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Computers hearing children’s cries
and pathologies – a foreword

When the children cry, and computers listen, huge potential for improved
health and well-being opens up. This comes not only as parents and caretakers
may not be around 24/7 without a pause. Much more, according to Greg Irving
and colleagues (2017) investigating “international variations in primary care
physician consultation time [in] a systematic review of 67 countries” across 111
publications, general practitioners (GP) have only shockingly limited average
consultation time per patient reaching from just 48 seconds in Bangladesh to
22.5 minutes in Sweden. Imagining a reliable, robust, and re-explainable detec-
tion, analysis and potential interpretation of vocalizations and spoken lan-
guage of infants to young adults by machines first provides the possibility to
collect such observations from considerably longer time windows with undi-
vided attention as only computers can provide. Furthermore, subsequent analy-
sis of these by computers can be based on precise signal processing and a data
experience a single GP could not experience throughout a human life time
given available “big” data. Computers could further be free of bias and objec-
tive. But even if actual diagnoses and decisions are not made by computers,
GPs can be significantly supported by suited pre-selection of informative ex-
amples of vocalizations and speech worth paying attention to. The general
idea of such bringing health sensing to our everyday environment by means
of mobile computing devices is, for example, met by the field of “mobile
health,” or mHealth as coined by my colleague Robert S. H. Istepanian more
than a decade ago.

In this fine collection of five chapters provided by a dozen authors from
leading institutions across Asia, Europe and Northern America, the focus is put
entirely on the microphone as sensor for the computational acoustic analysis of
pathologies, and the target group of this analysis are infants to young adults.
The book can be roughly divided into two main parts of interest: early infant
vocalizations and pathological speech of young individuals. The focus in the
first two chapters is put onto robustly recognizing and classifying infant cries.
In relation to this, Chapter 3 investigates toddlers’ vocalizations, who are on
the autism disorder spectrum. The remaining two chapters address effects of
dysarthria on computational modeling. In Chapter 4, pronunciation accuracy is
estimated by computing technology. Finally, the last chapter investigates the
effect of learning not only of humans, but also computers to improve the recog-
nition of dysarthric speech.
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In more detail, Chapter 1 discusses techniques for and challenges in infant
cry analysis and classification used so far. It further shows novel experimental
results showing that spectrographic analysis provides good performance in
some pathological cases.

Chapter 2 deals with the recent and popular topic of unsupervised represen-
tation learning for acoustic modeling. Here, again with the purpose of modeling
infant cries, but to distinguish normal from pathological ones, and in particular
by auditory filter-banks. To this end serve convolutional restricted Boltzmann
machines. The observed learnt banks perform better but are found to be very dis-
tinct from expertly shaped ones.

Chapter 3 discusses the use of wavelet-based and speech modulation spec-
tral features for autism diagnosis based on cries, laughs and other sounds
made by toddlers as young as one and a half years of age. These are found com-
plementary to other traditional features. Further, by means of support vector
machines, an impressive number of above 80% accuracy for the diagnosis of
autism spectrum disorder at this age are observed on the data. Interestingly,
the authors find that these vocalizations are better suited than speech-like vo-
calizations to this end.

Chapter 4 addresses the problem of recognizing mispronunciations of chil-
dren with selected neuromuscular disorders on the phoneme level. The consid-
ered dysarthric speech can be challenging to recognize both for humans and
current automatic speech recognition, as it is overall affected including impact
on spectral and prosodic characteristics, coarticulation and concerning pronun-
ciation rules. The authors show that representing the arising variabilities can
help improve automatic recognition.

Chapter 5 is directly related to this topic: it touches upon improving dys-
arthric speech recognition of humans and computers by “familiarization.” In
the case of machine listening, this leads to adaptive machine learning. The au-
thors further note that such adaptation benefits from an initial model already
incorporating information on a target group speaker’s pattern.

Overall, one can only congratulate the two editors, of which one contrib-
uted himself to the chapters, having put together these significant and most
recent contributions to the field by eminent authors as well as for their guid-
ance of a thorough and richly detailed iterative review process. As target audi-
ence for this collection, speech scientists, clinicians and pathologists will find
interest in the first place. One can easily see this book as a further milestone
on the highway toward earlier diagnosis and richer feedback, potentially
available to more of those concerned, ultimately leading to prediction and
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prevention with most patients in the loop over diagnosis and treatment avail-
able only to a few.

Professor Björn W. Schuller
(Doctor of TUM, Germany,

IEEE Fellow, and IEEE Computer Science Golden Core Member)
Imperial College London, UK, and University of Augsburg, Germany
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Editors’ introduction

Acoustic Analysis of Pathologies from Infancy to Young Adulthood covers a rather
broad pediatric population, starting with infant cry analysis to toddler squeals/
shouts/verbalizations to the dysarthric speech of college students. Among some
of the innovative approaches to signal processing examined in this book is the
study of unsupervised auditory filterbank learning using convolutional restricted
Boltzmann machine (ConvRBM). The experimental results show that the pro-
posed features perform better than the standard handcrafted feature sets such
as mel-frequency cepstral coefficients (MFCC), using various statistically mean-
ingful performance measures. Given that the corpus of literature on infant cry
analysis commenced in the late 1960s, these new findings add significantly to
methodologies used to analyze an infant’s cry for signs of pathology, as well as
to the corpus of knowledge on signal processing in general.

The contributors to this volume use novel methods in analyzing acoustic
sounds of infants and children. To wit, in studying toddlers with autism spec-
trum disorder (ASD), they employ specific research methods that incorporate a
much broader set of features in analyzing toddler acoustic productions. In so
doing, they show how their approach improves the accuracy of diagnosing tod-
dlers with ASD.

In this example of the study of toddlers suffering from ASD, the authors
demonstrate the novel use of wavelet-based and speech modulation spectral
features for ASD diagnosis based not only on speech-like verbalizations but
also on toddlers’ cries, laughs, squeals, shouts and other nonverbal sounds.
They show that the proposed features are complementary to existing ones and,
on a cohort of forty-three 18-month old toddlers, they showed how a support
vector machine classifier was capable of correctly discriminating the ASD
group from the typically developing toddlers with accuracies above 80%, thus
outperforming existing methods. In short, they show that with these new fea-
tures, vocalizations such as cries, squeals, whines, shouts and so forth, prove
to be more discriminative than babble and speech-like vocalizations.

This is of importance in practice because by broadening the acoustic cues
of autism to incorporate nonverbal productions, clinicians will be better able to
diagnose ASD earlier on in the toddler, even before they are able to talk.
Equally important, the contributors show greater precision in analyzing toddler
acoustic signals by not grouping them together into one category regardless of
age. Instead, they base their acoustic analysis on toddlers of roughly the same
age, thus removing the potential bias from natural age-related acoustic changes
and variability. Given the rapid development of children of that age, a differ-
ence in 3 or 4 months can prove significant.
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Rounding out the discussion of acoustic pathologies in infants and toddlers
are the studies on dysarthric children and young adults, which show the same
rigor and precision as the volume’s studies on infants and toddlers. For exam-
ple, contributors show how the use of an interactive system for verifying pho-
neme-level mispronunciations in children’s speech (by labeling utterances at
the phonemic level according to the accuracy of pronunciation) will enable
speech therapists to significantly reduce the investment of time and effort in
providing therapy to children with dysarthric speech. This is extremely impor-
tant in regions and communities where travel and financial constraints do not
allow children easy access to highly skilled speech therapists. The authors
show that by using this system based on acoustic modeling for automated veri-
fication of pronunciation accuracy, much of the work of assessing a patient is
eliminated. This allows the speech therapist to use their time more efficiently
for assimilating the evaluations obtained from the human–computer interac-
tion and to provide performance assessment and prescribe additional therapy.
As such, they show how cutting-edge work in computer-aided speech therapy
can bring the much-needed therapeutic resources to dysarthric children who
otherwise would be left without treatment.

In studying young dysarthric adults, particularly college-age students, the
contributors examine novel approaches to machine adaptation to dysarthric
speech. In so doing, they present new methods that improve the ability of a lis-
tener to understand dysarthric speech. They consider both human and machine
listeners in this process. As such, they look at how one can improve the ability
of the human listener in understanding dysarthric speech by invoking familiari-
zation, which is a listener training method where listeners receive brief, yet
structured, exposure to dysarthria. Similarly, they look at how one can improve
the machine listener’s understanding of dysarthric speech by using adaptive
machine learning methods. They show how the efficacy of such methods can
be improved by starting with an initial model that already incorporates some
information about the person’s speech patterns. Both approaches are speaker-
centric, using methods to optimize adaptation to the speaker rather than force
the dysarthric speaker to try to normalize their speech by undergoing strenuous
rehab that may prove ineffective.

The contributors to this anthology are drawn from prominent universities
and research labs in the United States, Canada and India, as well as from the
commercial sector, such as Google AI. They instill passion and interest in find-
ing the best acoustic methods to diagnose and detect medical problems in the
pediatric population as well as to provide early intervention in treating a wide
range of pathologies stemming from illnesses, developmental disorders and in-
juries. By bringing such eminent researchers under one rubric, this volume
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offers an insightful analysis of acoustic methods for diagnosing and treating pa-
thologies at each chronological stage of the pediatric population. We endeavor
to make this anthology an informative resource for signal processing experts
and speech scientists. We, likewise, strive to make this volume a useful re-
source to pediatricians, psychologists and speech therapists so that it becomes
a game changer in the delivery of medical care and therapeutic support, partic-
ularly in the under-resourced regions where access to diagnostic analysis and
therapeutic intervention is noticeably scarce.
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Anshu Chittora and Hemant A. Patil

1 Understanding infant cry analysis
for pathology classification

Abstract: Infants are difficult to understand as they cannot communicate their
requirements. This motivates us to decode their language in meaningful inter-
pretations so that adults can understand the requirements of their children. In
this chapter, the cry analysis techniques used so far are discussed and some ex-
periments in this direction are reported. Spectrographic analysis is also shown
for its good performance in some pathological cases of infant cries. Along with
this, what makes the infant cry analysis task a difficult task is also elaborated.
Some results on infant cry analysis and classification work are reported in the
later sections of this chapter.

Keywords: Cry modes, spectrographic analysis, higher order spectral analysis
(HOSA), bispectrum, higher order singular value decomposition (HOSVD)

1.1 Introduction

The word infant is derived from the Latin word “Infan” which means speechless.
Since infants cannot communicate using a language used by adults, they use cry
as their communication language. Any language has linguistic and paralinguistic
content in it, but the infant crying has only paralinguistic content. Crying is gen-
erated from a set of complicated and sophisticated physiological activities that
involves coordination among the brain, respiratory and motor control, and the
vocal system. It is considered that the crying helps in development of infant’s
physiology by increasing the pulmonary (lung) capacity [1].

In order to understand the actual reasons of the crying of an infant and to
measure the well-being of an infant, development of a tool is needed which can

Anshu Chittora, Healthark Wellness Solutions LLP, Ahmedabad
Hemant A. Patil, Dhirubhai Ambani Institute of Information and Communication Technology
(DA-IICT), Gandhinagar

Note: Anshu Chittora is now at Healthark Wellness Solutions LLP, Ahmedabad, Gujarat, India.
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any Healthark Wellness Solutions LLP proprietary information.
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support the parents to take necessary actions and ensure the healthy development
of an infant. This requires analysis of the infant cries as it is the only tool used by
the infants to convey their emotional and physical states. Infant cry analysis is not
limited to pediatrics, it requires inputs of neurologists, engineering and linguistics
also. Infant cry analysis can unfold the correlations among these fields.

A team of Scandinavian researchers started the research in infant cry
analysis by applying signal processing methods such as spectrographic analy-
sis and acoustic analysis of the cry signals. For the initial twenty years, spec-
trographic analysis remained the primary tool for cry analysis. Later on,
researchers tried automatic and semiautomatic methods using computer-
based algorithms. Using these methods, researchers tried to classify and ana-
lyse different cry types such as hunger, pain and pleasure cries and few at-
tempts have also been made towards pathological cry analysis. Compared to
other fields of the speech signal analysis, the domain of infant cry analysis is
comparatively less explored and researched.

Apart from the signal processing point of view, cry has also been studied
from the perception point of view. It has been noticed that the mother of the
infant can recognize her infant’s cry. However, recent research shows that rec-
ognition of an infant’s cry by the caregiver is dependent on the time spent by
the caregiver with the infant irrespective of the caregiver’s gender [2]. How pa-
rents perceive the cry impacts their parenting, if a parent can identify the cor-
rect reason of the crying then they can sooth the infant immediately. The
identification of the reason of crying of an infant is recognised by the parents
through the changes in the cry acoustics. If parents misunderstand the baby’s
crying pattern, then they find it difficult to calm the baby and it leads to child
abuse [3]. It is also observed that the way the parents respond to the infant
cries also impacts the changes in the neuro behaviour mechanism [4]. Parents
perception of the deviations in the crying pattern are reflected in their parent-
ing and misunderstanding these calls may result in compromised infant care
and parenting effectiveness [5]. In case, an infant is found with abnormal cry
patterns and characteristics then it is recommended to refer the infant for neu-
rological examination. In the early 3 months of the infant’s life, crying is a sig-
nal of vigour which helps in establishing parent-child contact [6].

1.2 Methods available for infant cry analysis

Since the inception of the idea to analyze the infant cry signals to understand
the physiology of crying, many researchers have used different methods. Brief
information of these methods is as follows:
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1.2.1 Auditory analysis

It is generally noticed that a caretaker or mother can identify the reason of
crying of her infant just by listening to it in daily routine. Wasz Hockert
et. al. have observed different patterns of infant vocalizations for different
reasons of crying, such as hunger, pain, birth and pleasure [7]. In some path-
ological cases, the pain cries of the infants are different from the pain cries
of the healthy infants [8]. Auditory analysis of the infant cries is dependent
on the manual training and perception, the accuracy in judgement is always
questioned.

1.2.2 Time-domain analysis

This method of cry analysis makes use of the conventional chart recorders
and oscillographs to record the cry signal parameters. The durational features
have proved useful in the classification of the severely sick infants from the
normal ones, for example, an infant suffering from brain haemorrhage needs
higher stimulation to generate the cry signal of the same intensity compared
to the healthy infants. Similarly, latency period is also higher in the patholog-
ical infant cries, which varies from 2.6–5.2 seconds compared to 1.2–1.6 sec-
onds in healthy normal infants. It must be noted that the latency time
depends on the wakeful/sleeping state of the infants. The duration of the
cries is also a parameter of interest because it also changes with the physical
fitness of the infants. In sick infants, the duration of the cries is smaller than
the normal infants of the same age [9]. Duration of the cries can be a good
measure of the developmental changes in the infants. As infant grows, the
cry duration also increases.

Though this method is easy and conveys a lot of information, yet, it suffers
from the drawbacks of human error in reading, instrument inertia and paper
and pen speed for taking records. Generally, the features used in time-domain
analysis are duration of the cry, latency period, and second pause and subse-
quent pauses. Latency Period is defined as the duration between the pain stim-
uli applied to the infant and the onset of infant cry sound. The time between
the onset of the infant cry and the end of the signal is defined as the duration
of the cry and it consists of the total vocalization occurring during a single expi-
ration or inspiration. The time interval between the end of the first cry signal
and the following inspiration is called second pause.

1 Understanding infant cry analysis for pathology classification 3
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1.2.3 Frequency-domain analysis

In this method, bandpass filters are used to find the strength of the signal in
different frequency ranges and give the information about the relative mag-
nitude and pitch, formants and frequency related parameters of the signal.
These parameters are of limited value when used alone but can be combined
with other features to extract more information about a particular cry type.

1.2.4 Spectrographic analysis

As the name suggests, this method uses the spectrograms of the cries to analyze
the cries. The spectrogram of a signal is a pictorial representation of the distri-
bution of energy in both time and frequency domain. Most of the work in the
field of infant cry analysis is mainly based on the spectrographic analysis of the
cries. Using this method, duration and frequency domain features are calcu-
lated from the spectrogram of a cry. Using these features, different cry types are
analyzed and significant differences based on these features are identified in
order to classify various cry types. Some of the durational features extracted
from the spectrogram of a signal are duration of a cry, latency period, pause
length between cry units. The frequency-domain features are statistical param-
eters derived from the pitch contour, glottal roll, melody type, biphonation etc.
Spectrographic analysis has shown excellent results in classification of pathol-
ogies also. Some the characteristics found in the spectrograms of the pathologi-
cal cries are as follows [9]:

Cri-du-chat: It has been found in the research that the cries of the infants
who suffer from this disease show a flat pattern of the harmonic contour
and the pitch values lies in the range of 600–1,000 Hz [9].
Down’ s syndrome: The vocalization of the cries was long and the mean
minimum and maximum pitch were observed around 270 Hz and 510 Hz.
Congenital hypothyroidism: Spectrographic analysis of the cries of the
infants who were suffering from congenital hypothyroidism showed a max-
imum pitch of 470 Hz and a minimum pitch of 270 Hz.
Infants with cleft palate: In their spectrographic analysis, no significant
differences were found between their cries and the normal infant cries.
Biphonation was absent in their spectrograms. Mean maximum and mini-
mum pitches were 710 Hz and 360 Hz, respectively.
Neonatal hyperbilirubinemia: In these cries, biphonation and furcation
were observed in the spectrograms. Moreover, the maximum and minimum
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pitches are higher than the normal cries which are 2120 Hz and 960 Hz
respectively.
Hypoglycemia: Biphonation was observed in the spectrogram and the fun-
damental frequency was also higher (1,590 Hz) compared to the normal
healthy infants.

The above results show that the cry characteristics changes with the health con-
dition of an infant. In diseases affecting the central nervous system, the fre-
quency domain features changes. Biphonation and glide are mostly seen in the
pathological cries. Though this method of cry analysis gives better insights in
the cry analysis and characteristics of pathological cry, however, it also suffers
from the disadvantage that identification of cry modes is based on the experi-
ence of a person and subjective.

1.2.5 Recent trends in infant cry analysis

With the advancement of computers and development of the programming
skillset, researchers are using algorithm to analyze the infant cry data which
make the results more accurate and reduces the processing time. The major
work in this domain is related to the cry identification, cry classification, patho-
logical cry classification and developmental studies of the infants. The identifi-
cation of an infant from his or her cry is reported in [10, 11] where use of MFCC
is proposed for this work. The work done by Xie et. al. is a landmark in infant
cry research, they defined the ten cry modes from the spectrogram and used
them for the automatic classification of various diseases [12–14]. Other impor-
tant publications in this area are related to using different machine learning
methods for the cry types classification, normal versus asphyxia pathology clas-
sification and normal versus pathological cries classification [15–29].

1.3 Challenges in infant cry analysis

This section discusses the problems faced in infant cry analysis when the stan-
dard signal processing methods are applied on infant cry signals. the signal proc-
essing methods discussed here are short-time Fourier transform (STFT) analysis,
linear prediction (LP) analysis, cepstral analysis and Teager energy operator
(TEO) based analysis. For the analysis, the adult samples are taken from the
TIMIT database and the infant cry samples are taken from the collected corpus
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which is described in detail in [30]. All the samples (of adults and infants both)
used in the analysis have been down-sampled to 12 kHz to maintain the similarity
in the analysis.

1.3.1 Short-time fourier transform (STFT) analysis

In speech signal processing applications, short-time Fourier transform (STFT) is
frequently used. The STFT of a frame s[n] is given as [31]:

Xðm,ωÞ=
X∞

n= −∞

s½n�w½n−m�e− jωn = < sðnÞ,wn,m ejωn > , (1:1)

where s[n] is the signal, w[n] is the window, ω is the frequency and <, > is the
inner product operator of s[n] with time-frequency atoms fwn,mejωng, where
wn,m =w½n−m�. Thus, STFT shows the frequency and time in the same plot.

A comparison of STFT of the voiced speech segments of the vowel /aa/
for a male, female, child sound and infant cry signals (voiced) are shown
in Figures 1.1–1.4. The samples were recorded at a sampling frequency of
12 kHz. The speech signals are segmented into frames of duration 50 ms
(30 ms in Figure 1.4) with an overlapping rectangular window of 10 ms. From
Figures 1.1 and 1.2, it can be observed that the male voice has clear harmonic
structure compared to the female voice. However, in females and infants, the
harmonics are not much clear and have negligible amplitudes after the fourth
harmonic (as shown in Figure 1.3).
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Figure 1.1: STFT representation of a speech signal (male voice): (a) time domain signal and (b)
STFT of (a).
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In the male and female speech, F0 ranges around 125 Hz and around
200 Hz spectral range, respectively. These values are around 250–400 Hz in
children while in infants, it is around 500 Hz range and can raise up to 1 kHz in
some cases (pre-mature infants). These variations in F0 are due to the different
sizes and masses of the vocal source (vocal folds). The size of the larynx in men
is about 40% taller and longer than women. The vocal fold length in male
speaker is 60% longer than the female speaker, i.e. mass of vocal folds is signif-
icantly higher for male speakers than the female and hence, it takes longer
time interval (i.e. more T0 and hence lesser F0) to complete the glottal cycle for
male speakers, making F0 lower than the female speakers. For the same reason,
F0 in children and infants is comparatively much higher. F0 is related to the
vocal fold length (L) by the equation [32]:

F0 = 1
2L

ffiffiffiffiffi
σ
ρ,

s
(1:2)

50 100 150 200 250 300 350 400 450 500 550 600
–0.2

0

0.2

10
20
30
40

Sample index

Am
pl

itu
de

Am
pl

itu
de

Frequency (Hz)

(a)

(b)

0 1,000 2,000 3,000 4,000 5,000 6,000

Figure 1.2: STFT representation of a speech signal (female voice): (a) time-domain signal and
(b) STFT of (a).
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Figure 1.3: STFT representation of a speech signal (infant cry signal): (a) time-domain signal
and (b) STFT of (a).
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where σ is the longitudinal stress, and ρ is the tissue density in vocal folds.
The high values of the fundamental frequency in infants causes interfer-

ence in the formant frequencies as both lies around similar values (1 kHz).
Sometimes, it causes difficulty in the analysis of cries using STFT.

1.3.2 Linear prediction (LP) of the speech

The LP analysis of a male speech sample for the vowel /aa/ is shown in
Figure 1.5. The length of the speech signal frame is 50 ms and the order of LP
is taken as p = 12. The LP error signal is plotted in Figure 1.5(b) which is calcu-
lated by subtracting the original speech segment s(n) from its estimated approxi-
mation s^(n) as shown in eq. 1.3.

eðnÞ ¼ sðnÞ-s ð̂nÞ (1:3)

The log- magnitude spectrum of the LP residual and of the STFT spectrum is plot-
ted in Figure 1.5(c). The STFT spectrum is shown by a light solid line while the LP
spectrum is shown by dark solid line. It can be observed that when the LP order is
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low, the resonance peaks matches with each other whereas increasing the LP
order will lead to matching with the STFT peaks. A similar analysis is also done for
the male, female, children and infant voice samples in Figures 1.6–1.9.

The spectral peaks of the STFT spectrum for an infant cry signal matches
with the source harmonics due to the sampling of the vocal tract. For compar-
atively higher values of LP order, i.e. p, the LP model tries to match all the
peaks of the spectrum for infants than those of male, female and children
subjects.

Increasing the order of LP analysis results in the matching of the LP spec-
trum and the STFT spectrum and similarly, the first formant frequency ap-
proaches to the fundamental frequency of the vocal folds vibration as evident
from Figures 1.6–1.9. In case of infants, for small values of the p, harmonics of
fundamental frequency (F0) are detected instead of formants. Hence, it is diffi-
cult to find the formant frequencies of infants using LP analysis.

The reason behind the difficulty in estimation of the formant frequency in
infants is the small size of the vocal tract and its narrow cross-section. The light
weight of the vocal folds and sometimes under developed vocal folds and lar-
ynx adds to complexity in the estimation of fundamental frequency and also
make F0 higher, approaching to the first formant frequency. Thus, the problem
of spectral resolution is much more complex in case of infants compared to fe-
male voices [33–35]. The number of formants covered in [0, Fs/2] is smaller (al-
most half) than male, female voices because the formant frequencies are higher
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Figure 1.5: LP analysis of a male speech for vowel /aa/ (a) time-domain signal (b) LP residual
and (c) LP spectrum for p = 12 and STFT, here, STFT is shown by light colour and LP spectrum
by dark line.
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in infants due to small length of the vocal tract. It indicates the need for using
higher sampling frequency in case of infant cry analysis to capture the system-
related information.

From Figure 1.10, it can be observed that the l2 norm of residual exhibits a
sharp decay initially (upto LP order 10–15) indicating that the all-pole LP model
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Figure 1.8: Changes in LP spectrum with LP order p in child’s speech. (a) time-domain signal
(b) LP error signal and (c) LP and short-time Fourier spectra (in dB).
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first tries to match the dominant peaks in the spectrum (which corresponds to
the formants). Afterwards, there is a little gradual decay in l2 norm and then, it
remains almost constant indicating no more optimization of LPCs is possible.
This in turn means that speech samples are also related to each other with a
dependency which is nonlinear in nature. The gradual decay in the l2 norm
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Figure 1.9: Changes in LP spectrum with LP order p in infant cry signal. (a) time-domain signal
(b) LP error signal and (c) LP and short-time Fourier spectra (in dB).
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indicates that the LP spectrum tries to match the other dominant peaks (except
formants) in STFT. This spectral matching happens at different LP orders for
different speakers (male-to-infant). Due to sampling of vocal tract spectrum by
the very distantly-spaced source harmonics, the spectral peaks in the STFT of
infant cry are of almost similar height and hence, LP model tries to match all
the peaks simultaneously for comparatively larger values of LP order than that
of children, female, and male speakers.

It is clear from the Figure 1.11 that for the same sampling frequency (FS),
the number of formants covered in the range [0, Fs/2], is almost half in infants
compared to the adults (because of the fact that vocal tract length is almost half
in infants compared to the adult speakers due to eq. (1.2)). This draws an impor-
tant observation that in case of adult speech analysis, sampling frequency (FS)
as low as 12 kHz (or even 8 kHz) is sufficient. However, for infant cry, to extract
system-related information, the sampling frequency should be kept especially
high in order to capture more formants.

10 20 30 40 50 60 70 80 90 100 110 120

1

2

3

4

5

6

7

8

9
x 10

-3

Male
Female
Children
Infant

RM
SE

LP order “p”

Figure 1.10: Trend in RMSE of LP error and LP order (p).
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1.3.3 Cepstral analysis on infant cry signal

In Figure 1.12, the cepstrum analysis is shown for a short speech segment of 30 ms
of a female subject’s voice of the vowel /aa/. In all the samples, the sampling fre-
quency is kept at 12 kHz. In Figure 1.12, the subfigure (a) shows the time domain
signal and in subfigure (b) its cepstrum is plotted. A lifter shown by thick line in
subfigure (b) is used to separate the initial portion of the signal. The liftered signal
is then processed with Fourier transform to get the vocal tract response in fre-
quency domain. The peaks of the vocal tract response (shown in Figure 1.12(c))
correspond to cepstrally smoothed vocal tract frequency response superimposed
on STFT, i.e., formants. In the Figures 1.13–1.16, the subfigure (c) shows a thick
line that corresponds to the cepstrally smoothed vocal tract response and the thin
line corresponds to the STFT of short-time signal shown in each subfigure (a).

A similar analysis is done on male, female, child and infant voices and corre-
sponding outcomes are shown in Figures 1.13–1.16. In all these analyses, a speech
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Figure 1.11: Transition of formants into F0 harmonics with increasing order of linear predictor
(LP). (a) male speech, (b) female speech, (c) children speech and (d) infant cry signal.
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segment considered is of 30 ms duration. Comparison of Cepstral analysis with LP
analysis for the same voices shown in the previous section indicates that Cepstral
analysis performs much better in estimation of the formant frequencies in all

100 200 300
–0.2

0
0.2

100 200 300 400 500
–0.5

0
0.5

1

1,000 2,000 3,000 4,000 5,000 6,000 1,000 2,000 3,000 4,000 5,000 6,000

1,000 2,000 3,000 4,000 5,000 6,0001,000 2,000 3,000 4,000 5,000 6,000

0.5

1

100 200 300
–0.2

0
0.2

100 200 300 400 500
–0.5

0
0.5

1

0.5

1

100 200 300
–0.2

0
0.2

100 200 300 400 500
–0.5

0
0.5

1

0.5

1

100 200 300
–0.2

0
0.2

100 200 300 400 500
–0.5

0
0.5

1

0.5

1

Panel I Panel II

Panel III Panel IV

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a)(a)

(b)

(c)

Sample index 

Am
pl

itu
de

Sample index

Am
pl

itu
de

Frequency (Hz)

Am
pl

itu
de

Sample index

Am
pl

itu
de

Sample index

Am
pl

itu
de

Am
pl

itu
de

Frequency (Hz)

Figure 1.13: Cepstrum analysis for male speech for different lifter sizes. (a) speech signal,
(b) cepstrum of (a) and (c) cepstrally smoothed vocal tract frequency response obtained by
liftering (b) and superimposed on STFT. Panel I: lifter size = 10 samples, Panel II: lifter size = 20
samples, Panel III: lifter size = 25 samples and Panel IV: lifter size = 30 samples.
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speakers; especially in case of high pitch speakers, it outperforms. To minimize
the interference of the speech source in the system frequency response, the lifter
size should be kept small enough to capture the system-related information, i.e.,
formants and ignoring the source information, F0.

From the analysis, it can be observed that for the infants the lifter size of
10–15 samples (~1–1.25 ms) is sufficient to estimate the impulse response of the
vocal tract. Increasing the lifter size to high values (comparable to adult speech
lifters, 30 samples 2.5 ms) causes interference of the source harmonics with the
vocal tract impulse response. The reason behind this interference is the high fre-
quency of vocal fold vibrations (F0, pitch period of 1–2 ms) in infants which
causes high-frequency harmonics in the same frequency range where the vocal
tract response lies. Hence, the separation of the source and system response be-
comes difficult in case of infants. With the same small lifter size, it is not possible
to capture the system information in adults. Moreover, a fixed lifter size can work
for different speakers of varying ages in adults while in infants because of higher
variations in pitch among different infants and their ages, the lifter size may vary.
Thus, algorithm development is needed for infant cry analysis for considering
these variations in pitches.
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Figure 1.14: Cepstrum analysis for female speech for different lifter sizes. (a) speech signal,
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1.3.4 TEO analysis of the infant cry signal

The speech production system is considered as an LTI (Linear Time-Invariant) sys-
tem in conventional speech signal processing applications. However, the results
reported by Teager indicates that speech production is a non-linear phenomenon.
According to Teager, the excitation source of speech production contains the vorti-
ces which are distributed across the vocal tract and interact non-linearly with the
pulsatile or aperiodic airflow. These interactions of the vortices and airflow are the
actual source of speech production which is non-linear in nature. Thus, Teagers
suggested a nonlinear model of speech production using energy of the airflow.
This model suggests an energy tracking operator known as Teager Energy
Operator (TEO) [36, 37]. For a short speech segment x(n), TEO is given by

ψ xðnÞf g= x2ðnÞ− xðn− 1Þ.xðn+ 1Þ, (1:4)

where ψf.g denotes the TEO operator. The dependence of the TEO on the past,
present and future samples of the signals can be observed in eq. (1.4). Thus,
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Figure 1.16: Cepstrum analysis for infant cry signal for different lifter sizes. (a) speech signal,
(b) cepstrum of (a) and (c) cepstrally smoothed vocal tract frequency response obtained by
liftering (b) and superimposed on STFT. Panel I: lifter size = 10 samples, Panel II: lifter
size = 20 samples, Panel III: lifter size = 25 samples and Panel IV: lifter size = 30 samples.
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TEO has high resolution and gives a running estimate of the energy. The esti-
mate of energy can have positive and negative values as well. In this Section,
TEO analysis of the speech signals of the male, female, children and infant’s
cry is presented and compared with respect to others. All the samples in the
analysis are down sampled to 12 kHz and then low pass filtered to 5 kHz. The
speech signal is then segmented into the frames of 50 ms with 10 ms overlap. In
all the following analyses, the LP residual e(n) (i.e., eq. (1.3) and the TEO profile
of the same signal are plotted to compare them.

The observations from Figures 1.17–1.21 are as follows:
1. It can be observed from Figure 1.17 that the TEO profile of a signal is not

always positive though it correlates to the energy of a signal. The polarity
of the TEO signal depends upon the following conditions
a) If x2ðnÞ> xðn− 1Þ.xðn+ 1Þ then TEO is positive, and
b) If x2ðnÞ< xðn− 1Þ.xðn+ 1Þ then TEO is negative

2. During the silence portion of the signal, the TEO is zero (as shown in Panel
II Figure 1.17(b)) which indicates the ability of the TEO signal to identify the
silence regions in the speech signal or infant cry signals. Thus, TEO can de-
tect glottal activity from the no glottal activity area.

3. Glottal closure instances (GCI) are the instances where the maximum change
in energy occurs due to the sudden closure of the vocal folds at GCIs. This
event is an effect of sudden decrease in pressure at epochs. At these instances,
the peaks are observed in the LP residuals well as in the TEO profile of the
signals. The TEO signal match with the peaks of LP residuals. This indicates
that like LP analysis, TEO also has the capability to capture the excitation
source information. Thus, TEO analysis can also be utilized for the pitch ex-
traction of the speech signals (As shown in Figure 1.18).

It can be observed from the TEO energy profiles of male, female, child speech,
and infant cry signals shown in Figure 1.18–1.21 that the TEO energy profile is
not smooth, it has many bumps within two consecutive GCI locations. If the sig-
nal under consideration is a damped sinusoid, then its TEO profile will be line-
arly decaying [38]. Presence of bumps in the TEO profile indicates deviation of
the system from the linearity. This is an indicator of the non-linearity present in
the speech production mechanism [31]. Hence, any sound produced by human
beings is caused by the nonlinear interactions of the excitation source with
vocal tract system (in particular with the first format F1) [31].

From Figures 1.18–1.21, it is clear that the variations in Teager energy are
different for different speakers (gender). Thus, the location and manner of non-
linearity are different in different subjects.
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From the analysis of TEO profiles of the infant, the presence of bumps indi-
cates the presence of non-linearity in speech production similar to the adults.
This non-linear behavior of the production mechanism can be explained by the
presence of airflow vortices during speech production.

0 100 200 300 400 500 600
–0.5

0

0.5

0 100 200 300 400 500 600
0

50

100

0 100 200 300 400 500 600
–0.1

0

0.1

(a)

(b)

(c)

Am
pl

itu
de

Am
pl

itu
de

Am
pl

itu
de

Sample index

Figure 1.18: TEO analysis of voiced infant cry (normal) signal, (a) time-domain signal (b) TEO
profile and (c) LP residual of (a).
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Figure 1.17: TEO analysis of infant cry signal for voiced signal (Panel I) and unvoiced signal
(Panel II). (a) Time-domain signal of an infant’s cry and (b) corresponding TEO profile and (c)
LP residual of (a).
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Figure 1.19: TEO analysis of voiced male speech signal, (a) time-domain signal (b) TEO profile
and (c) LP residual of (a).
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Figure 1.20: TEO analysis of voiced female speech signal, (a) time-domain signal (b) TEO
profile and (c) LP residual of (a).
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1.4 Analysis of infant cries using spectrogram

If the signal under consideration is a stationary signal, we can work with Fourier
analysis [12, 39, 40] but the cry signal is a non-stationary hence, Short-Time-
Fourier Transform of the signal is used for the analysis which represents signal
energy in the time-frequency domain. In STFT analysis, we divide the signal in
smaller (comparatively) stationary segments using an analysis window, and then
Fourier analysis is performed on the smaller segment of the signal.

A spectrogram is the representation of variation of signal energy along time
and frequencies. Spectrograms are generally used in the fields of radar, sonar,
music, and speech processing. In the analysis of speech signals, spectrogram is
used for the identification of voiced, unvoiced, and plosive sounds. Spectrograms
are used to study the voice excitation source and vocal tract system.

To analyze the signal in frequency-domain Continuous Time Fourier trans-
form (CTFT) is used. CTFT of a signal s(t) is given by

SðωÞ= FfsðtÞg=
ð∞
−∞

sðtÞe− jωtdt, (1:5)

=
ð+∞

−∞

sðtÞ cosðωtÞdt − j
ð+∞

−∞

sðtÞ sinðωtÞdt (1:6)
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Figure 1.21: TEO analysis of voiced children’s speech signal, (a) time-domain signal (b) TEO
profile and (c) LP residual of (a).
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The CTFT has infinite time-dimensional sine and cosine basis functions and there-
fore, it shows poor resolution in time. Hence, instead of working with an infinite-
dimensional basis function, it is truncated to localize events in non-stationary sig-
nals or highly time-varying signals. This gives motivation to the introduction of
short-time Fourier transform (STFT). The windowed Fourier transform (WFT) was
introduced to measure the frequency variations of the sound in 1946 by Dennis
Gabor [41]. Spectrogram of a signal represents squared magnitude of the STFT of
a signal. On the X and Y- axis time and frequency are represented, respectively.
For a signal s(n), the spectrogram is given by:

Sðn,ωÞ=
X∞

n= −∞

s½n�w½n−m�e− jωn
����

����
2

, (1:7)

= < sðnÞ,wm,ωðnÞ>j j2, (1:8)

where s(n) is the sampled signal of s(t), w(n) is the analysis window, wm,ωðnÞ=
w½n−m�ejωn and < sðnÞ,wm,ωðnÞ> indicates the inner product of signal s(n)
with time-frequency atoms, i.e., wm,ωðnÞ=w½n−m�ejωn.

Depending on the size of the analysis window, spectrograms are of two types:
(1) narrowband spectrogram and (2) wideband spectrogram. In the case of wide-
band spectrograms, the analysis window is taken as less than a pitch period
(<3 ms) whereas in the case of narrowband spectrograms the window width is
taken as 2–3 pitch periods. Narrowband spectrograms are used to define the vocal-
izations in birds, animal and human beings. The wideband spectrograms are used
to analyze the excitation source harmonics (formants) and its variations over time.

Wideband spectrograms are generally used to analyze the signals and it is
computed by estimating the spectrum of a short segment of the signal. The short
time segment or the window of the signal enables to capture the rapid variations
in the amplitude of the signal. During the voiced portion of the speech, the vocal
folds flap together and cause a rapid increase in the amplitude which is reflected
as vertical lines in the wideband spectrograms. In a narrowband spectrogram, a
longer time window is used to capture the rapid increase in amplitude that occurs
at the time of vocal fold closure. Narrowband spectrograms have good frequency
resolution. However, wideband spectrograms have good temporal resolution.
Wideband spectrograms are generally used in speech signal processing-related ap-
plications, such as word segmentation, phoneme segmentation, voicing, unvoic-
ing, and plosive detection. In Figure 1.22, wideband spectrograms of a male,
female, child speech, and infant cry of same duration are shown for comparison.

STFT obeys the Heisenberg’s uncertainty principle. The principle says that
for a particle, more precisely the momentum is known, less precisely position
is known and vice-a-versa. The same principle can be applied in the signal
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processing framework for time-frequency representation of the signal. As has been
stated earlier that the length of the window is directly proportional to the fre-
quency resolution of the spectrum, and it is inversely proportional to the temporal
resolution of the signal in the time-frequency analysis. The uncertainty principle in
the signal processing framework states that one cannot know what spectral com-
ponents exist at what instance of time. However, one can know the time intervals
in which a certain band of frequencies exists. This is known as time-frequency res-
olution [42]. Hence, if the signal length and window length are of same duration,
we get good frequency resolution and temporal information is lost. Reducing the
length of the window function improves the temporal information and reduces fre-
quency resolution. Thus, there exists a trade-off between the window length and
spectro-temporal resolution in STFT. For the spectrographic analysis, the selection
of window size is also very critical. The uncertainty principle can be written as

σ2t .σ2
ω ≥

1
4
, (1:9)
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Figure 1.22: Wideband spectrogram of (a) normal male speech, (b) normal female speech, (c)
normal child speech and (d) infant cry.
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where σ2t and σ2ω are the spread in time and frequency-domain with zero mean,
respectively. In particular, σ2t = 1

2π

Ð∞
−∞

t2jf ðtÞj2dt, σ2ω = 1
2π

Ð∞
−∞ ω2jFðωÞj2dω and

jjf ðtÞjj2 = 1.
In a wideband spectrogram, vertical striations correspond to the local en-

ergy fluctuations. The rate of vocal fold vibrations is called fundamental fre-
quency (F0) of speech sound. It is known that the F0 increases in the order
defined as male, female, child, and infant. From Figure 1.22(a) as F0 is low in
male voice, the vertical striations are clear in the spectrogram. However, as
we move from male to child’s voice, these are not at all clear and in infant’s cry,
these are very closely spaced, and do not impart any significant information.
From the wideband spectrograms of male and female voices, vocal tract resonan-
ces are clearly visible. However, in case of child and infant cries, formants are
not visible in the spectrogram. This is primarily due to the sampling of the vocal
tract spectrum by the largely-spaced pitch (F0) or excitation source harmonics.
Thus, formant structure is there in the spectrum, however, we cannot see it in
machines due to signal processing artifacts of sampling. This is the reason that
wideband spectrograms are not so useful in infant cry analysis.

In Figure 1.23, narrowband and wideband spectrograms are shown for the
same infant cry signal. In both the spectrograms, excitation source harmonics
are dominating, making it difficult to identify vocal tract resonances in the wide-
band spectrogram which is primarily due to the serious interaction of pitch (F0)
source harmonics with vocal tract spectrum. However, the excitation source and
vocal tract harmonics are mixed together in the wideband spectrogram. On the
other hand, in narrowband spectrogram, the excitation source harmonics are
clearly visible and hence, these can be used to define various infant cry modes
(e.g., study reported in [12]). Therefore, in remaining portion of this chapter, nar-
rowband spectrograms are used for infant cry analysis.

1.4.1 Infant cry modes from narrowband spectrogram

From the spectrographic patterns of the infant cries, various cry modes have
been identified by many researchers. The ten distinct cry modes used here for
the analysis of infant cries are as follows [14, 43]:

Rising: In this mode, the F0 increases with time and is clearly observable.
Flat: If the pattern has constant and clearly visible F0, it is termed as flat
melody.
Falling: In this mode, the F0 contour has a falling trend with time and is
clearly visible
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Double harmonic breaks: When simultaneous parallel lines are observed
between the harmonics of F0, they are called double harmonic breaks. The
lines in between the harmonics of the F0, are harmonics of a frequency
other than F0. Generally, it presents the pathological condition of an infant,
sometimes, they are also observed in newborn cries.
Glottal roll or glide: it is observed at the end of the cry and has a vibratory
pattern of the harmonics of F0. During this mode, the energy of the har-
monics decreases slowly.
Weak vibration or vibrato: It is similar to the glottal roll except that this
may occur in the middle of the infant cry also instead of at the end of the
cry. The energy in weak vibrations is much smaller.
Hyperphonation: It is defined as the regions where F0 exceeds 1 kHz. The
presence of hyperphonation is related to the presence of pathology (i.e.,
neural disorders).
Inspiratory phonation: It occurs due to the sound made by the infant dur-
ing inhalation. This occurs before the phonation region of the cry sound.
Typically, of much smaller duration.
Dysphonation: This is the noise concentration found in the infant cries.
This is characterized by the irregular or unstructured distribution of energy
and typically the energy in this region is very high, and heavy turbulence is
created in this region. If dysphonation dominates in the spectrogram, it may
indicate the presence of pathology. However, newborn infant cries also have
high dysphonation regions.
Vibrations: These are similar to weak vibrations, however, occurs with high
energy.

All these cry modes are shown in Figure 1.24. In the next Section, spectrographic
studies are reported carried out for infants suffering with laryngomalacia, deaf-
ness, and normal cries.

1.4.2 Spectrographic analysis and observations

Normal infant cry

The cry used in the analysis is collected during the vaccination of a 3-month old
infant. The cry signal and its narrowband spectrogram are shown in Figures 1.25
and 1.26. In the spectrogram, flat, rising, falling and glide melody patterns are ob-
served. Pitch harmonics are also seen along with hyperphonation and double har-
monic breaks.
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Neonatal cry

This is another case of normal infant crying. The cry is recorded while the neo-
nate was given an injection (pain cry). The age of the neonate was 5 days. The
spectrogram of the neonatal cry is shown in Figure 1.27 and it can be seen that
the duration of the cryunits is very small and lacks in energy due to poor physi-
cal strength and poor regulation of the rib cage movement by his brain. The
spectrogram has double harmonic breaks and hyperphonation is also present.
Frequency inhalation is visible in the spectrogram.

Cry in infants with larynx not developed (Laryngomalacia)

It is a condition in which larynx are not fully developed in the infant and is a kind
of laryngeal abnormality [44]. Infants suffering from this abnormality produce a
noisy breathing sound which is seen as unvoiced region in the spectrogram.

In the spectrogram of the cry signal of an infant suffering from laryngoma-
lacia (Figure 1.28), dysphonation, hyperphonation and inhalation patterns are
seen. Spectral resolution is poor causing unstructured energy distribution in
these cries due to turbulence. However, double harmonic breaks, glottal roll and
glide are not seen in the spectrogram. Similar observations were made in [45].

Deaf infant’s cry

The causes of hearing loss in infants are infection, genetics and mother with
diabetes condition during pregnancy. Newborns with hearing loss do not re-
spond to the sound and sound levels [46].
The cries of deaf infants are very short and cryunits are followed by long silen-
ces as shown in Figure 1.29. In the spectrogram of these cries, dysphonation is
seen. Melody pattern is generally rising with a sharp fall and a presence of
weak vibrations. Inspiratory phonations are absent in these cries while source
harmonics are seen only in small sections of the spectrogram.

1.4.3 Summary of observations from spectrographic analysis

A summary of the presence or absence of various cry modes is given in
Table 1.1.
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From the spectrographic analysis of infant cries of normal and pathological
infants, it is observed that dysphonation is generally associated with the patho-
logical condition of an infant. Inspiratory phonation and dysphonation are also
seen in the pathological cries, however, hyperphonation is also observed in the
newborn cries. Weak vibrations are also present in the pathological cries.
However, any mode cannot be associated with a particular disease and the
presence of any of these modes can not assure the pathological condition of an
infant. Thus, a robust tool is needed to identify the pathological state of an
infant.

The spectrographic analysis can be used as a primary tool for the screening
of the pathological condition of an infant which advices the caretaker to go for
a detailed examination of the infant. The shortcomings of the spectrographic
analysis are listed below:
1. Poor dynamic range and spectral resolution of the spectrogram,
2. Prior experience is required in spectrogram reading (in addition, it is sub-

jective and depends upon cognitive factors), and
3. Analyzing a large dataset with spectrograms is a tedious and time-consuming

work.

Spectrograms employ a fixed duration window function w(n), which limits the
joint time-frequency atoms, i.e., wm,ωðnÞ=wðn−mÞejωn.

1.5 Analysis of normal and pathological infant cries

1.5.1 Pre-processing and feature extraction

In this analysis, the data were collected at the sampling frequency of 44.1 kHz.
From the infant cry samples, data is divided into several cryunits. In all, we
have 229 normal cryunits and 145 pathological cryunits. The cry signal is
passed through a fourth-order lowpass filter with a cutoff frequency of 3 kHz.
Then, for each cryunit, voiced region is selected using energy measure (in par-
ticular, l2 norm-based algorithm). From the voiced portion of the cryunit, F0
contour is extracted using a sliding window of 30 ms with overlap duration of
15 ms. For each of the cry sound frame, mean fundamental frequency (F0) is
estimated using autocorrelation method. After finding the F0 contour and the
length of each cryunit (i.e., duration), a feature vector (1×4) is formed. The fea-
ture vector is given by V = [min F0, max F0, mean F0, duration]. For the estima-
tion of F0, autocorrelation method is used.
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1.5.2 Autocorrelation method

The method used for fundamental frequency (F0) estimation is the autocorrela-
tion-based method [47]. In this method, autocorrelation of the short segment of
the signal is found. The autocorrelation of the signal s(n) is given by [47]

RðlÞ=
XN − 1− l

n¼0

sðnÞsðn+ lÞ, (1:10)

where l is a lag element. The autocorrelation function is a non-invertible trans-
formation of the signal, which represents the structure of the waveform. Hence,
for the pitch period (P) detection of a voiced segment of speech, if the signal
s(n) is periodic with period P, i.e., sðnÞ= sðn+ PÞ then its autocorrelation func-
tion will also be periodic with the same pitch period P, i.e., RðlÞ=Rðl+PÞ. Using
this property of the autocorrelation function, peaks of the autocorrelation func-
tion of the cry signal are found. The difference in these peaks corresponds to
the pitch of the signal. The fundamental frequency can be found from pitch pe-
riod using F0 = Fsðsamples per secÞ=pitch periodðsamplesÞ. This method is illus-
trated in Figure 1.30.

1.5.3 Experimental results

One-way ANOVA analysis [48] is conducted and the significance of proposed
features is observed for the following cases:
a. Normal vs. pathological cry
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Figure 1.30: Estimation of pitch period using autocorrelation method. (a) time-domain infant
cry signal, (b) its autocorrelation function and (c) peaks corresponding to pitch period. In all
the subfigures, X-axis is sample index and Y-axis corresponds to the amplitude of the signal.

38 Anshu Chittora and Hemant A. Patil

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



b. Normal pain vs. pathological pain cry
c. Normal pain vs. normal hunger cry
d. Pathological pain vs. pathological hunger cry

From Table 1.2, it can be observed that for normal pain cries, maximum F0
is higher than the normal hunger cry. The mean F0 of pathological cries is sig-
nificantly higher than the normal infant cries and the same trend is observed in
the pain cry analysis of normal and pathological cries. Minimum F0 of patho-
logical pain cry is higher than the hunger cry of similar type. Hunger cry is lon-
ger than pain cry in both normal as well as pathological infant cries. Minimum
F0 of pathological cries is higher than normal cries. Minimum F0 of pathological
cry is higher than normal pain cry. However, minimum F0 of hunger cry in both
the cases are almost the same. Hunger cry of pathological infant has higher
mean F0 than the normal infant’s hunger cry.

Observations from Table 1.3, suggest that minimum, maximum and mean fun-
damental frequencies are good features for cry classification of normal vs. path-
ological cries. In both cases, minimum F0 and maximum F0 are good features
to identify hunger and pain cries as well. Duration does not seem to be a good
feature for identifying the normal and pathological cries. However, it is a good
indicator of identifying pain and hunger cries in both normal and pathological
infants. Mean F0 feature does not serve as a feature for distinguishing normal
pain and normal hunger cry (as the number of samples and number of classes
in the analysis are same, it resulted in same values of degree of freedom ‘Df’ in
the ANOVA analysis).

Table 1.2: Statistics of features for all cry types.

Cry type Features Minimum F
(Hz)

Maximum F
(Hz)

Mean F
(Hz)

Cry length
(s)

Normal pain () . . . .

Normal hunger () . . . .

Normal all () . . . .

Pathology all () . . . .

Pathological pain () . . . .

Pathological hunger () . . . .

* Numbers in brackets indicate the number of cryunits
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Looking at the boxplots shown in Figure 1.31 of durational features for all the
four cases, it can be observed that the means of the two classes within each case
are not much different. However, the duration of hunger cries is found to be longer
than the pain cries in both normal and pathological infant cries. Furthermore, nor-
mal pain cries are generally longer than pathological cries. When minimum F0
plots are analyzed as shown in Figure 1.32, it is observed that this feature is not
very much different in the two classes in all four cases. Only pathological pain
cries have higher minimum fundamental frequency than the normal pain cries.

The mean fundamental frequency (F0) of pathological cries is significantly
higher than the normal infant cries and the same trend is observed in the pain
cry analysis of normal and pathological cries as shown in Figure 1.33. There is
no significant difference in the maximum F0 of all four cases. Normally, pain
cries have higher maximum F0 (Figure 1.34). The significant difference in dura-
tion and F0 of normal and pathological pain cries is the reason that these fea-
tures can be used to classify normal vs. pathological cries.

Features derived from F0 contour for a cryunit play an important role in characteri-
zation of cry type and identify the state of the infant. For hunger cries, generally
the duration is longer and for pain cries, F0 is higher. These features are important
acoustic cues for a parent or a caretaker of an infant for recognizing the need
of infant (hunger) and for identifying the urgency of cry call (in case of pain cry).
For infants who suffer from some pathology, it has been observed by their
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Figure 1.31: Box plots of duration features for (a) normal and pathological (b) normal pain
and pathological pain cries, (c) normal pain and normal hunger cries and (d) pathological
pain and pathological hunger cries. In all subplots, Y-axis is time in sec. and X-axis
represents the class type. Notations: N: Normal, P: Pathological, NP: Normal Pain, NH:
Normal Hunger, PP: pathological pain, PH: Pathological hunger infant cry.
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parents that their infant’s cries are either shorter than normal infants or they
have comparatively either higher or lower pitch than normal infants. The same is
observed in our experiments as well. Change in F0 of pathological cries can be
attributed to instability in neural control of the larynx and lower vocal tract [49].
These parameters cannot be used alone for infant cry classification. However,
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Figure 1.32: Box plots of minimum fundamental frequencies (F0) features for (a) normal and
pathological (b) normal pain and pathological pain cries, (c) normal pain and normal hunger
cries and (d) pathological pain and pathological hunger cries. In all F0 plots, Y- axis is
frequency in Hz and X-axis represents the class type.
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Figure 1.33: Box plots of mean fundamental frequencies (F0) features for (a) normal and
pathological (b) normal pain and pathological pain cries, (c) normal pain and normal hunger
cries and (d) pathological pain and pathological hunger cries. In all F0 plots, Y- axis is
frequency in Hz and X-axis represents the class type.
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these features can be used along with some suitable features for improving the
classification results.

1.6 Sudden infant death syndrome (SIDS)

Sudden infant death syndrome (SIDS) is the condition of an infant’s death where
the reason for death remains unanswered even after thorough medical examina-
tion and autopsy. However, sudden unexpected death in infancy (SUDI) or sudden
unexpected infant deaths (SUID) refer to deaths in infancy, where the reason may
be explained or unexplained. The distinction between SIDS and SUID is generally
very difficult. Most of the SIDS deaths occur during the 1–3 months of age. The
chance of deaths due to SIDS reduces after 1 year of age. It is also observed that
most of the SIDS deaths occur in cold weather. Among other factors responsible
for SIDS, are mothers who are of less than 20 years of age, prenatal exposure to
cigarette, tobacco and nicotine. The prone or side sleep position increases the risk
of rebreathing expired gases, resulting in hypercapnia and hypoxia. This position
also increases the risk of overheating by decrease in heat loss and increasing body
temperature compared to normal infants. The risk for SIDS is exceptionally high
for infants who sleep on their stomach. This interesting observation led to a break-
through investigation by studying the sleep postures of infants residing in East
Germany vs. West Germany when Berlin wall was broken. Side sleeping is recom-
mended only in exceptional cases for infants with upper airway disorder for
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Figure 1.34: Box plots of maximum fundamental frequencies (F0) features for (a) normal and
pathological (b) normal pain and pathological pain cries, (c) normal pain and normal hunger
cries and (d) pathological pain and pathological hunger cries. In all F0 plots, Y- axis is
frequency in Hz and X-axis represents the class type.
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whom the airway protective mechanism is impaired, which may include infants
with anatomic abnormalities, such as type 3 or type 4 laryngeal clefts, who have
not undergone antireflux surgery [50]. Premature infants are more likely to be at
risk for SIDS compared to normal infant groups. Pre-mature infants should be
placed in spine position for sleeping as soon as possible after birth. Other recom-
mendations to avoid SIDS are as follows:
1. The crib should be of safety approved.
2. Infant should not be allowed to sleep on sofa or soft beds.
3. Bed sharing with parents is not recommended in specific cases, such as

where parents are using toxic drugs, alcohol, and cigarettes.
4. Car seats and other sitting devices are not recommended at home for rou-

tine sleep.
5. Wedges and positioning devices are not recommended.
6. Avoid alcohol and illicit drugs during pregnancy and after infant’s birth.
7. Breastfeeding is recommended.
8. Swaddling does not reduce the chances of sleep. However, if it is applied to

an infant who can roll, it can increase the risk of SIDS. There are insuffi-
cient evidences to show that swaddling should be used in routine to calm
the infants. If it is correctly applied, this may avoid hazards, such as hip
dysplasia (misalignment of hip joint) and strangulation.

9. Infant should be immunized as per the recommendation of hospital
authorities.

10. Infants should sleep on their back instead of sleeping on their stomach.

In India, the infant mortality rate (infant deaths per 1,000 live births) is 38
which is much higher than other developed countries (3 in Australia and 6 in
the USA in 2011–15) [51]. Following the above recommendations can reduce the
risk of SIDS to an infant.

1.6.1 Cry characteristics of SIDS victims

It has been reported by the parents of the SIDS victims that the cries of their
infants are strange or different than their siblings and other normal infants.
Stark and Nathanson studied the cries of a male infant who died at the age of 6
months. They found that the cries are shorter and weaker compared to the nor-
mal infants [43]. Colton and Steinschneider reported the cry characteristics of a
female infant who died at the age of 63 days and reported that the F0 was
lower, cry duration was longer and sound pressure level (SPL) was higher than
the normal infant’s group and SIDS sibling group [52].
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The results reported by the studies are contradictory. Thus, it is difficult to
say whether the identification of the SIDS prone infants on the basis of some
parameters is possible. The study on SIDS is very difficult because enough sta-
tistically meaningful data for cry analysis is not available to have statistical
confidence during analysis of results, and it is not known that the cries of SIDS
infants are normal or abnormal w.r.t. characteristics embedded in their cries.

In a study reported by National Institute of Health (NIH), USA, it is found
that the structural difference in a specific part of the brain (in particular, medulla
oblongata which is known to control breathing functions) which causes risk for
SIDS [43]. In a study reported by Harrison on SIDS infants, where he removed the
larynges of the 74 infants who died of SIDS, it was found that the SIDS can be
attributed to a decrease in the subglottic area (around the age of 3 months),
which is highly dangerous. The reduction in subglottic airway is often secondary
to an increasing mucus secreting glands, caused by upper respiratory tract infec-
tion [53]. Thereby, resulting in changes in the acoustic features of the cry.

1.7 Classification of normal and pathological
infant cries

A significant amount of work has been done in the processing of adult speech
for various applications like analysis of the disordered voice, development of a
system for the disordered voices, classification of voice pathologies etc [54–59].
However, a marginal work is done towards the pathological infant cry classifi-
cation and identification using cry as a biomarker. In this section, infant cry
classification for the healthy and pathological infant cries is reported using
higher order spectral analysis (HOSA). Bispectrum is used to classify the normal
and the pathological cries from the HOSA family. Bispectrum of a signal is de-
fined as the spectrum of the third order cumulant function.

1.7.1 Higher-order spectral analysis (HOSA)

Power spectral analysis is the most common spectral analysis method used by re-
searchers across the world. However, the power spectrum of a signal ignores the
phase information of the signal and provides the energy distribution across vari-
ous frequency components of the spectrum. The power spectrum of a signal indi-
cates the information contained in the autocorrelation function of the signal. The
approach of using power spectrum for the spectral analysis of a signal works well
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when the signal under consideration is a Gaussian signal because a Gaussian sig-
nal can be described by only first two moments i.e. mean and variance and its
higher order cumulants are zero. In real life situations, a signal may not have
Gaussian distribution and needs higher order moments to describe it completely.

In the following sections, higher order spectral analysis is used for the in-
fant cry analysis, but before proceeding let us check its applicability to infant
cry signals to an infant cry signal or alternatively proving that these signals are
not Gaussian signals so higher order spectral analysis can be applied.

In Figure 1.35, the distribution of skewness and kurtosis of normal cries, path-
ological cries, adult voices and Gaussian signals of the same length is shown. For
a Gaussian signal, skewness parameter is almost zero as observed from the figure.
While for the infant cry signal, the skewness and kurtosis parameters are non-zero
which indicates that the infant cry signals are not Gaussian. In an adult speech as
well, the skewness parameter is not zero which also confirms that the speech is a
non-Gaussian signal and hence, HOSA can be applied to it. The pathological voice
samples are borrowed from the MEEI (Massachusetts Eye and Ear Infirmary) data-
base [60]. In Figure 1.35, parameters are also plotted for the pathological voices of
adults and it can be observed that the pathological voices have more deviation
from zero of the skewness and kurtosis parameters compared to the normal voices.
While in case of infants, the distinction between normal and pathological voices is
difficult using these parameters as can be observed from Figure 1.36.
Higher order spectra are defined by the higher order statistics of the signal
which are also called cumulants of the signal. The third order spectrum is
called the bispectrum and the fourth order spectrum is termed as trispectrum of
a signal. The well-known power spectrum is the second order spectrum of a sig-
nal. Higher order spectra are defined by the moments and cumulants. The
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Figure 1.35: Skewness and kurtosis feature distribution for adult voices.
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power spectrum is defined as the Fourier transform of the autocorrelation func-
tion where autocorrelation function is a second order moment of the signal. For
a Gaussian signal, the higher order cumulants are zero which makes the higher

order spectrum of Gaussian signal zero. For the analysis of deterministic sig-
nals, moments and moment spectra are useful while for the stochastic signals
cumulant and cumulant spectra are useful. Since speech is a stochastic signal,
it can be better analyzed with higher order spectra (HOSA) of the signals. The
HOSA is useful in the following cases:
1. To detect deviations from Gaussianity,
2. To identify and reconstruct non-minimum phase signals,
3. To suppress additive Gaussian noise and
4. To Detect and characterize nonlinear properties in signals and identify non-

linear systems [61].

The nth order moment function of a signal XðkÞ is defined as

mx
nðτ1, τ2, ..., τn− 1Þ=EfXðkÞXðk + τ1Þ...Xðk + τn− 1Þg, (1:11)

where τ1, τ2, ..., τn− 1 are the time differences, and E{.} denotes the statistical ex-
pectation. The nth order cumulant function of a non-Gaussian signal is given by:

cxnðτ1, τ2, ..., τn− 1Þ=mx
nðτ1, τ2, ..., τn− 1Þ−mG

n ðτ1, τ2, ..., τn− 1Þ, (1:12)

where mx
nðτ1, τ2, ..., τn− 1Þ is the nth order moment function of signal XðkÞ and

mG
n ðτ1, τ2, ..., τn− 1Þ is the nth order moment function of an equivalent Gaussian
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Figure 1.36: Distribution of skewness and kurtosis features for (a) normal and Gaussian
signals, (b) pathological and Gaussian signals and (c) normal, pathological infant cries and
Gaussian signals.
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signal that has the same mean and autocorrelation sequence as that of XðkÞ.
Using the definition of cumulant, power spectrum, bispectrum and trispectrum
can be defined as [61]:

Power Spectrum : PðωÞ=
X∞

τ= −∞

cx2ðτÞ expð− jðωτÞÞ, (1:13)

Bispectrum : Bðω1,ω2Þ=
X∞

τ1 = −∞

X∞
τ2 = −∞

cx3ðτ1, τ2Þ expð− jðω1τ1 +ω2τ2ÞÞ, (1:14)

Trispectrum :

Cðω1,ω2,ω3Þ=
X∞

τ1 = −∞

X∞
τ2 = −∞

X∞
τ3 = −∞

cx4ðτ1, τ2, τ3Þ expð− jðω1τ1 +ω2τ2 +ω3τ3ÞÞ,

(1:15)

jω1j<π, jω2j<π, jω3j<π. For bispectrum, jω1 +ω2j< π and for trispectrum,
jω1 +ω2 +ω3j<π. An excellent description of properties of higher-order spec-
trum analysis is given in [62].

1.7.2 Bispectrum estimation

There are two methods for the estimation of bispectrum of a signal, these are (1)
Direct method and (2) Indirect method. Description of these methods is as fol-
lows [62]

Indirect method

For the estimation of bispectrum using indirect method, let the given dataset is
S(1), S(2), . . . .,S(k) and proceed as follows:
1. Segment the infant cry data of length N into K segments of M samples each,

i.e., N=KM. Let these segments be denoted as x(1), x(2), . . ., x(K).
2. Obtain 3rd order estimate of moment for each segment after subtraction of

its mean value as given by

riðm, nÞ= 1
M

Xs2
l= s1

xiðlÞxiðl+ nÞ, (1:16)

i= 1, 2, ...,K, s1 = maxð0, −m, − nÞ and s2 = minðM − 1,M − 1−m, M − 1− nÞ.
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3. Average the moment function over all the K segments.

cx3ðm, nÞ= 1
K

XK
i= 1

riðm, nÞ, (1:17)

4. Generate the bispectrum estimate, i.e.,

Bx
3 ω1,ω2ð Þ=

XL
m= − L

XL
n= − L

cx3 m, nð ÞW m, nð Þ exp − j ω1m+ω2nð Þð Þ, (1:18)

where L<M − 1 andWðm, nÞ is a two-dimensional (i.e., 2-D) window function.

Direct method

1. Similar to the indirect method of bispectrum estimation, segment the infant
cry signal of into K frames, each of length M. Add zeros at the end of each
segment to make its length convenient for FFT computation, such that
M = 2l, l 2 Z + .

2. For each of the K segments, find the DFT, i.e.,

XiðλÞ= FFTðxiðkÞÞ (1:19)

3. Estimate of bispectrum of each segment using the computed DFT by applying
it to eq. (1.20–1.21)

biðλ1, λ2Þ=Xiðλ1ÞXiðλ2ÞXiðλ1 + λ2Þ (1:20)

The average of the bispectrum estimates is given as

Bx
3ðω1,ω2Þ= 1

K

XK
i= 1

biðω1,ω2Þ (1:21)

Here, ω= ð2πFsN0
Þλ and N0 is the total number of samples in a segment.

In Figure 1.37, examples of the bispectrum estimated using direct and indirect
methods are shown for normal and pathological infant cries. The differences in the
two bispectrum can be observed from the spectral peak locations and the strength
of the peaks. The strength of the bispectrum peaks is higher in normal infant cries
and the bispectrum is smoother compared to the pathological infant cries. These
differences motivate to use bispectrum for the classification of normal and patho-
logical infant cries. In the following experiments, the performance of the direct
and indirect method in the classification of normal and pathological cries is
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measured and efficiency of different feature extraction methods is shown for the
classification work.

1.7.3 Higher-order singular value decomposition (HOSVD)

In this section, HOSVD is used for the extraction of the features from the bispec-
trum of the infant cry signals. The HOSVD theorem is used to reduce the dimen-
sions of the features space to reduce the complexity and memory requirements
of the processors and reduces the classification time. HOSVD is proposed by
Lathauwer et.al [65]. This feature extraction method has been used by the au-
thors for phoneme classification and normal vs. pathological cry classification
[66–69]. HOSVD is applied to a tensor and is a generalized form of the SVD. To
form a tensor, the 2-D feature set, i.e., bispectrum (F 2 RI1 × I2 ) is stacked to-
gether one after another to form a 3-D tensor A. Let the number of samples be
Is. The tensor A (of dimension I1 × I2 × Is) can be represented in HOSVD form (as
shown in Figure 1.38) by using eq. (1.22):
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Figure 1.37: Estimated Bispectrum for a Gaussian signal, normal cry signal and pathological cry
signal. In all the subfigures, Panel (a) time–domain waveforms, Panel (b) bispectrum using
direct method, Panel (c) bispectrum using indirect method and Panel (d) diagonal slice derived
from indirect method are shown for Gaussian signal, normal cry signal and pathological cry
signal. In subfigures of Panel (a) X-axis is samples and Y-axis is amplitude, in subfigures of
Panel (b) and Panel (c), X and Y-axis represents frequencies, ɷ1 and ɷ2, respectively and in
subfigures Panel (d) X-axis is frequency and Y-axis is amplitude of bispectrum. After [63, 64].
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A= S× 1UI1 × 2UI2 × 3US, (1:22)

where S is the core tensor with the same dimension as A. UI1 2 RI1 × I1 , UI2 2 RI2 × I2

and UIs 2 RIs × Is are the unitary matrices of the corresponding subspaces of I1, I2
and Is. The matrices UI1 and UI2 contains nmode singular vectors, i.e.,

UðnÞ = UðnÞ
1 UðnÞ

2 .... UðnÞ
In

h i
. (1:23)

The matrices UI1 and UI2 can be obtained from the matrix unfolding of A. The
unfolded matrices A1 2 RI1 × I2IS and A2 2 RI2 × I1IS are obtained (as shown in
Figure 1.39), and they are decomposed in their SVD representations to give UI1

and UI2 . Only first R1 and R2 principal components are retained from these uni-
tary matrices, respectively. Next, ÛI1 2 RI1 ×R1 and ÛI2 2 RI2 ×R2 are obtained,
which gives reduced dimension of feature set, namely,

Z =B× 1ÛT
I1
× 2ÛT

I2
= ÛT

I1
.B.ÛI2 , (1:24)

where Z 2 RR1 ×R2 and B 2 RI1 × I2 which is taken from A. From the infant cry re-
cording or episode (cry recorded from beginning till end), cry units are sepa-
rated. The cry sound produced in one expiratory cycle is known as a cryunit.
The cryunits of an infant are similar to the words spoken by an adult.
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Figure 1.38: Singular value decomposition of tensor
A . After [65].
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1.7.4 Experimental setup and feature extraction

To begin with, the infant cry database is divided into train and test sets in 75:25
ratio, respectively. Keeping 25% of the dataset aside for testing, such four train-
test datasets were created. Using energy based algorithm (l2 energy), voiced
segments are extracted from the cryunits. The voiced data is segmented into
non-overlapping frames of length 10 ms each and for each of the frame ampli-
tude normalization is performed by mean subtraction. From each cryunit 20
frames are considered for the analysis and feature extraction.

Bispectrum of a signal is a two-dimensional feature, for the experimental
purpose, we have considered FFT size of 128 which gave bispectrum of 512 × 512
dimension. The bispectrum is shown in Figure 1.40. It can be observed from the
figure that the bispectrum has 12 symmetry regions. The symmetry property of
bispectrum follows from the symmetry properties of the moments [62]. Because
of the symmetry property of the bispectrum, information in the first or the third
quadrant of the bispectrum is sufficient to consider for feature extraction.
Considering only one of the quadrants reduces the computational complexity
and computation time of feature extraction. Here, information in the third
quadrant is considered, which reduces the feature size to 128 × 128. For each of
the speech frames, similar process is repeated for the signals in train and test
sets. Using these 128 × 128 feature vectors, a tensor is formed for each train and
test set. On these tensors, HOSVD is applied to reduce the feature dimension
from 128 × 128 to 10 × 10. For each frame, we will store the features as a 1 × 100
feature vector. On these features logarithm is applied and then entropy is used
for the feature dimension reduction. The feature sizes considered in the experi-
ments are [3 5 8 10 20 30 40 50 60 70 80 90 100]. The reduced feature set is ap-
plied to a Support Vector Machine (SVM) classifier with Radial Basis Function
(RBF) kernel to determine the classification accuracy. In the analysis, LIBSVM
tool is used [70].

–0.15 –0.1 –0.05 0 0.05 0.1 0.15

–0.1

0

0.1

2

1

Figure 1.40: Symmetry regions of bispectrum. After [63, 64].

52 Anshu Chittora and Hemant A. Patil

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.7.5 Experimental results

The performance of bispectrum features for the classification of infant cries is
shown in Table 1.4 for different feature sizes. It is evident from the Table 1.4, that
as the feature size increases, the classification accuracy also increases. This trend
is observed till the feature size is 40, after that increasing the feature size resulted
in the decrease in the classification accuracy. This happens because increasing
the feature size increases redundancy after a certain value. Increasing the feature
size causes more samples of pathological condition to be recognized as a normal
sample by the classifier. The confusion matrix of the classification performance
of the classifier is shown in Table 1.5 for the feature size of 1 × 30 for the normal
and pathological cry classification. It can be observed that out of 427 samples of
the normal cries 425 samples are correctly classified (99.53%), while 221 out 225
(98.43%) samples of the pathological condition are correctly classified by the
classifier, resulting in a classification accuracy of 99.1% .

In Table 1.6, the performance of the proposed feature set is compared with
the convention features such as MFCC, LPC and PLP. Under the same experimen-
tal conditions, it is found that the MFCC, PLP and LPC features are giving classifi-
cation accuracies of 55.93%, 63.14% and 63.07% which is much lower than the
proposed feature set [63]. This is due to the ability of the bispectrum features to
capture the non-linearity in the infant cry signal which state-of-the-art features
cannot capture. During dimension reduction technique of the bispectrum, when
HOSVD is applied, the HOSVD theorem retains the principal components of the
bispectrum thereby outperforms much better than other methods.

1.7.6 Robustness of the bispectrum features under noisy
or signal degradation conditions

To understand the robustness of the bispectrum features in the presence of ad-
ditive noise [63], let us consider a signal s(n) corrupted by additive noise n(t)
which can be babble noise, car noise, Gaussian noise or HF noise. The noisy
signal can be represented by:

sηðtÞ= sðtÞ+ nðtÞ. (1:25)

where n(t) can be additive babble, car, white, and HF channel noise. Let us as-
sume that the noise under consideration has probability density function (pdf )
which is Gaussian. The bispectrum of the noisy speech will be given as:

Bsnðω1,ω2Þ≈Bsðω1,ω2Þ+Bnðω1,ω2Þ (1:26)
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For noise with Gaussian distribution, the bispectrum of the noise is zero.
Bnðω1,ω2Þ=0 and hence,

Bsnðω1,ω2Þ≈Bsðω1,ω2Þ. (1:27)

Thus, bispectrum features cause suppression of noise given the pdf of the noise is
Gaussian and the noise is additive. For this reason, bispectrum features perform
better than the other spectral features, such as LPCC, MFCC, etc., under noisy
conditions.

The robustness of the proposed features under noisy conditions is shown
in Table 1.7. In this experiment, different noises such as car noise, white
noise, HF noise and babble noises are considered and the samples were taken
from the NOISEX-2002 database [71]. These noises were added to the infant
cry signals at different signal-to-noise-ratio (SNR) levels and then classifica-
tion experiment were conducted using the bispectrum features. From the re-
sults shown in Table 1.7, we can observe that the classification performance
of the bispectrum features remains almost the same for both the feature ex-
traction methods even if the signal is corrupted by noise. The performance of
the bispectrum features is good at SNR as low as −10 dB. Hence, bispectrum

Table 1.5: Confusion matrix of classification of normal and
pathological cries using bispectrum as a feature set.
Adapted from [66].

Identified as Normal Pathological

Actual
Normal  

Pathological  

Table 1.6: Classification accuracy (in %) with MFCC,
LPC, PLP, and bispectrum features. Adapted from [66].

Feature Set Classification Accuracy (in %)

MFCC .

LPC .

PLP .

Bispectrum .
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features are more robust under noisy conditions and are suitable for infant
cry classification task because in hospitals, the environment for data collec-
tion is noisy.

1.8 Summary and conclusions

In this chapter, the results of applying conventional signal processing methods
on infant cry signals and the characteristics and classification of the normal and
pathological infant cries are reported. From the STFT analysis of a cry signal, it is
observed that the formants and harmonics are difficult to identify in an infant
cry spectrum because of poor spectral resolution. This effect occurs due to the
serious interaction of the fundamental frequency with the formant frequencies.
The effect of increasing the LP order on the spectral matching problem is also
observed. Increasing the LP order ‘p’ causes the LP spectrum peaks to match the
pitch harmonics. The order of LP analysis is very low in infant cry analysis com-
pared to adult speech because of the smaller vocal tract length. In the Cepstral
analysis also, similar effect is observed where the lifter length is found to be very
small compared to adults. Continuously changing vocal tract length in early days
of life of an infant makes infant cry analysis more challenging because it causes
continuous changes in LP order and lifter size. Finally, TEO analysis proved that

Table 1.7: Effect of different noises on classification performance (in %) when the indirect
method of bispectrum is used.

SNR
(in dB)

Babble Noise
(direct method)

Babble Noise
(Indirect method)

White Noise Car Noise HF Channel

Without noise . ± . . ± . . ± . . ± . . ± .

 . ± . . ± . . ± . . ± . . ± .

 . ± . . ± . . ± . . ± . . ± .

 . ± . . ± . . ± . . ± . . ± .

 . ± . . ± . . ± . . ± . . ± .

 . ± . . ± . . ± . . ± . . ± .

− . ± . . ± . . ± . . ± . . ± .

− . ± . . ± . . ± . . ± . . ± .
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the infant cry production is a nonlinear mechanism. TEO also supports the iden-
tification of the glottal activity and no glottal activity in the infant cry signals.

In our experiments of infant cry classification task, it has been observed
that the higher order spectral features perform much better than the conven-
tional features. Bispectrum features also found to be noise robust which makes
these features ideal for infant cry classification tasks in hospital environment.
In order to reduce dimensions of the bispectrum features, other feature extrac-
tion methods can also be tried for this work. This extensive book chapter has
tried to explore future research directions in this exciting and challenging field
of infant cry analysis and classification.
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Hardik B. Sailor and Hemant A. Patil

2 Unsupervised auditory filterbank
learning for infant cry classification

Abstract: The infant cry classification is a socially relevant problem where the
task is to classify the normal versus pathological cry signals. Since the cry signals
are very different from the speech signals, there is a need of better feature repre-
sentation for infant cry signals. Recently, representation learning is very popular
in various signal processing areas including the medical domain. In this chapter,
we propose to use unsupervised auditory filterbank learning using convolutional
restricted Boltzmann machine (ConvRBM). Analysis of the subband filters shows
that they are very distinct compared to the subband filters learned from the speech
signals. Various cry models were analyzed using ConvRBM spectrogram for nor-
mal and pathological cry signals. The infant cry classification experiments were
performed on the two databases, namely, DA-IICT Infant Cry and Baby Chillanto.
The experimental results show that the proposed features perform better than the
standard mel-frequency cepstral coefficients (MFCC) using various statistically
meaningful performance measures. In particular, our proposed ConvRBM-based
features obtained an absolute improvement of 2% on the DA-IICT Infant Cry data-
base and 0.58% on the Baby Chillanto database in the classification accuracy.
Since, the auditory filterbanks are learned from the infant cry signals, it is optimal
to represent the statistical structures in the infant cry signals. Hence, it performs
better then standard handcrafted feature sets such as the MFCC.

Keywords: Auditory representation learning, Convolutional Restricted Boltzmann
Machine, auditory filterbank, subband filters, and infant cry classification

2.1 Introduction

Humans cry to express a range and degree of emotions, such as from happiness
after passing a tough exam or meeting a beloved one to grief after the death of
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a person or difficult situations in life [1]. On the whole, the crying is not just a
simple reaction to any feeling or emotional state but rather a multifaceted be-
havior that can offer clues to how we process and regulate our feelings, and
how we experience the world around us [1]. The evolutionary background of
crying is discussed in a book [2], where it is shown that only humans have the
ability to cry not other mammals. In humans, infants communicate their needs
such as feeding, distress or pain by crying [3]. Intra-individual variation in the
infant cries is known to encode qualitative and quantitative information on the
condition, needs, emotional status and the degree of urgency. Infant cry carries
multiple levels of information as shown in Figure 2.1. Based on the perception
of the cry, the parents or caretakers empirically try to understand the reason for
the crying and even identify their newborn [3]. Recently, there is an increasing
effort to investigate the reasons for sudden infant death syndrome (SIDS) [4]
through the analysis of infant cry signals. The infant cry analysis is also valu-
able in the clinical diagnostics in order to know, whether the disease to the
newborn is due to the central nervous system (CNS) [5]. From a signal process-
ing perspective, our goal is to classify whether the infant is crying due to the
pain, hunger or some medical diseases collectively called pathology.

The basic block diagram of infant cry classification task is shown in Figure 2.2. In
the training phase, the pattern classifier is trained using acoustic features extracted
from the infant cry signals. The model obtained from the training phase is used to
test the cry signal for the presence of pathology based on the decision logic (e.g.,
log-likelihood ratio). Here, we briefly discuss the recent approaches for infant cry
databases and classification using signal processing and pattern recognition tech-
niques. To date, there is no standard publicly available database for infant cry
classification. Many researchers collected their own data including our Speech
Research Group at DA-IICT [6, 7]. Most of the studies used Baby Chillanto infant cry
database, which is a property of INAOE-CONACyT, Mexico [8]. Other studies

Infant cry

Preterm vs.
Full term  

Disease Health IdentityEmotions Gender

Asthma

First cry Hunger

Congenital 
myopathy

Asphyxia 
(HIE)

Fits Deaf Larynx 
abnormalities

Figure 2.1: Multiple levels of the information present in the infant cry signal. Adapted from [4].
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include the work in [9–13]. The literature on the infant cry classification using this
database is given in [8].The detailed discussion on the topic of infant cry and the
literature of infant cry classification is found in [4] and in [14], the first Ph.D. thesis
from India in this area (to the best of authors᾿ knowledge). Most of the studies used
mel-frequency cepstral coefficients (MFCC) as an auditory-based features. Recently,
representation learning (RL) is very popular to learn meaningful feature representa-
tion directly from the raw audio signals. Various approaches were proposed for RL
that shows significant improvements compared to the handcrafted features, such
as MFCC. In this chapter, the objective is to use our proposed convolutional re-
stricted Boltzmann machine (ConvRBM) for auditory-like filterbank learning from
the raw audio signal [15, 16]. We used two databases, namely, (1) Baby Chillanto [8]
and (2) DA-IICT infant Cry database collected by our group [6]. The experimental
results showed improved performance with the proposed feature representation.

The organization of the rest of the chapter is as follows: Section 2.2 describes
how the problem of infant cry classification is socially relevant. The significance
of representation learning for auditory modeling is presented in Section 2.3. The
architecture, training methodology and feature representation using ConvRBM
are presented in Section 2.4. The experimental setup for infant cry classification
task is given in Section 2.5. The analysis of the ConvRBM filterbank and experi-
mental results are presented in Section 2.6 and Section 2.7, respectively. Finally,
the summary and conclusions of the presented work are given in Section 2.9.

2.2 Social relevance of the infant cry classification

The infant cry classification task is very helpful to the parents, caretakers and
pediatricians in the diagnosis of a pathology at very early stage. This may be
beneficial to reduce or completely eliminate symptoms of a pathology. Many

Feature 
extraction

Pattern 
classifier

Infant cry signal 
(Normal/Pathology)

Feature 
extraction

Decision 
logic

Unknown infant 
cry signal

Normal or
pathology

Models

Training phase

Testing phase

Figure 2.2: The basic block diagram of the infant cry classification.
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times avoiding pathology at an early stage of infant development leads to the
severe conditions including death. The research work in this direction is also
important to identify the appropriate reasons for SIDS [17, 18]. The first study of
SIDS case was analyzed in [19]. The SIDS is the sudden unexplained death of a
child less than one year of age that remains unexplained even after a complete
investigation [20]. Data from the Centers for Disease Control and Prevention (CDC)
show that 1,545 infants died from SIDS in 2014 (the most recent year for which
data is available) [20]. The research evidence suggests that infants who die from
the SIDS are born with brain abnormalities or physiological defects [20]. Hence,
to prevent SIDS cases the study of infant cry analysis will be very much helpful.
Another important social relevance is to the families where the literacy level is
lower and access to the good hospitals is difficult specifically in the remote village
places. The infant cry classification if implemented in the mobiles (since mobiles
are nowadays available almost everywhere) can be beneficial in the initial detec-
tion (as early warning signs) of the pathology in the infants through cry signals.

2.3 Representation learning for auditory modeling

The features of human speech perception, vision and in other cognition tasks do
not exist rather they are learned through the experience as we grow [21]. The new
area of machine learning has emerged since 2006 that has a significant impact
on many signal processing applications, such as speech, audio, image, etc. Since
the early techniques started with learning from unlabeled data, it is called the
representation learning (RL). Later impressive results also achieved using super-
vised learning techniques by using many parallel data processing units with non-
linearities. It is now called deep learning or hierarchical learning. RL is defined
as learning the representations of the data that makes it easier to extract mean-
ingful and useful information when building classifiers or other predictors for
signal processing applications. In this chapter, we use the RL-based technique to
model auditory processing. The advantage of using RL to learn auditory-like fil-
terbank is that the subband filters obtained are optimal for the given task since it
uses statistics of the underlying database. Unsupervised representation learning
is currently a very active research area where we do not have labels or have very
limited amount of database. Supervised RL techniques are very effective when
we have a large amount of data available to train the classifier. Unsupervised
learning is the most important form of representation learning since human
learning is largely unsupervised [12]. An example is the language acquisition by
the infants during initial stages of their growth, which is also type of unsuper-
vised learning [22]. Most work on unsupervised learning for speech and audio
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signals are based on cochlear filterbank learning to model auditory processing.
Some of the studies model auditory cortex-level mechanisms by learning spectro-
temporal receptive fields (STRFs). The first approach to model cochlear filterbank
is presented in the remarkable study by M. S. Lewicki where the subband fil-
ters learned from various natural sounds are analyzed. We have developed
unsupervised auditory filterbank learning using ConvRBM directly from the full-
length raw speech and audio signals. The ConvRBM filterbanks successfully ap-
plied in the automatic speech recognition (ASR) [15, 16, 23], environmental sound
classification (ESC) [24] and spoof speech detection (SSD) task [25, 26]. Motivated
by these studies, in this chapter, we explore the potential of the ConvRBM filter-
bank learning for the infant cry classification task. In the next section, we present
the architecture and feature representation using ConvRBM.

2.4 Unsupervised auditory filterbank learning

In this section, we present the architecture of the proposed filterbank learning
model and feature extraction.

2.4.1 Convolutional restricted Boltzmann machine

ConvRBM is an undirected probabilistic graphical model with two layers, namely,
a visible layer and a hidden layer [16]. The block diagram of the arrangement
of the hidden units is shown in Figure 2.3. The input to the visible layer (denoted

m-samples

k

wK

w1

+ bK

+ b1
1

Filter  index

n-samples

Figure 2.3: The arrangement of hidden units in the K groups, and corresponding weight
connections. The filter index-axis is perpendicular to the plane of this page. Each hidden unit
(red dots) in the kth group is wired such that it resulted in a valid convolution between the
infant cry signal and weights, Wk. After [16].
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as x) is an infant cry signal of length n-samples. Hidden layer (denoted as h) con-
sists of K-groups (i.e., number of filters) with filter length m-samples in each.
Weights (also called subband filters) are shared between visible and hidden units
among all the locations in each group [16]. Denoting bk as the hidden bias for the
kth group, the convolutional response for the kth group is given as [16],

Ik = ðx* ~W
kÞ+ bk, (2:1)

where x= ½x1, x2, ..., xn� are samples of the infant cry signal, Wk = ½wk
1 ,wk

2 ,...,wk
m� is

a weight vector (i.e., kth subband filter) and
~
W denote a flipped array [16]. For

ConvRBM with visible units x, and hidden units h, the energy function of the
model is given as [15, 16]:

Eðx,hÞ= 1
2σ2x

Pn
i= 1

x2i −
1
σx

PK
k = 1

Pl
j= 1

Pm
r = 1

hkj w
k
r xj+ r − 1

� �

−
PK
k = 1

bk
Pl
j= 1

hkj −
1
σ2x
c
Pn
i= 1

xi,
(2:2)

where c is a visible bias, which is also shared. We have used “valid” length con-
volution and, hence, the length of each group is l= n−m+ 1. Each infant cry
signal is normalized to a zero-mean and a unit variance so that the variance
parameter (σx) in eq. (2.2) is set to 1 as suggested in [27]. The probability of joint
distribution of visible and hidden units is,

pðx,hÞ= 1
Z
e−Eðx,hÞ, (2:3)

where Z is the partition function, Z =
Ð∞
−∞

Ð∞
−∞

e−Eðx,hÞdxdh, which normalizes
the energy, and thereby making it a probability distribution function (PDF).
With noisy rectifier linear units (NReLU), the sampling equations for hidden
and visible units are given as [15, 16]:

hk ⁓maxð0, Ik +Nð0, σðIkÞÞÞ,

xrecon ⁓N
PK
k = 1

ðhk*WkÞ+ c, 1
� �

,
(2:4)

where c is a visible bias which is also shared, Nð0, σðIkÞÞ is a Gaussian noise
with mean-zero and sigmoid of Ik as a variance. While calculating the relation-
ship between hidden and visible units, a deterministic ReLU (i.e., maxð0, IkÞ) is
used as an activation function [16]. In ConvRBM training, a dropout is applied
before sampling the hidden units in both positive and negative phase of con-
trastive divergence (CD) learning. Applying a dropout to ConvRBM can be
thought of as multiplying each unit in a kth group with a binary mask (called
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as the dropout mask). The dropout mask for the kth group is defined as random
variables drawn from the Bernoulli distribution, that is,

mk =BernoulliðpÞ, (2:5)

where Pðmk = 1Þ= p and Pðmk =0Þ= 1− p. The sampling equation for the hidden
units is now given as:

hk⁓maxð0,mk � Ik +Nð0, σðmk � IkÞÞÞ, (2:6)

where � indicates an element-wise multiplication. We have explored an an-
nealed dropout training of ConvRBM that was proposed for supervised deep
networks in [28]. Our earlier works showed that the use of annealed dropout
resulted in an improved performance in speech recognition [23] and audio clas-
sification task [24, 26]. In an annealed dropout, the dropout probability of the
units in the network is gradually decreased over the training period. We have
used the following annealing dropout schedule as suggested in [28]:

p½t�=max 0, 1−
t
N

� �
· p½0�

� �
, t 2 ½0,N�, (2:7)

where p½0� is the initial dropout rate at training iteration, t =0. The dropout rate
is decayed from p½0� to a small value or zero for t =N iterations. After N itera-
tions, p½t� is kept constant as 0, that is, no dropout. The log-likelihood of the
ConvRBM is denoted as ,ðx; θÞ, where θ= Wk, bk, c

� 	
are model parameters.

With the notations used in [29], we can write the log-likelihood of the ConvRBM
in terms of expectations as [16]:

∂
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,ðx; θÞ = −Epðh jxÞ
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model

,
(2:8)

where h · i is the sample mean under distribution used to calculate expectations.
Here, h · idata is the sample mean estimated, when the visible units are clamped
to the signal (i.e., input data), and h · imodel is the sample mean estimated, when
visible and hidden units are sampled from a model distribution. For the weights
of the model, eq. (2.8) can now be written as [16]:
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(2:9)
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where the underline symbol denotes visible (x= xrecon), and the hidden states
(
~hk) in the CD-1 stage (negative phase). The model parameters are updated
using the Adam optimization method [30]. In the next section, we discuss how
to extract features once the ConvRBM is trained.

2.4.2 Auditory feature representation

After ConvRBM is trained, the pooling is applied to reduce the representation of
ConvRBM filter responses in the temporal domain. Here, pooling in the time do-
main is equivalent to short-time averaging in spectral features, such as MFCC and
low-pass filtering in scattering wavelets. For an audio signal of sampling fre-
quency, Fs = 16 kHz, pooling is applied using 25 ms (i.e., 400 audio samples) win-
dow length (wl) and 10 ms (i.e., 160 audio samples) shift (ws). We used this setup
to compare standard spectral features (e.g., MFCC) extracted using same window-
ing parameters. The infant cry signal with n-samples has, F = n−wl+ws

ws number of
frames. We have experimented with both average and max-pooling and found bet-
ter results with the max-pooling. After the pooling operation, stabilized logarithm
logð · + δÞ (with δ=0.0001) is applied as a compressive nonlinearity. The block di-
agram for feature extraction procedure (described above) is shown in Figure 2.4.

Infant cry signal 1 × n   (a)

K × n   (b)

K × n   (c)

K × F   (d)

K × F   (e)

Absolute
activation

Compressive
nonlinearity

Pooling
25 ms window length
10 ms window shift

Convolution layer
K subband filters

Short-time spectrum
representation

Figure 2.4: Feature extraction using trained ConvRBM: (a) infant cry signal, (b) and (c) responses
from the convolutional layer and ReLU nonlinearity, respectively, (d) representation after
pooling and (e) logarithmic compression. After [16].
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To obtain the same length as the audio signal, “same” length convolution is used.
During feature extraction stage, we have used absolute nonlinearity j Ik j as an ac-
tivation function of the hidden units as done in [26]. The pooling operation re-
duces the temporal resolution from K × n samples to the K × F frames. Logarithmic
nonlinearity compresses the dynamic range of features. The feature extraction
steps involved in this ordering resemble the auditory processing in the human au-
ditory system (HAS) [31, 32].

2.5 Experimental setup

2.5.1 Databases

The experiments were performed with two databases: DA-IICT Infant Cry data-
base developed by our group, and Baby Chillanto discussed as follows.

DA-IICT Infant Cry database

The DA-IICT Infant Cry database was collected as a part of B.Tech project work,
Ph.D. thesis work and the DST fast-track award for young scientist to Prof.
Hemant A. Patil for the project “Development of Infant Cry Analyzer using Source
and System Features” [6]. The infant cry data was collected from three hospitals in
Visakhapatnam, namely, (1) King George Hospital, (2) Prabha Nursing Home and
(3) Child Clinic. The sampling frequency of the original recordings was 12 kHz,
quantized at 16-bit PCM. For our experiments, we downsample it to 11.025 kHz
since at a later stage, we will compare the experimental results with another data-
base. The statistics of the DA-IICT Infant Cry database is shown in Table 2.1.
The healthy cry signals consist of normal and hunger cry signals. The pathology
cry includes two types of pathologies, namely, asphyxia (also called Hypoxic
Ischemic Encephalopathy (HIE)) and Asthma.

Table 2.1: Description of DA-IICT Infant Cry database. After [6].

Class Category No. of samples

Healthy Normal, hunger 

Pathology Asphyxia 

Asthma 
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Baby Chillanto database

Baby Chillanto database was developed by the recordings conducted by the med-
ical doctors. The infant cry signals were carefully labeled at the time of the re-
cording with the references, such as the reason for crying, sick or not, and infant
age. Each cry signal was segmented into one second duration (that represents
one sample) and have been grouped into five categories as shown in Table 2.2.
Since the sampling rate of cry signals is different in all the categories, we kept
the sampling rate of 11.025 kHz. Two groups were formed for the binary classifi-
cation of healthy versus pathology. Healthy cry signals include three categories,
namely, normal, hungry and pain resulting in 1,049 cry samples. Pathology cry
signals include two categories, namely, asphyxia and deaf resulting in 1,219 cry
samples.

2.5.2 Training of ConvRBM and feature extraction

The ConvRBM is trained with an annealed dropout using p = 0.3 that decayed to
zero (i.e., p=0) during training. The learning rate was chosen to be 0.001 and
decayed according to the learning rate schedule as suggested in [30]. The mo-
ment parameters of Adam optimization chosen to be β1 = 0.9 and β2 = 0.999 simi-
lar to other audio classification experiments [24]. The model is trained with 40
number of subband filters (i.e., K) with convolution window length m = 88 sam-
ples (i.e., 8 ms). After the model was trained, the features were extracted from
the infant cry signals. The Discrete Cosine Transform (DCT) was applied to reduce
the dimension retaining only first 13-D coefficients and compare the proposed
features with MFCC feature set in the Gaussian Mixture Model (GMM) framework.
The delta and delta-delta features were also appended resulting in 39-D cepstral
features (denoted as ConvRBM-CC). The baseline MFCC features are extracted
from the cry signals with 25 ms window length and 10 ms window shift.

Table 2.2: Description of Baby Chillanto database. After [8].

Class Category No. of samples

Healthy Normal 

Hungry 

Pain 

Pathology Asphyxia 

Deaf 
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2.5.3 Binary classification framework

Since the infant cry databases are very small in size, the GMM is used for binary
classification. Healthy cry features belong to one class, and pathology cry fea-
tures belong to another class. The GMMs with different mixture components
were trained using MFCC and ConvRBM-CC features. Final scores are repre-
sented in terms of the log-likelihood ratio (LLR). The decision of the test cry sig-
nal being normal or pathology is based on the LLR, that is,

LLR= log
pðX jH0Þ
pðX jH1Þ , (2:10)

where pðX jH0Þ and pðX jH1Þ are the likelihood scores from the GMM for a nor-
mal and pathology trials (with hypothesis H0 and H1), respectively, for features
X. The results are predicted using log-likelihood scores with 10-fold cross-
validation (CV). Since the number of samples in the two classes is different, we
applied 10-fold CV separately for each class and then combine respective training
and test folds. For each fold, we noted % classification accuracy. The final result
is presented as averaged % classification accuracy over all the 10-folds. Along
with classification accuracy, other performance measures are also used described
in the following section.

2.5.4 Performance measures

A significance of the proposed features is evaluated using various perfor-
mance measures. The confusion matrix of the binary classification task shows
how errors are distributed across the classes [33]. The example of a confusion
matrix for classification task is shown in Figure 2.5. The rows indicate the ac-
tual classes, and columns indicate the predicted outcome of the classifier [33].
Since our task is to detect the pathology in an infant cry, we denote the results
associated with pathology as positive and negative for vice-versa. Given the
labels of actual and predicted classes by the classifier, there are four out-
comes possible [33]:

Predicted outcomes

Normal
Normal TN FP

Pathology
Actual 
classes Pathology FN TP

Figure 2.5: The details of a confusion matrix for
the binary classification task.
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– True positive (TP): Actual class is pathology and predicted pathology
– True negative (TN): Actual class is normal and predicted normal
– False positive (FP): Actual class is normal and predicted pathology
– False negative (FN): Actual class is pathology and predicted normal

In the case of k-fold CV, we find the combined confusion matrix (i.e., all the
entries in the matrix are summed for all folds). Various other performance
measures can be obtained from the confusion matrix. The numbers along the
major diagonal indicate (TP and TN) the correct decisions made by the classifier
[33]. The classification accuracy can also be obtained from TP, TN and a total
number of instants of both the classes (i.e., P + N) as follows [33]:

Classification accuracy ð%Þ= TP+TN
P+N

. (2:11)

Another important performance measure is F1-score also known as F-measure.
The range of F-measure is between 1 and 0, where 1 represents the perfect pre-
diction and 0 means the worst. The F-measure is defined as follows [33]:

F −measure= 2TP
2TP+FP+FN

. (2:12)

F-measure does not take TN into account. Hence, we also used another perfor-
mance measure called Youden’s J-statistic or informedness [34]. The range of
J-statistic is between −1 and +1, where −1 indicates no agreement between the
observation and the prediction, and +1 represents a perfect prediction. J-statistic
estimates the probability of an informed decision and is given by [34]:

J − statistic= TP
TP+FN

+ TN
TN+FP

− 1. (2:13)

Another important performance measure is the Matthews correlation coefficient
(MCC) [35]. It takes into account TP, TN, FP, FN and is generally regarded as a
balanced measure, which can be used even if the classes are of very different
sizes. This is very important in our case due to a different number of samples
in each class (i.e., normal vs. pathological). The range of MCC is between −1
and +1 where +1 indicates a perfect prediction, 0 means no better than just a
random prediction, and 1 indicates a total disagreement between the observa-
tion and the prediction. MCC is expressed as [35]:

MCC= ðTP× TNÞ− ðFP×FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP+FPÞðTN+ FNÞðTP+ FNÞðTN+ FPÞp . (2:14)
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The feature visualization is performed using t-SNE technique [36]. t-SNE
(Stochastic Neighbor Embedding) is a high-dimensional data visualization
technique using student’s t-distribution [36]. It maps the high-dimensional
data onto two or three dimensions. We used t-SNE to visualize 39-D MFCC and
ConvRBM-CC feature vectors into three dimensions. This visualization helps
us to see the class separability of MFCC and ConvRBM-CC features.

2.6 Analysis of infant cry signals

2.6.1 Analysis of subband filters and frequency scale

The subband filters learned from the DA-IICT Infant Cry database and Baby
Chillanto infant cry database are shown in Figure 2.6 in the time and frequency
domain. We have also shown subband filters obtained from the TIMIT speech da-
tabase. It is very interesting to note an intriguing observation that, these subband
filters were learned from only 37 min and 50 s duration of cry signals from the
Baby Chillanto and 30 min of cry signals from the DA-IICT Infant Cry database
(which is all the more the case in medical scenarios). It shows the applicability of
our proposed model even in the very small scale database scenarios. The time-
domain subband filters are significantly different than speech database. The sub-
band filters of the infant cry databases contain more Fourier-like basis functions
due to harmonic nature of the infant cry signals as shown in Figure 2.7. The anal-
ysis of the frequency-domain subband filters revealed that many subband filters
are not localized and contain harmonic structures. This may be due to more har-
monic content present in infant cry signals. On comparing the subband filters
learned from the two different databases, the subband filters from the baby
Chillanto database has even lower frequency filters. However, the filter shapes of
most of the subband filters are similar.

The frequency scales obtained using ConvRBM are compared with the stan-
dard auditory frequency scales in Figure 2.8. Unlike the frequency scale obtained
through the speech database [16], here we observed two linear segments in the
frequency scale, from 0 to 1 kHz and from 1 to 3 kHz. After 3 kHz, it is nonlinear
and follows the ERB, and Bark scales. However, the frequency scale from the DA-
IICT Infant Cry database is more away from the standard scales. The minimum
center frequency is 500 Hz and 4 kHz it follows the other frequency scales. The
difference in the frequency scales of both the databases is due to variability in
cry signal production through language perception (Indian languages vs. English
in the Baby Chillanto), data recording conditions, background noise, channel
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characteristics, microphone specifications, etc. Overall, the frequency scale of
ConvRBM still follows standard auditory frequency scales (with piecewise linear
segments up to 3 kHz).
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Figure 2.7: Segments of the infant cry signals showing the harmonic nature of the cry signals
for different categories: (a) normal, (b) deaf, (c) asphyxia and (d) asthma.
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2.6.2 Analysis of ConvRBM spectrograms

The spectrogram representation for the cry signals using the ConvRBM filter-
bank is shown in Figure 2.9–2.13 along with the mel spectrograms. We will dis-
cuss each case in detail as follows:

Normal infant cry signal

The spectrograms from the three normal infant cry signals taken from the Baby
Chillanto database are shown in Figure 2.9. A better time-frequency resolution
is obtained using ConvRBM filterbank as marked in the spectrograms, specifi-
cally in the high frequency regions. We can see the slowly varying harmonic
structures and some noise (this is predominantly due to the turbulent excitation
source and not due to the environmental noise) in the normal cry signals that
are related to the cry modes as observed in [6, 14]. Figure 2.9(a) is an example of
falling, (b) is an example of flat and (c) is an example of rising with vibration
cry mode. We can also observe dysphonation cry mode in Figure 2.9(a) after
0.2 s along with the falling cry mode. The spectrograms from the three normal
infant cry signals taken from the DA-IICT Infant Cry database are shown in
Figure 2.10. The resolution of the ConvRBM spectrograms is higher than the mel
spectrograms as shown in marked regions in Figure 2.10. The harmonics are
clearly resolved in the ConvRBM spectrograms. The cry modes, such as series of
rising, falling and flat can be observed in Figure 2.10(d) and (g). The dysphona-
tion cry mode is observed in Figure 2.10(e), (h) with harmonic vibration mode
(shown by a circle). Our observations for the normal cry signals are similar to
as observed in [6, 14] for the normal infant cry signals.

Asphyxia infant cry signal

The asphyxia or HIE is a disease caused to the newborn due to the lack of supply
of oxygen or blood to the brain that arises due to abnormal breathing. In very
serious conditions, asphyxia can cause coma or even death. The infants suffering
from asphyxia are not able to produce a normal cry that resulted in pathological
signs in the cry signals. The spectrograms from the three asphyxia infant cry sig-
nals taken from the Baby Chillanto database are shown in Figure 2.11. The time-
frequency resolution is significantly better compared to the mel spectrograms
as can be seen from Figure 2.11. The difference between normal and asphyxia
cry can clearly visible from the spectrograms. There are no continuous harmonic
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structures present in the asphyxia cry, rather, it is of very short duration and
noisy. This is due to lack of oxygen that infant is not able to vocalize due to an
inadequate supply of oxygen or blood to his/her brain. Many of the cry modes
related to harmonics are absent in asphyxia cry. The blurred harmonics can be
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Figure 2.10: Comparison of spectrograms for normal cry signals from the DA-IICT Infant Cry
database: (a)–(c) time-domain signals, (d)–(f) mel spectrograms, and (g)–(i) ConvRBM
spectrograms. The rectangular and circular regions indicate the differences in two spectrograms.
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seen from asphyxia cry signals in Figure 2.11(a)–(c). ConvRBM spectrogram can
show continuous dysphonation cry mode for one of the asphyxia cry signals in
Figure 2.11(i) which cannot be revealed by the mel spectrogram in Figure 2.11(f).
Similar observations are made from the asphyxia cry signals taken from the DA-
IICT Infant Cry database as shown in Figure 2.12. The continuous dysphonation
cry mode is present in the asphyxia cry signals shown in Figure 2.12(g). One can
see that the mel spectrograms can not able to resolve leading and trailing har-
monics on both sides of dysphonation cry mode. The asphyxia cry signals from
the DA-IICT Infant Cry database also show very less spectral energies or dyspho-
nation cry mode in the spectrograms.

Deaf infant cry

There are several reasons for deafness in newborns or they become deaf early
in life. It is not always possible to identify the reason for such cases, however,
they are two possible cases, namely, prenatal causes and postnatal causes
[37]. Prenatal cases include genetic reasons, complications during pregnancy,
illnesses, such as rubella, cytomegalovirus (CMV), toxoplasmosis and herpes can
cause newborns deaf [37]. Postnatal causes include infection, specifically in pre-
maturely born babies and exposure to loud noise [37]. The deaf infant’s cry sig-
nals differ from the normal infant cry signals. The onset of crying or canonical
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Figure 2.12: Comparison of spectrograms for asphyxia cry signals from the DA-IICT Infant Cry
database: (a)–(c) time-domain signals, (d)–(f) mel spectrograms and (g)–(i) ConvRBM
spectrograms. The rectangular regions indicate the differences in two spectrograms.
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babbling is delayed in deaf infants and cry signals differ in duration and timing
[38]. Moreover, vocal cry inventories are very limited in deaf infants. The deaf in-
fants rely on only sounds that are visually prominent, such as /ba/ and /ma/.
This has a significant impact on the acquisition of language where sound percep-
tion plays a critical role [22]. Hence, early detection of deafness in infancy may
help in reducing or providing a hearing aid may benefit for the better develop-
ment of infants. The spectrograms from the three deaf infant cry signals from the
baby Chillanto database are shown in Figure 2.13. One can see more resolved har-
monics in the high frequency regions in ConvRBM spectrograms (as marked in
Figure 2.13) compared to the mel spectrograms. In all the deaf cry samples, dys-
phonation cry mode is present in the high frequency regions. There are vibration
cry modes also present as seen in the cry signals in Figure 2.13(a) and (b).

Asthma cry

Asthma is a chronic inflammatory disease that inflames and narrows the air-
ways. These airways allow air to come in and out of the lungs. Asthma causes
recurring periods of wheezing (a whistling sound when you breath), shortness
of breath (i.e., difficulty in breathing), chest tightness and coughing. The symp-
toms of asthma seen in people of all ages, but it most often starts during child-
hood or in the infant stage. Asthma is thought to be caused by a combination of
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Figure 2.13: Comparison of spectrograms for deaf cry signals from the Baby Chillanto
database: (a)–(c) time-domain signals, (d)–(f) mel spectrograms and (g)–(i) ConvRBM
spectrograms. The rectangular and circular regions indicate the differences in two
spectrograms.
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genetic and environmental factors that include allergens or air pollution. There
is no cure for asthma till now; however, early symptoms can be prevented by
avoiding triggers such as allergens and irritants, etc. An infant suffering from
asthma face difficulties in breathing, and hence proper treatment must be con-
ducted to reduce the symptoms. The spectrograms from the three deaf infant
cry signals from the DA-IICT Infant Cry database are shown in Figure 2.14. Due
to frequency inhalation, distorted harmonic structures are seen in the spectro-
grams in Figure 2.14(d) and (g). Abrupt dysphonation cry modes are present in
Figure 2.14(e) and (h). Due to breathing difficulty, sometimes acoustic energy
levels, and harmonic frequency range changes abruptly Figure 2.14(f) and (i).

2.7 Experimental results

In this section, the classification results and evaluation using various perfor-
mance measures are presented.

2.7.1 Experimental results on the DA-IICT Infant Cry database

The classification accuracies for the DA-IICT Infant Cry database using the
MFCC and ConvRBM-CC feature sets are shown in Figure 2.15. The ConvRBM-CC
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Figure 2.14: Comparison of spectrograms for asthma cry signals from the DA-IICT Infant Cry
database: (a)–(c) time-domain signals, (d)–(f) mel spectrograms and (g)–(i) ConvRBM
spectrograms. The rectangular regions indicate the differences in two spectrograms.
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obtained higher % classification accuracy compared to the MFCC for all the
GMM components. For the MFCC, optimal results obtained using 200 GMM com-
ponents. For the ConvRBM-CC, the optimal results obtained using 400 GMM
components. We achieved an absolute improvement of 2% in the classification
accuracy compared to the MFCC feature set. The confusion matrices for the clas-
sification experiment are shown in Figure 2.16. The FP and FN rate of the MFCC
is quite high compared to the ConvRBM-CC feature set. From Figure 2.16(b), it
can be seen that the ConvRBM-CC has no FP and only 4 FN compared to the
MFCC with 21 FN (Figure 2.16(a)). Hence, with the ConvRBM-CC, there is no
chance that a normal cry signal is considered as pathological cry signal.

The performance measures of the classification experiments on the DA-IICT
Infant Cry database are shown in Table 2.3. The ConvRBM-CC obtains significantly
high values for all the measures compared to the MFCC. Since F-measure does
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Figure 2.15: The % classification accuracies using for various GMM components the DA-IICT
Infant Cry database.
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Figure 2.16: Confusion matrices for experiments on the DA-IICT Infant Cry database using:
(a) MFCC, and (b) ConvRBM-CC.
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not consider the true negatives into account, the values of F-measure are very
similar for both the feature sets. The MCC and J-statistic values are higher for the
ConvRBM-CC compared to the MFCC. The % accuracy does not consider false pos-
itive and false negatives. From Table 2.3, one can see that the difference in MCC
and J-statistic for the MFCC and ConvRBM-CC is higher compared to % accuracy.
Hence, MCC and J-statistic are more meaningful performance measures than
just % classification accuracy. We have also shown the 3-D t-SNE visualization
in Figure 2.17 for the MFCC and ConvRBM-CC feature set extracted from the
DA-IICT Infant Cry database. The MFCC feature vectors of both normal and pa-
thology classes are scattered over all the dimensions in the tSNE plot. However,
the tSNE plot of ConvRBM shows that features related to normal and pathol-
ogy are grouped in separate clusters with very small overlap in them. Hence,
ConvRBM-CC discriminates normal and pathology classes in the DA-IICT Infant
Cry database more significantly than the MFCC.

2.7.2 Experimental results on the Baby Chillanto database

The experimental results using the Baby Chillanto Database are shown in
Figure 2.18 for the MFCC and ConvRBM-CC with different GMM mixture com-
ponents. Compared to the DA-IICT Infant Cry database, both the feature sets
were able to perform well in the classification of normal and pathology cry
signals. However, ConvRBM-CC consistently performs better than the MFCC
for all the GMM mixture components. The best classification accuracy of
99.87% was achieved using ConvRBM-CC (0.58% absolute improvement com-
pared to the MFCC) obtained with 300 GMM mixture components. The confu-
sion matrices for both feature sets are shown in Figure 2.19. The false positive
rate of the MFCC is quite high than the ConvRBM-CC (15 vs. 1), while there are
no false negative when the ConvRBM-CC is used in the classification task.
Hence, with the ConvRBM-CC feature set, all the cry samples are correctly
classified with only one false negative.

Table 2.3: Performance measures for the classification
experiments on the DA-IICT Infant Cry database.

Feature set MCC F-measure J-statistic

MFCC . . .
ConvRBM-CC . . .
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The significance of this improvement using the ConvRBM-CC feature set can
also be seen from the performance measures in Table 2.4. Here, again the F-
measure is similar for both ConvRBM-CC and the MFCC. The MCC and J-statistic
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Figure 2.17: t-SNE plots for 3-D visualizations of (a) MFCC, and (b) ConvRBM-CC feature sets
extracted from the DA-IICT Infant Cry database. The 39-D of both feature sets is mapped to 3-D
using the tSNE technique. The black color corresponds to normal and gray color corresponds
to pathology class.
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are quite high for the ConvRBM-CC with value 0.999 (close to 1). The difference
in values of MCC and J-statistic indicates that the ConvRBM-CC performs better
than the MFCC even though % accuracy is quite similar. The tSNE visualization
of the MFCC and ConvRBM-CC feature sets are shown in Figure 2.20. Compared
to the DA-IICT Infant Cry database, the MFCC features of the Baby Chillanto data-
base show more class separability in the tSNE 3-D feature space as shown in
Figure 2.20(a). ConvRBM-CC feature set also shows separate clusters of feature
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Figure 2.18: The % classification accuracies using for various GMM components the Baby
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Figure 2.19: Confusion matrices for experiments on the Baby Chillanto database using:
(a) MFCC and (b) ConvRBM-CC.

Table 2.4: Performance measures for the classification
experiments on the baby Chillanto database.

Feature set MCC F-measure J-statistic

MFCC . . .
ConvRBM-CC . . .
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vectors of the normal and pathological infant cry signals in Figure 2.20(b). The
class-specific grouping of feature vectors is more dominant in the ConvRBM-CC
compared to the MFCC.
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Figure 2.20: t-SNE plots for 3-D visualizations of (a) MFCC and (b) ConvRBM-CC feature sets
extracted from the baby Chillanto database. The 39-D of both feature sets is mapped to 3-D
using the tSNE technique. The black color corresponds to normal and gray color corresponds
to pathology class.
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2.8 Discussions

Most of the pathology in the infants is due to neurological diseases (including
SIDS) or changes in neurological responses due to physical abnormalities, such
as asthma and asphyxia. In one of the studies, it was observed that babies who
die of SIDS have abnormalities in the specific brain region called medulla oblon-
gata which helps in control functions like breathing, blood pressure and abnor-
malities in serotonin signaling [4]. The ConvRBM is a statistical auditory model
incorporating responses to the auditory nerve fibers (ANF). Hence, the learned fil-
terbank reflects the perceptual cues regarding pathology in the infant cry signals.
The spectrogram analysis of the filterbank revealed that good time-frequency res-
olution is required to clearly see different cry modes in the infant cry signals.
Though the mel filterbank is based on perceptual mel scale, the frequency resolu-
tion in progressively higher frequency region is poor. The frequency scale ob-
tained from the ConvRBM is learned through the infant cry signals that are
optimal to represent the infant cry signals in time and frequency domain. Hence,
we can analyze different cry modes clearly in the ConvRBM spectrograms. Further
extension of this work is to classify the type of pathology class. However, there
are potential challenges in doing so, such as very limited cry samples for each
pathology case and highly imbalance classes (e.g., large samples of normal cry
vs. few samples of pathology classes). Such difficulty may be overcome by using
data augmentation technique in the infant cry signals.

2.9 Summary and conclusions

In this chapter, we proposed to use ConvRBM-based auditory filterbank learning
for the infant cry classification task. The subband filters learned from the two in-
fant cry databases shows that most of the learned subband filters are the Fourier-
like basis. This is due to the fact that infant cry signals contain greater harmonic
structures. The filterbank scale also follows the standard auditory frequency
scales. The analysis of the ConvRBM spectrograms shows various cry modes more
clearly present in the ConvRBM spectrograms compared to the mel spectrograms.
The classification experiments for the normal versus three pathologies, namely,
deaf, asthma and asphyxia cry signals are presented. The experimental results
using standard performance measures show that the proposed ConvRBM-based
features perform significantly well in the infant cry classification task. The current
limitation of the present work is the use of imbalanced classes and justification of
the proposed approach through only two databases. We would like to obtain
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more statistically meaningful infant cry databases to further signify our proposed
approach. The future work also includes to classify pathological cry signals and
make better infant cry classier that will be helpful to the doctors and the society.
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3 Acoustic and prosodic analysis
of vocalizations of 18-month-old
toddlers with autism spectrum disorder

Abstract: Autism spectrum disorder (ASD) covers a wide spectrum of symptoms
with the main ones relating to problems with social communication and interac-
tion. Definite ASD diagnosis is based on the presence of certain symptoms and
their severity levels and, according to current standards, occurs typically at 48
months of age. Recent statistics show that about 1 in 68 children are diagnosed
with autism and there is a recurrence rate of 18.7% for the biological siblings of
individuals with ASD. As such, early detection is critical, as it may allow for in-
tense therapy to be initiated, thus tapping into a young brain’s plasticity proper-
ties and increasing odds of success. Today, researchers and clinicians have joined
efforts to understand and identify new markers of the disorder, thus allowing for
early diagnosis, ideally around 18 months of age. To this end, acoustic analysis of
toddler vocalizations has emerged as a promising area, even for preverbal chil-
dren. Prosodic and acoustic disorders have been reported for babble and speech-
like vocalizations. As such, pitch, energy and voice quality related features have
been explored for early ASD diagnosis. In this work, we build upon these findings
and propose the use of wavelet-based and speech modulation spectral features for
ASD diagnosis based not only on speech-like verbalizations, but also on cries,
laughs and other sounds made by the toddlers. We show that the proposed fea-
tures are complementary to existing ones and, on a cohort of 43 18-month-old tod-
dlers, a support vector machine classifier was capable of correctly discriminating
the ASD group from the typically developing toddlers with accuracies above 80%,
thus outperforming existing methods. More importantly, we show that with these
new features, vocalizations such as cries, squeals, whines and shouts showed to
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be more discriminative than babble and speech-like vocalizations. It is hoped that
these findings will lead to more accurate early diagnosis of ASD symptoms.

Keywords: autism spectrum disorder, diagnosis, prosody, wavelets, speech
modulation spectrum

3.1 Introduction

The American Psychiatric Association defines autism as a pervasive developmental
disorder that is related to a triad of impairments: (1) atypical development in recip-
rocal social interaction; (2) atypical communication; and (3) restricted, stereotyped
and repetitive behaviors [1]. In fact, the definition has recently been updated to
include a wide spectrum of symptoms and impairment levels, thus the terminology
autism spectrum disorder (ASD) has been incorporated [1]. The definite (or stable)
diagnosis of ASD is based on the presence of certain symptoms and their severity
levels, and typically occurs around 48 months of age [2]. Recent statistics suggest
that roughly 1 in 68 children are diagnosed with autism and there is a recurrence
rate of 18.7% for the biological siblings of children with ASD [3, 4].

Recent research, however, has suggested that diagnosis can be made around 18
months in many cases [5]. Early diagnosis can allow parents to move forward with
appropriate educational support [6] and clinicians to initiate interventions that take
advantage of the young brain’s plasticity properties [7]. New tools are needed, how-
ever, in order to accurately diagnose ASD at such an early age. The Autism Diagnostic
Observation Schedule (ADOS) is one of the gold-standard assessment tools used in
the diagnosis of ASD. In the most recent version of the ADOS [8], the item that cap-
tures atypical intonation, pitch, stress, tone, volume, rhythm and rate of vocalizations
was added to the diagnostic algorithm, due it demonstrated clinical utility [8–11].

These studies have shown that vocalizations of participants with ASD are
more difficult to interpret in terms of affective meaning and function than in
their typically developing (TD) and developmentally delayed (DD) peers [12, 13].
Moreover, individuals on the autism spectrum have been observed to have more
hoarse, harsh, hyper-nasal voice quality, with higher recurrence of squeals,
growls and yells [14]. Several terms have been used to described prosody in ASD
including: monotonous, exaggerated, robotic, pedantic and wooden, to name a
few. Whatever the unusual feature might be, it is often noticed by social contact
and may represent a significant barrier to peer acceptance. Atypicalities in the
prosody of individuals with ASD were noted in the earliest description of autism,
and studies show that impairments in vocal behavior are evident even in prever-
bal individuals with ASD and may represent an early feature of ASD [12, 15–18].

94 Stefany Bedoya et al.

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Early studies have examined both perception and production of prosody in in-
dividuals with autism; however, an issue often addressed in the literature of ASD is
the unknown prevalence of atypical prosody and the heterogeneity of the ASD pop-
ulation. Additionally, the lack of standardized investigative methods used to quan-
tify vocal prosody and the shortcomings of perceptual judgment have produced
inconsistent and sometimes contradictory findings [14, 19, 20]. As such, recent re-
search has focused on incorporating computerized acoustic analysis within the de-
tection of ASD, thus overcoming some of these limitations involved in research
studies using qualitative methods [9–11]. Acoustic characteristics of speech produc-
tion have been measured and quantified across several studies as possible markers
of ASD. Most existing studies, however, have been conducted with older children or
with younger children but with a wide age range between 18 and 36 months. Given
the natural changes in vocal characteristics (e.g., growing and maturation of the
vocal tract) that occur during childhood, it is important that acoustic analysis focus
on individuals of roughly the same age, thus removing the potential bias from natu-
ral age-related acoustic changes and variability, and allowing the system to focus
solely on disorder related differences. The work described herein fills this gap.

3.2 Prosody in ASD

Disordered prosody has long been considered a hallmark of ASD and atypical in-
tonation has been recognized as an important diagnostic ASD marker. Prosodic
characterization of children with ASD is an under-researched area, particularly
for very young and preverbal children, although studies suggest vocal atypi-
cality may represent an early appearing symptom of ASD. Studies have tradi-
tionally measured and quantified parameters of intonation, volume and vocal
quality to identify differences between ASD and comparison groups. The most
persisting finding reported in the literature is that individuals with ASD have
greater variability and a wider range in fundamental frequency (F0) measures
[9, 14, 18, 21–26]. This finding is to an extent counter-intuitive as children on the
autism spectrum are often described as having monotone or robotic speech. Few
studies have also suggested that impairments in the use of pitch related features
in individuals with ASD are linked to an abnormal processing of auditory stimuli
at the brainstem level [27–29]. More recently, a higher pitch coefficient of varia-
tion (CV) per word was found for the TD group in comparison with the ASD
group at school age, while no significant differences between the two classes
could be observed at a preschool age [11].

In addition to disordered pitch, ASD individuals have been reported to have
speech that is described as “too fast” or “too slow” [14]. Most studies that have
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measured sentence and word duration have reported longer duration in individu-
als with ASD [10, 14, 30–32]. In [10] for example, a perceptual and acoustic analysis
in children with Asperger syndrome was employed. The study showed that even
when children with ASD and TD performed similarly in the perception of intona-
tion patterns and the use of prosodic features to express grammatical meaning,
children with ASD showed an alteration in duration, mean and maximum pitch.
These findings are in line with the results shown in [32], where a significant differ-
ence in duration for emotional speech (sad utterances having a longer duration
than happy or angry utterances) was found for TD and Asperger Syndrome (AS)
groups, while participants with high-functioning autism (HFA) did not show any
difference. However, two recent studies did not find significant differences in dura-
tion between ASD and TD children [21, 33]. Again, such contradictory results may
be due to a wide age-range of the study participants, thus results may be biased
due to natural age-related acoustic changes and variability.

Moreover, a few studies have employed multivariate analysis using machine
learning techniques. In [34], for example, four groups of features: voice quality,
energy-related, spectral and cepstral features were compared for a database col-
lected to assess child abilities in imitation of different types of prosody contours.
The results showed that voice quality features improved classification perfor-
mance over the other feature groups. Other studies measured voice quality re-
lated measures such as jitter, harmonic-to-noise ratio (HNR) and cepstral peak
prominence (CPP), which tend to increase in the children with ASD with increas-
ing symptom severity [9, 24, 25, 35].

3.3 Early vocal patterns in ASD

Parents of children with ASD may have a difficult time recognizing the affective
meaning of their infants’ vocalizations, and recent evidence is emerging to indi-
cate that vocal atypicality may be apparent in very young infants with ASD [12, 13,
16, 36, 37]. However, most of the studies have tended to focus on verbal adoles-
cents and adults, though some have studied school and preschool age children as
well. Infant vocalizations are the earliest form of vocal communication. They play
an important role in the development of the parent-child relationship and lan-
guage acquisition. Infants begin to produce vegetative or reflexive sounds such as
coughing or crying soon after birth, and through several stages they expand their
sounds and their vocalizations to become more speech-like [38]. The growth and
anatomic restructuring of the vocal tract during the first half year of life and the
vocal learning are the main factors that induce a change in child vocalizations
[38]. Recently, a few studies have been analyzing the development of acoustic
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parameters in infants’ vocalizations as a noninvasive tool to measure vocal-
muscular maturation [12, 16, 39, 40]. Atypicalities in the production of vocal pat-
terns could involve abnormal processing of auditory feedback or problems in the
speech production mechanisms. In the next subsections we explore some studies
employed in children with ASD. Specifically crying and canonical babbling vocal-
izations have been studied in the ASD literature.

3.3.1 Crying

Crying is the infant’s earliest form of vocal communication. It has been ex-
plored due to its relationship with the central nervous system [12, 16, 17, 37, 41–
45]. Acoustic abnormalities in infants’ cries have been associated with some
disorder such as asphyxiation, low birth weight, metabolic disorder, neurologi-
cal symptoms and lead exposure, among others. Most of the studies evidence a
high and variable pitch [41]. In the ASD literature, the cries of children later di-
agnosed with autism exhibited a higher F0 value and shorter pauses than the
cries of developmentally delayed or typically developing children [12, 16, 36,
37]. Moreover, the fundamental frequency was shown to decrease for healthy
children during the first and second years of life, unlike the case with children
later diagnosed with ASD [16, 36]. Sheinkopf and colleagues employed a cry
acoustic analysis of 6-month-old infants [46] and showed that at 6 months,
high risk children started to show a higher and more variable pitch value than
those with low risk. Later, when the same high risk participants were analyzed
at the age of 36 months, they showed an even higher F0. Additionally, other
studies have analyzed the variability in the fundamental frequency (pitch
range) but no differences were found between the two groups [37, 46].

A more recent study in ASD employed a reaction time (RT) categorical task to
analyze adults’ responses to cries of children between 36 and 40 months of age
with ASD [16]. They found that differences in vocal behavior in children later diag-
nosed with ASD caused adults to perceive the cries as distressed and more difficult
to process and interpret than the cries of typically developing children, as well as
mammalian animal cries and environmental noise control sounds. Esposito and
colleagues, in turn, examined acoustic features of infant-cry vocalizations of a
group of typically developing children and children with ASD, both aged 13
months [12], and found that the pause length was more important for the percep-
tion of distress in children with ASD than the fundamental frequency or the fre-
quency of cry sounds per unit time across an episode of crying.
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3.3.2 Canonical babbling

Babbling begins shortly after birth and is well established by 10 months of age.
Any delay in the onset of canonical babbling is related to language delay or
other developmental disabilities [17]. Just a few studies have focused on the anal-
ysis of canonical babbling in children with ASD [17, 43, 44]. Patten and col-
leagues studied the canonical status and vocalization frequency of a group of 37
infants with ASD compared with a typical development group at 9–12 and 15–18
months [17]. Individuals later diagnosed with autism produced significantly
lower rates and had a later onset of canonical babbling than the control group.
These findings are congruent with the results obtained in the analysis of canoni-
cal syllable production of infants aged between 16 and 48 months [44]. However,
some reported findings have been contradictory. For example, Sheinkopf and
colleagues studied the nature of early vocal behaviors in young children with au-
tism with a focus on canonical babbling and atypical vocal quality (defined as
the rate of production of atypical phonation) [43] and the group with ASD did not
display significant differences compared with developmentally delayed control
group in terms of rate of canonical babbling, despite their vocalizations showing
atypical vocal quality [17, 44].

3.4 Methods and materials

3.4.1 Data collection

Data used in this study were extracted from a set of videotaped ADOS – Module 1
sessions, which are part of the longitudinal prospective Canadian “Infant Sibling
Study” from the Autism Research Unit at Toronto’s Sick Kids Hospital [47]. The
study monitors younger siblings of probands with ASD, recruited due to a known
higher risk to exhibit the disorder, estimated at an 18.7% recurrence rate [3], as
well as low-risk age-matched “control” children of families without a history of
ASD. Participants are followed from the age of 6–24 months and every 3–12
months undergo a series of (re)assessments, including the ADOS and other stan-
dardized developmental and language tests. At the 36-month follow-up visit, a
well experienced clinician, blinded to previous outcomes and impressions, as-
sesses them for ASD utilizing gold standard clinical tools, such as medical his-
tory, ADOS and the Autism Diagnostic Interview – Revised (ADI-R) [48].

Our analysis was conducted on a subset of the Infant Sibling data set and re-
lied on audio recordings of 43 participants during their 18-month assessment. The

98 Stefany Bedoya et al.

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



ASD group includes 23 (15 male and 8 female) children independently diagnosed
with ASD at the age of 36 months and encompassed both Asperger syndrome and
Autism disorder diagnoses. An age-matched comparison group of 20 (13 male and
7 female) low-risk TD children was used. Children in the control group received
the same follow-up assessments as the ASD group and were determined at 36
months of age not to have ASD. As per the larger study, participants who were
born premature or with low birth-weight are excluded from the study.

Audio content was extracted from the video recordings and toddlers’ vocal-
izations were manually segmented and labelled according to vocalization type.
Instances of vocalizations with overlapping adult speech (parents, clinician)
were discarded from our analysis. Overall, the total audio segments extracted
from only the toddler vocalizations resulted in 127.0 and 194.5 seconds for con-
trol and ASD groups, respectively.

3.4.2 Preprocessing

In the literature of infant phonology, a vocalization occurs on expiration and
when an inspiration occurs, it is perceived as a break that separates the vocal
events [44]. Each vocal event separated by a breath is called an utterance. In order
to extract the utterances of each one of the vocalizations in our database and to
avoid processing silent/noise-only intervals, an automated energy-thresholding
method was used, as in [44]. Using this segmentation method, a total of 2,647 ut-
terances were obtained for both ASD and non-ASD groups. Table 3.1 summarizes
the number of vocalization utterances for each group and type of vocalization.
The class labeled as “negative emotions” combines vocalization utterances such
as cry, squeal, whine and shout. As shown, the number of vocalizations per group

Table 3.1: Summary of vocalization utterances for ASD and control groups.

Group ASD (n = ) Control (n = ) Total

Babble   

Speech   

Laugh   

Negative emotions   

Others   

Total   
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and per vocalization type are not balanced with babble and speech being the
most prominent and laugh the least.

3.4.3 Feature extraction

Wavelet packet decomposition

Wavelet packet decomposition (WPD) is a generalization method of the discrete
wavelet transform (DWT) that allows a time-frequency multiresolution analysis
of an input signal. WPD has been used in previous studies for emotion recogni-
tion, speech analysis and also has shown to be useful in the analysis of patholog-
ical speech and pathological infant cry [49–51]. Due to the highly nonstationary
characteristics of some vocalizations such as cry, squeal and shout, the wavelet
analysis was more suitable for detection and classification than the traditional
Fourier methods [52]. The decomposition process and multiresolution analysis
can be viewed as the application of a filter bank. More specifically, the input sig-
nal is passed through a low-pass and high-pass filter, which corresponds to the
scaling and wavelet function [49, 53]. The lower frequency band gives the ap-
proximation coefficients and higher frequency band the detail coefficients. In
wavelet packet decomposition, the process is recursively applied to both fre-
quency subbands to generate the next level of decomposition. The wavelet pack-
ets coefficients can be computed as follows:

CP
n, k =

ffiffiffiffiffi
2P

p X∞
m= −∞

f ðmÞ ·Wnð2Pm− kÞ, (3:1)

CP− 1
2n, l =

X
m

hðm− 2lÞ ·CP
n,m, (3:2)

CP − 1
2n+ 1, l =

X
m

gðm− 2lÞ ·CP
n,m. (3:3)

where P is the scale index, l the translation index, h low-pass filter and g high-
pass filter, and K is filter length.

Figure 3.1 shows an example of a two-level wavelet packet decomposition for
a babble signal generated from a control and an ASD participant. For n levels of
decomposition, the WPD produces 2n finer equal-width frequency subbands or
nodes. The frequency ranges given in Hertz for the level n of decomposition are
described by:

kfs
2n+ 1

ðk+ 1Þfs
2n+ 1


 �
k =0, 1, ..2n− 1, (3:4)
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Figure 3.1: Two-level wavelet packet decomposition of (a) control and (b) ASD babble signals
with bior2.6 mother wavelet.
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where fs is the sampling frequency of the original signal [50]. Table 3.2 shows the
frequency ranges for each level of decomposition for a signal with a sampling fre-
quency of 16 kHz, as is the case in the database used herein. These frequency
ranges are used in our experiments to decompose vocalization utterances.

We propose the use of energy and entropy based features for our analysis, com-
puted from each wavelet packet coefficient CP

n, k as follows [49–51], respectively:

Eðn, k, lÞ =
X+∞

l= −∞

jCP
n, kðmÞj2wðl−mÞ, (3:5)

Sðn, k, lÞ =
X+∞

l= −∞

− jCP
n, kðmÞj2 log jCP

n, kðmÞj2wðl−mÞ, (3:6)

where l is the number of window frames, P is the scale index, n represents the
decomposition level and k=0, 1, ..., 2n− 1 is the node number. In our experiments,
each subband wavelet packet coefficient is divided into frames of 40 ms and
successive frames were overlapped by 50%. Finally, statistical measures such
as mean (�Xðn, kÞ), standard deviation (stdðn, kÞ), skewness (gðn, kÞ) and kurtosis
(Gðn, kÞ) are computed overall per-frame measures over the entire vocalization
utterance. The final feature vector is an 8-dimensional feature vector computed
per node k and decomposition level i, comprised of the mean, standard devia-
tion, skewness, and kurtosis of the energy and the entropy values.

3.4.4 Speech modulation spectral representation

The so-called speech modulation spectral signal representation is an audi-
tory-inspired spectro-temporal representation that captures both acoustic fre-
quency and temporal modulation frequency properties of the analyzed signal

Table 3.2: Frequency bands for wavelet packet decomposition of a signal with
sampling frequency of 16 kHz.

Decomposition level Frequency band (Hz)

 –,, ,–,

 –,, ,–,, ,–,

 –,, ,–,, ,–,, ,–,

 –, –,, ,–,, ,–,, ,–,
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[54]. Figure 3.2 shows the steps used in our approach to compute the spectro-
temporal (ST) representation of an input signal. In the first step, the active
signal level is normalized to –26 dBov (dB overload) [55]. Next, a bank of 23
critical-band gammatone filters is used to model the frequency response of
the basilar membrane [56]. The first filter is centered at 125 Hz and the last
one at half of the sampling frequency of the analyzed signal. The bandwidth
of each filter is described by a psychoacoustic measure called equivalent rect-
angular bandwidth (ERB) and is computed as follows:

ERBi =
fi

Qear
+Bmin, (3:7)

where fi is the center frequency given in Hz of the ith critical-band filter, and
Qear and Bmin are constants set to 9.26449 and 24.7, respectively.

The envelope eiðnÞ is computed for each one of the filterbank outputs ŝiðnÞ
using the Hilbert transform Hf · g. The envelope of the ith bandpass filter signal
is given by:

Input:
Vocalization utterance

Pre-processing

23-channel
Gammatone

filterbank

ŝi(n)

Hilbert envelope
H{.}

discrete Fourier
transform

f {.}

8 channel
gammatone

filterbank

ei(n)

Ei(m,f )

Figure 3.2: General scheme to compute ST representation.
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eiðnÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝiðnÞ2 +HfŝiðnÞg2

q
i= 1 � � � , 23 (3:8)

The modulation spectrum of the signal is computed using the discrete Fourier
transform (DFT). Specifically, the envelope signal eiðnÞ is divided into frames of
256-ms every 40-ms using a Hamming window. The notation eiðmÞ is used to
indicate the frame m of the windowed envelope. The next step is to take the
DFT Ff · g of each frame. Then, the modulation spectrum is defined by

Eiðm, f Þ= jFðeiðmÞÞj, (3:9)

where f is the modulation frequency. Finally, an auditory-inspired modulation
filter bank allows us to build a representation as a function of the acoustic fre-
quency and temporal modulation frequency elements. The modulation energy
of the ith critical-band signal is grouped into 8 bands; each band is denoted as
εi, kðmÞ, k = 1, . . . , 8, where k notes the kth modulation filter.

Given the modulation spectral representation above, the set of features
originally proposed in [54] is extracted. The first feature set, Φ1,mðkÞ, represents
the energy distribution along the modulation frequency. It is defined as the
mean of the energy samples with respect to the kth modulation channel:

Φ1,mðkÞ=
PN
i= 1

εi, kðmÞ
N

. (3:10)

The second set, Φ2,mðkÞ, is defined as the ratio of the geometric mean of a spec-
tral energy measure and its arithmetic mean value, thus representing the spec-
tral flatness of the spectrum. A spectral flatness value close to 1 is related to a
flat spectrum, while a value close to 0 suggests a spectrum with high variations
in its spectral amplitude. This measure is computed as follows:

Φ2,mðkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΠN

i= 1εi, kðmÞN
q

Φ1,mðkÞ . (3:11)

The third Φ3,mðkÞ measure corresponds to the center of mass of each modula-
tion channel, where f ðiÞ is the index of the critical band. The spectral centroid
for the ith modulation channel is given by:

Φ3,mðkÞ=
PN
i= 1

f ðiÞεi, kðmÞ
εi, kðmÞ . (3:12)
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In order to measure the relationship of different modulation channels, the 23
acoustic channels are grouped in five levels: D1 = ½1− 4�, D2 = ½5− 8�, D3 = ½9− 12�,
D4 = ½13− 18� and D5 = ½19− 23�. The modulation channels into each category are
summed and used to compute the spectral centroid Φ4,mðkÞ in the modulation
frequency domain for Dl as follows:

Emðl, kÞ=
X
i2Dl

εi, kðmÞ, (3:13)

Φ4,mðkÞ=
P8
k = 1

kEmðl, kÞ
P8
k = 1

Emðl, kÞ
. (3:14)

The two final measurements capture the rate of change of each acoustic frequency
region, thus providing an indication of the temporal dynamics of the utterances.
The linear regression coefficient Φ5,mðkÞ (slope) and the corresponding regression
error Φ6,mðkÞ (root mean squared error, RMSE) are computed. Those measures are
associated with the first-degree polynomial model used to fit Emðl, kÞ. The final fea-
ture vector includes 184 modulation spectrum energy features εi, kðmÞ, k = 1, . . . , 8
plus the 39 features described above, thus totaling 223 features.

Acoustic-prosodic measures

Acoustic-prosodic features and their variations between groups have been the
most widely used features in the analysis of autism spectrum disorder. Here, vo-
calization utterances were acoustically analyzed using the VoiceSauce MATLAB
toolbox from the UCLA SPAP laboratory. Many of the parameters estimated by
VoiceSauce depend on F0 and the formant range of the input signal. In our ex-
periments, both measures are optimized for children’s vocalizations. Pitch and
formant-related parameters were computed using a fundamental frequency (F0)
range between 60 and 1,600 Hz and a nominal frequency F1 of 1,250 Hz, which
correspond to the nominal frequency of a 7 cm vocal tract. The features were ex-
tracted from 25 ms frames every 10 ms.

In total, 26 acoustic parameters were extracted, as listed in Table 3.3. The
final feature group includes those related to intonation (pitch), maturity of
speech (first formant frequencies and amplitudes), volume (energy) and meas-
ures of vocal quality such as voice breathiness and harshness/creakiness (har-
monics, spectral tilt and cepstral peak prominence). In order to explore the
variations of prosodic features between ASD and control groups, three different
prosodic feature combinations are proposed. The first group (PF1) includes the
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mean value of the features reported in Table 3.3 for each vocalization utterance.
The second group (PF2) combined the distribution mean and standard deviation,
and finally, mean, standard deviation and range are included in the third
group (PF3). Such a partition was shown useful in [35].

3.4.5 Classification

In our experiments, three SVMs are trained separately on vocalization utterances
from the three different feature groups, namely wavelets, modulation spectral
and acoustic-prosodic. The SVM implementation in [57] was adopted and an RBF
kernel was chosen as it resulted in improved performance during our pilot ex-
periments. In order to find the optimal parameters for each SVM, a fourfold grid
search methodology was used. Classifier performance is measured using strati-
fied 10-fold cross-validation. In stratified 10-fold CV, the feature vector is divided
into partitions of approximately four individuals, where nine sets are used for
training and the rest are left for testing only. The sets are designed to ensure the
classes are equally represented across each test fold. The process is repeated 10
times, and the performance is computed on a per-participant basis. With this ap-
proach, an infant is labeled as control or ASD using a score-based scheme of the
decisions made by the SVM. This method was chosen empirically due to its supe-
rior performance when compared with the common method of plurality vote.
More specifically, SVM outputs of the vocalization utterances for each participant
are compared and the vocalization with the highest likelihood score decides the

Table 3.3: List of extracted acoustic-prosodic parameters.

Parameter Acronym

Fundamental frequency F

Formant frequencies F, F, F, F

Formant frequency bandwidths BW, BW, BW, BW

Harmonic spectra (location and magnitude) H, H, H, A, A, A

Differences of harmonic spectra at corrected
formant frequencies

H1*-H2*, H2*-H4*, H1*-A1*, H1*

-A2*, H1*-A3*

Volume Energy

Cepstral peak prominence CPP

Harmonic to noise ratio HNR, HNR, HNR, HNR
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final class prediction. Thus, if cðxiÞ corresponds to the prediction score for sam-
ple xi, then the final prediction score can be computed as:

C = argmax½cðx1Þ � � � cðxiÞ�, (3:15)

where cðxiÞ corresponds to the distance of the sample xi to the separating
hyperplane.

3.4.6 Fusion schemes

Decision-level fusion

Decision-level fusion schemes combine the decisions from different classifiers in
order to achieve higher robustness and to improve the performance of single-
classifier systems. The combination problem consists of finding the combination
function accepting N-dimensional input vectors fromM classifiers and outputting
N final classification decisions, where the optimal function is the function that
minimizes the misclassification cost. The input vector depends on the combina-
tion function and it can be probabilities, scores or labels from the classifiers. In
our experiments, all the samples xi belonging to the participant sl from the differ-
ent classifiers are used for the combination problem in order to make a per-
participant diagnosis. Three different combination functions are proposed:
1. Plurality vote (PV): This is the simplest and most common fusion method. The

participant sl is assigned to the class cj that obtained the highest number of
votes. In this case, all the classifier weights are equal, that is, wk = 1=K ∀K.

2. Maximum probability vote (MPV): In this fusion scheme, the probabilities
for the samples xi belonging to the participant sl are compared and the
sample with the highest probability decides the final prediction:

C= argmax½pðx1Þ � � �pðxiÞ�. (3:16)

3. Average probability vote (APV): The per-sample conditional probabilities
per each class are averaged and the class cj that obtained the highest aver-
age probability decides the final prediction. Thus if pðcj=xiÞ is the condi-
tional probability that xi belongs to the class cj, the final prediction is made
as follows:

C = argmax

P
i
pðc1=xiÞ
i

,

P
i
pðc2=xiÞ
i

2
4

3
5. (3:17)
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In our experiments, the classifiers in the ensembles are comparable in the
sense that they have been trained on the same data sets and using the same
partitioning.

Feature-level fusion

In feature-level fusion, the feature sets from different sources are concatenated
into a single feature vector before the classification process. The main advan-
tage of this method is that correlated features within and between different fea-
ture sets can be removed via dimensionality reduction tools, thus improving
the generability of the system. In our experiments, a mutual information (MI)-
based algorithm was used in order to measure the degree of relatedness be-
tween the feature values [58, 59]. The MI of the feature set is computed for the
algorithm using the nearest-neighbor method. The details of the method are
presented in [58].

3.5 Results

3.5.1 Experiment 1: Wavelet mother selection

Our first aim was to investigate and compare the effectiveness of different types
of mother wavelets and the distribution of information in several decomposi-
tion levels for the discrimination of autism spectrum disorder. In order to do so,
the extraction feature methodology proposed in the section “Wavelet packet de-
composition” is employed using different wavelet families, such as Daubechies
(db1-db10), coiflet (coif1-coif10), symlet (sym2-sym10), biorthogonal (bior1.1,
bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior,2.8, bior3.1, bior3.3) and reverse bi-
orthogonal (rbior1.1, rbior1.3, rbior1.5, rbior2.2, rbior2.4, rbior2.6, rbior,2.8,
rbior3.1, rbior3.3). Energy and entropy features are extracted from the wavelet-
packet coefficient at several decomposition levels and compared between them
for each kind of mother wavelet.

A summary of the best performance results per wavelet family is presented
in Table 3.4. Columns labelled Acc, Sens and Spec correspond to classifier accu-
racy, sensitivity and specificity. The index number specified in each wavelet
family refers to the vanishing order of the wavelet, which is related to the
length of the filter. Maximum recognition accuracy of 81.5% was achieved
using a first level decomposition and an eighteenth order Daubechies mother
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wavelet. Additionally, it was found that increasing the wavelet decomposition
level improved the general performance for most mother wavelets.

3.5.2 Experiment 2: Feature set comparisons

Experimental results for the different feature sets proposed in Section 3.4 are re-
ported in Table 3.5 As can be seen, the proposed wavelet features achieved the
best accuracy, reaching up to 81.5% average recognition rate. They are followed
by the modulation spectral features with a performance of 79.0%. The three
benchmark prosodic feature sets achieved similar performances with PF1 achiev-
ing the best overall performance among the PF1-PF3 (see Section 3.4.4 for details).

The average recognition rates in Table 3.5 are reported on a per-participant basis
as is described in Section 3.4.5. A total of 43 children (23 with ASD, 20 control)
were classified for each classification model separately. The vocalization with the

Table 3.4: Summary of best results per wavelet family.

Wavelet Acc % Sen % Spec % Level of decomposition

db . . . 

coif . . . 

sym . . . 

bior. . . . 

rbior. . . . 

Table 3.5: Recognition results for the different feature sets proposed.

Features group Acc (%) Sen (%) Spec (%) AUC

Prosodic-PF . . . .

Prosodic-PF . . . .

Prosodic-PF . . . .

Wavelet features “db” . . . .

Modulation spectral features . . . .
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highest score per individual made the final diagnosis. Tables 3.6 and 3.7 present
the details of the diagnosis made between control and ASD groups for each set of
features. Specifically, Table 3.6 shows the number of children correctly classified
(true positives and true negatives) and the vocalization that most contributed to
the final classification per child. Table 3.7, in turn, follows the same methodology
and shows the children that were incorrectly classified for each model (false pos-
itive and false negative).

As shown in Table 3.6, the vocalizations with the highest score among all the
feature groups are the negative emotions. This group includes pain/anger related

Table 3.6: Children correctly classified per model.

Prosodic-PF
features

Wavelet features
“db”

Modulation spectral
features

Vocalization ASD Control ASD Control ASD Control

Babble (%) (%) (.%) (%) (%) (%)

Speech (.%) (%) (%) (%) (.%) (%)

Laugh (%) (%) (.%) (%) (.%) (%)

Others (.%) (%) (%) (%)  (.%) (%)

Negative emotions (.%) (%) (.%) (%) (.%) (%)

TP/TN (.%)  (%) (.%) (%) (.%) (%)

Table 3.7: Children incorrectly classified per model.

Prosodic-PF
features

Wavelet features
“db”

Modulation spectral
features

Vocalization ASD Control ASD Control ASD Control

Babble (.%)  (%) (.%) (%) (.%) (%)

Speech (%) (%) (%) (%) (%) (%)

Laugh (%) (%) (%) (%) (%) (%)

Others (%)  (%) (%) (%) (%) (%)

Negative emotions (.%) (%) (.%) (%) (.%) (%)

FP/FN (.%) (%) (.%) (%) (.%) (%)
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vocalizations such as cry, squeal, whine and shout. The prosodic features re-
sulted in the highest number of individuals with ASD classified correctly (n = 15)
through “negative emotions” vocalizations, followed by modulation spectral fea-
tures (n = 10). In turn, modulation spectral and wavelet features contributed
mostly to correctly assigning the control label within the “others” vocalization
class. On the other hand, while “negative emotions” vocalizations were shown to
be helpful in the classification of ASD, they contributed negatively to the label-
ling of control cases, as shown in Table 3.7.

3.5.3 Experiment 3: Decision- and feature-level fusion

First, decision-level fusion was performed by combining decisions from the
classifiers that were trained and tested by prosodic, wavelet and modulation
features independently. Three different decision-level fusion schemes, as de-
scribed in Section 3.4.6, were employed. Table 3.8 has the classification results
for plurality (PV), maximum probability (MPV) and average probability (APV)
fusion schemes. Also, each fusion scheme was tested under different ensembles
where WF, MF and FC1 correspond to the wavelet, modulation and (mean) pro-
sodic features, respectively. As shown in Table 3.8, the combination of wavelet
and modulation features achieved the highest performance over all methods
tested. Notwithstanding, decision-level fusion did not improve the performance
obtained with the individual classifiers, as reported in Table 3.5.

Next, feature-level fusion combined with an MI dimensionality reduction
scheme was employed. In the end, an SVM classifier was trained on the top-17
features and the results are reported at the bottom of Table 3.8. As can be seen,
feature-level fusion was able to improve the accuracy and specificity of the best
individual ASD versus non-ASD classifier, while maintaining the sensitivity
level at around 90%. Table 3.9 lists the top 17 features used by this classifier.
As can be seen, most of the features are from the modulation spectral class.
Finally, Table 3.10 has the details of the classification made between control
and ASD groups using the top 17 features selected.

3.6 Discussion

Over the last decade, acoustic-prosodic characterization of children on the au-
tism spectrum has been explored as a possible marker for very early detection.
Here, we have explored two new features sets, namely features derived from a
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wavelet packet decomposition and features derived from an auditory-inspired
spectro-temporal feature representation. We showed that in a cohort of 18-
month-old toddlers, we were able to accurately discriminate between toddlers
with ASD and controls with accuracies higher than those achieved with previ-
ously proposed prosodic features [35]. Such findings are important as early de-
tection can allow for early interventions to commence, notably improving

Table 3.8: Recognition results for different decision level fusion and
feature-level schemes.

Decision level fusion

Plurality vote (PV)

Features group Acc (%) Sen (%) Spec (%)

WF+MF+PF . . .

WF+MF . . .

WF+PF . . .

MF+PF . . .

Maximum probability vote (MPV)

Features group Acc (%) Sen (%) Spec (%)

WF+MF+PF . . .

WF+MF . . .

WF+PF . . .

MF+PF . . .

Average probability vote (APV)

Features group Acc (%) Sen (%) Spec (%)

WF+MF+PF . . .

WF+MF . . .

WF+PF . . .

MF+PF . . .

Feature-level fusion

Features group Acc (%) Sen (%) Spec (%)

WF+MF+PF . . .
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prognosis [6]. In the sections to follow, we discuss in detail the major findings
of our study in light of the existing literature.

3.6.1 Vocalization types

Infants produce a wide variety of vocal expressions during the first years of life.
Children use these vocal expressions as a communicative means to express dif-
ferent emotions or different communicative functions to caregivers. From an
acoustic point of view, these vocalizations also exhibit different patterns that
can be the subject of further analyses [60–62]. Several studies in language

Table 3.9: Top 17 features chosen using the mutual
information-based algorithm for classification of
ASD and control groups.

Feature selected Type of feature

Entropy[,]_mean Wavelet

ε23,6 MSF

Φ2,mð6Þ MSF

ε8, 5 MSF

Energy[,]_mean Wavelet

HAC_mean Prosodic

ε1,8 MSF

Φ1,mð3Þ MSF

ε13,6 MSF

ε4,6 MSF

ε4,4 MSF

Energy[,]_mean Wavelet

A_mean Prosodic

Energy[,]_std Wavelet

ε5, 5 MS(n = )F

ε4, 7 MSF

ε14,8 MSF
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acquisition and early identification of pathologies have analyzed the specific
characteristics of different vocalizations such as cries, babbles, laughter and
grunts due to their relevance during language and communicative skills devel-
opment [12, 16, 17, 37, 38, 41–45, 60–63].

Vocal development in infants is considered a continuous, but nonlinear
process. Early vocalizations are precursors of speech and language develop-
ment. In the literature, vocalizations such as crying and babbling have received
significant attention. For example, babbling is likely to influence the develop-
ment of spoken language due to the fact that words are composed of canonical
syllables [17, 60, 64]. Infants start to produce canonical babbling around 10
months and it has been shown that any delay in the onset of canonical bab-
bling is a significant predictor of language delay or other disabilities [65, 66].
Given the relationship between language acquisition and babbling, a few stud-
ies have explored the production of babbling in individuals with ASD [17, 43,
44]. Infants diagnosed with ASD display low rates of canonical babbling, lower
number of total syllables produced (volubility) and a later onset in canonical
babbling stage compared with typically developing children [17, 44].

Crying, in contrast, is the first method of communication for an infant. It is
used to express different needs, states and demands. Frequency vibration of the
vocal cords has been related to the dominance of laryngeal processes in early
sound production [39]. Previous studies, including autism spectrum disorder
analysis, have shown that low birth weight infants and infants with neurological
symptoms have different acoustic patterns such as fundamental frequency (F0),
vocal tract resonance frequencies, pause length, amplitude modulations and
number of utterances compared with typically developing children [12, 16, 17, 37,
41–45]. In babies later diagnosed with ASD, cries were shown to convey high

Table 3.10: Children correctly classified after feature-level fusion.

Selected features

Vocalization ASD Control

Babble (.%) (%)

Speech (.%) (%)

Laugh (.%) (%)

Others (.%) (%)

Negative emotions (.%) (%)

FP/FN (.%) (%)
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levels of distress, a factor later attributed to modulation deficits and unnatural
F0 and formant values [36].

In our study, vocalizations such as cry, squeal, whine and shouts (called
here “negative emotions”) were grouped in order to allow for a more balanced
class relative to, for example, speech and babble. Table 3.6, in fact, suggests that
such vocalization types were more important than speech or babble in helping
correctly classify between ASD and controls, regardless of the feature used.
Similar findings could be seen with feature fusion, as reported in Table 3.10.

Laughter has also been studied within the infant population to convey in-
formation about the child’s mental/affective state [67]. Individuals with ASD
have been reported as having laughter episodes without an apparent motivat-
ing stimulus [61, 68]. Other studies have shown that patients with neurological
disorder exhibit uncontrollable episodes of pathological crying, pathological
laughing or both, potentially related to impairment in the control and use of
their emotions [69, 70]. Within our study, laughter was shown to be a useful
vocalization type to help correctly detect ASD, particularly within the prosodic
feature space (see Table 3.6).

3.6.2 Features

Mother wavelets

With wavelet packet decomposition, the signal is decomposed into scaled and
translated versions of a mother wavelet. As each family of mother wavelets has
different characteristics such as symmetry, orthogonality, filter length and van-
ishing order, different signal properties may be captured by different mother
wavelets. In this investigation, Daubechies 8 (“db8”) was deemed the best
mother wavelet to discriminate between control and ASD groups among other
tested mother wavelets, including: coiflet, symlet, biorthogonal and reverse bi-
orthogonal. Additionally, our results showed that increasing the level of decom-
position led to more detailed features and, consequently, better classification
performance. This was true for all tested mother wavelets, except db8, in which
a one-level decomposition showed to be optimal (see Table 3.4).

In the speech processing literature, the db8 mother wavelet has been
shown to be widely used across numerous applications, including enhance-
ment, compression and recognition, to name a few [71]. Wavelet decomposition
has also been used in the past for pathological cry and pathological speech
analysis [49, 50, 72, 73]. This is the first time, however, that wavelet features
have been explored for autism spectrum diagnosis. In [50], for example, cry
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signals were decomposed into five levels using four different mother wavelets
from the Daubechies family, namely: “db1”, “db4”, “db10” and “db20”. The
highest classification accuracy was achieved at the fifth level of decomposition
using the “db20”mother wavelet.

While higher decomposition levels may have assisted with pathological cry
detection, a simple one-level decomposition showed here to be optimal for the
task at hand. Such decomposition likely sufficed to measure the energy differen-
ces typically reported within the ASD literature (e.g., [44]), the high frequency
entropy representative of breathy and harsh sounds, as well as high frequency
energies representative of squeal/cry quality [44]. As shown in Table 3.6, wavelet
features were useful for the speech, other and negative emotion vocalization clas-
ses, thus likely capturing these qualities, respectively.

Prosodic features

According to Table 3.6, prosodic features were shown to be particularly useful
in discriminating between ASD and controls within the negative emotion vocal-
ization class, contributing to the correct classification of roughly half the partic-
ipants. Such findings corroborate those previously published in the literature,
which have shown cries to have different F0 and formant frequencies between
ASD and controls [12, 16, 17, 37, 41–45, 74]. The “others” and “laughter” catego-
ries were the second to contribute mostly to correct classification. Such findings
also corroborate those in the literature that have shown laughter to an affect
spectral tilt, F0 and first formant amplitudes [75]. Prosodic features have been
typically explored in the literature and are used here as a benchmark to the pro-
posed system, as well as providing complementary information to the proposed
wavelet and modulation spectral features.

Wavelet features

As per Table 3.6, negative emotion, others vocalizations and speech were the top
three vocalization classes, respectively, contributing to correct classification
when using only wavelet features. Wavelet features computed from the one-level
decomposition basically explore energy levels and variability in high and low fre-
quency ranges, as well as spectral entropy. In the past, such details, while not
computed via WPD, were shown to discriminate between the two groups.
Spectral entropy, for example, was related to rhythmic cues, breathiness, and
harshness and could discriminate between typically developing children and
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those with ASD [40]. Energy variability, in turn, was shown to be a correlate of
perceived prosody atypicality in ASD [76]. Wavelet features have also been
shown useful in pathological cry detection and in emotion recognition from
speech [77, 78]. In [77], for example, wavelet-based features were shown to be
useful for anger detection, whereas in [78], they were shown to be useful in dis-
criminating angry and disgust emotions. By computing wavelet features for dif-
ferent vocalization classes separately, different attributes could be measured,
thus contributing positively toward ASD detection.

Modulation features

Auditory-inspired modulation features have been used in the past for pathologi-
cal speech characterization [79–81] and speech emotion recognition [54]. High
frequency modulations have also been linked to turbulence noise in no-pain
cries [40], whereas certain cry modulation frequencies have been linked to cen-
tral nervous system disorder [40]. Additionally, recent research has suggested im-
paired extraction of speech rhythm from temporal modulation patterns in speech
in developmental dyslexia, an impaired neural representation of the sound struc-
ture of words typically observed with individuals on the spectrum [82]. The work
described herein exemplifies the first attempt at using modulation features for
ASD detection. Such findings corroborate the observation that the modulation
spectral features that contributed the most toward the task at hand were com-
puted from negative emotion, other and speech classes (see Table 3.6).

3.6.3 Overall accuracy

Table 3.5 shows that wavelet features achieved the best overall accuracy and sen-
sitivity, outperforming the benchmark prosodic features and proposed modula-
tion features. The modulation features, in turn, resulted in the highest specificity.
These findings suggest that different features may contribute complementary in-
formation to overall ASD detection. The next section discusses the obtained find-
ings aimed at fusing information at the decision and feature levels.

Decision-level fusion

Decision-level fusion is a widely explored method in machine learning and pat-
tern recognition that typically improves the performance over single classifiers
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[83, 84]. Here, three decision-level schemes were explored. However, as re-
ported in Table 3.8, none of the ensemble methods outperformed the results
achieved with a single classifier. Plurality vote, for example, helped improve
the specificity of the benchmark prosodic classifier when combined with deci-
sions from the wavelet classifier and from the three feature classes together,
but the overall performance was below that achieved with wavelet and modula-
tion spectral classifiers. Within the maximum probability fusion scheme, in
turn, combining decisions from wavelet and modulation feature classifiers
helped improve the sensitivity of the overall system, but at the cost of reduced
specificity. Similar findings were observed for the average probability vote fu-
sion scheme. From Tables 3.6 and 3.7, it can be seen that the majority of the
correct decisions have been made based on negative emotion classes, regard-
less of the tested feature. As such, fusing decisions of individual classifiers may
be overlooking the complementarity of the different feature sets and placing
most weight on features that convey similar information. To overcome this po-
tential limitation, feature fusion with feature selection has been explored.

Feature-level Fusion

Feature fusion combined with a mutual information-based selection algorithm
should be able to sift out top features that convey complementary information
from different vocalization classes. Results in Table 3.10 corroborate this hypoth-
esis and show that, after feature fusion, the different classes are contributing to
the overall accuracy in a more balanced manner. While negative emotions still
play a crucial role, other classes such as babble and laughter have stood out. As
expected, by attending to complementary details extracted from the different fea-
ture sets, improved overall performance is achieved. Overall, relative to using
only prosodic features, improvements of 21% and 60% could be seen in accuracy
and specificity, respectively. Relative to using only the wavelet features, improve-
ments of 6.1% and 14.3% could be seen in accuracy and specificity, respectively,
with a small drop in sensitivity of 1.7%. Lastly, relative to using only the modula-
tion spectral features, gains of 9.5%, 12.5% and 6.7% in accuracy, sensitivity and
specificity could be observed, respectively.

Close inspection of the top features reported in Table 3.9 further validate
the claim that feature-level fusion has allowed different features to extract com-
plementary information from different vocalization classes. For example, the
first formant amplitude (A1_mean) and spectral tilt (H1A3C_mean) measures
have been used within laughter research [75]. The entropy[1,1]_mean feature, in
turn, conveys detail about high frequency entropy, a metric previously related
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to vocalizations that fall under the “other” class. The authors in [49] also argue
that the vibration of the vocal cords is reflected in the entropy of the wavelet
parameters, a common finding reported in the ASD cry literature but computed
via the more complex method of fundamental frequency tracking [46]. The en-
ergy[1,0]_mean and energy [1,1]_mean features, on the other hand, measure
low and high frequency energy, respectively. These features, in turn, have been
shown useful in speech vocalization discrimination between ASD and controls,
and characterizing squeal quality [44], respectively. Energy variability, charac-
terized by energy[1,0]_std, in turn, has shown to be useful for discriminating
speech from ASD and control individuals from older, verbally fluent kids [76].

Interestingly, of the top 17 features chosen by the selection algorithm, 11 cor-
respond to modulation spectral features. Of the modulation energy features εi, j,
all features are from modulation channels higher than 4, corresponding to a
modulation frequency greater than 17.6 Hz. It is a well-supported finding that, in
running speech, modulation frequencies below 16 Hz contribute toward intelligi-
bility [85]. In the case of preverbal toddlers, such information is not deemed use-
ful and higher modulation frequencies seem to stand out. Within no-pain cries,
higher modulation frequencies have been related to turbulent noise [40]. In an-
other study looking at modulations of cries, frequencies around 10–70 Hz were
reported and significant differences around 40 Hz were seen for children with
brain damage relative to controls [40]. Interestingly, four of the top-selected mod-
ulation features convey information about the 6th modulation channel centered
near 40 Hz (47.5 Hz, to be more exact). In another recent study, modulation
below 20 Hz was shown to significantly differ between children with dyslexia
and controls [82]. Three top-features capture such a modulation frequency range
near modulation channels 4 and 5. Lastly, the energy distribution feature Φ1,mð3Þ
has been shown for running speech to be a top discriminative feature to detect
sadness and anger emotions [54]. Such features could be detecting distress cues
in cries, a finding that has been widely reported in the ASD literature [37].

3.7 Conclusions

Acoustic-prosodic characterization of toddler vocalization utterances has been
shown, in some studies, useful to discriminate between children with and without
ASD. Existing studies have typically explored irregularities during vocal fold vibra-
tion and inappropriate use of volume in individuals with autism [9, 14, 18, 21–26].
Given the wide range of age of the participants, however, and the fast changing
vocal tract characteristics during childhood, many of the reported findings have
been contradictory [14]. Moreover, findings have typically been reported using
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only speech-like utterances (e.g., babble) [17, 43, 44] or cries [12, 16, 17, 37, 41–45],
thus it is still not clear which types of vocalization contribute the most to classifi-
cation. Lastly, a vast body of literature has explored the use of wavelet features for
infant cry and pathological speech analysis (e.g., [49–51, 86]), as well as the
speech modulation spectrum (e.g., [54, 80, 87]). To the best of the authors’ knowl-
edge, however, such features have yet to be explored in ASD. This chapter aims to
fill these three gaps.

More specifically, we explore the use of wavelet, modulation spectral and
prosodic features to classify 43 18-month-old toddlers (23 children of which
were diagnosed as having autism at the 36-month assessment and 20 children
age-matched control group) into ASD and non-ASD groups. By focusing only on
18-month-old data, variability from vocal tract maturation is minimized, thus
shedding light on features truly discriminative of ASD. Lastly, we explore the
contributions of different vocalization types – namely, babble, speech-like,
laughter, negative emotions (grouping vocalizations such as cries, whines,
squeals and shouts) and others – and also explore the effects different features
have on certain vocalization types for overall ASD diagnosis.

Overall, it was found that an accuracy of 81.5%, a sensitivity of 91.6% and a
specificity of 70% could be achieved with an individual SVM classifier trained
on wavelet based energy and entropy features. When trained with speech mod-
ulation spectral features, an accuracy of 79%, a sensitivity of 80% and a speci-
ficity of 75% could be achieved. These accuracies compared favorably against
prosodic features previously proposed in the literature [35]. Moreover, while de-
cision-level fusion did not improve overall performance, feature-level fusion
combined with feature selection achieved an accuracy of 86.5%, a sensitivity of
90% and a specificity of 80%, thus representing a relative improvement over
the individual classifier of 5% and 10% in terms of accuracy and specificity, re-
spectively. Close inspection of the top 17 features selected showed that the most
important features corresponded to modulation spectral features. Interestingly,
it was observed that vocalizations such as cries, squeals, whines and shouts
were more discriminative between groups than speech, babble or laugh vocal-
izations. Such findings could assist clinicians in future assessments, which cur-
rently place focus on prosodic nuances during speech-like utterances.
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4 Computer-aided speech therapy
for dysarthric speakers: Statistical
acoustic modeling for automated
verification of pronunciation accuracy

Abstract: The objective of this study is to develop statistical modeling techniques
for characterizing phonetic variation in automatic speech recognition (ASR). One
issue addressed in this domain is to reliably detect the phoneme-level mispronun-
ciations in speech utterances that arise from speech therapy applications. Another
issue addressed in this work is to study the ability of ASR systems to model the
phonetic variation that often exists in speaker-independent recognition tasks. In
order to address these issues, first, a phoneme-level pronunciation verification
(PV) scenario is investigated for detecting the mispronunciation occurrences in
speech utterances recorded from a population of impaired children with neuro-
muscular disorders. The well-known continuous density hidden Markov model
(CDHMM) is used as a phoneme decoder which generates a finite state network of
phoneme string hypotheses for input speech utterances. The phoneme-level confi-
dence measures can be constructed from this network, and PV decision can be
made by comparing the confidence measures with a pre-selected threshold.
Second, the subspace Gaussian mixture model (SGMM) formalism is incorporated
into a new PV scenario. A new kind of pronunciation confidence measure used for
making mispronunciation verification decisions is extracted directly from the
state-level model parameters. Both session-level and utterance-level PV scenarios
based on the SGMM-based confidence measures are proposed. In the session-level
PV task, the equal error rate can be reduced by 15.35% when combining the
SGMM-based confidence measures with the above phoneme decoder-based confi-
dence measures. In the utterance-level PV task, the equal error rate can be reduced
by 12.94%. This equal error rate reduction is believed to result from an efficient
characterization of pronunciation variation for each phoneme by the SGMM.

Shou-Chun Yin, Nuance Communications Canada Inc., Montreal, Quebec, Canada
Richard Rose, Google, New York, USA

Note: Richard Rose and Shou-Chun Yin are now at Google, New York City, USA and Nuance
Communications Canada Inc, respectively. The work was done while the authors were at McGill
University, Montreal, Canada, and it does not contain any Google and Nuance Communications
proprietary information.

https://doi.org/10.1515/9781501513138-004

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9781501513138-004


Keywords: speech therapy, pronunciation verification, subspace Gaussian
mixture model

4.1 Automatic intelligibility assessment
of speech disorders

A major application of the work presented in this article is in the area of com-
puter-aided speech and language therapy (CASLT). The specific task addressed
here is verifying the quality of pronunciations in utterances from a population of
impaired children and young adults with neuromuscular disorders. However, the
area of CASLT is quite broad. A wide range of speech technologies have been ap-
plied to treating speech disorders in speaker populations whose disabilities
range from mild to profound [1–5].

This chapter has three goals. First, a brief overview of work in the area of
CASLT will be presented. Second, the CASLT system that was used in this project
is described. This system was originally developed as part of the “Comunica” proj-
ect and evaluated at the Public School for Special Education (CPEE), “Alborada,”
in Zaragiza, Spain [6]. Third, the data collection scenario, speaker population and
speech annotation strategy associated with the pronunciation verification (PV)
task domain considered in this article are presented.

4.1.1 Computer-aided speech and language therapy

Speech therapy for disabled individuals involves interaction between the patient
and a highly trained speech therapist. This interaction is considered to be impor-
tant for providing personalized diagnoses and assessment of patients᾿ progress.
Tools for CASLT have been developed to enhance the efficiency and the quality
of services provided by the human therapist. Diagnosing and assessing perfor-
mance can be made more efficient for the therapist by automating portions of the
interactive component of therapy. This reduces the time and the level of expertise
required for providing the interactive component of therapy. As a result, these
services can be made available to a large population of disabled individuals.
Another potential result of this automation is the quality of the therapists᾿ di-
agnoses can be made more consistent. This can be achieved through the use
of more accurate and objective measures of patients᾿ performance.
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Speech technology applications to CASLT

There are a number of CASLT applications that have been developed over the
last decade in an effort to address specific kinds of speech disabilities. Most of
these applications are based on statistical modeling approaches that were de-
veloped for speech and language processing. These approaches include HMM-
based ASR, Gaussian mixture model (GMM)-based speaker modeling and ma-
chine learning based pronunciation modeling.

Automatic speech recognition for severely disabled speakers: One of
the most compelling applications for ASR in the disabled community is for
communication aids for individuals with severe dysarthria [7]. These commu-
nication aids are called for in cases where speech impairments are severe. The
disabled speaker is equipped with a personalized device which is used to tran-
scribe the speakers᾿ utterances and then synthesize an equivalent spoken
message. Research in this area has been in developing acoustic modeling al-
gorithms that can provide adequate speech recognition performance for this
population of disabled speakers when interacting with these communication
aids.

Speaker modeling for assessing pathological speech: Statistical
speaker modeling techniques have been used for assessment of acoustic
properties of pathological voices that result from laryngeal cancer [4]. GMM
models were trained using utterances from individuals after having gone
through reconstructive surgery and then again after receiving speech ther-
apy. Statistical measures were derived from these model parameters to deter-
mine the degree to which the speakers᾿ voices differed from normal speakers
after these procedures were performed. The goal is to use this approach as
an automated means for measuring patients᾿ progress in response to speech
therapy.

Analyzing prosodic contours to assess intonation: Computer-assisted
pronunciation training (CAPT) involves providing impaired or unimpaired
speakers with training on the use of proper rhythm, intonation and stress pat-
terns in speech [5]. Research in machine learning and feature analysis has been
performed to develop automated measures of the accuracy of prosodic contours
with respect to utterances from normal speakers.

The goal of the pronunciation verification techniques presented here is to pro-
vide automated assessment of speakers᾿ performance as part of a CASLT scenario.
The task domain for this scenario is presented in more detail in Section 4.1.3.
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Human–computer interaction in CASLT

Automatic speech and language therapy requires consideration of the inter-
action between the patient and the automatic system. The applications de-
scribed above must be implemented in association with a well-designed
human–computer interaction (HCI) component in order to elicit natural ut-
terances. There have been several projects involving the design of CASLT
user environments and their evaluation of an actual user population. These
projects are briefly summarized here.

An audio-visual pronunciation teaching software system, the INCO-
Copernicus program of European Commission has been developed to help speech
handicapped people to train their speech pronunciation for vowels and misarti-
culated fricative phones [8]. This system records the speech from the children.
Then a series of acoustic features, such as loudness, pitch contours and spectral
distribution along the time axis, are obtained through the acoustic speech proc-
essing. Based on these acoustic features, several amusing pictures are created
and displayed to the children. These pictures attempt to draw the children’s at-
tention and encourage the children to improve their speech pronunciation.

Voice-input voice-output communication aid (VIVOCA) is another CASLT
example proposed by the University of Sheffield, UK [7]. VIVOCA is a personal-
ized and portable device which can be equipped by a disabled speaker. It serves
as a communication aid to transcribe the speech from individuals with severe
dysarthria, based on the ASR.

The project “Comunica” is another CASLT developed in Zaragiza, Spain [9].
The objective “Comunica” project is to develop a semi-automated system for
providing interactive speech therapy to a larger population of impaired individ-
uals and help professional speech therapists. There are three components in-
volved in “Comunica”: “Prelingua,” “Vocaliza” and “Cuéntame.” “PreLingua”
teaches basic phonation skills to children with neuromuscular disorders.
“Vocaliza” aims to train mainly the articulatory level of language. Finally,
“Cuéntame” attempts to introduce impaired children population to language
understanding. The pronunciation verification (PV) scenario presented in this
article gives a contribution toward “Vocaliza” development.

4.1.2 A system for articulatory speech therapy

“Vocaliza” is a human–computer interactive tool designed for helping impaired
children with neuromuscular disorders acquire articulation abilities in isolated
words or short sentences [9]. From the human–computer interface (HCI) point
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of view, “Vocaliza” provides an easy user interface that motivates children to
enjoy the application while practicing their speech. This involves the use of
text, images and sounds, which can reinforce concepts and correct pronuncia-
tions of words or sentences in utterances spoken by the user.

“Vocaliza” encourages the impaired child to utter a set of words prese-
lected by the speech therapist or educator to focus on the special needs of the
child. After receiving the speech utterances from the children, it segments the
utterance and evaluates the accepted utterances using a word-level PV algo-
rithm to display a grade as the final outcome of the game.

This article focuses on developing the PV scenario, which is used for help-
ing children with neuromuscular disorders improving the phonological level
of the communication skills. In [1], a word-level likelihood ratio-based utter-
ance verification (UV) procedure is used as a measure of confidence to each
hypothesized word in an utterance. This method obtains the ratio between the
likelihood of the input utterance with respect to two models: one generated
from nonimpaired speech and one adapted to impaired speech. The PV sce-
nario proposed in Section 4.2 involves the same user interface as described
above for verifying word-level pronunciations, but is concerned with pho-
neme-level pronunciation verification.

4.1.3 Task domain

The pronunciation verification scenario in Section 4.2.1 is evaluated using a novel
Spanish speech corpus obtained from a population of children and young adults
speakers enrolled in a special education program. This corpus was collected from
the University of Zaragoza [10]. The speech uttered by children and young adults
is recorded through the HCI of “Vocaliza” described in Section 4.1.2. The speech
utterances involved in this novel speech corpus are isolated word based, where a
small vocabulary set involved in these isolated words is designed for speech ther-
apy purpose. The recorded utterances are separated into two categories: an im-
paired children corpus designed for evaluation purpose and an unimpaired
children corpus for model development purpose.

Data collection scenario

The set of words involved in our PV scenario is given by the induced phonologi-
cal register (RFI) [11]. RFI, while containing only 57 words is a powerful set of
words for speech therapy as it contains examples of all the 25 phonemes, which
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represent a reduced phone set from the 51 allophones described traditionally in
the Spanish language [12], as shown in Table 4.1. The total number of syllables
in the 57 words is 129 which gives an average of 2.26 syllables per word, with 90
different syllables. The total number of phonemes is 292 which gives an average
of 5.13 phonemes per word. The isolated word utterances based on RFI and re-
corded from “Vocaliza” are sampled at 16 kHz and stored in 16 bits format. A
wireless close-talking microphone is used in the recording. This way, comfort-
ability of the speakers is guaranteed as they are not directly attached to the
computer while obtaining the best speech quality possible with a high signal-to
-noise ratio (SNR). While recording the utterances, the speaker will be told to

Table 4.1: 57 words in the induced phonological register (RFI) and their phonetic transcription.

Word Transcription Word Transcription Word Transcription

árbol /a-r-B-o-l/ boca /B-o-k-a/ bruja /B-r-u-x-a/

cabra /k-a-B-r-a/ campana /k-a-m-p-a-n-a/ caramelo /k-a-r-a-m-e-l-o/

casa /k-a-s-a/ clavo /k-l-a-B-o/ cuchara /k-u-tS-a-r-a/

dedo /D-e-D-o/ ducha /D-u-tS-a/ escoba /e-s-k-o-B-a/

flan /f-l-a-n/ fresa /f-r-e-s-a/ fuma /f-u-m-a/

gafas /G-a-f-a-s/ globo /G-l-o-b-o/ gorro /G-o-rr-o/

grifo /G-r-i-f-o/ indio /i-n-d-j-o/ jarra /x-a-rr-a/

jaula /x-a-w-l-a/ lápiz /l-a-p-i-T/ lavadora /l-a-B-a-D-o-r-a/

luna /l-u-n-a/ llave /L-a-B-e/ mariposa /m-a-r-i-p-o-s-a/

moto /m-o-t-o/ niño /n-i-J-o/ ojo /o-x-o/

pala /p-a-l-a/ palmera /p-a-l-m-e-r-a/ pan /p-a-n/

peine /p-e-j-n-e/ periódico /p-e-r-j-o-d-i-k-o/ pez /p-e-T/

piano /p-j-a-n-o/ pie /p-j-e/ piña /p-i-J-a/

pistola /p-i-s-t-o-l-a/ plátano /p-l-a-t-a-n-o/ playa /p-l-a-L-a/

preso /p-r-e-s-o/ pueblo /p-w-e-B-l-o/ puerta /p-w-e-r-t-a/

ratón /rr-a-t-o-n/ semáforo /s-e-m-a-f-o-r-o/ silla /s-i-L-a/

sol /s-o-l/ tambor /t-a-m-B-o-r/ taza /t-a-T-a/

teléfono /t-e-l-e-f-o-n-o/ toalla /t-o-a-L-a/ toro /t-o-r-o/

tortuga /t-o-r-t-u-g-a/ tren /t-r-e-n/ zapato /T-a-p-a-t-o/
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repeat the same utterance if an excess of noise from the environment is cap-
tured. The speaker population providing these isolated word utterances from
“Vocaliza” is described in the section “Speaker population.” The corresponding
speech corpus is used for our acoustic model training and PV evaluation.

Speaker population

The impaired children speakers involved in our PV scenario suffered develop-
mental disabilities of different origins and degrees that affected their language
abilities, especially at the phonological level. It was believed that all speakers
suffered from a neuromuscular disorder so that all of them can be characterized
as having dysarthria. Before recording the word utterances from “Vocaliza,”
none of the speakers were known to be hearing impaired or to have suffered
from any abnormality or pathology in the articulatory or phonatory organs. All
the impaired children were students at the Public School for Special Education
“Alborada” in Zaragoza, Spain [1]. There were 14 impaired speakers, 7 males and 7
females, that participate in the recording. These 14 speakers were distributed in
age from 11 to 21 years as shown in Table 4.2. All of these 14 speakers recorded 4
sessions of the 57 isolated words to make a total of 3,192 isolated word utterances.
These provide 2 hours and 56 seconds of speech including silence. In order to re-
flect intra-speaker variability, every session was recorded on different days.

A reference corpus containing speech from unimpaired children speakers was
collected in parallel with recording the impaired speech corpus. This corpus
was intended to contain speech from children within the same age range as
the children in the impaired population. Utterances from the unimpaired

Table 4.2: Information about 14 impaired children.

Impaired speech corpus

Code Gender Age Code Gender Age Code Gender Age

Spk F  Spk M  Spk F 

Spk M  Spk M  Spk M 

Spk M  Spk M  Spk F 

Spk F  Spk F  Spk F 

Spk M  Spk F  – – –
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children were collected from the same task domain. In order to reduce the
mismatch between the impaired speech corpus and the unimpaired speech
corpus, the unimpaired corpus was collected under the same acquisition sce-
nario via “Vocaliza” as the impaired speech corpus. The same RFI vocabulary
set and the same type of isolated word sessions were chosen for this unim-
paired children recording scenario. The amount of speakers in this unim-
paired corpus is 168, 73 males and 95 females ranging in age from 10 to 18
years. Every unimpaired speaker utters a single session of the 57 words in the
RFI, which makes a total number of 9,576 isolated-word utterances in the un-
impaired speech corpus. This includes 6 hours, 17 minutes and 43 seconds of
speech including silence, which gives an average of only 2.37 seconds in
length for each word utterances.

Pronunciation labeling by nonexpert human labelers

In order to evaluate the PV algorithm, a simple manual system for phoneme-
level pronunciation labeling is devised. In this process, every phoneme in the
impaired children corpus is labeled by three independent nonexpert labelers.
The phonemes in the isolated word utterances produced by impaired children
speakers are labeled as having been either deleted by the speaker, mispro-
nounced and therefore substituted with another phoneme, or correctly pro-
nounced. In the end, the final label for the phoneme was chosen by consensus
among the labelers.

Pairwise inter-labeler agreement for this manual labeling task is 85.81%.
This agreement raises to 89.7% when considering only a binary decision: correct
versus incorrect (deletions plus substitutions). This consistent labeling avoids
the problems of a subjective speech quality measurement that would have re-
quired very experienced labelers. The percentage of phoneme occurrences that
were labeled as correct is 82.4%, while 10.3% of the phoneme occurrences are
substitutions and 7.3% are deletions. The label distributions for each speaker are
shown in Table 4.3. The total number of labelers was 10, all of them with exper-
tise in the fields of speech technologies or phonetics.

4.1.4 Summary

This chapter has provided a brief overview of CASLT technology and examples
of interactive environments for speech therapy. The “Vocaliza” environment
used for eliciting utterances from children as part of articulation training was
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described. Finally, the speech corpus collected under the “Vocaliza” scenario
was described along with the annotation strategy that was used to provide the
reference labels for the experimental studies given in Section 4.2 and 4.4.

4.2 Automatic pronunciation verification

This chapter presents a multiple pass approach to verifying the correctness of
pronunciations in utterances from disabled speakers. Pronunciation verifica-
tion (PV) will be presented as a problem of verifying the claim that a particular
word or subword unit in an utterance has been correctly pronounced. PV will
be performed by detecting phoneme-level mispronunciations in utterances
from an impaired speaker population.

The PV scenario presented here is similar to the problem of PV for auto-
mated language learning and language skills evaluation applications [13]. The
test corpus involved in our PV scenario and described in Section 4.1.3 is re-
corded from members of young impaired speaker population suffering from
neuromuscular disorders of varying severity. This distinguishes the speaker
population from language learners who are assumed to be nonproficient in the
given language but at the same time are assumed to not suffer from any speak-
ing impairments. Hence, speech obtained from the impaired population of
speakers is more likely to be significantly affected at multiple levels than

Table 4.3: Labeling results per speaker: Rate of deletions, substitutions and correct
phonemes.

Human labeling

Speaker Del. Subs. Corr. Speaker Del. Subs. Corr.

# .% .% .% # .% .% .%

# .% .% .% # .% .% .%

# .% .% .% # .% .% .%

# .% .% .% # .% .% .%

# .% .% .% # .% .% .%

# .% .% .% # .% .% .%

# .% .% .% # .% .% .%
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speech from unimpaired speakers. The disorder effects can be observed in
frame-level spectral characteristics, segment-level coarticulation, lexical-level
pronunciation rules and super-segmental prosodic contours [14]. While there
has been considerable effort made to model how these disorders are reflected
in the underlying articulatory dynamics of speech production [15], the techni-
ques described here are based on a posteriori probabilities derived from HMM-
based ASR. Phone-level measures of confidence are derived from the acoustic
speech utterance and are used to define a decision rule for accepting or reject-
ing the hypothesis that a phoneme was mispronounced.

This chapter is organized into two parts. First, Section 4.2.1 presents a
procedure for deriving phone-level confidence measures based on posterior
probabilities derived from phone lattices. In order to effectively obtain a confi-
dence measure in detecting variability arising from the mispronunciations
produced by the impaired speaker population, it is necessary to reduce the
influence that other sources of variability have on the confidence measure.
Section 4.2.1 also presents various ASR techniques to limit the effects of inter-
speaker variability and task variability is described. Finally, Section 4.2.2
presents the experimental study.

4.2.1 Pronunciation verification scenario

This section describes the pronunciation verification (PV) scenario which
verifies the phone-level pronunciation accuracy for a given utterance pro-
nounced by an impaired speaker [16, 17]. The impaired speaker population
has been summarized in the section “Speaker population.” First, the section
“Phoneme-level confidence measure” describes how to generate the phone-
level confidence scores for making the PV decision, based on the ASR and
confusion network (CN) techniques. Second, the section “Reducing variability
through model adaptation” shows how to apply the acoustic model adapta-
tion techniques using maximum a posteriori (MAP) approach and maximum
likelihood linear regression (MLLR) approach [18, 19]. The objective of MAP/
MLLR adaptation is to construct a more robust acoustic model from a task-
dependent speech corpus, the unimpaired speech corpus described in the sec-
tion “Speaker population.” Finally, the section “Nonlinear mapping of poste-
rior probabilities” introduces a nonlinear mapping idea which maps the
lattice-based posterior confidence score to a more robust confidence measure.
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Phoneme-level confidence measure

In the phoneme PV scenario, it is assumed that the “target” word sequence and
its baseform phonetic expansion are known. For the experimental study de-
scribed in Section 4.2.2, it is assumed that the input test utterance corresponds
to an isolated word from the RFI described in the section “Data collection sce-
nario.” The corresponding baseform phone string, qn, n= 1, . . . ,N, is assumed
to be known. PV in this context simply refers to obtaining confidence measures
for each phoneme in the baseform expansion and applying a decision rule for
accepting or rejecting the hypothesis that a given phone was correctly pro-
nounced. This process, as depicted in Figure 4.1, is performed in two steps.

First, phoneme recognition based on the ASR scenario is performed on the given
isolated word utterance. The ASR search is constrained using a network that de-
scribes the potential pronunciations that might be expected from an unimpaired
speaker. This network could potentially be created from the syllabification rules of
the language or be trained from observed pronunciations decoded from the popu-
lation of unimpaired speakers. While rule-based constraints are currently being in-
vestigated, simple N-gram phonotactic constraints are applied here. Specifically,
a bigram phonotactic model is trained from baseform phonetic expansions ob-
tained from an 8 million word subset of the Spanish-language section of the
Europarl speech corpus [20], containing transcriptions from several sessions in the
European Parliament translated to different European languages. This phonotactic
bigram model is also used for constraining the search as outlined in Figure 4.1. In
order to observe how the phonotactic model would affect the PV performance, a

Isolated word utterance
with phone sequence

q1,q2,...qN

p1 P(q1) P(q2)

Confusion network

P(qN)
p1

p2

p2

p25

p3

HMM λ

Phoneme
lattice L1

Lattice
compressionASR

Phonotactic network

Figure 4.1: Confusion network-based posterior probability estimation.
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simple unconstrained, zerogram-based, phone network is also used in the experi-
mental study presented in Section 4.2.2

Second, a confusion network, as depicted in Figure 4.1, is created using a
lattice compression algorithm. A phoneme lattice L1 that contains phone labels
and their associated acoustic and language probabilities on the arcs is gener-
ated by the ASR decoder. The posterior phone probabilities PðqnÞ, n= 1, . . . ,N,
appearing on the transitions of the CN are obtained by forming the sum of prob-
abilities of all the paths passing through the target phoneme arc in the lattice
and normalizing by the sum of probabilities of all the paths in the lattice L1.
Compared with the original phoneme lattice L1, the compact structure and the
ordering properties of the CN facilitate efficient evaluation of posterior-based
confidence measures for verifying phone pronunciations. The posterior proba-
bilities for the baseform phones in the target phone string are obtained by
aligning the target phone string with the phoneme lattice L1. These posterior
phone probabilities are used as phone-dependent confidence scores.
Comparing these confidence scores with a decision threshold can be served as
a decision criterion for verifying whether a given target phoneme has been cor-
rectly pronounced.

Reducing variability through model adaptation

Acoustic model adaptation techniques such as MAP or MLLR adaptation can be
applied in the PV scenario in order to reduce the effects of other sources of vari-
ability. These may include all sources of variability outside of those introduced
by the speech disorders existing among the disabled speaker population. For
example, physiological and dialect differences among speakers, differences in
microphones, and differing acoustic environments can all influence the ability
to detect mispronunciations in the PV scenario.

The baseline ASR system and the adaptation scenarios included in our exper-
imental study are introduced here. Baseline HMM models are trained from the
Spanish language Albayzin speech corpus [21], which includes 6,800 sentences
with 63,193 words. This corpus contains 6 hours of speech including silence;
however, only 700 unique sentences are contained in the corpus. Because of this
lack of phonetic diversity, it is difficult to train context-dependent acoustic mod-
els that will generalize across task domains. For this reason and because of the
simplicity of this small vocabulary task, context-independent monophone mod-
els are used here. In all experiments, 25 monophone-based context-independent
HMMs are used which consist of 3 states per phone and 16 Gaussians per state.
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MFCC observation vectors along with their first and second difference coefficients
are used as 39-dimensional acoustic features.

As mentioned in the section “Phoneme-level confidence measure,” pho-
neme-level PV is performed on isolated word utterances from the RFI 57 word
vocabulary were each utterance is recorded from an impaired children speaker.
The speaker property and vocabulary involved in this impaired task is different
from the Albayzin speech corpus used for the baseline HMM training. In order
to obtain a more robust task-dependent acoustic model, the unimpaired corpus
described in the section “Speaker population” is used to perform an MAP-based
[18] and MLLR transform-based [19] adaptation of the Gaussian mean vectors.
The MLLR adaptation involved two regression classes, one for the silence and
the other one for all the nonsilence 25 phonemes. The reason for combining
both MAP and MLLR adaptation is based on their complementary behavior [22].
Simply stated, MAP adaptation is performed independently on the means asso-
ciated with distributions assigned to each phoneme classes. If the phonemes
are well represented in the adaptation data, improved acoustic models can be
obtained using MAP. On the other hand, MLLR adaptation is applied as a linear
transformation to the mean vectors of the distributions. MLLR has the ability to
benefit from observation vectors belonging to all phoneme classes to adapt
those models that are not well represented in the adaptation data. As a result,
simply combining the two adaptation procedures can result in complementary
performance increases.

The MAP/MLLR task-dependent adaptation corpus includes 6,840 adapta-
tion utterances spoken by 120 unimpaired speakers from the 168 children and
young adults in the section “Speaker population.” Each unimpaired speaker
provides 57 RFI isolated word utterances where all the words are assumed to be
accurately pronounced. The adaptation corpus contains 4.5 hours of speech in-
cluding silence.

Supervised speaker-dependent adaptation for each of the 14 test speakers
summarized in Table 4.3 is also performed using an MLLR-based transform ap-
plied to the Gaussian means of the task-dependent HMM. For each speaker, a
single MLLR transform matrix is estimated and applied for speaker adaptation.
The speaker-dependent MLLR adaptation data consists of 57 isolated word ut-
terances or 2.2 minutes of speech for each of the test speaker. The remaining
2,394 impaired speaker utterances, three sessions of 57 isolated word utterances
for each impaired speaker, are used for evaluation. The supervised speaker-
dependent MLLR transformation is then applied prior to verifying the pho-
neme-level pronunciation of the impaired speech utterances.

Even a supervised speaker adaptation paradigm is problematic for the im-
paired children population since the utterances contain many phonemes that
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are known to be mispronounced or deleted. It is possible, however, to modify
the adaptation procedure to incorporate the pronunciation labels obtained
from the human labelers. This was done for MLLR adaptation to the impaired
speakers by creating two regression matrices. One regression matrix was esti-
mated from occurrences of phonemes in the adaptation data that were labeled
as being correctly pronounced and another matrix was estimated from occur-
rences of phonemes that were labeled as being incorrectly pronounced. During
recognition, only the first matrix was applied to transforming the mean vectors
of all model distributions. Phonemes in the adaptation data that were labeled
by the human labelers as having been deleted by the speaker were simply de-
leted from the reference transcription during adaptation. This procedure, re-
ferred to later as “Label Supervised MLLR,” is similar in spirit to unsupervised
adaptation procedures that rely on acoustic confidence measures [23]. These
procedures apply varying weight to regions of an adaptation utterance to reflect
the relevance of the region to the distributions being adapted. It will be shown
in Section 4.2.2 that significant performance improvement can be obtained by
exploiting the supervision provided by the human labelers.

Nonlinear mapping of posterior probabilities

A nonlinear transformation can be performed to map the lattice posterior
probabilities to phone-level confidence measures. There are two motivations
for this: The first motivation stems from the fact that all of the PV techniques
presented here are evaluated in terms of their ability to predict the labels de-
fined by the labeling scheme defined in the section “Pronunciation labeling
by nonexpert human labelers.” The decision made by an expert as to whether
a given occurrence of a phone is classified as being “mispronounced” rather
than as a “pronunciation variant” will always have a subjective component.
The labeling scheme presented in the section “Pronunciation labeling by non-
expert human labelers” is important because it addresses the trade-off be-
tween the need for a consistent, repeatable and easily implemented labeling
strategy against the need for an accurate characterization of the quality of
pronunciation of a given phoneme. There is no guarantee, however, that the
posterior probabilities estimated as shown in Figure 4.1 will always be accu-
rate predictors of these labels.

The second motivation is the fact that there is a great deal of prior informa-
tion available in this PV scenario. This includes knowledge of the target word,
the target phone and the position of the phone within the word. This prior in-
formation can be combined with the phone-level posterior probability using
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one of many possible fusion strategies to better predict the human derived
labels.

In the experimental study described in Section 4.2.2, the parameters of a
multilayer perceptron with the above parameters as input are trained to imple-
ment a nonlinear transformation. Backpropagation training is performed for a
network with 47 hidden nodes and with input activations which include the
phone-level posterior probabilities, indicator variables corresponding to each
of the phone labels, and indicator variables corresponding to the word labels.
The network is trained with the human derived pronunciation labels serving as
targets. PV is performed using the output activations obtained from this net-
work on test utterances with the same kinds of input parameters as the ones
used in the training phase.

4.2.2 Experimental study of PV

This section presents an experimental study performed to evaluate the ability
of the PV techniques presented in Section 4.2.1 to detect mispronunciations in
utterances obtained from impaired speakers. Verification performance is mea-
sured using utterances from the 14 speaker population of impaired speakers
as a test corpus. For each phoneme in the baseform phonetic expansion of a
word, the task is to verify the claim that the pronunciation of that phone is
correct according to the human labels assigned using the labeling scheme de-
scribed in the section “Pronunciation labeling by nonexpert human labelers.”
Since this is in fact a detection problem, the performance is presented using
detection error trade off (DET) curves and the equal error rate (EER) measure.
The EER is computed by applying a decision threshold to the phone-level con-
fidence scores and identifying the threshold setting where the probability of
false acceptance is equal to the probability of false rejection. The phone-level
confidence scores are computed based on the scenario described in the sec-
tion “Phoneme-level confidence measure.”

The performance relating to several issues will be considered. First, the effect
of the adaptation strategies for reducing task-dependent (TDEP) and speaker-
dependent (SDEP) variability will be considered. Second, the effect of the applied
phonotactic bigram constraints in decoding will be evaluated with respect to an
unconstrained (zerogram) decoding. Third, the performance of the nonlinear neu-
ron network (NN)-based mapping procedure will be presented.

First, The PV verification performance is found to vary across phoneme
classes. For example, when the results in Table 4.4 are reported separately for
phonemes classified as vowels and nonvowels, the performance for the vowel
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class is considerably worse than the nonvowel class. For the TDEP MAP adapta-
tion case using the zerogram network, the vowel class EER is approximately
18% higher than the EER obtained for the nonvowel class. Vowels represent
44% of the total phoneme occurrences in the corpus. This surprising difference
in EER is partly due to the human labeling strategy. Rather forgiving subjective
judgments were made by the labelers when deciding whether a given utterance
contained a “pronunciation variant” of a phoneme as opposed to a labeled mis-
pronunciation error. This results in many cases where the decision threshold
defines a phoneme instance to be mispronounced when the reference label in-
dicates the phoneme was correctly pronounced. There is less ambiguity in
human labelers᾿ decisions for the labeling of deletion errors. The higher EER ob-
served for vowels results from the fact that mispronunciation errors are more
common for vowels and deletion errors are more common for nonvowels.

Table 4.4 presents the global PV performance under different experimental
conditions where each is delineated in the first column of the table. The second
and third columns of Table 4.4 display the performance in EER for the zero-
gram and bigram recognition networks respectively. The results in Table 4.4
are obtained on a test set consisting of 2,394 utterances and 12,264 mono-
phone test trials. These include 10,083 phonemes labeled as being correctly
pronounced and 2,128 labeled as incorrectly pronounced. The 2,128 “incor-
rect” test trials correspond to phoneme instances that have been either mis-
pronounced by the test speaker (substituted for another phoneme) or deleted
altogether.

Table 4.4: Phone detection performance measured as the equal error rate (EER)
for task-independent (TIND) baseline, task-dependent (TDEP) MAP/MLLR
adaptation, speaker-dependent (SDEP) MLLR adaptation with and without label
supervision and SDEP neural network (NN)-based nonlinear mapping.

Phone-level verification performance (EER)

Adaptation scenario zerogram bigram

TIND HMM (baseline) .% .%

TDEP MAP/MLLR adaptation .% .%

SDEP MLLR adaptation .% .%

SDEP label supervised MLLR adaptation .% .%

SDEP NN mapping .% N/A
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There are several observations that can be made from the results given in
Table 4.4. First, from the first row of the table, it is clear that the EER for verify-
ing phone-level pronunciation task-independent HMM models trained from the
Albayzin speech corpus is fairly high. An EER of over 25% is obtained when no
phonotactic constraints are applied in decoding. An EER of 22% is obtained
when the bigram network is used. The second row of the table shows that MAP/
MLLR adaptation of the HMM to the corpus of unimpaired children and young
adults speaking utterances of the same vocabulary words results in approxi-
mately 20% decrease in EER. This rather significant improvement is due largely
to the significant mismatch in speaker characteristics that exists between the
largely adult speaker population in the Albayzin corpus and the unimpaired
younger speaker population in the adaptation corpus.

The age of the children and young adults in the corpora used here ranged
from 11 to 21 years old. The age of members of the speaker population in the
Albayzin training corpus ranged from 19 to 64 years old. The ages of one third
of the speakers in the Albayzin corpus were between 39 and 64, approxi-
mately two thirds of the speakers were between the ages of 23 and 38, and
less than 1% of the speakers in the Albayzin corpus were less than 22. Hence,
the degree of overlap between the ages of the two speaker populations was
extremely small.

The third row of Table 4.4 shows that speaker-dependent MLLR adaptation
of the TDEP HMM models using 57 utterances from each test speaker results in
approximately 7% decrease in EER. Note that the speaker-dependent adapta-
tion data includes both correctly pronounced phonemes and phonemes that
were mispronounced by the impaired speakers. Including the mispronounced
phonemes in the adaptation data may limit the potential performance improve-
ments that are achievable in this scenario. The fourth row of Table 4.4 displays
the result after performing SDEP adaptation using the “label supervised” MLLR
adaptation described in Chapter 4.2.1. The corresponding results show that
when the MLLR regression matrix is trained only from phoneme segments that
have been labeled as being correctly pronounced, the relative reduction in EER
increases from 7% to 12% with respect to the TDEP EER.

The fifth row of the table shows the effect on performance when the same
utterances used for MLLR adaptation are instead used to train the NN based
mapping described in Chapter 4.2.1. This results in a substantial 18% reduction
in EER with respect to the TDEP case. Finally, comparing the EER displayed in
the second and third columns of Table 4.4, the bigram phonotactic constraints
result in a reduction in EER rate between 7% and 12%.

Recall that the performance of phoneme-level pronunciation verification pre-
sented in Table 4.4 is measured for two different subsets of the incorrectly
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pronounced test trials. These included instances where, first, the target phoneme
was deleted by the impaired speaker and, second, where the target phoneme was
mispronounced by the target speaker and substituted with another phoneme.
The performance measured for these two subsets of the incorrect utterances are
shown in Table 4.5 and Figure 4.2. These results show that for all conditions, ver-
ifying the hypothesis that a phoneme was deleted by the speaker is easier than
verifying that a phoneme was mispronounced. There are many potential explan-
ations for this behavior. One explanation may relate to the strategy followed by
the human labelers in assigning correct and incorrect pronunciation labels to the
phonemic expansions of words in the test corpus. Rather forgiving subjective
judgements were made when deciding whether a given utterance contained a
“pronunciation variant” of a phoneme as opposed to a mispronunciation. This
may result in many cases where the decision threshold defines a phoneme in-
stance to be mispronounced when the reference label indicates the phoneme was
correctly pronounced.

The issue of the statistical significance of differences between measures based on
false accept rates and false reject rates has been addressed in the literature [24,
25]. However, there is no significant test for these applications that has become
widely accepted in the speech and language community, so the results of these
significance tests can be difficult to interpret. By any test, one would assume that

Table 4.5: Phone detection performance comparison for baseline, task-dependent MAP
adaptation, and speaker-dependent MLLR adaptation with and without label supervision
performed on different subsets of the test data. The “All” case includes all the 12,264 test
trials (10,083 correct, 2,181 incorrect). “Deletion Errors” includes only the 943 incorrect test
trials that correspond to deleted phonemes. “Mispronunciation Errors” includes only the
1,238 incorrect test trials corresponding to mispronounced phonemes. Zerogram, or
unconstrained, network used in ASR.

Comparison in equal error rate (EER)

Adaptation All Deletion Mispron.

Scenario Error Errors Errors

TIND (baseline) .% .% .%

TDEP MAP/MLLR adaptation .% .% .%

SDEP MLLR adaptation .% .% .%

SDEP Label supervised MLLR adaptation .% .% .%
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the EER difference of 1.3% shown for rows two and three of Table 4.4 are at best
barely statistically significant. This equal error rate point corresponds to a differ-
ence of 130 false rejection trials out of 10,083 correctly pronounced phonemes
and 27 false acceptance trials out of 2,128 incorrectly pronounced phonemes.
Without computing confidence intervals on these outcomes, one cannot con-
clude with any certainty that the resulting estimate of the difference in error
rates for this case is significant.

Figure 4.3 displays the pronunciation verification performance over the
2,394 utterance test set in the form of DET curves. The DET curves labeled
TIND, TDEP and SDEP in Figure 4.3 correspond to the systems whose zerogram
EER results are given in rows two through four of Table 4.4. Note that the per-
formance characteristics are well behaved in that the same rank order of perfor-
mance is achieved by the three systems at all operating points.

While the NN-based nonlinear mapping was shown in Table 4.4 to provide a
substantial reduction in EER, the scenario followed for the system in Table 4.4
involved using speaker-dependent data in training the NN. In order to investigate
the effect of this mapping in a speaker-independent scenario, the 14 speaker
training set was divided in half. Utterances from the first seven speakers were
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Figure 4.2: DET curve comparison for different test cases. Zerogram, or unconstrained,
network used in ASR.
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used for training the NN-based mapping and utterances from the second set of
seven speakers were used as a test set. The results for this revised training and
testing scenario on the reduced test set are displayed in Table 4.6. It is clear from
Table 4.6 that the impact of the NN-based mapping in reducing the EER relative
to the TDEP performance is far less for the speaker-independent training of the
NN than it is for the speaker-dependent case reported in Table 4.4.
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Figure 4.3: DET curves displaying phone-level verification using baseline, task adapted and
speaker adapted HMM models. Zerogram, or unconstrained, network used in ASR.

Table 4.6: Task-dependent (TDEP) phone detection
performance using unconstrained zerogram network
obtained with and without speaker-independent neural
network (NN)-based nonlinear mapping.

TDEP verification performance using reduced test set (EER)

TDEP MAP/MLLR adaptation .%

TDEP + NN mapping .%
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4.2.3 Summary

A simple phoneme-level confidence measures based on CN posterior probabili-
ties were found to provide reasonable performance in detecting mispronuncia-
tions in utterances taken from the impaired children corpus described in
Section 4.1.3. However, after adapting acoustic models and performing nonlin-
ear mapping of the CN posteriors as described in the section 4.2.1, “Reducing
variability through model adaptation,” a relative 40% improvement in detec-
tion performance was obtained. The absolute EER can be reduced from 25.3%
to 14.9%. In additional, comparing with the unconstraint network, Table 4.4
shows that the bigram phonotactic constraints can result in a reduction in EER
rate between 7% and 12%. The results obtained here demonstrate that the abil-
ity to detect mispronunciations resulting from neuromuscular disorders can be
significantly improved by reducing the effects of other sources of variability in
speech. It is believed that the confidence measures used in this system achieve
a performance that is close to that necessary to provide useful feedback to im-
paired speakers in language learning and speech therapy applications.

4.3 Subspace Gaussian mixture models

One of the important issues resulting from the experimental study of pronuncia-
tion verification (PV) in Section 4.2. is the importance of distinguishing between
phonetic variation arising from speech impairments and variation arising from
natural coarticulation in speech from unimpaired speakers. To address this
issue, a modeling formalism is investigated in [26, 27] and described in this chap-
ter that provides an efficient subspace decomposition of the acoustic space. In
doing so, the goal is to improve the PV performance on the tasks presented in
Section 4.2. In this chapter, a subspace-based Gaussian mixture model (SGMM) is
introduced. The important aspect of the SGMM is its representation of state-level
acoustics as simple projections in multiple subspaces. An experimental study
will be presented in Section 4.4, where the SGMM acoustic model is applied to
the phone-level PV task that was described in Section 4.2.

In this chapter, the SGMM will be evaluated in terms of the ASR word error
rate on a standard read speech task. A brief description of the SGMM will be
presented in Section 4.3.1. In Section 4.3.2, a comparison between the conven-
tional continuous density hidden Markov model (CDHMM) acoustic model de-
scribed in [28, 29] and SGMM performance will be evaluated in terms of word
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recognition performance. In addition, phone recognition performance is mea-
sured for the CDHMM and SGMM and presented in Section 4.3.3.

4.3.1 A description of subspace-based models

A brief description of the SGMM acoustic modeling framework and its application
in the ASR decoder is presented here. First, the section “The single substate per
state-based SGMM structure” presents the simplest form of the SGMM structure,
where each state in the SGMM is represented by a single projection vector. Second,
the section “The multiple substate per state-based SGMM structure” presents a
more general parameterization of the model and discusses practical issues in-
volved in parameter estimation. Third, the section “The observation likelihood
computation with the SGMM” describes a method for efficient computation of
local likelihood in the SGMM. Finally, the section “SGMM initialization and train-
ing” discusses additional practical issues including SGMM parameter initialization
and issues associated with updating parameters in training.

The single substate per state-based SGMM structure

The CDHMM observation density Pðxtjst = jÞ for an F-dimensional feature vector,
xt, and given state j is formed from a mixture of state-dependent diagonal co-
variance Gaussians.

Assume the state index at time t, st = j, is given for an F-dimensional feature
vector xt, the probability density function for an Ij component Gaussian mixture
model λj is defined as

bjðxtÞ=PðxtjstÞ=
XIðjÞ
i= 1

wðjÞ
i PðjÞ

i ðxtÞ

where Ij represents the number of Gaussian mixtures associated with the state j.
eq. ( ) corresponds toa weighted linear combination of Ij state-dependent unimodal
Gaussian densities, PðjÞ

i ðxtÞ, where i represents the mixture index, i ¼ 1; . . . ; IðjÞ.
Each Gaussian density PðjÞ

i ðxtÞ is parameterized by a F-dimensional mean vector μji
and a F × F dimensional covariance matrix ΣðjÞi . The mixture weights, wðjÞ

i , satisfy
the constraint ΣI

j

i¼1w
j
i ¼ 1 The likelihood Pj

iðxtÞ is given by

PðjÞ
i ðxtÞ ¼ 1=ð2πÞF=2jΣðjÞi j1=2e�1

2ðx�μðjÞi Þ�ΣðjÞi �1ðx�μðjÞi Þ;

where the notation f:g� indicates the transpose operation.
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bjðxtÞ ¼ Pðxtjst ¼ jÞ ¼
XIðjÞ
i¼1

wðjÞ
i PðjÞ

i ðxtÞ (4:1)

The observation density in eq. (4.1) is based on a set of I shared full covariance
Gaussian densities with mean mi and full covariance matrix Σi, where i= 1, . . . , I.
Typically, I in eq. (4.1) may be on the order of 100 to 1,000. The state-dependent
mean vector, μji, for state j is a projection into the ith subspace defined by linear
subspace projection matrixMi,

μji =mi +Mivj, (4:2)

where vj is a state-dependent projection vector. In eq. (4.2), mi corresponds to the
mean vector for the ith shared Gaussian density [26, 30]. The parameterization ofmi

as a state-independent offset of the mean vectors provides a minor departure from
the formalization given by [26, 27]. The impact of introducing mi in eq. (4.2) for the
recognition performance will be addressed in Sections 4.3.2 and 4.3.3. The term vj is
the projection vector associated with the state j. The global mean projection matrices
Mi in eq. (4.2) is of dimension F × S where S is the dimension of the subspace associ-
ated with the global mean vectors μji. The state-specific weights, wji, in Equation
(4.1) are obtained from the state projection vector, vj, using a log-linear model,

wji =
expwT

i vjPI
k = 1

expwT
kvj

. (4:3)

Using the exponential function in eq. (4.3) provides a nondecreasing auxiliary
function in training [31]. Similar to the case for the CDHMM, there is no closed
form solution for estimating parameters in the SGMM. An EM-based training
procedure, is summarized from [27] for the SGMM in the section “SGMM initiali-
zation and training.”

As shown in eqs. (4.2) and (4.3), most of the SGMM parameters are
shared across the states. Intuitively, the state-independent parameters Mi,wif g,
i= 1, . . . , I, correspond to the shared subspace parameters. The state-dependent
projection vectors vj

� �
, j= 1, . . . , J, represent projections within these subspaces.

The dimension, S, of the state-dependent vectors vj
� �

is chosen to be S= F in
this work. Thus, the observation probability for a given state can be described by
mapping the state projection vector vj to the GMM means and weights. The state-
level covariances correspond to the global state-independent covariances Σif g,
i= 1, . . . , I. The SGMM parameterization relies on a large number of state-
independent shared parameters Mi,wi, Σif g, and a relatively small amount of
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state-dependent parameters vj
� �

. As a result, a robust acoustic model can be
expected from the SGMM structure, even when the amount of speech train-
ing data is limited.

The shared I full covariance Gaussian densities with mean mi and full covari-
ance matrix Σi form a global GMM which is similar to the universal background
model (UBM) described in [32]. In speaker recognition, the UBM is commonly used
as the prior model for running the speaker model adaptation [33].

The multiple substate per state-based SGMM structure

The notion of a substate can be used to provide additional flexibility in the
parameterization of the SGMM [26, 31]. In this case, the distribution for the ob-
servation in state j is a weighted combination of densities

Pðxtjst = jÞ=
XMj

m= 1

cjm
XI

i= 1

wjmiNðxt ;μji, ΣiÞ, (4:4)

where cjm is the substate weight associated with the substate index m in state j,
andMj is the number of substates in state j. The means and mixture weights are
now obtained using substate projection vectors, vjm,

μjmi =mi +Mivjm (4:5)

wjmi =
expwT

i vjmPI
k = 1

expwT
kvjm

. (4:6)

The basic motivation for parameterizing the state j with multiple substates is to
increase the model resolution for those states having sufficient occurrences in
the training data. Additional substates for those states are created based on the
observed accumulated zero-order statistics for that state. In the section “SGMM
initialization and training,” a procedure of obtaining these substate projection
vectors vjm will be described in more detail.

The observation likelihood computation with the SGMM

Comparing the observation likelihoods in the SGMM and the CDHMM, the compu-
tational complexity associated with the SGMM is higher than that associated with
the CDHMM. There are two reasons for this. First, all the Gaussians involved in a
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SGMM have full covariance rather than diagonal covariance matrices. Second, the
total number of Gaussians associated with each state is much higher for the
SGMM since all Gaussians are shared amongst the states. The technique used
for solving this issue is Gaussian preselection. Since summing over all the I
Gaussian probabilities as shown in eq. (4.1) is time-consuming, one can save
computation by assuming that the observation likelihood computation is domi-
nated by a relatively small number of Gaussians. In the SGMM experimental stud-
ies presented in this article, an appropriate value for this number was empirically
determined to be 10.

Gaussian preselection is performed for each observation vector, xt, and in-
volves finding a set of Gaussians that are likely to dominate the computation of
eq. (4.1). This set of Gaussians is identified in the following steps. First, all the
Gaussian full covariances in the SGMM are converted from full covariances into
diagonal covariances, ΣðdiagÞi . Second, an observation likelihood computation is
performed based on these diagonal covariances. Because all the Gaussian cova-
riances become diagonal, this likelihood can be computed quickly. Among all the
Gaussian mixture i= 1, . . . , I, the Top-10 Gaussian mixtures providing the Top-10
highest Nðxt;mji, ΣðdiagÞi Þ can be obtained for each state j and each input feature
vector xt. Finally, instead of using all the I full covariance-based Gaussians, only
the Top-10 preselected full covariance-based Gaussians, for each state j and each
input feature vector xt, will be used for computing Pðxtjst = jÞ in eq. (4.1). The ob-
servation likelihood computation based on the Gaussian preselection is obviously
just an approximation of eq. (4.1). The experimental studies show that, when using
the Top-10 preselected Gaussian mixtures instead of using all the 256 Gaussian
mixtures for computing the observation likelihood, a less than 0.15% relatively
word error rate increase is obtained on a standard read speech task. However, this
resulted in close to an order of magnitude reduction in decoding time.

SGMM initialization and training

The SGMM formalization and training procedure were originally proposed by
Povey et al. [26, 27]. The contributions made in this work toward the practical
implementation of SGMMs are discussed in this section. The first contribution is
a method for parameter initialization based on the use of joint HMM state and
GMMmixture posterior probabilities. The second contribution is a method for ini-
tializing SGMM substate projection vectors through a method of binary splitting
of substates. This section will describe SGMM training, SGMM sub-state splitting
and the joint state/mixture posteriors method for SGMM initialization.

4 Computer-aided speech therapy for dysarthric speakers 151

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Training

The SGMM structure is inherited from an initial CDHMM and the shared Gaussians
are obtained from a universal background model (UBM). The same training corpus
used for training the CDHMM and UBM is used for training the SGMM. The SGMM
shared Gaussian parameters mi, Σif g are initialized from the speech UBM directly.
The state list and state transition probabilities are inherited from the baseline
CDHMM, and are not updated during the SGMM training. The rest of the subspace
model parameters, Mi, wi and vj, are initialized from a flat start initialization,
where Mi are initialized as identity matrices, and wi and vj are initialized as the
zero vectors. The initial SGMM parameters, mi, Σi,Mi,wif g for each mixture i, and
vj

� �
for each state j, can be updated through the EM training iterations [31].
There is no closed form solution for the maximum likelihood (ML) estima-

tion of SGMM parameters. The same EM approach described in [18, 34, 35] is
required to progressively obtain a ML estimate of SGMM parameters, given an
initial estimate of the parameters. The auxiliary function for optimizing the
SGMM parameters can be expressed as

QðΦ, �ΦÞ= constant +
XT
t = 1

XI

i= 1

XJ

j= 1

γjiðtÞlogPðxt , ijst = jÞ. (4:7)

The term Pðxt , ijst = jÞ represents the contribution of the observation likelihood
from state j and Gaussian mixture i at time t, which is shown in eq. (4.1).

Except for Mi,wi, vj
� �

, the derivation of EM procedure for updating the
SGMM parameters is straightforward. Different parameters will be updated sepa-
rately on different EM iterations, following the order: vj

� �
, wif g, Mif g, mif g and

Σif g. The details of the training procedure for the SGMM parameters Mi,wi, vj
� �

are described in [26, 27], which is also summarized in [27].

Substate splitting

When the SGMM is parameterized using multiple substates per state, the sub-
states for a given state j are created based on the binary splitting of the initial
state projection vector vjm:

vð1Þjm = vjm +0.1H−0.5r, (4:8)

and

vð2Þjm =vjm −0.1H−0.5r. (4:9)
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The vector r is a random vector where each element is uniformly distributed
between -1 and 1. H−0.5 represents the inverse Cholesky decomposition of the
matrix H, which is given by

H= 1P
i γi

X
i

γiM
T
i Σ

− 1
i Mi. (4:10)

The mixture-dependent zero-order statistics γi is obtained by accumulating
γjiðtÞ over all the time indices and state indices.

γjiðtÞ= Pðst = j,mt = ijX,ΦÞ

=Pðst = jjX,ΦÞPðmt = ijst = j,X,ΦÞ

=
αjðtÞβjðtÞP
j
αjðTÞ

8<
:

9=
; wjiNðxt ;mji, SiÞP

i
wjiNðxt ;mji, SiÞ

8<
:

9=
;. (4:11)

The state posterior probability Pðst = jjX,ΦÞ in eq. (4.11) is obtained using the
conventional forward-backward algorithm. The mixture-specific probability
for a given state, Pðmt = ijst = j,X,ΦÞ, can be derived from eq. (4.1), with a fixed
mixture index i.

Initialization

In the early training iterations, the SGMM parameters initialized from a flat start
are not well estimated. As a result, the posterior γjiðtÞ estimated based on these
SGMM parameters can not be robustly computed. In order to deal with this issue,
an alternative method which is so called the joint state/mixture posteriors-based
SGMM parameters initialization is investigated and presented here. The goal of
the joint state/mixture posteriors method is to exploit the alignment between
HMM states and Gaussian mixture indices as follows.

γjiðtÞ≈ Pðst = jjX,Φ1ÞPðmt = ijX,Φ2Þ, (4:12)

where the state posterior probability Pðst = jjX,Φ1Þ is obtained from a well-
trained CDHMM, Φ1. The mixture posterior probability Pðmt = ijX,Φ2Þ is obtained
from a well-trained UBM, Φ2. In this case, Pðst = jjX,Φ1Þ and Pðmt = ijX,Φ2Þ are
computed independently from two well-trained models using the forward-
backward algorithm. In all the experimental studies presented in this article,
when using the joint state/mixture posteriors-based initialization scenario, the
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posteriors, γjiðtÞ, are obtained from the joint posteriors in the first seven SGMM
training iterations. After the seventh iteration, γjiðtÞ is computed using the con-
ventional forward-backward algorithm shown in eq. (4.11). The impact of using
this joint state/mixture posteriors initialization strategy will be considered in
Section 4.3.2.

4.3.2 Word recognition task for the subspace-based models

This section describes the experimental study performed to evaluate the word
recognition performance of the SGMM system on the resource management (RM)
task domain [30]. The original objective of implementing the SGMM is to apply
this new acoustic formalization in the PV task shown in Section 4.2. However, it
is also important to see how ASR performance on standard ASR tasks is impacted
by the SGMM.

The configuration of this RM task is given as follows. Acoustic speaker-
independent (SI) CDHMMs and SGMMs are trained using 3,990 utterances from
109 speakers taken from the standard RM SI-109 training set. Mel frequency ceps-
trum coefficient (MFCC) feature analysis described in [36] is used. Feature vectors
include 12 MFCC coefficients, normalized energy, and their first and second
difference coefficients for a 39-dimensional feature vector. Baseline speaker-
independent (SI) CDHMM’s contains 1,700 left-to-right 3-state state clustered
triphones with 6 diagonal Gaussian mixtures per state for a total of 10,224
Gaussians. The SGMM structure is inherited from the baseline CDHMM and
the shared Gaussians are initialized using I = 256 component UBM.

The CDHMM acoustic model used for obtaining the experimental results re-
lied on the HTK Toolkit for model training and recognition [37]. On the other
hand, SGMM training and recognition was implemented by updating HTK train-
ing and recognition tools.

Table 4.7 displays the word error rates obtained from CDHMM and SGMM
systems configured with a range of parameter allocations for model states and
substates. The first four rows of Table 4.7 show the WERs obtained using a
baseline CDHMM with 1,700 states and the SGMM models configured using the
same number of states. The third row of Table 4.7, labeled “SGMM-FSinit,” dis-
plays the WER for the flat start initialization, without using the joint state/mix-
ture posteriors. All other SGMM results shown in this work are initialized from
the joint state/mixture posteriors described in the section “SGMM initialization
and training” and [30].
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There are several observations that can be made from the top portion of
Table 4.7. The first observation is that SGMM configurations with J = 1700 states
obtain a WER reduction ranging from 8% to 18%. Second, comparing rows two
and three, there is a small 5% WER reduction obtained by initializing SGMM
training from joint posteriors relative to flat start initialization. Finally, by com-
paring the third and fourth rows of Table 4.7, it clearly shows that increasing
from a single substate per state to approximately three substates per state, the
SGMM WER is reduced by 6% relatively.

With only a small number of projection vectors representing state-level
information, one might expect that it would be efficient to train these state-
level parameters with a relatively small number of effective observations per
state. To investigate this conjecture, CDHMM and SGMM models with a much
larger number of context clustered states were trained on the same data set
used to train the original models. This was thought to be a better means for
evaluating training efficiency than simply reducing the overall number of
training utterances. There is less of a chance in this case of introducing arti-
facts that can arise from the highly skewed distribution of phonetic contexts
that can occur with a very small corpus size. The efficiency of the SGMM
models is demonstrated by comparing the WER for the 5,005 state systems in
rows four and five of Table 4.7. The WER obtained for the SGMM system rep-
resents a 32% reduction compared to the 5,005 state baseline CDHMM model.
This is a much greater reduction than was obtained for the 1,700 state case
and illustrates the robustness of the SGMM model with respect to sparseness
in training data.

Table 4.7: WERs for multiple parameter allocations of SGMM
and CDHMM.

Acoustic model States Subst. WER

CDHMM , – .%

SGMM-FSinit , , .%

SGMM , , .%

SGMM , , .%

CDHMM , – .%

SGMM , , .%
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4.3.3 Evaluation on a Spanish language phone
recognition task

Given the SGMM formalization introduced in this chapter, this section investi-
gates the SGMM to the PV task by replacing the CDHMM decoder shown in
Figure 4.1 with the SGMM-based decoder. This section describes the experimen-
tal study performed to evaluate the phone recognition performance of an
SGMM-based system on the Spanish unimpaired children speech corpus. In ad-
dition to providing another recognition performance comparison between
CDHMM and SGMM, the study is extended in Section 4.4.1 to measure how the
phone-level PV performance is affected by replacing the CDHMM acoustic
model with the SGMM in Figure 4.1.

The speech corpus involved in this phone recognition task is described in the
section “Speaker population,” which contains Spanish language utterances
from 168 unimpaired children. Each unimpaired speaker provides a set of iso-
lated word recordings for 57 RFI words, shown in Table 4.1. A subset of this cor-
pus containing 120 unimpaired children serves as the acoustic model training
corpus. Both CDHMM and SGMM acoustic models are trained from this corpus.
Another subset of the speech corpus containing speech from the remaining 48
unimpaired children serves as the phone recognition evaluation data, which
gives a total of 14,016 phoneme instances. The impact of acoustic model train-
ing from this corpus is compared with the impact of training from the adult
speaker Albayzin corpus described in Section 4.2.

The CDHMM consists of 25 phonemes with three state, left-to-right models for
each phoneme resulting in a total of 75 nonsilence states. Each state in the
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Figure 4.4: State projection plot for vowels in the RM corpus, without mean vector mi.
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CDHMM consists of 128 diagonal Gaussian mixtures. The SGMM has 25 phonemes,
J = 75 nonsilence states and I = 256 shared Gaussians. The same bigram phonotac-
tic model used in Section 4.2.2 is also used in this phone recognition task. The
39-dimensional MFCC feature analysis is used here.

The phone recognition performance comparison between CDHMM and SGMM
is presented in Table 4.8 in terms of the phone error rate (PER) on the above cor-
pus. The second column of the table indicates what combination of “Adult” and
“Children” speech data is used for acoustic model training. There are several ob-
servations that can be made from the results shown in Table 4.8. First, by compar-
ing rows one and three, it is clear that incorporating children᾿s speech in acoustic
model training results in nearly a factor of two reduction in PER. In this case,
CDHMM + MAP/MLLR indicates that a combination of MAP adaptation and MLLR
adaptation is performed using children speech data on the CDHMM acoustic
model trained from adult speech data, as described in the section “Reducing vari-
ability through model adaptation.” Second, by comparing the best performing
CDHMM and SGMM systems in rows four and six respectively, a nearly 25% reduc-
tion in PER is achieved. This trend is similar to that observed for WER on the RM
task as shown in Table 4.7.

Phone recognition performance as measured on the impaired children corpus for
the CDHMM and SGMM acoustic models is presented in Table 4.9. This impaired
children corpus is described in section “Speaker population,” which involves 14
impaired children. Each impaired speaker provides four set of isolated word

Table 4.8: Phone Recognition performance measured as the phone error rate (%)
for CDHMM and SGMM acoustic models, on a 48 speakers subset of the
unimpaired children speech corpus.

Phone recognition performance (phone error rate)

Acoustic model Training corpus PER

CDHMM ( Gaussians per state) Adult .%

CDHMM ( Gaussians per state) Children .%

CDHMM ( Gaussians per state) + MAP/MLLR Adult + Children .%

CDHMM ( Gaussians per state) Children .%

SGMM (256 shared Gaussians, without mi) Children .%

SGMM (256 shared Gaussians, with mi) Children .%
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recordings for 57 RFI words. The phone error rates evaluated on this corpus may
be misleading because, as described in the section “Pronunciation labeling by
nonexpert human labelers,” many of the phone occurrences in the utterances
from disabled speakers are known to be deleted or badly mispronounced.

There are several observations that can be made from Table 4.9 about ASR
performance on impaired children speech utterances. First, by comparing all
PERs in Tables 4.8 and 4.9, it is obvious that the PERs for impaired speaker utter-
ances are dramatically higher than they are for unimpaired speakers, Second, by
comparing rows one and three in Table 4.9, incorporating training data from chil-
dren speakers has shown to significantly reduce PER. However, the impact is far
less than that obtained from evaluating on unimpaired speaker utterances. Third,
by comparing rows four and five, it is clear that the best SGMM PER obtained for
the impaired speaker corpus is significantly lower than that obtained for unim-
paired speakers.

In comparing the PERs displayed for the unimpaired and impaired utteran-
ces in Tables 4.8 and 4.9 respectively, it is clear that the general trends in perfor-
mance are similar. However, the absolute difference in PERs observed for the
acoustic modeling approaches are not the same. This is due to two reasons. First,
the difference between unimpaired children speech used in training and the im-
paired speech evaluation utterances is significant. Second, as stated above, there
is a fundamental issue with reporting PER on impaired speakers᾿ utterances due
to the large number of phone deletions and mispronunciations.

Table 4.9: Phone Recognition performance measured as the phone error rate (%) for CDHMM
and SGMM acoustic models, impaired children speech corpus.

Phone recognition performance (phone error rate)

Acoustic model Training corpus PER

CDHMM ( Gaussians per state) Adult .%

CDHMM ( Gaussians per state) Children .%

CDHMM ( Gaussians per state) + MAP/MLLR Adult + Children .%

CDHMM ( Gaussians per state) Children .%

SGMM (256 shared Gaussians, without mi) Children .%

SGMM (256 shared Gaussians, with mi) Children .%
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4.3.4 Summary

The SGMM acoustic model formalism has been introduced in this chapter. Based
on the ASR experimental study in Sections 4.3.2 and 4.3.3, SGMM provides a
lower word error rate on the RM task and a lower phone error rate on the unim-
paired children corpus. It is believed that the recognition performance improve-
ment given by the SGMM structure comes from the efficient decomposition of
acoustic space to modeling the pronunciation variation, and also given by effi-
ciently reducing the number of model parameters required to be estimated. The
impact on the phone-level PV performance when replacing the CDHMM by the
SGMM in the CN-based PV scenario shown in Section 4.2 will be addressed in
Section 4.4.1. Besides, in Section 4.4, the SGMM state projections in subspaces
will be applied in a new pronunciation verification scenario.

4.4 Applying subspace-based pronunciation
modeling in verifying pronunciation accuracy

This chapter introduces a new PV approach [38, 39], which is based on SGMM
described in Section 4.3. It extends the CN-based phoneme-level pronunciation
verification (PV) scenario which has been presented in Section 4.2. First, the per-
formance of two CN-based PV systems are compared in Section 4.4.1. The first is
based on the HMM-based phonetic decoder, and the second is based on the
SGMM-based phonetic decoder. Second, a discussion of an articulatory interpre-
tation of SGMM subspace projection vectors is presented in Section 4.4.2. This
interpretation motivates a new approach for detecting phoneme-level mispro-
nunciations from utterances obtained from impaired children with neuromuscu-
lar disorders. The new phoneme-level PV scenario will be described as follows.
Section 4.4.3 describes the SGMM parameters used for this new PV scenario.
Then, a distance measure between two state projection vectors within the same
subspaces is investigated in Section 4.4.4 as a decision criterion for detecting
phoneme-level mispronunciations. Finally, Section 4.4.5 presents the experimen-
tal study for this new PV approach.

4.4.1 Applying SGMM into the CN-based PV scenario

In Section 4.2, a CN-based approach has been described for verifying the pho-
neme-level pronunciation accuracy. Given a well-trained monophone-based
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continuous density hidden Markov model (CDHMM), the approach begins by
performing a phonemic decoding on the given testing isolated word utterance.
A phone lattice containing phone labels and their associated acoustic probabili-
ties is then generated through the phonetic decoder. Finally, a CN is created
from the phone lattice using a lattice compression algorithm. The CN is a linear
network where all arcs that emanate from the same start node terminate in the
same end node. The ordering properties of the original lattice are maintained in
the confusion network. The posterior phone probability corresponding to the
given target phoneme from the baseform expansion of the given testing word
will appear on the arcs of the confusion network. This posterior phone proba-
bility is used as the utterance-specific phoneme-based confidence score.

An alternative acoustic modeling technique, the SGMM, is introduced in
Section 4.3. As discussed in Sections 4.3.2 and 4.3.3, both word recognition and
phone recognition performance given by the SGMM are significantly higher than
the recognition performance given by the conventional CDHMM. Therefore, it is
reasonable to consider the use of the SGMM acoustic model in place of the
CDHMM model in the phonetic decoder for the CN-based PV approach presented
in Section 4.2. The corresponding phone-level PV performance comparison be-
tween the CDHMM phonetic decoder and the SGMM phonetic decoder will be pre-
sented in this section. The main difficulty of applying the SGMM in the CN-based
PV framework arises from the fact that no implementation of SGMM-based
speaker adaptation existed at the time this work was being performed. As a result,
none of the adaptation scenarios used for the CDHMM acoustic model is investi-
gated here. Thus, the CDHMM or SGMM training corpus used for the experimental
study shown in this section includes only the unimpaired children speakers de-
scribed in the section “Speaker population.”

The same training recipe presented in Section 4.3.3 is used in this CN-based
PV experimental study. The speech obtained from the 120 unimpaired children
speakers serve as the CDHMM and SGMM acoustic model training corpus. The
CDHMM consists of 25 monophones modeled by three state left-to-right HMMs,
resulting in a total of 75 nonsilence states. The SGMM has J = 75 nonsilence
states, and I = 256 shared Gaussians. The same bigram phonotactic model used
in Section 4.2.2 is used in this PV task. All the utterances from the 14 impaired
children speakers are used as the PV evaluation set. This involves a total of
16,352 phoneme trials, which are given by four recording sessions of 57 RFI
words per impaired children speakers. Each session of 57 RFI words consists of
292 phoneme trials.

The PV performance given by various acoustic models are summarized in
Table 4.10. The same acoustic modeling approaches shown in Table 4.9 are in-
volved in this Table 4.10. The EERs given by rows one and three are similar to
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the EERs presented in the first two rows in Table 4.4, The slight EER difference
is due to the fact that this PV experimental study involves four instead of three
recordings for each of 57 RFI words for each of the impaired children.

There are several observations that can be made from the EERs shown in
Table 4.10. First, when comparing the PERs shown in Table 4.9 and the EERs
shown in Table 4.10, it indicates that the acoustic model training scenario will
have the same impact on the phone recognition performance and on the CN-
based phoneme-level pronunciation verification performance. A more robust
acoustic model which gives a lower recognition error rate, a better CN-based PV
performance can be expected when the CN is obtained from that acoustic
model. Second, by comparing rows one and three in Table 4.10, incorporating
training data from children speakers has shown to significantly reduce EER.
This observation has also been made in the experimental study shown in
Section 4.2.2. Third, by comparing rows four and six, it is clear that the best
SGMM outperforms the best CDHMM in terms of EER, when the same unim-
paired speaker corpus is involved in the acoustic model training. A 4.48% EER
relative reduction can be achieved. In order to further improve the PV perfor-
mance using the SGMM acoustic model formalism, a new phone-level pronunci-
ation verification scenario will be investigated in the following sections.

4.4.2 Subspace interpretation

Multiple subspace matrices provided by SGMM, which is introduced in Section 4.3,
describe the allowable variation associated with individual ASR acoustic model

Table 4.10: PV performance comparison between CDHMM and SGMM acoustic models,
impaired children speech corpus.

Pronunciation verification performance (equal error rate)

Acoustic model Training corpus EER

CDHMM ( Gaussians per state) Adult .%

CDHMM ( Gaussians per state) Children .%

CDHMM ( Gaussians per state) + MAP/MLLR Adult + Children .%

CDHMM ( Gaussians per state) Children .%

SGMM (256 shared Gaussians, without mi) Children .%

SGMM (256 shared Gaussians, with mi) Children .%
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distributions. Each state associated with a phonetic context event in the CDHMM
is represented as one or more low dimensional projection vectors within these
subspaces in the SGMM. One obvious advantage of using SGMM is to obtain a
more robust acoustic model from a limit amount of training data. Since each
state in the SGMM is only parameterized by one or few low dimensional projec-
tion vectors, it provides the potential for modeling phones associated with indi-
vidual states using only a relatively small amount of occurrences of that phone.

Another advantage of using SGMM is SGMM can be loosely interpreted as a
subspace representation of phonetic-level variation in speech recognition [40].
It has been found by Lukas Burget et al. that the state projection vectors in the
SGMM can loosely represent vowel sounds by two-dimensional plots. Simply
stated, if the first two elements of each state projection vectors associated with
the center state of each context-dependent vowels in the SGMM are displayed
in the two dimensional plot, there is a well-behaved clustering property associ-
ated for each vowels.

An example of such state projection vectors plot is given by Figure 4.4. The
SGMM involved in this figure is trained using the resource management (RM)
corpus, as described in Section 4.3.2. Each dot in Figure 4.4 is associated with
the center state of one context-dependent vowel shown in the RM training cor-
pus. The location of each vowel label is given by the center of each vowel clus-
ter. The distribution of vowel symbols is close to the English-based vowel
triangle plot, as shown in Figure 4.5. Vowels are distinct from each other based
on their acoustic form, or spectral properties. Spectral properties consist of the
speech sound᾿s fundamental frequency and its formants. Each vowel in the
vowel triangle diagram has a unique first and second formant, denoted as F1
and F2 respectively. In Figure 4.5, F1 values are shown in the y-axis, and the F2
values are shown in the x-axis.

Front Central   Back
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Close

axMid

Open ae aw

Figure 4.5: Vowel Triangle for English, y-axis means the lip status, x-axis means the tongue
position.
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The state projection vectors plot shown in Figure 4.4 is obtained from the
SGMM structure without using the mean vector mi. In other words, mi in eq.
(4.2) is a zero vector. It has been found that the state projection vectors cluster-
ing is not so significant when the mean vector mi is involved in eq. (4.2). In this
case, the state-dependent means μji is dominated by mi, and only the residual
can be modeled by the product of Mi and vj.

The state projection vectors have also been found to form well-behaved clus-
ters for the SGMM trained using multiple unimpaired children speaker described
in the section “Speaker population.” A similar state projection vectors plot for
Spanish vowels, fa, e, i, o, ug, is shown in Figure 4.6. The SGMM involved in
Figure 4.6 is trained using both unimpaired and impaired children speech cor-
pus. There is one set of speaker-independent state projection vectors obtained
from the speech provided by 60 unimpaired children, which are labeled as
faU1, eU1, iU1, oU1, uU1g in the plot. There is another set of speaker-independent
state projection vectors obtained from the speech provided by other 60 disjointed
unimpaired children, which are labeled as faU2, eU2, iU2, oU2, uU2g in the plot. On
the other hand, the SGMM also involves 14 sets of speaker-dependent state pro-
jection vectors, and each set is obtained from the speech provided by one im-
paired children. The labels faImp, eImp, iImp, oImp, uImpg shown in the plot are
associated with one of the 14 impaired children speaker.
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Distribution of vowel specific state projection vectors
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Figure 4.6: Distribution of vowel-specific state projection vectors. U1 represents the first set of
unimpaired speaker population. U2 represents the second set of unimpaired speaker
population. Imp represents one of the 14 impaired speaker. eU1 is overlapped with eU2 .
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In Figure 4.6, the location of each label is given by the center of each vowel
clusters. The distribution of five centers of fa, e, i, o, ug obtained from one set of
60 unimpaired children is similar to the distribution of five centers obtained
from another set of 60 unimpaired children. On the other hand, the distribution
of faImp, eImp, iImp, oImp, uImpg obtained from an impaired children speaker is
much different from the distributions obtained from unimpaired speaker popu-
lation. This clustering behavior provides a motivation to compare a phoneme
pronounced by an impaired speaker and by a set of unimpaired speaker popu-
lation, which will be described in the following sections.

4.4.3 SGMM parameterization

The SGMM configuration involved in the new PV scenario, which will be de-
scribed in Section 4.4.4, is shown in Figure 4.7.

The shared parameters in the model are trained from the entire population of
training speakers. However, a separate set of states is allocated for each
speaker. Note in Figure 4.7, speech from both unimpaired and impaired chil-
dren speakers is used for training this SGMM model.

Specifically, the SGMM parameterization is described as follows. The di-
mension, F, of feature vectors is 39, which includes 12 MFCC coefficients,
normalized energy, and their first and second difference coefficients. The

State-dependent parameters
245 triphone phonemes

j=1,...,735 states per speaker
Speaker-dependent states

48 unimpaired speakers
14 impaired speakers

Unimpaired speaker vj
suk

(k=1,...,48)

impaired speaker vj
sik

(k=1,...,14)

Shared parameters
256 Gaussians

SGMM
parameterization

Mi, ∑i, wi
(i=1,...,256)

Figure 4.7: SGMM: speaker-dependent states.
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subspace dimension, S, is also set to 39. The SGMM structure is inherited from
an initial CDHMM and speech UBM. Both CDHMM and speech UBM are trained
using the unimpaired speech corpus described in the section “Speaker popu-
lation.” The CDHMM states are part of three state unclustered context-
dependent triphones obtained from the 57 words from the RFI. The total num-
ber of context-dependent triphone units is 245, which corresponds to 108 con-
text-dependent vowels and 137 context-dependent consonants. The speech
UBM consists of 256 full covariance Gaussians.

There are several speaker-dependent sets of SGMM state projection vectors.
Each set contains 735 state projection vectors, and is trained using the speech
corpus for one unimpaired or impaired individual speaker. The 735 state projec-
tion vectors in each set are associated with the 245 three state context-dependent
triphones. A subset of the unimpaired children speech corpus, which consists of
48 unimpaired children, is used for training 48 sets of unimpaired speaker-
dependent state projection vectors, vsukj

n o
. Each of the 48 sets is represented by

one unimpaired child, suk, k = 1, . . . , 48. Each of the impaired children, sik,
k = 1, . . . , 14, from the impaired children speech corpus is used for training one
set of impaired speaker-dependent state projection vectors, vsikj

n o
. This gives 14

sets of impaired speaker-dependent state projection vectors. Note that each of
the impaired speaker-specific state projection vector are trained using multiple
instances in the SGMM training corpus. Some of them are correctly pronounced,
and some of them are mispronounced.

The motivation for configuring the model in Figure 7 is to define a measure
of phonetic variation directly in the state projection vector space. State projec-
tion vectors associated with the states of individual phones from multiple unim-
paired speakers have been found to form well-behaved clusters, as described in
Sections 4.4.2. 4.4.4 defines a PV distance measurement that exploits this be-
havior by measuring the deviation of state projection vectors obtained from an
impaired speaker from the state projection vectors obtained from an unim-
paired speaker population.

4.4.4 State projection-based PV scenario

Pronunciation verification (PV) refers to obtaining confidence measures for each
phoneme in the baseform expansion and applying a decision rule for accepting or
rejecting the hypothesis that a given phone was correctly pronounced. First, the
section “Distance between two state projection vectors” presents a new SGMM-
based approach of obtaining the utterance-independent confidence score for each
context-dependent triphone unit from each of the impaired speakers. Second, the
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section “Distance between two state projection supervectors” proposes a super-
vector approach to construct the confidence scores. Third, the section “Linear dis-
criminant analysis” discusses the use of linear discriminant analysis (LDA) for
suppressing inter-speaker variation in the phoneme-level PV scenario.

Distance between two state projection vectors

It is assumed that the pronunciation of a context-dependent phoneme, q, is char-
acterized by the state projection vector associated with its center state, j. Given
the state index, j, as the center state of the phoneme q, the PV decision of reject-
ing or accepting that phoneme q has been correctly pronounced by an impaired
speaker sik can be obtained from the distance between two state projection
vectors within the same SGMM subspace. One state projection vector vsikj is
trained from an impaired speaker sik. Another reference state projection vrefj is ob-
tained using utterances from the unimpaired speaker population. Specifically, vrefj

is obtained by clustering state projection vectors, vsukj , k= 1, . . . , 48, where vsukj is
the state projection vector for the kth unimpaired speaker.

Euclidean distance and the cosine distance were investigated for evaluating
the distance between two state projection vectors. It was found that the cosine
distance measurement provided more robust PV performance than the
Euclidean distance. The cosine distance is given by

D vrefj , vsikj
� �

=
vrefj ·vsikj

jjvrefj jjjjvsikj jj
, (4:13)

where the notation jjvjjj indicates the magnitude of the vector vj. A phonetic
subspace normalization is also implemented, in order to avoid the numerical
issue where some components of a state projection vector may have a very high
dynamic range [27]. This normalization over phonetic subspaces will improve
the robustness of constructing the distance measurement between vrefj and vsikj ,
when a unique PV decision threshold is applied across all states.

Distance between two state projection supervectors

Equation (4.13) proposes a mechanism to run the phoneme-level PV task by
comparing the pronunciation of the phoneme q between an impaired speaker
and a cluster of unimpaired speakers by measuring the cosine distance between
two state projection vectors within the same subspace of the SGMM. One can also
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assume that the pronunciation of a given phoneme q is not just characterized by
its center state projection vector, but is instead characterized by the three state
projection vectors associated with states j− 1, j, j+ 1f g. A state projection super-
vector associated with the phoneme q with dimension of 3S, where S= 39, can be
constructed by concatenating the three state projection vectors as follows,

Vq = ðvj− 1, vj, vj+ 1Þ. (4:14)

The cosine distance can then be computed in the supervector domain,

DðVref
q ,Vsik

q Þ= Vref
q ·Vsik

q

jjVref
q jjjjVsik

q jj
. (4:15)

The reference Vref
q in the supervector domain is given by clustering the 48 unim-

paired speaker-specific state projection supervectors, Vsuk
q . The idea of obtaining

Vref
q is similar to obtaining the vrefj , as described in the section “Distance between

two state projection vectors.”

Linear discriminant analysis

Linear discriminant analysis (LDA) is a well-known technique in pattern recogni-
tion and machine learning [41]. The goal in this work is to apply LDA to reduce
the impact of speaker variability in the PV task by performing a dimensionality
reducing linear transformation on the super vector Vq in eqs. (4.14). The new
state projection supervector V̂q for a given phoneme, q, can be obtained by ap-
plying the LDA transform as follows,

V̂q =LTVq. (4:16)

The LDA transform L is of dimension 3S× S′, where S′≤ 3S. Intuitively, LDA ro-
tates the state projection supervectors to a new direction that better discrimi-
nates between state projection supervectors belonging to different phoneme
classes. Thus, a better phoneme-level PV performance based on eqs. (4.15)
could be achieved after applying the LDA to state projection supervectors.

The column vectors of the LDA transform L are given by the eigenvectors
with the S′ highest eigenvalues of the generalized eigenvalue problem,X

B
E=

X
W
ED. (4:17)
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The eigenvectors and the corresponding eigenvalues are obtained from the col-
umns of matrix E and the diagonal elements of diagonal matrix D.

It is assumed that each context-dependent phoneme q, q= 1, . . . ,Q, where
Q= 245, represents one class in the LDA, and each class contains 48 unimpaired
speaker-specific supervectors, Vsuk

q , provided by a subset of the unimpaired
speech corpus as described in Section 4.4.3. The between classes covariance ΣB
and the within classes covariance ΣW can be computed as follows:

ΣW = 1
Q

XQ
q= 1

1
48

X48
k = 1

ðVsuk
q − μqÞðVsuk

q −μqÞT , (4:18)

and

ΣB =
1
Q

XQ
q= 1

ðμq −μÞðμq −μÞT . (4:19)

The phoneme-dependent mean μq is given by the average of all the 48 super-
vectors Vsuk

q for each phoneme q. The mean μ is given by the average of all the
phoneme-dependent mean vectors, μq, over all the phoneme classes. In this
way, LDA attempts to increase the class separability by maximizing the be-
tween classes covariance capturing the intra-speaker variability, and minimiz-
ing the within classes covariance capturing the inter-speaker variability. The
effect of applying the LDA on state projection supervectors will be discussed in
Section 4.4.5.

4.4.5 Experimental study

The PV evaluation shown in this experimental study is based on the SGMM co-
sine distance measurement described in Section 4.4.4. First, the baseline sys-
tem is described in the section “Baseline system.” Second, the session-level PV
evaluation is presented in the section “Session-level PV results.” This is pre-
sented as an average equal error rate (EER) which describes detection perfor-
mance across an entire session. Third, the utterance-level PV evaluation is
presented in section “Utterance-level PV results.” This provides a measure of
performance for verifying the occurrence of individual instances of phoneme-
level mispronunciation.
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Baseline system

The baseline PV scenario is based on the CN-based confidence scores, which is
presented in Section 4.2. For the baseline system presented in this work, the
acoustic CDHMM training is initialized using Albayzín corpus [21]. Then it is
adapted to the unimpaired children speech corpus using both maximum a pos-
teriori (MAP) and maximum likelihood linear regression (MLLR) adaptation, as
described in the section “Reducing variability through model adaptation.” A
zerogram-based unconstrained phonotactic network is used for decoding.

Session-level PV results

The session-level PV performance is reported as the average mispronunciation
detection performance across all context-dependent phonemes in the test cor-
pus. There are four utterances of each phoneme in an impaired speaker᾿s ses-
sion. If a majority of the individual instances of a phoneme in a speaker᾿s
session are labeled as being correctly pronounced, then that phoneme is la-
beled as correctly pronounced for the session. There are 245 context-dependent
phonemes from the 57 RFI words and provided by each of 14 impaired speakers.
This gives total of 3,430 session-level test trials. This involves 2,756 test trials
labeled as “correctly pronounced,” 543 test trials labeled as “incorrectly pro-
nounced,” and 131 test trials which are excluded from the evaluation.

For the baseline PV scenario, the overall session-level CN confidence score
for a phoneme q is obtained by averaging all the CN-based confidence scores
corresponding to q, among all the four instances of that phoneme. This gives
an equal error rate (EER) of 15.83%.

In the section “Distance between two state projection vectors,” a cosine dis-
tance measure between two state projection vectors sharing the same linear
subspaces in a SGMM is defined. This provides a model-based approach for
measuring the similarity between phoneme models trained from an impaired
speaker and a cluster of unimpaired speakers. It gives a session-level EER of
21.73%. When the cosine distance is measured between two state projection
supervectors, as described in eq. (4.14), the EER reduces to 19.85%. If LDA
transformed supervectors described in eq. (4.16) are used for computing the co-
sine distances, the EER can be further reduced to 18.44%. These results can be
shown in Figure 8 with a fusion weight equal to zero.

It is reasonable to assume that there would be some advantage to combin-
ing the scores from the two systems. The SGMM cosine distances can provide
context information which is potentially complementary to the baseline CN
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scores, which are obtained from a context-independent phonetic decoder. A
simple session-level combined score, Suiðq, sikÞ, for a given impaired speaker sik
and context-dependent phoneme q can be expressed as follows,

Suiðq, sikÞ= αSCNðq, sikÞ+ ð1− αÞDðvrefj , vsikj Þ. (4:20)

The first additive term in eq. (4.20), SCNðq, sikÞ, represents the overall session-
level CN posterior score obtained from the baseline system. The second additive
term is the SGMM-based cosine distance measurement between two state projec-
tion vectors, as defined in eq. (4.13). The state index j represents the center state
of the phoneme q. This cosine distance can also be computed between two state
projection supervectors, as defined in eq. (4.14), or between two LDA transformed
supervectors, as defined in eq. (4.16). The fusion weight is controlled by the fac-
tor α, varying from zero to one. The session-level PV performance from the com-
bined scores computed from eq. (4.20) is shown in Figure 4.8. These results show
that the CN baseline PV performance can be improved by incorporating any of
three kinds of SGMM cosine distance scores, if a proper fusion weight is selected.
Comparing the best results from the combined scores with the baseline results,
the EER drops from 15.83% to 13.40%.
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Figure 4.8: EER comparison, session-level PV evaluation.
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Utterance-level PV results

The utterance-level PV is evaluated directly based on the transcription provided
by human labelers, as described in the section “Pronunciation labeling by non-
expert human labelers,” There are 16,352 phoneme-level test trials, which in-
volve 13,472 “correctly pronounced” trials and 2,880 “incorrectly pronounced”
trials. The “incorrectly pronounced” trials include all the “mispronounced” and
“deleted” trials.

The baseline CN confidence scores provide an EER of 19.86%, which is
shown in Figure 4.9 with a fusion weight equal to one. This result is slightly
different from the result reported in the second row of Table 4.4. It is because
the evaluation shown in this PV experimental study involves four instead of
three recordings for each of 57 RFI words for each of the impaired children.

For a given impaired test speaker, SGMM state projection vectors have been
trained using all occurrences of each phone from the test speaker utterances.
So the model-based distance given in eq. (4.13) is a score that implicitly incor-
porates all of these occurrences. However, it is still believed that the context
information captured by SGMM cosine distances can be complementary to the
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Figure 4.9: EER comparison, utterance-level PV evaluation.
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utterance-level CN posterior scores. The combined score Sudðq, sik, uÞ for a given
impaired speaker sik and phoneme q in the baseform expansion of the word in
the utterance u is proposed as follows,

Sudðq, sik, uÞ= αSCNðq, sik, uÞ+ ð1− αÞDðvrefj , vsikj Þ. (4:21)

The first additive term in eq. (4.21), SCNðq, sik, uÞ, represents the utterance-
specific CN posterior score obtained from the baseline system. The second addi-
tive term is the SGMM-based cosine distance measurement between two utter-
ance-independent state projection vectors, which has exactly the same form as
the second additive term in eq. (4.20). Similarly, the cosine distance involved in
the second additive term can also be computed between two state projection
supervectors, or between two LDA transformed state projection supervectors.

The fusion weight is controlled by the factor α, varying from zero to one. The
utterance-level PV performance obtained from the combined scores given by eq.
(4.21) is shown in Figure 4.9. These results show that, even in the utterance-level
PV task, the context information captured by the SGMM cosine distances can still
be useful for improving the CN baseline performance. Comparing the best results
from the combined scores with the baseline results, there is a reduction in EER
from 19.86% to 17.29%.

4.4.6 Summary

An SGMM-based measure of performance accuracy has been presented and
evaluated on a pronunciation verification task for impaired children speak-
ers. It was that, when combined with a lattice-based method for deriving
phone-level confidence measures, a PV EER of as low as 13.4% was obtained.
The best performance was obtained by forming supervectors by concatenat-
ing the SGMM state projection vectors and performing discriminative di-
mensionality reduction in this space. These performance improvements are
believed to result from an efficient characterization of context information
for each phoneme by SGMM parameterization.

4.5 Conclusion

This article has addressed the issues of phonetic variability in speech arising
from speech impairments. One of the main challenges in addressing this issue
has been characterizing the variations in pronunciation associated with disabled
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speakers differs from what might be considered normal inter-speaker pronuncia-
tion variation within populations of impaired speakers. The main contributions
of this work are the statistical modeling techniques for characterizing phonetic
variation in speech and multiple pass pronunciation verification (PV) approaches
relying on CDHMM and SGMM modeling formalisms. The development and eval-
uation of these approaches has been enabled by the existence of an annotated
corpus of speech utterances from impaired and unimpaired children speakers.
This Chapter summarizes the contributions and proposes topics for future work.

4.5.1 Summary of contributions

The speech therapy application reviews are introduced in Section 4.1. The main
contributions of this thesis work are presented in Sections 4.2, 4.3 and 4.4. A
summary of these contributions will be briefly presented as follows.

Multiple pass ASR approach to pronunciation verification

In Section 4.2, a posterior probability CN-based PV scenario has presented. It
was evaluated on a task where instances of mispronounced phonemes oc-
curred in a predefined isolated word-based speech corpus. Given a well-
trained CDHMM acoustic model, a decoded phonemic lattice is produced on
the given isolated word utterance. The phone lattice structure contains phone
labels and their associated acoustic probabilities. Then, a CN is created from
the phone lattice. The posterior phone probability corresponding to the given
target phoneme from the baseform expansion of the given testing word will
appear on the arcs of the confusion network. This posterior phone probability
is used as the utterance-specific phoneme-based decision criteria for making
the mispronunciation decision. Various different speaker adaptation strate-
gies were investigated for reducing the mismatch between the CDHMM acous-
tic model and the impaired younger children speaker population. As a result,
the phoneme-level PV performance with respect to the impaired children test
corpus was improved. The equal error rate (EER) was reduced from 25.3% to
17.2% through the acoustic model adaptation, and an EER of 14.9% was
achieved when applying a nonlinear mapping for the CN posterior scores.
This CN-based PV approach provides the baseline verification performance
which was needed as a point of comparison for the approaches investigated
in Section 4.3 and 4.4.
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Subspace Gaussian mixture model implementation in ASR

There were two major sets of contributions in the thesis relating to acoustic
modeling using the SGMM. The SGMM was originally developed in [26, 27]. The
first set of contributions in this thesis addressed a number of practical problems
associated with SGMM implementation for ASR tasks. The second set of contribu-
tions involved the application of the SGMM acoustic model to the pronunciation
verification task. The SGMM infrastructure used in these works was developed at
McGill.

SGMM Implementation in ASR: The contributions related to SGMM imple-
mentation in ASR are presented in Section 4.3 and briefly described as follows.
First, an efficient strategy for parameter initialization in EM-based training was
presented. Second, a robust approach for identifying substate projection vectors
was implemented. Third, an efficient likelihood computation approach based on
Guassian preselection in ASR decoding was empirically established. Fourth, it
was demonstrated that a 18.74% relative reduction in word error rate with respect
to the well-known CDHMM acoustic model on a medium vocabulary ASR task.
Finally, it was demonstrated that a 24.79% relative reduction in phone error rate
with respect to the CDHMM for an unimpaired children speech corpus.

Applying SGMM in PV: The SGMM acoustic model formalism introduced
in Section 4.3 provides a state-level acoustics representation in subspaces.
Section 4.4.2 presents some two-dimensional plots obtained from the vowel-
specific SGMM state projection vectors. The state projection vectors associated
with the same phone are clustered in the two-dimensional plots. This clustering
property illustrates that SGMM can be loosely interpreted as a subspace repre-
sentation of phonetic-level variation. This behavior provides a motivation to
build a phone-level mispronunciation decision criteria based on the distance of
two state projection vectors within a SGMM. One state projection vector is ob-
tained from the reference unimpaired speaker population; another state pro-
jection vector is obtained from an impaired speaker. In other words, the PV
confidence scores are not constructed from the ASR decoder as presented in
Section 4.2, but constructed directly from the SGMM formalism. A cosine dis-
tance between two state projection vectors serves as the confidence score used
for making the phoneme-level PV decision. In order to characterize the pho-
netic variation, the SGMM states are based on the context-dependent triphone
units instead of monophone units. For each of the impaired or unimpaired
speaker, a set of state projection vector are obtained from all the training ob-
servation vectors provided by that speaker. Therefore, the SGMM cosine dis-
tance scores are utterance-independent and context-dependent. Both session-
level and utterance-level PV scenarios are proposed and the corresponding
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experimental studies are presented in Section 4.4. In both PV scenarios, in
order to achieve the best PV performance, the CN-based confidence scores pro-
posed in Section 4.2 and the SGMM-based cosine distance score are combined
together through a simple linear equation. Consider the CN-based PV scenario
as a baseline system. It is shown that, in the session-level PV task, the equal
error rate can be reduced from 15.83% to 13.40% when combining the CN-based
confidence scores and the SGMM cosine distance scores. On the other hand, in
the utterance-level PV task, the equal error rate can be reduced from 19.86% to
17.29%. These equal error rate performance improvements are believed to result
from an efficient characterization of context information for each phoneme by
SGMM parameterization. It is reasonable to assume that there would be some
advantage to combining the scores from the two systems. The SGMM cosine dis-
tances can provide context information which is potentially complementary to
the baseline CN scores, which are obtained from a context-independent pho-
netic decoder.

4.5.2 Investigation in the future

Other ASR techniques

There are two ASR techniques which have potential to improve the PV perfor-
mance proposed this thesis work.

Adaptation in acoustic feature domain

Replacing the CDHMM by the SGMM as the phonotactic decoder in the CN-based
PV scenario proposed in Section 4.2 is trivial. However, the PV performance can
not easily be improved due to the lack of efficient SGMM adaptation techniques.
One solution is to perform the adaptation in the MFCC acoustic feature domain,
such as the vocal track length normalization (VTLN), a well-known speaker adap-
tation technique used to improve the speech recognition accuracy. The standard
filterbank-based mel-frequency cepstrum coefficient (MFCC) is introduced [36]. The
MFCC features are constructed based on the following steps: sliding a data window
along the speech signal, doing FFT analysis to obtain the discrete spectrum magni-
tude, passing a set of the mel-warped filterbanks to get the filter bank energies,
take a logarithmic compression of the filter bank outputs, finally doing the discrete
cosine transform (DCT) to get the MFCC features. The idea of VTLN speaker adapta-
tion is to estimate a set of speaker-specific warping factors, which are used to warp
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the center frequencies of the filterbanks. One easy way to estimate the warping fac-
tors is based on the maximum likelihood (ML) criterion over the training data [42].
One can do a grid search over a set of warping factors and find the optimized
warping factor which maximizes the ASR likelihood score over the speaker-specific
data. Once the warping factor is found and applied for warping the filterbanks, the
speaker adaptation can be performed in the MFCC domain. It will be interesting to
see if the additional speaker adaptation performed in the acoustic feature domain
can further improve the PV performance or not.

Applying LDA in acoustic feature domain

In the section “Linear discriminant analysis,” the LDA transform is performed on
the state projection supervector domain in order to reduce the impact of speaker
variability in the PV task. The experimental studies presented in Section 4.4.5
shows that the LDA transformed state projection supervector-based cosine dis-
tance scores gives the better PV performance than the raw state projection super-
vector-based cosine distance scores. The success of applying the LDA in the
model parameter domain gives a hint to try the LDA directly in the acoustic fea-
ture domain. There are some research papers show how to apply the LDA trans-
form to the acoustic features in order to carry out the discriminant information for
the phoneme classification [43, 44]. First, the acoustic feature vectors from the
training data are aligned with the states of the baseline acoustic model. Second,
for each time frame in a training utterance, a supervector is constructed by
concatenating the 2N adjacent feature vectors. Suppose the feature vector is given
by the 13-dimensional MFCC vectors, and N = 5, then the supervector for each time
index will have a dimension of 143. The state indices determine the LDA classes.
The mean vector for each LDA classes are computed from all the supervectors
aligned to that state. The between classes covariance and the within classes covari-
ance can then be computed, as shown in the section “Linear discriminant analy-
sis.” It will be interesting to see if the LDA transform applied in the acoustic
feature domain can achieve a similar PV performance as the LDA applied in the
model parameter domain.

Restrictions and other applications

For the PV task, due to the restriction of the labeling scheme, there is no pho-
neme-level pronunciation diagnosis-based experimental study. Another issue is
how to let the speech and language therapist assess the patient᾿s ability based on
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the confidence scores provided by the proposed PV scenario. The current experi-
mental studies are based on an overall PV performance. However, it is certain
that the pronunciation of some phonemes is more difficult for the assessment.
Or, from a therapist point of view, some phonemes might be more critical than
other phonemes for evaluating the patient᾿s pronunciation ability. Thus, a pho-
neme-specific PV performance would be required. Besides, the PV experimental
study is based on a small Spanish impaired children corpus. It will be interesting
to see if the proposed PV scenario can provide useful feedbacks to other lan-
guages, or to the nonnative speaker corpus.
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Heejin Kim and Mark Hasegawa-Johnson

5 Communication improves when human
or computer listeners adapt to dysarthria

Abstract: This chapter reviews methods that improve the ability of human and
machine listeners to understand dysarthric speech. Traditionally, a speaker-ori-
ented approach has been the dominant technique to improve the intelligibility of
dysarthric speech. Recent work demonstrates the potential of listeners’ role in en-
hancing intelligibility. For human listeners, a training method called familiariza-
tion is evidenced to be effective, especially when the training is structured in a
way to maximize perceptual learning. For machine listeners, the accuracy in un-
derstanding dysarthric speech can be improved by adaptive machine learning
methods, with an initial model that already incorporates information about
speakers’ characteristic speech patterns. Future direction to optimize the training
results for human and machine listeners is discussed.

Keywords: dysarthria, intelligibility, familiarization, ASR, speech perception

5.1 Introduction

Speech and language disorders result from many types of congenital or trau-
matic disorders of the brain, nerves and muscles [1]. Dysarthria refers to the set
of disorders in which unintelligible or perceptually abnormal speech results
from impaired control of the oral, pharyngeal or laryngeal articulators. The spe-
cific type of speech impairment is often an indication of the neuromotor deficit
causing it, therefore speech language pathologists have developed a system of
dysarthria categories reflecting both genesis and symptoms of the disorder [1].
The most common category of dysarthria among children and young adults is
spastic dysarthria [2], typically characterized by strained phonation, imprecise
placement of the articulators, incomplete consonant closure, reduced voice
onset time distinctions between voiced and unvoiced stops, distorted vowels,
and monotonic or excessive variation of loudness and pitch.

We are interested in spastic dysarthria because it is the most common type
of severe, chronic speech disorder experienced by students at the University of
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Illinois, as well as being one of the most common types of dysarthria generally.
Spastic dysarthria is associated with a variety of disabilities such as, but not lim-
ited to, cerebral palsy and traumatic brain injury [3, 4]. 0.26% of all 7-year-old
children in the United States have moderate or severe cerebral palsy, and an addi-
tional 0.2% are reported to have mild cerebral palsy [5]. Adults with cerebral
palsy are able to perform most of the tasks required of a college student, including
reading, listening, thinking, talking and composing text: in our experience, their
greatest handicap is their relative inability to control personal computers. Typing
typically requires painstaking selection of individual keys. Some students are un-
able to type with their hands (or find it too tiring), and therefore choose to type
using a head-mounted pointer. Many students with noticeable dysarthria are less
impaired by their dysarthria, in daily life, than by their inability to use computers.

The speech impairments resulting from spastic dysarthria are neither arbitrary
nor unpredictable; indeed, van Santen [6] demonstrated a dynamic systems model
of vowel distortion under dysarthria. Table 5.1 lists a number of specific phoneme
substitutions errors attested in the literature [7]. As emphasized by the organiza-
tion of the table, most of the specific impairments reported in the literature can be
characterized as imprecision in the implementation of one or two distinctive fea-
tures; for example, /t/→/k/ is a mistake in the place of articulation of the stop. In
order to provide more evidence, the authors of this chapter phonetically tran-
scribed four long recordings from Aronson [8]: a phonetically rich read paragraph
(the “grandfather passage”), and three diadokinesis sequences, all read by one
male talker with moderate spastic dysarthria. All words in the grandfather passage
with nonstandard pronunciation [9] were marked as “errors”; likewise, as were all
diadokinesis syllables containing a consonant other than the target consonant

Table 5.1: Phoneme production errors in dysarthria, as reported in [7],
listed with the distinctive feature(s) changed by the error [10].

Articulatory deficit Distinctive feature(s) Examples

Tongue positioning [blade] /t/ vs. /k/

Tongue blade positioning [anterior] /ʃ/ vs. /s/

Oral-laryngeal timing [spread glottis] /t/ vs. /d/

Degree of closure [continuant] /t/ vs. /s/

Manner of closure [sonorant] /p/ vs. /m/

Vowel articulation [advanced tongue root] /u/ vs. /ʊ/

Lexical stress [reduced,front] /æ/ vs. /ə/
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(/p/, /t/ or /k/). Table 5.2 lists all substitution errors found in this corpus; deletion
errors are not listed, and there were no insertion errors. Tables 5.1 and 5.2 suggest
that speech production errors in dysarthria, though random, are not uniformly
random: almost all errors are errors of a single distinctive feature.

Errors of a single distinctive feature may be enough to confuse a listener who is
unfamiliar with dysarthria, but considerable experimental evidence suggests
that a familiar listener is able to take advantage of the regularities in the error
pattern in order to understand dysarthric speech: higher word and segment
identification accuracies were found in familiarized listeners compared to non-
familiarized listeners, even for individuals with severe dysarthria.

This chapter is about methods that improve the ability of a listener to under-
stand dysarthric speech. We consider both human and machine listeners. The
ability of human listeners to understand dysarthric speech can be improved by
familiarization, a listener training method in which listeners receive brief, yet
structured, exposure to dysarthria. The ability of machine listeners to understand
dysarthric speech can be improved by adaptive machine learning methods; the
efficacy of such methods can be boosted by starting with an initial model that
already incorporates some information about the talker’s speech patterns.

5.2 Perceptual adaptation of human listeners

There is an array of factors that can influence listeners’ perception of dysarthric
speech. Paralinguistic cues, which are independent of the acoustic signal of

Table 5.2: Pronunciation errors found in paragraph reading and diadokinesis, one male talker
from [8], phonemically transcribed at the University of Illinois.

Phonemes Count Distinctive features Phonemes Count Distinctive features

/p/→/b/  [spread glottis] /ŋ/→/n/  [blade]

/t/→/d/  [spread glottis] /z/→/n/  [sonorant, continuant]

/k/→/g/  [spread glottis] /k/→/ŋ/  [sonorant, continuant]

/p/→/m/  [sonorant] /f/→/h/  [lips]

/s/→/z/  [spread glottis] /ɑ/→/ə/  [reduced]

/z/→/d/  [continuant] /d/→/ɾ/  [reduced]

/ʒ/→/z/  [anterior] /ɪ/→/ə/  [reduced]
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dysarthria, can help listeners to decipher dysarthric speech: for example, facial
expressions, hand and body gestures, and situational context including knowing
the topic of the conversation [11–13]. Of particular interest to us, there is a signal-
dependent factor that influences perception: that is, the human listener’s adapt-
ability to the acoustic-phonetic content of dysarthric speech. Familiarity can be
defined as the listener’s previous contact or exposure with an acoustic signal [14],
and has been shown to improve the listener’s ability to understand the atypical
acoustic signal in dysarthria. In order to examine listeners’ familiarity effects on
the perception of dysarthria, studies have tested a training method, familiariza-
tion, in which listeners are provided brief exposure to dysarthric speech. The
major finding of these studies is that when naïve listeners receive brief exposure
to dysarthric speech, their ability to perceive the speech improves [14–20].
Familiarization effects are evidenced not only in dysarthria but also in a variety
of atypical speech including both natural and synthetic speech: for example,
nonnative accented speech [21–23], speech produced by individuals with hearing
impairment [12, 24, 25] and artificially created or altered speech such as synthe-
sized voice, noise-vocoded speech and time-compressed speech [26–33]. These
convergent findings of familiarity in the field of speech perception highlight a
cognitive-perceptual process called perceptual learning in which listeners seem
to automatically engage when they encounter atypical speech. By this process,
listeners are capable of recognizing speech that sounds deviant from what they
know as normal, and are capable furthermore of recalibrating existing speech
categories. The result of perceptual adaptation is an improved ability to under-
stand atypical speech that was initially difficult to perceive [34, 35]. Studies on
familiarization effects in dysarthria underscore the listeners’ flexibility of speech
perception and strongly support the potential of familiarization training as an in-
tervention method in dysarthria.

Concerning improved communication through familiarity-induced percep-
tual learning in dysarthria, two issues are particularly relevant: (1) what is learn-
able through perceptual adaptation and (2) how to facilitate perceptual learning.

What is learnable: Prior work has striven to understand perceptual learning
mechanisms, especially by identifying learning sources [36]. Evidence exists in
support of both suprasegmental and segmental learning. For example, when lis-
teners are exposed to sentential prosody in dysarthria during familiarization,
their ability to understand the speech improves [15, 18]. Segmental learning
through familiarization has been discussed in many studies. The majority of
studies reported familiarization benefits based on word intelligibility measures,
with the hypothesis that the source of improved word intelligibility would be pri-
marily at the segmental level of perceptual reorganization by which listeners ad-
just the mapping between acoustic-phonetic information and the phonemic
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representation in the language [27, 37–42]. Familiarized listeners in [17] exhibited
improved word intelligibility compared to the nonfamiliarized, but two groups
did not differ in terms of the lexical boundary error types, indicating that the ben-
efit could be attributed predominantly to the segmental level than prosodic level
of strong/weak syllables. Extended support was found in Borrie et al. [37] and
Spitzer et al. [14]: that is, more word substitution errors that bore phonemic re-
semblance to the target for familiarized listeners versus nonfamiliarized listeners.
The results drawn from word transcription tasks need to be interpreted with cau-
tion since it is not certain how much effect is attributable to the acoustic process-
ing versus high-level lexical or semantic knowledge [34, 36]. In order to find
more direct evidence of segmental learning, our work [43, 44] employed conso-
nant identification tasks instead of word transcription tasks. Four American-
English native speakers diagnosed with CP (Cerebral Palsy) provided speech
data. Their age, gender and intelligibility were as follows: Speaker 1 (58; male,
28%), Speaker 2 (18; male, 39%), Speaker 3 (21; male, 59%) and Speaker 4 (18;
female, 62%). A total of 120 listeners (30 listeners/speaker), who had no more
than incidental experience with persons with speech disorders, participated in
perception experiments. The main finding was that consonant identification
scores were higher in familiarized listeners, compared to nonfamiliarized listen-
ers. The effect size (the magnitude of difference between pre- vs. post-familiariza-
tion) was medium to large for all speakers.

Researchers have investigated acoustic correlates of speech perception in
dysarthria to identify acoustic metrics that can predict listeners’ performance
in understanding dysarthria as well as to better understand the production def-
icits in dysarthria. A substantial number of acoustic studies in dysarthria in-
cluding our work [45–47] have shown that there is a strong association
between acoustic measures of segmental clarity, on the one hand, and reduced
speech intelligibility on the other hand, supporting the perceptual consequen-
ces of acoustic deviances in dysarthria. However, to our knowledge, no study to
date has investigated acoustic correlates of perceptual learning effects in dysar-
thria. Perceptual learning is influenced by the nature of acoustic deviances
[48], but most familiarization studies in dysarthria have examined only word
intelligibility, failing to address acoustic sources for the familiarization benefit.
On the other hand, a study on synthesized speech [27] examined the training
process related to acoustic properties of the speech signal and reported evi-
dence for perceptual learning of acoustic features. It is unknown whether the
finding can be generalized to dysarthria. Broadmore [49] a study on the famil-
iarization effect in dysarthria associated with Parkinson’s disease (PD), found
that familiarization training improved intelligibility for two out of three speak-
ers. The author speculated on the possibility of an acoustic explanation for the

5 Communication improves when human or computer listeners adapt 185

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



reduced perceptual learning that occurred for one of the speakers. In other
words, the degree of perceptual learning success might be dependent on the
idiosyncratic acoustic characteristics of the speech. We are currently investigat-
ing acoustic deviances in voiceless sibilant fricative productions in dysarthria
and their relevance to a listener’s perceptual accuracy. Results show that re-
gression functions relating moment measures and identification scores of /s/ in
post familiarization are significant: in fact, the ability of listeners to understand
dysarthric speech is almost completely explained (over 80%) by the way in
which dysarthria changes the acoustic characteristics of speech segments. The
least amount of learning after familiarization was found for /ʃ/ (the first sound
in the word “ship”) when its spectral measures were overlapped with those
for /s/ (the first sound in the word “sip”). This preliminary finding suggests
that perceptual learning might be impeded when acoustic deviances are in the
form of phonemic substitution, less so in the form of nonprototypical, noisy
version of normal production.

How to facilitate perceptual learning: While most studies reported a fa-
miliarization benefit in dysarthria, the size of intelligibility improvement var-
ied across studies. Methodological differences such as dysarthria severity and
the listener’s experience level to dysarthric speech may be responsible for the
different degrees of the benefit, but in particular, differences in familiariza-
tion conditions suggest that a certain training method can be more effective
in facilitating perceptual learning for listeners. Three different training condi-
tions appear in prior work: an active (or sometimes called explicit) condition,
a passive condition and no separate familiarization with sequential repetition
of experimental tasks. Several studies examined an active condition, in which
listeners were familiarized with both audio signals and a written transcript,
and reported a significant effect of familiarization [14, 15, 17–19]. A passive
familiarization method, in which listeners were presented with only an audio
signal, resulted in no significant effect. The third type, that is, no separate fa-
miliarization but only sequential repetition of experimental tasks, was tested
in Hustad and Cahill [20], and resulted in a significant improvement in intelli-
gibility. Cross-study comparisons between active versus passive conditions in
Borrie et al. [37] reported a greater benefit of an active condition over a pas-
sive condition in terms of word transcription, phonemic resemblance and syl-
labic stress perception.

We have conducted integrated studies that compared the efficacy of all three
conditions (the active- vs. passive- vs. no separate familiarization conditions) for
both word and consonant intelligibility [40, 41, 43, 44]. Thirty listeners were re-
cruited per speaker, and were randomly assigned to one of the three conditions:
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passive versus active versus control. Listeners in the control condition received
no exposure to the audio signal prior to identification tasks, but performed multi-
ple identification tasks. Thus, the control condition in our experiments was simi-
lar to the experimental condition in Hustad and Cahill [20]. The main finding was
that an active condition was superior to other conditions in both word and conso-
nant intelligibility. The advantage was manifested in terms of two aspects: the
magnitude and the rapidity of improvement. First, for all speakers, listeners in
the active familiarization condition exhibited higher intelligibility scores com-
pared to the other two conditions: for word identification scores, the improve-
ment amount ranged from 21% to 28%, and for consonant identification scores, it
ranged from 5% to 19%. Furthermore, a larger degree of listener’s improvement
was found for speakers with severe dysarthria. Second, only the listeners in an
active condition improved consonantal perception as early as immediately after
the first familiarization training while the other groups reached significant in-
creases at a later session or no improvement at all. Rapid learning of consonants
in the active condition demonstrates that the use of orthographic transcripts facil-
itate listeners’ segmental learning. We note that echoing the finding in Hustad
and Cahill [20], even without separate familiarization, the repetition of test mate-
rial resulted in intelligibility improvements, highlighting the plasticity of speech
perception; however, the extra gain and the rapid improvement in the active con-
dition highlighted the efficacy of the active condition over others. For the purpose
of dysarthria management, an optimal intervention method should be sought that
considers not only the magnitude but also the rapidity of improvement. Thus, an
active training condition that expedites perceptual learning would be more desir-
able compared to other conditions that require more training time.

As discussed in Hustad and Cahill [20], caution is needed when interpreting
familiarization effects. It is difficult to know how much of the observed improve-
ment reflects a true learning effect, because we cannot exclude the possibility that
practice improves one’s ability to simply perform the experimental task, without
any specific perceptual learning benefit. Our work included different familiariza-
tion conditions in the experimental design, thus the key finding in our work is
that the additional effect in the active condition compared to other conditions can
be attributed to the availability of written material in the active condition.
Importantly, the active condition showed a long-term effect as well: 1-month de-
layed test scores were higher than pre-familiarization scores. This finding extends
support for the claim that perceptual learning is not a temporary adjustment but
rather a long-lasting effect [36], similar to other work in dysarthria [37], in syn-
thetic speech [31, 50] and in nonnative speech [51].
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5.3 Adaptive automatic speech recognition

It is counter-intuitive to imagine that a person with a speech pathology might
be able to use a spoken computer interface more effectively than a keyboard,
but it is often true. Many types of speech pathology accompany severe motor
disorders, and the large-scale motor disorder often makes the use of a keyboard
extremely difficult. Several studies have demonstrated that adults with dysar-
thria are capable of using automatic speech recognition (ASR), and that in
some cases, human–computer interaction using ASR is faster than interaction
using a keyboard [52–55].

The utility of ASR for dysarthric speech is limited by the average characteris-
tics of dysarthric speech, and by its variability. For example, Fager [56] investi-
gated the durations of single words and phonemes as produced by 10 participants
with dysarthria, and 10 control participants. The study also examined the rela-
tionships between word intelligibility and word duration, and between word
intelligibility and variability for the participants with dysarthria. Results showed
statistically significant differences of word and phoneme durations between the
participants with versus without dysarthria. Because of these significant popula-
tion differences, it is difficult for speakers with dysarthria and speakers without
dysarthria to use the same ASR: an ASR trained without dysarthria fails to cor-
rectly recognize the longer-duration phonemes produced by a speaker with
dysarthria.

Many speakers with dysarthria have solved the problem of population differ-
ence by using speaker-dependent or speaker-adaptive ASR. A speaker-dependent
ASR is trained entirely using speech read by the intended user; a speaker-adap-
tive ASR is initialized using a database of many speakers, but then adapted to
the speech of the intended user. Unfortunately, the utility of speaker-dependent
and speaker-adaptive ASR for speakers with dysarthria is limited by variability,
from one sentence to the next, in the speech produced by a speaker with dysar-
thria. Parker et al. [57] found the consistency of phonetic representation over
time to be crucial for accurate ASR. Blaney and Wilson [58] noted that intra-
speaker variability is a correlate of dysarthria, especially with regard to voice
onset time of stop consonants, vowel duration, and fricative duration. Speech
from speakers with moderate dysarthria exhibited greater variability across all
acoustic measures, compared to the speakers with mild dysarthria and the speak-
ers without speech pathology. A “minimal pair” can be defined as a pair of
words that differ in only one distinctive feature; Blaney and Wilson [58] docu-
ment several cases in which dysarthria erased the acoustic distinction between
minimal pairs.
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Raghavendra et al. [59] compared recognition accuracy of a speaker-adaptive
system and a speaker-dependent system. They found that the speaker-adaptive
system adapted well to speech with mild or moderate dysarthria, but the recogni-
tion scores were lower than for a speaker without dysarthria. The subject with
severe dysarthria was able to achieve better performance with the speaker-de-
pendent system than with the speaker-adaptive system. These findings were also
supported by Rudzicz [60], who compared the performance of speaker-depen-
dent and semi-adaptive systems on the Nemours database [61] by varying inde-
pendently the amount of data for training and the number of Gaussian
components used for modeling the output probability distributions. Doyle et al.
[62] asked six speakers with dysarthria, and six without, to read a list of 70 words
once in each of five training sessions. They found that the word recognition accu-
racy of a speaker-adaptive ASR increased rapidly after the first training session,
then increased more gradually during training sessions two through five.

Speakers with dysarthria may have trouble training a speaker-dependent or
speaker-adaptive ASR because of the great amount of training data required.
Reading a long training passage can be very tiring for a speaker with dysar-
thria. Speaker adaptive ASR may require less training data than speaker-depen-
dent ASR, and is therefore a useful method to provide ASR without over-tiring
the user. However, even if one applied such adaptation methods, there exists
a second obstacle: a speaker-adaptive system is initialized using recordings of
other speakers, who usually do not have dysarthria. Speaker-adaptive systems
may therefore converge more slowly to the voice of a speaker with dysarthria
than to the voice of one without dysarthria. Conventional adaptation techni-
ques such as maximum likelihood linear regression [63, 64], maximum a poste-
riori (MAP) adaptation [65, 66], or structured MAP adaptation [67] do not
explicitly model the mismatch between the speech characteristics of the target
speaker population and those of the population used to train the to-be-adapted
acoustic model.

The MAP adaptation algorithm of [65] was used by Sharma et al. [68–70] to
create a series of increasingly refined speech recognizers for speakers with dysar-
thria. First, [70] proposed a relatively standard MAP adaptation algorithm, which
was later dubbed SI-MAP (MAP initialized using a speaker independent = SI
speech recognizer). The SI-MAP algorithm is initialized with a hidden Markov
model trained using the TIMIT speaker-independent automatic speech recognition
database [71]. After being so initialized, the model is adapted to the speech of a
speaker with dysarthria. For the in-domain speech, Sharma et al. used the UA-
Speech corpus [72], which contains recordings of 16 speakers informally diag-
nosed with spastic dysarthria. Each speaker recorded three blocks of isolated
words: each block contained the same 155 core words, plus 100 “uncommon
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words” that differed across blocks. The core words included the 10 digits (“zero”
through “nine”), the 26 letters of the international radio alphabet (“alpha, bravo,
charlie, . . . ”), 19 computer commands (“command, enter, paragraph, . . . ”) and
the 100 most common words in the Brown corpus of written English (“is, it, . . . ”).
The uncommon words were selected from children’s novels digitized by Project
Gutenberg (e.g., Wizard of Oz, Peter Pan) to maximize phoneme-sequence diver-
sity. Digits and common words were primarily composed of monosyllables, com-
puter commands and radio alphabet letters of bisyllables, and uncommon words
of polysyllabic words (more than half of the uncommon words were trisyllabic or
longer). Each speaker recorded a total of 765 words, including 455 distinct words.

A second paper [68] proposed initializing MAP using a speaker-dependent
background model (SDB). The SDB is trained entirely using data recorded by
the speaker with dysarthria. None of the speakers in the UA-Speech corpus re-
corded enough data to train a complete speaker-dependent automatic speech
recognizer, however, so the SDB used a completely new approach. Rather than
trying to distinguish between the different phonemes produced by the intended
speaker, the SDB learns, instead, a Gaussian mixture model (GMM: a kind of
smoothed histogram) representing the set of all speech sounds produced by the
intended speaker. The SDB is a model of the general characteristics of the target
population speaker: it does not learn any patterns that can discriminate be-
tween phones/words but is intended to capture aspects of time-frequency varia-
tion that depend on the speaker rather than on what was spoken by him/her.
Because it does not try to distinguish among the different phonemes produced
by the intended speaker, the SDB can be learned using a much smaller training
dataset. After being trained in this way, the SDB is then cloned, and each clone
is MAP-adapted to the examples of one particular phoneme. In this way, rela-
tively rich models of each phoneme can be trained, using an extremely small
amount of training data per talker.

In general, because of the population mismatch, the SI and SDB models will
have very different parameters. A third paper [69] proposed using the SI and SDB
models to define a continuum of different initial models. The “background-inter-
polated” (BI) model is formulated as a linear interpolation between the SI and
SDB models. Each of the parameters of the speech recognizer is linearly interpo-
lated between the corresponding parameter of the SI model, and that of the SDB
model. Three ASR configurations were studied. SI-MAP is initialized using an SI
model, then MAP-adapted to a speaker with dysarthria using the MAP adaptation
algorithm of [65]. SDB-MAP is initialized using the speaker-dependent back-
ground model, then cloned to generate initial models of each phoneme, which
are then MAP-adapted to the phonemes of the speaker with dysarthria. BI-MAP is
initialized using the background-interpolated model, then MAP-adapted. These
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systems were developed for each of the 16 UA-Speech speakers and employed
word-internal, context dependent triphone hidden Markov models, with 3 hidden
states and observations modeled using a mixture of 32 Gaussians.

Table 5.3 lists the word recognition accuracy (WRA: higher is better) scores
for each UA-Speech speaker, for the three system configurations, in increasing
order of the speakers’ average intelligibility. SDB-MAP performs quite poorly:
apparently it is not possible to initialize a speech recognizer with an initial
model that completely ignores the differences between phonemes. On the other
hand, BI-MAP does quite well: it outperforms the SI-MAP system for 12 of the 16
speakers (all except F03, M05, M11, M08).

Table 5.3: Word recognition accuracy (WRA) of three ASR systems, after adaptation to each
speaker in the UA-Speech corpus. Intelligibility = % of words correctly transcribed by human
listeners who had no more than incidental experience with persons having speech disorders.
SI-MAP = adapted from a TIMIT-based speaker independent model. SDB-MAP = adapted from
a GMM that models speaker characteristics but does not differentiate phonemes.
BI-MAP = adapted from a model linearly interpolated between SI and SDB.

Speaker Intelligibility (%) WRA (%), SDB-MAP WRA (%), SI-MAP WRA (%), BI-MAP

M  . . .

F  . . .

M  . . .

M  . . .

M  . . .

F  . . .

M  . . .

M  . . .

M  . . .

M  . . .

F  . . .

M  . . .

M  . . .

M  . . .

M  . . .

F  . . .
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5.4 Summary: Adaptation by humans
and machines

Findings in our familiarization studies support a listener’s capacity to learn the
atypical characteristics of dysarthric speech. Our work demonstrates the poten-
tial of using familiarization as a listener-oriented intervention technique for
dysarthria management. Research efforts should continue to further exploit
perceptual learning mechanisms and to fully utilize the potential of listener
training for developing an optimal protocol of familiarization. Given the ample
evidence of segmental benefits, further investigation is warranted on how to
structure training materials to promote segmental learning. More work is also
needed to investigate what factors influence the longevity of perceptual learn-
ing, and the ways in which the detailed acoustic characteristics of dysarthric
speech are related to perceptual learning effects induced by familiarization. We
note that the active condition did not use any explicit method that guides lis-
teners to attune to specific phonetic or phonological features. A minimal-pair
approach, in which word pairs that contrast by a single phoneme are presented
during training, has been used in listener training for synthesized speech and
is a common model for intervention techniques in second language learning
and children’s phonological delay [73–75]. Further investigation is necessary,
to test whether words in minimal pairs will expedite segmental learning in dys-
arthria, by permitting listeners to have explicit experience in differentiating dis-
tinctive features and to capitalize on that experience more efficiently [48].
Perceptual learning results should be evaluated in terms of the amount of com-
munication improvement (effectiveness), rapidness of the improvement (effi-
ciency) and longevity of learning (robustness).

Speakers with dysarthria can sometimes use spoken language human–
computer interfaces more effectively than they can use a keyboard. Just like
human listeners, machines are more effectively able to understand dysarthric
speech if given some training materials that include dysarthria. If it were possi-
ble to train an ASR using a large quantity of speech produced by the intended
user (speaker-dependent training), then the ASR would probably perform pretty
well; unfortunately, speaker-dependent training is usually not possible, be-
cause speaker-dependent requires a great deal of speech, and speakers with
dysarthria (like the rest of us) get tired before they complete speaker-dependent
training regimen. Speaker-adaptive training is possible, but the resulting accu-
racy depends on the way in which the speaker-adaptive system is initialized.
An ASR initialized using the speech of individuals (SI-MAP) without dysarthria
performs poorly. As an alternative, we proposed initializing the ASR using a
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model of the target speaker’s voice, without any specified phoneme distinctions
(SDB-MAP), but SDB-MAP method yields even worse results than SI-MAP. The
best results are achieved using background-interpolated MAP (BI-MAP), which
is initialized using a linear interpolation between the parameters of a speaker-
independent ASR, and the parameters of a speaker-dependent but phoneme-
independent ASR.
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Kirtana Sunil Phatnani and Hemant A. Patil

6 Role of music on infant developments

Abstract: Sound plays a crucial role in the development and evolution of nature,
where animals protect their species from the other animals via alarming sounds
and learn to identify their species. In human beings, the linguistic development
takes place after the infant is 2 years old, before which soothing music forms a
part of their early arrival in this world. It helps calm them and put them to sleep.
This depicts the close connection of infants with music. We explore how the neu-
ral development of the brain and the healthy growth of the body are improved by
a piece of music played in the neonatal intensive care unit (NICU). Analyzing pre-
vious studies on voice lullabies played to infants on the NICU, we found a greater
average weight gain of 79 g over a 3 day time period for the preterm infants sub-
jected to music and a 62 g weight gain of infants without music. We also observe
that the total stay in the NICU of the preterm infants reduced by 5 days, who
were subjected to music when compared with the preterm infants not subjected
to music. Conducting the study on 40 adults, the blood pressure, heart rate,
and oxygen saturation were measured, which stabilizes with the onset of
music. We observe studies compiling all the studies over the decades of music
therapy incorporated in the NICUs, showing significantly the positive effects
of music therapy. Furthermore, we discern that the dopamine-based mecha-
nism present in our brain is crucial in the early development years of the in-
fant, and in case of not receiving enough love, care, and attention from the
mother or the family, the child develops the neurobehavioral disorder, such
as attention-deficit hyperactivity disorder. Music plays its role in activating
the same dopamine-based learning behavior while listening to music, thereby
allowing the child to be treated for such diseases. Furthermore, the neuroplas-
ticity of the brain is improved. We also construct an Upper Confidence Bound
Reinforcement Learning algorithm to model the dopamine-based reward sys-
tem in our brain, through which we observe that simpler the note repetition
structure, smaller the learning curve of the song. All these aspects form a sci-
entific base in using music for the cure of medical illnesses related to the
brain, and behavior in the form of music therapy.

Keywords: Infant brain development, Maslow’s Pyramid, Music Therapy,
Dopamine-based Learning, Reinforcement Learning
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6.1 Introduction

A sound can be of many types but what exactly it is can be either defined techni-
cally in terms of the audible range of wave frequencies perceived by a human ear,
or it can be said to characterize particular information known and unknown to us,
each characterizing a stimulus for our brain calling for attention. Our response to
a sound stimulus is among the fastest in our brain. We also observe that every
visual is guided by a trailing background sound in advertisements, directed
dramas, and horror movies, which attract our attention. This influences us to pay
attention and connect the sounds to emotions we recognize. Recently, in machine
learning literature of speech applications, it has been observed that the models
trained using attention-based layers perform better [1]. In the study of animal be-
havior, a bird’s young one is born without its eyes fully developed and identifies
the mother’s presence solely by her chirp to which it responds by its chirp when
inside the egg, and when outside the egg, it responds by opening its beak for the
mother bird to feed the young one with food. It responds in this manner only to
the specific bird’s chirp; if it does not recognize the chirp, it does not react in this
manner. This allows the mother bird to ensure that the baby bird is developing
well inside the egg and ensure its safety by its reaction to specific sounds when
the young one is outside the egg [2]. Similarly, a mother cobra has a very sensitive
hearing mechanism to any sound in the forest up to a certain distance; in case it
hears any sound approaching its eggs, it wraps the eggs by curling around them
and attacks on any animal that approaches it. In this way, the safety of the child is
ensured by the mother. In human beings, when the infant is in the mother’s
womb, the inner ear is the first sense organ that develops fully in the womb (i.e.,
immediately after 6 weeks of conception, first sensory mechanism that is active for
the fetus is hearing mechanism). This does not indicate that the infant can hear
the sound as we do. Due to the coverings over it and fluids around it, it hears muf-
fled voices. Furthermore, the infant in the 18th week can hear high-pitched voices
at first and then develops the mechanism to recognize voices by the 26th week [3].
This allows the infants to recognize their mother’s voice much before they are
born. We discuss in detail the cognitive abilities of the brain in Section 6.3, to un-
derstand in depth why do certain diseases occur in infants, and which portion of
the brain is responsible for what kind of response. For example, the positive effect
of the mother’s voice on the infant is produced by the limbic system in the brain.
Furthermore, the voice of the mother also improves the health of a preterm born
infant, reduces its cortisol levels, the stress hormone, and improves its oxytocin
levels, social bonding hormone [4]. The mother’s voice surrounds the infants in
the form of conversations or lullabies that are soothing. We investigate in
Section 6.4 as to how do this soothing lullabies provide a musical stimulus to the
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hearing mechanism of the infant, and help increase the vital signs of preterm in-
fants kept in the neonatal intensive care units (NICU).

During the development of the neural connections in the brain in the third
trimester, the infant can react to certain stimuli in the form of sound and touch.
The infant responds to the loud noises in the womb. This signifies the develop-
ment of the amygdala responsible for the feeling of fear. All of these developments
correspond to the building of a dense connection between the environment with
its active sensory organs as stimulus and the infant’s response in return to that
stimulus. The neonatal and postnatal development of the brain is responsible for
these early cognitive abilities [5]. Due to the advances in the images of the devel-
opment occurring in the fetus, the underlying abnormalities if present are also de-
tected before birth. The development of the dopaminergic neurons in the brain
can be observed and analyzed for detection and cure of Parkinson’s disease [6].
This forms the basis for computing the underlying learning mechanism in our
brain (Section 6.5). Hence, we can summarize a trifold approach by studying the
impact of music (as shown in Figure 6.1).

6.2 Cognitive abilities of the brain

The development of the brain plays a crucial role in forming the life of the infant.
The layered parts of the brain function to control our autonomous nervous sys-
tem via the brain stem, controlling our breathing, heart rate, and blood pressure.
The cerebellum plays its crucial role in learning and development of an activity,
for example, learning how to balance on uneven terrain by corrective learning
[7]. The limbic system provides a mechanism to interpret the environment around

Hearing
mechanism
in the infant

Improved
quality of life

Cognitive
abilities

of the brain

Effect of music on
the infant’s

development

Figure 6.1: Trifold approach of proposed study.
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us and localize it to our experience of the environment, providing us with a moti-
vation in learning and behavioral patterns that are important for social interac-
tion [8]. Above which lies the cerebral cortex, which works as a relay station for
receiving and sending all the sensory information. Figure 6.2 represents the sche-
matic structure of a human brain.

For infants, it has been found to indicate autism spectrum disorder in the
first year [9]. Furthermore, as per a study that is sponsored by the National
Institute of Health (NIH), USA, the medulla oblongata (a region of the brain
stem, which is known to control the breathing functions) affected in the fetus
causes sudden infant death syndrome [10, 11]. The magnetic resonance imaging
of the brain has been shown to indicate evidence supporting mental illnesses
in adults, such as reduced gray matter in certain areas of the brain in diseases,
such as dementia, depression, bipolar disorder, and schizophrenia [12–16].

The development of neurons in the brain occurs depending on the fre-
quency of neuron firing in that region (i.e., forms a denser network of neurons,
and hence, grows larger in size). For example, the amygdala (a part of the brain
in the limbic system responsible for anxiety, fear, and aggression) grows larger
if the person feels these emotions on a regular basis [17]. In the earlier decades,
epilepsy and seizures emerged in the temporal lobe (called so because these
lobes of the brain that exist around the temples), which is where our auditory
cortex also exists. There is medical evidence which depicts that seizures are
due to abnormal neuron activity in the brain [18]. This evidence indicates that
the healthy development of the brain from birth and even in adulthood stands
crucial to the quality of life we have. Maslow’s pyramid of needs (as shown in
Figure 6.3) describes the needs of a human being [19].

Cerebral cortex

Brain stem
Cerebellum

Limbic system

Figure 6.2: Schematic structure of the human brain.
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The physiological needs of a person with neurological disorders remain chal-
lenged and they depend on others due to their inability to perform day-to-day
activities, and needs of safety, such as employment, are always questionable due
to their decreased ability to perform tasks. They are always offered jobs that are
lowly paid. They also face multiple health issues in their development; hence,
special care, attention, and funds are required [20]. These people are able to form
good relationships with their close ones. Every neurologically disordered person
may have limited or no social interaction to have any kind of social recognition,
so their self-esteem stands challenged. The self-actualization of the person is
challenged by all the below circumstances, often leading them to fall into psy-
chological disorders. All these are prevented if the brain growth is normal in the
infant. To ensure the same, there are multiple measures that the mother and the
family take for the well-being and development of the infant.

6.3 Impact of music on infants and adults

An aspect that is to be noticed after the baby is born is how it reacts to sound.
Therefore, toys are made with sounds, for example, wind chimes that make
sounds when they collide together or musical tones triggered by some action.
Furthermore, the mother often sings lullabies for the infant to sleep [21]. With their
tiny vocabulary of crying for all their day-to-day needs, they pay close attention to
and enjoy music even when they are growing. This gives us evidence that music

Social
recognition,ego

Food,shelter,water

Relationships with
close ones, a sense of

belonging

Reaching one’s
full potentialSelf-

actualization

Love

Safety

Physiological

Esteem

Employment,health,
stability,law and order,
financial security

Figure 6.3: Maslow’s pyramid. After [19].
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plays a crucial role in their early formidable years. A complete assessment of
music on infants is trickier than that on adults due to their development phase.

An experience of a musician in her own delivery showed that during the
preterm delivery of her twins in the 22nd week of her pregnancy, she lost one of
her infants, and the development of the other had to take place in the noisy
environment of the hospital; hence, she decided to bring her own CDs to the
hospital and play it by her infant’s station, and to her amazement the vital
signs of the baby are as follows: oxygen saturation in the blood improved,
heart rate improved, and blood pressure stabilized and so was observed in all
the babies who were in the area and could listen to the music. This delivered
the healing power of music to the infant born in the 22nd week having a sur-
vival rate of only 2% in 2009, of which very few survive and if they survive are
prone to disabilities; however, with the continuous presence and exposure to
music, the infant was able to grow normally [22].

In adulthood, the positive effect of music in the life of musicians has shown
denser interconnections between the left and the right hemispheres of the brain,
which is connected by the corpus callosum. This interconnects the two hemi-
spheres of the brain and allows them to communicate via firing neurons [23].
White matter and gray matter distributed normally in humans have been ob-
served to be biased toward more gray matter in musicians and dancers, which
allows them to perform better at certain tasks [24]. Furthermore, a reduced
amount of gray matter is indicative of the disease that affects the brain causing
mental illnesses [25].

We conducted a study on 40 adult subjects to whom we played classical
music that was instrumental based on the following experimental setup. For
the experiment, we took a composition of each of the composer: J.S. Bach –
Invention No. 1 in C Major, BWV 772, L.V. Beethoven – Rondo in C op. 51 No. 1,
and W. A. Mozart Bassoon Concerto in B flat, K. 191, each comprising joyful and
tense music within them, and conducted a listening test. Based on the sugges-
tions of a general physician, we asked the subjects to sit ideal for a while before
the test and we asked them not to have tea or coffee 2 h prior to the test as it
affects the dopamine levels, blood pressure, heart rate, and oxygen percentage,
and thus, could induce a bias (Figure 6.4). The tests have been performed in
accordance with the Declaration of Helsinki [26]. We split the compositions
based on these criteria, and perform the experiment in the following manner
(Figure 6.5):
– Subjects were asked to fill up a metadata information form giving informa-

tion about them and their preferences in music, along with their consent
for giving their medical information for the purpose of this study.
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– Their initial blood pressure (systolic and diastolic), heart rate, and blood
oxygen percentage were measured.

– Subjects were asked to listen to joyful music for a minimum duration of
90 s before the measurements were taken again while listening to music.
This observation was made for three composers separately.

– They were given a break for 2–3 min before continuing with the test.
– Then they were made to listen to tense music for a minimum duration of

90 s before the measurements were taken again while listening to music.
Again separate readings were taken for the composer.

– Last observation was made after taking all the readings for 2–3 min after
stopping the music.

Oxygen percentage

Systolic pressure

Diastolic pressure

Heart rate

(a) (b)

Figure 6.4: (a) Pulse oximeter: Dr. Trust (USA) Signature Series FingerTip with AUDIO VISUAL
ALARM water-resistant pulse oximeter, and (b) blood pressure sensor: Omron HEM 6161 Fully
Automatic for Measuring Blood Pressure.

(a) (b)

Figure 6.5: (a) Measuring the blood pressure, and (b) taking the oxygen saturation readings of
the subjects during listening tests. In each picture, left side shows subjects, and right side
shows authors conducting data collection.
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In Figures 6.6 and 6.7, the Y-axis denotes the change in the magnitude of the
respective measures: the blood pressure (systolic, diastolic) and heart rate
vary from their initial readings by the magnitude indicated in the Y-axis, and
the width of the violin denotes the concentration of subjects, that is, greater
width indicates greater number of subjects showing the corresponding Y-axis
value of change from their normal readings. The oxygen saturation varies be-
tween three classes, that is, 1 for the subjects who showed an increase, 0 for
the subjects who showed no change in oxygen saturation levels, and −1 for
those subjects who showed a decrease in oxygen saturation levels. We plot a
violin plot to describe these observations. The violin plot is designed in a man-
ner where the distribution of the data is plotted, and then that distribution is
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Figure 6.6: Observations for subjects during joyful music: (a) systolic blood pressure,
(b) diastolic blood pressure, (c) heart rate, and (d) oxygen saturation. After [27].
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symmetrically flipped and plotted alongside itself to give an estimation of
width. This is done so because our eyes perform a good estimation of lengths
in symmetrical objects. The width of the violin plot at corresponding values
allows us to observe where the data is concentrated among all the other val-
ues to form a conclusion. We obtain the following observations for the happy/
joyful parts of the music:
– The systolic blood pressure decreased most for more than 40% of the subjects.
– The diastolic blood pressure showed less variation for most of the subjects;

however, for the subjects who showed variation majority showed a drop in
the levels of the diastolic blood pressure.

– The heart rate had an overall increase for most of the subjects when sub-
jected to this kind of music.

– The oxygen saturation increased for most of the subjects.
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Figure 6.7: Observations for subjects during tense music: (a) systolic blood pressure,
(b) diastolic blood pressure, (c) heart rate, and (d) oxygen saturation. After [27].
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We obtain the following observations for the tense parts of the music:
– The systolic blood pressure tends to decrease for most subjects and as com-

pared to joyful music, it decreases with greater magnitude.
– The diastolic blood pressure shows a significant decrease for most subjects as

compared to the joyful music, which stays mostly constant for the subjects.
– The heart rate varies equally on both sides of the subjects.
– The oxygen saturation either increases or remains constant for the majority

of the subjects and for a few, it decreases.

These observations indicate a positive result as overall in both the cases, the
oxygen saturation level increases and the blood pressure decreases. This may
not be very crucial for a healthy person listening to music at their own leisure
time but rather more crucial for an unhealthy person whose such vital signs are
to be monitored daily and kept in control. Based on the studies in [25–27], it
was found that preterm infants kept in the NICU were surrounded by noise
from fans, pagers, and other devices. The infants were split into two groups,
namely, control infants (who were not subjected to music) and music infants
(who were subjected to voice lullabies), and the results shown in Figure 6.8
were obtained. Analyzing previous studies on voice lullabies played to infants
on the NICU, we found that a greater average weight gain of 79 g over a 3 day
time period for the preterm infants subjected to music and a 62 g weight gain of
infants not subjected to music. We also observed that the total stay in the NICU
of the preterm infants was reduced to 5 days when subjected to music than the
preterm infants not subjected to music. Some studies conducted also reported
that while playing lullabies, the oxygen saturation level increased.

In Table 6.1, * represents not significant and REE is resting energy expendi-
ture. We observed the different behaviors of infants, Cohen’s d, and the confi-
dence interval of the test. Cohen’s d is given as follows [32]:

d=
�m− �c
Sc

(6:1)

where m ̅ denotes the mean of the experimental group subjected to music
therapy, c ̅ denotes the mean of the control group not subjected to music, and
Sc denotes the standard deviation of the control group of infants. We observe
significant deviations from the control group for heart rate, behavior state,
oxygen saturation, sucking/feeding ability, and length of stay. It is interest-
ing to observe that this observation is corroborating with our results for the
effects of music stimuli on adults as well, indicating the role of music on the
human body from infancy to adulthood. Such evidence of music regulating
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the autonomic nervous system to healthy behavior and response intrigues us
to investigate deeply about the structures of music that cause such effects on
the human body. Furthermore, subjecting the fetus in the womb via baby pod
has shown response of the fetuses indicating neural developments in the
fetus’ brain, which may help track and improve its prenatal development in
the mother’s womb [33].

(a)

(b)

W
ei

gh
t g

ai
n 

in
 3

 d
ay

s 
(g

)
To

ta
l s

ta
y 

in
 d

ay
s

40

30

10

20

0

80

Music Control

Music Control

60

20

40

0

Figure 6.8: Observations on infants [31]: (a) total stay in days versus music and control infants
(adapted from [28, 29]) and (b) weight gain in 3 days versus music and control infants
(adapted from [29, 30]).
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6.4 The occurrence of learning in the infant

One of the major abilities of the brain is learning. The infant is born with the
little vocabulary of crying to call for attention, smiling to show happiness or
joy, among other expressions. As the baby grows, it starts to walk by learning
to crawl, attempting to stand up sometimes, falling sometimes, and then get-
ting back up to crawl, and on one day after more than a thousand attempts, it
learns how to walk. This period for an infant lasts from 4 to 12 months.
Another example for it is the language acquisition in which the infant picks
up its first few words in the second year, learning only small lettered words.
For example, “mama” or “papa,” progressing to the third year, it picks up the
formation of sentences and finally in the fourth or fifth year, it marks the com-
pletion of major language acquisition. First, the infant has no recognition of
itself but only after the first 15–24 months does it recognize itself as different
from others and is conscious of its hands and legs and begins to develop emo-
tions related to the self, for example, shame, guilt, pride, jealousy, and arro-
gance. This shows us that the learning process for the toddler takes longer
time to complete, which consists of learning specific movements, that is, bal-
ancing on its own feet, learning to understand new words, fit words in the
right organization of the sentence to express themselves, and learn to develop
consciousness about themselves.

During these years, the brain develops by connecting neurons from one part
to another as the infant grows. The human behavior classifies behavior into two
categories, namely, innate and learned, out of which we focus on learned behav-
ior. The iterative learning process from experience is thought of as a learning

Table 6.1: Summing up the studies conducted on infant behavioral
effects when subjected to music therapy (adapted from [31]).

Dependent variable No. of studies Cohen’s d p

Heart rate  . .
Behavior state  . .
Respiration rate  . .*
Oxygen saturation  . .
Sucking/feeding ability  . .
Length of stay  . .
Weight/REE  . .*
Head circumference  . .*
Blood pressure  . .*
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behavior that develops after the child is born, and is not present innately. The
learned behaviors include habituation, classical conditioning, operant condition-
ing, and insightful learning. Habituation refers to our ability to stop reacting to a
stimulus because it has become common for it to occur. Classical conditioning ver-
sus operant conditioning are methods of learning, where the person learns to pre-
dict the rewarding stimulus before the actual stimulus in case of the classical
conditioning and learns after getting a rewarding or punishing stimulus how to act
in the environment. We can distinguish between the two as shown in Figure 6.9.

Figure 6.9 depicts that when the stimulus is received, it allows us to distinguish
between classical conditioning and operant conditioning. In classical condi-
tioning, the stimuli before allow us to predict the conditioned response while in
the operant conditioning, the stimulus after the event allows us to predict the
next action. In the computational world, we have modeled reinforcement learn-
ing (RL) algorithms, which is based on the following learn to interact with the
environment and reach the required goal. We call the algorithm interacting
with the environment as the RL agent:
– Design the states space and the action space of the agent: where the state

defines all possible states the agent can be in and actions define what are
all the possible actions the agent can take in any state.

– Design the goals and subgoals of the RL agent.
– Construct the reward system based on the goals and subgoals.
– Design of the environment of the RL agent. This is the simulation of a

world where the agent interacts and learns how to take actions based on

Conditioned
stimulus

Reward
or

punishment
stimulus

Operant
conditioning

Classical
conditioning Feedback stimulus

Time

Figure 6.9: Classical conditioning versus operant conditioning.
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what state it is currently present in, and what reward it has gained previ-
ously for each action based on the state.

– Design what kind of reward updates will the agent have:
– After each episode, where each sequence of moves has a definite end

either after taking the set number of actions or after a set number of
time steps elapsed or on reaching a terminal state the episode ends.

– After each action called temporal difference learning.
– After a set decided the number of epochs of interacting with the envi-

ronment, useful for approximating the intratransition between states
in a Markov decision process.

Our learning behavior occurs due to a dopamine-based learning mechanism in
our brain which gives us rewards as per our actions [34]. We describe the dopa-
mine-based rewarding experience of the infant in Figure 6.10. These studies
have grown over time to incorporate nature’s way of learning into these algo-
rithms, and most of them prove to give better results than the original algo-
rithms proposed [35]. In the studies of infants, the craving for a mother’s love
and attention is crucial for the behavioral development of the child. This occurs
due to the release of oxytocin that triggers the release of dopamine in the
child’s growth. Dopamine is a neurotransmitter responsible for creating motiva-
tion in our minds to pursue actions leading to a reward. The negligence of the
mother or her absence causes the child to develop the neurobehavioral disor-
der, such as attention-deficit hyperactivity disorder (ADHD) [36, 37]. An altered

The infant reacts
positively to the
music. 

Experiences
dopamine
release in the
brain, which
mimics the
response of a
rewarding
experience.     

Listens to music

This makes the
infant feel good. 

Figure 6.10: The experience of the infant while listening to music.
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RL mechanism is present in ADHD [38]. This forms the motivation to administer
stimulants that would trigger such behaviors. We investigated that the repeti-
tive structure of the music forms a melody, taking into consideration the notes,
the time durations of the notes, and the beats that create a dopamine-releasing
reaction from humans [39]. Neuroplasticity, the brain’s ability to change
throughout an individual’s life, is enhanced by music [40, 41]. We design an RL
algorithm based on the Upper Confidence Bound (UCB) RL algorithm, which is
based on the current note that predicts the next note. Based on whether the
note is correct or not, the agent gains a reward and learns to take action.

The UCB algorithm is used to allow the RL agent to learn the q-values and,
hence, approximate the probability distribution function (PDF) in hearing the
next note n given the last note heard was nJ, consequently forming a complete
PDF. Here N is the 128 × 128 matrix containing the number of times the notes
were played in a sequence, and R[i] is the reward obtained at ith position of the
song:

qðn=njÞ = qðn=njÞ+ 1
Nðn=njÞ ðR½i� qðn=njÞÞ (6:2)

The action and states of the RL agent are 128 notes, namely, C, C#, D, D#, E, F,
F#, G, G#, A, A#, B, and their harmonics. According to the current state (note),
the RL agent predicts the next action (note) to get the maximum reward. Here,
we provide the reward system as a simple binary one, whereupon prediction of
the correct note, the RL agent receives a positive reward of value +9 and on the
wrong note, the RL agent receives a negative reward of value −2. The q values
are assigned a value of 0 initially, which is a nonoptimal policy. We use the
UCB algorithm of RL to iterate and predict notes over the composition. We aim
at an accuracy of 25–35% of the RL agent; hence, we reiterate until the accuracy
is at least 25%, and that is why we limit the iterations to 500 epochs. The plot is
made in intervals of 10 epochs, and the pseudocode for the same is given in
Table 6.2 (as given in our recent study reported in [27]).

This algorithm allows us to approximate the learning curve of a composi-
tion based on the notes used. We extract the notes from the MIDI files and pre-
dict accordingly. We compile a list of 15 composers and take a composition of
each and run this algorithm to observe the learning curves. The composers and
their corresponding curves chosen are given in Table 6.3, and the observations
are given in Figure 6.11 (as given in [27]). These learning curves are formed in a
manner in which if the agent reaches 25% accuracy, it stops learning and if it is
below 25% accuracy it continues learning up to 500 epochs on the composition.
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Grouping the observations we see a shorter learning curve for Byrd (a),
Haydn (d), Scirabian (h), Bartok (i), Tchaikovsky (l), Beethoven (n), and a larger
learning curve for Handle (a), Bach (c), Mozart (e), Rachmanioff (f), Hummel
(g), Mandelssohn (j), Schumann (n), and Liszt (o). This indicates that as per the
repetitive structure in music, and the PDF of one note to the next in a given
composition, the reward accumulated changes in coherence with the accuracy.
A composition with a much simpler concentrated PDF reduces the randomness
in the prediction of the next note and, hence, attains a higher accuracy.
Another composition with a distributed PDF results in a poorer accuracy for the
agent as it has many choices of notes to pick from having close probabilities.

Table 6.2: Proposed algorithm for the reinforcement learning
agent (after [27]).

S.no. Steps

. Q[][]← ,N[][] ←
. R = [], epoch_ quantum = ,actions = ,
. note_seq = returnNoteSeq(filename)
. runs = length(note_seq)
. bandit[] = −

. bandit[] = 

. c = ,count = , total = 

. for i in range(, epoch_quantum):
. for m in range(, runs −):
. a = ,max_upperbound = 

. for k in range(,):
. if(N[k][note_seq[m-]]¿):
. upper_bound = Q[k][note seq[m‒1]] + csffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlogðmÞÞ=N½k�½note seq½m . . . 1��
p

. else:
. upper_bound = e
. if(upper_bound ¿ max_upperbound):
. max_upperbound = upper_bound, a = k
. if(a = = note_seq[m]):
. R.append(bandit[]), count + = 

. else:
. R.append(bandit[])
. N[a][note_seq[m‒]] + = 

. Q[a][note seq[m‒]] = Q[a][note_seq[m‒]] + (/N[a]
[note_seq[m‒]] * (R[length(R) ‒ ]-Q[a][note_seq[m‒]])

. total + = 

. if(count/total* ¡ ):
. repeat –
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This algorithm mimics the reward-based learning mechanism in our brain acti-
vated through music, and can be useful for being a perceptual-computational
model for music compositions, and the positive neural development in the
infant.

6.5 Summary and conclusions

The presence of sound in nature has evolved to ensure communication and safety
in organisms. The development of musical sounds in an organized structure took
place in order to mimic the human-singing voice, and orchestrate the production
of a variety of sounds that could be combined to form a melody. These melodies
make their presence in the early beginning of the infant life creating a soothing
and safe feeling for the infant. The autonomic nervous system controlled activi-
ties get stabilized in the presence of music for the adults as well as infants.
Furthermore, in the NICUs when the preterm infants were made to listen to lulla-
bies, they showed a greater weight gain in 3 days and an earlier discharge from
the NICU. The development of behavior through our motivation creating dopa-
mine system occurs as the child learns how to walk and communicate. This
mechanism is also the same which is present when we listen to music in eliciting
responses. This detail allows us to model a dopamine-based RL system present

Table 6.3: Composition chosen for each composer (after [27]).

S.no. Name of composer Name of composition

(a) G. F. Handel Concerto for Clarinet and Strings first overture
(b) William Byrd The Leaves Be Green
(c) J. S. Bach Inventio 

(d) Joseph Haydn Gypsy Rondo
(e) W. A. Mozart Piano Concerto No. in D Allegro
(f) Sergei Rachmaninoff Russian Rhapsody for two Pianos
(g) J. N. Hummel  piano Pieces op. 
(h) Alexander Scriabin Etude Op.  No. 
(i) Bela Bartok Bagatelle
(j) Felix Mandelssohn Rondo & Capriccioso in E, Op. 
(k)
(l)

Johannes Bhrams
P. I. Tchaikovsky

Waltz 
th Movement

(m) L. V. Beethoven Rage over lost penny
(n) Robert Schumann In the Evening
(o) Franz Liszt Hungarian Rhapsody No. .
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and model the question: how are we able to predict notes when a note is played?
Music influencing the dopamine-based learning mechanism could help in treat-
ing neurobehavioral disorders, for example, ADHD and also improve the neuro-
plasticity of our brain. This study also suggests that a simpler note pattern, that
is, more frequent repetitive structure of the song, can be among the best kinds of
musical melodies played to the child. Music, when examining structurally bit by
bit, allows us to draw our scientific facts and reasons to elicit a theory that can
then be used to form theorems of science incorporating music as a part of it.

Our current research conducts a study on the music mechanisms forming a
model around the structural pattern of a composition. It does not consider the
emotional content in a song, which is a crucial aspect of a composition. The in-
fant’s cry is another melodic composition just as the musical composition where
each cry is based upon eliciting a particular type of response from the listener
and the child innately regulates between the frequencies to indicate what it is
feeling [42, 11]. Just as the networks formed for music to indicate their simplicity
or complexity, networks can be formed for the infant cries so as to classify which
type of structures belong to which type of cry. In addition, pathologies can be
detected in infant cry mechanism for earlier detection and treatment [43, 44].
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