nonexistence of suitable sets in topological groups.

In the study of the structure of compact groups of large cardinality, it is conve-
nient to have cardinal invariants as a coarse tool of discriminating amongst them.
We have seen in this book that the weight is a particularly convenient topological
invariant. In Chapters 8 and 9 we also introduced the dimension dim as topolog-
ical group invariant for compact groups which is in line with our emphasis of the
exponential function as a major structural component.

The linking of the cardinal invariants weight, density, generating rank and
dimension is not trivial. For compact connected groups the dimension is revealed
to be the most important one because all the others are expressed in terms of
the dimension (Theorem 12.25). One of the most interesting phenomena in the
context of connected compact groups is the “Descent Procedure” by which the
cardinal invariants of the group are reduced to that of a maximal pro-torus (see
12.11, 12.24, 9.36(vi)).

The class of connected compact and that of totally disconnected compact
groups exhibit significantly different behavior, as is illustrated by a juxtaposition
of 12.25 and 12.28. The results in 12.27ff show that for topological group cardinal
invariants, a reduction to the cases of compact connected and compact totally dis-
connected groups is not trivially in sight. The results of Chapter 10 leading into
the Topological Decomposition of Compact Groups Theorem 10.39 show that for
topological invariants, a compact group is of the form A × S × T for a compact
connected abelian group A, a compact connected semisimple group (which is very
nearly a product of simple compact Lie groups as we explained e.g. in the Structure
of Semisimple Compact Connected Groups Theorem 9.19), and a compact totally
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disconnected group T . (Recall from [147], Theorem 9.15, p. 95, that every infinite
compact totally disconnected group is homeomorphic to a power of the two point
space.) This shows for the study of topological cardinal invariants, knowing them
for connected compact groups suffices. Remarkably, pursuing these observations for
the simply accessible cardinal invariant of density allows us to note in Theorem
12.31a that it depends on the weight in an order preserving fashion. The fact that
d(Z(2)2n) = n for all infinite cardinals may be counterintuitive at first sight.

References for this Chapter—Additional Reading

[68], [71], [147], [73], [91], [181], [184], [254], [361].
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Appendix 1

Abelian Groups

In this appendix we shall record background material on abelian groups. We be-
gin by fixing standard notation and by listing elementary examples. Basically we
stay in the domain of algebra—occasional excursions into analysis notwithstand-
ing. Certain simple constructions of new abelian groups from given ones will be
recorded and we shall discuss the concepts of free, projective and injective groups
and their characterizations. In the end we shall turn to the homological algebra
of abelian groups and give a complete discussion of the Whitehead problem and
Shelah’s solution of it [329]. This material is important for an understanding of
arcwise connectivity of compact abelian groups in Chapter 8.

By and large we shall write abelian groups additively; for some examples, the
multiplicative notation is natural. Frequently in this appendix, we shall simply
refer to an abelian group as a group; if non-abelian groups are meant we will say
so.

Prerequisites. An understanding of the concepts of a subgroup and a factor group
modulo a subgroup are taken for granted as is a grasp of the idea of a homomor-
phism f :A→ B and its canonical decomposition

A
f−−→ B

q

y xincl

A/ ker f −−→
f ′

im f

in which f ′:A/ ker f → im f is an isomorphism.
Usually, exercises will ask for a proof of a statement. This will not always be

repeated. Thus unless stated otherwise, all assertions made in the exercises are to
be proved.

For some exercises on the homological algebra of abelian groups one may wish
to consult such sources as MacLane’s book on homology [245]. The last section on
Whitehead groups will place more demands on the reader’s willingness to follow
arguments in the line of axiomatic set theory and of ordinal and cardinal arith-
metic and their applications in abelian group theory. A good reference for these
developments is the book by Eklof and Mekler [99] and a good source for set theory
is the book by Jech [221].

Examples

We begin with the examples most closely at hand.
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Examples A1.1. (i) The additive group of real numbers is called R; in it we find
the subgroup Q of all rational numbers and the group Z of all integers. All of these
groups also carry a multiplication; the first two are fields, the last is a ring.

Every infinite cyclic (i.e. singly generated) group is isomorphic to Z. Indeed, if
g is an element of a multiplicatively written group G then

e:Z→ G, e(n) = gn

is a homomorphism and the group 〈g〉 generated by g is the image im e and 〈g〉 ∼=
Z/ ker e by canonical decomposition. But if K is a nonzero subgroup of Z, then
Z/K is finite. (Exercise EA1.1(i).) Thus, if 〈g〉 is infinite, then 〈g〉 ∼= Z.

(ii) If m ∈ N, we write Z(m) = Z/mZ. If G is cyclic of order m, then the
surjective homomorphism e has the kernel mZ (Exercise 1(i)) and thus induces an
isomorphism e′:Z(m)→ G via the canonical decomposition of e.

Since mZ is an ideal of the ring Z, the factor group Z(m) is in fact a ring.
(iii) The factor group R/Z of reals modulo one is written T and is called the

1-torus. It contains the subgroup Q/Z as the subgroup of all elements of finite
order. If m is a natural number, then 1

m ·Z/Z is the unique subgroup of order m.
(iv) In the field C of complex numbers, the set S1 = {z ∈ C | |z| = 1} is

multiplicatively closed and is closed under inversion. Hence it is a multiplicative
group called the circle group. The exponential function exp:C → C \ {0} given
by exp z =

∑∞
n=0

1
n! ·z

n yields a homomorphism e:R → S1 via e(t) = exp 2πit.
Its kernel is Z. Hence the canonical decomposition of e yields an isomorphism
e′:T = R/Z → S1. Thus the 1-torus and the circle group are isomorphic. The
group of rotations of the euclidean plane R2 is given by the group of matrices

SO(2) =

{(
cos 2πt sin 2πt
− sin 2πt cos 2πt

)∣∣∣∣ t ∈ R
}
.

The function

t+ Z 7→ exp 2πt

(
0 1
−1 0

)
=

(
cos 2πt sin 2πt
− sin 2πt cos 2πt

)
: T→ SO(2)

is an isomorphism. The 1-torus thus also manifests itself as the group of rotations
of the euclidean plane. ut

Exercise EA1.1. (i) Every subgroup of Z is cyclic. If 0 < m, then Z/mZ has m
elements.

(ii) Every closed proper subgroup of R is cyclic.
(iii) R has uncountably many subgroups which are not cyclic.

[Hint. Regarding (ii): Let A be a closed proper subgroup of R. Assume A 6= {0}.
Set a = inf{r ∈ A | 0 < r}. Use the closedness of A to show a ∈ A. If a = 0 show
A = R. If 0 < a show A = Za.

Regarding (iii): Show that Q is not cyclic and consider rQ for r /∈ Q.] ut
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Exercise EA1.2. (i) A function f :R→ X of the group R into a set is said to be
periodic with period p if

(∀x ∈ R) f(x+ p) = f(x).

The set of all periods of a function f :R → X is a subgroup of R. If X is a
topological space and f is continuous, then this subgroup is closed.

(ii) Let q:R → T denote the quotient homomorphism given by q(x) = x + Z
and let e:T→ S1 denote the isomorphism given by e(t+ Z) = exp 2πit. Then the
following statements are equivalent for a function f :R→ R:

(1) f has period 1.
(2) There is a function F :T→ R such that f = F ◦ q.
(3) There is a function ϕ:S1 → R such that f = ϕ ◦ e ◦ q.

In this sense, periodic functions on R with period 1 and real-valued functions
on T and real-valued functions on S1 are one and the same thing.

In the elementary theory of analytic functions we learn that for a function
ϕ:U → C which is analytic on an open set in C containing S1 there are real
numbers 0 < r < 1 < R such that the ring domain V = {z ∈ U | r < |z| < R} is
contained in U and ϕ has an expansion

∑∞
n=−∞ anz

n into a Laurent series in V .
Assume that z = e(t + Z) and express ϕ(z) as a series of scalar multiples of the
numbers sin 2πt and cos 2πt.

These observations are at the root of the theory of Fourier series expansions of
functions which are periodic with period 1. ut

Exercise EA1.3. (i) If a multiplication (x, y) 7→ xy makes Q/Z into a ring, then
all products are zero.

(ii) The circle group T has a natural topology such that the following conditions
are satisfied:

(a) The quotient map t 7→ t+ Z : R→ T is continuous and open.
(b) The addition (x, y) 7→ x+ y and the inversion x 7→ −x are continuous.
(c) e:T → S1, e(t + Z) = e2πit is a homeomorphism (where S1 inherits its

topology from that of C).
The subgroup Q/Z of T is dense.
If a continuous multiplication makes T into a ring, then all products are 0. ut

The most elementary constructions are the forming of the direct product and
the direct sum.

Lemma A1.2. (i) If {Aj | j ∈ J} is a family of abelian groups, then the cartesian
product ∏

j∈J
Aj = {(aj)j∈J | (∀k ∈ J) ak ∈ Ak}

is an abelian group under componentwise operations.
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(ii) If supp
(
(aj)j∈J

)
denotes the set {j ∈ J | aj 6= 0}, then supp(g + h) ⊆

supp(g) ∪ supp(h) and supp(−g) = supp(g). Hence⊕
j∈J Aj

def
=
{
g ∈

∏
j∈J Aj | card supp(g) <∞

}
is a subgroup.

(iii) If all Aj ⊂ A for a group A, then the function f :
⊕

j∈J Aj → A, f
(
(aj)

)
=∑

j∈J aj is a well-defined homomorphism whose image is the subgroup
〈⋃

j∈J Aj

〉
of A generated by all Aj.

Proof. Exercise EA1.4. ut

Exercise EA1.4. Prove A1.2.

[Hint. Assume that Aj is a family of subgroups of one and the same group A. If

the support of (aj)j∈J is finite, say {j1, . . . , jn}, then
∑
j∈J aj

def
= aj1 + · · · + ajn

is a well-defined element, and the function

(aj)j∈J 7→
∑
j∈J

aj :
⊕
j∈J

Aj → A

is a homomorphism whose image is the subgroup generated by
⋃
j∈J Aj .] ut

Definition A1.3. The group
∏
j∈J Aj is called the direct product of the groups

Aj and
⊕

j∈J Aj is called their direct sum. If Aj = A for all j ∈ J we write∏
j∈J

Aj = AJ and
⊕
j∈J

Aj = A(J). ut

In these special cases it may be advantageous to write the elements of AJ as
functions f : J → A.

In particular, the group Z(X) contains a copy of the set X via the inclusion
map jX :X → Z(X) given by

jX(x)(y) =

{
1, if y = x,
0, otherwise.

The simple construction of the direct product and the direct sum allow us to
construct abelian groups of arbitrarily large cardinality from the elementary exam-
ples given in the beginning. But even in elementary situations these constructions
are indispensable. We shall prove in the next section the fundamental theorem of
finitely generated abelian groups saying that any such group is a direct sum of
cyclic groups. A simple special case is considered in the following easy exercise:

Exercise EA1.5. If m = pn1
1 · · · p

nk
k is the prime decomposition of a natural

number then
Z(m) ∼= Z(pn1

1 )⊕ · · · ⊕ Z(pnkk ). ut
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Free Abelian Groups

Definition A1.4. Let X denote a set and F (X) a group together with a function
j:X → F (X). We say that F (X) is a free abelian group over the set X (via j)
if for every function f :X → A into an abelian group there is a unique morphism
f ′:F (X)→ A such that f = f ′ ◦ j.

Sets Abgroups

X
j−−→ F (X) F (X)

f

y yf ′ yf ′
A −−→

idA
A A

We say that an abelian group is free if it is isomorphic to a free abelian group
over some set.

A subset X of a group G is said to be free if the subgroup 〈X〉 generated in G
by X is a free group over X (via the inclusion map X → G). ut

This is a good example of a definition expressed in terms of a universal property.
At first glance such definitions appear to be roundabout. They turn out to be very
effective. We shall soon say what free abelian groups look like.

Remark A1.5. (i) The map j in the definition of a free abelian group is injective.
(ii) If for n = 1, 2 the two functions jn:X → Fn(X) define free abelian groups

over X, then there is a unique isomorphism i:F1(X)→ F2(X) such that j2 = i◦j1.

Proof. Exercises EA1.6. ut

Exercise EA1.6. Prove (i), (ii). ut

In view of Remark A1.5(i) we may assume that X is in fact a subset of F (X),
and that the morphism f ′ extends the function f . Remark A1.5(ii) shows that the
free abelian group over X is unique (up to a natural isomorphism).

We shall now explicitly describe the structure of the free abelian group over a
given set X. First we define a function x 7→ ex:X → Z(X) by

ex(y) =
{

1 if y = x,
0 otherwise.

Proposition A1.6. The group Z(X) is the free abelian group over X via x 7→ ex.

Proof. Let f :X → A be a function. Define f ′:Z(X) → A by f ′
(
(zx)x∈X

)
=∑

x∈X zx·f(x). Notice (zx)x∈X =
∑
x∈X zx·ex. Now f ′ is a morphism satisfying

f(x) = f ′(ex), and it is unique with respect to this property. ut
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Remark A1.7. (i) A subset X of an abelian group G is free if and only if any
relation

∑
x∈X nx·x = 0, nx ∈ Z implies nx = 0 for all x ∈ X.

(ii) For two sets X and Y we have F (X) ∼= A ≤ F (Y ) if and only if cardX ≤
cardY . (The cardinality of a set X is denoted by cardX.)

(iii) F (X) ∼= F (Y ) if and only if cardX = cardY .

Proof. Exercise EA1.7. ut

Exercise EA1.7. Prove A1.7.

[Hint. (i) The family (ex)x∈X in Z(X) certainly does not satisfy a nontrivial linear
relation. Conversely, if a subset X ⊆ G satisfies no nontrivial linear relation, define
ϕ:Z(X) → G by ϕ(ex) = x and show that it has zero kernel.

(ii) If F (X) ∼= A ⊆ F (Y ), then Z(X) ∼= B ⊆ Z(Y ) and hence Q(X) ∼= spanQB ⊆
Q(Y ). Now it is a question of linear algebra to observe that the dimension of a
vector subspace does not exceed the dimension of the containing space.

If cardX ≤ cardY then Z(X) may be identified with a subgroup of Z(Y ).
(iii) is a consequence of (ii).] ut

From Remark A1.7(iii) we see that cardX is an invariant of any free abelian
group G ∼= F (X); it is called the rank of G and is written rankG.

Proposition A1.8. (i) Every abelian group is a quotient group of a free abelian
group.

(ii) Every abelian group A is a quotient group of the free abelian group F (A)
over the set underlying A.

(iii) Every countable abelian group is a quotient group of a countable free abelian
group.

Proof. Let A denote an abelian group. Then the universal property of Defini-
tion A1.4 provides a surjective morphism F (A) → A arising from X = A and
f = idA. This proves (i) and (ii) from which (iii) immediately follows. ut

If we realize the free abelian group over A as Z(A), then the surjective morphism
Z(A) → A is explicitly given by

∑
a∈A za·ea 7→

∑
a∈A za·a.

There is an important result which is harder. We recall that a well-order < on a
set X is a total order such that every non-empty subset has a minimal element. An
ordered set whose order is a well-order is called well-ordered. The Well-Ordering
Theorem states:
(WOT) Every set can be well-ordered.

This statement is equivalent to the Axiom of Choice:
(AC) For each surjective function f :X → Y there is a function σ:Y → X such
that f ◦ σ = idY .

It is also equivalent to Zorn’s Lemma (see e.g. [136] or [375]):
(ZL) A partially ordered set has maximal elements provided it is inductive (i.e.
every totally ordered subset is bounded above).
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The Subgroup Theorem for Free Abelian Groups

Theorem A1.9. Every subgroup of a free abelian group is a free abelian group.

Proof. (AC)1 Let F be a free abelian group and G a subgroup. Let X be a free set
of generators of F and, by the (WOT) find a well-order < on X. The coordinate
projection px:F → Z given by px(

∑
y∈X ny·y) = nx is a homomorphism. Let

Fx = 〈y ∈ X | y ≤ x〉 denote the subgroup spanned by the y ∈ X with y ≤ x.
The subgroup px(Fx ∩ G) of Z is generated by one element, say zx. By (AC) we
pick gx ∈ Fx ∩ G so that px(gx) = zx and that gx = 0 if zx = 0. We write

Gx = {gy | y ≤ x and gy 6= 0} and Y
def
= {x | x ∈ X and gx 6= 0}. Note that

G∞ =
⋃
x∈X Gx = {gy | y ∈ Y }. We claim

(a) G∞ generates G,
(b) G∞ is free,

which will prove the theorem. First, in order to prove (a), we consider the set X∗

of all x ∈ X such that
〈Gx〉 = Fx ∩G.

We claim X∗ = X. Assume momentarily that this claim were established. If g ∈ G
then g =

∑
y∈X my·y, and if x = max{y | my 6= 0}, then g ∈ Fx ∩G. Then g is a

linear combination of the gy since 〈Gx〉 = Fx ∩G. Hence (a) follows.
Now we shall prove that for an arbitrary x ∈ X the assumption y < x ⇒

y ∈ X∗ implies x ∈ X∗. If this is established we have X∗ = X for if not, then the
complement X \X∗ has a minimal element x; then the predecessors of x in X are
in X∗ and by what we assume this implies x ∈ X∗—a contradiction. Therefore,
assume that y ∈ X∗ for all y < x. Consider g ∈ Fx∩G. Then px(g) = nzx with some
n ∈ Z. Hence px(g−n·gx) = px(g)−npx(gx) = 0, and thus g−n·gx =

∑
y<xmy·gy.

Thus there is an x′ < x with g− n·gx ∈ Fx′ ∩G. By assumption, Fx′ ∩G = 〈Gx′〉,
and thus g − n·gx ∈ 〈Gx′〉. Then g ∈ 〈Gx〉 which completes the proof of (a).

Now we prove (b). Let
∑
y∈Y my·gy = 0. We must show my = 0 for all y ∈ Y .

Suppose this is not true. Since at most finitely many of the my are nonzero,
the element x = max{y | my·gy 6= 0} exists. Now 0 = px(

∑
y≤xmy·gy) =

px(
∑
y<xmy·gy) + px(mx·gx). Now let x′ = max{y | my·gy 6= 0 and y < x} < x.

Since x′ < x and Gx′ ⊆ Fx′ and since px(Fx′) = {0} we know that px(
∑
y<xmy·gy)

= 0. But mxpx(gx) = mxzx. Since x ∈ Y implies gx 6= 0 we have zx 6= 0. Hence
mx = 0 a contradiction to the definition of x. This completes the proof of (b) and
thereby the proof of the theorem. ut

If X is a finite set then we can say much more about the subgroups of F (X).
Recall that we have on N a partial order a|b (“a divides b”) iff Z·b ⊆ Z·a iff there
is an a′ ∈ N such that aa′ = b.

1 We mark proofs in this appendix that use the Axiom of Choice in this fashion.
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The Elementary Divisor Theorem

Theorem A1.10. (A) Let F be a free abelian group over a finite set and G a
nonzero subgroup. Then there exist, firstly, a free generating set X = {x1, . . . , xn}
of F , secondly a natural number 1 ≤ d ≤ n, and thirdly natural numbers m1|m2| · · ·
|md such that {m1·x1, . . . ,md·xd} is a free generating set of G.

(B) If P is a subgroup of G such that F/P has no elements of finite order,
then there is a nonnegative integer c, 0 ≤ c ≤ d such that, in the case that 0 < c,
the elements x1, . . . , xc may be chosen to be a free generating set of P and that
m1, . . . ,mc = 1.

Proof. We consider the set X of all free generating sets X of F . For 0 6= g ∈ G and
X ∈ X we write g =

∑
x∈X nx·x in a unique fashion and set n(g,X) = min{|nx| |

x ∈ X, 0 6= nx}. We define

N(G,F ) = {n(g,X) ∈ N | (g,X) ∈ G×X}.

Then m = minN(G,F ) is a positive natural number and we find a pair (g,X) ∈
G × X such that m = n(g,X), and since n(g,X) = n(−g,X) we may assume
g = m·x +

∑
y∈X\{x} ny·y. We claim that m|ny. Proof of the claim: We find

integers qy and ry such that ny = qym + ry with 0 ≤ ry < m. Setting x′ = x +∑
y∈X\{x} qy·y we have Y = {x′}∪ (X \ {x}) ∈ X , and g = m·x′+

∑
y∈X\{x} ry·y.

By the minimality of m we conclude ry = 0 for all y ∈ X \ {x}. This proves
the claim. We note that m·x′ = g. The projection px′ :F → Z, defined by f =
px′(f)·x′ +

∑
y∈X\{x} ny·y, maps G onto a subgroup of Z with minimal element

m, i.e. on Z·m. Thus, for h ∈ G we compute px′(h −
px′(h)

m
·g) = 0 and thus

we find h − px′(h)

m
·g ∈ G ∩ 〈X \ {x}〉. Therefore, setting F ′ = 〈X \ {x}〉 and

G′ = G ∩ 〈X \ {x}〉 we get
F = Z·x′ ⊕ F ′,
G = Z·g ⊕G′.

Moreover, if X ′ is any free generating set of F ′ and g′ =
∑
y′∈X′ ny′ ·y′ ∈ G′, then

m|ny′ for all ny′ by the definition of m as we see by the same proof as for the
claim above.

The proof of the theorem now follows by induction on rank(G). ut

The (uniquely determined) natural numbers m1, . . . ,md are called the elemen-
tary divisors of G in F .

The Fundamental Theorem of Finitely Generated Abelian Groups

Theorem A1.11. Let A be a finitely generated abelian group.
(i) Then there is a unique sequence of natural numbers 1 < m1|m2 · · · |md and

a natural number m0 such that

(1) A ∼= Z(m1)⊕ · · · ⊕ Z(md)⊕ Zm0 .
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(ii) For each prime p there is a subgroup

(2) Ap ∼= Z(p)k(p,1) ⊕ Z(p2)k(p,2) ⊕ Z(p3)k(p,3) ⊕ · · ·

such that

A = Zm0 ⊕
⊕

Ap(3)

= Zm0 ⊕
⊕

p prime
n∈N

Z(pn)k(p,n),(4)

where k(p, n) = 0 for all but finitely many pairs (p, n).

Proof. (i) By A1.8 there is a finite set X and a quotient morphism q:F (X)→ A.
Let G = ker q. By the Elementary Divisor Theorem A1.10 there is an ordered
sequence of natural numbers 1, . . . , 1,m1, . . . ,md, 1 < m1| · · · |md and a free gen-
erating set

{e1, . . . , em, x1, . . . , xd, xd+1, . . . , xd+m0}

such that
{e1, . . . , em,m1·x1, . . . ,md·xd}

is a free generating set of G. Then

A ∼=
Z{e1,...,em,x1,...,xd,xd+1,xd+m0

}

Z{e1,...,em,x1,...,xd}
∼= Z(m1)⊕ · · · ⊕ Z(md)⊕ Zm0 .

(ii) By Exercise EA1.5, for each natural number m = pn1
1 · · · p

nk
k (pj prime) we

have

(5) Z(m) = Z(pn1
1 )⊕ · · · ⊕ Z(pnkk ).

All we need to do now is to substitute (5) into (1) and rearrange direct summands
to get (4). Finally, (2) and (3) are just a consequence of regrouping (4). ut

Some remarks are in order on the preceding two theorems.
First a general remark which we shall pursue a bit more systematically later (cf.

A1.14). If a subgroup B of an abelian group A is such that A/B is free, then there
is a free subgroup C of A such that A = B⊕C. Indeed, let {xj+B | j ∈ J} denote
a free generating set of A/B. By the universal property of free groups there is a
unique homomorphism f :A/B → A such that f(xj + B) = xj . Set C = f(A/B).
Then f(a + B) + B = a + B, equivalently, a ∈ f(a + B) + B for all a ∈ A. Thus
A = B+C. Let c ∈ B∩C, say c = f(a+B). Then a ∈ f(a+B)+B = c+B = B,
whence c = f(B) = 0. Thus A = B⊕C as asserted. Since C ∼= A/B, the subgroup
C is free.

Assume the circumstances of the Elementary Divisor Theorem A1.10 and as-
sume, in addition that P is a subgroup of G such that F/P is a finitely generated
abelian group without nonzero elements of finite order. Then, since the factor
group F/P is finitely generated, it is free by the Fundamental Theorem A1.11.
Hence F = P ⊕ C by the preceding observation and G = P ⊕ (G ∩ C). We can
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therefore fix a free generating set {x1, . . . , xc} of P and applying the Elementary
Divisor Theorem A1.10 to C and G ∩ C actually produce a free generating set
X = {x1, . . . , xc, xc+1, . . . , xd, xd+1, . . . , xn} of F whose existence is asserted in
A1.10 in such a fashion that m1 = · · · = mc = 1 and that the elements x1, . . . , xc
generate P .

It is important to realize that the group G may contain subgroups S such that
P ∩ S = {0} which are not contained in any direct summand C of F that is
complementary to P . A simple example is illustrated by the case of F = Z2 ⊆
Q2, P = Z × {0}, S = Z·(5, 3). If S were contained in a direct summand C
complementary to P , then, as a rank one subgroup, it would have to be contained
in Z2 ∩Q·(5, 3) = Z·(5, 3). But since P ⊕ Z·(5, 3) = Z× 3Z, this is not possible.

If, in this example, we set A = F/Z·(0, 3), then torA ∼= {0} × Z/3Z ∼= Z(3).

The subgroup Z
def
=
(
S + Z·(0, 3)

)
/Z·(0, 3) = (5Z × 3Z)/({0} × 3Z) ∼= 5Z is

not contained in any direct summand complementary to torA. Thus a finitely
generated abelian group A may contain a free subgroup Z but no direct summand
C of A complementary to torA contains Z.

It is a fact that any discrete subgroup of Rn is a free abelian group of finite
rank, i.e. a copy of Zm for some m. Therefore the following theorem, even though
it exhibits topological aspects, belongs here:

Closed Subgroups and Quotient Groups of Rn

Theorem A1.12. (i) If S is a closed subgroup of Rn, then there is a basis
e1, . . . , en and there are natural numbers p, q such that

S = R·e1 ⊕ · · · ⊕ R·ep ⊕ Z·ep+1 ⊕ · · · ⊕ Z·ep+q.

(ii) The factor group Rn/S is isomorphic to Tq ⊕ Rm with m = n− p− q.
(iii) If E is a vector subspace of Rn containing q linearly independent elements

from spanR{ep+1, . . . , ep+q}, then S+E
S
∼= E/(S∩E) is a closed subgroup of Rn/S.

Proof. Let V denote the largest vector subspace of Rn contained in S. Every
vector subspace is closed. We let e1, . . . , ep denote a basis of V and record V =
R·e1⊕· · ·⊕R·ep. Now we can write Rn = V ⊕W with an arbitrarily chosen vector
space complement W ∼= Rn−p of V . Since V ⊆ S we have S = V = ⊕(W ∩S) (for
if s ∈ S, write s = v ⊕ w and note that w = −v + s ∈ W ∩ S). If we can prove
the assertion for the subgroup S ∩W in W , we have clearly proved assertion (i)
in general. Thus without losing generality we assume that S contains no vector
subgroups. First we claim that S is discrete. For a proof consider any norm on
Rn, e.g. the one given by the standard scalar product. If S is not discrete then
there is a sequence of nonzero elements sn ∈ S converging to 0. Since the unit
sphere is compact, after picking a converging subsequence we may assume that

e = limn→∞ ‖sn‖−1·sn exists. If r ∈ R, then dn
def
= r‖sn‖−1 − [r‖sn‖−1] is in [0, 1[
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(where [x] = max{z ∈ Z | z ≤ x}). Thus limn→∞ dn·sn = 0 whence

‖r·e− [
r

‖sn‖
]·sn‖ ≤ ‖r·e−

r

‖sn‖
·sn‖+ ‖ r

‖sn‖
·sn + [

r

‖sn‖
]·sn‖

= |r|‖e− ‖sn‖−1·sn‖+ dn‖sn‖ → 0

for n → ∞. Since [ r
‖sn‖ ]·sn ∈ S and S is closed, we conclude that r·e ∈ S.

Thus {0} 6= R·e ⊆ S, and this contradicts our assumption that S does not contain
nontrivial vector subgroups. Now we claim that S is generated by a finite R-linearly
independent subset of Rn: For a proof, let f1, . . . , fr denote any basis of the real
vector subspace spanR S spanned by the elements of S. Then spanR S/〈f1, . . . , fr〉 is
isomorphic to (R/Z)r, and therefore is a compact group. The image S/〈f1, . . . , fr〉
of S is closed and discrete, hence is finite. Thus S is generated by a finite set F ,
say. For each f ∈ F there is a natural number m such that m·f ∈ 〈f1, . . . , fr〉.
Hence there is a natural number M such that M ·F ⊆ 〈f1, . . . , fr〉. Hence S =
〈F 〉 ⊆ 〈 1

M ·f1, . . . ,
1
M ·fq〉. By the Elementary Divisor Theorem A1.10, there exist

numbers m1| · · · |mq, q ≤ r such that

S =
m1

M
Z·f1 ⊕ · · · ⊕

mk

M
Z·fq.

The elements ej =
mj
M , j = 1, . . . , q are R-linearly independent as asserted. (In

fact, since fj ∈ S for j = 1, . . . , r we may conclude q = r.) This completes the
proof of assertion (i).

The proof of assertion (ii) is immediate from (i) since Rn = R·e1⊕· · ·⊕R·en and
the direct sum decomposition of S given in (i) fits this direct sum decomposition
of Rn.

(iii) We can write E = E1 ⊕ E2 with E2 = spanR{ep+1, . . . , ep+q} and E1 ⊆
F

def
= spanR{e1, . . . , ep, ep+q+1, . . . , en}. Then E+S

S
∼= F/E1 ⊕ E2/(S ∩ E2). This

reduces the proof to the case that e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) and
E = E2 = Rn in which case E+S

S = Rn/S and the assertion is trivial. ut

Exercise EA1.8. (i) Prove a common generalisation of the Subgroup Theorem
for Rn and the Elementary Divisor Theorem in the following form:

Assume that S is a closed subgroup of Rm ⊕ Zn. Then there are basis elements
e1, . . . , em of Rm and em+1, . . . , em+n of Zn and natural numbers n1|n2| . . . |nk,
k ≤ n such that

S = R·e1 ⊕ · · · ⊕ R·ep +⊕Z·ep+1 ⊕ · · · ⊕ Z·ep+q ⊕ n1Z·em+1 ⊕ · · · ⊕ nkZ·em+k.

(ii) Determine all quotient groups of Rm ⊕ Zn modulo closed subgroups.
(iii) Determine all closed subgroups and quotient groups modulo closed sub-

groups of groups of the form Ra × Tb × Zc × Z(m1)× · · · × Z(mj). ut
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Projective Groups

We have two equivalent characterizations of free abelian groups: one by a universal
property, one by giving an explicit description of the structure of a free abelian
group. We are aiming for another characterization which will be expressed in terms
of the existence of morphisms.

Definition A1.13. An abelian group P is called projective if for every surjective
morphism e:A→ B and every morphism p:P → B there is a morphism f :P → A
with p = e ◦ f .

P
idP−−→ P

f

y yp
A −−→

e
B ut

We remark in passing that in the same fashion one can define projective mod-
ules over rings other than Z, indeed one can define projective objects in an arbitrary
category where surjective morphisms have to be replaced by epimorphisms.

Proposition A1.14. For an abelian group G the following conditions are equiv-
alent:

(1) G is free.
(2) G is projective.

Proof. (1)⇒(2) (AC). Assume that j:X → G is free over X via j. Let e:A→ B
be surjective. Then the Axiom of Choice (AC) secures a function σ:B → A with
e◦σ = idB . If now f :G→ B is a morphism, then for the function σ ◦p◦ j:X → A
we find a unique morphism f ′:G → A with f ′ ◦ j = σ ◦ p ◦ j by the universal
property of free abelian groups (A1.5). The uniqueness in the universal property
of G then shows f ′ = σ ◦ p. This implies e ◦ f ′ = e ◦ σ ◦ p = p.

(2)⇒(1). Assume that G is projective. By Proposition A1.8 there is a surjective
morphism e:F → G from a free abelian group F . If we take for f :G → G the
identity map of G, the defining property of a projective group yields a morphism
f ′:G→ F with e◦f ′ = f = idG. Thus f ′ is certainly injective and G is isomorphic
to a subgroup of F . Then the Subgroup Theorem A1.9 shows that G is free. ut

Proposition A1.15. If f :A → F is a morphism of an abelian group A into a
free abelian group, then A has a free subgroup C ∼= f(A) such that A = ker f ⊕C.
If f is surjective, then f |C:C → F is an isomorphism.

Proof. (AC) By the Subgroup Theorem A1.9 the group f(A) is free. Hence it
is projective by Proposition A1.14. Thus there is a morphism f ′: f(A) → A such
that f

(
f ′(x)

)
= x for all x ∈ f(A). We let C = f ′

(
f(A)

)
. This group satisfies all

requirements: If a ∈ ker f∩C, then a = f ′(x) and 0 = f(a) = f
(
f ′(x)

)
= x whence

a = f ′(x) = 0. If a ∈ A, then a =
[
a−f ′

(
f(a)

)]
+f ′

(
f(a)

)
, and f

[
a−f ′

(
f(a)

)]
=
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718 Appendix 1. Abelian Groups

f(a) − f(a) = 0. Thus ker f ∩ C = {0} and A = ker f + C. The last assertion is
clear since f |C is injective. ut

Torsion Subgroups

The subset of all elements of finite order in an abelian group is closed under
addition and passing to the inverse.

Definition A1.16. (i) If A is an abelian group, then

tor(A) = {a ∈ A | (∃n ∈ N) n·a = 0}

is called the torsion subgroup of A. A group is called torsion-free if tor(A) = {0}.
(ii) A subgroup C of a (not necessarily abelian) group G is called characteristic,

respectively, fully characteristic if for every automorphism, respectively endomor-
phism, α of G we have α(C) ⊆ C. ut

Remark A1.17. (i) The factor group A/ tor(A) is torsion-free.
(ii) Let A be an abelian group, B a torsion-free group, and assume that f :A→

B is a homomorphism. Then
a) torA ⊆ ker f .
b) There is a unique morphism F :A/ torA→ B such that F (a+torA) = f(a).
In particular, any subgroup G of A such that A/G is torsion-free contains

tor(A).
(iii) The torsion subgroup is a fully characteristic subgroup.

Proof. Exercise EA1.9. ut

Exercise EA1.9. Prove the preceding Remark A1.17. ut

Definition A1.18. For a natural number p, a group A is called a p-group if for
each element a ∈ A there is an n ∈ N with pn·a = 0. For a group A we set
Ap = {a ∈ A | (∃n ∈ N) pn·a = 0} and call it the p-primary component of A or
the p-Sylow subgroup of A. ut

Of course, to justify such a designation we have to verify that Ap is indeed a
subgroup.

Theorem A1.19. For an abelian group A, the p-primary component Ap is a fully
characteristic subgroup, and tor(A) =

⊕
p primeAp.

Proof. One notices quickly that Ap is a fully characteristic subgroup. The mor-
phism f given by (ap)p prime 7→

∑
p prime ap :

⊕
p primeAp → A maps into the

torsion group. Assume that
∑
p prime ap = 0. The set F = {p | ap 6= 0} is finite and

the element a =
∑
p∈F ap is contained in the subgroup G generated by the elements
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ap, p ∈ F . Hence G is finite. Thus Theorem A1.12 implies that G =
⊕

p∈F Gp and
then ap ∈ Gp. Hence a = 0 in G implies ap = 0 for all p. Conversely, if a ∈ tor(A)
is given, then the cyclic group 〈a〉 generated by a is finite and thus is a direct sum
of cyclic p-groups, hence is contained in

∑
p primeAp. Thus f is an isomorphism

onto the torsion group tor(A). ut

Definition A1.20. For an abelian group A and a prime p we set Sp(A) = {a ∈
A | p·a = 0}. This set is a subgroup called the p-socle. If A is already a p-group,
we write S(A) = Sp(A). ut

Since the map x 7→ p·x:A → A is an endomorphism of A, the p-socle of A is
exactly the kernel of this endomorphism.

Remark A1.21. (i) The p-socle Sp(A) of an abelian group is the additive group
of a vector space over the field of p elements GF(p).

(ii) Sp(A) is a fully characteristic subgroup of A such that for each 0 6= x ∈ Ap
there is a natural number n such that 0 6= pn·g ∈ Sp(A).

Proof. Exercise EA1.10. ut

As a consequence, Sp(A) has a basis over GF(p); its unique cardinality is called
the p-rank written rankp(A).

Exercise EA1.10. Prove Remark A1.21. ut

Pure Subgroups

Definition A1.22. A subgroup P of an abelian group A is called pure if

(∀p ∈ P, a ∈ A, n ∈ N) n·a = p ⇒ (∃x ∈ P ) n·x = p. ut

If we denote by µn the endomorphism x 7→ n·x of A, then a subgroup P
is pure iff P ∩ µn(A) ⊆ µn(P ) iff P ∩ µn(A) = µn(P ). If A = B ⊕ C, then
B∩µn(A) = B∩(µn(B)⊕µn(C)) = µn(B) for each n. Thus every direct summand
is a pure subgroup. If P is a pure subgroup of A and Q is a pure subgroup of P ,
then for each natural n we have P ∩ µn(A) = µn(P ) and Q ∩ µn(P ) = µn(Q).
Hence µn(Q) = Q ∩ P ∩ µn(A) = Q ∩ µn(A). Thus Q is pure in G. Purity is
transitive.

Lemma A1.23. (i) The torsion subgroup tor(A) is a pure subgroup of A.
(ii) The p-primary component Ap is pure in A.

Proof. Since purity is transitive and Ap is a direct summand of torA by A1.19,
it suffices to show (i). Assume that m·a = 0 with 0 < m ∈ N minimal and
that n·g = a. Thus mn·g = 0 and then g ∈ torA. This already completes the
argument. ut
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Proposition A1.24. (i) For a subgroup G of a torsion-free abelian group A the
following conditions are equivalent:

(1) G is pure.
(2) The factor group A/G is torsion-free.
(3) (∀n ∈ N, a ∈ A) n·a ∈ G⇒ a ∈ G.
(4) (∀n ∈ N) µ−1

n (G) ⊆ G.

(ii) If these conditions are satisfied and A/G is finitely generated, then A =
F ⊕G with a F finitely generated free abelian group.

Proof. (i) Note that n·a ∈ G and n·(a+G) = 0 in A/G are equivalent statements.
This implies the equivalence of (1) and (2). Further (1) is equivalent to

(∀n ∈ N)(∀a ∈ A) µn(a) = n·a ∈ G ⇒ (∃x ∈ G) µn(x) = µn(a).

Since µ is injective, this condition is equivalent to

(∀n ∈ N)(∀a ∈ A) µn(a) = n·a ∈ G⇒ a ∈ G,

i.e. to (3). This condition is clearly equivalent to (4).
(ii) (AC) Assume that G is pure in A. Then A/G is torsion-free by (i). If A/G

is also finitely generated, then A/G is free by A1.11. But then the assertion follows
from A1.15. ut

The subgroup Z of Q is not pure. (The expression impure does not seem to be
customary.)

Proposition A1.25. In a torsion-free abelian group A, every subset X is con-
tained in a unique smallest pure subgroup [X] given via

[X] = {a ∈ A | (∃x1, . . . , xk ∈ X,n0, n1, . . . , nk ∈ Z) n0·a =
k∑
j=1

nj ·xj}.

If X is a subgroup, then [X] = {a ∈ A | (∃n ∈ N) n·a ∈ X}.

Proof. If H is any subgroup of A, then the set of all a ∈ A for which there is a
natural number n with n·a ∈ H is a subgroup [H]. We claim that it is pure: If
h ∈ H and m·x = h then there is a natural number n with n·h ∈ H, and thus
mn·x ∈ H, whence x ∈ [H]. Thus [H] is pure. Assume that P is a pure subgroup
containing H. If x ∈ [H], then n·x ∈ H for some n ∈ N. Since P is pure and
n·x ∈ H ⊆ P there is a p ∈ P with n·p = n·x. Then n·(x − p) = 0 and since A
is torsion-free we conclude x = p ∈ P . Thus [H] ⊆ P . This shows that [H] is the
unique smallest pure subgroup containing H. Now we let H = 〈X〉 be the subgroup

generated by X, i.e. the set of all integral linear combinations
∑k
j=1 nj ·xj . Then

[X] = [H] is the required pure subgroup.
The last assertion of the proposition is clear. ut
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We shall call [X] the pure subgroup generated by X. In the countable group Q,
like in any torsion-free abelian group, every finitely generated subgroup is free.
But the only pure subgroups are {0} and Q.

The following proposition is another characterisation of free abelian groups as
long as they are countable. (We shall use this later in the proof of Theorem A1.62
below.)

Proposition A1.26. A countable torsion-free abelian group is free if (and only
if) every pure subgroup generated (as a pure subgroup) by a finite set is free.

Proof. Firstly, since G is countable, there is an ascending sequence Pn n ∈ N of
finitely generated pure subgroups with G =

⋃
n∈N Pn. Indeed, if G = {g1, g2, . . .},

it suffices to take Pn = [g1, . . . , gn]. We may assume that Pn 6= Pn+1. Assume that
we have found an ascending family of subsets Xk ⊆ Pk for k = 1, . . . , n such that
Pk is free over Xk. By hypothesis, Pn+1 is free. We may identify this group with

Z(X) for some set X, and it is then contained in the Q-vector space V
def
= Q(X).

Then V = Q·g1 + · · · + Q·gn+1 since Pn+1 is the pure subgroup generated by
{g1, . . . , gn+1}. Hence cardX = dimQ V < ∞. Now Proposition A1.24(ii) applies
and yields Pn+1 = Pn ⊕ Fn with a group Fn which is free over X ′n. Then Pn+1 is
free over Xn+1 = Xn ∪X ′n. Now we set X =

⋃
n∈NXn. Then 〈X〉 =

∑
n∈N〈Xn〉 =∑

n∈N Pn = G. Then the morphism (nx)x∈X 7→
∑
x∈X nx·x : Z(X) → G is sur-

jective. But it is injective, for if
∑
x∈X nx·x = 0, then there is a finite subset

X ′ ⊆ X with nx = 0 for x /∈ X ′. Then we find an n such that X ′ ⊆ Xn. But then∑
x∈Xx nx·x = 0 ∈ Pn and Pn was free over Xn. Hence nx = 0 for x ∈ X ′ ⊆ Xn.

We have shown G ∼= Z(X). ut

Free Quotients

Let A be an abelian group. Let K denote the set of all subgroups K of A such
that A/K is free. Then K is a filter basis; for if K1, K2 ∈ K then K = K1 ∩K2

is the kernel of the map a 7→ (a + K1, a + K2) → A/K1 × A/K2. The image of
this homomorphism is a subgroup of a free group and thus is free by the Subgroup
Theorem A1.9. We can form the characteristic subgroup

K∞ = K∞(A) =
⋂
K.

(Cf. [108].) Then all morphisms into free groups factor through A → A/K∞ and
the homomorphisms A/K∞ → Z separate the points. In particular, A/K∞ is
torsion-free and torA ⊆ K∞. Notably, K∞ is a pure subgroup. An abelian group
A with K∞(A) = {0} is also called torsionless.

Lemma A1.27. If K∞(A) = {0}, i.e. if A is torsionless, then every finite rank
pure subgroup of A is free.
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Proof. Let P be a finite rank pure subgroup of A and F a maximal rank free
subgroup contained in P . Then P = [F ]. Since K∞ = {0}, there is a subgroup
K ∈ K such that F ∩ K = {0}. It follows that P ∩ K = {0}, for if p ∈ P ∩ K
then there is an m ∈ N such that m·p ∈ F ∩K = {0}, whence p = 0 since A is
torsion-free. The map x 7→ x + K : P → A/K is therefore injective. But A/K is
free by the definition of K, and thus P is free by the Subgroup Theorem A1.9, as
we wanted to show. ut

Proposition A1.28. Let A be an abelian group such that A/K∞(A) is countable.
Then A contains a free subgroup F such that A = F ⊕K∞(A). Moreover, K∞(A)
does not have any nondegenerate free quotient groups.

Proof. The group A/K∞(A) is torsion-free, countable, and the morphisms into
free groups separate the points. Hence K∞

(
A/K∞(A)

)
= {0}. Thus from Lemma

A1.27 we know that every finite rank pure subgroup is free. Then, by Proposi-
tion A1.26, the quotient A/K∞(A) is free. Since free groups are projective, this
implies the existence of F as asserted. Again any free quotient of K∞(A) splits, so
K∞(A) = F ′⊕K with a free F ′ isomorphic to the free quotient. But then F ⊕F ′
is free and thus K ∈ K. It follows that K∞(A) ⊆ K and that, as a consequence,
F ′ is degenerate. ut

The statement that K∞(A) = {0} is tantamount to saying that the morphisms
of Hom(A,Z) separate the points of A. There is a vast class of groups for which
this is the case but which are not free (for an example see A1.65 below).

Divisibility

Recall that in an abelian group we write µn(x) = n·x.

Definition A1.29. Let A be an abelian group. An element a ∈ A is called divisible
if for each natural number n there is an x ∈ A with n·x = a. The set

⋂
n∈N µn(A) of

all divisible elements is called Div(A). The groupA is called divisible ifA ⊆ Div(A).
We say A is reduced if {0} is the only divisible subgroup of A. ut

We notice quickly that Div(A) is a characteristic subgroup.

Definition A1.30. If p is a prime, we write 1
p∞Z for the group of all rational

numbers which can be written m/pn for an integer m and a natural number n.
We define Z(p∞) = 1

p∞Z/Z. ut

Exercise EA1.11. (i) The additive group of a vector space over Q (or any field
of characteristic 0) is divisible.

(ii) 1
p∞Z is not divisible.
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(iii) If m and n are relatively prime integers and m·a = 0 in A then there is an
x such that n·x = a.

(iv) Z(p∞) is divisible.
(v) If {Aj | j ∈ J} is a family of divisible groups, then

⊕
j∈J Aj and

∏
j∈J Aj

are divisible.
(vi) Every homomorphic image of a divisible group is divisible.
(vii) Every pure subgroup of a divisible group is divisible. ut

In particular, every direct sum of copies of Q, Z(p∞), p prime, is divisible. We
shall see shortly, namely, in A1.41 below, that all divisible groups are so obtained.

Proposition A1.31. Each abelian group contains a unique largest divisible sub-
group div(A).

Proof. If {Bj | j ∈ J} is a family of divisible subgroups, then
⊕

j∈J Bj is divis-
ible by EA1.11(v) and

∑
j∈J Bj is the homomorphic image of this group under

the homomorphism (bj)j∈J 7→
∑
j∈J bj (see A1.2(iii)). Hence it is divisible by

EA1.11(vi). Now we apply this to the family of all divisible subgroups. Then their
sum div(A) is divisible, and this group contains all divisible subgroups. ut

We call div(A) the largest divisible subgroup of A. Notice that div(A) is a fully
characteristic subgroup and that div(A) ⊆ Div(A). We shall show in the following
theorem that the converse inclusion may fail. This theorem deals with one single
group; but this one is eminently important and complicated enough to be looked
at carefully.

In Z(N) we consider the elements en given as in A1.6 by en(m) = 1 for m = n
and 0 otherwise. We define W to be the subgroup of Z(N) generated by the elements
e1−n·en, n ∈ N and set∇ = Z(N)/W . Also we shall write gn = en +W ∈ ∇. Roots
bn of an element b1 in a group B, n·bn = b1 are called consecutive if for all pairs
(m,n) of natural numbers we have m·bmn = bn.

We now describe an example that illustrates well the complications arising with
the concept of divisibility.

Theorem A1.32. The group ∇ has the following properties:
(i) If B is any abelian group with a divisible element b1, then for every set of

roots bn ∈ B with n·bn = b1, there is a unique homomorphism d:∇ → B
with d(gn) = bn.

(ii) There is a surjective homomorphism p:∇ → Q defined by p(gn) = 1/n. If
in (i) above the roots are consecutive, then d:∇ → B factors through p, i.e.
there is a unique q:Q→ B with d = qp.

(iii) Z·gn ∼= Z for all n and g1 = n·gn.
(iv) ker p = tor(∇). That is, 0→ tor(∇)→ ∇ p−−→Q→ 0 is exact.
(v) ∇/Z·g1

∼=
⊕∞

n=2 Z(n) and tor(∇) ∩ Z·g1 = {0}. If G is any subgroup with
G ∩ Z·g1 = {0}, then G ⊆ tor(∇).

(vi) div(∇) = {0}, i.e. ∇ is reduced. Also, Div(∇) = Z·g1.
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(vii) tor(∇) is not a direct summand of ∇.

(viii) The group S
def
=
⊕∞

n=2 Z(n) contains a subgroup K ∼= tor(∇) such that
S/K ∼= Q/Z. The subgroup K of S is not a direct summand.

(ix) Define Pp =
⊕

n∈N Z(pn), Z(pn) = Z/pnZ. Then

S =
⊕
p prime

Pp,

and if Kp is the p-primary component of K, there is an exact sequence

0→ Kp
incl−−→Pp

γp−−→Z(p∞)→ 0.

In particular, the p-rank of Kp and thus the p-rank of ∇ is infinite.
(x) tor(∇) ∼=

⊕∞
n=2 Z(n), and there is an exact sequence

0→
∞⊕
n=2

Z(n)→ ∇ p−−→Q→ 0.

Proof. We prove (i) by using the freeness of Z(N) over {en | n ∈ N}, and by
considering the unique morphism f :Z(N) → ∇ given by f(en) = bn. We observe
that f(e1 − n·en) = f(e1) − n·f(en) = b1 − n·bn = 0. Hence f vanishes on W .
Thus f induces a unique morphism d:∇ = Z(N)/W → B with d(x + W ) = f(x).
In particular, d(gn) = f(en) = bn.

The first part of (ii) is an immediate consequence of (i). Now let m/n = m′/n′

with n, n′ ∈ N. Then m·bn = mn′·bnn′ = m′n·bnn′ = m′·bn. Hence we can
unambiguously define q:Q → B by q(m/n) = m·bn. Also q(m1/n + m2/n) =
q
(
(n1 + n2)/m

)
= (n1 + n2)·bn = n1·bn + n2·bn = q(m1/n) + q(m2/n); thus q is a

morphism. Now 1/n = p(gn). Hence d(gn) = bn = q(1/n) = q
(
p(gn)

)
. Since the gk

generate ∇, we conclude d = q ◦ p. Since p is surjective, q is uniquely determined
by this equation.

(iii) Since p(gn) = 1
n ∈ Q and this element generates an infinite group, the

group Z·gn is infinite.
(iv) Next we take a ∈ ∇ with p(a) = 0. We have a =

∑
n∈N zn·gn with

0 = p(a) =
∑
n∈N zn/n. If N = max{n | zn 6= 0}, then

∑N
1 (N !/n)zn = 0, or,

equivalently,

N !z1 = −
N∑
n=2

N !

n
zn.

Consequently,

N !·
N∑
n=1

zn·en = N !z1·e1 +
N∑
n=2

N !zn·en

= −
N∑
n=2

N !

n
zn·(e1 − n·en) ∈W.
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Thus a ∈ tor(∇). Since Q is torsion-free, ker p ⊇ tor(∇). Thus ker p = tor(∇).
(v) Since Z·g1 is infinite by (iii) we have Z·g1 ∩ tor(∇) = {0}. Also, ∇/Z·g1

∼=
Z(N)/〈e1, 2·e2, 3·e3, . . .〉 ∼=

⊕∞
n=2 Z(n). It follows that tor(∇) is isomorphic to a

subgroup of
⊕∞

n=2 Z(n)

If a =
∑
n∈N zn·gn is any element of ∇ with N = max{n | zn 6= 0}, then

N !·gn = N !
n n·gn = N !

n ·g1, whence N !·a ∈ Z·g1. Thus if G is any subgroup of ∇ not
contained in tor(∇), then G must contain an element a of infinite order and we
have 0 6= N !·a ∈ G ∩ Z·g1 6= {0}.

(vi) Claim: The group S
def
=
⊕∞

n=2 Z(n) contains no divisible elements. Hence
it is reduced. Indeed, if a were a nonzero divisible element, then S = F ⊕ F ′

with a finite group F ∼=
⊕N

n=1 Z(n) containing a and with F ′ =
⊕∞

n=N+1 Z(n).
Homomorphisms preserve divisibility, whence a, being the image of the projection
onto F is divisible in F . But |F |·x = 0 for all x ∈ F , and so a = 0, a contradiction.
This proves the claim.

Hence the image of Div(∇) is trivial in ∇/Z·g1. Thus Div(∇) ⊆ Z·g1. But Z·g1

is reduced, and thus div(∇) ⊆ Div(∇) is zero. Since e1 − n·en ∈ W we know
g1 = n·gn. Thus Z·g1 ⊆ Div(∇). Hence Z·g1 = Div(∇) follows.

(vii) If tor(∇) were a direct summand, then∇ would contain a subgroup A such
that ∇ = tor(∇)⊕ A and A ∼= ∇/ tor(∇) ∼= Q. But this would be a contradiction
to the fact that ∇ is reduced.

(viii) Set ∇1 = Z·g1 + tor(∇). Since tor(∇) ∩ Z·g1 = {0} by (v), in view of
(iii), the functions x 7→ x+ Z·g1: tor(∇)→ ∇1/Z·g1 and n 7→ n·g1 + tor(∇):Z→
∇1/ tor(∇) are isomorphisms. By (iv) we have ∇/ tor(∇) ∼= p(∇) = Q, and for
every infinite cyclic subgroup Zq of Q, we have Q/Zq ∼= Q/Z. As a consequence,

Q
Z
∼=
∇/ tor(∇)

∇1/ tor(∇)
∼=
∇
∇1

∼=
∇/Z·g1

∇1/Z·g1
.

Since there is an isomorphism κ:
⊕∞

n=2 Z(n) → ∇/Z·g1 by (v), the first assertion
follows if we define

K
def
= κ−1(∇1/Z·g1).

In order to prove the second, suppose that K were a direct summand of S. This
would imply that ∇ would contain a subgroup A such that A + ∇1 = ∇ and
A∩∇1 = DIV(∇). Then we would conclude ∇ = A+tor(∇) and A∩tor(∇) = {0}
which would contradict the fact that tor(∇) is not a direct summand of ∇.

(ix) Let N0 be the additive monoid {0, 1, 2, 3, . . .}. Then we have a morphism

µ:N(N)
0 → N into the multiplicative monoid N of natural numbers defined as fol-

lows: Let ν = (n1, n2, . . .) ∈ N(N)
0 and let (p1, p2, p3, . . .) be the sequence of prime

numbers (2, 3, 5, . . .). Then µ(ν) = pn1
1 pn2

2 pn3
3 · · · in an obvious sense due to the

fact that all but a finite number of the nj are 0. Then the theorem on the unique
prime decomposition of natural numbers is exactly the statement that

µ is an isomorphism of monoids.

Now

Z(µ(ν)) = Z(pn1
1 )⊕ Z(pn2

2 )⊕ Z(pn3
3 )⊕ · · · ,
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which clarifies the p-primary decomposition of S.
Specifically, we may consider Z(p∞) as the colimit of the direct system

· · ·Z(pn)
ηn−−→Z(pn+1) · · · , ηn(1 + pnZ) = p+ pn+1Z,

and where γp is the map from the coproduct to the colimit. If the generator 1+pnZ
of Z(pn) is abbreviated by εn, then Kp is generated by the set {p·εn+1 − εn : n =
2, 3, . . .}.

(x) The second part follows from the first through (ii) and (iv). For proving the
first part, we show that there is an injective endomorphism η:S → S with image
K.

For this purpose we invoke (ix) to see that it is sufficient to show that for each
prime p, there is an exact sequence

(E) 0→
∞⊕
n=1

Z(pn)
ηp−−→

∞⊕
n=1

Z(pn)→ Z(p∞)→ 0.

Indeed we define ηp(εn) = p·εn+1 − εn, n = 1, 2, . . .. Since clearly p·εn+1 − εn has
order pn, we have to show that ηp is injective. For a proof let a =

∑∞
n=1 zn·εn

with a finite support sequence of elements zn ∈ Z such that ηp(a) = 0. Then
0 =

∑∞
n=1 zn·εn −

∑∞
n=1 pzn·εn+1 =

∑∞
n=1 zn·εn −

∑∞
n=2 pzn−1·εn = z1.ε1 +∑∞

n=2(zn − pzn−1)·εn. In the direct sum of the subgroups Z(pn), this implies,
successively, z1 = 0 (modulo p), z2 − pz1 = 0 (modulo p2), z3 − pz2 = 0 (modulo
p3), and so on. Inductively, this shows zn = 0 (modulo pn), n=1,2,..., and so a = 0.
This completes the proof of the injectivity of ηp, and the remaining statements
involved in the exactness of the sequence (E) are routine. ut

As the numerous statements of the theorem indicate, this example is complex
and surprising. It is very useful to have in our bag of tricks. Let us visualize its
structure in diagrams

b
b
b
b
b

"
"
"

"

"
"

"
"

b
b
b
b
b
b
b

.

.

.
.

.

0

Z ∼= Div(∇)

∇

∇1

tor(∇) ∼= Z(2)⊕ Z(3)⊕ · · ·

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



Appendix 1. Abelian Groups 727

Q ∼=



∇∣∣∣∣∣
}
∼= Q/Z

∇1∣∣∣∣∣
}
∼= Z

tor(∇)

Notice that, in particular, a group with a nonzero divisible element b is infinite.
For if d(∇) is a finite group of order N , then 0 = N ·d(gN ) = d(g1) = b, a
contradiction. Also observe that conclusion (ii) yields for every element b1 in a
divisible group B a homomorphism q:Q→ B with q(1) = b1.

The following result is a counterpart to the statement that every abelian group
is the quotient of a free one.

Proposition A1.33. For each abelian group A there is a divisible group D and
an injective morphism A→ D. In this sense, every abelian group is a subgroup of
a divisible one.

Moreover, D can be chosen so that A ⊆ D and that
(i) cardD ≤ max{ℵ0, cardA}, where equality holds if A 6= {0}.
(ii) (AC) Any nonzero subgroup of D meets A nontrivially.

Proof. By Propositions A1.7 and A1.8 there is a set X and a surjective homo-
morphism p:Z(X) → A. We may assume that A = Z(X)/K with K = ker p and
that cardX = cardA. Now K ⊆ Z(X) ⊆ Q(X). Then A = Z(X)/K ⊆ Q(X)/K,
and D = Q(X)/K is divisible. The statement (i) on the cardinals is now straight-
forward since cardQ(X) = cardZ(X). Assertion (ii) is proved as follows: The set
of subgroups S of D with S ∩A = {0} is inductive with respect to “⊆”. Hence by
Zorn’s Lemma, we find a maximal one, say M . Then M ∩ A = {0} implies that
the quotient map q:D → D/M restricts to an injective morphism q|A:A→ D/M ,
and D/M is divisible as a homomorphic image of a divisible group. Now let S be
a subgroup of D containing M such that S/M meets (A+M)/M trivially. Then S
meets A trivially, and by maximality of S we have M = S, i.e. S/M is singleton.
Thus we may replace A by (A+M)/M and D by D/M and then the conclusion
of (ii) is satisfied. ut

If the inclusion A ⊆ D satisfies A1.33(ii) we say that D is a divisible hull of A.

The idea of projectivity yielded a characterization of free abelian groups. Now
we encounter the dual concept of injectivity.
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Definition A1.34. An abelian group I is called injective if for every injective
morphism i:A → B and every morphism j:A → I there is a morphism f :B → I
with j = f ◦ i.

I
idI−−→ I

j

x xf
A −−→

i
B ut

One may rephrase injectivity in the following convenient fashion: An abelian group
I is injective if and only if any homomorphism j:A → I of a subgroup A of a
group B extends to a homomorphism f :B → I on the whole group.

Proposition A1.35. For an abelian group G the following conditions are equiv-
alent:

(1) G is divisible.
(2) G is injective.

Proof. (1)⇒(2). (AC) Assume that A is a subgroup ofB and that a homomorphism
j:A → G is given. We must extend j to a morphism f :B → G. We consider the
set of all morphisms ϕ:C → G with A ⊆ C ⊆ B and ϕ|A = j. This set is partially
ordered by inclusion of domains and extension of mappings (i.e. ϕ ≤ ϕ′ if C ⊆ C ′
and ϕ′|C = ϕ). One verifies quickly that this set is inductive, hence by Zorn’s
Lemma contains a maximal element µ:M → G. We must show M = B. Let
b ∈ B. Then M ∩ Z·b is a cyclic group, say nZ·b. Since G is divisible, there is an
element d ∈ G such that n·d = µ(n·b). Assume now that m1 + z1·b = m2 + z2·b.
Then m2 − m1 = (z1 − z2)·b ∈ M ∩ Z·b = nZ·b. In particular, the kernel of
m 7→ m·b:Z→ G is contained in nZ. Thus there is a z ∈ Z with (z1−z2−zn)·b = 0,
and thus z1−z2−zn = z′n for some z′ ∈ Z. Hence µ(m2−m1) = µ

(
(z1−z2)·b

)
=

µ
(
(z + z′)n·b

)
= (z + z′)n·d = (z1 − z2)·d and thus µ(m1) + z1·d = µ(m2) + z1·d.

Therefore we define unambiguously a function µ′:M ′ → I, M ′ = M + Z·b by
µ′(m + z·b) = µ(m) + z·d satisfying µ′|M = µ. It is easy to verify that µ is
a morphism. Hence µ ≤ µ′. By the maximality of µ we have µ′ = µ and thus
M ′ = M . Hence b ∈M . Thus M = B.

(2)⇒(1). By Proposition A1.33 there is a divisible group D with G ⊆ D. Since
G is injective there is a morphism f :D → G such that f |G = idG. Hence G is a
homomorphic image of a divisible group and is, therefore, divisible. ut

Corollary A1.36. (i) A divisible subgroup D of an abelian group is a direct sum-
mand; i.e. there is a subgroup D′ such that A = D ⊕D′.

(ii) If A ⊆ Dj, j = 1, 2 are two divisible hulls of A then there is an isomorphism
f :D1 → D2 such that f |A = idA.

(iii) If D is a divisible hull of A, then rankpD = rankpA for all primes p, and
if X is a maximal free subset of A (i.e. one for which 〈X〉 is a free subgroup of A
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freely generated by X, and for which X is maximal with respect to this property),
then X is a maximal free subset of D.

Proof. (i) By Proposition A1.35, the group D is injective, and thus there is
a morphism f :A → D with f |D = idD. Set D′ = ker f . If a ∈ D ∩ D′, then
a ∈ D′ implies 0 = f(a) and a ∈ D implies f(a) = a. Thus a = 0. If a ∈ A, then
a = f(a)+

(
a−f(a)

)
; here f(a) ∈ D and a−f(a) ∈ ker f = D′. Thus A = D⊕D′.

(ii) By the injectivity of D2 there is an f :D1 → D2 such that f(a) = a for all
a ∈ A. The kernel K of f is a subgroup of D1 meeting A trivially; since D1 is a
divisible hull, K = {0}. Thus f is injective. The subgroup f(D1) of D2 is divisible;
hence by (i) above there is a subgroup T of D2 such that D2 = f(D1)⊕ T . Since
A ⊆ f(D1) we conclude A ∩ T = {0}. Since D2 is a divisible hull of A we have
T = {0}, i.e. f(D1) = D2. Thus f is bijective.

(iii) The p-socle Sp(A) of A (see A1.20) is contained in Sp(D). Since Sp(A) is
a vector space over GF(p), there is a subgroup T ⊆ Sp(D) such that Sp(D) =
Sp(A) ⊕ T . This implies A ∩ T = {0}. Since D is a divisible hull of A it follows
that T = {0}, i.e. Sp(A) = Sp(D), whence rankpA = rankpD (see the definition
following A1.21). Now let X be a maximal free subset of A. Assume that Y is
a free subset of D containing X. Since 〈Y 〉 is freely generated by Y we have
〈Y 〉 = 〈X〉 ⊕ 〈Y \ X〉, and from the maximality of X in A we conclude that
A ∩ 〈Y \X〉 = {0}. Since D is a divisible hull, it follows that 〈Y \X〉 = {0} and
this implies X = Y . Now D = torD ⊕ ∆ with a torsion-free divisible subgroup
∆ ∼= D/ torD since torD is divisible and divisible subgroups are direct summands
by (i). Then X is a maximal free subset of D if and only if its projection into ∆
is maximal free. ut

The last observation will allow us shortly to introduce the torsion-free rank of
an abelian group as the cardinality of a maximal free subset; we have to have the
means to argue that all such sets have the same cardinality.

Theorem A1.37. Every abelian group A is isomorphic to div(A)⊕A/div(A) and
A/div(A) is reduced.

Proof. By Corollary A1.36 there is a subgroup A′ such that A = div(A) ⊕ A′.
We have A′ ∼= A/div(A). Since div(A) contains all divisible subgroups of A, any
complementary summand A′ must be reduced. ut

Proposition A1.38. If A is a divisible group, then A = tor(A) ⊕ A′ and all
primary components Ap are divisible.

Proof. In view of Corollary A1.36, this follows from the fact that tor(A) and Ap
are pure subgroups of A by Lemma A1.23. ut

For a complete description of divisible groups it is now required that we deter-
mine the structure of torsion-free divisible groups and of divisible p-groups.
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Proposition A1.39. A divisible torsion-free abelian group is the additive group
of a rational vector space.

A subset X of a divisible abelian group D is free if and only if it is linearly
independent over Q. It is a maximal free subset if and only if it is a Q vector space
basis of D. Its cardinality then is dimQD.

Proof. Let a ∈ A. The morphism f :Z → A, f(z) = z·a extends to a morphism
F :Q → A. (See also Theorem A1.32(ii)!) We claim that this extension is unique:
If F ′:Q → A is likewise an extension of f , then q = m/n ∈ Q implies n·

(
F ′(q)−

F (q)
)

= F ′(nq)−F (qn) = F ′(m)−F (m) = m·a−m·a = 0. Since A is torsion-free,
F ′(q)− F (q) = 0 follows.

We set q·a = F (q). The functions q 7→ q·a + q·a′ and q 7→ q(a + a′) both
extend n 7→ n·a+n.a′ = n·(a+ a′):Z→ A. Hence they agree by uniqueness. Thus
(q, a) 7→ q·a : Q × A → A is bilinear. The proof of q·(q′·a) = qq′·a follows from
n·(n′·a) = nn′·a.

By A1.7, a subset X ⊆ D is free if and only if every relation
∑
x∈X nx·x = 0

with nx ∈ Z implies nx = 0 for all x ∈ X. Every such set is linearly independent
over Q, because for any relation

∑
x∈X qx·x = 0 with qx ∈ Q only finitely many

of the qx are nonzero, and thus there is a natural number m such that mqx ∈ Z
for all x ∈ X yielding qx = 0. Trivially, every Q-linearly independent set is free
according to A1.7. The remainder is now clear. ut

If A is a torsion-free group and D is a divisible hull, then A ∩ torD = {0}
implies torD = {0}. By A1.36(iii) and the preceding proposition, a subset of A is
maximal free iff it is a vector space basis of D and thus its cardinal is dimQD and
thus is an isomorphy invariant of A, called the rank of A, written rankA. The rank
of an arbitrary abelian group A is defined to be rank(A/ torA). Since a subset X
of A is maximal free if and only if its image (X + torA)/ torA is maximal free
in A/ torA we know that rankA is the cardinal of any maximal free subset of A.
Accordingly, by A1.33 and A1.36, if D is a divisible hull of an abelian group A,
then rankD = rankA and rankpD = rankpA for all primes p.

Before we elucidate the structure of a divisible p-group we prove a lemma. We
recall that Sp(A) = {x ∈ A : p·x = 0} denotes the p-socle. Further recall that a
sum

∑
j∈J Aj of a family of subgroups of a group A is called direct if the function

(aj)j∈J 7→
∑
j∈J aj :

⊕
j∈J Aj → A is injective.

Lemma A1.40. Let A be a p-group and {Aj | j ∈ J} a family of subgroups. The
sum

∑
j∈J Aj is direct if and only if

∑
j∈J Sp(Aj) is direct.

Proof. It is clear that the sum of the socles Sp(Aj) is direct if the sum of the Aj
is direct.

Now we prove the converse. Let σ:
⊕

j∈J Aj → A be the morphism defined

by σ
(
(aj)j∈J

)
=
∑
j∈J aj . We assume that the restriction of σ to

⊕
j∈J Sp(Aj) is

injective. Now let g = (aj)j∈J be in the kernel of σ. Define F (g) = {j ∈ J : aj 6= 0}
and recall that n(g) = cardF (g) is finite. We claim that g = 0. Suppose that this
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is not the case; we shall derive a contradiction. Let o(j) denote the order of aj and
m = max{νj : pνj = o(aj), j ∈ F (g)}. Set I(g) = {j ∈ F (g) : o(j) = pm}. Then
0 = pm−1·σ(g) = σ(pm−1·g) =

∑
j∈I(p) p

m−1·aj . But now pm−1·aj ∈ Sp(Aj) for

all j ∈ J . So by hypothesis, pm−1·aj = 0 for all j ∈ I(g), but then o(aj) = pm−1

for j ∈ I(g), a contradiction. ut

Proposition A1.41. A divisible p-group is isomorphic to Z(p∞)(X) for some
set X.

Proof. (AC) The socle S(A) is a vector space over GF(p) by Remark A1.21. Hence
there is a basis X ⊆ S(A). For x ∈ X we define x1 = x and recursively p·xn = xn−1

for n = 2, 3, 4, . . . . If m/pn = m′/pn
′

with, say n ≤ n′, then mpn
′−n = m′

and thus m′xn′ = mpn
′−nxn′ = mxn. Thus we define a function F : 1

p∞Z → A

by F (m/pn) = m·xn. Then F (1) = F (p/p) = p·x1 = p·x = 0. We claim that
kerF = Z. Indeed if not, then there exist nonzero integers m relatively prime to
p, and n such that F (m/pn) = 0. Then m·xn = 0. We write 1 = sm + tpn+1

and compute 0 = sm·xn = xn − tpn+1·xn = xn. But pnxn = x 6= 0, and thus
xn 6= 0. This contradiction proves the claim kerF = Z. Hence there is a unique
isomorphism f :Z(p∞) → imF with f(q + Z) = F (q). Thus we have a subgroup
C(x) ∼= Z(p∞) in A containing x.

Now we define a morphism

ϕ:
⊕
x∈X

C(x)→ A

by ϕ
(
(cx)x∈X

)
=
∑
x∈X cx. The image is divisible, hence a direct summand con-

taining the entire socle. Hence the socle of the complementary summand must
be trivial, and this means that this complement is zero. Hence the function is
surjective. By Lemma A1.40, however, ϕ is injective. ut

We now put all this information together for the following structure theorem:

The Structure Theorem for Divisible Subgroups

Theorem A1.42. Let A be an abelian group and D a divisible subgroup, for
instance, D = div(A). Then A is a direct sum of

(i) unique direct summands Dp = D ∩ Ap ∼= Z(p∞)((X(p)) with sets X(p) of a
unique cardinality rankp(D),

(ii) a direct summand D0
∼= D/ tor(D) ∼= Q(X) with a set X of a unique cardi-

nality rank(D),
(iii) a direct summand A′ ∼= A/D (reduced if D = div(A)).

In particular,

D = D0 ⊕
⊕

p prime

Dp
∼= Q(rankD) ⊕

⊕
p prime

Z(p∞)(rankp(D)). ut
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Corollary A1.43. Let c denote the cardinality of R. The following list gives the
structure of familiar groups in terms of the Structure Theorem A1.42 above:

(i) R ∼= Q(c) ∼= C.
(ii) T = R/Z ∼=Q(c) ⊕

⊕
p prime Z(p∞) ∼= R× T ∼= (C \ {0})×. ut

Exercise EA1.12. Let A be an uncountable abelian group and ℵ0 ≤ ℵ < |A|.
Then A contains a subgroup B such that (A : B) = ℵ.

Moreover, if (A : torA) is at least ℵ then B may be picked so that B is pure
and A/B is torsion free.

In particular, every uncountable abelian group has a proper subgroup of index
ℵ0.

[Hint. Let D be a divisible hull of A according to Proposition A1.33. If D =
D1 ⊕ D2 is any direct decomposition, and pr1:D → D1 is the projection onto
the first summand of D, then A/(A ∩ D2) ∼= (A + D2)/D2

∼= pr1(A). Now any
subgroup of D1 is a subgroup of the divisible hull of A and therefore meets A and
thus {0} 6= S∩A∩D1 ⊆ pr1(A) (see Proposition A1.33); therefore D1 is a divisible
hull of pr1(A). Hence either pr1(A) is finite or else cardD1 = card pr1(A) =
card(A/(A ∩D2)) by Proposition A1.33(i).

Since we control cardD1 by choosing D1 appropriately, we aim to set B =
A∩D2 and thereby prove our first assertion. We thus have to exclude the possibility
that pr1(A) might turn out to be finite by an inappropriate choice of D1. We now
let torA denote the torsion subgroup of A. Then torD is a divisible hull of torA,
and D ∼= (torD)×(D/ torD) by Proposition A1.38. We now distinguish two cases:

(a) Case card(torA) = cardA. Since A is uncountable, one of the p-primary
components of torA, as p ranges through the countable set of primes, say A(p),
satisfies cardA(p) = card(torA) = cardA. In particular cardA(p) is uncountable,
that is, its p-rank cardA is uncountable and agrees with the p-rank of D(p) (see
Corollary A1.36(iii)). In view of D(p) ∼= (Z(p∞)(cardA)) by Theorem A1.42(iii)
above, we find a direct summand D1 of D(p) of p-rank ℵ, giving us a direct
summand of torD and thus yielding a direct sum decomposition D = D1 ⊕ D2.
Since the p-rank ℵ of D1 is infinite, and D1 is the divisible hull of pr1(A) we know
that pr1(A) cannot be finite, whence ℵ = cardD1 = card(A/(A ∩ D2). Our first
assertion then follows with B = A ∩D2.

(b) Case card(A/ torA) = cardA. Then the (torsion free) rank of D is cardA
(see Corollary A1.36(iii)). By the structure theorem of divisible groups (see Theo-
rem A1.42]) and elementary cardinal arithmetic, we can write D = D1 ⊕D2 with
a torsionfree subgroup D1 of cardinality ℵ. Then pr1(A) ⊆ D1 cannot be finite,
and as in the first case, we let B = A ∩D2 and have ℵ = cardD1 = cardA/B as
in our first assertion.

It remains to inspect the case that card(A/ torA) ≥ ℵ. Then we may assume
torA ⊆ D2 and D1 torsion free. Since A ∩D2 is torsion as D2 is torsion, we have
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torA = A ∩ D2 = B. So, firstly, A/B is torsion free, and, secondly, B, as the
torsion group of A is pure in A. ]

Some Homological Algebra

We have seen the direct product and the direct sum as basic constructions to
create abelian groups from given ones. Other basic constructions arise from homo-
morphisms.

(i) If A and B are abelian groups, then the set

Hom(A,B)
def
= {f | f :A→ B is a homomorphism} ⊆ BA

is a subgroup of BA. We shall refer to the abelian group Hom(A,B) as a hom-
group.

(ii) If A, B, and C are abelian groups, then a function f :A×B → C is called
bilinear if a 7→ f(a, b0) : A → A and b 7→ f(a0, b) : B → B are morphisms for all
b0 ∈ B and a0 ∈ A. ut

Proposition A1.44. (i) For abelian groups A and B there is a group A ⊗ B,
unique up to isomorphism, with a function (a, b) 7→ a ⊗ b : A × B → A ⊗ B
such that for every bilinear map f :A × B → C there is a unique homomorphism
f ′:A⊗B → C such that f ′(a⊗ b) = f(a, b).

(ii) The groups

Hom(A⊗B,C), Hom
(
A,Hom(B,C)

)
, and Hom

(
B,Hom(A,C)

)
are naturally isomorphic and are isomorphic to the group of all bilinear maps in
CA×B.

Proof. (i) In order to prove existence we consider the free group Z(A×B) and
define the subgroup U spanned by all elements e(a+ a′, b)− e(a, b)− e(a′, b) and
e(a, b + b′) − e(a, b) − e(a, b′) with a, a′ ∈ A and b, b′ ∈ B. Then we set A ⊗ B =
Z(A×B) and we set a⊗ b = e(a, b) +U . Then A⊗B has the required property; the
uniqueness follows from the universal property.

The details and the proof of part (ii) are left as an exercise. (See Exercise
EA1.13.) ut

Exercise EA1.13. Prove part (ii) of Proposition A1.44. ut

The abelian group A⊗B which allows us to reduce bilinear maps on A×B to
linear ones on A⊗B is called the tensor product of A and B.

The following observation applies tensor products to divisibility theory.

Proposition A1.45. Let A denote an abelian group and δ:A→ Q⊗ A the mor-
phism given by f(a) = 1⊗ a. Then
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(i) every element in Q⊗A is of the form q ⊗ a. In particular, (Q⊗A)/(1⊗A)
is a torsion group.

(ii) The function

(q, q′ ⊗ a) 7→ qq′ ⊗ a:Q× (Q⊗A)→ Q⊗A

makes Q ⊗ A into a rational vector space. Hence Q ⊗ A is a torsion-free
divisible group, and no nonzero subgroup of Q⊗A meets 1⊗A trivially.

(iii) ker δ = tor(A).
(iv) The embedding A/ tor(A) → Q ⊗ A is the unique embedding of a torsion-

free abelian group into a smallest divisible one, and Q⊗
(
A/ tor(A)

) ∼= Q⊗A.
(v) If A is a subgroup of B, then the inclusion map j:A→ B induces an injection

idQ⊗ j:Q⊗A→ Q⊗B. The quotient map p:B → B/A induces a surjection
idQ⊗ p:Q⊗B → Q⊗ (B/A) whose kernel is im(idQ⊗ j).

Proof. (i) If t =
∑
j∈J qj ⊗ aj is a typical element of the tensor product Q ⊗ A

with a finite set J . Then we can write qj = mj/n and qj ⊗ aj = 1
n ⊗mj ·aj . Hence

t = 1
n ⊗

∑
j∈J mj ·aj .

If q = m
n then n·(q ⊗ a) = mn

n ⊗ a = m·(1 ⊗ a), whence (Q ⊗ A)/(1 ⊗ A) is a
torsion group.

(ii) Q⊗ A is a Q-vector space with respect to a scalar multiplication given by
q·(q′⊗a) = qq′⊗a. In particular, it is a torsion-free divisible group. If 0 6= q⊗a ∈
S ≤ Q⊗A, with q = m

n then 0 6= n·(q ⊗ a) ∈ S ∩ (1⊗A).

(iii) Any homomorphism into a torsion-free group kills the torsion group, hence
tor(A) ⊆ ker f . Conversely, let a /∈ torA, i.e. z 7→ z·a : Z → A is injective, and
thus, by the injectivity of Q, the inclusion Z→ Q “extends” to a morphism F :A→
Q with F (z·a) = z for z ∈ Z. The bilinear map (q, a) 7→ qF (a) factors through
Q⊗A with ϕ:Q⊗A→ Q, ϕ(q ⊗ a) = qF (a). In particular, ϕ(1⊗ a) = F (a) = 1.
Hence 1⊗ a 6= 0.

(iv) By (iii), A/ tor(A) is injected into Q ⊗ A and the image is 1 ⊗ A. The
smallest divisible subgroup of Q⊗A containing 1⊗A is Q·(1⊗A) = Q⊗A. If A
is torsion-free and j:A → D is an injection into a divisible group D, then there
is a unique morphism i:Q⊗ A → D with j(a) = i(1⊗ a). It is readily seen to be
injective, since i(q ⊗ a) = 0 implies 0 = i(1 ⊗ a) = j(a) and thus a = 0. In this
sense Q⊗A is the smallest divisible group into which A/ tor(A) is embedded.

(v) If q ∈ Q, then (idQ⊗ j)(q ⊗A a) = q ⊗B a. This element vanishes if either
q = 0 or a is a torsion element in B by (iv) above. But this is the case iff q⊗A a=0.
Thus idQ⊗ j is injective. If q ⊗B/A (b+A) is given, then it is the image of q ⊗B b
under idQ⊗ p. Assuming q 6= 0 we have q ⊗B/A (b+ A) = 0 iff there is an n such
that n·b ∈ A by (iv) above. Then q ⊗B b = (q/n) ⊗B n·b ∈ Q ⊗B A which is the
image of idQ⊗ j. ut

Assertion A1.45(v) is a very special case of a more general fact; indeed the
assertion remains true if Q is replaced by any torsion-free group.
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After A1.45(i,ii) the group Q ⊗ A is a divisible hull of 1 ⊗ A. The embedding
of an abelian group A into a divisible hull D according to Proposition A1.33 is
not functorial in the sense that a morphism A1 → A2 extends canonically to a
morphism D1 → D2 of divisible hulls. The embedding of a torsion-free abelian
group into a minimal divisible torsion-free abelian group, however, is functorial,
and the injection is given by A→ Q⊗A.

In particular, after A1.45 we know that rankA = dimQ Q⊗A (see the definition
following A1.39).

Proposition A1.46. (i) If D is a divisible group and A is any abelian group, then
D ⊗A is divisible.

(ii) If D is divisible and A is a torsion group, then D ⊗A = {0}.
(iii) An abelian group A is torsion-free and divisible if and only if A 7→ Q⊗A

is an isomorphism.

Proof. Exercise EA1.14(i). ut

Exercise EA1.14. (i) Prove Proposition A1.46. (ii) Prove that for a torsion-free
group F and any subgroup A of an abelian group B, the group F ⊗ A may be
identified with a subgroup of F ⊗B. ut

Proposition A1.47. The tensor product is commutative and additive in each
argument: A⊗B ∼= B ⊗A and A⊗

⊕
j∈J Bj

∼=
⊕

j∈J A⊗Bj.

Proof. Exercise EA1.15(i). ut

We shall now provide some links between the hom-sets and direct products
and direct sums. For a family {Aj | j ∈ J} of abelian groups the projections
prj :

∏
i∈J Ai → Aj are defined by prj

(
(ai)i∈J

)
= aj and the coprojections coprj :

Aj →
⊕

i∈J Ai by coprj(a) = (xi)i∈J with xj = a and xi = 0 otherwise.

Proposition A1.48. For a fixed abelian group G and a family {Aj | j ∈ J} of
abelian groups we have the following conclusions:

(i) There is an isomorphism Hom(G,
∏
j∈J Aj) →

∏
j∈J Hom(G,Aj) which

assigns to ϕ:G→
∏
j∈J Aj the element (prj ◦ ϕ)j∈J . Its inverse mapping assigns

to an element (ϕj)j∈J ∈
∏
j∈J Hom(G,Aj) the morphism

g 7→
(
ϕj(g)

)
j∈J :G→

∏
j∈J

Aj .

(ii) There is an isomorphism
∏
j∈J Hom(Aj , G) → Hom(

⊕
j∈J Aj , G) which

assigns to an element (ϕj)j∈J the morphism (aj)j∈J 7→
∑
j∈J ϕj(aj) :⊕

j∈J Aj → G and whose inverse map assigns to a morphism ϕ:
⊕

i∈J Ai → G

the element (ϕ ◦ copri)i∈J .

Proof. Exercise EA15(ii). ut
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Exercise EA1.15. (i) Prove Proposition A1.47.
(ii) Prove Proposition A1.48. ut

Exact Sequences

It is frequently convenient to think about the data given through an abelian group
B and a subgroup A in various ways. Firstly, we have the quotient morphism
p:B → C with C = B/A and the inclusion map j:A → B. The purely order
theoretical aspects are well visualized in a lattice diagram of the type indicated
below, known as a Hasse diagram:

B∣∣∣∣∣
}

C

A∣∣∣∣∣
{0}.

Another way, sometimes preferable, is the use of the exact sequence. A finite
or infinite sequence C of morphisms of abelian groups

· · · → An−1
fn→ An

fn+1→ An+1 → · · ·

is called a cochain complex if fn+1 ◦ fn = 0 for all n. This means, of course,

that im fn ⊆ ker fn+1, and the factor groups Hn(C) def
= ker fn+1/ im fn are called

the cohomology groups of the complex. The sequence C is called exact (at An)
if im fn = ker fn+1. In particular, a cochain complex is exact iff its cohomology
groups vanish.

With the aid of this concept our data can be represented in terms of the exact
sequence

(1) 0→ A
j→ B

p→ C → 0.

We now need to discuss some homological algebra of abelian groups. For a
given abelian group G we need to discuss the functor Hom(G,−), that is the as-
signment of the abelian group Hom(G,A) to an abelian group A and the homomor-
phism Hom(G, f): Hom(G,A)→ Hom(G,B) defined by Hom(G, f)(ϕ) = f ◦ϕ for
f :A → B and ϕ:G → A. We shall have cause to apply Hom(G,−) to the exact
sequence (1).

Lemma A1.49. If (1) is exact, then the sequence

(2) 0→ Hom(G,A)
Hom(G,j)−−−−−→ Hom(G,B)

Hom(G,p)−−−−−→ Hom(G,C)
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is exact.

Proof. Exercise EA1.16. ut

Exercise EA1.16. We observe that Hom(G, p) need not be surjective, thus exact-
ness would fail at Hom(G,C) if we extended the sequence (2) by the zero morphism
at the right end. We need a measure of the degree of failure of Hom(G, p) to be
surjective. ut

We shall consider the class of all exact sequences (1) with fixed groups A and
C and call them extensions of A by C. We shall call

(1n) En = (0→ A
jn→ Bn

pn→ C → 0)

for n = 1, 2 equivalent if and only if there is an isomorphism f :B1 → B2 such that
the diagram

0 → A
j1→ B1

p1→ C → 0y idA

y f

y yidC

y
0 → A

j2→ B2
p2→ C → 0

commutes. Since the cardinality of B is the product of the cardinalities of A and
C, the class of equivalence classes [E] of all extensions of A by C is a set, called
Ext(C,A).

We shall now denote by O the trivial extension B = A⊕C with the coprojection
j:A → A ⊕ B onto the first summand and the projection p:A ⊕ C → C onto
the second summand. Now let E1 and E2 be two extensions. We shall create an
extension E1 + E2 whose equivalence class will only depend on the equivalence
classes [E1] and [E2]. First we form the subgroup ∆A = {

(
j1(a),−j2(a)

)
| a ∈

A} ⊆ B1 ⊕ B2. The subgroup of all (b1, b2) ∈ B1 ⊕ B2 with p1(b1) = p2(b2)
contains ∆A. So we can define a subgroup B = {(b1, b2)+∆A | p1(b1) = p2(b2)} in
(B1 ⊕ B2)/∆A and define j:A→ B by j(a) = (j1(a), 0) + ∆A =

(
0, j2(a)

)
+ ∆A.

This homomorphism is injective. We can specify p:B → C by p
(
(b1, b2) + ∆A

)
=

p1(b1) = p2(b2). Clearly, p is surjective, and pj = 0, i.e. im j ⊆ ker p. An element
(b1, b2) + ∆A is in the kernel of p if and only if p1(b1) = p2(b2) = 0, that is
if and only if there are elements a, a′ ∈ A such that (b1, b2) =

(
j1(a), j2(a′)

)
∈

(j1(a+ a′), 0) + ∆Aj(a
′′), where a′′ = a+ a′ ∈ A. We thus have im j = ker p. Thus

we have an exact sequence

(∗) E1 + E2 = (0→ A
j→ B

p→ C → 0).

The class [E1 +E2] depends only on [E1] and [E2] and we can set [E1]+[E2]
def
=

[E1 + E2].

Lemma A1.50. For fixed groups A and C we have the following conclusions:
(i) [E1] + [E2] = [E2] + [E1].
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(ii) [E] + [O] = [E].
(iii) Assume that

E = (0→ A
j→ B

p→ C → 0).

Set
−E = (0→ A

−j→ B
p→ C → 0).

Then [E] + [−E] = [O].
(iv) Addition of equivalence classes of extensions is associative.

Proof. Exercise EA1.17. ut

Exercise EA1.17. Prove Lemma A1.50. ut

Definition A1.51. The abelian group constructed in Lemma A1.50 is called the
group of extensions of A by C and is written Ext(C,A). (The first argument C is
the factor group, the second argument A is the subgroup!)

Lemma A1.52. If f :A→ A′ is a morphism, then there is a morphism Ext(C, f):
Ext(C,A)→ Ext(C,A′) which assigns to the class of

E = (0→ A
j→ B

p→ C → 0)

the class of the exact sequence

E′ = (0→ A′
j′→ B′

p′→ C → 0)

with B′ = (A′⊕B)/∆A with ∆A = {
(
f(a),−j(a)

)
| a ∈ A}, j′(a′) = (a′, 0) + ∆A,

p′
(
(a′, b) + ∆A

)
= p(b).

Proof. Exercise EA1.18. ut

Exercise EA1.18. Prove Lemma A1.52. ut

Proposition A1.53. Let G be an abelian group. Then G is injective if and only
if Ext(X,G) = 0 for all abelian groups X, and G is projective if and only if
Ext(G,X) = 0 for all abelian groups X.

Proof. If G is injective, then Ext(X,G) = 0 by Proposition A1.35 and Corol-
lary A1.36. In order to prove the converse, assume that j:A→ B is injective and
that f :A→ G is given. Then we have an exact sequence

E = (0→ A
j→ B

p→ C → 0)

and, by the preceding lemma (and its proof) also a sequence

E = (0→ G
j′→ B′

p′→ C → 0)
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Let f ′:B → B′ be given by f ′(b) = (0, b)+∆A. Then f ′j = j′f . If now Ext(C,G) =
0 then the second exact sequence splits, and there is a homomorphism σ:B′ → G
with σj′ = idG. We set ϕ:B → G ϕ = σ ◦f ′. Then ϕ◦j = σ ◦f ′ ◦j = σ ◦j′ ◦f = f .
This shows that G is injective.

The proof of the second part is Exercise EA1.19. ut

Exercise EA1.19. Prove the second part of Proposition A1.53. ut

Lemma A1.54. (i) For an exact sequence

E = (0→ A
j→ B

p→ C → 0)

and for any abelian group G, there is a morphism

δ: Hom(G,C)→ Ext(G,A)

which associates with a morphism f :G→ C the class of the exact sequence

Ef = (0→ A
jf→ Bf

pf→ G→ 0)

with Bf = {(g, b) ∈ G×B | f(g) = p(b)}, jf (a) =
(
0, j(a)

)
, pf (g, b) = g.

(ii) ker δ = {f ∈ Hom(G,C) | (∃g ∈ Hom(G,B)) f = p ◦ g}.
(iii) im δ = ker Ext(G, j).

Proof. (i) We have to show that Ef is exact. Firstly, jf is injective since j is
injective, and pf is surjective since p is surjective.

Next, pf jf (a) = pj(a) = 0; hence im jf ⊆ ker pf . Now assume that pf (g, b) = 0,
i.e. g = 0. Then p(b) = f(g) = 0. By the exactness of E there is an a ∈ A with
j(a) = b, and thus jf (a) =

(
0, j(a)

)
= (g, b). This completes the proof of the

exactness of Ef . We must show that Ef1+f2
is equivalent to Ef1

+ Ef2
; we leave

this as an exercise.
(ii) We begin by taking an f :G → C with δ(f) = 0 and show that f lifts, i.e.

there is a ϕ:G → B such that f = pϕ. Now δ(f) = 0 means that Ef splits, i.e.
that there is an s:G→ Bf with pf ◦ s = idG, and that says that s(g) =

(
g, ϕ(g)

)
with ϕ:G→ B. Now

(
g, ϕ(g)

)
∈ Bf means f(g) = p

(
ϕ(g)

)
.

The next step is to assume that f = p◦ϕ with a ϕ:G→ B. We must show that
Ef splits. We set s:G → Bf , s(g) =

(
g, ϕ(g)

)
. Indeed f(g) = p

(
ϕ(g)

)
and thus s

is well-defined. But pfs(g) = pf
(
g, ϕ(g)

)
= g, and thus s is the desired splitting

morphism.
(iii) Firstly, we claim that im δ ⊆ ker Ext(G, j). This means that for Ef the

following sequence splits:

E′ = (0→ B
i→ (B ⊕Bf )/∆A

r→ G→ 0)

where ∆A = {
(
j(a), (0,−j(a))

)
∈ B ⊕ Bf | a ∈ A} and where i(b) =

(
b, (0, 0)

)
+

∆A, r
(
(b, (g, b′)) + ∆A = g. For g ∈ G there is a b ∈ B with f(g) = p(b). If also

p(b′) = f(g) then p(b− b′) = 0, and thus there is an a ∈ A with b− b′ = j(a), that
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is b′ = b− j(a). Then the elements
(
− b, (g, b)

)
and

(
− b′, (g, b′)

)
=
(
− b, (g, b)

)
+(

j(a), (0,−j(a))
)

are congruent modulo ∆A. Thus we may unambiguously define

s(g) =
(
−b, (g, b)

)
+∆A. Then s:G→ (B⊕Bf )/∆A is a morphism with rs(g) = g.

Hence E′ splits.
Secondly, let us assume that an exact sequence

E = (0→ A
e→ X

q→ G→ 0)

satisfies Ext(G, j)[E] = 0. We must show that E and Ef are equivalent for some
f :G→ C. The hypothesis means that we have a commutative diagram

0 → A
ξ−→ X

η−→ G → 0y j

y q

y yidG

y
0 → B

coprB−→ B ⊕G prG−→ G → 0.

The morphism q:X → B⊕G is of the form q(x) =
(
ϕ(x), η(x)

)
with ϕ:X → B

such that ϕ
(
ξ(a)

)
= j(a). Now pϕξ(a) = pj(a) = 0. Hence there is a unique

f :G→ C with f
(
η(x)

)
= pϕ(x). It remains to show that there is an isomorphism

ψ:X → Bf such that prG ψ = η and prB ψ = ϕ holds. Accordingly, we set
ψ(x) =

(
η(x), ϕ(x)

)
. If ψ(x) = 0, then η(x) = 0 and thus there is an a ∈ A with

x = ξ(a). Now 0 = ϕ(x) = ϕξ(a) = j(a) and thus a = 0 since j is injective.
Further, let (g, b) ∈ Bf . Then f(g) = p(b). Now since η is surjective, we find an
x′ ∈ X with η(x′) = g. Now p(b) = fη(x′) = pϕ(x′). Hence b−ϕ(x′) ∈ ker p = im j
and thus there is an a ∈ A such that j(a) = b − ϕ(x′). Set x = x′ + ξ(a). Then
ϕ(x) = ϕ(x′) + ϕξ(a) = ϕ(x′) + j(a) = b. Thus ψ is bijective, and the claim is
proved. ut

This is the raw material for an understanding of the following basic theorem
of homological algebra:

The Exact Hom-Ext Sequence

Theorem A1.55. For an exact sequence

0→ A
j→ B

p→ C → 0

and any abelian group G we obtain an exact sequence

0→Hom(G,A)
Hom(G,j)−−−−−→ Hom(G,B)

Hom(G,p)−−−−−→ Hom(G,C)

δ−→Ext(G,A)
Ext(G,j)−−−−→ Ext(G,B)

Ext(G,p)−−−−→ Ext(G,C)→ 0.

Proof. The first half of the long exact sequence was already observed in Lemma
A1.49. Exactness at Hom(G,C) and Ext(G,A) was proved in Lemma A1.54. We
propose the proof of the exactness at the remaining terms as an exercise. ut

Exercise EA1.20. Prove the exactness of the Hom-Ext-sequence.
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[Hint. As a reference one may consult [245], pp. 74ff.] ut

The following is an important corollary for our purposes. We apply the theorem
to the exact sequences

0→ Z j→ R p→ T→ 0

and

0→ Z j→ Q p→ Q/Z→ 0.

In both instances, B is divisible, hence injective, and thus Ext(G,B) = 0 in both
instances. Hence we have the following result:

Theorem A1.56. For any abelian group G we have exact sequences

0→Hom(G,Z)
Hom(G,j)−−−−−→Hom(G,R)

Hom(G,p)−−−−−→ Hom(G,T)

δ−→Ext(G,Z)→ 0,

and
0→Hom(G,Z)

Hom(G,j)−−−−−→ Hom(G,Q)
Hom(G,p)−−−−−→ Hom(G,Q/Z)

δ−→Ext(G,Z)→ 0. ut

The first of these sequences is of crucial significance for the structure theory of
compact abelian groups. We notice that Hom(G,R) is always an R-vector subspace
of the topological vector space RG with its product structure.

Corollary A1.57. For an arbitrary abelian group G and for the quotient map
p:R→ T, the following two statements are equivalent:

(1) Hom(G, p): Hom(G,R)→ Hom(G,T) is surjective.
(2) Ext(G,Z) = 0; that is every exact sequence

0→ Z i→ X
q→ G→ 0

(for some abelian group X) splits. ut

The preceding ideas also give an indication how one might use the long ex-
act sequence to calculate Ext(G,A). If G and A are given then we consider an
embedding j:A→ B into a divisible group such that we have an exact sequence

E = (0→ A
j→ B

p→ C → 0)

with a divisible torsion group C. Then Ext(G,B) = 0 by Proposition A1.53, since
B is injective, and thus we have an exact sequence

Hom(G,B)
Hom(G,p)−−−−−→ Hom(G,C)

δ−→ Ext(G,A)→ 0.

In other words, we have
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Proposition A1.58. If G and A are abelian groups and A is considered as a
subgroup of a divisible group B according to Proposition A1.33 and if q:B → B/A
is the quotient morphism, then

Ext(G,A) ∼= Hom(G,B/A)/ im
(

Hom(G, q)
)
.

The group B may be chosen so that B/A is a torsion group, and if A is torsion-free,
we take B = Q⊗A. ut

Definition A1.59. If A is an abelian group, then dimQ Q ⊗ A is called the rank
of A written rankA. ut

Note that Q⊗A ∼= Q⊗ (A/ torA) by A1.45. Therefore

rankA = rank(A/ torA).

In the proof of Lemma A1.61, we can effectively utilize some information on
continuous homomorphic images of Rn such as are collected in Remark A1.60
below. In its proof we use a result which we shall first formulate in an exercise:

Exercise EA1.21. Prove the following theorem.

The Open Mapping Theorem for Locally Compact Groups. If f :G→ H
is a surjective continuous morphism between locally compact groups and G is a
countable union of compact subsets, then f is open.

[Hint. We must show that for each identity neighborhood U of G the image f(U)
is an identity neighborhood. Observe that it suffices to show that for each identity
neighborhood U the set f(U) has nonempty interior. Using the fact that G is
a countable union of compact sets, show the existence of a sequence gn ∈ G,
n ∈ N such that G =

⋃∞
n=1 Ugn. Take U compact. Then H =

⋃∞
n=1 f(U)f(gn) is

a countable union of closed sets. Since H is locally compact, H is a Baire space.
(This is one portion of the Baire Category Theorem. For more details see e.g.
the sources given in Chapter 2 preceding Theorem 2.3; a reference also yielding
the Open Mapping Theorem is Hewitt and Ross [147], p. 42, 5.28 and 5.29). If a
Baire space is a countable union of closed sets, one of them has nonempty interior.
Conclude that f(U) has nonempty interior.] ut

Remark A1.60. (i) If S is a closed subgroup of Rn and if the quotient Rn/S is
compact, then S contains an R-basis of Rn.

(ii) If f :Rn → K is a surjective morphism onto a compact group, then ker f
contains an R-basis of Rn.

Proof. (i) is clear from Theorem A1.12.
(ii) Set S = ker f . In order to apply (i) it suffices to show that f is open,

Since Rn is a countable union of compact sets this follows from the Open Mapping
Theorem for Locally Compact Groups. ut
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Lemma A1.61. If a finite rank abelian group G satisfies Ext(G,Z) = 0 then it is
free.

Proof. From Corollary A1.57 we know that the vanishing of Ext(G,Z) is equivalent
to the information that every morphism f :G→ T lifts to a morphism ϕ:G→ R,
f = p◦ϕ. In particular, each morphism f :G→ T annihilates the torsion subgroup.
If Z is a cyclic subgroup of G of finite order, then there is an injection into Q/Z,
hence into T, and by Proposition A1.35 this injection extends to a morphism
G → T. We saw that every such morphism annihilates torsion subgroups. Hence
Z = 0. Thus G is torsion-free.

Now recall that dimQ Q⊗G = n < ∞. Note that f 7→ f(1) : Hom(Q,R) → R
is an isomorphism and that therefore, in view of Proposition A1.44(ii) we have

Hom(G,R) ∼= Hom
(
G,Hom(Q,R)

)
∼= Hom(Q⊗G,R) ∼= Hom(Qn,R) ∼= Rn.

Thus we obtain an exact sequence

(∗) 0→ Hom(G,Z)
Hom(G,j)−−−−−→ Hom(G,R) ∼= Rn Hom(G,p)−−−−−→ Hom(G,T)→ 0.

The group Ĝ
def
= Hom(G,T) is a compact group as a closed subgroup of TG.

The map Hom(G, p) is a continuous homomorphism if we give Hom(G,R) and
Hom(G,T) the topology of pointwise convergence inherited from RG, respectively,
TG. With respect to this topology, Hom(G,R) is a topological R-vector subspace
of RG. Since Hom(G,R) is a finite dimensional real topological vector space, it ad-
mits only one vector space topology. Thus the isomorphism Hom(G,R) ∼= Rn is an
isomorphism of topological vector spaces. Thus Hom(G, p) implements a continu-

ous surjective homomorphism from Rn onto the compact group Ĝ whose kernel we
denote with S. By the preceding Remark A1.60(ii) it follows that spanR S = Rn.
If we apply this to (∗), we notice that Hom(G,Z), when identified with a subgroup
of Hom(G,R) via Hom(G, j), must contain a basis e1, . . . , en of Hom(G,R), where
ej :G→ Z ⊆ R, j = 1, . . . , n. If ej(g) = 0 for all j, then g = 0 since every morphism
G → R is a linear combination of the ej . Hence g 7→

(
e1(g), . . . , en(g)

)
: G → Zn

is injective. Hence G is isomorphic to a subgroup of Zn and is therefore free by
Theorem A1.9 (or A1.10). ut

We have seen in Proposition A1.53 that G is free if Ext(G,X) = 0 for all
abelian groups X. The following result is remarkable in many respects.

Theorem A1.62 (Pontryagin). Let G be a countable abelian group. Then the
following conditions are equivalent:

(1) G is free.
(2) Ext(G,Z) = 0.

Proof. The implication (1)⇒(2) is clear from Proposition A1.53. Therefore we
must prove (2)⇒(1): The information Ext(G,Z) = 0 means that every morphism
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f :G→ T lifts. However, if every morphism f :G→ T lifts to a morphism ϕ:G→ R,
then this is certainly also the case for every morphism f1:G1 → T, for any subgroup
G1 ⊆ G, since f1 extends to a morphism f :G→ T by the divisibility of T (Propo-
sition A1.35). Thus Ext(G1,Z) = 0 for all subgroups G1 of G. Thus every finite
rank subgroup of G is free by Lemma A1.61. In particular, G is torsion-free. Since
G is countable, G is free by A1.26. This completes the proof of Theorem A1.62. ut

It is now convenient to have the following definitions.
A subgroup G of an abelian group G is said to split if there is a subgroup H

of A such that A = G⊕H. Likewise we say that a short exact sequence

(E) 0→ G
j→ A→ B → 0

is split if j(G) is a split subgroup of A. This is tantamount to saying that the
equivalence class of (E) in Ext(B,G) is zero. (See Definition A1.51). A subgroup
G of an abelian group A splits automatically if it is divisible or G/A is free (See
Corollary A1.36 and Proposition A1.15).

Definition A1.63. (i) An abelian group is called ℵ1-free if every finite rank pure
subgroup is free.

(ii) An abelian group A is called a Whitehead group if Ext(A,Z) = 0.
(iii) An abelian group A is called an S-group if for each a ∈ A the pure subgroup

[Z·a] is free and splits.
Notice that every free group is both an ℵ1-free and a Whitehead group.

Proposition A1.64. The following conditions are equivalent for an abelian
group G:

(1) G is ℵ1-free.
(2) Every countable subgroup of G is free.

Also, the following statements are equivalent:
(i) A is an S-group.
(ii) Every rank one pure subgroup is free and splits.

(iii) Every finite rank pure subgroup is free and splits.

Proof. (1)⇒(2): Firstly, if G is ℵ1-free, then G is torsion-free, since the torsion
subgroup has rank zero and hence is free, and thus zero. Let H be a countable
subgroup of G. Then [H] is still countable by Proposition A1.25. By A1.26 and
Condition (1) we know that [H] is free. Then H is free by Theorem A1.10.

(2)⇒(1): If P is a finite rank pure subgroup of G, then it is countable as a
subgroup of a finite dimensional rational vector space. Then by Condition (2) it
is free.

For the equivalence of (i), (ii) and (iii) see [193]. ut
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We have the following proper containments of torsion free classes.

ℵ1-free groups∣∣∣∣∣
S- groups∣∣∣∣∣

free groups

Example A1.65. The group ZN is an ℵ1-free abelian group (and thus an S-group)
which is not a Whitehead group. The subgroup Z(N) is a countable free subgroup
which does not split.

Proof. (i) The group ZN is a subgroup of QN. For a finite dimensional vector space
V of functions N→ Q there is a finite subset F ⊆ N such that f 7→ f |F :V → QF is
an injection. If V is the Q-span of a finite rank subgroup G of ZN, then this function
maps G injectively into ZF , a free group. Hence G is free by Theorem A1.9. This
shows that ZN is a ℵ1-free.

(ii) We have to show that Ext(ZN,Z) 6= 0. By Corollary A1.57 it suffices to
show that there is a morphism χ:ZN → T which does not lift to a morphism
ϕ:ZN → R.

We shall denote by βN the Stone–Čech compactification [369, 124] of the dis-
crete set N. We may assume that N ⊆ βN. The universal property of βN gives
us for any function f :N → X into a compact space a unique continuous func-
tion f ′:βN → X with f ′|N = f . Thus, in particular, there is a natural bijection
f 7→ f ′:TN → C(βN,T) with inverse g 7→ g|N which implements, in fact, an iso-
morphism of abelian groups. Now let ξ ∈ βN\N. The evaluation f 7→ f ′(ξ):TN → T
defines a morphism α ∈ Hom(TN,T) which has the following property:

(P) For every f ∈ TN which takes the value t on all but finitely many elements
of N we have α(f) = t.

We now define η:ZN → RN by η(f)(m) = 1
2f(m). Then ZN ⊆ η(ZN). We note

η−1(ZN) = (2Z)N and let 2:ZN → (2Z)N denote the isomorphism inverting the
restriction and corestriction of η.

Next we define χ:ZN → T by χ = α ◦ pN ◦ η with the quotient map p:R → T.
We assume that there is a lifting ϕ:ZN → R so that χ = p ◦ ϕ and we shall derive
a contradiction and thereby complete the proof.

If i: (2Z)N → ZN denotes inclusion, we have χ ◦ i ◦ 2 = α ◦ pN ◦ jN = 0 where
j:Z→ R is the inclusion. Hence there is a map ζ:H → Z such that the following
diagram commutes:
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0 → ZN jN−−→ RN pN−−→ TN → 0

2

y η

x yα
(2Z)N −−→

i
ZN −−→

χ
Tyζ ϕ

y yidT

0 → Z −−→
j

R −−→
p

T → 0.

The mapping ξ = ζ ◦ 2 = 2ζ:ZN → Z has finite support, i.e. there is a finite
subset F ⊆ N such that ξ(ZN\F ) = {0}, where we have identified ZN\F with the
subgroup of ZN of functions N→ Z vanishing on F . We define a function f :N→ Z
by

(∗) (ηf)(m) =
1

2
f(m) =

{
0 for m ∈ F ,
1
2 for m /∈ F .

Then χ(f) = αpNη(f) = 1
2 +Z in view of property (P). But η(2f) ∈ ZN\F ⊆ ker ξ.

In particular, η(2f) ∈ ZN. Hence ϕ(2f) = jζi−1(2f) = jξη(2f) = 0. Then 0 =
1
2ϕ(2f) = ϕ(f), whence χ(f) = 0, a contradiction. ut

Proposition A1.66. (i) Every abelian group A contains a characteristic pure
subgroup K∞(A) such that A/K∞(A) is ℵ1-free and that K∞(A) is the largest
subgroup annihilated by all morphisms A → Z. If A/K∞(A) is countable, then
A = F ⊕K∞ with a countable free direct summand F , and K∞ has no nontrivial
free quotient groups.

(ii) (Laszlo Fuchs, personal communication, February 26, 1996) There is an
ℵ1-free abelian group A such that K∞(A) ∼= Z and A/K∞ ∼= ZN.

Proof. (i) The assertions follow from Definition A1.63, Lemma A1.27 and Propo-
sition A1.28.

(ii) We shall produce an abelian group A containing a subgroup Z ∼= Z such
that G/Z ∼= ZN and such that all morphisms f :A → Z have Z in their kernel.
This will prove the claim.

Lemmas A and B below are contained in [116] and provide an argument for
the existence of such a group.

Lemma A. Let E = [0 → Z ↪→ A → B → 0] be any extension of Z ∼= Z by an
abelian group B. Then there is a homomorphism f :A→ Z whose restriction to Z
is nontrivial if and only E represents an element of finite order in Ext(B,Z).

Proof. Assume E has order n in Ext(B,Z). Then the extension n·E = [0→ Z →
A∗ → B → 0] induced from E by µn:Z → Z, µn(x) = n·x splits. Thus there
is an f :A → Z, namely, A → A∗ followed by the projection from A∗ to Z ∼= Z.
Conversely, assume that there is a homomorphism f :A → Z which is nontrivial
on Z. Without losing generality we can assume that f is surjective. Clearly, f |Z
is multiplication by an integer n; it induces an extension n·E = [0 → Z → A∗ →
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B → 0] which splits in view of the existence of f . This completes the proof of
Lemma A. ut

For the following see the discussion of algebraically compact groups in [114],

p. 159ff. The group C
def
= ZN/Z(N) is a torsion-free algebraically compact group

([114], p. 176, 42.2); it is not divisible, so it contains a copy of the group Zp of
p-adic integers (for a definition of Zp, see Chapter 1, 1.28(i)) for each p as a direct
summand ([114], p. 169, 40.4).

Lemma B. Ext(ZN,Z) contains 2(2ℵ0 ) elements of infinite order.

Proof. The exact sequence 0→ Z(N) → ZN → C → 0 induces the exact sequence

Hom(Z(N),Z)→ Ext(C,Z)→ Ext(ZN,Z)→ Ext(Z(N),Z) = {0}.

Since cardZN = 2ℵ0 , it suffices to show that Ext(C,Z) contains the direct sum of
more than 2ℵ0 copies of Q. We are done if we can prove that already Ext(Zp,Z)
contains such a direct sum. From the exact sequence 0→ Z→ Zp → D → 0, where
D is the direct sum of a torsion-free divisible group of cardinality 2ℵ0 and the Prüfer
group Z(p∞), we derive the exact sequence 0→ Z→ Ext(D,Z)→ Ext(Zp,Z)→ 0.
Since Ext(Q,Z) is a torsion-free divisible group of cardinality 2ℵ0 , we observe

card
(

Ext(D,Z)
)

= 2(2ℵ0 ), and we are done. ut

Whitehead’s Problem

In this section we closely follow notes by Fuchs [117] which he kindly supplied to
us together with permission to use them in this place. We also thank him expressly
for discussing the final version of this section with us.

Whitehead’s Problem asks whether the following statement is true.

Proposition W. If an abelian group A satisfies Ext(A,Z) = {0}, then it is free.

In short: Whitehead groups are free. We have seen that Proposition W holds
for countable groups A (see A1.62).

In order to address the truth or falsehood of Proposition W we need to record
some axioms of set theory. The first of these axiom requires some concepts in
ordinal and cardinal set theory. Let κ be a well ordered set without maximal
element. A subset C ⊆ κ is closed and unbounded (a cub) if it has no upper
bound in κ and X ⊆ C, supX ∈ κ implies supX ∈ C. A subset S of κ is called
stationary if it intersects every cub in κ. We consider cardinals as those ordinals
whose cardinality is bigger than that of all preceding ordinals. A family {Xα}α<κ
of subsets of a set X, or subgroups of an abelian group, indexed by the ordinals

below κ
def
= cardX is called a continuous chain if the following conditions hold:

(Fi) α < β implies Xα ⊆ Xβ ,
(Fii) Xλ =

⋃
α<λXα for each limit ordinal λ < cardX.
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The family is called a filtration of X if, in addition, the following conditions
hold:
(Fiii) cardXα < cardX,
(Fiv) X =

⋃
α<cardX Xα.

A cardinal κ is called regular, if it agrees with its cofinality, i.e. the smallest
cardinal α such that κ contains a subset X with cardX = α and supX = κ. We
note that every subset of X of cardinality below κ is contained in some member
Xα of a filtration of X whenever κ is regular. Now we can formulate the

Diamond Principle � (Jensen [222]). Let E be any stationary subset of the set of
predecessors of an uncountable regular cardinal κ. Let X be a set with cardX = κ
and {Xα | α < κ} a filtration of X. Then there is a family {Sα | α ∈ E} with

Sα ⊆ Xα such that for any Y ⊆ X the set E′
def
= {α ∈ E | Y ∩ Xα = Sα} is a

stationary subset of the set of predecessors of κ. ut

Since Gödel’s Axiom of Constructibility “V = L” (saying that the model V of
set theory we are working in is the constructible universe L) according to Gödel
is consistent with ZFC, and since Gödel’s Axiom implies � we know that � is
consistent with ZFC.

We now turn to the second axiom to which we will refer. A partially ordered
set P is said to satisfy the countable antichain condition if the subset S ⊆ P is
countable whenever no pair of elements of S has an upper bound in P .

Martin’s Axiom MA. Let P be a partially ordered set satisfying the countable
antichain condition. Then for every family {Cj | j ∈ J} of cofinal subsets of P
such that card J < 2ℵ0 there is a directed subset D of P such that D ∩Cj 6= Ø for
each j ∈ J . ut

Zermelo–Fraenkel Set Theory and the Axiom of Choice (ZFC) and ℵ1 < 2ℵ0

and Martin’s Axiom are consistent [337].

In the discourse which follows below we shall establish the following results.

Theorem A1.67. Assume that the axioms of ZFC and � hold. Then all White-
head groups A with cardA ≤ ℵ1 are free.

Proposition A1.68. Assume that the axioms of ZFC, MA and ℵ1 < 2ℵ0 hold.
Then there exists a Whitehead group A with cardA = ℵ1 which is not free.

This result entails at once the following more general theorem.

Theorem A1.69. Assume that the axioms of ZFC, MA and ℵ1 < 2ℵ0 hold. Then
for any cardinal ℵ ≥ ℵ1 there exists a Whitehead group A with cardA = ℵ which
is not free.
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Proof. Using Proposition A1.68 above, we find a nonfree Whitehead group A1

with cardA1 = ℵ1. Then A = A1 ⊕ Z(ℵ) is a nonfree Whitehead group with
cardA = (cardA1)·(cardZ(ℵ)) = ℵ. ut

The Continuum Hypothesis (CH) ℵ1 = 2ℵ0 is independent from ZFC by Co-
hen’s Theorem [63, 64]. We therefore have the following result [329].

Shelah’s Independence Theorem

Theorem A1.70. ([329]) If ZFC is consistent, then ZFC + Proposition W and
ZFC +¬Proposition W are consistent; i.e. Proposition W is undecidable in ZFC.

ut

We now proceed to prove Theorem A1.67 and Proposition A1.68 in this order
and begin by discussing some ordinal and cardinal number arguments.

Exercise EA1.22. The intersection of two cubs in an uncountable regular cardinal
κ is a cub.

[Hint. If A and B are cubs, then the intersection C = A ∩ B is closed; one has
to show that it is unbounded. If α1 ∈ A then, since B is unbounded, there is a
β1 ∈ B with α1 < β1. Then there is an α2 ∈ A with β1 < α2. And so on. The
chain α1 < β1 < α2 < β2 < · · · has a supremum in C exceeding α1. Since A is
unbounded, so is C.] ut

We index the ordinals in a cub in κ by the ordinals below κ. Therefore a cub
C in κ is order-isomorphic to κ and thus there is a monotone bijection f :κ→ C.

Lemma A1.71. Let κ be an uncountable regular cardinal. Then for two filtrations
{Xα}α<κ and {Yα}α<κ of a set X of cardinality κ, the set C = {α < κ | Xα = Yα}
is a cub in κ.

Proof. The set C is closed because the filtrations are continuous (cf. (Fii)). We
prove that C is unbounded. For each α < κ conditions (Fiii) and (Fiv) imply that
there is a β with α ≤ β < κ such that Xα ⊆ Yβ . Thus for any α1 ∈ C we find a β1

with α1 ≤ β1 < κ andXα1
⊆ Yβ1

. Analogously, we get an α2 such that β1 ≤ α2 < κ
and Yβ1

⊆ Xα2
. Thus, recursively, we find a sequence α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · ·

such that Xα1 ⊆ Yβ1 ⊆ Xα2 ⊆ Yβ2 ⊆ · · · . Then γ
def
= supn αn = supn βn, by

continuity (Fii), produces Xγ =
⋃
nXαn =

⋃
n Yβn = Yγ . Thus α1 ≤ γ ∈ C.

Hence C is unbounded in κ. ut

Lemma A1.72. (�) If E is a stationary subset of the uncountable regular cardinal
κ, and if {Xα}α<κ is a filtration of a set X of cardinality κ, then for any countable
set Y there is a family (gα)α∈E of functions gα:Xα → Y ×Xα such that, for any

function g:X → Y ×X, the set E′
def
= {α ∈ E : g|Xα = gα} is stationary in κ.
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Proof. Define X ′ = X × (Y ×X) and X ′α = Xα × (Y ×Xα); now apply � to the
filtration {X ′α}α<κ of X ′. We find subsets Sα ⊆ Xα × Y ×Xα with the property
specified in �. Fix a y0 ∈ Y . Define gα:Xα → Y × Xα to have Sα as graph if
Sα is the graph of a function, and via gα(x) = (y0, x) otherwise. Now consider a
function g:X → Y ×X. Let S be its graph. Set E′ = {α ∈ E : g|Xα = gα}. Then
� yields that E′ is stationary in κ. ut

Lemma A1.73. Let 0 → A
α→ B

β→ C → 0 be an exact sequence of torsion-
free groups in which B is a Whitehead group but C is not. Then the following
statements hold.

(i) There exists a morphism ϕ:A → Z which does not extend to a morphism
B → Z, i.e. for which there is no Φ:B → Z with ϕ = Φ ◦ α.

(ii) Define a morphism χ:Z ⊕ A → Z ⊕ B by χ(n, a) =
(
n + ϕ(a), α(a)

)
with

ϕ:A → Z as in (i) above. Then there is no morphism τ :B → Z ⊕ B such
that the following diagram commutes:

(∗)
A

coprA−−−−→ Z⊕A
α

y yχ
B −−−−→

τ
Z⊕B.

Proof. (i) In the exact sequence

Hom(B,Z)
Hom(α,Z)−−−−−→ Hom(A,Z)→ Ext(C,Z)

Ext(β,Z)−−−−→ Ext(B,Z) = {0}

we have Ext(C,Z) 6= {0} since C is not a Whitehead group. Thus Hom(α,Z) is
not surjective and this implies the assertion.

(ii) From the definition of χ we get

(∗∗) prZ ◦χ ◦ coprA = ϕ:A→ Z.

Suppose that, contrary to the assertion of (ii), a τ exists making (∗) commutative.
Then we set Φ = prZ ◦τ . Now Φ ◦α = prZ ◦ τ ◦α = prZ ◦χ ◦ coprA = ϕ by (∗) and
(∗∗), contrary to the choice of ϕ. ut

Lemma A1.74. (�) Let κ be an uncountable regular cardinal and A a torsion-free
group of cardinality κ. Assume that A has a filtration {Aα}α<κ such that

(i) Aα is a pure free subgroup of A for each α < κ,
(ii) cardAα < κ for each α < κ,

(iii) the set E
def
= {α < κ | Aα+1/Aα is not a Whitehead group} is stationary in κ.

Then A is not a Whitehead group.

Proof. By Lemma A1.72 there is a family (gα)α∈E of functions gα:Aα → Z×Aα
such that for every function g:A → Z × A, the set E′

def
= {α ∈ E : g|Aα = gα}

is stationary in κ. We will construct, by transfinite induction, a direct system
ϕαβ :Gα → Gβ , α < β < κ, and morphisms πα:Gα → Aα such that with the
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inclusion morphisms ψα,β :Aα → Aβ , we have commuting diagrams of split exact
sequences

(†)
Sα : 0 → Z jα−−−−→ Gα

πα−−−−→ Aα → 0∥∥∥ ϕαβ

y yψαβ
Sβ : 0 → Z −−−−→

jβ
Gβ −−−−→

πβ
Aβ → 0.

We claim further that we can implement the construction in such a fashion that
for the colimits G = colimα<κGα and A = colimα<κAα =

⋃
α<κAα we obtain an

exact sequence

S : 0→ Z j→ G
π→ A→ 0

which does not split.
Now we begin the induction. There is nothing to prove for α = 0. Assume that

for some γ < κ the sequence Sα has been defined for all α < γ < κ so that the
diagrams (†) commute for all α < β < γ. Since all Sα are split for α < γ we have
isomorphisms of groups εα:Z×Aα → Gα. We have to consider several possibilities.

Case 1. Assume that γ is a limit ordinal. Set Gγ = colimα<γ Gα and obtain
the exact sequence Sγ as the colimit of the sequences Sα. Since Aγ is free, this
sequence splits and yields an isomorphism εγ :Z×Aγ → Gγ .

Case 2. Assume that γ = β + 1 for some β. Here we consider two subcases:
2a. β /∈ E or gβ :Aβ → Z × Aβ is not a cross section homomorphism for the

morphism πβ ◦ εβ = prAβ :Z×Aβ → Aβ .
In these circumstances let

Sγ : 0 → Z
jγ−−−−→ Gγ

πγ−−−−→ Aγ → 0

be any split extension, giving rise to an isomorphism εγ :Z × Aγ → Gγ , and find
ϕβγ via

Z×Aβ
εβ−−−−→ Gβ

idZ×ψβγ
y yϕβ,γ

Z×Aγ −−−−→
εγ

Gγ .

Then the following diagram of split exact sequences commutes:

Sβ : 0→ Z
jβ−−−−→ Gβ

πβ−−−−→ Aβ → 0∥∥∥ ϕβγ

y yψβγ
Sγ : 0→ Z −−−−→

jγ
Gγ −−−−→

πγ
Aγ → 0.
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Since (†) is assumed to commute for all α < β < γ a simple diagram chase yields
that

Sα : 0→ Z jα−−−−→ Gα
πα−−−−→ Aα → 0∥∥∥ ϕαγ

y yψαγ
Sγ : 0→ Z −−−−→

jγ
Gγ −−−−→

πγ
Aγ → 0

commutes for any α < γ.

2b. β ∈ E and gβ :Aβ → Z×Aβ is a cross section morphism for πβ ◦ εβ .
Now we apply Lemma A1.73 with A = Aβ , B = Aγ , C = Aβ+1/Aβ and obtain a
morphism χβ :Z×Aβ → Z×Aγ , an isomorphism εγ :Aγ → Z×Aγ , and an exact
sequence Sγ in a commutative diagram

Sβ : 0→ Z
jβ−−−−→ Gβ

πβ−−−−→ Aβ → 0∥∥∥ ϕβγ

y yψβγ
Sγ : 0→ Z −−−−→

jγ
Gγ −−−−→

πγ
Aγ → 0

with ϕβγ = ε−1
γ χβεβ , such that there is no morphism τ :Aγ → Z×Aγ which makes

the following diagram commutative:

(∗)
Aβ

coprAβ−−−−→ Z×Aβ
ε−1
β−−−−→ Gβ

ψβγ

y χβ

y yϕβγ
Aγ

τ−−−−→ Z×Aβ
ε−1
γ−−−−→ Gγ .

This concludes the inductive construction.

The εα are not to be expected to be cofinally compatible with the inclusion
maps ψαβ :Aα → Aβ ; therefore we cannot conclude the existence of a limit isomor-
phism ε:G→ A× Z. On the contrary, we claim that the colimit exact sequence

S : 0 → Z j−−−−→ G = colimα<κGα
π−−−−→ A =

⋃
α<κAα → 0

does not split. By way of contradiction suppose that it did and that there is a cross
section morphism g′:A → G such that π ◦ g′ = idA. If ϕα:Gα → G denotes the
colimit morphism and ψα:Aα → A the inclusion morphism, we have πϕα = ψαπα
and thus ϕα = g′πϕα = g′ψαπα, whence g′(Aα) ≤ ϕα(Gα). Thus, since the

corestriction ϕ′α:Gα → ϕα(Gα) of ϕα is an isomorphism, the morphism g′α
def
=

(ϕ′α)−1g′ψα:Aα → Gα is a cross section homomorphism for πα, i.e. παg
′
α = idAα

and

(∗∗)
Aα

jα−−−−→ Gα∥∥∥ yεα
Aα −−−−→

coprAα

Z×Aα
is commutative.
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From the exact sequence S we do find a bijection (not a morphism!) ε:G →
Z×A which we fix. Define the function g:Z→ A×G by g

def
= ε ◦ g′. By the initial

choice of the functions gα:Aα → Z × Aα, there is at least one γ ∈ E′ (indeed
cofinally many of them below κ) such that g|Aγ = gγ . For all α < κ let us write

g∗α
def
= ε−1

α ◦ gα:Aα → Gα. Then we have ϕγg
∗
γ = ϕγε

−1
γ gγ = ϕγε

−1
γ (g|Aγ) =

ϕγε
−1
γ gψγ = ϕγg

′ψγ = g′γ . In other words

ε−1
γ gγ :Aγ → Gγ

is a cross section morphism for πγ :Gγ → Aγ .
Therefore Sγ+1 was constructed according to Case 2b. In view of (∗∗) we have

a commutative diagram

Aγ
coprAγ−−−−→ Z×Aγ

ε−1
γ−−−−→ Gγ

ψγ(γ+1)

y χγ

y yϕγ(γ+1)

Aγ+1

coprAγ+1−−−−−→ Z×Aγ+1

ε−1
γ+1−−−−→ Gγ+1.

This is a commutative diagram of type (∗) above which according to our con-
struction in Case 2b could not exist. This contradiction proves the claim that the
sequence S does not split. Hence it provides a nonzero element of Ext(A,Z) and
thus A is not a Whitehead group, as asserted in the lemma. ut

Lemma A1.75. Assume that A is a Whitehead group such that cardA is an
uncountable regular cardinal. Then every subgroup B ≤ A with cardB < cardA is
contained in a pure subgroup C with cardC < cardA such that for every subgroup
D ≤ A with C ≤ D and cardD < cardA the factor group D/C is a Whitehead
group.

Proof. Suppose that the lemma is false and that there is a pure subgroup B ≤ A
with cardB < cardA such that for every pure subgroup C ≥ B of cardinality
below cardA we find a subgroup D ≥ C of cardinality below cardA such that

D/C is not a Whitehead group. Set κ
def
= cardA. By transfinite induction, we will

construct a continuous well-ordered ascending chain {Aα}α<κ of pure subgroups
of A. Set A0 = B, and if β < κ and Aα is defined for all α < β, define Aβ as
follows. If β is a limit ordinal, set Aβ =

⋃
α<β Aα; if β = α+1 then by assumption

we find a pure subgroup Aβ ≤ A containing Aα such that cardAβ < κ and Aβ/Aα
is not a Whitehead group. Since subgroups of Whitehead groups are Whitehead

groups, A′
def
=
⋃
α<κAα is a Whitehead group. However, Lemma A1.74 now applies

to A′ with E = κ and proves that A′ is not a Whitehead group. This contradiction
proves the lemma. ut

Only the first and simple part of the following lemma is needed for the next
theorem; the second, more refined part will be useful later.
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Lemma A1.76. (i) If {Aα}α<κ is a continuous chain of pure subgroups of an
abelian group A and A =

⋃
α<κAα, and if Aα+1/Aα is free for all α < κ, then A

is free.
(ii) Let κ be an uncountable regular cardinal and

{0} = P0 ⊂ P1 ⊂ · · · ⊂ Pα ⊂ · · · ,

α < κ, a chain of pure subgroups of an abelian group A such that
(Ai)

⋃
α<λ Pα = Pλ for every limit ordinal λ < κ,

(Aii) Pα is a free abelian group of cardinality < κ for all α < κ, and
(Aiii) A =

⋃
α<κ Pα.

Then the following two conditions are equivalent:
(1) A is free.

(2) E
def
= {α < κ | (∃β > α)

Aβ
Aα

is not free} is not stationary in κ.

Proof. (i) For each α < κ we find a free subgroup Fα of Aα+1 such that Aα+1 =

Aα ⊕ Fα. Let Xα be a free generating set of Fα. Then X
def
=
⋃
α<κXα is a free

generating set of A. Thus A is free.
Proof of (ii). (1)⇒(2) Since A is free we can choose a filtration {Aα}α<κ of

A whose members Aα are direct summands. The set C = {α < κ | Pα = Aα} is
a cub by Lemma A1.71. Thus {Pα}α∈C is a filtration whose members are direct
summands. Hence A/Pα is free for α ∈ C, and this implies that C ∩E = Ø. Hence
E is not stationary.

(2)⇒(1) Since E is not stationary, there is a cub C ⊆ κ with C ∩ E = Ø.
Then {Pα}α∈C is a filtration of A. In order to simplify notation we may rename
the Pα and assume that we have a filtration {Aα}α<κ such that all factor groups
Aα+1/Aα, α < κ, are free and A0 = {0}. Then (i) proves that A is free and thus
completes the proof. ut

Since countable Whitehead groups are free by Pontryagin’s Theorem A1.62 and
a subgroup of a Whitehead group is a Whitehead group, all Whitehead groups are
ℵ1-free. Hence the following theorem will prove Theorem A1.67 for Whitehead
groups of cardinalities ≤ ℵ1.

Theorem A1.77. (�) Let κ be an uncountable regular cardinal and assume that
A is a Whitehead group of cardinality κ. If all Whitehead groups of cardinality < κ
are free, then A is free.

Proof. The conclusions of Lemma A1.75 apply with the additional information
that D/C is free as a Whitehead group with cardD/C < κ. We construct a
filtration {Aα}α<κ of A. Choose a maximal free subset {eα | α < κ} in A. Set
A0 = {0} and assume that for some β < κ and all α < β groups Aα have been
constructed such that (i) cardAα < κ, (ii) {Aα}α<β is a continuous chain, and
(iii) eρ ∈ Aα for ρ < α. Now we set Aβ =

⋃
α<β Aα if β is a limit ordinal,

and if β = α + 1, we let B be the pure subgroup generated by Aα ∪ {eα} and
take Aβ to be a pure subgroup C guaranteed by Lemma A1.75. This construction
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indeed produces a filtration. Since A is a Whitehead group, by Lemma A1.74,

the set E
def
= {α < κ | Aα+1/Aα is not free} fails to be stationary in κ. Hence

there is a cub F in κ which does not intersect E. Let us index F in the form
F = {να | α < κ}. Then {Aνα}α<κ is a filtration of A. We claim that Aνα+1

/Aνα
is free; this claim will finish the proof by A1.76(i). By our recursive construction,
Aνα+1/Aνα is free. Moreover, in our application of Lemma A1.75 we obtained
Aνα+1 in the inductive construction as C from Aνα as B; thus the group Aνα+1

can be taken as a D in Lemma A1.75. Hence Aνα+1/Aνα+1 is free, and this proves
the claim. ut

We will prove the full version of A1.67 later, but now we aim for a proof for
A1.68. For the line of argument presented here see [98]. We recall that ω1 denotes
the first uncountable ordinal.

Lemma A1.78. (ZFC + MA +¬CH) Let {Aα}α<ω1
be a well-ordered continuous

chain of subgroups of an abelian group A of cardinality ℵ1 such that
(i) cardAα = ℵ0 and Aα is free for all α < ω1,
(ii) A =

⋃
α<ω1

Aα,
(iii) Aα+1 is a direct summand of Aβ for each α < β < ω1.

Then A is a Whitehead group.

Proof. Let 0 → Z j→ G
π→ A → 0 be an exact sequence. We have to show that

it splits. Thus we are looking for a morphism ∆:A → G such that π∆ = idA.
In search of such a ∆ consider the set A of all morphisms δ:S → G such that
S is a finitely generated pure subgroup of A and πδ = idS . Then A is partially
ordered by the extension of functions. For every finitely generated pure subgroup
S, the restriction π|π−1(S):π−1(S)→ S is a surjective morphism onto a free group
and thus it splits by A1.15. Hence there is a δ:S → G in A. The morphism δ is
determined by its action on the finitely many generators of S and has π−1(S) as
range; since kerπ ∼= Z, this range is a finitely generated free group. Thus for a
given S there are only countably many δ:S → G in A. We now proceed through
several steps.

Claim 1. For every δ:S → G in A and every finite F ⊆ A there is a δ′:S′ → G
in A such that S ∪ F ⊆ S′ and δ′|S = δ.

Clearly, by (ii), the finitely generated group 〈S ∪F 〉 is contained in a pure free
subgroup and thus there is a finitely generated pure subgroup S′ of A containing
S ∪ F . Since S is pure, S′/S is finitely generated torsion-free and thus by A1.11
and A1.15 we have S′ = S ⊕ S∗ with a finitely generated pure subgroup S∗ of A.
We find a δ∗:S∗ → G in A and define δ′(s+ s∗) = δ(s) + δ∗(s).

Claim 2. Assume that B is an uncountable subset of A. Then there is a free
pure subgroup F of A and an uncountable subset B′ of B such that for δ:S → G
in B′ we have S ≤ F .

It is enough to consider the case that cardB = ℵ1. We write B = {δα}α<ω1
.

For each α < ω1 the domain Sα of δα has finite rank, and thus there is an integer
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m such that {α | rankSα = m} is uncountable. It is therefore no loss of generality
to assume that rankSα = m for all α < ω1. Among all pure subgroups contained
in uncountably many Sα let T be one of highest rank. Then, as we observed
earlier, {δα|T | α < ω1} is countable. So once again we may assume without
losing generality that T ≤ Sα for all α < ω1 and that all δα|T agree. We set
F0 = T and assume that for some β < ω1 we have defined a continuous chain
{Fα}α<β of countable subgroups of A such that Sα ≤ Fα. If β is a limit ordinal,
set Fβ =

⋃
α<β Fα. If β = α+1, find a γ′ < ω1 such that Fα ⊆ Aγ′ . Set γ = γ′+1.

Then Fα ⊆ Aγ . Moreover, T = F0 ⊆ Fα ⊆ Aγ . Since Aγ is countable, the set
{Sν ∩ Aγ | ν < ω1} is countable; thus one of these groups, say, S′ is such that
{ν < ω1 | Sν ∩ Aγ = S′} is uncountable. Since T ⊆ S′ and since S′ is pure, as all
Sν are pure by definition and Aγ is pure by (iii), the definition of T shows T = S′.
Let µ be such that T = Sµ ∩Aγ . Let Fβ be the smallest pure subgroup containing
Fα+Sµ. We claim that Fβ∩Aγ = Fα. Obviously the right hand side is contained in
the left. Now let a ∈ Fβ∩Aγ . Then there is natural number n such that n·a = b+s
with b ∈ Fα and s ∈ Sµ. Then s = −b + n·a ∈ Sµ ∩ Aγ = T = F0 ⊆ Fα, whence
n·a ∈ Fα, and since Fα is pure, we have a ∈ Fα and thus the claim is established.
Now Fβ/Fα = Fβ/(Fβ ∩ Aγ) ∼= (Fβ + Aγ)/Aγ . Since Fβ + Aγ is countable, there
is an η < ω1 such that Fβ + Aγ ⊆ Aη. Since Aη is free by (i) and Aγ is a direct
summand of Aη by (iii), the group Aη/Aγ is free, and thus Fβ/Fα is free. If we set
F =

⋃
α<ω1

Fα then F is a pure subgroup of A since all Fα are pure subgroups of
A, and by A1.76(i), the group F is free. Finally, set B′ = {δν ∈ B : Sν ≤ F}. This
completes the proof of Claim 2.

Claim 3. The partially ordered set A satisfies the antichain condition.

Let B be an uncountable subset of A. Choose F and B′ as in Claim 2. We will
show that B′ contains a two element set with an upper bound in A. It suffices
to show that there are two elements in A which have an upper bound in A and
dominate elements in B′. Select a basis X of F containing a basis Y of T . Claim 1
permits us to enlarge each element of B to a member δ:S → G of A such that
S is generated by a finite subset of X. We write B′′ for the set of these δ. Now
select any δν1 :Sν1 → G from B′′ such that T 6= Sν1 . There are only countably
many pure subgroups T ′ of A such that T < T ′ ≤ Sν1 . By the construction of

T , for each of these T ′, the set B′′(T ′) def
= {δν :Sν → G | δν ∈ B′′, T ′ ≤ Sν} is

countable, and thus
⋃
T ′ B′′(T ′) is countable. Thus the complement of this union

in B′′ therefore is uncountable. Let δν2 :Sν2 → G be a member of this complement.

Then Sν1
∩ Sν2

= T . Now S∗
def
= Sν1

+ Sν2
is a pure subgroup F as it is generated

by a subset of X. Hence it is a pure subgroup of A. The morphisms δνj :Sνj → G,
j = 1, 2 agree on T .

Thus they have a common extension δ∗:S∗ → G which is a member of A and
is an upper bound for the two different elements δνj , j = 1, 2. This establishes
Claim 3.

In order to complete the proof of the lemma, for each a ∈ A, we let Aa =
{δ:S → G | δ ∈ A, a ∈ S}. Then for each a ∈ A the set Aa is cofinal in A, and the
cardinality of the family {Aa}a∈A does not exceed the cardinality of A, which is ℵ1
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by hypothesis. Since we assume ¬(CH), we have card{Aa}a∈A < 2ℵ0 . Now Claim
3 and Martin’s Axiom yield a directed subset D ⊆ A such that D∩Aa 6= Ø for all
a ∈ A. We define a function ∆:A→ G as follows. Let a ∈ A. Pick a δν :Sν → G in
D∩Aa. Then a ∈ Sν . Assume that δρ:Sρ → G is also in D∩Aa. Then a ∈ Sρ and
since D is directed, there is a δσ:Sσ → G which is an upper bound for δµ and δρ.

Hence δν(a) = δσ(a) = δρ(a). Hence we can unambiguously define ∆(a)
def
= δν(a).

If aj ∈ A, j = 1, 2, we find δνj :Sνj → G in D ∩Aaj , j = 1, 2.
Since D is directed, there is an upper bound δρ:Sρ → G of {δν1 , δν2}. Then aj ∈

Sνj ⊆ Sρ, whence a1 +a2 ∈ Sρ. Then ∆(a1 +a2) = δρ(a1 +a2) = δρ(a1)+δρ(a2) =
δν1

(a1) + δν2
(a2) = ∆(a1) + ∆(a2). Hence ∆:A→ G is a morphism. Moreover, for

a ∈ A let δν :Sν → G in D ∩ Aa. Then we have π
(
δ(a)

)
= π

(
δν(a)

)
= a because

δν :Sν → G was a cross section morphism for π|δ−1
ν (Sν) : δ−1

ν (Sν) → Sν . Thus
∆:A→ G is the required cross section morphism for π:G→ A. ut

Lemma A1.79. There is a torsion-free group A of cardinality ℵ1 which is not
free and has a chain of subgroups as described in Lemma A1.78.

Proof. For each ordinal ν < ω1 we set Zν = Z and form G
def
=
∏
ν<ω1

Zν and

H
def
=
⊕

ν<ω1
Zν . Define Gµ

def
=
∏
ν<µ Zν considered as a direct summand of G

and Hµ
def
=
⊕

ν<µ Zν . For any subgroup X ≤ G set Xµ = X ∩Gµ, similarly for H
in place of G. Every limit ordinal λ < ω1 has cofinality ω and thus we can choose
a sequence of ordinals ν1 < ν2 < · · · converging to λ and a sequence (xn)n∈N such
that

prνm(xn) =

{
m!
n! for m ≥ n,
0 otherwise.

Then

(∀m ≥ n) n prνm(xn) = prνm(xn−1), n = 2, 3, . . . .

Set Xλ = 〈x1, x2, . . .〉. Define Yλ
def
= Xλ/(Xλ ∩ H) ∼= (Xλ + H)/H and set ξn =

xn+(Xλ∩H); then nξn = ξn−1, n = 2, 3, . . . . Thus we have a morphism ϕ:Yλ → Q
given by ϕ(ξn) = 1

n! . Since Yλ is a rank 1 divisible torsion-free group, ϕ is an
isomorphism.

Let Λ be the set of all limit ordinals λ < ω1. Define A ≤ G by A = H +∑
λ∈ΛXλ. Then A is a pure subgroup of cardinality ℵ1. Set

Aν = H +
∑

λ∈Λ, λ<ν

Xλ, ν ∈ Λ.

The family {Aλ}λ∈Λ is a filtration of A. The group G is ℵ1-free; hence Aλ, being
countable, is free for all λ ∈ Λ. We want to apply A1.76(ii) and consider E = {α <
ω1 | Aα+1/Aα is not free}. If λ is a limit ordinal, then Aλ+1 = Xλ + Aλ. Thus
Aλ+1/Aλ ∼= Xλ/(Xλ ∩ Aλ) is a nonzero quotient of Yλ ∼= Q and thus is not free.
Hence Λ ⊆ E, and thus E is stationary in ω1. Hence by A1.76(ii) the group A is
not free.
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We claim that Aβ/Aα+1 is free for all α < β < ω1. But Aβ/Aα+1 is a countable
subgroup of A/Aα+1 = A/(A ∩ Gα+1) ∼= (A + Gα+1)/Gα+1 ≤ G/Gα+1 which is
an ℵ1-free group. Thus Aβ/Aα+1 is free. ut

The preceding lemmas yield a proof of Proposition A1.68.

Proposition A1.80 = A1.68. (ZFC + MA +¬CH) There are Whitehead groups
of cardinality ℵ1 which are not free.

Proof. This follows at once from Lemmas A1.78 and A1.79. ut

We have already noted in Theorem A1.69 that Proposition A1.80 maintains for
all uncountable cardinals in place of ℵ1.

It remains now to prove A1.67, which we have established for Whitehead groups
of cardinality ≤ ℵ1, for Whitehead groups of any cardinality. We want to do this by
transfinite induction. Theorem A1.77 allows us to pass through regular cardinals.
We need a theorem which allows us to pass through singular cardinals, i.e. cardinals
which fail to be regular.

Let κ be any cardinal. A subgroup P of an abelian group A is said to be
κ-pure if P is a direct summand in every subgroup B ⊆ A containing P such
that card(B/P ) < κ. In generalisation of Proposition A1.64 we shall say that an
abelian group A is κ-free if every subgroup whose rank is smaller than κ is free.
If κ is regular we say that A is strongly κ-free if it is κ-free and every subgroup of
cardinality below κ is contained in some κ-pure subgroup of cardinality below κ.

Shelah’s Singular Compactness Theorem

Theorem A1.81 ([329]). Let λ be a singular cardinal and assume that A is an
abelian group of cardinality λ. If all subgroups of cardinality < λ in A are free,
then A is free.

Proof. Let κ < λ be the cofinality of λ and consider an increasing well-ordered set
{κν | ν < κ} of cardinals such that ν 7→ κν preserves sups with λ = supν<κ κν and
let {Aν}ν<κ be a continuous chain of pure subgroups of A with union A such that
cardAν = κν . We shall construct a continuous chain of subgroups Bν ⊇ Aν such
that B0 ⊆ B1 ⊆ · · · , and that all factor groups Bν+1/Bν are free. Then A1.75(i)
shows that A =

⋃
ν<λAν ⊆

⋃
ν<λBν ⊆ A is free.

The construction of the Bν is accomplished by a somewhat elaborate recursion.
We let µ+ denote the first cardinal which is larger than µ.

Pν = {B ≤ A | B is κ+
ν -pure in A and cardB ≤ κν}.

Since the group A is α-free for all α < λ, it is strongly α-free for all α < λ. Thus
every subgroup B ≤ A with cardB ≤ κν is contained in a member of Pν . For all
ν < κ we shall recursively define subgroups Bnν and subsets Xn

ν ⊆ Bnν , subject to
the following properties:
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(i) Bnν ∈ Pν for ν < κ, n ∈ N0,
(ii) Bnν is a free abelian group with a basis Xn

ν for all ν < κ, n ∈ N0,
(iii) Aν < B0

ν , and Xm
ν ⊂ Xn

ν for each ν < κ, m < n in N,
(iv) Bn−1

ν ≤ 〈Bnν ∩Xn−1
ν+1 〉 for each ν < κ, n ∈ N,

(v) if µ < κ is a limit ordinal, then Xn
µ is the union of a chain of subsets Y nαµ

with cardY nαµ = κα and Y nαµ ⊆ Bn+1
α for all α < µ.

Step 1. Construction of B0
ν by induction on ν. Pick B0

0 to be any member of
P0 containing A0. If for some µ < κ, the group B0

ν is defined for all ν < µ,
then select with the aid of the cardinality assumptions B0

µ ∈ Pµ such that it
contains Aµ +

∑
ν<µB

0
ν . This gives a chain B0

0 < B0
1 < · · · < B0

ν < · · · such that

cardB0
ν = κν . Next we select a basis X0

ν of B0
ν for each ν < κ. If µ is a limit

ordinal below κ we can represent X0
µ as the union of a chain of subsets Y 0

αµ, each
of cardinality κα.

Step 2. Induction with respect to n ∈ N0. Let n ∈ N. Assume that the groups
Bmν and the subsets Xm

ν have been defined for all ν < κ and all m < n, and that,
moreover, for all limit ordinals ν < κ, the sets Y mαν are defined for α < ν, m < n.
Now choose Bnµ ∈ Pµ containing Bn−1

µ and such that (iv) is satisfied, further so
that Bnµ contains firstly, Bnν for all ν < µ, and secondly, the sets Y n−1

αν for all limit
ordinals ν < µ and all α < ν. Since Bn−1

µ is a direct summand of Bnµ we can select
a basis Xn

µ of Bnµ containing Xn−1
µ . If µ is a limit ordinal, since κµ < κ we succeed

in choosing a family Y nαµ, α < µ of subsets of Xn
µ such that (v) holds. With these

choices, conditions (i), . . . ,(v) are satisfied, and the induction is complete.

Step 3. We claim that the subgroups Bν
def
=
⋃∞
n=0B

n
ν , ν < κ form a continuous

chain such that all factor groups Bν+1/Bν are free. In order to show that ν 7→ Bν
preserves sups, we let µ < κ be a limit ordinal and compute

Bµ =

∞⋃
n=0

Bnµ =

∞⋃
n=0

〈Xn
µ 〉 =

∞⋃
n=0

⋃
α<µ

〈Y nαµ〉 ≤
∞⋃
n=0

⋃
α<µ

Bn+1
α =

⋃
α<µ

Bα ≤ Bµ.

This proves the asserted continuity.
Let us set Xν =

⋃
n∈N0

Xn
ν . Then Xν is a basis of Bν . Note that by (iv), we

have

Bν =
∞⋃
n=1

Bn−1
ν ≤

∞⋃
n=1

〈Bnν ∩Xn−1
ν+1 〉 =

〈 ∞⋃
n=1

(Bnν ∩Xn−1
ν+1 )

〉
⊆
〈 ∞⋃
n=1

(Bν ∩Xn−1
ν+1 )

〉
= 〈Bν ∩Xν+1〉 ⊆ Bν .

Thus the group Bν is generated by Bν ∩Xν+1. Accordingly, Bν+1/Bν is free, as
asserted.

By our initial remarks this completes the proof. ut

This theorem holds in ZFC and is certainly of independent interest as we note
in Chapter 8, Exercise E8.8; but in the present discourse it allows us to finish the
proof of Theorem A1.67.
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Theorem A1.82=A1.67. Assume that the axioms of ZFC and � hold. Then all
Whitehead groups are free.

Proof. We prove the assertion “A Whitehead group A with cardA = ℵα is free”
by transfinite induction with respect to α. By Pontryagin’s Theorem A1.62 all
countable Whitehead groups are free and so the assertion holds for α = 0. Assume
now that for some β > 0 the assertion has been established for all α < β. Case
1: ℵβ is regular. Then Theorem A1.77 applies and shows that A is free; so the
assertion is true for ℵβ . Case 2: ℵβ is singular. Let B be a subgroup of A with
cardB < cardA. Then B is a Whitehead group of cardinality < ℵβ . Hence it is
free by induction hypothesis. Now Shelah’s Singular Compactness Theorem A1.81
applies and shows that A is free. Thus the assertion holds for cardA = ℵβ in this
case, too. The transfinite induction is complete. ut

Postscript

This appendix includes a short introductory course in abelian group theory. The
material presented is primarily that which is essential for the structure theory of
compact abelian groups. This motive accounts for the inclusion of certain elements
of homological algebra and, in the end the presentation of the solution of the
Whitehead Problem.

Some parts of our presentation are not prominent in standard sources, for
example, the detailed discussion of the reduced group ∇ in A1.32. We encounter
frequently the phenomenon that countability often opens up structural results
which otherwise are not available, e.g. in A1.26, A.1.28, A1.62.

The material on Whitehead’s Problem is motivated by our discussion of the
connectivity properties of compact abelian groups in Chapter 8. The essential
result is Saharon Shelah’s Theorem that the assertion of freeness of Whitehead
groups is independent from ZFC (see A1.70). The proof presented here is more
in the spirit of abelian group theory. We gratefully acknowledge Laszlo Fuchs’
permission to present material from unpublished course notes of his. This material
very convincingly shows that in compact abelian group theory, leaving the metric
situation means getting deeply into set theory and logic.

References for this Appendix—Additional Reading

[63], [64], [98], [99], [108], [113], [114], [115], [116], [117], [124], [134], [136], [147],
[221], [222], [228], [245], [250], [295], [329], [337], [369], [375].
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Appendix 2

Covering Spaces and Groups

In this appendix we summarize, for easy reference, material on covering maps of
topological spaces and the concept of simple connectivity as well as some back-
ground material on topological groups which is related to these matters and is
useful in any approach to Lie group theory.

All topological spaces considered in this appendix are assumed to be Hausdorff
spaces.

Covering Spaces and Simple Connectivity

Definitions A2.1. A function f :X → Y is called a covering map or simply a
covering if Y has an open cover {Uj | j ∈ J} such that for each j ∈ J there is a
nonempty discrete space Fj and a homeomorphism hj :Fj × Uj → f−1(Uj) such
that the following diagram commutes:

Fj × Uj
hj−−−−→ f−1(Uj)

pr2

y yf |f−1(Uj)

Uj −−−−→
idUj

Uj .

We will briefly say that f−1(Uj) is compatibly homeomorphic to Fj × Uj . We call
Fj the fiber over Uj and Y the base space of the covering.

A function f :X → Y between topological spaces is said to induce a local
homeomorphism at x if there are open neighborhoods U of x in X and V of
f(x) in Y such that f |U :U → V is a homeomorphism. It is said to induce local
homeomorphisms if it induces local homeomorphisms at all points. (Many authors
say in these circumstances that f is a local homeomorphism.)

A function f :G→ H between topological groups is said to be a covering mor-
phism if, algebraically, it is a homomorphism and if it is a covering of topological
spaces. ut

Since coverings are clearly continuous and open, a covering morphism is always
an open morphism of topological groups.

It is noted immediately that coverings are surjective, continuous and open
maps. We recall at this point that a morphism of topological groups is always
understood to be a continuous group homomorphism.
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762 Appendix 2. Covering Spaces and Groups

Remark A2.2. Every covering induces local homeomorphisms. The converse fails
in general. ut

The assertions in the following examples are left as an exercise.

Examples A2.3. (i) Let G be a topological group and H a discrete subgroup. Let
G/H denote the space of all cosets gH, g ∈ G endowed with the quotient topology
and let p:G→ G/H, p(g) = gH be the quotient map. Then p is a covering.

(ii) If f :G→ H is a morphism of topological groups then f is a covering if and
only if the following conditions are satisfied:

(a) ker f is discrete.
(b) f is open.
(c) f is surjective.

(iii) Let (g, x) 7→ g·x : G×X → X be an action of a finite discrete group G on
a Hausdorff space such that all x 7→ g·x are continuous and that the action is free,
i.e. that g·x = x implies g = 1. Then the orbit map q:X → X/G = {G·x | x ∈ X}
is a covering when X/G is given the quotient topology.

(iv) By (i), the homomorphism p:R → T = R/Z, p(r) = r + Z is a covering.
Its restriction to

]
0, 1 1

2

[
induces local homeomorphisms but is not a covering. ut

Exercise EA2.1. Verify the claims of Examples A2.3.

[Hint for (iii). Let x ∈ X. Find an open neighborhood U of x in X such that
(∀g ∈ G\{1}) g·U ∩U = Ø; indeed if that were not possible, then for each U there
would be xU , yU ∈ U and a gU ∈ G such that gU ·xU = yU . Since G is finite, we
may assume that for a basis of neighborhoods V of x we have gV = g ∈ G \ {1}.
But xV , yV → x; thus g·x = x by the continuity of z 7→ g·z; a contradiction to
the freeness of the action. Now the function (g, u) 7→ G× U → G·U = q−1q(U) is
a homeomorphism.] ut

One can construct new coverings from given ones as the following proposition
shows.

Proposition A2.4. (i) If fj :Xj → Yj, j = 1, 2 are coverings, then f1 × f2:
X1 × X2 → Y1 × Y2 is a covering. In short: Finite products of coverings are
coverings.

(ii) If p:E → B is a covering, f :X → B any continuous function, and if

P
f∗−−−−→ E

p∗
y yp
X −−−−→

f
B

is a pullback diagram (i.e. P = {(x, e) ∈ X × E | f(x) = p(e)}, f∗(x, e) = e,
p∗(x, e) = x), then p∗:P → X is a covering. In short: Pullbacks of coverings are
coverings.
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(iii) If f :X → Y is a covering and Y ′ ⊆ Y , then f ′:X ′ → Y ′ is a cover-
ing where X ′ = f−1(Y ′) and f ′ = f |X ′. In short: Restrictions of coverings are
coverings.

(iv) Assume that p:E → B is a covering, B is connected, and that B admits
a cover of connected open sets Uj, j ∈ J such that p−1(Uj) is compatibly homeo-
morphic to F × Uj. Then for every connected component E′ of E the restriction
p|E′:E′ → B is a covering.

Proof. The proofs are largely straightforward from the definition of a covering:
(i) Assume that {Uj | j ∈ J} is an open cover of Y1 such that for each j ∈ J ,

the space p−1(Uj) is compatibly homeomorphic to Fj×Uj , and {Vk | k ∈ K} is an
open cover of Y2 such that f−1

2 (Vk) is compatibly homeomorphic to Gk×Vk. Then
{Uj×Vk | (j, k) ∈ J×K} is an open cover of Y1×Y2 such that (f1×f2)−1(Uj×Vk)
is compatibly homeomorphic to (Fj ×Gk)× (Uj × Vk).

(ii) Assume that {Uj | j ∈ J} is an open cover of B such that for each j ∈ J , the
space f−1

1 (Uj) is compatibly homeomorphic to Fj × Uj . Then {f−1(Uj) | j ∈ J}
is an open cover of X such that for each j the space (p∗)−1

(
f−1(Uj)

)
= {(x, e) ∈

X × E | f(x) = p(e) ∈ Uj} is compatibly homeomorphic to Fj × f−1(Uj).
In fact this proof shows that in pullbacks the fibers are pulled back.
The proof of (iii) is quite straightforward.
(iv) For each j ∈ J there is a homeomorphism hj :Fj × Uj → p−1(Uj) such

that phj(x, u) = u. We consider e ∈ p−1(Ui) ∩ E′. Then hj
(
x, p(e)

)
= e for

some x ∈ Fj , and hj({x} × Uj) is a connected open subset of E containing e.
Hence it is contained in E′. If we set F ′j = {x ∈ Fj | hj({x} × Uj) 6= Ø}, then

(p|E)−1(Uj) = p−1(Uj) ∩ E′ is compatibly homeomorphic to F ′j × Uj . ut

Even though in the context of topological groups the great generality in which
coverings are defined is justified, the most viable context is that of connected spaces
and of pointed spaces. A pointed space is a pair (X,x) of a space and a base point
x ∈ X; a morphism of pointed spaces f : (X,x) → (Y, y) is a continuous function
f :X → Y such that f(x) = y. It is also called a base point preserving continuous
map. Often pointed spaces occur quite naturally; e.g. all topological groups have
their identity as a natural base point, and homomorphisms are automatically base
point preserving.

A covering of pointed spaces is a covering between pointed spaces which is base
point preserving.

If p: (E, e) → (B, b) is a covering of pointed spaces and f : (X,x) → (B, b) is
a morphism of pointed spaces, then a function F :X → E is called a lifting of f
across p if it is a morphism of pointed spaces and f = p ◦ F .

(X,x)
F−−−−→ (E, e)

idX

y yp
(X,x) −−−−→

f
(B, b).

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



764 Appendix 2. Covering Spaces and Groups

Proposition A2.5. (i) Assume that X is a connected space, x0 ∈ X and that
ϕ, ψ:X → Y are continuous functions such that ϕ(x0) = ψ(x0). Assume further
that for some continuous function ρ:Y → Z which induces local homeomorphisms
the compositions ρ ◦ ϕ and ρ ◦ ψ agree. Then ϕ = ψ.

(ii) A lifting of a morphism f of pointed spaces across a covering of pointed
spaces is unique if the domain of f is connected. ut

Exercise EA2.2. Prove Proposition A2.5.

[Hint. (i) Define X ′ = {x′ ∈ X | ϕ(x′) = ψ(x′)}. Since all spaces considered are
assumed to be Hausdorff spaces, X ′ is closed. Note that x0 ∈ X ′ and prove that
X ′ is open in X using the fact that p induces local homeomorphisms. Use the
connectivity of X to conclude the assertion. Derive (ii) from (i).] ut

Defining Simple Connectivity

Definition A2.6. A topological space X is called simply connected if it is con-
nected and has the following universal property: For any covering map p:E → B
between topological spaces, any point e0 ∈ E and any continuous function f :X →
B with p(e0) = f(x0) for some x0 ∈ X there is a continuous map f̃ :X → E such

that p ◦ f̃ = f and f̃(x0) = e0.

X
f̃−−−−→ E

idX

y yp
X −−−−→

f
B. ut

The lifting f̃ , if it exists, is automatically unique by A2.5(ii).

The definition we give is particularly useful in the context of topological groups
and transformation groups because it specifies directly the property one uses most
often. It is noteworthy that it does not depend on arcwise connectedness.

The conventional definition in the context of arcwise connected spaces is more
geometric but coincides on this class of spaces with our definition. We shall deal
with the equivalence of the two concepts for arcwise connected pointed spaces in
Proposition A2.10 and Exercise EA2.6 below.

One notices that Definition A2.6 is best phrased in terms of the category of
pointed topological spaces and base point preserving continuous maps. Then it
simply says that a pointed space is simply connected if any morphism into the
base space of a covering lifts across the covering. In this category, simply connected
spaces are, for those who know category theoretical elementary concepts, exactly
the connected relative projectives with respect to the class of epics containing
exactly the coverings.

Notice also that the definition of a simply connected pointed space (X,x0) can
also be expressed as follows.
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Whenever
(P, p0)

F−−−−→ (E, e)

π

y yp
(X,x0) −−−−→

f
(B, b)

is a pullback, then there is a subspace (P ′, p0) of (P, p0) such that π|(P ′, p0) is
bijective. Indeed, this restriction being a covering by A2.4.(ii), (iii), its inversion
is continuous and gives rise to the required lifting; the necessity is clear.

This raises at once the question of the existence of simply connected spaces.
We shall first give examples and later exhibit a far ranging existence theorem.

Example A2.7. Assume that X is a totally ordered space, i.e. a set with a total

order and a topology generated by the set of all open intervals ]a, b[
def
= {x ∈

X | a < x < b}, and assume that X is connected. Then X is simply connected.
Examples are the space of real numbers and all of its intervals. ut

Exercise EA2.3. Prove the claim in Example A2.7.

[Hint. Let x0 ∈ X and f :X → B a continuous map for a covering p:E → B
and let e0 ∈ E be such that p(e0) = f(x0). Let U be the set of all functions
ϕ:U → E such that U is an open interval of X with x ∈ U and that ϕ(x0) = e0

and p(ϕ(u)
)

= f(u) for u ∈ U . Consider an open neighborhood V of f(x0) and
a discrete set F and a homeomorphism h:F × V → E such that imh = p−1(V )
and p

(
h(y, v)

)
= v. Let h

(
y0, f(x0)

)
= e0. There is an open interval U around x0

in X with f(U) ⊆ V and define ϕ:U → E by ϕ(u) = h
(
y0, f(u)

)
. Verify ϕ ∈ U .

Show that U is inductive with respect to extension of functions as partial order.
Let f̃ :W → E be a maximal element in U using Zorn’s Lemma. Finish the proof
by showing that W = X; if not then there is an x ∈ X with u < x (say) and
x /∈ W . Set W1 = {x ∈ X | (∃w ∈ W )x ≤ w}. Since W is open, so is W1. Set
W2 = {x ∈ X | (∀w ∈ W )w < x}. For x ∈ W2 use the covering property around
f(x) ∈ B to show that there is a whole neighborhood of x contained in W2. Thus
W2 is open. Show that X = W1 ∪W2 and note that this is a contradiction to the
connectivity of X.] ut

Proposition A2.8. (i) Assume that (X,x0) and (Y, y0) are simply connected
pointed spaces and that p: (E, e)→ (B, b) is a covering. Let f :

(
X × Y, (x0, y0)

)
→

(B, b) be a morphism of pointed spaces. Assume finally that Y is locally connected

at y0. Then f has a lifting f̃ :
(
X × Y, (x0, y0)

)
→ (E, e) across p.

(ii) If X and Y are simply connected, and if Y is locally connected at the base
point, then X × Y is simply connected.

(iii) All spaces Rn, [0, 1]n (i.e. all open and all closed n-cells), n ∈ N, are simply
connected.

(iv) Each retract of a simply connected space is simply connected. In particular,
if a product of spaces is simply connected, then each factor is simply connected.
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Proof. Exercise EA2.4. ut

Exercise EA2.4. Prove Proposition A2.8.

[Hint. (i) The proof of the asserted lifting requires some subtle hypotheses and
arguments which we outline in their entirety. We begin with three independent
lemmas.

Lemma A. Let p:E → B be a continuous function defined on a Hausdorff space
E such that it induces at each point of E a local homeomorphism. Let f, g:Z → E

be two continuous functions satisfying p ◦ f = p ◦ g. Then D
def
= {z ∈ Z : f(z) =

g(z)} is open and closed in Z.
In particular, if f(z) = g(z), then f and g agree on the connected component

of z in Z.

Proof. Define ϕ:Z → B×B by ϕ(z) = (f(z), g(z)). Since B is a Hausdorff space,
the diagonal ∆ in B×B is closed and so the equalizer D = ϕ−1(∆) is closed. Now
let z ∈ D and set e = f(z) = g(z). There is an open neighborhood U of e in E and
an open neighborhood V of p(e) in B such that p|U : U → V is a homeomorphism.
Let W be an open neighborhood of z in Z such that f(W ) ⊆ U and g(W ) ⊆ U .
Now w ∈ W implies f(w) = (p|U)−1(p|U)f(w) = (p|U)−1(p|U)g(w) = g(w) and
so W ⊆ D. Therefore D is open in Z. ut

A similar argument yields

Lemma B. Under the hypotheses of Lemma A on p:E → B, let F :Z → E be
any function such that p ◦ F : Z → B is continuous. Then the set of points of
continuity of F is open.

Proof. Let z be a point of continuity of F and let U be an open neighborhood of
F (z) such that f |U :U → V is a homeomorphism onto an open neighborhood of
p(F (z)). Since F is continuous at z there is an open neighborhood of z in Z such
that F (W ) ⊆ U . Then F |W = (p|V )−1 ◦ (p ◦ F )|W and thus F |W is continuous.

ut

Lemma C. Let p:E → B be a covering, and let F :Z → E be any function such
that p◦F : Z → B is continuous. Then the set of points of continuity of F is open
and closed.

Proof. Since the openness is a consequence of Lemma B we must prove closedness.
Let C ⊆ Z be the set of points at which F is continuous and let c ∈ C. Let V

be an open neighborhood of b
def
= p(F (c)) ∈ B such that p−1(V ) is compatibly

homeomorphic to Fb×V . Let U = hb({ξ}×V ) be that open subset of p−1(V ) ⊆ E
for which hb(ξ, b) = F (c), and so U is an open neighborhood of F (c) in E. Also
p|U :U → V is a homeomorphism. Let W be an open neighborhood of c in Z such
that F (W ) ⊆ U . Then we find a point of continuity z of F in W ∩ C. Now let
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w ∈ W ; then F (w) = idU (F (w)) = (p|U)−1(p|U)(F (w)) = (p|U)−1(p ◦ F )(w).
The functions (p ◦ F )|W :W → V and (p|U)−1:V → U are continuous, hence
F |W = (p|U)−1 ◦ (p ◦ F )|W is continuous. Hence the open neighborhood W of c
is contained in C and so c ∈ C. This proves C = C. ut

Now we prove Part (i) of Proposition A2.8.
Step 1: Local continuous lifting at (x0, y0):
Let V be an open neighborhood of b = f(x0, y0) ∈ B such that p−1(V ) is compat-
ibly homeomorphic to F × V . Let U = hb({ξ} × V ) be that open subset of E for

which hb(ξ, f(x0, y0)) = f̃(x0, y0). Then p|U :U → V is a homeomorphism. Let W
be an open neighborhood of (x0, y0) in X × Y such that f(W ) ⊆ V . The function

f̃0
def
= (p|U)−1 ◦ f |W : W → V

is a continuous lifting of f |W :W → U across p|V .

Step 2: Global lifting, continuous at (x0, y0):
Since (X,x0) is simply connected, the continuous morphism f |(X × {y0}) : (X ×
{y0}, (x0, y0))→ (B, b) has a unique lifting

ϕ: (X × {y0}, (x0, y0))→ (E, e)

across p. Since ϕ(x0, y0) = e = f0(x0, y0) and ϕ is continuous and U is an open
neighborhood of e in E, there is an open neighborhood W1of x0 in W ⊆ X × Y
such that ϕ(W1 × {y0}) ⊆ U . Then, noting the restriction

f |(W1 × {y0}) : W1 × {y0} → V,

we obtain that ϕ0
def
= ϕ|((W1 × {y0}) : W1 × {y0} → U satisfies

ϕ0 = (p|U)−1 ◦ (f |(W1 × {y0})).

We recall that f̃0 : W → U was given by f̃0 = (p|U)−1 ◦ (f |W ), we observe

f̃0|(W1 × {y0}) = (p|U)−1 ◦ f |(W1 × {y0}). Therefore f̃0|(W1 × {y0}) = ϕ0 =

ϕ|(W1 × {y0}), that is, f̃(x, y0) = ϕ(x, y0) for all x ∈W1.

Now, since Y is locally connected at y0, we select a connected open neighbor-
hood W2 of y0 in Y such that W1×W2 ⊆W . Let us simplify notation by assuming
W = W1 ×W2. Since Y is simply connected, for each x ∈ X, there is a unique
lifting ψx: ({x} × Y, (x, y0))→ (E,ϕ(x)) of

f |({x} × Y ) : ({x} × Y, (x, y0))→ (B, f(x, y0))

across p. We define f̃ : (X×Y, (x0, y0))→ (E, e) by f̃(x, y) = ψx(y); as ϕ(x0, y0) = e

we indeed have f̃(x0, y0) = ψx0
(y0) = ϕ(x0, y0) = e as required. Moreover, for each

(x, y) ∈ X × Y we get p(f̃(x, y)) = p(ψx(y)) = f(x, y). Thus f̃ is a lifting of f
across p.

Now for each x ∈W1, the function

(1) f̃ |({x} ×W2) : ({x} ×W2, (x, y0))→ (E,ϕ(x, y0))
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is a continuous lifting of

(2) f |({x} ×W2) : ({x} ×W2, (x, y0))→ (B, f(x, y0))

across p. Likewise,

(3) f̃0|({x} ×W2) : ({x} ×W2, (x, y0))→ (E,ϕ(x, y0))

is a unique continuous lifting of (1) across p as well. Now since W2 is connected,

Lemma A shows that (1) and (3) agree for all x ∈ X. Hence f̃ |W = f̃0|W . In other

words, f̃ :X × Y → E is continuous at every point of W = W1 ×W2.

Step 3. Continuity of f̃ .
Let C denote the set of all (x, y) ∈ X × Y at which f̃ is continuous. By Step 2 we
have (x0, y0) ∈ W ⊆ C, that is, C 6= Ø. Now Lemma C applies to show that C is
open closed in X × Y . Since X and Y are connected, X × Y is connected, and so
X × Y = C. Thus f̃ is continuous as asserted.

(ii) is a consequence of (i) and (ii) implies (iii).
(iv) Let X ⊆ Y and r:Y → X be a retraction. If p:E → B is a covering and

f :X → B a continuous function, then fp:Y → B has a lifting F :Y → E. Then
F |X:X → E is the required lifting of f .] ut

Since this proof is somewhat delicate, we point out that the local connectivity
of Y at one point, namely y0, was used merely in showing that the fiberwise lifting
f̃ is continuous at least at one point (x0, y0).

On a more elementary level, the proof that a product of connected spaces
is connected requires a bit of circumspection which is remotely reflected in the
present proof.

Proposition A2.9. For a connected space X, the following statements are equiv-
alent:

(i) X is simply connected.
(ii) Whenever f :E → X is a covering and E0 is a connected component of E,

then f |E0:E0 → X is a homeomorphism.

Proof. (i)⇒(ii) Let f :E → X be a covering and assume (i). Pick e0 ∈ E0 and

set x0 = f(e0). Then the identity map i:X → X has a lifting ĩ:X → E such that

f
(̃
i(x0)

)
= x0 and f ◦ ĩ = i. We claim that the image ĩ(X) is open in E. Indeed

let x ∈ X and find an open neighborhood U of x in X such that for some discrete
set F and some homeomorphism h:F ×U → f−1(U) we have f

(
h(y, u)

)
= u. Let

h(y0, x) = ĩ(x). Then W
def
= h({y0} × U) is an open neighborhood of ĩ(x). Since

ĩ is continuous there is an open neighborhood V of x in U such that ĩ(V ) ⊆ W .

Since f |W :W → U is a homeomorphism, ĩ(V ) is a neighborhood of ĩ(x). Hence

W and thus ĩ(X) is a neighborhood of ĩ(x). Now ĩ ◦ f :E → E is a retraction with

image ĩ(X) and the image of retractions in Hausdorff spaces are closed, ĩ(X) is a
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connected open closed subset of E containing e0. It therefore agrees with E0 and
the assertion follows.

(ii)⇒(i) Assume (ii) and consider a covering p:E → B and a continuous
function f :X → B such that f(x0) = p(e0) for suitable (x0, e0) ∈ X ×E. Now we
consider the pullback

P
f∗−−−−→ E

p∗
y yp
X −−−−→

f
B.

Let p0 ∈ P denote the unique point with p∗(p0) = x0 and f∗(p0) = e0. Then
p∗ is a covering by A2.3(ii). Let P0 denote the component of p0 in P . Then
by (ii) the restriction p∗|P0:P0 → X is a homeomorphism. Denote the inclusion

map P0 → P by j and set f̃
def
= f∗ ◦j ◦(p∗|P0)−1 : X → E. Then f̃(x0) = f∗(p0) =

e0 and p ◦ f̃ = p ◦ f∗ ◦ j ◦ (p∗|P0)−1 = f ◦ p∗ ◦ j ◦ (p∗|P0)−1 = f . This completes
the proof. ut

Sometimes simple connectivity is defined by condition (ii).

We say that two continuous functions f, g: (X,x0)→ (Y, y0) of pointed spaces
are homotopic if there is a continuous function H: [0, 1] × X → Y such that
H(0, x) = f(x), H(t, x0) = y0 and H(1, x) = g(x) for all t ∈ [0, 1] and x ∈ X.
Let I denote the pointed unit interval ([0, 1], 0). A continuous function f : (S1, 1)→
(Y, y0) is called a loop at y0. It is said to be contractible, if it is homotopic to the
constant morphism of pointed spaces. We note that the contractibility of loops
in X at x0 is the same as saying that every continuous function ∂D → X from
the boundary of the unit square D = [0, 1]2 into X (mapping (0, 0) to x0) ex-
tends to a continuous function D → X, and that, in turn, means that two paths
α, β: I → (X,x0) starting at x0 and ending at the same point α(1) = β(1) are
homotopic. Homotopy is an equivalence relation on the set C0(X,Y ) of base point
preserving functions from a pointed space X to a pointed space Y .

For each point x in an arcwise connected pointed space (X,x0) we associate a
discrete set F (x), namely the set of homotopy classes [α] of arcs α: I → X from

x0 = α(0) to x = α(1). Write X̃ =
⋃
x∈X F (x) and set p: X̃ → X, p([α]) = α(x).

Now assume that X has an open cover {Uj | j ∈ J} such that each Uj is arcwise
connected and every loop in every Uj is contractible; we call such spaces locally

arcwise simply connected. For each j ∈ J pick a uj ∈ Uj . For each f = [α] ∈ Fj
def
=

F (uj) and u ∈ Uj we connect uj and u by an arc ε in Uj . Every other arc from
uj to u is homotopic to ε by assumption on Uj . Let β denote the arc obtained
by going from x0 to uj by α and from uj to u by ε. Write hj(f, u) = [β] ∈ F (u).
Then p

(
hj(f, u)

)
= u. Thus hj :Fj × Uj → p−1(Uj) is a well-defined function. If

[γ] ∈ p−1(Uj), then u = p([γ]) = γ(1) and there is an arc η in Uj from u to uj ,
unique up to homotopy. The arc δ is obtained by going from x0 to u by γ and from

u→ uj by η. Then f
def
= [δ] is an element of F (uj) = fj , and (f, u) = h−1(u). Thus

hj is bijective. There is a unique topology on X̃ which induces on p−1(Uj) that
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topology which makes hj :Fj ×Uj → p−1(Uj) a homeomorphism. Then p: X̃ → X
is a covering map.

Proposition A2.10. For an arcwise connected locally arcwise connected pointed
Hausdorff space (X,x0) consider the following conditions:

(i) All loops at x0 are contractible.
(ii) (X,x0) is simply connected.

Then (i) implies (ii). If X is also locally arcwise simply connected, then both con-
ditions are equivalent.

Proof. (i)⇒(ii) Let p: (E, e) → (X,x0) be a covering which we assume to be
connected by A2.4(iv). By the simple connectivity of I, every arc α: I→ (X,x0) lifts
to a unique arc α̃: I→ (E, e), and by the simple connectivity of D, homotopic arcs
lift to homotopic arcs. Define σ: (X,x0)→ (E, e) by σ(x) = α̃(1) for any member
α of the class of homotopic arcs from x0 to x. Then pσ(x) = pα̃(1) = α(1) = x.
Let {Uj | j ∈ J} be an open cover of X consisting of arcwise connected open
sets such that for each Uj there is a discrete space Fj and a homeomorphism
hj :Fj × Uj → p−1(Uj) such that p

(
hj(f, u)

)
= u for all (f, u) ∈ Fj × Uj . Let

x ∈ Uj . Elements y nearby in Uj can be reached by a small arc ε from x to y,
giving an arc via α from x0 to x and from there to y; call this arc β. There is a
unique f ∈ Fj such that hj(f, α(x)) = α̃(x) = σ(x). Then t 7→ hj

(
f, ε(t)

)
is a

small arc in hj({f}×Uj) from σ(x) to a unique point in the set above y, which is

necessarily the endpoint of β̃. This point is σ(y). It follows that σ(u) = hj(f, u) for
u ∈ Uj . In particular, σ is continuous, induces local homeomorphisms, and satisfies
pσ = idX . Then σ(X) is an open subspace of E such that for all j ∈ J the relation
hj({f}×Uj)∩σ(X) 6= Ø implies hj({f}×Uj) ⊆ σ(X). Hence p|σ(X):σ(X)→ X
is a covering map and the complement of σ(X) in E is open, too. Since E is
connected, σ(X) = E. Then σ = p−1. That is, p is a homeomorphism. Then X is
simply connected by A2.9.

(ii)⇒(i) Let p: X̃ → X be the covering constructed in the paragraph pre-
ceding the proposition. Since X is simply connected, p is bijective by A2.9. By
the definition of X̃ this means that two arcs linking x0 with a point x in X are
homotopic, and this is equivalent to (i). ut

Example A2.11. (i) All continuous functions f : (X,x0) → (C, c0) preserving
base points into a convex subset C of any real topological vector space E are
contractible. Hence all convex subsets of any real topological vector space are
simply connected.

(ii) All spheres Sn are simply connected spaces with the exception of the zero-
and one-dimensional ones. In particular S3 ∼= SU(3) is a simply connected compact
topological group.

(iii) Let {Sj | j ∈ J} be a family of simply connected, arcwise connected, locally
arcwise connected and locally arcwise simply connected pointed spaces. Then the
product space

∏
j∈J Sj is simply connected.
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Proof. Exercise EA2.5. ut

Exercise EA2.5. Prove the assertions of the examples in A2.11.

[Hint. (i) Work with the function H(r, x) = (1− r)·f(x) + r·c0.
(ii) Show that in all spheres of dimension 2 or more each loop is contractible.

Observe that S0 fails to be connected. Show that for the covering p:R→ S1, p(t) =

eit the identity map f :S1 → S1 does not lift to a continuous function f̃ :S1 → R; if
it did, the map f̃ and then f would be contractible, but the coextension f :S1 →
C \ {0} has winding number one, and contractible loops in C \ {0} would have
winding number 0. (A little elementary complex analysis is used here!)

(iii) The product S =
∏
j∈J Sj is arcwise and locally arcwise connected by the

definition of the product topology. If α:S1 → S is a loop, then α(t) =
(
αj(t)

)
j∈J

and αj :S1 → Sj is a loop in Sj . Then by A2.10, since Aj is simply connected,
there is continuous extension Aj :D→ Sj to the complex unit disc D. Then A:D→
S, A(t) =

(
Aj(t)

)
j∈J is a continuous extension of α. Hence every loop in S is

contractible and thus S is simply connected by A2.10.] ut

In the Definition A2.1 of a covering, the open cover {Uj : j ∈ J} plays a
somewhat volatile role; there is however, a class of spaces in which such a cover
may be chosen in a canonical fashion. Indeed, a space X will be called locally
simply connected if the set S(X) of simply connected open subsets of X covers X.
(In the constructions of A2.10 we have used a similar hypothesis.)

Lemma A2.12. Let X be a locally simply connected space. Then for each cov-
ering p:E → X there is a family (FS)S∈S(X) of discrete spaces and a family of

homeomorphisms (hS)S∈S(X), hS :FS ×S → f−1(S) such that f
(
hS(y, s)

)
= s for

all s ∈ S.

Proof. Let S ∈ S(X). The restriction f |f−1(S) : f−1(S) → S is a covering by
A2.4(iii). Let FS denote the set of connected components of f−1(S). By A2.9 each
restriction f |T :T → S for T ∈ FS is a homeomorphism. Define hS :FS × S →
f−1(S) by hS(T, s) = (f |T )−1(s). Then f

(
hS(T, s)

)
= f

(
(f |T )−1(s)

)
= s. ut

We fix a connected and locally simply connected space X and consider the
class C(X) of all coverings p:E → X, denoted (E, p), together with the maps
f :E1 → E2 for objects (Ej , pj), j = 1, 2 satisfying p2 ◦ f = p1. This class forms a
category with these maps as morphisms f : (E1, p1)→ (E2, p2).

We assume that X is connected and consider the subclass C0(X) of connected
coverings (meaning, of course those coverings (E, p) for which E is connected. We
claim that there is an upper bound to the cardinality of E depending on X only.
We define an equivalence relation R on E consisting of all pairs (x, y) ∈ E × E
such that there is a finite sequence of open subsets U1, . . . , Un in E such that

(i) p(Uj) ∈ S(X) for j = 1, . . . , n,
(ii) Uj−1 ∩ Uj 6= Ø, j = 2, . . . , n,
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(iii) x ∈ U1 and y ∈ Un.
Undoubtedly R is an equivalence relation, and obviously its cosets are all open.

But each coset of an equivalence relation whose cosets are open is closed (as the
complement of the union of all the other cosets). Since E is connected, there is only
one equivalence class. At this point we pass to pointed spaces and fix an x0 ∈ X
and consider each covering (E, p) of X to be equipped with a base point e0 ∈ E
such that p(e0) = x0. For each x we find a chain U1, . . . , Un satisfying (i), (ii) and
(iii)0 e0 ∈ U1 and x ∈ Un.

Then we set Vj
def
= p(Uj), j = 1, . . . , n and notice

(a) Vj ∈ S(X) for j = 1, . . . , n,
(b) Vj−1 ∩ Vj 6= Ø, j = 2, . . . , n,
(c) x0 ∈ V1 and p(x) ∈ Vn.

We observe that every such chain Vj and every choice of an element y ∈ Vn
gives rise to only one lifting to a chain of sets Uj satisfying (i), (ii), and (iii) and
the selection of exactly one x ∈ Un such that p(x) = y. The cardinality of the
set of all finite chains V j is not bigger than the cardinality of finite sequences of
the infinite set of all subsets of X and is therefore not bigger than 2cardX . The
function assigning to (V1, . . . , Vn; y) where (V1, . . . , Vn) satisfies (a), (b), and (c)
and y ∈ Vn the unique x ∈ Un with the unique lifting (U1, . . . , Un) and f(x) = y
is surjective. Hence

cardE ≤ cardX·2cardX = 2cardX .

It follows that there is a set J of coverings
(
(E, e0), p)

)
of (X,x0) with a con-

nected covering space E such that every isomorphy class of C(X) contains exactly
one member of J , and we may assume that (X, idX) is one of them. We say that
a covering j1 =

(
(E1, e10), p1

)
is above a covering j2 =

(
(E2, e20, p2

)
iff there is

a morphism of coverings of pointed spaces f : j1 → j2 and write j2 ≤ j1. Since a
base point preserving morphism is a lifting of the base point preserving covering
p1:E1 → X, it is unique by Proposition A2.5(ii). Hence J is a partially ordered set
with respect to the “above” relation. Due to the pullback construction in 2.4(ii)
this partially ordered set is directed, since for any two coverings there will be one
which is above the two.

We propose to show that J contains a maximal element (X̃, p̃) which is above

all others. If there is such an element then X̃ will be simply connected by Propo-
sition A2.9, and up to isomorphisms of coverings, it will be unique.

Definition A2.13. A covering (X̃, p̃), p̃: X̃ → X is called a universal covering if

X̃ is simply connected. ut

As an example consider the one-sphere S1. We take x0 = 1 as base point.
Among the coverings we have the following morphisms

1) All maps µn:S1 → S1, n ∈ Z. The fiber over any simply connected open set
in S1 (here being homeomorphic to an interval) is isomorphic to kerµn =
{e2πim/n | m = 0, . . . , n− 1},
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2) The map exp:R → S1, exp r = e2πir. The fiber over any simply connected
open set in S1 is ker expZ.

Since R is simply connected by Proposition A2.7 the covering in 2) is universal,
and indeed given any other one in 1) there is a covering from the universal one to
it. The issue is now: Do we always find a universal covering?

The construction of an inverse limit in Chapter 1, notably 1.25ff. (for which
category theory provides sweeping generalisations) suggests that we construct a
limit. For this purpose, we let M denote the set of all morphisms f : (Ef , pf ) →
(Ef , pf ) between the coverings of X in J and consider, in the category of pointed
spaces, the projective limit

L(X)
def
= {(xE)(E,p)∈J ∈

∏
(E,p)∈J E | (∀f ∈M) f(xEf ) = xEf }.

We define the map p:L(X) → X, p
(
(xE)(E,p)∈J

)
= xX recalling (X, idX) to be

the minimal element of J . Set e = (ej)j∈J where ej is the base point of E where
j = (E, p) ∈ J . Then p(e) = x0. Now let ξ = (xj)j∈J ∈ L(X) and set x = p(ξ).
Let S ∈ S(X) be a simply connected open neighborhood of x in X. Then for
each j = (E, p) ∈ J there is a unique cross section σj :S → E of pointed spaces

such that p ◦ σj = idS and σj(x) = xj see A2.9). Then σ(x′)
def
= (σj(x

′))j∈J ∈∏
(E,p)∈J E is seen to be in L(X) for all x′ ∈ S by the uniqueness of liftings

(A2.5(ii)). Hence σ(ξ,S):X → L(X), is a cross section satisfying σ(ξ,S)(p|p−1(S)) =
idS and σ(ξ,S)(x) = ξ. In particular, if x is in the image of p then every simply
connected neighborhood S of X is in the image I of p. This shows that I is open. If
x ∈ I then some simply connected neighborhood S of x meets I. Hence x ∈ S ⊆ I.
Thus x ∈ I and I is also closed. Since X is connected, I = X and thus L(X)→ X
is surjective. The set B of all open subsets U of X for which there is an S ∈ S(X)

with U ⊆ S form a basis for the topology of X. The set of all Vξ,U
def
= σξ,S(U) for

any S ∈ S(X), U ⊆ S is a basis for a topologyO on L(X) such that the components
of p−1(S) are exactly the sets σξ,S(S). For S ∈ S we let FS denote the set of these
components and define hS :FS × S → p−1(S) by hS(σξ,S(S), y) = σξ,S(y). Then
p
(
hS(C, y)) = y. This shows that p:

(
L(X),O)→ X is a covering of pointed spaces.

Let X̃ be the connected component of e in
(
L(X),O

)
, and let p̃ be the restriction

p|X̃. Then p̃: (X̃, e)→ (X,x0) is a covering by A2.4(iv). Thus
(
(X̃, e), p̃

)
∈ J .

For each k ∈ J we have a limit map pk:L(X) → E for k = (E, p) given by
p
(
(xj)j∈J

)
= xk. The space E is locally simply connected; e.g. the connected

components of p−1(S), S ∈ S(X) are homeomorphic to S by A2.4(iv) and A2.9.
Then just as in the case of the minimal k = (X, idX) we see that pk:

(
L(X),O

)
→

(E, p) = k is a covering. By A2.4(iv), accordingly, write x̃ = (xj)j∈J for an element

in X̃ and note that p
(
pk(x̃)

)
= p(xk) = x(X,idX) = p̃

(
(xj)j∈J

)
= p̃(x̃). Thus the

map pk|X̃: (X̃, e) → (E, ej) is a morphism of pointed coverings of (X,x0). Thus

(X̃, p̃) is maximal in J and p̃: (X̃, e)→ (X,x0) is a universal covering.
We have now proved the following existence theorem:
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Existence of Universal Coverings

Theorem A2.14. Every connected locally simply connected Hausdorff space has
a universal covering. ut

Since each open n-ball in Rn is simply connected (see EA2.8(iii)) every locally
euclidean space (i.e. every space having an open cover consisting of sets homeo-
morphic to an open ball of Rn) is locally simply connected. By A2.10 and A2.11(i)
all open balls in a Banach space are simply connected. Thus every space covered
by a family of open sets each homeomorphic to an open ball in some Banach space
is locally simply connected. Let us call such spaces topological manifolds.

Universal Coverings of Manifolds

Corollary A2.15. Every connected topological manifold has a universal covering.
ut

From hindsight the somewhat lengthy proof of Theorem A2.14 exhibits a cu-
riosity as far as limit constructions go: After we were all through we discovered
that the limit was none other than a member of the inverse system itself be-
cause the index set turned out to have a maximal element. The example of the
one-sphere mentioned above illustrates this fact: The limit of the coverings listed
under 1) alone is a genuine solenoid; if we include the covering under 2), the limit
degenerates to the universal covering itself.

The Group of Covering Transformations

Let X denote a space possessing a universal covering p̃: X̃ → X. Recall that
a morphism f : (E1, p1) → (E2, p2) of coverings of X is a continuous function
f :E1 → E2 such that p2f = p1, equivalently, that f is a lifting of p1 across p2 (see

A2.1). Let Γ denote the group of all automorphisms γ: X̃ → X̃ of the covering

p̃: X̃ → X.
Fix a point x0 ∈ X and write F = p̃−1(x0). Now fix a point x̃0 ∈ F .

Proposition A2.16. For each x̃ ∈ F there is a unique automorphism γx̃ of
(unpointed ) covering spaces of p̃: X̃ → X such that γx̃(x̃0) = x̃. The map x̃ 7→
γx̃:F → Γ is a bijection.

Proof. By Definition A2.6 of simple connectivity there is a lifting γ: X̃ → X̃ across
p̃: X̃ → X of the map p̃:X → X such that γx̃(x̃0) = x̃. Likewise there is a lifting γ′

satisfying γ′(x̃) = x̃0. Now γ′γx̃, γx̃γ
′, and idX̃ are all liftings fixing x0, and thus

by the uniqueness of liftings (see Proposition A2.5(ii)) they all agree. Hence γx̃ is
invertible and thus a member of Γ. By the uniqueness of liftings, x̃ 7→ γx̃:F → Γ
is injective. If γ ∈ Γ, then γ

γ(x̃0)
= γ by uniqueness again. ut
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Definition A2.17. The members of Γ are called covering transformations or deck
transformations and Γ is called the Poincaré group of X. If the dependence of X
is to be made evident we write Γ(X) for the Poincaré group of X. ut

The underlying set of Γ is a prototype for the fibers of the universal covering
of X. It is clear that X is simply connected if and only if Γ is singleton.

The theory of simple connectivity can be based on homotopy theory as was
already indicated in A2.10. The discourse in the following pursues this idea in
identifying Γ(X) with the so called fundamental group π1(X) of an arcwise con-
nected space.

Exercise EA2.6. A morphism α: I→ (X,x0) lifts uniquely to a morphism α̃: I→
X̃ across a universal covering p̃: (X̃, x̃0)→ (X,x0). If α(1) = x0, then α represents

a loop in X and α̃(1) ∈ F
def
= p̃−1(x0). If X is arcwise connected, then so is

X̃. For every path β: I → (X̃, x̃0) with β(1) ∈ F the path α = p̃ ◦ β satisfies
α(1) = x0, and β is the unique lifting of α across p̃. If two loops α, α′: I → X
are homotopic via a homotopy leaving the initial and end point fixed then the
homotopy lifts and yields homotopic liftings α̃, α̃′: I→ X̃ such that α̃(1), α̃′ ∈ F ;

then α̃(1) = α̃′(1). Conversely, if two liftings α̃ and α̃′ of two closed paths end at

the same point, then α̃ and α̃′ are homotopic, and thus α and α′ are homotopic.
Let π1(X) denote the set of homotopy classes of loops in X based at x0. Then the
function π1(X) → Γ(X) which associates with a homotopy class of a closed path
α at x0 the transformation γα̃(1) is a bijection.

Explain the group structure transported to π1(X) by this map in terms of the
loops and operations on them. ut

Exercise EA2.6 which puts the sets Γ(X) and π1(X) into bijective correspon-
dence shows, in particular, that an arcwise connected space X is simply connected
if and only if Γ(X) is singleton if and only if π1(X) is singleton if and only if every
loop in X based at x0 is contractible.

In view of this exercise, the Poincaré group is often written as π1(X).

Universal Covering Groups

Proposition A2.18. Let G be a topological group and assume that the underlying
space of G admits a universal covering p̃: G̃→ G. Then for each 1̃ ∈ p̃−1(1) there

exists a unique topological group structure on G̃ with 1̃ as the identity element
and that p̃ is a group homomorphism which, as a consequence, induces a local
isomorphism at 1.

Proof. The continuous function (g̃, h̃) 7→ p̃(g̃)p̃(h̃) : G̃× G̃→ G mapping (1̃, 1̃) to

1 has a unique lifting across p̃: G̃ → G mapping (1̃, 1̃) to 1̃ which we shall write

(g̃, h̃) 7→ g̃h̃. Then p̃(g̃)p̃(h̃) = p̃(g̃)p̃(h̃). The functions (g̃, h̃, k̃) 7→ (g̃h̃)k̃), g̃(h̃k̃):
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G̃ × G̃ × G̃ → G̃ both map (1,1,1) to 1, and their compositions with p̃: G̃ → G
agree. Hence by the uniqueness of the lifting they agree. Hence the multiplication
on G̃ is associative. The maps x̃ 7→ x̃1̃, 1̃x̃: X̃ → X̃ as well as the identity map
of X̃ all map 1 to 1 and agree when followed by p̃. Hence they agree. Thus G̃
is a monoid with 1̃ as identity. Finally, by the same procedure we lift the map
x̃ 7→ p̃(x̃)−1: G̃ → G across the universal covering mapping 1̃ to itself, and then

we see again that the lifting is inversion on G̃ making G̃ a topological group in
precisely the fashion asserted. ut

Definitions A2.19. If the underlying space of a topological group G permits
a universal covering, then the simply connected topological group G̃ according to
Proposition A2.19 is called a universal covering group, and the morphism p̃: G̃→ G
is called a universal covering morphism. ut

Exercise EA2.7. Prove the following proposition:

Universal covering groups are determined uniquely up to an isomorphism of cov-
ering morphisms.

[Hint. If p̃j : X̃j → X, j = 1, 2 are two universal covering morphisms, then by the
simple connectivity of X1 the morphism p̃1 lifts across the covering p̃2 to a unique
morphism of pointed spaces α: X̃1 → X2. Show the existence of an inverse of α by
reversing the roles of the two universal coverings.] ut

Existence of Universal Covering Groups

Theorem A2.20. Every Hausdorff topological group G which is connected and
possesses a simply connected open identity neighborhood has a universal covering
morphism p̃: G̃→ G.

Proof. If S is a simply connected open identity neighborhood then gS is a simply
connected neighborhood of g in G. Thus G is locally simply connected. (See the
definition immediately preceding A2.12.) Hence the underlying pointed space of G
has a universal covering by the Existence of Universal Coverings Theorem A2.14.
By Proposition A2.18 above the assertion now follows. ut

Corollary A2.21. Every connected topological group with an identity neighbor-
hood homeomorphic to an open ball in a Banach space has a universal covering
group. In particular, every linear Lie group and indeed every topological group
locally isomorphic to a linear Lie group has a universal covering group. ut

Example A2.22. (i) The quotient map Rn → Rn/Zn ∼= Tn (which is also the
exponential map of the n-torus) is a universal covering homomorphism.

(ii) The homomorphism p:S3 → SO(3) of E1.2(ii) is a universal covering. ut

Proposition A2.23. Let p̃: G̃→ G be a universal covering morphism of topological
groups. Then ker p̃ is a discrete central subgroup of G̃ and for each z̃ ∈ ker p̃ the
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function Tz̃: G̃→ G̃ given by Tz̃ g̃ = z̃g̃ = g̃z̃ is a covering transformation and the
function z 7→ Tz: ker p̃ → Γ(G) is an isomorphism of groups. In particular, the
Poincaré group of every topological group is abelian.

Proof. Since ker p̃ is the fiber of a covering, it is a discrete normal subgroup. Hence
it is central (cf. 6.13). Now Tz̃ (well defined by centrality!) is a homeomorphism of

G̃ satisfying p̃ ◦ Tz̃ = p̃. Hence it is a member of Γ(G). Clearly, Tz̃ is the identity

of G̃ if and only if z̃ = 1̃. Thus z̃ 7→ Tz̃ is injective. If γ ∈ Γ(G), then z̃
def
= γ(1)

is in ker p̃. Then both γ and Tz̃ are elements of Γ(G) mapping 1̃ to z̃. Hence they
agree because the Poincaré group operates simply transitively on the fibers. Thus
z̃ 7→ Tz̃ is surjective. It is straightforward to verify that it is a morphism. The
remainder is then clear. ut

Groups Generated by Local Groups

This section deals with generating groups from local data in topological groups.
Dealing with local topological groups is always messy. It is unfortunate that each
author has a definition different from all other ones. The situation is a little better
in the case of the idea of a local group within a given group. It is this situation
we are dealing with here. In fact we shall consider a group G and a subset K
supporting a topology τK satisfying the following conditions, to be augmented as
we proceed:

(i) 1 ∈ K.
(ii) (∀x, y ∈ K, V ∈ τK) xy ∈ V⇒(∃U ∈ τK) y ∈ U and xU ⊆ V .

(iii) The set D
def
= {(x, y) ∈ K × K | xy ∈ K} is a neighborhood of (1,1) in

K ×K, and multiplication (x, y) 7→ xy : D → K is continuous at (1,1).
(iv) K−1 = K.
(v) Inversion x 7→ x−1:K → K is continuous at 1.

(vi) (∀y ∈ K, V ∈ τK) y ∈ V⇒(∃U ∈ τK) 1 ∈ U and Uy ⊆ V .
We define a subset of the set of subsets of G as follows:

τG = {W ⊆ G | (∀w ∈W )(∃U ∈ τK) 1 ∈ U and wU ⊆W}.

It follows immediately from the definition that τG is a topology on G and that it
is invariant under all left translations, i.e. that all left translations Lg, Lg(x) = gx
are τG-homeomorphisms. If we apply (ii) with y = 1 and consider the definition of
τG we obtain at once that every V ∈ τK is a member of τG:

(τ) τK ⊆ τG.

In particular, K ∈ τG (i.e. K is open in G) and τG|K = τK (i.e. the topology of G
induces the given one on K).

Lemma A2.24. Assume that G is a group and that K ⊆ G satisfies conditions
(i), . . . , (vi). Then there is a unique maximal τG-open subgroup H of G such that
(H, τG|H) is a topological group. In particular the connected component G0 of 1
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in G is topological, and if K is connected, then G0 is the subgroup 〈K〉 generated
by K.

Proof. Since τK ⊆ τG multiplication and inversion of G are continuous at (1,1)
and 1, respectively, by (iii) and (v).

As a first step we shall construct H. Let U denote the neighborhood filter of
the identity in (G, τG). The group G acts on the set of all filters F on G via
(g,F) 7→ gFg−1 = {gFg−1 | F ∈ F}. We set H = {g ∈ G | g Ug−1 = U}, the
stabilizer of U for this action. Then H is a subgroup. By (iii) there is an identity
neighborhood U ∈ τG such that UU ⊆ K. By (iii) once more we find an identity
neighborhood V ∈ τG such that V V ⊆ U and by (v) we find a W ∈ τG ∩ U such
that W ∪W−1 ⊆ V . As a consequence we have WWW−1 ⊆ K. Thus the function
y 7→ yw−1:W → K is defined and by (vi) it is continuous at 1. Therefore, the
function x 7→ wxw−1:W → K is defined for all w ∈ W and is continuous at 1,
since all left translations are continuous. As a consequence, w Uw−1 = U . Thus
W ⊆ H. Therefore H contains all hW , h ∈ H and thus is open. By definition, all
inner automorphisms Ih of H, Ih(x) = hxh−1 are continuous. Then H is a group in
which left translations and all inner automorphisms are continuous, multiplication
is continuous at (1,1) and inversion is continuous at 1. We claim that a group
with these properties is topological: We note that the right translations Rg =
Ig−1Lg are continuous and that inversion ι, ι(x) = x−1 is continuous at each g
because ι is continuous at 1 and ι = Rg−1 ◦ ι ◦ Lg−1 . Finally, multiplication µ,
µ(x, y) = xy is continuous at each (g, h) because µ is continuous at (1,1) and
Rh ◦ Lg ◦ µ ◦ (Lg−1 ×Rh−1) = µ.

As a second step we show that H is the largest open topological subgroup of
G. Let A be a subgroup of G which is τG-open and is topological with respect to
τG|A. Since A is open, the neighborhood filter UA of the identity in A generates
U . If a ∈ A, since (A, τG|A) is topological, aUAa−1 = UA, and thus aUa−1 = U .
Then a ∈ H by the definition of H. Therefore A ⊆ H.

Thirdly we observe that G0 ⊆ H. Since H is open, this will be shown if we
prove that every open subgroup U of G is also closed and thus must contain the
identity component. Now each left translations Lg of (G, τG) is continuous and
thus, having the inverse Lg−1 , is a homeomorphism. Hence gU is open for all
g ∈ G. Thus U = G \

⋂
g/∈U gU is closed.

Finally assume that K is connected. Then K contains 1 by (i) and is con-
nected as a subspace of (G, τG) since τG|K = τK . Hence K ⊆ G0 and thus
〈K〉 ⊆ G0. From τK ⊆ τG we know that K is open in (G, τG). Hence Kn =⋃
k1,...,kn−1∈K k1 · · · kn−1K is open. Since K−1 = K we have 〈K〉 =

⋃
n∈NK

n and

so this group is open. Then 〈K〉 contains G0 as we have seen in the previous
paragraph. ut

We summarize the essence of this discussion in the following theorem.
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Groups Generated by Local Subgroups

Theorem A2.25. Let K be a symmetric subset (K = K−1) of a group G con-
taining 1. Assume that K is a connected topological space such that

(i) x, y, xy ∈ K, with xy ∈ V for an open subset V of K imply the existence of
open neighborhoods Ux and Uy of x and y such that xUy ∪ Uxy ⊆ V ,

(ii) {(x, y) ∈ K ×K | x, y, xy ∈ K} is a neighborhood of (1,1) in K ×K, and
multiplication is continuous at (1,1),

(iii) inversion is continuous at 1.
Then there is a unique topology on the subgroup H = 〈K〉 generated by K which
induces on K the given topology and makes H a topological group such that K is
an open identity neighborhood of H. ut

With the information we provided on simple connectivity and with this result
we can derive a powerful result on the extension of local morphisms.

Extending Local Homomorphisms

Corollary A2.26. Let S be a simply connected topological group and G an ar-
bitrary (not necessarily topological ) group. Let U be an open connected symmetric
identity neighborhood of S and f :U → G a function such that x, y, xy ∈ U implies
f(x)f(y) = f(xy). Then there is a unique group homomorphism extending f .

Proof. On the group S×G we consider K
def
= {

(
x, f(x)

)
| x ∈ U} and equip K with

that topology which makes the bijection x 7→
(
x, f(x)

)
:U → K a homeomorphism.

It is easily seen that the hypotheses of the Generation Theorem A2.25 are satisfied,
giving us on the subgroup H = 〈K〉 a unique topology making G a topological
group such that the projection prS :S × G → S induces a covering morphism
prS |H:H → S. Since S is simply connected, Proposition A2.9 implies that prS |H
is a homeomorphism. If ι:H → S ×G is the inclusion morphism, then

F
def
= prG ◦ ι ◦ (prS |H)−1:S → G

is the required morphism whose uniqueness with respect to extending f is secured
by the fact that the connected group S is generated by the identity neighborhood
U . (Cf. the proof of 5.4(iii).) ut

Corollary A2.27. If, under the conditions of Corollary A2.26, G is a topological
group and f is continuous at 1, then f is a morphism of topological groups. If f
is open, so is F .

Proof. Since F extends f and f is defined on an open neighborhood of 1 in S,
the group homomorphism F is continuous at 1 and is, therefore, continuous. The
remainder is similar. ut
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Universality of the Universal Covering Group

Corollary A2.28. Let G be a topological group with a universal covering mor-
phism p̃: G̃→ G. Assume that H is a connected topological group and that U and
V are open connected symmetric identity neighborhoods of G and H, respectively,
such that there is a homeomorphism ϕ:U → V satisfying ϕ(xy) = ϕ(x)ϕ(y) for

all x, y, xy ∈ U . Then there exists an open symmetric identity neighborhood W̃ of
G̃ and a unique covering morphism q̃: G̃→ H such that

(i) p̃(W̃ ) ⊆ U ,

(ii) q̃(w) = ϕ
(
p̃(w)

)
for all w ∈ W̃ .

Proof. By the continuity of the covering morphism p̃ we find an open symmetric
identity neighborhood W̃ of G̃ such that p̃(W̃ ) ⊆ U . Define f : W̃ → H by f(w) =

ϕ
(
p̃(w)

)
for all w ∈ W̃ . Then f(ww′) = f(w)f(w′) for all w, w′, ww′ ∈ W̃ . Since G̃

is simply connected, the Extending Local Homomorphisms Corollary A2.26 applies
and furnishes a unique extension q̃: G̃→ H of f . Since p̃ is a local homeomorphism
at 1̃ and ϕ is a homeomorphism, the map q̃ is a local homeomorphism at 1. For a
morphism of topological groups implies that its kernel ker q̃ is discrete and that it
is open. In particular, q̃(G̃) is an open, hence closed subgroup of H. (Cf. the third
step of the proof of A2.24.) Since H is closed this shows that q̃ is surjective. Hence
it is a covering morphism by A2.3(ii). ut

Remark A2.29. If the topological group G has a universal covering group G̃ then
G̃ classifies the connected topological groups which are locally isomorphic to G.
Each of them is a quotient group of G̃ modulo a discrete normal (hence central)
subgroup. ut

Example A2.30. The connected topological groups locally isomorphic to SO(3)
are isomorphic to either SO(3) or S3 ∼= SU(2).

Proof. The morphism S3 → SO(3) of E1.2(ii) is a universal covering homomor-
phism (by A2.11 (ii)) whose kernel S0 = {1,−1} is the full center of S3. The
assertion the follows. ut

Corollary A2.31 (Generating Subgroups of Topological Groups). Let G be a
topological group and K a symmetric connected subspace containing the identity
such that the following condition is satisfied:

(∗) {(x, y) ∈ K × K : xy ∈ K} is a neighborhood of (1,1) in K × K, and
x, y, xy ∈ K, with xy ∈ V for an open subset V of K imply the existence of
open neighborhoods Ux and Uy of x and y such that xUy ∪ Uxy ⊆ V .

Then there is a topological group H and an injective morphism of topological groups
f :H → G such that for some open symmetric identity neighborhood V of H we
have

(i) H = 〈V 〉,
(ii) f(V ) = K and f |V :V → K is a homeomorphism.
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Hypothesis (∗) is satisfied if there is an open symmetric identity neighborhood
U in G and K is a connected symmetric subset of U containing the identity such
that

KK ∩ U ⊆ K.

Proof. The hypotheses of A2.25 are quite clearly satisfied. Hence the subgroup
〈K〉 has a unique topology τ making it into a topological group H and inducing

on K the same topology as does that of G such that V
def
= (K, τ |K) is open and

generates H. The inclusion map f :H → G then satisfies the requirements.
The last claim of the corollary is straightforward. ut

This is in fact the topological group version of what we do in the Recovery of
Subalgebras 5.52, whose proof we base directly on Theorem A2.25. The connectiv-
ity of K is not absolutely necessary for the mechanism of this subsection to work;
in the absence of this hypothesis the proof of A2.24 shows that there is an open
symmetric identity neighborhood W of K such that 〈W 〉 has a group topology
inducing on W the given one. Thus W will then play the role of K.

Proposition A2.32 (Lifting Homomorphisms). Let p:E → B be a covering mor-
phism of topological groups and suppose that f :S → B is a morphism of topological

groups from a simply connected group S to B. Then the unique lifting f̃ :S → E
according to Definition 2.6 is a morphism of topological groups.

Proof. Let g ∈ S and set ϕ:S → B, ϕ(x) = f(gx). Then ϕ̃:S → E, ϕ̃(x) = f̃(gx)

and ψ̃:S → E, ψ̃(x) = f̃(g)f̃(x) satisfy q
(
ϕ̃(x)

)
= q
(
f̃(gx)

)
= f(gx) = f(g)f(x) =

q
(
f̃(g)

)
q
(
f̃(x)

)
= q

(
f̃(g)f̃(x)

)
= q(ψ̃(x)

)
and ϕ̃(1) = f̃(g) = ψ̃(1). Then ϕ̃ = ψ̃

by A2.5. Since g is arbitrary, f̃(gh) = f̃(g)f̃(h) for all g, h ∈ S follows. ut

Postscript

Our approach to covering spaces and to simple connectivity through the Poincaré
group and covering groups is inspired by Chevalley’s presentation which appeared
in the first modern book on Lie group theory in 1946 [58]. We develop this approach
further and formulate it in an even more operational fashion; more specifically, our
definition of simple connectedness of a space is immediately ready for application
in the context of topological groups. The concept of a covering independent of
special properties of the base space is modelled after fiber space theory and was
used in this context by Tits in the lecture notes which circulated in the early sixties
and which much later appeared in book form [354]. The emphasis on pullbacks is
the fruit of category theory and of fiber space oriented thinking. The proof of the
existence of universal covering spaces is a bit more general than it appears in most
other sources.

Chevalley’s proof of the Extension Theorem of Local Homomorphisms (Corol-
lary A2.26) was rather complicated, whereas Bourbaki presents a comparatively
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direct proof ([41], Chap. 3, §6, no 2, Lemme 1; see also Corollary A2.26 above).
Our blending of covering theory with the local theory of topological groups is from
the article by Hofmann [166], see also [165]. Among other things it yields a smooth
and lucid proof of the Extension Theorem of Local Homomorphisms. (For other
fruits of this approach see e.g. the proof of 5.52.)

References for this Appendix—Additional Reading

[41], [58], [118], [165], [166], [338], [354].
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Appendix 3

A Primer of Category Theory

Categorical and functorial thinking are an undercurrent in most of this book.
Therefore, in this appendix we provide an introduction to those features of category
theory which are essential for a better understanding of the structure theory of
compact groups. Prerequisites in the usual sense are not required—basic material
such as would be presented in courses such as Linear Algebra and Introduction to
Algebra are presupposed.

A certain maturity in abstract reasoning will help. In illustrating the working
of category theory we shall cite many examples of mathematical subspecialties not
all of which may be familiar to every reader. This should not deter the reader
in this appendix; nothing will be lost if unfamiliar examples are simply skipped.
While this appendix is self-contained as far as the presentation of category theory
is concerned, the discussion of examples will frequently draw on knowledge stem-
ming from other areas. In particular, the last section on commutative monoidal
categories and graded commutative Hopf algebras does require experience and
facility with multilinear algebra over a field.

Categories, Morphisms

The first task is to motivate categories, the second to define them formally. The
basic philosophy of category theory is to observe the functions and transformations
which are at large in any given field of mathematical investigation and to focus on
these more sharply than on the objects of the field themselves. From this viewpoint,
in set theory, functions look more important than sets, in linear algebra, linear
maps are more important than vector spaces, and matrices more important than
n-tuple spaces.

The ancestor of all categories is the category of all sets. We perceive of the
sets themselves as objects and of the functions between them as the relevant trans-
formations or morphisms. The elements of the sets are, for the moment, totally
ignored. We observe that this collection of objects is not a set, but rather a proper
class (cf. e.g. [230, 305]). Appropriate care needs to be taken in dealing with proper
classes.

Guided by the example of sets and functions we attempt a definition.

Definition A3.1. A category C is a collection of data satisfying conditions which
are listed in the following.
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Data:

1) A class of objects ob(C).
2) For each ordered pair (X,Y ) of objects, a set C(X,Y ) of morphisms or arrows

from X to Y . The statement f ∈ C(X,Y ) is equivalently written f :X → Y

or X
f→ Y , if the category C is understood.

3) For each object X a morphism idX ∈ C(X,X).
4) For each ordered triple (X,Y, Z) of objects a function

(f, g) 7→ f ◦ g: C(Y, Z)× C(X,Y )→ C(X,Z)

called composition. (This function is the empty function if one or both of
C(X,Y ) and C(Y, Z) are empty.)

Properties:

I) For each morphism f :X → Y we have idY ◦ f = f ◦ idX = f .
II) For each triple (f, g, h) of morphisms h:X → Y , g:Y → Z, f :Z → A the

equation (f ◦ g) ◦ h = f ◦ (g ◦ h) holds. ut

The sets C(X,Y ) are called hom-sets. The class
⋃
{C(X,Y ) | X,Y ∈ ob(C)} is

called the class of morphisms, written morph(C). Sometimes it is also postulated
that (X,Y ) 6= (X ′, Y ′) implies C(X,Y )∩C(X ′, Y ′) = Ø. In most categories arising
in nature this is automatically satisfied; a category not satisfying this condition is
easily converted into one satisfying it by simple set-theoretical gimmicks.

Proposition A3.2. In any category C, all sets C(X,X), X ∈ ob(C), are monoids
with respect to composition with idX as identity.

Proof. By Definition A3.1 3) and 4), the composition of any pair of elements in
C(X,X) is secured, and by Definition A3.1 II) composition is associative. Defini-
tion A3.1 I) says that idX is an identity. ut

One might say that a monoid and a one-object category are one and the same
thing; for, given a monoidM , we set ob M̃ = {1}, morph M̃ = M , and, for f, g ∈M
also f ◦ g = fg with the multiplication in M . In this fashion we have defined a
one-object category M̃ .

The elements of C(X,X) are called the endomorphisms of X.
If f :X → Y is a morphism in a category then it is called an isomorphism if

there is a g:Y → X with gf = idX and fg = idY ; i.e. if f is invertible. Two
objects X and Y are called isomorphic if there is an isomorphism f :X → Y . A
morphism which is simultaneously an endomorphism and an isomorphism is called
an automorphism. A category G such that morphG consists of isomorphisms only
is called a groupoid. A one-element groupoid is one and the same thing as a group
in the same way as a one-element category is the same thing as a monoid.

It may be considered as clear when a subclass C′ ⊆ C endowed with a subset
C′(X ′, Y ′) ⊂ C(X ′, Y ′) for each pair (X ′, Y ′) ∈ C′ × C′ is called a subcategory of
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C. We shall call a subcategory C′ of a category C full, if C′(X ′, Y ′) = C(X ′, Y ′) for
each pair (X ′, Y ′) ∈ C′ × C′. (See also Exercise EA3.10 below.)

Now we illustrate the definition with a long list of examples. The verification
of the conditions of Definition A3.1 are usually straightforward; in the case they
are not, we pose an exercise.

Examples A3.3. The following are examples of categories:

1. The category S of sets

Objects: sets X,Y etc.
Morphisms: functions f :X → Y . Usual notation: S(X,Y ) = Y X .
Isomorphisms: bijections.
Automorphisms: permutations.
Endomorphisms: S(X,X) = XX .

A small but significant modification is sometimes relevant: the category S0 of
pointed sets:

Objects: pairs (X,x0) consisting of a set X and a distinguished point x0 ∈ X.
Morphisms: f : (X,x0)→ (Y, y0); i.e. functions f :X → Y with f(x0) = y0.

2. The category VK of K-vector spaces

Let K be any field.

Objects: K-vector spaces V , W etc.
Morphisms: linear maps L:V →W . Usual notation: VK(V,W ) = Hom(V,W )
Endomorphisms: VK(V, V ) = End(V ).
Automorphisms: Aut(V ) = Gl(V ) invertible linear self-maps of V (if dimV <∞:
endomorphisms with nonzero determinant)

3. The category AB of abelian groups

Objects: abelian groups (preferably written additively) A, B etc.
Morphisms: homomorphisms f :A→ B. Usual notation: AB(A,B) = Hom(A,B).
Endomorphisms: AB(A,A) = End(A).

The category of (not necessarily abelian) groups is defined similarly.

Common generalization: the category ABR of R-left-modules

Objects: R-left-modules M , N , etc. for a fixed ring R with identity (commutative
or not).
Morphisms: R-module homomorphisms f :M → N . Usual notation: ABR(M,N) =
HomR(M,N).

Clearly, Examples 2 and 3 are subsumed under this idea with VK = ABK and
AB = ABZ.

Next to the category S of sets, the categories ABR are ancestors of category
theory, too. Since major parts of this book deal with abelian groups, the cate-
gory AB = ABZ is of particular relevance for us; Appendix 1 is a self-contained
introduction to it.
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4. The category MK of K-matrices

Objects: ob(MK) = N0 = {0, 1, 2, . . .}.
Morphisms: MK(n,m) = Mmn(K) = set of all m×n-matrices over K if m,n ≥ 1.
MK(0,m) = {0m0}, MK(n, 0) = {00n}.
Automorphisms: Gl(n,K) invertible matrices, matrices with nonzero determinant.
Composition: matrix multiplication and the rules 00mA = 00n and A0n0 = 0m0 for
A ∈ MK(n,m). For n ∈ N0 we have idn = En, the n × n-identity matrix. Usual
notation: MK(n,m) = Mmn(K).
Endomorphisms: MK(n, n) = Mnn(K) = set of n× n-matrices.

Note that objects play a subordinate role and that morphisms are not functions.
Further note that the class of objects as well as the class of morphisms are sets.
Categories in which the class of objects is a set are called small. However, we also
observe that there is a bijection of ob(MK) onto

{
{0} = K0,K1,K2, . . .

}
given by

n 7→ Kn and also a bijection morph(MK) onto
⋃
m,n∈N0

HomK(Kn,Km) sending
an m × n-matrix A = (ajk) j=1,...,m

k=1,...,n
to the unique linear map Kn → Km given

by (x1, . . . , xn) 7→ (
∑n
k=1 a1kxk, . . . ,

∑n
k=1 amkxk) and every 00m and 0n0 to the

respective constant morphism.

5. Partially ordered sets as categories

Let (X,≤) denote a set with a reflexive, transitive and antisymmetric relation.

Objects: x , x ∈ X.
Morphisms: if x 6≤ y then hom(x, y) = Ø; if x ≤ y then card

(
hom(x, y)

)
= 1. Thus

the existence of an arrow x→ y is equivalent to x ≤ y, and this arrow is unique.
Law of composition: if x → y and y → z are given, then x ≤ y and y ≤ z; thus
transitivity yields x ≤ z; i.e. there is a unique arrow x→ z which we define to be
(y → z) ◦ (x → y). Associativity of composition, where defined, is an immediate
consequence of the uniqueness of arrows.
Existence of the identities: if x is given, then reflexivity gives x ≤ x and thus a
unique arrow x→ x with the required properties.

This example, just as the preceding one, shows that categories need not be
made up of structured sets with structure preserving functions as morphisms.

6. Topological spaces TOP

Objects: topological spaces X, Y etc.
Morphisms: continuous functions f :X → Y . Usual notation for the set of mor-
phisms: TOP(X,Y ) = C(X,Y ).
Isomorphisms: homeomorphisms.

An important variation of this theme is the category of pointed spaces TOP0:

Objects: pointed spaces (X,x0) where X is a space and x0 ∈ X a base point.
Morphisms: base point preserving continuous functions.
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7. The homotopy category [TOP]

Objects: topological spaces; i.e. ob([TOP]) = ob(TOP).
Morphisms: we say that two functions f, g:X → Y between topological spaces
are homotopic, written f ∼ g, if there is a family {Ft | Ft:X → Y, t ∈ [a, b]},
a ≤ b in R of continuous functions such that Fa = f , Fb = g and that (x, t) 7→
Ft(x):X × [a, b]→ Y is continuous.

Exercise EA3.1. Homotopy is an equivalence relation on morph(TOP). It is a
congruence for composition, i.e. f1 ∼ f2 implies f1 ◦ e ∼ f2 ◦ e and g ◦ f1 ∼ g ◦ f2,
assuming the compositions are defined. ut

The equivalence class of f is denoted [f ]. For X
α→ Y

f→ Z we therefore define
unambiguously [f ] ∗ [α] = [f ◦ α]. We set idX = [idX ]. The required properties
for the identity and composition are clear. The usual notation for [TOP](X,Y ) is
[X,Y ].

Isomorphisms: homotopy equivalences.

Variation of the same theme: the pointed homotopy category [TOP0].
Two maps f, g: (X,x0) → (Y, y0) of pointed spaces are homotopic if f, g:X →

Y are homotopic via Ft such that Ft(x0) = y0 through the homotopy. Clearly,
[TOP0]

(
(X,x0), (Y, y0)

)
⊆ [TOP](X,Y ), and both sets are equal if in both X and

Y , given two points, there is a continuous self map mapping one to the other and
being homotopic to the identity. Special cases lead to a particular notation:

[(Sn, southpole), (X,x0)] = πn(X,x0).

If X is arcwise connected, πn(X,x0) = [Sn, X], and one writes πn(X).

We notice that the homotopy category illustrates the existence of categories
whose objects are structured sets (here: topological spaces), but whose morphisms
are not functions.

8. The path groupoid of a space

Let X be a topological space.

Objects: x, x ∈ X.
Morphisms: two curves γj : [aj , bj ] → X, j = 1, 2 from x = γ1(a1) = γ2(a2) to
y = γ1(b1) = γ2(b2) are equivalent if there is a monotonically increasing homeo-
morphism f : [a1, b1]→ [a2, b2] with γ1 = γ2 ◦f . This indeed defines an equivalence
relation. The equivalence class Γ = [γ] of a curve from x to y is called a path from
x to y, written Γ:x → y. Let Ω: y → z be a path from y to z. If Γ = [γ] and
Ω = [ω], then one can define a concatenation of curves ω#γ : [0, 1] → X from
x→ z and define Ω + Γ : x→ z by [ω#γ]. The resulting category Π(X) is called
the path category of X.

One defines, without difficulty, the concept of homotopy of paths. Accordingly,
one obtains the category of homotopy classes of paths on the set of points of X as
objects. It is, in fact, a groupoid (cf. [54]) called the path groupoid [π(X)] of X.
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Endomorphisms if X is arcwise connected: [Π(X)](x, x) = π1(X), the fundamental
group of X.

Exercise A3.2. Fill in the missing details of the example of the path groupoid.ut

9. The category of posets

Objects: posets (X,≤); short notation X.
Morphisms: order preserving maps f :X → Y . Usual notation [X → Y ].

10. The category of metric spaces and contractions

Objects: metric spaces (X, dX), short notation X.
Morphisms: contractions f :X → Y ; i.e. functions satisfying

dY
(
f(x1), f(x2)

)
≤ dX(x1, x2).

Isomorphisms: isometries.

11. The category BAN of Banach spaces

Objects: Banach spaces E.
Morphisms: bounded linear maps T :E → F . The usual notation is BAN(E,F ) =
L(E,F ).
Isomorphisms: invertible bounded operators; by the Open Mapping Theorem, (see
[94]) every bijective bounded operator is an isomorphism.
Endomorphisms: L(E), the set of bounded linear operators on E.

An important variation of this theme: the category BAN1 of Banach spaces
with linear contractions:

Objects: Banach spaces E (as before).
Morphisms: linear contractions T :E → F ; i.e. linear maps with ‖Tx‖ ≤ ‖x‖. The
sets BAN1(E,F ) = L1(E,F ) are the unit balls of the Banach spaces L(E,F ).
Isomorphisms: linear isometries.
Automorphisms in the case that E is a Hilbert space: unitary operators.
Endomorphisms: L1(E), the unit ball of L(E).

12. The category attached to a variety (equational class)

Objects: algebras
fj :X × · · ·×︸ ︷︷ ︸

nj times

X → X, j ∈ J with nj-ary operations nj ∈ N0, satisfying equations.

(Example: Monoids; J = {1, 2}, f1:G0 = ∗ → G, f(∗) = e (nullary operation),
f2:G × G → G, f2(g, h) = gh multiplication. Equations: eg = ge = g, g(hk) =
(gh)k.)
Morphisms: functions ϕ:X → Y with

fYj
(
ϕ(x1), . . . , ϕ(xnj )

)
= ϕ

(
fXj (x1, . . . , xnj )

)
for all j ∈ J . ut

We shall use the following definition in an informal way:
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Definition A3.4. A category C will be called set-based, if the objects in ob C
are sets with additional structure and the morphisms in morph C are functions
preserving structure. ut

One should be aware that the precision of this definition leaves much to be de-
sired since we appeal to consensus when we speak of “additional structure.” The
examples, however, illustrate what is meant. Clearly such categories as groups,
abelian groups, modules, topological spaces are set-based. Our formulation is not
invariant under “isomorphisms” of categories (which we have not defined yet any-
how). The category MK of matrices overK (see Example A3.3 (4)) is not set-based;
the category of all vector spaces Km, m ∈ N0 with all linear maps between them
is set-based; these two categories would have to be called “isomorphic” under any
reasonable concept of isomorphy of categories. The homotopy category (Example
A3.3 (7)) is not set-based due to the nature of its morphisms.

These informal discussions perhaps motivate an equivalent definition of the
concept of a category which does not appeal very closely to our intuition of set-
based categories.

Let us consider a category C. Let us call a morphism e ∈ morph C an identity
if it is a member of C(X,X) for some object and if e = idX . This is tantamount
to saying that e ◦ e is defined and that f ◦ e = f for each f ∈ morph C for which
f ◦ e is defined, and, likewise, that e ◦ g = g for each g ∈ morph C for which e ◦ g
is defined. Thus we have two functions

D,R: morph C → morph C

called domain and range projections such that for any morphism f :X → Y , the
morphism Df is the identity idX of the domain X of f and Rg is the identity idY
of the range Y of f . As is usual we write D2f = D(Df) and so on and quickly
observe

(1) D2 = D, R2 = R, DR = R, RD = D,

that is, as function under composition, the set {D,R} is a right zero semigroup of
two elements. We write C = morph C and define

C ×DR C = {(f, g) ∈ C × C | Df = Rg}.

Then we have a composition:

(2) (f, g) 7→ fg:C ×DR C → C

with fg = f ◦ g such that

(3)
(Df,Df), (Rf,Rf), (f,Df), (Rf, f) ∈ C ×DR C and

(Df)2 = Df, (Rf)2 = Rf, f(Df) = f, (Rf)f = f.

Clearly, a further consequence of Definition A3.1 is

(4)
(fg, h), (f, gh) ∈ C ×DR C and (fg)h = f(gh) whenever

(f, g), (g, h) ∈ C ×DR C.
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Also we record:

(5) (∀f ∈ C) {g ∈ C | Dg = Df and Rg = Rf} is a set.

Proposition A3.5. If C is a category, then for C = morph C there are two func-
tions D,R:C → C satisfying (1), . . . , (5).

Conversely, assume C is a class with two self-functions D and R satisfying
(1), . . . , (5). Then E = imD = imR is a well-defined class, and C =
(E, C(•, •), id, ◦) with C(e1, e2) = {f ∈ C | Df = e1 and Rf = e2} for all
(e1, e2) ∈ E2, ide = e for e ∈ E, and f ◦ g = fg for all (f, g) = C ×DR C is
a category with ob C = E, morph C = C.

Proof. Exercise EA3.4. ut

Exercise EA3.4. Prove Proposition A3.5. ut

The preceding proposition shows that there is a definition of categories which
is completely equivalent to Definition A3.1, and which is completely based on the
concept of morphism. This definition, apart from set-theoretical concerns, is in the
spirit of an algebraic structure: A category is a universal partial algebra with two
unary operations and one partial binary operation. The issue whether or not a
category is set-based does not arise here. A very good example fitting this second
formal definition is the category MK of K-matrices where the objects were an
artificial decoration to begin with.

It is instructive to realize a visualization of the new definition of a category.
Let us consider a square P = M ×M of a set M . If we identify the diagonal E =
{(x, x) | x ∈M} withM under x 7→ (x, x), then we can identify the two projections
d′, r′:P → M , d′(x, y) = x, r′(x, y) = y with two retractions d, r:M ×M → E,
d(x, y) = (x, x), r(x, y) = (y, y). Now picture a subset C ⊆ P containing E and let
D = d|C, R = r|C, and write C ×DR C = {(f, g) | f = (y, z), g = (x, y), f, g ∈ C}
and set fg = (x, z). Then C, D, and R satisfy conditions (1)–(5). Now imagine
for each pair (x, y) ∈ C a whole set C(x,y) and replace C by the union of these
sets, assuming (x, x) ∈ C(x,x). For f ∈ C(x,y) write Df = (x, x) and Rf = (y, y).
Now we have the raw material to visualize a C endowed with the structure of a
category. An instructive case is obtained by taking any subset N ⊆ R × R and
to try

(
R2 \N)×R with a composition obtained by restricting the multiplication

(y, z, f)(x, y, g) = (x, z, f + g).
We note that once the concept of a category C expressed through the data

D,R, and the associative partial multiplication m:C ×DR C → C is understood,
it would be no problem at all to ask, for instance, that C be a topological space
(or, for that matter, a smooth manifold) such that D, R, and m are continuous
(respectively, smooth). In this sense this definition opens up the possibility to
speak of topological categories, or smooth categories and so on. The latter case is
of considerable recent interest in the case of groupoids [244].

The more abstract formulation of a category in A3.5 illustrates very well the
fact that, sometimes, it is not clear how one would recover the particular nature
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of an object from the data of a category. Sometimes it is possible to recover at
least a portion of this structure, e.g. the underlying set: In the category S of
sets, the hom-set S({∗}, X) = X{∗} is in natural bijective correspondence with
X. In the category G of groups, the hom-set G(Z, G) = Hom(Z, G) is in bijective
correspondence with the underlying set of G, but that, certainly is all that can be
recovered. In the case of AB, in this regard, the situation is much better, but that
is the precise topic of Appendix 1.

Figure A3.1: Image of a category

Pointed Categories

As an exercise and because of their practical significance, let us consider the fol-
lowing concepts:

Definition A3.6. If C is a category then an object N is called
(i) initial if C(N,X) has exactly one element 0NX for all X ∈ obX,
(ii) terminal if C(X,N) has exactly one element 0XN for all X ∈ obX,

(iii) null or a null object if it is both initial and terminal. A category C is called
pointed if it has null objects. ut

If C is a pointed category and N a null object, then each hom-set C(X,Y )
contains a unique morphism 0 = 0XY :X → Y given by 0XY = 0NY ◦ 0XN .

0XY does not depend on N . Further 0f = f0 = 0 for all morphisms f and the
appropriate 0-morphisms.

There is no great harm in denoting the unique morphisms in the sets C(N,X),
respectively, C(X,N), by 0.

Exercise EA3.5. Verify the assertions made on pointed categories. ut

Typically ABR is pointed with any one-element module (vector space, abelian
group) as null objects. The categories S0 and TOP0 of pointed sets and pointed
spaces are pointed categories with singletons as null objects.
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Exercise EA3.6.
(i) Does S, the category of sets, have initial objects; does it have terminal ob-

jects? Does it have null objects?
(ii) If (X,≤) is a quasiordered set, what (if any) are the initial (terminal) objects?

Are there null objects? ut

Types of Morphisms

We know from all the set-based categories with which we are familiar that the
concept of an isomorphism is crucial. This is an entirely categorical idea.

In the category of sets it is important that we can speak of injective and sur-
jective functions. First we recall, for completeness, the concept of an isomorphism:

Definition A3.7. (a) If f :X → Y is a morphism in a category then it is called
an isomorphism if there is a g:Y → X with gf = idX and fg = idY ; i.e. if f
is invertible. Two objects X and Y are called isomorphic if there is an isomor-
phism f :X → Y . A morphism which is simultaneously an endomorphism and an
isomorphism is called an automorphism.

(b) A morphism f :X → Y is called a retraction (respectively, coretraction) if
there is a morphism g:Y → X such that fg = idY (respectively, gf = idX).

(c) An endomorphism p:X → X is a projection if p2 = p. ut

Obviously, the ideas of retractions and coretractions arise from “splitting” the
definition of an isomorphism. Indeed f is an isomorphism if and only if it is both
a retraction and a coretraction.

Compositions of isomorphisms are isomorphisms. If f is an isomorphism, then
its inverse f−1 is uniquely determined. If f :X → Y is a retraction with fg = idY ,
then p = gf is a projection of X.

Exercise EA3.7. Prove these assertions. ut

Examples A3.8. (1) Let f :A → B1 denote a morphism of R-modules. Then f
is a retraction if and only if there is a submodule B of A such that A = B ⊕ ker f
and B ∼= B1, if and only if there is a submodule B of A such that f |B:B → B1

is an isomorphism. If R is a field K (i.e. in the category VK of K-vector spaces)
every surjective morphism is a retraction. The quotient morphism Z→ Z/nZ for
n 6= ±1 is never a retraction in AB.

(2) A morphism f :G → H1 of groups (topological groups) is a retraction if
and only if there is a closed subgroup H such that with N = ker f the map
(n, h) 7→ nh:N oα H → G is an isomorphism of (topological) groups. That is,
G is a semidirect product of the kernel of f and a complementary subgroup.
(The multiplication on the semidirect product N oαH is given by (n, h)(n′, h′) =
(n
(
α(h)(n′)

)
, hh′) with α(h)(n) = hnh−1; also, α:H → Aut(N) is a morphism of

groups. In the case of topological groups, the definition of a group topology on
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Aut(N) is somewhat delicate, but this does not affect the inherent simplicity of
the definition of the semidirect product; after all, this information on α is just an
additional piece of information.)

(3) If f :X → Y1 is a continuous function between topological spaces, then f is
a retraction if and only if there is a continuous self-map p:X → X with p2 = p;
i.e. a projection, with image Y such that f |Y :Y → Y1 is a homeomorphism and
f = (f |Y ) ◦ p. Thus a retraction is equivalent to a projection and a projection is
a continuous self map p of X onto a subspace Y such that p(y) = y for all y ∈ Y .
Such maps are called retractions in the classical terminology of topology.

A space Y1 is then called a retract of a spaceX if there is a retraction f :X → Y1.
(4) In the homotopy category [TOP] a retraction [f ]:X → Y is called a homo-

topy retraction and Y is called a homotopy retract of X. If [f ] is an isomorphism,
then f (or [f ]) is called a homotopy equivalence. Two isomorphic spaces in this
category are called homotopy equivalent. ut

Exercise EA3.8. Assume that one is given that the n−1-dimensional unit sphere
Sn−1 is not a retract of the n-dimensional unit ball Bn. With this information at
hand Brouwer’s Fixed Point Theorem [92] is quite elementary. ut

Exercise EA3.9. All initial (terminal, null) objects are isomorphic. ut

Exercise EA3.10. (i) If C is a category and A an arbitrary class of objects in C,
then this class together with all morphisms between them is again a category. It is
called the full subcategory of the objects in A, and is often (and unambiguously)
denoted A.

(ii) Isomorphy is an equivalence relation on ob C. Assume that one is allowed a
“Big Axiom of Choice” and that one can select in each isomorphy class one object.
Let C∼= denote the full subcategory of these objects, it is called a skeleton of C.

In the category VK(fin) of finite dimensional vector spaces the full subcategory
of all objects Kn, n = 0, 1, 2, . . . is a skeleton of VK(fin). If one lets n range through
the class of all cardinal numbers then the full subcategory of all vector spaces K(n)

of direct sums of n copies of K and all linear maps between them is a skeleton of
VK . ut

Exercise EA3.11. Let Fp denote the category of fields of characteristic p and all
morphisms of rings between them. Are there initial, terminal, null objects? ut

In the category of sets, functions f :X → Y are classified according as they are
injective, surjective or both. Injectivity, as everyone knows means that f(x) = f(y)
implies x = y. Trying to express this in terms of arrows we readily see that for any
two functions a, b:U → X with fa = fb we have a = b. Conversely, taking for U
a one element set, and for a and b the functions taking this one element to x and
y respectively, we recognize that this condition implies injectivity.
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Definition A3.9. A morphism f :X → Y in a category is called a monomorphism
or monic if the relation fa = fb for any two morphisms a, b:R→ X in the category
for any object R implies a = b. ut

We have just seen that in the category S of sets, an injective morphism is a
monomorphism. In all set-based categories, injective morphisms are always mono-
morphisms. The converse is frequently, but not always, true as we shall see at
once:

Examples A3.10. 1) Let f :A → B be a morphism in ABR. Set K = ker f
and consider the inclusion morphism a = inc:K → A and the zero morphism
b = 0:K → A. Then fa = fb. If f is a monomorphism, this implies a = b, that is
inc = 0, which means K = {0}. This is equivalent to the injectivity of f . Thus, in
ABR the monics are exactly the injective morphisms.

2) In the category of groups, topological groups, or Hausdorff topological groups,
the same argument shows that monomorphisms are injective morphisms.

3) Let C denote the category of connected Hausdorff topological groups. If
f :G→ H is a monic in this category, then in general the kernel ker f is not con-
nected and is, therefore, not an object in the category. However, K = (ker f)0, the
identity component of the kernel, is such an object and we can consider a, b:K → G
with a = inc and b = 0. Then fa = fb, and thus again a = b and (ker f)0 = {1}.
In other words, ker f is totally disconnected, i.e. has singleton connected compo-
nents. Conversely, if ker f is totally disconnected and a, b:A → G are morphisms
such that fa = fb, then we consider the continuous function ϕ:A → G given by
ϕ(x) = a(x)−1b(x). Then ϕ(1) = 1, and ϕ(A) is connected as a continuous image
of a connected space. Hence ϕ(A) ⊆ (ker f)0 = {1}, and this means a = b. Thus
in the category of all connected Hausdorff topological groups and continuous mor-
phisms, a monomorphism is a continuous homomorphism with totally disconnected
kernel. ut

From this example we learn, in particular, that even in set-based categories,
monomorphisms need not be injective.

The dual concept of that of a monomorphism is that of an epimorphism.

Definition A3.11. A morphism f :X → Y is an epimorphism or epic if the
relation af = bf for any two morphisms a, b:Y → C and an arbitrary object C
implies a = b. ut

Of course, epimorphisms should model surjectivity of functions. We have seen
that in set-based categories, monomorphisms are usually, but not always, injective.

Remark A3.12. In any set based category, surjective morphisms are epimor-
phisms.
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Proof. Let f :X → Y denote a surjective morphism in a set-based category. If
α, β:Y → Z are morphisms with αf = βf , let y ∈ Y be arbitrary. Since f is
surjective, there is an x ∈ X with y = f(x). Then α(y) = α

(
f(x)

)
= β

(
f(x)

)
=

β(y), and thus α = β. ut

Remark A3.13. (i) If fg is a monic, then g is monic.
(ii) If fg is epic, then f is epic.
(iii) If fg = 1 and f is monic or g is epic, then f and g are inverse isomorphisms.

In other words, a monic retraction and an epic coretraction are both isomorphisms.

Proof. Exercise EA3.12. ut

Exercise EA3.12. Prove A3.13. ut

Now the question arises, whether in a set-based category, epimorphisms are
surjective. This is a question which is frequently much deeper than the question
when are monomorphisms injective. In fact it leads very quickly to mathematical
difficulties which appear insurmountable.

Examples A3.14. (i) In the category of sets, every epimorphism is surjective.
(ii) In the category TOP of topological spaces, every epimorphism is surjective.
(iii) In the category TOP2 of Hausdorff spaces and continuous maps, a function

f :X → Y is an epimorphism if and only if it has a dense image.

Proof. (i) Let f :X → Y be an epimorphism. Assume that f is not surjective. Let
R denote the equivalence relation on Y whose cosets are the two (non-empty!) sets
f(X) and Y \ f(X). Let α:Y → Y/R denote the quotient map and β:Y → Y/R
the constant function with value f(X). Then αf and βf are both the constant
functions with value f(X) and therefore agree. Hence α = β which is inconsistent
with the fact that α is not constant.

(ii) Use the same technique (Exercise EA3.13).
(iii) Unfortunately, this technique leads nowhere in the category TOP2 of Haus-

dorff spaces and continuous maps. We need another idea:
If f(X) = Y , then all pairs of functions α, β:Y → Z agreeing on the dense set

f(X) must agree since Z is Hausdorff. (Consider the continuous function ϕ:Y →
Z × Z given by ϕ(y) =

(
α(y), β(y)

)
. Since the diagonal ∆Z of Z × Z is closed on

account of the Hausdorff separation in Z, the inverse image ϕ−1(∆Z) is closed in
Y and therefore contains f(X) = Y . Thus α = β.)

Conversely, assume that f :X → Y is an epimorphism. We want to show that
f(X) = Y . Let f = jf1 where f1:X → f(X) is the corestriction of f and
j: f(X) → Y is the inclusion. Then j is an epic by Remark A3.13(ii). It is there-
fore no loss in generality if we assume that X is a closed subspace of Y and f
is the inclusion. Then we consider Z1 = Y × {0, 1} and α1, β1:Y → Z1 given by
α1(y) = (y, 0) and β1(y) = (y, 1). Now we define on Z1 an equivalence relation
R where (y1, s1)R (y2, s2) if y1 = y2 ∈ X. We set Z = Z1/R and let q:Z1 → Z
denote the quotient map. If R(y1, s1) 6= R(y2, s2) then y1 6= y2 or y1 = y2 /∈ X and
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s1 6= s2. In the first case find disjoint open neighborhoods Uj of yj , j = 1, 2; then
q(Uj) are disjoint open neighborhoods of R(yj , sj). In the second case let U be an
open neighborhood of y1 = y2 with U ∩X = Ø. Then q(U × {0}) and q(U × {1})
are disjoint open neighborhoods of R(y1, s1), and R(y2, s2), respectively. Hence Z
is a Hausdorff space, and α = q ◦α1 and β = q ◦β1 are continuous functions which
agree on X. Since the inclusion X → Y is an epimorphism, α = β follows. But
this is readily seen to imply X = Y . ut

Exercise EA3.13. Prove the assertion in Example A3.14(ii). ut

Notice that the technique of the previous examples is suitable for treating epics
in the category of (pointed) sets, (pointed) topological spaces, (pointed) regular
spaces.

Remark A3.15. In the category of R-modules every epimorphism is surjective.

Proof. Let f :A→ B be an epimorphism. Let α:B → B/f(A) denote the quotient
morphism and β:B → B/f(A) the constant morphism. Then αf = βf . It follows
that α = β and thus B/f(A) must be singleton, i.e. f(A) = B. ut

The quotient B/f(A) is called the cokernel of f .

Exercise EA3.14. Prove the following assertion.

In the category of Hausdorff abelian topological groups a morphism is an epimor-
phism if and only if it has a dense image. ut

Recall for the following that N0 = {0, 1, . . .} and that n + N is an additive
semigroup for all non-negative integers n.

Example A3.16. The inclusion morphism f :X → Z for any additive subsemi-
group X of Z which generates Z as a group is an epimorphism in the category of
semigroups. In particular, the inclusion N→ Z is an epimorphism.

Proof. Let α, β:Z → S be morphisms of semigroups with αf = βf . Then G =
α(Z) and H = β(Z) are subgroups of the semigroup S as homomorphic images
of a group. Their intersection G ∩ H contains α(X) = β(X); in particular, it is
not empty. Let g be an element in it and let e denote the identity of G. Denote
the largest subgroup containing e by H(e); indeed this is the set of all elements
s ∈ S for which there is an s′ with es′ = s′e = s′ and ss′ = s′s = e. Then
G ⊆ H(e). We claim that the identity u of H agrees with e. Firstly, let g′ denote
the inverse of g in G. Then eu = g′gu = g′g = e since gu = g as g ∈ H. Likewise
ue = ugg′ = gg′ = e. But by symmetry, we also have ue = u = eu. This proves
the claim. Hence G and H are subgroups of the group H(e). However, since Z, as
a group, is generated by X, both groups G and H are generated (as groups) by
G∩H. Hence G = H. Let α′, β′:Z→ G denote the corestrictions of α, β to their
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common image. As semigroup morphisms between groups they are morphisms of
groups, and they agree on a group generating set; hence they agree. But then
α = β. ut

Thus epimorphisms of semigroups are not surjective by a long way.

Exercise EA3.15. Consider the semigroup S consisting of 5 elements e, f , x, y
and 0 such that e2 = e, f2 = f , ex = x = xf , fy = y = ye, xy = e, yx = f ,
and such that all other products are 0. Prove that the inclusion of the semigroup
{e, f, x, 0} into S is an epimorphism. ut

This observation shows, that epimorphisms in the category of finite semigroups
are not surjective. The preceding Example A3.16 showed also that epimorphisms
in the category of commutative semigroups are not surjective.

It is not trivial to show that in the category of finite commutative semigroups,
epimorphisms are surjective (Isbell [212]).

What is the situation in the category of groups? Here as in similar situations in
other categories, the methods of proof are more interesting than the actual results.

Exercise EA3.16. In the category of groups, every epimorphism is surjective.

[Hint. Let G denote a group, H an epimorphically embedded subgroup. We have
to show that H = G; this clearly suffices.

Consider a G-module E. Form the semidirect product E o G with multiplica-
tion (x, g)(y, h) = (x + g·y, gh). Let f :G → E denote a function. Then the set
{(f(g), g) | g ∈ G} is a subgroup if and only if f(gg′) = f(g) + g·f(g′). Such
functions are called 1-cocycles. Assume that H is a proper subgroup of G. If we
succeed in finding a non-constant cocycle which is 0 on all elements of H, then
the two morphisms g 7→ (0, g), (f(g), g):G→ EoG agree on H, but are different.
Thus H cannot be epimorphically embedded.

One source of cocycles are the so-called coboundaries f defined by f(g) =
−m + g·m for some m ∈ E. Indeed, f(gg′) = −m + gg′·m = (−m + g·m) +
g·(−m + g′·m) = f(g) + g·f(g′). Therefore, we are done if we find an element
m ∈ E such that H·m = {m} and that there is some g with g·m 6= m.

We take an arbitrary abelian group A, e.g. A = Z(p) for some p 6= 1 and take
E = AG with g·ϕ(g′) = ϕ(g′g). If H 6= G then we find a function m:G→ A which
is constant on the cosets gH, g ∈ G but satisfies m(1) 6= m(g0) for some g0 /∈ H.
Then h·m(g′) = m(g′h) = m(g′), but g0·m(1) = m(g0) 6= m(1).] ut

We notice that this proof shows us that epimorphisms in the category of all
finite groups (or, to give another example, the category of all finite p-groups)
are surjective. Observation A3.16 is not a trivial result. Notice under which cir-
cumstances it can be used to show that in some preassigned category of groups,
epimorphisms are surjective: We need, in the category in question, a G-module E,
i.e. an abelian group object E in the category and an automorphic group action
G × E → E such that (1) the semidirect product E o G exists in the category,
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(2) there is a fixed element m ∈ E for H which is not fixed under all of G. It is a
good exercise to try out whether this method has a chance to work for, say, Haus-
dorff topological groups. (Warning: It does not work!) Also, the method of proof
gives additional information which other proofs do not yield. We can in fact choose
the function m:G→ A in the proof in such a fashion that (∀g ∈ G) m(gh) = m(g)
if and only if h ∈ H. Then we obtain the following (sharper) result.

Given a subgroup H of a group G we find a group S containing G and another
isomorphic copy G2 of G in such a fashion that G ∩G2 = H.

The method of proof presented here, however, is of no help in proving that
epimorphisms of compact groups are surjective.

Exercise EA3.17 (Poguntke [294]). Epimorphisms of compact groups are surjec-
tive.

[Hint. It suffices again to show that an epimorphically embedded closed subgroup
of a compact group is the whole group. Thus consider a closed subgroup H of a
compact group G such that the inclusion H → G is an epimorphism.

Claim 1. Every irreducible G-module is an irreducible H-module.
Proof of Claim 1. Let E denote an irreducible G-module over C. We may

assume that E is a unitary module (Weyl’s Trick 2.10). By compactness of H,
each H-submodule is an orthogonal direct summand. If E1 ⊕E2 is an orthogonal
direct sum of H-submodules and pj :E → E is the projection onto Ej , then the
function ϕ:E → E given by ϕ(v) = p1(v) − p2(v) is a unitary automorphism
of the vector space E with precise fixed point set E1. If h ∈ H, then ϕ(h·v) =
p1(h·v) − p2(h·v) = h·p1(v) − h·p2(v) since both projections are H-equivariant;
and this last element equals h·ϕ(v) by the linearity of the action. Hence ϕ is H-
equivariant, i.e. an H-module automorphism. Let π:G→ U(E) denote the unitary
representation associated with the G-module E. This map as well as the map
g 7→ ϕπ(g)ϕ−1:G→ U(E) are morphisms of compact groups. Now π(h)ϕ = ϕπ(h),
i.e. π(h) = ϕπ(h)ϕ−1 for all h ∈ H. Since the inclusion H → G is an epimorphism,
we conclude π(g) = ϕπ(g)ϕ−1 for all g ∈ G. Thus ϕ is a G-module automorphism.
Since E is an irreducible G-module, we conclude ϕ = c· idE for some c ∈ C by
Schur’s Lemma. But the definition of ϕ is compatible with this only if c = 1 and
E2 = {0}. Hence E is an irreducible H-module as asserted.

Claim 2. If E is an arbitrary feebly complete G-module (see 3.29; for instance,
a Banach G-module will do), then the fixed point modules Efix(G) and Efix(H)
and the effective submodules Eeff(G) and Eeff(H) with respect to H and G agree
(see 3.34).

Proof of Claim 2. By the Big Peter–Weyl Theorem 3.51, the algebraic sum of
all nontrivial irreducible G-modules (resp., H-modules) is dense in Eeff(G) (resp.,
Eeff(H)). By Claim 1, we therefore have Eeff(G) ⊆ Eeff(H). Trivially, we have
Eeff(H) ⊆ Eeff(G). Now we have canonical direct sum decompositions

E = Efix(G)⊕ Eeff(G) = Efix(H)⊕ Eeff(G).

The asserted equalities follow.
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Claim 3. The projection operators PG and PH given by PGv =
∫
G
g·v dg and

PHv =
∫
H
h·v dh with the respective normalized Haar integrals agree. This claim

follows at once from Claim 2, since kerPG = Eeff(G) and imPG = Efix(G); the
analogous relations hold for H in place of G.

Now we apply Claim 3 to the module E = C(G,C). Then PGf =
∫
G
f(g) dg and

PHf =
∫
H
f(h) dh. If H 6= G, then we find a continuous function f :G→ [0, 1] with

f(H) = {0} and f(g) = 1 for some g ∈ G. Then 0 =
∫
H
f(h) dh =

∫
G
f(g) dg > 0,

a contradiction. Hence H = G.] ut

For a long time, the following problem was unsettled (sometimes referred to
as Hofmann’s Epimorphism Problem for Hausdorff Groups). Prove the following
assertion or refute it with a counterexample: If the inclusion map of a closed
subgroup H into a Hausdorff topological group G is an epimorphism in the category
of Hausdorff topological groups, then H = G. ut

Eventually a counterexample was found:

Exercise EA3.18. Let G denote the group of all self-homeomorphisms of S1 =
{z ∈ C | |z| = 1} and H the closed proper subgroup of all f ∈ G with f(1) = 1.
Then the inclusion map H → G is an epimorphism.

(See Uspenskĭı [357, 358].) ut

After Uspenskĭı’s Theorem was established, people thought that similar answers
would be found for categories not too remote from this one. Vladimir Pestov asked
whether in the category of C∗-algebras and *-preserving algebra morphisms there
exist examples showing that epimorphisms were not necessarily surjective.

Exercise EA3.19 (Hofmann and Neeb [200]). In the category of C∗-algebras all
epimorphisms are surjective. ut

Let us see some really simple exercises:
(i) Any retraction is an epic, every coretraction is a monic.
(ii) Any isomorphism is both a monic and an epic. The converse is not true in

general.
In the category of Hausdorff topological groups, the function f :Rd → R, Rd =

additive group of real numbers with the discrete topology, f(r) = r, is bijective
and thus is both a monic and an epic. It is not an isomorphism.

In the category ABR a morphism is an isomorphism if it is both a monic and
an epic.

Functors

Functors are structure preserving maps between categories, and natural trans-
formations are structure preserving “maps” between functors. One prototype of
functor is a functor forgetting structure. For instance, if we consider the category
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Sem of semigroups and semigroup morphisms and the category S of sets, then
we can assign to any semigroup S the underlying set U(S) and to any morphism
f :S → S′ of semigroups the underlying function U(f):U(S) → U(S′). Then we
certainly assign to any identity morphism idS :S → S the identity function of
U(S), that is, U(idS) = idU(S). If f ′′:S′ → S′′ and f ′:S → S′ are semigroup
morphisms, clearly we have U(f ′′f ′) = U(f ′′)U(f ′).

Such an assignment we shall call a functor.

Definition A3.17. A functor F : C1 → C2 of a category C1 to a category C2 is a
function ob C1 → ob C2 which assigns to an object X of C1 an object FX of C2 and
a function morph C1 → morph C2 which maps C1(X,Y ) into C2(FX,FY ) in such
a fashion that the following conditions are satisfied:

(i) F (idX) = idFX for all objects X in C1.
(ii) F (fg) = (Ff)(Fg) whenever the domain of f equals the range of g. ut

Remark A3.18. Assume that Cj , for each of j = 1, 2, is a class endowed with
functions Dj , Rj :Cj → Cj and compositions Cj ×DjRj Cj → Cj , both satisfying
conditions 1.4.(1), (3), (4), and (5), defining categories Cj in the sense of Propo-
sition A3.5. Then a function F :C1 → C2 is a functor if and only if FD1 = D2F
and FR1 = R2F and F (fg) = (Ff)(Fg) for all (f, g) ∈ C1 ×D1R1 C1.

Proof. Exercise EA3.20. ut

Exercise EA3.20. Prove A3.18. ut

We shall record a sample of functors to familiarize ourselves with the concept.

Example A3.19 (Grounding functors, forgetful functors). Assume that C is a
set-based category. Then the assignment U : C → S which maps an object X of
C to the underlying set U(X), and which maps a morphism f :X → Y to the
underlying function U(f):U(X) → U(Y ) is a functor. It is called the underlying,
grounding or forgetful functor (it forgets the structure!).

There are other forgetful functors which forget a portion of the structure:
Let TOPG denote the category of (Hausdorff) topological groups and contin-

uous morphisms, TOP0 the category of pointed (Hausdorff) topological spaces
and G the category of groups. Consider the assignment V :TOPG→ TOP0 which
assigns to a topological group G the underlying space with the identity as base
point, and which assigns to a morphism of topological groups the underlying base
point preserving continuous function. Then V is a functor, as is the assignment
W :TOPG → G which maps G to the underlying (abstract) group and each mor-
phism of topological groups to the underlying homomorphism of groups. There are
grounding functors TOP0 → S0 → S and G → S0 → S. There is no limit to the
imagination in observing grounding functors. ut

Typically, the grounding functors have functors in the reverse direction.
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Example A3.20 (Free functors. Cf. Appendix 1, A1.4ff.). Let R denote a ring
and ABR the category of R-modules and R-module morphisms. If X is a set we
consider the R-module R(X) ⊆ RX of all functions f :X → R with finite support.
For x ∈ X, we define ex:X → R by ex(y) = δxy (the Kronecker-Delta). Then every
element f ∈ R(X) may be written as a linear combination f =

∑
x∈X f(x)·ex. We

write FX = R(X) and identify an element x ∈ X with the function ex:X → R.
Then the elements of FX are the linear combinations

∑
x∈X rx·x with x 7→ rx in

R(X). If ϕ:X → Y is a function, then the prescription Fϕ:FX → FY given by
(Fϕ)(

∑
x∈X rx·x) =

∑
x∈X rx.ϕ(x) makes F :S→ ABR into a functor.

The identification of x and ex may seem to be too daring. We can say at any
rate that we have a function x 7→ ex:X → FX. If we insist on writing arrows for
morphisms in well-defined categories, this function is not an arrow, since X is an
object of S and FX is an object of ABR. This is easily remedied with the help of
the grounding functor U :ABR → S. We can now write

ηX :X → U(FX), ηX(x) = ex.

The module FX is called the free module over X, the function ηX the natural
embedding of X, and F is called the free functor from S to ABR. Of course, the
entire construction specializes to the case AB of abelian groups (R = Z) and the
case VK of K-vector spaces (R = K a field).

Proposition A3.21 (Universal Property of Free Functors). Every function f :
X → A where X is a set and A an R-module extends uniquely to an R-module
homomorphism f ′:FX → A given by f ′(

∑
x∈X rx·x) =

∑
x∈X rx·f(x). More

formally: Let U :ABR → S denote the grounding functor. Then the free functor
F :S→ ABR has the following universal property.

Given any function f :X → U(A) (where A is any R-module), there is a unique
morphism of R-modules f ′:FX → A such that f = (Uf ′) ◦ ηX .

S ABR

X
ηX−−−−→ UFX FX

f

y yUf ′ yf ′
UA −−−−→

idUA
UA A

Proof. Exercise EA3.21. ut

Exercise EA3.21. Prove A3.21. ut

Let us notice that the universal property gives us a bijection

f 7→ f ′:S(X,UA)→ ABR(FX,A).

In terms of more traditional algebra, one could write this in fact as an isomorphism

AX ∼= HomR(FX,A)
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of abelian groups (and indeed of R-modules if R is commutative). The free functor
allows the representation of a function module AX as a Hom-module.

Many functors arise from identity functors of a category through the selection
of canonically defined subobjects.

Example A3.22 (Subfunctors). Consider the category ABR of R-modules for any
integral domain R. (Again: For R = Z we obtain abelian groups, for R a field K
we obtain K-vector spaces!) For each R-module A we select a submodule TA =
{a ∈ A | (∃r ∈ R \ {0}) r·a = 0}, the so-called torsion submodule (cf. Appendix 1,
A1.16ff.). If f :A→ B is a morphism of R-modules, then f(TA) ⊆ TB. Hence the
restriction and corestriction Tf :TA→ TB is well-defined. If torABR denotes the
full subcategory of torsion modules over R, then T :ABR → torABR is a functor.
Of course, there is an inclusion functor I: torABR → ABR.

This pair of functors also has a close connection. Firstly, for each module A
there is an inclusion morphism εA: ITA → A of the submodule TA into A, but
in as much as TA is in the other category of torsion modules, we should write
ITA when we refer to the morphism εA in the category ABR. Now assume that
B is any torsion module, and that we have a morphism f : IB → A in ABR. Then
f(B) is a torsion module and a submodule of A. Hence f(B) ⊆ TA. We can
consider the corestriction f ′:B → TA of f and then note that this f ′ is a unique
torABR-morphism such that f = εA ◦ If ′.

torABR ABR

TA ITA
εA−−−−→ A

f ′
x xIf ′ xf
B IB −−−−→

idIB
IB

The function f 7→ f ′:ABR(IB,A) → torABR(B, TA) implements an isomor-
phism of sets—and indeed R-modules.

It may appear that we have chosen an awfully roundabout way of saying that
every homomorphism from an abelian torsion group B into an abelian group A
factors through the torsion subgroup TA of A. However, in doing so we have
discovered a striking parallel to the set-up of the free functors in Proposition A3.21.
There we had an isomorphism

S(X,UA) ∼= ABR(FX,A).

Here we have an isomorphism

torABR(B, TA) ∼= ABR(IB,A).

This cannot be an accident. We have to discover why. Note, in passing, that for R
a field we have TA = {0}. Vector spaces simply do not have a torsion theory. All
vector spaces are free, as we have seen.

The previous example arose from picking subobjects in a natural way. Now we
attempt the same for quotient objects in set-based categories.
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Example A3.23. (Quotient functors). (a) For an R-module A in ABR we form
the quotient module FA = A/TA. This module is torsion-free; i.e. T (FA) = {0}.

Any morphism f :A → B induces Tf :TA → TB, and thus a morphism
Ff :FA→ FB given by (Ff)(a+TA) = f(a)+TB. If tfrABR denotes the category
of torsion-free R-modules, then F :ABR → tfrABR is a functor. Of course, there
is an inclusion functor U : tfrABR → ABR. For every module, let ηA:A → UFA
denote the quotient homomorphism. Every morphism f :A → UB from A into
a torsion free module B is annihilated on all torsion elements. Hence there is a
unique morphism f ′:FA→ B such that f = (Uf ′)◦ηA. The function f ′ 7→ Uf ′◦ηA
implements an isomorphism

tfrABR(FA,B) ∼= ABR(A,UB).

(b) For a topological space X let RX be the equivalence relation which asso-
ciates with a point x the equivalence class RX(x) which is the intersection of all
open-closed (“clopen”) neighborhoods of x. Then the quotient space Y = X/RX
is RY -trivial; i.e. RY (y) = {y} for all y ∈ Y . This is a consequence of the fact that
every open closed subset of X is RX -saturated, i.e., is a union of RX -cosets. If we
set FX = X/RX , then F defines a functor TOP→ TOP> into the full subcategory
of RX -trivial spaces X. The inclusion functor TOP> → TOP is denoted U .

Every continuous function f :X → UY into an RY -trivial space Y equal-
izes RX -equivalent points, hence factors through the natural quotient morphism
ηX :X → UFX, i.e. there is a unique continuous map f ′:FX → Y such that
f = (Uf ′) ◦ ηX . Again

TOP>(FX, Y ) ∼= TOP(X,UY ). ut

The RX -classes are called the quasicomponents of X. Every connected compo-
nent is contained in a quasicomponent. The converse may not be true. However,
this is true in the category of compact spaces. In this category a space X is RX -
trivial if and only if X is totally disconnected, and in general, for a compact space
X, the space FX is the space of connected components.

Exercise EA3.23. Show that a similar procedure works for topological groups.ut

Example A3.24 (Hom-functors). (a) If A ∈ ob(S), then we define a functor
H:S→ S by H(X) = S(A,X) = XA for all objects X ∈ ob(S) and by H(f):XA →
Y A, (Hf)(ϕ) = f ◦ ϕ:A→ Y for f :X → Y and ϕ ∈ XA.

A
idA−−−−→ A

ϕ

y y(Hf)(ϕ)

X
f−−−−→ Y.

The functor H is also called a covariant hom-functor.

Let us also define a functor P :S→ S by P (X) = X×A on objects and Pf :X×
A → Y × A by (Pf)(x, a) = (f(x), a). The verification that our prescriptions are
functors is straightforward.
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Now observe that we have a morphism ηX :X → (X ×A)A = HP (X) given by
ηX(x)(a) = (x, a). If f :X → Y A is a function then we have a function f ′:X×A→
Y given by f ′(x, a) = f(x)(a). This function satisfies f(x)(a) = f ′(x, a), and(
H(f ′) ◦ ηX

)
(x) = H(f ′)

(
ηX(x)

)
= f ′ ◦ ηX(x), whence

(
H(f ′) ◦ ηX

)
(x)(a) =

f ′
(
ηX(x)(a)

)
= f ′(x, a) = f(x)(a). Thus f(x) =

(
H(f ′) ◦ ηX

)
(x) and thus f =

H(f ′) ◦ ηX .

S S

X
ηX−−−−→ HPX PX

∀f
y yHf ′ y∃!f ′
HY −−−−→

idHY
HY Y.

In this diagram and in all following ones of an analogous type, the symbols ∃!f ′
means that there exists a unique morphism f ′ such that the rectangle on the left
commutes. The function f 7→ f ′:S(X,HY )→ S(PX, Y ) is a bijection inverted by
g 7→ (Hg) ◦ ηX . In other words,

S(X,Y A) ∼= S(X ×A, Y ).

Sometimes this isomorphism, which can also be written in the form

Y X×A ∼=
(
Y A)X

is called the exponential law for the hom-functor. Of course this exponential law
shows the same formal relationship between the functors H and P which we have
seen before.

Exponential laws are more prevalent than one thinks.
(b) Let R be a commutative ring (such as Z or a field) and M = ABR the

category of R-modules. For a fixed R-module A, the set M(A,X) of all module
homomorphisms f :A→ X is a submodule of HX, the module XA of all functions
f :A→ X with the pointwise operations. If f :X → Y is a module homomorphism,
then we obtain a module homomorphism Hf :HX → HY via (Hf)(ϕ) = f ◦ϕ as
in example (a) above. In this fashion we obtain a self-functor H:M→M.

On the other hand we have a self-functor T :M → M given by TX =X ⊗R A
on objects and by the module morphisms Tf :TX → TY which is uniquely char-
acterized by the condition (Tf)(x⊗ a) = f(x)⊗ a. (Cf. Appendix 1, A1.44ff.)For
each X ∈ obM we set ηX :X → HT (X), ηX(x)(a) = x⊗ a. Then every morphism
f :X → HY yields a unique f ′:TX → Y such that f = (Hf ′) ◦ ηX , namely, the
one given through f ′(x⊗ a) = f(x)(a).

M M

X
ηX−−−−→ M(A,X ⊗A) X ⊗A

∀f
y yHf ′ y∃!f ′

M(A, Y ) −−−−→
idM(A,Y )

M(A, Y ) Y.
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As before, we obtain an isomorphism

M(X ⊗A, Y ) ∼= M
(
X,M(A, Y )

)
,

where M(A, Y ) = HY is understood to carry the natural R-module structure.
(c) If H is the category of Hausdorff topological spaces, then the set H(K,Y )

supports a Hausdorff topology, namely, the compact-open topology, making it into
a Hausdorff space C(K,Y ). If K is locally compact and X and Y are arbitrary
spaces the formalism indicated before provides an isomorphism of sets

H
(
X,C(K,Y )

) ∼= H(X ×K,Y ),

and indeed a homeomorphism

C
(
X,C(K,Y )

) ∼= C(X ×K,Y ).

(d) There is a version of this formalism for the category H0 of pointed Hausdorff
spaces. The set H0(K,Y ) of base point preserving maps from a locally compact
pointed space K to Y becomes a Hausdorff space C0(K,Y ) with the compact open
topology. If we set X××K = (X×K)/

(
(X×{k0})∪{x0}×K

)
, the quotient space

obtained from X ×K by collapsing the subspace
(
(X × {k0}) ∪ {x0} ×K

)
to a

point, and if we define ηX :X → C0(K,X ××K) by ηX(x)(k) = [x, k], the class of
(x, k) in the quotient space, then for every morphism f ∈ H0

(
X,C0(K,Y )

)
there

is a unique f ′:X ×× K → Y with f = C0(K, f ′) ◦ ηX , namely the one given by
f ′([x, k]) = f(x)(k).

H0 H0

X
ηX−−−−→ H0(K,X ××K) X ××K

∀f
y yH0(K,f ′)

y∃!f ′
H0(K,Y ) −−−−→

id
H0(K,Y ) Y.

In particular,
C0(X ××K,Y ) ∼= C0

(
X,C0(K,Y )

)
:

But note also that, ifX is locally compact, these same spaces are homeomorphic
to the following

C0(K ××X,Y ) ∼= C0

(
K,C0(X,Y )

)
.

If K = S1 (with a base point), then there are special names in use:

Ω(Y ) = C0(S1, Y ) = loop space of Y ,
Σ(X) = X ×× S1 = suspension of X.

With this notation we have at once

H0 H0

X
ηX−−−−→ ΩΣ(X) ΣX

∀f
y yΩ(f ′)

y∃!f ′
ΩY −−−−→

id
ΩY Y,
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and

C0(ΣX,Y ) ∼= C0(X,ΩY ).

If X is locally compact, we also have

C0(ΣX,Y ) ∼= C0

(
S1, C0(X,Y )

)
= Ω

(
C0(X,Y )

)
.

Passage to the set of arc components of C0(A,B) yields [A,B], the hom-set in
the homotopy category of pointed spaces, and thus we have at once

[ΣX,Y ] ∼= [X,ΩY ],

and if X is also locally compact, then this set is the set
[
Ω
(
C0(X,Y )

)]
of arc com-

ponents of Ω
(
C0(X,Y )

)
. Note that π1(Z) = [Ω(Z)], whence [ΣX,Y ] ∼= [X,ΩY ]

∼= π1

(
C0(X,Y )

)
.

Very frequently, functors “reverse the direction of arrows.” For a category A
we let Aop denote the opposite category which has the same objects but for which
Aop(A,B) = A(B,A) and the composition is given by f ◦op g = g ◦ f . One verifies
readily that these prescriptions define a category.

Definition A3.25. If A and B are categories, then a functor F :A → Bop is called
a contravariant functor F :A → B. ut

Thus a contravariant functor is a prescription F assigning to each object A of A
an object FA and to each morphism f :A1 → A2 a morphism (Ff):FA2 → FA1

such that F (idX) = idFX and that F (fg) = (Fg)(Ff) whenever fg is defined.
The most typical contravariant functors are the contravariant hom-functors.

Example A3.26 (Contravariant hom-functors). (a) Let A denote a set. Then the
prescription DX = S(X,A) = AX gives a set, and if f :X → Y is a function, then
Df :DY → DX , (Df)(ϕ) = ϕ ◦ f gives a well-defined function.

A
idA−−−−→ A

(Df)(ϕ)

x xϕ
X

f−−−−→ Y.

It is readily verified that D:S→ Sop is a functor.

Now let us observe that we have a morphism ηX :X → DDX = A(AX) given
by ηX(x)(α) = α(x) for α:X → A. For each f :X → DY = AY we define a
map f ′:Y → DX = AX such that f ′(y)(x) = f(x)(y). Now

(
(Df ′) ◦ ηX)(x) =

(Df ′)
(
ηX(x)

)
= ηX(x) ◦ f ′, whence

[(
(Df ′) ◦ ηX

)
(x)
]
(y) = [ηX(x) ◦ f ′](y) =

ηX(x)
(
f ′(y)

)
= f ′(y)(x) = f(x)(y). It follows that f = (Df ′) ◦ ηX ; and one
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verifies readily that only one function f ′ has this property.

S S

X
ηX−−−−→ D2(X) DX

∀f
y y(Df ′)

x∃!f ′
DY −−−−→

id
DY Y.

The function f 7→ f ′ is an isomorphism

S(X,DY ) ∼= S(Y,DX) = Sop(DX,Y ).

Needless to emphasize that, once again, we have a pairing of functors—this
time a “self-pairing” D:S→ Sop and D:Sop → S.

(b) This formalism applies to many categories C in such a fashion that the
hom-set C(X,A) can be endowed with the structure of an object DX in C.

Example: C = ABR for a commutative ring. Then DX = ABR(X,A) ⊆ AX

inherits the module structure from AX . The map ηX :X → D2X is the well-known
evaluation morphism in the case of vector space duality; if R = K is a vector space

and A = K, then DX = Hom(X,K) = X̂ is the dual vector space, and D2X =
̂̂
X

is the bidual. The duality theorem for finite dimensional vector spaces expresses
the fact that ηX is an isomorphism if and only if dimX is finite. If R = Z and
A = R/Z, then DX = Hom(X,R/Z) is the character group of X.

(c) In the category of topological spaces and the associated homotopy categories
this formalism works. Let us consider H0 and inspect the contravariant functor
X 7→ DX = C0(X,A) for some fixed Hausdorff space A. If A happens to be
a topological group, then DX is a topological group with respect to pointwise
operations, as is the “bidual” D2X. We have

C0

(
X,C0(Y,A)

)
= C0(X,DY ) ∼= C0(Y,DX) = C0

(
Y,C0(X,A)

)
.

If X is locally compact we know that these spaces are homeomorphic to

C0(X ×× Y,A) = D(X ×× Y ).

If A = S1 one defines H1(X,Z) = [C0(X,S1)]; this is an abelian group, namely,
the factor group of the topological group C0(X,S1) modulo the arc component of
the origin. (In fact, if X is compact, we define A to be the real Banach algebra

C(X,R). Then G
def
= C0(X,S1) is a closed multiplicative subgroup of A−1 and

g = iC0(X,R) = C0(X, iR) is mapped to G under exp, exp(if)(x) = eif(x), in a
locally homeomorphic fashion so as to make G into a linear Lie group.) The group
H1(X,Z) is also called the Bruschlinsky group; for paracompact spaces X it is the
same as the first integral Čech cohomology group [338].

Let us briefly consider pointed Hausdorff spaces U , V . Let U ∨ V denote the
disjoint union with the base points identified. We may certainly identify U and V
with their images in this quotient space. Then C0(U ∨V,A) ∼= C0(U,A)×C0(V,A)
under f 7→ (f |U, f |V ).
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Now we consider two homeomorphic copies U and V of T = R/Z ∼= S1 and
denote with c1, c2:T→ T ∨ T the two embeddings. Then the pinching map

p:T→ T ∨ T p(r + Z) =

{
c1(2r + Z), if 0 ≤ r ≤ 1

2 ,
c2(2r + Z), if 1

2 < r < 1

defines, by contravariance, a function

C0(T, A)× C0(T, A)
∼=←− C0(T ∨ T, A)

C0(p,A)←− C0(T, A),

that is, a continuous function

m: Ω(A)× Ω(A)→ Ω(A).

Exercise EA3.24. Prove the following lemma.

Lemma. Let ∼ denote the relation of being connected by an arc; (i.e. f ∼ g in the
loop space ΩA if and only if f is homotopic to g.) Then ∼ is a congruence for the
multiplication m, and the multiplication induced on π1(A) = [Ω(A)] = Ω(A)/ ∼
makes π1(A) into a group. In other words, m is homotopy associative, has the
constant loop as a homotopy identity, and f̌ given by f̌(r + Z) = f(−r + Z) is a
homotopy inverse of f . ut

There is one good reason for using the homotopy category instead of the cate-
gory of spaces and continuous maps: Ω(A) has a binary multiplication which does
not have any particularly nice algebraic properties, but [Ω(A)] = [T, A] is a group.
Notice that both [T, A] and [A,T] are groups, and that their behavior is quite dif-
ferent. The fundamental group is a covariant functor and the Bruschlinsky group
is a contravariant functor.

The relations π1

(
C0(X,Y )

)
=
[
Ω
(
C0(X,Y )

)] ∼= [ΣX,Y ] ∼= [X,ΩY ] for lo-
cally compact X show that [ΣX,Y ] is always a group. It follows recursively that
all [ΣnX,Y ] are groups. With X = S1 and Sn = S1 ×× · · · ×× S1︸ ︷︷ ︸

n times

we have that

all πn(Y ) = [Sn, Y ] = [Σ(Sn−1), Y ] are groups for n = 1, 2 . . . . These are the
homotopy groups of Y .

We look now at an elementary but very useful example of functors.

Example A3.27 (Partially ordered sets). Let P and Q be partially ordered sets.
Each is a category with the existence of an arrow x → y if and only if x ≤ y. A
functor g:P → Q is exactly a monotone function, i.e. a function such that x ≤ y
in P implies g(x) ≤ g(y) in Q. Often we find a monotone map d:Q → P such
that dx ≤ y if and only if x ≤ gy for all x ∈ Q and y ∈ P . This of course is
tantamount to saying that the hom-sets P (dx, y) and Q(x, gy) are isomorphic.
Also since P (dx, dx) contains an element because of the reflexivity of ≤, then also
Q(x, gdx) contains an element, and thus x ≤ gdx. Whenever x ≤ gy for an x ∈ Q
and y ∈ P ; that is, an arrow f :x→ gy, then dx ≤ y by definition, i.e. there is an
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arrow f ′: dx→ y and by the monotonicity of g we get gdx ≤ gy.

Q P

x ≤ gd(x) d(x)

∀f
y yg(f ′) y∃!f ′
g(y) = g(y) y

A pair of monotone functions (d, g) between posets like the one we described is
called a (covariant) Galois connection between P and Q. The function g is called
the upper adjoint and d the lower adjoint.

We remark in this context that a Heyting algebra (H,∨,∧,⇒) (see e.g. [122],
p. 25, Definition 3.17) is an algebra with three binary operations such that (H,∨,∧)
is a lattice and that for all a ∈ H we have y ≤ (a⇒ x) if and only if (a∧y) ≤ x, i.e.
that x 7→ (a⇒ x) is a upper adjoint of y 7→ (a∧ y). Such lattices are distributive.
Every Boolean lattice is a Heyting algebra if we set (a⇒ x) = (¬a ∨ x).

We conclude this discussion of examples of functors with one of the most im-
portant definitions of elementary category theory and begin by formalizing the
concept of universal property.

The Universal Property

Theorem A3.28. Let A and B denote two categories and U :B → A a functor.
Assume that F : obA → obB is a function of objects and that for each object A ∈
obA there is a morphism ηA:A→ UFA such that for all morphisms f :A→ UB
in A there is a unique morphism f ′:FA→ B such that f = (Uf ′) ◦ ηA.

A B

A
ηA−−−−→ UFA FA

∀f
y yUf ′ y∃!f ′
UB −−−−→

id
UB B

Then the following conclusions hold:
(i) The function F extends in a unique fashion to a functor F :A → B such that

for each morphism ϕ:A1 → A2 one has (UFϕ) ◦ ηA1
= ηA2

◦ϕ, i.e. that the
following diagram commutes:

A1

ηA1−−−−→ UFA1

ϕ

y yUFϕ
A2 −−−−→

ηA2

UFA2.

(ii) For each pair of objects (A,B) ∈ obA× obB there is an S-isomorphism

µA,B :B(FA,B)→ A(A,UB), µA,B(g) = (Ug) ◦ ηA, µ−1
A,B(f) = f ′

such that µA,FA(idFA) = ηA.
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Proof. (i) For a morphism ϕ:A1 → A2 we set

(1) Fϕ:FA1 → FA2, Fϕ = (ηA2
◦ ϕ)′.

The universal property makes this definition possible. According to this property,
we now have (UFϕ) ◦ ηA1 = (ηA2 ◦ ϕ)′ ◦ ηA1 = ηA2 ◦ ϕ.

(2)

A1

ηA1−−−−→ UFA1 FA1

ϕ

y yUFϕ yFϕ=(ηA2
◦ϕ)′

A2 −−−−→
ηA2

UFA2 FA2.

If ϕ = idA, then idFA:FA→ FA is a morphism such that

ηA = idUFA ◦ηA = (U idFA) ◦ ηA,

and by the uniqueness in the universal property we deduce F idA = (ηA)′.
Now we consider ϕj :Aj → Aj+1, j = 1, 2. We must show that F (ϕ2 ◦ ϕ1) =

Fϕ2 ◦ Fϕ1. For this purpose we observe by piling up two diagrams like (2), that
Fϕ2 ◦ Fϕ1 is the right fill-in morphism for F (ϕ2 ◦ ϕ1). The uniqueness in the
universal property then shows the required equality.

A1

ηA1−−−−→ UFA1 FA1

ϕ1

y yUFϕ1

yFϕ1=(ηA2
◦ϕ1)′

A2 −−−−→
ηA2

UFA2 FA2

ϕ2

y yUFϕ2

yFϕ2=(ηA3
◦ϕ2)′

A3 −−−−→
ηA3

UFA3 FA3.

This proves that F is a functor. Assuming that f ′:FA1 → FA2 was another
morphism satisfying (Uf ′) ◦ ηA1

= ηA2
◦ ϕ in place of Fϕ, then the uniqueness

postulate in the universal property shows f ′ = Fϕ. Thus (i) is proved.
(ii) By the universal property, f 7→ f ′:A(A,UB)→ B(FA,B) is a well-defined

function ν such that µA,B ◦ ν = idA(A,UB). The uniqueness, however, also shows
that ν ◦ µA,B = idB(FA,B). This proves the first assertion of (ii). The conclusion
ηA = µA,FA(idFA) is immediate from the definitions. ut

This theorem now permits the following definition:

The Definition of Adjoint Functors

Definition A3.29. Functors F :A → B and U :B → A are called adjoint if for
every object A ∈ obA there is a morphism ηA:A→ UF (A) in A such that for all
morphisms f :A → UB in A there is a unique morphism f ′:FA → B in B such
that f = (Uf ′) ◦ ηA and the functor F is determined as in Theorem A3.28.
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A B

A
ηA−−−−→ UFA FA

∀f
y yUf ′ y∃!f ′
UB −−−−→

id
UB B

The functor F is called a left adjoint and U is called a right adjoint. ut

We have already observed that f 7→ f ′:A(A,UB) → B(FA,B) is a bijection
inverted by g 7→ (Ug) ◦ ηA. The isomorphy of sets

A(A,UB) ∼= B(FA,B)

justifies the choice of the adjectives “left” and “right.”

Definition A3.30. We also say that two contravariant functors F :A → B and
U :B → A are adjoint on the right if there is a morphism ηA:A → UFA for each
A ∈ obA such that for each morphism f :A → UB there is a unique morphism
f ′:B → FA such that f = (Uf ′) ◦ ηA and if for ϕ:A1 → A2 we have Fϕ =
(ηA2

◦ ϕ)′:FA2 → FA1.

A B

A
ηA−−−−→ UFA FA

∀f
y yUf ′ x∃!f ′
UB −−−−→

id
UB B ut

Natural Transformations

In almost all branches of algebra and topology, but also in other areas of mathemat-
ics such as functional analysis, one speaks frequently of “natural isomorphisms” or
“canonical isomorphisms.” For instance, the isomorphism of a finite dimensional
vector space with its bidual is natural; an isomorphism between a finite dimensional
vector space and its dual is not. The formalism of category theory provides a precise
setting for natural morphisms.

Definition A3.31. Let S, T :A → B be two functors. A natural transformation
α:S → T is a function which assigns to each object A ∈ obA a B-morphism
αA:SA→ TA such that the following diagram commutes for all f :A→ A′ in A.

SA
Sf−−−−→ SA′

αA

y yαA′
TA −−−−→

Tf
TA′ ut

If all αA are isomorphisms, then α is called a natural isomorphism.
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We begin with examples from the elementary areas.

Example A3.32. (1) Let V denote the category of finite dimensional vector spaces
over a field K (i.e. V = ABK). Let DV = HomK(V,K) denote the dual, and let I
denote the identity functor of V. Now

ηV : IV → DDV, ηV (v)(ω) = ω(v)

is a natural isomorphism η: I → D2.
It is noteworthy to observe, that V and DV are isomorphic, because they are

vector spaces of the same dimension. However, this isomorphism in reality does not
count for anything, because it depends on the choice of some basis in both vector
spaces. Also, the two functors I and D are not suitable for comparison because I
is covariant while D is contravariant. However, the well-known isomorphism of a
finite dimensional vector space and its double dual is indeed a natural isomorphism
worthy of this name.

(2) In ABR for an integral domain R, let I denote the identity functor and tor
the self-functor associating with A its torsion submodule torA. Then the inclusion
morphism ηA: torA→ A is a natural transformation η: tor→ I.

(3) Let TOPG denote the category of Hausdorff topological groups. Let U :
TOPG→ TOP0 be the forgetful functor into pointed Hausdorff topological spaces.
For a topological group G set LG = TOPG(R, G) with the compact open topology.
(Cf. 5.7.) Then L is a hom-set functor TOPG→ TOP0. For a given G ∈ obTOPG
set

expG:LG→ UG, expX = X(1).

Then exp:L→ U is a natural transformation, called the exponential function.
When restricted to linear Lie groups, LG can be given the structure of a Lie algebra
and UG that of a pointed real analytic manifold. (Cf. 5.41 and 5.36). Then exp is
a natural transformation from the functor L to the functor U where L goes from
Lie groups to pointed analytic manifolds (underlying real vector spaces) and U
from Lie groups to pointed analytic manifolds. As a morphism of pointed analytic
manifolds it is real analytic.

One will notice from these examples that natural transformations are very
prevalent. They provide the correct formalism for giving a meaning to the fre-
quently used word “canonical” or “natural” in the context of isomorphisms or
homomorphisms. Natural transformations are typical for the universal property
defining adjoint functors.

Proposition A3.33. If F :A → B is left adjoint to U then the morphism ηA:A→
UFA is a natural transformation η: idA → UF . The isomorphism

µA,B :B(FA,B)→ A(A,UB), µA,B(g) = (Ug) ◦ ηA

is a natural transformation

µA,•:B(FA, •)→ A(A,U•)
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for each A ∈ obA and

µ•,B :B(F•, B)→ A(•, UB)

for each B ∈ obB.

Before we prove this proposition it is feasible to establish a lemma.

Lemma A3.34. If F :A → B and U :B → A are two functors and

µA,B :B(FA,B)→ A(A,UB)

is a function for each pair of objects A ∈ obA and B ∈ obB, then the following
conditions are equivalent:

(1) For each A ∈ obA and for each B ∈ obB, both

µA,•:B(FA, •)→ A(A,U•),

and
µ•,B :B(F•, B)→ A(•, UB)

are natural transformations.
(2) For each f :A1 → A2 in A, each g:B1 → B2 in B, each ϕ:FA2 → B, and

each ψ:FA→ B1 the conditions

(∗) µAB2(g ◦ ψ) = Ug ◦ µAB1(ψ)

and

(∗∗) µA1B(ϕ ◦ Ff) = µA2B(ϕ) ◦ f

hold.

Proof. We have to note that the naturality conditions asserted in (1) mean exactly
that the following diagrams of sets and functions commute:

B(FA,B1)
B(FA,g)−−−−→ B(FA,B2)

µA,B1

y yµA,B2

A(A,UB1) −−−−→
A(A,Ug)

A(A,UB2),

B(FA2, B)
B(Ff,B)−−−−→ B(FA1, B)

µA2,B

y yµA1,B

A(A2, UB) −−−−→
A(f,UB)

A(A1, UB).

In view of the fact that B(FA, g)(ϕ) = g ◦ ϕ and B(Ff,B)(ϕ) = ϕ ◦ Ff etc.
it is straightforward to verify that these commutativity conditions are exactly the
conditions expressed in (2). ut

Proof of Proposition A3.33. The first assertion on the naturality of η follows from
the definition of naturality and from Theorem A3.28.
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It remains to show that, firstly, µA,•:B(FA, •) → A(A,U•) is natural. Let
g:B1 → B2 be a morphism in B and let ϕ ∈ B(FA,B1). Then µA,B2(g ◦ ϕ) =
U(g ◦ ϕ) ◦ ηA = Ug ◦ [(Uϕ) ◦ ηA] = A(A,Ug)

(
µA,B1(ϕ)

)
.

Secondly, we have to show the naturality of µ•,B . So let ϕ ∈ B(FA2, B). Then
µA1,B(ϕ ◦ Ff) = U(ϕ ◦ Ff) ◦ ηA1

= Uϕ ◦ [UFf ◦ ηA1
] = Uϕ ◦ [ηA2

◦ f ] = [(Uϕ) ◦
ηA2

] ◦ f = µA2,B(ϕ) ◦ f = A(f, UB)
(
µA2,B(ϕ)

)
. Here we have used the naturality

of η.
The preceding lemma shows the required naturality conditions. ut

Now we consider the converse of Proposition A3.33.

Proposition A3.35. Assume that F :A → B and U :B → A are functors and
µA,B :B(FA,B) → A(A,UB) is a bijective function for each A and B such that
the functions

µA,•:B(FA, •)→ A(A,U•)

and
µ•,B :B(F•, B)→ A(•, UB)

are natural transformations for each A ∈ obA and for each B ∈ obB. Then
ηA = µA,FA(idFA):A→ UFA is a natural transformation so that F is left adjoint
to U through the universal property defined by ηA.

Proof. First we observe the naturality of ηA: If f :A1 → A2 is a morphism then we
have to show that UFf ◦ηA1 = ηA2 ◦f . But UFf ◦ηA1 = UFf ◦µA1,FA1(idFA1) =
µA1,FA2

(Ff) by (∗), and this last expression is µA2FA2
(idFA2

) ◦ f = ηA2
◦ f by

(∗∗).
Next we establish the universal property. Existence: Let f :A→ UB be given.

Set f ′ = µ−1
AB(f):FA→ B. Then

Uf ′ ◦ ηA = Uµ−1
AB(f) ◦ µA,FA(idFA) = µAB(µ−1

AB(f)) = f.

Uniqueness: If also Uf ′′ ◦ ηA = f , then f = µAB(f ′′) by (*) and thus f ′′ =
µ−1
AB(f) = f ′. ut

Thus F is left adjoint to U if there is a natural isomorphism

µA,B :B(FA,B)→ A(A,UB).

Then
νB,A

def
= µ−1

A,B :Aop(UB,A)→ Bop(B,FA)

is a natural isomorphism. Thus U :Bop → Aop is left adjoint to F . Hence by the
preceding, there is a natural transformation εB :B → FUB in Bop relative to which
the universal property holds. If we reinterpret this in the original categories, we
get:

Proposition A3.36. Assume that F :A → B and U :B → A are functors. Then
F is left adjoint to U if and only if there is a natural transformation ε:FU → idB
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such that for every morphism g:FA→ B there is a unique morphism g′:A→ UB
with εB ◦ (Fg′) = g. ut

Definition A3.37. The natural transformations η and ε are called the front ad-
junction and the back adjunction, respectively. One uses also the terms unit and
counit. ut

Proposition A3.38. Assume that F :A → B and U :B → A are functors and
η: idA → UF and ε:FU → idB are natural transformations. Then the following
statements are equivalent:

(1) F is left adjoint to U and η and ε are the front adjunction and the back
adjunction, respectively.

(2) (εF )(Fη) = F and (Uε)(ηU) = U , that is for all A ∈ obA we have (εFA) ◦
(FηA) = idFA and for all B ∈ obB we have U(εB) ◦ (ηUB) = idUB.

Proof. Exercise EA3.24. ut

Exercise EA3.24. Prove Proposition A3.38. ut

As a typical example, if D:A → B is a contravariant functor adjoint to itself
on the right with the “evaluation” front adjunction ηA:A→ D2A, then

(ηDA)(DηA) = idDA

under all circumstances. In other words, the objects DA ∈ B always have duality.

Equivalence of Categories

Definition A3.39. (i) Two categories A and B are said to be equivalent if there
are adjoint functors F :A → B and U :B → A such that front and back-adjunctions
are isomorphisms. Briefly:

idA ∼= UF and FU ∼= idB .

(ii) A skeleton of a category A is a category S satisfying
(a) S is equivalent to A.
(b) If A, A′ are isomorphic in S then A = A′. ut

Somewhat more informally, we discussed skeletons in EA3.10.

Proposition A3.40. (i) Let A be a category. Assume that there is a subclass C of
obA which meets each isomorphy class of obA in precisely one object. Then the
full subcategory S whose objects are those of C is a skeleton of A.

In particular, if we allow a “Big Axiom of Choice,” then every category has a
skeleton.
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(ii) Assume that the functor F :A → B is left adjoint to the functor U :B → A,
and let A0 denote the full subcategory of A containing all objects A such that
ηA:A → UF (A) is an isomorphism and B0 the full subcategory of B containing
all objects B such that εB :FU(B)→ B is an isomorphism. Then F restricts and
corestricts to a functor F0:A0 → B0 and U to a functor U0:B0 → A0 such that
F0 is left adjoint to U0 and that ηA:A → F0U0(A) is an isomorphism for all
A ∈ ob(A0) and εB :U0F0(B) → B for all B ∈ ob(B0). In particular, A0 and B0

are equivalent categories.

Proof. Exercise EA3.25. ut

Exercise EA3.25. Prove Proposition A3.40. [Hint for (ii): If A ∈ ob(A0), then
ηA:A → UF (A) is an isomorphism, hence F (ηA):FA → FUF (A) is an isomor-
phism. By A3.38(2) we have εFA ◦ (FηA) = idFA. Hence εFA:FUFA→ FA is an
isomorphism. Therefore FA ∈ ob(B0). This shows the existence of the restriction
and corestriction F0:A0 → B0 of F . The proof of the existence of the restriction
and corestriction U0 of U is analogous and the verification of the other assertions
are straightforward.] ut

Limits

In this section we deal with functors D: J → C which we call diagrams if J is a
small category.

For fixed J and C, the class CJ of all diagrams together with all natural transfor-
mations α:D1 → D2 between D1 and D2 as hom-set CJ(D1, D2) is a “generalized”
category: All axioms of a category are satisfied with the possible exception of that
which demands that hom-sets be sets rather than proper classes; if J is small,
this condition is satisfied as well. For each object A of C we obtain the constant
diagram const(A): J → C mapping all objects j of J to A and all morphisms of
J to idA. A natural transformation α : const(A) → D is called a cone with ver-
tex A. Any morphism f :A → B in C gives a natural transformation of diagrams
const(f): const(A) → const(B). The assignment const is a functor const: C → CJ
of generalized categories.

The Definition of Limits

Definition A3.41. We say that a diagram D: J → C has a limit limD ∈ ob C if
there is a cone λ: const(limD)→ D such that for each cone α: constA→ D there
is a unique morphism α′:A→ limD such that α = λ ◦ const(α′). ut

Proposition A3.42. The assignment

ν: C(A, limD)→ CJ(const(A), D), ν(f) = λ ◦ const(f): const(A)→ D

is a bijection with inverse ν−1(α) = α′.
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Proof. Exercise EA3.26. ut

Exercise EA3.26. Prove Proposition A3.41. ut

We shall call a category J discrete if it has no morphisms except the iden-
tity morphisms. We may say that a discrete category has only objects and no
morphisms (with the exception of those which it has to have).

Definition A3.43. (i) If J is a discrete category, then a diagram D: J → C is
nothing but a family of objects {D(j) | j ∈ J}. The limit limD of D is called
the product of the family, written P =

∏
j∈J Aj , Aj = D(j), and the morphisms

λj :P → Aj are called projections, frequently written prj . If D = {A,B}, we write
limD = A× B and prA, prB for the projections. If α:X → A and β:X → B are
morphisms, we write (α, β):X → A × B for the unique fill-in morphism of the
product.

(ii) If f, g:A → B are two morphisms in C, then an object E is called an
equalizer eq(f, g) of f and g if there is a morphism e:E → A such that fe = ge
and for every morphism ϕ:X → A with fϕ = gϕ there is a unique morphism
ϕ′:X → E with eϕ′ = ϕ.

(iii) If f :A → C and g:B → C are two morphisms in C, then an object P is
called a pullback or fibered product of f and g written P = A ×C B (somewhat
incompletely, since P depends on f and g), if there are morphisms p:P → A and
q:P → B such that fp = gq and that for each pair of morphisms α:X → A and
β:X → B with fα = gβ there is a unique morphism ξ:X → P such that α = pξ
and β = qξ.

We also call the entire diagram

P
p−−−−→ A

q

y yf
B −−−−→

g
C

a pullback if it has the universal property described above. If both f and g are
monics, then the pullback P is called an intersection. ut

Exercise EA3.27. Show that equalizers and pullbacks are limits.
Determine the products, equalizers and pullbacks in the category of sets. Why

does an intersection deserve its name? ut

Proposition A3.44. (Pullbacks via Products and Equalizers). Let f :A → C
and g:B → C be morphisms such that the product A × B and the equalizer
e:P = eq(f prA, g prB) → A × B exist. Then P is the pullback of f and g with
p = prA e and q = prB e.

Proof. Verify the universal property of the pullback by diagram chasing. Exercise
EA3.28. ut
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Exercise EA3.28. Prove Proposition A3.44. ut

Proposition A3.45 (Equalizers via Products and Intersections). Assume that we
have morphisms f, g:A → B, and that the product A × B and the pullback E of
(idA, f):A → A × B and (idA, g):A → A × B exist. If p, q:E → A are the two
pullback morphisms, then p = q and E is the equalizer of f and g with e = p = q.

Proof. Notice that (idA, f) and (idA, g) are coretractions, hence certainly monics,
whence the pullback is in fact an intersection. Verify the universal property of the
equalizer by diagram chasing. See Exercise EA3.29 below. ut

Exercise EA3.29. Complete the proof of A3.45. ut

Let us say, that a category has intersections of retracts if two coretractions
have a pullback. The preceding proposition yields the following corollary.

Corollary A3.46. A category has pullbacks if it has finite products and intersec-
tions of retracts. ut

Arbitrary Limits through Equalizers and Arbitrary Products

Theorem A3.47. Let D: J → C denote an arbitrary diagram.

Hypotheses: Assume that the following products exist:
(i) P =

∏
j∈ob J D(j),

(ii) Q =
∏
f∈morph J D(ran f).

For each f ∈ morph J define two morphisms αf , βf :P → D(ran f) by αf =
(Df) ◦ prdom f and βf = prran f . By the universal property of the product Q there
exist unique morphisms

α′, β′:P → Q with αf = prf ◦α′ and βf = prf ◦β′.

Assume that the following equalizer exists:
(iii) L = eq(α′, β′), e:L→ P .

Conclusions: The prescription λj = prj ◦ e:L→ D(j) defines a cone λ: const(L)→
D and L is the limit of D with respect to this cone.

Proof. (a) For each f : j → k in J we must show that λk = (Df)λj , i.e. prk e =
(Df) prj e. This means αfe = βfe which is equivalent to prf α

′e = prf β
′e, and

since e is the equalizer of α′ and β′ this condition is satisfied.
(b) Let ξ: constX → D be a cone. By the universal property of P , there is a

unique morphism ξ′′:X → P such that ξj = prj ξ
′′ for all j. Let f : j → k in J .

Then prf α
′ξ′′ = αfξ

′′ = (Df) prj ξ
′′ = (Df)ξj = ξk = prk ξ

′′ = βfξ
′′ = prf β

′ξ′′.
By the uniqueness of the universal property of Q we conclude α′ξ′′ = β′ξ′′. Since
L is the equalizer of α′ and β′ we conclude the existence of a unique ξ′:X → L
such that ξ′′ = eξ′. Then ξj = prj ξ

′′ = prj eξ
′ = λjξ

′. The uniqueness of ξ′ follows
from its construction. ut
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The preceding results yield at once:

The Limit Existence Theorem

Theorem A3.48. If a category C has arbitrary products and intersections of
retracts, then it has arbitrary limits. ut

This theorem is of the greatest importance in determining the existence of
limits. It reduces the verification of the existence of limits to that of intersections
and products. In general, these are readily checked or refuted.

Definition A3.49. A category is said to be complete if it has arbitrary limits.

Exercise EA3.30. Give examples of complete categories. Try S, TOP, compact
Hausdorff spaces, ABR, any algebraic variety such as semigroups, abelian semi-
groups, semilattices, rings. ut

The category BAN of Banach spaces and bounded operators as morphisms
is not complete. However, the category BANcontr of Banach spaces and linear
contractions is complete. The products in this category are remarkable: If {Bj |
j ∈ J} is a family of Banach spaces and

∏S
j∈J Bj is the product in S, i.e. the

cartesian product, then
∏
j∈J Bj = {(xj)j∈J ∈

∏S
j∈J Bj | supj∈J ‖xj‖ < ∞} is

the product in BANcontr. The category C∗ of all C∗-algebras and ∗-morphisms
between them is complete (since all of these morphisms are in BANcontr).

The categories of locally compact Hausdorff spaces (groups etc.) and the cat-
egory of Hilbert spaces are notoriously incomplete. (It should be clear what mor-
phisms are meant. No sensible choice of morphisms between Hilbert spaces pro-
duces a complete category.)

Exercise EA3.31. Investigate a partially ordered set (X,≤) as a category with
j → k iff j ≤ k. What are limits? What does completeness mean? ut

Now we consider the relation between functors and limits.

The Definition of Continuous Functors

Definition A3.50. A functor F :A → B is said to preserve limits or to be contin-
uous if for every diagram D: J → A with a limit limD, λ: const(limD) → D the
diagram FD: J → B has the limit F (limD), Fλ:F

(
const(limD)

)
→ FD. ut

In a considerable compactification of the circumstances we can write: “F is
continuous iff limFD ∼= F (limD).”

Proposition A3.51. The following conditions are equivalent for a functor U from
a complete category to an arbitrary category:

(i) U preserves arbitrary limits, i.e. U is continuous.
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(ii) U preserves intersections and arbitrary products.
(iii) U preserves equalizers and arbitrary products.

Proof. Exercise EA3.32. ut

Exercise EA3.32. Prove Proposition A3.51.

[Hint. Use Theorem A3.47 and Propositions A3.44 and A3.45.] ut

The Continuity of Adjoints

It is of great importance to note that right adjoint functors preserve limits.

The Continuity of Adjoints

Theorem A3.52. If a functor U :B → A has a left adjoint, then it preserves all
limits.

Proof. Let F :A → B denote the left adjoint of U . The naturality of the back ad-
junction εB :FUB → B yields a commutative diagram of natural transformations

A B

UD(j) FUD(j)
εD(j)−−−−→ D(j)

Uλj

x xFUλj xλj
U(limD) FU(limD) −−−−→

εlimD

limD.

We shall operate in the framework of this diagram. Let αj :A→ UD(j) denote
a cone. We have to find a morphism α′:A → U(limD) uniquely such that αj =
(Uλj)α

′. (This happens on the left side of the diagram.) We define βj :FA→ D(j)
by βj = εD(j)(Fαj). By the universal property of the limit there exists a unique
morphism β′:FA→ limD such that βj = λjβ

′. By the adjunction there is a unique
α′:A → U(limD) such that β′ = εlimD(Fα′). Now we start diagram chasing on
the right side: εD(j)F

(
(Uλj)α

′) = εD(j)(FUλj)(Fα
′) = λjεlimD(Fα′) = λjβ

′ =
βj = εD(j)(Fαj). The uniqueness in the universal property of the adjunction now
shows that αj = (Uλj)α

′—which is what we had to show. ut

The Left Adjoint Existence Theorem

It is almost true that, conversely, a continuous functor U :B → A defined on
a complete category has a left adjoint. We shall begin by considering a useful
construct aiding us in the main existence proof.
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The Definition of Comma Category

Definition A3.53. Let A denote an object in a category A and let U :B → A
denote a functor. The comma category (A,U) has as objects all pairs (f,B) of
morphisms f :A→ UB ∈ A(A,UB) for all B ∈ obB, and the hom-set

(A,U)
(
(f1, B1), (f2, B2)

)

consists of all morphisms ϕ ∈ B(B1, B2) with f2 = (Uϕ)f1. ut

We verify very quickly that this is a category.

Remark A3.54. An initial object (ηA, FA) in this category is a morphism ηA:A→
UFA such that for each morphism f :A → UB there is a unique morphism
f ′:FA→ B such that f = (Uf ′) ◦ ηA. ut

This is immediate from the definitions and shows that, according to Proposi-
tion A3.28, the existence of a left adjoint F of U is equivalent to the existence of
an initial element in each of the comma categories (A,U) as A ranges through the
objects of A.

Lemma A3.55. Assume that A is an object of A and that U :B → A is a functor.
Let the functor D: (A,U) → B be given by D(f,B) = B on objects and Dϕ = ϕ
on morphisms. Consider the following two statements:

(1) The comma category (A,U) has an initial object (ηA, FA).
(2) The diagram D: (A,U) → B (which is large in general) has a limit limD

with the limit cone λ(f,B): limD → B.
Then (1) implies (2), and if U preserves limits then the conditions are equivalent.

Proof. (1)⇒(2) Assume that the initial object (ηA, FA) of (A,U) exists. We claim
that λ(f,B):FA→ D(f,B), λ(f,B) = f ′:FA→ B is a limit cone in A.

Firstly, the family λ(f,B) is a cone: Assume that ϕ: (f1, B1) → (f2, B2) is a
morphism in (A,U). Then ϕ:B1 → B2 is a B-morphism such that (Uϕ)f1 = f2.
By the initiality of (η, FA) we get unique morphisms λ(fj ,Bj) = f ′j :FA→ Bj such
that (Uf ′j)ηA = fj for j = 1, 2. The upper part of the following diagram commutes:
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A
idA−−−−→ A

idA−−−−→ A

ηA

y yidA

UFA −−−−→
Uf ′1

UB1
f1←−−−− A

idUFA

y yUϕ yidA

UFA −−−−→
Uf ′2

UB2 ←−−−−
f2

A

FA
f ′1−−−−→ B1

idFA

y yϕ
FA −−−−→

f ′2

B2.

Hence both ϕf ′1:FA → B2 and f ′2:FA → B2 define morphisms (ηA, FA) →
(f2, B2). By the uniqueness in the initial object property,

λ(f2,B2) = f ′2 = ϕf ′1 = (Dϕ)λ(f1,B1)

follows. And this proves the claim that λ(f,B):FA→ D(f,B) is a cone.
Secondly we verify the universal property. First the existence part: Assume

that α(f,B):B0 → D(f,B) = B is a cone. We set α′ = α(ηA,FA):B0 → FA and
note that λ(f,B) ◦ α′ = f ′ ◦ α(ηA,FA) = α(f,B) by the naturality of α. Next the
uniqueness part: Assume that α′′:B0 → D(f,B) = B is a B-morphism such that
f ′α′′ = λ(f,B)α

′′ = α(f,B) = λ(f,B)α
′ for all (f,B) ∈ ob(A,U). In particular,

this applies to (f,B) = (ηA, FA). But the initial object ηA(FA) has only one
endomorphism, namely, the identity idFA:FA → FA, and thus η′A:FA → FA
agrees with idA. Therefore, α′′ = η′Aα

′′ = η′Aα
′ = α′. Thus α′ is unique with

respect to the fill-in property. Thus FA = limD and λ(f,B):FA → D(f,B) = B
is a limit cone as asserted.

(2)⇒(1) For the proof of the converse we assume now that U preserves limits
and assume that limD exists with limit cone λ(f,B): limD → D(f,B) = B. Then
we set FA = limD and know that Uλ(f,B):UFA → UB is a limit cone since U
preserves limits. Now α(f,B) = f :A→ UD(f,B) = UB is a cone by the definition
of the comma category (A,U), and by the limit property there exists a unique
ηA:A→ UFA such that

(∗)
(
∀(f,B) ∈ ob(A,U)

)
f = α(f,B) =

(
Uλ(f,B)

)
ηA.

We consider λ(ηA,FA): limD → D(ηA, FA) = FA. Our first aim is to show that

(∗∗) λ(ηA,FA) = idFA .

By the definition of ηA:A→ U(limD) as the universal fill-in morphism for the limit
cone Uλ(f,B):U limD → UD(f,B) = UB we have

(
Uλ(f,B)

)
ηA = f for all (f,B).

Therefore λ(f,B): (ηA, FA)→ (f,B) is an (A,U)-morphism and λ(f,B) = Dλ(f,B).
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It follows that

λ(f,B)λ(ηA,FA) =
(
Dλ(f,B)

)
λ(ηA,FA) = λ(f,B) = λ(f,B) idFA

by the naturality of λ.

A
ηA−−−−→ FA

idA

y yUλ(f,B)

A −−−−→
f

UB

FA
idFA−−−−→ FA

λ(ηA,FA)

y yλ(f,B)

D(ηA, FA) −−−−→
Dλ(f,B)

D(f,B).

Thus we have two fill-in maps λ(ηA,FA):FA → limD and idFA:FA → limD for
the cones λ(f,B):FA → D(f,B) and λ(f,B): limD → D(f,B). By the uniqueness
in the limit property, λ(ηA,FA) = idFA follows as asserted in (∗∗).

We now claim that (ηA, FA) is an initial element of (A,U). For a proof of
the claim let (f,B) be an arbitrary object of (A,U). We have to find a unique
morphism ϕ: (ηA, FA)→ (f,B), i.e. a unique morphism ϕ:FA→ B in B such that
(Uϕ)ηA = f inA. First the existence: Set ϕ = λ(f,B): (ηA, FA)→ (f,B). Then f =(
Uλ(f,B)

)
ηA by (∗). Now we have to show uniqueness: Assume that ψ: (ηA, FA)→

(f,B) is a morphism in (A,U). Then ψ = ψ idFA = (Dψ)λ(ηA,FA) = λ(f,B) = ϕ
by the naturality of λ.

limD
idlimD−−−−→ limD

λ(ηA,FA)

y yλ(f,B)

D(ηA, FA) −−−−→
Dψ

D(f,B).

The uniqueness of ϕ is established and the proof is complete. ut

In order to reduce the problem of the existence of “large” limits to “small
limits” we next discuss the concept of cofinality.

Definition A3.56. A functor C:K → J is called cofinal if it satisfies the following
two conditions:

(i) (∀j ∈ ob J)(∃f) f ∈ J(Ck, j). A simple diagram:

j
f← Ck.
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(ii) (∀fi ∈ J(Cki, j), i = 1, 2)(∃gi ∈ J(k, ki)) f1(Cg1) = f2(Cg2). A simple
diagram:

Ck1
Cg1←−−−− Ck

f1

y yCg2

j ←−−−−
f2

Ck2.

ut

Theorem A3.57. Assume that C:K → J is a cofinal functor and D: J → C a
diagram. If limDC exists with limit cone λ: limDC → DC, then D has the limit
limDC with a suitable limit cone λ̃: limDC → D such that λ̃Ck = λk.

Proof. First the construction of λ̃: If j ∈ ob J , then by A3.56(i) there is an
f :Ck → j and we set λj,f = (Df)λk: limDC → D(j). Now assume that fi:Cki →
j, i = 1, 2 are given. Then by A3.56(ii) we find gi: k → ki with f1(Cg1) = f2(Cg2).
Now λj,f1

= (Df1)λk1
= (Df1)(DCg1)λk = D

(
f1(Cg1)

)
λk = D(f2Cg2)λk =

· · · = λj,f2
. Thus λj,f does not depend on the particular choice of f and we may

set λ̃j = λj,f unambiguously. We note that λ̃Ck = λk,idCk = λk. With A3.56(ii)

again we verify that λ̃: limDC → D is a cone.
We claim it has the universal property. Let α:A→ D be a cone. Then αCk:A→

DC(k) is a cone, and by the limit property there is a unique morphism α′:A →
limDC such that αCk = λkα

′. If now j ∈ ob J by A3.56(i) we find an f :Ck → j,

and by the definition of λ̃ we have λ̃j = (Df)λk. Now αj = (Df)αCk (since α is

natural) = (Df)λkα
′ = λ̃jα

′. We note the uniqueness of α′ as a fill-in for the cone

αj :A → Dj: Let α′′:A → limDC be a morphism such that λ̃jα
′′ = λ̃jα

′ for all

j ∈ ob J . Let k ∈ obK. Then λkα
′′ = λ̃Ckα

′′ = λ̃Ckα
′, and the uniqueness of α′

as a fill-in for the cone αCk:A→ DCk shows α′′ = α′.
The proof is now complete. ut

Definition A3.58. We say that the functor U :B → A satisfies the solution set
condition if for each A ∈ obA there is a set S(A) of pairs (ϕ,M), ϕ:A → UM
such that for every pair (f,B), f :A→ UB there is some (ϕ,M) ∈ S(A) with some
factorisation f = (Uf0)ϕ and f0:M → B. ut

Lemma A3.59. Assume that B has pullbacks and that U preserves pullbacks and
satisfies the solution set condition. Then the full subcategory 〈S(A)〉 generated in
the comma category (A,U) by the objects of S(A) is cofinal in (A,U); i.e. the
inclusion functor is cofinal.

Proof. First we show A3.56(i). If (f,B) ∈ ob(A,U) then by Definition A3.58 there
is a (ϕ,M) ∈ ob〈S(A)〉 and an f0 ∈ (A,U)

(
(ϕ,M), (f,B)

)
.
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Next we show A3.56(ii). Let fi ∈ (A,U)
(
(ϕi,Mi), (f,B)

)
, i = 1, 2 be given.

Since B has pullbacks, we can form the pullback of fi:Mi → B, say, pi:P →Mj :

P
p1−−−−→ M1

p2

y yf1

M2 −−−−→
f2

B.

Since U preserves pullbacks, Upj :UP → UMj is a pullback of Ufi:UMj → UB.
Since (Uf1)ϕ1 = f = (Uf2)ϕ2, the pull back property gives π:A→ UP such that
ϕi = (Upi)π, i.e. that pi ∈ (A,U)

(
(π, P ), (ϕi,Mi)

)
. By the solution set condition,

there is a (ϕ0,M) ∈ ob(A,U) and an f0 ∈ (A,U)
(
(ϕ0,M), (π, P )

)
. Set gi = pif0 ∈

(A,U)
(
(π, P ), (ϕi,Mi)

)
, i = 1, 2. Then f1g1 = f2g2 and the assertion A3.56(ii) is

established. ut

We have now arrived at a major result in category theory.

The Adjoint Functor Existence Theorem

Theorem A3.60. Assume that the functor U :B → A satisfies the solution set
condition and that B is complete. Then the following conditions are equivalent:

(1) U has a left adjoint F :A → B.
(2) U preserves limits.

Proof. In A3.52 we have seen that (1) implies (2). For each A ∈ obA we set J =
〈S(A)〉 and define D: J → B by D(ϕ,M) = M (and accordingly for morphisms).
Since B is complete, FA = limD exists. Since 〈S(A)〉 is cofinal in (A,U), then FA
is the limit of the functor (f,B) 7→ B: (A,U) → B according to Theorem A3.57.
Since U preserves limits, Lemma A3.55 applies. Thus (A,U) has an initial element
(ηA, FA). But then by Remark A3.54 and by Theorem A3.28, this implies the
existence of the desired left adjoint F . ut

In checking the concrete occurrences of the situation of the Adjoint Functor
Existence Theorem one observes that the Solution Set Condition practically never
causes problems, and all the other conditions are readily verified.

As a rule, the question of free and universal objects can therefore be disposed
of with the following sentence.

By the Adjoint Functor Existence Theorem, the required universal objects exist
functorially.

Standard examples are all free objects, also such things as free topological
groups, free compact groups, free compact abelian groups, free compact semi-
groups, free compact spaces (that is, Stone–Čech compactifications), almost peri-
odic and weakly almost periodic compactifications of topological groups and so on
ad infinitum.
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Commutative Monoidal Categories and their Monoids

The concept of commutative monoidal categories and the multiplicative functors
between them is at the root of Hopf algebras, at least wherever they arise natu-
rally such as group algebras, universal enveloping algebras of Lie algebras (accord-
ingly also polynomial algebras), exterior algebras, cohomology algebras of compact
groups, dual objects of compact groups, dual objects of algebraic groups. Most of
these avenues are not pursued in this book; the issue of the cohomology of compact
groups alone is motivation enough to present the category theoretical background
in this appendix. It is inherent in the technical complexity of the subject that this
subsection is not as self-contained as are the preceding sections.

Part 1: The Quintessential Diagram Chase

We consider a category A which supports a functor ⊗:A× A→ A.
Let us look at examples; the simplest examples are the categories having finite

products.

Examples A3.61. (i) Let S denote the category of sets and functions. Define

X ⊗ Y def
= X × Y .

(ii) Let CTOP denote the category of compact spaces and continuous func-

tions. Define X ⊗ Y def
= X × Y .

(iii) Let R be a commutative ring with identity and ABR the category of left

modules over R. Set V ⊗W def
= V ⊗RW , the tensor product of the R-modules V

and W .
(iv) Let AB∗R be the category of (nonnegatively) graded R-modules V =⊕
n∈N0

V n and gradation preserving linear maps. Set

V ⊗∗W =
⊕
n∈N0

(V ⊗∗W )n, where (V ⊗∗W )n =
⊕
p+q=n

V p ⊗RW q. ut

If in the Examples (iii) and (iv) we let R be a field K, then ABK is the category
of K-vector spaces and AB∗K is the category of graded K-vector spaces. As we
progress we will soon specialize to the case that R = K is a field of characteristic 0.
Thus the reader will not lose much in understanding of the remainder of this
appendix if R is taken to be a field of characteristic 0 right away.

Since later in this section we shall have a lot to do with graded R-modules
A =

⊕
n∈N0

An let us recall some standard terminology: The direct summand An

is called the homogeneous component of A of degree n. An element x ∈ A is called
homogeneous if there is an n ∈ N0 such that x ∈ An and if x 6= 0 then the degree
deg(x) is n.
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Now we attempt to express the fact that ⊗ is associative and assume that there
is a natural isomorphism

αABC :A ⊗ (B ⊗ C)→ (A ⊗ B) ⊗ C.

In the category S of sets or the category CTOP of compact spaces we may take
αXY Z

(
ξ, (η, ζ)

)
=
(
(ξ, η), ζ

)
; in the category ABR of R-modules with the tensor

product we have indeed a natural isomorphism αUVW which is characterized by
the identity αUVW

(
u ⊗ (v ⊗ w)

)
=
(
(u ⊗ v) ⊗ w

)
. Correspondingly, we have a

natural isomorphism αUVW implementing the associativity of the tensor product
of graded vector spaces.

We can form a diagram which may or may not be commutative.

(A ⊗ B) ⊗ (C ⊗ D)
id(A⊗B)⊗(C⊗D)−−−−−−−−−→ (A ⊗ B) ⊗ (C ⊗ D)

αAB,C⊗D

x yαA⊗B,CD
A ⊗

(
B ⊗ (C ⊗ D)

) (
(A ⊗ B) ⊗ C) ⊗ D

idA⊗αBCD
y xαABC⊗idD

A ⊗
(
(B ⊗ C) ⊗ D

)
−−−−−→
αA,B⊗C,D

(
A ⊗ (B ⊗ C)

)
⊗ D.

In our basic examples, this diagram does commute. Because of its five different
vertices we shall call it the pentagon diagram.

Next we focus on the commutativity of multiplication and consider a natural
isomorphism κAB :A ⊗ B → B ⊗ A with κ−1

AB = κBA. In our basic examples one
readily identifies such isomorphisms: In the case of the cartesian product in S or
CTOP we have κXY (ξ, η) = (η, ξ), in the case of the tensor product of R-modules
there is indeed an isomorphism κVW characterized by κVW (v ⊗ w) = w ⊗ v.

An interesting situation arises when we define isomorphisms κ that are suit-
able for the tensor product of graded R-modules: If V =

⊕
n∈N0

V n and W =⊕
n∈N0

Wn are graded R-modules, consider elements v =
∑∞
n=0 vn ∈ V and

w =
∑∞
n=0 wn ∈W . We define two involutive isomorphisms

κVW , κ
′
VW :V ⊗∗ W →W ⊗∗ V

as follows: Write v ⊗∗ w =
∑∞
n=0(v ⊗∗ w)n and define(

κVW (v ⊗∗ w)
)n

=
∑

p+q=n

(−1)pqwq ⊗ vp ∈ (W ⊗∗ V )n,[κ]

(
κ′VW (v ⊗∗ w)

)n
=

∑
p+q=n

wq ⊗ vp ∈ (W ⊗∗ V )n.[κ′]

Using α’s and κ’s we can form the following diagram which may or may not
commute for all A,B,C ∈ obA:
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A ⊗ (B ⊗ C)
αABC−−−−→ (A ⊗ B) ⊗ C κA⊗B,C−−−−→ C ⊗ (A ⊗ B)

idA⊗κBC
y yαCAB

A ⊗ (C ⊗ B) −−−−→
αACB

(A ⊗ C) ⊗ B −−−−−→
κAC⊗idB

(C ⊗ A) ⊗ B

This diagram is called the hexagon diagram.
A multiplication, like in a commutative monoid, should have a neutral element.

Therefore, we finally assume that the category A has an object E and natural
isomorphisms ιA:E ⊗ A→ A, ι′A:A ⊗ E → A. We may derive ι′ from ι via κ if κ
is available.

In the category of sets or compact spaces we may take for E a one element set,
e.g. {Ø}, and for ι and ι′ the respective projections; in the category of modules
over the commutative ring R we may take for E the module underlying R. Then
the scalar multiplication (r, v) 7→ r·v:R × V → V gives an isomorphism ιV :R ⊗
V → V .

In the prototypical examples the following diagram commutes:

E ⊗ A κEA−−−−→ A ⊗ E
ιA

y yι′A
A −−−−→

idA
A.

We call it the triangle diagram. The object E is only relevant up to natural iso-
morphism. E.g. E ⊗ E and E are naturally isomorphic via the very definition
of ι.

Definition A3.62. A commutative monoidal category is a 7-tuple

(A,⊗, α, κ, E, ι, ι′)

with natural isomorphisms α, κ, ι and ι′ such that the pentagon diagram, the
hexagon diagram, and the triangle diagram commute. ut

Frequently a commutative monoidal category is called a symmetric monoidal
category. It is sloppy but convenient to speak of (A,⊗) or even of A as a com-
mutative monoidal category if the other ingredients are specified or understood.
Commutative monoidal categories are quite prevalent. In this book we shall con-
sider only a small selection.

Proposition A3.63. The following are commutative monoidal categories.
(A) The category (CTOP,×) with the cartesian product as multiplication, a one

element object E = {Ø}, and the standard isomorphisms α, κ, ι and ι′.
(B) The category (ABR,⊕) of R-modules for a commutative ring R and the direct

sum as multiplication, the object E = {0} as R-module, and the standard
isomorphisms α, κ, ι and ι′.
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(B∗) The category (AB∗R,⊕∗) of graded R-modules for a commutative ring R and
the graded direct sum as multiplication, the object E = {0} as a graded R-
module, and the standard isomorphisms α, κ, ι and ι′.

(C) The category (ABR,⊗) of R-modules for a commutative ring R and the ten-
sor product over R as multiplication, the object E = R as R-module, and the
standard isomorphisms α, κ, ι and ι′.

(C∗) The category (AB∗R,⊗∗) of graded R-modules for a commutative ring R and
the graded tensor product as multiplication, the object E =

⊕
n∈N0

En as

graded R-module with E0 = R, En = {0} for n > 0, and the standard
isomorphisms α, ι and ι′. For κ we take the isomorphism given in [κ].

(D) The category (AB∗R,⊗∗)′ of graded R-modules for a commutative ring R and
the graded tensor product as multiplication, the object E =

⊕
n∈N0

En as

graded R-module with E0 = R, En = {0} for n > 0, and the standard
isomorphisms α, ι and ι′. For κ we take the isomorphism given in [κ′].

Proof. Exercise EA3.33. ut

The case (D) will only occur in examples.

Exercise EA3.33. Prove Proposition A3.63. ut

On the abstract level, the theory of monoidal symmetric categories is based on
a fact which MacLane called coherence: With the available natural isomorphisms,
a countably infinite family of correctly formed diagrams can be drawn which may
or may not be commutative. MacLane’s Coherence Theorem states that all of
these commute. The proof proceeds by a technically complicated set of proofs
of judiciously chosen assertions by induction. The practitioners have a tendency
to ignore this necessity. They believe that, in the symmetric monoidal categories
occuring in concrete situations, coherence is “obvious,” and that the commutativity
of the few additional diagrams needed is verifiable ad hoc and directly. Moreover,
the proof of the coherence theorems does not elucidate the much more pressing
concrete problems of dealing with, say, group objects in commutative monoidal
categories and their transformation under multiplicative functors. We adopt the
practitioners’ viewpoint only in as much as we do not present the proof of the
Coherence Theorem but rather refer to MacLane’s text [247], p. 157ff., or to the
survey [246], p. 75ff., or to other sources [170].

A typical natural isomorphism which must be defined uniquely is the so-called
middle four exchange µABCD:

(A ⊗ B) ⊗ (C ⊗ D)
[associativity]−−−−−−−→∼=

A ⊗
(
(B ⊗ C) ⊗ D

)
µABCD

y yidA⊗(κBC⊗idD)

(A ⊗ C) ⊗ (B ⊗ D)
∼=←−−−−−−−

[associativity]
A ⊗

(
(C ⊗ B) ⊗ D

)
.

We are now ready for introducing a concept of utmost importance in concrete
situations.
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Definition A3.63a. An associative multiplicationon an object A of a symmetric
monoidal category is a morphism m:A⊗ A→ A such that the following diagram
is commutative:

A ⊗ (A ⊗ A)
idA⊗m−−−→ A ⊗ A

αAAA

y yidA⊗A

(A ⊗ A) ⊗ A A ⊗ A
m⊗idA

y ym
A ⊗ A −−→

m
A.

The multiplication is called commutative if the following diagram commutes:

A ⊗ A κAA−−→ A ⊗ A
m

y ym
A −−→

idA
A.

In an analogous fashion, an associative (respectively, commutative) comultiplica-
tion c:A → A ⊗ A is defined by reversing arrows in the associativity defining
diagram.

We say that there is an identity for a multiplication m:A ⊗ A→ A if there is
a morphism u:E → A such that the following diagram is commutative:

E ⊗ A u⊗idA−−−→ A ⊗ A idA⊗u←−−− A ⊗ E
ιA

y m

y yι′A
A −−→

idA
A ←−−

idA
A.

Similarly, we define a coidentity k:A → E for a comultiplication. An object with
an associative multiplication and an identity is called a monoid in the commutative
monoidal category A. Analogously, a comonoid is defined. ut

Note that the diagonal map x 7→ (x, x):X → X × X is an associative and
commutative comultiplication in S or CTOP.

If objects A and B have multiplications and identities then a morphism f :A→
B of A is a morphism of monoids if the following diagram commutes:

A ⊗ A mA−−→ A
uA←−− E

f⊗f
y yf yidE

B ⊗ B −−→
mB

B ←−−
uB

E.

A monoid in a commutative monoidal category ABR (see A3.63(C)) is an asso-
ciative R-algebra with identity element. A monoid in the commutative monoidal
category AB∗R (see A3.63(C∗)) is a graded associative R-algebra with identity. (Be-
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cause of the particular commutation isomorphism κ we prefer to consider in this
category, these algebras are also called anticommutative.) And so on.

With a little diagram chasing, using coherence, one can show that the product
A ⊗ B of two monoids is again a monoid; e.g. the multiplication is defined via the
middle four exchange by

mA •mB =
{

(A ⊗ B) ⊗ (A ⊗ B)
µABAB−−−→ (A ⊗ A) ⊗ (B ⊗ B)

mA⊗mB−−−−→ A ⊗ B
}
,

and the identity is defined by

uA • uB =
{
E

ι−1
E−−→∼= E ⊗ E uA⊗uB−−−−→ A ⊗ B

}
.

Of, course, one has to verify, as an exercise, that in this way,

(A ⊗ B,mA •mB , uA • uB)

is a monoid. The fact that for a monoid A also A ⊗ A is monoid is used crucially
in the following definition.

Definition A3.64. (i) A bimonoid in a commutative monoidal category (A,⊗)
is an object A with a multiplication mA:A ⊗ A → A and an identity uA:E → A
making A a monoid, further a comultiplication cA:A → A ⊗ A and a coidentity
kA:A → E making A a comonoid such that the monoid and the comonoid are
linked by the assumption that cA is a monoid morphism A→ A ⊗ A. A morphism
of bimonoids f :A → B in the commutative monoidal category (A,⊗) is an A-
morphism which is both a monoid and comonoid morphism. In the following, for
the sake of brevity we shall write m, u, c, k in place of mA, uA, cA, and kA.

(ii) A group object or simply a group in a commutative monoidal category
(A,⊗) is a bimonoid A whose comonoid is commutative together with a morphism

σ:A → A, called inversion such that the following diagrams commute with p
def
=

uk:A→ A:

A ⊗ A σ⊗idA−−−→ A ⊗ A
c

x ym
A −−→

p
A,

E
k←−− A

c−−→ A ⊗ AyidE

yσ yσ⊗σ
E ←−−

k
A −−→

c
A ⊗ A.

A morphism of groups or group morphism is a bimonoid morphism of the under-
lying bimonoids. ut

The hypothesis that m is assumed to be a comonoid morphism is equivalent to
the commuting of the following diagrams:
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E
k←−− A

idA−−→ A
u←−− E

ιE

x m

x yc yι−1
E

E ⊗ E ←−−
k⊗k

A ⊗ A A ⊗ A ←−−
u⊗u

E ⊗ E
c⊗c
y xm⊗m

(A ⊗ A) ⊗ (A ⊗ A) −−−→
µAAAA

(A ⊗ A) ⊗ (A ⊗ A),

c • c = µAAAA ◦ (c ⊗ c) and m •m = (m ⊗ m) ◦ µAAAA.

In particular, the hypothesis is symmetric: m is a comonoid morphism if and only
if the diagram above commutes if and only if c is a monoid morphism.

The following remark, simple as it may sound, is nevertheless relevant: In
any pointed category A with finite products, every monoid A in the commuta-
tive monoidal category (A,×) is automatically a bimonoid when given the diagonal
morphism cA:A→ A×A as comultiplication and the unique morphism kA:A→ E
to the terminal object as a coidentity. It is for this reason that bimonoids are very
prevalent without being recognized as such.

It can be verified directly that for a group object the left hand diagram also
commutes with idA ⊗ σ in place of σ ⊗ idA.

Exercise EA3.34. A morphism of groups automatically preserves inversion. ut

Each commutative monoidal category (A,⊗) defines a category of bimonoids
Bimon(A,⊗) and a category of groups Gr(A,⊗). The category of groups is full
in the category of bimonoids. If A and B are bimonoids (groups) then A ⊗
B is a bimonoid (group), too. Thus the categories of bimonoids, respectively,
groups become commutative monoidal categories

(
Bimon(A,⊗),⊗

)
, respectively,(

Gr(A,⊗),⊗
)
. The multiplication m:A ⊗ A → A of a commutative monoid is a

morphism of monoids. Conversely, if the multiplication m:A ⊗ A→ A of a monoid
is a monoid morphism, then m is commutative as is deduced from the definition
of m • m = (m ⊗ m) ◦ µAAAA (Hilton’s Lemma). In this sense, the category of
commutative groups in (A,⊗) may be identified with the category of groups in
(Gr(A,⊗),⊗).

A group object in the symmetric monoidal category S is a group in the tradi-
tional sense with the diagonal map c:G → G × G, the constant function k:G →
{1}, and σ(x) = x−1. In the symmetric monoidal category of compact topolog-
ical spaces, a group object is a compact (topological) group. Algebraic geome-
try provides a category of varieties with a (not entirely obvious) finite product
(V,W ) 7→ V ×W ; a group object in this category is called an algebraic group. A
Lie group may be considered as a group object in the category of smooth manifolds
although in this book we have opted for a different approach pedagogically.

We notice that in the definition of a group object we have allowed for a slight
asymmetry in this definition in so far as we have postulated the commutativity of
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the comultiplication; this condition is always satisfied for the groups in concrete
categories where the multiplication is given by a cartesian product.

Definition of Hopf Algebras

Definition A3.65. Let R be a commutative ring with identity.

(i) A Hopf algebra over R is a bimonoid in the commutative monoidal category
(ABR,⊗R) of R-modules.

(ii) A graded Hopf algebra over R is a bimonoid in the commutative monoidal
category (AB∗R,⊗∗R) of graded R-modules.

(iii) Let (A,⊗) be a symmetric monoidal category. A symmetric Hopf algebra in
(A,⊗) is a group object in (A,⊗). A morphism of Hopf algebras, respectively,
morphism of symmetric Hopf algebras is a morphism of bimonoids, respectively,
group objects in the category (AB∗R,⊗∗), respectively, (A,⊗). ut

A large portion of the following discourse will deal with graded commutative
Hopf algebras. This is justified by their eminent role in homological algebra. There-
fore it is important to recall that the multiplication of commutative monoids in
the category (AB∗R,⊗∗) (i.e. the multiplication of graded commutative algebras) is
sometimes called anticommutative. If A denotes one of the commutative monoidal
categories (ABR,⊗R), (AB∗R,⊗∗R), or (AB∗R,⊗∗R)′, then the category Hopf(A) of
graded Hopf algebras in A is simply the category of bimonoids Bimon(Aop)op

in A.
The concept of a Hopf algebra appears in the literature in different variations.

Frequently the word “Hopf algebra” means what we call “symmentric Hopf alge-
bra”. A frontal approach to the definition of a Hopf algebra requires the specifica-
tion of a variety of maps and their properties. The category theoretical definition
has the great advantage that the definition is compact, and one understands di-
rectly what it means and where it comes from; this motivation will be corroborated
in the following discussion. Indeed the most prominent classical Hopf algebras arise
in a functorial context which we discuss next.

Definition A3.66. Let Aj , j = 1, 2 be commutative monoidal categories. A
functor F :A1 → A2 is called multiplicative if there are natural isomorphisms

µAB :F (A ⊗1 B)→ FA1 ⊗2 FA2 and ξ:FE1 → E2

such that the following diagrams are commutative:

F
(
A ⊗ (B ⊗ C)

) µA,B⊗C−−−−→ FA ⊗ F (B ⊗ C)
idFA⊗µBC−−−−−−→ FA ⊗ (FB ⊗ FC)yF (α

(1)

ABC
) α

(2)

FA,FB,FC

y
F
(
(A ⊗ B) ⊗ C

)
−−−−→
µA⊗B,C

F (A ⊗ B) ⊗ FC −−−−−−→
µAB⊗idFC

(FA ⊗ FB) ⊗ FC,
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F (E1 ⊗ A)
µE1A−−→ FE1 ⊗ FA

ξ⊗idFA−−−−→ E2 ⊗ FAyF (ι
(1)

A
) ι

(2)

FA

y
FA −−→

idFA
FA −−→

idFA
FA,

F (A ⊗ B)
µAB−−→ FA ⊗ FB

Fκ
(1)

AB

y yκ(2)

FA,FB

F (B ⊗ A) −−→
µBA

FB ⊗ FA.

Let us look at examples. In a ring A let 〈X〉 denote the two sided ideal generated
by a subset X of A. Recall the tensor algebra

⊗
V =

⊕
n∈N0

⊗n
V of an R-

modules V , where
⊗0

V = R. For an R-module V let SV denote the graded
R-module underlying the symmetric algebra over V , i.e.

SV =
⊗

V/〈v ⊗ w − w ⊗ v | v, w ∈ V 〉,

and let
∧
V denote graded R-module underlying the exterior algebra over V , i.e.∧

V =
⊗

V/〈v ⊗ w + w ⊗ v | v, w ∈ V 〉.

For a graded R-module V =
⊕

n∈N V
n (with degree null component being zero)

let HV be the graded R-module underlying the graded commutative algebra:

HV =
⊗

V/〈vp ⊗ wq − (−1)pqwq ⊗ vp | vp ∈ V p, wq ∈W q, p, q ∈ N〉.

Note that indeed HV is a graded R-algebra.
If all even homogeneous components of V =

⊕
n∈N V

n are zero, then HV ∼=∧
V with an appropriate gradation; if all odd homogeneous components of V are

zero, then HV = SV with an appropriate gradation. More generally, if we write
V0 =

⊕∞
m=1 V

2m and V1 =
⊕∞

m=1 V
2m−1, then

HV = SV0 ⊗∗
∧
V1

with the appropriate gradation. Thus the algebras HV generalize simultaneously
exterior algebras and polynomial algebras; they play a crucial role in the remainder
of this section and we assume them as well understood.

For our purposes the following examples are of immediate interest.

Proposition A3.67. (i) The assignments

S: (ABR,⊕)→ (AB∗R,⊗∗)′,∧
: (ABR,⊕)→ (AB∗R,⊗∗), and

H: (AB∗R,⊕∗)→ (AB∗R,⊗∗)

are multiplicative functors.
(ii) Let K be a field and for a compact space X let H(X) denote the graded K-

vector space
⊕

n∈N0
Hn(X,K) Alexander–Čech–Spanier–Wallace cohomology (see
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e.g. [338], p. 306ff.). Then the assignment

H: (CTOP,×)→ (AB∗K ,⊗∗)op

is a multiplicative functor.

Proof. The assertions on S and
∧

are standard multilinear algebra in as much as
they code the natural isomorphisms S(V ⊕W ) ∼= SV ⊗ SW and

∧
(V ⊕W ) ∼=∧

V ⊗
∧
W . The assertion on H generalizes these facts and can be directly derived

from them via HV = SV0 ⊗∗
∧
V1.

The assertion of (ii) is the Künneth Theorem for cohomology over fields. (Cf.
[245], p. 166, [338], p. 360.) ut

Proposition A3.68. A multiplicative functor maps bimonoids to bimonoids and
groups to groups.

Proof. Exercise EA3.35. ut

Exercise EA3.35. Prove A3.68. ut

We say that a graded Hopf algebra (respectively, bimonoid) A =
⊕

n∈N0
An is

connected if A0 = R·1. The full subcategory of connected graded Hopf algebras is
written Hopf0(AB∗R,⊗∗), and the full subcategory in AB∗R of graded R-modules V
whose homogeneous component V 0 is zero will be written (AB∗R)0. These modules
we call graded R-modules without zero component.

Corollary A3.69. For any R-module V , the symmetric algebra SV , the exterior
algebra

∧
V and, in the case that V is graded without zero term, the object HV ,

all are connected graded commutative Hopf algebras, the graded Hopf algebra SV
being a strictly commutative one in the sense that ab = ba for all a, b ∈ SV .

Proof. This is an immediate consequence of Proposition A3.68 in view of Propo-
sition A3.67(i) and the fact, that (ABR,⊕) and (AB∗R,⊕∗) may be identified with
the categories of commutative group objects. ut

We rightfully take the position that the Hopf algebra structure of the graded
commutative algebras HV is also well understood.

Corollary A3.70. For a compact topological monoid G and a field K, the coho-
mology

H(G) =
⊕
n∈N0

Hn(G,K) over K

is a graded commutative Hopf algebra, and if G is connected, then H(G) is con-
nected. If G is a compact group then H(G) is a cogroup object in (AB∗K ,⊗∗).
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Proof. This is an immediate consequence of Proposition A3.68 in view of Proposi-
tion A3.67(ii) and the fact that a compact space X is connected iff H0(X,K) = K.

ut

It is quite remarkable, that these conclusions emerge from little more than
diagram chasing or what, by some, is called “general nonsense,” meaning the dis-
ciplined and consistent application of category theoretical thinking. The concrete
input, in the background, is multilinear algebra, the machinery of Čech cohomol-
ogy and the homological algebra of the Künneth formula. The further success of
this approach depends on how much we will be able to elucidate the concrete
situation of graded commutative Hopf algebras over a field K.

Part 2: Connected Graded Commutative Hopf Algebras

For a graded R-module A =
⊕

n∈N0
An we let A+ = {0}⊕

⊕
n∈NA

n be the graded

submodule with (A+)0 = {0}. We denote the inclusion morphism A+ → A by iA
and the projection A → A+ with kernel A0 by κA. Let m:A ⊗∗ A → A be the
multiplication of a graded algebra over R with identity uA:R → A. Then A+ is
an ideal and we have a multiplication

m+ def
= (A+ ⊗∗ A+iA⊗∗iA−−−−→A ⊗∗ A m−−→A κA−−→A+).

Technically, in terms of elements, m+ just represents the restriction of the ring

multiplication of A to the ideal A+. The image S(A)
def
= imm+ = m+(A+ ⊗∗ A+)

is the set of all elements in A+ which may be represented as the finite linear
combinations of products ab with a, b ∈ A+, i.e. of products ab of homogeneous
elements a and b of positive degree. Thus S(A) is an ideal of A. Then

A/S(A) ∼= A0 ⊕Q(A), Q(A)
def
= A+/ imm+

is a graded commutative algebra satisfying Q(A)2 = {0}. The graded module
Q(A) ⊆ A0 ⊕Q(A) is called the set of indecomposable elements of A.

Exercise EA3.36. If A is the underlying algebra of HV , then the quotient mor-
phism HV → R⊕Q(A) maps V ⊆ HV isomorphically onto Q(A). ut

For graded Hopf algebras the concept of a primitive element is crucial. We
shall return to the concept of primitive and grouplike elements again at Definition
A3.95ff. For a comonoid A in a commutative monoidal category (A,⊗) we set

p1
def
= ι′A ◦ (idA ⊗ kA):A ⊗ A→ A, and

p2
def
= ιA ◦ (kA ⊗ idA):A ⊗ A→ A.

By the definition of a coidentity, both of these morphisms are retractions since
pj ◦ c = idA, j = 1, 2. Dually, for a monoid A we have two coretractions
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λA =
(
A

ι−1
A−−→ E ⊗ A u⊗idA−−−→ A ⊗ A

)
ρA =

(
A −−→

ι′
A
−1

A ⊗ E −−−→
idA⊗u

A ⊗ A
)
.

If A = AB∗R and A is a graded commutative Hopf algebra, then A ⊗∗ A contains
several isomorphic copies of the graded commutative algebra A as module direct
summands, namely, c(A), λA(A) =

⊕
n∈N0

1 ⊗ An, and ρA(A) =
⊕

n∈N0
An ⊗ 1.

Assuming that A has finite products, we can form the diagonal morphism dA:A→
A × A; then we have a morphism (ρA × λA) ◦ dA:A → (A ⊗ A) × (A ⊗ A). If
A = AB∗R (or if A is any other category whose objects allow an abelian group
addition add:X ×X → X on their objects which is a morphism), then we have a
morphism addA⊗A: (A ⊗ A)× (A ⊗ A)→ A ⊗ A giving us a unique A-morphism

πA
def
= addA⊗A ◦ (ρA × λA) ◦ dA:A→ A⊗A.

In the case of A = AB∗R we have

(∀a ∈ A) πA(a) = a ⊗ 1 + 1 ⊗ a.

If A is a comonoid in (A,⊗) with comultiplication cA:A → A ⊗ A, since a =
p1cA(a) = p2cA(a) we have cA(a) − πA(a) ∩ A ⊗ 1 + 1 ⊗ A = {0}. If equalizers
exist, then we can form the equalizer

P (A)
e→ A

cA−−→−−→
πA

A ⊗ A.

Recall that κA:A→ A+ denotes the projection of graded modules with kernel
A0 and iA:A+ → A the inclusion map. Then κA ⊗∗ κA:A ⊗∗ A → A+ ⊗∗ A+

has the kernel A ⊗∗ 1 + 1 ⊗∗ A = A0 ⊗ A0 +A+ ⊗∗ 1 + 1 ⊗∗ A+. If we can form

c+
def
= (A+ iA−−→A c−−→A ⊗∗ AκA⊗

∗κA−−−−→A+ ⊗∗ A+),

then

ker c+ = A+ ∩ c−1(A0 ⊗ A0 +A+ ⊗∗ 1 + 1 ⊗∗ A+) = c−1(A+ ⊗∗ 1 + 1 ⊗∗ A+).

Definition A3.71. Let A denote a graded Hopf algebra over a commutative ring
R with comultiplication c:A→ A ⊗∗ A. Set

P (A) = {a ∈ A | c(a) = a ⊗ 1 + 1 ⊗ a} ⊆ A.

The elements of P (A) are called the primitive elements of the Hopf algebra and
P (A) the primitive submodule of A.

If A is the smallest Hopf subalgebra of A containing P (A) then A is called
primitively generated. ut

We shall later completely clarify the structure of primitively generated con-
nected graded commutative Hopf algebras over fields of characteristic 0.

The restriction of the algebra morphism A→ A0 ⊕Q(A) induces a morphism
of graded R-modules qA:P (A)→ Q(A).
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Lemma A3.72. (i) The set P (A) is a graded R-submodule of A.
(ii) If f :A→ B is a morphism of graded Hopf algebras, then the restriction and

corestriction of f defines a morphism of graded R-modules P (f):P (A)→ P (B).
(iii) If r ∈ R then r·1 ∈ P (A) iff r = 0.
(iv) Write A+ = ker kA =

⊕
n∈NA

n. Then

P (A) = c−1(A+ ⊗∗ 1 + 1 ⊗∗ A+).

(v) P (A) = ker c+ ⊆ A+.
(vi) The morphism qA:P (A)→ Q(A) is injective if and only if P (A)∩S(A) =

{0} and qA is surjective if and only if P (A) + S(A) = A+. It is an isomorphism
of graded R-modules if and only if A+ = P (A)⊕ S(A).

(vii) If d = min
{
n ∈ N | An 6= {0}

}
, then Ad ⊆ P (A).

Proof. (i) The functions c:A→ A ⊗∗ A, γ:A→ A ⊗∗ A, γ(a) = a ⊗ 1 + 1 ⊗ a
are morphisms of graded R-modules. As the equalizer {a ∈ A | c(a) = γ(a)} of
these two morphisms, P (A) is a graded R-module.

(ii) Since c
(
f(a)

)
= (f ⊗∗ f)c(a) as f is a morphism of comonoids (in

(AB∗R,⊗∗)), and since γ
(
f(a)

)
= f(a) ⊗ 1 + 1 ⊗ f(a) = (f ⊗∗ f)(a ⊗ 1 + 1 ⊗ a)

as f preserves identities, we see that f
(
P (A)

)
⊆ P (B) so that the restriction of

f to P (A) and the corestriction to P (B) is a well-defined morphism of graded
R-modules.

(iii) Assume now that r·1 ∈ P (A). Since c preserves identities,being a monoid
morphism, we have r·(1 ⊗ 1) = c(r·1) = r·1 ⊗ 1 + 1 ⊗ r·1, i.e. r·(1 ⊗ 1) = 0 which
implies r = 0.

(iv) Assume that c(a) ∈ A+ ⊗∗ 1+1 ⊗∗ A+. Thus there are elements a1, a2 ∈
A+ such that c(a) = a1 ⊗ 1+1 ⊗ a2. Then a1 = p1(a1 ⊗ 1+1 ⊗ a2) = p1

(
c(a)

)
=

a, similarly a2 = a.
(v) This follows from (iv) and the structure of ker c+ computed prior to A3.71.
(vi) By definition S(A) is the kernel of the quotient map of graded modules

A+ → Q(A), whose restriction to P (A) ⊆ A+ is qA. The assertions are then
immediate.

(vii) If d is as stated, then m ∈ {1, . . . , d − 1} implies Ad−m ⊗ Am = {0}.
Thus c(Ad) ∈ Ad ⊗ 1⊕ 1⊗Ad. Hence Ad ⊆ P (A) by (iv) above. ut

The proof is easily converted into a proof using arrows only.

Since the composition R
uA−−→A kA−−→R is the identity, for objects A and B, the

following compositions represent identity morphisms also:

R ⊗ B uA⊗idB−−−−→ A ⊗ B kA⊗idB−−−−→ R ⊗ B
A ⊗ R −−−−→

idA⊗uB
A ⊗ B −−−−→

idA⊗kB
A ⊗ R.

In particular, the compositions
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B
ι−1
B−−→ R ⊗ B uA⊗idB−−−−→ A ⊗ B ⊆ A ⊗ B

A −−−→
(ι′
A

)−1
A ⊗ R −−−−→

idA⊗uB
A ⊗ B ⊆ A ⊗ B

are injective and induce, in view of P (A) ⊗ 1 ∩ 1 ⊗ P (B) = {0} in A ⊗ B,
isomorphisms

P (A) → P (A) ⊗ 1 ⊆ A ⊗ A
P (B) → 1 ⊗ P (B) ⊆ B ⊗ B

P (A)⊕ P (B) → P (A) ⊗ 1 + 1 ⊗ P (B) ⊆ A ⊗ B.

Now assume that R is a field K.

Proposition A3.73. The assignment

P : Hopf0(AB∗K ,⊗∗)→ (AB∗K ,⊕∗)0

is a multiplicative functor.

Proof. Let A and B be two graded Hopf algebras. Then A ⊗∗ B is a graded Hopf
algebra (since the product of two bimonoids in a commutative monoidal category
is a bimonoid in this category). We have seen P (A)⊕P (B) ∼= P (A) ⊗ 1+1 ⊗ P (B)
and now claim that P (A ⊗∗ B) = P (A) ⊗ 1 + 1 ⊗ P (B), which will prove the
proposition.

Firstly let a ∈ P (A) and b ∈ P (B). Then

cA⊗B(a ⊗ 1 + 1 ⊗ b) = µ
(
(c ⊗ c)(a ⊗ 1 + 1 ⊗ b)

)
= µ

(
c(a) ⊗ (1 ⊗ 1)

)
+ µ

(
(1 ⊗ 1) ⊗ c(b)

)
= µ

(
(a ⊗ 1 + 1 ⊗ a) ⊗ (1 ⊗ 1)

)
+ µ

(
(1 ⊗ 1) ⊗ (b ⊗ 1 + 1 ⊗ b)

)
= µ

(
(a ⊗ 1) ⊗ (1 ⊗ 1)

)
+ µ

(
(1 ⊗ a) ⊗ (1 ⊗ 1)

)
+ µ

(
(1 ⊗ 1) ⊗ (b ⊗ 1)

)
+ µ

(
(1 ⊗ 1) ⊗ (1 ⊗ b)

)
= (a ⊗ 1) ⊗ (1 ⊗ 1) + (1 ⊗ 1) ⊗ (a ⊗ 1)

+ (1 ⊗ b) ⊗ (1 ⊗ 1) + (1 ⊗ 1) ⊗ (1 ⊗ b)
= (a ⊗ 1 + 1 ⊗ b) ⊗ (1 ⊗ 1) + (1 ⊗ 1) ⊗ (a ⊗ 1 + 1 ⊗ b).

Thus P (A) ⊗ 1 + 1 ⊗ P (B) ⊆ P (A ⊗∗ B).
Secondly let x =

∑
n∈N0

xn ∈ P (A ⊗∗ B). Then

(∗) cA⊗B(xn) = xn ⊗ (1 ⊗ 1) + (1 ⊗ 1) ⊗ xn.

By the definition of A ⊗∗ B, and since A and B and thus A ⊗∗ B are connected,
we have x0 = 0 and the element x is of the form

x = a ⊗ 1 + 1 ⊗ b+
∑
j∈J
p,q∈N

ajp ⊗ bjq, a ∈ A+, b ∈ B+

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



840 Appendix 3. A Primer of Category Theory

and we will first show that all ajp and bjq vanish. In view of cA⊗B = µ◦ (cA ⊗ cB)
we get

cA⊗B(ajp ⊗ bjq) = µ
(
c(ajp) ⊗ c(bjq)

)
= µ

(
(ajp ⊗ 1 + 1 ⊗ ajp) ⊗ (bjq ⊗ 1 + 1 ⊗ bjq)

)
= µ

(
(ajp ⊗ 1) ⊗ (bjq ⊗ 1) + (ajp ⊗ 1) ⊗ (1 ⊗ bjq)

+ (1 ⊗ ajp) ⊗ (bjq ⊗ 1) + (1 ⊗ ajp) ⊗ (1 ⊗ bjq)
)

= (ajp ⊗ bjq) ⊗ (1 ⊗ 1) + (1 ⊗ 1) ⊗ (ajp ⊗ bjq)
+ [(ajp ⊗ 1) ⊗ (1 ⊗ bjq) + (1 ⊗ bjq) ⊗ (ajp ⊗ 1)].

Together with (∗) this implies

(∗∗)
∑
j∈J
p,q∈N

[(ajp ⊗ 1) ⊗ (1 ⊗ bjq) + (1 ⊗ bjq) ⊗ (ajp ⊗ 1)] = 0.

Since K is a field we may assume the ajp and bjq, j ∈ J , p, q ∈ N to be linearly
independent families. Then(

(ajp ⊗ 1) ⊗ (1 ⊗ bjq), (1 ⊗ bjq) ⊗ (ajp ⊗ 1)
)
j∈J, p,q∈N

is a linearly independent family. By (∗∗) this family can only contain the zero vector
and thus ajp = bjq = 0 for all j ∈ J and all p, q ≥ 1. Hence x = a ⊗ 1 + 1 ⊗ b
with a ∈ A+ and b ∈ B+. Using (∗) and (the computation leading to) (∗∗) we
straightforwardly verify that a ∈ P (A) and b ∈ P (B). ut

For any graded vector R-module V = V 1⊕V 2⊕· · · we consider V as embedded
into

HV =
⊗

V/I, I = 〈ap ⊗ bq − (−1)pqbq ⊗ ap | ap ∈ V p, bq ∈ V q〉

via v 7→ v + I.

Lemma A3.74. P
(
HV

)
= V .

Proof. We have a natural isomorphism µVW : H(V ⊕W ) → HV ⊗∗ HW , which
is uniquely determined by its action on the elements (v, w) ∈ V ×W ∼= V ⊕W ⊆
H(V ⊕W ) µ(v, w) = v ⊗ 1 + 1 ⊗ w.

The comultiplication c of A
def
= HV is induced by the diagonal morphism

d:V → V ⊕ V as

A
Hd−−→H(V ⊕ V )

µV V−−→A ⊗∗ A.

Thus c(v) = µ(v, v) = v ⊗ 1 + 1 ⊗ v, whence V ⊆ P (A).
We note HV =

⊕
n∈N0

Hn(V ) of A, Hn(V ) = spanK V · · ·V︸ ︷︷ ︸
n times

, pick a basis

{xi | i ∈ I} of homogeneous elements in V on whose index set we may assume a
total order, and observe xixj = (−1)ijxjxi. Then we can represent each element
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a of A in the form

a = r·1 +
∑
k∈N

i1≤...≤ik

α(i1, . . . , ik)·xi1 · · ·xik

with α(i1, . . . , ik) ∈ K, ij ∈ I. If a ∈ P (A) then r = 0 and∑
α(i1, . . . , ik)·(xi1 · · ·xik ⊗ 1 + 1 ⊗ xi1 · · ·xik) = a ⊗ 1 + 1 ⊗ a

= c(a) =
∑

α(i1, . . . , ik)·(xi1 ⊗ 1 + 1 ⊗ xi1) · · · (xik ⊗ 1 + 1 ⊗ xik)

since c is an algebra morphism and c(w) = w ⊗ 1 + 1 ⊗ w for w ∈ V . For J =
{j1, . . . , jp} ⊆ {1, . . . , k}, j1 < · · · < jp, we write xJ = xij1 · · ·xijp . Then (xi1 ⊗
1 + 1 ⊗ xi1) · · · (xik ⊗ 1 + 1 ⊗ xik) =

∑
J⊆{1,...,k} xJ ⊗ xJ′ , where J ′ denotes the

complement of J in {1, . . . , k}. It follows that∑
k=2,3,...
i1≤...≤ik

α(i1, . . . , ik)·x(i1, . . . , ik) = 0 where

x(i1, . . . , ik) =
∑

Ø6=J⊂{1,...,k}

xJ ⊗ xJ′

and where ⊂ means proper containment. Since the x(i1, . . . , ik) are linearly inde-
pendent, it follows that α(i1, . . . , ik) = 0 for all tuples (i1, . . . , ik) with i1 ≤ . . . ≤ ik
for k ≥ 2. This means that a =

∑
i∈I α(i)·xi, i.e. a ∈ V . ut

Lemma A3.75. (i) Let A be a connected commutative graded algebra and V a
graded R-module with V 0 = {0}. Let f :V → A be a morphism of graded R-
modules. Then there is a unique morphism f ′: HV → A of graded algebras extend-
ing f .

(ii) Assume, in addition that A is a connected graded commutative Hopf algebra.
Then the inclusion map P (A) → A of graded modules induces a morphism of
graded commutative Hopf algebras εA: H

(
P (A)

)
→ A.

Proof. (i) By the universal property of the tensor algebra there is a unique mor-
phism of graded R-algebras ϕ:

⊗
V → A extending the morphism of graded mod-

ules f :V → A. If v ∈ V m and w ∈ V n, then wv = (−1)mnvw. Hence ϕ vanishes
on I = 〈ap ⊗ bq − (−1)pqbq ⊗ ap | ap ∈ V p, bq ∈ V q〉, hence induces a morphism
of graded commutative R-algebras f ′: HV → A extending the inclusion f :V → A
(where we have assumed, as we may, that V ⊆ HV .

(ii) Now assume that A is a Hopf algebra and apply (i) to the inclusion P (A)→
A and obtain a morphism of algebras εA: H

(
P (A)

)
→ A. The diagram

P (A)
P (cA)−−−→ P (A ⊗∗ A)

incl

y yincl

A −−→
cA

A ⊗∗ A

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



842 Appendix 3. A Primer of Category Theory

commutes. Then by the universal property of H there is a commutative diagram

H
(
P (A)

) H
(
P (cA)

)
−−−−−−→ H

(
P (A⊗∗ A)

)
εA

y yεA⊗∗A
A −−→

cA
A ⊗∗ A.

Since H and P are multiplicative functors there is a commutative diagram

H
(
P (A⊗∗ A)

) ∼=−−→ H
(
P (A)

)
⊗∗ H

(
P (A)

)
εA⊗∗A

y yεA⊗∗εA
A ⊗∗ A −−→

idA
A ⊗∗ A.

The two preceding diagrams together show that

H
(
P (A)

) H
(
P (cA)

−−−−−→ H
(
P (A)

)
⊗∗ H

(
P (A)

)
εA

y yεA⊗∗εA
A −−→

cA
A ⊗∗ A

commutes. In a similar fashion we observe that εA respects identity, coidentity and
inversion. ut

We write Hopf comm
0 (AB∗K ,⊗∗) for the full category of commutative graded

Hopf algebras. Our findings may then be rephrased as follows.

Proposition A3.76. The functor H: (AB∗K ,⊕∗)0 → Hopf comm
0 (AB∗K ,⊗∗) is left

adjoint to the functor P : Hopf comm
0 (AB∗K ,⊗∗)→ (AB∗K ,⊕∗)0.

Proof. Exercise EA3.37. ut

Exercise EA3.37. Prove A3.76.

[Hint. Verify the universal property

(AB∗K ,⊕∗)0 Hopf comm
0 (AB∗K ,⊗∗)

PA H
(
P (A)

) εA−−→ A

P (f)

x xH
(
P (f)

) xf
V = P

(
HV

)
HV −−→

idHV

HV.] ut

We must now look more closely into the linear algebra of graded commutative
Hopf algebras. In particular, one wants to understand the nature of singly gener-
ated Hopf subalgebras. This appears as a fairly delicate situation. We shall heavily
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use the fact that the multiplication is commutative. A graded Hopf subalgebra B
of a graded commutative Hopf algebra A has very special properties. Recalling the
notation B+ =

∑
n∈NB

n introduced above we shall associate with B the smallest
ideal I(B) of A containing B+, specifically, I(B) = spanK AB

+ =
∑
b∈B+ Ab.

Note that I(B) =
⊕

n∈N0
In(B) with In(B) =

∑n
q=1 spanK A

n−qBq. Hence

A//B
def
= A/I(B)

is a graded commutative algebra and there is a quotient morphism q:A→ A//B of
graded commutative algebras. The morphism of graded algebras (q ⊗∗ q) ◦ c:A→
(A//B) ⊗∗ (A//B) has the kernel c−1

(
ker(q ⊗∗ q)

)
= c−1(A ⊗∗ I(B) + I(B) ⊗∗

A). Now c(AB+) = c(A)c(B+) ⊆ (A ⊗∗ A)(B+ ⊗∗ B+) ⊆ AB+ ⊗∗ AB+ ⊆ A ⊗∗
I(B) + I(B) ⊗∗ A. Hence I(B) ⊆ ker(q ⊗∗ q) ◦ c and thus (q ⊗∗ q) ◦ c induces a
comultiplication c:A//B → (A//B) ⊗∗ (A//B). With the aid of the surjectivity of
q:A→ A//B and the associativity of c one verifies that c is associative. Similarly
one obtains u, k, and σ so that A//B is a graded commutative Hopf algebra. For any

homogeneous element x ∈ A we set B[x]
def
=
∑
n∈N0

Bxn. Then B[x] is the graded

subalgebra generated in A by B ∪ {x}. Further we write BA
def
= B0 + I(B) ⊇ B;

in particular, BA[x] =
∑
n∈N0

BAx
n. Note that c(BA) ⊆ c(B) + c

(
I(B)

)
⊆ B ⊗∗

B + spanK c(A)c(B+) ⊆ B ⊗∗ B + spanK(A ⊗∗ A)(B ⊗∗ B) = B ⊗∗ B +
spanK AB

+ ⊗∗ AB+) ⊆ B ⊗∗ B + I(B) ⊗∗ I(B) ⊆ BA ⊗∗ BA, whence BA is a
Hopf subalgebra.

In A//B we write 0 = q(0) and 1 = q(1).
For any homogeneous element x in A we write once and for all

J(x) =

{
{0, 1} ⊆ N0 if d is odd
N0 if d is even.

For any subset X of a graded commutative algebra over K we denote by K[X] the
subalgebra generated by X. Remember that a subalgebra is understood to contain
the identity element.

Proposition A3.77. Let A be a connected commutative graded Hopf algebra and
B a graded Hopf subalgebra. Assume that x is a homogeneous element of degree d
contained in A \B such that

(min) d = min{deg(y) : y ∈ A \B and y is homogeneous}.

Then
(i) x /∈ I(B), i.e., q(x) 6= 0. In particular, x /∈ BA.
(ii) BA[x]//B = K[q(x)] is a Hopf subalgebra of A//B such that q(x) ∈ P (A//B).

(iii) BA[x] is a Hopf subalgebra of A containing B[x] such that

c(x) ∈ x ⊗ 1 + 1 ⊗ x+A⊗ I(B) + I(B)⊗A.

(iv) Assume charK = 0. Then BA[x] is a free BA-module with {xm | m ∈ J(x)}
as a basis, i.e., BA[x] =

⊕
m∈J(x)BAx

m with BAx
m ∼= BA for m ∈ J(x).
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(v) The natural morphism

µ:BA⊗∗KK[x]→ BA[x], µ(b ⊗ c) = bc, and its restriction B⊗∗K[x]→ B[x]

are isomorphisms of graded algebras. Moreover, µ−1
(
I(B)

)
= BA ⊗∗ 1 and

µ−1(B) = B ⊗∗ 1.
(vi) If B = K, and if A = K[x], then A =

∧
K·x if deg x is odd and A = S(K·x),

the polynomial algebra over K in one variable x, if deg x is even.

Proof. (i) Suppose x ∈ I(B) =
∑
m∈N0, bn∈Bn, n∈NA

mbn. We select a basis
(ejp)j∈Jp of Ap such that for a subset Ip ⊆ Jp the family (eip)i∈Ip is a basis
of Bp. Then

x =
∑

p=1,...,d
j∈Jd−p, i∈Ip

rjip·ej,d−peip

with rjip ∈ K. Since x /∈ B there is at least one p ∈ {1, . . . , d} and a pair (j, i) ∈
Id−p × Ip such that ej,d−peip /∈ B. Since eip ∈ B this implies ej,d−p ∈ Ad−p \ B.
Now p ≥ 1 whence deg(ej,d−p) = d − p < d = deg(x) which contradicts (min).
This contradiction proves claim (i).

(ii) As the ground ring is a field, we may write

BA[x]//B =
∑
n∈N0

K·q(x)n = K[q(x)] ⊆ A//B.

From this we conclude two things: Firstly,

(BA[x]//B)p = {0} for p = 1, . . . , d− 1, i.e.,

BA[x]p ⊆ I(B) for p = 1, . . . , d− 1.(†)

Now

(∗) c(x) = x ⊗ 1 + 1 ⊗ x+
d−1∑
p=1

ap with ap ∈ Ap ⊗ Ad−p for p = 1, . . . , d− 1.

We claim ap ∈ Ap ⊗ I(B)d−p + I(B)p ⊗ Ad−p. For if not, then writing ap =∑m
k=1 αk⊗βk with αk ∈ Ap and βk ∈ Ad−k would yield at least one αk ∈ Ap\I(A)p

or one βk ∈ Ad−p \ I(B)d−p; in view of (i) above this would be a contradiction to
the definition of d in (min). Hence

(††) c(x)− (x ⊗ 1 + 1 ⊗ x) ∈ A ⊗∗ I(B) + I(B) ⊗∗ A.

Secondly, (
(A//B) ⊗∗ (A//B)

)d ⊇ K·q(x) ⊗ 1 + 1 ⊗ K·q(x).

Then in view of A3.72(iv) we have

(‡) c
(
q(x)

)
= q(x) ⊗ 1 + 1 ⊗ q(x), i.e. q(x) ∈ P (A//B).

Then c(xn) =
(
q(x) ⊗ 1 + 1 ⊗ q(x)

)n ∈ BA[x] ⊗∗ BA[x]. Thus BA[x]//B is a Hopf
subalgebra of A//B.
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(iii) This is a consequence of (ii).
(iv) We now define the graded algebra homomorphism ϕ:A → A ⊗∗ (A//B)

by ϕ = (idA ⊗∗ q) ◦ c. Then for each b ∈ BA, then b = r·1 + b+ with b+ ∈ I(B)
and thus c(b) = r·(1 ⊗ 1) + c(b+) = r·(1 ⊗ 1) + (b+ ⊗ 1) +

∑
j∈J b

′
j ⊗ b′′j with

b′j ∈ BA and b′′j ∈ I(B). Hence ϕ(b) = r·(1 ⊗ 1) + b+ ⊗ 1 = b ⊗ 1.

From (††) we get ϕ(x) = x ⊗ 1 + 1 ⊗ q(x). Therefore

ϕ(x2) = x2 ⊗ 1 + (x ⊗ 1)
(
1 ⊗ q(x)

)
+
(
1 ⊗ q(x)

)
(x ⊗ 1) + 1 ⊗ q(x)2

= x2 ⊗ 1 + (1 + (−1)d
2

)
(
x ⊗ q(x)

)
+ 1 ⊗ q(x)2.

If d is odd, then x2 = (−1)d
2

x2 = −x2 and thus x2 = 0 if charK 6= 2. If d is odd,
for b ∈ BA and n = 1, or if d is even and n ∈ N we get

(L0)

ϕ(bxn) = ϕ(b)ϕ(x)n = (b ⊗ 1)(x ⊗ 1 + 1 ⊗ q(x))n

=

n∑
j=0

(
n

j

)
(b ⊗ 1)(xj ⊗ q(x)n−j)

=

n∑
j=0

(
n

j

)
(bxj ⊗ q(x)n−j).

Now assume charK = 0 and suppose that there is a nontrivial linear relation

(L1)
N∑
m=0

bmx
m = 0, bm ∈ BA with minimal N > 0.

We shall derive a contradiction.
If d is odd, then N = 1. At any rate, with the aid of (L0) we compute

0 = ϕ(
N∑
m=0

bmx
m) =

∑
0≤j≤m≤N

(
m

j

)
(bmx

m−j ⊗ q(x)j)

=
N∑
j=0

1

j!

( N∑
m=j

m(m− 1) · · · (m− j + 1)·bmxm−j
)
⊗ q(x)j .

The first summand with j = 0 vanishes because of (L1). Applying to the remaining
sum the projection

A ⊗∗ (A//B) =
⊕
m∈N0

A ⊗ (A//B)m−−→A ⊗ (A//B)d, d = deg x,

we get

(L2)
N∑
m=1

m·bmxm−1 ⊗ q(x) = 0.
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Since q(x) 6= 0 by (i), it follows from (L2) that

(L3)
N∑
m=1

m·bmxm−1 = 0.

Now (L1) and (L3) are linear relations of the same type, but (L3), which follows
from (L1) contradicts the minimality ofN in (L1), and this contradiction completes

the proof of the fact that there cannot be a relation
∑N
m=0 bmx

m = 0 with bNx
N 6=

0. In particular, bxm = 0 with m ≥ 1, b ∈ BA and xm 6= 0 implies b = 0. It now
follows that BA[x] =

⊕
m∈N0

BAx
m and BAx

m ∼= BA if BAx
m 6= 0. For d odd we

have BA[x] = K ⊕BAx. If d is even, BA[x] =
⊕

n∈N0
BAx

n. Thus (iv) is proved.
(v) By (iv) above, BAx

m ∼= BA ⊗ K·xm for all m and

BA[x] =
⊕

m∈J(x)

BAx
m.

But now the natural morphism µ:BA⊗∗K[x]→ BA[x] is given by µ(
∑
m∈J(x) bm ⊗

xm) =
∑
m∈J(x) bmx

m and we recognize that it is an isomorphism in view of these
facts. The remainder is then straightforward.

(vi) This is a direct consequence of (iv) above. ut

The arguments in the proof of Proposition A3.77 are in some sense elementary,
but its architecture is fairly delicate.

Proposition A3.78. Let A be a connected commutative graded Hopf algebra over
a field K.

(i) If V ⊆ P (A), then the subalgebra K[V ] generated by V is a primitively gen-
erated Hopf subalgebra and the morphism of graded algebras i′: HV → A induced
by the inclusion i:V → A by A3.75(i) is a morphism of Hopf algebras onto K[V ].
In particular, K[P (A)] is the largest primitively generated subalgebra of A and
εA: H

(
P (A)

)
→ A is a morphism of Hopf algebras onto K[P (A)].

(ii) Set d = min
{
n ∈ N | An 6= {0}

}
. Then Ad ⊆ P (A).

(iii) A is primitively generated if and only if the underlying algebra is generated
by P (A).

Proof. (i) We must show cA(K[V ]) ⊆ K[V ] ⊗∗ K[V ]. Since c is an algebra
morphism, it suffices to check this for algebra generators x ∈ V . Since x ∈ P (A)
we have cA(x) = x ⊗ 1 + 1 ⊗ x ∈ K[V ] ⊗∗ K[V ]. In HV ⊇ V we have cHV (x) =
x ⊗ 1 + 1 ⊗ x. Thus, since i′|V = i,(

(i′ ⊗∗ i′) ◦ cHV
)
(x) = i′(x) ⊗ 1 + 1 ⊗ i′(x) = x ⊗ 1 + 1 ⊗ x

= cA(x) = cA
(
i′(x)

)
= (cA ◦ i′)(x).

Since (i′ ⊗∗ i′) ◦ cHV and cA ◦ i′ are morphisms of algebras, their equalizer is a
subalgebra; but it contains V which is a set of algebra generators of HV . Hence
they agree and i′ therefore is a morphism of Hopf algebras. It is readily checked
that i′ is compatible with coidentities.
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(ii) Let x ∈ Ad. If x = 0 there is nothing to prove. If x 6= 0 then we can apply
Proposition A3.77 with B = K and A = A//B. Then A3.77(ii) proves the claim.

(iii) Assume that A is primitively generated. Then A = K[P (A)] by (i), and
thus A is generated as an algebra by P (A). The converse is trivial. ut

Proposition A3.79. (i) Let B be a Hopf subalgebra of a connected graded commu-
tative Hopf algebra A over a field of characteristic 0 and let V be a graded vector
subspace of P (A) such that V ∩B = {0}. Let i′: HV → A be the algebra morphism
induced by the inclusion i:V → A according to A3.75(i). Then the morphism

ψ:B ⊗∗ HV → A, ψ(b ⊗ h) = bi′(h),

is an isomorphism of graded algebras onto the image B[V ].
(ii) In particular, for any connected commutative graded Hopf algebra A over a

field K of characteristic 0 the morphism εA: H
(
P (A)

)
→ A of graded Hopf algebras

is injective and thus is an isomorphism of Hopf algebras onto K[P (A)].

Proof. (i) By A3.78(i) the subalgebra K[V ] is a Hopf subalgebra of A and i′: HV →
K[V ] is a surjective morphism of Hopf algebras. The vector space V is the directed
union of the set F of all finite dimensional subspaces W ⊆ V . Accordingly HV is
the directed union of the set of all HW , W ∈ F . The function ψ is injective if and
only if ψ|B ⊗∗ HW is injective for all W ∈ F . It suffices therefore to prove the
claim for the case that V is finite dimensional.

In that case we prove the claim by induction with respect to m = dimK V .
For m = 0 the assertion holds trivially since then B ⊗∗ H{0} = B ⊗∗ K and ψ
is (essentially) the inclusion morphism B → A. Assume that dimK V = m > 0
and that the claim has been proved for all graded vector subspaces W ⊆ P (A)
with dimKW < m and B ∩ W = {0}. Assume V ⊆ P (A), dimK V = m, and
B∩V = {0}. We consider an m−1-dimensional graded vector subspace W of V and

let B′
def
= B[W ]. Then ψ|B ⊗∗ HW :B ⊗∗ HW → B′ by induction hypothesis is

an isomorphism of Hopf algebras. Now pick x ∈ V \B′ homogeneous with minimal
degree. Then V = W⊕K·x. Now K[x] =

⊕
n∈J(x)K·xn. By Proposition A3.77(v),

the natural morphism m:B′ ⊗∗ K[x] → A characterized by m(b ⊗ c) = bc is an
isomorphism of graded algebras onto B′[x] = B[V ]. By A3.77(v) we know that
εK[x]: H(K·x) → K[x] is an isomorphism. Thus B ⊗∗ HW ⊗∗ H(K·x) → B[V ],
b ⊗ h ⊗ k 7→ bi′V (h) ⊗ i′K·x(k) is an isomorphism. From the commutativity of the
diagram

HW ⊗∗ H(K·x)
εK[W ]⊗∗εK[x]−−−−−−−−→ K[W ] ⊗∗ K[x]

M

y ym
H(W ⊕K·x) −−−→

εK [V ]
K[W ⊕K·x]

we conclude that ψ:B ⊗∗ HV → B[V ] ⊆ A is an isomorphism of graded algebras.
(ii) This is a special case of (i) with B = K and V = P (A). ut
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Proposition A3.80. Let A be a connected graded commutative Hopf algebra over
a field of characteristic 0. Then the morphism qA:P (A)→ Q(A) is injective.

Proof. By 3.72(vi) we have to show that P (A) ∩ S(A) = {0}. By A3.78(ii) we
have P (A) 6= {0} and by A3.79(ii) we know K[P (A)] ∼= H

(
P (A)

)
and we further

know that P
(
HV ) ∩ S

(
HV

)
= {0}. Hence K[P (A)] is a member of the set B of

graded subalgebras B of A containing K[P (A)] such that P (A) ∩ S(B) = {0}.
Then this set is inductive. Let B be a maximal element. We claim B = A. If not
then there is a homogeneous element x ∈ A \ B of minimal degree. By A3.77(v),
B ⊗∗ K[x]→ B[x] is an isomorphism of algebras. Now P (B ⊗∗ K[x]) = P (A) ⊗ 1
and S(B ⊗∗ K[x]) = B+ ⊗ K[x]x + S(B) ⊗ 1 + K ⊗ K[x]x2. Thus P (B ⊗∗
K[x]) ∩ S(B ⊗∗ K[x]) = P (A) ⊗ 1 ∩ S(B) ⊗ 1 = {0} since B ∈ B. Hence
P (A) ∩ S(B[x]) = {0} and thus B[x] ∈ B. This contradicts the maximality of B
and thus proves B = A and thus the proposition. ut

Let A be a connected graded commutative Hopf algebra over a field of charac-
teristic 0 and set A(n) = K[

∑n
m=1A

m]. Clearly, A =
⋃∞
n=1A(n). Recall that P (A)

is a graded submodule
⊕

n∈N P (A)n, and each A(n) is a graded subalgebra A(n) =⊕
m∈N0

A(n)m. Every element in A(n)n+1 is a linear combination of nondegenerate
products of homogeneous elements x ∈ A of degree deg x ∈ {1, 2, . . . , n}, and every
element of An+1∩S(A) is necessarily of this form. Hence A(n)n+1 = An+1∩S(A).
It then follows from Proposition A3.80 that P (A) ∩A(n)n+1 = {0}.

We decompose the vector space An+1 as a direct sum A(n)n+1 ⊕ P (A)n+1 ⊕
W (n+ 1). Note that the vector space W (n+ 1) is not uniquely determined.

Proposition A3.81. In the circumstances of the preceding paragraph the following
conclusions hold:

(i) A(n) is an ascending sequence of Hopf subalgebras.
(ii) The inclusions j:P (A)n+1 → A(n + 1) and jW :W (n + 1) → A(n + 1) by

A3.75(i) induce unique morphisms of graded algebras j′: H
(
P (A)n+1

)
→

A(n + 1) and j′W : H
(
W (n + 1)

)
→ A(n + 1) such that the morphism of

algebras ψ:A(n) ⊗∗ H
(
P (A)n+1

)
⊗∗ H

(
W (n + 1)

)
→ A(n + 1) given by

ψ(a ⊗∗ v ⊗∗ w) = aj′(v)j′W (w) is an isomorphism of algebras. The restric-
tion to A(n) ⊗∗ H

(
P (A)n+1

)
⊗∗ K is a morphism of Hopf algebras.

(iii) The following statements are equivalent.
(1) qA:P (A)→ Q(A) is an isomorphism of graded modules.
(2) (∀n = 2, 3, . . .) W (n) = {0}.
(3) A is primitively generated.

Proof. (i) We prove the assertion by induction. For n = 1 we have A1 ⊆ P (A)
by Proposition A3.72(vii). Thus A(1) is a Hopf subalgebra by A3.78(i). Note that

Am = (A(n))m for m = 0, . . . , n and that

c(An+1) ⊆ An+1 ⊗ 1 +
n−1∑
m=1

Am ⊗An−m + 1⊗An+1 ⊆ A(n+ 1) ⊗∗ A(n+ 1).
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Now assume that A(n) is a Hopf subalgebra. Then c(Am) ⊆ A(n) ⊗∗ A(n) ⊆
A(n+1)⊗∗A(n+1) for m = 1, . . . , n. Since A(n+1) is generated as an algebra by
K+A1+· · ·+An+1 and c is a morphism of algebras, we conclude that c

(
A(n+1)

)
⊆

A(n+ 1)⊗∗ A(n+ 1). Thus the induction is complete.
(ii) The existence of the vector subspaces P (A)n+1 and W (n + 1) is clear.

The subalgebra K[P (A)n+1] is a primitively generated Hopf subalgebra by A3.78
and the restriction of ψ to A(n) ⊗∗ H

(
P (A)n+1

)
⊗∗ K is an morphism of

graded Hopf algebras by A3.78(i). Consider the set V of graded vector subspaces
W ⊆W (n+1) such that the inclusion jW :W → A(n+1) induces an algebra mor-
phism j′W : HW → A(n+ 1) in such a fashion that the induced algebra morphism
ψW :A(n) ⊗∗ H(P (A)n+1) ⊗∗ HW → A(n+ 1) is injective and that

(∗) imψW = A(n)[(P (A)][W ]

is a Hopf subalgebra of A. Since the tensor product commutes with direct limits,
the set V is inductive and contains {0}. Let W be maximal in V. We claim that
W = W (n+ 1). This will prove that ψ is an isomorphism of algebras.

Suppose not. Then there is a homogeneous element x ∈ W (n + 1) \W . Set

B′
def
= imψW according to (∗), a Hopf subalgebra of A. Then x /∈ B′ and deg x is

minimal w.r.t. this property. By A3.77(v), the natural morphism of graded algebras

B′ ⊗∗ K[x]→ B′[x] = A(n)[P (A)n+1][W +K·x], b′ ⊗ y 7→ b′y

is an isomorphism of graded algebras. By A3.77(iv) the morphism of graded al-
gebras j′: H(K·x) → K[x] is bijective. It follows that B′ ⊗∗ H(K·x) → B′[x],
b′ ⊗ h = b′j′(h) is bijective. In view of the isomorphism H(W ⊕K·x)→ HW ⊗∗
H(K·x) we obtain the injectivity of the restriction of ψ to A(n) ⊗∗ H

(
P (A)n+1

)
⊗∗ H(W ⊕K·x). Furthermore, since for m = 1, . . . , n we have Am = A(n) ⊆ B′,
we conclude c(x) ∈ x⊗1+1⊗x+

∑
m=1A

m⊗An−m ⊆ B′[x]⊗B′[x]. Hence B′[x]
is a Hopf subalgebra of A. Thus W +K·x ∈ V, and this is a contradiction to the
maximality of W . This contradiction proves the claim of (ii).

(iii) (1)⇒(2). In view of A3.72(vi) and A3.80, condition (1) is equivalent to
P (A) + S(A) = A+. Because of An+1 ∩ S(A) = A(n)n+1 this is equivalent to
An+1 = A(n)n+1 + P (A)n+1 for n = 1, 2 . . . . By the definition of W (n + 1) this
means W (n+ 1) = {0} for n = 1, 2 . . . . This proves (2).

(2)⇒(3). Condition (2) is equivalent to An = P (A)n⊕A(n−1)n for n = 1, 2 . . . .
Thus if A(n − 1) is primitively generated, so is A(n). Since A(1) is primitively
generated by A3.78(ii), by induction, A(n) is primitively generated for all n ∈ N.
As A =

⋃
n∈NA(n), the whole algebra A is primitively generated.

(3)⇒(1). If A is primitively generated, then A ∼= H
(
P (A)

)
by A3.79(ii). For

the Hopf algebras HV , however, we know P
(
HV

)
= V and that V is mapped

isomorphically onto Q
(
HV

) ∼= HV +/S
(
HV

)
under the quotient morphism. Thus

(1) is proved. ut

Corollary A3.82. Let A be a connected graded commutative Hopf algebra over
a field of characteristic 0 and define the graded vector subspace W1 = {0}, Wn =
W (2)⊕W (3)⊕ · · · ⊕W (n), n = 2, . . . .
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(i) Then the morphism of graded algebras

νn: H(P (A)1 ⊕ P (A)2 ⊕ · · · ⊕ P (A)n) ⊗∗ HWn → A(n), νn(p ⊗ h) = ph

is an isomorphism of graded algebras.
(ii) νn is a morphism of Hopf algebras if and only if Wn = {0} for n ∈ N.

Proof. (i) We prove the claim by induction. By A3.78(ii) we have A1 = P (A)1

and thus H(P (A)1) → K[P (A)1] = A(1) is an isomorphism and the assertion
is true for n = 1. Suppose it is true for n − 1 with n > 1. From A3.81(ii) the
morphism of graded algebras A(n− 1) ⊗∗ H

(
P (A)n

)
⊗∗ H

(
W (n)

)
→ A(n) is an

isomorphism. By induction hypothesis and the multiplicativity of the functor H
the morphism H

(
P (A)1⊕ · · · ⊕P (A)n−1⊕P (A)n

)
⊗∗ H

(
Wn−1⊕W (n)

)
→ A(n)

is an isomorphism of graded algebras. Since Wn−1⊕W (n) = Wn, the induction is
complete.

(ii) For n = 1 there is nothing to prove. If Wn−1 = {0}, i.e., H
(
P (A)1⊕· · ·⊕

P (A)n−1)
) ∼= A(n−1), then H(P (A)1⊕P (A)2⊕· · ·⊕P (A)n) ⊗∗ H

(
W (n)

)
→ A(n)

is an isomorphism of Hopf algebras if and only if K[W (n)] is a Hopf subalgebra.
Since H

(
W (n)

) ∼= K[W (n)] this is the case iff W (n) = P (K[W (n)]) ⊆ P (A) iff
W (n) = {0}. ut

Theorem for Connected Graded Commutative

Hopf Algebras

Theorem A3.83. Let K be a field of characteristic 0.
(i) There is a graded vector subspace W with W 0 = W 1 = {0} such that the

unique morphism of graded algebras νA: H
(
P (A)

)
⊗∗ HW → A extending

the morphism P (A) ⊗∗ 1⊕ 1 ⊗∗ W → P (A)⊕W ⊆ A given by p ⊗ 1 + 1 ⊗
w = p+ w is an isomorphism of graded commutative algebras.

(ii) The quotient morphism A→ A/S(A) maps the graded submodule P (A) +W
isomorphically onto Q(A).

(iii) The following statements are equivalent:
(1) qA:P (A)→ Q(A) is an isomorphism of graded modules.
(2) W = {0}.
(3) A is primitively generated.
(4) νA is an isomorphism of Hopf algebras.

(iv) If dimK A <∞ then Q(A)2m = {0} for m ∈ N. Moreover,

νA:
∧
P (A) ⊗∗

∧
W → A

is an isomorphism of graded commutative algebras.

Proof. (i) We let W = W (2) ⊕ W (3) ⊕ · · · with W (n) ⊆ A(n) constructed
inductively as in A3.81. Since tensor products commute with direct limits the
claim then follows from A3.82.
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(ii) The inverse image of P (A) + W under νA is P (A) ⊗∗ 1 + 1 ⊗∗ W in

Ã
def
= H

(
P (A)

)
⊗∗ HW . Also, S(Ã) = H

(
P (A)

)+ ⊗∗ HW+S
(
H
(
P (A)

))
⊗∗

1 + 1 ⊗∗ S
(
bfH(W )

)
. It follows that the quotient morphism Ã → Ã/S(Ã) maps

P (A) ⊗∗ 1 + 1 ⊗∗ W isomorphically onto Ã+/S(Ã) = Q(Ã)
(iii) The equivalence of (1), (2) and (3) follows from A3.81(iii) upon passing to

direct limits. Clearly (3)⇒(4) by A3.79(ii). We prove (4)⇒(2): If νA is a morphism
of Hopf algebras, then H

(
P (A)

)
⊗∗ HW is a Hopf algebra. As H is a multiplicative

functor by A3.67 and thus this Hopf algebra is isomorphic to H
(
P (A)⊕W ). The

module of primitive elements of this Hopf algebra is P (A)⊕W by A3.74. Since the
isomorphism vA of Hopf algebras transports primitive elements, the submodule of
primitive elements of A is P (A)⊕W . This is equivalent to W = {0}. This is (2).

(iv) The subalgebras K[P (A)2m] ∼= H(P (A)2m) and K[W 2m] ∼= H(W 2m) are
finite dimensional if and only if both P (A)2m and W 2m vanish, because otherwise
they are isomorphic to polynomial algebras over a set of commuting variables.
By (ii) above this is equivalent to Q2m = {0} for m ∈ N. Furthermore, if all
homogeneous components of even degree in P (A) and W vanish, then H

(
P (A)

)
=∧

P (A) and HW =
∧
W . ut

We let Hopfpgc
0 (AB∗K ,⊗∗) denote the full subcategory of primitively generated

connected graded commutative Hopf algebras over K in Hopf(AB∗K ,⊗∗)).
By Lemma A3.74 all Hopf algebras HV are primitively generated, and accord-

ingly this holds for the special cases
∧
V and S(V ). Recall the concept of the

equivalence of categories from Definition A3.39.
In the following corollary we continue to assume that K is a field of character-

istic 0.

Corollary A3.84. (i) The functors

H: (AB∗K ,⊕∗)0 → Hopfpgc
0 (AB∗K ,⊗∗) and P : Hopfpgc

0 (AB∗K ,⊗∗)→ (AB∗K ,⊕∗)0

implement an equivalence of categories.
(ii) Every primitively generated connected graded commutative Hopf algebra

over K is isomorphic to a Hopf algebra HV for a graded K-vector space V without
degree 0 component.

(iii) Every finite dimensional primitively generated connected graded commuta-
tive Hopf algebra over K is isomorphic to

∧
V for some finite dimensional graded

K-vector space all of whose homogeneous components of even degree are zero.
(iv) Every finite dimensional primitively generated connected graded commuta-

tive Hopf algebra A over K is a tensor product of finitely many singly generated
Hopf algebras

∧
K·v where v is an element of odd degree.

Proof. (i) By Lemma A3.74 we have P ◦H = id(AB∗
K

)0
(assuming that we write,

as we may, V ⊆ HV ; if we do not make this assumption, the equality is re-
placed by a natural isomorphism). By Proposition A3.79(ii), the natural morphism
εA: H

(
P (A)

)
→ A is injective; if A is primitively generated, then εA is surjective,

because εA is a morphism of graded Hopf algebras, whence the image of εA is a
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Hopf subalgebra of A containing P (A), while A is the smallest Hopf subalgebra
of A containing P (A). Hence εA is a natural isomorphism and the claim is proved
by Lemma A3.76 and Definition A3.39.

(ii) This is an immediate consequence of (i).
(iii) This is a consequence of Theorem A3.83(iii).
(iv) now follows from (iii) via A3.67. ut

This structure theorem says in effect that primitively generated connected com-
mutative graded Hopf algebras over a field of characteristic 0 are the same thing
as graded vector spaces with no degree zero components. It is implicit in the struc-
ture theorem that these Hopf algebras have a commutative comultiplication. For
fields of finite characteristic separate efforts are necessary because of our use of
the binomial formula in Proposition A3.77.

Proposition A3.85. Let A be a primitively generated connected graded Hopf al-
gebra such that P (A)2m = {0} for m ∈ N. Then A is commutative.

Proof. For two homogeneous elements x and y of A we write [x, y]
def
= xy −

(−1)deg x deg yyx and extend this definition by bilinearity to a bilinear function
[·, ·]:A×A→ A. If x, y ∈ P (A) are homogeneous primitive elements, then

c([x, y]) = c(x)c(y)− (−1)deg x deg yc(y)c(x)

= (x ⊗ 1 + 1 ⊗ x)(y ⊗ 1 + 1 ⊗ y)

− (−1)deg x deg y(y ⊗ 1 + 1 ⊗ y)(x ⊗ 1 + 1 ⊗ x)

= (xy − (−1)deg x deg yyx) ⊗ 1 + 1 ⊗ (xy − (−1)deg x deg yyx)

= [x, y] ⊗ 1 + 1 ⊗ [x, y].

Thus [x, y] is a homogeneous primitive element of degree deg x+deg y. This number
is even. Then P (A)deg x+deg y = {0} by hypothesis. Therefore xy = (−1)deg x deg yyx
for all primitive homogeneous elements. Then this holds when x and y are arbitrary
products of homogeneous primitive elements. Since A is primitively generated it
is generated by P (A) as an algebra by A3.78(iii). It thus follows that the multi-
plication of the graded algebra A is commutative. ut

Part 3: Duality of Graded Hopf Algebras

One of the nice features of a bimonoid A in a commutative monoidal category
(A,⊗) is that it is also a bimonoid in the opposite category (Aop,⊗) obtained
from A by simply “reversing arrows.”

This is of particular interest under circumstances when dual categories are con-
cretely realized. So let K be a field and AB∗K,fin the category of finite dimensional
graded vector spaces. For each such object V the vector space dual V ′ is naturally
graded. Thus V 7→ V ′:AB∗K,fin → AB∗op

K,fin is an equivalence of categories; the
category is “autodual”. If V and W are finite dimensional graded vector spaces,
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then (V ⊗∗ W )′ is naturally isomorphic to V ′ ⊗∗ W ′ and we may identify these
two graded vector space in such a way that α ∈ V ′, β ∈W ′, v ∈ V , w ∈W implies
〈α ⊗ β, v ⊗ w〉 = 〈α, v〉〈β,w〉.

Lemma A3.86. (i) Let A be a connected graded Hopf algebra with data

A
c−−→ A ⊗∗ A m−−→ A, K

uA−−→ A, A
kA−−→ K.

Then
A′

c′←−− A′ ⊗∗ A′ m′←−− A, K
u′A←−− A′, A′

k′A←−− K

are the data of a graded connected Hopf algebra.
(ii) The exact sequences

0→ P (A)
j−−→ A+ c+−−→ A+ ⊗∗ A∗

and
A+ ⊗∗ A+ m+

−−→ A+ p−−→ Q(A)→ 0

yield exact sequences

0← P (A)′
j′←−− (A′)+ (c′)+

←−− (A′)+ ⊗∗ (A′)+

and
(A′)+ ⊗∗ (A′)+ (m′)+

←−−− (A′)+ p′←−− Q(A)′.

(iii) If Q(A)′ is identified with a submodule of A′ it is the submodule P (A′) of
primitive elements, and P (A)′ may be identified with the module Q(A′) of inde-
composable elements. The morphism q′A:Q(A)′ → P (A)′ thereby may be identified
with qA′ :P (A′)→ Q(A′).

Proof. Exercise EA3.38. ut

The proof is direct.

Exercise EA3.38. Prove Lemma A3.86. ut

Structure of Finite Dimensional Graded Hopf Algebras

Theorem A3.87. Let A be a 1) connected, 2) graded, 3) commutative Hopf
algebra A, defined 4) over a field with characteristic 0 which is, in addition, 5)
finite dimensional. Then the following conclusions hold.

(i) A is primitively generated.
(ii) P (A)2m = {0} for m ∈ N.

(iii) The natural map εA:
∧
P (A) 7→ A is an isomorphism of graded Hopf alge-

bras.

Proof. (i) Since dimA is finite dimensional, Q(A)2m = {0} for m ∈ N by
A3.83(iv). Then by Lemma A3.86(iii) we have P (A′)2m = {0} for all m ∈ N.
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Now by A3.85, the multiplication of A′ is commutative. Thus qA′ :P (A′)→ Q(A′)
is injective by A3.80. Hence by Lemma A3.86(iii) again, qA:P (A) → Q(A) is
surjective and thus bijective in view of A3.80. Now A3.83(iii) implies that A is
primitively generated.

(ii) This follows from P (A) ∼= Q(A) and Q(A)2m = {0} for m ∈ N.
(iii) From (i) above and Corollary A3.83 we know that εA: H

(
P (A)

)
→ A is

an isomorphism. By (ii) we have H
(
P (A)

)
=
∧
P (A). ut

Corollary A3.88. A finite dimensional connected graded commutative Hopf al-
gebra A over a field with characteristic 0 is uniquely and functorially determined
by the graded vector space P (A) of its primitive elements. ut

Corollary A3.89. Let A be a connected graded commutative Hopf algebra over a
field with characteristic 0 satisfying the following hypothesis:

5′) The collection A of finite dimensional Hopf subalgebras is ≤-directed and
A =

⋃
A.

Then the conclusions (i), (ii), and (iii) of Theorem A3.87 hold.

Proof. Exercise EA3.39. ut

Exercise EA3.39. Prove Corollary A3.89.

[Hint. The properties (i), (ii), (iii) are preserved under direct limits.] ut

Part 4: An Application to Compact Monoids

Let us consider a compact connected topological monoid G such that for a field

K of characteristic 0, the cohomology vector space H(G)
def
=
⊕

n∈N0
Hn(G,K)

is finite dimensional. By Corollary A3.70, H(G) is a graded commutative Hopf
algebra. We continue to use Čech cohomology.

Theorem A3.90 (H. Samelson). If G is a compact connected topological monoid
G whose cohomology Hopf algebra H(G) over a field K of characteristic 0 is finite
dimensional, then

(i) there are natural isomorphisms of graded Hopf algebras

H(G) ∼=
∧
P
(
H(G)

)
∼=
∧
P
(
H(G)

)1 ⊗∧P
(
H(G)

)3 ⊗ · · · ⊗∧P
(
H(G)

)2N−1
.

(ii) The graded vector space P
(
H(G)

)
of primitive elements of H(G) has only odd

dimensional nonvanishing homogeneous components and determines H(G)
uniquely and functorially.
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(iii) (H. Hopf) If d2j−1 = dimP
(
H(G)

)2j−1
, j = 1, 2, . . . , N , define S to be the

product

S
def
= (S1)d1 × (S3)d3 × · · · × (S2N−1)d2N−1 .

Then the graded commutative K-algebras H(G) and H(S) are isomorphic.

Proof. (i) and (ii) are consequences of A3.70 and A3.87.
(iii) The functor

H: (CTOP,×)→ (AB∗K ,⊗∗)op

of Proposition A3.67(ii) is a multiplicative functor. Hence there is an algebra iso-
morphism

(∗∗) H(S) ∼=
d1⊗

H(S1) ⊗ · · · ⊗
d2N−1⊗

H(S2N−1).

Now

Hm(Sp,K) =

{
K if m = 0 or m = p
{0} otherwise.

Hence
d2j−1⊗

H(S2j−1) =
∧
V 2j−1,

where V 2j−1 is a vector space of dimension d2j−1 and all of its nonzero elements
have degree 2j − 1. But then∧

V 2j−1 ∼=
∧
P
(
H(G)

)
,

and the assertion follows. ut

We should hasten to add, that for every compact manifold (locally euclidean
space) M of dimension n we have dimH∗(M,K) <∞. (See e.g. [338], in particular
p. 292ff.)

Corollary A3.91. Assume that G is a compact connected topological monoid G
which is a projective limit limj∈J Gj of an inverse system of compact topological
monoids such that dimK H

∗(Gj ,K) <∞ for a field K of characteristic 0 and all
j ∈ J . Then

(i) there are natural isomorphisms of graded Hopf algebras H(G) ∼=
∧
P
(
H(G)

)
.

(ii) The graded vector space P
(
H(G)

)
of primitive elements of H(G) has only odd

dimensional nonvanishing homogeneous components and determines H(G)
uniquely and functorially.

Proof. The contravariant functor

H: (CTOP,×)→ (AB∗K ,⊗∗)

of A3.67(ii) converts projective limits into direct limits. (See e.g. [338], pp. 318,
319.) Therefore H(G) ∼= colimj∈J H(Gj). The Theorem of Hopf–Samelson A3.90
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applies to each H(Gj) and each of its homomorphic images in H(G). The family
of images of the H(Gj) is an upwards directed family A satisfying the hypothesis
5′) of Corollary A3.89. The assertion then follows from Corollary A3.89. ut

The main application aims at compact groups. From Chapter 1 we know that
every compact group is a projective limit of Lie groups (see 2.43). The underlying
space of a compact Lie group is locally euclidean (see Chapters 5 and 6). Hence
A3.91 applies to every compact group G in particular.

Corollary A3.92. Suppose that G is a compact connected group. Then
(i) there is a natural isomorphism of graded Hopf algebras H(G) ∼=

∧
P
(
H(G)

)
.

(ii) The graded vector space P
(
H(G)

)
of primitive elements of H(G) has only odd

dimensional nonvanishing homogeneous components and determines H(G)
uniquely and functorially.

Proof. The proof is immediate from A3.91. ut

It may be puzzling at first sight that compact connected monoids and compact
groups have the same type of cohomology and that the cohomology Hopf algebra is
in fact a cogroup in the category (AB∗K ,⊗∗K) of graded K-vector spaces. However
this is a consequence of a fact known from the theory of compact monoids, that
every maximal subgroup of its minimal ideal (cf. Exercise E5.1(e), see e.g. [196]) is
a (weak) homotopy retract of the monoid and therefore the two have isomorphic
cohomology.

Part 5: Symmetric Hopf Algebras over R and C

We shall now restrict our attention to the ground fields K = R and K = C. In order
to define the concept of a weakly complete Hopf algebra over K, we summarize
its definition which is based on our category theoretical discussions on Definitions
A3.62 through A3.65 applied to the symmetric monoidal category W of weakly
complete K-vector spaces presented in Appendix 7 from Definition A7.8 through
A7.19. The concept of a weakly complete unital K-algebra is defined in Definition
A7.32, and we consider the definition of a unital (associative) K-algebra as well
understood. While our earlier definitions should make it clear what a Hopf algebra
and a symmetric Hopf algebra (over K) are, for the convenience of the reader we
repeat here the definition in the case of the weakly complete Hopf algebras.

Definition A3.93. A weakly complete K-Hopf algebra is a weakly complete unital
K-algebra space equipped with

(i) a coassociative comultiplication c:A → A ⊗W A which is an algebra mor-
phism,

(ii) a coidentity k:A → K, which is an algebra morphism, such that with the
identity u:K → A, k(t) = t·1 and the multiplication m:A ⊗W A → A,
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m(a ⊗ b) = ab the conditions of a bimonoid in the symmetric monoidal
category (W,⊗W ) are satisfied (see Definitiion A3.64).

A weakly complete K-Hopf algebra A is called symmetric if in addition there is
(iii) a W-morphism σ:A→ A such that the following diagram commutes:

A⊗W A
σ⊗idA−−−→ A⊗W A

c

x ym
A −−→

u◦k
A. ut

Theorem A3.94. The categories of symmetric K-Hopf algebras and Hopf algebra
morphisms and that of weakly complete K-Hopf algebras and morphisms of weakly
complete Hopf algebra morphisms are dual to each other.

Proof. The proof is staightfoward from the definitions and the duality of K-vector
spaces and weakly complete K-vector spaces in Theorem A7.9. ut

In any theory of Hopf algebras it is common to single out two types of special
elements, and we review them in the case of weakly complete Hopf algebras.

Definition A3.95. Let A be a weakly complete Hopf algebra with comultiplica-
tion c and coidentity k. Then an element a ∈ A is called grouplike if k(a) = 1 and
c(a) = a⊗ a. The set of grouplike elements we call G(A). ut

In Definition A3.71 we already said that an element a ∈ A is called primitive,
if c(a) = a⊗ 1 + 1⊗ a and that we denoted the set of primitive elements of A by
P(A).

For any a ∈ A with c(a) = a ⊗ a, the conditions a 6= 0 and k(a) = 1 are
equivalent.

Remark A3.96. In at least one source on bialgebras in earlier contexts, the termi-
nology conflicts with the one introduced here which is now commonly accepted. In
[163], p. 66, Definition 10.17, the author calls a grouplike element in a coalgebra
primitive. Thus some caution is in order concerning terminology. Primitive ele-
ments in the sense of Definition A3.95 do not occur in [163].

Lemma A3.97. The set G of grouplike elements of a weakly complete Hopf algebra
A is a closed submonoid of (A, ·) and the set L of primitive elements of A is a
closed Lie subalgebra of ALie. If A is a symmetric Hopf algebra, then G is a closed
subgroup of A−1.

Proof. The proof is straightforward. ut

Let us briefly consider one aspect of the duality in Theorem A3.94. For a
morphism f :W1 → W2 of weakly complete vector spaces let f ′ =W(f,K):W ′2 →
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W ′1 denote the dual morphism of vector spaces. Again by the sheer duality of the
categories V of K-vector spaces and the category W of weakly complete K-vector
spaces, for a weakly complete coalgebra A let A′ =W(A,K) be the dual of A. Then
A′ is an algebra: If c:A→ A⊗A is the comultiplication of A then c′:A′⊗A′ → A′

is the multiplication of A′. For a unital algebra R and a weakly complete coalgebra
A in duality let (a, g) 7→ 〈a, g〉 : R×A→ K denote the pairing between R and A,
where for f ∈ R = Hom(A,K) and a ∈ A we write 〈f, a〉 = f(a).

Definition A3.98. Let R be a unital algebra over K. Then a character of R is a
morphism of unital algebras R→ K. The set of characters is subset of KR and so
inherits the topology of pointwise convergence from KR. This topological space of
characters is called the spectrum of R and is denoted Spec(R).

An element d ∈ V(R,K) is called a derivative (sometimes also called a deriva-
tion or infinitesimal character of R (with respect to k) if it satisfies

(∀x, y ∈ R) d(xy) = d(x)k(y) + k(x)d(y).

The set of all derivatives of R is denoted Der(R). ut

Now let R be a unital algebra and A
def
= R∗ its dual weakly complete coal-

gebra with comultiplication c such that ab = c′(a ⊗ b) for all a, b ∈ R. In these
circumstances we have:

Proposition A3.99. Let g ∈ A. Then the following statements are equivalent:
(i) g ∈ G(A).
(ii) g ∈ Spec(R).

Proof. The dual of A⊗A is R⊗R in a canonical fashion such that for r1, r2 ∈ R
and h1, h2 ∈ A we have

〈r1 ⊗ r2, h1 ⊗ h2〉 = 〈r1, h1〉〈r2, h2〉.

The set of linear combinations L =
∑n
j=1 aj ⊗ bj ∈ A ⊗ A is dense in A ⊗ A. So

two elements x, y ∈ R ⊗ R agree if and only if for all such linear combinations L
we have

〈x, L〉 = 〈y, L〉,

and this clearly holds if and only if for all a, b ∈ A we have

〈x, a⊗ b〉 = 〈y, a⊗ b〉.

We apply this to x = c(g) and y = g ⊗ g and observe that (i) holds if and only if

(0) (∀r, s ∈ R) 〈r ⊗ s, c(g)〉 = 〈r ⊗ s, g ⊗ g〉.

Now

(1) g(rs) = 〈rs, g〉 = 〈m(r ⊗ s), g〉 = 〈r ⊗ s, c(g)〉.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



Appendix 3. A Primer of Category Theory 859

(2) g(r)g(s) = 〈r, g〉〈s, g〉 = 〈r ⊗ s, g ⊗ g〉.

So in view of (0),(1) and (2), assertion (i) holds if and only if g(rs) = g(r)g(s) for
all r, s ∈ R is true. Since g is a linear form on A, this means exactly that a nonzero
g is a morphism of weakly complete algebras, i.e., g ∈ Spec(R). ut

Let us return to the primitive elements of a unital bialgebra. For this purpose
assume that R is not only a unital algebra, but a Hopf algebra over K, which

implies that its dual A
def
= R∗ is a Hopf algebra over K by Theorem A3.94.

Proposition A3.100. Let R be a unital Hopf algebra and d ∈ A. Then the
following statements are equivalent:

(i) d ∈ P(A)
(ii) d ∈ Der(R). ut

The procedure of the proof of Proposition A3.99 allows us to leave the explicit
proof of this proposition as an exercise.

Definition A3.101. For any weakly complete Hopf algebra A let S(A) denote
the closed linear span of G(A) in A. We say that A is group-saturated if A = S(A).

ut

Since G(A) is a submonoid of A−1, the linear span of G(A) is a unital sub-
algebra, and so S(A) is a closed weakly complete subalgebra of A. Moreover, if
f :A→ B is a morphism of weakly complete Hopf algebras, then f(G(A)) ⊆ G(B),
and so f(S(A)) ⊆ S(B). Therefore c(S(A)) ⊆ S(A ⊗W A), where the comultipli-
cation c of A replaces f .

If A is a weakly complete symmetric Hopf algebra then G(A) is a closed sub-
group of A−1 which is an almost connected pro-Lie group (cf. A7.22ff.) according to
Proposition A7.37, and whose Lie algebra is L(A−1) = ALie, the Lie algebra whose
underlying vector space is A and whose Lie bracket is [x, y] = xy − yx. Therefore
G(A) is a pro-Lie group. The exponential function expA−1 :L(A−1) → A−1 is the
exponential function of A by Appendix 7, Theorem A7.41. Let us now identify its
Lie algebra and its exponential function expG(A):L(G(A))→ G(A). (See Appendix
7 for some basic information on pro-Lie groups.)

Theorem A3.102. Let A be a symmetric K-Hopf algebra. Then G(A) is a pro-
Lie group whose Lie algebra may be identified with the closed Lie subalgebra P(A)
of primitive elements in ALie. The exponential function of G(A) is the restriction
and corestriction of the exponential function of A.

Proof. It was noticed by R. Dahmen in [76] that for a primitive element x ∈ P(A)
we compute c(expx) = exp c(x) = exp(x⊗1 + 1⊗x) = (exp(x⊗1))(exp(1⊗x)) =
((expx) ⊗ 1)(1 ⊗ (expx)) = (expx) ⊗ (expx). Therefore, expx ∈ G(A). Thus
expP(A) ⊆ G(A). Hence for each primitive element x ∈ P(A), the one parameter
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subgroup {exp t·x : t ∈ R} is contained in G(A). We have to verify the converse: So
let exp t·x ∈ G(A) for all t ∈ R and some x ∈ A. We have to show that x ∈ P(A).
Now

exp t·c(x) = exp c(t·x) = c(exp t·x) = (exp t·x)⊗ (exp t·x)

=
(
(exp t·x)⊗ 1

)(
1⊗ (exp t·x)

)
= exp(t·x⊗ 1) exp(1⊗ t·x)

= exp((t·x⊗ 1) + (1⊗ t·x)) = exp t·(x⊗ 1 + 1⊗ x),

for all t ∈ R, and this implies:

c(x) = x⊗ 1 + 1⊗ x

which indeed means x ∈ P(A). ut

Let us look more closely at the dual K-Hopf algebra of a weakly complete
symmetric K-Hopf algebra A. For the group G = G(A) of grouplike elements,
the underlying weakly complete vector space of A is a topological left and right
G-module A with the module operations

(g, a) 7→ g·a : G×A→ A, g·a := ga, and
(a, g) 7→ a·g : G×A→ A, a·g := ag.

In Appendix 7 we denoted by I(A) the filterbasis of closed two-sided ideals I of A
such that A/I is a finite dimensional algebra and that A ∼= limI∈I(A)A/I. We can
clearly reformulate Corollary A7.35 in terms of G-modules as follows:

Lemma A3.103. For the topological group G = G(A), the G-module A has a
filter basis I(A) of closed two-sided submodules I⊆A such that dim(A/J)<∞ and
that A = limI∈I(A)A/I is a strict projective limit of finite dimensional G-modules.
The filter basis I(A) in A converges to 0 ∈ A. ut

For a J ∈ I(A) let J⊥ = {f ∈ A′ : (∀a ∈ J) 〈f, a〉 = 0} denote the annihilator of
J in the dual A′ of A. We compare the “Annihilator Mechanism” from Proposition
7.62 and observe the following configuration:

A {0}∣∣∣ ∣∣∣ }
∼= (A/I)′

I I⊥∣∣∣ ∣∣∣ }
∼= I ′

{0} A′.

In particular we recall the fact that I⊥ ∼= (A/I)′ showing that I⊥ is a finite-
dimensional G-module on either side. By simply dualizing Lemma 3.103 we obtain
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Lemma A3.104. For the topological group G = G(A), the dual G-module R
def
=

A′ of the weakly complete G-module A has an up-directed set D(R) of finite-
dimensional two-sided G-submodules (and K-coalgebras!) F ⊆ R such that R is
the direct limit

R = colim
F∈D(R)

F =
⋃

F∈D(R)

F.
ut

The colimit is taken in the category of (abstract) G-modules, i.e. modules
without any topology.
This means that for the topological group G = G(A), every element ω of the
dual of A′ is contained in a finite dimensional left- and right-G-module (and K-
subcoalgebra).

We record this in the following form:

Lemma A3.105. Consider ω ∈ A′. Then the vector subspaces span(G·ω) and
span(ω·G) of both the left orbit and the right orbit of ω are finite dimensional, and
both are contained in a finite dimensional K-subcoalgebra of A′. ut

For any ω ∈ A′ the restriction f
def
= ω|G : G→ K is a continuous function such that

each of the sets of translates fg, fg(h) = f(gh), respectively, gf , gf(h) = f(hg)
forms a finite dimensional vector subspace of the space C(G,K) of the vector space
of all continuous K-valued functions f on G.

In Definition 3.3., for an arbitrary topological group G we defined R(G,K) ⊆
C(G,K) to be that set of continuous functions f :G→ K for which the linear span
of the set of translations gf , gf(h) = f(hg), is a finite dimensional vector subspace
of C(G,K). The functions in R(G,K) were called representative functions.

In Lemma A3.105 we saw that for a weakly complete symmetric K-Hopf algebra
A and its dual A′ (consisting of continuous linear forms) we have a natural linear
map

τA:A′ → R(G(A),K), τA(ω) = ω|G(A).

By Proposition A3.99, for each g ∈ G(A) the function ω 7→ ω(g):A′ → K is a
character, i.e. is multiplicative which is also clear from the fact that it is a point
evaluation on R(G(A),K). An element ω ∈ A′ is in the kernel of τA if and only
if ω(G(A)) = {0} if and only if ω

(
S(A)

)
= {0} if and only if ω ∈ S(A)⊥. We

therefore observe:

Lemma A3.106. There is an exact sequence of K-vector spaces

0→ S(A)⊥
incl−−→A′ τA−−→R(G(A),K). ut

Using the terminology in Definition A3.101 we can formulate a conclusion that
more intuitively represents the connection beween the dual A′ of a weakly complete
symmetric Hopf algebra A and the representation ring R(G(A),K) of its pro-
Lie group G(A) of grouplike elements. Recall that A is called group-saturated iff
S(A) = A iff S(A)⊥ = {0}.
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Corollary A3.107. Let A be a weakly complete, symmetric Hopf algebra. Then
the natural morphism τA:A′ → R(G(A),K), τA(ω) = ω|G(A) is injective if and
only if A is group-saturated. ut

The issue of surjectivity is clear up to a point:

Remark A3.108. The morphism τA:A′ → R(G(A),K) is surjective if and only
if every representative function f :G(A) → K extends to some continuous linear
functional F :A→ K. ut

If G is any topological group and f ∈ R(G,K), then from Proposition 3.34
(whose proof does not depend on the compactness of the group G) there is a finite
dimensional G-module V , an element ω in its dual V ′, and an element v ∈ V such
that f(g) = 〈ω, π(g)(v)〉 with the representation π of G belonging to the G-module
V . Then π:G→ End(V ) where π(G) ⊆ Aut(V ) = (End(V )−1.

Now assume that G = G(A) as in Remark A3.108. If we assume that π
has an extension to an algebra morphism π:A → End(V ), then indeed F (a) =
〈ω, π(a)(v)〉 defines a linear form extending f and the surjectivity of τ is secured.
If A happens to be the weakly complete group algebra of a compact group G,
then G(A) ∼= G by the results of the third part of Chapter 3, the extension π and,
therefore, F exist. Thus τ is indeed surjective in such a situation.

Postscript

This appendix is a short introductory course in category theory. Our presentation
of category theory aims for making understood a few basic concepts: morphisms
in their various forms, functors, natural transformations, adjoint pairs of functors,
limits and how these interrelate. However, it is a principal goal of our discussion to
fill these concepts with mathematical life from the beginning and to illustrate them
with a wealth of examples stemming from various mathematical domains, notably
from algebra and topology. We opted for this mode of illustration even though it
breaks with a principle we have adhered to in other parts of the book, namely, to
make everything self-contained and to prove all assertions made in this book. As
far as basic category theory itself is concerned to the extent it is presented here,
it is completely self-contained. Since categories of modules are one major class of
examples, Appendices 1 and 3 complement each other.

The last section on commutative monoidal categories is located between cat-
egory theory in general and multilinear algebra and therefore requires familiarity
with multilinear algebra and some maturity in handling tensor products. With
this proviso, complete proofs are given in the section on graded Hopf algebras.
The literature on this subject is not abundant. This is the reason why we felt we
had to give a self-contained account of this type of Hopf algebras. Finally, the new
section on weakly complete symmetric Hopf algebras over K, K = R or K = C, is
needed in the third part of Chapter 3 on weakly complete group K-algebras which,
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among other results leads to a proof of Tannaka duality. The duality between K-
vector spaces and weakly complete K vector spaces that is required in this context
is comprehensively presented in Appendix 7.

References for this Appendix—Additional Reading

[3], [21], [54], [78], [94], [92], [112], [122], [129], [146], [151], [153], [170], [196], [200],
[205], [212], [230], [244], [245], [246], [247], [259], [294], [305], [313], [338], [357],
[358].

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



Appendix 4

Selected Results on Topology
and Topological Groups

In this appendix we gather together material on the arc component topology,
weight, and metrizability of topological groups which we need.

The Arc Component Topology

A space X is said to be locally arcwise connected if the topology of X has a basis
of arcwise connected open sets.

Lemma A4.1. The set of arc components of open sets of X is a basis for a
topology Oα(X) making the underlying set of X into a topological space Xα such
that the following statements hold.

(i) The identity map εX :Xα → X is continuous and has the following universal
property: If f :Z → X is a continuous map from any locally arcwise connected
space Z to X, then it factors through εX ; i.e. the underlying function of f defines
a continuous map f ′:Z → Xα such that f = εX ◦ f ′.

(ii) A function f : I→ X from the unit interval I = [0, 1] to X is continuous if
and only if the function f ′: I→ Xα, f ′(r) = f(r) is continuous.

(iii) For each x ∈ X the arc components Xx and (Xα)x agree. In particular,
Xα is locally arcwise connected.

(iv) For a continuous function f :X → Y the function fα = f :Xα → Y α

is also continuous. The assignment X 7→ Xα is a functor from the category of
Hausdorff spaces into the category of locally arcwise connected Hausdorff spaces,
right adjoint to the forgetful functor. (See Appendix A3, Definition A3.29)

(v) The relation X = Xα holds if and only if X is locally arcwise connected.

Proof. (i) For any subset S ⊆ X and an element s ∈ S we let Ss denote the arc
component of s in S. If U and V are open in X and x ∈ U ∩ V , then (U ∩ V )x ⊆
Ux∩Vx. Hence the set {Uu | U ∈ O(X), u ∈ U} is a basis of a topologyOα(X). The
topological space

(
X,Oα(X)

)
will be denoted Xα. The identity map εX :Xα → X

is obviously continuous.
Now let f :Z → X be a continuous function and assume that Z is locally arcwise

connected. Let z ∈ Z and let V be an open neighborhood of f(z) in Xα. By the
definition of Oα there is an open neighborhood W of f(z) in X containing V such
that the arc component Wf(z) of f(z) is contained in V . Since f is continuous
and Z is locally arcwise connected, there is an arcwise connected neighborhood U
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of z such that f(U) ⊆ W . Since continuous functions preserve arc connectivity,
f(U) ⊆ Wf(z). Thus f(U) ⊆ V and hence f is continuous as a function Z → Xα.
This is what is asserted in (i).

(ii) Let f : I → X be a function. If f ′: I → Xα is continuous, then clearly
f = εX ◦f ′: I→ X is continuous. Conversely, let f : I→ X be continuous. Since the
unit interval I, its topology having a basis of intervals, is locally arcwise connected,
the function f ′:X → Xα is continuous.

(iii) Any arc component Xx of X is arcwise connected in Xα by (ii) and thus
Xx ⊆ (Xα)x. The relation (Xα)x ⊆ Xx is trivial. Since the arc components of
X form a basis of the topology of Xα and these are arcwise connected in Xα, it
follows that Xα is locally arcwise connected.

(iv) Assume that f :X → Y is a continuous map between Hausdorff spaces.
Then f ◦ εX :Xα → Y is a continuous map from a locally arcwise connected space
to Y . Hence by (i) it factors through εY :Y α → Y ; i.e. there is a continuous map
fαXα → Y α, fα(x) = f(x) such that εY ◦ fα = f ◦ εX . f(Ux) ⊆ W . Thus
f :Xα → Y α is continuous.

The assignment X 7→ Xα is clearly a functor, and its universal property for-
mulated in (i) shows that it is right adjoint to the forgetful functor.

(v) is a simple corollary of (iii) and the definition of Xα. ut

A few comments are in order. We could have refined the given topology by
taking connected components in place of the arc components. The universal prop-
erty (i) then holds for locally connected spaces Z. However, the argument that
the space with the refined topology is locally connected breaks down. This is the
reason why the refinement mechanism does not work properly for connectivity.

Exercise EA4.1. Let T2 denote the dyadic solenoid. @See Chapter 1, Example
1.28(ii).) Set X = (T2)N. Discuss (T2)α and Xα and investigate the space obtained
on the underlying set of X by considering the connected components of all open
sets as a basis for a topology. ut

The argument for Assertion (iv) in A4.1 is a concrete version of a category
theoretical argument deriving functoriality from the universal property (see Ap-
pendix 3, A3.28).

Definition A4.2. The topology Oα(X) is called the arc component topology on
X and Xα is called the space on X with the canonical locally arcwise connected
topology. ut

Lemma A4.3. If X and Y are Hausdorff spaces, then (X × Y )α = Xα × Y α.

Proof. Exercise E4.2. ut

Exercise EA4.2. Prove A4.3. ut
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Lemma A4.4. Let G be a topological group. Then Gα is a locally arcwise connected
topological group whose filter of identity neighborhoods Uα has a basis of open
identity neighborhoods U1 where U ranges through the open members of U , the
filter of identity neighborhoods of G.

Proof. In view of A4.3 and A4.1(iv), multiplication (x, y) 7→ xy:Gα × Gα =
(G × G)α → Gα and inversion x 7→ x−1:Gα → Gα are continuous. Thus Gα is a
topological group.

The sets U1, U ∈ U are certainly open sets of Gα. If g ∈ G and g ∈ V ∈ O(G),
then Vg is a basic open set of Gα. Then g−1V ∈ U and g−1Vg = (g−1V )g ∈ Uα.
The assertion follows. ut

There is an application of these concepts of topological group theory which
is relevant in Lie group theory. We refer to Appendix 2, Corollary A2.31 on the
Generating of Subgroups of Topological Groups. The gist of that corollary was
that a subset K of a topological group G generates a subgroup with very well con-
trolled properties provided K satisfies certain conditions linking group structure
and topology on K. Therefore the following proposition sheds new light on this
idea.

Proposition A4.5. Assume the hypotheses of Corollary A2.31 and assume in ad-
dition that the subspace K of G is arcwise connected and locally arcwise connected.
Let H∗ = 〈K〉 denote the subgroup generated in G by K given the induced topology.
Then the topological group H of A2.31 may be identified with (H∗)

α and f with
the inclusion map.

Proof. By A2.31, the groupH has an open identity neighborhood V which is home-
omorphic to K, and is therefore arcwise connected and locally arcwise connected.
Thus the topological group H is locally arcwise connected, and, being generated
by V , it is arcwise connected, too. The continuous bijection f ′:H → H∗ obtained
from corestricting f to its image factors through εH∗ : (H∗)

α → H by A4.1(i) with
a bijective continuous morphism F :H → (H∗)

α, f ′ = F ◦ εH∗ . Since K is locally
arcwise connected, the topology O of H∗ and the arc component topology Oα on
H∗ induce on K the same topology (cf. A2.33(i), applied to the inclusion K → H∗).
Since f ′|V :V → K is a homeomorphism, F |V :V → K ⊆ (H∗)

α is a homeomor-
phism, too. Thus F is a bijective morphism of topological groups which maps an
open identity neighborhood of its domain onto an open identity neighborhood of
its image. Therefore it is also open and thus ε is an isomorphism of topological
groups. ut

Proposition A4.6. Assume that p:G→ G/N is a quotient morphism of a topo-
logical group which has arc lifting (see 8.27). Then pα = p:Gα → (G/N)α is a
quotient morphism.
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Proof. A subset S ∈ G will be called saturated iff SN = NS = S. If S′ ⊆
G, then S

def
= S′N is the smallest saturated set containing S′. If S is saturated

we write p(S) = S/N . The open sets of G/N are exactly the sets U/N with U
ranging through all saturated open subsets of G. If U is a saturated open identity
neighborhood of G, then U1 ∈ Uα and p−1p(U1) = U1N =

⋃
n∈N U1n is open in

Gα. The quotient group Gα/N is therefore a locally arcwise connected topological
group and thus the identity map Gα/N → (G/N)α is continuous by A8.1(i) We
have to show that it is open. Let U be a saturated open identity neighborhood of
G. The spaces U and U/N are pointed at 1 and N . Then p−1

(
(U/N)1

)
= {g ∈ U |

(∃γ ∈ C0(I, U/N)) γ(1) = gN} and U1N = {g ∈ G | (∃γ ∈ C0(I, U)) γ(1)N = gN}
Clearly the second of these two sets is contained in the first. For a proof of the
reverse containment consider a g ∈ p−1

(
(U/N)1

)
and let γ: I → U/N ⊆ G/N be

a pointed arc such that γ(1) = gN . Since p:G→ G/N has arc lifting, there is an
arc γ̃: I → G such that γ̃(r)N = γ(r) for all r ∈ I. Thus γ̃(I)p−1(U/N) = U and
γ̃(1) ∈ gN . Hence

p−1
(
(U/N)1

)
= U1N.

Thus the identity map Gα/N → (G/N)α is also open and therefore a homeomor-
phism. It follows that g 7→ gN :Gα → Gα/N is a quotient map which has arc
lifting. ut

The Weight of a Topological Space

Definition A4.7. Let X be a topological space and O its topology. The set
{cardB : B is a basis for O} is well ordered and thus has a minimal element. This
cardinal is called the weight of X and is written w(X). ut

Clearly if X ⊆ Y , or if f :Y → X is surjective, continuous, and open, then
w(X) ≤ w(Y ). For a discrete space X one has w(X) = cardX. The spaces with
w(X) ≤ ℵ0 are said to satisfy the Second Axiom of Countability. All separable
metric spaces have this property. We shall encounter separable compact spaces of
weight 2ℵ0 shortly. Every Cantor space 2J , 2 denoting the discrete two element
space {0, 1}, has weight w(2J) = card J ; in particular, every cardinal occurs as
a weight of a compact Hausdorff space. We shall prove this and indeed a more
general statement in the next exercise below.

Lemma A4.8. Assume X is a space with an infinite topology O. Let S be a sub-
basis for O (i.e. S ⊆ O such that the collection of finite intersections of members
of S is a basis for O). Then w(X) ≤ cardS.

Proof. This is a consequence of the fact that the set of finite subsets of an infinite
set has the same cardinality as this set. ut

Exercise EA4.3. Prove the following assertion.
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If Xj, j ∈ J is a family of topological spaces of weights wj = w(Xj), such that the

topology of X
def
=
∏
j∈J Xj is infinite. Then

w(X) =
∑
j∈J

wj = sup({card J} ∪ {wj | j ∈ J}).

[Hint. (a) The equality∑
j∈J

wj = sup({card J} ∪ {wj | j ∈ J})

for infinite left hand side is a simple exercise in cardinal arithmetic. Indeed, the
right hand side is clearly dominated by the left hand side, and if ℵ is the right
hand side, then the left hand is dominated by (cardJ)(supj∈J wj) = ℵ2 = ℵ.

(b) Let Bj be a basis for the topology of Xj of cardinality wj . For W ∈ Bk,
k ∈ J write Uk(W ) = {(xj)j∈J ∈ X | xk ∈ W}. Then {Uj(W ) | W ∈ Bj , j ∈ J}
is a subbasis of the product topology on X and its cardinality is

∑
j∈J wj . Thus

w(X) ≤
∑
j∈J wj by Lemma A4.8.

(c) Next we claim that sup({card J} ∪ {wj | j ∈ J}) ≤ w(X). In view of (a)
this will complete the proof. Let B be a basis of the topology on X of cardinality
w(X). The projections prj :X → Xj are continuous and open. Hence prj(B) is a
basis of the topology of Xj , whence wj ≤ w(X). Hence sup{wj , j ∈ J} ≤ w(X).
If J is finite, we are done. Assume that J is infinite. Let Fin(J) denote the set of
finite subsets of J . If C ⊆ Fin(J) is cofinal, i.e. for F ∈ Fin(J) there is an F ′ ∈ C
with F ⊆ F ′, we define retractive function γ: Fin(J) → C by picking for each
F ∈ Fin(J) a minimal γ(F ) ∈ C containing F . In particular, γ is surjective; and
since γ−1(F ′) is finite for every F ′ ∈ C we conclude cardC = card Fin(J) = cardJ .
If U ∈ B, then there is a minimal ω(U) ∈ Fin(J) such that for some (uj)j∈J ∈ U the
set {(xj)j∈J | j ∈ F ⇒ xj = uj}. Since the image of the function ω:B → Fin(J) is
cofinal and thus has cardinality cardJ by the preceding observations, we deduce
w(X) = cardB ≥ card J . Thus w(X) ≥ sup({card J}∪{wj , | j ∈ J}) as asserted.]ut

Recall (cf. Definition 12.15(ii)) that if X is a topological space, the density of
X is defined to be

d(X) = min{ℵ | there is a dense subset Y of X with cardY = ℵ}.

Exercise EA4.4 ([67]). Prove the following assertions.

(i) Let B be a nonseparable normed vector space. Consider the subsets S of
the open unit sphere S(1) with the property that ‖x−y‖ ≥ 1

2 , for x, y ∈ S, x 6= y.
Partially order these subsets by set-theoretic inclusion and, by using Zorn’s Lemma
pick a maximal subset A among them. Then cardA = d(B).

(ii) (Kruse–Schmidt–Stone Theorem) ([67], [68], [233], [323], [345]) If B is a
Banach space then

cardB = (cardB)ℵ0 = (d(B))ℵ0 .
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[Hint. (i) Let D be a dense subset of B of cardinality d(B). Each of the cardA
disjoint open balls of radius 1

4 with midpoints a ∈ A has to contain an element of
D. Thus the Axiom of Choice yields an injective function A→ D. It follows that
cardA ≤ d(B). The reverse inequality is proved by finding a dense subset D of B
of cardinality cardA, as follows.

Put D = {
∑k
i=1 qiai | k ∈ N, qi ∈ Q, ai ∈ A}, and observe that cardD =

cardA, since A is infinite. To show D is dense, prove that for each x ∈ B there
is a sequence of points sn, n ∈ N, in D converging to x. Let M ∈ N be such that
‖x‖ < M . Then 1

M x ∈ S(1) and since A is maximal, there exists an element a1 ∈ A
such that ‖ 1

M x−a1‖ < 1
2 . Putting s1 = Ma1 we see that s1 ∈ C and ‖x−s1‖ < M

2 .
Complete the proof by inductively defining the other terms of the sequence; indeed,
assume sn ∈ C is such that ‖x − sn‖ < M

2n . Then 2n

M x − 2n

M sn ∈ S(1). So there

exists an+1 ∈ A such that ‖( 2n

M x− 2n

M sn)−an+1‖ < 1
2 . Putting sn+1 = sn+ M

2n an+1

it follows that ‖x− sn+1‖ < M
2n+1 .]

(ii) If B is separable, then cardB = 2ℵ0 and the result is clear. So assume B is
nonseparable. Let A be as in (i), so that cardA = d(B). Define a map f :AN → B
by f(a) =

∑∞
j=1

1
6j aj for a = (aj)j∈N. As B is a complete metric space and

‖aj‖ < 1, this series converges absolutely and ‖f(a)‖ <
∑∞
j=1

1
6j = 1

5 < 1. Thus

f(AN) ⊆ S(1). Verifying that f is one-to-one will show that cardB ≥ (cardA)ℵ0 =
(d(B))ℵ0 . The reverse inequality, cardB ≤ (d(B))ℵ0 , follows from the fact that
every point in B is the limit of a sequence in a dense subset. So cardB = (d(B))ℵ0

and hence cardB = (cardB)ℵ0 .
Finally, prove that f is one-to-one by considering distinct elements a, b ∈ AN,

namely a = (a1, a2, . . .) and b = (b1, b2, . . .), and showing that their images under
f are distinct. Now am 6= bm, for some m ∈ N, and aj = bj , for j ≤ m. So

‖f(a)− f(b)‖ ≥
∥∥∥am − bm

6m

∥∥∥− ∞∑
j=m+1

∥∥∥aj − bj
6j

∥∥∥
≥ 1

2
.

1

6m
− 2

∞∑
j=m+1

1

6j
=

1

2·6m
(

1− 4

5

)
> 0

and so the images are distinct, as required.] ut

The Kruse–Schmidt–Stone Theorem is a remarkable result. Among other things
it tells us that the cardinality cardB = ℵ of any Banach space B has the property
that ℵ = ℵℵ0 .

Let X be a pointed compact Hausdorff space, G an infinite abelian topological
group, C(X,G) the group of all continuous functions from X into G, and C0(X,G)
the group of all continuous basepoint preserving functions from X into G. If G is
R or T we consider the topology of uniform convergence on C0(X,G) given by the
complete metric ‖f−g‖ = sup{|f(x)−g(x)| : x ∈ X}, for f, g ∈ C0(X,G). Further,
C0(X,R) is a Banach space when ‖f‖ is defined to be sup{|f(x)| : x ∈ X}, for
each f ∈ C0(X,R).
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Theorem A4.9 (The Weight of Function Spaces). (i) Let X be a compact Haus-
dorff space. Then

cardC0(X,R) = cardC0(X,T) = cardC0(X,U(n)) = w(X)ℵ0 .

(ii) If A is a discrete abelian group, then

cardC0(X,A) =

{
(cardA)n if #X = n+ 1,
max{w(X/conn), cardA} if #X is infinite.

Proof. Exercises EA4.5 and EA4.6. ut

Exercise EA4.5. Prove Theorem A4.9(i) by proceeding through the following
steps.

(i) Let X1, X2 and X3 be compact Hausdorff pointed spaces.
If f :X1 → X2 is a continuous injection and g:X2 → X3 is a continuous surjec-

tion, then

cardC0(X1,R) ≤ cardC0(X2,R) and cardC0(X3,R) ≥ cardC0(X2,R).

(ii) cardC0(X,R) = cardC0(X,T).

[Hint. Note that T is a quotient group of R and so cardC0(X,T) ≥ cardC0(X,R).
The reverse inequality follows by observing that T is homeomorphic to a subspace
of R2 and cardC0(X,R2) = (cardC0(X,R))2.]

(iii) Let F be a dense subset of C0(X,R) such that cardF = d(C0(X,R)).
Then the family F separates points (that is for x 6= y in X there is an f ∈ F
such that f(x) 6= f(x)). The map x 7→

(
f(x)

)
f∈F : X → RF is continuous and is

injective since F separates points. As X is compact, it is an embedding of X into
Rd(C0(X,R)). So

w(X) ≤ d(C0(X,R)).

[Hint. By Exercise EA4.3, w(Rd(C0(X,R))) = d(C0(X,R)).]

(iv) (w(X))ℵ0 ≤ cardC0(X,R).

[Hint. Use (iii) and the Kruse–Schmidt–Stone Theorem of EA4.4(ii).]

(v) If X is infinite and 0-dimensional, then cardC0(X,Z(2)) = w(X), where
Z(2) is the discrete cyclic group of order 2.

[Hint. The cardinality of C0(X,Z(2)) equals that of C(X,Z(2)) and this is equal
to that of the set L of all compact open subsets of X. Let B be a basis for the
open sets with cardB = w(X). Now form the set B′ of finite unions of sets in B.
Then cardB′ = cardB = w(X). But then L ⊆ B′. Thus cardL ≤ w(X). But as L
is a basis for the topology of the compact 0-dimensional space X, w(X) ≤ cardL.
So cardC0(X,Z(2)) = w(X).]

(vi) If X is infinite and 0-dimensional, then cardC0(X,R) = w(X)ℵ0 .

[Hint. Let K be the compact abelian topological group (Z(2))ℵ0 , which is homeo-
morphic to the Cantor space (the subspace {2

∑∞
n=1

an
3n | (a1, a2, . . .) ∈ {0, 1}N} of
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the unit interval I = [0, 1]). Noting that C0(X,K) ∼= C0(X,Z(2)
)N

it follows from
(iv) that cardC0(X,K) = w(X)ℵ0 .

Let k:K → I be the continuous surjective Cantor–Carathéodory function de-
fined by

k
(

2
∞∑
n=1

an
3n

)
=
∞∑
n=1

an
2n
.

As T is a quotient space of I, there is a continuous surjective map m of K onto
T. Then C0(X,m):C0(X,K)→ C0(X,T) is surjective. To see this, note that since
X is totally disconnected and thus has a basis of compact open subsets, the set of
locally constant and finitely valued functions in C0(X,T) is uniformly dense. Each
such function lifts to a function in C0(X,K) as m is surjective. Thus the image
of C(X,m) is uniformly dense. Since it is also closed in the topology of uniform
convergence, the claim follows. Hence cardC0(X,K) ≤ cardC0(X,T).

Let j be an embedding of K in T. Then C0(X, j):C0(X,K) → C0(X,T) is
injective, and thus cardC0(X,T) ≤ cardC0(X,K).

So cardC0(X,T) = cardC0(X,K). Thus cardC0(X,T) = w(X)ℵ0 . Finally ap-
ply (ii).]

(vii) cardC0(IA,R) = (cardA)ℵ0 for any infinite set A.

[Hint. Noting that K is a subspace of I and I is a quotient space of T, apply (i) to
show cardC0(IA,R) = C0(KA,R). Then apply (vi) and EA4.3.]

(viii) The space X can be embedded into Iw(X).

[Hint. For finiteX this is trivial so assume thatX is infinite. LetB be a basis for the

open sets of X with cardB = w(X). Set J
def
= {(U, V ) ∈ B×B | U ∩V = Ø}. Then

w(X) ≤ card J ≤ w(X2) = w(X) since w(X) is infinite. For each j = (U, V ) ∈ J
select a continuous function fj :X → I with U ⊆ f−1(0) and V ⊆ f−1(1). The
function

x 7→
(
fj(x)

)
:X → IJ

is an embedding. Finally, cardJ = cardw(X).]

(ix) cardC0(X,R) ≤ (w(X))ℵ0 for any infinite compact space.

[Hint. Apply (i), (vii) and (viii).]

(x) For any compact Hausdorff pointed space,

cardC0(X,R) = w(X)ℵ0 .

[Hint. If X is infinite, this follows from (iv) and (ix). If X contains n > 1 points,
then C0(X,R) = Rn−1, whence cardC0(X,R) = 2ℵ0 . On the other hand, w(X) =
n > 1 and thus w(X)ℵ0 = nℵ0 = 2ℵ0 . If X is singleton, then C0(X,R) is singleton
and w(X) = 1, whence w(X)ℵ0 = 1.]

(xi) For any compact Hausdorff pointed space,

cardC0(X,U(n)) = cardC0(X,R).

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



872 Appendix 4. Selected Results on Topology and Topological Groups

[Hint. Use (i), that R can be embedded as a subspace of U(n), that U(n) can be

embedded as a subspace of Rn2

, and that

cardC0(X,Rn
2

) = (cardC0(X,R))n
2

= (w(X)ℵ0)n
2

= w(X)ℵ0 .]

An alternative to going through these steps in order to prove Part (i) of Theo-
rem 4.9 is to use Smirnov’s Theorem ([67], [335]) which, with minor modification,
tells us that for any infinite compact Hausdorff space X we have d(C0(X,R)) =
w(X).] ut

Exercise EA4.6. Prove Theorem A4.9(ii). ut

Metrizability of Topological Groups

A metric d on a group G is called left invariant if d(gx, gy) = d(x, y) for all
g, x, y ∈ G.

We may cast the presence of a left invariant metric into different guises involving
functions.

Lemma A4.10. For any Hausdorff topological group G, the following statements
are equivalent.

(i) There exists a left invariant metric d on G defining the topology of G.
(ii) There exists a continuous function ‖·‖:G→ R+ = [0,∞[ such that

(1) ‖x‖ = 0 if and only if x = 1.
(2) ‖x−1‖ = ‖x‖ for all x ∈ G.
(3) ‖xy‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ G.
(4) For each identity neighborhood U there is an n ∈ N such that ‖g‖ < 1

n
implies g ∈ U .

(iii) There exists a function p:G→ [0, 1] such that
(1) p(1) = 0 and for each identity neighborhood U there is an n ∈ N such

that p(g) < 1
n implies g ∈ U .

(2) For all n ∈ N there is an identity neighborhood U such that for all
g ∈ G and u ∈ U the relation p(gu) ≤ p(g) + 1

n holds.
If these conditions are satisfied, then ‖·‖ may be chosen to arise from d, p from
‖·‖, and d from p, as follows.

‖x‖ = d(x, 1),

p(x) = min{‖x‖, 1},
d(x, y) = sup{|p(gy)− p(gx)| : g ∈ G}.

Proof. (i)⇒(ii). Set ‖x‖ def
= d(x, 1). Then (ii)(1) follows from the positive definite-

ness of the metric. Further |x| = d(x−1, 1) = d(xx−1, x) = d(1, x) = d(x, 1) = |x|
by left invariance and symmetry. Thus (ii)(2) holds. Finally, |xy| = d(xy, 1) =
d(y, x−1) ≤ d(y, 1) + d(1, x−1) = d(y, 1) + d(x−1, 1) = ‖y‖+ ‖x−1‖ = ‖x‖+ ‖y‖ by
left invariance, triangle inequality, and (ii)(2). This shows (ii)(3) holds.
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(ii)⇒(iii). Set p(x) = min{‖x‖, 1} for all x ∈ G. Then p(1) = 0 is clear. By
(ii)(4), for every identity neighborhood U there is an n ∈ N such that ‖g‖ < 1

n
implies g ∈ U . This is (iii)(1). Next (ii)(3) and the continuity of ‖·‖ give (iii)(2).

(iii)⇒(i). Set d(x, y)
def
= sup{|p(gy)− p(gx)| : g ∈ G}. Since p is bounded, there

is no problem with the existence of the least upper bound. Then d(x, y) ≥ 0 and
d(x, y) = 0 iff (∀g ∈ G) p(gy) = p(gx), and this holds only if 0 = p(1) = p(y−1y) =
p(y−1x) for all x, y ∈ G. By (iii)(1), and sinceG is Hausdorff, this implies y−1x = 1,
since 1 is the only element contained in each identity neighborhood. So x = y.
Conversely, if x = y then trivially d(x, y) = 0. Hence d is definite. The symmetry
of d is immediate from the definition.

Also d(gx, gy) = sup{|p(hgx) − p(hgy)| : h ∈ G} = d(x, y). Thus d is left
invariant.

Finally |p(gx) − p(gz)| ≤ |p(gx) − p(gy)| + |p(gy) − p(gz)| ≤ d(x, y) + d(y, z)
for all g ∈ G whence d(x, z) ≤ d(x, y) + d(y, z). Thus d is indeed a left invariant
metric. It remains to show that d defines the topology. Because of left invariance,

it suffices to show that the sequence of sets Un
def
= {x ∈ G | d(x, 1) < 1

n} for
n = 1, 2, . . . forms a basis for the filter of identity neighborhoods. First we show
that all Un are identity neighborhoods. Consider an n ∈ N. By(iii)(2), there is an
identity neighborhood U = U−1 such that for all g ∈ G we have p(gu) ≤ p(g) + 1

2n
and p(g) = p(guu−1) ≤ p(gu) + 1

2n for all g whence |p(gu) − p(g)| ≤ 1
2n for all

g ∈ G and thus d(u, 1) ≤ 1
2n < 1

n . Thus U ⊆ Un. Now let an open identity
neighborhood U be given. Then by (iii)(1) we find an n ∈ N such that x /∈ U
implies 1

n ≤ p(x) = |p(1x)− p(1)| ≤ sup{|p(gx)− p(g)| : g ∈ G} = d(x, 1). ut

Lemma A4.11. Assume that d, ‖·‖, and p are linked as in Lemma A4.10 and
that Γ is a set of automorphisms of the topological group G. Then the following
conditions are equivalent:

(4) ‖γ(x)‖ = ‖x‖ for all x ∈ G, γ ∈ Γ,
(4′) p

(
γ(x)

)
= p(x) for all x ∈ G, γ ∈ Γ,

(4′′) d
(
γ(x), γ(y)

)
= d(x, y) for all x ∈ G, γ ∈ Γ.

If Γ is the group of inner automorphisms, then these conditions are also equivalent
to
(4′′′) d(xg, yg) = d(x, y) for all g, x, y ∈ G.

Proof. The proofs of (4)⇒(4′)⇒(4′′)⇒(4) are straightforward from the definitions.
Assume now that Γ is the group of inner automorphisms. We note that

d(xg, yg) = d(g−1xg, g−1yg) by left invariance. Thus invariance of the metric un-
der right translations and invariance under inner automorphisms are equivalent
for any left invariant metric. ut

Condition (4′′′) is equivalent to the additional right invariance of d. A metric
which is both left and right invariant is called biinvariant.

In conjunction with Lemma A4.10, a left invariant metric defining a topology
can also be translated into terms of certain families of identity neighborhoods.
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Lemma A4.12. For a topological group G the following two conditions are equiv-
alent.

(iii) There exists a function p:G → [0, 1] such that conditions (1) and (2) of
A4.10(iii) are satisfied.

(iv) There is a function r 7→ U(r): ]0,∞[ → P(G) into the set of subsets of G
containing 1 such that the following conditions are satisfied:
(A) (∀r > 1)U(r) = G.
(B) (∀0 < s)

⋃
r<s U(r) = U(s).

(C) For each identity neighborhood U there is an n ∈ N such that U( 1
n ) ⊆ U .

(D) For each n ∈ N there is an identity neighborhood U such that U(r)U ⊆
U(r + 1

n ) holds.
Moreover, the two concepts are related by

p(g) = inf{r ∈]0, 1] | g ∈ U(r)} and U(r) = {g ∈ G | p(g) < r}.

Proof. (iii)⇒(iv) For 0 < r define U(r)
def
= {g ∈ G | p(g) < r}. If 1 < r, then

p(g) ≤ 1 < r for all g ∈ G, and so g ∈ U(r). Now (A) follows from the fact that
p(g) ≤ 1 for all g ∈ G.

Proof of (B). Let g ∈
⋃
r<s U(r). Then there is an r < s such that g ∈ U(r)

and then by definition p(g) < r. Then p(g) < s, i.e. g ∈ U(s). Now let, conversely,

g ∈ U(s). Then p(g) < s by definition. Set t = p(g)+s
2 . Then p(g) < t < s, and

thus g ∈ U(t) ⊆
⋃
r<s U(r).

Proof of (C). For a given U choose n as in A4.10(iii)(1). Then g ∈ U( 1
n ) implies

p(g) < 1
n and thus g ∈ U .

Proof of (D). By (iii)(2) for a given n ∈ N we find an identity neighborhood
such that p(gu) < p(g) + 1

n for all g ∈ G and u ∈ U . So for a g ∈ U(r) and u ∈ U
we have p(gu) < tg,u < p(g) + 1

n < r + 1
n so that gu ∈

⋃
s<r+ 1

n
U(s) = U(r + 1

n ).

Finally, p is retrieved from U(·) via p(g) = inf{r ∈ [0, 1] | g ∈ U(r)}; indeed let
the right side be denoted by m. If g ∈ U(r), then by definition p(g) < r, and so
p(g) is a lower bound for the set {r | g ∈ U(r)}. Hence p(g) ≤ m. Now let p(g) < r.
Then g ∈ U(r) and thus m ≤ r. It follows that m ≤ p(g) and p(g) = m is proved.

(iv)⇒(iii) For g ∈ G define p(g) = inf{r ∈ ]0, 1] | g ∈ U(r)}. This definition is
possible by (A). Clearly, 0 ≤ p(g) ≤ 1. Since 1 ∈ U(r) for all r > 0 by hypothesis
on r 7→ U(r), we have p(1) = 0.

Proof of (C)⇒(iii)(1). Let U be given. Find n so that U( 1
n ) ⊆ U . If p(g) < 1

n ,
then g ∈ U( 1

n ) ⊆ U .
Proof of (D)⇒(iii)(2). Let n ∈ N. Then by (D) there is an identity neighborhood

U such that U(r)U ⊆ U(r + 1
n ). Now let g ∈ G and u ∈ U . Take any r with

g ∈ U(r). Then gu ∈ U(r)U ⊆ U(r + 1
n ) and thus p(gu) < r + 1

n . We conclude
p(gu) ≤ p(g) + 1

n .

Finally, U(·) is retrieved from p via U(r) = {g ∈ G | p(g) < r}. Indeed, let
g ∈ U(r), then by (B) there is an s < r with g ∈ U(s). Then p(g) ≤ s < r; thus
the left hand side is contained in the right hand side. Conversely, assume that
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p(g) < r. Since p(g) = inf{s | g ∈ U(s)}, there is an s with p(g) ≤ s < r such that
g ∈ U(s). Then, a fortiori, g ∈ U(r). So both sides are equal. ut

Lemma A4.13. The metric d corresponding to the p in Lemma A4.12 is biinvari-
ant if and only if gU(r)g−1 = U(r) for all g ∈ G and all r ∈ [0, 1]. More generally,
d is invariant under the members of a set Γ of automorphisms of G if and only if
all sets U(r) are invariant under the automorphisms from Γ.

Proof. This is immediate from A4.11 and the connection between r 7→ U(r) and
p in A4.12. ut

The function U(·) now permits an access to metrizability theorems on a purely
algebraic level. A subset D of a set X endowed with a partial order ≤ is called a
directed set if it is not empty and each nonempty finite subset of D has an upper
bound in D.

Definition A4.14. A semigroup with a conditionally complete order is a semi-
group S together with a partial order ≤ such that the following conditions are
satisfied:

(i) (∀s, t, x) s ≤ t⇒ sx ≤ tx and xs ≤ xt.
(ii) (∀s, t) s ≤ st.
(iii) Every directed subset of S has a least upper bound. Further S has a

(semigroup) zero which is the largest element of S. ut

The set of identity neighborhoods of a topological group G is a semigroup with
the conditionally complete order ⊆.

Lemma A4.15. Let S be a semigroup with a conditionally complete order. Assume
that there is a sequence of elements un, n = 1, 2 . . . in S satisfying the following
condition: (

√
) u2

n+1 ≤ un.

Then there is a function F : ]0,∞]→ S such that
(I) (∀r > 1) F (r) = maxS.

(II) (∀0 < s) supr<s F (r) = F (s).
(III) (∀n ∈ N) F ( 1

2n ) ≤ un, and
(IV) (∀r > 0, n ∈ N) F (r)un+1 ≤ F (r + 1

2n ).
Moreover, F takes its values in the smallest subsemigroup containing

{u1, u2, . . . ; maxS}

which is closed under the formation of directed suprema.

Proof. (a) Note that un+1 ≤ u2
n+1 ≤ un by A4.13(ii) and (

√
). Thus

(#) (∀m, n ∈ N, m ≤ n) un ≤ um.

We shall first define a function f : J → S on the set J of dyadic rationals r = m/2n,

m, n ∈ N with values in the subsemigroup T
def
= 〈u1, u2, . . . ; maxS〉. Once and for
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all we set f(r) = maxS = 0 ∈ T for all 1 ≤ r ∈ J . To get started in earnest, we set
f(1/2) = u1 ∈ T . The next step is to define f(r) for r ∈ { 1

4 ,
3
4}; note that f( 2

4 ) = u1

is already defined. We set f( 1
4 ) = u2 ∈ T and f( 3

4 ) = f(1/2)u2 = u1u2 ∈ T . This
indicates our strategy of producing a recursive definition. We set

Jn =
{m

2n
| m = 1, . . . , 2n

}
, n = 0, 1, 2, . . .

and note J0 = {1} ⊆ J1 = { 1
2 , 1} ⊆ J2 = { 1

4 ,
2
4 ,

3
4} ⊆ J3 ⊆ · · · and J = (J ∩

[1,∞[) ∪
⋃
n∈N Jn. Assume that f is defined on Jn with f(Jn) ⊆ T in such a way

that f( 1
2m ) = um for m = 1, . . . , n and that

(†n) (∀r ∈ Jn) f(r)un ≤ f(r +
1

2n
)

holds. We note that f(r) ≤ f(r)um by A4.14(ii) and that therefore (†n) implies
that f is monotone on Jn, that is

(##) (∀r, s ∈ J, r ≤ s) f(r) ≤ f(s).

We must define f(r), r = m/2n+1. If m is even, then r ∈ Jn and f(r) ∈ T
is defined. If r = 1

2n+1 , we set f(r) = un+1 ∈ T ; if r ∈ Jn we set f(r + 1
2n+1 ) =

f(r)un+1 ∈ TT ⊆ T . We must show that (†n+1) holds.
Case 1. r ∈ Jn, m = n+ 1. Then f(r)un+1 = f(r + 1

2n+1 ) by definition.
Case 2. r ∈ Jn+1 \ Jn. Then r = r0 + 1

2n+1 with r0 ∈ {0} ∪ Jn. Now

f(r)un+1 =

{
un+1un+1 ≤ un if r0 = 0
f(r0)un+1un+1 ≤ f(r0)un if r0 > 0

}
≤ f(r0 + 1/2n)

=f(r0 +
1

2n+1
+

1

2n+1
) = f

(
r + (1/2n+1)

)
by the definition of f on Jn+1 and A4.14(i), by (

√
), and by the induction hypoth-

esis (†n).
The induction is complete, and we have defined f : J → S by recursion in

such a fashion that (##)) and (†n) are satisfied. Now we extend f to a function
F : ]0,∞]→ S by F (r) = maxS for r > 1 and

F (r) = sup
s∈J, s<r

f(s) for0 < r ≤ 1.

This least upper bound exists by A4.14(iii). If T denotes the smallest subsemigroup
of S containing T and being closed under the formation of directed sups, then
imF ⊆ T .

Clearly (I) is satisfied. Proof of (II). We compute

sup
0<s<r

F (s) = sup
0<s<r

(
sup

u∈J, u<s
f(u)

)
= sup
{(u,s)|u∈J, u<s<r}

f(u) = sup
u∈J, u<r

f(r) = F (r)

since J is order dense in ]0, 1].
Proof of (III): We have F (1/2n) = supr∈J, r< 1

2n
f(r) ≤ un since r < 1

2n implies

f(r) ≤ f( 1
2n ) by (##), and f( 1

2n ) = un by the construction of f .
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Proof of (IV). Fix an n ∈ N and consider an r ∈ ]0, 1]. If 1 − (1/2n+1) ≤ r,
then F (r + (1/2n)) = maxS ≥ F (r)un+1. So assume that r < 1 − (1/2n+1) and
let s be the first element of Jn+1 such that r ≤ s. Then (##) and the definition
of F implies
(α) F (r) = supq∈J, q<r f(q) ≤ f(s),

and since the element s+(1/2n+1) =
(
s− (1/2n+1)

)
+(1/2n) < r+(1/2n) belongs

to J , we have
(β) f

(
s+ (1/2n+1)

)
≤ F

(
r + (1/2n)

)
.

From (†n+1) we get
(γ) f(s)un+1 ≤ f

(
s+ (1/2n+1)

)
.

Now (α), (β), and (γ) and 2.11(i) together imply
F (r)un+1 ≤ f(s)un+1 ≤ F

(
r + (1/2n)

)
,

and this is what we had to show. The proof of the lemma is now complete. ut

Theorem A4.16 (Characterisation of Left Invariant Metrizability). (a) For a
topological group G, the following conditions are equivalent:

(1) The topology of G is defined by a left invariant metric.
(2) The filter of identity neighborhoods (equivalently, that of any point in G) has

a countable basis.
(b) Also, the following conditions are equivalent:

(3) The topology of G is defined by a biinvariant metric.
(4) The filter of identity neighborhoods has a countable basis each member of

which is invariant under inner automorphisms.
(c) For a locally compact group G conditions (1) and (2) are equivalent to the

following condition.
(5) There is a countable family of identity neighborhoods intersecting in {1}.

Proof. Clearly, (1)⇒(2) and (3)⇒(4).
We assume (2) and show (1). In order to prove (4)⇒(3) at the same time we

consider a set Γ of automorphisms of the topological group G, e.g. Γ = {id}, or the
group of all inner automorphisms. Let On, n ∈ N be a family of Γ-invariant identity
neighborhoods which form a basis for the filter of identity neighborhoods. We define
recursively a new basis Un by setting U1 = O1. Assume that U1, . . . , Un is defined
so that all Um are Γ-invariant and satisfy U2

m ⊆ Um−1 ∩ Om−1, m = 2, 3, . . . , n.
There is an identity neighborhood V such that V V ⊆ Un∩On. Since the Om form
a basis for the identity neighborhoods there is an index j(n) such that Oj(n) ∈ V .
Set Un+1 = Oj(n). The recursion is complete and yields a basis of Γ-invariant
identity neighborhoods Un with (Un+1)2 ⊆ Un.

Now we let S denote the semigroup of all Γ-invariant identity neighborhoods
under multiplication of subsets of G. Containment ⊆ endows S with a condition-
ally complete order (see A4.13). Then Lemma A4.15 applied with un = Un yields
a function r 7→ U(r): ]0,∞[→ P(G) such that Conditions A4.15(I)–(IV) are satis-
fied with U in place of F . We claim that (A)–(D) from A4.12 are satisfied. We have
(A)⇐⇒ (I) and (B)⇐⇒ (II). In order to prove (C) let U be any identity neighbor-
hood. Since the Uk form a basis for the identity neighborhoods we find an m such
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that Um ⊆ U . We set n = 2m and see that U(1/n) = U(1/2m) ⊆ Um ⊆ U by (III).
In order to verify (D) we let n be given. Pick an m ∈ N such that n ≤ 2m. Then set
U = Um+1. Then for each t > 0 we have U(t)U = U(t)Um+1 ⊆ U

(
t + (1/2m)

)
≤

U
(
t + (1/n)

)
by (IV) and the monotonicity of s 7→ U(s), secured by (II). Thus

s 7→ U(s) satisfies conditions (A)–(D) of A4.12. Then Lemmas A4.10 through 13
show that G has a Γ-invariant metric defining its topology.

It is obvious that (1) implies (5). We now assume that G is locally compact
and prove that (5) implies (1). Assume {1} =

⋂
n∈N Un for a family of identity

neighborhoods Un. We may assume that Un is compact for all n and that Un+1 ⊆
Un. Let U be an open identity neighborhood in G. Claim: There is an N such that
UN ⊆ U . Suppose not, then Un \ U is a filter basis of compact sets. Its nonempty
intersection is contained in {1} on the one hand and in G \ U on the other. This
contradiction proves the claim. ut

We remark that the preceding theorem allows us to conclude that a topological
group with a metrizable identity neighborhood is left invariantly metrizable. This
is the case if some identity neighborhood is homeomorphic to an open ball in some
Banach space. In particular we obtain the following corollary.

Corollary A4.17. A linear Lie group has a left invariant metric. It has a biinvari-
ant metric if and only if it has arbitrarily small identity neighborhoods which are
invariant under inner automorphisms if and only if the Lie algebra has arbitrarily
small zero neighborhoods invariant under the adjoint representation. ut

We notice that in Theorem A4.16 we have proved a little more:

Corollary A4.18. Assume that G is a topological group and Γ a set of automor-
phisms. If G has a countable basis of Γ-invariant identity neighborhoods, then the
topology of G is defined by a left-invariant metric satisfying d

(
γ(x), γ(y)

)
= d(x, y)

for all automorphisms from the group 〈Γ〉 generated by Γ. ut

Corollary A4.19. The topology of every compact group with a countable basis of
identity neighborhoods is defined by a biinvariant metric.

Proof. By Corollary 1.12, every compact group has a basis of identity neighbor-
hoods which are invariant under inner automorphisms. The assertion then follows
from A4.18 with the group of all inner automorphisms Γ. ut

Exercise EA4.7. (i) The power semigroup P(G) of a topological group G has
various subsemigroups which are conditionally complete in the containment order.
Examples:

(a) The semigroup of all normal subgroups.
(b) The semigroup of all open closed normal subgroups.

Note that all elements in these semigroups are idempotent. What are the conse-
quences for the metric constructed according to Theorem A4.16 from a countable
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basis Un for the filter of identity neighborhoods consisting of open normal sub-
groups?

(ii) Show that, for a metric group G there is a family r 7→ U(r): ]0,∞[→ P(G)
which, in addition to the conditions (A)–(D) of Lemma A4.12 also satisfies the
following condition:
(E) (∀0 < s, t) U(s)U(t) ≤ U(s+ t).

[Hint for (ii). Consider p(x) = min{‖x‖, 1} for a function ‖·‖ satisfying the condi-
tions A4.10(ii)(1)–(4) and define U(r) = {g ∈ G | p(g) < r}.] ut

Regarding Exercise EA4.7(ii) it is not known whether a semigroup theoretical
proof exists to construct a function F such as in Lemma A4.15 with the additional
property that F (s)F (t) ≤ F (s+t). In the presence of certain additional conditions
such a proof was given in [161].

Exercise EA4.8. Recall that a pseudometric satisfies all axioms of a metric with
the possible exception of the postulate that d(x, y) = 0 implies x = y. Use the
tools at our disposal in order to prove the following result.

In a topological group G let Un be a sequence of identity neighborhoods satisfying
(Un+1)2 ⊆ Un. Then there is a continuous left invariant pseudometric d such
that for any n the identity neighborhood Un contains some open d-ball around the
identity. ut

Notice that in a group with a left invariant pseudometric the set of elements
with distance 0 from the identity is a subgroup.

Proposition A4.20. (i) Let G be a metric subgroup of a product
∏
j∈J Gj of

topological groups. Then there is a countable subset J1 of such that the projection
onto the partial product

∏
j∈J1

Gj maps G continuously and bijectively onto its
image.

(ii) Let G be a subgroup without small subgroups contained in a product
∏
j∈J Gj

of topological groups. Then there is a finite subset J1 of such that the projection
onto the partial product

∏
j∈J1

Gj maps G continuously and bijectively onto its
image.

Proof. Exercise EA4.9. ut

Exercise EA4.9. Prove A4.20. Apply Part (ii) to prove the following result:

If the additive topological group of a Banach space G is a subgroup of the product∏
j∈J Gj of topological groups, then a continuous bijective copy of it is contained

in a finite subproduct of it.

[Hint. For Part (i), J ′ ⊆ J set HJ′
def
=
∏
j∈J G

∗
j ,

G∗j =

{
{1} for j ∈ J ′,
Gj otherwise.
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Let {Un | n ∈ N} be a countable family of identity neighborhoods of
∏
j∈J Gj such

that {G ∩ Un | n ∈ N} is a basis for the filter of identity neighborhoods of G. For
each n there is a finite subset Fn of J such that HFn is contained in Un. Then

J1
def
=
⋃
n∈N Fn is a countable subset of J and G ∩HJ1

= {1}. Then G is mapped
faithfully into HJ/HJ1 . For Part (ii) take an open identity neighborhood U of the
product such that G ∩ U does not contain a nonsingleton subgroup. Proceed in
the spirit of the proof above.] ut

Duality of Vector Spaces

In Chapter 7, in comments preceding Proposition 7.25 we introduce for a real
vector space E the finest locally convex vector space topology O(E). We note here
that there is a finest vector space topology O′(E) and obviously, O(E) ⊆ O′(E).
For vector spaces of countable dimension the two topologies agree (see e.g. [40],
p. 136, Ex. 16.)

Proposition A4.21. Let E be a real vector space whose dimension is uncountable.
Then

(i) O(E) 6= O′(E).

(ii)
(
E,O′(E)

)′′
=
(
E,O(E)

)′′
= (E,O(E)

)
.

(iii) The underlying abelian topological group of
(
E,O′(E)) is semireflexive but

not reflexive (see Definitions 7.8).

Proof. Exercise EA4.10. ut

Exercise EA4.10. Prove A4.21.

[Hint. (i) Let {ej | j ∈ J} be a basis of E and fix a number p, 0 < p < 1. Show
that the following defines a left invariant metric according to A4.10: |

∑
j∈J rj ·ej | =∑

j∈J |rj |p. Show that the ball B = {x ∈ E : |x| < 1} does not contain any identity
neighborhood of O(E) (Suppose that V is a balanced absorbing convex set with
V ⊆ B. For each j ∈ J , set λj = sup{|r| : r·ej ∈ V }. Then 0 < λj ≤ 1. Let Jn =
{j ∈ J | λj > 1

n}. Since J is uncountable, for some n the set Jn is uncountable.
Hence there is an uncountable subset I ⊆ J and a positive number ε such that
ε·xi ∈ V ⊆ B for all i ∈ I. For each finite subset F = {s1, . . . , sN}, the convex

combination xF = 1
N

∑N
n=1 ε·esn is contained in V . But |yF | = N ·( εN )p = εpN1−p.

As N becomes large, |yF | tends to infinity. Thus yF is not in B for large enough
N . This is a contradiction.

(ii) Show that
(
E,O(E)

)
and

(
E,O′(E)

)
have the same compact sets and the

same functionals (see 7.25(iv)). Hence their duals agree as topological vector spaces

and thus their biduals agree. For
(
E,O(E)

)′′
=
(
E,O(E)

)
see 7.5 and 7.30(i).

(iii) is a consequence of (ii).] ut

The above argument was communicated to us by Arkady Leiderman. We shall
say much more about the duality of the category V of vector spaces E over R or
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C in Appendix 7, notably, on the case of the finest locally convex topology O(E)
on E.

Subgroups of Topological Groups

There are a number of facts concerning subgroups of topological groups which are
used frequently and most of which are quite elementary. We collect them here for
easy reference.

Definition A4.22. Let G be a topological group and H a subgroup. Then H
is called locally closed if there is an open set U of G and a subset W of U such
that for some h0 ∈ W ∩ H the set W is a neighborhood of h0 in G and that
W ∩H ∩ U ⊆ H. ut

Proposition A4.23. Let G be a topological group and H a subgroup. Then the
subgroup H is closed in G if and only if it is locally closed.

Proof. Trivially, a closed subgroup is locally closed; we must prove the reverse.
The left translation λh0 :G→ G, λh0(x) = h0x is a homeomorphism and λ−1

h0
maps

h0 to 1. Now U ′ = h−1
0 U is an open subset of G and W ′ = h−1

0 W is an identity
neighborhood in G such that W ′ ∩H∩U ′ ⊆ H. We may and shall therefore assume
from here on that h0 = 1.

Let W0 denote the interior of W . If g ∈ H, then there is an h ∈ gW−1
0 ∩ H.

Hence g ∈ hW0 ⊆ hU . Let U denote the filter basis of identity neighborhoods

V of G such that gV ⊆ hW0. Then V ∈ U implies HV
def
= gV ∩ H 6= Ø and

HV ⊆ hW ∩H = hW ∩hH = h(W ∩H). Now g ∈
⋂
V ∈U HV ⊆ h(W ∩H)∩hU =

h
(
W ∩H ∩ U) = k(W ∩ H) since W ∩ H is closed in U by hypothesis. Then

g ∈ hH = H. ut

Corollary A4.24. Every locally compact subgroup of a Hausdorff topological group
is closed.

Proof. Let G be a Hausdorff topological group and H a locally compact subgroup.
Take an identity neighborhood W such that W ∩H is compact and let U be the
interior of W . Since W ∩H is compact and G is Hausdorff, the set W ∩H is closed
in G and thus W ∩H ∩ U = W ∩H ∩ U = H ∩ U ⊆ H. Then Proposition A4.23
shows that H is closed in G. ut

Proposition A4.25. Let G be a topological group. Then
(i) a subgroup H is open if and only if it contains a nonempty open subset

of G.
(ii) Any open subgroup H of G is closed.
(iii) Any subset with nonempty interior, in particular any identity neighborhood

of G, generates an open closed subgroup.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



882 Appendix 4. Selected Results on Topology and Topological Groups

(iv) The identity component G0 is contained in any open subgroup.

Proof. (i) If H contains a nonempty open subset U and h ∈ H, let u ∈ U and
note that hu−1U is an open subset of G containing h and contained in H. Thus
H =

⋃
h∈H hu

−1U is open.
(ii) If H is open, then gH is open for all g ∈ G. Since G is the disjoint union

of the cosets gH, g ∈ G, we observe that H = G \
⋃
g∈G\H gH is the complement

of an open set and is therefore closed.

(iii) If U is a nonempty open subset of G then U ⊆ H
def
= 〈U〉, and then H is

open by (i).
(iv) Let H be an open subgroup. Then G = H ∪̇ (G \ H) is a decomposition

of G in two open and closed subsets and 1 ∈ H. Since G0 cannot be decomposed
into a disjoint union of two nonempty open subsets and 1 ∈ G0 we must have
G0 ∩ (G \H) = Ø; i.e. G0 ⊆ H.

Corollary A4.26. A connected topological group is generated by any nonempty
open subset and, in particular, by any of its identity neighborhoods.

Proof. This is an immediate consequence of A4.25(iii), (iv). ut

Proposition A4.27. A totally disconnected normal subgroup of a connected topo-
logical group is central. (Cf. 6.13.)

Proof. Let N be a normal totally disconnected subgroup of the connected topo-
logical group G. Let n ∈ N . The function g 7→ comm(g, n) = gng−1n−1:G → N
is continuous. Since G is connected and N is totally disconnected, the image is
singleton, and it contains 1 = comm(1, n). Hence comm(g, n) = 1 for all g, and
this proves the claim. ut

Proposition A4.28. Let G be a topological group and D a discrete normal sub-
group and let q:G → G/D be the quotient morphism. Then G contains an open

symmetric identity neighborhood U such that for the image V
def
= UD/D in G/D

the following assertions hold.

(i) q induces a homeomorphism ϕ
def
= q|U :U → V .

(ii) If g1, g2, g1g2 ∈ U , then ϕ(g1)ϕ(g2) = ϕ(g1g2).
(iii) If γ1, γ2, γ1γ2 ∈ V , then ϕ−1(γ1)ϕ−1(γ2) = ϕ−1(γ1γ2).

Proof. Since D is discrete, there is an open identity neighborhood W such that
W ∩D = {1}. We find an open identity neighborhood U0 such that U0U

−1
0 ⊆W .

Then q|U0 is injective; for if q(u) = q(u′) for u, u′ ∈ U0, then u′u−1 ∈ U0U
−1
0 ∩

ker q ⊆ W ∩ D = {1}. Hence u = u′. Now let U be a symmetric open identity

neighborhood of G such that U2 ⊆ U0. Since q is open, V
def
= q(U) is an open

symmetric identity neighborhood of G/D. Then ϕ = q|U :U → V is continuous,
open, and bijective. Thus (i) is proved. (ii) is obvious since ϕ is the restriction of
a morphism. We show (iii). Let x = ϕ−1(γ1)ϕ−1(γ2) and y = ϕ−1(γ1γ2). Then
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x ∈ UU , y ∈ U ⊆ UU , and q(x) = q
(
ϕ−1(γ1)ϕ−1(γ2)

)
= γ1γ2 = q

(
ϕ−1(γ1γ2)

)
=

q(y). But UU ⊆ U0 and q|U0 is injective. Hence x = y, and the assertion in (iii)
follows. ut

Wallace’s Lemma

The following is a very simple, but also very useful tool, based on first principles.

Proposition A4.29 (Wallace’s Lemma). Let A be a compact subspace of X and
B a compact subspace of Y , and assume that there is an open subset U of X × Y
containing A × B. Then there are open neighborhoods V of A in X and W of B
in Y such that V ×W ⊆ U .

Proof. Exercise. ut

Exercise EA4.11. Prove Wallace’s Lemma.

[Hint. For the proof, assume first that B is singleton. Conclude that in the general
case for each b ∈ B there is an open set Vb containing A and an open neighborhood
Wb of b in Y such that Vb ×Wb ⊆ U . Cover A×B by the Vb ×Wb.]

Cantor Cubes and Dyadic spaces

Let 2 denote the discrete space {0, 1} of two elements.

Definition A4.30. A Cantor cube is space which is homeomorphic to a product
space 2ℵ for some infinite cardinal ℵ. A dyadic space is a continuous image of a
Cantor cube. ut

The Cantor cube 2ℵ0 is (homeomorphic to) the standard Cantor set.

Lemma A4.31 (Alexandroff’s Theorem on Dyadic Spaces). Every compact metric
space is dyadic and is, in fact, a continuous image of the standard Cantor set.

A compact metric space is homeomorphic to 2N iff it is totally disconnected and
has no isolated points.

Proof. See e.g. [101], 4.5.9(b), p. 291) and [101], 6.2.A(c), p. 370. ut

Corollary A4.32. Every cartesian product of a family of compact metric spaces
is dyadic.

Every product of Cantor cubes is a Cantor cube.
Every infinite product of finite sets is a Cantor cube.

Proof. Exercise. ut
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Exercise EA4.12. Prove Corollary A4.32.

[Hint. Let X =
∏
j∈JMj and assume that Mj is compact metric for each j ∈ J ,

respectively a Cantor cube. Then Mj is a continuous image of 2ℵ0 by Lemma
A4.31, respectively, a homeomorphic image of 2Aj . Thus X is a continuous image

of (2ℵ0)J = 2max{ℵ0,J}, respectively, a homeomorphic image of 2

⋂
j∈J

Aj .
If J is an infinite set and X =

∏
j∈J Fj with finite sets Fj , then by the Well-

Ordering Theorem we can write J as the disjoint union
⋃
k∈K Jk of countably

infinite sets Jk. Then X =
∏
k∈K Xk where Xk−

∏
j∈Jk Fj . Each Xk is a standard

Cantor set 2N, Hence X is a Cantor cube.] ut

Lemma A4.33. Assume that we are given an inverse system of compact spaces

X1
p1←−−X2

p2←−−X3 · · ·

and that there are homeomorphisms f :Xn → Xn−1 × Yn, X0 = {1} singleton and
Y1 = X1, such that the following diagram commutes for n = 1, 2, . . .:

(1n)

Xn
pn←−− Xn+1

idXn

y yfn+1

Xn ←−−
prXn

Xn × Yn+1.

Set X
def
= limn{· · ·Xn

pn←−−Xn+1 · · ·} and Y
def
=
∏
n Yn.

Then
(i) X and Y are homeomorphic, and
(ii) If all Yn are Cantor cubes, then X is a Cantor cube.

Proof. (i) Let us recall that the product of a family {Zj : j ∈ J} is the set

of all functions α: J → U
def
=
⋃
j∈J Zj such that α(j) ∈ Xj for all j ∈ J . For

I ⊆ J , the function α 7→ α|I :
∏
j∈J Zj →

∏
i∈I Zi will be denoted pI . We write

Nn
def
= {1, . . . , n}.

Claim 1. For each n there is a homeomorphism Fn:Xn →
∏
m∈Nn Yn such that

the following diagram commutes

(2n)

Xn
pn←−− Xn+1

Fn

y yFn+1∏
m∈Nn Ym ←−−

pNn

∏
m∈Nn−1

Ym.

We prove this claim by induction. Claim (21) is true by (11). Assume that (2n−1)
has been proved for n ≥ 2. We must construct Fn:Xn−1 × Yn. By induction
hypothesis we have a homeomorphism Fn−1:Xn−1 → Xn−2 × Yn−1 satisfying
(2n−1). We identify

∏
m∈Nn−1

Ym × Yn and
∏
m∈Nn Ym and define Fn to be the

composition

Xn
fn−−→Xn−1 × Yn

Fn−1×idYn−−−−−−→
∏

m∈Nn−1

Ym × Yn =
∏
m∈Nn

Ym.
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Then we have a commutative diagram

Xn−1
pn←−− Xn

idXn−1

y (8n)
yfn

Xn−1 ←−−−−−−−−−−
prXn−1

Xn−1×Yn
Xn−1 × Yn

Fn−1

y yFn−1×idYn∏
m∈Nn−1

Ym ←−−−
pNn−1

∏
m∈Nn Ym.

after our identification. Since the vertical map on the right is Fn by definition, we
have (2n). This proves Claim 1.
Claim 2. We have a commutative diagram of inverse systems in which the rows
are limit diagrams, where we abbreviate Pn =

∏
m∈Nn Ym, and where F :X → L

is the induced morphism:

X1
p1←−− X2

p2←−− X3 · · · ←−− X

F1

y F2

y · · ·
yF

P1 ←−−
pN1

P2 ←−−
pN2

P3 · · · ←−− L.

Since all Fn are homeomorphisms, F is also a homeomorphism.
Claim 3. L = Y : We may assume that

L = {
(
(y(n)
m )m∈Nn

)
n∈N ∈

∏
n∈N

∏
m∈Nn

Yn : pNn(y(n+1)
m )m ∈ Nn+1) = (y(n)

m )m ∈ Nn}.

By Induction it follows that y
(n)
m = y

(n+1)
m , m ∈ Nn. We set ym = y

(n)
m for n ≥ m.

Thus the function

(ym)m∈N 7→
(
(ym)m∈Nn

)
n∈N : Y → L

is a homeomorphism.
This completes the proof of the (i).
Assertion (ii) follows immediately from (i) and Corollary A4.32. ut

Some Basic Facts on Compact Monoids

In the next Appendix we will present an independent and self-contained proof of
the existence and uniqueness of Haar measure. An essential part of it rests on a
few basic facts from the theory of compact topological monoids which we select
and present here to have them available then.

If S is a compact topological semigroup, then the set of ideals I ⊆ S, that is, of
subsets satisfying SI∪IS ⊆ S is a filter basis (note IJ ⊆ I∩J for ideals!) in which
the filter basis of compact ideals is cofinal (s ∈ I implies SsS ⊆ I!). This implies
that there is a unique minimal ideal M(S) which is compact. If S is abelian then
A =M(S) is a compact abelian semigroup satisfying Aa = A for all a ∈ A. Hence
A is a group. In particular, A contains an idempotent e. If s ∈ S in an arbitrary

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



886 Appendix 4. Selected Results on Topology and Topological Groups

compact semigroup, then Γ(s) = {s, s2, s3, . . .} is a compact abelian semigroup.
Its minimal idealM

(
Γ(s)

)
is a group whose identity is an idempotent e(s). In this

minimal ideal, the element se(s) has an inverse s′.

Proposition A4.34. A closed subsemigroup in a compact group is a subgroup.

Proof. If S is a closed subsemigroup of a compact group G and s ∈ S, then
e(s) = 1 since there is only one idempotent in G. Therefore s′ ∈ S is the inverse
s−1 of s in G. Hence S is a group. ut

Now we consider the set of closed left ideals of S which contains S and is
downward inductive: Indeed if T is a tower of closed left ideals, then in particular
it is a filterbasis of compact sets and so

⋂
T is nonempty and closed; its being a

left ideal implies that it is a lower bound of T proving the claim. Hence by Zorn’s
Lemma

the compact topological semigroup S has minimal closed left ideals.
Let L be one of these and let X be its (nonempty!) set of idempotent elements.

If e ∈ X, then Se ⊆ L is a closed left ideal of S and thus by minimality of
L we have L = Se. Then for all ∈ L we note x = se for some s ∈ S and so
xe = (se)e = se = x, that is e is a right identity of L. In particular for any pair of
idempotents x, y ∈ X we have xy = x.

Thus X is what in semigroup theory is called a left zero semigroup. If the two
element set {0, 1} is endowed with its left zero multiplication, then {0} and {1}
are two disjoint left ideals. In retrospect this makes it clear that the Axiom of
Choice appears to be inevitable in general for a proof of the existence of minimal
closed left ideals.

Definition A4.35. An involution x 7→ x∗ on a semigroup S is a self map satisfying
x∗∗ = x and (xy)∗ = y∗x∗. A semigroup S is called involutive if it possesses an
involution. ut

Proposition A4.36. The minimal ideal of an involutive compact topological semi-
group is a group if its involution fixes idempotents. ut

Proof. If L is a minimal left ideal and e and f are idempotents of L, then e = ef
and e = e∗ = (ef)∗ = f∗e∗ = fe = f . Thus L contains only one idempotent e and
L = Se = S∗e∗ = eS. Thus e is an identity of L. If s ∈ L, then e(s) = e and s′ is
therefore an inverse of s with respect to e, and so L is a group. Since L = eS is
also a right ideal, L is an ideal and thus is the minimal ideal. ut

We continue with a purely topological and geometric definition: An affine space
X is a convex subset of a real (but not necessarily topological!) vector space
together with a topology on X such that the function

(r, s, t) 7→ r · s+ (1− r) · t: [0, 1]×X ×X → X,
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is continuous, where “·” denotes the scalar multiplication of the surrounding vector
space.

A continuous map f :X → Y between affine spaces is affine if

(∀x, x′ ∈ X,∀r ∈ [0, 1]) f(r · x+ (1− r) · x′) = r · f(x) + (1− r) · f(x′),

Definition A4.37. A topological semigroup S is affine if
(1) S is an affine space, and
(2) the self maps s 7→ su and s 7→ us of S are affine for all u ∈ S.

A morphism f :S → T of affine semigroups is a continuous mapping between
affine semigroups that preserves both the semigroup operation and is an affine
map. ut

The unit interval, int
def
= [0, 1] in the usual topology and with the usual product

and affine structure, is the canonical example of a compact affine monoid. It is
noteworthy that the open half-line ((0,∞), ·) under multiplication and the affine
structure induced by R is a locally compact affine topological group.

Later, after we have developed a sufficient body of measure theory we shall see
that the probability measures on a compact group form a compact affine semi-
group.

In a compact affine semigroup we have a significant ergodic theorem which is
an affine parallel to the statement that in every compact semigroup S and every
x ∈ S the compact subsemigroup Γ(x) has a compact abelian monothetic group
as a minimal ideal with idempotent e(x).

Proposition A4.38. (Chow’s Lemma [61]) For each element x of a compact affine

semigroup S, the closed convex hull C(x)
def
= conv(Γ(x)) of Γ(x) is a compact

commutative affine subsemigroup with a zero z, where

z = lim
n→∞

1

n
·(x+ x2 + · · ·+ xn).

Proof. It is straightforward to show that the convex hull of a commutative sub-
semigroup in an affine topological semigroup is a commutative subsemigroup, and
since the closure of a commutative, affine subsemigroup is another such, it follows
that C(x) is a compact commutative affine subsemigroup of S for each x ∈ S.

Fix an x ∈ S, and define xn
def
= 1

n ·(x + x2 + · · · + xn) for n = 1, 2, . . .. In the
compact space Γ(x) × C(x), the sequence (xn, xn)n∈N, has a cluster point (h, z).
Thus there is a directed set J and a cofinal function j 7→ n(j) : J → N such that
such that limj∈J(xn(j), xn(j)) = (h, z). Now

(i) xn+1 =
1

n+ 1
·(n·xn + xn+1) =

n

n+ 1
·xn +

1

n+ 1
·xn+1.

Also,

(ii) xn+1 =
1

n+ 1
·(x+ n·xxn) =

1

n+ 1
·x+

n

n+ 1
·xxn, xxn = xnx
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In (i) and (ii) we replace n by n(j) and pass to the limit as j ranges through J .
Then, since G is a compact affine semigroup, from (i) we obtain

lim
j∈J

xn(j)+1 = z

and from (ii) we get
lim
j∈J

xn(j)+1 = xz = zx.

Therefore, x = xz = zx. Since the set of finite convex combinations of the powers
of x is dense in C(x), the element z is a zero of C(x).

In the second part of the proof we argue that z is actually the limit of the
sequence (xn)n∈N by claiming that z is the only cluster point of (xn)n∈N. So let
z′ be an arbitrary cluster point of the sequence (xn)n∈N. Then there is a subnet
(xm(i))i∈I converging to z′. Now by the compactness of Γ(x), there is a cofinal

function α from a directed set K to I such that (xm(α(k)), xm(α(k)))k∈K converges
to (h′, z′). Then the argument in the first part of the proof shows that z′ is a zero
of C(x). But zeros are unique; hence z′ = z and this proves the claim. ut

(For further comments see [177], p. 137.)

Theorem A4.39. A compact affine group G is singleton.

Proof. Let g ∈ G. By Chow’s Lemma A4.38, the compact affine subsemigroup
C(g) has a zero z; but the identity e of G is the only idempotent of G whence
z = e and thus g = ge = e. So G = {e}. ut

The example of the positive half-line shows that this theorem fails for locally
compact affine groups.

Corollary A4.40. Let S be a compact involutive affine semigroup in which the
involution fixes the idempotents. Then S has a zero.

Proof. By Proposition A4.36 the minimal ideal of S is a group G with identity e.
The map f :S → G, given by f(x) = xe is a surjective affine morphism. Thus G is
a compact affine group. Hence it is singleton by Theorem A4.39. But then e is a
zero of S. ut

Postscript

The first section deals with the arc component topology which is a more or less
classical, but not much referenced, tool of point set topology (see [378]); it is ap-
propriate to have it here since by Theorem 5.52 it is that topology which distills
a Lie group topology from an analytic subgroup even if the latter is not closed in
the induced topology. It also serves us well in the fine structure theory of compact
abelian groups as is exemplified by Corollary 8.31. The arc component topology
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may be considered as the topological analog of the Riemann–Rinow metric at-
tached to a metric space, i.e. the metric derived from a given metric by measuring
distance along rectifiable curves (to the extent these exist) ([302], p. 118ff.).

The concept of weight of a topological space is a well-known tool from the
arsenal of cardinal invariants attached to a space ([67, 68]). One important fact
which we use in the determination of the structure of free compact abelian groups is
that, in A4.9, for all compact Hausdorff spacesX we have cardC0(X,T) = w(X)ℵ0 .
To obtain this we include a proof of the Kruse–Schmidt–Stone Theorem in EA4.4,

which says that the cardinal of any Banach space B is (cardB)ℵ0 =
(
d(B)

)ℵ0
with

the density d(B) of B. A sidelight is that any cardinal number ℵ which occurs as
the cardinality of some Banach space satisfies ℵℵ0 = ℵ.

Metrizability of topological groups is an established topic in this area. The stan-
dard texts have quite satisfactory treatments, see e.g. [147], p. 68ff., or [263],
p. 28ff., 34ff., and p. 58ff. Bourbaki [34] devotes a whole section to metrizable
groups (Chapter 9, §3, no 1), but there the treatment is based on an extensive
study of uniform spaces which the author rightfully presents at an early stage.
Our treatment is not based on uniform spaces; we give a discourse directly suited
to topological groups which is appropriate for our needs as it allows us to construct
left invariant metrics with additional invariance properties, as we certainly wish
to do in the context of compact groups. Our emphasis here is on grouping various
functional descriptions of left invariant metrics together (Lemmas A4.10, A4.11)
and then to establish an equivalent formulation in terms of families r 7→ U(r),
0 < r ∈ R of identity neighborhoods which are to be created from sequences
n 7→ Un, n = 1, 2, . . . forming a basis for the identity neighborhoods. The con-
struction of such a family r 7→ U(r), however, is in reality a simple algebraic and
order theoretical construction in ordered semigroups (Lemma A4.15). This ap-
proach was observed by Hofmann in [161] for the context of compact spaces and
special metrics.

The last portion covers some basic material on compact and compact affine
monoids needed in our proof of the existence of Haar measure in the next appendix.
It contains a remarkably direct and simple Lemma due to Chow [61] whose proof
we slightly modified allowing it to apply to the slightly more general definition of
a compact affine monoid given here, avoiding, as it were, the embedding into a
locally convex topological vector space. For more detailed comments we refer to
[177], a source illustrating renewed interest in this subject matter.

References for this Appendix—Additional Reading

[40], [61], [67], [68], [84], [143], [147], [161], [176], [177], [178], [233], [263], [302],
[323], [334], [335], [345], [378].
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Appendix 5

Measures on Compact Groups

In this appendix we present some results that are used in the structure theory
of compact groups. The most important fact in this regard is the existence and
uniqueness of normalized Haar measure on a compact group.

The Definition of Haar Measure

For the moment let G denote a compact Hausdorff space and let K = R or K = C,
and let C(G,K) denote the Banach space of continuous K-valued functions on G.
An element µ of the topological dual—that is the vector space of all continuous
linear functionals—of the Banach space C(G,K) is a (K-valued) integral or mea-
sure. The number µ(f) is also written 〈µ, f〉 or indeed

∫
f dµ =

∫
G
f(g) dµ(g).

What we need is the uniqueness and existence of a particular measure on a com-
pact group G; such a measure is familiar from the elementary theory of Fourier
series as Lebesgue measure on the circle group T = R/Z. The formulation of the
existence (and uniqueness theorem) is easily understood. Here we shall give a proof
through a sequence of smaller steps.

For a semigroup G, an element g ∈ G, and a function f :G → K we recall

gf(x) = f(xg). If µ is a measure, we define µg by µg(f) = µ(gf).

Definition A5.1. Let G denote a compact group. A measure µ is called invariant
if µg = µ, that is, µ(gf) = µ(f) for all g ∈ G and f ∈ E = C(G,K). It is called
positive if it satisfies µ(f) ≥ 0 for all f ≥ 0. A measure is called a Haar measure if
it is invariant and positive. The measure µ is called normalized if µ(1) = 1 where
1 also indicates the constant function with value 1. A normalized positive measure
is also called a probability measure. ut

We now state the Existence and Uniqueness Theorem on Haar Measure. We
shall provide one of its numerous proofs in the following; this one uses compact
semigroups and thus is also of independent interest.

Theorem A5.2. (The Existence and Uniqueness of Haar Measure) For each com-
pact group G there is one and only one normalized Haar measure.

The Required Background of Radon Measure Theory

First we note in a self-contained fashion, some basic features of the measure theory
we use. By definition, for a compact Hausdorff space X, the space M(X,K) of K-
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valued measures is the topological dual M(X,K) = C(X,K)′ of the Banach space
of continuous K-valued functions on X. If ϕ:Y → X is a continuous map between
compact spaces, then it induces a contractive linear map f 7→ f ◦ ϕ:C(X,K) →
C(Y,K) (contravariant!) which is also called C(ϕ) and induces in turn a contractive
linear adjoint operator M(ϕ):M(Y,K)→M(X,K) (covariant!) via M(ϕ)(µ)(f) =
µ(f ◦ ϕ). In the literature, M(ϕ) is sometimes denoted ϕ?, but we reserve this
notation for the adjoint of an element in an involutive semigroup. If ϕ is the
inclusion map of a closed subset Y into X then M(ϕ)(µ) is the extension of µ to
a measure µX , that is, µX(f) = µ(f |Y ) for f ∈ C(X,K).

Product Measures

We need an understanding of how measures on products of spaces are to be treated.
Indeed for two measures µ1 on a compact space X1 and µ2 on a compact space
X2, define the product measure µ1 ⊗ µ2 on X1 ×X2 in the following discussion.

If f ∈ C(X1 ×X2,K) we note that f is uniformly continuous on the compact
space X1 ×X2 and so x2 7→ f(−, x2):X2 → C(X1,K) is continuous. The details
are left to the following exercise.

Exercise EA5.1. Prove that for f ∈ C(X1 ×X2,K) for compact spaces X1 and
X2 the function x2 7→ f(−, x2):X2 → C(X1,K) is continuous. ut

With this information, from the continuity of µ2, we conclude that

x2 7→ 〈µ1, f(−, x2)〉 =

∫
X1

f(x1, x2) dµ1(x1)

is a member of C(X2,K). Therefore

f 7→
∫
X2

(∫
X1

f(x1, x2) dµ1(x1)

)
dµ2(x2)

is a member of M(X1 ×X2,K). We provisionally denote it by µ1 ⊗1 µ2, that is,

〈µ1 ⊗1 µ2, f〉 =

∫
X1×X2

f d(µ1 ⊗1 µ2) =

∫
X2

(∫
X1

f(x1, x2) dµ1(x1)

)
dµ2(x2).

Quite analogously we define

〈µ1 ⊗2 µ2, f〉 =

∫
X1×X2

f d(µ1 ⊗2 µ2) =

∫
X1

(∫
X2

f(x1, x2) dµ2(x2)

)
dµ1(x1).

Now consider two functions fj ,∈ C(Xj ,K), j = 1, 2 and define f1 ⊗ f2:X1 ×
X2 → K by (f1 ⊗ f2)(x1, x2) = f1(x1)f2(x2). The finite linear combinations of
these functions form a dense subalgebra

C(X1,K)⊗ C(X2,K) of C(X1 ×X2,K).
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Therefore a continuous linear functional from M(X1 ×X2,K) on C(X1 ×X2,K)
is uniquely determined by its values on C(X1,K)⊗ C(X2,K).

Now we compute

〈µ1 ⊗1 µ2, f1 ⊗ f2〉 =
∫
X2

(∫
X1

(f1 ⊗ f2)(x1, x2) dµ1(x1)
)
dµ2(x2)

=
∫
X2

(∫
X1
f1(x1)·f2(x2) dµ1(x1)

)
dµ2(x2)

=
∫
X2

(∫
X1
f1(x1) dµ1(x1)·f2(x2)

)
dµ2(x2)

= µ2(µ1(f1)·f2)
= µ1(f1)µ2(f2).

In the same spirit we calculate

〈µ1 ⊗2 µ2, f1 ⊗ f2〉 = µ1(f1)µ2(f2).

We conclude that ⊗1 = ⊗2 and that

〈µ1 ⊗ µ2, f1 ⊗ f2〉 = µ1(f1)µ2(f2).

Moreover, we have, for f ∈ C(X1 ×X2,K), the (small) Fubini Theorem∫
X1×X2

f(x1, x2) d(µ1 ⊗ µ2)(x1, x2) =
∫
X2

(∫
X1
f(x1, x2) dµ1(x1)

)
dµ2(x2)

=
∫
X1

(∫
X2
f(x1, x2) dµ2(x2)

)
dµ1(x2).

This concludes the definition of the product measure µ1 ⊗ µ2.

The Support of a Measure

Let µ be a positive measure on a compact space G. An open subset U of G is a
µ-null set if for every positive f ∈ C(G,K) such that {x ∈ G | f(x) > 0} ⊆ U we
have µ(f) = 0. The support supp(µ) of a positive measure is the complement of
the largest open µ-null set.

Proposition A5.3. Let X and Y be compact Hausdorff spaces.
(1) Let µ be a positive measure on X. Then x /∈ supp(µ) iff there is a non-

negative continuous function f such that
(a) 〈µ, f〉 = 0, and
(b) f(x) > 0.

(2) Assume ϕ:X → Y is a continuous map and that µ ∈ M(X,K) is a positive
measure on X. Then an open set V in Y is a M(ϕ)(µ)-null set iff ϕ−1(V )
is a µ-null set in X.

(3) In the circumstances of (2) we have supp(M(ϕ)(µ)) = ϕ
(

supp(µ)
)
.

Proof. For (1), if x /∈ suppµ use complete regularity of X to find a contin-
uous f :X → [0, 1] such that f(x) = 1 and f

(
supp(µ)

)
⊆ {0}; then the de-

finition of supp(µ) implies 〈µ, f〉 = 0. Conversely, assume that there is an f
satisfying (a) and (b). By (b) find a compact neighborhood K of x such that
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f(K) ⊆ [f(x)/2,max f(X)]. Then ϕ
def
= min{f, f(x)/2} is nonnegative and satis-

fies ϕ
(

supp(µ)
)
⊆ {0} and ϕ(K) = {f(x)/2}. Now from (a) we have 0 ≤ 〈µ, ϕ〉 ≤

〈µ, f〉 = 0. Now let V be the interior of K and take any nonnegative continuous
function F such that F (X\V ) ⊆ {0}. Since F is bounded there is a k ≥ 0 such that
F ≤ k·ϕ. Hence 〈µ, F 〉 ≤ k·〈µ, ϕ〉 = 0. Thus V is an open µ-null set containing x
and so x /∈ supp(µ) by the definition of supp(µ).

For (2), let f be a positive member of C(Y,K) such that f(g) > 0 implies g ∈ V .
Then 〈M(ϕ)(µ), f〉 = 〈µ, f ◦ ϕ〉 and so an open set V in Y is a M(ϕ)(µ)-null set
iff ϕ−1(V ) is a µ-null set; note that (1) is helpful for the harder implication.

For (3), we have

ϕ−1
(
Y \ supp(M(ϕ)(µ))

)
⊆ X \ supp(µ),

i.e., supp(µ) ⊆ ϕ−1
(

supp(M(ϕ)(µ))
)

by (2), and so

(∗) ϕ
(

supp(µ)
)
⊆ supp

(
M(ϕ)(µ)

)
;

but V
def
= Y \ϕ

(
supp(µ)

)
is an open set since ϕ

(
supp(µ)

)
is compact as a contin-

uous image of a compact set, and ϕ−1(V )∩ supp(µ) = Ø, whence V is a M(ϕ)(µ)-
null set by (2) and thus is contained in X \ supp

(
M(ϕ)(µ)

)
by the definition of

the support. Thus equality holds in (∗). ut

Proposition A5.4. Let X be a compact space, µ a positive measure, and f ∈
C(X,K). Assume that f(x) ≥ 0 for all x ∈ supp(µ). Then

(1) 〈µ, f〉 ≥ 0, and
(2) if there is an s ∈ supp(µ) such that f(s) > 0, then 〈µ, f〉 > 0.
(3) If g ∈ C(X,K) agrees with f on supp(µ), then 〈µ, g〉 = 〈µ, f〉.

Proof. As a first step of the proof define F = max{f, 0}. Then F is a continuous
nonnegative function such that, by hypothesis on f , we have F (x) = f(x) for
x ∈ supp(µ) and F (x) ≥ f(x) for x ∈ X \ supp(µ). Then

(F − f)(x)

{
= 0 for x ∈ supp(µ)
≥ 0 for x ∈ X \ supp(µ)

}
≥ 0.

Then, by the definition of the support of µ, we have 〈F − f, µ〉 = 0. Thus 〈F, µ〉 =
〈f, µ〉 and the positivity of µ implies 〈f, µ〉 ≥ 0 and that is the proof of (1).

For a proof of (2), assume f(s) > 0 for an s ∈ supp(µ). We must argue that
〈µ, f〉 > 0. We proceed by contradiction and assume that 〈µ, f〉 = 0.

Let U be an open neighborhood of s such that f(u) ≥ f(s)/2 > 0 for all u ∈ U .
Now let ϕ be any nonnegative continuous function such that ϕ(X \U) = {0}. As a
continuous function, ϕ is bounded and after multiplying ϕ with a positive number,
we assume without loss of generality that ϕ(X) ⊆ [0, f(s)/2]. Then

0 ≤ ϕ(x)

{
≤ f(s)/2 ≤ f(x) for x ∈ U
= 0 for x ∈ X \ U

}
≤ f(x),

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



894 Appendix 5. Measures on Compact Groups

since f ≥ 0. Thus 0 ≤ 〈µ, ϕ〉 ≤ 〈µ, f〉 = 0 by assumption. But then, by the
definition of open µ-null set U is an open µ-null set. By the definition of the
support, this implies U ∩ supp(µ) = Ø. Yet this contradicts s ∈ U ∩ supp(µ). This
contradiction completes the proof of (2), and (3) is an immediate consequence of
(2) applied to max{f − g, 0} and max{g − f, 0}. ut

Proposition A5.5. If µ1 ∈M(X1,K) and µ2 ∈M(X2,K) are positive measures,
then

(∗∗) supp(µ1 ⊗ µ2) = supp(µ1)× supp(µ2).

Proof. If U is a µ1-null set in X1, then we claim that the product U ×X2 is an
open (µ1 ⊗ µ2)-null set. For let F :X1 ×X2 → K be a positive function vanishing
outside U ×X2, then by Fubini’s Theorem we have

〈µ1 ⊗ µ2, F 〉 =
∫
X1×X2

F (x1, x2) d(µ1 ⊗ µ2)(x1, x2)

=
∫
X2

(∫
X1
F (x1, x2) dµ1(x1)

)
dµ2(x2) = 0,

since F (−, y):X → K vanishes outside U for each y and U is a µ-null set. Thus
the claim is established. In particular, this applies to U = X1 \ supp(µ1). So

X1×X2 \ supp(µ1)× supp(µ2) =
((
X1 \ supp(µ1)

)
×X2

)
∪
(
X1×

(
X2 \ supp(µ2)

))
is an open µ1⊗µ2-null set and thus S

def
= supp(µ1⊗µ2) ⊆ supp(µ1)×supp(µ2). By

way of contradiction, suppose the containment is proper and pick xk ∈ supp(µk),
k = 1, 2 with (x1, x2) /∈ S. Find fk ≥ 0 in C(Xk,K) with fk(xk) > 0 such that
supp(f1⊗f2) does not meet the closed set S. Then

∫
fkdµk > 0, k = 1, 2 by Propo-

sition A5.4. Thus
∫

(f1⊗f2) d(µ1⊗µ2) = 〈µ1⊗µ2, f1⊗f2〉 = 〈µ1, f1〉〈µ2, f2〉 > 0 on
the one hand, and

∫
(f1⊗f2) d(µ1⊗µ2) = 0 on the other, since supp(f1⊗f2)∩S = Ø.

This contradiction shows that S = supp(µ1)× supp(µ2) as asserted. ut

Measures on Compact Groups: Convolution

For the following discussion we fix a compact group G. Let m:G×G→ G denote
the multiplication of G. Then we have the operator

M(m):M(G×G)→M(G).

For µ1, µ2 ∈M(G) we set µ1 ∗ µ2 = M(m)(µ1 ⊗ µ2),

〈µ1 ∗ µ2, f〉 = 〈µ1 ⊗ µ2, C(m)(f)〉 =
∫
G×G f(g1g2) d(µ1 ⊗ µ2)(g1, g2)

=
∫
G

(∫
G
f(gh) dµ1(g)

)
dµ2(h)

=
∫
G

(∫
G hf dµ1

)
dµ2(h).

The product µ1 ∗ µ2 is called the convolution of the measures µ1 and µ2.
For f ∈ C(G,K) and µ ∈ M(G,K), the function g 7→ µ(gf):G → K is in

C(G,K).
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Exercise EA5.2. Prove directly that g 7→
∫
G
f(xg) dµ(x):G→ K is continuous.

[Hint. We do this for K = R and derive the assertion for K = C from this result.
Note that gf is uniformly continuous on G. As G is a compact group, this means
that, given ε > 0 there is an identity neighborhood U of G such that | gf(xu) −
gf(x)| < ε for all u ∈ U . Write the inequality in the form gf(x) − ε < gf(xu) <

gf(x) + ε. The positivity of µ yields

µ(gf)− ε·µ(1) < µ(gf) <

∫
G

f(xgu) dµ(x) < µ(gf) + ε·µ(1).

It is not hard to complete the proof.] ut

We recall that M(G,K) has a natural norm, the dual norm, that is, the operator
norm on continuous functionals on C(G,K) defined by ‖µ‖ = sup‖f‖≤1 ‖µ(f)‖. If

G is a compact group, then inversion σ:G→ G, σ(g) = g−1 is an involution that
is, satisfies σ(gh) = σ(h)σ(g) and σ2 = idG. We shall abbreviate M(σ)(µ) by µ∗.

Lemma A5.6. Let G be a compact semigroup. Then convolution (µ, ν) 7→ µ ∗ ν
makes M(G,K) into a Banach algebra with respect to the dual norm on M(G,K).
If G is a group, then µ∗∗ = µ and (µ ∗ ν)∗ = ν∗ ∗ µ∗, that is, M(G,K) is an
involutive Banach algebra.

Proof. This is the topic of the following exercise. ut

Exercise EA5.3. Prove Lemma A5.6.

[Hint. Show the bilinearity and associativity of ∗ and verify ‖µ ∗ ν‖ ≤ ‖µ‖·‖ν‖.
Check the condition on the involution in the group case.] ut

Lemma A5.7.
(1) For positive measures µ, ν ∈M(G,K) one has

(†) supp(µ ∗ ν) = supp(µ)supp(ν).

(2) The support of an idempotent probability measure is a compact subsemigroup
of G.

Proof. (1) The (semi)group multiplication m:G×G→ G induces an operator

M(m):M(G×G,K)→M(G,K) satisfying M(m)(µ⊗ ν) = µ ∗ ν.

Proposition A5.3 (3) implies supp(µ ∗ ν) = supp
(
M(m)(µ ⊗ ν)

)
= m

(
supp(µ ⊗

ν)
)
; by Proposition A5.5 (∗∗) we have supp(µ ⊗ ν) = supp(µ) × supp(ν). Thus

supp(µ ∗ ν) = m
(

supp(µ)× supp(ν)
)

= supp(µ) supp(ν).
(2) This is immediate from (1). ut

There are two significant topologies onM(G,K): firstly, the dual norm topology,
endowing M(G,K) with the structure of a Banach algebra, and, secondly, the
topology of pointwise convergence of functionals, that is, the topology induced
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from the inclusion M(G,K) ⊆ KC(G,K). This latter one is called the weak ∗-
topology, endowing M(G,K) with a locally convex algebra topology. It is the weak
∗-topology we are interested in here.

Recall that a measure µ ∈M(G,K) is called a probability measure if it is positive
and normalized. The topological space of all probability measures equipped with
the weak ∗-topology will be denoted P (G) ⊆M(G,K).

Lemma A5.8. For a compact semigroup G, endowed with the weak ∗-topology,
the space P (G) has the following properties.

(1) P (G) is a compact and convex subset of M(G,R).
(2) P (G) is a compact topological semigroup with respect to convolution.
(3) For µ1, µ2, ν ∈ P (G) and 0 ≤ r1, r2, r1 + r2 = 1 we have

ν ∗ (r1·µ1 + r2·µ2) = r1·(ν ∗ µ1) + r2·(ν ∗ µ2),
(r1·µ1 + r2·µ2) ∗ ν = r1·(µ1 ∗ ν) + r2·(µ2 ∗ ν).

(4) If G is a group, the involution µ 7→ µ∗ leaves P (G) invariant.

Proof. For (1) we have to show compactness, convexity, and for (2) that P (G) is
closed under convolution, and that the multiplication

(µ, ν) 7→ µ ∗ ν : P (G)× P (G)→ P (G)

is weak ∗–continuous. Assertion (3) is due to the fact that multiplication on P (G)
is the restriction of an algebra multiplication to a convex subset. Claim (4) is
straightforward. The details are left to the following exercise. ut

Exercise EA5.4. Provide the missing details of the proof of Lemma A5.8.

[Hint. (i) Show convexity directly. Show that P (G) is weak-∗-closed and bounded;
then apply the Theorem of Bourbaki-Banach-Alaoglu to prove compactness.

(ii) For proving continuity of a function α:X → P (G), recall that this amounts
to showing that the functions α 7→ 〈α(x), f〉 : X → K are continuous for all
f ∈ C(G,K).

(iii) In a real algebra, multiplication is linear in each argument separately and
this implies the assertion.] ut

By Definition, an affine semigroup S is a topological semigroup satisfying

u(r1·v + r2·w) = r1·uv + r2·uw and (r1·u+ r2·v)w = r1·uw + r2·vw,

for all u, v, w ∈ S and real numbers 0 ≤ r1, r2, r1 + r2 = 1.
Also by Definition, an involutive semigroup S has an involution s 7→ s∗ satis-

fying s∗∗ = s and (st)∗ = t∗s∗. Accordingly, we can say that

Corollary A5.9. For any compact group G, the space P (G) of probability mea-
sures on G is a locally convex, affine, compact involutive semigroup. ut
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Recall that the point-mass δg concentrated at g ∈ G is the probability measure
defined by δg(f) = f(g). The function g 7→ δg:G→ P (G) is an injective morphism
of compact topological semigroups. The element δ1 is the identity of P (G).

Exercise EA5.5.
(1) Discover the group H

(
P (G)

)
of elements of P (G) which are invertible with

respect to δ1.
(2) Prove that µg = µ ∗ δg.

[Hint. Let µ, ν ∈ P (G) be such that µ∗ν = δ1. Then supp(µ) supp(ν) = supp(δ1) =
1. This implies that µ and ν are Dirac measures.

The remainder is straightforward.] ut

Semigroup Theoretical Characterization of Haar Measure

Recall from the introduction to the section on the definition of Haar measure that
〈µg, f〉 = 〈µ, gf〉; likewise we now define 〈gµ, f〉 = 〈µ, fg〉 for gf(x) = f(xg) and
fg(x) = f(gx) and call γg = γ the right invariance and gγ = γ the left invariance
of γ. We observe that

(+) µg = µ ∗ δg and gµ = δg ∗ µ.

Proposition A5.10. For a probability measure γ ∈ P (G) the following statements
are equivalent:

(1) γ is a left- and right-invariant measure of G.
(2) γ ∗ µ = µ ∗ γ = γ for all µ ∈ P (G), that is, γ is the zero element of the

compact semigroup P (G).
Moreover, if these conditions are satisfied, then supp(γ) = G.

Proof. This is the subject of the following exercise. ut

Exercise EA5.6. Prove (+) and Proposition A5.10.

[Hint. (+) is straightforward, e.g.

〈µ ∗ δg, f〉 =

∫
G

∫
G

f(xy) dδg(y)dµ(x) =

∫
G

f(xg) dµ(x) = 〈µ, gf〉 = 〈µg, f〉.

(1)⇒(2). By definition of the convolution, (γ ∗ µ)(f) =
∫
G
γ(gf) dµ(g). Now

γ(gf) = γ(f) by right invariance of γ. Proceed.
Next (µ ∗ γ)(f) =

∫
G
µ(gf) dγ(f) =

∫
G

(∫
G
f(xg) dµ(x)

)
dγ(g). By the Fubini

Theorem we can invert the order of integration:

(µ ∗ γ)(f) =

∫
G

(∫
G

f(xg) dγ(g)

)
dµ(x).

We have
∫
G
f(xg) dγ(g) = γ(f). So µ ∗ γ = γ follows.

(2)⇒(1). Via (+) this is straightforward by taking µ = δg.
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Moreover, assume (2) satisfied. Then from Proposition A5.10 we derive

g· supp(γ) = supp(δg ∗ γ) = supp(γ)

and since G acts transitively under left translation and supp(γ) 6= Ø, we have
supp(γ) = G.] ut

Proposition A5.10 shows that there is at most one probability measure which is
both left and right invariant, since a zero of a semigroup is unique. If an arbitrary
compact space X is endowed with the semigroup multiplication gh = g (the so-
called left zero multiplication) then every measure is right invariant, but if X has
at least two elements, a point measure δg is not left invariant. In fact, the proof
of Proposition A5.10 shows that a right invariant measure on G is a left zero of
P (G).

After Proposition A5.10 the Existence and Uniqueness of a two-sided-invariant
probability measure of a compact group is equivalent to the assertion that

for a compact group G the compact topological semigroup P (G) has a zero.

In particular, Haar measure is an idempotent in P (G), if it exists. The element δ1
is an idempotent. One needs to understand the idempotents of P (G).

Idempotent Probability Measures on a Compact Group

We now return to our study of measures on a compact group.

Proposition A5.11. Assume that µ is an idempotent probability measure on a
compact group G. Then the following conclusions hold:

(1) The support supp(µ) is a closed subgroup of G.
(2) If g ∈ supp(µ) then µg = µ, that is

∫
gf dµ =

∫
f dµ for all f ∈ C(G,K).

(3) If ν ∈ P (G) and supp(ν) ⊆ supp(µ), then µ ∗ ν = ν ∗ µ = µ.
(4) µ∗ = µ.

Proof. (1) Lemma A5.7(2) and Proposition A4.34. imply the claim.
(2) It is sufficient to prove (2) for positive f . So we assume that f is positive. We

must show that the function F :G→ K defined by F (g) = 〈µ, gf〉 is constant on the
compact subgroup supp(µ). Since supp is compact and F is continuous, there is an
m ∈ supp(µ) such that F (m) = maxF (supp(µ)). Then mF attains its maximum
on supp(µ) in the identity 1, and it is no loss of generality if we replace F by mF
and assume now that F attains its maximum on supp(µ) in 1. Thus F (1) − F is
a continuous function on G which is nonnegative on supp(µ). Then Proposition
A5.4(1) allows us to conclude 〈µ, F (1)−F 〉 ≥ 0, that is 〈µ, F 〉 ≤ 〈µ, F (1)〉 = F (1).
Now we calculate

F (1) = 〈µ, f〉 = 〈µ ∗ µ, f〉 =
∫
G

∫
G
f(xy) dµ(x)dµ(y)

=
∫
G

(∫
G yf(x) dµ(x)

)
dµ(y) =

∫
G
F (y) dµ(y) = 〈µ, F 〉 ≤ F (1).
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Thus equality holds and therefore we have, for the continuous function F (1)−F :
G→ R, which takes nonnegative values on supp(µ), the relation

∫
G

(F (1)−F ) dµ =
0. Now Proposition A5.4(2) implies (F (1)− F )| supp(µ) ≡ 0 and this proves that
F is constant on supp(µ).

(3) We compute (µ∗ν)(f) =
∫
G
µ(gf) dν(g). Now µ(gf) = µ(f) for g ∈ supp(µ)

and so certainly for g ∈ supp(ν). So Proposition A5.4(3) implies (µ ∗ ν)(f) =∫
G
µ(gf) dν =

∫
G
〈µ, f〉 dν = µ(f). The proof of the relation ν ∗ µ = µ is similar.

(4) By Proposition A5.3(3) applied with ϕ(g) = g−1 we have supp(µ) =
supp(µ∗) and therefore µ ∗ µ∗ = µ by (3). But we also have µ∗ ∗ µ∗ = µ∗ and
thus we may apply the results of (3) to µ∗ and find µ ∗ µ∗ = µ∗. Thus µ∗ = µ
follows. ut

Corollary A5.12. P (G) has a zero.

Proof. From Proposition A5.11 we know that P (G) is a compact affine involutive
semigroup in which all idempotents are involutive. The assertion then follows from
Corollary A4.40. ut

In view of Proposition A5.10 this implies the existence and uniqueness of Haar
measure on a compact group. Thus Theorem A5.2 is proved.

Actions and Product Measures

In the discussions leading to the Structure Theorem 9.102 on the probability that
two elements commute in a compact group we need some measure theory beyond
the necessities required to prove existence (and uniqueness) of Haar measure. The
following discussions provide for this material.

Let (g, x) 7→ g·x : G × X → X be a continuous action α of a compact group
G on a compact space X (see Definition 1.9). As usual in this book all spaces in
sight are assumed to be Hausdorff. We specify a Borel probability measure P on
G×X and discuss the probability that a group element g ∈ G fixes a phase space
element x ∈ X for a pair (g, x), randomly picked from G×X, that is, that g·x = x.
We define

E
def
= {(g, x) ∈ G×X : g·x = x},

that is, E is the equalizer of the two functions α,prX : G×X → X and is therefore
a closed subset of G×X.

Let Gx = {g ∈ G : g·x = x} be the isotropy (or stability) group at x and
let Xg = {x ∈ X : g·x = x} be the set of points fixed under the action of
g. We note that Gg·x = gGxg

−1. The function g 7→ g·x : G → G·x induces a
continuous equivariant bijection G/Gx → G·x which, due to the compactness of
G, is a homeomorphism (see Proposition 1.10). We have
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E = {(g, x) : g ∈ Gx, x ∈ X} =
⋃
x∈X

Gx × {x}

= {(g, x) : g ∈ G, x ∈ Xg} =
⋃
g∈G
{g} ×Xg ⊆ G×X·

Now we assume that µ and ν are Borel probability measures on G and X,
respectively, and that P = µ× ν is the product measure. For information on mea-
sure theory the reader may refer to [37]. Let χE :G×X → R be the characteristic
function of E. We define the function m:X → R, m(x) = µ(Gx). Then by the
Theorem of Fubini we compute

P (E) =

∫
G×X

χE(g, x)dP =

∫
X

(∫
G

χE(g, x)dµ(g)

)
dν(x)(∗)

=

∫
X

µ(Gx)dν(x) =

∫
mdν.

Likewise

P (E) =

∫
G×X

χE(g, x)dP =

∫
G

(∫
X

χE(g, x)dν(x)

)
dµ(g)(∗∗)

=

∫
G

ν(Xg)dµ(g).

We now see from (∗) that P (E) > 0 implies, firstly, that there is at least one
x ∈ X such that µ(Gx) = m(x) > 0 holds, and that, secondly, the set of all x for
which m(x) > 0 has positive ν-measure. Likewise, there is at least one g ∈ G such
that ν(Xg) > 0 and that the set of all of these g has positive µ-measure. At this
point we introduce a terminology which we shall retain and use.

Definition A5.13. Let C be a set of subgroups of a compact group G, such as
the set of all closed subgroups or all subgroups whose underlying set is a Borel
subset of G. We shall say that a Borel probability measure σ on G respects C-
subgroups if every subgroup H ∈ C with σ(H) > 0 is open. ut

Recall that an open subgroupH of a topological groupG, being the complement
of all the cosets gH for g /∈ H, is closed and that it contains the identity component
G0 of G. If G is compact, then H has finite index in G.

We claim that
Haar measure µ on a compact group G respects Borel subgroups.

Indeed, assume that H is a Borel subgroup of G with µ(H) > 0. Then by [147],
p. 296, Corollary 20.17, H = HH contains a nonvoid open set and thus is open.

If, in the cirumstances discussed here, µ respects closed subgroups, and µ(Gx) >
0 then the subgroup Gx is open in G and hence contains G0. If G is a compact
Lie group, then the condition G0 ⊆ Gx is also sufficient for the openness of the
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subgroup Gx of G, since the identity component of a Lie group is open. If Gx is
open, then G·x ∼= G/Gx is discrete and compact, hence finite.

Let now

(†) F
def
= {x ∈ X : |G·x| <∞} = {x ∈ X : Gx is open}.

These remarks require that henceforth whenever the measure µ occurs we shall
assume that µ respects closed subgroups.

Lemma A5.14. Let G be a compact group acting on a compact space X.

(i) If G is a Lie group, then for each x ∈ X there is an open invariant neigh-
borhood Ux of x such that all isotropy groups of elements in U are conjugate
to a subgroup of the isotropy subgroup Gx.

(ii) Under these circumstances, m takes its maximum on Ux in x. That is,
m−1(]−∞,m(x)]) is a neighborhood of x. In particular, m is upper semicon-
tinuous.

(iii) If G is a Lie group, then the subspace F of X is compact.

(iv) If G is an arbitrary compact group, then the subspace F of X is an Fσ, that
is, a countable union of closed subsets and thus is a Borel subset.

(v) There is a compact commutative monoid X with compact group G of in-
vertible elements such that for the action of G on X by multiplication, the set
F = X \G is a nonclosed Fσ.

Proof. Assertion (i) is a consequence of the Tube Existence Theorem (see e.g. [48],
p. 86, Theorem 5.4, or [356], p. 40, Theorem 5.7).

(ii) Immediate from (i) and from m(u) = µ(Gu).

(iii) We recall that y ∈ F if and only if m(y) > 0. Hence F is the complement
of m−1(0). By conclusion (ii), however, m−1(0) is open. Thus F is closed and
therefore compact.

(iv) For a natural number n ∈ N we set F (n) = {x ∈ X : |G·x| ≤ n}. We claim
that F (n) is closed in X for all n ∈ N. Since F =

⋃∞
n=1 F (n), this claim will prove

assertion (iv).
We prove the claim by contradiction and suppose that there is an n ∈ N such

that F (n) contains an x′ /∈ F (n). Then there exist elements g1, . . . , gn+1 ∈ G such
that |{g1·x′, . . . , gn+1·x′}| = n+ 1. Now we find a compact normal subgroup N of
G such that G/N is a Lie group and that Ngj ·x′ ∩ Ngk·x′ = Ø for all j 6= k in
{1, . . . , n+ 1}.

The Lie group G/N acts on X/N = {N ·x : x ∈ X} via (gN)◦(N ·x) = N ·(g·x).
By what we just saw |(G/N)◦(N ·x0)| ≥ n + 1. On the other hand, FN (n) =
{N ·x ∈ X/N : |(G/N)◦(N ·x)| ≤ n} is closed by (ii) above. Since the orbit map
πN :X → X/N is continuous and π(F (n)) ⊆ FN (n) we have N ·x0 = π(x0) ⊆
FN (n) = FN (n). Thus, by the definition of FN (n) we have |(G/N)◦(N ·x0)| ≤ n.
This contradiction proves the claim.

(v) Let I denote the unit interval [0, 1] under ordinary multiplication, a com-
pact connected topological monoid. Set I0 = [0, 1 − 1/p], I1 =]1 − 1/p, 1 − 1/p2],
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. . . , In =]1− 1/pn, 1− 1/pn+1], . . . , I∞ = {1}. We form the compact topological
product monoid S = I× Zp for the additive group Zp of p-adic integers. For r ∈ I
set

Jr =


Zp, if r ∈ I0,
pnZ, if r ∈ In, n = 1, 2, . . .,
{0}, if ∈ I∞.

The binary relation R, whose cosets are R(t, z) = {t}× (z+Jt) is a closed congru-

ence relation. Therefore, X
def
= S/R is a compact connected abelian monoid with

zero R(0, 0) whose group of units is G
def
= ({1} × Zp)/R ∼= Zp. For t < 1 in I and

x = R(t, z) we have G·x =
(
{t} × (z + Zp/Ip)

) ∼= Zp/pnZp ∼= Z/pnZ for t ∈ In,
n = 0, 1, . . . .

In particular, considering X as a G-space under multiplication, the space of
finite orbits F is ([0, 1[×G)/R is not closed in X. ut

Statement A5.14(v) shows that A5.14(iv) cannot be improved to read that F
is closed.

For p = 2, the space X is the standard binary tree with G as the Cantor set of
leaves. Compact monoids like X above were considered in [196] rather generally
under the name cylindrical semigroups; for our construction see in particular D-
2.3.3ff on p. 241.

Recall that we assume that µ respects closed subgroups. Now that we know
that F ⊆ X is a Borel set, hence is ν-measurable, we can state that, regardless of
any particular property of ν, the function m satisfies

P (E) =

∫
X

mdν =

∫
X

χH ·mdν =

∫
x∈F

m(x)dν(x).

Here x ∈ F implies 0 < m(x) = µ(Gx) = 1/|G/Gx| ≤ 1.

Lemma A5.15. If µ respects closed subgroups and P (E) > 0, then 0 < P (E) ≤
ν(F ). In particular, F 6= Ø.

Proof. We have seen that P (E) =
∫
F
mdν since F is Borel measurable. The

Lemma then follows from this fact and m(x) ≤ 1 for x ∈ F . ut

We shall say that the group G acts automorphically on X if X is a compact
group and x 7→ g·x : X → X is an automorphism for all g ∈ G.

Lemma A5.16. Assume that G and X are compact groups and assume the fol-
lowing hypotheses:

(a) G acts automorphically on X.
(b) µ respects closed subgroups.
(c) ν respects Borel subgroups or else X is a Lie group and ν respects closed

subgroups.
(d) P (E) > 0.
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Then F is an open, hence closed subgroup of X.

Proof. Let x, y ∈ F . Then G·x and G·y are finite sets by the definition of F . Now
G(xy−1) = {g·(xy−1) : g ∈ G} = {(g·x)(g·y)−1 : g ∈ G} ⊆ {(g·x)(h·y)−1 : g, h ∈
G} = (G·x)(G·y)−1, and the last set is finite as a product of two finite sets. Thus
xy−1 ∈ F and F is a subgroup. By Lemma A5.15, ν(F ) > 0. Then by Lemma
A5.14(iii),(iv) and the kind of subgroups respected by ν, we conclude that F is an
open subgroup. ut

If G acts automorphically on a compact group X, we let π:G→ Aut X be the
representation given by π(g)(x) = g·x. Let idX denote the identity function of X.
Then the fixed point set Xg is the equalizer of the morphisms π(g) and idG and is
therefore a closed subgroup of X. Let I ⊆ G denote the set of all g ∈ G for which
Xg has inner points.

Lemma A5.17. Assume that G and X are compact groups and assume the fol-
lowing hypotheses:

(a) µ and ν are the Haar measures on G and X, respectively.
(b) G acts automorphically on X.
(c) G is finite.

Then P (E) = 1
|G| ·

∑
g∈I |X/Xg|−1. In particular, P (E) is a rational number.

Proof. By (∗∗) preceding Definition A5.13 and the fact that Haar measure on
a finite group G is counting measure with µ({g}) = |G|−1, we have P (E) =

1
|G| ·

∑
g∈G ν(Xg). If a closed subgroup Y of the compact group X has no inner

points, its Haar measure ν(Y ) is zero. If it has inner points, it is open and its
measure ν(Y ) is the reciprocal of its index, that is ν(Y ) = |X/Y |−1. Hence P (E) =

1
|G| ·

∑
g∈I |X/Xg|−1 and the assertion follows. ut

Our conclusions sum up to the following result:

Proposition A5.18. Let G and X be compact groups and assume that G acts
automorphically on X. Let µ and ν be normalized positive Borel measures on G
and X, respectively. Define

E = {(g, x) ∈ G×X : g·x = x} ⊆ G×X,

whence (µ × ν)(E) =
∫
x∈F µ(Gx)dν(x). Assume that µ respects closed subgroups

and that at least one of the following conditions is satisfied
(α) ν respects Borel subgroups of X,
(β) X is a Lie group and ν respects closed subgroups of X,

then the following statements are equivalent:
(1) (µ× ν)(E) > 0.
(2) The subgroup F ≤ X of all elements with finite G-orbits is open and thus

has finite index in X.
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Proof. The proof follows from the preceding discourse. ut

The main application of this general situation will be the case of a compact
group G and the automorphic action of G on X = G via inner automorphisms:

(g, x) 7→ g·x = gxg−1 : G×X → X.

The orbit G·x of x is the conjugacy class C(x) of x, and the isotropy group
Gx of the action at x is the centralizer Z(x,G) = {g ∈ G : gx = xg} of x in G.
The set E is the set D = {(x, y) ∈ G × G : [x, y] = 1}, and F is the union of
all finite conjugacy classes. In particular, F is a characteristic Fσ subgroup of G
whose elements have finite conjugacy classes, that is, the FC-center of G. Recall
that a group agreeing with its FC-center is called an FC-group .

Corollary A5.19. Let G be a compact group and let µ and ν be Borel probability
measures on G and assume that µ respects closed subgroups and that ν respects
Borel subgroups or, if G is a Lie group, that ν respects closed subgroups.

Let F be the FC-center of G. Then F is an Fσ and we define

D = {(g, x) ∈ G×G : [g, x] = 1} ⊆ G×G.

Then

P (D) =

∫
x∈F

µ(Z(x,G))dν(x),

and the following statements are equivalent:
(1) (µ× ν)(D) > 0.
(2) F is open in G and thus has finite index in G.

Proof. This is a consequence of Proposition A5.18. ut

Moreover, under these conditions, Z(F,G) contains the identity component
G0, and the profinite group G/Z(F,G) is acting effectively on F with orbits being
exactly the finite conjugacy classes of G.

In the Structure Theorem 9.102 on the probability that two elements commute
in a compact group, we show that the center Z(F ) is an open subgroup, whence
Z(F,G), containing Z(F ), is an open subgroup of G. Therefore G/Z(F,G) in fact
turns out to be finite.

Nonmeasurable Subgroups of Compact Groups

Hewitt and Ross provided in 1963 an instructive and far-reaching discussion of
the topic of subsets of a (locally) compact group which are not measurable with
respect to Haar measure in [147], pp. 226ff. However, more than twenty years later,
in 1985, S. Saeki and K. Stromberg published the following question in [310]:
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Question 1. Does every infinite compact group necessarily have a subgroup
which is not Haar measurable?.

For compact abelian groups the answer is affirmative, as Comfort et al have
shown in [74]. Yet in general this question is still not completely answered and
continues to interest authors in the field after an article by Hernández and the
authors [145] in 2016. It looks like another case for which the structure theory
of compact groups reaches into the domain of set theory and logic. We saw such
situations in the contexts of the undecidability of the Torus Proposition (see The-
orem 8.48), or in the environment of the question whether the arc component of
the identity in a compact abelian group is a Borel set (see Theorem 8.94 ff. and
Theorem 9.60 ff.).

In any compact totally disconnected, that is, profinite, group any open, hence
closed, subgroup has finite index. In Corollary 1.3 of [144] we show that every
infinite power G = KX for a profinite group K has nonclosed subgroups of finite
index.

In the following Definition we single out a rather small class of compact groups:

Definition A5,20. Let G be a topological group and G′ its (algebraic) com-
mutator subgroup. Then G is called an HHM-group if it satisfies the following
conditions:

(a) G is profinite.
(b) The only subgroups of G of finite index are open.
(c) G′ has finite index in G.

A result of M. G. Smith and J. S. Wilson [336] says the following:

Proposition A5.21. A profinite group satisfies (b) if and only if there are only
countably many finite index subgroups. ut

Since in any profinite group the open subgroups form a basis of the filter of
identity neighborhoods, this implies, in particular, that

(d) any HHM-group is metric.

Profinite groups satifying (b) are also called strongly complete (see [298], Sec-
tion 4.2, pp. 124ff.) Nikolov and Segal [280] showed that all topologically finitely
generated metric profinite groups are strongly complete, as had been conjectured
by Serre.

Typical examples in this class of groups are countable products of pairwise
nonisomorphic simple finite groups. A result of Saxl and Wilson [316] says:

Proposition A5.22. Let {Gn : n ∈ N} be a sequence of finite simple nonabelian
groups and G =

∏
n∈NGn. Then condition (b) holds if and only if there are not

infinitely many of the Gn which are isomorphic. ut

A partial but not fully satisfactory answer to Question 1 now is the following:
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Theorem A5.23. [145] Any compact group in which all subgroups are measur-
able is an HHM-group.

Therefore Question 1 may be rephrased as follows:

Question 2. Does every HHM-group contain a nonmeasurable subgroup?

In the contemplation of the quest for nonmeasurable subgroups of a compact
group, the following is an instructive exercise:

Exercise EA5.2. Let G be a compact group and H a subgroup.
(a) If H has countably infinite index, then H is nonmeasurable. In particular,

H is not a Borel subset.

(b) If H is measurable, then either it has measure 0, or it has positive measure
in which case it is open (thus having finite index).

(c) If H has finite index in G and is not closed, then H is nonmeasurable. In
particular, a countable index subgroup H of G is either closed with finite index or
is nonmeasurable.

(d) If H is nonmeasurable in G, then H is an open (and therefore finite index)
subgroup of G.

(e) If H is a finite index subgroup, G = H ∪ g1H ∪ · · · ∪ gnH, then the largest
normal subgroup N = H ∩ g1Hg

−1
1 ∩ · · · ∩ gnHg−1

n has finite index in G.

(f) Assume that H is nonmeasurable and that N is the largest normal subgroup
contained in the open subgroup H. Then N is open and H ∩N is dense in N and
nonmeasurable in N .

(g) Assume that f :G → G1 is a surjective morphism of compact groups and

that H1 ⊆ G1 is a nonmeasurable subgroup of countable index. Then H
def
= f−1(H1)

is a nonmeasurable subgroup of G.

[See [145], Proposition 1.1.]

Since Haar measure is a Borel measure, every Borel subset of G is measurable.
In the present context it is natural that we should calculate some cardinal invari-
ants which we had not computed in Chapter 12. So let S(G) denote the set of (not
necessarily closed!) subgroups of G. We let again c = 2ℵ0 denote the cardinality of
the continuum and let B(G) be the set of all Borel subsets of G.

Proposition A5.24. If X is an infinite second countable metric space, then

card(B(X)) ≤ c.

Proof. In [34], Exercise 4 c), §6, Chap. 9 it is established that the cardinality of
the set of Borel subsets of a metric second countable space is ≤ c. ut

Remark A5.25. For Haar measure µ on a compact metric group G, a subset X
is measurable iff there are sets B1, B2 ∈ B(G) such that B1 ⊆ X ⊆ B2 such that
µ(B2 \X) = 0 = µ(X \B1). ut
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(See e.g. [307], 10.10; the argument given there is quite general.)

We now observe that an infinite compact metric group has as many subgroups
as it has subsets.

Theorem A5.26. Let G be an infinite metric compact group. Then

card(S(G)) = 2c.

Proof. By Zelmanov’s Theorem 9.91a, G contains an infinite abelian subgroup A
which we may assume to be closed. Then A is a compact metric abelian group.
Therefore, if the assertion of the Theorem is true for abelian groups, then it is true
in general. Thus the claim follows from Corollary 1.2 of [22]. ut

Corollary A5.27. Every infinite compact group has a subgroup which is not a
Borel subset.

Proof. By Proposition A5.24 and Theorem A5.26, every infinite compact metric
group has more subgroups than it has Borel subgroups. ut

By Theorem A5.23, every compact group which fails to be a metric profinite
group has a subgroup which is nonmeasurable for Haar measure. Since all Borel
subgroups are Haar measurable, none of these is a Borel subgroup.

Brian and Mislove show 2016 in [50] that

The assertion that every compact group has a nonmeasurable subgroup is con-
sistent with ZFC.

Przezdzieck, Szewczak, and Tsaban, use in 2018 a consequence of the Contin-
uum Hypothesis to derive a positive answer to Question 1, see [297].

Postscript

While we did not wish to disrupt the train of thought in the very early Chapters
1 and 2 by detouring into the technical details of Radon measure theory, it is
neverthess true that Haaar measure on a compact group is basic for the structure
theory of compact groups as an essential tool. Numerous proofs of the existence
and uniqueness of Haar measure of compact groups (and indeed of locally compact
group) are sprinkled all over the literature. The proof, of which we give a self-
contained presentation here has the unique charm of being based on the topological
algebra of compact monoids and gives additional insights into a compact affine
monoid coming along with each compact group. It is, however, not suitable for
dealing with locally compact groups by this very feature, as noncompact locally
compact groups lack this accompaniment. Our presentation parallels that of [177].
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The second part of this appendix provides some measure theoretical techni-
calities which in the text are used for a surprising structure theorem on compact
groups, in which the probability that two randomly picked elements commute is
nonzero (Theorem 9.102, due to Hofmann and Russo [202]).

The third part deals with a problem on compact groups and their Haar mea-
sure of 1985 [310], which was revitalized through a paper by Hernández and the
authors [145] and which remains without a definitive solution. The challenge is the
simply formulated question whether an infinite compact group necessarily contains
a subgroup which is nonmeasurable with respect to the normalized Haar measure
of the group whose existence was discussed in the first part of this Appendix. A
definitive result describes a small class of metric profinite groups for which the
question remains open (Theorem A5.25); for all other compact groups the exis-
tence of nonmeasurable subgroup is assured. If An denote the finite simple group
of even permutations of n ≥ 5 elements, the group

G = A5 ×A6 ×A7 × · · ·

is a typical member of the group for which a definitive answer to the question is
not available. Beyond that situation authors have established results depending on
the set theory one is allowed to use to assert an affirmative answer to the question
[50, 297].

References for this Appendix—Additional Reading

[37], [38], [50], [147], [177], [202], [203], [280], [297].
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Appendix 6

Well-Ordered Projective Limits,
Supercompactness, and
Compact Homeomorphism Groups

In this appendix we indicate an alternative projective limit approach to the struc-
ture theory of compact groups first proposed by L. S. Pontryagin in his book [295],
Definition 42ff. We explain how it can be used to prove that every compact group
is supercompact. Finally we record that homeomorphism groups can be compact
groups only if they are profinite.

Well-ordered Lie chains

A total order is called a well-order if every nonempty subset has a minimum. Let G
be a compact group and let N(G) denote the complete lattice of all closed normal
subgroups. Then N(G) contains the filter basis N (G) of normal subgroups N such
that G/N is a Lie group.

Definition A6.1. Let us say that a ⊇-well-ordered chain C ⊆ N(G) is a Lie-chain
if the following conditions are satisfied:

(1) maxC = G,
(2) If N ∈ C has a predecessor M ∈ C, then M/N is a Lie group,
(3) If N ∈ C has no predecessor, then N =

⋂
{M ∈ C : N ⊆M},

(4)
⋂
C = {1}.

We say that C is a standard Lie chain if, in addition, the following condition is
satisfied where w(G) denotes the weight of G:

(5) If G is not a Lie group, then the ordinal number of C is w(G). ut

We recall that the class of cardinals is considered as a subclass of the class of
ordinals and that ordinals are viewed as representing the set of preceding ordinals.
Thus ℵ0, in this spirit, is considered as the set of natural numbers (it is often
called ω). The next ordinal ω + 1 is not a cardinal. There is a first subsequent
cardinal ℵ1. The Continuum Hypothesis expresses the assumption that ℵ1 = 2ℵ0 ,
the cardinality of the continuum.

Let us say that a well-ordering of a set is canonical if its ordinal number is
a cardinal. By the Well-Ordering Principle every set I can be well-ordered. The
well-order can be chosen so that its ordinal number is card I and that all proper
initial subintervals have smaller cardinality than card I.
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Example A6.2. Let {Gj : j ∈ J} be an infinite family of nondegenerate compact
Lie groups and set G =

∏
j∈J Gj . Let ≤ be any canonical well-ordering of I. For

each j ∈ I we set Nk =
∏
k≤j Gj where a product over a subset of I is identified

with a partial product of G. For j ∈ I let fj :Nj → Nj+1 for the successor j+ 1 of
j be the projection onto the partial product with kernel ker fj = Gj considered as

a subgroup of Nj in the obvious way. Then M
def
= {Nk : k ∈ I} is a standard Lie

chain. ut

Exercise EA6.1. Verify the claim of Example A6.2.

[Hint. Observe Exercise EA4.3.] ut

We shall call M in Example A6.2 a Lie chain associated with the product G
and a canonical well-ordering ≤ of its index set I.

Notice that if M is a Lie chain in a compact group G and M ⊇M∗ is a succes-
sive pair of of members of M, then there is a canonical morphism pM :G/M∗ →
G/M , pM (gM∗) = gM whose kernel is the Lie group M/M∗. Moreover, if N ∈M
has no predecessor, then G/N = limM∈M,M⊃N G/M . In particular, for a standard
Lie chain, C, we have.

G = lim
M∈C

G/M.

If M = {Nk : k ∈ I} is the Lie chain associated with a product G =
∏
j∈I Gj and

a canonical well-ordering of I, then G/Nk ∼=
∏
j<kGj and ker fj+1 = Gj .

With the aid of the Axiom of Choice one obtains Pontryagin’s theorem:

Proposition A6.3. Every compact group has a standard Lie chain.

Proof. Exercise AE6.2. ut

Exercise AE6.2. Prove Proposition A6.3.

[Hint. See [295], Theorem 68. Here Pontryagin considers a basis U of neighborhoods
of the identity of a given compact group G, where the cardinality of U is the weight
w(G) of G considered as an ordinal, selects a well-ordering (Uα)α<w(G), α ≤ 0 of
U , and picks in each Uα ∈ U a normal subgroup Mα such that Mα ⊆ Uα and that
G/Mα is a Lie group. Then the chain of normal subgroups Nα =

⋂
β<αMβ , α ≥ 1

is a canonical Lie chain.] ut

Corollary A6.4. Let G be a compact group and Z a central closed subgroup.
Then G has a Lie chain C containing Z. Moreover, unless G is a Lie group,
cardC = max{w(G/Z), w(Z)}.

Proof. By Proposition A6.3 applied to G/Z, there is a Lie chain C1 of G with
Z =

⋂
C1. Applying A6.3 again with Z in place of G we obtain a Lie chain C2

inside Z with maximal element Z and
⋂
C2 = {1}. Since Z is central, all subgroups

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



Appendix 6. Well-Ordered Projective Limits 911

of Z are normal in G. Then M
def
= C1∪C2 is the required Lie chain of G containing

N and having {1} as minimal element. We have w(G) = max{w(G/Z), w(Z)} and
card(C1) = w(G/Z), card(C2) = w(Z). ut

In the case of connected compact groups one can obtain more specific results.

Definition A6.5. A morphism f :G → H is a projection morphism if there is a
morphism g:H → G such that fg = idH and im g is normal. ut

If we denote ker f = M and im g = N we have an isomorphism µ:M ×N → G,
µ(m,n) = mn and a commutative diagram

M ×N µ−−→ G
prN

y yf
N −−→

f |N
H

in which the horizontal maps are isomorphisms.
For a Lie chain C of a compact group and for N ∈ C we let again N∗ ⊆ N denote

the successor of N . The morphisms G/N∗ → G/N for a Lie chain associated with
a product and a well-ordering of its index set are all projection morphisms.

Definition A6.6. The Lie chain C is called special if for each N ∈ C the morphism
fN :G/N∗ → G/N is a projection morphism whose kernel is either a centerfree
simple Lie group, or a circle group, or a finite group. ut

Example A6.7. Let {Gj : j ∈ I} be a family of compact Lie groups such that
each Gj is a centerfree simple compact Lie group or a circle group or a finite group.
Then the Lie chain associated with the product G =

∏
j∈I Gj and any canonical

well-ordering of I is a standard special Lie chain. ut

Exercise EA6.3. Verify the claim in Example A6.7. ut

Recall that every strictly reductive group G according to Definition 9.88(ii) is
of the type of Example A6.7.

Example A6.8. Let G be a profinite group. Then any standard Lie chain of G is
special. ut

This is trivial since the kernels of the connecting morphisms fN :G/N∗ → G/N
for N in a Lie chain C of G are finite.

Furthermore, recalling that a product of circle groups is called a torus, accord-
ing to Exercise E9.16 following Corollary 9.79 we have

• every connected compact group G has a totally disconnected central subgroup D
such that G/D is a product of simple centerfree compact Lie groups and a torus,
that is, a product of circles.
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Moreover, Proposition 12.10(iii) shows w(G) = w(G/D). As was observed in
the paragraph following the Definition A4.7 of the weight of a space, w(D) ≤ w(G).

With the aid of Corollary A6.4, the preceding statements yield without undue
difficulties the following result.

Proposition A6.9. Every compact connected group has a special Lie chain M
and cardM = w(G). ut

In light of the Countable Layer Theorem 9.91 it is of interest to note in passing
that every strictly reductive group has a special Lie chain as well.

Notice that the Lie chain whose existence is asserted in Proposition A6.9 will
not be a standard Lie chain unless D = {1}.

Supercompactness

Definition A6.10. A Hausdorff space is called supercompact if it possesses a
subbasis for the open sets such that every cover of the topological space from
elements of the subbasis has a subcover with at most two elements. ut

This concept was introduced by J. de Groot in 1967 [81]. Not every compact
space is supercompact [20], but every compact metric space is supercompact [260].
Results of the kind of Proposition A6.9 were used in [234] to prove the following
theorem, first announced by Mills [261] and belonging to the ambience of this
book.

Theorem A6.11. (Supercompactness Theorem for Compact Groups) (Mills,
Kubís and Turek) Every compact group is supercompact.

To see this, note that the Dyadicity Theorem 10.40 says that

• a compact group is homeomorphic to a product of a compact connected group
and a Cantor Cube.

Since products of supercompact spaces are supercompact, and a Cantor cube is
supercompact, the Supercompactness Theorem follows if it is proved for compact
connected groups.

Kubís and Turek proved the following result:

Supercompactness Lemma. Let X be the projective limit of a well-ordered
inverse system

{fjk : Xk → Xk|(j, k) ∈ I × I, j ≤ k}

of compact spaces and assume that
(i) X0 is supercompact,
(ii) (∀j ∈ I) fj,j+1:Xj+1 → Xj is either a local homeomorphism, or else is

equivalent to a product projection Xj × Sj → Xj for some supercompact
space Sj,

(iii) for all limit elements k ∈ (I,≤) we have Xk = limj<kXj.
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Then X is supercompact.

The Supercompactness Lemma and Proposition A6.9 yield the Supercompact-
ness Theorem for Compact Groups.

Compact Homeomorphism Groups

For the remainder of this appendix, let I denote the group of all self-homeomor-
phisms of I = [0, 1] fixing the endpoints, endowed with the compact-open topology.
One knows that this group is homeomorphic to `2(N), that is, separable Hilbert
space. (For further references see e.g. [191].)

Recall that a Tychonoff space is a completely regular Hausdorff space.

Lemma A6.12. (Main Lemma) Let G be a compact group acting on a Ty-
chonoff space X. If there is at least one orbit which has nondegenerate connected
subspaces, then the homeomorphism group H(X) has a closed subgroup G allowing
a continuous morphism p:G→ I with a continuous cross section. ut

The proof of this principal lemma in [191] is technical and involved. We note
that, under these circumstances, G is homeomorphic to ker p×I. One proves easily
the following:

Lemma A6.13. A topological group cannot be locally compact if it has a closed
subgroup G such that for a closed normal subgroup N ⊆ G the quotient group G/N
is isomorphic to I. ut

Lemma A6.14. If a G-space X has at least one orbit failing to be totally discon-
nected, then H(X) is not locally compact.

Proof. This is a consequence of the preceding Lemmas A6.12 and Lemma A6.13.
ut

Now we obtain quickly

Theorem A6.15. A compact homeomorphism group H(X) of a Tychonoff space
X is profinite.

Proof. Assume that G
def
= H(X) is compact. Then X is a G-space to which Lemma

A6.14 applies, and it follows that all G-orbits on X are totally disconnected. Since
the functions f 7→ f(x) : G→ G·x, x ∈ X separate the points, the group G itself
is a totally disconnected compact group, that is, a profinite group. ut
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Postscript

It was Pontryagin’s idea to represent a compact group in terms of a projective
limit of a well-ordered inverse system of compact groups in which each successive
member Gα+1 arises as an extension of a Lie group Lα by the predecessor Gα in
the form of Gα ∼= Gα+1/Lα and in which Gα for a limit ordinal α is the projective
limit of the system of all of its predecessors. Whenever a property of G is pulled up
by transfinite induction across such a well-ordered system, such a presentation can
be very useful as a sequence of recent applications shows ([5], [11], [120], [234]).
Pontryagin used this idea to prove theorems of the type of Corollary 10.75.

In general, however, the structure theory of a compact group G has tradition-
ally used projective limits over inverse systems which arise naturally from given
data, such as the filter base N of normal subgroups N for which G/N is a Lie
group. These have well-ordered bases only in the case of metric groups. This use
of projective limits is reflected in this book from Chapter 1, Defininition 1.25 on.

The last portion of this appendix shows that a representation theory of compact
groups in terms of groups of homeomorphisms on completely regular Hausdorff
spaces is somewhat limited: A surjective representation π:G→ H(X) of a compact
group G must have G0 in its kernel. In [119], Gartside and Glyn show that every
metric profinite group can indeed be represented as a homeomorphism group.
Whether this remains true for arbitrary profinite groups is an open question.

References for this Appendix—Additional Reading

[11], [120], [20], [119], [81], [191], [234], [261], [295], [347].
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Appendix 7

Weakly Complete Topological Vector Spaces

In this book, duality is certainly an important topic. Chapter 7 is devoted to
Pontryagin duality of locally compact abelian groups and the structure theory of
those groups. Chapter 3, Part 3 has a proof of Tannaka duality for compact groups.
In this appendix, we record some very useful material on an elementary duality of
vector spaces which will, however, be of considerable importance to us, especially
in Chapter 3, Part 3.

If E is a real vector space, then E is isomorphic as a vector space to the
restricted direct sum R(J) of card(J) copies of R. Now E has a natural topology,
O(E), which is the finest topology such that (E,O(E)) is a locally convex space.
If we consider the topological dual E′ of the topological vector space (E,O(E)),
then E′ is isomorphic as a topological vector space to the space RJ with the
Tychonoff product topology. Topological vector spaces of the type RJ are called
weakly complete. We shall see that there is a duality between real vector spaces
and weakly complete locally convex spaces.

The situation for complex vector spaces will be seen to be slightly different.
While continuous real linear functionals correspond precisely to characters (contin-
uous homomorphisms into the circle group T), the same is not true for continuous
complex valued linear functionals. We shall show that there are natural tensor
products for vector spaces and for weakly complete locally convex spaces and the
duality mentioned above extends to tensor products.

Also in this Appendix we shall introduce weakly complete K-algebras and their
duals which are coassociative K-coalgebras. This allows us to state Cartier’s Fun-
damental Theorem and to derive from it the significant portion of pro-Lie-group
theory for weakly complete unital algebras.

Character Groups of Topological Vector Spaces

For topological vector spaces the study of vector space duals turned out to be
eminently fruitful. We want to make the connection between character theory and
vector space duality. A first step is the following observation:

Proposition A7.1. (i) Assume that E1 and E2 are R-vector spaces such that the
underlying additive groups are topological groups and that for each v ∈ Ej, j = 1, 2,
the function r 7→ r·v:R→ Ej is continuous. Then every morphism f :E1 → E2 of
abelian topological groups is linear.

(ii) Let E be a real topological vector space and E′ = HomR(E,R) the space of
all continuous linear forms E → R endowed with the compact open topology. Then
E′ = Hom(E,R) (in the sense of topological Hom-groups), and if q:R→ T is the
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quotient morphism, then Hom(E, q):E′ = Hom(E,R) → Hom(E,T) = Ê is an
isomorphism of topological vector spaces.

Proof. (i) Let f :E1 → E2 be additive. If m ∈ N, n ∈ Z, then m·f( nm ·v) =
f(n·v) = n·f(v), whence f( nm ·v) = n

m ·f(v). Thus f is Q-linear, i.e. r·f(v) = f(r·v)
for r ∈ Q. By the continuity of all r 7→ r·v and the continuity of f we get the
desired R-linearity.

(ii) Each continuous linear form E → R is trivially a member of Hom(E,R).
Conversely, every member f of Hom(E,R) is R-linear by (i). It follows that E′ =

Hom(E,R). Now Hom(E, q):E′ → Ê is a morphism of topological groups as is
readily checked.

The additive topological group of E as that of a real topological vector space is
simply connected (see for instance Definition A2.6, Proposition A2.9, Proposition
A2.10(i)). Hence every character χ:E → T has a unique lifting χ̃:E → R such
that

Hom(E, q)(χ̃) = q ◦ χ̃ = χ

(see for instance Appendix 2, A2.32). Thus χ 7→ χ̃: Ê → E′ is an inverse of
Hom(E, q). It remains to be verified that it is continuous. We set D = {z ∈ R :
|z| ≤ 1}. Let C be a compact subset of E and U = ]−ε, ε[ ⊆ R with 0 < ε ≤ 1

4 .
Now D·C is compact connected and contains C. Consider χ ∈ VE

(
D·C, q(U)

)
. Then

χ̃(D·C) is a connected subset of q−1(q(U)) containing 0. The component of 0 in
q−1
(
q(U)

)
= U + Z is U . Hence χ̃(D·C) ⊆ U . Thus χ̃ ∈ VE(D·C,U) ⊆ VR(C,U),

proving the continuity of χ 7→ χ̃: Ê → E′. This completes the proof. ut

One is wondering to what extent the ground field R is unique with respect
to the conclusions of Proposition A7.1. The following exercise shows that it is
and to what extent statements similar to A7.1(ii) may be formulated for complex

vector spaces. For this purpose we write C× def
= (C \ {0}, .) ∼= R × T and note

that the exponential function exp:C → C×, exp z = e2πiz is a universal covering
homomorphism of C× in the sense of Definitions A2.19. Thus every morphism of
abelian topological groups f :E → C× defined on a topological R-vector space E
lifts uniquely to a morphism f̃ :E → C such that exp ◦f̃ = f by Proposition A2.32
again. For a complex topological vector space let E′ = Hom(E,C) be the complex
dual of E endowed with the compact open topology.

Exercise AE7.1. Let E be a complex topological vector space and
E′ = HomC(E,C) the space of all continuous linear forms E → C endowed with
the compact open topology.

f 7→ exp ◦f : E′ → Hom(E,C×)

is an isomorphism of topological groups.

[Hint. One has noted that E′ → Hom(E,C×) is an isomorphism of abelian
groups. Its continuity and openness is proved as in the proof of A7.1(ii).]
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It should be observed that in the complex case, the abelian topological group
Hom(E,C×) takes the role of the character group of E in the real case whereas
here

Hom(E,C×) ∼= Hom(E,R)×Hom(E,T) = (ER)′ × Ê

where ER is the underlying real topological vector space and Ê the character group
of the underlying abelian topological group E.

Let us recall some basic facts on topological vector spaces in an exercise. In
this Appendix we shall denote the real or complex ground field by K. We write

D def
= {x ∈ K : |x| ≤ 1}. A subset U in a K-vector space is called balanced if

D·U = U . It is called absorbing if

(∀v ∈ E)(∃r > 0)(∀t ∈ K) (|t| > r)⇒ (v ∈ t·U).

A balanced set is absorbing if every vector is contained in a multiple of the set.

Finite dimensional topological vector spaces

Recall that a topological vector space over K (or over any topological field K, for
that matter) is an abelian topological group E with a continuous scalar multipli-
cation (t, v) 7→ t·v:K× E → E.

Exercise EA7.2. Show that the filter of zero neighborhoods U in a Hausdorff
topological vector space satisfies

(0)
⋂
U = {0}.

(i) (∀U ∈ U)(∃V ∈ U) V − V ⊆ U .
(ii) (∀U ∈ U)(∃V ∈ U) D·V ⊆ U .

(iii) Every U ∈ U is absorbing.
Conversely show that, if a filter U satisfies (i), (ii), (iii), then the set O of all

subsets U of E such that for v ∈ U there is a W ∈ U with v +W ⊆ U is a vector
space topology whose filter of identity neighborhoods is U . If it also satisfies (0),
then O is a Hausdorff topology. ut

We shall always assume that our topological vector spaces are Hausdorff.

A subset P of a topological group is called precompact, if for every nonempty
open subset U there is a finite subset F such that P ⊆ FU . We call an abelian
topological group G locally precompact if it has a precompact identity neighbor-
hood.

For topological vector spaces over the reals (or indeed any locally compact
field), the finite-dimensional ones form a topologically distinguished class.

Proposition A7.2. (i) On a one-dimensional K-vector space E there is only
one vector space topology. For each 0 6= v ∈ E the map r 7→ r·v:K → E is an
isomorphism of topological vector spaces.
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(ii) A locally compact subgroup H of a Hausdorff topological group G is a closed
subset.

(iii) A finite-dimensional K-vector space admits one and only one vector space
topology. If E is a K-vector space with dimE = n and E → Kn is an isomorphism
then it is an isomorphism of topological vector spaces where Kn has the product
topology.

(iv) A locally precompact topological vector space over K is finite-dimensional.

Proof. (i) Let 0 6= e ∈ K, set f :K → E, f(t) = t·e. Let V def
= f−1

(
U(E)

)
be the

inverse image of the filter of zero neighborhoods of E. Since f is linear, V has a
basis of balanced and absorbing sets. In K a set V is balanced iff it is of the form
V = {r ∈ K : |r| < ε} or of the form V = {r ∈ K : |r| ≤ ε}. The only one among
these which is not absorbing is {0}. Note that V intersects in {0} and conclude
that V is the neighborhood filter of 0 in K.

(ii) It is no loss of generality to assume G = H; show H = G. Let K be a
compact identity neighborhood of H and let U be an open identity neighborhood
of G with U ∩H ⊆ K. Consider g ∈ G; we must show g ∈ H. Since H is dense in
G there is an h ∈ H ∩ U−1g, say h = u−1g. Since U is open, U ∩ H is dense in
U . Thus U ∩K is dense in U , i.e. U ⊆ K = K (as K is compact in a Hausdorff
space). Thus u ∈ U ⊆ K ⊆ H, whence g = uh ∈ HH ⊆ H.

(iii) Let e1, . . . , en be a basis of E and set f :Kn → E, f(x1, . . . , xn) =
x1·e1 + · · ·+xn·en. We prove by induction on n that f is an isomorphism of topo-
logical vector spaces. In (i) one dealt with n = 1. We consider vector subspaces

N
def
= K·e1⊕· · ·⊕K·en and H

def
= K·en+1. We show that (n, h) 7→ n+h:N×H → E

is an isomorphism of topological vector spaces. This map is a continuous algebraic
isomorphism. We must show that its inverse is continuous. By the induction hy-
pothesis N ∼= Kn, H ∼= K, and so both vector spaces are locally compact hence
closed by (ii). Then E/N is Hausdorff, and hence isomorphic to K by (i). Thus
h 7→ h+N :H → E/N is an isomorphism of topological vector spaces by (i). Hence
the projection of pH :E → H, pH(x1·e1 + · · ·+ xn+1·en+1) = xn+1·en+1, factoring
through the quotient E → E/N and the isomorphism E/N → H is continuous.
Hence the projection pN = id−pH onto N is continuous. So (n, h) 7→ n+ h has a
continuous inverse.

(iv) Let U be a balanced zero neighborhood of E such that U+U is precompact.
The sets U + u, u ∈ U form an open cover of U + U by translates of an identity
neighborhood. By precompactness there is a finite subset F ⊆ U such that U+U ⊆
U + F . Let E1 = spanK F . Then U + U ⊆ U + E1. Since the vector space E1 is
finite-dimensional and therefore locally compact by (iii), it is closed by (ii). Hence
E/E1 is Hausdorff. Set V = (U + E1)/E1, then V is a balanced 0-neighborhood
of E/E1 satisfying V + V ⊆ V = −V . Then V is a vector space. However, V is
precompact since U is precompact. Claim: V is a singleton. Suppose it is not a
singleton; then by (i) the K-vector space contains a vector subspace isomorphic to
K. Hence K would have to be precompact. But then the subspace N ⊆ K would
have to be precompact, but it is not because it cannot be covered by a finite
number of translates of a disc of radius 1

2 . Thus V is singleton and E = E1. ut
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Duals of vector spaces

A topological vector space E over K is called locally convex if every zero neigh-
borhood contains a convex one. Now let E be any real vector space and let B(E)
denote the set of all balanced, absorbing and convex subsets of E. Let us ob-
serve that there are plenty of those, in fact enough to allow only {0} to be their
intersection. Let F be a basis of E and ρ:F → ]0,∞[ any function. Then the set

U(F ; ρ) =
{∑
e∈F

re·e : |re| < ρ(e)
}

is balanced, absorbing and convex. We call it a box neighborhood with respect to
F . The box neighborhoods with respect to a single basis already intersect in {0}.
Thus the filter of all supersets of sets from B(E) satisfies (0), (i), (ii), and (iii) of
EA7.2. If we set

O(E) = {W ⊆ E | (∀w ∈W )
(
∃U ∈ B(E)

)
w + U ⊆W},

then O(E) is a locally convex vector space topology. From its definition it is
immediate that it contains every other locally convex vector space topology. It
is clearly an algebraic invariant in so far as it depends only on the vector space
structure of E. A convex subset U of E belongs to O(E) if and only if for every
u ∈ U and every x ∈ E the set {r ∈ R | u + r·x ∈ U} is an open interval of R
containing 0. It follows that a convex subset U of E belongs to O(E) if and only
if for each finite-dimensional vector subspace F and each v ∈ E the intersection
F ∩ (U − v) is open in F (in the unique vector space topology of F ).

Let us record some of the basic properties of O(E). We shall see that O(E) is
not only an isomorphism invariant, but is, in a variety of aspects, a purely algebraic
entity attached to the real vector space E.

Proposition A7.3. Let E be an arbitrary vector space over K.
(i) If E1 and E2 are vector spaces, T :E1 → E2 is a linear map, and E2 is a

locally convex topological vector space, then T is continuous for the topology O(E1).
In particular, every algebraic linear form E → K is O(E)-continuous; i.e. the

algebraic dual E∗ = HomK(E,K) is the underlying vector space of the topological
dual E′ = Hom(E,K) (which is considered to carry the compact open topology and

which is isomorphic to Ê if K = R).
(ii) Every vector subspace of E is O(E)-closed and is a direct summand alge-

braically and topologically. Moreover, the topology induced on each vector subspace
is its finest locally convex topology.

(iii) Let F be a linearly independent subset of E. Then there is a zero neigh-
borhood U ∈ O(E) such that {v + U | v ∈ F} is a disjoint open cover of F . In
particular, any linearly independent subset of

(
E,O(E)

)
is discrete.

(iv) If C is an O(E)-precompact subset, then spanK(C) is finite-dimensional.
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Proof. (i) If U is any balanced and convex zero neighborhood of E2 then T−1(U)
is balanced, absorbing and convex and thus belongs to B(E1). This shows the
continuity of T with respect to O(E1). The remainder of (i) then follows at once.

(ii) Let E1 be an arbitrary vector subspace of E and let E2 be a vector space
complement; i.e. E = E1⊕E2. The function x 7→ (pr1(x),pr2(x)):E → E1×E2 is a
vector space isomorphism and then is continuous by (i). The function α:E1×E2 →
E, α(x, y) = x+y, is its inverse. Since it is the restriction of the continuous addition
(x, y) 7→ x + y:E × E → E to the subspace E1 × E2 it is continuous. Hence α is
an isomorphism of topological vector spaces. This proves assertion (ii).

(iii) Let F be a linearly independent subset. Since by the Axiom of Choice, F
can be supplemented to a basis {ej | j ∈ J} we may just as well assume that F is
this basis. Let σ:F → ]0,∞[ be the function with the constant value 1

2 . We claim
that for different elements e ∈ F we have(

e+ U(F ;σ)
)
∩
(⋃

f∈F, f 6=e f + U(F ;σ)
)

= Ø.

Indeed if ω:E → K is the linear functional defined by ω(f) = 0 for e 6= f ∈ F and
by ω(e) = 1, then ∣∣∣ω (⋃f∈F, f 6=e f + U(F ;σ)

)∣∣∣ ⊆ [0, 1
2 [,

and

|ω(e+ U(F ;σ))| ⊆] 1
2 , 1[.

This proves (iii).
(iv) Let K be a precompact subset of

(
E,O(E)

)
. We want to show that

dim spanKK < ∞. It is no loss of generality to assume that E = spanKK. Then
we can select a basis B = {ej | j ∈ J} of elements ej ∈ K. Then B is precompact.
By (iv) we find an open zero neighborhood U such that ej + U is a disjoint cover
of B by translates of U . Since B is precompact this implies that J is finite. Hence
dimE = cardJ <∞. ut

The topology O(E) is called the finest locally convex topology on E.
For a vector space E over K we shall denote the set of all finite-dimensional

vector subspaces by Fin(E). For a topological vector space E over K we denote
the set of cofinite-dimensional closed vector subspaces (i.e. closed vector subspaces
M with dimE/M <∞) by Cofin(E).

Exercise A7.2a. Use Proposition A7.3(i) to prove the following observation:

Corollary A7.3a. The assignment E 7→ (E,O(E)) is a functor from the category
of real vector spaces to the category of locally convex vector spaces and continuous
linear maps which is left adjoint in the sense of Definition A3.31 (and Proposition
A3.33) to the grounding functor assigning to a locally convex real topological vector
space the underlying real vector space. ut
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According to Proposition A3.21 for each set X there is a free real vector space
FX over X, and so (FX,O(FX)) is the free locally convex vector space on the set
X.

Lemma A7.4. Let E be a K-vector space endowed with its finest locally convex
vector space topology O(E).

(i) Then the compact open topology on E′ is the weak∗-topology, i.e. the topology
of pointwise convergence.

(ii) Every continuous linear functional Ω:E′ → K is of the form ω 7→ ω(x) :
E′ → K for a unique x ∈ E.

(iii) F 7→ F⊥: Fin(E)→ Cofin(E′) is an order reversing bijection.

Proof. (i) The compact open topology on E′ is generated by the set of basic
zero-neighborhoods VE(C,U) = {f ∈ E′ : f(C) ⊆ U} for a compact subset
C of E and some zero neighborhood U of R. This topology is always equal to
or finer than the weak∗-topology. It is no loss of generality to assume that C is
convex balanced, since C is contained in a finite-dimensional subspace by A7.3(iv),
where the closed convex circled hull C∗ of a compact set C is compact and then
VE(C∗, U) ⊆ VE(C,U). Assume C is convex balanced now. For any ε > 0 we write

Dε
def
= {t ∈ K : |t| < ε}. For a zero neighborhood U in K there is always an ε > 0

such that Dε ⊆ U . Then
VE( 1

εC,D1) = VE(C,Dε) ⊆ VE(C,U).
Thus we may assume that the filter of zero-neighborhoods of E′ for the compact
open topology is generated by basic zero neighborhoods of the form VE(C,D1) as
C ranges through the compact convex and balanced subsets of E. Now spanC is

finite-dimensional; then there is a basis e1, . . . , en of spanC such that C ⊆ K
def
=

{
∑n
j=1 rj ·ej | |rj | ≤ 1, j = 1, . . . , n}, where K is the convex balanced hull of

{e1, . . . , rn}. Then
VE({e1, . . . , en}, D1) = VE(K,D1) ⊆ VE(C,D1).

Hence the topology of E′ and the weak∗-topology agree.
(ii) Let Ω:E′ → K be a continuous linear functional. By (i), its continuity

implies the existence of a finite set F ⊆ E of vectors in E such that

Ω(VE(F,D1)) ⊆ D1.

Since F⊥ ⊆ E′ is contained in VE(F,D1) we have Ω(F⊥) ⊆ D1, and since Ω(F⊥)
is a vector space, we conclude F⊥ ⊆ ker(Ω). Therefore we have a linear functional
Ω′:E′/F⊥ → R such that Ω = Ω′ ◦ q for the quotient map q:E′ → E′/F⊥. If
x ∈ E, then x⊥ = {ω ∈ E′ : ω(x) = 0} is a closed hyperplane in E′, and thus
F⊥ =

⋂
x∈F x

⊥ is a finite intersection of hyperplanes. Thus E′/F⊥ is a finite
dimensional vector space. Its dual may be identified with spanF in the sense that
every linear functional of E′/F⊥ is of the form ω+F⊥ 7→ ω(x) for an x ∈ spanF .
We apply this to Ω′ and find some vector x ∈ spanF such that Ω′(ω) = ω(x).
Then Ω(ω) = ω(x) for all ω ∈ E′, and this is what we had to show.

(iii) If F ∈ Fin(E), then F⊥ ∈ Cofin(E′) as we saw in the proof of (i). Con-
versely let M ∈ Cofin(E′). Then M is the intersection of finitely many closed
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hyperplanes. Each one of these is the kernel of a continuous functional Ω; we saw
in (ii) that each one of these is of the form ω 7→ ω(x). Hence M is the annihi-
lator M = F⊥ of some F ∈ Fin(E). Hence F 7→ F⊥: Fin(E) → Cofin(E′) is a
containment reversing bijection. ut

Let E be a locally convex topological vector space over K and E′ its topological
dual. If ηE :E → E′′, ηE(x)(ω) = ω(x), denotes the evaluation morphism, then for

each subset H ⊂ E we set H◦
def
= {ω ∈ E′ : |ω(H)| ⊆ [0, 1]} =

⋂
h∈H ηE(h)−1B1

with B1 = {r ∈ K : |r| ≤ 1} and call this set the polar of H in E′. Similarly for

a subset Ω ⊆ E′ we define the polar of Ω in E to be Ω◦
def
= {x ∈ E : |Ω(x)| ⊆

[0, 1]} =
⋂
ω∈Ω ω

−1(B1). Again as in the case of annihilators of subsets of abelian
topological groups one must specify where the polars are taken. Polars are always
closed.

For the following, recall that E is called semireflexive if the morphism ηE :E →
E′′, ηE(x)(ω) = ω(x) is bijective. It is called reflexive if ηE is an isomorphism of
topological groups.

Lemma A7.5. (The Bipolar Lemma). Let E be a locally convex vector space and
U be a convex balanced subset of E. Let Ω be a convex balanced subset of E′.
Then

(i) U◦◦ = U , and
(ii) if E is semireflexive, Ω◦◦ = Ω.

Proof. (i) The taking of polars is containment reversing. Hence U ⊆ U◦◦ and since
polars are closed we have U ⊆ U◦◦. In order to prove the converse containment
let x ∈ U◦◦. This means that |U◦(x)| ⊆ [0, 1]. We claim that this implies x ∈ U .
Suppose it does not. Then by the Theorem of Hahn and Banach (see e.g. [40]),
there is a real linear functional ρ:E → R with ρ(x) > 1 and ρ(U) ⊆ [−1, 1]. If
K = R, then this says that ρ ∈ U◦, contradicting |U◦(x)| ⊆ [0, 1]. If K = C,
then ω(y) = ρ(x)− iρ(i·x) defines a complex linear functional such that |ω(x)| ≥
Re |(ω(x))| = ρ(x) > 1, while, on the other hand, for 0 6= u ∈ U we define z with
|z| = 1 by zω(u) = |ω(u)|. Then zu ∈ U and |ω(u)| = zω(u)ω(zu) = Reω(zu) =
ρ(zu) = |ρ(zu)| ≤ 1. Thus ω ∈ U◦. This proves the claim.

(ii) If E is semireflexive, then E may be identified with the vector space of all
continuous linear functionals of E′. Since E′ is locally convex, the proof of part (i)
applies here and proves the assertion. ut

Weakly complete topological vector spaces

Our main interest will be with vector spaces dual to those we just discussed.
Their topology was determined by the finite-dimensional vector subspaces. Dually
we may consider vector space topologies which are determined by the cofinite-di-
mensional closed vector subspaces.
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Proposition A7.6. Let E be a topological K-vector space. Then for M, N ∈
Cofin(E) with N ⊆ M , there is a canonical quotient map qMN :E/N → E/M .
Since Cofin(E) is a filter basis, there is an inverse system and, in the category of
topological vector spaces, there is a projective limit ECofin(E) = limM∈Cofin(E)E/M ,
the vector subspace of all

(vM +M)M∈Cofin(E) ∈
∏

M∈Cofin(E)

E/M

such that N ⊆M implies vN − vM ∈M . The function

γE :E → ECofin(E), γE(v) = (v +M)M∈Cofin(E)

is a morphism of topological vector spaces which is injective if and only if⋂
Cofin(E) = {0}.

Proof. This is straightforward. ut

Lemma A7.7. For a topological K-vector space E, the following statements are
equivalent:

(1) There is a set J and an isomorphism of topological vector spaces E → KJ .
(2) There exists a K-vector space P such that E = P ∗ = Hom(P,K) ⊆ KP with

the topology of pointwise convergence on P ∗.
(3) The evaluation map ev:E → E′

∗
, ev(v)(f) = f(v) is an isomorphism of

topological vector spaces.
(4) The function γE :E → ECofin(E) is an isomorphism of topological vector

spaces.
(5) E is isomorphic to a closed vector subspace of KX for some set X.

Proof. (1) ⇒(2): If E = KJ , let P = K(J) =
⊕

j∈J Kj , Kj = K. Then P ∗ ∼= P J

under the pairing 〈·, ·〉 : P J × P (J) → K given by 〈(xj)j∈J , (yj)j∈J〉 =
∑
j∈J xjyj ,

where we note that the sum is well-defined since all but finitely many of the yj are
0.

(2)⇒(3): Assume E = P ∗. By the Axiom of Choice, P has a basis {ej : j ∈ J}.
Hence P may be identified with K(J). ‘Now E = (K(J))′ may be identified with KJ .
Then E′ = Hom(KJ ,K) in the category of topological K-vector spaces, and this
vector space has as a basis the projections prm:KJ → K, pr((xj)j∈J) = xm, m ∈ J .
Thus E′ may be identified with K(J) via the dual pairing 〈·, ·〉:K(J),KJ → K.
Assertion (3) follows from this fact.

(3) ⇒(4): By Lemma A7.4(iii) upon interchanging the roles of E′ and E we
observe that M 7→ M⊥ : Cofin(E)→ Fin(E′) is an order reversing bijection. The
limit limM∈CofinE E/M is dual to the colimit

⋃
F∈Fin(E′) F in the category of K-

vector spaces. The obvious colimit morphism τE′ :
⋃
F∈Fin(E′) F → E′ is dual to

γE . Since τE′ is an isomorphism, so is γE
(4) ⇒(5): By (4), E is isomorphic to a closed vector subspace of∏
M∈Cofin(E)E/M where each E/M is ismorphic to a finite product of copies
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of K. Hence E is isomorphic to a closed topological K-vector subspace of KX for
some set X.

(5) ⇒(1): The topological dual (KX)′ = Hom(KX ,K) may be identified with
the (abstract) K-vector space K(X), and KX may be considered as the dual
Hom(K(X),K) with the topology of pointwise convergence. In view of the Ax-
iom of Choice, The annihilator E⊥ of E in K(X) has a basis ej : j ∈ J0 for some
set J0 which may be extended to a basis {ex : x ∈ X}, X = J0∪̇J so that
E′ ∼= K(X)/K(J0) ∼= K(J). So E ∼= KJ follows. ut

The Definition of weakly complete topological vector spaces

Definition A7.8. A topological vector space E is called weakly complete if it
satisfies any of the equivalent conditions (1)–(5) of Lemma A7.7. ut

The weak topology on a K-vector space is the smallest topology making all
linear functionals f :E → K continuous. All finite-dimensional vector spaces are
weakly complete. On a weakly complete topological vector space, the continuous
functionals separate points. Our definition establishes completeness in the weak
topology as the name of a “weakly complete topological vector space” suggests.

Recall from A7.3(i) that the algebraic dual E∗ of a K-vector space E is at
the same time the topological dual (E,O(E))′, consisting of all continuous linear
functionals on E when E is endowed with the finest locally convex topology O(E).
On the basis of bare linear algebra one always has the weak ∗-topology on E∗,
that is, the topology of pointwise convergence induced by the natural inclusion
E∗ → KE . The first item in the following lemma will show that this topology agrees
with the topology of uniform convergence on compact sets which is the topology
we consider in order to have the isomorphism E′ ∼= Ê for K = R according to
A7.1.

Let us denote the category of K-vector spaces, K = R or K = C, and linear
maps by VK and the category of weakly complete K-vector spaces and continuous
K-linear maps by WK. For a K-vector space V we write V ∗ for its algebraic dual
VK(V,K) ⊆ KV equipped with the topology induced from KV , i.e., the topology
of pointwise convergence, and for any weakly complete K-vector space W , we
write W ′ for its topological dualWK(W,K) as an abstract K-vector space. Clearly
V 7→ V ∗ : VK →WK and W 7→W ′ :WK → VK are contravariant functors.

The Duality of VK and WK

Theorem A7.9. The natural evaluation morphisms

(A) evV :V → V ∗′, evV (v)(f) = f(v),

and

(B) evW :W →W ′
∗
, evW (w)(f) = f(w),

are isomorphisms. The categories VK and WK are dual to each other.
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Proof. The naturality of the evaluation morphisms ev∗ is straightforward. By
the basis theorem, every object V of VK is VK-isomorphic to K(J) for some set
J , and (K(J))∗ ∼= KJ , naturally. Also by Definition A7.8. and Lemma A7.7 ev-
ery WK object is WK-isomorphic to KJ for some set J . The fact that evK(J) :

K(J) → (K(J))∗
′ ∼= (KJ)′ is an isomorphism was established in Lemma A7.4(ii),

and the fact that evKJ : KJ → (KJ)′
∗ ∼= (KJ)′ is an isomorphism is clear from

the fact that any continuous linear functional f :KJ → K must vanish on some

vector subspace KI ⊆ KJ such that F
def
= J \ I is finite, plus the elementary linear

algebra information that evKF is an isomorphism for finite F . ut

If W = RJ , then the cardinal cardJ is called the topological dimension of W .
(See [185].) Thus the topological dimension of a weakly complete topological vector
space is the linear dimension of its dual.

In this spirit, the weakly complete topological vector spaces are generalisations
of the familiar euclidean vector spaces Rn, and we provide enough evidence in this
book that they are the correct generalisation.

What may be considered as lacking in this duality theory is any information how
it fits into Pontryagin Duality of abelian topological groups as it was expounded in
Chapter 7. We have secured the background material to provide this information
now for the real ground field K = R. We utilize this aspect in Chapter 7 in
the section entitled “Character Groups of Topological Vector Spaces” (headline
preceding Exercise E7.12).

We shall stay in the category TAB of all abelian topological groups, and we
shall denote the full subcategory of all reflexive abelian topological groups by ABD,

that is all abelian topological groups G such that ηG:G→ ̂̂
G, ηG(x)(χ) = χ(x), is

an isomorphism of abelian topological groups.

Duality of Real Vector Spaces

Theorem A7.10. Let V be a real vector space and endow it with its finest locally
convex vector space topology O(V ), and let W be a weakly complete real topological
vector space. Then

(i) V is reflexive; that is, ηV :V → ̂̂
V is an isomorphism of topological vector

spaces.
(ii) W is reflexive; that is, ηW :W → ̂̂

W is an isomorphism of topological vector
spaces.

(iii) The contravariant functor ·̂ : ABD → ABD exchanges the full subcategory
of real vector spaces (given the finest locally convex topology) and the full
subcategory of weakly complete topological vector spaces.

Proof. (i) The topological dual V ′ and the character group V̂ are isomorphic by
7.5(iii). Since the linear functionals separate the points, ηV is injective. By A7.4(ii),

ηV is surjective. As vector spaces, therefore, V , V ′′, and
̂̂
V may be identified.
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A subset K in V ′ ∼= V̂ is compact if and only if it is closed in V ′ and for
each compact subset C of V and each ε > 0 there is an M ∈ B(V ) such that
|K(C ∩M)| ⊆ [0, ε[ (see for instance Proposition 7.6). In view of the fact that V ∗

is weakly complete and that V ′ = V̂ by A7.4(i), we may express this as follows:

(∗) (∀F ∈ Fin(V ), ε > 0)(∃M ∈ B(V )) K(F ∩M) ⊆ [0, ε].

We shall now show that B(V ) has a basis of zero neighborhoods VV ′(K,Bε) =
{x ∈ V : |K(x)| ⊆ [0, ε]} for the compact open topology on V when V is identified

with V ′′ ∼= ̂̂
V . For a proof of the claim let U ∈ B(V ). Set K

def
= {ω ∈ V ′ : |ω(U)| ⊆

[0, 1]} = U◦. We claim that K is compact. Clearly, K is closed in V ′ since V ′ has
the topology of pointwise convergence by (i) above. Let F ∈ Fin(V ) and ε > 0.
Then |K(F ∩ ε·U)| ⊆ ε·[0, 1] by the definition of K. Hence (∗) is satisfied and K
is compact as asserted. Now we observe that VV ′(K,B1) = U◦◦. By the Bipolar
Lemma A7.5 we have VV ′(K,B1) = U . Since the filter basis B(V ) has a basis of
closed sets, we have shown that it has a basis of sets VV ′(K,B1). Thus the compact
open topology on V is finer than or equal to the given topology of V which is the
finest locally convex topology. But since the sets VV ′(K,B1) are convex, the two
topologies agree and thus V is the dual of V ′ and V is reflexive.

(ii) Set V = W ′. Then each nonzero ω ∈ V has a closed hyperplane as
kernel, and each closed hyperplane is the kernel of such an ω. It follows that
M 7→ M⊥: Cofin(W ) → Fin(V ) is an order reversing bijection. Now let Θ ∈ V ′′
and consider F ∈ Fin(V ). Set M = F⊥. Now F may be canonically identified with
the dual of W/M so that 〈ω, v + M〉 = ω(v) for ω ∈ F = M⊥, v ∈ W (see the
Annihilator Mechanism Lemma 7.17(i)). But F and W/M are finite-dimensional
vector spaces which are reflexive. Hence there is a unique element ΘM ∈ w/M such
that 〈ω,Θ|F 〉 = 〈ω,ΘM 〉 for all ω ∈ F . Moreover, if F1 ⊆ F2 then M2 = F⊥2 ⊆
F⊥1 = M1 and since (Θ|F2)|F1 = Θ|F1 the quotient map qM1M2

:W/M2 → W/M1

maps ΘM2 to ΘM1 . Hence (ΘM )M∈Cofin(W ) ∈
∏
M∈Cofin(W )W/M is contained in

limM∈Cofin(W )W/M . By hypothesis, W is weakly complete; hence there is an ele-

ment v ∈W such that v+M = ΘM . Let ω ∈ V . Then F
def
= K·ω ∈ Fin(V ). Thus,

letting M = F⊥ we get Θ(ω) = 〈ω,Θ|F 〉 = 〈ω,ΘM 〉 = 〈ω, v +M〉 = ω(v). Hence
Θ = ηW (v). This suffices to show that W is semireflexive.

Now we investigate the compact open topology of V and show that it agrees
with the finest locally convex topology. Let U be in the set B(V ) of all balanced,

absorbing, and convex subsets of V . Set U◦
def
= {x ∈ W : |U(x)| ⊆ [0, 1]} and

consider 0 6= ω ∈ V . Set M = ω−1(0). Since U is absorbing, Bε·ω ⊆ U for some

ε > 0, Bε = {r ∈ K : |r| ≤ ε}. Thus U◦ ⊆ (Bε·ω)◦
def
= {x ∈ W : |(Bε·ω)(x)| ⊆

[0, 1]} = {x ∈ W : |ω(x)| ≤ 1
ε} = ω−1B1/ε. Since W = limM∈Cofin(W )W/M , the

sets ω−1(Br), ω ∈ V and r > 0 are subbasic zero neighborhoods of W (meaning
that the collection of all finite intersections of these form a basis of the filter of
zero neighborhoods), and the topology of W is the smallest making all ω ∈ V
continuous. Thus x 7→ (ω(x))ω∈W\{0} : W → RV \{0} is an embedding and U◦ is
mapped onto a closed subset of

∏
ω∈W\{0}Br(ω) for a family of positive numbers

r(ω). Hence U◦ is compact in W . Now U◦◦ = {ω ∈ V : ω(U◦) ⊆ B1} is a zero
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neighborhood for the compact open topology. Since W is semireflexive, by the
Bipolar Lemma A7.5(ii), U◦◦ = U . Thus the closed sets which are members of
B(V ) are zero neighborhoods of the compact open topology. This says that the
compact open topology of V and the finest locally convex topology of V agree.

Now V ′ carries the topology of pointwise convergence by A7.4(i); by the char-
acterisation of the topology of W just derived we know that ηW :W → W ′′ = V ′

is an algebraic and topological embedding. Since we have seen ηW to be bijective,
it is an isomorphism of topological vector spaces.

(iii) is a consequence of (i) and (ii). ut

Duality at Work for Weakly Complete Topological Vector
Spaces

Duality: Vector Subspaces

Theorem A7.11. Let V be a weakly complete real topological vector space. Then
the following statements hold:

(i) Every closed vector subspace V1 of V is algebraically and topologically a direct
summand; that is there is a closed vector subspace V2 of V such that (x, y) 7→ x+y :
V1 × V2 → V is an isomorphism of topological vector spaces.

(ii) Let E in VK be V ′. We may identify E∗ and V by duality. For every closed
vector subspace H of E, the relation H⊥⊥ = H ∼= (V/H⊥)′ holds and V/H⊥ is

isomorphic to Ĥ.
(iii) The map F 7→ F⊥ is an antiisomorphism of the complete lattice of vector

subspaces of E onto the lattice of closed vector subspaces of V .

E {0}∣∣∣ }
= E/H (E/H)′ =

{ ∣∣∣
H H⊥∣∣∣ }

∼= (V/H⊥)∗
∣∣∣

{0} V.

Proof. (i) Let E = V ′. Then V ′ is a vector space in VK. Let E1 = V ⊥1 . Then there
is a vector subspace E2 such that E = E1 ⊕E2 in VK. Set V2 = E⊥2 and conclude
V = V2 ⊕ V1 with V1

∼= (E2)∗ and V2
∼= (E1)∗.

(ii) We consider a vector subspace H of E and recall that E = V ′ and that the
linear functionals of E/H separate the points. Then the Annihilator Mechanism
applies (see for instance Lemma 7.17(iii)) and shows H = H⊥⊥. Since E = V ′ and
the continuous functionals of E/H separate points, we know that (V/H⊥)′ and
H are isomorphic vector spaces. (Cf. 7.17(v).) There is a vector subspace K of
E such that E = H ⊕K, and we obtain E′ = K⊥ ⊕H⊥ with a closed and hence
weakly complete topological vector subspace K⊥ ∼= Ĥ of V . Then V/H⊥ ∼= K⊥
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928 Appendix 7. Weakly Complete Topological Vector Spaces

is a weakly complete topological vector space and thus is isomorphic to its bidual.
This implies that V/H⊥ ∼= H∗ (cf. for instance Lemma 7.17(vi)).

(iii) is a consequence of these facts. ut

Duality: Morphisms

Theorem A7.12. (a) Let f :V →W be a morphism of weakly complete topological
vector spaces. Assume that f has a dense image. Then f :V → W splits; that is,
there is a morphism σ:W → V such that f ◦ σ = idW .

(b) Let f :V →W be a morphism of weakly complete topological vector spaces.
Then f(V ) is a closed vector subspace of W , and the natural bijection V/ ker f →
f(V ) is an isomorphism of topological vector spaces.

V
f−−→ W

q

y xj
V/ ker f −−→

f ′
f(V )

(c) (The Second Isomorphism Theorem) If V and W are closed vector sub-
spaces of a weakly complete topological vector space U , then V +W is closed, and
the function f :V/(V ∩ W ) → (V + W )/W , f

(
v + (V ∩ W )

)
= v + W is an

isomorphism of topological vector spaces.

Proof. (a) Let f :V → W be a morphism of weakly complete topological vector
spaces with dense image. Then the morphism f ′ is an epimorphism in the category
of topological vector spaces since it has a zero cokernel. Then f ′:W ′ → V ′ is a
monomorphism of real vector spaces. Thus f ′ has a zero kernel and so is injective.
Now the linear algebra of vector spaces provides, with the use of the Axiom of
Choice, a linear function τ :V ′ → W ′ such that τ ◦ f ′ = idW ′ . the map τ is
continuous and is thus a morphism of topological vector spaces. From (iii) we
know that f ′

∗ ◦ τ∗ is the identity map of W ′
∗
. We get a morphism σ:W → V such

that σ′
∗

= τ∗ and that f ◦ σ = idW .

(b) In the category of weakly complete topological vector spaces, we have a
canonical decomposition

(∗)
V

f−−→ W
q

y xj
V/ ker f −−→

ϕ
f(V )

where q(v) = v + ker f , j(w) = w, ϕ(v + ker f) = f(v). After replacing f by
ϕ we may assume without loss of generality that f is injective and has a dense
image. Then f is both a monic and an epic in the category of weakly complete
topological vector spaces. By (a) it is also a retraction, and a monic retraction is
an isomorphism. In particular, it is surjective and thus (b) is proved.

(c) We define a morphism of weakly complete topological vector spaces

F :V/(V ∩W )→ U/W by F
(
v + (V ∩W )

)
= v +W.
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By Part (a), the vector subspace (V + W )/V = F (V ) is closed in U , and thus
V +W , the full inverse image under the quotient morphism U → U/W is closed in
U . Moreover, the corestriction of the injective morphism F to the image. namely,
f :V/(V ∩W ) → (V + W )/W , is an isomorphism of weakly complete topological
vector spaces. ut

Filter Bases of Closed Linear Subspaces

Theorem A7.13. Let W be a weakly complete topological vector space and F a
filter basis of closed linear subspaces.

(a) Assume that F is a closed vector subspace of W . Then

(∗) F +
⋂
F =

⋂
H∈F

(F +H).

(b) The following conditions are equivalent
(i) limF = 0.
(ii)

⋂
F = {0}.

(c) Assume that F ⊆ Cofin(W ). Then the following conditions are equivalent:
(i) limF = 0.
(iii) F is a basis of Cofin(W ).

Proof. (a) By duality of weakly complete topological vector spaces according
to Theorems A7.9(iii) and A7.11.(ii) by passing to annihilators, the assertion is
equivalent to the following assertion in a vector space E with a vector subspace S
and a directed (ascending) set D of vector subspaces

S ∩
⋃
D =

⋃
U∈D

S ∩ U.

This relation holds for elementary set-theoretic reasons.
(b) Let U denote the filter of zero neighborhoods of W . Then by definition, (i)

is equivalent to
(i)′ The filter 〈F〉 generated by F contains U .

This in turn is equivalent to
(i)′′ (∀U ∈ U)(∃V ∈ F)V ⊆ U .

Now (i)′′⇒(ii) is clear since
⋂
F ⊆

⋂
U = {0}.

We prove (ii)⇒(i)′′. Let U be a zero neighborhood. Since W is weakly complete
the filter basis V of cofinite dimensional vector spaces V converges to 0. Hence we
may assume that there is a cofinite-dimensional vector space V contained in U ,
and we may even assume that V is the only vector space containing V and being
contained in U . By (a) we have

⋂
V ′∈F (V + V ′) = V +

⋂
F = V + {0} = V . Now

{(V + V ′)/V : V ′ ∈ F} is a filter basis of vector subspaces of the finite-dimens-
ional vector space W/V intersecting in {0}, and thus there is a V ′ ∈ F such that
(V + V ′)/V is zero, that is, V ′ ⊆ V ⊆ U . This proves (i)′′.

(c) Trivially, (ii) implies (i) because lim Cofin(W ) = 0. For a proof of (i) implies
(ii), let V ∈ Cofin(W ). Then W/V is finite-dimensional, and by the continuity of
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the quotient mapW →W/V the filter basis {B+V/V : B ∈ B} of vector subspaces
of W/V converges to zero. Since W/V has no small subgroups, there is a B ∈ B
such that (B + V )/V = V/V , that is B + V = V or, equivalently, B ⊆ V . ut

In lattice theoretic terminology conclusion (a) reads:
The lattice of closed vector subspaces of V is meet continuous.

For the following, recall that an affine subspace A of a vector space W is a
subset of the form A = g + V for some vector subspace V . The affine subspace is
linear iff g ∈ V .

Filter Bases of Affine Subspaces

Theorem A7.14. Let W be a weakly complete topological vector space and F a
filter basis of closed affine subspaces. Then

⋂
F 6= Ø.

Proof. (a) We write the affine members of F in the form gj + Vj with closed
vector subspaces Vj and elements gj , j ∈ J . We claim that the set {Vj : j ∈ J}
is a filter basis. Indeed let i, j ∈ J , then there is a k ∈ J such that gk + Vk ⊆
(gi + Vi) ∩ (gj + Vj), since F is a filter basis. Therefore gi + Vi = gk + Vi and
gj + Vj = gk + Vj . Now gk + Vk ⊆ (gk + Vi) ∩ (gk + Vj), and hence Vk ⊆ Vi ∩ Vj .
Let V =

⋂
j∈J Vj . Then W/V is a weakly complete topological vector space and

F/V = {(gj +V )+Vj/V : j ∈ J} is a filter basis of closed affine subsets. It clearly
suffices to show that F/V has a nonempty intersection. Thus we assume from here

on that V = {0}, that is the filter basis V def
= {Vj : j ∈ J} has the intersection

{0}. But then limV = 0 in W by (b) above. This implies that F is a Cauchy filter:
Let U be an identity neighborhood; then there is a j ∈ J such that Vj ⊆ U . Then
(gj + Vj) − (gj + Vj) = Vj ⊆ U . Since W is a complete topological vector space,
every Cauchy filter basis converges. Let g = limF . Since all gj +Vj are closed, we
have g ∈ gj + Vj for all j ∈ J and this completes the proof of the Lemma. ut

In terms of a terminology that has been used for situations resembling the one
we have in the previous theorem, this result can be expressed in the following form:

Weakly complete topological vector spaces are linearly compact.

Topological Properties of Weakly Complete Topological
Vector Spaces

A topological group G is topologically compactly generated if there is a compact
subset C ⊆ G such that G = 〈C〉.

It is compactly generated if there is a compact subset C ⊆ G such that G = 〈C〉.
We begin by observing that the idea of a weakly complete topological vector

space being a topologically compactly generated pro-Lie group is not very restrictive.
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Remark A7.15. Any weakly complete topological vector group is topologically
compactly generated.

Proof. For the purposes of the proof we may and will assume that W = RJ
for some set J . For any subset I of J we identify RI naturally with a subgroup

of RJ . The dual E
def
= Ŵ may and will be identified with R(J), the set of all

f : J → R with finite support, in such a fashion that f ∈ E and g ∈ W gives us
〈f, g〉 =

∑
j∈J f(j)g(j).

Let K = {δj ∈ RJ : j ∈ J} ∪ {0}. Let V be a cofinite-dimensional vector

subspace of W . Then V ⊥ is a finite-dimensional vector subspace of the dual E
def
=

Ŵ . Let Fin(J) denote the set of finite subsets of J . Since E =
⋃
I∈Fin(J) R(I) and

since V ⊥ is finite-dimensional, there is an I ∈ Fin(J) such that V ⊥ ⊆ R(I) and

thus V ⊆
(
R(I)

)⊥
= RJ\I . Hence K \ V = {δi : i ∈ I} is finite. Therefore K is

compact. On the other hand, W = R(J) = 〈[0, 1]·K〉 and [0, 1]·K is a compact
subset of R(J). Hence W is topologically compactly generated.

Since δj ∈ ZJ ⊆ RJ , the assertion on ZJ follows analogously, as ZJ = Z(J) =

〈K〉. ut

In Chapter 5 we specified the following concepts: A topological space is called
a Polish space if it is completely metrizable and second countable. It is said to be
σ-compact, if it is a countable union of compact subspaces. It is said to be separable
if it has a dense countable subset. Countable products of Polish spaces are Polish.
For instance, RN is Polish.

Remark A7.16. (i) Every almost connected locally compact group is compactly
generated.

(ii) Every compactly generated topological group is σ-compact.
(iii) A topological group whose underlying space is a Baire space and which is

σ-compact is a locally compact topological group.
(iv) A σ-compact Polish group is locally compact.
(v) A compactly generated Baire group is locally compact.

Proof. (i) Let K be a compact neighborhood of the identity. Then 〈K〉 is an open
subgroup which has finite index in G. Let F be any finite set which meets each
coset modulo 〈K〉. Then K ∪ F is a compact generating set of G.

(ii) If K is a compact generating set of G, then C
def
= KK−1 is a compact

generating set satisfying C−1 = C; then G = 〈C〉 =
⋃∞
n=1 C

n.
(iii) A Baire space cannot be the union of a countable set of nowhere dense

closed subsets. A topological group containing a compact set with nonempty inte-
rior is locally compact.

(iv) By the Baire Category Theorem (see [34], Chapter 9, §5, no 3, Théorème
1.), every Polish space is a Baire space.

(v) is clear from the preceding. ut
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Proposition A7.17. For a weakly complete topological vector space W , the fol-
lowing statements are equivalent:
(A) W is σ-compact.
(B) W is locally compact.
(C) W is finite-dimensional.
(D) W is compactly generated.

Proof. The equivalence of (B) and (C) was shown in A7.2(iii) and (iv). Locally
compact connected groups are compactly generated by A7.16(i) and so (B) implies
(D); and (D) implies (A) by A7.16(ii).

In order to prove that (A) implies (C), let W be a weakly complete σ-compact
topological vector space. Its dual is a vector space E and W is finite-dimensional
iff E is finite-dimensional. Suppose that E is infinite-dimensional. Selecting from
a basis an infinite countable subset we get a vector subspace F with a countable
basis. Then W/F⊥ is isomorphic to the dual of F ∼= R(N) and therefore W/F⊥ is
a homomorphic image of W which is isomorphic to RN and therefore is a Polish
topological vector space. Since it is also σ-compact as a homomorphic image of a
σ-compact group, it is locally compact by A7.16. But then it is finite-dimensional,
a contradiction. ut

Proposition A7.18. For a weakly complete topological vector space W , the fol-
lowing statements are equivalent:
(i) W ∼= RJ with card J ≤ ℵ0.
(ii) W is locally compact or is isomorphic to RN.
(iii) W is finite-dimensional or is isomorphic to RN.
(iv) W is second countable.
(v) W is first countable.
(vi) W is Polish.

Proof. By the remarks preceding the proposition, for each cardinal ℵ, there is,
up to isomorphy of topological vector spaces and of topological groups one and
only one weakly complete topological vector space of topological dimension ℵ,
namely, Rℵ. Conditions (i), (ii), (iii) are ostensibly all equivalent to saying that
ℵ is countable. The weight w(W ), that is the smallest cardinal representing the
cardinality of a basis for the topology of W ∼= Rℵ is ℵ0 if ℵ is countable, and is ℵ
if ℵ is uncountable (see e.g. Exercise EA4.3 following Proposition A7.8), so (iv) is
likewise equivalent to (ii), and implies (v). Then W is metrizable (see e.g. Theorem
A4.16) and thus (vi) follows by the completeness of W . Since trivially (vi) implies
(iv), the equivalence of (iv), (v), and (vi) follows, and the proof is complete. ut

Proposition A7.19. For a weakly complete topological vector space W , the fol-
lowing statements are equivalent:
(a) W is separable.
(b) W contains a dense vector subspace of countable linear dimensions over R.
(c) W is isomorphic as a topological vector space to RJ with card J ≤ 2ℵ0 .
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These conditions are implied by the equivalent statements of Proposition A7.17.

Proof. A second countable space is always separable: It suffices to pick a point
in every set in a countable basis for the topology: this yields a countable dense
set. What remains therefore is to see the equivalence of (a), (b), and (c). We may
safely assume that W is infinite dimensional, since the finite-dimensional case is
clear.

(a)⇒(b): Let C be a countable dense subset of RJ . Then the real linear span
of C is dense vector subspace of RJ whose linear dimension is countable.

(b)⇒(c): Assume that ι:R(N) → RJ is a linear map between vector spaces such
that im(ι) = RJ . We give R(N) the finest locally convex topology. The vector space
dual of R(N) may be identified with RN, and that of RJ with R(J). The morphism
ι is both an epic (and a monic) in the category of (Hausdorff) topological vector
spaces. Its adjoint morphism ι′:R(J) → RN is a monic (and epic) and is therefore
an injection (with dense image). Thus card(J) ≤ dimR RN = 2ℵ0 .

(c)⇒(a): Let W = RJ with card(J) = 2ℵ0 . We shall show that W is separable;
since RI with card(I) ≤ card(J) is a homomorphic image of RJ , this will yield the
implication. The topological vector space dual of RJ may be identified with R(J)

and then there is a linear bijection β:R(J) → RN. If we give R(J) the finest locally
convex topology and RN the product topology, then β is an epic (and a monic) in
the category of topological vector spaces and thus its adjoint β′:R(N) → RJ has a
dense image (and is injective). Even in the finest locally convex topology, Q(N) is
dense in R(N), and Q(N) is countable. Hence RJ is separable as asserted. ut

Tensor Products

We need to endow each of the categories V of K-vector spaces and W of weakly
complete vector spaces with tensor products so that each may be considered as
a commutative monoidal category according to Definition A3.62, also called sym-
metric monoidal cagegory A which supports a functor ⊗ : A×A → A. The precise
definitions were collected in Appendix 3, see notably Definition A3.62. What is rel-
evant here is that not only does the category V of K-vector spaces have the familiar
tensor product ⊗V but that the category W of weakly complete vector spaces has
a tensor product as well. It was first introduced by R. Dahmen in [76] and was
used readily in [78]. The essence of this tensor product is that for two weakly
complete vector spaces W1 = KX and W2 = KY we have W1 ⊗ W2

∼= KX×Y
and that for a natual topological embedding W1 × W2 → W1 ⊗W W2 denoted
(w1, w2) 7→ w1 ⊗w2 : W1 ×W2 →W1 ⊗W2 we have the following universal prop-
erty: For any continuous bilinear function b:W1×W2 →W3 with a weakly complete
object W3 ofW there is a unique continuous linear map b′:W1⊗W2 →W3 so that
b(w1, w2) = b′(w1 ⊗W w2) for all w1 ∈W1, w2 ∈W2.

Proposition A7.20. The category W together with its tensor product ⊗W is a
commutative monoidal category such that for any two K-vector spaces V1 and V2
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and two weakly complete K-vector spaces W1 and W2 we have natural isomorphisms

(V1 ⊗V V2)∗ ∼= V ∗1 ⊗W V ∗2 and (W1 ⊗W W2)′ ∼= W ′1 ⊗V W ′2.

Proof. The verification is left as an exercise. ut

Exercise EA7.3. Fill in the details of the proof of Proposition A7.20. (Cf. [76]).
ut

Corollary A7.21. The symmetric monoidal categories (V,⊗V) and (W,⊗W) are
naturally dual.

Proof. This is a reformulation of Theorem A7.21 and Proposition A7.20. ut

Pro-Lie Groups

In one small section here it is impossible to do the topic “Pro-Lie Groups” justice.
For a complete treatment see [188] and for a subsequent survey see [192].

Definition A7.22. A topological group G is called a pro-Lie group if is is complete
and if every identity neighborhood of G contains a normal subgroup N such that
G/N is a Lie group. ut

The topological groups R, T, Rm, for every cardinal number m, every finite-
dimensional Lie group, every compact group, and every locally compact abelian
group is a pro-Lie group.

Proposition A7.23. (Yamabe’s Theorem) Every almost connected locally com-
pact group is a pro-Lie group.

To each topological group G one can easily associate a topological space L(G),
namely, the space Hom(R, G) of all continuous group homomorphisms from the
additive topological group R of real numbers to the topological group G, endowed
with the topology of uniform convergence on compact sets. We also have a continu-
ous function exp:L(G)→ G given by expX = X(1) and a “scalar multiplication”
(r,X) 7→ r·X : R × L(G) → L(G) given by (r·X)(s) = X(sr). If G is a pro-Lie
group, then L(G) is equippend with the sructure of a weakly complete R-vector
space and a topological Lie algebra.

Proposition A7.24. Every pro-Lie group G has a Lie algebra L(G) and the im-
age expL(G) of the exponential function algebraically generates a subgroup which
is dense in the connected component G0 of the identity.

For the present record, let us recall what we did in Definition 1.25ff. when
we introduced projective limits. So, a projective system of topological groups is
a family of topological groups (Cj)j∈J indexed by a directed set J and a family
of morphisms {fjk:Ck → Cj | (j, k) ∈ J × J, j ≤ k}, such that fjj is always the
identity morphism and i ≤ j ≤ k in J implies fik = fij ◦ fjk. Then the projective
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limit of the system limj∈J Cj is the subgroup of
∏
j∈J Cj consisting of all J-tuples

(xj)j∈J for which the equation xj = fjk(xk) holds for all j, k ∈ J such that j ≤ k.

Theorem A7.25. Every projective limit of pro-Lie groups is a pro-Lie group.
Every closed subgroup of a pro-Lie group is a pro-Lie group. A topological group
is a pro-Lie group if and only if it is isomorphic to a closed subgroup of a product
of Lie groups.

Theorem A7.26. The category of pro-Lie groups and continuous homomor-
phisms is closed in the category of topological groups and continuous homomor-
phisms under the formation of all limits and is therefore complete. It is the smallest
full subcategory of the category of all topological groups and continuous homomor-
phisms that contains all finite dimensional Lie groups and is closed under the
formation of all limits.

We consider a topological Lie algebra g and on it the filterbasis of closed ideals
j such that dim g/j <∞; we shall denote it by I(g).

Definition A7.27. A topological Lie algebra g is called a pro-Lie algebra (short
for profinite dimensional Lie algebra) if I(g) converges to 0 and if g is a complete
topological vector space. ut

Under these circumstances, g ∼= limj∈I(g) g/j, and the underlying topological
vector space is a weakly complete topological vector space.

Theorem A7.28. Every pro-Lie group G has a pro-Lie algebra g as Lie-algebra,
and the assignment L which associates with a pro-Lie group G its pro-Lie algebra
is a limit preserving functor.

Theorem A7.29. The Lie algebra functor from the category of pro-Lie groups
to the category of pro-Lie algebras has a left adjoint Γ. It associates with every
pro-Lie algebra g a unique simply connected pro-Lie group Γ(g) and a natural
isomorphism ηg: g→ L

(
Γ(g)

)
such that for every morphism ϕ: g→ L(G) for some

pro-Lie group G, there is a unique morphism ϕ′: Γ(g)→ G of pro-Lie groups such
that ϕ = L(ϕ′) ◦ ηg.

The abelian pro-Lie groups we know best are the compact abelian groups and
the weakly complete vector groups. So it is very pleasing that we can state in the
end of our review of some basic pro-Lie Theory the fact that our Vector Group
Splitting Theorem 7.57 for locally compact abelian groups largely generalizes to
abelian pro-Lie groups. Indeed, every abelian pro-Lie G group has a weakly com-
plete vector subgroup V such that G is isomorphic to the direct product V ×(G/V )
where the factorG/V has no nontrivial vector subgroup. We call any such subgroup
V a vector group complement. Recall from Definition 7.44 that for a topological
group G we let comp(G) denote the set of all elements which are contained in a
compact subgroup. A topological group is called prodiscrete if it is complete and
every identity neighborhood contains an open normal subgroup.

It may be helpful for understanding the following theorem to consult and keep-
ing in mind the diagram concluding the statement of the Vector Group Splitting
Theorem 7.57 for locally compact abelian groups.
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Theorem A7.31. (Vector Group Splitting Theorem for Abelian Pro-Lie Groups)
Let G be an abelian pro-Lie group and V a vector group complement. Then there
is a closed subgroup H such that
(i) (v, h) 7→ v + h : V ×H → G is an isomorphism of topological groups,
(ii) H0 is compact and equals compG0 and comp(H) = comp(G); in particular,

comp(G) ⊆ H.
(iii) H/H0

∼= G/G0, and this group is prodiscrete.
(iv) G/ comp(G) ∼= V ×S for some prodiscrete abelian group S without nontrivial

compact subgroups.
(v) G has a characteristic closed subgroup G1 = G0 comp(G) which is isomor-

phic to V × comp(H) such that G/G1 is prodiscrete without nontrivial com-
pact subgroups.

Weakly Complete Unital Algebras

In any abstract or topological category, an algebra V with a multiplication poses
the problem that multiplication

(x, y) 7→ xy : V × V → V
is not a morphism because it is bilinear rather than linear. The presence of a tensor
product “⊗” that transforms bilinearity into linearity is therefore an ideal tool to
deal with algebras in a systematic way.

An algebra is called unital if it has an identity.

Definition A7.32. A weakly complete unital algebra is an associative algebra A
over K with identity, whose underlying vector space is weakly complete, and whose
multiplication (a, b) 7→ ab : A×A→ A is continuous. ut

A product of any family of finite dimensional associative K-algebras is obviously
a weakly complete unital algebra, as is any closed K-subalgebra containing the
identity element.

After what was said before, the multiplication can be written as aW-morphism
m:A⊗W A→ A making (A,⊗W) into a monoid in the symmetric monoidal cate-
gory (W,⊗W) in the sense of Appendix 3, Definition A3.63a. (Cf. also [78], Defi-
nition 1.6.)

A K-vector space C together with a linear map c:C → C ⊗V C of K-vector
spaces and a linear map k:A → K making C into a comonoid in the symmetric
monoidal category (V,⊗V) in the sense of Appendix 3, Definition A3.63a (or [78],
Definition 2.5) is called a (coassociative and counital) coalgebra (over K) .

There is a fundamental theorem attributed to Cartier on these purely alge-
braic objects for which we refer the reader to the informative handbook essay by
W. Michaelis [258].

For us, the following version is relevant. It should be clear that a vector subspace
S of a coalgebra C is a subcoalgebra if cC(S) ⊆ S ⊗ S and kC(S) = R.
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Theorem A7.33. (Fundamental Theorem of Coalgebras) Every coalgebra C is
the directed union of the set of its finite dimensional subcoalgebras.

Proof. See [258], Theorem 4.12, p. 742. ut

This is sometimes formulated as follows: Every coalgebra is the injective limit
of its finite dimensional subcoalgebras.

Now if we take Theorems A7.21 and A7.33 together, we arrive at the follow-
ing theorem [25]. Its consequences are surprising. In this book we see projective
limits everywhere, and in the sense of category theory they are discussed in Defi-
nition A3.41ff., and in the concrete case of limits and notably projective limits of
topological groups we also refer to [188], pp. 63ff., respectively, pp. 77ff.)

A projective limit of topological groups is strict if all bonding morphisms and all
limit morphisms are surjective (see Definition 1.32 in this book or Definition 1.24
in [188]). We shall call a projective limit of topological groups a strict projective
limit of quotients if all bonding maps and all limit morphisms are surjective and
open; that is, are quotient morphisms.

Theorem A7.34. (The Fundamental Theorem of Weakly Complete Topologi-
cal Algebras) Every weakly complete unital topological K-algebra is the strict
projective limit of a projective system of quotient morphisms between its finite
dimensional unital quotient algebras.

Proof. Theorem A7.12 implies that for any injective morphism f :E1 → E2 in the
category V of vector spaces, the dual morphism

f∗:E∗2 → E∗1
in the categoryW of weakly complete vector spaces is automatically surjective and
open. Therefore, the present theorem is a direct consequence of the Fundamental
Theorem of Coalgebras A7.33. ut

The literature on locally compact groups shows considerable attention to structural
results derived from the information that a group, say, is a projective limit of
Lie groups. It is therefore remarkable that a result concluding the presence of a
projective limit of additive Lie groups emerges out of the vector space duality
between V and W and the Fundamental Theorem on Coalgebras.

For a weakly complete unital algebra A let I(A) denote the filter basis of closed
two sided proper ideals I ⊂ A such that A/I is a finite dimensional.

Corollary A7.35. In a weakly complete topological unital algebra A each neigh-
borhood of 0 contains an ideal I ∈ I(A). That is, the filter basis I(A) converges to
0. In short, lim I(A) = 0 and

(∗) A ∼= lim
I∈I(A)

A/I.
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Proof. The assertion is a reformulation of Theorem A7.34. (Cf. [78], Corollary
3.3.) ut

An element a in an algebra A is called a unit if it has a multiplicative inverse,
that is, there exists an element a′ ∈ A such that aa′ = a′a = 1. The set A−1 of
units of an algebra is a group with respect to multiplication.

Lemma A7.36. The group of units A−1 of a weakly complete unital algebra A is
a topological group.

Proof. We must show that the function a 7→ a−1 : A−1 → A−1 is continuous.
In every finite dimensional real or complex unital algebra, the group of units is
a topologial group. This applies to each factor algebra A/I, for I ∈ I(A). Then
a 7→ a−1I : A−1 → (A/I)−1 is continuous for all I ∈ I(A). Since the isomorphism
A ∼= limI∈I(A)A/I holds also in the category of topological spaces, the continuity
of a 7→ a−1 follows by the universal property of the limit (see Definition A3.41). ut

Let us denote the category of weakly complete unital K-algebras by A and
the category of (Hausdorff) topological groups by T . Then A 7→ A−1 : A → T
is readily seen to be a functor preserving products and intersections. Hence by
Proposition A3.51 it preserves arbitrary limits.

Proposition A7.37. The group A−1 of units of a weakly complete unital K-algebra
A is a pro-Lie group and

(∗∗) A−1 ∼= lim
I∈I(A)

(A/I)−1

where (A/I)−1 is a linear Lie group for each I ∈ I(A).

Proof. Since A 7→ A−1 is a limit preserving functor, relation (**) follows from
relation (*). Since A/I is a finite dimensional K-algebra for each I ∈ I(A), the
group (A/I)−1 of its units is a linear Lie group according to Definition 5.32. ut

We observe that we do not have at this time any obvious conclusion on the
nature of the bonding and limit maps in (∗∗). We shall obtain the final piece of
information in Corollary A7.43.

In the category of (abstract) K-algebras, the polynomial algebra K[X] is the
free object in one generator. If by a slight extension of notation we let I(K[X])
denote the set of all ideals of K[X] such that K[X]/I is finite dimensional, we
obtain

K〈X〉 def
= lim

I∈I(K[X])
K[X]/I

as the free weakly complete unital K-algebra in one generator.
Let P denote the set of all irreducible polynomials p with leading coefficient 1.

Then we have the following:
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Lemma A7.38. There is an isomorphism of weakly complete K-algebras

K〈X〉 ∼=
∏
p∈P

Kp〈x〉, where Kp〈X〉 = lim
k∈N

K[X]

(pk)
.

Proof. Since K[X] is a principal ideal domain, every ideal J ∈ I(K[X]) is generated
by a nonzero polynomial f = f(X), that is, J = (f). Furthermore, each polynomial
f admits a unique decomposition into irreducible factors:

I(K[X]) =


∏
p∈P

pkp

 : (kp)p∈P ∈ (N0)(P)

 .

Here, (N0)(P) denotes the set of all families of nonnegative integers where all
but finitely many indices are zero. For each f =

∏
p∈P p

kp we have

K[X]/(f) ∼=
∏
p∈P

K[X]/(pkp)

by the Chinese Remainder Theorem.
This enables us to rewrite the projective limit in the definition of K〈x〉 as

(#) lim
J∈I(K[X])

K[X]/J →
∏
p∈P

(
limk∈N K[X]

(pk)

)
.

ut

We remark that if p ∈ P is of degree 1, the algebra Kp〈X〉 is isomorphic to K[[X]],
the power series algebra in one variable.

Since for K = C, all p ∈ P are of degree 1, it follows that the algebra C〈X〉 is
isomorphic to C[[X]]C.

Recall that a commutative unital ring R is called a local ring if it has a unique
maximal ideal M in which case R/M is a field.

Lemma A7.39. (Density Lemma) For each irreducible polynomial p over K with

leading coefficient 1, the weakly complete algebra A
def
= Kp〈X〉 is a local ring and

its group A−1 of units is open and dense in A.

Proof. Let π:A→ K[X]/(p) denote the bonding morphism for k = 1 in (#) and

let J
def
= kerπ. For every f ∈ J , the series

∑∞
m=0 f

m converges in A to (1− f)−1.
So

(∗) 1− J ⊆ A−1.

Now let f ∈ A \ J . Since F
def
= K[X]/(p) is a field, π(f) has an inverse in F . Thus

there is an element g ∈ A with h
def
= fg ∈ 1−J . By (∗), h−1 exists and fgh−1 = 1.

Hence f is invertible. This shows that

(∗∗) A \ J ⊆ A−1.
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Trivially A−1 ∩ J = Ø and so equality holds in (∗∗).
This shows that the closed ideal J is maximal and thus A is a local ring.

Moreover, A−1 = A \J = π−1(F \{0}) is open and dense as the inverse of a dense
set under an open surjective map. ut

Theorem A7.40. (The Density Theorem) For any weakly complete unital K-
algebra A, the group A−1 of units is dense in A.

Proof. Let 0 6= a ∈ A and let V denote an open neighborhood of a of A. According
to the universal property of K〈X〉 there is a morphism ϕ:K〈X〉 → A with ϕ(X) =

a. Then U
def
= ϕ−1(V ) is an open neighborhood of X in K〈X〉. If we find a unit

u ∈ K〈X〉−1 in U , then ϕ(u) ∈ V ∩ A−1 is a unit, and this will prove the density
of A−1 in A. By Lemma A7.28 we have K〈X〉 ∼=

∏
p∈P Kp〈X〉, and so the problem

reduces to finding a unit near X in Kp〈X〉 for each p ∈ P. The preceding Density
Lemma A7.39 says that this is possible. ut

The Exponential Function

Every finite dimensional unital K-algebra is, in particular, a unital Banach algebra
over K with respect to a suitable norm. By Proposition 1.4, in any unital Banach
algebra A over K the group A−1 of units is an open subgroup of the monoid (A, ·),
and it is a (real) linear Lie group with Lie algebra L(A) = ALie, the real vec-
tor space underlying A with the Lie bracket given by [x, y] = xy − yx, with the
exponential function exp:L(A−1)→ A−1 given by the everywhere absolutely con-
vergent power series expx =

∑∞
n=0

1
n! ·x

n. (For K = R this is discussed extensively
in Chapter 5, notably Definition 5.32.)

Now let A be a weakly complete unital K-algebra. Every closed (2-sided) ideal
J of A is a closed Lie algebra ideal of ALie. We apply the Theorem A7.34 and
note that the Lie algebra ALie is (up to natural isomorphism of topological Lie
algebras) the strict projective limit of quotients

lim
J∈I(A)

(
A

J

)
Lie

⊆
∏

J∈I(A)

(
A

J

)
Lie

of its finite dimensional quotient algebras Each of these quotient Lie algebras is
the domain of an exponential function

expA/J :ALie/J → (A/J)−1 ⊆ A/J, (∀aJ ∈ A/J) expA/J aJ =
∞∑
n=0

1

n!
·anJ .

This yields a componentwise exponential function on
∏
J∈I(A)A/J which respects

the bonding morphisms of the subalgebra limJ∈I(A)A/J . Thus we obtain the fol-
lowing basic result which one finds in [25, 192].

Theorem A7.41. If A is a weakly complete unital K-algebra, then the expo-
nential series 1 + a+ 1

2!a
2 + · · · converges on all of A and defines the exponential
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function

expA:ALie → A−1, expA a =
∞∑
n=0

1

n!
an

of the pro-Lie group A−1. The Lie algebra L(A−1) of the pro-Lie group A−1 may be
identified with the topological Lie algebra ALie, whose underlying weakly complete
vector space is the underlying weakly complete vector space of A. ut

Corollary A7.42. Let f :A → B be a surjective morphism of weakly complete
unital K-algebras. Then the induced morphism of topological groups F :A−1 → B−1

is a quotient morphism of almost connected pro-Lie groups.

Proof. By the Density Theorem A7.30, A−1 is dense in A. So F (A−1) is dense in
B−1. Abbreviate A−1 by G and B−1 by H. Then ALie = L(G) and BLie = L(H).
Accordingly, L(F ):L(G) → L(H) agrees with f and therefore is surjective. The
image expG(L(G)) = expA(A) is in G and so expH L(H) = expH L(F )(L(G)) =
F (expG(L(G))) ⊆ F (G). But from Proposition A7.24 we know that for any pro-Lie
group H with exponential function expH :L(H)→ H the closure of the subgroup
〈expH(L(H))〉 generated by the image of the exponential function is precisely the
connected component H0 of the identity. Therefore H0 ⊆ F (G), and so F (G)/H0

is dense in H/H0 since F (G) is dense in H. Since F (G0) ⊆ H0, the morphism
g 7→ F (g)H0 : G → H/H0 induces a morphism ϕ:G/G0 → H/H0 with dense
image.

It was shown in [78], Theorem 4.1, that G/G0 is compact. Therefore ϕ is sur-
jective, which shows that F (G)H0 = H and so F (G) = H, since H0 ⊆ F (A). The
Open Mapping Theorem for pro-Lie Groups (see Theorem 9.60 in [188]) shows that
the surjective morphism F :A−1 → B−1 is open and thus is a quotient morphism.ut

We warn the reader that the references which we cited in the proof from [78] and
[188] are not trivial. This indicatees that the Corollary we proved is not superficial.

Proposition A7.37 now has a significantly sharper corollary:

Corollary A7.43. Let A be any weakly complete unital algebra. Then the projec-
tive limit representation of the pro-Lie group A−1 of units of A in the form

A−1 ∼= lim
I∈I(A)

A−1

(A−1 ∩ (1 + I))

is a strict projective limit of quotient limit maps.

Proof. This is an immediate consequence of the preceding corollary. ut
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Postscript

In this Appendix we introduce weakly complete topological vector spaces over the
field K, where K is R or C. We denote the category of K-vector spaces and linear
maps by VK and the category of weakly complete K-vector spaces and continuous
K-linear maps by WK. For a K-vector space V we write V ∗ for its algebraic dual
VK(V,K) ⊆ KV equipped with the topology induced from KV , i.e., the topology of
pointwise convergence, and for any weakly complete K-vector space W , we write
W ′ for its topological dual WK(W,K) as an abstract K-vector space. We prove
two duality theorems, one which holds for vector spaces over the field K, where K
equals R or C, and one which holds only over R. The first one is in the spirit of
linear algebra and says that the natural evaluation morphisms

(A) evV :V → V ∗′, evV (v)(f) = f(v),

and

(B) evW :W →W ′
∗
, evW (w)(f) = f(w),

are isomorphisms. This means that the categories VK and WK are dual to each
other.

The other duality is between two full subcategories of the category of all locally
convex Hausdorff topological vector spaces. The first one has as objects those
real locally convex vector spaces whose topology is maximal among all its locally
convex topologies and the second one has all those complete vector spaces with the
smallest locally convex Hausdorff topology. These two categories are duals of each
other, and the first category is equivalent to the category of all real vector spaces
(without topologies) and the second is equivalent to the category of all weakly
complete locally convex vector topological vector spaces.

We let V be a real vector space and endow it with its finest locally convex
vector space topology O(V ), and we let W be a weakly complete real topological
vector space. Then

(i) V is reflexive; that is, ηV :V → ̂̂
V is an isomorphism of topological vector

spaces (where V̂ is the Pontryagin dual of the abelian topological group V );

(ii) W is reflexive; that is, ηW :W → ̂̂
W is an isomorphism of topological vector

spaces;
(iii) The contravariant functor ·̂ : ABD → ABD exchanges the full subcategory

of real vector spaces (given the finest locally convex topology) and the full
subcategory of weakly complete topological vector spaces.

We endow each of the categories V of K-vector spaces andW of weakly complete
vector spaces with tensor products so that each may be considered as a commu-
tative monoidal category A which supports a functor ⊗ : A × A → A. What is
relevant here is that not only does the category V of K-vector spaces have the famil-
iar tensor product ⊗V but that the category W of weakly complete vector spaces
has a tensor product as well. The essence of this tensor product is that for two
weakly complete vector spaces W1 = KX and W2 = KY we have W1⊗W2

∼= KX×Y
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and that for a natural topological embedding W1 ×W2 → W1 ⊗W W2 denoted
(w1, w2) 7→ w1 ⊗ w2 : W1 ×W2 →W1 ⊗W2

We see that the category W together with its tensor product ⊗W is a com-
mutative monoidal category such that for two K-vector spaces V1 and V2 and two
weakly complete K-vector spaces W1 and W2 we have natural isomorphisms

(V1 ⊗V V2)∗ ∼= V ∗1 ⊗W V ∗2 and (W1 ⊗W W2)′ ∼= W ′1 ⊗V W ′2.

The symmetric monoidal categories (V,⊗V) and (W,⊗W) are naturally dual.
Before moving on to weakly complete unital algebras we remind the reader

about the theory of pro-Lie groups as appeared in [188] and we mentioned the
subsequent survey [192]. We noted that the category of pro-Lie groups and con-
tinuous homomorphisms is the smallest full subcategory of the category of all
topological groups and continuous homomorphisms that contains all finite dimen-
sional Lie groups and is closed under the formation of all limits. Further, every
pro-Lie group G has a pro-Lie algebra g as Lie-algebra, and the assignment L
which associates with a pro-Lie group G its pro-Lie algebra is a limit preserving
functor.

Finally in this Appendix we discuss weakly complete unital algebras. We note
that in any abstract or topological category, an algebra V with a multiplication
poses the problem that multiplication (x, y) 7→ xy : V ×V → V is not a morphism
because it is bilinear rather than linear. The presence of a tensor product “⊗” that
transforms bilinearity into linearity is therefore an ideal tool to deal with algebras
in a systematic way.

A weakly complete unital algebra is then an associative algebra A over K with
identity, whose underlying vector space is weakly complete, and whose multipli-
cation (a, b) 7→ ab : A × A → A is continuous. A product of any family of finite
dimensional associative K-algebras is a weakly complete unital algebra, as is any
closed K-subalgebra containing the identity element. The multiplication can be
written as a W-morphism m:A⊗W A→ A making (A,⊗W) into a monoid in the
symmetric monoidal category (W,⊗W). A K-vector space C together with a linear
map c:C → C⊗V C of K-vector spaces and a linear map k:A→ K making C into
a comonoid in the symmetric monoidal category (V,⊗V) is called a (coassociative
and counital) coalgebra (over K).

There is a fundamental theorem attributed to Cartier on these purely algebraic
objects. It says that every coalgebra C is the directed union of the set of its finite
dimensional subcoalgebras. This can be expressed by saying every coalgebra is the
injective limit of its finite dimensional subcoalgebras.

The Fundamental Theorem of Weakly Complete Topological Algebras says that
every weakly complete unital topological K-algebra A is the strict projective limit
of a projective system of quotient morphisms between its finite dimensional unital
quotient-algebras. Further each neighborhood of 0 in A contains an ideal I ∈ I(A).
So lim I(A) = 0 and A ∼= limI∈I(A)A/I. We show that the group of units A−1 of a
weakly complete unital algebra A is a topological group.
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We denote the category of weakly complete unital K-algebras by A and the
category of (Hausdorff) topological groups by T . Then A 7→ A−1 : A → T is
readily seen to be a functor preserving arbitrary limits.

We prove that the group A−1 of units of a weakly complete unital K-algebra
A is a pro-Lie group and A−1 ∼= limI∈I(A)(A/I)−1, where (A/I)−1 is a linear Lie
group for each I ∈ I(A). We also prove the Density Theorem which says that for
any weakly complete unital algebra K-algebra A, the group A−1 of units is dense
in A.

Finally we show that if f :A→ B is a surjective morphism of weakly complete
unital K-algebras, then the induced morphism of topological groups A−1 → B−1

is a quotient morphism of almost connected pro-Lie groups.
The results in this Appendix which may seem at this point to be curious and

only mildly interesting. However they in fact turn out to be absolutely crucial for
Part 3 of Chapter 3, which culminates in a new proof of, and approach to, the
Tannaka-Hochschild Duality Theorem.

References for this Appendix—Additional Reading

[75], [76], [171].
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Adámek and S. Mac Lane, Eds., World Scient. Publ., Singapore, 1989,
208–219.

[181] Hofmann, K. H., and S. A. Morris, Weight and c, J. Pure Appl. Algebra
68 (1990), 181–194.

[182] Hofmann, K. H., and S. A. Morris, Free compact groups IV: Splitting the
component and the structure of the commutator group, J. Pure Appl. Al-
gebra 70 (1991), 89–96.

[183] Hofmann, K. H., and S. A. Morris, Free compact groups V: Remarks on
projectivity, in: Category Theory at Work, Eds.: H. Herrlich and H.-E.
Porst, Heldermann Verlag Berlin, 1991, 177–198.

[184] Hofmann, K. H., and S. A. Morris, Generators on the arc component of
compact connected groups, Math. Proc. Cambridge Philos. Soc. 113 (1993),
479–486.

[185] Hofmann, K. H., and S. A. Morris, Transitive actions of compact groups
and topological dimension, Journal of Algebra 234 (2000), 454–479.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



References 955

[186] Hofmann, K. H., and S. A. Morris, A structure theorem on compact groups,
Math. Proc. Camb. Phil. Soc. 130 (2001), 409–426.

[187] Hofmann, K. H., and S. A. Morris, Compact groups with large abelian sub-
groups, Math. Proc. Camb. Phil. Soc. 133 (2002), 235–247.

[188] Hofmann, K. H., and S. A. Morris, The Lie Theory of Connected Pro-
Lie Groups—A Structure Theory for Pro-Lie Algebras, Pro-Lie Groups,
and Connected Locally Compact Groups, European Mathematical Society
Publishing House, 2006, xii+663pp.

[189] Hofmann, K. H., and S. A. Morris, The Structure of almost connected pro-
Lie groups, J. of Lie Theory 21 (2011), 347–383.

[190] Hofmann, K. H., and S. A. Morris, Local Splitting of Locally Compact
Groups and Pro-Lie Groups, J. of Group Theory 14 (2011), 931–935.

[191] Hofmann, K. H., and S. A. Morris, Compact Homeomorphism Groups are
Profinite, Topology and its Applications 9 (2012), 2453–2462.

[192] Hofmann, K. H., and S. A. Morris, Pro-Lie Groups: A Survey with Open
Problems, Axioms 4 (2016), 294–312.

[193] Hofmann K. H., S. A Morris, and D. Poguntke, The exponential function of
locally connected compact abelian groups, Forum Mathematicum 16 (2004),
1–16.

[194] Hofmann, K. H., S. A. Morris, and M. Stroppel Locally compact groups,
residual Lie groups, and varieties generated by Lie groups, Topology Appl.
20 (1996), 1–29.

[195] Hofmann, K. H., and P. S. Mostert, Splitting in Topological Groups, Mem.
Amer. Math. Soc. 43, 1963.

[196] Hofmann, K. H., and P. S. Mostert, Elements of Compact Semigroups,
Charles E. Merrill, Columbus (Ohio), 1966.

[197] Hofmann, K. H., and P. S. Mostert, The cohomology of compact abelian
groups, Bull. Amer. Math. Soc. 74 (1968), 975–978.

[198] Hofmann, K. H., and P. S. Mostert, Cohomology theories for compact
abelian groups, VEB Deutscher Verlag der Wissenschaften, Berlin, 1973,
reprinted by Springer-Verlag, Berlin.

[199] Hofmann, K. H., and P. S. Mostert, Compact groups acting with (n − 1)-
dimensional orbits on subspaces of n-manifolds, Math. Ann. 167 (1966),
224–239.

[200] Hofmann, K. H., and K.-H. Neeb, Epimorphisms of C∗-algebras are epi-
morphisms, Arch. Math. (Basel) 35 (1995), 134–137.

[201] Hofmann, K. H., and W. A. F. Ruppert, Lie Groups and Subsemigroups
with Surjective Exponential Function, Mem. Amer. Math. Soc. 130 (1997).

[202] Hofmann, K. H., and F. G. Russo, The probability that x and y commute in
a compact group, Math. Proc. Cambridge Philos. Soc. 153 (2012), 557–571.

[203] Hofmann, K. H., and F. G. Russo, The probability that xm and yn commute
in a compact group, Bull. Austral. Math. Soc. 87 (2012), 503–513.

 EBSCOhost - printed on 2/10/2023 3:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



956 References

[204] Hofmann, K. H., T. S. Wu, and J. S. Yang, Equidimensional immersions
of locally compact groups, Math. Proc. Cambridge Philos. Soc. 105 (1989),
253–261.
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Moskov. Gos. Univ. Uč. Zap. 30 (1939), 131–140.

[364] Venkataraman, R., Extensions of Pontrjagin duality, Math. Z. 143 (1975),
105–112.

[365] Vilenkin, N. Ya., On the dyadicity of the group space of bikompact commu-
tative groups, Uspehi Mat. Nauk. (N.S.) 13, vyp. 6(84), (1958), 79–80.

[366] Vinberg, E. B., and A. L. Onishchik, Lie Groups and Algebraic Groups,
Springer-Verlag, Berlin etc., 1990.

[367] Wagner, S., Extending Characters of Fixed Point Algebras Axioms 7 (2018),
no 79.

[368] Wagon, S., The Banach–Tarski Paradox, Cambridge Univ. Press, 1985.
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268, 270, 272ff, 302, 310, 321f, 329,
596, 672, 679, 780

SO(n), 4, 5, 776
Spec, 165f, 178, 267, 316f
Sp(n), 4
SU(2), 181, 234, 268, 270, 272ff,

302, 321f, 329, 655, 780
SU(3), 274, 623
SU(7), 662
SU(E), 233f
SU(n), 4, 204, 234, 622, 655
ΣX, 460
T, 7f, 47, 64, 453, 614, 707f, 732
TA, 11
TAB, 348, 370, 374f
T (G), 440
Tm, 236
Tn, 49, 204

TOP0, 645
Tp, 18, 20, 27, 47, 49
tr, 58
U(1), 8, 653
U(n), 4, 5, 147, 204, 655
vrank, 388, 390
w(X), 401, 867
(WOT), 711
Xα, 864
X/conn, 463f, 484
[X,G], 451
[X,T], 451, 460
X t Y , 465
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free compact 453f, 462, 465, 467,
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projective 717, 738
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strongly κ-free 758
torsion-free 460, 616, 718, 720
torsionless 721

abelian Lie algebra, 194
abelian linear Lie group, 194, 196f,

204, 375
Abelian Subgroup Conjecture, 571
abelianization, 650
absolutely convergent, 148f
absolutely summable, 147
absorbing, 362f, 917ff
accumulation point, 682f
action, 5, 7, 32, 36, 329, 583, 762,

899
adjoint 59

automorphic 572
free 329, 762
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actions, isomorphic 587, 596
acts freely, 585, 587f, 590f, 600, 602,

605, 640
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adjoint, 355, 393, 395, 468f, 552,

645ff, 677f
adjoint action, 59
adjoint functor, 454
Adjoint Functor Existence Theorem,
370, 645, 647, 825

adjoint functors, 810
adjoint group, 298
adjoint module, 54
adjoint morphism, 339
adjoint on the right, 811
adjoint operator, 54
adjoint representation, 159, 184,

223f, 237, 239, 268, 276, 291f, 878
Adjoint Representation Theorem, 184
advanced real analysis, 322
affine map, 41, 887
affine semigroup, 887
affine space, 886
affine subspace, 930
affine subspaces, 930
Alexander–Čech–Spanier–Wallace co-

homology, 323, 834
Alexander Duality Theorem, 539
Alexandroff’s Theorem, on dyadic

spaces 503, 883
algebra,
C∗- 173
associative 157, 182, 206ff
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157ff, 161ff, 168ff, 174ff, 178f, 181f,
185ff, 189ff, 195f, 198f, 201, 205ff,
220, 223, 232, 297, 302, 451, 604

cohomology Hopf 324
commutator 198
compact Lie 587
completely normable Lie 170, 177ff,

181f, 195, 219, 222
exterior 474, 478
free associative 207
graded Hopf 474
Heisenberg 205
Heyting 809
homological 303, 397, 431, 469,

484, 611, 706, 740
Hopf 324, 335, 473, 478, 484
involutive 110
Lie 157f, 170ff, 176ff, 181f, 184ff,

191, 193ff, 200, 202, 205f, 209, 219ff,
373, 375, 657, 661

non-associative 157
opposite 96
polynomial 485
symmetric 485
topological Lie 158, 176, 178
universal 663
weakly complete 856

algebra over a field, 2
algebraic cohomology theory, 641
algebraic commutator group, 198
algebraic dual, 365, 924
algebraic geometry, 832
algebraic group, 826, 832
algebraic interior, 277, 281
algebraic topology, 333, 453, 462,

485
algebraically compact group, 747
algint, 277, 281
almost invariant, 52
almost invariant vector, 52
almost periodic compactification, 825
analytic, 148ff, 153, 160f, 164f, 174ff,

182f, 186f, 191, 193, 197, 202, 205f,
208, 220, 222

analytic function, 224, 232, 322, 708
analytic group, 174f, 205f, 208
analytic manifold, 175
analytic subgroup, 193
Analytic Subgroups and Recovery of

Subalgebras Theorem, 240, 242
Analytic Subgroups and the Recov-

ery of Subalgebras Theorem, 191
angle, 8

oriented 8
annihilator, 351f, 356, 360f, 366f,

390, 392, 395f, 398f, 403ff, 442f, 651,
659, 860, 922, 926f

Annihilator Mechanism, 356, 360f,
367, 390, 392, 396, 398f, 403ff, 422,
553, 926f

annihilator mechanism, of Hilbert spa-
ces 276

Annihilator Mechanism Theorem, 392,
398, 411f, 417, 424ff, 438, 442, 445,
448, 462, 467

anti-isomorphism, 361
antichain condition, 756
antiisomorphism, 366, 927
antipodal points, 596
antipode, 97
antitone, 361
approximating compact groups, 49
arbitrarily small, 419, 434f, 437
arbitrarily small compact subgroups,
387

arc, pointed 429, 433
arc component, 20, 400, 409f, 420,

430, 540, 699, 864f
Arc Component of a Compact Group

Theorem, 540
Arc Component of a Locally Com-

pact Abelian Group Theorem, 430
Arc Component Theorem, 541
arc component topology, 865
arc lifting, 429ff, 433, 866
arcwise connected, 20, 376, 431,

433, 437, 446, 454, 495, 541, 543,
545, 547, 667, 764, 770

locally 434
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arcwise connected pointed space, 764,
769

arcwise connected subgroup, charac-
teristic 441

arrow, 784
ascending chain condition, 559f
Ascoli’s Theorem, 343
associative algebra, 157, 182, 206ff

free 207
associative comultiplication, 830
associative multiplication, 830
associativity, 326, 827
associativity of the tensor product,
827

Auerbach’s Generation Theorem, 319,
323

augmentation, 96
augmentation ideal, 121
autodual category, 852
automorphic action, 572, 902
automorphism, 2, 225f, 228f, 233,

251, 254ff, 259, 264, 270, 275, 287,
289ff, 296ff, 303, 310f, 318f, 334, 564f,
567f, 622, 662, 668, 672, 718, 774,
784, 792, 873

inner 10, 158f, 188, 195, 201, 214,
289, 291, 299, 310, 318f, 334

outer 291
automorphism group, 228, 289ff,

296, 298, 303, 310f, 334, 567f, 622,
668

of a compact abelian group 566
of a discrete abelian group 566
outer 291

Automorphism Group of a Compact
Connected Group Theorem, 568

Automorphism Group of a Compact
Lie Algebra Theorem, 295, 302,
308f, 311

automorphisms, inner 873
averaging, 38, 50, 129f, 133f
averaging operator, 68, 75, 237, 316,

604

Axiom of Choice, 247, 352, 449,
596, 611, 677, 694, 711, 717, 728,
731, 869, 920

Back adjunction, 815
Baire Category Theorem, 32, 323,

742
Baire category theory, 318
Baire space, 32, 78, 321, 742
Baker–Campbell–Hausdorff–Dynkin

multiplication, 151, 161, 165, 167,
219f

balanced, 341, 362f, 366, 917ff, 922
Banach algebra, 3, 47f, 82, 147ff,

153ff, 157ff, 161ff, 168ff, 174ff, 178f,
181f, 185ff, 189ff, 195f, 198f, 201,
205ff, 220, 223, 232, 297, 302, 451,
604

Banach space, 73, 78, 82, 148, 163,
165, 168, 171, 173ff, 182ff, 192ff, 199,
209, 359, 375, 774, 776, 868

Banach–Tarski Paradox, 322
base point preserving continuous map,
763f

base space, 761
basic zero neighborhood, compact

open 921
basis,

attached to a set R+ 284
countable 447
filter 21

BFC-group, 575
bicommutant, 64
Big Axiom of Choice, 793, 815
Big Peter and Weyl Theorem, 83f,

123, 140f, 206
Big Peter–Weyl Theorem, 798
biinvariant metric, 447, 873, 878
bilinear, 53, 62, 78, 80, 227, 478,

733
bilinear form, 224, 228, 233
bilinear morphism, 346
bimonoid, 831, 835, 857

connected graded 835
bimonoid morphism, 831
bimonoids, category of 832
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binomial, 149, 162
Bipolar Lemma, 366, 922, 926
bonding map, 18
bonding maps, 495
Boolean lattice, 809
Boolean ring, 132f
Borel measure, 900
Borel-Scheerer-Hofmann Splitting The-

orem, 518, 527, 541, 545ff, 608,
613, 615

Borel subset, 479
boundary point, 251
bounded above, 711
Bourbaki, 220
box neighborhood, 919
Brouwer-Čech dimension, 427
Brouwer’s Fixed Point Theorem, 793
Bruschlinsky group, 807

[X,T] 451, 460
X compact totally disconnected 465

C∗-algebra, 4, 37, 173, 456
C-H multiplication, 151, 161, 165,

167, 219f
Campbell–Hausdorff multiplication, 151,

161, 165, 167, 219f
canonical arcwise connected topology,
433

Canonical Decomposition of a Mor-
phism, 300

Canonical Decomposition Theorem,
244

canonical locally arcwise connected
topology, 865

canonical well-ordering, 909
Cantor-Carathéodory function, 871
Cantor cube, 883, 912
Cantor fan, 633
Cantor set, 13, 29, 633

standard 13, 633
Cantor space, 13
cardinal, 499, 686

regular 748f
singular 450, 758

cardinal invariants, 682, 692

of semisimple compact connected
groups 503

cardinal invariants of a semisimple com-
pact connected group, 499

Cardinal Invariants of Connected Com-
pact Groups Theorem, 695

cardinal number, 429
cardinality, 531
Cartan–Killing form, 228f
Cartan subalgebra, 248f, 252, 264,

275, 291, 295, 317
categories, equivalent 815
category, 336, 339, 347f, 350, 356,

364, 374f, 404, 611, 783, 864, 923
abelian 484
attached to a variety 788
attached to an equational class 788
comma 821
complete 819
discrete 817
homotopy 787
homotopy category of pointed spaces
806

monoidal 826
monoidal symmetric 474
of abelian groups 468, 475, 646,

677, 785
of abelian topological groups 374f
of Banach spaces 788
of C∗-algebras 799
of commutative semigroups 797
of compact 0-dimensional groups
646

of compact abelian groups 450,
469ff, 611f, 677

of compact abelian Lie groups 485
of compact groups 611, 645f, 678ff,

798
of compact spaces 475, 647
of compact spaces with base points
645

of compact totally disconnected gro-
ups 646

of connected Hausdorff topological
groups 794
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796
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of K-vector spaces 785
of metric spaces and contractions
788

of pointed spaces 678, 773
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of posets 788
of R-left-modules 785
of R-modules 796
of real topological vector spaces 374f
of semigroups 800
of sets 611, 677, 785
of topological spaces 786, 795
of topological vector spaces 364,

923
of torsion-free abelian groups 474
opposite 322, 806
partially ordered set 786
pointed 791
set-based 290, 789
small 786
smooth 790
topological 790

category CN, 551
category of bimonoids, 832
category of groups, 832
category theory, 474, 773, 781
Cauchy filter, 353, 365
Cauchy-Schwarz Inequality, 37
Čech–Alexander–Wallace cohomology

group, 473, 483
Čech cohomology, 475, 836, 854

integral 616

Čech cohomology group, 453, 533,
807

zeroth reduced 462
Čech cohomology Hopf algebra, 485
Čech-Lebesgue dimension, 427
center, 194, 198, 202, 205, 216, 223,

225ff, 233ff, 239, 242ff, 248, 252f,
259, 265, 268, 274f, 298, 302, 615,
622, 644, 647, 650f, 656ff, 662ff, 666,
672, 676

identity component of the 650
Center of a Free Compact Group The-

orem, 655
Center Theorem, 131, 133, 135f,

140
centerfree, 226, 242, 297, 498, 520,

558f, 568, 665
central, 612ff, 619, 622
central subgroup, 648
centralizer, 38, 185, 193f, 197, 247,

253f, 312, 330, 512, 519
CH, 749, 755, 758
character, 11, 14, 109, 114, 127, 235,

261f, 264, 339
generalized 127ff
irreducible 127
of a closed subgroup 393
of an algebra 109
simple 127f, 130f

character group, 11, 262, 339, 371
locally compact 343
of a compact abelian group 340
of a discrete abelian group 340
of a locally compact abelian group
343

character group tables, 29
character of an algebra, 109, 858
Characterisation of Compact Lie Al-

gebras Theorem, 230
Characterisation of Compact Metric

Abelian Groups Theorem, 447
Characterisation of Finite Dimensional

Compact Abelian Groups Theorem,
423, 426
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Characterisation of Left Invariant Met-
rizability Theorem, 877

Characterisation of Local Connectiv-
ity Theorem, 437

characteristic, 157, 200, 229, 231,
239, 289, 295, 297f, 305, 323, 327f

fully 289
characteristic arcwise connected sub-

group, 441
Characteristic Locally Connected Sub-

group Theorem, 442
characteristic sequence, 471, 473,

504, 653, 656, 659
characteristic subgroup, 23, 239,

297, 395, 441, 718, 722
fully 23, 430, 718

characters,
extension of 45
separates the points 44

circle group, 2, 34, 251, 261, 653,
707f

class, 452
class function, 78f, 82, 129ff
classification, of abelian linear Lie

groups 196
classification of compact simple Lie

groups, 328
classification of complex simple Lie

algebras, 334
Classification of Connected Normal

Subgroups, 528
Classification Theorem of Connected

Normal Subgroups, 553
classifying space, 485, 641
clopen, 803
closed commutator group, 198
Closed Graph Theorem, 216f, 594f,

598
Closed Subgroup Theorem, 428
Closed Subgroups and Quotient Gro-

ups of Rn Theorem, 318, 441, 715
Closed Subspace Theorem, 426, 428
Closedness of the Commutator Sub-

group Theorem, 239f, 243, 245,
251, 258, 288

cluster point, 598
coalgebra, 936
coboundary, 303, 307
cochain complex, 736
cocycle, 256ff, 260, 303f, 307, 313,

797
cofactor, 214, 518

semidirect 256, 259, 308, 313
cofactors, classifying of 518
cofinal functor, 823
cofinality, 450, 748, 757f
cofinite dimensonal vector subspaces,
920

cogroup object, 835
Cohen’s Theorem, 749
coherence, 829, 831
Coherence Theorem, 829
cohomological dimension, 427, 429,

532
cohomologically trivial, 464
cohomology, 324f, 327, 333, 335,

483, 834f, 854
Alexander–Čech–Spanier–Wallace
323, 834

integral Čech 616
relative 427
singular 323

cohomology algebras, 826
cohomology functor, 328
cohomology group, 473, 736

Čech 807
first 303f
graded 323

cohomology Hopf algebra, 324
cohomology of a compact connected

topological monoid, 855
cohomology of a compact group, 324,

856
cohomology theory, 332, 474
cohomology theory, algebraic, 641
cohomology theory of compact man-

ifolds, 332
cohomology theory of connected com-

pact Lie groups, 323
coidentity, 836
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cokernel, 796
colimit, 475
colimits, directed 475
comltiplication, 830
comma category, 821
commutant, 38, 63
commutative comultiplication, 830
commutative diagram, 238, 261ff,

298, 300, 305, 307, 327, 329, 332
commutative Lie algebra, 194, 198
commutative monoidal category, 828,

833, 836, 933
commutative multiplication, 830
commutative ring, 474
commutativity, 827
commutativity degree, 577
commutator, 199ff, 223, 234f, 241,

248, 288f
commutator algebra, 198, 225ff, 244
commutator degree, 240
commutator group, 223, 234f, 239ff,

248, 251, 258f, 288, 333, 623
algebraic 198, 488
closed 198

commutator subgroup, 198, 200ff,
216f, 221, 223, 234f, 239ff, 248, 251,
258f, 288, 333, 386, 488, 644, 646f,
656, 658, 672, 677, 680

algebraic 488
Commutator Subgroup of a Connected

Compact Lie Group Theorem, 245
Commutator Subgroup Theorem, 201,

221, 235, 240, 243, 251
Commutator Theorem for Connected

Compact Lie Groups, 248, 288
comonoid, 830f, 936
compact, weakly 71f
compact abelian group, 46, 49, 340,

741
p-group 413
πn(G) = 0 461
arcwise connected 431, 449
arcwise connected metric 448
cardinality of dual group of a 402
connected 400, 410

connected locally connected arcwise
disconnected 437

connected locally connected met-
ric 448

dense cyclic subgroup 468
dense torsion subgroup 412
dimension of 425, 542
DivG = 0 410
divisible 410
dual group countable 447
dual group free 416
dual group projective 470
exponential function injective 449
factor group a torus 417
finite dimensional 423, 425
finite dimensional connected 425,

432, 450
finite dimensional metric 450
free 453f, 462, 465, 467, 484, 611,

646, 648, 656, 658, 680
homeomorphic to a torus 460
identity component as direct fac-

tor 413
infinite dimensional 425
injective 469f
metric 447
projective 469
rank of dual group 423
simply connected 510
structure theory 741
torsion 412
torsion-free 410, 469
torsion-free direct factors 411
torus 448f, 470
torus free 448
torus free metric 449
totally arcwise disconnected 410
totally disconnected 400, 410f
totally disconnected subgroup 417
universal monothetic 469
with dual group torsion 400
with dual group torsion-free 400

compact abelian groups, 114
compact connected abelian group, 49,

690
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determined by its topology 460
torsion-free 412

compact connected group, 568, 856
compact connected normal subgroup,
498

compact connected projective group,
553

compact connected semisimple group,
660

compact connected topological monoid,
854f

compact element, 381, 386
compact group, 2, 33ff, 41ff, 46, 48ff,

561, 878, 886
approximating by compact Lie groups
49

connected semisimple 660
essential G-free 667
free 611, 644, 647ff, 655ff, 660f,

672, 675ff, 680f
homomorphically simple 661f
locally connected component of a
546

semisimple 489
semisimple connected 670
strictly reductive 569
totally disconnected 23, 30, 49,

696
universal monothetic 656

compact groups, elementary geomet-
ric properties of 537

Compact Groups and Simple Connec-
tivity Theorem, 510

compact groups are dyadic, 608
compact Lie algebra, 224f, 228, 230,

242, 247f, 252, 289ff, 293, 295, 302,
317, 334, 587

compact Lie group, 48ff, 147, 171,
175, 190f, 198, 204f, 220f, 223f, 228ff,
233, 235, 239f, 242ff, 246ff, 258ff,
264, 270, 273f, 287ff, 291, 296ff, 302,
304, 308ff, 315f, 319f, 322ff, 333ff,
694
n-dimensional connected 326
closed subgroup of 49

commutator subgroup closed 239
finite products of 49
quotient of 231
semisimple 493

compact Lie groups, simply connected
semisimple 494

compact manifold, 13, 609, 855
compact matrix group, 46, 48, 147
compact matrix groups, topological

characterisation of 537
compact metric abelian group, 449
compact metric group, 447
compact metric space, 447
compact open basic zero neighborhood,
921

compact open topology, 338, 340,
342f, 345, 347, 350, 353f, 362, 364f,
370f, 401f, 404, 406, 455, 915f, 919,
921, 926f

compact operator, 40f, 80
compact p-group, 411
compact pointed space, 700f
compact projective group, 567
compact semigroup, 50, 583
compact simple Lie algebra, 516,

675
compact space, pointed 646
compact subgroup, totally discon-

nected 685
compact topological monoid, 835
compact totally disconnected, 689
compact zero-dimensional group, free
647

compactification, 825
one point 604

compactlike, 114
compactlike Hopf algebra, 114
compactly generated, 215f, 382ff,

387, 930
compatibly homeomorphic, 761, 763
complete, weakly 365f, 368f, 371,

395, 404, 472, 924f, 927
complete category, 819
complete integral cohomology ring, 484
complete lattice, 361, 366, 927
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completely metrizable space, 321
completely normable Lie algebra, 170,

177ff, 181f, 195, 219, 222
completely normable topological vec-

tor space, 176, 192f, 220
completely regular Hausdorff pointed,
689

completely regular Hausdorff space,
454, 688

completeness, 353, 365
complex, 736
complex Hilbert G-module, 86
complexification, 85, 333
component,

arc 20
locally connected 443, 448

Component Splitting Theorem for Free
Compact Groups, 649

composition, 784
comultiplication, 326, 856
cone, 79f, 452, 816

convex 79, 277, 285, 291
conjugate, 582, 585ff, 592f, 596, 599ff,

604, 609, 617, 640
conjugate module, 55
conjugate vector space, 55
conjugation, 593
connected,

arcwise 20
simply 230, 297f, 329, 340, 430,

489, 916
Connected Center of a Free Compact

Group, 657
connected commutative graded Hopf

algebra, 843, 846
connected compact group, simple 561
connected compact Lie group, 331
G′′ = G′ 240
center of 252
quasisimple 229
rank 326
simple 229f, 244ff, 298, 304

connected compact projective group,
567

connected compact subgroup, largest
395

connected component, 451, 865
connected covering, 771
connected graded bimonoid, 835
connected graded commutative Hopf

algebra, 835, 847ff
connected graded Hopf algebra, 835,

839, 853
connected locally compact abelian group,
387

connected locally compact group, 382
connected monothetic subgroup, 471,

514
connected normal subgroups,

classification of 528
classification theorem of 553

Connectivity in Compact Metric
Abelian Groups Theorem, 448

Connectivity in Compact Metric
Groups Theorem, 547

constructible universe, 481
Construction of Free Compact Abelian

Groups Theorem, 455
contains a cube, 535
Continuity of Adjoints Theorem, 820
continuous chain, 747
continuous cross section, 610, 622,

913
continuous derivation, 158, 182
continuous functor, 91, 819
continuous operator, 32
continuum, 548

decomposable 548
indecomposable 548

Continuum Hypothesis, 749, 909
contractible, 452, 470, 609, 624,

659, 769f
contractible loop, 495
contraction, 376, 624
contraction, weak, 624
contractive, 158f, 183
contravariant duality functor, 360
contravariant functor, 366, 806, 808,

925
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convergence,
of a filter basis 487
uniform 300

convex, 363, 366, 770, 919, 922
convex cone, 79, 277, 285, 291
convolution, 82
convolution algebra, 82f
convolution of measures, 894
coproduct, 322
coprojection, 290, 565
coretraction, 433, 493, 792
coset representatives, 297, 299, 301
countable antichain condition, 748
countable basis, 447
countable group, 448
Countable Layer Theorem, 569
countable products, of locally com-

pact abelian groups 359
covariant, 803
covariant functor, 375, 808
cover, projective 623
covering, 430, 761f, 765

double 596, 623
universal 230, 297, 329, 385

covering dimension, 428
covering group, 661, 781

universal 230
covering map, 595f, 602, 761
covering morphism, 230, 298, 321,

426, 761
covering of pointed spaces, 763
covering space, 774
covering transformation, 775
Coxeter groups, 286
cross section, 582f, 587ff, 599ff, 606,

617, 683, 913
continuous 610, 622
global 605, 609f, 640, 649

Cross Section Theorem, 588, 591,
610, 640

cub, 747, 749
cube, contains a 535
cyclic, 136, 144ff, 316, 615, 707
cyclic group, 297, 315, 707

Deck transformation, 775

decomposable continuum, 548
degree, 826
degree of a differentiable map, 335
degree of the power map, 327
degree theory, 333
dense image, 393
density, 687, 689f, 694f, 868
Density Theorem, 940
Density Theorem of Jacobson, 64
derivation, 158f, 182ff, 198, 207,

228f, 858
continuous 158, 182
inner 158f

derivative, 163
Descent Procedure, 692
determinant, 317, 325
diagonal morphism, 837
diagonalisable, 234
diagram,

commutative 238, 261ff, 298, 300,
305, 307, 327, 329, 332

Hasse 354, 360
Diagram Lemma, 700
Diamond Principle, 449, 748
differentiation, 270
dihedral group, 278
dimension, 326, 414, 417, 532, 682,

690, 695, 701
Čech-Lebesgue 427
Brouwer-Čech 427
cohomological 429
covering 428
fine 682
Hausdorff 429
large inductive 427f
Lebesgue covering 427, 429
local large inductive 429
Menger-Urysohn 427
sheaf 428
sheaf theoretical 427, 429
small inductive 423, 427ff
topological 429, 484

dimension function, 427, 429
dimensional theory, 530
direct factor, 565
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direct limit, 475
direct product, 223, 244, 246, 256,

258, 260, 468, 658, 680, 684, 709
direct set, 605
direct sum, 12, 135f, 140ff, 468, 709
direct summand, 714f, 719, 728
directed colimits, 475
directed family, 605
directed set, 17
disconnected, totally 22
discrete, 682
discrete abelian group, 340
discrete category, 817
discrete subgroup, 223, 229f, 232,

235, 239, 242, 244f, 247, 262, 268,
272, 302, 305f, 310f, 318, 323

disjoint sum, 465
Divisibility and Connectivity in Com-

pact Abelian Groups Theorem, 409
Divisibility in compact Groups, 513
divisible, 197, 204, 214, 236, 304,

435, 552, 658, 680, 722f, 728
divisible group, 14, 658
divisible hull, 727f, 730
divisible subgroup, largest 410, 723
domain, 789
Dong Hoon Lee’s Supplement The-

orem, 312
Dong Hoon Lee’s Supplement The-

orem for Compact Groups, 519
double commutator subgroup, 489
double covering, 596, 623, 679
double dual, 348
doughnut, 20
dual,

algebraic 365, 924
double 348
topological 365, 924

dual group, 339
divisible 410
locally compact 343
of a locally compact abelian group
343

torsion 410
torsion-free 410

dual module, 55
dual of the weakly complete group al-

gebra, 103
Duality, Pontryagin–van Kampen 114
duality, 25, 348, 482

of vector spaces 880
Pontryagin 616
sufficient 361
vector space 340

Duality and Local Compactness The-
orem, 343

duality functor, 360
Duality of Real Vector Spaces The-

orem, 366, 369, 925
duality theorem, 348
Duality Theorem of Real Vector spaces,
702

duality theory, 24, 347
dyadic space, 503, 883
dyadicity of compact groups, 608
Dyadicity Theorem, 912
Dynkin diagram, 622

Edge, 277, 280
effective submodule, 76, 78
effective vector subspace, 76
eigenspace, 267
eigenvalue, 227, 233
Eilenberg-MacLane space, 453
Elementary Divisor Theorem, 318,

713ff
elementary divisors, 713
Elementary Geometric Properties of

Compact Groups, 537
empty word, 320
endomorphism, 31, 227f, 233, 235,

237, 257, 267, 289, 430, 622, 718,
784
G-module 38

enough compact sets, 351f, 355
epic, 551, 611, 646, 794
epimorphism, 551, 794
equalizer, 154, 181, 189f, 319, 374,

648, 817
equational class, 788
equicontinuous, 10, 32
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equicontinuous set, 348
equicontinuous subset, 347
equivalence of categories, 851
equivalence relation, 769, 771f
equivalent categories, 815
equivalent extensions, 737
equivariant, 6, 62, 82, 128, 130ff,

134ff, 144f, 249, 264f, 587ff, 595, 598f,
602, 604, 640, 672

equivariant operator, 78, 80
essential function, 660, 667
essentialG-free compact group, 660f,

667
essential S-free compact group, 671
euclidean 3-space, 291, 334
Euclidean Fundamental Theorem, 426,

428
euclidean plane, 291
euclidean space, 321
evaluation function, 341
evaluation map, 667
evaluation morphism, 15f, 341, 347,

391, 922
continuity of 343

even homogeneous components, 834
Exact Hom-Ext Sequence Theorem,
740

exact sequence, 393, 395, 736
split 744

Existence of Universal Covering Gro-
ups Theorem, 776

Existence of Universal Coverings The-
orem, 774, 776

exponential function, 149, 175ff, 185,
187, 195f, 220ff, 250, 261, 292, 322,
367ff, 372, 394f, 430, 433, 446, 451,
523f, 527, 541, 547, 812, 859

Exponential Function and Homotopy
Theorem, 461

Exponential Function for Locally Com-
pact Abelian Groups Theorem, 395,
424, 443

exponential law, 804
exponential map, 776
extending characters, 393

Extending Local Homomorphisms, 779f
Extending Local Homomorphisms The-

orem, 341
extension, 737

trivial 737
Extension Lemma, 15, 181, 603f
Extension Theorem for Characters,
45, 360

Extension Theorem of Local Homo-
morphisms, 781

exterior algebra, 474, 478, 835
exterior algebras, 826

Face, 277, 280f
maximal 277

factor group, 706
faithful, 33, 36
faithful G-module, 34
faithful Hilbert module, 36f
faithful on orbits, 590f, 599
FC-center, 571, 904
FC-group, 571, 904
feebly A-complete, 72
feebly complete, 72f, 77, 83f, 123,

133, 144, 211, 524
fiber, 591, 596, 601f, 604, 761, 763,

775
fiber bundle, 601, 640
fiber space, 781
fibered product, 817
fibration, 609
field, 2, 328, 707

skew 267
filter, 585

Cauchy 353, 365
neighborhood 330
of identity neighborhoods 337, 362,

585, 597, 917
of neighborhoods 343

filter basis, 21, 435, 441, 487, 586,
605

Filter Basis Theorem for Closed Affine
Subspaces, 930

Filter Basis Theorem for Closed Lin-
ear Subspaces, 929

filtration, 748
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Fine Structure Theorem for R(G,K),
67f, 84, 126, 136, 140f

finest locally convex topology, 532,
919

finest locally convex vector space topol-
ogy, 364, 366f, 370ff, 395, 404, 420,
443, 880, 920, 925

finest vector space topology, 880
finite dimensional, 425, 478, 533
finite dimensional connected graded

commutative Hopf algebra, 854
finite dimensional minimal two-sided

ideals, 106
finite dimensional representation, 54
finite dimensional submodule, 41
finite dimensional topological vector

space, 363, 918
finite dimensional torus, subgroup
444

finite dimensional torus subgroup, 444
Finite Discrete Center Theorem, 216
finite group, 238, 247f, 255, 292,

304, 306, 309, 312, 334
finitely generated abelian group, 13,

45, 49, 713ff
finitely generated free abelian group,
325, 475

first cohomology group, 303f
first countable, 343
First Structure Theorem for Connected

Compact Lie Groups, 244, 256,
260, 274, 304

First Theorem on Morphisms of Com-
pact Groups, 508

Fitting null component, 186, 197
Fitting one component, 186, 198
fixed point, 9, 60, 75ff, 85, 89, 123,

263, 584, 587
forgetful functor, 374, 475, 646, 677,

864
Fourier series, 141, 708
Frattini Argument, 254f, 285, 292ff,

309f
Fréchet space, 73
free, 415

free abelian group, 12, 367, 413,
415, 432, 448, 453f, 470, 476, 611,
710f, 717, 743f, 747, 754, 758, 760

compact group topology 413
finitely generated 325, 475f
locally compact group topology 413
rank 711
subgroup of 712, 721

free action, 329
free associative algebra, 207
free compact abelian group, 453f,

462, 465, 467, 484, 611, 646, 648,
656, 658, 679f

closed subgroup of 464
connectedness 467
identity component of 464, 467
metric 468
weight 464f

free compact group, 611, 644, 647ff,
655ff, 660f, 672, 675ff, 680f, 686

center 650f, 655
commutator subgroup 660, 672
essential G- 660f
identity component 656, 658
identity component of center 657
on a contractible space 659
projective cover of identity compo-

nent 675f
weight 658

Free Compact Group Direct Product
Theorem, 658

free compact zero-dimensional group,
647, 651

free functor, 801
free group, 320ff, 334f
free group of rotations, 321
free locally convex vector space, 921
free module, 801
free object, 453
free p-group, 571
free product, 322
free profinite group, 647
free semisimple compact connected gro-

up, 660f
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freely, 585, 587f, 590f, 600, 602, 605,
640

Freeness Criterion Theorem, 465
front adjunction, 92, 645, 677, 815
Fubini’s Theorem, 74f, 82
Fubini Theorem, 900
full subcategory, 366, 476, 785, 793,

925
fully characteristic, 289
fully characteristic subgroup, 23,

430, 441f, 718
function,

analytic 224, 232, 322, 708
antitone 361
bilinear 733
class 78f, 82, 129ff
dimension 429
equivariant 6
essential 660
evaluation 341
exponential 149, 175ff, 182, 185,

187, 195f, 220ff, 367ff, 372, 394f,
430, 433, 446, 451

periodic 708
regular 165, 167
representative 53f, 56, 126ff

function space, 296, 302
function space topology, 296, 302
functor, 336, 338f, 348ff, 360, 366,

370, 374f, 378, 475, 499, 645ff, 677f,
736, 800, 864, 925

adjoint 454
cofinal 823
cohomology 328
commutator factor group 647
component factor group 647
continuous 819
contravariant 366, 806, 808, 925
covariant 375, 808
forgetful 374, 475, 646, 677, 800
free 801
grounding 475, 645, 677f, 800
Hom- 803
inclusion 645ff
left adjoint 645ff, 677f, 811

Lie algebra 297
multiplicative 833
quotient 803
right adjoint 811
underlying 800

functor, continuous, 91
functorial argument, 474
Functoriality of the Lie algebra of a

Lie Group Theorem, 179
fundamental group, 217f, 221, 462,

483, 661, 681, 775, 788, 808
torsion-free 462

Fundamental Theorem, 232
Fundamental Theorem of Coalgebras,
937

Fundamental Theorem of Finitely Gen-
erated Abelian Groups, 217, 383,
388, 418, 713f

Fundamental Theorem on Closed sub-
groups of Rn, 367

Fundamental Theorem on Unitary Mod-
ules, 41f

G-A-complete, 72, 75, 77, 80
G-complete, 72ff, 79ff, 133f, 137,

140f
G-module, 32, 224, 233, 235, 243
G-module endomorphism, 38
Galois connection, 809
general linear group, 3
generalized character, 127ff
generate, topologically 682
Generating of Subgroups of Topolog-

ical Groups, 866
generating rank, 687, 689f, 695
Generating Subgroups of Topological

Groups, 780
Generation Theorem Revisited, 323
generator, 136, 145, 315ff, 320ff, 329
Geometric Properties of Compact Gro-

ups, 537
global cross section, 605, 609f, 640,

649
Global Cross Section Theorem, 683
Global Cross Section Theorem for Con-

tractible Base Spaces, 640
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Global Cross Section Theorem for To-
tally Disconnected Base Spaces, 605,
609f, 640, 649

Global Cross Sections for Contractible
Base Spaces Theorem, 609

global Lie group theory, 328
G-module, 51
Gödel’s Axiom of Constructibility, 748
Gotô’s Commutator Subgroup The-

orem for a Compact Connected Gro-
up Theorem, 488

Gotô’s Commutator Theorem for Con-
nected Compact Lie Groups, 288

gradation, 834
graded abelian group, 475
graded algebra, 850
graded bimonoid, connected 835
graded cohomology group, 323
graded commutative algebras, 850
graded commutative Hopf algebra, 835ff
graded Hopf algebra, 324, 474, 833,

835, 837f
connected 835

graded R-module, 836
graded R-modules, 826, 829
graded R-modules without zero com-

ponent, 835
graded ring, 474, 477f
graded tensor product, 829
graded vector space, 324f, 827
graded vector subspace, 847
graph, 389
greatest lower bound, 361
ground ring extension, 478
grounding functor, 475, 645, 677f
group, 784, 835
ℵ1-free abelian 744
Čech cohomology 453
κ-free abelian 758
p- 240, 411, 413, 718
-sphere 2
abelian linear Lie 194, 196f, 204,

375
acting on a set 5
adjoint 298

algebraic commutator 198
algebraically compact 747
analytic 174f, 205f, 208
automorphism 228, 289ff, 296, 298,

303, 310f, 334, 567f, 622, 668
Bruschlinsky 807
Čech cohomology 807
character 11, 14, 262, 339, 371
circle 2, 34, 251, 261, 653, 707f
closed commutator 198
cohomology 736
commutator 198, 200ff, 216f, 221,

623, 644, 646f, 656, 658, 672, 677,
680

compact 2, 33ff, 41ff, 46, 48ff, 561,
886

compact abelian 46, 49, 340
compact connected 568
compact connected abelian 49
compact Lie 48ff
compact matrix 46, 48, 147
compact metric 447
compact metric abelian 447
compact p- 411
compact projective 567
connected locally compact 382
connected locally compact abelian
387

countable 448
countable abelian 743
covering 661
cyclic 297, 315, 707
dihedral 278
discrete abelian 340
divisible 14, 653
divisible abelian 722, 728
divisible p- 731
divisible torsion-free abelian 730
dual 339
essential G-free compact 667
essential S-free compact 671
factor 706
finite 2, 238, 247f, 255, 292, 304,

306, 309, 312, 334
finite dimensional linear Lie 171
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finitely generated abelian 13, 45,
49, 713ff

finitely generated free abelian 325
first cohomology 303f
free 320ff, 334f
free abelian 12, 367, 413, 415, 432,

448, 453f, 470, 476, 611, 710f, 717,
743f, 747, 754, 758, 760

free compact 611, 644, 647ff, 655ff,
660f, 672, 675ff, 680f

free compact abelian 453f, 462,
465, 467, 484, 611, 646, 648, 656,
658, 680

free compact zero-dimensional 647,
651

free profinite 647
free semisimple compact connected
660f

fundamental 217f, 221, 462, 661,
788, 808

general linear 3
graded abelian 475
graded cohomology 323
has duality 25
has no small normal subgroups 47f
has no small subgroups 47f
has small subgroups 47
Heisenberg 205, 221, 248
homomorphically simple compact
661f

homomorphically simple compact
Lie 669

homotopy 461, 808
in a category 831
injective abelian 728, 738
isotropy 6, 255, 294, 309, 329, 584ff,

592f, 596, 599ff, 604
linear 2
linear Lie 4, 171ff, 175ff, 181f, 184ff,

193ff, 201ff, 209, 211, 214, 218ff,
451, 776

local 153, 167ff, 176, 181, 200, 777
locally compact 2, 22f
locally compact abelian 27, 29f

locally compact abelian topologi-
cal 343

matrix 2, 46, 302
metabelian 386
NSS- 47
of all homotopy classes of maps 451
of covering transformations 774
of extensions 738
of matrices 2
of p-adic integers 18
of permutations 562
of rotations 707
operating on a set 5
opposite 96, 297
orthogonal 4, 29, 46, 48
outer automorphism 291
Poincaré 596, 602, 777
product 10
profinite 23, 30, 117
projective abelian 717, 738
quotient 7, 711
reduced 465
reduced abelian 722, 729
reflexive 376f, 391
ring 652
simple 229, 569
simple compact connected Lie 569
simple Lie 664
singly generated 707
special linear 4
special orthogonal 4
special unitary 4
stability 6f, 292f
strictly reductive 911
strongly κ-free abelian 758
super-ℵ1-free 437
symplectic 4
topological 2
torsion-free 19, 653
torsion-free abelian 616, 718, 720
torsionless abelian 721
torus 13, 16, 49, 416
transformation 764
unitary 4, 29, 37, 46, 48
universal compact monothetic 656
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universal covering 230, 776
Weyl 248, 254f, 276, 284, 329,

334, 595
Whitehead 431f, 437, 448f, 744,

748, 750, 753ff, 760
group action, 5, 36

transitive 6
group algebra, 91
group algebra, classical, 92
group-determined, 101, 103, 112
group object, 95, 831, 833
group of all arc components, 540
group of extensions, 738
group of inner automorphisms, 334
group of permutations, 562
group of quaternions, 2
group ring, 429, 652
group-saturated, 98, 100, 103, 859,

861
grouplike, 857
grouplike element, 857
groupoid, 784, 790

path 787
groups,

category of 832
compact abelian 114
direct product of 709
direct sum of 709
K-linearizable topological 101

Groups Generated by Local Subgroups
Theorem, 779

groups on compact surfaces, 537
G-space, 538, 583, 589ff, 593f, 596,

599ff, 605, 640, 913
attached to the pair 593, 596, 599,

601

Haar integral, 323, 604
normalized 323

Haar measure, 34, 36, 50, 68, 70,
74f, 77, 81, 317f, 322f, 583, 604

existence and uniqueness 35
Hahn–Banach Theorem, 40, 69, 72,

79, 922
half-line, 8
harmonic analysis, 50

Hasse diagram, 354, 360, 736
Hasse diagram for compact connected

groups, 506
Hausdorff–Banach–Tarski Paradox, 322
Hausdorff dimension, 429
Hausdorff group topology, 562
Hausdorff topological group, 353
Heisenberg algebra, 205
Heisenberg group, 205, 221, 248
Heisenberg Lie algebra, 206
hermitian operator, 40, 79
hexagon diagram, 828
Heyting algebra, 809
Hilbert cube, 537
Hilbert G-module, 36, 39, 41f, 55,

60, 80, 85ff, 89
complex 86
real 86, 89

Hilbert Lie algebra, 225ff, 233f, 251,
264, 275, 305, 333

Hilbert’s Fifth Problem for Compact
Groups, 536

Hilbert–Schmidt operator, 50
Hilbert space, 61, 66f, 69, 73, 78f,

85ff, 89, 130, 142, 144f, 224f, 233ff,
262f, 276

Hilton’s Lemma, 832
hom-group, 370, 733
homeomorphic, compatibly 761, 763
homeomorphic compact connected abelian

groups, 460
homogeneous, 485, 826
homogeneous component, 826
homogeneous element, 843
homogeneous elements, 836
homogeneous space, 7, 345
homological algebra, 303, 397, 431,

469, 484, 611, 706, 740, 836
homology, 706
homomorphic retract, 680
homomorphic retraction, 493
homomorphically simple, 661f
homomorphically simple compact Lie

group, 668f
homomorphism, 706
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homotopic, 376, 451f, 624, 769
weakly 624

homotopic maps, 328
homotopy, 769
homotopy axiom, strong, 624
homotopy class, 458, 700, 769
homotopy classes of loops, 775
homotopy equivalence, 793
homotopy equivalent, 328, 793
homotopy group, 461, 808
homotopy of paths, 787
homotopy retract, 793
homotopy retraction, 793
Hopf algebra, 324, 335, 473, 478,

484, 833
Čech cohomology 485
cohomology 324
compactlike 114
connected graded 835
connected graded commutative 835
graded 324, 474
graded commutative 835
primitively generated connected gra-

ded commutative 851
reduced 114
symmetric weakly complete 95
weakly complete 856

Hopf algebra, reduced, 51
Hopf algebra, weakly reduced, 103
Hopf’s Rank Theorem, 328f
Hopf’s Theorem on the Cohomology

of Lie Groups, 328, 335
Hopf–Samelson Theorem, 324, 540
Hopf–Samelson Theorem for Connected

Compact Lie Groups, 324f, 328f,
335

Hopf subalgebra, 843
Hunt’s Lemma, 249
hyperplane, 234, 272f, 276f, 280

Ideal, 187f, 193f, 198, 202, 206f,
225ff, 242, 244f, 275, 289f, 707, 885

minimal 885
simple 664

idealizer, 194
ideals, minimal 106

idempotent, 131f, 134, 885
idempotent operator, 39, 75
identity, for a multiplication 830
identity component, 23, 400, 409f,

413, 646
of a locally compact abelian group
398

open locally connected 434
identity component abelian, compact

Lie group 235
identity component of the center, 650
inclusion functor, 645ff
incomplete quotient group, 440
incompressible, 635
indecomposable continuum, 548
indecomposable element, 836, 853
Indecomposable Group Continua The-

orem, 548
Independence of the Torus Proposi-

tion Theorem, 449
index, 402
induce local homeomorphisms, 761f
induces local homeomorphisms, 764
inductive, 711
infinite dimensional, 425
infinite dimensional group, 535
initial object, 791
injective, 348, 393, 469f, 728, 738

object in a category 557ff
injectives, relative 557
injectivity, 257, 260, 262
inner automorphism, 10, 158f, 188,

195, 201, 214, 289, 291, 299, 310,
318f, 334, 670, 778

inner automorphisms, 873
inner derivation, 158f
inner product, 225ff, 229f, 254, 262ff,

266, 274, 291, 293, 302
invariant 263f, 274, 291

integers, p-adic 30
integral, 34, 118

Haar 323, 604
Riemann 35

integral Čech cohomology, 616
integration, vector valued 52, 68f
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interior, algebraic 277, 281
interior point, 323
intersection, 817
intertwining operator, 38
invariance of domain, 423
invariant, 584, 587, 594, 597, 601,

605f
topological 429

invariant measure, 34
invariant neighborhood, 584
invariant scalar product, 249
invariant subspace, 39
inverse limit, 773
Inverse Mapping Theorem, 44
inversion, 831
involution, 4, 55, 85, 87ff, 117, 275,

277, 284
involutive algebra, 110
involutive semigroup, 886
irreducible character, 127
irreducible representation, 42, 233,

263, 266, 654f
isomorphic, 784, 792

locally 615
naturally 645f

isomorphic actions, 587, 596
isomorphism, 230f, 234, 242, 244f,

254, 256f, 262f, 268ff, 289ff, 294, 297f,
301f, 305, 307, 313, 324, 327f, 332,
564, 784, 792

Lie algebra 269
local 19, 153, 182, 193, 205, 208,

219, 270
module 269
of G-spaces 587
vector space 269

isomorphism of compact groups, 5
isomorphism of topological groups, 5
isotropy, stable 585f, 588f, 592f, 596,

599ff, 604, 606, 609, 640
isotropy group, 255, 294, 309, 329,

584ff, 592f, 596, 599ff, 604
isotropy subgroup, 6, 584, 899
isotypic, 206, 266, 274, 289, 316,

619, 621ff, 641

isotypic component, 141f, 144f, 502,
553

isotypic G-module, 141
isotypical, 615, 617, 620
Iwasawa’s Automorphism Group The-

orem, 304, 308, 310, 561
Iwasawa’s Theorem, 561

Jacobi identity, 157, 159
Jacobson’s Density Theorem, 104
Jordan normal form, 166

Kernel, 226, 228, 233f, 239, 242,
245, 254, 257, 261, 268, 272, 275, 287,
291f, 302, 304, 312f, 319, 522
Klein bottle, 591
Kronecker-Delta, 801
Kruse-Schmidt-Stone Theorem, 868
k-space, 343
Künneth Theorem, 324, 474, 477,

534
Künneth Theorem for cohomology, 835

Large inductive dimension, 427f
local 429

largest divisible subgroup, 723
lattice, 263f, 292, 361, 366, 393, 416,

927
Boolean 809
complete 361, 366, 927
of closed subgroups 361

lattice diagram, 650f, 736
Lebesgue covering dimension, 427,

429, 532
Lebesgue measure, 34, 318, 322f,

375
Lee’s Theorem, 255, 311, 334, 685
Lee’s Theorem for Compact Groups,
649

Lee supplement, 312, 314
left adjoint, 475

preserve colimits 475
left adjoint functor, 556, 645ff, 677f,

811
Left Adjoint Functor Existence The-

orem, 91
left invariant metric, 447, 872, 878
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left modules, 826
left translation, 778
left zero semigroup, 886
Leibniz rule, 184
Lemma, bipolar 922
Levi-Mal’cev Structure Theorem for

Connected Compact Groups, 506
Lie, subgroup 182
Lie algebra, 157f, 170ff, 176ff, 181f,

184ff, 191, 193ff, 200, 202, 205f, 209,
219ff, 230, 232f, 242f, 245ff, 253, 261f,
267, 269f, 274, 289, 291f, 294, 297f,
315ff, 333f, 373, 375, 657, 661

abelian 194
commutative 194, 198
compact 224f, 228, 230, 242, 247f,

252, 289ff, 293, 295, 302, 317, 334,
587

compact simple 516, 675
completely normable 170, 177ff,

181f, 195, 219, 222
finite dimensional 224ff, 233ff, 247f,

276, 297, 305
Heisenberg 206
Hilbert 225ff, 233f, 251, 264, 275,

305, 333
of a group 179
of an abelian topological group 373
semisimple 225ff, 242, 267, 275,

287, 290, 292ff, 316f, 333f
simple 225, 230
topological 158, 176, 178
weakly complete 523

Lie algebra functor, 297
Lie algebra isomorphism, 269
Lie bracket, 177, 221, 225ff, 451
Lie-chain, 909

special 911
standard 909
standard special 911

Lie chain associated with a product,
910

Lie group, 222, 329, 832
abelian linear 194, 196f, 204, 375

compact 48, 147, 171, 175, 190f,
198, 204f, 220f, 223f, 228ff, 233,
235, 239f, 242ff, 246ff, 258ff, 264,
270, 273f, 287ff, 291, 296ff, 302,
304, 308ff, 315f, 319f, 322ff, 333ff

connected simple compact 671
finite dimensional linear 171
homomorphically simple compact
668f

linear 4, 171ff, 175ff, 181f, 184ff,
193ff, 201ff, 209, 211, 214, 218ff,
228ff, 233, 239, 289, 297f, 300ff,
308, 333, 451, 776

quotient of a compact 231
simple 615, 660, 664
simply connected 615

Lie group theory, global 328
Lie groups, Local characterization of
180

Lie’s Fundamental Theorem, 179
Lie subalgebra, 158, 164ff, 170f,

182, 185, 187f, 190ff, 198f, 201f, 205,
207f, 218, 220f, 859

Lie subgroup, 171ff, 178, 182, 187ff,
194ff, 209, 211, 218

lifting, 314, 496, 764
arc 429ff, 433

Lifting Homomorphisms, 781
lifting morphism, 497
limit, 25, 597f, 606, 816f

as functor 491
projective 18, 365, 374, 429, 456,

487, 605, 666
strict projective 21f, 24, 45ff, 49

Limit Existence Theorem, 819
limit manifold, 635
limit map, 18
limit ordinal, 757
limit projections, 491
limits, categorical 523
linear, 930
linear functional, 365, 924f
linear group, 2
linear Lie group, 4, 171ff, 175ff, 181f,

184ff, 193ff, 201ff, 209, 211, 214, 218ff,
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228ff, 233, 239, 289, 297f, 300ff, 308,
333, 451, 776, 878

abelian 194, 196f, 204, 375
finite dimensional 171

linear morphism, 340, 915
linear retraction, 526
linearizable, 101, 112
linearly compact, 930
Local characterization of Lie groups,
180

Local Cross Section Theorem for Com-
pact Lie Group Actions, 604, 606,
609, 640

local group, 153, 167ff, 176, 181,
200, 777

local homeomorphism, 761
local homomorphisms, extending 779
local isomorphism, 19, 153, 182,

193, 205, 208, 219, 270
local large inductive dimension, 429,

532
local one parameter subgroup, 154f
Local Structure of Locally Compact

Abelian Groups, 435
Local Triviality Theorem for Actions,
601f, 605, 640

locally arcwise connected, 434, 437,
770, 864

locally arcwise connected topological
group, 866

locally arcwise simply connected, 769f
locally closed, 881
locally compact, 343, 688
locally compact abelian group, 27,

29f, 367, 458
p-group 411
πn(G) = 0 461
arc component of a 400
compactly generated 383ff, 387
connected 387
connected locally arcwise connected
437

connected locally connected 437
dimension of a 429
identity component of a 398, 400

local connected 435
totally arcwise disconnected 400
totally disconnected 399f
weight of a 402
with dual group connected 399
with no nontrivial compact sub-

groups 399
with no nontrivial one-parameter

subgroups 400
locally compact abelian groups, count-

able products of 359
locally compact group, 2, 22f

compactly generated 215f
connected 382
identity component of a 382
monothetic 381

locally compact subgroup, 363, 881,
918

Locally Compact Subgroups of Invert-
ible Elements in a Banach Algebra
Theorem, 170

locally connected, 434, 437, 543,
547

strongly 439
locally connected component, 443,

448, 479, 545, 547
Locally Connected Component of a

Compact Abelian Group Theorem,
443

Locally Connected Component of a
Compact Group Theorem, 546

locally connected subgroup contain-
ing all tori, 442

locally convex, 363, 919
locally convex space, 51f, 68f, 71ff
locally convex topological vector space,
142

locally convex vector space topology,
finest 364, 366f, 370ff, 395, 404,
920, 925

locally euclidean, 536
locally isomorphic, 181, 193, 206f,

216, 222, 615, 665, 679, 776
locally precompact, 363, 917f
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locally simply connected, 771, 773f,
776

locally trivial, 609
logarithm, 149, 155, 182, 184, 195
loop, 769f

contractible 495
loop space, 805
lower adjoint, 809
lower bound, 361
Lusin space, 480

Manifold, 49, 323f, 327, 332
analytic 175
compact 13, 323f, 327, 332, 609
orientable 331
topological 385, 774

map,
affine 41
bonding 18
covering 761
limit 18

Martin’s Axiom, 449, 748, 757
matrix, 317
matrix group, 2, 46, 302

compact 46, 48, 147
matrix representation, 54
maximal, 711
maximal abelian subgroup, 253
maximal compact connected subgroup,
389

maximal connected abelian subgroup,
246

maximal connected compact abelian
subgroup, 246

maximal element, 606, 765, 774
maximal face, 277
maximal pro-tori, conjugacy of 512
maximal pro-torus, 511, 518, 532,

535, 545, 548, 555, 567f, 612, 692ff,
699

being a torus 514
center contained in 512
normalizer of a 513
weight of a 514, 555

maximal pro-torus groups, 695

Maximal Pro-Torus Theorem, 527,
532, 545, 548, 693f, 699

Maximal Pro-Torus Theorem for Com-
pact Connected Groups, 512

maximal tori, mapping of 511
maximal torus, 223, 248ff, 252ff,

259, 264, 268, 274, 287f, 291, 309,
311, 315f, 318f, 323, 326, 328, 331,
333, 527, 532, 567, 595f, 612

contains the center 252
Maximal Torus Theorem, 250, 252,

254, 258, 288, 299f, 319f, 326, 333,
527

Mayer-Vietoris, 522, 557
Mayer-Vietoris Lemma, 503
Mayer-Vietoris morphism, 504
Mayer-Vietoris sequence for compact

connected groups, 506
Mayer-Vietoris sequence for compact

groups, 504
meager, 318f, 321ff
measure, 34

Haar 34, 36, 50, 68, 70, 74f, 77,
81, 317f, 322f, 583, 604

invariant 34
Lebesgue 34, 318, 322f, 375
normalized 34, 36
positive 34, 36
probability 36, 70, 72, 74, 81
Radon 52, 70, 72

measure respects subgroups, 900
Menger-Urysohn dimension, 427
metabelian, 240
metabelian group, 386
metric, 543, 547, 872

biinvariant 447, 873
left invariant 447, 872

metric torus, 547
metrizability, 864
metrizable, 531
middle four exchange, 829
minimal ideal, 885
modular law, 367, 369
module, 32, 51

adjoint 54
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conjugate 55
dual 55
faithful Hilbert 37
free 801
G- 51, 224, 233, 235, 243
Hilbert 36
Hilbert G- 36, 39, 41f
projective 717
regular G- 37
simple 127ff, 132ff, 140f, 289
simple G- 42
torsion 802

module isomorphism, 269
modules, semisimple 64
monic, 551, 794
monoid, 784

compact connected topological 854
in a commutative monoidal cate-

gory 830
monoidal category, 826

commutative 933
symmetric 933

monomorphism, 551, 794
monothetic, 381, 471, 572, 684
monothetic compact group, univer-

sal 469
monothetic subgroup, connected 471,

514
morph, 784
morphism, 783f

adjoint 339
bilinear 346
covering 426, 761
evaluation 341, 347, 391
injective 348
linear 340, 915
nearly normally split 672
nearly split 672
of bimonoids 831
of topological groups 683
projection 911
split 610f, 640
split algebraically 610
topologically split 610f, 620, 623,

640

universal covering 776
with dense image 348

Morphism Duality Theorem for Weakly
Complete Topological Vector Spaces,
928

morphism of affine semigroups, 887
morphism of compact groups, 5, 691
morphism of groups, 831
morphism of Hopf algebras, 833
morphism of Lie algebras, 157
morphism of monoids, 830
morphism of pointed spaces, 763,

765
morphism of symmetric Hopf alge-

bras, 833
morphism of topological groups, 5
multilinear algebra, 836
multiplicative functor, 94, 833, 835,

839, 842

Natural transformation, 374, 811f
natural vector space topologies, 137
naturally isomorphic, 645f
nearly normally split, 672
nearly split, 672
neighborhood,

invariant 584
tubular 600f

neighborhood filter, 330
net, 9, 330, 586, 591, 597f, 606
neutral element, 828
nil-space, 186, 197
no small normal subgroups, 47f
no small subgroups, 47f, 171, 231ff,

333
non-associative algebra, 157
normal, 428
normalized Haar integral, 323
normalized measure, 34
normalizer, 194, 237, 247f, 256, 290,

312, 519, 564, 583, 586, 592ff, 600f
normed vector space, 868
nowhere dense, 318f, 321
n-spheres, 460
NSS-group, 47, 171
null object, 791
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Object, 783
initial 791
null 791
terminal 791

odd homogeneous components, 834
of compact totally disconnected spaces,

category 647
one parameter semigroups, uniquely

ruled by 177
one parameter subgroup, 153ff, 175f,

181, 185, 190f, 193, 195, 221f, 372,
375, 400, 410, 525, 587

local 154f
one point compactification, 604, 651,

682, 686
one-sphere, 455
open cover, 584
Open Mapping Theorem, 214, 333,

788
Open Mapping Theorem for Locally

Compact Groups, 662, 742
open subgroup, 7, 881

closed 778
operates transitively, 249, 275, 294
operator, 3

adjoint 54
averaging 50, 68, 75, 129f, 133f,

604
bounded 37f
compact 40f, 80
continuous 32
equivariant 78, 80
hermitian 40, 79
Hilbert–Schmidt 50
idempotent 39, 75
intertwining 38
positive 40f, 80
selfadjoint 40
translation 37
unitary 35ff, 80, 205

operator norm topology, 3
opposite algebra, 96
opposite category, 322, 806
opposite group, 96, 297

orbit, 52, 77, 83, 88, 583ff, 587, 590,
592ff, 596ff, 601ff

orbit map, 329, 583f, 670
orbit space, 592ff, 596f, 599, 601,

603, 605, 668
totally disconnected 605

orbit type, 585
ordered semigroups, 889
ordinal, limit 757
ordinal number, 909
orientable manifold, 331
oriented angle, 8
orthogonal, 224ff, 233ff, 242ff, 251,

254, 263f, 270, 273ff, 285, 289, 291,
293, 302, 305, 316

orthogonal automorphism, 265
orthogonal complement, 39, 226,

330, 352
orthogonal decomposition, 263, 305
orthogonal group, 4, 29, 46, 48
orthogonal projection, 39, 41, 280
orthogonal representation, 42
outer automorphism, 291
outer automorphism group, 291

P-adic integers, 28, 27, 30, 747
p-adic rationals, 28, 382
p-adic solenoid, 18, 27, 47, 49
pair, has enough compact sets 351f,

355
paracompact, 147, 210, 426ff, 453,

470
weakly 427

partial product, 494, 498, 501f, 663,
666

Passage to Quotients, 602
passes through, 587f, 601
path groupoid, 787
pentagon diagram, 827
period, 708
periodic function, 708
permutation, 290
permutation group, 562
Peter and Weyl Theorem, 50, 56,

68, 83, 123, 129, 141
piecewise differentiable, 453
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p-group, 240, 411, 413, 718
divisible 731

Poincaré group, 596, 602, 775, 777,
781

point, fixed 9, 60, 75ff, 85, 89, 123,
263

point evaluation, 109
pointed arc, 429, 433
pointed category, 791
pointed compact Hausdorff space, 869
pointed compact space, 646
pointed space, 763
polar, 366, 922
Polish space, 480, 931
polynomial algebra, 485
Pontryagin duality, 616
Pontryagin Duality Theorem, 25,

44, 410
Pontryagin’s Theorem, 743, 754,

760
Pontryagin–van Kampen Duality, 114
Pontryagin–van Kampen Duality The-

orem, 391, 396
positive definite bilinear symmetric

form, 276, 279
positive generating set, 277
positive measure, 34
positive operator, 40f, 80
positive roots, 264
positive set of vectors generating a

reflection group, 277
power series, 148ff, 153, 155, 159,

161, 183f
power series expansion, 148
p-primary component, 411, 718
precompact, 341ff, 347, 363f, 917ff

locally 363, 917f
preservation of identity components,
497

preserve colimits, 475
primitive, 115, 857
primitive element, 836f, 857
primitive submodule, 837
primitively generated, 837, 850, 853

primitively generated connected com-
mutative graded Hopf algebra, 852

primitively generated connected graded
commutative Hopf, 851

primitively generated connected graded
commutative Hopf algebra, 851

primitively generated connected graded
Hopf algebra, 852

primitively generated Hopf algebra,
846

primitively generated Hopf subalge-
bra, 846

principal fiber bundle, 601f, 604,
640

Principle of the smallest criminal, 251
pro-Lie group, -11, 859
pro-p-group, 575
pro-torus, 511, 524, 567, 686

being its own centralizer 512
maximal 612, 686

probability measure, 70, 72, 74, 81
product, 10, 817

direct 223, 244, 246, 256, 258, 260
free 322
inner 225ff, 229f, 254, 262ff, 266,

274, 291, 293, 302
partial 498, 663, 666
scalar 224f, 233f, 249, 333
semidirect 213f, 218, 220, 247, 256,

258, 290, 294f, 308, 313, 564, 610,
652

subdirect 663ff
tensor 370, 657, 733, 735
vector 291, 302, 310
wreath 290

product group, 10
product topology, 10
products, 523
profinite group, 23, 30, 117

free 647
profinite groups, 687
projection, 792, 817

orthogonal 39, 41, 280
projection morphism, 911
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projective, 432, 469, 562, 611, 616,
621, 680, 717, 738

object in a category 552
Projective and Injective Compact Abelian

Groups Theorem, 469
projective cover, 471, 553, 623, 656f,

674f
Projective Cover Theorem, 554
projective covering morphism, 471,

553, 684
projective limit, 18, 365, 374, 429,

456, 475, 487, 605, 666, 773
of compact pointed spaces 457
strict 21f, 24, 45ff, 49

projective limit of tori, 511
projective resolution, 471, 473
projective system, 17, 20

strict 21, 25, 491f
projectivity of, free compact abelian

group 470
proper, 582, 589, 598
Proposition W, 449
pseudometric, 879
p-socle, 719
p-Sylow subgroup, 411, 718
pull-backs, 523
pullback, 189f, 762f, 765, 772, 781,

817f
pure subgroup, 471, 505, 555, 719ff,

744

Quasicomponent, 803
quasisimple connected compact Lie

group, 229
quaternions, 2, 267
quotient,

of a compact Lie group 231
of a free object 450

quotient functor, 803
quotient group, 7, 711

incomplete 440
of a totally disconnected locally com-

pact abelian group 400
quotient space, 7

Radical, 664

Radon measure, 52, 70, 72, 118
range projections, 789
rank, 326ff, 383, 417, 423ff, 463ff,

478, 690, 711, 742
finite 743f
of an abelian group 742
vector 388, 426

rational vector space, 425
cardinality 464
dimension 464

rationals, p-adic 28
real analysis, 322
real Hilbert G-module, 86, 89
real Lie group, 222
real number system compact group

topologies on 412
real projective plane, 596
real representation, 85
real root space decomposition, 264
Recovery of Addition, 155, 168, 178,

181, 188, 243
Recovery of Scalar Multiplication, 154,

176, 178
Recovery of Subalgebras, 191ff, 195,

201, 378, 781
Recovery of the Bracket, 157, 168,

188, 199
reduced, 411, 722, 729
reduced group, 465
reduced Hopf algebra, 51, 114
Reduction Theorem, 385
Rees matrix semigroup, 58
reflection, 272f, 276
reflection about a line, 277
reflexive, 348f, 355, 359, 361, 422,

922
reflexive group, 376f, 391
reflexive topological vector space, 366,

925
regular, 165, 167, 428
regular cardinal, 748f
regular G-module, 37
relative cohomology, 427
relative injectives, 557
relative n-cell, 332
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relative projectives, 764
representation, 32, 36, 64, 223f, 233,

235, 237, 239, 242, 255, 260f, 264,
276, 291f, 319

adjoint 159, 184, 223f, 237, 239,
268, 276, 291f

faithful 33
faithful finite dimensional 48
faithful finite dimensional orthog-

onal 48
faithful finite dimensional unitary
48

finite dimensional 54
irreducible 42, 233, 263, 266, 654f
matrix 54, 64
orthogonal 42
regular 37
unitary 36f, 41f

representation ring, 53
representation theory, 141
representative function, 53f, 56, 126ff,

861
Resolution Theorem, 433, 484
Resolution Theorem for Compact Abelian

Groups, 420
Resolution Theorem for Compact Con-

nected Groups, 529
respects subgroups, 900
retract, 765

homotopy 793
retraction, 397, 551, 553, 589, 611,

645, 677, 792
homomorphic 493
homotopy 793

Riemann integral, 35
Riemann Sphere, 322
Riesz Representation Theorem, 34,

38, 69
right adjoint functor, 811
right invariance, 873
ring, 707f

Boolean 132f
commutative 474
graded 474, 477f
group 429

root decomposition, 273, 315
root space, 284f
root space decomposition, 292, 333
roots, 264, 287
Roß, 511
rotation, 386
rotation by an angle, 9
rotations, 321, 707
rus, 511

S-group, 744
Samelson’s Theorem, on the coho-

mology of compact connected monoids
854

Sandwich Theorem, for Semisimple
Compact Connected Groups 503

sandwich theorem, 502, 522
Sandwich Theorem for Compact Con-

nected Groups, 507
Sandwich Theorem for Compact Gro-

ups, 522
Sandwich Theorem for Compact Lie

Groups, 312
saturated (grop saturated), 859
saturated set, 867
scalar product, 35f, 130, 224f, 233f,

249, 333
invariant 249

Scholium, 426, 429
Schur’s Lemma, 104, 654
σ-compact, 931
Second Axiom of Countability, 425,

867
Second Isomorphism Theorem, 928
Second Structure Theorem for Con-

nected Compact Lie Groups, 259f
Second Theorem on Morphisms of Com-

pact Groups, 509
selfadjoint operator, 40
Semicontinuity and Continuity of Iso-

tropy, 585
semidirect, group complement 615
semidirect cofactor, 256, 259, 308,

313
semidirect complement, 295f, 311f
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semidirect decomposition, 612f, 617,
640

semidirect factor, 214, 217, 223,
248, 295, 312, 333, 582, 614, 649

semidirect product, 213f, 218, 220,
247, 256, 258, 290, 294f, 308, 313,
503, 537, 564, 608, 610, 652, 797

semidirect splitting, 611f
semidirect sum, 664
semigroup, 875

affine 887
involutive 886
Rees matrix 58

semigroups, ordered 889
semilattice, 132
semireflexive, 348, 355, 366, 922
semisimple, 197, 225ff, 242, 245,

251, 256, 267, 275, 287ff, 292ff, 298,
301f, 305, 316f, 333f, 489, 491, 497,
510, 612f, 615, 618, 623, 641, 664,
666, 670

semisimple compact connected, 498
semisimple compact Lie group, 493,

680
semisimple group, compact connected
660

semisimple modules, 64
separable, 931
separable metric spaces, 867
separable space, 931
separate the points, 355, 361, 365,

367, 391, 394, 455, 664, 924f
separates the points, 13, 42, 44f, 56,

667
Separation Theorem, 355
series,

Fourier 708
power 148ff, 153, 155, 159, 161,

183f
sesquilinear form, 37
set,

directed 17
equicontinuous 347f
suitable 682f, 686, 699, 702
totally ordered 711

well-ordered 711
set-based category, 789
set of positive roots, 284, 316
set of positive weights, 263
set of real weights, 263
sheaf dimension, 428
sheaf theoretical dimension, 427,

429, 532
Shelah’s Independence Theorem, 749
Shelah’s Singular Compactness The-

orem, 450, 758, 760
sigma-compact, 931
simple, 569, 623

connected compact Lie group 671
homomorphically 661f

simple character, 127f, 130f
simple compact connected Lie group,
569

simple connected compact group, 561
simple connected compact Lie group,
229f, 244ff, 298, 304, 680

simple connectivity, 510
simple G-module, 42
simple group, 229, 569
simple ideal, 664
simple Lie algebra, 225, 230

compact 675
simple Lie group, 615, 660, 664
simple module, 127ff, 132ff, 140f,

289
simple simply connected compact Lie

group, 530, 532, 552, 567
simple simply connected compact Lie

groups, 529, 552
simple simply connected Lie group,
622

simple topological group, 569
simplex, 41
simply connected, 218, 230, 297f,

301, 329, 331, 340, 430, 452, 489,
615, 623, 664, 671, 679, 681, 764f,
768, 770ff, 779ff, 916

simply connected compact abelian group,
510

simply connected pointed space, 764f
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simply connected semisimple compact,
498

simply connected simple compact Lie
group, 566f

simply connected spaces, products of
765

simply transitively, 284, 293
SIN-group, 10
singly generated group, 707
singly generated Hopf algebra, 842,

851
singular cardinal, 450, 758
singular cohomology, 323, 485
skeleton, 476, 793, 815
skew field, 267
skew hermitian, 225, 233
skew symmetric, 225, 228f, 291
small category, 786
small inductive dimension, 423, 427ff,

532
small invariant neighborhoods, 10
small subgroups, 232
Smirnov’s Theorem, 872
smooth category, 790
Snake Lemma, 440
socle, 719
solenoid, 30, 550, 774
p-adic 18, 27, 47, 49
of van Dantzig 30
of Vietoris and Van Dantzig 550

solenoidal, 572
Solution Set Condition, 91
solution set condition, 824f
space,
k- 343
affine 886
Baire 32, 78, 742
Cantor 13
dyadic 883
first countable 343
homogeneous 7, 345
locally compact Hausdorff 343
Polish 931
quotient 7
separable 931

supercompact 912
totally disconnected 13
underlying 645
uniform 365

Space Cohomology of Compact Abelian
Groups Theorem, 477

Space Cohomology of Compact Con-
nected Abelian Groups Theorem, 474

special generating set, 699
Special Generating Sets in Connected

Compact Groups Theorem, 704
special generating subset, 687, 699
special Lie chain, 911
special linear group, 4
special orthogonal group, 4
Special Product Theorem, 426, 428
special unitary group, 4
Spectral Mapping Theorem, 166
spectrum, 109, 165, 858
sphere, 2, 329, 770, 772

2- 596
even dimensional 328
odd dimensional 328

sphere groups, 537
Sphere Theorem for Connected Com-

pact Lie Groups, 329
Spin(2m), 664
split, 610, 615, 623, 679, 744
split algebraically, 610
split exact sequence, 744
split morphism, 610f
split topologically, 610
splits, 366, 616, 928
splitting, topological 478
Splitting Fixed Points Theorem, 77,

89, 133, 263
Splitting the Component of Compact

Groups, 607, 649
stability group, 292f
stability subgroup, 6f
stabilizer, 584
stable isotropy, 585f, 588f, 592f, 596,

599ff, 604, 606, 609, 640
stable isotropy conjugate to H, 585
standard Cantor set, 13, 633
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standard Lie chain, 909
standard special Lie chain, 911
Standuntergruppe, 6
star-shaped, 33
stationary subset, 747
Stokes’ Theorem, 333
Stone-Čech compactification, 686,

688
Stone-Čech compactification, 645,

745, 825
Stone–Weierstraß Theorem, 51, 56,

111f, 355, 456
strict projective limit, 21f, 24, 45ff,

49, 487
strict projective system, 21, 25, 491f
strictly reductive compact group, 569
strictly reductive group, 911
strong homotopy axiom, 624
strong operator topology, 32, 37
strongly κ-free, 758
strongly locally connected, 439
strongly reflexive, 359
Structure of Compact Groups The-

orem, 504
Structure of Compact Lie Groups with

Abelian Identity Component The-
orem, 235

Structure of Finite Dimensional Com-
pact Groups Theorem, 530

Structure of Finite Dimensional Gra-
ded Hopf Algebras Theorem, 853

Structure of Free Compact Abelian
Groups Theorem, 464

Structure of Maximal Pro-tori in Com-
pact Connected Groups, 513

Structure of Maximal Pro-tori The-
orem, 513

Structure of Semisimple Compact Con-
nected Groups Theorem, 656

Structure of Semisimple Connected
Compact Groups Theorem, 659

Structure of Simply Connected Com-
pact Groups Theorem, 495

Structure of the Automorphism Gro-
up of a Compact Lie Group The-
orem, 311f

Structure of the Automorphism Gro-
up of a Compact Projective Group
Theorem, 567

Structure Theorem for Compact Lie
Groups, 243

Structure Theorem for Connected Gra-
ded Commutative Hopf Algebras, 850

Structure Theorem for Divisible Sub-
groups, 410, 448, 463, 731

Structure Theorem of Free Compact
Abelian Groups, 689

Structure Theorem ofG-modules, 141f
Structure Theorem of HilbertG-modules,
142, 144

sub-G-space, 599
subalgebra, Lie 158, 164ff, 170f,

182, 185, 187f, 190ff, 198f, 201f, 205,
207f, 218, 220f

subcategory, 785
full 366, 785, 793, 925

subdirect product, 663ff
subfunctor, 802
subgroup, 706
p-Sylow 718
annihilator 352
central 612ff, 619, 622, 648
characteristic 23, 395, 441, 718,

722
characteristic arcwise connected 441
commutator 198, 200ff, 216f, 221,

386, 644, 646f, 656, 658, 672, 677,
680

discrete 223, 229f, 232, 235, 239,
242, 244f, 247, 262, 268, 272, 302,
305f, 310f, 318, 323

divisible 723, 728
fully characteristic 23, 430, 441f,

718
isotropy 6, 584
largest divisible 723
Lie 171ff, 178, 187ff, 194ff, 209,

211, 218
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lie 189
local one parameter 154f
one parameter 153ff, 175f, 181,

185, 190f, 193, 195, 221f, 372, 375
open 7
pure 653, 719ff, 744
smallest compact connected locally

connected tori containing 442
splitting 744
stability 6f
torsion 399, 413, 423, 718f
totally disconnected 568
vector 209ff, 214, 221

Subgroup Theorem for Free Abelian
Groups, 712, 721

Subgroups of a Weakly Complete Vec-
tor Space Theorem, 369

submodule, 39
finite dimensional 41

subnet, 330, 586, 597f, 606
subsemigroup, 263, 583
subspace,

invariant 39
linear 930

Subspace Theorem, 428
Subspace Theorem for Weakly Com-

plete Topological Vector Spaces, 927
subspaces, affine 930
subtangent vector, 167, 199
sufficient duality, 361
suitable set, 682f, 685f, 699, 702
Suitable Set Theorem, 685
sum, 147
Sum Theorem, 428f
summable, 173
summand, 290
super-ℵ1-free, 437
supercompact, 912
Supercompactness Lemma, 912
Supercompactness Theorem, 912
Supplement Theorem, 218, 222, 685
Supplement Theorem for Compact Gro-

ups, 519
support, 70, 77, 118
support of a measure, 118

suspension, 460, 805
Sylow subgroup, 255, 718
Sylow Theorems, 255
symmetric, 857
symmetric algebra, 485, 834f
symmetric Hopf algebra, 51, 833,

857
symmetric monoidal category, 51,

94, 828, 933f
symmetric weakly complete Hopf al-

gebra, 95
symmetry, 97
symplectic group, 4
system of coset representatives, 297,

299, 301

Tables, character group 29
tangent vector, 167, 202
Tannaka Duality, 51, 104, 114, 863
Tannaka-Hochschild Duality, 51
tensor algebra, 834
tensor product, 57, 137ff, 184, 370,

475f, 657, 733, 735
associativity of the 827

terminal object, 791
test G-space, 599
Test Morphism Theorem forG-Spaces,
599

The Sphere Group Theorem, 537
The Structure of Essential S-Free Com-

pact Groups Theorem, 671
The Structure of Semisimple Com-

pact Connected Groups Theorem,
498

The Structure Theorem for Compact
Groups, 561

Theorem,
Adjoint Functor Existence 370,

645, 647, 825
Adjoint Representation 184
Analytic Subgroups and Recovery

of Subalgebras 240, 242
Analytic Subgroups and the Re-

covery of Subalgebras 191
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Annihilator Mechanism 392, 398,
411f, 417, 424ff, 438, 442, 445, 448,
462, 467

Arc Component of a Locally Com-
pact Abelian Group 430

Ascoli 343
Auerbach’s Generation 319, 323
Automorphism Group of a Com-

pact Connected Group 568
Automorphism Group of a Com-

pact Lie Algebra 295, 302, 308f,
311

Automorphism Group of a Com-
pact Projective Group 567

Baire Category 32, 323, 742
Big Peter and Weyl 798
Big Peter–Weyl 140f
Big Theorem of Peter–Weyl 83f,

123, 206
Borel-Scheerer-Hofmann Splitting
518, 527, 541, 545ff, 608, 613, 615

Brouwer’s Fixed Point 793
Cardinal Invariants of Connected

Compact Groups 695
Center 131, 133, 135f, 140
Center of a Free Compact Group
655

Characterisation of Compact Lie
Algebras 230

Characterisation of Compact Met-
ric Abelian Groups 447

Characterisation of Finite Dimen-
sional Compact Abelian Groups
423, 426

Characterisation of Local Connec-
tivity 437

Characteristic Locally Connected
Subgroup 442

Closed Graph 216f, 594f, 598
Closed Subgroup 428
Closed Subgroups and Quotient Gro-

ups of Rn 318, 441, 715
Closed Subspace 426, 428

Closedness of the Commutator Sub-
group 239f, 243, 245, 251, 258,
288

Cohen’s 749
Commutator Subgroup 201, 221,

235, 240, 243, 251
Commutator Subgroup of a Con-

nected Compact Lie Group 245
Commutator Theorem for Connected

Compact Lie Groups 248, 288
Compact Groups and Simple Con-

nectivity 510
Component Splitting Theorem for

Free Compact Groups 649
Connectivity in Compact Metric

Abelian Groups 448
Connectivity in Compact Metric

Groups 547
Construction of Free Compact Abelian

Groups 455
Continuity of Adjoints 820
Cross Section 588, 591, 610, 640
Density Theorem of Jacobson 64
Divisibility and Connectivity in

Compact Abelian Groups 409
Dong Hoon Lee’s Supplement 312
Dong Hoon Lee’s Supplement The-

orem for Compact Groups 519
Duality and Local Compactness 343
Duality of Real Vector Spaces 366,

369
duality of real vector spaces 925
Elementary Divisor 318, 713ff
Euclidean Fundamental 426, 428
Exact Hom-Ext Sequence 740
Existence of Universal Covering Gro-

ups 776
Existence of Universal Coverings
774, 776

Exponential Function and Homo-
topy 461

Exponential Function for Locally
Compact Abelian Groups 395,
424, 443
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Extending Local Homomorphisms
341

Extension of Local Homomorphisms
781

Extension Theorem for Characters
45, 360

filter bases of closed affine subspaces
930

filter bases of closed linear subspaces
929

Fine Structure Theorem forR(G,K)
67f, 84, 126, 136, 140f

Finite Discrete Center 216
First Structure Theorem for Con-

nected Compact Lie Groups 244,
256, 260, 274, 304

First Theorem on Morphisms of Com-
pact Groups 508

Free Compact Group Direct Prod-
uct 658

Freeness Criterion 465
Functoriality of the Lie algebra of

a Lie Group 179
Fundamental 232
Fundamental Theorem of Finitely

Generated Abelian Groups 217,
383, 388, 418, 713f

Fundamental Theorem on Closed
Subgroups of Rn 367

Fundamental Theorem on Unitary
Modules 41f

Global Cross Section Theorem for
Contractible Base Spaces 640

Global Cross Section Theorem for
Totally Disconnected Base Spaces
605, 610, 640, 649

Global Cross Sections for Contract-
ible Base Spaces 609

Gotô’s Commutator Subgroup The-
orem for Compact Groups 488

Gotô’s Commutator Theorem for
Connected Compact Lie Groups
288

Groups Generated by Local Sub-
groups 779

Hahn–Banach 40, 69, 72, 79, 922
Hilbert’s Fifth Problem for Com-

pact Groups 536
Hopf’s Rank 328f
Hopf’s Theorem on the Cohomol-

ogy of Lie Groups 328, 335
Hopf–Samelson 324
Hopf–Samelson Theorem for Con-

nected Compact Lie Groups 324f,
328f, 335

Indecomposable Group Continua 548
Independence of the Torus Propo-

sition 449
Inverse Mapping 44
Iwasawa’s Automorphism Group 304,

308, 310, 561
Künneth 324, 474, 477
Lee’s 255, 311, 334, 685
Lee’s Theorem for Compact Gro-

ups 649
Levi-Mal’cev Structure Theorem for

Connected Compact Groups 506
Lie’s Fundamental 179
Limit Existence 819
Local Cross Section Theorem for

Compact Lie Group Actions 604,
606, 640

Local Triviality Theorem for Ac-
tions 601f, 605, 640

Locally Compact Subgroups of Invert-
ible Elements in a Banach Alge-
bra 170

Locally Connected Component of
a Compact Abelian Group 443

Locally Connected Component of
a Compact Group 546

Maximal Pro-Torus 693f
Maximal Torus 250, 252, 254, 258,

288, 299f, 319f, 326, 333
morphism duality of weakly com-

plete topological vector spaces 928
of Alaoglu, Banach and Bourbaki
366

of Fubini 74f, 82
of the Local Inverse 169, 220, 232
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on connected graded commutative
Hopf algebras 850

on divisibility of compact groups
513

on duality of real vector spaces 702
on finite dimensional compact groups
530

on global cross sections 683
on left invariant metrizability 877
on supplementing the identity com-

ponent 519
on [T, G] and [G,T] 458
on the arc component of a compact

group 540
on the exponential function of a

compact group 527
on the structure of compact groups
504

on the structure of maximal pro-
tori 513

on the structure of simply connected
compact groups 495

on the weight of function spaces
870

Open Mapping 214, 333, 788
Open Mapping Theorem for Lo-

cally Compact Groups 662, 742
Peter–Weyl 50, 56, 68, 129, 141
Pontryagin Duality 25, 44, 410
Pontryagin’s 743, 754, 760
Pontryagin - van Kampen Duality
391, 396

Projective Cover 554
Reduction 385
Resolution 433, 484
Resolution Theorem for Compact

Abelian Groups 420
Resolution Theorem for Compact

Connected Groups 529
Riesz Representation 34, 38, 69
Sandwich Theorem for Compact Gro-

ups 522
Sandwich Theorem for Compact Lie

Groups 312

Sandwich Theorem for Semisimple
Compact Connected Groups 503

Second Structure Theorem for Con-
nected Compact Lie Groups 259f

Second Theorem on Morphisms of
Compact Groups 509

Separation 355
Shelah’s Independence 749
Shelah’s Singular Compactness 450,

758, 760
Space Cohomology of Compact Abelian

Groups 477
Space Cohomology of Compact Con-

nected Abelian Groups 474
Special Generating Sets in Connected

Compact Groups 704
Special Product 426, 428
Spectral Mapping 166
Sphere Theorem for Connected Com-

pact Lie Groups 329
Splitting Fixed Points 77, 89, 133,

263
Splitting the Component of Com-

pact Groups 607
Stokes’ 333
Stone–Weierstraß 51, 56, 355, 456
Structure of Compact Lie Groups

with Abelian Identity Component
235

Structure of Finite Dimensional Gra-
ded Hopf Algebras 853

Structure of Free Compact Abelian
Groups 464

Structure of G-modules 141f
Structure of HilbertG-modules 142,

144
Structure of Semisimple Compact

Connected Groups 656
Structure of Semisimple Connected

Compact Groups 659
Structure of the Automorphism Gro-

up of a Compact Lie Group 311f
Structure Theorem for Compact Lie

Groups 243
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Structure Theorem for Divisible Sub-
groups 410, 448, 463, 731

Structure Theorem of Free Com-
pact Abelian Groups 689

Subgroup Theorem for Free Abelian
Groups 712, 721

Subgroups of a Weakly Complete
Vector Space 369

Subspace 428
subspaces of weakly complete topo-

logical vector spaces 927
Suitable Set 685
Sum 428f
Supplement 218, 222, 685
Sylow 255
Test Morphism Theorem forG-Spaces
599

The Structure of Essential S-Free
Compact Groups 671

The Structure of Semisimple Com-
pact Connected Groups 498

The Structure Theorem for Com-
pact Groups 561

Theorem of Peter–Weyl 83, 123
Third Theorem on Morphisms of

Compact Groups 525
Tietze Extension 582, 604
Tietze-Gleason Extension 604f
Topological Automorphism Group

of a Compact Lie Group 298,
302, 308

Topological Characterisation of Com-
pact Matrix Groups 537

Topological Decomposition of Com-
pact Groups 608

Topological Splitting for Vector Sub-
groups 210

Topological Splitting Theorem for
Vector Subgroups 610

Torsion-Free Abelian Groups as [X,T]
460

Transitivity 249ff, 255, 260, 273,
275, 292, 295, 309, 317, 319, 333

Triviality Theorem for Actions 599ff,
640

Triviality Theorem for Contractible
Base Spaces 640

Triviality Theorem for Totally Dis-
connected Base Spaces 640

Tubular Neighborhood 171, 173,
209

Tubular Neighborhood Theorem for
Subgroups 327, 330, 600, 603f

Tychonoff 11, 342
Universal Property 809
Van der Waerden’s Continuity The-

orem 203
Vector Group Splitting 387, 391,

396, 402, 426, 431, 435, 442, 461
Vector Subgroup Splitting 211,

221f
Vedenissoff 415
Weight of a Free Compact Group
658

Weight of Locally Compact Abelian
Groups 402, 447

Well-Ordering 711
Weyl’s Trick 35, 42, 78

Theorem of Alaoglu, Banach and Bour-
baki, 366

Theorem of the Local Inverse, 169,
232

Theorem on generating compact con-
nected groups, 517

Third Theorem on Morphisms of Com-
pact Groups, 525

Tietze Extension Theorem, 582, 604
Tietze-Gleason Extension Theorem,
604f

topological algebra, 43
Topological Automorphism Group of

a Compact Lie Group Theorem, 298,
302, 308

topological category, 790
Topological Characterisation of Com-

pact Matrix Groups, 537
Topological Decomposition of Com-

pact Groups Theorem, 608
topological dimension, 422, 427, 429,

484
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topological dual, 365, 924
topological group, 2

acts on a space 7
compactly generated 382ff, 387
connected locally compact 382
first countable 347
has duality 348
has sufficient duality 361
Hausdorff 353
locally compact abelian 347
monothetic 381
product 10
quotient 7
reflexive abelian 348f, 355, 359,

361
semireflexive abelian 348, 355
simple 569
strongly reflexive abelian 359
totally arcwise disconnected 375
totally disconnected 375

topological group action, 7
topological invariant, 429
topological Lie algebra, 158, 176,

178
topological manifold, 385, 774
topological semigroup, 297
topological splitting, 478
Topological Splitting Theorem for Vec-

tor Subgroups, 210, 610
topological vector space, 31, 69, 137,

141f, 340, 362f, 770, 916ff
completely normable 176, 192f,

220
finite dimensional 363, 918
locally convex 51f, 68f, 71ff, 142,

363, 919
one-dimensional 363, 917
reflexive 366, 925
weakly complete 523
weakly complete real 367

topologically compactly generated, 930
topologically split, 613ff, 623, 679f

not split 615
topologically split morphism, 610f,

623

splits 617
topology, 864

algebraic 333
compact open 338, 340, 342f, 345,

347, 350, 353f, 362, 364f, 370f,
401f, 404, 406, 915f, 919, 921, 926f

function space 296, 302
of pointwise convergence 11, 32,

337f, 340ff, 344, 353f, 365, 370f,
457, 921, 924, 926f

of uniform convergence 56, 73, 78,
154, 337ff, 341, 347f, 359, 362, 365,
372f, 924

operator norm 3
product 10
strong operator 32, 37
weak 70, 365, 924
weak *- 70f, 365, 921, 924
Zariski 317

topology of compact Lie groups, 335
topology of pointwise convergence, 567
topology of uniform convergence, 296f,

302f, 524, 869
tor, 382, 399, 408f, 416, 462, 467,

471, 718
torsion-free, 19, 410, 412, 452, 460,

470, 475, 552, 718, 720
torsion-free abelian group, 616
Torsion-Free Abelian Groups as [X,T]

Theorem, 460
torsion-free dual group, 410
torsion module, 802
torsion subgroup, 399, 408, 413,

423, 718f
torsionless, 721
torus, 20, 235ff, 239, 243f, 246ff,

252ff, 258f, 261f, 264, 273f, 287f, 291,
294, 300, 309, 311f, 315ff, 323, 325f,
328, 333, 416, 430, 437, 440, 470,
545, 547, 591, 707, 776, 911

compact group topologies on 412
dimension of 417
finite extension of a 416, 419
maximal 223, 248ff, 252ff, 259,

264, 268, 274, 287f, 291, 309, 311,
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315f, 318f, 323, 326, 328, 333, 595f,
612

quotient group of 449
torus free, 448, 548
torus free subgroup, 547
torus group, 13, 16, 49, 416
Torus Proposition, 449, 483
total order, 263
totally arcwise disconnected, 367,

369, 375, 400, 410
totally disconnected, 13, 22, 117,

375, 399f, 410f, 414, 524
group 22

totally disconnected compact group,
696

totally disconnected subgroup, 568
totally normal, 427
totally ordered set, 711
totally ordered space, 765
trace, 58
transfinite induction, 753, 758, 760
transformation group, 764
transitive, 6, 249f, 292f, 295
transitively, 279, 284, 292f, 309f
Transitivity Theorem, 249ff, 255,

260, 273, 275, 292, 295, 309, 317,
319, 333

translation, 386
triangle diagram, 828
trignometric function, 50
trignometric polynomial, 50
trivial action, 588, 592f, 596, 599,

601f, 604ff, 609, 640
trivial extension, 737
Triviality Theorem for Actions, 599ff,

640
Triviality Theorem for Contractible

Base Spaces, 640
Triviality Theorem for Totally Dis-

connected Base Spaces, 640
tubular neighborhood, 600f
Tubular Neighborhood Theorem for

Subgroups, 171, 173, 209, 327,
330, 600, 603f

Tychonoff’s Theorem, 11, 342

Tychonoff space, 913
type, 502, 553

Undecidable in ZFC, 481
underlying space, 645
uniform convergence, 300
uniform space, 365
uniformly continuous, 155, 297
unique compact group topology, 204
uniquely ruled by one parameter semi-

groups, 177
unit, 3, 47, 147
unit sphere, 868
unital, 936
unitary, 4, 36, 226, 233, 235
unitary group, 4, 29, 37, 46, 48
unitary operator, 35ff, 80, 205
unitary representation, 36f, 41f, 235
universal algebra, 663
universal coefficient formula, 478
universal compact monothetic group,
656

universal covering, 230, 297, 329,
385, 491f, 772, 774f

universal covering group, 230, 492,
776

existence 780
simply connected 671
universality of the 780

universal covering homomorphism, 780
universal covering mapping, 776
universal covering morphism, 493,

618, 671, 776
universal covering space, 781
Universal Coverings of Manifolds, 774
universal mapping, 667
universal monothetic compact group,
469

universal monothetic group, 686
universal property, 91, 453f, 476,

478, 645ff, 651f, 655, 661, 667, 669,
672f, 676, 678, 842, 864

Universal Property Theorem, 809
universal space, 641
universal topological algebra, 334
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Universality of the Universal Cover-
ing Group, 780

upper adjoint, 809
upper bound, 361

Van Dantzig, 30
Van der Waerden’s Continuity The-

orem, 203
variety, 788
vector,

almost invariant 52
subtangent 167, 199
tangent 167, 202

Vector Group Splitting Theorem, 387,
391, 396, 402, 426, 431, 435, 442,
461

vector product, 291, 302, 310
vector rank, 388, 426
vector space,

conjugate 55
graded 827
weakly complete topological 924

vector space duality, 340
vector space isomorphism, 269
vector subgroup, 209ff, 214, 221
Vector Subgroup Splitting Theorem,
211, 221f

vector valued integration, 52, 68f
Vedenissoff’s Theorem, 415

Wallace’s Lemma, 10
Walroß, 511
walrus, 511
weak contraction, 624
weak topology, 70f, 365, 524, 921,

924
weakly almost periodic compactifica-

tion, 825
weakly compact, 71f, 524
weakly complete, 90, 365f, 368f, 371,

395, 404, 422, 472, 656, 924f, 927
weakly complete G-module, 524
weakly complete group algebra, 91
weakly complete Hopf algebra, 856
weakly complete Lie algebra, 523ff,

527

weakly complete real topological vec-
tor space, 367

weakly complete symmetric Hopf al-
gebra, group determined, 101

weakly complete topological vector space,
523, 924

weakly complete unital algebra, 90,
856, 936

weakly complete vector space, 90,
531f, 554

weakly homotopic, 624
weakly paracompact, 427
weakly reduced, 103
wedge, 79
weight, 401, 484, 514, 531, 647f,

658, 661, 667, 669, 671, 682, 690,
695, 864, 867

character group 402
dual group 402
of a dual group 402
of the projective cover 554

weight decomposition, 264
Weight of a Free Compact Group The-

orem, 658
weight of free compact abelian group,
464

Weight of Function Spaces Theorem,
870

Weight of Locally Compact Abelian
Groups Theorem, 402, 447

Weil’s Lemma, 381, 384
well-order, 711, 909
well-ordered inverse system, 914
well-ordered set, 711
well-ordering, canonical 909
Well-Ordering Principle, 909
Well-Ordering Theorem, 711
Wendel, 50
Weyl chamber, 277, 279ff, 284f, 291ff,

309f
Weyl group, 248, 254f, 276, 284,

329, 334, 511, 595
of a compact connected group 511

Weyl’s Trick, 35, 42, 78, 107, 224,
798
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Whitehead group, 431f, 437, 448f,
744, 748, 750, 753ff, 760

Whitehead’s Problem, 449, 747
winding number, 453
word, 320

empty 320
wreath product, 290

Zariski topology, 317
Zermelo-Fraenkel Set Theory, 748
zero-dimensional, 414
zero-dimensional group, free compact
647

Zorn’s Lemma, 42, 85, 415, 519,
711, 727f, 765, 868
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