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Preface

Nanometer 1 - 200 nm measurement range opens up new properties and 
approaches to the study of substances. Currently, a large amount of scientific 
literature is devoted to the study of nano -objects (Gubin, 2019; Haberland, 
1994; Gusev & Rempel, 2000; Suzdalev, 2005). Nanotechnology includes 
both research on the nano - objects themselves (in particular, clusters), and 
methods for their preparation, as well as methods for producing nanomaterials 
consisting of a set of clusters. It is difficult to list already obtained nanoclusters 
and nanomaterials. Nanomaterials can have one, two, or three dimensions, 
which adds a variety of phenomena that can be studied in nanoscience and 
technology (Pan et al., 2014; The different dimensions of nanotechnology, 
2009). In this paper, it will be shown that nanoclusters often have dimensions 
greater than three. Therefore, nanomaterials can also have a higher dimension. 
This opens up new prospects for creating nanomaterials with unique properties. 
Nanotechnology is already playing a significant role in the processes of 
obtaining new substances and in their practical use in various fields of 
human activity. One of the surprising properties of the nano - crystalline state 
discovered in recent decades is the discovery of the existence of quasicrystals 
in which there is no translational symmetry (Shechtman et al., 1984; Janssen 
et al., 1984; Shechtman & Blech, 1985; Pauling, 1987; Cratias & Cahn, 1986; 
Janssen et al., 2007). It was not possible to explain the observed differences 
from classical crystals with translational symmetry within the framework of 
three - dimensional Euclidean geometry. However, the author of this work 
as a result of analyzing experimental diffraction patterns of quasicrystals 
(intermetallic compounds) Al6 Mn (Shechtman et al., 1984), Al72 Ni20 Co8 
(Eiji Abe et al., 2004), Al70 Fe20 W10 (Mukhopadhyay et al., 1993), Ti54 Zr26 
Ni20 (Zhang & Kelton, 1993) found that the absence of translational symmetry 
in quasicrystals is only apparent. If we assume that the diffraction pattern 
of quasicrystals is a projection of a crystal lattice from a space of higher 

viii
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dimensionality, then a translational symmetry appears (Shevchenko, Zhizhin 
& Mackay, 2013; Zhizhin, 2014a, b, c; Zhizhin & Diudea, 2016).

There are abstract methods for describing clusters, strictly speaking, not 
related to specific chemical compounds (Diudea & Nagy, 2007; Ashrafi, 
Cataldo, Iraumanesh & Ori, 2013). In these works, proceeding from the 
well - known three - dimensional polyhedrons of Plato and Archimedes, they 
are transformed by various operations: construction of a polyhedron by the 
midpoints of edges, truncation, construction of a dual polyhedron, adding 
vertices of a polyhedron, etc. At the same time, such transformations are in no 
way connected with real chemical compounds. It is noted that adding vertices 
to a polyhedron can lead to an increase in its dimension. It should be noted 
here, and it is significant that if the original polyhedrons corresponded to 
some specific chemical compounds with certain chemical bonds between the 
atoms and the edges corresponding to them, then the transformation of these 
polyhedrons leads, generally speaking, to the elimination of these chemical 
bonds. At the same time, it remains unclear what chemical bonds exist in 
the transformed bodies and what chemical compounds they correspond 
to. In addition, consideration of the transformed bodies is carried out in a 
certain abstract space, as if “forgetting” about the real dimension of chemical 
compounds (MacMullen & Schulte, 2002). This cluster research direction 
is most clearly formulated in a generalizing monograph of M.V. Diudea 
“Multi – shell Polyhedral Clusters” (Diudea, 2018). In the preface to it, it is 
directly emphasized that the cluster models built in it are not associated with 
specific crystallographic objects: real crystals, networks, and quasicrystals.

In the monograph “The Structure of Chemical Compounds and Higher 
Dimensional Molecules: Emerging Research and Opportunities” (Zhizhin, 
2018), it was shown that most molecules have a higher dimension if their atoms 
(or functional groups) are considered as the vertices of a convex polytope. 
Clusters, as larger chemical compounds than molecules, naturally therefore 
may also have a higher dimension. At present, the question of determining 
the structural principles of nature, in which clusters of atoms and molecules 
appear, is important. The literature presents known concrete clusters of 
chemical compounds (see, for example, Lord, Mackay & Ranganathan, 
2006). However, the dimension of the clusters in accordance with the Euler 
– Poincaré equation (Poincaré, 1895) was not determined, but a priori was 
assumed to equal three.

The characteristics of higher-dimensional polytopes corresponding to 
these molecules have been studied in monograph The Geometry of Higher: 
Dimensional Polytopes (Zhizhin, 2019a). It first posed the question of the 

ix
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importance of studying the incidence of elements of different dimensions in 
these polytopes. The question of the formation of polytopic prismahedrons 
from these polytopes capable of splitting n - dimensional spaces without 
gaps is investigated. This solves 18 Hilbert’s problem (Hilbert, 1901; Delone, 
1969) in the space of higher dimension.

Nanotechnology issues are important in modern medicine and biology. The 
monograph Attractors and Higher Dimensions in Population and Molecular 
Biology: Emerging Research and Opportunities (Zhizhin, 2019b) proved the 
necessity to take account of higher dimensions in the analysis of biological 
processes in living organisms. It is shown that the transmission of inherited 
traits occurs in objects of very high dimension.

In this monograph, starting with the study of spaces of higher dimensionality 
of intermetallic compounds (Chapter 1), clusters of intermetallic compounds 
(ligand - free clusters) are sequentially considered (Chapter 2), then chemical 
compounds of the metal atom with an environment of non - metal atoms 
(Chapter 3). After that, linear chains of metal atoms are considered with ligands 
attached to them (Chapter 4). Chapter 5 is devoted to the analysis of chemical 
compounds of a curved chain of metal atoms with ligands, and Chapter 6 deals 
with clusters of metals with ligands at the polyhedral core of metal atoms. It 
is significant that in all cases, and this is the principal novelty of the study, 
convex models of clusters are built and the dimension of the corresponding 
polytopes is determined. Moreover, it turned out that in all cases the dimension 
of clusters is higher three. Thus, clusters have a higher dimension. In this 
regard, the question arises about the principles of constructing clusters of 
higher dimension. In Chapter 7, a new law is formulated and proved: the law 
of the preservation of incidents in higher dimension polytopes. The law states 
that the total sum of incidents from elements of higher dimension to elements 
of lower dimension is equal to the total sum of incidents from elements of 
higher dimension to elements of lower dimension. Moreover, with an increase 
in the dimension of the polytopes, this amount increases dramatically. The 
incidence of natural elements of different dimensions can be interpreted as 
the exchange of information between elements. It follows from the law, for 
example, that in biological objects (DNA and RNA molecules responsible 
for heredity) there is a very intensive exchange of information between the 
components, which apparently provides a hereditary process.

The last two chapters (8 and 9) of the book are devoted to the study of 
the mathematical construction of nanomaterials from clusters of a higher 
dimension. Chapter 8 discusses the methods of transition from a single 
cluster of a higher dimension to a larger cluster with a higher dimension, 

x
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which includes the original cluster as a component. Chapter 9 addresses the 
issue of extended (in principle infinite) nanomaterials from clusters. This 
question is mathematically formulated as partitions of n - dimensional spaces 
with the participation of clusters a lower dimension. Thus, the problem 
of nanotechnology for producing clusters and nanomaterials is solved 
mathematically using spaces of higher dimension.

Thus, one can assume that the process of obtaining quasicrystals 
(intermetallic compounds), associated with high thermal stresses, leads to the 
creation of spaces of higher dimensionality in these materials. Along with the 
translational filling of the higher dimension space in the diffraction patterns 
of quasicrystals, one can see the hierarchical filling of the space around its 
arbitrary point (Zhizhin, 2012). Quasicrystals can be considered as cluster 
aggregates (Eiji, Yanfa & Pennycook, 2004). All of them can be the bases of 
polytopic prismahedrons without changing their chemical structure (Zhizhin, 
2018). Thus, polytopic prismahedrons, and not stereohedrons, of which 
dreamed B.N. Delone (Delone, 1961; Delone & Sandakova, 1961), solve 
the eighteenth Hilbert problem about constructing a space from congruent 
figures in the case of n - dimensional space. The fact is that B.N. Delone did 
not succeed in citing at least one example of a specific type of stereohedron 
that provided the partition of n - dimensional space. The direct construction 
of the partition of the n - dimensional space by polytopic prismahedrons 
(Zhizhin, 2015, 2019a), showed the impracticability of the contact conditions 
of polytopes (stereohedrons) adopted in the theory of B.N. Delone. The 
polytopic prismahedrons in the partition of n - dimensional space can contact 
each other along faces of different dimensions, and not only along faces of 
dimension n - 1, as is customary in the theory of B.N. Delone.

Due to the need for modern analysis of the structure of materials based 
on the use of clusters of chemical compounds in this book:

1.  A geometric analysis of known clusters of chemical compounds is carried 
out with the determination of their dimensions.

2.  Various types of clusters are systematized in general form.
3.  Polytopic prismahedrons with bases in the form of clusters of a higher 

dimension are constructed and investigated.
4.  Partitions of n - dimensional spaces with a polytopic prismahedrons face 

into a face with bases in the form of clusters of a higher dimension are 
constructed and investigated.

xi

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



Preface

Based on the research conducted, a new paradigm of the discrete world 
is formulated. In it take account of the discoveries of quasicrystals, scaling 
processes in materials (Kadanoff, 1966; Wilson, 1971a, b), second - order 
phase transition processes (Landau, 1937; Zhizhin, 2014e), the formation of 
fractals in solids (Mandelbrott, 2007; Zhizhin, 2014a, b; Zhizhin, 2018), the 
highest dimension of chemical compounds (Zhizhin, 2014d, 2018). These 
discoveries do not fit into the paradigm of the discrete world, advanced by 
B.N. Delone in 1937 (Delone, 1937; Galiulin, 2003), since the basic principles 
of this paradigm contradict the listed discoveries.

The results of the work can be used to study the geometry of dissipative 
structures in n - dimensional space (Zhizhin, 2010).

This monograph completes the cycle of works by the author of four 
monographs (Zhizhin, 2018, 2019a, b) devoted to the study of the influence 
of higher dimensionality on natural processes in nature. These works create 
a new scientific basis, which should change our understanding of nature and 
lead to the modernization of all natural science disciplines: mathematics, 
physics, chemistry and biology. A number of the results obtained in these 
monographs already testify to the new opportunities opening up for using 
the higher dimensional accounting in the near world surrounding us. The 
continuation of this work is waiting for its researchers.

This monograph naturally partially uses the materials of the author’s 
previous monographs (Zhizhin, 2018, 2019a, b) in which the geometry of 
individual molecules of chemical compounds was mainly considered. The 
material used is necessary for understanding the geometry of clusters of 
higher dimension, which is the main goal of this study.

Gennadiy Vladimirovich Zhizhin
Independent Researcher, Russia
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ABSTRACT

In this chapter, a geometrical model to accurately describe the distribution 
of light points in diffraction patterns of quasicrystals is proposed. It is shown 
that the proposed system of parallel lines has axes of the fifth order and 
periodically repeating the fundamental domain of the quasicrystals. This 
fundamental domain is 4D-polytope, called the golden hyper-rhombohedron. 
It consists of eight rhombohedrons densely filling the 4D space. Faces of 
the hyper-rhombohedron are connected by the golden section; they can 
be scaled as needed. On this universal lattice of the vertices of the golden 
hyper-rhombohedrons, famous crystallographic lattices—Bravais, Delone, 
Voronoi, etc.—can be embedded. On the lattice of the vertices of the golden 
hyper-rhombohedrons, projections of all regular three-dimensional convex 
bodies—Plato’s bodies—can be constructed.

INTRODUCTION

The consideration of clusters in the space of higher dimension must begin 
with the presentation of general ideas about the highest dimension of the 
nanoworld, arising from the geometric analysis of intermetallic diffractograms.

Incommensurate (modulated) structures (Izyumov, 1984) are widespread 
in nature. They include liquid crystals (chiral smectics), quasi - crystals, 
intercalated graphite compounds (structure consisting of alternating layers 

Higher-Dimensional 
Space of Nanoworld
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of carbon and layers of metal atoms), hardening alloys, etc. They may also 
include various types of ore bodies, consisting usually of many layers and 
distributed inclusions of different shape from different substances. The 
content of the definition “incommensurate” means that in these structures 
some basic structure with the translational symmetry can be distinguished 
and a substructure, which either has no translational symmetry, or has 
translational symmetry, but its period is incommensurate with the period 
of translating the basic structure (Gridnev, 1977). In both cases, the overall 
structure consisting of basic structure and substructure has no translational 
symmetry. Such structures are the result of different influences on the initial 
body with translational symmetry – thermal, mechanical, electrical, magnetic 
ones. The absence of translational symmetry in the incommensurate phase 
combines them with quasi - crystals, which got its name precisely because 
of the lack of translational symmetry in their diffraction patterns.

The concept of earth reality space introduced by Vernadsky (1965) and 
his evaluation of Pierre Curie’s (Curie, 1966) principle of dissymmetry 
as a tool for the study of this space are of considerable interest to both the 
construction of the theory of rocks, and for the understanding of biological 
morphogenesis processes (Belousov, 2013). According to Pierre Curie’s 
principle of dissymmetry, for the results of earthly reality phenomena some 
deviations from mentally attainable symmetry limit are characteristic. Rocks 
are formed as a result of complex physical, chemical and mechanical processes, 
in this regard Landau’s (Landau, 1937) theory of phase transitions, linking 
the decrease of order of the symmetry group of a substance occurring in 
it under the influence of temperature and mechanical external effects is of 
great interest (Zhizhin, 2014e). One important consequence of this theory of 
Landau discovered in recent decades is the experimental proof of the existence 
of incommensurate phases. The decrease of the order of symmetry group 
is also characteristic of living organisms in the course of their development 
(Belousov, 2013), these changes being also associated with phase transitions 
as a stage in their development. Thus, it can be claimed that the decrease of 
order of symmetry is a general property of natural bodies being in the space 
of earthly reality (Zhizhin, 2014b). The most studied (both experimentally and 
theoretically) are the issues of crystalline solids structure changing. Therefore, 
one turn to studies of incommensurate crystalline solids structures taking into 
account the modern concepts of generalized crystallography (Lord, Mackay, 
& Ranganathan, 2006; Shevchenko, Zhizhin, & Mackay, 2013a, b; Zhizhin, 
2014d; Zhizhin, & Diudea, 2016; Zhizhin, 2018).
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Finding in 1982 of ordered structures deprived of translational symmetry 
(Shechtman et al., 1984), next called “quasicrystals”, had marked the beginning 
of numerous cycles of papers and books devoted to the experimental and 
theoretical study of these unusual materials. The main problem was to prove 
that the lack of translational symmetry does not contradict the existence of 
the crystal, even it is mandatory in the classical crystallography. It was noted 
(Janssen et al., 2007) that the absence of visible strict periodicity of quasicrystals 
does not mean randomness (i.e. disorder) of such structures. Approximation 
of quasicrystals can be described in terms of almost - periodic functions 
(Bohr, 1952). Almost - periodic (or quasi - periodic, aperiodic) functions 
occur when periodic functions with incommensurable periods (expressed by 
irrational numbers) are involved. It was shown that, in order to obtain a clear 
diffraction pattern, it is not necessary to have a strict periodicity of the crystal, 
but rather a quasi - periodicity. Moreover, the diffraction pattern retains its 
form by modulation of periodic structures by irrational numbers. However, the 
quasi - periodic functions do not conflict with the axes of the fifth and tenth 
- order diffraction patterns, observed in quasicrystals, banned in the strictly 
periodic structure in Euclidean three – dimensional space. The presence of 
these axes in the diffraction patterns of quasicrystals promoted attempts to 
explain the structure of quasicrystals by means of convex polyhedrons with 
the axes of the 5-th order, i.e., icosahedron and dodecahedron (Shechtman & 
Blech, 1985). Many studies have been devoted to the qualitative explanation 
of diffraction patterns of quasicrystals by Penrose tiling (Penrose, 1979). 
However, icosahedrons cannot fill the three - dimensional space without 
cracks and gaps and therefore the description of the diffraction patterns of 
quasicrystals using icosahedrons impossible; also, the geometric elements of 
Penrose rhombic tiling in the diffraction patterns are absent. Pauling (Pauling, 
1987) explained the diffraction patterns of icosahedron apparent symmetry 
by multiple twinning of cubic crystals. He based his arguments only on the 
radial intensity distribution of the spots of diffraction patterns. However, this 
model could not explain the high - resolution micrographs and diffraction 
patterns with the distribution of spots different from those proposed by Pauling 
(Gratias & Cahn, 1986). Application of expansions of functions in a Fourier 
row in classical crystallography to describe the direction of rays reflected 
from a periodic lattice, obtained in recent years continued to describe his 
spots diffraction patterns of quasicrystals (Janssen et al., 2007). It uses the 
idea of   modulation grids terms in the Fourier row with incomparable periods. 
However, such modulation may not lead to an accurate strictly ordered 
arrangement of spots observed in the diffraction patterns.
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Figure 1 illustrates the electron diffraction pattern of the cluster Al6Mn 
(Shechtman et al., 1984).

The same countenance is shown by the electronic diffraction patterns 
of many other compounds: Al72Ni20Co8 (Eiji Abe et al., 2004) (Figure 2), 
Al70Ni20W10 (Mukhopadhyay et al., 1993) (Figure 3), Ti54Zr26Ni20 (Zhang 
& Kelton, 1993) (Figure 4). The brightest detailed diffraction pattern was 
obtained in the work of Eiji Abe et al. (Figure 2). This diffraction pattern will 

Figure 1. Electron diffraction pattern of compound Al6Mn

Figure 2. Electron diffraction pattern of compound Al72Ni20Co8
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be used in the future for additional geometric constructions characterizing 
the structure of a quasicrystal. Therefore, this diffraction pattern is shown 
on a larger scale compared to other ones.

It is seen clearly that the diffraction patterns are at the center of a bright 
spot correspond to the crash of the electron beam on the sample. Less bright 
spots of various sizes form a complex geometric pattern away from the center. 
The main elements of this diffraction patterns are straight lines emanating 
from the center, forming the axis of rotation of the 10th order, passing through 
the center perpendicular to the plane of diffraction patterns. The structure of 
the pattern on the diffraction patterns of all the same. In the vicinity of the 
center spot, the smaller ones form regular pentagons, adjacent to each other. 
On external diagonal these pentagons larger pentagons rely on and on their 
external diagonal rely on yet larger pentagons, etc. An important feature of 
these structures is to increase the distance between the spots away from the 
center of the diffraction patterns along the lines passing through the center, 
as well as the formation of pentagons smaller pentagons into pentagons 
large size. Spot sizes and the distance between them can vary depending on 
the experimental conditions, the composition of matter and the used device.

THE FRACTAL NATURE OF INCOMMENURATE PHASES

The system of lines, on which the diffraction patterns spots are located 
(Figures 1 - 4), includes five families of parallel lines (Zhizhin, 2014a, b, c; 

Figure 3. Electron diffraction pattern of compound Al70Ni20W10
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Shevchenko, Zhizhin, & Mackay, 2013a, b) having an inclination angle of 
i×36o(i=0÷4), integer). In each family, lines are spaced apart by a distance 
d, constant within set lines. Let us choose an arbitrary point O on one of the 
lines of the family i = 0 (Figure 5a).

From this point, more four straight lines spread, with angles i×36o(i=0÷4)). 
Each of these will provide a family of parallel lines, spaced at a distance d. 

Figure 4. Electron diffraction pattern of compound Ti54Zr26Ni20

Figure 5a. Representative of families of parallel lines
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Now step d = AB (Figure 5b) in all of the parallel lines and divide the segment 
AB into three parts, according to the golden section, by points C and D so that

AC = BD = d (2 - τ), 

CD = d (2 τ - 3), 

τ = +( ) /5 1 2= 1.618033988. 

Through the points C and D on each step in the sequence of all the families 
of parallel lines, draw lines parallel to the lines of this family. It is obvious 
that the line passing through the points C, at each step, will form a plurality 
of parallel lines with a pitch d. Treat similarly the lines passing through the 
point D. Each of the intervals AC, BD and CD are divided also into three 
golden sections section and this process can be continued. However, the 
distance between lines will decrease rapidly and, accordingly, reduce (in the 
diffraction patterns) the size and intensity of the spots located on these newly 
constructed lines. The result of the mutual disposition and the intersection 
of all the families of parallel lines is shown in Figure 6.

Figure 5b. Dividing a segment d by a system of parallel lines in the golden section
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The intersection of these families create a plane system of regular pentagons, 
of various size, whose vertices superimpose over the spots of the electron 
diffraction patterns. Thus, the observed diffraction patterns of quasicrystals 
originate in the system of five families (and subfamilies) of parallel lines 
lying with respect to each other at the distance d, i.e. in there is a (hidden) 
periodicity in 5 - directions in the plane.

It should be noted that the location of the spots in Figure 6 along any 
straight line passing through the center of the figure coincides with the location 
of reflexes (upon irradiation with fast electrons of the surface layers) of In 
on As, In on Ge, Pb on Si (Galicin et al.,1998; Ichikawa, 1981; Weiering, 
1992). Figure 7 gives an example of reflections on the surface layers of In 
on As (Galicin et al., 1998).

Geometric structure on Figure 6 can be viewed as a hierarchical filling of 
the dual plane by regular pentagons. Indeed, in the center of each diffraction 
pattern is clearly visible a regular decagon, which is a result of blending (with 
rotation) to each other of two regular pentagons. By the way, the Penrose 

Figure 6. Geometric model of electronic diffraction patterns of quasicrystals
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rhombus model of diffraction patterns is not in the center of the regular 
decagon; this is different from the real diffraction patterns. At a distance from 
the center of a pentagon, resizing by a geometric progression with a base 1+ 
τ, results in a hierarchical filling of the plane so that it is filled hierarchical 

Figure 7. The XRD pattern of the reflexes of In on As

Figure 8. Fractal from regular pentagons
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plane (Zhizhin, 2012, 2014a, b, c) in this case a double pentagon. Moreover, 
such filling can happen, not only for the center of the diffraction patterns, but 
also for the points uniformly distributed on the diffraction pattern. Regular 
pentagons form a sectors emanating from the center of the diffraction patterns 
and similar points, consisting of pentagons, based on the diagonal to each other, 
so that the size of the parties pentagons increases at geometric progression 
with the base 1+ τ / (1+ τ). Since the sequence of line segments division by 
the golden section leads to the formation of regular pentagons smaller and 
smaller, it results in a geometric structure of a double fractal. To prove this, 
one construct a regular pentagon large enough (Figure 8).

Its diagonal form coaxial regular pentagon smaller. Mentally cut out the 
pentagon (or paint over it with black paint). As can be seen initial pentagon 
5 pentagons More of the same size as the central, each having a common 
vertex with the original pentagon. Diagonals of pentagons formed in each 
pentagon coaxial with them smaller pentagons. Cut out these pentagons. In 
each of the pentagons around emitted pentagon has 5 more pentagons smaller, 
which is also in the future we have to cut. The process can continue indefinitely, 
so that each of the pentagons emitted around more five smaller pentagons. 
This process is similar to getting a Sierpinski carpet - fractal geometric figure, 
which is a square or a triangle (Mandelbrott, 1982; Crownover, 1995). One 
can calculate the fractal dimension of the regular pentagons. Note that in 
reducing the size of each side of the pentagon it decreases ( )2 1− −τ  times. 
In addition, each number of pentagons downscaling increases by 5 times. 
Therefore, the fractal dimension D by Hausdorff (1918) can be calculated 
with the formula:

D f x f x= log[ ( ) / ( )]/ log ,λ λ  

where λ τ= −1 2/ [( )N ] is the scale factor, N is any integer, f x( )λ  and f(x) 
are the number of new and the number of initial elements, respectively. Since 
in this case f x f x( ) / ( ) ,λ = 5  then (Zhizhin, 2014 a, b, c):
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As already mentioned, there is a regular pentagon double diffraction 
pattern in the center. Therefore, the geometry of these pentagons (Figure 
8) of the diffraction pattern is superimposed on each other rotated by 36o. 
As opposed to the Sierpinski`s gasket (Crownover, 1995), our considered 
quasicrystal system can be regarded as a dual irrational (“golden”) fractal, 
of dimension D = 1.6722759 each.

One define the source area of   a regular pentagon, which remains after 
consecutive cut smaller regular pentagons in the “golden” fractal. Let consider 
the length of the sides of regular pentagons cut off from the initial regular 
pentagon equal to d. Since the length of the sides of decreasing pentagons 
is given by the golden section (see Figure 5 a), can to find that after each 
step the scaling of the pentagon side is equal to d N( )2− τ . Denote by So the 
original area of   the pentagon and by S the area remained from   the original 
pentagon after removing smaller pentagons. Then

S S SN
N

N

= −
=

∞

∑0
1

5 , 

S d S
N

N N= −
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
 +( ) = −( ) ( )
/

2 5 5 2 5 2
2 4

0
2τ τ  

is area of   the pentagon at the Nth step of the scale. Pulling S0 in the right side 
of the equation, can to get
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τ

 

It is obvious that the formation of fractal regular pentagons is a consequence 
of repeated division, of step d between the lines, on the golden section. In 
this case, in step d a fractal is formed also. Performing the division step d in 
each interval results in two smaller intervals along the edges of the interval 
d, and in the remaining part of the central cut, then the dimension of this 
fractal, by Hausdorff, is
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If we assume that d = 1, then the cut part of the interval is equal to

2 2 3
2 3
7 4

0 447213591

1

N N

N

−

−

∞

− =
−
−

=∑ ( ) . .τ
τ
τ

 

Thus, the remaining part of the interval is a little more than half of its 
original length. This fractal cannot be called the dust of Cantor (Crownover, 
1995), whose power is zero; rather it can be called golden dust.

THE SPATIAL STRUCTURE OF QUASICRYSTALS

Since the diffraction pattern is the result of the interaction of the electron 
beam with the material, the diffraction pattern geometry should be viewed as 
projections of 3D spatial geometric elements in the 2D plane. However, from 
3D space one cannot to receive such projections using convex polyhedrons. 
Similarly happens with the objects of higher dimensions, particularly the 
four – dimensional ones. A simple convex correct figure in 4D space is a 
regular simplex; in projection on the 2D plane, it has the form of a regular 
pentagon with intersecting diagonals. One can see these pentagons in the 
diffraction patterns on Figures 1 to 4 and in Figure 6. Thus, a quasicrystal 
should recognize the four - dimensional body, in which the space is filled 
with hierarchically regular simplex. Moreover, from each of the right simplex 
in 4D, as well as from its projection onto the plane 2D, five smaller right 
simplexes will be formed. Therefore, the regular simplex in the space 4D, as 
well as their projection on the plane 2D, form doubling fractal with dimension 
D = 1.6733759 each.

Recall that the geometric system of diffraction patterns built by a family 
of parallel lines is periodically arranged to five directions in the plane 2D. A 
question arises: what causes this hidden periodicity of the families of parallel 
lines in 4D space? To answer this question, one turn again to the analysis of 
the diffraction patterns.

Let choose a rhombus with angles γ = 72o and δ =108o. Obviously, the 
plane can be covered by the rhombus without cracks and gaps by translating in 
two directions x and y parallel to the rhombus edges. In this case, the rhombus 
vertices form a lattice of nodes with integer values   of x and y, if the length 
of the edge is taken as unity. Through each node in the lattice perpendicular 
to the plane, the axis of second order is crossed with its rotated by 180o 
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line to combine the grid to itself. Naturally, each point inside a rhombus or 
on the edge (side) also is formed the lattice for translation of a rhombus in 
directions x and y.

If the coordinates of a selected point into the rhombus are

x y= = ≤ ≤ ≤ ≤α β α β, ,( , ),0 1 0 1  

then the coordinates of the new lattice are respectively α ± n, β ± n. Next, on 
each side of the rhombus defined by the vertices A1, A2, A3, A4 choose two 
points, each of which dividing a golden section (Figure 9), i.e.

a x y a x y a x y a x y

b
1 2 3 4

1

2 0 1 0 2 1 1 1( , ); ( , ); ( , ); ( , );= − = = − = = − = = − =τ τ τ τ
(( , ); ( , ); ( , ); ( , );x y b x y b x y b x y= = − = = − = = − = = −
=

0 2 0 1 1 2 1 1

1
2 3 4

τ τ τ τ
τ .. ...6180

 

One connect the point A1 to points a4,b4, and point A3 with points a1,b1. 
Obviously (by symmetry) the points of intersection of lines A1,a4,b1,A3 and 
lines A3,a1,A1,b4 lie on the diagonal of the rhombus A2,A4 Line b1,A3 is defined 
by equation y x= − + −( )τ τ1 2 , while A1,a4 line byy x= −/ ( )τ 1  . The 
intersection of these lines gives the coordinates of the point

a x y
a a5 5 5

2 1: ,= − = −τ τ . 

Thus, the point a5 lies on the line a3a1 and direct b2b4. Similarly, can to 
find the coordinates of the point a6, lying on the intersection of the lines 
a1A1 and A1b4,

x y
a a6 6

1 2= − = −τ τ, .  

Consequently, the point a6 lies at the intersection directs a4a2,b1,b3. Draw 
further the lines a3a1, a4a2, b2,b4, b1,b3 (Figure 9); crossing the line b1b3 with 
line A1a4 gives the point a7 with coordinates

x y
a a7 7

1 2 2= − − = −( )( ),τ τ τ ; 
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crossing the line b2,b4 with the line A3,a1, given by the equation

x
y

x
y

−
−
=
− +1

1
2 τ , 

results in the point a5 with coordinates

x y
a a8 8

2 2 1= − = −( ),τ τ . 

Draw now the parallel lines a3b1,b4a2. The intersection of these lines with 
a diagonal A2A4 gives the points a9,a10. The equation of the line a3b1 is

x
y

x
y

− +
−

=
− +

2
1 2
τ

τ
; 

equation of the line b4a2 is

Figure 9. Division sides of the rhombus on the golden section
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x
t

x
y

−
− +

=
− +1

1
1

τ
τ ; 

equation of the line A2A4 is x
y

x
y−

=
−

1
1  . The point of intersection of the 

diagonal A2A4 with the line a3b1 can be found from the system:

x
y

x
y
x
y

x
y−

=
− − +

−
=
− +1

1 2
2

, ,
τ
τ τ

 

i.e. one obtain the coordinates of the point a9:

x x y
a a a9 7 9

1 2 2 2= − − = = −( )( ) , ( )τ τ τ . 

The point of intersection with the diagonal line b4a2 is found out from 
the system:

x
y

x
y

x
y

x
y−

=
− −

− +
=
− +

1
1 1

1
1

, ,
τ

τ  

i.e. we obtain the coordinates of the point a10:

x x y
a a a10 8 10

2 2 2 3= − = = −( ) , .τ τ  

Lines a3a1, b1b3 intersect in the point a13 with coordinates x y
a a13 13

2= = − τ.

Lines a2a4, b2b4 intersect in the point a14 with coordinates x y
a a14 14

1= = −τ .

It is easy to see that the points b1,a5,a6,a1,A1 and b4,a5,a6,a4,A3 form two 
(of the same size) regular pentagon with the side 2 - τ. In addition, in Figure 
9, one can see a number of regular pentagons with the sides 2τ - 3 and a 
number of regular pentagons with sides 5 - 3τ.

Note that in the vicinity of vertices A1 and A3 the original rhombus is 
formed by three expanded sectors, consisting of regular pentagons that 
grow in size so that each subsequent pentagon is built on the diagonal of the 
previous pentagon (i.e. has edge length equal to the diagonal of the previous 
pentagon). If connecting points the a4 with b4 and a1 with b1 one finds that 
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sectors in the vicinity of the vertices A1A3 coincide with each other when 
rotating by 36o. The same two sectors are formed in the vicinity of vertices 
of A2,A4. They coincide with one another by rotation with 36o around the 
corresponding vertex. It is essential that the described sectors, emanating 
from each vertex, exist simultaneously in the rhombus. Let now translate 
the rhombus A1A2A3A4 at coordinates x and y equaling unit; then the vertices 
of the rhombus on the plane form a lattice. Draw rhombus translation from 
the basic position one the step to the left, than one the step down and at a 
time one the step to the left and down. When you translation to the left select 
sector emanating from the vertex of the rhombus A4 mainly position; when 
translated down select sector emanating from the vertex of the rhombus A2 
mainly position; when translated down and left select sector emanating from 
the vertex of the rhombus A3 mainly position. The result of these translations 
is presented in Figure 10.

It can be seen clearly that the point O in Figure 10 has rotation axis of the 
fifth and tenth order. If one needs to increase the number of translations on the 
coordinate axes to save the axes of rotation of 5th and 10th order, a system of 
five families of parallel lines in the initial state of the rhombus can be drawn:

The First Family:

AA a a a a AA a a a a
2 1 3 1 4 2 3 4 9 13 8 10
, , , , , .  

The Second Family:

AA b b b b AA a a a a
4 1 3 1 4 2 3 2 9 12 7 10
, , , , , .  

The Third Family:

Ab b a a b Ab a a a a
3 1 3 1 4 2 1 4 14 13 8 10
, , , , , .  

The Fourth Family:

a A a b b a Aa a a a a
4 1 3 1 4 2 3 1 11 12 15 14
, , , , , .  

The Fifth Family:

AA a b b a b a a b
4 2 1 1 2 2 3 3 4 4
, , , , .  
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Comparing Figure 10 with the diffraction patterns in Figures 1 to 4, one 
can see that Figure 10 fully describes the basic elements of the diffraction 
patterns. A more detailed arrangement of the points marked on the diffraction 
patterns in Figure 10 regular pentagons one can be obtained using earlier 
subfamily of parallel lines.

Figure 10. Increasing the number of translations on the coordinate axes to save the 
axes the axes of rotation of 5th and 10th order in the translated rhombus AAAA

1 2 3 4
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GOLDEN GIPER - ROMBOHEDRON: TRANSLATIONAL 
BASIS OF QUASICRYSTALS (ZHIZIN, 2014, A, B, C)

What is essential, the grid of families of parallel lines in the four positions 
of the rhombus in Figure 10, for condition draw lines to subfamilies, has the 
property of translation (by construction).

The property of translation can be found also in experimental diffraction 
patterns of quasicrystals (contrary to the claims of Shechtman et al. (1984), 
for which they were awarded the Nobel Prize). Indeed, Figure 11 shows that 
through the bright spots of the diffraction pattern in Figure 2, in the vicinity 
of the central bright spot, a periodic flat grid can be distinguished with nodes 
coinciding with other bright spots.

At the same time, the same system of rhombuses allows building an 
axisymmetric lattice with an axis of the tenth order passing through the 
center of the diffraction pattern on the experimental diffraction pattern of the 

Figure 11. Construction of a flat translational lattice on an experimental diffraction 
pattern of the alloy Al72Ni20Co8
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alloy Al72Ni20Co8, i.e. through the brightest and largest spot of the diffraction 
pattern (Figure 12).

From Figure 12 it follows that the axisymmetric flat lattice is most 
prominent due to the use of bright spots of the diffraction pattern as nodes. 
One can say that it is a hierarchical filling of the plane with the original 
figure in the form of a regular decagon (or a double regular pentagon). With 
distance from the center of the diffraction pattern, the distance between the 
nodes is constantly increasing. It should be noted that the axisymmetric 
lattice requires the use of a smaller number of diffraction pattern spots as 
compared to the periodic lattice in Figure 11. It is important, however, that 
these spots are on the diffraction pattern, that is, the diffraction pattern makes 
it possible to distinguish its translational component. It can be assumed that 
the axisymmetric component of the diffraction pattern is associated with the 
axisymmetric conditions of the experiment - the axisymmetric incidence of 
the beam on the alloy sample.

Figure 12. Construction of an axisymmetric lattice on an experimental diffraction 
pattern of the alloy Al72Ni20Co8
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From a comparison of Figures 11 and 12, it follows that among the 
luminous spots of diffraction patterns there are spots that are involved in 
the creation of an axisymmetric lattice and do not participate in the creation 
of a translational lattice. In order to isolate the translational part from the 
diffraction pattern, it is necessary to remove from it those spots that ensure 
only the existence of an axisymmetric lattice. Here it must be remembered 
that Figure 11 shows the simplest two -dimensional part of the translational 
lattice. However, it is clear that the lattice must be spatial. To find it, one turn 
to Figure 10, which represents a diffraction pattern model with all its nodes. 
Remove from it the nodes that ensure the existence of only an axisymmetric 
lattice. The remaining nodes belong to the translational lattice (Zhizhin, 2014 
c). They are presented in Figure 13.

From Figure 13 it can be seen that in the absence of central axial symmetry 
(in which the lattice, taking into account the spatial dimension, is a hierarchical 
filling of space with a double simplex with dimension 4), local axes of order 
10 are uniformly distributed across the lattice.

The procedure selects from the diffraction patterns of the periodic part 
of the incommensurate structure of the quasicrystal led to this. Exploring 
the structure of Figure 13, one can find that it is a projection of the periodic 

Figure 13. Translational lattice formed by families of parallel lines diffraction pattern
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space filling by 4D - polytopes is depicted in Figure 14 (see the outlined 
circles in Figure 14).

The polytope in Figure 14 consists of 8 – cells (i.e., 3D – polyhedrons) 
whose faces were built up by the golden section. That is, all two - dimensional 
faces of the 3D - polytope are the same rhombus, with angles φ = arccos 1 
/ 2τ, γ = π - φ.

Any two 3D - faces (rhombohedrons) share to each other a 2D - face, 
which is precisely described as a flat rhombus; this is a necessary condition 
for the existence of a 4D – polytope (Zhizhin, 2018, 2019). In opposition to 
the 4 – Cube (also having 8 - cells), the set of cells is divided into pairs of 
rhombohedrons adjacent to each other in two lanes πauw and woab, whose 
width is 2 - τ on the length of the edge. Thus, polytope in Figure 14 can be 
called the “golden hyper - rhombohedron” and assume that the periodic part 
of the structure of quasicrystals is a translational space filling by 4D golden 
hyper - rhombohedrons.

Figure 15 shows an example of the location of the golden hyper - 
rhombohedron on the diffraction pattern of the alloy Al72Ni20Co8.

Interestingly, the coordinates of the vertices of the golden hyper - 
rhombohedron can be expressed in four - dimensional space in integers. Let`s 
choose the vertices a Figure 14 as beginning of the coordinate system (x, y, z, 
h). Let the axis x be directed along the edge ar, the axis y be directed along 

Figure 14. Golden hyper - rhombohedron
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the edges aπ, the axis z be directed along the edges ad, the axis h be directed 
along the edges ab (see Figure 14). Then the coordinates of the rhombohedron 
a𝜋ebdkfc are expressed in whole numbers: a(0, 0, 0, 0), π(0, 1, 0, 0), e(0, 
1, 0, 1), b(0, 0, 0, 1), k(0, 1, 1, 0), f(0, 1, 1, 1), c(0, 0, 1, 1), d(0, 0, 1, 0). To 
determine the coordinates of the other vertices of the hyper - rhombohedron, 
one consider the rhombohedron vtwusrom. From Figure 14 it follows that at 
the vertex r the value of the variable x is equal to one. In other vertices of this 
rhombohedron, the value of the variable x cannot change, since the edges of 
this rhombohedron are not directed along the x coordinate. The coordinates 
of the vertices of this rhombohedron can to find in Figure 14 taking into 
account this condition:

v(1, 1, 0, 1), t(0, 0, 0, 1), w(1, 1, 1, 1), u(1, 0, 1, 1), 

s(1, 1, 0, 0), r(1, 0, 0, 0), o(1, 1, 1, 0), m(1, 0, 1, 0). 

Figure 15. Example of the location of the golden hyper - rhombohedron on the 
diffraction pattern of the alloy Al72Ni20Co8.
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SCALING THE GOLDEN HYPER – RHOMBOHEDRON 
IN THE HIGHER DIMENSIONAL SPACE

On the diffraction pattern (Figure 15), as an example, the projection of golden 
hyper - rhombohedron with the edges of a certain size is applied. It is essential 
that in addition to the already built golden hyper - rhombohedron certain 
size, on a lattice of vertices can build these polytopes and other dimensions 
(see. Figure 16), i.e. allows the process of scaling (Zhizhin, 2014a, b, c, e).

However, in contrast to the ideas of Kadanoff (1966), involving cell 
merging smaller to larger, here the analysis of lattice vertices golden hyper - 
rhombohedron it follows that the process of scaling occurs hierarchically, i.e. 
smaller sell hyper - rhombohedron is not combined with similar, but simply 
increases in hierarchical mode, absorbing more and more of lattice sites.

In Figure 16, two hyper - rhombohedrons, the smaller one (indicated by 
thick solid lines) and the larger one (indicated by small circles around the 
vertices), are in contact with each other along the edges. Moreover, it is clear 
that the length of the edge of the smaller hyper - rhombohedron is 2 - τ of 
the length of the edge of the larger hyper - rhombohedron (see Figure 5a). 
Thus, the dimensions of the hyper - rhombohedrons in the process of scaling 

Figure 16. Scaling on the lattice of golden hyper - rhombohedron
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are related by the golden section, i.e. the lengths of the edges of hyper - 
rhombohedrons of different sizes correspond to each other as degrees ( )2− ±τ n , 
n = 0, 1, 2,…. Interestingly, at the vertices of the lattice golden hyper - 
rhombohedron is possible to construct the projection of the golden hyper - 
rhombohedron of space even more dimension. Figure 17 is a projection on 
to the plane 2D golden hyper - rhombohedron of space 5D.

From figure 17 it follows that a hyper - rhombohedron of dimension 5 is 
a polytopic prism with the bases of a hyper - rhombohedron of dimension 4 
(Zhizhin, 2018).

The polytopic prism in Figure 17 is the product of a hyper - rhombohedron 
4 D and a segment. One can get the product of a hyper - rhombohedron 4 
D on other geometric shapes (triangles, squares, cubes, etc.). This will lead 

Figure 17. Golden hyper - rhombohedron in space 5D
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to getting complex lattices with high dimension. The existence of lattices 
describing the structure of the nanoworld unrelated to the hyper -rhombohedron 
should not be ruled out. All these lattices can be considered as aggregates 
of several lattices or several subspaces of different dimensions. Since all the 
listed products of the shapes are polytopic prismahedrons (Zhizhin, 2015, 
2018), they all allow us to construct partitions of n - dimensional spaces. The 
conditions of contact of polytopic prismahedrons in these n - dimensional 
spaces will be studied further.

Figure 18 representing the lattice vertices golden hyper – rhombohedron 4D, 
as an example, shows how on the vertices of the golden hyper - rhombohedron 
4D can obtain projection shapes of Platonic: tetrahedron, cube, octahedron, 
icosahedron, dodecahedron. Moreover, these figures may have vary in size.

On the grid of vertices golden hyper - rhombohedron can build more 
complex cells body than Platonic, for example, Archimedean solids, the 
same as the Bravais cells (Brave, 1974), Delaunay cells and Voronoi cells 
(Delone, 1937), and even more complex cells. It follows that the golden 
hyper - rhombohedron have universal value in the description of the process 
of filling the space of different dimensions.

Figure 18. Platonic solids on the lattice golden hyper - rhombohedron
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It is also important to note that on the diffraction patterns of inter metallic 
one can see not only the latent periodicity of the structure in spaces of higher 
dimension, but also the hierarchical filling of spaces in the vicinity al almost 
any point of the structure . It is expressed in an increase in the size of the 
figures around an arbitrary point of the structure while maintaining the shape 
of the figure (similar uniform increasing Universe).

Thus, one can conclude that the lattice vertices of golden hyper - 
rhombohedron in 4D space is flexible enough to describe all kinds of basic 
cells. The fact that the basis of this lattice is a polytope with irrational ratios 
characteristic sizes shows the irrationality of the world 4D. This demolish 
the unfounded allegations of Shevchenko (Shevchenko, 2011) about getting 
rid of the irrationality of the transition in the space of higher dimension.

CONCLUSION

More Plato suggested that objects of Nature, their quality and operating 
between the forces, may be the result of exposure to hidden from us the 
geometric structures (Yau & Nadis, 2010). In recent decades, a shining 
example of the opening of the geometric structure is string theory. Based on 
the solutions of Einstein’s equations, this theory postulated that the manifold 
of higher dimension hidden in every point in space (Colabi -Yau manifold of 
dimension 6). It has vanishingly small size. In the nanoworld, as shown in 
(Zhizhin, 2014a, b, c, d, e; Zhizhin, 2015; Zhizhin & Diudea, 2016; Zhizhin, 
Khalaj & Diudea, 2016) is also a hidden dimension but objects (especially 
molecules), having these dimensions, are tangible sizes. A common basis for 
understanding the hidden dimensions of the objects of nature, and in string 
theory, explains the structure of the universe and the structure of elementary 
particles (Green, 2000; Gepner, 1988), and in the theory of the nanoworld 
is Riemann geometry (Riemann, 1854), allowing the existence of spaces of 
higher dimension in the space of lower dimension.

The unit cell of the smallest dimension 4 of the nanoworld structure, 
determined from the analysis of diffraction patterns of intermetallics, is the 
golden hyper - rhombohedron. It is a polytopic prismahedron consisting of 
eight rhombohedrons. On diffraction patterns, cells of a higher dimension 
can be distinguished, representing works of the golden hyper - rhombohedron 
and polytopes of arbitrary dimension. Simultaneously with the translational 
symmetry in the space of the highest dimension in the diffraction patterns 
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of inter-metallics, one can see the central symmetry at each point of the 
diffraction pattern, like a homogeneous expanding universe.
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KEY TERMS AND DEFINITIONS

Diffraction: A wide range of phenomena occurring in the propagation 
of waves in heterogeneous environments in the space.

Dimension of the Space: The member of independent parameters needed 
to describe the change in position of an object in space.

Fractal: The set is self-similar, that is, uniformity at different scales.
Golden Hyper-Rhombohedron: Polytope in four-dimensional space 

with facets as rhombohedron and metric characteristics associated the golden 
section.

Polytope: Polyhedron in the space of higher dimension.
Quasicrystal: A solid body, characterized by symmetry without translation 

in three-dimensional Euclidean space.
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ABSTRACT

The author has previously proved that diffraction patterns of intermetallic 
compounds (quasicrystals) have translational symmetry in the space of higher 
dimension. In this chapter, it is proved that the metallic nanoclusters also 
have a higher dimension. The internal geometry of clusters was investigated. 
General expressions for calculating the dimension of clusters are obtained 
from which it follows that the dimension of metallic nanoclusters increases 
linearly with increasing number of cluster shells. The dimensions of many 
experimentally known metallic nanoclusters are determined. It is shown that 
these clusters, which are usually considered to be three-dimensional, have a 
higher dimension. The Euler-Poincaré equation was used, and the internal 
geometry of clusters was investigated.

INTRODUCTION

A systematic study of the geometry of the structures of chemical compounds 
(Zhizhin, 2014a, b, c, d, 2016, 2018, 2019a) showed that almost all elements 
of the periodic system form molecules of higher dimension. It is natural to 
assume that clusters, as larger than education molecules, including a large 
number of atoms, can have a higher dimension. However, until recently, clusters 
considered as three - dimensional objects (Lord, Mackay, & Ranganathan, 
2006; Pauling, 1960). This Chapter discusses clusters of real chemical 

Higher Dimensions of Clusters 
of Intermetallic Compounds

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



32

Higher Dimensions of Clusters of Intermetallic Compounds

compounds (as opposed to the book of Diudea, 2018, in which, as the author 
emphasizes, clusters are not related to real chemical compounds). Moreover, 
in this work, consideration of clusters is limited to a special type of chemical 
compounds - intermetallic compounds, since the study of intermetallic 
compounds has had a significant impact on the development of scientific views 
in recent decades. In particularly, the discovery of so - called quasicrystals 
is associated with intermetallic compounds, i.e. crystals supposedly devoid 
of translational symmetry (Shechtman et al., 1984). Although it was later 
shown that quasicrystals have translational symmetry, but in the space of 
higher dimension (Shevchenko, Zhizhin, & Mackay, 2013a, b; Zhizhin, 
2014c; Zhizhin, & Diudea, 2016). The ideas about the higher dimension of 
clusters and the calculation of this dimension should be taken account to 
in their practical use as objects with valuable physic - chemical properties.

CLASTERS OF MACKAY

Mackay’s cluster consists of two icosahedrons of different sizes with a common 
center (Mackay, 1962). A larger icosahedron is obtained by attaching a number 
of tetrahedrons and octahedrons to the surface of the smaller icosahedron. 

Figure 1. The cluster of Mackay
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However, to determine the dimension of Mackay’s cluster, only the result 
of this connection is important - the formation of a larger icosahedron. 
Moreover, each vertex of the larger icosahedron is located on a certain line 
passing through the common center of the icosahedrons. On the same line 
is located one of the vertices of the smaller icosahedron (Lord, Mackay, & 
Ranganathan, 2006). In all vertices of each icosahedron, one atom is located. 
In addition, there is one more atom in the middle of each edge. Since the 
icosahedron has 12 vertices and 30 edges, it turns out that Mackay’s cluster 
has 54 atoms (Figure 1).

In this figure, the atoms in the midpoints of the edges of the larger 
icosahedron are not shown, since in determining the dimension the atoms 
located on the linear portions of the edges do not matter. Connect the edges 
of the vertices of both icosahedrons lying on the same line passing through 
the common center of the icosahedrons (dotted lines in Figure 1). This shows 
that the space between the icosahedrons is completely filled with triangular 
prisms, the bases of which are the triangular faces of the smaller and larger 
icosahedrons (Figure 2).

These prisms are adjacent to each other along flat quadrilateral side faces. 
The number of these prisms is equal to the number of triangular faces of the 
icosahedron - 20. To determine the dimension of the construction of two 
icosahedra with a common center, between which there are 20 triangular 
prisms can be determined by the Euler - Poincaré formula (Poincaré, 1895)

( ) ( ) ( )− = + − −

=

−

∑ 1 1 1 1

0

1
i
i

d

i

d

f P . (1)

Figure 2. The triangular prism
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In (1) fi(P) is the number of faces with dimension i in polytope P with 
dimension d.

For a given design, we have

f f f f
0 1 2 3

2 12 24 2 30 12 72 2 20 30 70 20 2 22= ⋅ = = ⋅ + = = ⋅ + = = + =, , , .  

Substituting these values into equation (1), we have 24 – 72 + 70 – 22 = 
0. This proves that the dimension of Mackay’s cluster with two icosahedral 
shells is equal to 4.

To the second icosahedron, as well as to the first one, tetrahedrons and 
octahedrons can be attached and a third icosahedral shell can be obtained. 
This process can be continued.

Theorem 1. The dimension d of a cluster of n - icosahedrons with a 
common center is 2 + n.

Proof.
If a cluster consists of three shells of an icosahedron with a common 

center, then

f f f f
0 1 2 3

3 12 36 3 30 2 12 114 3 20 2 30 120 2 20 3 43= ⋅ = = ⋅ + ⋅ = = ⋅ + ⋅ = = ⋅ + =, , , .  

The number of four - dimensional figures in this case is equal to f C
4 3

2 3= = .  
Substituting these values into equation (1), one have 36 – 114 + 120 – 43 + 
3 = 2. This proves that the dimension of Mackay’s cluster with three icosahedral 
shells is d = 5.

If a cluster consists of four shells of an icosahedron with a common 
center, then

f f f f
0 1 2 3

4 12 48 4 30 3 12 156 4 20 3 30 170 3 20 4 64= ⋅ = = ⋅ + ⋅ = = ⋅ + ⋅ = = ⋅ + =, , , .  

The number of four - dimensional figures in this case is equal to f C
4 4

2 6= = .  
The number of five - dimensional figures in this case is equal to f C

5 4
3 4= = .  

Substituting these values into equation (1), one have 48 – 156 + 170 – 64 + 
6 - 4 = 0. This proves that the dimension of Mackay’s cluster with four 
icosahedral shells is d = 6.
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If a cluster consists of five shells of an icosahedron with a common center, 
then

f f f f
0 1 2 3

5 12 60 5 30 4 12 198 5 20 4 30 220 4 20 5 85= ⋅ = = ⋅ + ⋅ = = ⋅ + ⋅ = = ⋅ + =, , , .  

The number of four - dimensional figures in this case is equal to 
f C
4 5

2 10= = .  The number of five - dimensional figures in this case is equal 
to f C

5 5
3 10= = .  The number of six - dimensional figures is equal to 

f C
6 5

4 5= = .  Substituting these values into equation (1), one have 60 – 198 
+ 220 – 85 +10 – 10 + 5 = 2. This proves that the dimension of Mackay’s 
cluster with five icosahedral shells is d = 7.

These constructions can be continued. However, it is now possible to write 
general expressions for the numbers of elements of different dimensions in a 
cluster with an arbitrary number n of shells of icosahedra and to give a formula 
for calculating its dimension. So, in the n - shell cluster of icosahedrons, we 
have

f n f n n f n n

f n n f
0 1 2

3 4

12 30 1 12 20 1 30

1 20

= ⋅ = ⋅ + − ⋅ = ⋅ + − ⋅

= − ⋅ +

, ( ) , ( ) ,

( ) , == = =+
−C f C f C

n n n n
n2

5
3

1
1, , ..., .

 (2)

Substituting these values into equation (1) and opening the brackets, one 
can to see that in this case the left side of the Euler - Poincaré equation (1) 
takes the form

( ) ( ) ( ) .− = − + −
=

−

=

−

∑∑ 1 2 1
2

1

0

1
i
i n

k

k

n
k

i

d

f P n C  (3)

To calculate the sum on the right side of equation (3), one used the well - 
known expression for the alternating series of combinations (Vilenkin, 1969)

C C C C
n n n

n
n
n0 1 2 1 0− + − + − =... ( ) .  (4)

From the series (4), taking into account the equalities C C C n
n n

n
n

0 11= = =, , 

it follows that the sum C
n
k

k

n
k

=

−

∑ −
2

1

1( )  in the right side of equation (3) is n - 2 
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for n even and n, if n is odd. Therefore, the right side of equation (3) coincides 
with the right side of equation (1). This proves that the figures in question 
are closed convex polytopes and they satisfy the Euler - Poincaré equation.

At the same time, from equation (2), since f C
n n

n
+ = =

2
1 , it follows that 

the dimension of a cluster of n - icosahedrons with a common center is equal 
d = n + 2. Q.E.D.

Thus, it is proved that the dimension of a cluster of n icosahedral shells 
with a common center increases linearly with the number of icosahedral 
shells (Zhizhin, 2019 b; 2020).

The total number of atoms in a cluster, including the nth layer, is n(10n2+ 
15n+ 11)/3 (Lord, Mackay, & Ranganathan, 2006). Clusters of icosahedral 
shells are a structural feature of many complex alloys.

CLASTERS OF γ - BRASS

The structure of γ - brass was described as early as 1926 in the concept of 
a lattice of cubic cells (Bradley & Thewlis, 1926). Pauling, considering the 
structure of γ - brass, noticed that this structure is icosahedral (Pauling, 
1960). Nyman & Anderson (1979) described the alloy Mn5Si3,Th6Mn23 and 
γ - brass as a 26 - atomic cluster of identical balls, although it should be noted 
that atoms are not balls, especially since the atoms in the alloy of γ - brass 
are different.

Theorem 2. A γ - brass cluster has the dimension d = 4 + 3n, where n is 
the number of cluster shells (n = 0, 1, 2,...). The cluster is a d - cross - polytope 

Figure 3. The tetrahedron
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and the number of elements of the dimension i included in the cluster is 
determined by the ratio f d C

i
i
d
d i( )= + − −21 1  .

Proof. Alloys of γ - brass, as well as other intermetallic alloys, are 
conveniently considered using tetrahedrons (Lord, Mackay & Ranganathan, 
2006). Place four atoms at the vertices of the 1234 tetrahedron (Figure 3).

Then on each flat face of the 1234 tetrahedron one place another a 
tetrahedrons (Figure 4).

Then a figure appears, including 8 atoms (vertices 1 - 8). Connect the 
vertices 5, 6, 7, 8 of edges. They also form a tetrahedron. As a result, the 
resulting figure (Figure 5) is a 4 - cross - polytope (Zhizhin, 2019 a).

In this polytope, in addition to 8 vertices, there are 24 edges, 32 flat 
triangular faces, and 16 tetrahedrons. Each vertex has no edge connection to 
some other (opposite) vertex. These unconnected vertices form pairs 
1 2 3 4

7 8 5 6
. Each vertex in the top row does not have a connection with the 

vertex in the bottom row, just below that vertex. This polytope has dimension 

Figure 4. The tetrahedron with tetrahedrons on its faces

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



38

Higher Dimensions of Clusters of Intermetallic Compounds

4. Upon further joining of the tetrahedrons to the edges of the original 
tetrahedron 1234 (two tetrahedrons to the edge), a figure is formed containing 
14 vertices. Each newly formed vertex is located opposite one of the edges 
of the tetrahedron 1234. If we designate the newly formed vertices by a pair 
of vertices of the corresponding edges of the original tetrahedron 1234, then 
these are the next vertices (1,2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4). Among 
these newly formed vertices, opposite vertices can be distinguished, given 
the opposite edges of the original 1234 tetrahedron. These opposite vertices 

also form pairs 
( , )( , )( , )

( , )( , )( , )

2 3 1 2 1 3

1 4 4 3 2 4
. Connecting the remaining vertices with edges, 

leaving pairs 
1 2 3 4

7 8 5 6
 unconnected, can to get a 7 - cross - polytope. In 

a topologically equivalent form, this polytope of dimension 7 is shown in 
Figure 6.

From the general expression for the number of elements of the dimension 
and in the d - cross - polytope (Zhizhin, 2013, 2014 c, 2018, 2019) 
f d C
i

i
d
d i( )= + − −21 1  it follows that

Figure 5. The 4 - cross - polytope
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the number of vertices in this polytope f C
0 7

62 14= ⋅ = ,

the number of edges f C
1

2
7
52 84= ⋅ = ,

the number of triangle faces f C
2 7

48 280= ⋅ = ,

the number of tetrahedrons f C
3 7

316 560= ⋅ = ,

the number of four - dimension simplexes f C
4 7

232 672= ⋅ = ,

the number of five - dimension simplexes f C
5 7

164 448= ⋅ = ,

the number of six - dimension simplexes f6=128.

Connecting a pair of tetrahedrons to the edges of the tetrahedron 5678, 
we obtain six more vertices (5, 6), (5.7), (5, 8), (6, 7), (6, 8), (7, 8). Opposite 
ones can be distinguished among these vertices, considering the opposite of 

the edges of the tetrahedron 5678 
( , )( , )( , )

( , )( , )( , )

5 6 5 8 6 8

8 7 6 7 5 7
 . Connecting the remaining 

vertices with edges, leaving pairs

1 2 3 4

7 8 5 6

2 3 1 2 1 3 5 6 5 8 6 8

1 4 4 3 2 4 8
  

( , )( , )( , )( , )( , )( , )

( , )( , )( , )( , 77 6 7 5 7)( , )( , )
 

Figure 6. The 7 - cross - polytope
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unconnected, one get a 10 - cross - polytope. In this polytope:

the number of vertices is f C
0 10

910 2 20( ) ,= ⋅ =

the number of edges is f C
1

2
10
810 2 180( ) ,= ⋅ =

the number of triangle faces f C
2 10

710 8 960( ) ,= ⋅ =

the number of tetrahedrons f C
3 10

610 16 3360( ) ,= ⋅ =

the number of four - dimension simplexes f C
4 10

510 32 8064( ) ,= ⋅ =

the number of five - dimension simplexes f C
5 10

410 64 13440( ) ,= ⋅ =

the number of six - dimension simplexes f C
6 10

310 128 15360( ) ,= =

the number of seven - dimension simplexes f C
7 10

210 256 11520( ) ,= =

the number of either - dimension simplexes f C
8 10

110 512 5120( ) ,= =
the number of nine - dimension simplexes f9(10)=1024.

Continuing to attach tetrahedrons to a cluster of 20 vertices, keeping the 
order of attachment, as in the previous steps, a cluster of 26 atoms can be 
obtained. This will be the 13 - cross - polytope. In this polytope the number 
of vertices is f C

0 13
1213 2 26( ) ,= ⋅ =  the number of tetrahedrons is

f C
3

4
13
913 2 45760( )= ⋅ = . Thus, instead of a cluster in the form of four 

interpenetrating icosahedrons in three - dimensional space, the image of this 
cluster in the space of dimension 13 in the form of a convex standard cross 
- polytope can serve. Two such clusters make up an elementary cell of γ - 
brass.

Thus, it was proved that the addition of tetrahedrons to a γ - brass cluster 
of 8 atoms, having the form of a 4 - cross - polytope, leads to the creation 
of a number of shells, and the dimension of the cluster when each shell is 
attached increases by three. The number of elements of different dimensions in 
a cluster for any shell number n (n = 0, 1, 2, ...) is determined by the formula 
established earlier for d - cross - polytopes.

CLUSTERS OF BERGMEN, SAMSON, R – PHASES

In many metal alloys there are clusters in which the initial element is an 
icosahedron with a central atom (in contrast to Mackey’s clusters). The 
extension of the tetrahedrons to the outer surface of the icosahedron leads 
to the formation of the next convex shell. This process can be continued and 
a series of larger convex hulls can be obtained. The location of the vertices 
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on each convex hull is often determined by the author, based on the author’s 
commitment to some of the ideas prevailing at a given time. There were 
clusters, designated by the name of the authors. However, to determine 
the dimension of these clusters with a central atom, it is important that an 
icosahedral surface can be distinguished on all these outer shells. The sizes 
of triangles on these surfaces naturally increase as one move to more and 
more distant shells. Such clusters will be called icosahedral complexes with 
a central atom.

Theorem 3. The dimension d of icosahedral complexes with a central 
atom equal n + 3, where n is the number of the shells in the complexes.

Proof. The icosahedral with a central atom has 13 vertices (f0=13), 42 
edges (f1=42), 50 flat triangle faces (f2=50), 21 three - dimensional faces (20 
triangle pyramids and 1 icosahedron) (f3=21). Substituting the values in the 
equation (1) we have 13 – 42 + 50 – 21 = 0. This proves that the icosahedron 
with its center has a dimension of 4.

If one continue the edges going from the center of the icosahedron (Figure 
7), and on these edges at the appropriate distance arrange more atoms forming 

Figure 7. Two icosahedrons with a common center

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



42

Higher Dimensions of Clusters of Intermetallic Compounds

the second icosahedron of a larger size, such a construction of two icosahedra 
with a common center will have 25 vertices (f0=25), 84 edges (f1= 2∙30+ 
2∙12= 84), 100 flat faces (f2= 2∙20+ 2∙30= 100), 42 three - dimensional 
faces (f3= 2∙20+ 2= 42), 3 four - dimensional faces ( f C

4 3
2 3= = ). Substituting 

these values in the equation (1) you can get 25 - 84 + 100 – 42 + 3 = 2. This 
proves that the two icosahedrons with common center has a dimension 5.

Note that the number of four - dimensional faces in this case includes a 
smaller icosahedron with a center, a larger icosahedron with a center, and the 
space between two icosahedrons. Indeed, for this space one have 24 vertices 
(f0=24), 72 edges (f1= 2∙30+ 12= 72), 70 flat faces (f2= 2∙20+ 30= 70), 22 
three - dimensional faces (f3= 20+ 2= 22). Substituting these values in the 
equation (1), can get 24 - 72 + 70 – 22 = 0. This proves that the space between 
two icosahedrons has a dimension 4. The total number of four - dimensional 
elements in this case is determined by the number of combinations between 
the three characteristic elements of the construction (the center and two 
icosahedral surfaces) of two elements. Any of these combinations gives a 
four - dimensional element.

If one continue again the edges coming from the center of the icosahedrons, 
and on these edges one construct the third icosahedron of a still larger size, 
then such a construction will have 37 vertices (f0= 25+ 12= 37), 126 edges 
(f1= 3∙30+ 3∙12= 126), 150 flat faces (f2= 3∙20+ 3∙30= 150), 63 three - 
dimensional faces (f3= 3∙20+ 3= 63), 6 four - dimensional faces ( f C

4 4
2 6= = ), 

4 five - dimensional faces ( f C
5 4

3 4= = ). Substituting these values into the 
equation (1), can get 37 - 126 + 150 – 63 + 6 - 4 = 0. This proves that the 
tree icosahedrons with common center has a dimension 6.

The total number of four - dimensional elements in this case is determined 
by the number of combinations between the four characteristic elements of 
the construction (the center and three icosahedral surfaces) of two elements. 
Any of these combinations gives a four - dimensional element.

The total number of five - dimensional elements in this case is determined 
by the number of combinations between the three characteristic elements of 
the construction (the center and three icosahedral surfaces) of three elements. 
Any of these combinations gives a five - dimensional element.

These constructions can be continued. However, it is now possible to write 
general expressions for the numbers of elements of different dimensions in 
a cluster with a center for arbitrary number n of shells of icosahedra and to 
give a formula for calculating its dimension. So, in the n - shell cluster of 
icosahedrons with a center, we have
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f n f n n f n n

f n n f C f
n

0 1 2

3 4 1
2

5

12 1 30 12 20 30

20

= ⋅ + = ⋅ + ⋅ = ⋅ + ⋅

= ⋅ + = =+

, , ,

, , CC f C
n n n

n
+ + +=

1
3

2 1
, ..., .

 (5)

Substituting these values into equation (1), one can to see that in this case 
the left side of the Euler - Poincaré equation (1) takes the form

( ) ( ) ( ) .− = − + −+
==

−

∑∑ 1 1 1
1

20

1
i
i n

k

k

n
k

i

d

f P n C  (6)

To calculate the sum on the right side of equation (6), one use the expression 
(4) for the alternating series of combinations (Vilenkin, 1969).

From the series (4), taking into account the equalities C C C n
n n

n
n

0 11= = =, , 

it follows that the sum C
n
k

k

n
k

+
=
∑ −

1
2

1( )  in the right side of equation (6) is n + 

1 for n even and n - 1 if n is odd. Therefore, the right side of equation (6) 
coincides with the right side of equation (1). This proves that the figures in 
question are closed convex polytopes and they satisfy the Euler – Poincaré 
equation.

At the same time, from equation (5), since f C
n n

n
+ +

+= =
3 1

1 1 , it follows that 
the dimension of a cluster from n - icosahedrons with an atom in a common 
center is equal d = n + 3.

Thus, as in the Mackay clusters, the dimension of clusters of several 
icosahedrons with one common central atom increases linearly with the number 
of shells. The dimension of these clusters is greater than the dimension of 
the corresponding Mackay clusters by one due to the presence of an atom 
in a common center.

From Theorem 3, for example, it follows that the dimension of a giant 
palladium cluster (Vargaftik et al., 1985), containing 561 atoms in five shells, 
is 8. The claims of some authors that the palladium cluster in this case is an 
E8 lattice (Shevchenko, 2011) are groundless. The lattice E8, as you know 
(Conway & Sloane, 1988), is a collection of points in an eight-dimensional 
space with coordinates (±1, ±1, 0, 0, 0, 0, 0, 0), where units can stand 
anywhere on the line with arbitrary signs, as well as points with coordinates

± ± ± ± ± ± ± ±










1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

, , , , , , , . 
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Obviously, this lattice has nothing to do with the structure of a cluster 
consisting of five icosahedral shells, although it is for such a cluster that the 
number of atoms gives 561 (Lord et al., 2006). It is assumed (Coxeter, 1963) 
that the lattice E8 corresponds to the polytope of Gosset (1900), which draws 
from simplexes and cross-polytopes. But from the previous it follows that 
the polytope corresponding to the giant palladium cluster does not include 
either simplexes or cross-polytopes.

The outer surface of the clusters of Bergman, Samson, and R - phases 
(Lord, Mackay, & Ranganathan, 2006) outwardly seems to be different from 
the icosahedron. However, this difference is not significant. For example, in 
the Bergman cluster of 45 atoms, the outer surface is supposed to consist 
of rhombuses. Can note by construction it is not, it is the icosahedron. For 
example, the clusters from Mg32(Al,Zn)49 was specifically decided to deform in 
order to bring it closer to Pauling’s three - contohedron (Bergman et al., 1952, 
1957). In the Samson cluster of 105 atoms of alloy Mg6Pd (Samson, 1972), 
the outer surface is a truncated icosahedron. It is easy to get an icosahedron 
from this surface, connecting the centers of the pentagons, especially since 
the initial construction is based on tetrahedrons. The surfaces of the R - phase 
clusters from Mg32(Al,Zn)49, Mo-Cu-Cr,Al5CuLi3 consist of elements of 
icosahedral surfaces (Bergman et al., 1952, 1957; Komura et al., 1960; Audier 
et al., 1988). Therefore, the dimensions of these clusters can be calculated 
from the formulas obtained in this work, taking into account the number of 
shells in these clusters. Since the Bergman cluster has two icosahedral shells, 
according to Theorem 3 its dimension is 5. Since the Samson cluster has 
three shells, its dimension is 6. Since the R - phase cluster has four shells, 
its dimension is 7.

THE DIMENSION OF METALLIC CLUSTERS OF SEVERAL 
SHELLS IN THE FORM OF PLATO`S BODIES

The icosahedron is only one of Plato’s bodies found in the skeleton of metal 
clusters (Gubin, 1987). Suppose there is a cluster, each shell of which is a 
convex regular three - dimensional polyhedron (Plato’s body) with some 
possible number of vertices n and the same for all shells of this cluster. The 
flat sides of the shells are regular m - corner. All shells of this cluster differ 
only in size and have a common center. Assume that the number of flat edges 
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in the shell is j. One denoted Sj a shell satisfying the indicated conditions. 
Then the following statement is true.

Theorem 4. The dimension d of a cluster of N shells with a common 
center is N + 2, if there is no atom in the common center, and is equal to N 
+ 3, if there is an atom in the common center.

Proof. Denote by the symbol t the number of edges emanating from each 
vertex of the shell Sj. Then the total number of edges of the shell is nt/2, and 
the number of faces of the shell is j=nt/m . The number j in Plato’s body also 
gives the form of the shell, i.e. sets the numbers n, m, t (Table 1).

Let a shell with the number of faces j and be given. Therefore, the number 
of vertices nj, the number of sides mj at the flat face, the number of edges tj 
emanating from each vertex are given. Consider two shells of different sizes 
with a common center, arranged so that every two corresponding vertices of 
both shells are on the same straight line connecting them with a common 
center (there is no atom in the center). Then the space between the shells is 
filled with prisms, the bases of which are flat faces of the larger and smaller 
shells. The number of these prisms is equal to the number of faces of the 
shell, i.e. j. The number of vertices in a polytope of two shells is 2nj=f0 . The 
number of edges of this polytope, taking into account the edges connecting 
the corresponding vertices of the shells, is njtj+nj=f1 . The number of flat 
edges in a polytope is equal to twice the number of flat edges in each shell 

and the number of edges in one of the shells, i.e. 2
2 2

j
n t

fj j+ = . The number 

of three - dimensional figures in the polytope is equal to j+2=f3 . Substitute 
these numbers in the equation (1) Euler - Poincare

Table 1. Defining Plato bodies by the number of two - dimensional faces of the 
outer shell

J n m T Polyhedron

4 4 3 3 Tetrahedron

6 8 4 3 Cube

8 6 3 4 Octahedron

12 20 5 3 Dodecahedron

20 12 3 5 Icosahedron
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2 1 2
2

2
2

2 0n n t j
n t

j n
n t

j
j j j

j j

j

j j− + + + − − = − +











− =( ) .  

There n
n t

j
j

j j− +










2
= 2 on the equation (1) for the polytope of dimension 

3.
This proves that a polytope composed of two shells Sj with a common center 

(in the absence of an atom in the center) has dimension 4 for any possible j.
If the cluster consists of three shells Sj with a common center, then f0=3nj 

. The number of edges in this cluster, taking into account the edges connecting 

of the corresponding vertices in shells Sj, is equal to f
n t

nj j

j1
3

2
2= +  . The 

number of two - dimensional faces is 3j+njtj=f2 . The number of three - 
dimensional faces is 2j+3=f3. The number of four - dimensional faces is 
f C
4 3

2 3= = . Substitute these numbers in the equation (1) Euler - Poincare

3
3
2

2 3 2 3 3
2

2n n t j n t n
n t

j
j j j j j j

j j− +









+ + − + + = − + =( j ) .  

This proves that dimension of the cluster of tree shells Sj is equal 5.
One can write a general expression for the numbers of elements of different 

dimensions in a cluster with an arbitrary number N of shells Sj and get a formula 
for calculating its dimension. So, in the N - shell cluster of shells Sj, we have

f Nn f N
n t

N n f Nj N
n t

f N N f C

j

j j

j

j j

0 1 2

3 4

2
1 1

2
1

= = + − = + −

= − + =

, ( ) , ( ) ,

( ) j ,
NN N N N

Nf C f C2
5

3
1

1, , ..., .= =+
−

 (5)

Substituting the values (5) in the equation (1) and opening the brackets, 
one can see that in this case the left side of the Euler - Poincaré equation (1) 
takes the form

( ) ( ) ( ) .− = − + −
=

−

=

−

∑∑ 1 2 1
2

1

0

1
i
i N

k

k

N
k

i

d

f P N C  (6)
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To calculate the sum on the right side of equation (6), we use the expression 
for the alternating series of combinations (Vilenkin, 1969)

C C C C
N N N

N
N
N0 1 2 1 0− + − + − =... ( ) .  (7)

From the series (7), taking into account the equalities C C C N
N N

N
N

0 11= = =, , 

it follows that the sum C
N
k

k

N
k

=

−

∑ −
2

1

1( )  in the right side of equation (6) is N - 2 

for N even and N for N odd. Therefore, the right side of equation (6) coincides 
with the right side of equation (1). This proves that the figures in question 
are closed convex polytopes and they satisfy the Euler - Poincaré equation.

At the same time, from equation (5), since f C
N N

N
+ = =

2
1 , it follows that 

the dimension of a cluster of N shells Sj with a common center if at center 
not atoms is equal d = N + 2.

Now consider a cluster of several shells Sj with a common center in which 
the atom is located. The shell Sj with a central atom has nj+1=f0 vertices, 
n t

n fj j

j2 1
+ =  edges, 

n t
j fj j

2 2
+ =  flat faces, j+1=f3 three – dimensional 

faces. Substituting the values in the equation (1) one can get

n n
n t

j
n t

j
j j

j j j j+ − +











+ + − − =1

2 2
1 0( ) . 

This proves that the shell Sj with its center has a dimension of 4.
If one continue the edges going from the center of the shell Sj to its vertices 

and at the appropriate distance arrange more atoms forming the second a 
shell Sj of a larger size. Such a construction of two the shells Sj with a common 
atom in center will have 2nj+1=f0 vertices, njtj+2nj=f1 edges, 2j+njtj=f2 flat 
faces, 2j+2=f3 three - dimensional faces, f C

4 3
2 3= =  four - dimensional 

faces. Substituting these values in the equation (1), one can get

2 1 2 1 2 2 2 2 3 2n n t j n t j
j j j j j
+ − + + + − + + =( / ) ( ) . 

This proves that the two shells Sj with common atoms in the center has 
a dimension 5.
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If one continue again the edges coming from the center of the shells Sj, 
and on these edges one construct the third shell Sj of a still larger size, then 

such a construction will have f0=3nj+1 vertices, f
n t

nj j

j1
3

2
3= +  edges, 

f j
n t
j j

2
3 3

2
= +  flat faces, f3=3j+3 three - dimensional faces, f C

4 4
2 6= =  

four - dimensional faces, f C
5 4

3 4= =  five - dimensional faces. Substituting 
these values into the equation (1), one can get

3 1 3
2

3
2

3 1n n
n t

j
n t

j
j j

j j j j+ − +











+ +











+ +( )) .+ − =6 4 0  

This proves that cluster of the tree shells Sj with common atom at center 
has a dimension 6.

Can write a general expression for the numbers of elements of different 
dimensions in a cluster with a center for arbitrary number N of shells Sj and 
give a formula for calculating its dimension. Then in the cluster of N shell Sj 
with atom in a common center, we have

f Nn f N
n t

Nn f Nj N
n t

f Nj N f C f C

j

j j

j

j j

N N

0 1 2

3 4 1
2

5

1
2 2

= + = + = +

= + = =+

, , ,

, , ++ + +=
1

3
2 1

, ..., .f C
N N

N

 (8)

Substituting these values into equation (1), one can see that in this case 
the left side of the Euler - Poincaré equation (1) takes the form

( ) ( ) ( ) .− = − + −+
==

−

∑∑ 1 1 1
1

20

1
i
i N

k

k

N
k

i

d

f P N C  (9)

To calculate the sum on the right side of equation (6), we use the expression 
(7). From the series (7), taking into account the equalities C C C N

N N
N

N
0 11= = =, , 

it follows that the sum C
N
k

k

N
k

+
=
∑ −

1
2

1( )  in the right side of equation (9) is N + 

1 for N even and N -1for N odd. Therefore, the right side of equation (9) 
coincides with the right side of equation (1). This proves that the figures in 

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



49

Higher Dimensions of Clusters of Intermetallic Compounds

question are closed convex polytopes and they satisfy the Euler - Poincaré 
equation.

At the same time, from equation (8), since f C
N N

N
+ +

+= =
3 1

1 1 , it follows 
that the dimension of a cluster of N shells Sj with an atom in a common center 
is equal d = N + 3.

CLUSTERS OF THE HYPER-ROMBOHEDRONS

When analyzing the diffraction pattern of intermetallic compounds of Al6Mn 
(Shechtman et al., 1984), Ti54Zr26Ni20 (Zang & Kelton, 1993), Al70Fe20W10 
(Mukhopadhyay et al., 1993), Al72Ni20Co8 (Eiji, Yanfa, & Pennycook, 2004) 
it was found (Zhizhin, 2014c, 2018, 2019a), that the unit cell of the structure 
created by the luminous points of the diffraction patterns is a figure of 
dimension 4, called the golden hyper - rhombohedron. It consists of eight 
rhombohedrons, with angles in the flat edges defined by the golden section, 
contains 16 vertices (Figure 8).

This figure provides the translational symmetry of quasicrystals in 
the space of higher dimension. The golden hyper - rhombohedron can be 
considered a cluster of intermetallic compounds, since the luminous points 

Figure 8. The golden hyper - rhombohedron
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in the diffraction patterns are lattice nodes, which reflect the rays passing 
through the metal alloy.

The products of the golden hyper - rhombohedron on other geometric figures 
lead to the formation of clusters of the higher dimension. Definitions and 
research the works on various geometric shapes are given in the monographs 
of the author (Zhizhin, 2018, 2019a). In Figure 9 and Figure 10, as an 
example, the products of the golden hyper - rhombohedron on a triangle and 
a tetrahedron are shown, correspondingly.

Since the dimension of the product of the figures is equal to the sum of 
the dimensions of the factors, the dimension of the product of the golden 
hyper - rhombohedron by a triangle is 6, and the dimension of the product 
of the golden hyper - rhombohedron by the tetrahedron is 7. The number of 
vertices in the product of the figures is equal to the product of the numbers 
of the vertices of the factors. Therefore, the number of vertices in the product 
of the golden hyper - rhombohedron on a triangle is equal to 48, and the 
number of vertices in the product of the golden hyper - rhombohedron on a 
tetrahedron is 64.

Figure 9. The product of golden hyper - rhombohedron on a triangle
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INTERMETALLIC COMPOUNDS AS 
ASSEMBLIES OF NANOCLUSTERS

The term nanocluster is used currently in the wide sense as a nanometric 
set of connected atoms, stable either in isolation state or in building unit of 
condensed matter (Shevchenko, 2011). Metallic nanoclusters are particularly 
important objects in the nanoworld, and their structural chemistry is a new 
chapter of modern inorganic chemistry and materials science. The former is 
characterized by the great diversity in composition and structure, and often is 
the primary unit in the self - assembly of nanostructured materials. Nanoclusters 
existing in solids and interacting with each other (so - called quantum dots) 
are of special interest as well as the process of the self – organization of 

Figure 10. The product of golden hyper - rhombohedron on a tetrahedron
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nanoclusters from isolated atoms in some environment. Quantum processes 
are still important in large semiconducting nanoclusters. Nanoclusters can 
be obtained by gas aggregation, vaporization from surfaces, dispersion, laser 
ablation, etc.

In terms of nanoclusters was studied chemical compounds Rh7Mg44,ZrZn22 
(Shevchenko & Mackay, 2008; Shevchenko, Blatov, & Ilyushin, 2009), NaCd2 
(Samson, 1962, 1964; Shevchenko, Blatov, & Ilyushin, 2009; Bergman, 1996), 
Mg2Al3 (Samson, 1965), Cu3Cd4 (Samson, 1967), MgCu2 (Shevchenko, Blatov, 
& Ilyushin, 2009), MgZn2 and MgNi2 (Shevchenko, Blatov, & Ilyushin, 2009). 
It was established that practically in all these compounds has two types of 
nanoclusters A and B are involved simultaneously, each of which contains 
a large number of atoms. Geometrically, icosahedrons, Friauf polyhedrons, 
and other polyhedrons are involved in the compounds. Determining the 
dimension of complicated nanoclusters containing a large number of atoms 
is a difficult task. However, it follows from the preceding that one can say 
with certainty, that the dimension of these nanoclusters is more than three. 
Details of the study of the structure of nanoclusters intermetallic compounds 
can be found in the cited literature.

CONCLUSION

For the first time, based on previously developed ideas about the 
multidimensionality of the nanoworld, an analytical expressions are obtained 
for calculating the dimension of multi - shell clusters depending on the number 
of shells. These expressions are applicable to clusters consisting of shells in 
the form of an icosahedron with a common center, if an atom is located or 
dislocated in this center. From the obtained analytical formulas in it follows 
that in both cases the dimension of the clusters increases linearly with an 
increase in the number of shells. Thus, for the clusters of Mackay (1962), 
Bergman (Bergman et al., 1952, 1957, 1996), Samson (1972) known in the 
literature, which can be approximately described by such multi - shell models, 
expressions are obtained for calculating their dimensions and proved that 
they have a higher dimension. It should be noted an interesting fact that the 
clusters of γ - brass studied for a long time turned out to have geometry of a 
high - dimensional cross - polytope. Consequently, not only extended alloys 
of intermetallic compounds, as was shown in the previous chapter, have a 
higher dimension, but also isolated compounds of intermetallic compounds 
in the form of clusters have a higher dimension. Clusters, connecting 
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with each other, lead to the formation of new clusters with an even higher 
dimension. This also applies to the hyper - rhombohedron, as a cluster of 
quasicrystals. This is demonstrated in this chapter. In the case of complex 
clusters of intermetallic compounds containing a large number of atoms 
and formations in various geometric forms, it is difficult to determine their 
dimension. However, it is safe to say on the basis the conducted research, 
that they have a higher dimension.
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KEY TERMS AND DEFINITIONS

Diffraction: A wide range of phenomena occurring in the propagation 
of waves in heterogeneous environments in the space.
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Dimension of the Space: The member of independent parameters needed 
to describe the change in position of an object in space.

Fractal: The set is self-similar, that is, uniformity at different scales.
Golden Hyper-Rhombohedron: Polytope in four-dimensional space 

with facets as rhombohedron and metric characteristics associated the golden 
section.

Nanocluster: A nanometric set of connected atoms, stable either in 
isolation state or in building unit of condensed matter.

Polytope: Polyhedron in the space of higher dimension.
Quasicrystal: A solid body, characterized by symmetry without translation 

in three-dimensional Euclidean space.
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Chapter  3
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ABSTRACT

The structures of compounds of a metal atom with ligands were studied by 
sequentially changing the groups and subgroups of the periodic system of 
elements in which the metal atom is located. It is shown that all metals from 
the first to the eighth groups form chemical compounds of a higher dimension. 
The formation of molecules of higher dimension occurs due to the chemical 
bonds of the metal atom with ligands both due to the influence of electron 
pairs and due to the attraction of ions. Moreover, the apparent valence of 
the metal atom, as a rule, exceeds the value of the valence determined by the 
location of the metal in the periodic table of chemical elements.

INTRODUCTION

In previous chapters, compounds of atoms of the same or different metals 
with each other were considered. The structures of these compounds and 
the dimensions of the elementary cells of a solid array of material or the 
dimensions of their nanoparticles (clusters of metal compounds of each other) 
were determined. However, in nature and in technology, the combination of 
metals with other chemical elements, their compounds and groups is very 
important. In coordination chemistry, elements or groups of elements attached 

Dimension of Chemical 
Compounds of Atoms Metals 

With Atoms No Metals
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to a metal atom are called ligands, and the compounds themselves are called 
complex compounds. However, there is still no exact (unambiguous) definition 
of the concept of a complex compound covering all possible types of such 
compounds (Morozov, 2008). A number of terms and definitions have been 
introduced that have a narrow scope (Werner, 1936; Greenberg, 1986). In 
particular, the concepts of the main and secondary valence of chemical 
elements, etc., are introduced.

In the monograph (Zhizhin, 2018), relying on the works of Gillespie 
(Gillespie, 1972; Gillespie & Hargittai, 1991), an analysis of almost all 
elements of the periodic system was carried out and it was shown that most 
of the molecules of the chemical compounds of these elements have a higher 
dimension. At the same time, it was not necessary to use special definitions 
of coordination chemistry, since the ball is sufficient to have ideas about 
divided and unshared electron pairs. There is for the purpose of determining 
the dimension of a molecule of a chemical compound, it is important to take 
into account the arrangement of the atoms of this molecule in space. A priori 
the equality of the dimension of space by three was not given. In addition, 
when determining the dimension of molecules, the nature of the chemical 
bond fades into the background. The result is important - the arrangement 
of atoms in space. In this case, there is no need to solve accurately the 
complex problems of determining the degree of covalence and ionization of 
a chemical bond. It is important that this bond is strong enough to ensure a 
stable configuration of the molecule. Weak bonds (for example, hydrogen 
bonds) are not taken into account.

To determine the dimension, the molecule is modeled by a convex figure 
(polyhedron or polytope), the edges of which are both chemical bonds 
between atoms and edges that have only a geometrical meaning. They serve 
to make the molecule look like a closed geometric figure. The dimension 
of the molecule is determined by the Euler – Poincaré formula (Poincaré, 
1895), substituting the numbers of elements of different dimensions that 
make up the polytope. In the author’s works (Zhizhin, 2016a, 2018, 2019, 
2020), when considering the geometry of biomolecules, the concept of the 
functional dimension of biomolecules was introduced, taking complex groups 
of atoms attached to the central atom to be functional groups, denoting them 
as vertices of a polytope. In this case, the polytope is a simplified model of 
the molecule. The concept of functional groups and functional dimensions 
will also be used here when considering complex molecules.
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THE STRUCTURE OF THE COMPOUNDS M2O

If the anomalous elements has one electron in the outer orbital s and subshell 
d completely (or almost completely) filled, then the element at the expense 
of s electron forms a linear molecule, such as a linear molecule oxide M2O, 
where M is the atom of metal (anomalous elements Cu, Pd, Ag, Pt, Au, 
Rg). However, due to the donor - acceptor bond linear molecule can form 
complex structures in the space. Can choose element Cu from second group 
of anomalous elements. Figure 1 shows an exemplary structure formed by 
linear molecules Cu2O

Each oxygen atom in the structure of Figure 1 bonded to four metal atoms 
(Cu). Two covalent bonds due to the formation of electron pairs divided: 
one s - electron metal atom and a p - electron atom of oxygen. In addition, 

Figure 1. The structure of the compound Cu2O. A black small circle is oxygen atom. 
A brown circle is copper atom.
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there are two more donor - acceptor chemical bond due to the transfer of 
two electrons from the s - orbital and two electrons from the p - orbitals of 
the oxygen atom to vacant quantum cell of orbital metal. Thus, oxygen atom 
acquires valence equal four. In addition, each metal atom is linearly between 
two oxygen atoms.

In this structure, oxygen atoms (except oxygen atoms located at the vertices 
of a cube) form structure is topologically equivalent to the structure of carbon 
atoms in the molecule of adamantane. As shown in the article of Zhizhin 
(2014a) on the basis the monograph of Zhizhin (2014b), the dimension of this 
molecule is 4. However, the two molecules comprising 10 oxygen atoms have 
free unallocated space. Therefore, if one set the task of finding the unit cell 
structure of copper oxide without filling cracks and gaps to help translation 
the entire space, one need to build polytopic prismahedron Zhizhin (2015b), 
with bases in the form polytopes corresponding to these molecules. Taking a 
line segment equal to the length of the edge of the cube, in which is inscribed 
the structure including 10 oxygen atoms, multiply the polytope corresponding 
to this structure for this segment. We obtain polytopic prismahedron of 
dimension 5. With this polytopic prismaehdron can fill space without gaps 
and clearances.

From the third group of anomalous elements we choose gold (Au). The 
outer shell of gold atom has one 6s - electron and a completely filled 5d - 
orbital. In the compound chlorine triphenylphosphine (Ph3P)AuCl of gold 
atom, giving one s - electron to chlorine atom, forms ion Au(Ph3P)

3
+  with 

trigonal coordination (Gillespie, 1972; Perrin, Armarego & Perrin, 1980). 
Following of Zhizhin (2016 b) can denoted phosphine molecule as a functional 
group of the compound.

Then ion Au(Ph3P)
3
+  represented in the form of three tetrahedrons with 

the center, having one common vertex - a gold atom. In the center of each 
tetrahedron is located phosphorus atom and the remaining vertices of the 
tetrahedrons are occupied introduced functional groups Ph3 (Figure 2).

The functional dimension of each tetrahedron with center is still equal to 
4. Thus, the ion Au(Ph3P)

3
+  is a collection of three polytopes of dimension 

4, having a common vertex. The assertion is proven
Theorem 1. The ion Au(Ph3P)

3
+  has dimension 5.

Proof. To prove the necessity of the three tetrahedrons with a common 
vertex to form a convex shape. Connect the vertices of a3, a4, a7 by line 
segments, forming a triangle a3 a4 a7. Connect also the three centers of the 
tetrahedrons with each other, forming a triangle a7 a11a13. Connect the center 
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of the tetrahedrons with vertices corresponding of the tetrahedrons and 
vertices in the grounds of the tetrahedrons, forming a hexagon a1 a2 a9 a10 
a5 a6 (thin lines on Figure 2). Define dimension polytope in Figure 5 on the 
Euler- Poincaré equation (Poincaré, 1895)

( ) ( ) ( ) ,− = − −
=

−

∑ 1 1 1
0

1
i
i

i

i

n

f P  (1)

fi is the number of the elements with the dimension i at polytope P; n is 
dimension of the polytope P.

To calculate the number of elements of large dimensions we turn first to 
a simple polytope, a part of a polytope in Figure 2. Temporarily excluded 
from Figure 2 the centers of the tetrahedrons – a11, a12, a13, and all edges 
emanating from these vertices. Then, the polytope has 13 vertices, i. e. 
f0=10. The number of edges of the polytope is sum the number edges of three 
tetrahedrons (6∙3=18), the number of edges connecting tetrahedrons at the 
base figure (3), the number of the edges connecting vertices of the tetrahedrons 

Figure 2. Ion Au(Ph3P)
3
+  . A white circle is gold atom. A black small circle is 

phosphorus atom. A black big circle is functional groups Ph3
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at top of Figures 2. Thus, the number of edges polytope without centers of 
the tetrahedrons equal 24, i.e. f1=24. The number of flat elements is sum 
of the flat faces of tetrahedrons (4∙3=12), 1 hexagon, 3 triangles between 
tetrahedrons at base of figure, 3 lateral tetragons, 4 triangles of tetrahedron at 
top of figure. Thus, the number of flat elements is 23, i.e. f2=23. The number 
of three - dimension elements is sum of 4 tetrahedrons, 3 figures between 
tetrahedrons, 1 hexagon at base and figure composed from boundary flat faces. 
Thus, the number of three - dimension elements is 9, i.e. f3=9. Substituting 
the values fi in equation (1), you can see that it holds for n = 4

10 – 24 + 23 – 9 = 0. 

Therefore, three tetrahedrons with common vertices is polytope with 
dimension 4.

For add centers in tetrahedrons the number of the vertices becomes equal 
13, i.e. (f0)c=13. For this there add the number of the edges: 4∙3=12 edges 
in tetrahedrons with centers, and 3 edges connecting centers. Thus, common 
number of edges on Figure 5 equal to 39, i.e. (f1)c=39. The number flat faces 
there increases on 18 triangles in the tetrahedrons, 4 triangles in tetrahedron 
a11a12a13a8, 6 tetragons with vertices part which are centers of the tetrahedrons. 
Thus, common number of flat faces on Figure 2 equal to 51, i.e. (f2)c=51. 
For add centers the number of three-dimensions faces increases on 4∙3=12 
tetrahedrons into tetrahedrons with centers,

tetrahedron a11a12a13a8, 

figure a1 a2 a9 a10 a5 a6 a11a12a13a8, 

prism a11a12a13a3a4a7, 

3 pyramids with vertex a8 (a8a1a2a12a11, a8a5a6a11a13, a8a9a10a12a13), 

3 prism (a1a2a3a7a11a12, a5a6a4a7a11a13, a9a10a3a4a12a13). 

Thus, common number of three - dimension faces on Figure 2 equal to 
30, i.e. (f3)c=30.

It is known from the preceding that the Figure 2 has polytopes of dimension 
4. Each tetrahedron with center there is polytope of dimension 4 and 3 
tetrahedrons without center, but with a common vertex, there is a polytope 
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of dimension 4. In addition, in Figure 2 between any two tetrahedrons with 
the center is polytope dimension 4. Obviously, such polytopes are 3. That to 
proof this statement one consider any polytope from them. For example, the 
polytope a4a5a6a7a11a13 (Figure 3).

Figure 3 has 7 vertices (f0=7);

15 edges

a11a7, a11a8, a11a6, a11a13, a7a6, a7a8, a7a4, a8a4, a8a13, a8a5, a6a5, a13a5, a4a13, 
a4a5, a8a6; 

14 flat faces

Figure 3. The polytope a4a5a6a7a11a13
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a11a8a6, a11a7a8,a6a7a8, a11a7a6, a8a5a13, a8a13a4, a5a13a4, a8a5a4, a6a8a5, a11a8a13, 
a7a8a4, a6a11a13a5, a6a5a7a4, a11a7a13a4; 

6 three-dimension faces

a6a11a8a7, a8a5a13a4, a7a8a11a13a4, a6a11a8a13a5, a11a6a7a13a5a4, a6a7a8a4a5. 

Therefore, for Figure 3 are

f f f f
0 1 2 3

7 15 14 6= = = =, , , . 

Substituting the values fi in equation (1), you can see that it holds for n = 4

7 – 15 + 14 – 6 = 0. 

This proof that Figure 3 has dimension 4.
As the figures in polytope on Figure 2 is 3, so common number polytopes 

with dimension 4 in Figure 2 equal to 7, i.e. (f4)c=7. Substituting the values 
(fi)c in equation (1), you can see that it holds for n = 5

13 – 39 + 51 – 30 + 7 = 2. 

THE DIMENSION OF THE WURTZITE

In the structure of wurtzite every atom of one component has a tetrahedral 
environment of the atoms of the other component. This results to arrangement 
of tetrahedrons with center so that vertex one tetrahedron is the center of 
another tetrahedron (Figure 4).

If to carry construction of atoms in Figure 4 on this principle, can obtain a 
spatial lattice, the unit cell the lattice is a convex shape it is shown in Figure 5.

This figure is the unit cell structure of the wurtzite. In Figure 5, solid 
lines represent chemical bonds of the atoms, and the dotted lines are only 
geometric sense outlining contours of the figure. One define the dimension 
of this figure by the Euler-Poincaré equation (1). The number of vertices of 
this figure is equal to 14, i.e. f0=14. The number of edges is equal to 29, i.e. 
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Figure 4. The tetrahedral coordination atoms in wurtzite. A white circle is atom of 
one component. A black circle is atom of other component

Figure 5. The unit cell of the wurtzite
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f1=29. The number of two - dimensional faces is the sum of the number of 
triangles (8) and number of quadrangles (13), i.e. f2=21. The number of three 
- dimensional faces is equal to 6. The figures are abcghkon, gceruo, cefump, 
cdfulm, bcdklu, and all shape on Figure 5 without inner partitions, i.e. f3=6. 
Substituting these values fi, (i=0,1,2,3) in the Euler-Poincare equation (1), 
one can find that it is satisfied for n = 4

14 – 29 + 21 – 6 = 0. 

Thus, the dimension of polytope on Figure 5 is equal to 4, i.e. the unit cell 
structure of the wurtzite has dimension 4.

THE DIMENSION OF THE FLUORITE

On example of compound MnCl2 one look at the structure of fluorite. Isolate 
magnesium atoms lying at the centers of the cube faces (•), and chlorine 
atoms (▲), forming a smaller cube inside the bigger cube, which are located 
at the vertices of magnesium atoms (Figure 6).

Figure 6. The unit cell of the fluorite
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From Figure 6 it follows that the number of vertices is 14, i.e. f0=14, 
the number of edges is 36, i.e. f1=36, the number of flat faces is sum from 
number of triangles (24) and number of rectangles (6) (smaller cube faces), 
i.e. f2=30. The number three - dimension shape to sum up from smaller cube 
(1), pyramids on its faces (6) and figure (22) without inner parts (1), i.e. f3=8. 
Substituting these values fi, (i=0,1,2,3) in the equation (1), you can find that 
it is satisfied for n = 4

14 – 36 + 30 – 8 = 0. 

Thus, the dimension of polytope on Figure 6 is equal to 4, i.e. the unit cell 
structure of the fluorite has dimension 4.

THE STRUCTURE AND HIGHER 
DIMENSION OF ALKALINE METALS

In the vast majority of compounds involving alkali metals (elements of first 
group of the Mendeleev table) the chemical bond is preferably ionic. Alkali 
metals have an external electron shell ns1. They easily give bake one electron 
exhibiting a degree of oxidation +1. Salts of alkali metals in the condensed 
state usually have a cubic lattice, forming a structure of type rock salt structure.

However, Oganov and his co - workers have found that under high pressure 
the structure of many compounds, including alkali metal compounds, acquires 
new unexpected properties (Zhung et al., 2013; Zhou et al., 2012; Zhu, 
Oganov & Lyakhov, 2013). In particular, it is shown that the structure of the 
sodium - chlorine compounds varies significantly (Zhung et al., 2013). The 
elementary cell of this structure is a cube with sodium atoms at its vertices, 
and an icosahedron with a center with chlorine atoms at its vertices is located 
inside the cube. This compound is denoted Pm3-NaClx.

Theorem 2 (Zhizhin, 2016b). The dimension of the unit cell Pm3-NaClx 
is 5.

In the proof of Theorem 2 one shell use equation Euler - Poincare (1).
Figure 7 shows the structure of this compound, where sodium atoms are 

located at the vertices of the cube 13 -19, and chlorine atoms are located at 
the vertices 1 - 12, 21.

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



69

Dimension of Chemical Compounds of Atoms Metals With Atoms No Metals

Note that the icosahedron with the center already has dimension 4. Indeed, 
the icosahedron has 12 vertices, 30 edges, 20 flat faces. If you enter a center 
in the icosahedron (point 21), then f0=13, f1=42, f2 = 50 for it. In addition, 
20 tetrahedrons are added, taking into account that they are located in the 
icosahedron, we obtain f3=21. Substituting the obtained values of fi into 
equation (1), you can find that it is satisfied for n = 4

13 - 42 + 50 - 21 = 0. 

This proves that the icosahedron with the center has dimension 4.
From it follows that the dimension of the polytope with 21 vertices in 

Figure 7 is greater than 4. To determine this dimension, let us calculate the 
number of elements of different dimension entering into this polytope. Thus, 
for this polytope f0=21. The number of edges is the sum of the number of 
edges of the icosahedron (30), the number of edges issuing from the center 

Figure 7. The structure of compound sodium and chlorine at high pressure
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to the vertices of the icosahedron (12), the number of edges of a cube (12), 
the number of edges issuing from the vertices of the cube to the vertices of 
the icosahedron (24). Hence, f1=78.

Two - dimensional elements include trapezoids:

13 - 8 - 7 - 14, 1 - 3 - 17 - 16, 1 - 3 - 18 - 20, 19 - 8 - 7 - 15, 11 - 12 - 18 - 17, 
11 - 12 - 19 - 13, 6 - 5 - 20 - 16, 5 - 6 - 14 - 15, 18 - 10 - 9 - 13, 9 - 10 - 20 
- 14, 17 - 2 - 4 - 19, 2 - 4 - 15 - 16. 

Total number of trapezoids is 12.
In the number of two - dimensional elements includes also triangles:

1.  The triangles of the outer surface of the icosahedron (20).
2.  The triangles inside the icosahedron ((20 ∙ 3) / 2 = 30).
3. Triangles of tetrahedrons resting on the faces of icosahedrons (with the 

exception of the icosahedron faces themselves) having common vertices 
with a cube:

13 - 8 - 9, 13 - 11 - 9, 13 - 8 - 11, 14 - 7 - 9, 14 - 7 - 6, 14 - 9 - 6, 15 - 4 - 5, 
15 - 4 - 7, 15 - 5 - 7, 19 - 4 - 8, 19 - 12 - 8, 19 - 12 - 4, 17 - 1 - 12, 17 - 1 - 2, 
17 - 12 - 2, 16 - 3 - 2, 16 - 2 - 5, 16 - 3 - 5, 18 - 1 - 11, 18 - 1 - 10, 18 - 10 - 
11, 20 - 3 - 10, 20 - 3 - 6, 20 - 6 - 10; 

all these triangles is 24.

4. Triangles of pyramids resting on the cube’s faces

13 - 1 - 18, 17 - 12 - 19, 18 - 17 - 1, 20 - 3 -16, 16 - 5 - 15, 20 - 6 - 14, 19 - 
8 - 13, 14 - 7 - 15, 18 - 10 - 20, 14 - 7 - 15, 17 - 2 - 16, 19 - 4 – 1; 

all of these triangles is 12.
The total number of triangles is

20 + 30 + 24 + 12 = 86. 

Also, in the number of two - dimensional elements includes 6 squares of 
cube faces. The total number of two - dimensional elements is
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f2 = 12 + 86 + 6 = 104. 

In the number of the three - dimensional elements includes:

• 1 cube.
• 1 icosahedron.
• 20 tetrahedrons in the icosahedron.

8 tetrahedrons at the tops of the cube

17 - 1 - 2 - 12, 16 - 2 - 3 - 5, 15 - 4 - 5 - 7, 14 - 6 - 7 - 9, 13 - 11 - 8 - 9, 18 - 
1 - 12 - 11, 19 - 12 - 4 - 8, 20 - 3 - 6 – 10. 

6 pyramids with a base face of the cube

13 - 11 - 18 - 19 - 12 - 17, 19 - 17 - 4 - 2 - 15 - 16, 16 - 15 - 5 - 6 - 14 - 20, 
13 - 18 - 10 - 9 - 20 - 14, 18 - 17 - 1 - 3 - 20 - 16, 13 - 19 - 8 - 7 - 14 – 15. 

12 pyramids on the trapezes of these pyramids

18 - 17 - 11 - 12 - 1, 13 - 18 - 11 - 10 - 9, 11 - 12 - 13 - 19 - 8, 20 - 14 - 10 
- 9 - 6, 17 - 16 - 1 - 3 - 2, 18 - 20 - 1 - 3 - 10, 13 - 14 - 9 - 8 - 7, 19 – 15 - 8 
- 7 - 4, 14 - 15 - 7 - 6 - 5, 20 - 16 - 6 - 5 - 3, 16 - 15 - 5 - 2 - 4, 19 - 17 - 12 - 
2 - 4. 

The total number of three - dimensional elements is

f3 = 2 + 20 + 8 + 6 + 12 = 48. 

The four - dimensional element, as already proved, is an icosahedron with a 
center. There are other four - dimensional elements. The second such element 
is the polytope in Figure 7 after removing the center. Indeed, in this case

f0 = 21 - 1 = 20, f1 = 78 - 12 = 66, f2 = 104 - 30 = 74, f3= 48 – 20 = 28. 

Substituting these values of fi in the equation (1), you can find that it is 
satisfied for n = 4

20 - 66 + 74 - 28 = 0. 
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This proves that the figure in Figure 7 after removing the center is a 
polytope of dimension 4. One can find three more elements of dimension 4 
in Figure 7 if separate the prism connections on the parallel faces of the cube: 
upper and lower, right and left, front and back. Since these constructions are 
compatible with a rotation by 900, we prove the desired equality for only one 
of these constructions, for example, for the upper and lower faces of the cube. 
This construction is shown in Figure 8.

In it the number of vertices is 16, i. е. f0 = 16. The number of edges consists 
of the number of edges of the cube (12); the number of edges of the cube in 
the upper part (without the edges of the cube) is

Figure 8. Four - dimensional part of the unit cell of the compound sodium and 
chlorine at high pressure
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17 - 2, 2 - 16, 17 - 1, 1 - 2, 2 - 3, 1 - 3, 3 - 20, 3 - 10, 1 - 10, 1 - 18, 18 - 10, 
10 - 20, 3 - 16, 

i.e. 13 edges; the same number of edges (13) in the lower part; 2 connecting 
(vertical) edges 2 - 4, 10 - 9. Thus, the total number of edges is f1 = 40.

In the number of two - dimensional elements includes:

• 6 faces of the cube.
• 10 facets of the pyramids in the upper part of the structure and 2 

triangles from the pyramid with a crouching upper bound of the cube, 
i.e. 12 two - dimensional elements.

• 12 two - dimensional elements in the lower part of the structure.
• 2 vertical trapezes at the back wall of the cube and 2 vertical trapezes 

near the front wall of the cube.

Thus, the total number of two - dimensional elements is f2 = 34.
In the number of the three - dimensional elements in Figure 8 includes:

• 2 pyramids with a trapezoidal base and one pyramid with a cube face 
at the top of the structure.

• 3 the same pyramids in the lower part of the structure.
• 2 pyramids with the bases of the back and front walls of the cube.
• 1 cube.

the figure left from the cube after deducting all the pyramids from it.
Thus, the total number of three - dimensional elements f3 = 10. Substituting 

the values   of fi, determined for the polytope in Figure 8, in the equation (1) 
we find that it is satisfied for n = 4

16 - 40 + 34 - 10 = 0. 

This proves that the construction in Figure 8 has dimension 4. Taking into 
account the existence of two more similar constructions and the impossibility 
of the existence of other similar constructions, we conclude that for the 
polytope in Figure 7 f4 = 5. Substituting the values of fi, determined for the 
polytope in Figure 7, in the equation (1), we find that it is satisfied for n = 5

21 - 78 + 104 - 48 + 5 = 2. 
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This proves that the polytope in Figure 7 has dimension 5.
It should be expected that other alkali metal salts at high pressure have 

structures with elementary cells of higher dimension. Besides atoms of alkali 
metals enters into complex compounds with many of different elements. 
We shall see later that these compounds also have higher dimensionality at 
normal pressures.

THE STRUCTURE AND HIGHER DIMENSION OF 
COMPOUNDS ELEMENTS OF SECOND GROUP

The elements of the second group of the periodic table have on the outer shell 
two of the valence electrons and can form linear molecules. For example, 
beryllium forms linear molecules with halogens BeF2, BeCl2, BeBr2, BeI2. 
However, in the vast majority of its compounds, beryllium manifests around 
itself tetrahedral coordination. An important example of such a compound 
is beryllium oxide. This compound is a valuable optical material. It is used 
in nuclear power engineering, microelectronics, and laser technology. The 
structure of this compound is a wurtzite structure. It shows tetrahedral 
coordination both around the beryllium atom and around the oxygen atom. It 
turned out to be equal to 4. Thus, the dimension of the beryllium oxide molecule 
is 4. For beryllium oxide, atoms of beryllium are located at the vertices b, 
c, e, h, l, m, o of the polytope Figure 2, and oxygen atoms are located at the 
vertices a, d, g, k, p, f. The nature of the chemical bond in beryllium oxide 
is still open. Estimates of the relative contribution of the ionic and covalent 
bonds are contradictory (Sholl & Walter, 1969; Hidaka, 1976). In any case, 
it is impossible to explain the observed structure of beryllium oxide by any 
distribution of electrons, divided or unshared electron pairs over elementary 
quantum cells of the adopted system of electronic orbitals. However, this also 
applies to compounds of the wurtzite type.

When the beryllium oxide is an extended crystalline body, then in order 
to build a model of such a body, the polytope Figure 2 need to multiply by 
an edge and to obtain a polytopic prismahedron of dimension 5.

In crystalline beryllium fluoride, the linearity of the combination of 
beryllium atoms with fluorine atoms and the tetrahedral coordination of 
beryllium atoms with one another surprisingly are combined. In this case, a 
structure is formed topologically equivalent to the adamantane molecule. The 
difference from the adamantane molecule is the linear arrangement between 
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the beryllium atoms of the fluorine atoms (Figure 9). Since the adamantane 
molecule has a dimensionality of 4 (Zhizhin, 2014a), the unit cell dimension 
in crystalline beryllium fluoride is also 4.

The second element in the second group of the periodic table after 
beryllium is the element of magnesium. Like beryllium, in accordance with 
the arrangement in the second group, it has two valence s - electrons on 
the outer layer. However, in contrast to beryllium, it has a completely filled 
pre - extrinsic layer of electrons. This layer includes two s - electrons and 
six p -electrons. These four electron pairs, starting from each other, create 
tetrahedral coordination around the magnesium atom. Taking vacant quantum 
cells of ligands, they increase the possible value of valence of magnesium 
to six. This gives magnesium more chemical activity especially important 
for living organisms. It participates in all metabolic processes in living 
organisms. Magnesium is one of the basic elements of the cell. It stimulates 
the work of enzymes that break down proteins and other nutrients. Magnesium 
participates in the harmonious work of all body systems, especially the central 
and peripheral nervous system, affects the growth of estrogen hormones and 
blood coagulability.

Figure 9. The structure of crystalline beryllium fluoride
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Even for the chemical bonds of magnesium with valence 2, compounds 
of higher dimension are formed. Consider a molecule of bis (neopentyl) 
magnesium Mg(C5H11)2 (Gillespie & Hargittai,, 1991). Magnesium in this 
molecule exhibits a valence of 2. In each group C5H11, the carbon atoms form 
the geometric form of a tetrahedron centered. This already gives the dimension 
of this form equal to 4. In addition, around each carbon atom there is also a 
tetrahedral coordination of other atoms (hydrogen and carbon). Each group 
C5H11 can be represented in the form of a tetrahedron with a center in which 
its vertices contain functional groups CH3, and in the fourth (attached to the 
magnesium atom) is a functional group CH2. At the center of the tetrahedron 
is a carbon atom. Then the bis (neopentyl) magnesium molecule has the form 
of two tetrahedrons with a center connected to each other by a magnesium 
atom (Figure 10). Functional groups CH3 are located in the vertices a1,c1,d1, 
a2,c2,d2; functional groups CH2 are located in the vertices b1,b2; at the points 
o1,o2 are carbon atoms; at the point o there is a magnesium atom.

Figure 10. The structure of bis(neopentyl) magnesium molecule
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Valentine bonds are indicated in Figure 10 with a brown color. The remaining 
edges (black) serve to form a convex figure (polytope), the dimension of 
which must be established.

Theorem 3. The dimension of bis(neopentyl) magnesium molecule equal 
to 6.

Proof. For proof of theorem 3 we noted that polytope on Figure 10 is 5 
– cross – polytope with centrum (Figure 11).

Comparing Figures 10 and 11, we see that these figures are topologically 
equivalent, that is, in Figure 11, the same vertices are shown as in Figure 10. 
Moreover, each of the corresponding vertices in Figure 11 is incidental to the 
number of edges as in Figure 10 and the connection of vertices by edges in 
Figure 11 is topologically the same as in Figure 10. If we denote in Figure 
11 the edges issuing from vertex O to other vertices in green, the remaining 
figure, as can be seen, is the 5 - cross - polytope, given in the monograph by 
Zhizhin, (2014b). In addition, the vertex O is the center of 5 - cross - polytope. 
As follows from Zhizhin (2014b) 5 - cross -polytope has 10 vertices (f0=10), 
40 edges (f1= 40), 80 triangular faces (f2= 80), 80 tetrahedrons (f3= 80), 32 
4 - cross - polytopes (f4= 32). The introduction of the center into the 5 - cross 
- polytope adds, according to Figure 11, 10 edges

Figure 11. The 5 – cross – polytope with centrum
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oa ob oc od oo ob oa oc od oo
1 1 1 1 1 2 2 2 2 2
, , , , , , , , ,( ) , 

24 triangular faces

o b o b a o b oa b od b oc b oc c d o c od c oa c oo
1 1 1 1 1 2 1 2 1 2 1 1 2 2 2 1 2 2 2

, , , , , , , , ,
22 2 2 2 2 2 2

2 2 2 2 2 2 2 1 2 1 1 1

, , , ,

, , , , , ,

o d o o oa o ob

b a o b od b oc b oc b d o c od c
11 2 1 2 1 1 1 1 1 1
od c oa c oo a o o o d o, , , ,















, 

28 tetrahedrons

b od a b c oo b d oa b a d o b od a b oa c b od c c
1 2 2 1 1 1 1 1 1 1 1 2 1 1 2 1 2 2 1 1 1 2

, , , , , , , ooa d c b oo

c a od c a d o c oa d c od b c oa b c o
1 1 2 2 2

2 2 2 2 1 2 2 2 1 2 1 1 2 2 2 1

, ,

, , , , , aa d c a od c d a o c oa d c od b c od b

o a d o b od
2 2 1 1 1 1 1 2 1 1 2 1 2 2 1 1 1

1 1 1 2

, , , , , ,

,
11 1 2 2 2 2 2 1 2 2 1 2 1 1 2 2 2 2 2 2
a b d oa b a d o b od a b oa c b od c o d a o, , , , , ,













, 

18 4 - simplexes

b a od c b c d a o b o a oc b od o c b od a o c d oa b
1 1 2 2 1 1 1 1 1 1 1 2 1 2 2 2 1 2 2 2 1 1 2

, , , , ,
22 1 1 1 2

1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1

, ,

, , , ,

c o d b o

c oa o b c oo d o c b a d o c o d ob c oa oo b c oa d o b a od c b od o c

b od a o o c od a b
1 1 2 1 1 1 2 2 1 1 2 1 1 1

2 1 1 1 2 2 2 2 2

, , , ,

,













, 

6 5 - simplexes

o b a od c c od a o b c od a o b b oa o d c c od a o b
1 1 1 1 1 2 2 2 2 2 1 2 2 2 2 2 1 1 1 1 2 1 1 1

, , , ,
11 1 2 2 2 2
,b oa o d c( ) . 

Adding the obtained quantities of geometric figures of different dimensions 
connected with the center of the 5 - cross - polytope to the corresponding 
numbers of figures not connected with the center of the 5 - cross - polytope, 
we obtain the total number of geometric figures of different dimensions in 
the 5 - cross - polytope with center:

f0=11, f1=50, f2=104, f3=108, f4=50, f5=7 
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Substituting these values in the equation (1), we find that the Euler-Poincare 
equation is satisfied for n = 6

11 – 50 + 104 – 108 + 50 -7 =0. 

This proves that a 5 - cross - polytope with center has dimension 6.
It should be noted that the above evidence accurately lists (in view of the 

work of Zhizhin, 2014b) all the 108 three - dimensional figures included in 
the 6 - dimensional 5 - cross - polytope with the center. This is significantly 
different from the proof of the existence of 4 - dimensional 100 - cell and 
600 - cell cells in Coxeter’s work (Coxeter, 1963), for which the direct 
enumeration of three - dimensional figures included in these polytopes has 
not yet been received. Therefore, the question of proving the existence of 
these 4 - dimensional polytopes remains open.

If the electron pairs of magnesium at the second energy level enter into a 
chemical bond, then its valence is more than two. For example, in Grignard 
reagent the magnesium valence is 4 and in the vicinity of magnesium atom 
there is tetrahedral coordination. While the nearest neighborhood of the 
magnesium atom has a dimension of 4, and with the account of the attached 
groups of atoms this dimension is even higher. An interesting example is the 
complex magnesium ion Mg(OAsMe3) 5

2+ , Me=CH3. In this compound, 
magnesium exhibits a valence of 5. In this case, the nearest environment of 
magnesium is of dimension 5. Indeed, the nearest environment of magnesium 
by oxygen atoms has the form of a 4 - simplex with a center in the magnesium 
atom (Figure 12 ). At the vertices a, b, c, d, e of the polytope, in Figure 12, 
there are oxygen atoms, in the vertex o there is a magnesium atom. The 
valence bonds are indicated in Figure 12 with a brown color, the other edges 
(black) are needed to create a convex figure in space. The vertices together 
with the connecting ribs form a 4 - simplex. The addition of a magnesium 
atom and valence bonds converts this polytope into a 4 - simplex with a 
center.

In Figure 12 can to indicate 6 vertices (f0 = 6); 15 edges (f1 = 15);

20 trigonal faces

(abc, aeb, abo, abd, bcd, bco, bce, aeo, aed, aec, edo, edc, edb, dco, dca), f2 
= 20; 
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15 tetrahedrons

(abed, abec, abcd, dbce, aecd, obcd, oecd, aoed, aoeb, aobc, boed, coae, 
doeb, eobc, aocd), f3 = 15; 

6 4 - simplexes

(abcde, abedo, abeco, abcdo, dbceo, aecdo), f4 = 6. 

Substituting values fi into equation (1), we find that the Euler - Poincaré 
equation is satisfied for n = 5

6 – 15 + 20 – 15 + 6 = 2. 

This proves that a 4 - simplex with center has dimension 5. If we take into 
account the presence of other atoms in the ion Mg(OAsMe3) 5

2+ , then its 
dimension will be even higher.

Such compounds can form other alkaline - earth elements, i. e. calcium 
and barium.

Figure 12. The 4 - simplex with centrum
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THE STRUCTURE AND HIGHER DIMENSION OF 
COMPOUND ELEMENTS OF THE GROUP THREE (a)

The first element of group 3a of the element table is boron. Like all elements 
of this group, it has two s - electrons and one p - electron on the outer layer. 
Boron does not have vacant d - and f - orbitals, and there are not several 
electron pairs on the pre - existing layer, as, for example, for the atoms of 
alkaline - earth elements. However, the property of the collective interaction 
of electron pairs is also manifested here, but in a slightly different way 
compared to magnesium. Here pairs of electrons of the second energy level of 
several boron atoms interact, creating (repelling from each other) tetrahedral 
coordination of boron atoms. Therefore, in the compound B4Cl4, the boron 
atom has an effective valence of 4, and not three, which would correspond 
to the group number (Figure 13).

Figure 13. The structure of the B4Cl4 molecule
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At the vertices g, h, f, e in Figure 13 boron atoms are located, and at the 
vertices a, b, c, d chlorine atoms arranged.

Theorem 4. The B4Cl4 molecule has dimension 4.
Proof. In Figure 13 there is eight vertices, f0 = 8. The number of edges is 16

(ab, bc, cd, ad, bd, ac, gh, hf,ef, he, gf, eg, bh, fc, ed, ag), f1= 16. 

The number of elements of dimension 2 is 14

(triangles abd, bcd, abc, acd, ghe, hef, ghf, gfe 

and

quadrangles aghb,aged, hbed, hbfc, efcd, hfbc), f2= 14. 

The number of elements of dimension 3 is 6

(tetrahedrons abcd, ghef and prismatoides abhged, hbedbfc, aghbfc, gefadc), 
f3= 6. 

On Figure 13 the edges correspondent of chemical bounds is indicated 
brown, remain edges (black) it is need for creating convex body. Substituting 
the values of the number of elements of different dimension in the equation 
Euler - Poincaré (1), we obtain

8 – 16 + 14 - 6 = 0 . 

We find that it holds for n = 4. This proves that the figure who projection 
is shown in Figure 13 there is polytope of dimension 4.

Due to the interaction of electron pairs of several atoms, formation of 
other compounds is also possible. For example, in Figure 14. The image 
of the B6Cl6 molecule is shown. Here, also, the edges corresponding to the 
chemical bonds is indicated in brown, the remaining edges are necessary for 
obtaining a convex figure.

In the compound, both the boron atoms and the chlorine atoms have 
octahedral coordination. The effective valence of boron in this compound 
is 5. In the polytope in Figure 14, boron atoms are located at the vertices 
a1,b1,c1,d1,e1,f1 and hydrogen atoms are located at the vertices a2,b2,c2,d2,e2,f2.

Theorem 5. The B6Cl6 molecule has dimension 4.
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Proof. In this case the number of elements of zero dimension is f0 = 12. 
The number of elements of dimension one is

f1 = 12+ 12+ 6 = 30. 

The number of elements of dimension 2 is sum of the number small 
triangles 8 and big triangles 8, add 12 quadrangles, i. e. f2 = 28. The number 
of elements of dimension 3 is sum two octahedrons and eight prisms, i.e. f3 
= 10. Substituting the values of numbers of elements of different dimensions 
in the equation (1), we obtain

Figure 14. The structure of the B6Cl6 molecule
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12 – 30 + 28 – 10 = 0. 

We find that it holds for n = 4. This proves that the figure 8 is polytope 
of dimension 4.

Elements Al, Ga, In and Tl have vacant d - and f - orbitals and tend to 
supplement their valence shell to 6 electron pairs, and in several compounds 
In and Tl have more than 6 electron pairs. These elements in many compounds 
exhibit tetrahedral coordination in the vicinity of the atom. Taking into account 
the possible addition of other elements to tetrahedral coordination, complex 
compounds with high dimensionality can arise. For example, aluminum (a 
biogenic element) forms a cyclic compound [(CH3)2AlF]4 (Figure 15).

If we form a convex figure from Figure 15, we get the polytope shown in 
Figure 16. At the vertices of a1,a4,a7,a10 fluorine atoms are located. At the 
vertices a13,a14,a15,a16 aluminum atoms are located. Functional groups CH3 
are located in the a2,a3,a5,a6,a8,a9,a11,a12 vertices.

Theorem 6. The polytope of cyclic compound [(CH3)2AlF]4 has dimension 
5.

Proof. The polytope in Figure 16 has 16 vertices, f0 = 16; 52 edges, f1 = 
52. In addition, it has 4 polytopes of dimension 4 each (tetrahedrons with a 
center)

a a a a a a a a a a a a a a a a a a a
1 2 3 4 14 4 5 6 7 15 7 8 9 10 16 10 11 12 13

, , , . 

Figure 15. A cyclic compound [(CH3)2AlF]4
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Each tetrahedron with a center has 10 triangular faces. This gives 40 
triangular faces in the polytope 10. In addition, three triangular faces are 
formed at the vertices a1,a4,a7,a10 with horizontal and vertical sides. This 
gives another 4 ∙ 3 = 12 triangles. There are 4 more rectangular faces

(a a a a a a a a a a a a a a a a
13 14 15 16 6 2 8 12 11 5 3 9 1 7 10 4

, , , ) 

and 12 trapezoids

(a a a a a a a a a a a a a a a a a a a a a a a
3 5 15 14 3 2 5 6 15 2 6 14 6 8 15 16 6 8 5 9 15 5 9

, , , , , aa
16

, 

a a a a a a a a
11 9 8 12 9 11 13 16

, , a a a a a a a a a a a a a a a a
12 8 13 16 2 12 14 13 12 2 3 11 3 11 13 14

, , , ). 

Figure 16. The convex polytope of cyclic compound [(CH3)2AlF]4
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Thus, the total number of two - dimensional faces 68, f2 = 68. Each 
tetrahedron with a center has 5 tetrahedrons. Therefore, the total number of 
tetrahedrons in Figure 10 is 5 ∙ 4 = 20. Each of the vertices a3,a7,a4,a10 is 
the vertex of the three pyramids. The total number of these pyramids is 12:

a a a a a a a a a a a a a a a a a a a a a a a a
5 15 3 4 14 6 2 3 4 5 4 2 6 15 14 1 2 3 12 11 1 14 3

, , , ,
111 13
a ,  

a a a a a a a a a a a a a a a a a a a a a a
10 12 11 8 9 10 12 13 8 16 10 11 13 16 9 7 8 9 5 6 7

, , , ,
99 16 5 15 7 8 16 6 15
a a a a a a a a, . 

There are four triangular prisms:

a a a a a a a a a a a a a a a a a a a a a a a
2 3 14 5 6 15 15 5 6 8 9 16 11 12 13 8 9 16 2 3 14 11

, , ,
112 13
a ,  

and six quadrangular prisms:

a a a a a a a a a a a a a a a a a a a a a
13 14 15 16 3 5 9 11 13 14 15 16 2 6 8 12 13 14 15 16 1

, , aa a a

a a a a a a a a a a a a a a a a a a a a a a
4 7 10

2 6 8 12 3 5 9 11 1 2 4 6 7 8 10 12 1 3 4 5 7

,

, ,
99 10 11
a a

. 

Then, the total number of three -dimensional figures is 42, f3 = 42.
In addition to the 4 tetrahedrons mentioned with the center, as four - 

dimensional figures, there are another four - dimensional figures. In particular, 
this is a figure (F), shown in Figure 17. Indeed, this figure has 12 vertices, 
f0 (F) = 12; 24 edges, f1 (F) = 24; 19 two - dimensional faces, f2(F) = 19; 
and 7 three - dimensional figures, f3(F) = 7. Substituting these values in the 
Euler - Poincaré equation (1), we obtain that it is satisfied for n = 4

12 – 24 + 19 – 7 = 0. 

This proofs that polytope F has dimension 4.
Four identical polytopes of dimension 4 exist in a neighborhood of each 

of the vertices a1,a4,a7,a10. One of these polytopes (L) is depicted in Figure 
18. It has 7 vertices, f0 (L) = 7; 15 edges, f1(L) = 15; 14 two - dimensional 
faces, f2(L) =14; and 6 3D facets, f3(L) = 6. Substituting these values into the 
Euler - Poincaré equation (1), we obtain

7 – 15 + 4 – 6 = 0, 
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Figure 17. The 4 - dimension polytope F included in Figure 16

Figure 18. The 4 - dimension polytope L included in Figure 16
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i.e. the equation (1) hold for n = 4 and all the polytopes L has dimension 4.
Three more topologically equivalent polytopes of dimension 4 can be 

distinguished from Figure 16. Each of these polytopes consists of a rectangular 
prism and four tetrahedrons connected to each other in a cycle along the 
vertices of a1,a4,a7,a10. These are polytopes

a a a a a a a a a a a a a a a a a a a a a a a
1 4 3 14 5 15 7 16 8 10 13 12 1 2 14 4 15 6 7 16 9 10 11

, aa a a a a a a a a a a a a
13 1 2 3 4 5 6 7 8 9 10 11 12
, . 

One of them (polytope K) is shown in Figure 19.

The K polytope has 12 vertices, f0(K) = 12; 32 edges, f1(K) = 32; 31 two 
- dimensional faces, f2 (K) = 31; and 11 3D facets, f3(K) = 11. Substituting 
these values into the Euler - Poincaré equation (1), we obtain

Figure 19. The 4 - dimension polytope K included in Figure 16
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12 – 32 + 31 – 11 = 0, 

i. e. the equation (1) hold for n = 4 and all the polytopes K has dimension 4.
Thus, the polytope on Figure 16 has 11 polytopes of dimension 4. Therefore, 

for polytope on Figure 16 the Euler - Poincaré equation (1) has face

16 – 52 + 68 – 42 + 11 = 2, 

i.e. it holds for n = 5.

THE DIMENSION OF THE FE – PORPHYRIN

In the center of myoglobin globule (Lehninger, 1982) is hemo - group 
containing Fe - porphyrin (iron atom surrounded by five nitrogen atoms).

Theorem 7. The dimension of the Fe - porphyrin before joining the oxygen 
atom is equal to 5.

Proof. Consider the first coordination sphere of the iron atom in the center 
of the porphyrin (Zhizhin, 2015a), since only in the first coordination sphere 
of atoms are linked by a covalent bond, and in the following focal areas of 
intermolecular bonds between atoms. Before joining of the oxygen atom the 
first coordination sphere of Fe - porphyrin may be represented as a plane 
projection (Figure 20), at the vertices a, c, d, f of which the nitrogen atoms 
of the porphyrin are located, an iron atom is located at the vertex g, and the 
nitrogen atom of the nearest histidine residue is located at the vertex b. The 
deflection of vertex g from the center of the rectangle acdf corresponds to 
a certain “dome” character of porphyrin (Steed & Atwwod, 2007; Lehn, 
1998). The projection in Figure 12 represents some polytope (let`s denote 
A - polytope).

The A – polytope has six elements with dimension 0, f0(A)=6. There are 
vertices a, c, d, f, g, b. The number of elements with dimension 1 is 
f A C
1 6

2 15( ) .= =  It are edges

ab, bc, bd, bf, bg, ac, cd, fd, af, fc, ad, ag, gc, fg. 

The number of elements with dimension 2 is f A C
2 6

3 20( ) .= =  It are 
triangles
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abf, bfg, bgd, dbc, bga, bgc, agc, dfg, adc, acf, fcd, bgd, fbg, agd, fgc, fbc, 
abd, afg, gcd, afd). 

The number of elements with dimension 3 is f A C
3 6

4 15( ) .= =  It are 
tetrahedons

abgf, bsgd, abfc, abcd, bfcg, abdg, acfg, abdf, acdg, bfdg, abgc, fbcd, fgcd, 
afgd, afcd). 

The number of elements with dimension 4 is f A C
4 6

4 6( ) .= =  It are 
simplexes

abcdf, adcdg, abdfg, abcfg, bcdfg, acdfg. 

Substituting the received numbers of elements of different dimensions in 
the equation (1) at a value of n = 5, we obtain

Figure 20. The first coordination sphere of Fe - porphyrin before binding oxygen
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6 - 15 + 20 - 15 + 2 = 2, 

i.e. the Euler - Poincare equation is satisfied for A - polytope with n = 5. This 
is a simplex of dimension 5.

Theorem 8. The dimension of Fe - porphyrin after joining of oxygen 
atom is 6.

Proof. The first coordination sphere after joining oxygen atoms is 
complemented by one vertex e (Figure 21).

Figure 21. The first coordination sphere of Fe - porphyrin after joining of oxygen atom
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“Dome” character of Fe - porphyrin after joining of oxygen atom decreases, 
but it is not possible to affirm that it disappears completely (Steed & Atwood, 
2007). Therefore, the deflection of vertex g from the center of rectangle in 
Figure 21 quality is maintained qualitatively. Taking into account the significant 
difference between the geometry and mass of the groups attached to the iron 
atom at the top and bottom, it is shown in Figure 21 that the vertices e and 
b do not lie on the same line. In the polytope in Figure 21 (B - polytope) the 
number of elements of zero dimension is increased compared with to the 
A-polytope by one vertex e, f0(B)=7. This leads to the increase in the dimension 
of the polytope by 1, as the number of edges issuing from each top also 
increases by 1. In the polytope B the number of elements of dimension 1 is 
f B C
1 7

2 21( )= =  (edges). The number of elements with dimension 2 is 
f B C
2 7

3 35( )= =  (triangles). The number of three-dimensional figures is 
f B C
3 7

4 35( )= =  (tetrahedrons). The number of elements with dimension 4 
is f B C

4 7
5 21( )= = , (simplexes of dimension 4). The number of elements 

with dimension 5 is f B C
5 7

6 7( )= = , (simplexes of dimension 5). Substituting 
the numbers   of the elements of different dimensions in equation (1) with n 
= 6, can to get

7 - 21 + 35 - 35 + 21 - 7 = 0, 

i.e. the Euler - Poincaré equation for B - polytope is satisfied when n = 6. 
Therefore, B - polytope is a simplex of dimension 6. This proves theorem 8.

The dimensions of molecules increase with an increase of its energy 
again. It is shown that myoglobin is associated coil circuit elements of higher 
dimension (4) and in the center of the coil is a group of atoms even greater 
dimension.

CONCLUSION

The structures of compounds of a metal atom with ligands were studied by 
sequentially changing the groups and subgroups of the periodic system of 
elements in which the metal atom is located. It is shown that all metals from 
the first to the eighth groups form chemical compounds of a higher dimension. 
The images of these compounds in the spaces of higher dimension were 
constructed and presented, the values   of the dimensions of various specific 
compounds were determined. The formation of molecules of higher dimension 
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occurs due to the chemical bonds of the metal atom with ligands both due to 
the influence of electron pairs, and due to the attraction of ions. Moreover, 
the apparent valence of the metal atom, as a rule, exceeds the value of the 
valence, determined by the location of the metal in the periodic table of 
chemical elements. The concept of secondary valency, used in coordination 
chemistry, loses its meaning under these conditions. Consideration of the 
geometry of the compound of a single metal atom with ligands allows us 
to proceed to the analysis of the geometry of clusters of several atoms with 
ligands in the subsequent chapters.
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KEY TERMS AND DEFINITIONS

Anomalous Elements: Transitional chemical elements in which the filling 
of the orbitals by electrons occurs with a violation of the experimental series 
of an increase in the energy of orbitals.

Divided Electron Pair: The binding electron pair, which simultaneously 
belongs to two atoms in the molecule.

Geometrical Image of a Chemical Compound: The geometrical image 
of a chemical compound (molecule) is a convex polytope, at the vertices of 
which atoms (or functional groups) are located. The edges of the polytope 
connecting the vertices correspond to the chemical bonds of the compound. 
The part of edges only carries a geometric function. They are necessary to 
give the molecule the image of a convex geometric figure. The dimension 
of the polytope is determined by the Euler-Poincare equation.

N-Cross-Polytope: The convex polytope of dimension n in which opposite 
related of centrum edges do not have connection of edge.

N-Simplex: The convex polytope of dimension n in which each vertex is 
joined by edges with all remain vertices of polytope.

S- and P-Elements: The chemical elements in which is filling with 
electrons s- and p-orbitals of atoms.

Tetrahedral Coordination of Electron Pairs: The location of the 
electronic pairs of the outer and the pre-outer electron layer at the vertices 
of the tetrahedron.

Transitional Elements: Chemical elements in which electrons fill d- and 
f-orbitals of an atom (d- and f-elements).

Undivided Electron Pair: A non-bonding electron pair belonging to one 
atom in a molecule.
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ABSTRACT

This chapter geometrically investigated the structure of clusters, the core 
of which represent the metal chains (linear or curved) of both identical and 
different elements. It was shown that the dimension of the structures of these 
clusters is more than three. To create a model of these chains in a higher 
dimension space, a new geometric approach has been developed that allows us 
to construct convex, closed polytopes of these chains. It consists of removing 
part of the octahedron edges necessary for constructing the octahedron and 
adding the same number of new edges necessary to build a closed polytope 
chain while maintaining the number of metal atoms and ligands and their 
valence bonds. As a result, it was found that metal chain polytopes consist 
of polytopes of higher dimension, adjacent to each other along flat sections.

INTRODUCTION

Models containing polymetallic chains formed by metal atoms with ligands 
attached to them represent a special class of multicore clusters. Experimentally 
(Gubin, 2019) obtained a significant number of such compounds in the form 
of metal chains (usually three - link chains). Metal chains can be both homo - 
element and hetero - element, and the structure of the metal chain can be linear 
and non - linear (curved). Binuclear compounds with a metal - metal bond is 
partially consecrated in the monograph Cotton, Walton (1982). From short 

Chains of Metallic 
Clusters With Ligands
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chains, as from bricks, longer metal chains can be constructed. In addition, 
the formation of polymeric compounds is possible, the main chain in which 
is built of metal atoms linked together.

In this monograph, it is of interest to determine the dimensionality of the 
chains of metal clusters with ligands. The methods for analyzing the geometry 
of high - dimensional polytopes, developed by the author (Zhizhin, 2018, 
2019a, b), are used.

LINEAR HOMO - ELEMENT METAL CHAINS

An example of a linear homo - element metal chain is shown in Figure 1 
(Smart, Cook, & Woodward, 1977; Evans, Okrasinski, Pribula, & Norton, 
1976; Gochin & Moss, 1980).

In this example, we illustrate the sequence of actions to calculate the 
dimension of the metal chain. When determining the dimension of metal 
chains, atoms that are linearly located and do not have branching of the chain 
at their location do not matter (Zhizhin, 2018). At the same time, not only 
metal atoms, but also ligand atoms are of importance for determining the 
dimension of a compound. Therefore, Figure 1 can be represented as Figure 2.

In Figure 2, the red edges correspond to chemical bonds, and the black 
edges serve only to create a convex closed figure. It can be seen that each 
link of the metal chain creates an octahedron with the center as a convex 
figure. Moreover, the center of each octahedron is simultaneously the vertex 
of another neighboring octahedron or two neighboring octahedrons. In Figure 

Figure 1. Schematic structure of cluster connection Os3(CO)12R2

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



98

Chains of Metallic Clusters With Ligands

2 at the centers of octahedrons are disposed Os atoms (vertices 2, 3, 4). At 
the vertices

1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17 

Figure 2. The geometric structure of cluster connection Os3(CO)12R2

Figure 3. Octahedron with a center
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are disposed the functional group CO, at the vertices 5, 16 are disposed the 
functional group R (Zhizhin, 2016). It is easy to prove that an octahedron 
with a center has a dimension of 4. To do this, refer to Figure 3, which shows 
separately the first of the chain octahedron.

Polytope on Figure 3 has 7 vertices (f0=7), 18 edges (f1=18)

1 - 2, 2 - 3, 2 - 5, 2 - 9, 1 - 5, 5 - 3, 3 - 9, 1 - 9, 2 - 4, 2 - 11, 1 - 7, 5 - 7, 3 - 7, 
7 - 9, 1 - 11, 5 - 11, 9 - 11, 3 - 11. 

Polytope composed of eight tetrahedrons

1 - 2 - 9 - 11, 2 - 9 - 3 - 11, 2 - 5 - 3 - 11, 1 - 2 - 5 - 11, 1 - 2 - 5 - 7, 2 - 5 - 3 
- 7, 2 - 9 - 3 - 7, 1 - 2 - 9 - 7. 

To these three - dimensional figures you need to add an octahedron 
without a center

1 - 5 - 3 - 7 - 9 - 11. 

Thus, the total number of three - dimensional figures is equal to 9 (f3=9). 
Each flat face of any of these nine polyhedrons is simultaneously one of 
the flat faces of some other of these nine polyhedrons. Therefore, the total 
number of two - dimensional faces in the polytope in Figure 3 is 16 (f2=16):

1 - 9 - 11, 9 - 3 - 11, 5 - 3 - 11, 1 - 5 - 11, 5 - 3 - 7, 1 - 5 - 7, 1 - 7 - 9, 7 - 3 - 9, 
2 - 9 - 11, 2 - 3 - 11, 1 - 2 - 11, 5 - 2 - 11, 1 - 2 - 7, 2 - 5 - 7, 2 - 3 - 7, 2 - 11 
- 9, 1 - 2 - 5, 2 - 5 - 3, 2 - 9 - 3, 1 - 2 - 9. 

Define dimension polytope in Figure 3 on the Euler - Poincaré equation 
(Poincaré, 1895)

( ) ( ) ( ) ,− = − −
=

−

∑ 1 1 1
0

1
i
i

i

i

n

f P  (1)

fi is the number of the elements with the dimension i at polytope P; n is 
dimension of the polytope P.
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Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 
see that the Euler – Poincaré equation is satisfied in this case with a value of 
n equal to 4. This proves that the dimension of an octahedron with center is 4.

In a linear homogeneous chain of metal atoms, tetrahedrons penetrate 
into each other (Figure 2). This greatly complicates the geometric analysis 
of the compound. Here one could use the same method of forming a convex 
figure, corresponding to a chain, as in the analysis of individual molecules. 
However, the construction of an additional system of edges, taking into account 
the possible growth of the chain, greatly complicates the convex figure. In 
this case, the dimension of the whole figure, the corresponding chain, will 
increase dramatically with the growth of the chain. This approach seems 
to be irrational. It would be logical to present these chains in the form of a 
convex figure consisting of a sequence of convex polytopes adjacent to each 
other in the geometric analysis of the chains of metal atoms.

Theorem 1. Linear homo - element metal chains with ligands are a 
sequence of convex polytopes of dimension 4 adjacent to each other along 
whole sections of octahedrons passing through the center and the vertices 
of the octahedrons.

Proof. Taking into account that metal chains with two chain links exist 
(Cotton & Walton, 1982), consider two adjacent chain links in Figure 2. To 
create a closed shape from two octahedrons interconnected, it is necessary to 
fill the free space between the octahedrons. This can be done by connecting 

Figure 4. Convex figure built on a metal chain of two metal atoms with ligands
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the vertices of two octahedrons, which were not yet connected to each other 
(Figure 4). These compounds

(7 - 8, 5 - 6, 9 - 10, 11 - 12) 

in Figure 4 are indicated in green.
In Figure 4, the region in which the octahedrons enter each other

5 - 7 - 8 - 6 - 10 - 12 - 9 - 11 - 2 - 3 

should be distinguished. As well as two regions in which only of the octahedron 
is present

1 - 5 - 7 - 9 - 11 - 2, 4 - 8 - 6 - 10 - 12 - 3 

should be distinguished. An area in which only one of the octahedron is 
present, for example,

Figure 5. 
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1 - 5 - 7 - 9 - 11 - 2 

(Figure 5) has 6 vertices (f0=6), 13 edges (f1=13)

1 - 5, 1 - 7, 1 - 2, 1 - 9, 1 - 11, 5 - 7, 7 - 9, 9 - 11, 5 - 11, 2 - 5, 2 - 7, 2 - 9, 
2 - 11, 

12 flat two - dimensional faces (f2=12)

1 - 7 - 5, 1 - 5 - 2, 1 - 7 - 2, 1 - 9 - 7, 1 - 2 - 9, 1 - 9 - 11, 1 - 2 - 11, 1 - 5 - 11, 
2 - 5 - 7, 2 - 7 - 9, 2 - 11 - 9, 5 - 2 - 11, 

5 three - dimensional areas (f3=5)

1 - 5 - 2 - 7, 1 - 2 - 7 - 9, 1 - 2 - 9 - 11, 1 - 5 - 2 - 11, 1 - 7 - 9 - 5 - 11 - 2. 

Substituting the obtained values fi(i=0,1,2,3) in the equation (1), you can 
see that the Euler - Poincaré equation is satisfied in this case with a value 
of n equal to 4

6 – 13 + 12 – 5 = 0. 

This proves that each of these regions has dimension 4. It should be noted 
that the region

1 - 7 - 9 - 5 - 11 - 2 

does not contain edge 1 - 2, therefore it has dimension 3. As soon as edge 
1 - 2 is added, region has dimension 4. The base of this figure is constructed 
from four triangles that are faces of other three - dimensional figures in this 
polytope.

The region

5 - 7 - 8 - 6 - 10 - 12 - 9 - 11 - 2 - 3 

in which the octahedrons penetrate into each other is quite complicated. 
However, here we must bear in mind that the edges of the octahedrons in 
this region, which are not valence bonds, were necessary for the creation 
of convex figures (octahedrons) when considering these figures separately. 
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When the general region, which includes octahedrons, is considered, their 

purpose is lost, due to the introduction of other edges that create a unifying 
closed convex figure. Therefore, in this region one should leave only the edges 
corresponding to the valence bonds and the edges forming the boundary of 
the region. Other edges

7 - 3, 8 - 2, 5 - 3, 2 - 6, 2 - 10, 3 - 9 

must be removed. In this case, the region takes the form shown in Figure 6.
The polytope on Figure 6 has 10 vertices (f0=10), 21 edges (f1=21)

7 - 8, 6 - 5, 2 - 3, 9 - 10, 11 - 12, 5 - 7, 7 - 9, 9 - 11, 11 - 5, 2 - 5, 2 - 7, 2 - 9, 
2 - 11, 8 - 6, 6 - 12, 12 - 10, 10 - 8, 3 - 8, 3 - 6, 3 - 12, 3 - 10, 

16 two - dimensional faces (f2=16)

5 - 7 - 8 - 6, 5 - 2 - 6 - 3, 7 - 8 - 2 - 3, 7 - 8 - 9 - 10, 9 - 10 - 11 - 12, 2 - 3 - 
11 - 12, 2 - 3 - 9 - 10, 2 - 3 - 5 - 6, 2 - 5 - 7, 2 - 7 - 9, 2 - 9 - 11, 2 - 5 - 11, 
3 - 6 - 8, 3 - 6 - 12, 3 - 10 - 12, 3 - 8 - 10, 

5 tree - dimensional faces (f3=5)

Figure 6. Simplified region penetrated by adjacent octahedrons in chains
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2 - 5 - 7 - 3 - 8 - 6, 2 - 7 - 9 - 3 - 8 - 10, 2 - 9 - 11- 3 - 10 - 12, 2 - 5 - 11 - 3 
- 6 - 12, 5 - 7 - 8 - 6 - 9 - 10 - 11 - 12 - 2 - 3 

(not contain edge 2 - 3) .

Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 
see that the Euler - Poincaré equation is satisfied in this case with a value 
of n equal to 4

10 – 21 + 16 – 5 = 0. 

This proves that polytope on Figure 6 has dimension 4.
Let us return to the chain containing three metal atoms (Figure 2). Its image 

using spaces of higher dimension, according to the developed description, 
has the form shown in Figure 7.

It is a chain of convex closed polytopes of dimension 4 adjoining each 
other along vertical sections of octahedrons passing through the center of the 
octahedrons and their vertices. It is obvious that the chain of polytopes can 
be continued. It will include a chain of polytopes in Figure 6, in alternating 
positions. At the ends of the chain are the polytopes in Figure 5, also in 
reversed positions. This is the spatial implementation of a polymetallic 
linear chain using a higher dimension space. Obviously, other linear metal 
chains with similar attachments of ligands will have the same appearance. 

Figure 7. Image of a chain with three metal atoms in a higher dimension space
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For example, metal chains [Mn3(CO)14]
- (Bau, Kirtley, Sorrel, & Winarko, 

1974), in which the atoms of the metal are manganese atoms, and all ligands 

are functional groups CO.

CLUSTER CONNECTIONS WITH A BACKBONE IN THE 
FORM OF NONLINEAR HOMOELEMENT METALLOCHAIN

The existence of cluster compounds with a skeleton in the form of nonlinear 
(bent) homo - element metal chains was experimentally established. An 

Figure 8. One of the possible of hydride H2Os3(CO)12 structures

Figure 9. The spatial image of hydride H2Os3(CO)12
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example of such a compound can be hydride H2Os3(CO)12 (Aleksandrov, 
Zolnikova, Kritskaya, & Pods, 1980). A diagram of it is presented in Figure 8.

Theorem 2. The spatial figure correspondent to hydride H2Os3(CO)12 is 
a polytope consists of two parts, each of which is a polytope of dimension 4. 
Both polytopes of dimension 4 are adjacent to each other along a flat section 
that separates them and are symmetric with respect to this section.

Proof. The octahedral coordination of elements manifests itself around 
each of the three atoms of the osmium and the octahedrons (in the center 
of each octahedron, an osmium atom is located) penetrate each other. The 
spatial image of this compound is shown in Figure 9.

On Figure 9 the valence bonds are marked in red, it is taken into account 
that the metal - metal bond length is substantially greater than the bond length 
of the metal with the ligands. The edges of the octahedrons are marked in 
black. At the vertices 5, 8, 12 (centers of octahedrons), atoms of the osmium 
are located; hydrogen atoms are located at the vertices 2, 14; at vertices

3, 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17 

functional groups CO are located. Each octahedron with a center has a 
dimension of 4. However, the common connection of octahedrons is a non - 
convex and closed figure. To bring the image of this compound to the form of 
a figure closed and convex, one should fill the space between the octahedrons 
with additional figures. The result of such a construction will give a complex 
figure for analysis. However, here we must recall the procedure applied in 
the previous section. It is necessary to connect the vertices cut off from each 
other by the edges and remove the edges of the octahedrons, which have lost 
their significance for the creation of a convex closed figure around an Os 
atom and do not solve this problem in a combined figure. At same time, all 
the valence bonds are preserved and the edges delineating the outer contour 
of the figure are preserved. So, let is connect vertices of octahedrons 1, 4, 
9 edges with each other (blue color), connect vertices of octahedrons 15, 
16, 17 edges with each other (blue color). Connect vertex 3 with vertex 7, 
connect vertex 6 with vertex 10, connect vertex 11 with vertex 13 (all edges 
are black). Remove the edges

5 - 7, 1 - 8, 3 - 8, 12 - 11, 13 - 8, 5 - 16, 6 - 8, 15 - 8, 12 - 16. 
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The number of remote edges turned out to be equal to the number of 
newly entered edges. Then all valence compounds will be inside the new 

Figure 10. The top of the polytope corresponding to the compound H2Os3(CO)12

Figure 11. The bottom of the polytope corresponding to the compound H2Os3(CO)12
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closed convex figure. Moreover, the figure turned out to be a folded of two 
convex closed polytopes, applied to each other along a two - dimensional 
(horizontal) flat section

2 - 3 - 7 - 11 - 13 - 14 - 10 - 6 - 2 

made up of several sections. The image of the upper polytope (above the 
horizontal section) is shown in Figure 10.

The image of the lower polytope (below the horizontal section) is shown 
in Figure 11.

One define the dimension of the polytope in Figure 10.The polytope on 
Figure 10 has 14 vertices (f0=14), 32 edges (f1=32)

1 - 2, 1 - 3,1 - 4, 1 - 5, 1 - 6, 1 - 9, 2 - 5, 2 - 6, 3 - 5, 3 - 7, 4 - 9, 4 - 7, 4 - 11, 
4 - 8, 5 - 8, 5 - 6, 6 - 10, 7 - 8, 7 - 11, 8 - 11, 8 - 12, 9 - 10, 9 - 12, 9 - 13, 
9 - 14, 10 - 12, 10 - 14, 11 - 13, 12 - 13, 12 - 14, 13 - 14, 5 - 12, 

28 flat two - dimension sections (f2=28)

1 - 4 - 9, 1 - 2 - 6, 1 - 2 - 3, 1 - 2 - 5, 1 - 5 - 3, 1 - 4 - 5 - 8, 1 - 5 - 6, 1 - 3 - 
4 - 7, 1 - 5 - 9 - 12, 1 - 6 - 9 - 10, 2 - 3 - 5, 2 - 5 - 6, 3 - 5 - 7 - 8, 4 - 7 - 8, 
4 - 7 - 11, 4 - 8 - 11, 4 - 9 - 11 - 13, 4 - 8 - 9 - 12, 5 - 6 - 10 - 12, 5 - 8 - 12, 
7 - 8 - 11, 8 - 11 - 12 - 13, 9 - 10 - 12, 9 - 12 - 13, 9 - 10 - 14, 9 - 13 - 14, 
10 - 12 - 14, 12 - 13 - 14, 

10 tree – dimension area (f3=10)

1 - 2 - 3 - 5, 1 - 2 - 5 - 6, 1 - 3 - 4 - 7 - 5 - 8, 1 - 4 - 9 - 5 - 8 - 12, 1 - 9 - 5 - 
12 - 6 - 10, 4 - 7 - 8 - 11, 4 - 8 - 11 - 9 - 12 - 13, 9 - 12 - 13 - 14, 1 - 2 - 3 - 4 
- 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 

(without edges 1 - 5, 4 - 8, 9 - 12).
Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 

see that the Euler - Poincaré equation is satisfied in this case with a value 
of n equal to 4

14 – 32 + 28 – 10 = 0. 

This proves that polytope on Figure 10 has dimension 4.
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One define the dimension of the polytope in Figure 11. The polytope on 
Figure 11 has 14 vertices (f0=14), 32 edges (f1=32)

15 - 2, 15 - 3,15 - 16, 15 - 5, 15 - 6, 15 - 17, 2 - 5, 2 - 6, 3 - 5, 3 - 7, 16 - 17, 
16 - 7, 16 - 11, 16 - 8, 5 - 8, 5 - 6, 6 - 10, 7 - 8, 7 - 11, 8 - 11, 8 - 12, 17 - 10, 
17 - 12, 17 - 13, 17 - 14, 10 - 12, 10 - 14, 11 - 13, 12 - 13, 12 - 14, 13 - 14, 
5 - 12, 

28 flat two - dimension sections (f2=28)

15 - 16 - 17, 15 - 2 - 6, 15 - 2 - 3, 15 - 2 - 5, 15 - 5 - 3, 15 - 16 - 5 - 8, 15 - 5 
- 6, 15 - 3 - 16 - 7, 15 - 5 - 17 - 12, 15 - 6 - 17 - 10, 2 - 3 - 5, 2 - 5 - 6, 3 - 5 
- 7 - 8, 16 - 7 - 8, 16 - 7 - 11, 16 - 8 - 11, 16 - 17 - 11 - 13, 16 - 8 - 17 - 12, 
5 - 6 - 10 - 12, 5 - 8 - 12, 7 - 8 - 11, 8 - 11 - 12 - 13, 17 - 10 - 12, 17 - 12 - 13, 
17 - 10 - 14, 17 - 13 - 14, 10 - 12 - 14, 12 - 13 - 14, 

10 tree - dimension area (f3=10)

15 - 2 - 3 - 5, 15 - 2 - 5 - 6, 15 - 3 - 16 - 7 - 5 - 8, 15 - 16 - 17 - 5 - 8 - 12, 
15 - 17 - 5 - 12 - 6 - 10, 16 - 7 - 8 - 11, 16 - 8 - 11 - 17 - 12 - 13, 17 - 12 - 13 
- 14, 15 - 2 - 3 - 16 - 5 - 6 - 7 - 8 - 17 - 10 - 11 - 12 - 13 - 14 

(without edges 15 - 5, 16 - 8, 17 - 12).
Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 

see that the Euler - Poincaré equation is satisfied in this case with a value 
of n equal to 4

Figure 12. The scheme of compound Os3(μ-Br)2(CO)10
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14 – 32 + 28 – 10 = 0. 

This proves that polytope on Figure 11 has dimension 4.
It can be noted that the upper and lower parts of the polytope corresponding 

to the compound are symmetrical to each other with respect to the flat section 
separating them.

A feature of homo - element metal chains is the possibility of bridging 

compounds between metal atoms. An example of such a cluster can be a 
chemical compound Os3(μ-Br)2(CO)10 (Aleksandrov, Zolnikova, Kritskaya, 
& Struchkov, 1980). The scheme of this compound is shown in Figure 12.

Theorem 3. The spatial figure correspondent to hydride Os3(μ-Br)2(CO)10
It is a polytope consists of two parts, each of which is a polytope of 

dimension 4. Both polytopes of dimension 4 are adjacent to each other along 
a flat section that separates.

Proof. The octahedral coordination of elements around osmium atoms 
is also visible here. Due to bridging compounds, bromine atoms in this case 
simultaneously three octahedrons penetrate each other (Figure 13).

At the same time, one of the octahedrons has a slope with respect to two 
other octahedrons. As before, the edges corresponding to the valence bonds 
are marked in red, and the edges of the octahedrons proper are marked 
in black. At the vertices 1, 2, 3 (the centers of the octahedrons), atoms of 

Figure 13. Spatial image of compound Os3(μ-Br)2(CO)10
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osmium are located. At the vertices 6, 8 are located bromine atoms. In the 
remaining vertices

4, 5, 7, 9, 10, 11, 12, 13, 14, 15 

there are functional groups CO.
Each octahedron with a center has a dimension of 4 there are, however, the 

common connection of octahedrons is a non - convex and closed figure. To 
bring the image of this compound to the form of a figure closed and convex, 
one should fill the space between the octahedrons with additional figures. 
The result of such a construction will give a complex figure for analysis. 
However, here one must recall the procedure applied in the previous section. 
It is necessary to connect the vertices cut off from each other by the edges 
and remove the edges of the octahedrons, which have lost their significance 
for the creation of a convex closed figure around an Os atom and do not 
solve this problem in a combined figure. At same time, all the valence bonds 
are preserved and the edges delineating the outer contour of the figure are 
preserved. So, let is connect vertices of octahedrons 6, 9 edge with each 
other (blue color), connect vertices of octahedrons 15, 14, 12 edges with each 
other (blue color). Connect vertex 11 with vertex 13, connect vertex 9 with 

Figure 14. The top of the polytope corresponding to the compound Os3(μ-Br)2(CO)10
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vertex 7, connect vertex 9 with vertex 5, connect vertices 5 with vertices 4, 
connect vertices 11 with vertices 14 (all edges are black). Remove the edges

2 - 14, 3 - 2, 2 - 4, 3 - 13, 14 - 3, 5 - 1, 3 - 9, 5 - 6, 1 - 8. 

The number of remote edges turned out to be equal to the number of newly 
entered edges (9). Then all valence compounds will be inside the new closed 
convex figure. Moreover, the figure turned out to be a folded of two convex 
closed polytopes, applied to each other along a two - dimensional (horizontal) 
flat section 4 - 5 - 7 - 8 - 10 - 11 - 13 made up of several sections. The image 
of the upper polytope (above the horizontal section) is shown in Figure 14.

The image of the lower polytope (below the horizontal section) is shown 
in Figure 15.

One define the dimension of the polytope in Figure 14. The polytope on 
Figure 14 has 13 vertices (f0=13), 35 edges (f1=35)

1 - 4, 1 - 2, 1 - 3, 1 - 13, 1 - 12, 1 - 14, 1 - 15, 1 - 11, 2 - 5, 2 - 7, 2 - 8, 2 - 12, 
3 - 8, 3 - 10, 3 - 11, 3 - 12, 3 - 15, 4 - 13, 4 - 14, 4 - 12, 4 - 5, 5 - 7, 5 - 12, 

Figure 15. The bottom of the polytope corresponding to the compound Os3(μ-
Br)2(CO)10

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



113

Chains of Metallic Clusters With Ligands

7 - 12, 7 - 8, 8 - 10, 8 - 12, 8 - 15, 10 - 11, 10 - 15, 11 - 13, 11 - 14, 11 - 15, 
13 - 14, 14 - 15, 

37 flat two - dimension sections (f2=37)

1 - 11 - 14, 1 - 3 - 15, 1 - 11 - 15, 1 - 11 - 13, 1 - 13 - 4, 1 - 4 - 12, 1 - 12 - 
14, 1 - 3 - 11, 1 - 2 - 12, 1 - 12 - 15, 1 - 12 - 3, 2 - 8 - 12, 2 - 12 - 5, 2 - 7 - 5, 
2 - 7 - 12, 2 - 8 - 7, 3 - 12 - 8, 3 - 12 - 15, 3 - 15 - 8, 3 - 11 - 15, 3 - 10 - 8, 
3 - 15 - 10, 3 - 11 - 15, 4 - 13 - 14, 4 - 12 - 14, 4 - 5 - 12, 5 - 12 - 7, 8 - 12 - 
15, 8 - 10 - 15, 8 - 7 - 12, 10 - 11 - 15, 11 - 14 - 15, 11 - 13 - 14, 12 - 14 - 15, 
1 - 2 - 3 - 8, 1 - 2 - 4 - 5, 1 - 3 - 14 - 15, 

15 tree - dimension area (f3=15)

1 - 11 - 14 - 15, 1 - 12 - 14 - 15, 1 - 12 - 3 - 15, 1 - 11 - 3 - 15, 1 - 4 - 13 - 14, 
2 - 7 - 8 - 12, 3 - 8 - 12 - 15, 3 - 8 - 10 - 15, 1 - 4 - 12 - 14, 1 - 13 - 11 - 14, 
1 - 2 - 4 - 5 - 12, 1 - 2 - 3 - 8 - 12, 1 - 3 - 14 - 15 - 11, 4 - 5 - 7 - 8 - 10 - 15 - 1 
4 - 13 - 1 - 2 - 3 - 12 - 11 

(without edges 3 - 15, 1 - 14, 2 - 12).
Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 

see that the Euler - Poincaré equation is satisfied in this case with a value 
of n equal to 4

13 – 35 + 37 – 15 = 0. 

This proves that polytope on Figure 14 has dimension 4.
One define the dimension of the polytope in Figure 15. The polytope on 

Figure 15 has 12 vertices (f0=12), 30 edges (f1=30)

1 - 9, 1 - 2, 1 - 13, 1 - 6, 1 - 4, 1 - 3, 2 - 9, 2 - 6, 2 - 7, 2 - 8, 2 - 5, 3 - 6, 3 - 8, 
3 - 10, 3 - 11, 4 - 5, 4 - 9, 4 - 13, 5 - 9, 5 - 7, 6 - 7, 6 - 8, 6 - 10, 6 - 11, 7 - 9, 
8 - 10, 9 - 13, 10 - 11, 11 - 13, 1 - 11, 

31 flat two - dimension sections (f2=31)

1 - 6 - 3, 1 - 6 - 2, 1 - 3 - 11, 1 - 6 - 9, 1 - 9 - 13, 1 - 9 - 2, 1 - 4 - 9, 1 - 6 - 11, 
2 - 6 - 8, 2 - 9 - 5, 2 - 9 - 6, 2 - 6 - 7, 1 - 13 - 11, 2 - 5 - 7, 3 - 6 - 8, 3 - 8 - 10, 
3 - 10 - 11, 3 - 6 - 11, 3 - 6 - 10, 4 - 9 - 13, 4 - 5 - 9, 5 - 9 - 7, 6 - 7 - 9, 6 - 7 
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- 8, 6 - 8 - 10, 6 - 10 - 11, 1 - 2 - 8 - 3, 1 - 2 - 4 - 5, 1 - 9 - 6 - 3, 9 - 6 - 11 - 
13, 

13 tree - dimension area (f3=13)

1 - 4 - 9 - 13, 2 - 1 - 9 - 6, 3 - 6 - 11 - 10, 3 - 6 - 8 - 10, 1 - 3 - 6 - 11, 2 - 6 - 
8 - 7, 9 - 6 - 2 - 7, 9 - 2 - 5 - 7, 4 - 1 - 13 - 9, 1 - 2 - 5 - 4 - 9, 1 - 2 - 3 - 8 - 6, 
1 - 6 - 9 - 11 - 13, 4 - 5 - 9 - 7 - 8 - 10 - 11 - 13 - 1 - 2 - 3 - 6 

(without edges 1 - 9, 3 - 6, 2 - 6).
Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 

see that the Euler - Poincaré equation is satisfied in this case with a value 
of n equal to 4

12 – 30 + 31 – 13 = 0. 

This proves that polytope on Figure 15 has dimension 4.

Figure 16. Schemes of hetero - element metal chains of transition metal atoms
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HETERO - ELEMENT METALL CHAINS

Figure 16 a, b shows typical examples of nonlinear hetero - element metal 
chains constructed from transition metal atoms (Cramer et al.,1965; Chiswell, 
& Venanzi, 1966).

From Figure 16 it follows that these compounds have, respectively, the 
shape of an octahedron with a center and a tetrahedron with a center in 
which the metal atom is located, and ligands are located at the vertices of 
the octahedron and tetrahedron. Moreover, the ligands also include transition 
elements that differ from the metal in the center of the figure. The functional 
dimension of these compounds in both cases is 4.

Metal chains can contain both transition elements and non - transition 
elements. Figure 17 shows the schemes of compound Pt(SnCl3)5. It is a 
limiting case of the replacement of all ligands at the central atom of the 
transition metal by metal - containing ligands with non - transition metal 
(Cramer et al., 1965).

Each tin atom in this compound exhibits tetrahedral coordination, i.e. the 
compounds of the platinum atom with the functional group are geometrically 

Figure 17. Schemes of compound Pt(SnCl3)5
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a tetrahedron with the center, therefore it has the dimension 4. In Figure 17, 
a platinum atom is located at vertex 1, tin atoms are located at vertices 2, 3, 
4, 5, 6, and at vertices

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 

located chlorine atoms. Valence bonds in Figure 17 are marked in red, and 
all other edges are marked in black. The space between the tetrahedrons with 
the center in this compound is also a polytope. Let us turn to one of these 
five polytopes, for example, the polytope

1 - 2 - 18 - 9 - 3 - 10 - 19. 

It has seven vertices (f0=7), 13 edges (f1=13)

18 - 9, 9 - 2, 18 - 2, 2 - 1, 9 - 1, 1 - 3, 1 - 10, 10 - 3, 10 - 19, 19 - 3, 18 - 19, 
9 - 10, 2 - 3, 

9 flat faces (f2=9)

2 - 9 - 1, 2 - 9 - 18, 18 - 19 - 9 - 10, 2 - 3 - 9 - 10, 19 - 10 - 3, 10 - 3 - 1, 2 - 
3 - 1, 9 - 10 - 1, 9 - 2 - 10 - 3, 

3 three - dimensional figures (f3=3)

1 - 2 - 3 - 9 - 10, 2 - 9 - 18 - 3 - 10 - 19, 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 
11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 

(without flat section 9 - 10 - 2 - 3).

Figure 18. The tetrahedron with center
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Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 
see that the Euler - Poincaré equation is satisfied in this case with a value 
of n equal to 4

7 – 13 + 9 – 3 = 0. 

This proves that polytope 1 - 2 - 18 - 9 - 3 - 10 - 19 has dimension 4.
Thus, all five polytopes between tetrahedrons with center have dimension 

4. It should be noted that the image of tetrahedrons with center in Figure 17 
is schematized to give symmetry to Figure 17. A more accurate image of 
the tetrahedron with center (Figure 18) avoids the overlapping of edges on 
each other occurring in Figure 17 and confirm the convexity of the polytope 
located between the tetrahedrons with the center.

Consequently, the cluster Pt(SnCl3)5 is a curious example of a closed cycle 
of polytopes of dimension 4 adjoining each other along two - dimensional 
faces of a tetrahedron centered inside tetrahedrons, although there is no closed 
loop of metal atoms in this compound. Clusters with closed cycles of metal 
atoms will be discussed in the next chapter.

CONCLUSION

Geometrically investigated the structure of clusters, the core of which represent 
the metal chains of both identical and different elements. Chains are linear or 
curved. For the first time it was shown that the dimension of the structures 
of these clusters is more than three. The octahedral coordination of ligands 
around metal atoms in chains leads to the penetration of octahedrons into 
each other in both linear and non - linear metal chains. The dimension of 
octahedron with a metal atom in the center is 4. To create a model of these 
chains in a higher dimension space, a new geometric approach has been 
developed, which allows us to construct a convex, closed polytopes of these 
chains. It consists in removing part of the octahedron edges necessary for 
constructing the octahedron and adding the same number of new edges 
necessary to build a closed polytope chain, while maintaining the number 
of metal atoms and ligands and their valence bonds. As a result, it was found 
that metal chain polytopes consist of polytopes of higher dimension, adjacent 
to each other along flat sections. This allowed us to simplify the geometry 
of the clusters and to construct their structure. Including it was possible to 
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detect the existence of clusters with a closed cycle of polytopes in the absence 
of closed cycles of metal atoms.
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KEY TERMS AND DEFINITIONS

Dimension of the Space: The member of independent parameters needed 
to describe the change in position of an object in space.

Hetero-Element Metal Chains: Clusters in which the core contains 
atoms of different elements.

Homo-Element Metal Chains: Clusters in which the core contains atoms 
of the same element.

Linear Metal Chains: Metal chains in which metal atoms are located in 
a straight line.

Metal Chains: Cluster compounds that have a skeleton in the form of 
metal chains, that is, polymetallic chains formed by metal-metal localized 
covalent bonds.

Nanocluster: A nanometric set of connected atoms, stable either in 
isolation state or in building unit of condensed matter.

Nonlinear (Curved) Metal Chains: Clusters in which metal-metal valent 
bonds form an angle different from 180 degrees between them.

Polytope: Polyhedron in the space of higher dimension.
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Chapter  5
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ABSTRACT

This chapter considers closed three-membered metal cycles of one or several 
chemical elements surrounded by ligands connected to them. It has been 
proven that the widespread opinion in the literature about the formation of 
ligands by atoms in some cases of the semi-correct polyhedron of the anti-
cube-octahedron is wrong. Geometrical analysis of the interpenetration of 
the coordinates of ligand atoms around each of the metal atoms of a closed 
chain showed that this leads to a different class of special three-dimensional 
irregular polyhedrons for different clusters. In all cases of homo-element 
and hetero-element closed metal chains, the cycle itself, located in a certain 
plane, creates a cross section of the cluster, dividing the cluster into two 
parts. Each of the parts of a cluster has dimension 4.

INTRODUCTION

Cluster compounds containing a skeleton in the form of metal cycles are a 
widespread type of cluster metal compounds (Gubin, 2019). Homo - cyclic 
structures with metal atoms from 3 to 8, bicyclic formations are known. 
Particularly, systems consisting of several condensed metal cycles can be 
considered. Cluster compounds that have one hundred in the form of three 
-membered metal cycles are obtained for most metals and have ligands of 
various types. In cluster compounds with a large number of metal atoms, the 

Closed Metal Cycles in 
Clusters With Ligands
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main part of the faces of the metal frame polyhedrons is triangles. Therefore, 
three - membered metal rings to some extent can simulate the properties of 
more complex clusters.

HOMO: ELEMENT METAL CYCLES WITH LIGANDS

The absence of bridging ligands and high symmetry make three - nuclear 
carbonyls Ru3(CO)12, Os3(CO)12 convenient support compounds for structural 
and theoretical studies of three - membered homo - element metal cycles. In 
molecules, each metal atom is associated with four functional groups (Figure 1).

It is believed that 12 ligands are arranged so that they form an anti – 
cube – octahedron as a ligand polyhedron (Mason & Rae, 1968; Benfield 
& Jonson, 1981; Gubin, 2019). However, evidence of this assumption 
has not yet been provided. The proof of this assertion could be a concrete 
construction of an anti – cube – octahedron with a three - link metal cycle 
enclosed in it, connection by valence bonds of the metal cycle atoms to the 
vertices of the anti – cube - octahedron. After this, it is required to determine 
the partition of the anti – cube - octahedron with the constructed valence 
bonds into elementary three - dimensional cells and the verification of the 
implementation of the Euler – Poincaré (Poincoré, 1895) equation for the 
constructed polytope. No such evidence was carried out. In this chapter, this 
question will be considered as part of the proof of the following theorem:

Figure 1. Shema of three - nuclear carbonyls Ru and Os
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Theorem 1. The geometric model of three nuclear carbonyls Ru and Os 
consists of two polytopes of dimension 4, touching each other in a two - 
dimensional section, containing a three nuclear metal cycle.

Proof. Let us assume that carbonyl ligands form a ligand polyhedron in 
the form of an anti - cube - octahedron. Then the three nuclear metal cycle 
contained in an anti - cube - octahedron must be connected by vertices of an 

anti - cube - octahedron by valence bonds. Each vertex of the metal cycle must 
be connected with the four nearest vertices of the anti - cube - octahedron. 
In an arbitrary general form will look like that shown in Figure 2.

At the vertices 12, 13, 14, belonging to the metal cycle, there are metal 
atoms, and at the 12 vertices of the anti - cube - octahedron functional groups 
CO are present. The valence bonds of the metal atoms with each other and 
the functional groups are indicated by red edges. The edges of the anti - 
cube - octahedron is denoted by solid black lines. Valence bonds and edges 
of anti - cube - octahedron already create convex three - dimensional bodies

Figure 2. The anti - cube - octahedron with the three nuclear metal cycle
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1)  2 - 3 - 4 - 12,
2)  5 - 6 - 15 - 14,
3)  1 - 9 - 13 - 7,
4)  9 - 12 - 13 - 14 - 15,
5)  1 - 2 - 12 - 9 - 13,
6)  3 - 4 - 12 - 11 - 5 - 15,
7)  4 - 12 - 5 - 15 - 14,
8)  2 - 4 - 9 - 14 - 12,
9)  7 - 9 - 14 - 6 - 13 - 15,
10)  anti - cube - octahedron.

However, body particles do not yet create a partition of the space inside 
the anti - cube - octahedron into elementary three - dimensional cells, i.e. 
do not create the structure of this space. To create it, you need to add more 
edges between the 15 vertices of the system. You need to do this carefully 
enough so as not to come to possible contradictions. To do this, choose in 
the system the smallest possible number of places for holding these edges 
so that each added edge leads to the creation of the maximum number of 
three-dimensional bodies. Such places can be symmetrically located edges 
(indicated by dotted lines)

13 - 10, 12 - 11, 11 - 15. 

These edges lead to the creation of a whole series of three - dimensional 
bodies:

1-7 - 8 - 10 - 13, 12) 13 - 10 - 11 - 15 - 12 - 8, 13) 10 - 3 - 11 - 12, 14) 7 - 8 
- 13 - 15 - 6, 15) 9 - 13 - 12 - 14 - 15, 16) 1 - 3 - 10 - 2 - 13 - 12, 17) 3 - 10 
- 12 - 11, 18) 5 - 6 - 8 - 11 - 15. 11) 

Now the whole space of the anti - cube - octahedron is divided into three - 
dimensional polyhedrons. For further it is necessary use the Euler - Poincare` 
equation (Poincaré, 1895)

( ) ( ) ( ) ,− = − −
=

−

∑ 1 1 1
0

1
i
i
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fi is the number of the elements with the dimension i at polytope P; n is 
dimension of the polytope P.

Two numbers are already there f0=15, f3=18 . It is necessary to count the 
number of edges and the number of flat two - dimensional elements. It is 
possible to determine that Figure 2 has 45 edges (f1=45)

1 - 2, 1 - 9, 1 - 10, 1 - 13, 1 - 7, 2 - 3, 2 - 4, 2 - 12, 2 - 9, 3 - 10, 3 - 12, 3 - 11, 
3 - 4, 4 - 12, 4 - 14, 4 - 5, 5 - 11, 5 - 14, 5 - 15, 5 - 6, 6 - 14, 6 - 15, 6 - 8, 6 - 7, 
7 - 8, 7 - 13, 7 - 9, 8 - 15, 8 - 10, 8 - 13, 8 - 11, 9 - 12, 9 - 14, 9 - 13, 10 - 12, 
10 - 11, 10 - 13, 11 - 2, 11 - 15, 12 - 13, 12 - 14, 12 – 15, 13 - 15, 14 - 15, 

31 two - dimensional elements (f2=31) (two - dimensional elements that 
are a section of three -dimensional figures are not taken into account)

1 - 2 - 3 - 10, 1 - 2 - 9, 1 - 9 - 13, 1 - 10 - 13, 1 - 9 - 7, 2 - 3 - 4, 2 - 4 - 12, 
2 - 4 - 9 - 14, 3 - 10 - 12, 3 - 10 - 11, 3 - 4 - 12, 3 - 4 - 5 - 11, 3 - 12 - 11, 4 - 
14 - 12, 4 - 5 - 14, 5 - 14 - 15, 5 - 15 - 6, 5 - 14 - 6, 6 - 14 - 15, 5 - 6 - 8 - 11, 
6 - 8 - 15, 7 - 8 - 6, 7 - 8 - 13, 7 - 9 - 13, 8 - 13 - 10, 8 - 11 - 15, 8 - 10 - 11, 
1 - 7 - 8 - 10, 1 - 2 - 12 - 13, 9 - 12 - 13, 11 - 15 - 12. 

Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 
see that the Euler - Poincaré equation is not satisfied in this case

15 – 45 + 31 – 18 = - 17 < 0. 

This proves that Figure 2 is not polytope.
The reason for this lies in the fact that not all the flat faces of the 45 faces 

are the faces of two adjacent polyhedrons. It can be determined from Figure 
2 that the faces

3 - 10 - 12, 3 - 12 - 11 

are not at the same time the face of two neighboring polyhedrons (they are 
only a part of the face of neighboring polyhedrons). This is a necessary 
condition for the existence of a polytope in this case, dimension 4. With 
increasing polytope dimension, each flat face must simultaneously be the 
face of an even larger number of three - dimensional faces (Zhizhin, 2019). 
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Attempts to draw additional edges in Figure 2, in order to create additional 
three - dimensional bodies with faces

3 - 10 - 12, 3 - 12 - 11, 

lead to the emergence of new flat faces, which need to be closed by new 
polyhedrons, and this process is difficult to complete. Make it fails. It should 
be recognized that the assumption made at the beginning about the anti - 
cube - octahedron as a ligand polytope of compounds Ru3(CO)12, Os3(CO)12 
is not correct, since it is not provable.

To create a geometric image of a cluster with the skeleton of a three - bar 
metal cycle, one should turn to the coordination of ligands around each atom 
of the cycle. This coordination is octahedral. In the case of a closed cycle, 
coordination around each atom overlaps each other. Here it is necessary 
to apply the method developed in the previous chapter when considering 

metal chains. This will be a logical continuation of the method during the 
transition to closed cycles. Consider the plane in which the metal cycle is 
located (Figure 3).

In this plane, there are three intersecting cross sections of the octahedron 
coordination of ligands around each metal atom. In the figures in Figure 3, 
these sections are

1 - 2 - 4 - 5, 4 - 7 - 8 - 9, 5 - 7 - 13 - 14. 

Figure 3. A section of a cluster containing a closed three - bar metal cycle
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Valence bonds are indicated by red edges. At the vertices 4, 5, 7 are located 
the metal atoms. In other vertices are located functional groups. Passing from 
the octahedron section into space, one should draw segments perpendicular 
to the section plane at vertices 4, 5, 7. These segments should intersect the 
section plane and are located above the section plane for the bond length and 
below the section plane for the bond length too. From the free vertices of 
these segments, the edges of the octahedrons connecting these vertices with 
the vertices of each corresponding octahedron should be drawn. The overall 
picture of the intersection of three octahedrons in the projection on the plane 
will be quite complicated. In addition, to create a geometric image of the 
entire cluster in the form of a convex closed figure, it is necessary to fill the 
space between the octahedrons. Here, as well as in the previous chapter, it 
is necessary to remove part of the edges of octahedrons that have ceased to 
bear the function of creating a convex figure in the cluster image, and add 

Figure 4. Spatial image of the cluster with a closed three - bar metal cycle
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the edges necessary to create a convex figure in the cluster image. The final 
cluster figure is shown in Figure 4.

The vertices of the octahedrons above the sectional plane (Figure 3) are 
marked with numbers 3, 11, 15. The vertices of the octahedrons below the 
section plane (Figure 3) are designated with numbers 6, 10, 12. In accordance 
with what was said earlier, in Figure 4 eight edges of

6 - 5, 7 -9, 3 - 5, 7 - 11, 8 - 4, 2 - 4, 12 - 7, 1 - 5 

from all edges of octahedrons with marked vertices are removed. At the same 
time, eight other edges are added

2 - 13, 8 - 14, 6 - 10, 10 - 12, 6 - 12, 3 - 15, 15 - 11, 3 - 11. 

The edges connecting the indicated vertices of three parallel octahedrons 
have blue color. The edges corresponding to the valence bonds are marked 
in red, the other edges have a black color. The construction in Figure 4 can 
be divided into two polytopes: one polytope, located above the section in 

Figure 5. The polytope upper part of a cluster with a three - bar metal atom cycle
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which the closed cycle of metal atoms is located (Figure 5); another polytope 
is located under this section (Figure 6).

Figure 6. The polytope lower part of a cluster with a three - bar metal atom cycle

Figure 7. A section dividing a cluster with a three - bar closed cycle of metal atoms 
into two polytopes
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The section that separates both polytopes and at the same time belongs 
to both polytopes, taking into account the added and removed edges, has the 
form shown in Figure 7.

One defined the dimension of the upper part of the cluster shown in Figure 
5. This part has 12 vertices (f0=12), 35 edges (f1=35)

1 - 2, 1 - 7, 1 - 3, 1 - 9, 2 - 3, 2 - 7, 2 - 13, 3 - 7, 3 - 4, 3 - 11, 3 - 13, 3 - 15, 
4 - 7, 4 - 13, 4 - 15, 4 - 14, 4 - 11, 4 - 5, 5 - 11, 5 - 8, 5 - 9, 5 - 7, 5 - 14, 5 - 15, 
7 - 13, 7 - 15, 8 - 11, 8 - 14, 8 - 9, 9 - 11, 11 - 14, 11 - 15, 13 - 14, 13 - 15, 
14 - 15, 

41 two - dimensional elements (f2=41)

1 - 2 - 7, 1 - 7 - 5 - 9, 1 - 7 - 3, 1 - 2 - 3, 1 - 3 - 11 - 9, 2 - 3 - 7, 2 - 3 - 13, 2 - 
13 - 7, 3 - 13 - 15, 3 - 4 - 11, 3 - 4 - 15, 3 - 4 - 7, 3 - 7 - 15, 3 - 13 - 14 - 11, 
3 - 13 - 4, 4 - 7 - 5, 4 - 5 - 11, 4 - 7 - 13, 4 - 5 - 14, 4 - 11 - 14, 3 - 13 - 7, 4 
- 13 - 15, 4 - 11 - 15, 4 - 13 - 14, 4 - 15 - 14, 4 - 15 - 5, 4 - 7 - 15, 5 - 9 - 11, 
5 - 15 - 11, 5 - 11 - 14, 5 - 14 - 8, 5 - 11 - 8, 5 - 15 - 14, 5 - 8 - 9, 8 - 11 - 14, 
8 - 9 - 11, 11 - 15 - 14, 13 - 14 - 15, 3 - 7 - 4 - 15, 5 - 11 - 4 - 15, 3 - 7 - 5 - 
11, 

18 three - dimensional elements (f3=18)

1 - 2 - 7 - 3, 1 - 3 - 7 - 11 - 5 - 9, 2 - 3 - 7 - 13, 3 - 7 - 4 - 13, 3 - 7 - 4 - 15, 3 
- 13 - 15 - 4, 3 - 13 - 15 - 14 - 11, 3 - 13 - 14 - 11 - 7 - 5, 3 - 4 - 11 - 14 - 13, 
3 - 4 - 7 - 5 - 11, 4 - 7 - 5 - 15, 4 - 13 - 14 - 15, 4 - 5 - 11 - 14, 4 - 15 - 11 - 14, 
5 - 15 - 11 - 14, 5 - 14 - 11 - 8, 5 - 11 - 8 - 14, 5 - 11 - 8 - 9, 

external three - dimensional surface of Figure 5.
Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 

see that the Euler - Poincaré equation is satisfied in his case for n = 4

12 – 35 + 41 – 18 = 0. 

This proves that Figure 5 is polytope with dimension 4.
The lower part of the cluster (Figure 6) is symmetrical to the upper part 

of the cluster (Figure 5) relative to the cross section separating them. The 
perpendiculars to the section
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3-7, 5-11, 4-15 

in the upper part of the cluster are equal in length to the perpendiculars to 
the section in the lower part of the cluster passing through the same points 
in the section, respectively, 7, 4, 5. Each edge in the upper part of the cluster 
has an edge in the lower part of the cluster. Therefore, the dimension of the 
polytope of the lower part of the cluster is equal to the dimension of the 
polytope of the upper part of the cluster, i.e. it is equal to 4. This can also be 
seen by directly counting the number of elements of different dimensions at 
the bottom of the cluster.

Following. The cluster ligand polyhedron is not an anti - cube - octahedron.

Figure 8. Top and bottom views of ligand polyhedron

Figure 9. The spatial image of the ligand polyhedron
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The top view of the cluster (from a point above the triangle 3 - 15 - 11) 
coincides with the view of the cluster from the bottom (from a point under 
triangle 6 - 10 - 12), as follows from Figure 8.

Only the numbers of the points of the blue triangle change (the numbers 
for the lower part of the cluster are indicated in brackets). The spatial image 
of the ligand polyhedron is shown in Figure 9.

As follows from Figures 8, 9 the ligand polyhedron contains 12 vertices 
(f0=12), 28 edges (f1=28), 18 flat faces (2 trapeziums, 16 triangles) (f2=18).

Substituting the obtained values fi(i=0,1,2) in the equation (1) you can see 
that the Euler – Poincaré equation is satisfied in his case for n = 3

12 – 28 + 18 = 2. 

This proves that Figure 9 is polyhedron with dimension 3.
It is clearly seen that the ligand polyhedron is not an anti - cube - octahedron, 

as was assumed earlier.
The ligand polyhedron cross section divides the ligand polyhedron into 

two parts, which are also three - dimensional surfaces. If the section is a 
hexagon, then in each half there are 9 vertices (f0=9), 17 edges (f1=17), 10 
two - dimensional faces (f2=10) . Substituting the obtained values fi(i=0,1,2) 
in the equation (1) you can see that the Euler – Poincaré equation is satisfied 
in his case for n = 3

9 – 17 + 10 = 2. 

Substituting the obtained values fi(i=0,1,2) in the equation (1) you can see 
that the Euler – Poincaré equation is satisfied in his case for n = 3

12 – 28 + 18 = 2. 

If the cross section of the ligand polyhedron is the section in Figure 7 (it 
was used to analyze the upper and lower parts of the cluster when determining 
their dimensions), then each of the halves also represents a three - dimensional 
surface. In this case, for each of the halves, the number of vertices increases 
by 3, the number of edges increases by 9, the number of flat faces increases 
by 6. The total change in the right side of the Euler-Poincaré equation is 3 – 9 
+ 6 = 0. Thus, the right side of equation (1) does not change. The surfaces 
remain three - dimensional.
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HOMO: ELEMENT METAL CYCLES 
WITH THE BRIDGING LIGANDS

The carbonyls Ru and Os discussed above are essentially the only structurally 
characterized compounds in which the metal – containing fragments are 
connected to each other only by metal - metal bonds. In many cases, there 
are a number of bridging ligands in the cycle. A typical example of such a 
compound is hydride H3Mn3(CO)12 (Kirtley et al., 1973). Here, along the 
metal – metal bonds, three bridging hydrogen atoms are located in the cycle 
plane. The scheme of such a compound is shown in Figure 10.

In this compound, the coordination of a double hexagonal pyramid is 
observed around each metal atom. Passing into each other the coordination 
creates the spatial structure. It also, as in the previous case, in a three - 
link metal cycle without bridge connections consists of two parts that are 
symmetrical with respect to the flat section separating them. The upper part 
of this structure is shown in the Figure 11.

The cross section separating both parts of the compound’s spatial structure 
is a hexagon. However, compared to the section in Figure 7, this section 
contains three more vertices. Hydrogen atoms are located in these additional 
vertices 2, 5, 11. At the vertices 13, 14, 15, there are manganese atoms. In 
the remaining vertices of both the upper and lower parts there are functional 
groups of CO. The edges of the structure corresponding to the valence 
bonds are indicated in red. The remaining edges of the pyramids are marked 
in black. To determine the dimension of this compound, one will use the 
method developed in this book. As a first step, it is necessary to transform 

Figure 10. Shema of a hydride H3Mn3(CO)12
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this structure into a closed convex body. To do this, add the edges connecting 
the free vertices of the three hexagonal pyramids. These are edges

9 - 8, 8 - 7, 9 - 7. 

These edges are marked in blue (Figure 12).
From the hexagonal pyramids, it is necessary to remove the edges that 

have lost their significance in the creation of pyramids, like convex bodies. 
In Figure 12, the edges

Figure 11. Spatial structure of compound H3Mn3(CO)12
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11 - 9, 11 - 8, 5 - 7, 5 - 8, 2 - 9, 2 - 7, 13 - 7, 13 - 8, 15 - 9, 15 - 7, 14 - 8, 14 
- 9 

are removed. As a result, in Figure 12 a convex figure is obtained. As a second 
step in determining the dimension of a compound, it is necessary to apply 
the Euler - Poincaré formula to this figure (Poincaré, 1895). To do this, you 
first need to determine which three - dimensional figures are included in the 
structure in Figure 12. These figures are tetrahedrons with edges, which are 
the short edges of the base, and the heights of the pyramids. These are three 
tetrahedrons

Figure 12. The upper part of the structure of the compound H3Mn3(CO)12,as a 
convex body
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1 - 12 - 13 - 9, 3 - 4 - 14 - 7, 6 - 15 - 10 - 8, 

prism

13 - 14 - 15 - 7 - 8 - 9, 

and three figures located between the tetrahedrons and the prism. It is required 
to prove that these figures are three - dimensional. Consider one of them

1 - 2 - 3 - 7 - 9 - 13 - 14 

(Figure 13).

The polyhedron in Figure 13 has 7 vertices (f0=7), 12 edges (f1=12)

1 - 2, 2 - 3, 1 - 13, 2 - 13, 2 - 14, 3 - 14, 3 - 7, 1 - 9, 7 - 9, 7 - 14, 9 - 13, 13 
- 14, 

7 two - dimensional faces (f2=7)

Figure 13. The figure 1 - 2 - 3 - 7 - 9 - 13 - 14 in the structure of the compound 
H3Mn3(CO)12
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1 - 2 - 13, 2 - 13 - 14, 2 - 3 - 14, 3 - 7 - 14, 1 - 13 - 9, 7 - 9 - 13 - 14, 1 - 2 - 
3 - 7 - 9. 

Substituting the obtained values fi(i=0,1,2) in the equation (1) you can see 
that the Euler - Poincaré equation is satisfied in his case for n = 3

7 – 12 + 7 = 2. 

This proves that Figure 13 is polyhedron with dimension 3.
In addition to this figure, the polytope in Figure 12 has two more similar 

figures

10 - 11 - 12 - 9 - 8, 4 - 5 - 6 - 7 - 8. 

Another three - dimensional polyhedron in Figure 12 is the outer surface 
of the structure in this figure. It includes all vertices and all edges except for 
the three heights of the hexagonal pyramids

13 - 9, 14 - 7, 15 - 8. 

Thus, this surface includes 15 vertices (f0=15), edges (f1=33)

1 - 2, 1 - 13, 1 - 12, 1 - 9, 2 - 13, 2 - 14, 2 - 3, 3 - 14, 3 - 4, 3 - 7, 4 - 5, 4 - 14, 
4 - 7, 14 - 5, 5 - 6, 5 - 15, 6 - 15, 6 - 10, 6 - 8, 7 - 9, 7 - 8, 9 - 8, 8 - 10, 9 - 12, 
10 - 11, 10 - 15, 11 - 15, 11 - 13, 11 - 12, 12 - 13, 13 - 14, 13 - 15, 14 - 15, 

20 two - dimensional faces (f2=20)

1 - 12 - 13, 1 - 13 - 2, 1 - 12 - 9, 1 - 9 - 7 - 3 - 2, 2 - 14 - 3, 2 - 13 - 14, 3 - 14 
- 4, 3 - 7 - 4, 4 - 5 - 6 - 7 - 8, 4 - 5 - 14, 5 - 14 - 15, 5 - 15 - 6, 6 - 8 - 10, 6 - 
15 - 10, 10 - 8 - 9 - 12, 10 - 15 - 11, 11 - 15 - 13, 11 - 13 - 12, 13 - 14 - 15, 
7 - 8 - 9. 

Substituting the obtained values fi(i=0,1,2) in the equation (1) you can see 
that the Euler - Poincaré equation is satisfied in his case for n = 3

15 – 33 + 20 = 2. 
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This proves that the outer surface of Figure 12 is polyhedron with dimension 
3.

Thus, the polytope on Figure 12 has 8 polyhedrons with dimension 3 
(f3=8). The number of edges in Figure 12 on three edges more of the number 
of edges in its outer surface (three heights of the hexagonal pyramids 9 - 13, 
7 - 14, 8 - 15). Therefore, the number of the edges in Figure 12 is equal to 36 
(f1=36). Adding the heights of hexagonal pyramids into the surface in Figure 
12 leads to an increase in the number of two - dimensional faces compared 
with the number of such faces on the surface. Added 9 two - dimensional faces

1 - 13 - 9, 12 - 13 - 9, 3 - 14 - 7, 4 - 14 - 7, 13 - 14 - 7 - 9, 6 - 15 - 8, 10 - 15 
- 8, 14 - 15 - 7 - 8, 13 - 15 - 8 - 9. 

Figure 14. A ligand polyhedron of a cluster with a three - membered metal chain 
with bridging ligands
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Therefore, the number of two - dimensional faces in the polytope in Figure 
12 is 29 (f2=29).

Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 
see that the Euler - Poincaré equation is satisfied in his case for n = 4

15 – 36 + 29 – 8 = 0. 

This proves that Figure 12 is polytope with dimension 4.
The polytope on Figure 12 is only the upper part of the polytope, 

corresponding to a cluster with a three - membered metal chain with bridging 
ligands. Due to symmetry, the lower part of this polytope also has dimension 4. 
The surface of the polytope corresponding to the cluster is a ligand polyhedron. 
It has the form shown in Figure 14.

The ligand polyhedron consists of eight triangles (two equilateral and 
six isosceles) and six quadrangles in the form of trapezoids. Topologically, 
it is close to an anti - cube - octahedron and, therefore, it undoubtedly has 
dimension 3. It differs from an anti - cube - octahedron in that the two - 
dimensional figures that form it are mostly incorrect.

HETERO: ELEMENT METAL CYCLES 
WITH THE BRIDGING LIGANDS

Other atoms can be used as atoms in the bridged compounds of the three 
- membered metal chain, i.e. metals other than chain metals. In this case, 
the cluster becomes hetero element. Moreover, the ligand metal atom can 
be associated with all the metal atoms of the three - membered metal chain. 
It is obvious that in this case the ligand metal atom can no longer lie in the 
plane of the three - membered metal chain. An example of such a cluster is 
cluster FeCo2(CO)9(μ-Θ)(Θ=S,Se,Te) (Raithby, 1980). The scheme of this 
cluster is shown in Figure 15.

In this compound, octahedral coordination is manifested around each 
atom of the metal chain. Moreover, the three vertices of the octahedrons are 
combined in one atom of the ligand. The spatial structure of this cluster is 
shown in Figure 16.

In Figure 16, at the vertices 8, 9, 10 are located the atoms of the metal of 
the chain, at the vertex of 4 there is an atom of the ligand, common to the 
three octahedrons of the chain, in the other vertices the functional groups of 
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Figure 15. Scheme of the cluster FeCo2(CO)9(μ-Θ)(Θ=S,Se,Te).

Figure 16. Spatial structure of the cluster FeCo2(CO)9(μ-Θ)(Θ=S,Se,Te).
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CO are located. The edges corresponding to the valence bonds are marked 
in red. The edges of the octahedrons are marked in black. To determine the 
dimension of this compound, one will use the method developed in this 
book. As a first step, it is necessary to transform this structure into a closed 
convex body. To do this, add the edges connecting the free vertices of the 
three octahedrons. These are edges

1 - 7, 2 - 3, 5 - 6, 12 - 11, 11 - 13, 12 - 13. 

These edges are marked in blue (Figure 17).

Figure 17. The structure of the compound FeCo2(CO)9(μ-Θ)(Θ=S,Se,Te), as a 
convex body
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From the octahedrons, it is necessary to remove the edges that have lost 
their significance in the creation of octahedrons, like convex bodies. In Figure 
17, the edges

2 - 10, 1 - 9, 8 - 7, 10 - 6, 3 - 8, 5 - 9, 12 - 10, 13 - 10, 11 - 9, 11 - 8 

are removed. As a result, in Figure 17 a convex figure is obtained.
The construction in Figure 17 can be divided into two polytopes: one 

polytope, located above the section in which the closed cycle of metal atoms is 
located (Figure 18); another polytope is located under this section (Figure 19).

One can define the dimension of the upper part of the cluster shown in 
Figure 18. This part has 10 vertices (f0=10), 24 edges (f1=24)

1 - 4, 1 - 2, 1 - 8, 1 - 7, 2 - 8, 2 - 4, 2 - 3, 3 - 4, 3 - 5, 3 - 10, 4 - 8, 4 - 10, 4 - 9, 
4 - 7, 4 - 6, 4 - 5, 5 - 6, 5 - 10, 6 - 7, 6 - 9, 7 - 9, 8 - 9, 8 - 10, 9 - 10, 

22 two - dimensional elements (f2=22)

1 - 2 - 8, 1 - 8 - 4, 1 - 8 - 9 - 7, 1 - 4 - 7, 2 - 8 - 10 - 3, 2 - 3 - 4, 2 - 8 - 4, 3 - 
4 - 5, 3 - 4 - 10, 3 - 5 - 10, 4 - 5 - 10, 4 - 5 - 6, 4 - 9 - 6, 4 - 10 - 9, 4 - 8 - 10, 
4 - 8 - 9, 4 - 6 - 7, 4 - 9 - 7, 8 - 7 - 10, 5 - 10 - 9 - 6, 6 - 9 - 7, 

Figure 18. The polytope upper part of a cluster FeCo2(CO)9(μ-Θ)(Θ=S,Se,Te).
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8 three - dimensional elements (f3=8)

1 - 2 - 8 - 4, 1 - 7 - 8 - 9 - 4, 2 - 8 - 3 - 10 - 4, 3 - 4 - 5 - 10, 5 - 6 - 9 - 10 - 4, 
7 - 6 - 9 - 4, 8 - 9 - 10 - 4, 

external surface of the upper part of the cluster.
Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 

see that the Euler - Poincaré equation is satisfied in his case for n = 4

10 – 24 + 22 – 8 = 0. 

This proves that Figure 18 is polytope with dimension 4.
One can define the dimension of the lower part of the cluster shown in 

Figure 19. This part has 12 vertices (f0=12), 26 edges (f1=26)

1 - 2, 1 - 8, 1 - 7, 1 - 12, 2 - 3, 2 - 8, 2 - 12, 3 - 5, 3 - 10, 3 - 11, 5 - 10, 5 - 11, 
5 - 6, 6 - 9, 6 - 7, 6 - 13, 7 - 9, 7 - 13, 8 - 10, 8 - 9, 9 - 13, 9 - 10, 10 - 11, 11 
- 12, 11 - 13, 12 - 13, 

Figure 19. The polytope lower part of a cluster FeCo2(CO)9(μ-Θ)(Θ=S,Se,Te).

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



143

Closed Metal Cycles in Clusters With Ligands

21 two - dimensional elements (f2=21)

1 - 2 - 8, 1 - 8 - 9 - 7, 1 - 7 - 12 - 13, 1 - 2 - 12, 1 - 8 - 12, 2 - 3 - 10 - 8, 3 - 5 
- 10, 3 - 10 - 11, 3 - 5 - 11, 2 - 3 - 11 - 12, 5 - 10 - 11, 5 - 10 - 9 - 6, 5 - 6 - 11 
- 13, 6 - 7 - 13, 6 - 9 - 7, 7 - 9 - 13, 8 - 10 - 9, 8 - 9 - 12 - 13, 8 - 10 - 11 - 12, 
9 - 10 - 11 - 13, 11 - 12 - 13, 

8 three - dimensional elements (f3=8)

1 - 2 - 8 - 12, 1 - 7 - 8 - 9 - 12 - 13, 2 - 8 - 12 - 3 - 10 - 11, 3 - 5 - 10 - 11, 
5 - 10 - 9 - 6 - 11 - 13, 9 - 6 - 7 - 13, 8 - 10 - 9 - 11 - 12 - 13, 

external surface of the lower part of the cluster.
Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 

see that the Euler - Poincaré equation is satisfied in his case for n = 4

12 – 26 + 21 – 8 = 0. 

Figure 20. A ligand polyhedron of a hetero - element cluster FeCo2(CO)9(μ-Θ)
(Θ=S,Se,Te) with a three - membered metal chain with bridging ligand
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This proves that Figure 19 is polytope with dimension 4.
The surface of the polytope consists from two parts corresponding to the 

clusterFeCo2(CO)9(μ-Θ)(Θ=S,Se,Te) is a ligand polyhedron. It has the form 
shown in Figure 20.

It differs from an anti - cube - octahedron.

CONCLUSION

There are considered with closed three - membered metal cycles of one or 
several chemical elements surrounded by ligands connected to them. It has 
been proven that the widespread opinion in the literature about the formation 
of ligands by atoms in some cases of the semi -correct polyhedron of the 
anti - cube - octahedron is wrong. In alleged cases, ligands do not form this 
polyhedron. Geometrical analysis of the interpenetration of the coordinates 
of ligand atoms around each of the metal atoms of a closed chain showed 
that this leads to a different class of special three - dimensional irregular 
polyhedrons for different clusters. A very effective method for the geometric 
analysis of the distribution of atoms in clusters of such a structure turned out 
to be a developed method for removing and adding edges. The edges of the 
geometric coordination of ligands around individual atoms of a metal chain 
that have lost their purpose in creating a convex body around an individual 
metal atom during the transition of a metal into a chain are removed. The 
edges needed to create a convex body around the chain are added. In this 
case, all edges corresponding to the valence bonds of atoms and, of course, all 
atoms are retained. This leads to the creation of a clear, easier to understand, 
cluster structure with preservation of their chemical nature. In all cases of 
homo element and hetero element closed metal chains, the cycle itself, located 
in a certain plane creates a cross section of the cluster, dividing the cluster 
into two parts. Each of the parts of a cluster has dimension 4. The increase 
in dimension is connected geometrically with the fact that there are several 
atoms in this two - dimensional section. Thus, the structure of clusters with 
a skeleton in the form of a flat metal cycle is two polytope of dimension 4, 
separated by a section containing this metal cycle.

If the bridging ligands break the symmetry of the chemical compound, then 
both parts of the cluster structure are not symmetrical with respect to the cross 
section containing the metal cycle. If the bridging ligands do not violate the 
symmetry of the chemical compound, then both parts of the cluster structure 
are symmetric with respect to the cross section containing the metal cycle.
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The geometry of clusters with a more complex spatial arrangement of 
metal atoms in the cluster core will be considered in the next chapter.
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KEY TERMS AND DEFINITIONS

Dimension of the Space: The member of independent parameters needed 
to describe the change in position of an object in space.

Hetero-Element Metal Chains: Clusters in which the core contains 
atoms of different elements.

Homo-Element Metal Chains: Clusters in which the core contains atoms 
of the same element.

Linear Metal Chains: Metal chains in which metal atoms are located in 
a straight line.
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Metal Chains: Cluster compounds that have a skeleton in the form of 
metal chains, that is, polymetallic chains formed by metal-metal localized 
covalent bonds.

Nanocluster: A nanometric set of connected atoms, stable either in 
isolation state or in building unit of condensed matter.

Nonlinear (Curved) Metal Chains: Clusters in which metal-metal valent 
bonds form an angle different from 180 degrees between them.

Polytope: Polyhedron in the space of higher dimension.
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ABSTRACT

The geometry of clusters with ligands and a polyhedral frame is considered 
by the methods of studying the geometry of higher-dimensional polytopes, 
developed in the author’s monograph. It is shown that these methods allow us 
to establish important details of cluster geometry, which elude analysis based 
on the representations of three-dimensional geometry. It is established that 
the well-known Kuban cluster is a 4-cross-polytope, which allows different 
variants of the Kuban cluster. A cluster of gold with a tetrahedral backbone 
is a 5-cross-polytope. The cluster tetra anion of cobalt is a polytope of 
dimension 5 of a new type. Different types of ligands limit the cobalt skeleton 
from above and below.

INTRODUCTION

A significant part of the known cluster are molecules that have a skeleton 
in the form of a metal polyhedron. In other words, the shortest distances 
between metal atoms in such molecules form a convex closed polyhedron 
bounded by flat faces. As a rule, these polyhedrons are considered three - 
dimensional. Even if in the simplest cases this is so, then taking into account 
the ligands attached to the skeleton, such a molecule will have a dimension 
greater three. In addition, the metal core may have a higher dimension, 
which further increases the dimension of the cluster. Therefore to analyze 

Metallic Clusters With Ligands 
and Polyhedral Core
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the structure of clusters with a metal backbone in the form of a polyhedron, 
it is necessary to use the geometry of high - dimensional polytopes, not the 
abstract geometry of spaces of higher dimension, but the geometry of high 
- dimensional polytopes based on the analysis of the geometry of chemical 
compounds (Zhizhin, 2018, 2019a, b). If the space surrounding the cluster 
is considered three - dimensional, the outer surface of the cluster can be 
constructed from two - dimensional faces, although the cluster itself has a 
higher dimension. The existence of a higher dimension space inside a three 
- dimensional space does not contradict the Riemann geometry (Riemann, 
1854), since according to the Riemann geometry, space is finite (in Euclidean 
geometry the space is infinite).

Inside the cluster can meet a variety of convex bodies with dimensions 
less than the dimension of the cluster, including regular, semi - correct and 
irregular three - dimensional polyhedrons. Analysis of the structure of clusters, 
taking into account its dimensions and the dimensions of its components, is 
necessary for an adequate modern description of cluster geometry.

CLUSTER COMPOUNDS HAVING A SKELETON 
IN THE FORM OF A METAL TETREHEDRON

Among a wide variety of clusters, a special place is occupied by compounds 
based on the skeleton in the form of the simplest metal - polyhedron — the 
tetrahedron. Tetrahedral cluster compounds are widely distributed (Cubin, 
2019; Garner, 1980). The special significance of tetrahedral clusters lies in 

Figure 1. Homo - metallic tetrahedral iridium cluster Ir4(CO)12
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the fact that compounds based on them are found in nature in the form of 
multi - core redox homo - metallic and hetero - metal enzymes (Lichtensins, 
1979; Neuton & Otsuka, 1980). Let us consider in more detail the structural 
features of cluster compounds with tetrahedral metal cores. A classic example 
of compounds of this type is the tetrahedral cluster Ir4(CO)12 (Gubin, 2019). 
The scheme of this compound is shown in Figure 1.

Theorem 1. The homo - metallic tetrahedral iridium cluster Ir4(CO)12 has 
dimension 4.

Proof. The spatial structure of the cluster Ir4(CO)12 is shown in Figure 2.

As follows from Figures 1, 2 the spatial structure of the cluster Ir4(CO)12 
contains 16 vertices. In vertices 1÷2 is arrangement of the functional groups 
CO, in vertices 13÷6 is arrangement of the atoms Ir.

For further it is necessary to use the Euler - Poincaré equation (Poincaré, 
1895)

( ) ( ) ( ) ,− = − −
=

−

∑ 1 1 1
0

1
i
i

i

i

n

f P  (1)

Figure 2. The spatial structure of the clusterIr4(CO)12
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fi is the number of the elements with the dimension i at polytope P; n is 
dimension of the polytope P.

In this case f0=16. The numbers of edges on Figure 2 is 42 (f1=42)

1 - 13, 1 - 12, 1 - 6, 1 - 7, 1 - 2, 2 - 7, 2 - 15, 2 - 8, 2 - 3, 3 - 8, 3 - 15, 3 - 9, 
3 - 4, 4 - 9, 4 - 10, 4 - 14, 4 - 5, 5 - 10, 5 - 14, 5 - 11, 5 - 6, 6 - 11, 6 - 13, 6 - 
12, 12 - 10, 12 - 13, 12 - 8, 7 - 11, 7 - 16, 7 - 9, 9 - 16, 9 - 11, 8 - 15, 8 - 10, 
10 - 14, 11 - 16, 13 - 15, 13 - 16, 13 - 14, 14 - 16, 14 - 15, 15 - 16. 

The number of triangles on Figure 2 is 24

2 - 3 - 15, 2 - 3 - 8, 2 - 8 - 15, 3 - 8 - 15, 3 - 15 - 16, 13 - 15 - 14, 15 - 16 - 14, 
13 - 16 - 14, 14 - 4 - 10, 14 - 10 - 5, 14 - 4 - 5, 5 - 4 - 10, 1 - 13 - 6, 1 - 13 - 12, 
1 - 12 - 6, 6 - 13 - 12, 7 - 9 - 16, 7 - 16 - 11, 7 - 9 - 11, 16 - 9 - 11, 1 - 2 - 7, 
3 - 9 - 4, 6 - 5 - 11, 12 - 8 - 10. 

The flat tetragonal faces on Figure 2 is 18

1 - 2 - 8 - 12, 8 - 3 - 4 - 10, 12 - 10 - 5 - 6, 2 - 3 - 7 - 9, 1 - 7 - 6 - 11, 11 - 9 
- 4 - 5, 2 - 15 - 7 - 16, 15 - 16 - 3 - 9, 9 - 4 - 16 - 14, 1 - 7 - 16 - 13, 11 - 16 - 
14 - 5, 6 - 11 - 13 - 16, 2 - 15 - 13 - 1, 12 - 8 - 15 - 13, 3 - 4 - 15 - 14, 8 - 10 
- 15 - 14, 6 - 5 - 13 - 14, 12 - 10 - 13 - 14. 

Thus, the common number of flat faces on Figure 2 is 42, (f2=42).
The tetrahedrons on Figure 2 is 5

1 - 13 - 12 - 6, 5 - 4 - 10 - 14, 2 - 3 - 8 - 15, 13 - 14 - 15 - 16, 7 - 9 - 11 - 
16. 

The trigonal prisms on Figure 2 is 4

1 - 2 - 7 - 13 - 16 - 15, 14 - 15 - 16 - 3 - 9 - 4, 13 - 16 - 14 - 6 - 11 - 5, 13 - 
16 - 14 - 12 - 8 - 10. 

The pyramids on Figure 2 is 6

6 - 12 - 13 - 14 - 10 - 5, 1 - 2 - 8 - 12 - 15 - 13, 8 - 3 - 4 - 10 - 15 - 14, 1 - 7 
- 6 - 11 - 13 - 16, 9 - 4 - 5 - 11 - 16 - 14, 2 - 3 - 9 - 7 - 15 - 16. 
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On Figure 2 is one cube - octahedron

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 

(ligand polyhedron). Thus, the common number of the three - dimensional 
faces on Figure 2 is 16 (f3=16).

Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 
see that the Euler - Poincaré equation is satisfied in his case for n = 4

16 – 42 + 42 – 16 = 0. 

This proves that Figure 2 is polytope with dimension 4.

FOUR-CORE CLUSTER CONNECTION HAVING 
A FRAME IN THE FORM “CUBAN CLUSTER”

Among the cluster compounds containing four metal atoms, there is a rather 
representative group of molecules having a skeleton in the form of a “Cuban 
cluster” (Garner, 1980; Gubin, 2019), at the vertices of which metal atoms 
and non - metal atoms alternate. Schemes of such compounds are presented 
in Figure 3 a, b.

Figure 3. Structural types of cores of cluster molecules containing a group M4E4: 
a) A metal tetrahedron resting on a triangular face. b) A metal tetrahedron resting 
on an edge.
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On Figure 3 M is atom of metal, E is atom non - metal (O, S, N, P, As, 
Sb, Cl, Br, I).

Theorem 2. “Cuban cluster” is 4 - cross - polytope.
Proof. The spatial image of clusters containing a group M4E4 is shown 

in Figure 4 a, b.

As follows from Figures 4 a, b, the metal atoms in variant a) are located 
at the vertices 1, 3, 5, 7, and in variant b) the metal atoms are located at the 
vertices 2, 4, 6, 7. In theory, non - metal atoms are located in the remaining 
free vertices of the cube. In both cases the number of vertices is 8 (f0=8), the 
number of edges is 24 (f1=24)

1 - 2, 1 - 3, 1 - 8, 1 - 7, 1 - 5, 1 - 6, 2 - 3, 2 - 4, 2 - 7, 2 - 8, 2 - 6, 3 - 4, 3 - 5, 
3 - 7, 3 - 8, 4 - 5, 4 - 6, 4 - 7, 4 - 8, 5 - 6, 5 - 8, 5 - 7, 6 - 7, 6 - 8, 

the number of two - dimension faces is 32 (f2=32),

1 - 2 - 3, 1 - 3 - 8, 1 - 7 - 2, 1 - 5 - 7, 1 - 6 - 5, 1 - 6 - 7, 1 - 2 - 6, 1 - 6 - 8, 
1 - 8 - 2, 1 - 5 - 8, 2 - 6 - 8, 2 - 8 - 3, 2 - 4 - 3, 2 - 8 - 4, 2 - 7 - 3, 2 - 7 - 4, 
3 - 8 - 4, 3 - 7 - 4, 3 - 5 - 4, 4 - 5 - 7, 4 - 5 - 6, 4 - 6 - 7, 5 - 6 - 7, 5 - 6 - 8, 
1 - 3 - 7, 2 - 6 - 4, 3 - 1 - 5, 3 - 5 - 7, 4 - 2 - 6, 4 - 6 - 8, 5 - 4 - 8, 5 - 8 - 3, 

The number of three - dimension faces is 16 (f3=16),

Figure 4. The spatial image of clusters containing a group M4E4: a) A metal 
tetrahedron resting on a triangular face. b) A metal tetrahedron resting on an edge.
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1 - 7 - 5 - 6, 1 - 2 - 8 - 6, 1 - 2 - 3 - 7, 1 - 2 - 3 - 8, 2 - 3 - 7 - 4, 2 - 3 - 8 - 4, 
3 - 4 - 5 - 7, 4 - 5 - 6 - 7, 1 - 2 - 6 - 7, 1 - 3 - 7 - 5, 1 - 3 - 8 - 5, 1 - 5 - 6 - 8, 
2 - 6 - 8 - 4, 2 - 6 - 7 - 4, 4 - 5 - 8 - 6, 4 - 5 - 8 - 3. 

Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 
see that the Euler - Poincaré equation is satisfied in his case for n = 4

8 – 24 + 34 – 16 = 0. 

This proves that Figures 4 a, b are polytopes with dimension 4.
Obviously, it is easy to see that there are four more variants of the 

arrangement of the tetrahedron of metal atoms in a cube by changing the 
arrangement of the diagonal and the triangle with the metal atoms in the 
lower base of the cube. In all the cases listed above, the arrangement of the 
atoms of the constituents they are characterized by the fact that each vertex 
has a certain (opposite) vertex with which this vertex is not connected by an 
edge. Moreover, this vertex is connected with all other vertices by an edge. 
This property of polytopes, which are called cross - polytopes. For the first 
time the existence of cross - polytopes of dimension 4 was announced in 1880 
(Stringham, 1880). The properties of cross - polytopes with any dimension 
and n are studied in detail in the work (Zhizhin, 2019a). Thus, “Cuban cluster” 
is 4 - cross - polytope.

It should be noted that the ligand polyhedron cannot be separated separately 
in the “Cuban cluster”, since the ligand tetrahedron and the metal tetrahedron 
penetrate each other.

CLUSTER WITH A GOLD TETRAHEDRON FRAME

Clusters with the participation of tetrahedron of gold atoms show a known 
position about the high lability of compounds of these metals (Gubin, 2019). 
Consider the structure of one of these clusters Au4I2R4, R=PPh3 is a functional 
group. The scheme of this compound is shown in Figure 5.

To obtain a spatial model of this compound in the form of a convex 
polytope, it is necessary to add several edges that have a purely geometric 
value. In the previous text, to create a spatial model of molecules, at the 
first step, the coordination of atoms around a single metal atom was taken 
into account and then the extra edges of this coordination were removed, 
losing their importance in the combination of several metal atoms. In clear 
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Figure 5. The scheme of cluster Au4I2R4, R=PPh3

Figure 6. The spatial structure of cluster Au4I2R4, R=PPh3
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cases, you can immediately go to the second stage of adding edges to create 
a spatial image of the compound, like a convex body. The spatial image of 
this compound is shown in Figure 6.

In Figure 6, the valence bonds are marked with red edges, the added edges 
are marked with black. Here one had to add a significant number of edges in 
order to achieve a convex body of the minimum dimension in this case. From 
Figure 6 it can be seen that the resulting convex figure is a cross - polytope, 
since each vertex of the figure has an opposite vertex with which there is no 
edge connection. With other vertices, except the opposite, there are such edge 
connections. In this case, to calculate the numbers of elements of different 
dimensions i, you can use the general formula for n - cross - polytopes 
(Zhizhin, 2013, 2014, 2019a)

f n C
i

i
n
n i( )= + − −21 1 . (2)

The correctness of this formula can be checked by subtracting numbers 
of various dimensions for 4 - cross - polytopes with the help of this formula 
and comparing with the corresponding values of these numbers obtained by 
direct recalculation of image 4 - cross - polytopes in the previous section.

In accordance with formula (2), the number of vertices (i = 0) in a polytope 
of dimension n is equal to 2 21C n

n
n− = . Since the number of vertices in Figure 

6 is 10, the dimension of the cross - polytope in Figure 6 is equal to 5. 
According to formula (2), the number of edges, two -dimensional, three - 
dimensional and four - dimensional elements in a 5 - cross - polytope are 
equal

f1(5)=40, f2(5)=80, f3(5)=80, f4(5)=32. 

Substituting these numbers in the equation (1) of Euler - Poincaré, we 
confirm that it holds for n = 5

10 – 40 + 80 – 80 + 32 = 2. 

Thus, cluster Au4I2R4, R=PPh3 is cross - polytope with dimension 5.
It should be noted that ligands in this case form a convex figure. This can 

be proved by counting elements of various dimensions on the set of ligand 
vertices. According to Figure 6, the number of ligand vertices is 6 (f0=6), the 
number of edges between the ligand vertices is 14 (f1=14)
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1 - 2, 1 - 3, 1 - 4, 1 - 5, 1 - 6, 2 - 3, 2 - 4, 2 - 5, 2 - 6, 3 - 4, 3 - 5, 4 - 5, 4 - 6, 
5 - 6, 

the number of flat elements formed by the edges is 16 (f2=16),

1 - 2 - 3, 1 - 2 - 4, 1 - 2 - 5, 1 - 2 - 6, 1 - 3 - 4, 1 - 3 - 5, 1 - 4 - 5, 1 - 4 - 6, 
1 - 5 - 6, 2 - 3 - 4, 2 - 3 - 5, 2 - 4 - 5, 2 - 4 - 6, 2 - 5 - 6, 3 - 4 - 5, 4 - 5 - 6, 

the number of three - dimensional elements is 8 (f3=8)

1 - 2 - 3 - 4, 1 - 2 - 3 - 5, 1 - 2 - 4 - 6, 1 - 2 - 5 - 6, 1 - 3 - 4 - 5, 1 - 4 - 5 - 6, 
2 - 3 - 4 - 5, 2 - 4 - 5 - 6. 

Substituting these numbers in the equation (1) of Euler - Poincaré you 
can see that it holds for n = 4

6 – 14 + 16 – 8 = 0. 

This proves that ligand polytope in this case has dimension equal 4. In 
this case, the ligand polytope 1 - 2 - 3 - 4 - 5 - 6 and metallic polyhedron 
7 - 8 - 9 - 10 penetrate each other.

CLASTERS WITH A GOLD OCTAHEDRON FRAME

Theoretically, a large number of isomeric non - planar metal cores can be 
constructed from six metal atoms, many of which can be realized in the 
form of cluster molecules. However, octahedron is most common among 
6 - nuclear cluster compounds. As an example, consider the structure of the 
gold phosphine cluster [Au6(PR3)6]

2+, R=C6H4CH3-p (Gubin, 2019). The 
scheme of this compound is shown in Figure 7.

The spatial image of a cluster of phosphine gold is presented in Figure 8.
It represents the gold octahedron embedded in the octahedron of ligands. 

In vertices 7, 8, 9, 10, 11, 12 is arrangement of the functional groups PR3, in 
vertices 1, 2, 3, 4, 5, 6 is arrangement of the atoms of gold Au. In Figure 8, 
the valence bonds are marked with red edges. Additional edges forming the 
outer convex shape of the connection are indicated in black.

Let one proved, that the dimension of this compound is 4.
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Figure 7. Schema of the gold phosphine cluster [Au6(PR3)6]
2+, R=C6H4CH3-p

Figure 8. The spatial image of a cluster of phosphine gold [Au6(PR3)6]
2+, R=C6H4CH3-p
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In this case the number of vertices is 12 (f0=12). The numbers of edges 
on Figure 8 is 30 (f1=30)

1 - 2, 1 - 3, 1 - 4, 1 - 5, 6 - 5, 6 - 2, 6 - 3, 6 - 4, 4 - 5, 5 - 2, 2 - 3, 3 - 4, 1 - 7, 
2 - 8, 3 - 11, 4 - 10, 5 - 9, 9 - 10, 10 - 11, 11 - 8, 8 - 9, 8 - 7, 11 - 7, 10 - 7, 
9 - 7, 8 - 12, 9 - 12, 10 - 12, 11 - 12, 6 - 12. 

The number of triangles on Figure 8 is 16

1 - 2 - 3, 1 - 3 - 4, 1 - 4 - 5, 1 - 2 - 5, 6 - 3 - 2, 6 - 5 - 2, 6 - 4 - 5, 6 - 4 - 3, 7 
- 9 - 8, 7 - 9 - 10, 7 - 10 - 11, 7 - 11 - 8, 11 - 8 - 12, 11 - 10 - 12, 10 - 9 - 12, 
9 - 8 - 12. 

The number of tetragon flat faces on Figure 8 is 12

3 - 2 - 8 - 11, 3 - 4 - 11 - 10, 4 - 5 - 9 - 10, 2 - 5 - 9 - 8, 1 - 2 - 7 - 8, 1 - 3 - 7 
- 11, 1 - 4 - 7 - 10, 1 - 5 - 7 - 9, 3 - 6 - 11 - 12, 2 - 6 - 12 - 8, 10 - 4 - 6 - 12, 
9 - 5 - 6 - 12. 

Thus, the common number of flat faces on Figure 8 is 28 (f2=28).
The number of octahedrons on Figure 8 is 2

1 - 2 - 3 - 4 - 5 - 6 (gold octahedron), 7 - 8 - 9 - 10 - 11 - 12 (ligand 
octahedron). 

The trigonal prisms on Figure 8 is 8

1 - 2 - 3 - 7 - 8 - 11, 1 - 2 - 5 - 7 - 8 - 9, 3 - 4 - 10 - 11 - 12, 4 - 5 - 6 - 9 - 10 
- 12, 4 - 1 - 3 - 7 - 10 - 11, 1 - 4 - 5 - 7 - 9 - 10, 6 - 3 - 2 - 8 - 12 - 11, 5 - 2 - 
6 - 8 - 9 - 12. 

Thus, the common number of the three - dimensional faces on Figure 8 
is 10 (f3=10).

Substituting the obtained values fi(i=0,1,2,3) in the equation (1) you can 
see that the Euler - Poincaré equation is satisfied in his case for n = 4

12 – 30 + 28 – 10 = 0. 

This proves that Figure 8 is polytope with dimension 4.
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COMPOUNDS HAVING A METAL OCTAHEDRON FRAME

A cluster of phosphine gold, discussed in the previous section, is a special 
case of numerous compounds in which the octahedron participates as a 
structural unit. If a complex functional group is opened in gold phosphine, the 
dimension of the compound in this case will become much higher. Clusters 
with a structural unit octahedron exist with different metals in the core: Pt, 
Pd, Ni, Cu, Ti, Fe, Ru and other metals (Gubin, 2019). They are distinguished 
by sufficient structural complexity, leading to the formation of polytopes of 
a higher dimension of new types. So far, none of them have been analyzed 
in the space of higher dimension. As an illustration of such an analysis, we 
consider the structure of the cobalt tetra - anion cluster [Co6(μ-Co)8(CO)6]

4-. 
The scheme of this compound is shown in Figure 9 (Johnson, & Benfield, 
1981).

The desire to create a convex model of this compound leads to the appearance 
of various three -dimensional polyhedrons and four - dimensional polytopes 
entering into each other.

Theorem 3. The dimension of cobalt tetra - anion cluster [Co6(μ-
Co)8(CO)6]

4- equal 5.
Proof. To build a spatial model of cobalt tetra - anion cluster [Co6(μ-

Co)8(CO)6]
4-, let us turn to its scheme in Figure 9. From this figure, it can 

be seen that the ligands (μ - CO) that bind two metal atoms form a cube. In 
addition, each vertex of the metal core in the form of an octahedron is formed 

Figure 9. Scheme of cobalt tetra - anion cluster [Co6(μ-Co)8(CO)6]
4-
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as a result of constructing a pyramid on each face of the ligand cube. The free 
vertices of these pyramids give the vertices of the octahedron of atoms cobalt. 
The six faces of the cube thus give six vertices of the octahedron. Consider 
first the figure that forms as a result of this construction. The spatial image 
of this figure is shown in Figure 10.

The valence bonds are indicated in this figure with red edges. The edges 
of the ligand cube are marked with dotted black lines. The edges of the 
pyramids, with the exception of the grounds, denoted by solid lines in black. 
Thus, the ligands (μ - CO) are located at the vertices

Figure 10. The spatial image of compound Co6(μ-Co)8
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2, 4, 6, 8, 9, 11, 12, 14. 

Metal atoms are located at the vertices

1, 3, 5, 7, 10, 13. 

To create a closed convex figure in the figure, two edges are added blue 1 
- 4, 9 - 14. Determine the dimension of this compound. There are 14 vertices 
here (f0=14). The numbers of edges on Figure 10 is 50 (f1=50)

1 - 2, 1 - 3, 1 - 13, 1 - 12, 1 - 4, 1 - 10, 1 - 9, 1 - 8, 1 - 7, 2 - 3, 2 - 13, 2 - 14, 
2 - 12, 2 - 9, 3 – 4, 3 - 5, 3 - 14, 3 - 13, 3 - 12, 3 - 10, 4 - 5, 4 - 6, 4 - 10, 4 - 
12, 4 - 14, 5 - 14, 5 - 11, 5 - 10, 5 - 6, 5 - 7, 5 - 13, 6 - 7, 6 - 10, 6 - 11, 6 - 8, 
7 - 10, 7 - 11, 7 - 13, 7 - 8, 7 - 9, 8 - 9, 8 - 10, 8 - 12, 9 - 11, 9 - 13, 9 - 14, 
10 - 12, 11 - 13, 11 - 14, 13 - 14. 

The number of triangles on Figure 10 is 58

1 - 2 - 3, 1 - 3 - 13, 1 - 3 - 12, 1 - 2 - 13, 1 - 2 - 12, 1 - 2 - 9, 1 - 9 - 8, 1 - 9 - 
7, 1 - 12 - 8, 1 - 13 - 7, 1 - 10 - 7, 1 - 10 - 8, 1 - 10 - 12, 1 - 10 - 3, 1 - 9 - 13, 
1 - 8 - 7, 2 - 12 - 3, 2 - 13 - 3, 2 - 14 - 3, 2 - 14 - 13, 2 - 9 - 13, 3 - 12 - 4, 
3 - 13 - 14, 3 - 13 - 5, 3 - 4 - 5, 3 - 14 - 5, 3 - 14 - 4, 3 - 10 - 12, 3 - 10 - 4, 
3 - 10 - 5, 4 - 5 - 14, 4 - 10 - 12, 4 - 5 - 10, 4 - 6 - 10, 4 - 5 - 6, 5 - 13 - 11, 
5 - 13 - 14, 5 - 14 - 11, 5 - 11 - 6, 5 - 11 - 7, 5 - 10 - 6, 5 - 7 - 6, 5 - 10 - 7, 
6 - 10 - 7, 6 - 11 - 7, 6 - 8 - 7, 6 - 8 - 10, 7 - 11 - 13, 7 - 8 - 10, 7 - 8 - 9, 7 - 
9 - 11, 7 - 9 - 13, 8 - 10 - 12, 9 - 11 - 13, 9 - 13 - 14, 9 - 14 - 11, 1 - 12 - 4, 
1 - 10 - 4. 

The number of tetragon flat faces on Figure 10 is 6

2 - 14 - 4 - 13, 14 - 4 - 11 - 6, 11 - 6 - 8 - 9, 9 - 8 - 2 - 13, 4 - 6 - 8 - 12, 2 - 
14 - 11 - 9. 

Thus, the common number of flat faces on Figure 10 is 64 (f2=64).
The number of tetrahedrons on Figure 10 is 19

1 - 2 - 3 - 12, 1 - 12 - 9 - 7, 1 - 12 - 8 - 9, 1 - 2 - 3 - 13, 1 - 2 - 12 - 9, 1 - 3 - 
11 - 13, 1 - 9 - 8 - 7, 2 - 12 - 14 - 3, 3 - 4 - 5 - 14, 3 - 13 - 4 - 11, 13 - 8 - 11 
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- 1, 4 - 5 - 6 - 11, 5 - 14 - 10 - 12, 5 - 11 - 7 - 6, 5 - 10 - 7 - 6, 5 - 12 - 7 - 10, 
6 - 11 - 7 - 8, 7 - 9 - 10 - 12, 1 - 8 - 11 - 7. 

The number of pyramids on Figure 10 is 6

2 - 12 - 4 - 6 - 3, 4 - 14 - 6 - 11 - 5, 6 - 8 - 9 - 11 - 7, 9 - 8 - 12 - 2 - 1, 4 - 6 
- 8 - 12 - 10, 2 - 14 - 11 - 9 - 13. 

On Figure 10 is 1 cube

2 - 14 - 4 - 12 - 6 - 8 - 9 - 11, 

and is 1 octahedron

Figure 11. The image a closed body S = 2 - 13 - 11 - 10 - 6 - 12 - 3 - 5 - 1 - 7
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1 - 3 - 5 - 7 - 10 - 13. 

In addition, in Figure 10 there is also a closed body with 12 vertices

2 - 13 - 11 - 10 - 6 - 12 - 3 - 5 - 1 - 7. 

His image is presented separately in Figure 11.
Determine the dimension of the body S. For this body is f0=10 . The 

number of edges on Figure 11 is 22 (f1=22)

1 - 2, 1 - 13, 1 - 12, 1 - 10, 1 - 7, 2 - 3, 2 - 13, 2 - 12, 3 - 5, 3 - 10, 3 - 13, 
3 - 12, 5 - 13, 5 - 11, 5 - 10, 6 - 7, 6 - 10, 6 - 11, 7 - 10, 7 - 11, 10 - 12, 11 - 
13. 

The number of triangles on Figure 11 is 8

2 - 3 - 12, 2 - 3 - 13, 1 - 2 - 13, 6 - 5 - 10, 6 - 5 - 11, 1 - 2 - 12, 7 - 6 - 10, 
7 - 6 - 11. 

The number of tetragon flat faces on Figure 11 is 4

13 - 3 - 5 - 11, 12 - 3 - 5 - 10, 1 - 7 - 13 - 11, 1 - 12 - 10 - 7. 

Thus, the common number of flat faces on Figure 11 is 12 (f2=12).
Substituting the obtained values fi(i=0,1,2) in the equation (1) you can see 

that the Euler - Poincaré equation is satisfied in his case for n = 3

10 – 22 + 12 = 2. 

This proves that Figure 11 is polyhedron with dimension 3. Consequently, 
the total number of three - dimensional figures included in the polytope in 
Figure 10 is 19 + 9 = 28, i.e. for this figure f3=28.

Substituting the obtained for Figure 10 values fi(i=0,1,2,3) in the equation 
(1) you can see that the Euler - Poincaré equation is satisfied in his case for 
n = 4

14 – 50 + 64 – 28 = 0. 
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This proves that Figure 10 is polytope with dimension 4. Now back to the 
review of cobalt tetra - anion cluster [Co6(μ-Co)8(CO)6]

4- in Figure 9.
Figure 10 shows the spatial image of only part of this compound. To create 

the spatial image of this compound, it is necessary to release the edges into 
the outer part from the vertices of the octahedron in Figure 10 and build a 
larger octahedron

15 - 16 - 17 - 18 - 19 - 20 

on the free vertices of these edges. This are red edges

1 - 18, 3 - 15, 5 - 16, 7 - 17, 13 - 19, 10 – 20 

on Figure 12.

Figure 12. Spatial image of cobalt tetra - anion cluster [Co6(μ-Co)8(CO)6]
4-
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Thus, the number of vertices on Figure 12 equal 20 (f0=20). The construction 
of a large octahedron taking into account the edges connecting two octahedrons 
adds 16 edges to the body in Figure 10. A three - dimensional figure is 
formed between each face of a large octahedron and the corresponding face 
of a small octahedron. For example, a three - dimensional figure is formed 
between the face of 1 - 10 - 7 small octahedron and the face 18 - 17 - 20 of 
the large octahedron (see Figure 12)

1 - 10 - 7 - 18 - 17 - 20. 

The number of such three - dimensional figures is equal to the number of 
faces of the octahedron - 8. In addition, to fill the space between the large 
octahedron and other convex bodies that make up the polytope in Figure 
10, it is necessary to connect the vertices of the large octahedron with the 
vertices of the cube

2 - 14 - 4 - 12 - 6 - 8 - 9 - 11. 

This adds to the body in Figure 10 another 24 edges

2 - 15, 12 - 15, 14 - 15, 4 - 15, 14 - 16, 4 - 16, 6 - 16, 11 - 16, 6 - 17, 8 - 17, 
9 - 17, 11 - 17, 8 - 18, 9 - 18, 2 - 18, 12 - 18, 2 - 19, 14 - 19, 9 - 19, 11 - 19, 
4 - 20, 12 - 20, 8 - 20, 6 - 20. 

Thus, a common number of the edges on Figure 12 is 50 + 16 + 24 = 
90 (f1=90).

The construction of a large octahedron taking into account the edges 
connecting two octahedrons adds 20 flat faces to body on Figure 10 (see 
previous section). Connection the vertices of the large octahedron with the 
vertices of the cube adds 48 flat faces to Figure 10. For example, the face 
of the cube 2 - 14 - 4 - 12 when building a large pyramid on it gives an 
additional 8 flat faces

2 - 12 - 15, 4 - 12 - 15, 4 - 14 - 15, 2 - 14 - 15, 12 - 3 - 15, 2 - 3 - 15, 4 - 3 - 
15, 14 - 3 - 15. 

Since the faces at cube 6 one gets an additional 48 flat faces. In this way, 
the total number of flat edges in Figure 12 is 64 + 20 + 48 = 132, (f2=132).
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The construction of a large octahedron taking into account the edges 
connecting two octahedrons adds 9 three - dimensional faces to body on Figure 
10 (see previous section). Connection the vertices of the large octahedron with 
the vertices of the cube adds 30 three - dimensional faces to Figure 10. For 
example, the face of the cube 2 - 14 - 4 - 12 when building a large pyramid 
on it gives an additional 5 three - dimensional faces

2 - 12 - 15 - 3, 4 - 12 - 15 - 3, 4 - 14 - 15 - 3, 2 - 14 - 15 - 3, 12 - 2 - 15 - 4 - 
14. 

Since the faces at cube 6 one get an additional 30 three - dimensional 
faces. In addition, 4 tetrahedrons are additionally formed between the cube 
and the large octahedron, each of which has an edge of one of the edges of a 
rectangular cross section of 15 - 16 - 17 - 18 large octahedron. For example, 
a tetrahedron 18 - 17 - 8 - 9 is formed on the edge 17 - 18. Thus, the total 
number of three - dimensional areas in the body in figure 12 is 28 + 9 + 30 
+ 4 = 71 (f3=71).

Connection the vertices of the large octahedron with the vertices of the 
cube adds 2 four - dimensional faces to Figure 10, one of which has an edge 
18 - 17 and second has edges 15 - 16 of a rectangular cross section of 15 - 
16 - 17 - 18 large octahedron. For example, on the edge 17 - 18 formed area

18 - 1 - 9 - 8 - 7 - 17 

(see Figure 12). This area has 6 vertices (f0=6). It has 14 edges (f1=14)

1 - 9, 1 - 8, 1 - 7, 1 - 18, 7 - 8, 7 - 9, 7 - 17, 8 - 9, 8 - 18, 8 - 17, 9 - 18, 9 - 17, 
9 - 8, 18 - 17. 

It has 14 two - dimensional faces (f2=14)

1 - 9 - 18, 1 - 9 - 8, 1 - 8 - 7, 1 - 7 - 17 - 18, 7 - 9 - 17, 7 - 8 - 9, 7 - 9 - 17, 
8 - 17 - 18, 8 - 9 - 17, 8 - 9 - 18, 9 - 18 - 17. 

It has 6 three - dimensional faces (f3=6)

1 - 9 - 8 - 18, 1 - 9 - 8 - 7, 18 - 9 - 8 - 17, 1 - 18 - 9 - 7 - 17, 9 - 8 - 7 - 17, 
1 - 8 - 18 - 7 - 17. 
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Substituting the obtained for Figure 10 values fi(i=0,1,2,3) in the equation 
(1) you can see that the Euler - Poincaré equation is satisfied in his case for 
n = 4

14 – 50 + 64 – 28 = 0. 

This proves that body

18 - 1 - 9 - 8 - 7 - 17 

is polytope with dimension 4. It is also proved that the body

15 - 16 - 5 - 4 - 14 - 3 

has the dimension 4. It can be shown that, due to the orientation of the cube 
with respect to the large octahedron, similar four - dimensional polytopes 
with the edges of the large octahedron 18 - 15 and 17 - 16 do not form.

Connection the vertices of the large octahedron with the vertices of the 
cube adds yet 6 four - dimensional faces to Figure 10, associated with the 
formation of structures of the pyramid in the pyramid on the faces of the 
cube. Consider for example two pyramids on the face of a cube 2 - 12 - 14 - 
4. This body has 6 vertices (f0=6), 13 edges (f1=13)

2 - 3, 2 - 15, 12 - 3, 12 - 15, 4 - 3, 14 - 3, 4 - 15, 14 - 15, 3 - 15, 2 - 12, 2 - 14, 
4 - 12, 4 - 14, 

13 two - dimensional faces (f2=13)

2 - 15 - 12, 2 - 3 - 12, 4 - 3 - 14, 4 - 15 - 14, 3 - 4 - 12, 15 - 4 - 12, 2 - 14 - 3, 
2 - 14 - 15, 12 - 3 - 15, 2 - 3 - 15, 4 - 3 - 15, 14 - 3 - 15, 2 - 14 - 12 - 4, 

and 6 three - dimensional faces (f3=6)

2 - 14 - 4 - 12 - 3, 2 - 14 - 4 - 12 - 15, 4 - 3 - 15 - 14, 12 - 4 - 3 - 15, 2 - 12 - 
3 - 15, 2 - 3 - 14 - 15. 

Substituting the obtained for two pyramids values fi(i=0,1,2,3) in the 
equation (1) you can see that the Euler - Poincaré equation is satisfied in his 
case for n = 4
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14 – 50 + 64 – 28 = 0. 

This proves that construction from two pyramids is polytope with dimension 
4.

The four - dimensional structure of two pyramids on the remaining five 
faces of the cube is proved in a similar way. In addition, the polytope in 
Figure 12 has two polytopes formed by inscribing a cube into an octahedron 
(large and small). Each of these polytopes has dimension 4 (this has already 
been proved). Finally, the polytope in Figure 12 has a polytope octahedron 
in an octahedron. This polytope also has dimension 4 (see previous section). 
Therefore, the total number of polytopes of dimension 4 that make up a 
polytope in Figure 12 is 11 (f4=11). Substituting the obtained for Figure 12 
values fi(i=0,1,2,3,4) in the equation (1) you can see that the Euler - Poincaré 
equation is satisfied in his case for n = 5

20 – 90 + 132 – 71 + 11 = 2. 

This proves that dimension of cobalt tetra - anion cluster [Co6(μ-Co)8(CO)6]
4- 

equal 5.

CONCLUSION

The geometry of clusters with a polyhedral metal core with ligands was 
studied. The attachment of ligands to the skeleton of metal atoms forming a 
three - dimensional polyhedron should naturally lead to the formation of a 
cluster of the higher dimension. This is shown in this chapter on the example 
of the widespread metal cores in the form of a tetrahedron and octahedron. 
As a result, the cluster assumes the form of both well - known polytopes of 
a higher dimension, and polytopes of a higher dimension of a new type. In 
particular, it has been established that the well - known Kuban clusters are 
nothing more than the well - known cross - polytopes of dimension 4. The 
bridged metal compounds by ligands further increases their dimension. For 
example, the cluster, as it turned out, has dimension 5, forming 5 - cross - 
polytope. The most complex structures of polytopes of higher dimension have 
clusters with ligands at the octahedral metal core. The simplest spatial model 
of a metallic octahedron with ligands is a metallic octahedron embedded in a 
ligand octahedron and has dimension 4. It should be noted that in many cases, 
ligands penetrate into the metallic core, so ideas about the surroundings of the 
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metallic skeleton ligands are not realized. Inside clusters with a polyhedral 
metallic skeleton and ligands, various geometric shapes of various dimensions 
are formed. The analysis of the geometry of a tetra - anion cobalt cluster can 
serve as an effective example of the application of geometric analysis of 
clusters of higher dimensions. It is proved that the dimension of this cluster 
is 5. The structure of this cluster includes octahedrons, a cube, a set of twin 
pyramids, and different three – dimensional body, 11 four - dimensional 
bodies. In this cluster, the metal core was located between the two shells of 
the ligands. Binding ligands form a small ligand polyhedron. Terminal ligands 
form a large ligand polyhedron. Both ligand polyhedrons limit the metal core 
“bottom” and “top”. It should be noted that the geometrical analysis using 
the methods of analysis of polytopes of higher dimension (Zhizhin, 2019 a) 
allows us to establish the important features of cluster geometry that elude 
the analysis from the standpoint of three - dimensional geometry.
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KEY TERMS AND DEFINITIONS

Binding (or Bridge) Ligands: Non-metal atoms or functional groups 
bonded by a chemical bond to several atoms of the metal backbone of the 
cluster simultaneously.

Dimension of the Space: The member of independent parameters needed 
to describe the change in position of an object in space.

Nanocluster: A nanometric set of connected atoms, stable either in 
isolation state or in building unit of condensed matter.

Polytope: Polyhedron in the space of higher dimension.
Terminal Ligands: Non-metal atoms or functional groups bonded by 

chemical bonding to only one of the atoms in the metal core of the cluster.
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ABSTRACT

This chapter first establishes the existence of integral equality in relation to 
the issue of the transmission of information by elements of lower and higher 
dimensions in the polytopes of higher dimension that describe natural objects. 
This integral equality is called the law of conservation of incidents. There 
is the incidence interpreted as the transfer of information from one material 
body to another. The fulfillment of the law of conservation of incidents for 
the n-simplex of the n-cube and the n-cross-polytope is proved in general 
terms. It is shown that the law of conservation of incidents is valid for both 
regular bodies and irregular bodies, which can be clusters of chemical 
compounds. The incident conservation law can serve as a mathematical 
basis for the recently discovered epigenetic principle of the transmission of 
hereditary information without changing the sequence of genes in DNA and 
RNA molecules.

INTRODUCTION

In previous chapters, it was convincingly shown that various objects of the 
nanoworld have a higher dimension. Geometrically, these objects are convex 
closed polytopes whose components are geometric elements with a monotonic 
change of the dimension from zero to the dimension of the polytope. In the 
monograph “The Geometry of Higher - Dimensional Polytopes” (Zhizhin, 
2019a) has studied in detail the geometry of higher - dimensional polytopes, 
based on an analysis of the structures of chemical compounds (Zhizhin, 2018). 

Incident Conservation Law
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The monograph (Zhizhin, 2019a) introduced the concept of the incidence 
coefficients of elements of lower dimension with respect to elements of 
higher dimension and elements of higher dimension with respect to elements 
of lower dimension. The first characterizes the number of elements of a 
certain higher dimension to which the given element of a lower dimension 
belongs. The second characterizes the number of elements of a given lower 
dimension that are included in a particular element of a higher dimension. 
Here we must remember that the vertices of geometric elements of various 
dimensions are atoms, molecules or functional groups. Therefore, the incidence 
of geometric elements to a friend means contact between particles of matter, 
including living matter. The contact between particles of matter can be 
interpreted as the transfer of information on material structures, including 
biological structures. The monograph “Attractors and higher dimensions in 
population and molecular biology: emerging research and opportunities” 
(Zhizhin, 2019b) showed that the elements of nanostructures of living matter 
are objects of higher dimension. Information sharing is an inherent property 
of living beings, without which even primitive organisms would not be able 
to maintain an extremely delicate balance, which depends on their survival 
(Mancuso &Viola, 2013; Mancuso, 2017). The monograph (Zhizhin, 2019b) 
found that DNA, RNA molecules are polytopes of higher dimension, and 
nitrogenous bases connecting the double helix in the DNA molecule form 
a cross - polytopes of dimension 13. In this connection, the phenomenon of 
living organisms associated with DNA modification due to the binding of 
the methyl group CH3 to the nitrogenous bases of DNA (methylation). This 
provides the memory of living organisms, i.e. transfer of inherited traits 
without changing the sequence of genes in DNA (Mancuso, 2017; Lindquist 
et al., 2016; Sanbonmatsu et al., 2016). Therefore, it is of interest to study in 
detail the incidence of the entire polygamy of elements of different dimensions 
in higher dimension polytopes, considering it as a study of the possibility 
of transmitting information in biological molecules. This study is devoted 
to this chapter. It considers all possible incidents in convex bodies, starting 
with the simplest bodies and gradually complicating them.

INCIDENT CONSERVATION LAW FOR N - SIMPLEX

In n - simplex (Zhizhin, 2013, 2014, 2019 a) the number of elements with 
dimension d is
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This is the number of edges in n - simplexes. We introduce the notation: 
k
d dj
i
u

 is the number of elements of dimension u, which include an element of 

dimension j (u > j) with number i. Thus, k
d dj
i
u

 is the incidence factor of element 

i with dimension j relative to elements with dimension u. We introduce the 
notation also: k

d dj u
i  is the number of elements of dimension j, which included 

in element i with a dimension u (u > j). Thus, k
d dj u
i  is the incidence factor of 

element i with dimension u relative to elements with dimension j.
If n = 2, so f0(2)=3, f1(2)=3, see (2), (3). The factors of incidents (from 

smaller dimension to larger) are

k i
d di0 1

2 1 2 3= =, , , ; k i
d di1 2

1 1 2 3= =, , , .  

Sum up the incidence coefficients for all vertices and edges of the triangle
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The factors of incidents (from larger dimension to smaller) are

k i k
d d d di

0 1 1 2
2 1 2 3 3= = =, , , ; .  
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Sum up the incidence coefficients for all elements of the triangle with 
dimension larger of zero

k k
d d

i
d di

0 1 1 2
1

3

9
=
∑ + = .  (5)

Comparing (4) and (5) you can see that the sum of incidents in a triangle 
from elements with a lower dimension to elements with a higher dimension 
is equal to the sum of incidents from elements with a higher dimension to 
elements with a lower dimension. Thus, the sum of incidents retains its value 
when the direction of the relationship between the elements it is change.

If n = 3, so

f0(3)=4, f1(3)=6, f2(3)=4. 

The factors of incidents (from smaller dimension to larger) are
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Sum up the incidence coefficients for all elements of the tetrahedron
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The factors of incidents (from larger dimension to smaller) are
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Sum up the incidence coefficients for all elements of the tetrahedron
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Comparing (6) and (7) you can see that the sum of incidents in a tetrahedron 
from elements with a lower dimension to elements with a higher dimension 
is equal to the sum of incidents from elements with a higher dimension to 
elements with a lower dimension. Thus, the sum of incidents retains its value 
when the direction of the relationship between the elements it is change.

Let us prove the general statement for a simplex of arbitrary finite 
dimension n.

Theorem 1. In any simplex of dimension n, the sum of all incidents of 
elements of a lower dimension with respect to all elements of a higher dimension 
is equal to the sum of all incidents of elements of a higher dimension with 
respect to all elements of a lower dimension and equals the sum of the series
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Proof. The number of edges (elements of dimension 1) that have a certain 
vertex di

0
 its end point (given that in a simplex each vertex is connected by 

edges with all other vertices) is determined by the incidence factor

k C f n n i f n
d d ni

0 1

1
0 0

1 1= = − = = ÷( ) , ( ).  (8)

The number of elements of dimension 2 that have its vertex a certain 
vertex di

0
 is determined by the incident factor

k C i f n
d d n
o
i

2

2
0

1= = ÷, ( ) . (9)

The number of elements of dimension 3 that have its vertex a certain 
vertex di

0
 is determined by the incident factor

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



176

Incident Conservation Law

k C i f n
d d n
o
i

3

3
0

1= = ÷, ( ) . 

And so on.
The number of elements of dimension (n - 1) that have its vertex a certain 

vertex di
0
 is determined by the incident factor

k C i f n
d d n

n

o
i
n−

= = ÷−

1

1
0

1, ( ) . 

The number of elements of dimension n that have its vertex a certain 
vertex di

0
 is determined by the incident factor

k C i f n
d d n

n

o
i
n

= = = ÷1 1
0

, ( ) . 

The total number of incidents of vertices to elements of higher dimensions 
in a n - simplex will be

f n k f n C C C f n
d d

j

n

n n n
n n

i
j

0
1

0
1 2

0
0

2 1( ) ( )( ... ) ( )( ).
=
∑ = + + + = −  

The number of elements of dimension 2 that have a certain edge di
1
 its 

edge is determined by the incidence factor

k C f n n i f n
d d ni

1 2
1

1
0 1

2 1 1= = − = − = ÷− ( ) , ( ).  

The number of elements of dimension 3 that have its edge an elementdi
1
 

is determined by the incident factor

k C i f n
d d ni

1 3
1

2
1

1= = ÷− , ( ) . 

And so on.
The number of elements of dimension (n - 1) that have its edge a certain 

edge di
1
 is determined by the incident factor
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k C i f n
d d n

n
i
n1 1

1
2

1
1

−

= = ÷−
− , ( ) . 

The number of elements of dimension n that have its edge a certain edge 
di
1
 is determined by the incident factor

k C i f n
d d n

n
i
n1

1
1

1
1 1= = = ÷−

− , ( ) . 

The total number of incidents of edges to elements of higher dimensions 
in n - simplex will be

f n k f n C C C f n
d d

j

n

n n n
n n

i
j

1
2

1 1
1

1
2

1
1

1
1

1

2( ) ( )( ... ) ( )(
=

− − −
− −∑ = + + + = −−1).  (10)

In the same way, it is proved that the total number of incidences of elements 
of dimension 2 to elements of higher dimension in a n - simplex is determined 
by the expression

f n k f n C C C f n
d d

j

n

n n n
n n

i
j

2
3

2 2
1

2
2

2
2

2
2

2

2( ) ( )( ... ) ( )(
=

− − −
− −∑ = + + + = −−1).  

The total number of incidences of elements of dimension 3 to elements of 
higher dimension in a n - simplex is determined by the expression

f n k f n C C C f n
d d

j

n

n n n
n n

i
j

3
4

3 3
1

3
2

3
3

3
3

3

2( ) ( )( ... ) ( )(
=

− − −
− −∑ = + + + = −−1).  

And so on. Thus, the sum of all incidents of elements of a lower dimension 
with respect to all elements of a higher dimension in n - simplexes is equal

f n f n f n f nn n n
n0 1

1
2

2
1

2 1 2 1 2 1( )( ) ( )( ) ( )( ) .... ( ).− + − + − + +− −
−  (11)

To complete the proof of Theorem 1, it is necessary to show that the 
same expression is equal to the sum of all incidents of elements of a higher 
dimension with respect to all elements of a lower dimension in n - simplexes.
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We pose the question: how many elements of a lower dimension belong 
to one element of a higher dimension? For example, how many vertices 
belong to a single edge d i f ni

1 1
1, ( )= ÷ ? Obviously, this number is 2. This 

is the value of the coefficient of incidence k C
d di0 1

2
1 2= = . The product C f n

2
1

1
( )  

gives the number of vertices belonging to all edges of an n - simplex. This 
number

2 2
1

1 2
1

1
2C

n
n

n n
n+ =

+
−

= +
( )!

( )! !
( )  

is equal to the product

k C C n n
d d n n
o
i

1

1
1

1 1= = ++ ( ),  

i.e. the number of edges with a peak point d i f ni
0 0

1, ( )= ÷  (8). The number 
of vertices belonging to a single element of dimension 2 (triangle) is given 
by the incidence coefficientk i f n

d di0 2

1
2

, ( )= ÷ . Obviously, this number is 

3
3
1=C  . The product C f n

3
1

2
( )  corresponds to the number of vertices belonging 

to all elements of dimension 2 in the n - simplex. This number is

C f n C
n
n

n
nn3

1
2 1

13
2

3
2

1
2 3

1
2 2

( )
!
!

!
!

( )!
( )! !

( )!
( )! !

.= =
+
−

=
+
−+  

Let us compare this number with the number of elements of dimension 2 
with vertices (9), i.e. with the product

C f n
n

n
C

n
n

n
n

n
nn n

2
0 1

1

2 2 2 2
1 1

2 2
( )

!
( )! !

!
( )! !

( )!
!

( )!
( )! !

=
−

=
−

+
=

+
−+ ..  

It is clear that C f n C f n
n
2

0 3
1

2
( ) ( )= . This proves that the number of vertices 

belonging to all elements of dimension 2 in an n - simplex is equal to the 
number of elements of dimension 2 that have their vertices di

0
.

Let k
d dj

i
0

 be the number of vertices belonging to some one element of 

dimension j, that isd
j
i . Obviously, this number is equal to C j

j+ = +
1

1 1 , 
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i=1÷fj(n). The product C f n
j j+1
1 ( )  corresponds to the number of vertices 

belonging to all elements of dimension j in the n - simplex. Compare this 
number with the number of elements of dimension j having vertices di

0
 at 

i=f0(n), i.e. with the product

C f n n
n

n j jn
j

0
1( ) ( )

!
( )! !

.= +
−

 

On the other hand, we have

C f n
j
j

n
n j

n n
j n jj+ =

+ +
− +

=
+
−1

1
0

1 1
1

1
( )

( )!
!

( )!
( )!(j )!

!( )
!( )!

.  

It can be seen that these values coincide. This proves that the number of 
vertices belonging to all elements of dimension j in the n - simplex is equal 
to the number of elements of dimension j that have their verticesdi

0
.

Let k
d dj
i

1

 be the number of edges belonging to some one element of 

dimension j, that is

d j i f n
j
i

j
, , ( )> = ÷1 1 . 

Obviously, this number edges belonging all elements with dimension j is

f j f n C C
j
j

n
n j jj j n

J
1 1

2
1
1 1

1 2
1

1
( ) ( )

( )!
( )! !

( )!
( )!( )!

(
= =

+
−

+
− +

=+ +
+ nn

j n j
+

− −
1

1 2
)!

( )! !( )!
.  

Compare this number with the number of elements dimension j having 
element d1 (see (10))

f n k f n C C C
n n n

n jd d n
j

n n
j

i
j

1 1 1
1

1
2

1
1

1

1
2

1
( ) ( )

( ) ( )!
( )!(

= = =
+ −

−−
−

+ −
−

jj −1)!
.  

It can be seen that these numbers are the same.
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Let k
d dh j

i  be the number of elements with dimension h belonging to some 

one element of dimension j (h < j), that is d i f n
j
i

j
, ( )= ÷1 . Obviously, this 

number equal fh(j). The product fh(j)fj(n) corresponds to the number of elements 
with dimension h belonging to all elements of dimension j in the n - simplex. 
This number is

f j f n C C
j

j h h
n

n j jh j j
h

n
j( ) ( )

( )!
( )!( )!

( )!
( )!(

= =
+

− +
+

−+
+

+
+

1
1

1
1 1

1
1

++
=

+
− + −1

1
1)!

( )!
( )!( )!( )!

.
n

j h h n j
 

Compare this number with the number of elements dimension j having 
elements with dimension h (d i f n

h
i

h
, ( )= )

f n k f n C C C
n

n h hh d d h n h
j h

n
h

n h
j h

h
i
j

( ) ( )
( )!

( )!( )!
= = =

+
− +−

−
+
+

−
−

1
1 1

1
(( )!

( )!( )!
.

n h
n j j h

−
− −

 

It can be seen that these numbers are the same.
This proves that the number of elements of dimension h, belonging to all 

elements of dimension j in n - simplex, is equal to the number of elements of 
dimension j, which have elements of dimension h. Thus, the total number of 
incidents of elements of a smaller dimension to elements of a larger dimension 
is equal to the total number of incidents of elements of a higher dimension 
to elements of a smaller dimension. This exists in spite of the difference in 
the incidence coefficients of elements of a smaller dimension to elements 
of a higher dimension and the incidence coefficients of elements of a higher 
dimension to elements of a smaller dimension.

This fact can be considered the law of conservation of incidences in the 
n - simplex.

The total number of incidents in the n - simplex is described by equality 
(11).

It can be seen that the total number of incidents in the n - simplex depends 
only on the dimension n and increases sharply with increasing n. For example, 
it is 12 for n = 2, 50 for n = 3, 180 for n = 4, 602 for n = 5.
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INCIDENT CONSERVATION LAW FOR N - CUBE

In n - cube (Zhizhin, 2013, 2014, 2019 a) the number of elements with 
dimension d is

f n C d n
d

n d
n
d( ) , .= = ÷−2 1  (12)

For example, if d = 0, so

f0(n)=2n. (13)

This is the number of vertices in n - cube. If d = 1, so

f n C nn
n

n
1

1 1 12 2( ) .= =− −  (14)

This is the number of edges in n - cube.
We introduce the notation: k

d dj
i
u

is the number of elements of dimension 

u, which include an element of dimension j (u > j) with number i. Thus, k
d dj
i
u

is the incidence factor of element i with dimension j relative to elements with 
dimension u. We introduce the notation also: k

d dj u
i is the number of elements 

of dimension j, which included in element i with a dimension u (u > j). Thus, 
k
d dj u
i  is the incidence factor of element i with dimension u relative to elements 

of dimension j.
If n = 2, so f0(2)=4, f1(2)=4, see (13), (14). The factors of incidents (from 

smaller dimension to larger, Figure 1) are

k C i
d di0 1

2 1 4
2
1= = = ÷, ; k i

d di0 2

1 1 4= = ÷, ; k i
d di1 2

1 1 4= = ÷, .  

On Figure 1 the edges are

d d d d d d d d d d d d
1
1

0
1

0
2

1
2

0
2

0
3

1
3

0
3

0
4

1
4

0
4

0
1= = = =, , , .  

Sum up the incidence coefficients for all vertices and edges of the triangle
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k k k k
d d

i
d d

i
d d

i
di i i i

0 1 0 2 1 2 01

4

1

4

1

4

2 4 8 1 4 4 1 4 4
= = =
∑ ∑ ∑= ⋅ = = ⋅ = = ⋅ =, , ,

dd
i

d d
i

d d
i

k ki i
1 0 2 1 21

4

1

4

1

4

16
= = =
∑ ∑ ∑+ + = .  

(15)

The factors of incidents (from larger dimension to smaller, Figure 1) are

k i k k
d d d d d di

0 1 1 2 0 2
2 1 4 4 4= = ÷ = =, ; , .  

Sum up the incidence coefficients for all elements of the 2 - cube with 
dimension larger of zero

k k k
d d

i
d d d di

0 1 1 2 0 2
1

4

16
=
∑ + + = .  (16)

Comparing (15) and (16) you can see that the sum of incidents in a 2 - cube 
from elements with a lower dimension to elements with a higher dimension 
is equal to the sum of incidents from elements with a higher dimension to 
elements with a lower dimension. Thus, the sum of incidents remains unchanged 
when the direction of the relationship between the elements it is change.

If n = 3, so

f0(3)=8, f1(3)=12, f2(3)=6, 

Figure 1. The 2-cube
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see (13), (14). The factors of incidents (from smaller dimension to larger, 
Figure 2) are

k i k i k i

k i
d d d d d d

d d

i i i

i

0 1 0 2 0 3

1 2

3 1 8 3 1 8 1 1 8

2 1

= = ÷ = = ÷ = = ÷

= = ÷

, ; , ; , ;

, 112 1 1 6 1 1 12
2 3 1 3

; , ; , .k i k i
d d d di i= = ÷ = = ÷

 

Sum up the incidence coefficients for all vertices, edges and two - dimension 
faces of the 3 - cube

k k k

k

d d
i

d d
i

d d
i

d

i i i
0 1 0 2 0 31

8

1

8

1

8

3 8 24 3 8 24 1 8 8
= = =
∑ ∑ ∑= ⋅ = = ⋅ = = ⋅ =, , ,

11 2 2 3 1 31

12

1

6

1

12

2 12 24 1 6 6 1 12 12i i id
i

d d
i

d d
i

k k
= = =
∑ ∑ ∑= ⋅ = = ⋅ = = ⋅ =, , ,,

k k k k k
d d

i
d d

i
d d

i
d d

i
d d

i
i i i i i
0 1 0 2 1 2 0 3 2 31

8

1

8

1

12

1

8

= = = =
∑ ∑ ∑ ∑+ + + +

== =
∑ ∑+ =

1

6

1

12

1 3

98k
d d

i
i .

 (17)

The factors of incidents (from larger dimension to smaller, Figure 2) are

Figure 2. The 3-cube
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k i k i k i k k
d d d d d d d d d di i i

0 1 1 2 0 2 0 3 1
2 1 12 4 1 6 4 1 6 8= = ÷ = = ÷ = = ÷ =, ; , ; , ; ;

33 2 3
12 6= =; .k

d d
 

Sum up the incidence coefficients for all elements of the 3 - cube with 
dimension larger of zero

k k k k k k
d d

i
d d d d

ii
d d d d d di i i

0 1 0 2 1 2 1 3 0 3 2 3
1

12

1

6

1

6

98
= ==
∑ ∑∑+ + + + + = .  (18)

Comparing (17) and (18) you can see that the sum of incidents in a 3 - cube 
from elements with a lower dimension to elements with a higher dimension 
is equal to the sum of incidents from elements with a higher dimension to 
elements with a lower dimension. Thus, the sum of incidents retains its value 
when the direction of the relationship between the elements it is changes.

If n = 4, so

f0(4)=16, f1(4)=32, f2(4)=24, f3(4)=8, 

see (12) - (14). The factors of incidents (from smaller dimension to larger, 
Figure 3) are

k i k i k i k

i
d d d d d d d di i i i

0 1 0 2 0 3 0 4

4 1 16 6 1 16 4 1 16 1= = ÷ = = ÷ = = ÷ =, ; , ; , ; ,

== ÷ = = ÷ = = ÷ = = ÷1 16 3 1 32 3 1 32 1 1 32
1 2 1 3 1 4

2

; , ; , ; , ;k i k i k i

k
d d d d d d

d

i i i

ii i id d d d d
i k i k i

3 2 4 3 4

2 1 24 1 1 24 1 1 8= = ÷ = = ÷ = = ÷, ; , ; , .

 

Figure 3. The 4-cube
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Sum up the incidence coefficients for all vertices, edges, two - dimension 
faces and three - dimension faces of the 4 - cube

k k k
d d

i
d d

i
d d

i
i i i
0 1 0 2 0 31

16

1

16

1

16

4 16 64 6 16 96 4 1
= = =
∑ ∑ ∑= ⋅ = = ⋅ = = ⋅, , 66 64 16

3 32 96 3

0 4

1 2 1 3

1

16

1

32

1

32

= =

= ⋅ = = ⋅

=

= =

∑

∑ ∑

, ,

,

k

k k

d d
i

d d
i

d d
i

i

i i 332 96 32 2 24 48

2

1 4 2 3

2 4

1

32

1

24

1

24

= = = ⋅ =

=

= =

=

∑ ∑

∑

, , ,k k

k

d d
i

d d
i

d d
i

i i

i 44 1 8 8
3 4 0 1 0 2 0 31

8

1

16

1

16

1

16

, .k k k k
d d

i
d d

i
d d

i
d d

i
i i i i

= = = =
∑ ∑ ∑= ⋅ = + +∑∑ ∑ ∑

∑ ∑

+ +

+ + +

= =

= =

k k

k k k

d d
i

d d
i

d d
i

d d
i

d

i i

i i

0 4 1 2

1 3 1 4 2

1

16

1

32

1

32

1

32

ii i id
i

d d
i

d d
i

k k
3 2 4 3 41

24

1

24

1

8

544+ + =
= = =
∑ ∑ ∑ .

 
(19)

The factors of incidents (from larger dimension to smaller, Figure 3) are

k i k i k i k k
d d d d d d d d di i i

0 1 0 2 0 3 0 4
2 1 32 4 1 24 8 1 8 16= = ÷ = = ÷ = = ÷ =, ; , ; , ; ;

11 2

1 3 1 4 2 3 2

4

1 24 12 1 8 32 6 1 8
d

d d d d d d d

i

i ii k i k k k

=

= ÷ = = ÷ = = = ÷

,

; , ; ; , i ;
dd d d

k
4 3 4

24 8= =; .
 

Sum up the incidence coefficients for all elements of the 4 - cube with 
dimension larger of zero

k k k k k
d d

i
d d d d

ii
d d

i
d di i i i i

0 1 0 2 1 2 0 3 1 31

32

0 1

24

1

24

1

8

= == =
∑ ∑∑ ∑+ + + +

ii
d d

i
d d d d d d d d

k k k k ki

= =
∑ ∑ + + + + =

1

8

1

8

2 3 0 4 1 4 2 4 3 4
544.  

(20)

Comparing (19) and (20) you can see that the sum of incidents in a 4 - cube 
from elements with a lower dimension to elements with a higher dimension 
is equal to the sum of incidents from elements with a higher dimension to 
elements with a lower dimension. Thus, the sum of incidents retains its value 
when the direction of the relationship between the elements it is changes.

It is easy to see that each incidence coefficient from a smaller dimension 
to a higher dimension corresponds to its inverse incidence factor from a larger 
dimension to a smaller dimension. For example, k k

d d d di i
0 2 0 2

6 4= =, .  Moreover, 

the number of such incidents from a smaller dimension to a higher dimension 
is 16, the number of corresponding inverse incidents is 24. So, the product 
of the incidence coefficient and the corresponding number retains its value, 
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6∙16= 4∙24= 96. It can be seen that this situation exists for all incidence 
rates. Therefore, the sum of incidents in the forward and reverse direction is 
preserved.

In order to write down the sum of incidents for a cube of any dimension 
in general, it is necessary to write expressions for the incidence coefficients 
and numbers of incidences in the forward and reverse directions, as a function 
of the cube size. This will also allow us to prove the next statement:

Theorem 2. In any cube of dimension n, the sum of all incidents of elements 
of a lower dimension with respect to all elements of a higher dimension is 
equal to the sum of all incidents of elements of a higher dimension with 
respect to all elements of a lower dimension and equals the sum of the series

f n f n f n f n f nn n n
n d0 1

1
2

2
1

2 1 2 1 2 1( )( ) ( )( ) ( )( ) .... ( ), ( )− + − + − + +− −
− == = ÷ −+

+C d n
n
d

1
1 0 1, ( ).  

Proof. The number of vertices in n - cube is equal f0=2n (see (12)). The 
number of edges in n - cube incident to any of the vertices of a cube, by its 
definition, is equal to k C i f

d d ni
0 1

1
0

1= = ÷, .

The number of elements of two - dimension incident to any of the vertices 
of a cube is equal k C i f

d d ni
0 2

2
0

1= = ÷, .  We can also record the number of 

elements of any dimension incident to any of the vertices of the cube up to 
the cube itself k C i f

d d n
n

i
n0

1
0

= = ÷, .

Multiplying each of these incidence coefficients by the number of vertices 
in the n - cube and summing up the obtained products, we find that the total 
number of incidences of the vertices to the elements of higher dimensionality 
in the n - cube is determined by the expression

f C C C f
n n n

n n
0

1 2
0

2 1( ... ) ( ).+ + + = −  

This expression coincides with the expression of the total number of 
incidences of vertices to elements of higher dimension in the n - simplex. The 
numerical difference between these expressions consists in a different value of 
the vertices in the n - cube and in the n - simplex, i.e. in the meaning of f0(n).

The number of edges in n - cube is equal f n Cn
n1

1 12( )= −  (see (12)). The 
number of two - dimension elements in n - cube incident to any of the edges 
of a cube, by its definition, is equal to k C i f

d d ni
1 2

1
1

1
1= = ÷− , .
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The number of three - dimension elements incident to any of the edges of 
a cube is equal k C i f

d d ni
1 3

1
2

1
1= = ÷− , .  We can also record the number of 

elements of any dimension incident to any of the edges of the cube up to the 
cube itself k C i f

d d n
n

i
n1

1
1

1
1= = ÷−

− , .

Multiplying each of these incidence coefficients by the number of edges 
in the n - cube and summing up the obtained products, we find that the total 
number of incidences of the edges to the elements of higher dimensionality 
in the n - cube is determined by the expression

f C C C f
n n n

n n
1 1

1
1

2
1
1

1
12 1( ... ) ( ).− − −

− −+ + + = −  

This expression coincides with the expression of the total number of 
incidences of edges to elements of higher dimension in the n - simplex. The 
numerical difference between these expressions consists in a different value 
of the edges in the n - cube and in the n - simplex, i.e. in the meaning of f1(n).

Continuing to write expressions for the total numbers of incidents of 
elements of different dimensions to elements of a higher dimension in a n 
- cube, summing up these numbers, we obtain a general expression for the 
number of incidences of elements of a lower dimension in relation to elements 
of a higher dimension in n - cube

f n f n f n f n f nn n n
n d0 1

1
2

2
1

2 1 2 1 2 1( )( ) ( )( ) ( )( ) .... ( ), ( )− + − + − + +− −
− == = ÷ −+

+C d n
n
d

1
1 0 1, ( ).  

(21)

It is easy to make sure that the calculations of the incidence flow in the 
n - cube according to expression (21) at values n=2÷4 coincide with the 
values of these quantities obtained earlier by analyzing the images of n - cube 
at these values n.

Let k
d dh j

i  be the number of elements of dimension h in a n - cube belonging 

to some one element of dimension j (h<j), that is d
j
i  . Obviously, this number 

is equal to fh(j), and i=1÷fj(n). The product fh(j)fj(n) corresponds to the number 
of elements of dimension h belonging to all elements of dimension j. For a 
n - cube, this product is equal to

f j f n C C
n

n j j h hh j
j h

j
h n j

n
j n h( ) ( )

!
( )!( )! !

.= =
− −

− − −2 2 2  
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Let us compare this number with the number of elements of dimension j, 
which have elements of dimension h in the n - cube

k f n C C
n

n h h
n h

n j j hd d h n h
j h n h

n
h n h

h
i
j

( )
!

( )! !
( )!

( )!( )
= =

−
−

− −−
− − −2 2

!!
. 

Obviously, these numbers are equal to each other. This proves that the 
number of elements of dimension h in a n - cube belonging to all dimensions 
of j (j>h) in a n - cube is equal to the number of elements of dimension j, 
which have elements of dimension h as elements.

Thus, the total number of incidents of elements of a smaller dimension 
with respect to elements of a higher dimension is equal to the total number 
of incidents of elements of a higher dimension with respect to elements of a 
smaller dimension. This the total number define expression (21).

It is significant that equality of incidence (information) flows exists 
despite the difference in the incidence coefficients of elements of a lower 
dimension in relation to elements of a higher dimension and the incidence 
coefficients of elements of a higher dimension in relation to elements of a 
smaller dimension. Therefore, the incidence conservation law found in the 
previous section for the n - simplex is also valid for the n - cube. Moreover, 
the analytical form of this law is preserved, expressed through functions fi(n) 
that determine the values of the numbers of the elements of dimension i in 
the polytope of dimension n.

INCIDENT CONSERVATION LAW FOR 
N - CROSS - POLYTOPE

In n - cross - polytope (Zhizhin, 2013, 2014, 2019 a) the number of elements 
with dimension d is

f n C d n
d

d
n
n d( ) , .= = ÷+ − −2 01 1  (22)

For example, if d = 0, so

f n C n
n
n

0
12 2( ) .= =−  (23)
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This is the number of vertices in n - cross - polytope. If d = 1, so

f n C
n
n

n n
n
n

1
2 22 2

2
2 1( )

!
( )!

( ) .= =
−

= −−  (24)

This is the number of edges in n - cross - polytope. If d = 2, so

f n C n n n
n
n

2
3 32

4
3

2 1( ) ( )( ) .= = − −−  (25)

This is the number of two - dimension faces in n - cross - polytope. If d 
= 3, so

f n C n n n n
n
n

3
4 42

2
3

3 2 1( ) ( )( )( ) .= = − − −−  (26)

This is the number of three - dimension faces in n - cross - polytope.
The smallest dimension of the cross - polytope is 4. From (23) - (26) it 

follows that in this polytope there are 8 vertices, 24 edges, 32 two - dimensional 
faces, 16 three - dimensional faces (Figure 4).

Figure 4. The 4-cross-polytope
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The factors of incidents (from smaller dimension to larger) are

k i k i k i k i
d d d d d d d di i i i

0 1 0 2 0 3 0 4

6 1 8 12 1 8 8 1 8 1 1= = ÷ = = ÷ = = ÷ = =, ; , ; , ; , ÷÷

= = ÷ = = ÷ = = ÷

8

4 1 24 4 1 24 1 1 24
1 2 1 3 1 4 2 3

;

, ; , ; , ;k i k i k i k
d d d d d d d di i i i ==

= ÷ = = ÷ = = ÷

2

1 32 1 1 32 1 1 16
2 4 3 4

,

; , ; , .i k i k i
d d d di i

 

Sum up the incidence coefficients for all vertices, edges, two - dimension 
faces and three -dimension faces of the 4 - cross - polytope

k k k
d d

i
d d

i
d d

i
i i i
0 1 0 2 0 31

8

1

8

1

8

6 8 48 12 8 96 8 8 64
= = =
∑ ∑ ∑= ⋅ = = ⋅ = = ⋅ =, , , kk

k k k

d d
i

d d
i

d d
i

i

i i

0 4

1 2 1 3

1

8

1

24

1

24

8

4 24 96 4 24 96

=

= =

∑

∑ ∑

=

= ⋅ = = ⋅ =

,

, ,
dd d

i

d d
i

d d
i

d d

i

i i ik k k

1 4

2 3 2 4 3

1

24

1

32

1

32

24

2 32 64 32

=

= =

∑

∑ ∑

=

= ⋅ = =

,

, ,
44

0 1 0 2 0 3 0 4

1

16

1

8

1

8

1

8

1

8

16
i

d d
i

d d
i

d d
i

d d
i

k k k ki i i i

=

= = = =

∑

∑ ∑ ∑

=

+ + +

.

∑∑ ∑ ∑

∑ ∑

+ +

+ + +

= =

= =

k k

k k k

d d
i

d d
i

d d
i

d d
i

d

i i

i i

1 2 1 3

1 4 2 3 3

1

24

1

24

1

24

1

32

ii id
i

d d
i

k
4 2 41

16

1

32

544
= =
∑ ∑+ = .

 

The factors of incidents (from larger dimension to smaller, Figure 4) are

k i k i k i k k
d d d d d d d d di i i

0 1 0 2 0 3 0 4
2 1 24 3 1 32 4 1 16 8= = ÷ = = ÷ = = ÷ =, ; , ; , ; ;

11 2

1 3 1 4 2 3 2

3

1 32 6 1 16 24 4 1 8
d

d d d d d d d

i

i ii k i k k k

=

= ÷ = = ÷ = = = ÷

,

; , ; ; , i ;
dd d d

k
4 3 4

32 16= =; .
 

Sum up the incidence coefficients for all elements of the 4 - cube with 
dimension larger of zero

k k k k k
d d

i
d d d d

ii
d d

i
d di i i i i

0 1 0 2 1 2 0 3 1 31

24

1

32

1

32

1

16

= == =
∑ ∑∑ ∑+ + + + ++ + + + + =

= =
∑ ∑
i

d d
i

d d d d d d d d
k k k k ki

1

16

1

16

2 3 0 4 1 4 2 4 3 4
544. 

(27)

Comparing (26) and (27) you can see that the sum of incidents in a 4 - 
cross - polytope from elements with a lower dimension to elements with a 
higher dimension is equal to the sum of incidents from elements with a higher 
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dimension to elements with a lower dimension. Thus, the sum of incidents 
retains its value when changes the direction of the relationship between the 
elements.

Theorem 3. In any cross - polytope of dimension n, the sum of all 
incidents of elements of a lower dimension with respect to all elements of a 
higher dimension is equal to the sum of all incidents of elements of a higher 
dimension with respect to all elements of a lower dimension and equals the 
sum of the series

f n f n f n f n f n Cn n n
n d n

n d
0

1
1

2
2

3
1

0 13 3 3 3( ) ( ) ( ) .... ( ) , ( )− − −
−

− −+ + + + = 22 0 11+ = ÷ −d d n, ( ).  

Proof. According to equation (23), each cross - polytope of dimension n 
has 2n = f0(n) vertices. The peculiarity of a cross - polytope is that each of 
its vertices has an opposite vertex, with which it is not connected by an edge. 
Moreover, there is one edge between this vertex and all other vertices. We 
subtract from the total number of vertices two vertices (the selected vertex and 
its opposite) 2n - 2. This is the possible number of edges emanating from the 
selected vertex. Thus, the incidence coefficient of the edges of any vertex is

k n i f n
d d ni

0 1

2 1 2 1
1

1
0

= − = = ÷−( ) C , ( ).  

A cross - polytope of any dimension can be depicted as a projection on 
a two - dimensional plane (Zhizhin, 2019a). In this image, all its vertices 
are located on a circle, with the selected vertex and its opposite vertex 
located symmetrically relative to the center of the circle. A mentally drawn 
line through these two vertices halves the circle (Figure 4). Therefore, the 
number of variants the location of the edges from the selected vertex to the 
other vertices in one of the halves of the circle is n - 1, i.e. the number of 
combinations of n - 1 vertices one by one. Since there are two halves of a circle, 
then for the total number of vertex selection options for edge formation, this 
number of combinations should be multiplied by 2. This is the meaning of the 
expression for the incidence rate of any vertex in the n - cross - polytope with 
respect to the edge. To further prove the theorem 3 and clarify the nature of 
the formation of the coefficients of incidence in the n - cross - polytope, we 
will use this technique. We arrange the vertices of the 4 - cross - polytope in 
two lines, so that the vertices unlinked by an edge form vertical pairs: each 
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vertex in the top line is not connected by an edge to the vertex in the bottom 
line located strictly under this vertex in the top line

d d d d

d d d d
0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

      

      
. (28)

We choose some vertex in the top line (28), for example d
0
1  . It cannot be 

connected by an edge with a vertex d
0
5  in the bottom line, but it can be 

connected by an edge with other vertices of the bottom line. The number of 
such options is 3, i.e. with n = 4 is 3

1
1

3
1= =−C C

n
. However, a vertex d

0
1  may 

be connected by an edge with any of the remaining three vertices in the top 
line (28). Therefore, the incidence coefficient of a vertex with respect to an 
edge in 4 - cross - polytope

k i
d d ni

0 1

2 6 1 8
1

1= = = ÷−C , .  

When considering the belonging of a vertex d
0
1  to two - dimensional faces, 

it is necessary to determine the number of options for the participation of 
two vertices in the top line (28) (without a vertex d

0
1 ) and in the bottom line 

(28) (without a vertex d
0
5 ). This will be the number2

3
1C . In addition, as the 

vertices of the triangle, there may be vertices located in the upper and lower 
lines (28) in a cross - section way. There are 6 such variants in (28), i.e. more 
2

3
1C . Therefore, the incidence coefficient of a vertex with respect to a two 

- dimensional element in 4 - cross - polytope is

k i
d d ni

0 2

2 12 1 82
1

2= = = ÷−C , .  

Multiplying this number by the number of vertices in 4 - cross - polytope 
(8) you can get the total number of incidents of vertices to two - dimensional 
elements in 4 - cross - polytope equal to 96. This number coincides with the 
corresponding number, defined earlier in Figure 4. Combination d

0
1  with 

three the different vertices from (28) can get the incidence coefficient of 
vertex to the three - dimension body (tetrahedron) for condition absent in 
combination opposite vertices. Can to show that this combination is 8,
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k C i
d d0

1
3

2 8 1 83
3
3= = = ÷, .  

Multiplying this number by the number of vertices in 4 - cross - polytope 
(8) you can get the total number of incidents of vertices to three - dimensional 
elements in 4 - cross - polytope equal to 64. This number coincides with the 
corresponding number, defined earlier in Figure 4. Combination two vertices, 
for example d

0
1  andd

0
2  (the edged

0
1 d

0
2 ) with two the different vertices from 

(28) you can get the incidence coefficient of edge to three - dimension body 
(tetrahedron) for condition absent in combination opposite vertices. Can to 
show that this combination is 4,

k C i
d d1

1
3

2 4 1 82
2
2= = = ÷, .  

Multiplying this number by the number of edges in 4 - cross - polytope 
(8) you can get the total number of incidents of edges to three - dimensional 
elements in 4 - cross - polytope equal to 96. This number coincides with the 
corresponding number, defined earlier in Figure 4. Combination two vertices 
(the edged

0
1 d

0
2 ) with one the vertex from (28) can get the incidence coefficient 

of edge to triangle for condition absent in combination opposite vertices. Can 
to show that this combination is 4,

k C i
d d1

1
2

2 4 1 8
2
1= = = ÷, .  

Multiplying this number by the number of edges in 4 - cross - polytope 
(8) you can get the total number of incidents of edges to triangle in 4 - cross - 
polytope equal to 24. This number coincides with the corresponding number, 
defined earlier in Figure 4.

In general case can write of 2n vertices of the n - cross - polytope in two 
lines

d d d d

d d d d

n

n
0
1

0
2

0
3

0

0
5

0
6

0
7

0
2

     ... 

     ...  
, (29)

where vertex in the top line is not connected by an edge to the vertex in the 
bottom line located strictly under this vertex in the top line. The incidence 
coefficient of a vertex with respect to an edge in n - cross - polytope is
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k i f n
d d ni

0 1

2 1
1

1
0

= = ÷−C , ( ).  

The incidence coefficient of a vertex with respect to a two - dimensional 
element in n - cross - polytope is

k i f n
d d ni

0 2

2 12
1

2
0

= = ÷−C , ( ).  

The incidence coefficient of a vertex with respect to a three - dimensional 
edge in n - cross - polytope is

k i f n
d d ni

0 3

2 13
1

3
0

= = ÷−C , ( ).  

Go on can to say the incidence coefficient of a vertex with respect to a 
(n – 1) - dimensional element in n - cross - polytope is

k i f n
d d

n
n
n

i
n0 1

2 11
1
1

0
−

= = ÷−
−
−C , ( ).  

Obviously, that the incidence coefficient of a vertex with respect to n - 
cross - polytope is

k i f n
d di n0

1 1
0

= = ÷, ( ).  

Multiplying of the incidence coefficients of a vertex with respect to 
different dimension elements in n - cross - polytope and sum the product you 
can get the common express for the number of incident vertices to elements 
of different dimension in n - cross - polytope

f C C C f n C
n n

n
n
n i

n
i

i

n

0
0 1

1
1 2

1
2 1

1
1

0 1
0

1

2 2 2 2 2( ... ) ( )+ + + + =− −
−

−
−

−
=

−

∑ == −f n n
0

13( ) .  

In this way you can get the common express for the number of incident 
edges to elements of different dimension more one in n - cross - polytope
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f C C C f n C
n n

n
n
n i

n
i

i

n

1
0 1

2
1 2

2
2 2

2
2

1 2
0

2

2 2 2 2 2( ... ) ( )+ + + + =− −
−

−
−

−
=

−

∑ == −f n n
1

23( ) , 

and go on.
In result, one can get the common express for the sum of all incidents 

of elements of a lower dimension with respect to all elements of a higher 
dimension in n - cross - polytope

f n f n f f n f n Cn n
n i

n i

i

n

i n0
1

1
2

1
0 1

0

1

3 3 3 3( ) ( ) ... ( ) , ( )− −
−

− −

=

−

+ + + = =∑ nn i i− − +1 12 .  (30)

Let k
d dh j

i  be the number of elements of dimension h in a n - cross - polytope 

belonging to some one element of dimension j (h<j), that is d
j
i  . Obviously, 

this number is equal to fh(j)s for simplex, and i=1÷fj(n)cr for n - cross - polytope. 
So, elements of cross - polytope are simplexes the product fh(j)sfj(n)cr 
corresponds to the number of elements of dimension h belonging to all 
elements of dimension j for a simplex. This product is equal to f n C

d n
d( )= +
+
1
1

C C
j

h j h
n

n j jj
h j

n
n j j

+
+ + − − +=

+
+ − − − +1

1 1 1 12 2
1

1 1 1
( )!

( )!( )!
!

( )!( )!
.  

Let us compare this number with the number of elements of dimension j, 
which have elements of dimension h in the n - cross - polytope

k f n C C
n

n h hd d h cr n
n h h

n h
j h j h j

h
i
j

( )
!

( )!( )
= =

− − +
− − +

− −
− − +1 1

1
12 2 2

1 1 !!
( )!

( )!( )!
n h

n j j h
− −

− − −
1

1
. 

Obviously, these numbers are equal to each other. This proves that the 
number of elements of dimension h in a n - cross - polytope belonging to 
all dimensions of j (j>h) in a n - cross - polytope is equal to the number of 
elements of dimension j, which have elements of dimension h as elements.

Thus, the total number of incidents of elements of a smaller dimension 
with respect to elements of a higher dimension is equal to the total number 
of incidents of elements of a higher dimension with respect to elements of a 
smaller dimension. This the total number define expression (30).

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



196

Incident Conservation Law

INCIDENT CONSERVATION LAW FOR 
CLUSTERS CHEMICAL COMPOUND

Incident Conservation Law Regular 
and Irregular Polytopes

The polytopes n - simplex, n - cube and n - cross - polytopes considered in 
early was topological regular. Each vertex in any of it was incident same 
number of edges. However, the length of edges not put equal. Therefore, the 
polytopes are not metrical regular. Obviously, incident conservation law is for 
regular and topological regular polytopes. Now consider incident conservation 
law for irregular and same - regular polytopes.

Incident Conservation Law for Quadrangular 
Three - Dimension Pyramid

In this pyramid (Figure 5) the number of vertices are f0=5, the number of 
edges are f1=8, the number of two - dimension faces are f2=5.

The incident coefficients at vertices of bases to edges are equal 3 
( , )k i
d di0 1

3 1 4= = ÷ , the incident coefficient at top of the pyramid to edges 

is equal 4 ( )k
d d0

5
1

4= . The incident coefficients at vertices of bases to two - 

dimension faces are equal 3 ( , )k i
d di0 2

3 1 4= = ÷ , the incident coefficient at 

top of the pyramid to two - dimension faces is equal 4 ( )k
d d0

5
2

4= . The incident 

Figure 5. The quadrangular three-dimension pyramid
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coefficients at edges of pyramid to two - dimension faces are equal 2 
( , )k i
d di1 2

2 1 8= = ÷ . The incident coefficients of all elements of pyramid to 

pyramid are 1

( , ; , ; , )k i k i k i
d d d d d di i i

0 3 1 3 2 3

1 1 5 1 1 8 1 1 5= = ÷ = = ÷ = = ÷ . 

Multiplying this incident coefficients by the number elements of correspond 
dimension you can get

k k k k
d d d d

ii
d d d d

ii
i i i i
0 1 0 2 0 3 1 2

16 16 5 16
1

5

1

5

1

8

1

5

= = = =
== ==
∑∑ ∑∑, , , ,, , .k k

d d
i

d d
i

i i
2 3 1 3

5 8
1

5

1

8

= =
= =
∑ ∑  

Sum up the incidence coefficients for all elements of the pyramid (from 
smaller dimension to larger)

k k k k k
d d d d

ii
d d d d

ii
d d

i
i i i i i
0 1 0 2 0 3 1 2 2 31

5

1

5

1

8

1

5

1

+ + + + +
== == =
∑∑ ∑∑

55

1

8

1 3

64∑ ∑ =
=

k
d d

i
i .  (31)

The factors of incidents (from larger dimension to smaller) are

k i k i
d d d di i

0 1 0 2

2 1 8 3 1 4= = ÷ = = ÷, ; ,  

(for triangle faces of the pyramid), k
d d0 2

4=  (for bases of the pyramid), 

k
d d0 3

5= , k i
d di1 2

3 1 4= = ÷,  (for triangle faces of the pyramid), k
d d1 2

4=  (for 

bases of the pyramid), k
d d1 3

8= , k
d d2 3

5= . Sum up the incidence coefficients 
for all elements of the pyramid (from larger dimension to smaller)

k k k k k k k
d d

i
d d

i
d d

i
d d d d d d d di i i

0 1 0 2 1 2 0 2 0 3 1 2 1
1

8

1

4

1

4

+ + + + + +
= = =
∑ ∑ ∑

33 2 3
64+ =k

d d
.  (32)

Comparing (31) and (32) you can see that the sum of incidents in a pyramid 
from elements with a lower dimension to elements with a higher dimension 
is equal to the sum of incidents from elements with a higher dimension to 
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elements with a lower dimension. Thus, the sum of incidents retains its value 
when changes the direction of the relationship between the elements.

Incident Conservation Law for the Mackay Cluster

Consider the Mackay cluster (Figure 1, Chapter 2). In it, the values of the 
numbers of elements of different dimensions are determined by the equalities

f0=24, f1=72, f2=70, f3=22, f4=1. 

We calculate the values of the incidence coefficients of the elements of 
lower dimension with respect to the elements of higher dimension. The factors 
of incidents (from smaller dimension to larger) are

k i k i k

i k
d d d d d d

d d

i i i

i

0 1 0 2 0 3

0 4

6 1 24 10 1 24 6

1 24 1

= = ÷ = = ÷ =

= ÷ =

, ; , ; ,

; , ii k i
d di

= ÷ = = ÷1 24 3 1 60
1 2

; ,
(edges on icosahedron); 

k i
d di1 2

5 1 12= = ÷, (edges in connected of icosahedrons); 

k i
d di1 3

3 1 60= = ÷, (edges on icosahedron); 

k i
d di1 2

5 1 12= = ÷, (edges in connected of icosahedrons); 

k i k i k i k i
d d d d d d d di i i i

1 4 2 3 2 4 3 4

1 1 72 2 1 70 1 1 70 1= = ÷ = = ÷ = = ÷ =, ; , ; , ; , == ÷1 22.  

Sum up the incidence coefficients for all vertices, edges, two dimension 
faces and three dimension faces of the Mackay cluster

k k

k

d d
i

d d
i

d d
i

i i

i

0 1 0 2

0 3

1

24

1

24

1

24

6 24 144 10 24 240
= =

=

∑ ∑

∑

= ⋅ = = ⋅ =

=

, ,

66 24 144 24 3 60 180
0 4 1 21

24

1

60

⋅ = = = ⋅ =
= =
∑ ∑, , ,k k

d d
i

d d
i

i i

( e d g e s  o n 

icosahedron); 
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k
d d

i
i
1 21

5

5 12 60
=
∑ = ⋅ = (edges in connected of icosahedrons); 

k
d d

i
i
1 31

60

3 60 180
=
∑ = ⋅ = (edges on icosahedron); 

k
d d

i
i
1 31

12

5 12 60
=
∑ = ⋅ = (edges in connected of icosahedrons); 

k k k k
d d

i
d d

i
d d

i
di i i i

1 4 2 3 2 4 31

72

1

70

1

70

72 2 70 140 70
= = =
∑ ∑ ∑= = ⋅ = =, , ,

dd
i

d d
i

d d
i

d d
i

d d
i

k k k ki i i i

4

0 1 0 2 0 3 0 4

1

22

1

24

1

24

1

24

22
=

= = =

∑

∑ ∑ ∑

=

+ + +
== = = =

=

∑ ∑ ∑ ∑+ + +

+ +

1

24

1

72

1

72

1

72

1

70

1 2 1 3 1 4

2 3

k k k

k

d d
i

d d
i

d d
i

d d
i

i i i

i∑∑ ∑ ∑
= =

+ =k k
d d

i
d d

i
i i
2 4 3 41

70

1

22

1336.

 (33)

The factors of incidents (from larger dimension to smaller) are

k i k i
d d d di i

0 1 0 2

2 1 72 3 1 40= = ÷ = = ÷, ; , (at triangle faces); 

k i
d di0 2

4 1 30= = ÷, (at quadrangular faces); 

k i
d di0 3

6 1 20= = ÷, (at prisms); 

k i
d di0 3

12 1 2= = ÷, (at icosahedrons); 

k k i
d d d di0 4 1 2

24 3 1 40= = = ÷; , (at triangle); 

k i
d di1 2

4 1 30= = ÷, (at quadrangular faces); 

k i
d di1 3

3 1 60= = ÷, (edges on icosahedron); 
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k i
d di1 2

5 1 12= = ÷, (edges in connected of icosahedrons); 

k i k i k i k i
d d d d d d d di

1 4 2 3 2 4 3 4

1 1 72 2 1 70 1 1 70 1 1= = ÷ = = ÷ = = ÷ = = ÷, ; , ; , ; , 222.  

Sum up the incidence coefficients for all vertices, edges, two - dimension 
faces and three - dimension faces of the Mackay cluster

k k k
d d

i
d d

i
d d

i
i i i

0 1 0 2 0 31

72

1

70

1

2 72 144 3 40 4 30 240
= = =
∑ ∑= ⋅ = = ⋅ + ⋅ =, ,

222

1

24

1

70

6 20 2 12 144

24 3 40 4 30 2
0 4 1 2

∑

∑ ∑

= ⋅ + ⋅ =

= = ⋅ + ⋅ =
= =

,

,k k
d d

i
d d

i
i 440 9 20 2 20 240 72

1 3 1 4

2 3

1

22

1

72

1

22

, , ,k k

k

d d
i

d d
i

d d
i

i

i

= =

=

∑ ∑

∑

= ⋅ + ⋅ = =

== ⋅ + ⋅ = = =
= =

=

∑ ∑

∑

5 20 2 20 140 70 22
2 4 3 4

0 1

1

70

1

22

1

72

, , ,k k

k

d d
i

d d
i

d d
i

i ++ + + + +
= = = =
∑ ∑ ∑ ∑k k k k k

d d
i

d d
i

d d
i

d d
i

d di i i
0 2 0 3 0 4 1 2 1 31

70

1

22

1

24

1

70

ii

i

i
d d

i

d d
i

d d
i

d d
i

k

k k k

= =

= = =

∑ ∑

∑ ∑ ∑

+

+ + + =

1

22

1

72

1

22

1

70

1

22

1 4

2 3 2 4 3 4
11336.

 

(34)

Comparing (33) and (34) you can see that the sum of incidents in the 
Mackay cluster from elements with a lower dimension to elements with a 
higher dimension is equal to the sum of incidents from elements with a higher 
dimension to elements with a lower dimension. Thus, the sum of incidents 
retains its value when changes the direction of the relationship between the 
elements.

The Law of Conservation of Incidence in 
Clusters with a Central Metal Atom

Let us verify the implementation of the law of conservation of incidence in 
clusters with a central metal atom. As an example, take an octahedron with a 
center. A metal atom is located in the center; ligands are located at the vertices 
of the octahedron. In this polytope (Figure 6) the values of the numbers of 
elements of different dimensions are determined by the equalities
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f0=7, f1=18, f2=16, f3=9, f4=1. 

We calculate the values of the incidence coefficients of the elements of 
lower dimension with respect to the elements of higher dimension. The factors 
of incidents (from smaller dimension to larger) are

k i
d di0 1

5 1 6= = ÷, (for vertices of octohedron); 

k
d d0 1

6= (for atom at the center); 

k i
d di0 2

8 1 6= = ÷, (for vertices of octohedron); 

k
d d0 2

12= (for atom at the center); 

k i
d di0 3

5 1 6= = ÷, (for vertices of octohedron); 

k
d d0 3

8= (for atom at the center); 

k i
d di0 4

1 1 7= = ÷, ;  

Figure 6. The octahedron with a centrum
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k i
d di1 2

4 1 6= = ÷, (edges from the center); 

k
d di1 2

3= (for edges of octahedron); 

k i
d di1 3

4 1 6= = ÷, (edges from the center); 

k
d di1 3

3= (for edges of octahedron); 

k i k i k i k i
d d d d d d d di i i i

1 4 2 3 2 4 3 4

1 1 18 2 1 16 1 1 16 1= = ÷ = = ÷ = = ÷ =, ; , ; , ; , == ÷1 9.  

Sum up the incidence coefficients for all vertices, edges, two - dimension 
faces and three - dimension faces

k k k k k
d d

i
d d

i
d d

i
d d

i
d d

i
i i i i i
0 1 0 2 0 3 0 4 1 21

7

1

7

1

7

1

7

1

1

= = = = =
∑ ∑ ∑ ∑+ + + +

88

1

18

1

18

1

16

1

16

1 3 1 4

2 3 2 4

∑ ∑ ∑

∑ ∑

+ +

+ + +

= =

= =

k k

k k k

d d
i

d d
i

d d
i

d d
i

d

i i

i i
33 41

9

324id
i=
∑ = .

 (35)

The factors of incidents (from larger dimension to smaller) are

k i k i k i
d d d d d di i i

0 1 0 2 0 3

2 1 18 3 1 16 4 1 9= = ÷ = = ÷ = = ÷, ; , ; , (at tetrahedrons) 

k i
d di0 3

6 1= =, (at octahedron) 

k k i
d d d di0 4 1 2

7 3 1 16= = = ÷; , ;  

k i k i
d d d di i

1 3 1 3

6 1 8 12 1= = ÷ = =, ; , (for octahedron) 

k k i k
d d d d d di

1 4 2 3 2 3
18 4 1 8 8= = = ÷ =; , ; (for octahedron) 
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k k
d d d d2 4 3 4

16 9= =; .  

Sum up the incidence coefficients for all vertices, edges, two - dimension 
faces and three -dimension faces

k k k k k
d d

i
d d

i
d d

i
d d d d

i
i i i i

0 1 0 2 0 3 0 4 1 21

18

1

16

1

10

1

16

= = = =
∑ ∑ ∑ ∑+ + + + + kk k k k k

d d
i

d d d d
i

d d d di i
1 3 1 4 2 3 2 4 0 4

1

9

1

9

324
= =
∑ ∑+ + + + = .  

(36)

Comparing (35) and (36) you can see that the sum of incidents in the 
octahedron with center of elements with a lower dimension to elements 
with a higher dimension is equal to the sum of incidents from elements with 
a higher dimension to elements with a lower dimension. Thus, the sum of 
incidents retains its value when changes the direction of the relationship 
between the elements.

CONCLUSION

In the modern scientific world, information exchange is of great importance. 
This is characteristic for various fields of knowledge. In mathematics, there 
is the concept of incidence, i.e. belonging of some mathematical element 
to another mathematical element. If mathematical elements are models of 
some material bodies, then incidence can be interpreted as the transfer of 
information from one material body to another. In the framework of this 
monograph, the polytopes of higher dimension are the mathematical elements 
that model material bodies. With their help, the structure of clusters of 
chemical compounds is described, i.e. bonded to each other by chemical bonds 
of atoms, molecules, functional groups. The geometric elements in this case 
are the faces of different dimensions of polytopes. Of interest is the question 
of transferring information from elements of lower dimension to elements 
of higher dimension and vice versa from elements of higher dimension to 
elements of lower dimension. This chapter first establishes the existence of 
integral equality in relation to the issue of the transmission of information by 
elements of lower and higher dimensions that describe natural objects (Zhizhin, 
2019c). This integral equality is called the law of conservation of incidents. 
At the beginning, using simple geometric examples, a direct calculation of 
incidents from images of geometric shapes shows that the sum of incidents of 
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elements of lower dimension with respect to elements of higher dimension is 
equal to the sum of incidents of elements of higher dimension with respect to 
elements of lower dimension. Then, the fulfillment of the law of conservation 
of incidents for the n - simplex of the n - cube and the n - cross - polytope is 
proved in general terms. It is shown that the law of conservation of incidents 
is valid for both regular bodies and irregular bodies, which can be clusters of 
chemical compounds. It is significant that the flow of incidents from elements 
of lower dimension to elements of higher dimension and vice versa increases 
sharply with increasing dimension of the polytope. It is significant that the 
flow of incidents from elements of lower dimension to elements of higher 
dimension and vice versa increases sharply with increasing dimension of 
the polytope. Interestingly, the flow of incidents (information) is of greatest 
importance to the n - cross - polytope. If we compare the values of these 
flows calculated from the obtained expressions, then with the same dimension 
value (13) for 13 - simplex this value is 4.75∙106, for 13 - cube this value is a 
thousand times greater (1.2∙109), and in the 13 - cross - polytope is 1.5 times 
more than the 13 - cube and is 1.8∙109. In the monograph (Zhizhin, 2019b), 
that the binding of helices in a DNA molecule with the help of nitrogen bases 
occurs in a cross - polytope of dimension 13. This corresponds to a significant 
flow of information between the elements of the DNA molecule. The latter 
can serve as a mathematical basis for the recently discovered epigenetic 
principle of the transmission of hereditary information without changing the 
sequence of genes in DNA and RNA molecules (Zhizhin, 2019d).
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KEY TERMS AND DEFINITIONS

Dimension of the Space: The member of independent parameters needed 
to describe the change in position of an object in space.

Incidence Coefficients of Elements of Higher Dimension With Respect 
to Elements of Lower Dimension: The number of elements of a given lower 
dimension that are included in a particular element of a higher dimension.

Incidence Coefficients of Elements of Lower Dimension With Respect 
to Elements of Higher Dimension: The number of elements of a certain 
higher dimension to which the given element of a lower dimension belongs.
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N-Cross-Polytope: The convex polytope of dimension n in which opposite 
related of centrum edges does not have connection of edge.

N-Cube: The convex polytope of dimension n in which each vertex 
incident to n edges.

N-Simplex: The convex polytope of dimension n in which each vertex is 
joined by edges with all remain vertices of polytope.

Nanocluster: A nanometric set of connected atoms, stable either in 
isolation state or in building unit of condensed matter.

Polytope: Polyhedron in the space of higher dimension.
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ABSTRACT

Using concrete examples of clusters of chemical compounds of various types 
(intermetallic clusters, metal chains with ligands, polyhedral metal clusters 
with ligands), it is shown how nanomaterials are formed from individual 
clusters by multiplying their geometric structure by other geometric elements 
of different dimensions. The considered examples correspond to nanomaterials 
with a structure of limited complexity. However, the mathematical apparatus 
developed on the basis of the geometry of high-dimensional polytopes allows, 
in principle, to describe and study and design nanomaterials of this type of 
any complexity and any dimension. In particular, nanomaterials with the 
simultaneous use of elements with different metric characteristics can be 
attributed to such nanomaterials.

INTRODUCTION

In the monograph Zhizhin G.V. (Zhizhin, 2018) it was established that the 
fundamental area in the filling of the n - dimensional space is the polytopic 
prismahedron, which is a prism or a complex of prisms with bases in the 
form of polytopes of dimension n. It is polytopes provide the filling of the n - 
dimensional space with a face into the face without gaps. Thus, the polytopic 

Mathematical Design of 
Nanomaterials From Clusters 

of Higher Dimension
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prismahedron is the stereohedron, the existence of which was suggested by 
B.N. Delone (Delone, 1961; Delone & Sandakova, 1961). However, Delone 
never succeeded in constructing any particular stereohedron in a space with 
a dimension greater than three. Considering, that clusters are of higher 
dimension, the question of creating nanomaterials consisting of clusters 
leads to the need to look for solutions to this problem in a space of higher 
dimension. Here we digress from practical methods of creating nanomaterials 
associated with special methods of mechanical and physical impact on clusters. 
The problem is considered mathematically about how clusters, as objects of 
higher dimension, must interact with each other to form a nanomaterial. The 
mathematical apparatus for contacting polytopes of higher dimension for the 
formation of continuous arrays consisting of these polytopes was developed 
in the monograph “Geometry of High - Dimensional Polytopes” (Zhizhin, 
2019a). It examined the correct and topologically correct polytopes of the 
highest dimension. It is shown that polytopes filling the space form polytopic 
prismahedrons (Zhizhin, 2015). The main operation for creating polytopic 
prismahedrons is the production of polytopes. By its design, a polytopic 
prismahedron is the product of a polytope to another polytope, or in a particular 
case to a one - dimensional segment. Pontryagin mentioned the structures 
resulting from the product of a polyhedron by a one - dimensional segment the 
cylinder ones (Pontryagin, 1976). We can say that the product of a polytope by 
a segment is a prism (Robertson, 1984) with a base in form of a polytope. To 
distinguish it from a usual three - dimensional prism, can to call it polytopic 
prism. Ziegler noted that the product of polytopes is not a simplex even if the 
factors are simplexes, so the polytopes are of considerable interest (Ziegler, 
1995). In the chapter, the process of forming polytopic prismahedrons is used 
for clusters different types discussed in previous chapters.

POLYTOPIC PRISMAHEDRON FROM MACKAY CLUSTERS

Chapter 2 examined clusters of intermetallic compounds. It is proved that the 
Mackay cluster, consisting of two icosahedrons with a common center (Figure 
1 in Chapter 2) has dimension 4. In determining polytopic prismahedrons 
from clusters, we will use the following theorem (Zhizhin, 2019a), preserving 
the accepted notation,

Theorem 1. (Zhizhin, 2015)
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If there are convex polytopes of dimensions n and m, respectively denoted 
Pn and Qm (or simply P and Q), then their product Pn×Qm, (or simply ×, when 
it is clear what polytopes are multiplied) has a face Fk×  with numbers

f f fk
P
k i

Q
i

i

j

×
−

=

= ∑
0

, (1)

j=k, j=k if 0≤k<m; j=m, if m≤k≤n+m; n≥m. 

Here the symbol f indicates the number of faces, the superscript of f and 
F indicates the dimension of faces, the lower index indicates belonging of a 
face to the respective polytope.

Consider the polytopic prismahedron formed by the product of the Mackay 
cluster in a one -dimensional segment. The Mackay cluster (P) with two 
icosahedrons (Chapter 2) has the following numbers of elements of different 
dimensions

f f f f f
P P P P P
0 1 2 3 424 72 70 22 1= = = = =, , , , .  

The one - dimensional segment Q1 has f f
Q Q
0 12 1= =,  . The product of 

polytopes P=P4 and Q1 according to (1) it is determined by the equalities:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 24 2 48= ⋅ = ⋅ = ; 

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 72 2 24 1 144 24 168= ⋅ + ⋅ = ⋅ + ⋅ = + = ;  

the number of faces with dimension two is

f f f f f
x P Q P Q
2 2 0 1 1 70 2 72 1 212= ⋅ + ⋅ = ⋅ + ⋅ = ;  (2)

the number of faces with dimension three is
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f f f f f
x P Q P Q
3 3 0 2 1 22 2 70 1 112= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f
x P Q P Q
4 4 0 3 1 1 2 22 1 24= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension five is

f f f
x P Q
5 4 1 1 1 1= ⋅ = ⋅ = .  

Thus, the product of a Mackay cluster with two icosahedrons with a 
common center on a one -dimensional segment is a polytopic prismahedron 
of dimension 5. The form of this prismahedron is shown in Figure 1. The 
totality of values determines the structure of this product.

Figure 1. The product of a Mackay cluster with two icosahedrons with a common 
center
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Consider the polytopic prismahedron formed by the product of the Mackay 
cluster of two icosahedrons with a common center on a triangle. In this case, 
the first factor in the product is still P4, and the second factor is Q2 with faces 
f f f
Q Q Q
0 1 23 3 1= = =, , .

The product P4 and Q2 according to (1) has the faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 24 3 72= ⋅ = ⋅ = ;  

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 72 3 24 3 216 72 288= ⋅ + ⋅ = ⋅ + ⋅ = + = ;  

the number of faces with dimension two is

f f f f f f f
x P Q P Q P Q
2 2 0 1 1 0 2 70 3 72 3 24 1 450= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  (3)

the number of faces with dimension three is

f f f f f f f
x P Q P Q P Q
3 3 0 2 1 1 2 22 3 70 3 72 1 348= ⋅ + + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f f f
x P Q P Q P Q
4 4 0 3 1 2 2 1 3 22 3 70 1 139= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension five is

f f f f f
x P Q P Q
5 4 1 3 2 1 3 22 1 25= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension six is

f f f
x P Q
6 4 2 1 1 1= ⋅ = ⋅ = .  
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Thus, the product of a Mackay cluster with two icosahedrons with a 
common center on a triangle is a polytopic prismahedron of dimension 6 
with faces defined by equalities (3).

You can also get a polytopic prismahedron formed by the product of the 
Mackay cluster with two icosahedrons with a common center on the tetrahedron. 
In this case, the first factor is still P4, and the second factor is Q3 with faces

f f f f
Q Q Q Q
0 1 2 34 6 4 1= = = =, , , .  

The product of polytopes P4 and Q3 according to (1) it is determined by 
the equalities:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 24 4 64= ⋅ = ⋅ = ;  

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 72 4 24 6 432= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f f f
x P Q P Q P Q
2 2 0 1 1 0 2 70 4 72 6 24 4 808= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  (4)

the number of faces with dimension three is

f f f f f f f f f
x P Q P Q P Q P Q
3 3 0 2 1 1 2 0 3 22 4 70 6 72 4 24 1 820= ⋅ + + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ + ⋅ = ;;  

the number of faces with dimension four is

f f f f f f f f f
x P Q P Q P Q P Q
4 4 0 3 1 2 2 1 3 1 4 22 6 70 4 72 1 488= ⋅ + ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ + ⋅ = ;;  

the number of faces with dimension five is

f f f f f f f
x P Q P Q P Q
5 4 1 3 2 2 3 1 6 22 4 70 1 164= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  
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the number of faces with dimension six is

f f f f f
x P Q P Q
6 4 2 3 3 1 4 22 1 26= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension seven is

f f f
x P Q
7 4 3 1 1 1= ⋅ = ⋅ = .  

Thus, the product of a Mackay cluster with two icosahedrons with a 
common center on a tetrahedron is a polytopic prismahedron of dimension 
7 with faces defined by equalities (4).

Obviously, in this way it is possible to obtain nanomaterial with any finite 
number of clusters, if the Mackay cluster is replaced by convex polytopes 
with a given number of vertices.

POLYTOPIC PRISMAHEDRONS OF CLUSTERS 
CONSISTING OF N SHELLS IN THE FORM OF 
ICOSAHEDRONS WITH A COMMON CENTER

In Chapter 2, it was shown that in clusters of n icosahedrons with a common 
center, the numbers of faces of different dimensions are determined by the 
equalities

f n f n n f n n

f n n f C f
n

0 1 2

3 4
2

12 30 12 1 20 30 1

20 1

= = + − = + −

= − + =

, ( ), ( ),

( ) , ,
55

3
1

1= =+
−C f C

n n n
n, ..., .

 (5)

The dimension of a cluster of n shells in the form of icosahedrons is 
defined in Chapter 2; it is 2+n. Consider the product of this cluster on a one 
- dimensional segment. So, we are considering the product P Qn2 1+ ×  . The 
factors of this product have, according to (1), faces

f n f n n f n n

f n n f
P P P

P P

0 1 2

3 4

12 30 12 1 20 30 1

20 1

= = + − = + −

= − + =

, ( ), ( ),

( ) , CC f C f C f f
n P n P

n
n
n

Q Q
2 5 3 1 1 0 12 1, ,..., , , .= = = =+ −  
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In the product P Qn2 1+ ×  according to (1) is determined by the equalities:

the number of faces with dimension zero is

f f f n
x P Q
0 0 0 24= ⋅ = ;  

the number of faces with dimension one is

f f f f f n n n n n
x P Q P Q
1 1 0 0 1 60 24 1 12 72 24 1= ⋅ + ⋅ = + − + = + −( ) ( );  

the number of faces with dimension two is

f f f f f n n n n n n
x P Q P Q
2 2 0 1 1 40 60 1 30 12 1 70 72 1= ⋅ + ⋅ = + − + + − = + −( ) ( ) ( );  

(6)

the number of faces with dimension three is

f f f f f n n n n n n
x P Q P Q
3 3 0 2 1 40 1 2 20 30 1 22 70 1= ⋅ + = − + + + − = + −( ) ( ) ( );  

the number of faces with dimension four is

f f f f f C n n
x P Q P Q n
4 4 0 3 1 22 20 1= ⋅ + ⋅ = + − +( ) ;  

the number of faces with dimension five is

f f f f f C C
x P Q P Q n
5 5 0 4 1

4
3 22= ⋅ + ⋅ = + ;  

the number of faces with dimension six is

f f f f f C C
x P Q P Q n n
6 6 0 5 1 4 32= ⋅ + ⋅ = + ;  

the number of faces with dimension 2 + n is

f f f f f C C n
x
n

P
n

Q P
n

Q n
n

n
n2 2 0 1 1 1 11 2 1 2 2+ + + − −= ⋅ + ⋅ = ⋅ + ⋅ = + = + ;  
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the number of faces with dimension 3 + n is

f f f
x
n

P
n

Q
3 2 1 1 1 1+ += ⋅ = ⋅ = .  

Thus, the product P Qn2 1+ ×  is a polytopic prismahedron of dimension 3 
+ n with faces defined by equalities (6).

Consider a polytopic prismahedron formed of the product of cluster from 
n icosahedron shells on the triangle. In this case the second factor is Q2 with 
faces f f f

Q Q Q
0 1 23 3 1= = =, , .  The product P Qn2 2+ × according (1) has a faces:

the number of faces with dimension zero is

f f f n
x P Q
0 0 0 36= ⋅ = ;  

the number of faces with dimension one is

f f f f f n n n n n
x P Q P Q
1 1 0 0 1 30 12 1 3 36 126 36 1= ⋅ + ⋅ = + − + = + −[ ( )] ( );  

the number of faces with dimension two is

f f f f f f f

n n n n
x P Q P Q P Q
2 2 0 1 1 0 2

20 30 1 3 30 12 1 3

= ⋅ + ⋅ + ⋅
= + − + + − +[ ( )] [ ( )] 112 162 126 1n n n= + −( );

 

the number of faces with dimension three is

f f f f f f f

n n n n n
x P Q P Q P Q
3 3 0 2 1 1 2

20 1 3 20 30 1 3 30

= ⋅ + + ⋅
= − + + + − +[ ( ) ] [ ( )] ++ − = + −( ) ( );n n n1 12 93 162 1

 

the number of faces with dimension four is

f f f f f f f

C n n n n
x P Q P Q P Q

n

4 4 0 3 1 2 2

23 20 1 3 20 30 1

= ⋅ + ⋅ + ⋅

= + − + + + − =[ ( ) ] ( ) 33 23 90 12C n n
n
+ + −( );
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the number of faces with dimension five is

f f f f f C C
x P Q P Q n
5 5 0 4 1

4
3 22= ⋅ + ⋅ = + ;  (7)

the number of faces with dimension six is

f f f f f C C
x P Q P Q n n
6 6 0 5 1 4 32= ⋅ + ⋅ = + ;  

the number of faces with dimension 2 + n is

f f f f f f f C C
x
n

P
n

Q P
n

Q P
n

Q n
n

n
n2 2 0 1 1 2 3 21 3 3+ + + − −= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ;  

the number of faces with dimension 3 + n is

f f f f f C
x
n

P
n

Q P
n
Q n

n3 2 1 1 2 11 3+ + + −= ⋅ + = ⋅ + ;  

the number of faces with dimension 4 + n is

f f f
x
n

P
n

Q
4 2 2 1 1 1+ += ⋅ = ⋅ = .  

Thus, the product P Qn2 2+ ×  is a polytopic prismahedron of dimension 4 
+ n with faces defined by equalities (7).

Obviously, in this way it is possible to obtain nanomaterial with any finite 
number of clusters from n - icosahedrons, if multiply the n - icosahedron by 
a convex polytope with a given number of vertices.

NANOMATERIALS FROM CLUSTERS OF γ - BRASS

In Chapter 2 was shown that minimum dimension of the cluster γ - brass is 
4. This cluster has 8 vertices and is cross - polytope. Next dimension in a 
number of the clusters of γ - brass is 7. This cluster has 14 vertices and tape 
cross - polytope too. From cluster of γ - brass with dimension 4 can obtain a 
polytopic prismahedron with dimension 5 if multiply it on a one - dimension 
segment. The form of this prismahedron is shown in Figure 2.
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The 4 - cross - polytope has faces (Zhizhin, 2019 a)

f0=8, f1=24, f2=32, f4=1. 

In this case the product P4×Q1 in according with (1) has faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 8 2 16= ⋅ = ⋅ = ;  

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 24 2 8 1 56= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f
x P Q P Q
2 2 0 1 1 32 2 24 1 88= ⋅ + ⋅ = ⋅ + ⋅ = ;  (8)

the number of faces with dimension three is

f f f f f
x P Q P Q
3 3 0 2 1 16 2 32 1 64= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension four is

Figure 2. The product of the cluster of γ - brass with dimension 4 on a one - dimension 
segment

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



218

Mathematical Design of Nanomaterials From Clusters of Higher Dimension

f f f f f
x P Q P Q
4 4 0 3 1 1 2 16 1 18= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension five is

f f f
x P Q
5 4 1 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the 4 - cross - polytope by one - dimension segment 
is polytopic prismahedron with dimension 5 and faces dimension of equality 
(8). Can to multiply the 4 - cross - polytope on a triangle (polytope Q2). So, 
the product P4 and Q2 according to (1) has the faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 8 3 24= ⋅ = ⋅ = ;  

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 24 3 8 3 96= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f f f
x P Q P Q P Q
2 2 0 1 1 0 2 32 3 24 3 8 1 176= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  (9)

the number of faces with dimension three is

f f f f f f f
x P Q P Q P Q
3 3 0 2 1 1 2 16 3 32 3 24 1 168= ⋅ + + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f f f
x P Q P Q P Q
4 4 0 3 1 2 2 1 3 16 3 32 1 83= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension five is

f f f f f
x P Q P Q
5 4 1 3 2 1 3 16 1 19= ⋅ + = ⋅ + ⋅ = ;  
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the number of faces with dimension six is

f f f
x P Q
6 4 2 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the 4 - cross - polytope by a triangle is polytopic 
prismahedron with dimension 6 and faces dimension of equality (9). Next 
on a dimension cluster of γ - brass is 7 - cross - polytope. It has the faces 
(Zhizhin, 2019a)

f0=14, f1=84, f2=280, f3=560, f4=672, f5=448, f6=128, f7=1. 

The product of 7 - cross - polytope by a one - dimension segment P7×Q1 
has faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 14 2 28= ⋅ = ⋅ = ;  

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 84 2 14 1 182= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f
x P Q P Q
2 2 0 1 1 280 2 84 1 644= ⋅ + ⋅ = ⋅ + ⋅ = ;  (10)

the number of faces with dimension three is

f f f f f
x P Q P Q
3 3 0 2 1 560 2 280 1 1400= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f
x P Q P Q
4 4 0 3 1 672 2 560 1 1904= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension five is
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f f f f f
x P Q P Q
5 5 0 4 1 448 2 672 1 1568= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension six is

f f f f f
x P Q P Q
6 6 0 5 1 128 2 448 1 704= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension seven is

f f f f f
x P Q P Q
7 7 0 6 1 1 2 128 1 130= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension eight is

f f f
x P Q
8 7 1 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the cluster γ - brass in as 7 - cross - polytope by one 
- dimension segment is polytopic prismahedron with dimension 8 and faces 
defined of equality (10). Can to multiply the 7 - cross - polytope on a triangle 
(polytope Q2). So, the product P7 and Q2 according to (1) has the faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 14 3 42= ⋅ = ⋅ = ;  

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 84 3 14 3 294= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f f f
x P Q P Q P Q
2 2 0 1 1 0 2 280 3 84 3 14 1 1106= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  (11)

the number of faces with dimension three is

f f f f f f f f f
x P Q P Q P Q P Q
3 3 0 2 1 1 2 0 3 560 3 280 3 84 1 2604= ⋅ + + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  
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the number of faces with dimension four is

f f f f f f f f f
x P Q P Q P Q P Q
4 4 0 3 1 2 2 1 3 672 3 560 3 280 1 3976= ⋅ + ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;;  

the number of faces with dimension five is

f f f f f f f
x P Q P Q P Q
5 5 0 4 1 3 2 448 3 672 3 560 1 3920= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension six is

f f f f f f f
x P Q P Q P Q
6 6 0 5 1 4 2 128 3 448 3 672 1 2400= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension seven is

f f f f f f f
x P Q P Q P Q
7 7 0 6 1 5 2 1 3 128 3 448 1 835= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension eight is

f f f f f
x P Q P Q
8 7 1 6 2 1 3 128 1 131= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension nine is

f f f
x P Q
9 7 2 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the cluster of γ - brass as 7 - cross - polytope by a 
triangle is polytopic prismahedron with dimension 9 and faces defined of 
equality (11).

Obviously, the multiplication of clusters of γ - brass in the form of cross 
- polytopes of even greater dimension (with an increase in the number of 
shells) by one - dimensional segments and triangles will also lead to the 
formation of polytopic prismahedron with faces determined by relations (1). 
An increase in the number of vertices in the polytope, which plays the role 
of the second factor in the product, will lead to an increase in the number of 
clusters of γ - brass in the resulting nanomaterial.
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In the Chapter 2 shows that known clusters can approximately describe n - 
icosahedral clusters containing an atom in a common center. Such clusters can 
also be used to obtain nanomaterials, multiplying them by convex polytopes of 
different dimensions. As shown in Chapter 2, such clusters with an arbitrary 
number of shells n have faces

f n f n f n f n f C f C f C
n n n0 1 2 3 4 1
2

5 1
3

2
12 1 42 50 21= + = = = = = =+ + +, , , , , , ...,

nn
n
+1.  

The dimension of this clusters equal d = n + 3. Multiply this cluster Pn+3  
for arbitrary n by a one - dimensional segment Q1. Then, according to (1), 
the result of the work is a polytope with faces:

the number of faces with dimension zero is

f f f n
x P Q
0 0 0 12 1 2= ⋅ = + ⋅( ) ;  

the number of faces with dimension one is

f f f f f n n n
x P Q P Q
1 1 0 0 1 42 2 12 1 1 85 1= ⋅ + ⋅ = ⋅ + + ⋅ = +( ) ;  

the number of faces with dimension two is

f f f f f n n n
x P Q P Q
2 2 0 1 1 50 2 42 1 142= ⋅ + ⋅ = ⋅ + ⋅ = ;  (12)

the number of faces with dimension three is

f f f f f n n n
x P Q P Q
3 3 0 2 1 21 2 50 1 92= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f C n
x P Q P Q n
4 4 0 3 1

1
22 21= ⋅ + ⋅ = ++ ;  

the number of faces with dimension five is
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f f f f f C C
x P Q P Q n n
5 5 0 4 1

1
3

1
22= ⋅ + ⋅ = ++ + ;  

the number of faces with dimension 2 + n is

f f f f f C C
x
n

P
n

Q P
n

Q n
n

n
n2 2 0 1 1

1 1
12+ + +

+ +
−= ⋅ + ⋅ = ⋅ + ;  

the number of faces with dimension 3 + n is

f f f f f C
x
n

P
n

Q P
n

Q n
n3 3 0 2 1
1

2+ + +
+= ⋅ + ⋅ = + ;  

the number of faces with dimension 4 + n is

f f f
x
n

P
n

Q
4 3 1 1 1 1+ += ⋅ = ⋅ = .  

Thus, the product of cluster n - icosahedron with an atom at center by 
one - dimension segment is a polytopic prismahedron of dimension n + 4 
with faces defined equality (12).

Multiply a cluster of n - icosahedron with an atom at center by triangle. 
Then according (1) a result of the product will be a polytope with faces:

the number of faces with dimension zero is

f f f n
x P Q
0 0 0 12 1 3= ⋅ = + ⋅( ) ;  

the number of faces with dimension one is

f f f f f n n n
x P Q P Q
1 1 0 0 1 42 3 12 1 3 162 3= ⋅ + ⋅ = ⋅ + + ⋅ = +( ) ; 

the number of faces with dimension two is

f f f f f f f n n n n
x P Q P Q P Q
2 2 0 1 1 0 2 50 3 42 3 12 1 288 1= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + + = + ;  

(13)

the number of faces with dimension three is
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f f f f f f f n n n n
x P Q P Q P Q
3 3 0 2 1 1 2 21 3 50 3 42 1 255= ⋅ + + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f f f C n n C n
x P Q P Q P Q n n
4 4 0 3 1 2 2

1
2

1
23 21 3 50 3 113= ⋅ + ⋅ + = ⋅ + ⋅ + = ++ + ;  

the number of faces with dimension five is

f f f f f f f C C n
x P Q P Q P Q n n
5 5 0 4 1 3 2

1
3

1
23 3 21= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ ++ + ;  

the number of faces with dimension 3 + n is

f f f f f f f C C
x
n

P
n

Q P
n

Q P
n

Q n
n

n
n3 3 0 2 1 1 2

1 1
13 3+ + + +

+ +
−= ⋅ + ⋅ + ⋅ = + ⋅ + ;  

the number of faces with dimension 4 + n is

f f f f f f f C
x
n

P
n

Q P
n

Q P
n

Q n
n

n
4 4 0 3 1 2 2

1 1
1 3 1 3 1 6+ + + +

+ += ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = +Cnn ;  

the number of faces with dimension 5 + n is

f f f
x
n

P
n

Q
5 3 2 1 1 1+ += ⋅ = ⋅ = .  

Thus, the product of cluster n - icosahedron with an atom at center by 
triangle is a polytopic prismahedron of dimension n + 5 with faces defined 
equality (13).

Obviously, it is possible to obtain nanomaterials with any finite number of 
clusters from n - icosahedrons if multiply the n - icosahedron with a central 
atom by a convex polytope with any given number of vertices.

NANOMATERIALS FROM WURTZITE

In Chapter 3 was shown that minimum dimension of the cluster wurtzite is 
4 (Zhizhin, 2019b). This cluster has faces
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f0=14, f1=29, f2=21, f3=6, f4=1. 

From of the cluster wurtzite with dimension 4 can obtain a polytopic 
prismahedron with dimension 5 if multiply it on a one - dimension segment. 
The form of this prismahedron is shown in Figure 3.

In this case the product P4×Q1 in according with (1) has faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 14 2 28= ⋅ = ⋅ = ;  

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 29 2 14 1 72= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f
x P Q P Q
2 2 0 1 1 21 2 29 1 71= ⋅ + ⋅ = ⋅ + ⋅ = ;  (14)

the number of faces with dimension three is

f f f f f
x P Q P Q
3 3 0 2 1 6 2 21 1 33= ⋅ + = ⋅ + ⋅ = ;  

Figure 3. The product of the cluster wurtzite with dimension 4 on a one - dimension 
segment
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the number of faces with dimension four is

f f f f f
x P Q P Q
4 4 0 3 1 1 2 6 1 8= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension five is

f f f
x P Q
5 4 1 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the wurtzite by one - dimension segment is polytopic 
prismahedron with dimension 5 and faces dimension of equality (14). Can 
to multiply the wurtzite on a triangle (polytope Q2). So, the product P4 and 
Q2 according to (1) has the faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 14 3 42= ⋅ = ⋅ = ;  

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 29 3 14 3 129= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f f f
x P Q P Q P Q
2 2 0 1 1 0 2 21 3 29 3 14 1 164= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  (15)

the number of faces with dimension three is

f f f f f f f
x P Q P Q P Q
3 3 0 2 1 1 2 6 3 21 3 29 1 110= ⋅ + + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f f f
x P Q P Q P Q
4 4 0 3 1 2 2 1 3 6 3 21 1 42= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension five is
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f f f f f
x P Q P Q
5 4 1 3 2 1 3 6 1 9= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension six is

f f f
x P Q
6 4 2 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the wurtzite by triangle is polytopic prismahedron 
with dimension 6 and faces dimension of equality (15).

NANOMATERIALS FROM FLUORITE

In Chapter 3 was shown that minimum dimension of the cluster fluorite is 
4. This cluster has faces

f0=14, f1=36, f2=30, f3=8, f4=1. 

From of the cluster fluorite with dimension 4 can obtain a polytopic 
prismahedron with dimension 5 if multiply it on a one - dimension segment. 
The form of this prismahedron is shown in Figure 4.

Figure 4. The product of the cluster fluorite with dimension 4 on a one - dimension 
segment
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In this case the product P4×Q1 in according with (1) has faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 14 2 28= ⋅ = ⋅ = ;  

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 36 2 14 1 86= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f
x P Q P Q
2 2 0 1 1 30 2 36 1 96= ⋅ + ⋅ = ⋅ + ⋅ = ;  (16)

the number of faces with dimension three is

f f f f f
x P Q P Q
3 3 0 2 1 8 2 30 1 46= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f
x P Q P Q
4 4 0 3 1 1 2 8 1 10= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension five is

f f f
x P Q
5 4 1 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the fluorite by one - dimension segment is polytopic 
prismahedron with dimension 5 and faces dimension of equality (16). Can 
to multiply the fluorite on a triangle (polytope Q2). So, the product P4 and 
Q2 according to (1) has the faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 14 3 42= ⋅ = ⋅ = ;  
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the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 36 3 14 3 150= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f f f
x P Q P Q P Q
2 2 0 1 1 0 2 30 3 36 3 14 1 212= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  (17)

the number of faces with dimension three is

f f f f f f f
x P Q P Q P Q
3 3 0 2 1 1 2 8 3 30 3 36 1 150= ⋅ + + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f f f
x P Q P Q P Q
4 4 0 3 1 2 2 1 3 8 3 30 1 57= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension five is

f f f f f
x P Q P Q
5 4 1 3 2 1 3 8 1 11= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension six is

f f f
x P Q
6 4 2 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the fluorite by triangle is polytopic prismahedron 
with dimension 6 and faces dimension of equality (17).

NANOMATERIALS FROM CLUSTERS B6Cl6

In Chapter 3 was shown that dimension of the cluster B6Cl6 is 4. This cluster 
has faces

f0=12, f1=30, f2=28, f3=10, f4=1. 
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From of the cluster B6Cl6 with dimension 4 can obtain a polytopic 
prismahedron with dimension 5 if multiply it on a one - dimension segment. 
The form of this prismahedron is shown in Figure 5.

In this case the product P4×Q1 in according with (1) has faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 12 2 24= ⋅ = ⋅ = ;  

the number of faces with dimension one is

Figure 5. The product of the cluster B6Cl6 with dimension 4 on a one - dimension 
segment
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f f f f f
x P Q P Q
1 1 0 0 1 30 2 12 1 72= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f
x P Q P Q
2 2 0 1 1 28 2 30 1 86= ⋅ + ⋅ = ⋅ + ⋅ = ;  (18)

the number of faces with dimension three is

f f f f f
x P Q P Q
3 3 0 2 1 10 2 28 1 48= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f
x P Q P Q
4 4 0 3 1 1 2 10 1 12= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension five is

f f f
x P Q
5 4 1 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the cluster B6Cl6 by one - dimension segment is 
polytopic prismahedron with dimension 5 and faces dimension of equality 
(18). Can to multiply the fluorite on a triangle (polytope Q2). So, the product 
P4 and Q2 according to (1) has the faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 12 3 36= ⋅ = ⋅ = ;  

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 30 3 12 3 126= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f f f
x P Q P Q P Q
2 2 0 1 1 0 2 28 3 30 3 12 1 186= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  (19)
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the number of faces with dimension three is

f f f f f f f
x P Q P Q P Q
3 3 0 2 1 1 2 10 3 28 3 30 1 144= ⋅ + + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f f f
x P Q P Q P Q
4 4 0 3 1 2 2 1 3 10 3 28 1 61= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension five is

f f f f f
x P Q P Q
5 4 1 3 2 1 3 10 1 13= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension six is

f f f
x P Q
6 4 2 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the cluster B6Cl6 by triangle is polytopic prismahedron 
with dimension 6 and faces dimension of equality (19).

NANOMATERIALS FROM LINEAR HOMO - 
ELEMENT METAL CHAINS WITH LIGANDS

In Chapter 4 was shown that dimension of the cluster linear homo - element 
metal chains with ligands (Figure 6 in Chapter 4) is 4. This cluster has faces

f0=10, f1=21, f2=16, f3=5, f4=1. 

From this cluster with dimension 4 can obtain a polytopic prismahedron 
with dimension 5 if multiply it on a one - dimension segment.

In this case the product P4×Q1 in according with (1) has faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 10 2 20= ⋅ = ⋅ = ;  
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the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 21 2 10 1 52= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f
x P Q P Q
2 2 0 1 1 16 2 21 1 53= ⋅ + ⋅ = ⋅ + ⋅ = ;  (20)

the number of faces with dimension three is

f f f f f
x P Q P Q
3 3 0 2 1 5 2 16 1 26= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f
x P Q P Q
4 4 0 3 1 1 2 5 1 7= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension five is

f f f
x P Q
5 4 1 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the cluster linear homo - element metal chains with 
ligands by one - dimension segment is polytopic prismahedron with dimension 
5 and faces dimension of equality (20). Can to multiply the cluster linear 
homo - element metal chains with ligands on a triangle (polytope Q2). So, 
the product P4 and Q2 according to (1) has the faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 10 3 30= ⋅ = ⋅ = ;  

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 21 3 10 3 93= ⋅ + ⋅ = ⋅ + ⋅ = ;  
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the number of faces with dimension two is

f f f f f f f
x P Q P Q P Q
2 2 0 1 1 0 2 16 3 21 3 10 1 121= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  (21)

the number of faces with dimension three is

f f f f f f f
x P Q P Q P Q
3 3 0 2 1 1 2 5 3 16 3 21 1 84= ⋅ + + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f f f
x P Q P Q P Q
4 4 0 3 1 2 2 1 3 5 3 16 1 34= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension five is

f f f f f
x P Q P Q
5 4 1 3 2 1 3 5 1 8= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension six is

f f f
x P Q
6 4 2 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the cluster linear homo - element metal chains with 
ligands by triangle is polytopic prismahedron with dimension 6 and faces 
dimension of equality (21).

NANOMATERIALS FROM METALLIC CLUSTERS 
WITH LIGANDS AND POLYHEDRAL CORE

In Chapter 6 was shown that dimension of the metallic cluster with ligands and 
polyhedral core Ir4(CO)12 (Figure 2 in Chapter 6) is 4. This cluster has faces

f0=16, f1=42, f2=42, f3=16, f4=1. 

From this cluster with dimension 4 can obtain a polytopic prismahedron 
with dimension 5 if multiply it on a one - dimension segment.
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In this case the product P4×Q1 in according with (1) has faces:

the number of faces with dimension zero is

f f f
x P Q
0 0 0 16 2 32= ⋅ = ⋅ = ;  

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 42 2 16 1 100= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f
x P Q P Q
2 2 0 1 1 42 2 42 1 126= ⋅ + ⋅ = ⋅ + ⋅ = ;  (22)

the number of faces with dimension three is

f f f f f
x P Q P Q
3 3 0 2 1 16 2 42 1 74= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f
x P Q P Q
4 4 0 3 1 1 2 16 1 18= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension five is

f f f
x P Q
5 4 1 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the metallic cluster with ligands and polyhedral 
core Ir4(CO)12 by one - dimension segment is polytopic prismahedron with 
dimension 5 and faces dimension of equality (22). Can to multiply the cluster 
linear homo - element metal chains with ligands on a triangle (polytope Q2). 
So the product P4 and Q2 according to (1) has the faces:

the number of faces with dimension zero is
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f f f
x P Q
0 0 0 16 3 48= ⋅ = ⋅ = ;  

the number of faces with dimension one is

f f f f f
x P Q P Q
1 1 0 0 1 42 3 16 3 174= ⋅ + ⋅ = ⋅ + ⋅ = ;  

the number of faces with dimension two is

f f f f f f f
x P Q P Q P Q
2 2 0 1 1 0 2 42 3 42 3 16 1 268= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  (23)

the number of faces with dimension three is

f f f f f f f
x P Q P Q P Q
3 3 0 2 1 1 2 16 3 42 3 42 1 216= ⋅ + + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension four is

f f f f f f f
x P Q P Q P Q
4 4 0 3 1 2 2 1 3 16 3 42 1 93= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = ;  

the number of faces with dimension five is

f f f f f
x P Q P Q
5 4 1 3 2 1 3 16 1 19= ⋅ + = ⋅ + ⋅ = ;  

the number of faces with dimension six is

f f f
x P Q
6 4 2 1 1 1= ⋅ = ⋅ = .  

Thus, the product of the metallic cluster with ligands and polyhedral core 
Ir4(CO)12 by triangle is polytopic prismahedron with dimension 6 and faces 
defined of the equality (23).
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CONCLUSION

Using concrete examples of clusters of chemical compounds of various 
types (intermetallic clusters, metal chains with ligands, polyhedral metal 
clusters with ligands), it is shown how nanomaterials are formed from 
individual clusters by multiplying their geometric structure by other geometric 
elements of different dimensions. Moreover, each cluster is geometrically a 
convex polytope of higher dimension. Formulas are obtained that make it 
possible for each cluster to determine the number of elements of different 
dimensions in a nanomaterial of finite size. This determines the structure of 
the nanomaterial. Each geometric element can be considered as a product 
of geometric elements of certain dimensions. Therefore, from the work of 
two polytopes, revealing each polytope as the product of certain geometric 
elements, we can proceed to the work of several polytopes (more than two). 
By consecutively revealing each factor by Theorem 1, it is possible to obtain 
formulas for calculating the numbers of elements of different dimensions, 
which are sums of the product of the numbers of elements of different 
dimensions with the number of factors more than two. This is of importance 
when building the structure of nanomaterials, which can be quite complex 
and include elements with different metric characteristics. For example, 
the lengths of the one - dimensional segments by which the polytopes are 
multiplied at each step may differ from the lengths of the one - dimensional 
segments in the previous step. Moreover, Theorem 1 can be used in all cases 
of constructing nanomaterials of any complexity.

It should be emphasized that three methods can be specified for filling 
the space of higher dimension with polytopes of higher dimension with the 
formation of a continuously distributed body. The first way is hierarchical 
filling of space (Zhizhin, 2010, 2012, 2014). It consists in filling the space 
with an expanding body. At each step of expansion, the body remains 
similar to itself. Such a large - scale increase in bodies is characteristic of 
scaling processes (Kadanoff, 1966; Wilson, 1971a, b). The second method 
is translational filling of space with a body of higher dimension (Zhizhin, 
2015). In these two methods, the body dimension at each step of its change 
remains unchanged. The second method is devoted to the second method of 
filling the space associated with the formation of nanomaterials. In the same 
chapter, the third way was considered to fill the space with a cluster with the 
formation at each step of its increase, in essence, a new cluster of greater and 
greater dimension. This cluster, in general, is not similar to the original cluster. 
It is the result of multiplying it at each step by various geometric elements.
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KEY TERMS AND DEFINITIONS

Dimension of the Space: The member of independent parameters needed 
to describe the change in position of an object in space.

Nanocluster: A nanometric set of connected atoms, stable either in 
isolation state or in building unit of condensed matter.

Polytope: Polyhedron in the space of higher dimension.
Polytopic Prismahedron: Is the product of a polytope to another polytope, 

or in a particular case to a one-dimensional segment.
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Chapter  9

DOI: 10.4018/978-1-7998-3784-8.ch009

ABSTRACT

It is proved that clusters in the form of the polytopic prismahedrons have the 
necessary properties for partitioning the n-dimensional spaces of a face into 
a face, that is, they satisfy the conditions for solving the eighteenth Hilbert 
problem of the construction of n-dimensional spaces from congruent figures. 
Moreover, they create extended nanomaterials, in principle, of any size. General 
principles and an analytical method for constructing n-dimensional spaces 
with the help of polytopic prismahedrons are developed. On the example of 
specific types of the polytopic prismahedrons (tetrahedral prism, triangular 
prismahedron), the possibility of such constructions is analytically proved. It 
was found that neighboring polytopic prismahedrons in these constructions 
can have common geometric elements of any dimension less than n or do 
not have common elements.

INTRODUCTION

In Chapter 1, when studying intermetallic nanostructures, it was found that 
the space of intermetallic nanostructures has the highest dimension and the 
fundamental region of these nanostructures is the golden hyper-rombohedron 
whose dimension is greater than 3 (Zhizhin, 2014c; Zhizhin, 2015; Zhizhin 
& Diudea, 2016; Zhizhin, Khalaj, & Diudea, 2016). The golden hyper-
rombohedron of intermetallic compounds forms a partition of higher - 

Nanostructures as Tillings of 
Higher Dimension Spaces
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dimensional space. It is a type of nanocluster. Other types of intermetallic 
clusters were considered in Chapter 2. Various types of metal clusters with 
ligands were discussed in Chapters 3 - 6. All these clusters have the highest 
dimension. However, not all types of clusters of chemical compounds can 
serve as a fundamental area of   partitions of spaces of higher dimension, 
i.e. fill the space of the highest dimension by broadcasting, adjoining each 
other along whole faces. Only polytopes of the highest dimension, which 
are polytopic prismahedrons, possess such properties (Zhizhin, 2019). In 
particular, the golden hyper-rombohedron is a polytopic prismahedron. In 
the previous chapter, the process of formation of a polytopic prismahedron 
from any cluster of chemical compounds was considered. To do this, you need 
to multiply the original cluster as a convex closed polytope by a geometric 
element with a dimension other than zero. Continuing to multiply the cluster 
by various geometric elements, you can get clusters of larger size and so 
fill the space. However, at each step of increasing the size of the cluster, 
its dimension also increases. This is not a partition of space. At each step, 
multiplication changes the appearance of the cluster. This chapter discusses 
the partitioning of higher - dimensional spaces by polytopic prismahedrons, 
which can be obtained from clusters of chemical compounds, with the 
formation of nanomaterials.

The problem of completing space by polyhedrons is one of the fundamental 
problems of mathematics, which has long attracted the attention of scientists. 
In 1900, D. Hilbert formulated 23 mathematical problems that require 
solution (Hilbert, 1901). One of these problems (eighteenth) was devoted 
to this question. It was formulated as follows: “Construction of space from 
congruent polyhedrons”. This problem is especially complicated in the case 
of n -dimensional spaces (Delone, 1969), and up to the end it has not been 
solved to this day under these conditions. In 1961, Delone proved that if we 
require that polytopes in n - dimensional space be adjacent along entire (n - 
1) faces, then for any n there are only finitely many topologically different 
partitions of space into polytopes. These partitions are called normal. Delone 
and Sandakova (1961) obtained a finite algorithm, in principle (according to 
the authors), which allows one to find all such partitions for a given n. In this 
case, the polytopes themselves (stereohedrons by the Delone terminus) of 
these partitions for a fixed n can be only of a finite number of topologically 
different types. However, unfortunately, the authors did not obtain concrete 
examples of normal partitions of higher - dimensional space into polytopes and 
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the specific types of corresponding polytopes. The question of the existence 
of fundamental domains in n - dimensional space is quite nontrivial. The main 
definition of the fundamental domain it was formulated by Delone (1969). 
The fundamental domain of a group of motions is a set of points of space 
such that, firstly, all its points are not equivalent to each other with respect 
to the group of motions, and secondly, any point of space is equivalent to 
some point of this region relative to the group of motions. What kind of these 
fundamental areas for a space with a dimension greater than three remains 
is uncertain to this day. Here we must also keep in mind the existence of 
polytopes, whose congruential copies can fill a gapless space, but each of 
them is not a fundamental area (Reingard, 1928).

The partitions of higher dimensional space first it was given by Zhizhin 
(2018). He showed that polytopes of partitions of higher - dimensional space 
are the polytopic prismahedrons. Moreover, the normality condition in these 
partitions is not obligatory, i.e. in the n - dimensional space there are polytopes 
adjacent along entire (n - 1) faces, but there are polytopes adjacent along the 
faces of another dimension.

One begin our consideration of the problem of partitioning a space of 
higher dimension from the reduction of concrete examples of these partitions.

EXAMPLES OF PARTITIONS OF 
HIGHER DIMENSIONAL SPACE

Partition of Space by the Polytopic Prism

One of the simplest types of the polytopic prismahedrons is the tetrahedral 
prism, i.e. a product tetrahedron by the segment. Tetrahedral coordination 
is widespread in clusters of chemical compounds. Its structural formula has 
form (Zhizhin, 2019)

P F P P P F F F F
4
3

3
2

2
1

8
4

6
3

4
2

3
2

4
3

3
24 4 3 2 2 4( ) [ ( , ), ( )].× =  (1)

Here, the subscript in the polytope P and his face F indicates the number 
of vertices, and the superscript indicates the dimension of the corresponding 
polytope or faces. The right side of (1) describing the structural formula of 
the product, the facet indicated by the symbol of the polytope to specify 
which polytopes of dimension n - 1 is composed work polytopes. Thus, P

4
3  
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- the tetrahedron, P
2
1  - the segment, P

6
3 - the triangular prism, P

3
2 - the triangle, 

P
4
2 - the quadrilateral, P

8
4 - the tetrahedral prism. The dimension of the 

tetrahedral prism is equal to 4, it has 8 vertices, 16 edges, 14 faces two - 
dimensional, 6 three - dimensional faces (2 tetrahedrons, 4 triangular prisms). 
Image tetrahedral prism is shown in Figure 1 in Chapter 4.

Can to introduce one of the vertices of the tetrahedral prism origin of the 
four - dimensional space (x, y, z, t). Orient the coordinates, such as indicated 
in Figure 1.

Assume that the length of each edge is equal to 1. Then, each node tetrahedral 
prism can be associated with a set of integers (Figure 1). Translating tetrahedral 
prism along the coordinates x, y, z, t, we obtain the lattice vertices. Let A0 
tetrahedral prism with the values of vertex coordinates in Figure 1. Then

A
0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1= [( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , )],0 0 0 1 1 0 0 1 0 1  
(2)

A A x
1 0

1 1 0 0 0 2 0 0 0 1 1 0 0 1 0 1 0 1 0 0= + =( ) [( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , )],1 2 1 0 0 1 1 1 0 1 1 0 1  

A A z
2 0

1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 2 0 0 0 1= + =( ) [( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , )],1 1 1 1 0 0 1 2 0 0 1 1 1  

A A x z A z
3 0 1

1 1 1

1 0 1 0 2 0 1 0 1 1 1 0 1 0

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , , ),( , , , ),( , , , ),( , , , )],2 0 1 0 1 1 2 1 1 0 1 1 2 0 1 1 1 1
 

Figure 1. The tetrahedral prism
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A A y z A y
4 0 2

1 1 1

0 1 1 0 1 1 1 0 0 2 1 0 0 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , )],2 0 0 1 1 1 1 2 1 0 0 2 2 0 0 2 1 1
 

A A x y z A y
5 0 3

1 1 1 1

1 1 1 0 2 1 1 0 1 2 1 0

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),(( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 2 0 1 1 1 1 2 2 1 0 1 2 2 0 1 2 1 1
 

A A y
6 0

1 0 1 0 0 1 1 0 0 0 2 0 0 0 1 1 0 0 1 0= + =( ) [( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , )],1 1 2 0 0 0 2 1 0 0 2 0 1  

A A y x A y
7 0 1

1 1 1

1 1 0 0 2 1 0 0 1 2 0 0 1 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , )],1 0 1 1 0 1 2 2 0 0 1 2 1 0 1 2 0 1
 

A A t
8 0

1

0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0

= + =( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , )],2 1 1 0 1 0 1 1 1 0 1 0 2
 

A A y t A t
9 0 6

1 1 1

0 1 0 1 1 1 0 1 0 2 0 1 0 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 0 1 0 2 1 2 0 1 0 2 1 1 0 2 0 2
 

A A x y t A t
10 0 7

1 1 1 1

1 1 0 1 2 1 0 1 1 2 0 1

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 1 1 1 1 0 2 2 2 0 1 1 2 1 1 1 2 0 2
 

A A x t A t
11 0 1

1 1 1

1 0 0 1 2 0 0 1 1 1 0 1 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , 00 1 1 1 0 0 2 2 1 0 1 1 1 1 1 1 1 0 2, , ),( , , , ),( , , , ),( , , , ),( , , , )],
 

A A y z A t
12 0 2

1 1 1

0 0 1 1 1 0 1 1 0 1 1 1 0

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , 00 2 1 0 0 1 2 1 1 1 1 0 1 2 1 0 1 1 2, , ),( , , , ),( , , , ),( , , , ),( , , , )],
  

A A z y t A t
13 0 4

1 1 1 1

0 1 1 1 1 1 1 1 0 2 1 1

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],0 1 2 1 0 2 2 1 0 1 1 2 1 2 1 1 0 2 1 2
 

A A x y z t A t
14 0 5

1 1 1 1 1

1 1 1 1 2 1 1 1 1 2

= + + + + = + =( , , , ) ( )

[( , , , ),( , , , ),( , ,11 1 1 1 2 1 1 1 1 2 2 2 1 1 1 2 2 1 1 2 1 2, ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],
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A A x t z A t
15 0 3

1 1 1 1

1 0 1 1 2 0 1 1 1 1 1 1

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , )].1 0 2 1 1 0 1 2 2 1 1 1 1 1 2 1 1 1 1 2
 

Representing the tetrahedral prisms A0÷A15 dots in three - dimensional space, 

can to get the hypercube. Moreover, the edges of the hypercube correspond 
to possible changes in the values   of one of the coordinates of the vertices of 
the tetrahedral prism unit (Figure 2).

In addition, each edge of the hypercube in Figure 2 can be considered 
as an element of the overall two tetrahedral prisms, connected by an edge. 
Using the coordinate expression tetrahedral prisms (2) can be analytically 
determined. In Table 1 geometry elements are common to each pair of the 
tetrahedral prisms connected by an edge in Figure 2 are listed.

Diagonals flat faces in the hypercube correspond to a simultaneous change 
in the unit values of the two coordinates of the vertices of the tetrahedral 
prisms (Table 2). Diagonals 8 cubes in the hypercube in Figure 2 correspond 
to a simultaneous change in the unit of some three coordinates. Common 
elements of the tetrahedral prisms with such change vertex coordinates is 

Figure 2. The hypercube from 16 tetrahedral prisms
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either a vertex or the empty set. When you change the same unit coordinates 
all four common elements in the tetrahedral prisms not.

Between Ai type tetrahedral prisms arranged tetrahedral prism type Bi (see 

Figure 3) having a closest to them tetrahedral prisms Ai general quadrangular 
two - dimensional face.

The tetrahedral prisms Ai and Bi have common edges, which are parties to 
the general quadrilateral faces. The tetrahedral prisms Ai and Bi are connected 
symmetry transformation - turning the 1800 around a common edge of the 
tetrahedron. Let B0 tetrahedral prism type Bi, adjacent tetrahedral prism A0, 
contains the x - axis, will translate the prism B0 on edge length for all the 
coordinates x, y, z, t four - dimensional space. Then we obtain a lattice of 
the tetrahedral prisms Bi.

B
0

0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1= −[( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , 00 0 1 1 1 0 1 1 1 1 0, , ),( , , , ),( , , , )],− − −  
(3)

B B x
1 0

1

1 0 0 0 1 1 0 0 2 1 0 0 2 0 0 0 2 0

= +
= −

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , 11 0 2 0 0 1 2 1 0 1 2 1 1 0, ),( , , , ),( , , , ),( , , , )],− − −
 

B B z
2 0

1

0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 0

= +
=

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , )],0 1 0 1 1 1 1 1 1 1 1 0 0− −
 

Figure 3. The partition space by the tetrahedral prisms
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B B x z B z
3 0 1

1 1 1

1 0 1 0 1 1 1 0 2 1 1 0 2 0

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , , ),( , , , ),( , , , ),( , , , )],1 0 2 0 0 0 2 0 1 1 2 1 1 1 2 1 0 0− −
 

B B y z B y
4 0 2

1 1 1

0 1 1 0 0 2 1 0 1 2 1 0 1 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , )],1 0 1 1 0 0 1 1 1 1 1 2 1 1 1 2 0 0− −
 

B B y z B y
5 0 3

1 1 1 1

1 1 1 0 1 2 1 0 2 2 1 0

= + + + = + =(x , , ) ( )

[( , , , ),( , , , ),( , . . ),(( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],2 1 1 0 2 1 0 0 2 1 1 1 2 2 1 1 2 2 0 0− −
 

B B y
6 0

1

0 1 0 0 0 2 0 0 1 2 0 0 1 1 0 0 1 1

= +
= −

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , 11 0 1 1 0 1 1 2 0 1 1 2 1 0, ),( , , , ),( , , , ),( , , , )],− − −
 

B B y B y
7 0 1

1 1 1

1 1 0 0 1 2 0 0 2 2 0 0 2 1

= + + = + =( , x ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , )],0 0 2 1 1 0 2 1 0 1 2 2 0 1 2 2 1 0− − − −
 

B B
8 0

1

0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0

= + =
−

(t )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , 11 1 1 0 0 1 1 1 0 0 1 1 1 1, ),( , , , ),( , , , ),( , , , )],−
 

B B y B
9 0 6

1 1 1

0 1 0 1 0 2 0 1 1 2 0 1 1 1

= + + = + =( , t ) (t )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , )],0 1 1 1 1 1 1 1 0 0 1 2 0 0 1 2 1 1− −
 

B B y B
10 0 7

1 1 1 1

1 1 0 1 1 2 0 1 2 2 0 1

= + + + = + =(x , , t ) (t )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],2 1 0 1 2 1 1 1 2 1 0 0 2 2 0 0 2 2 1 1− −
 

B B B
11 0 1

1 1 1

1 0 0 1 1 1 0 1 2 1 0 1 2

= + + = + =(x , t ) (t )

[( , , , ),( , , , ),( , , , ),( , 00 0 1 2 0 1 1 2 0 0 0 2 1 0 0 2 1 1 1, , ),( , , , ),( , , , ),( , , , ),( , , , )],− −
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B B B
12 0 2

1 1 1

0 0 1 1 0 1 1 1 1 1 1 1 1

= + + = + =(y , z ) (t )

[( , , , ),( , , , ),( , , , ),( , 00 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1 0 1, , ),( , , , ),( , , , ),( , , , ),( , , , )],
  

B B t B
13 0 4

1 1 1 1

0 1 1 1 0 2 1 1 1 2 1 1

= + + + = + =(z , y , ) (t )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 1 1 1 1 0 1 1 1 1 0 1 2 1 0 1 2 0 1
 

B B z t B
14 0 5

1 1 1 1 1

1 1 1 1 1 2 1 1 2 2

= + + + + = + =(x , y , , ) (t )

[( , , , ),( , , , ),( , ,11 1 2 1 1 1 2 1 0 1 2 1 1 0 2 2 1 0 2 2 0 1, ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],
 

B B z B
15 0 3

1 1 1 1

1 0 1 1 1 1 1 1 2 1 1 1

= + + + = + =(x , t , ) (t )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , )].2 0 1 1 2 0 0 1 2 0 1 0 2 1 1 0 2 1 0 1
 

It is presented tetrahedral prisms B0÷B15 points in the 4 - dimensional space 
can to get up hypercube in Figure 2 with change notation Ai on Bi. From the 
construction it is follows that tetrahedral prism Bi can have common elements 
such as tetrahedrons, edges and vertices. This is easily seen by analytical 
expressions (3). In addition, it follows from the construction (Figure 3) that 
the tetrahedral prism Ai and Bi can have common elements only tetrahedrons, 
edges and vertices. Triangular prisms, which are present in tetrahedral prisms 
of both types cannot be common for these tetrahedral prisms.

They only deal with each other on a flat quadrilateral. This also easily seen 
from the formulas (2) and (3). This situation is significantly different from 
the conditions of normality, to accept in general theory of stereohedrons. The 
provided construction proves that the tetrahedral prism is a fundamental area 
in the 4 - dimensional space, as it completely fills the space in the translation 
of the prism in all the coordinates of space and turning it into 1800.

Since all the vertices of the tetrahedral prisms are equal and filling the 
space with their translation is uniform, then the partition created by them is 
the right one space.

As follows from the division of space by the tetrahedral prisms (Figure 
3), the geometric shape of the tetrahedral prism B (Figure 4) differs from the 
geometric shape of the tetrahedral prism A.

These differences are related to the different angle of the one - dimensional 
segment, as a factor of the tetrahedral prism, to the tetrahedron in these 
tetrahedral prisms. Moreover, the angles between tetrahedrons and one - 
dimensional segment are coordinated so that tetrahedral prisms A and B 
can adjoin to each other along a common two - dimensional face having the 
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Table 1. Common elements of the tetrahedral prisms

Edge of the 
Hypercube

Common Element of the Tetrahedral 
Prisms

Edge of the 
Hypercube

Common Element of the 
Tetrahedral Prisms

A0 A1

A0 A2

А0 А6

A0 A8

A1A3

A7A1

A1A11

A2A3

A2A4

A2A12

A3A5

A3A15

A4A5

A4A6

A4A13

A7A5

edge (1,0,0,0)(1,1,0,0) 
edge (0,1,1,0)(0,0,1,0) 

tetrahedron 
(0,1,0,0)(1,1,0,0)(0,1,0,1)(0,1,0,1) 

edge (0,1,0,1)(0,0,0.1) 
edge (1,0,1,0)(1,1,1,0) 

tetrahedron 
(1,1,0,0,)(2,1,0,0)(1,1,1,0)(1,1,0,1) 

edge (1,0,0,1)(1,1,0,1) 
edge (1,0,1,0)(1,1,0,0) 

tetrahedron 
(0,1,1,0)(1,1,1,0)(0,1,1,1)(0,1,2,0) 

edge (0,1,1,0)(0,0,1,1) 
tetrahedron 

(1,1,1,0)(2,1,1,0)(1,1,2,0)(0,1,1,1) 
edge (1,0,1,1)(1,1,1,1) 
edge (1,1,1,0)(1,2,1,0) 
edge (0,1,1,0)(0,2,1,0) 

vertex (0,1,1,1) 
edge (1,1,1,0)(1,2,1,0)

A5 A14

A6 A7

А6 А9

A7A10

A8 A11

A8A9

A8A12

A9A10

A9A13

A11A10

A14A10

A11A15

A13A12

A12A15

A13A14

A14A15

edge (1,1,1,1)(1,2,1,1) 
vertex (1,1,1,0) 

edge (0,1,0,1)(0,2,0,1) 
vertex (1,1,0,1) 

edge (1,0,0,1)(1,1,0,1) 
tetrahedron 

(0,1,0,1)(1,1,0,1)(0,1,1,1)
(0,1,0,2) 

edge (0,0,1,1)(0,1,1,1) 
edge (1,1,0,1)(1,2,0,1) 
edge (1,2,1,1)(0,1,1,1) 
edge (1,2,0,1)(1,1,0,1) 
edge (1,1,1,1)(1,2,1,1) 
edge (1,0,1,1)(1,1,1,1) 
edge (0,1,1,1)(1,1,1,1) 
edge (1,0,1,1)(1,1,1,1) 

tetrahedron 
(1,1,1,1)(1,1,2,1)(1,2,1,1)

(1,2,2,1) 
tetrahedron 

(1,1,1,1)(2,1,1,1)(1,1,2,1)
(1,1,1,1)

Table 2. Common elements of the tetrahedral prisms

Diagonal Flat Face 
of the Hypercube

Common Element of the Tetrahedral 
Prisms

Diagonal Flat Face 
of the Hypercube

Common Element of the 
Tetrahedral Prism

A8 A13, A8 A13
A6 A2, A0 A4

А8 А2
A0 A12
A4 A9
A6A13
A5A13
A4 A14
A5A10
A7A14
A7A9

A6 A10
A9A14
A13A10
A5A6
A4A7

A11A12
A14A12

vertex (0,1,1,1) 
vertex (0,1,1,0) 

edge (0,1,1,1)(0,0,1,1) 
∅ 

vertex (0,1,1,1)(0,0,1,1) 
∅ 

edge (1,1,1,1)(1,2,1,1) 
∅ 

edge (1,2,1,1)(1,1,1,1) 
∅ 

edge (1,1,0,1)(1,2,0,1) 
∅ 
∅ 

edge (1,2,1,1)(1,1,1,1) 
∅ 

edge (1,1,1,0)(1,2,1,0) 
edge (1,1,1,1)(1,0,1,1) 

vertex (1,1,1,1)

A8 A10, A9 A11
A14 A7
A5 A10

А13А14, A5 A15
A3A11
A1 A15

A7A11, A1 A10
A5 A1, A7 A3

A3A12
A2A15
A11A0
A1A8

A4A3, A5 A2
A1 A6, A0 A7
A6 A8, A0 A9

A11A14,A10 A15
A8A15
A13A15

vertex (1,1,1,1) 
∅ 

edge (1,1,1,1)(1,2,1,1) 
vertex (1,1,1,1) 

vertex (1,0,1,1)(1,1,1,1) 
∅ 

vertex (1,1,0,1) 
vertex (1,1,1,0) 

edge (1,0,1,1)(1,1,1,1) 
∅ 
∅ 

edge (1,0,0,1)(1,1,0,1) 
edge (1,1,1,0) 

vertex (1,1,0,0) 
vertex (0,1,0,1) 
vertex (1,1,1,1) 

∅ 
edge (1,1,2,1)(1,1,1,1)
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form of a parallelogram. The polytope depicted in the figure consists of four 
tetrahedral prisms: two tetrahedral prisms of type A and two tetrahedral prisms 
of type B. The tetrahedral prisms A and B have common two - dimensional 
quadrangular faces, and each of the pairs of tetrahedral prisms A and B have 
the common one - dimensional segment. This polytope, as is easy to see, is the 
fundamental domain of the partition of a four - dimensional space by tetrahedral 
prisms, since the translation of this region covers all four - dimensional space. 
Moreover, translation in the direction of a one - dimensional segment, which 
is a factor in the product of tetrahedrons per segment, leads to overlapping of 
regions with four tetrahedrons, and translation in directions perpendicular to 
this segment leads to overlapping of regions along two - dimensional faces. 
Moreover, each point of this region does not have an equivalent in the region 
with respect to the enumerated group of motions. Thus, for the first time the 
concrete fundamental region of four - dimensional space constructed has a 
complex form in the case of tetrahedral prisms and is a complex of tetrahedral 
prisms. Each individual tetrahedral prism is not a fundamental domain.

The fundamental area of the partition of a four - dimensional space by 
tetrahedral prisms can be conditionally represented as a set of tetrahedral 
prisms BA

AB
 in which the diagonal elements are joined to each other along 

the edge, and the elements along the vertical and horizontally join each other 
along two - dimensional quadrangular surfaces connected along this edge. 
The fundamental region with adjacent fundamental regions is bordered by 
two - dimensional quadrangular surfaces and by the totality of four tetrahedrons.

Figure 4. The tetrahedral prism B
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Partition of Space of the Triangular Prismahedron

The triangular prismahedron is the product of a triangle by a triangle. The 
dimension of this polytope equal 4, it has 9 vertices and 6 triangle prisms 
(Zhizhin, 2019).

One direct the coordinates of the four - dimensional space along the edges 
of the triangular prismahedron (see the Figure 5).

Assume that the length of each edge is equal to 1. Then, each node 
triangular prismahedron can be associated with a set of integers (Figure 5). 
Translating the triangular prismahedron along the coordinates x, y, z, t, can 
to obtain the lattice vertices. Let E0 triangular prismahedron with the values 
of vertex coordinates in Figure 5. Then

E
0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0= [( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ],1 0 0 1 1 0 1 0 0 1 0 1 0 1  
(4)

E E x
1 0

1

1 0 0 0 2 0 0 0 1 1 0 0 1 0 1 0 1 0 0

= +
=

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],1 2 0 1 0 1 1 1 0 2 0 0 1 1 1 0 1
 

E E z
2 0

1

0 0 1 0 1 0 1 0 0 1 1 0 0 0 2 0 0 0 1

= +
=

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 0 2 0 0 1 2 0 1 0 1 1 0 1 1 1
 

Figure 5. The triangular prismahedron
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E E x z E z
3 0 1

1 1 1

1 0 1 0 2 0 1 0 1 1 1 0 1 0

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , , ),( , , , ),( , , , ),( , , , ),( , , , )]2 0 1 0 1 1 2 0 2 0 1 1 2 0 2 0 1 1 1 1 1 1 ,,
 

E E y z E y
4 0 2

1 1 1

0 1 1 0 1 1 1 0 0 2 1 0 0 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],2 0 0 1 1 1 1 1 2 0 0 2 2 0 1 1 1 1 0 2 1 1
 

E E x y z E y
5 0 3

1 1 1 1

1 1 1 0 2 1 1 0 1 2 1 0

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),(( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , ,1 1 2 0 1 1 1 1 2 1 2 0 1 2 2 0 1 2 1 1 1 2 1 11)],
 

E E y
6 0

1

0 1 0 0 1 1 0 0 0 2 0 0 0 1 1 0 0 1 0

= +
=

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 1 1 0 0 2 1 0 1 1 0 1 0 2 0 1
 

E E y E y
7 0 1

1 1 1

1 1 0 0 2 1 0 0 1 2 0 0 1 1

= + + = + =( , x ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],1 0 1 1 0 1 2 1 1 0 1 2 1 0 2 1 0 1 1 2 0 1
 

E E t
8 0

1

0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0

= + =( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],2 1 0 1 1 0 1 1 1 1 0 0 2 0 1 0 2
 

E E y t E t
9 0 6

1 1 1

0 1 0 1 1 1 0 1 0 2 0 1 0 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 0 1 0 2 1 1 1 1 0 2 1 1 1 1 0 2 0 2 0 2
 

E E x y t E t
10 0 7

1 1 1 1

1 1 0 1 2 1 0 1 1 2 0 1

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,1 1 1 1 1 1 0 2 2 1 1 1 1 2 1 1 2 1 0 2 1 2 0,, )],2
 

E E x t E t
11 0 1

1 1 1

1 0 0 1 2 0 0 1 1 1 0 1 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , 00 1 1 1 0 0 2 2 0 1 1 1 1 1 1 2 0 0 2 1 1 0 2, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],,
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E E y z E t
12 0 2

1 1 1

0 0 1 1 1 0 1 1 0 1 1 1 0

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , 00 2 1 0 0 1 2 1 0 2 1 0 1 2 1 1 0 1 2 0 1 1 2, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],,
  

E E z y t E t
13 0 4

1 1 1 1

0 1 1 1 1 1 1 1 0 2 1 1

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,0 1 2 1 0 1 1 2 0 1 1 2 1 1 2 1 1 1 1 2 0 2 1,, )],2
 

E E x y z t E t
14 0 5

1 1 1 1 1

1 1 1 1 2 1 1 1 1 2

= + + + + = + =( , , , ) ( )

[( , , , ),( , , , ),( , ,11 1 1 1 2 1 1 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 1, ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( ,, , , )],2 1 2
 

E E x t z E t
15 0 3

1 1 1 1

1 0 1 1 2 0 1 1 1 1 1 1

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,1 0 2 1 1 0 1 2 2 0 2 1 1 1 2 1 2 0 1 2 1 1 1,, )].2
 

Representing the triangular prismahedrons E0÷E15 dots in three-dimensional 
space, can to get the hypercube. Moreover, the edges of the hypercube 
correspond to possible changes in the values   of one of the coordinates of the 
vertices of the triangular prismahedron unit (Figure 6).

Figure 6. The hypercube from 16 triangular prismahedrons

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



254

Nanostructures as Tillings of Higher Dimension Spaces

In addition, each edge of the hypercube in Figure 6 can be considered 
as an element of the overall two triangular prismahedrons, connected by 
an edge. Using the coordinate expression triangular prismahedrons (4) can 
be analytically determined. In Table 3 geometry elements are common to 
each pair of triangular prismahedrons connected by an edge in Figure 6 
are listed. From Table 3 it follows that triangular prismahedrons of type E 
when translating along the coordinates of a four-dimensional space form a 
network, adjoining each other along entire triangles. The direct construction 
of this network shows (see Figure 7) that between these prismhedrons formed 
closed areas of three more types, which are also triangular prismahedrons 
E, but differing in the different arrangement of the triangles, as the factors 
of the product.

The types of these triangular prismahedrons (denoted by L, C, D) are 
presented separately in the Figure 8, Figure 9, Figure 10 and are indicated 
by a different color.

The triangular prismahedrons L, C, D, as well as triangular prismahedrons 
E form networks in which they adjoin each other along entire triangles. This 
follows from indicated the triangular prismahedrons L, C, D in coordinates of 
vertices of network and tables 4, 5, 6 of common elements in each of network.

The indicated of the triangular prismahedrons type L

Table 3. Common elements of the triangular prismahedrons E0÷E15

Edge of the 
Hypercube

Common Element of the Triangular 
Prismahedrons

Edge of the 
Hypercube

Common Element of the 
Triangular Prismahedrons

E0 E1
E0 E2
E0 E6
E0 E8
E1E3
E7E1
E1E11
E2E3
E2E4
E2E12
E3E5
E3E15
E4E5
E4E6
E4E13
E7E5

triangle (1,0,0,0)(1,0,1,0)(1,0,0,0) 
triangle (0,1,1,0)(0,0,1,0)(1,0,1,0) 
triangle (0,1,0,0)(0,1,1,0)(0,1,0,1) 
triangle (0,1,0,1)(0,0,0,1)(1,0,0,1) 
triangle (1,0,1,0)(1,1,1,0)(2,0,1,0) 
triangle (1,1,0,0,)(1,1,1,0)(1,1,0,1) 
triangle (1,0,0,1)(1,1,0,1)(2,0,0,1) 
triangle (1,0,1,0)(1,0,2,0)(1,0,1,1) 
triangle (0,1,1,0)(0,1,1,1)(0,1,2,0) 
triangle (0,1,1,1)(0,0,1,1)(1,0,1,1) 
triangle (1,1,1,0)(1,1,2,0)(0,1,1,1) 
triangle (1,0,1,1)(1,1,1,1)(2,0,1,1) 
triangle (1,1,1,0)(1,1,2,0)(1,1,1,1) 
triangle (0,1,1,0)(0,2,1,0)(1,1,1,0) 
triangle (0,1,1,1)(1,1,1,1)(0,2,1,1) 
triangle (1,1,1,0)(1,2,1,0)(2,1,1,0)

E5 E14
E6 E7
E6 E9
E7E10
E8 E11
E8E9
E8E12
E9E10
E9E13
E11E10
E14E10
E11E15
E13E12
E12E15
E13E14
E14E15

triangle (1,1,1,1)(1,2,1,1)(2,1,1,1) 
triangle (1,1,1,0)(1,1,0,0)(1,1,0,1) 
triangle (0,1,0,1)(0,2,0,1)(1,1,0,1) 
triangle (1,1,0,1)(2,1,0,1)(1,2,0,1) 
triangle (1,0,0,1)(1,0,1,1)(1,0,0,2) 
triangle (0,1,0,1)(0,1,1,1)(1,0,0,2) 
triangle (0,0,1,1)(1,0,1,1)(1,0,0,2) 
triangle (1,1,0,1)(1,1,0,2)(1,1,1,1) 
triangle (0,2,1,1)(0,1,1,1)(1,1,1,1) 
triangle (1,1,0,1)(1,1,0,2)(1,1,1,1) 
triangle (1,1,1,1)(1,2,1,1)(2,1,1,1) 
triangle (1,0,1,1)(1,1,1,1)(2,0,1,1) 
triangle (0,1,1,1)(0,1,2,1)(0,1,1,2) 
triangle (1,0,1,1)(1,0,2,1)(1,1,1,2) 
triangle (1,1,1,1)(1,1,2,1)(1,1,1,2) 
triangle (1,1,1,1)(1,1,2,1)(1,1,1,2)
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Figure 7. The partition space by the triangular prismahedrons E

Figure 8. The triangular prismahedron L

Figure 9. The triangular prismahedron C

Figure 10. The triangular prismahedron D
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L
0

0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1= [( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),0 1 1 0 0 1 0 1 1 1 1 0 1 1  

L L x
1 0

1

1 0 1 0 1 0 0 1 1 0 1 1 2 0 1 0 1 1 1

= +
=

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],0 1 1 0 1 2 0 0 1 1 1 1 1 2 0 1 1
 

L L z
2 0

1

1 0 2 0 1 0 1 1 1 0 2 0 2 0 2 0 1 1 2

= +
=

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],0 1 1 1 1 2 0 1 1 1 1 2 1 2 0 2 1
 

L L x z L z
3 0 1

1 1 1

1 0 2 0 1 0 1 1 1 0 2 1 2 0

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , , ),( , , , ),( , , , ),( , , , ),( , , , )]2 0 1 1 2 0 1 1 1 1 2 0 1 1 1 1 2 1 2 0 2 1 ,,
 

L L y z L y
4 0 2

1 1 1

1 1 2 0 1 1 1 1 1 1 2 1 2 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],2 0 1 2 2 0 1 2 1 1 2 1 1 1 1 2 2 1 2 1 2 1
 

L L x y z L y
5 0 3

1 1 1 1

1 1 2 0 1 1 1 1 1 1 2 1

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),(( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , ,2 1 2 0 1 2 2 0 1 2 1 1 2 1 1 1 1 2 2 1 2 1 2 11)],
 

L L y
6 0

1

0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 2 1

= +
=

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],0 0 2 0 1 1 1 0 1 0 2 1 1 1 1 1 1
 

L L y x L y
7 0 1

1 1 1

1 1 1 0 1 1 0 1 1 1 1 1 2 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],1 0 1 2 1 0 1 2 0 1 2 1 0 1 1 2 1 1 2 1 1 1
 

L L t
8 0

1

0 0 1 1 0 0 0 2 0 0 1 2 1 0 1 2 0 1 1

= + =( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],1 0 1 0 2 1 0 0 2 0 1 1 2 1 0 1 2
 

L L y t L t
9 0 6

1 1 1

0 1 1 1 0 1 0 2 0 1 1 2 1 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 0 2 1 1 0 2 0 2 1 1 0 2 0 2 1 2 1 1 1 2
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L L x y t L t
10 0 7

1 1 1 1

1 1 1 1 1 1 0 2 1 1 1 2

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,2 1 1 1 1 2 1 1 1 2 0 2 2 1 0 2 1 2 1 2 2 1 1,, )],2
 

L L x t L t
11 0 1

1 1 1

1 0 1 1 1 0 0 2 1 0 1 2 2

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , 00 1 1 1 1 1 1 1 1 0 2 2 0 0 2 1 1 1 2 2 0 1 2, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],,
 

L L y z L t
12 0 2

1 1 1

1 0 2 1 1 0 1 2 1 0 2 2 2

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , 00 2 1 1 1 2 1 1 1 1 2 2 0 1 2 1 1 2 2 2 0 2 2, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],,
  

L L z y t L t
13 0 4

1 1 1 1

1 1 2 1 1 1 1 2 1 1 2 2

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 2 2 1 2,, )],2
 

L L x y z t L t
14 0 5

1 1 1 1 1

1 1 2 1 1 1 1 2 1 1

= + + + + = + =( , , , ) ( )

[( , , , ),( , , , ),( , ,22 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 2 2, ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( ,, , , )],1 2 2
 

L L x t z L t
15 0 3

1 1 1 1

1 0 2 1 1 0 1 2 1 0 2 2

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,2 0 2 1 1 1 2 1 1 1 1 2 2 0 1 2 1 1 2 2 2 0 2,, )].2
 

The indicated of the triangular prismahedrons type С

C
0

0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1= [( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , )],0 0 1 0 0 1 1 1 1 0 1 1 0 1  

C C x
1 0

1

1 1 0 0 2 0 0 0 1 1 0 1 1 1 1 0 2 0 1

= +
=

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],0 2 1 0 0 2 0 0 1 2 1 1 0 2 1 0 1
 

C C z
2 0

1

0 1 1 0 1 0 1 0 0 1 1 1 0 1 2 0 1 0 2

= +
=

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],0 1 1 1 0 1 0 1 1 1 1 2 0 1 1 1 1
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C C x z C z
3 0 1

1 1 1

1 1 1 0 2 0 1 0 1 1 1 1 1 1

= + + = +
=

( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , , ),( , , , ),( , , , ),( , , , ),( , , , )]2 0 2 0 2 0 2 1 1 0 2 0 1 1 2 1 2 0 2 1 1 1 ,,
 

C C y z C y
4 0 2

1 1 1

0 2 1 0 1 1 1 0 0 2 1 1 0 2

= + + = +
=

( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],2 0 1 1 2 0 1 2 1 0 1 1 1 1 1 2 2 0 1 2 1 1
 

C C x y z C y
5 0 3

1 1 1 1

1 2 1 0 2 1 1 0 1 2 1 1

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),(( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , ,1 2 2 0 2 1 2 0 2 2 1 0 2 1 1 1 2 2 2 0 2 2 1 11)],
 

C C y
6 0

1

2 2 0 0 1 1 0 0 0 2 0 1 0 2 1 0 1 1 1

= +
=

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],0 1 2 0 0 1 1 0 1 1 2 1 0 1 2 0 1
 

C C y x C y
7 0 1

1 1 1

1 2 0 0 2 1 0 0 1 2 0 1 1 2

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],1 0 2 1 1 0 2 2 0 0 2 1 0 1 2 2 1 0 2 2 0 1
 

C C t
8 0

1

0 1 0 1 1 0 0 1 0 1 0 2 0 1 1 1 1 0 1

= + =( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 1 0 1 1 0 0 2 1 1 1 1 1 1 0 2
 

C C y t C t
9 0 6

1 1 1

0 2 0 1 1 1 0 1 0 2 0 2 0 2

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 1 1 1 1 1 2 0 1 1 1 0 2 1 2 1 1 1 2 0 2
 

C C x y t C t
10 0 7

1 1 1 1

1 2 0 1 2 1 0 1 1 2 0 2

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,1 2 1 1 2 1 1 1 2 2 0 1 2 1 0 2 2 2 1 1 2 2 0,, )],2
 

C C x t C t
11 0 1

1 1 1

1 1 0 1 2 0 0 1 1 1 0 2 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( ,11 1 1 2 0 1 1 2 1 0 1 2 0 0 2 2 1 1 1 2 1 0 2, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],,
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C C y z C t
12 0 2

1 1 1

0 1 1 1 1 0 1 1 0 1 1 2 0

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( ,11 2 1 1 0 2 1 1 1 1 1 1 0 1 2 1 1 2 1 1 1 1 2, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],,
  

C C z y t C t
13 0 4

1 1 1 1

0 2 1 1 1 1 1 1 0 2 1 2

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,0 2 2 1 1 1 2 1 1 2 1 1 1 1 1 2 1 2 2 1 1 2 1,, )],2
 

C C x y z t C t
14 0 5

1 1 1 1 1

1 2 1 1 2 1 1 1 1 2

= + + + + = + =( , , , ) ( )

[( , , , ),( , , , ),( , ,11 2 1 2 2 1 2 1 2 1 2 2 1 1 2 1 1 2 2 2 2 1 2, ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( ,, , , )],2 1 2
 

C C x t z C t
15 0 3

1 1 1 1

1 1 1 1 2 0 1 1 1 1 1 2

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,1 1 2 1 2 0 2 1 2 1 1 1 2 0 1 2 2 1 2 1 2 1 1,, )].2
 

The indicated of the triangular prismahedrons type D

D
0

0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0= [( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , )],1 1 1 1 0 1 1 1 1 0 1 1 1 1  

D D x
1 0

1

1 1 1 0 2 0 1 0 2 0 0 1 1 1 0 1 1 1 1

= +
=

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],1 2 0 1 1 2 1 0 1 2 1 1 0 2 1 1 1
 

D D z
2 0

1

0 1 2 0 1 0 2 0 1 0 1 1 0 1 1 1 0 1 2

= +
=

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 1 1 1 1 1 2 0 1 1 2 1 1 0 2 1
 

D D x z D z
3 0 1

1 1 1

1 1 2 0 2 0 2 0 2 0 1 1 1 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , , ),( , , , ),( , , , ),( , , , ),( , , , )]1 1 1 1 2 1 2 0 2 1 2 1 1 1 2 1 2 0 2 1 2 1 ,,
 

D D y z D y
4 0 2

1 1 1

0 2 2 0 1 1 2 0 1 1 1 1 0 2

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 0 2 2 1 1 1 2 1 1 2 1 1 1 2 2 0 1 2 2 1
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D D x y z D y
5 0 3

1 1 1 1

1 2 2 0 2 1 2 0 2 1 1 1

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),(( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , ,1 2 1 1 1 2 2 1 2 1 2 1 2 2 1 1 2 2 2 0 2 2 2 11)],
 

D D y
6 0

1

0 2 1 0 1 1 1 0 1 1 0 1 0 2 0 1 0 2 1

= +
=

( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 1 1 1 1 2 0 1 1 2 1 0 1 2 1 1
 

D D y x D y
7 0 1

1 1 1

1 2 1 0 2 1 1 0 2 1 0 1 1 2

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],0 1 1 2 1 1 2 1 1 1 2 2 0 1 2 2 1 0 2 2 1 1
 

D D t
8 0

1

0 1 1 1 1 0 1 1 1 0 0 2 0 1 0 2 0 1 1

= + =( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , ),( , , , )],2 1 0 1 2 1 1 0 2 1 1 1 1 1 1 1 2
 

D D y t D t
9 0 6

1 1 1

0 2 1 1 1 1 1 1 1 1 0 2 0 2

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],0 2 0 2 1 2 1 1 1 2 1 2 0 2 1 2 1 1 1 2 1 2
 

D D x y t D t
10 0 7

1 1 1 1

1 2 1 1 2 1 1 1 2 1 0 2

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,1 2 0 2 1 2 1 2 2 1 1 2 2 2 1 1 2 2 1 2 2 1 1,, )],2
 

D D x t D t
11 0 1

1 1 1

1 1 1 1 2 0 1 1 2 0 0 2 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( ,11 0 2 1 1 1 2 2 0 1 2 2 1 0 2 2 1 1 1 2 1 1 2, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],,
 

D D y z D t
12 0 2

1 1 1

1 1 1 1 2 0 1 1 2 0 0 2 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( ,11 0 2 1 1 1 2 2 0 1 2 2 1 0 2 2 1 1 1 2 1 1 2, , ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],,
  

D D z y t D t
13 0 4

1 1 1 1

0 2 2 1 1 1 2 1 1 1 1 2

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,0 2 1 2 0 2 2 2 1 1 2 2 1 2 1 2 1 2 2 1 1 2 2,, )],2
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D D x y z t D t
14 0 5

1 1 1 1 1

1 2 2 1 2 1 2 1 2 1

= + + + + = + =( , , , ) ( )

[( , , , ),( , , , ),( , ,11 2 1 2 1 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2, ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( ,, , , )],2 2 2
 

D D x t z D t
15 0 3

1 1 1 1

1 1 2 1 2 0 2 1 2 0 1 2

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,1 1 1 2 1 1 2 2 2 0 2 2 2 1 1 2 2 1 2 1 2 1 2,, )].2
 

Defining the intersections of the triangular prismahedrons in each of the 
sets of prismahedrons E, L, C or D from their coordinate expressions it is easy 
to determine that the common part of any pair of triangular prismahedrons 
belonging to a given set of prismahedrons (E, L, C or D) is some triangular 
face of the chosen pair of prismahedrons. Representing the triangular 
prismahedrons

L0÷L15, C0÷C15, D0÷D15 

dots in three - dimensional space, for each type triangular prismahedrons can 
to get the hypercube. Moreover, the edges of the hypercube correspond to 
possible changes in the values   of one of the coordinates of the vertices of the 
triangular prismahedrons of given type unit (see Figure 6 for the triangular 
prismahedrons of type E).

Using the coordinate expressions of the triangular prismahedrons, can 
establish that triangular prismahedrons belonging to different types can 
have common geometric elements of different dimensions that enter into 
triangular prismahedrons. Their intersections can be empty (that is, they do 
not have common elements), for example, E2 ∩ D1= Ø. Their intersection 
can be single edge, for example,

E3 ∩ L0=(1,0,1,0) (1,0,1,1), 

E3∩ C1=(1,0,1,0) (1,1,1,0), E2 ∩ D0=(0,1,1,0) (1,0,1,1). 

Their intersection can be square face, for example,

E7 ∩ D1 = (1,1,1,0)(1,1,0,1)(2,1,1,0)(2,1,0,1), 

E3 ∩ D2= (1,0,2,0)(1,0,1,1)(1,1,2,0)(1,1,1,1). 
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Their intersection can be triangular prism also, for example,

E3 ∩L1 1 0 1 0 2 0 1 0 1 1 1 0 1 0 1 1 2 0 1 1 1 1 1 1= ( , , , )( , , , )( , , , )( , , , )( , , , )( , , , ),  

L1 ∩D0 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1= ( , , , )( , , , )( , , , )( , , , )( , , , )( , , , ).  

Let us consider the set of the triangular prismahedrons of four types E,L,C,D 
of least - cubed numbers close to the origin from the considered set of the 
triangular prismahedrons. This set consists of the triangular prismahedrons 
E0, L0, C0, D0. By their coordinate expressions we establish that the pairs of 
the triangular prismahedrons E0 and C0, E0 and L0, C0 and D0, L0 and D0 have 
common trigonal prisms, and the pairs of the triangular prismahedrons E0 
and D0, C0 and L0 have common planar faces of the four coal form

E0 ∩C 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0= ( , , , , )( , , , )( , , , )( , , , )( , , , )( , , , ),,  

E0 ∩L0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 0 1= ( , , , , )( , , , )( , , , )( , , , )( , , , )( , , , ),,  

C0 ∩D0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0= ( , , , , )( , , , )( , , , )( , , , )( , , , )( , , , ),,  

L0 ∩D0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0= ( , , , , )( , , , )( , , , )( , , , )( , , , )( , , , ),,  

E0 ∩D0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0= ( , , , )( , , , )( , , , )( , , , ),  

L0 ∩C 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0= ( , , , )( , , , )( , , , )( , , , ).  

Thus, the triangular prismahedrons form closed complex of the triangular 
prismahedrons, which is convex polytope with dimension 4 (see Figure 11).

It is easy to see that the complex of the trigonal prismahedrons E0, L0, C0, 
D0 is the fundamental domain of the partition of four - dimensional space 
by a trigonal prismahedron, since translation of this complex with respect 
to the coordinates of space leads to the filling of this space without gaps. At 
the same time, adjacent complexes have common three - dimensional figures 
(rhombohedrons) included in the complex.
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The fundamental area of the partition of a four - dimensional space by a 
trigonal prismahedron can be conditionally represented as a set of the trigonal 
prismahedrons LD

EC
 in which the diagonal elements are joined to each other 

along two - dimensional quadrangular surfaces and the elements along the 
vertical and horizontally join each other connected along trigonal prism. The 
fundamental region with adjacent fundamental regions is bordered by 
rhombohedrons.

GENERAL PRINCIPLES OF THE PARTITION 
OF THE N - DIMENSIONAL SPACES BY 
POLYTOPIC PRISMAHEDRONS

The investigations of specific partitions of spaces by the polytopic 
prismahedrons allow us to formulate some general principles for partitioning 
spaces by the polytopic prismahedrons.

The polytopic prismahedrons, being a product of geometric figures of 
different dimensions, necessarily contain in their composition works of facets 
of figures on one - dimensional segments (edges). Therefore, they always 
have systems of parallel edges, and therefore parallelogons, in particular, 
flat faces in the form of quadrilaterals with parallel sides. In space, these 
parallel edges in the translation of the polytopic prismahedrons along the 
coordinates of space this gives rise to a system of parallel lines. Thus, between 
the polytopic prismahedrons in space are formed regions bounded by ribs 

Figure 11. The fundamental domain of the decomposition of a four - dimensional 
space by a trigonal prismahedron
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and flat faces, i.e. again the polytopic prismahedrons are born. Their form is 
induced by the polytopic prismahedrons during their translation (translated 
polytopic prismahedrons). It either repeats the form of the translated the 
polytopic prismahedrons (in the case of a fairly symmetrical form of the latter) 
or slightly differs from their shape by the principle of “squeezing out” the 
shape. The number of possible deviations of free regions from translation the 
polytopic prismahedrons depends on the deviations from the symmetry of the 
most translation the polytopic prismahedrons. The contact of the polytopic 
prismahedrons of different shapes is carried out along prism generators (as 
factors), and on surfaces formed by these generators. In addition, the contact 
of the polytopic prismahedrons is realized by three - and multidimensional 
figures connected by these generators. Translated the polytopic prismahedrons 
form a network in space. If we introduce a coordinate system directed along 
the edges of some polytopic prismahedron emanating from its arbitrary 
vertex, taken as the origin, and the length of each edge is considered equal 
to one, then each vertex of the polytopic prismahedron acquires the notation. 
This designation consists of a sequence of zeros and ones as the values of 
the coordinates of the n - dimensional space. The translation of the polytopic 
prismahedron by the length of the edge along one of the coordinates of the 
space increases the value of this coordinate at all vertices of the polytopic 
prismahedron by one. The introduction of integer values of the coordinates 
of the vertices of a polytopic prismahedron allows analytically describe not 
only the translated polytopic prismahedron, but also polytopic prismahedrons 
located between the translated polytopic prismahedrons.

If we denote every translatable polytopic prismahedron by a point in n - 
dimensional space, then when translating this polytopic prismahedron by 
one in all coordinates of the n - dimensional space, then the number of these 

points is equal to C
n
i

i

n
n

=
∑ =
0

2 , where C
n
i  is the number of combinations of 

the total number of coordinates n on the number of coordinates equal to unity 
. These points can be considered vertices of the n - cube, since the number 
of vertices in the n - cube is equal to 2n . The number of edges in the n - cube 
is n n2 1−  (Zhizhin, 2014a, b, c). In this case, each edge in the n - cube 
corresponds to translation of the polytopic prismahedron by one from one 
of the coordinate n – dimension space.

The analytical description of the polytopic prismahedrons allows 
analytically to describe the partition of an n - dimensional space by the 
polytopic prismahedrons. In particular, establish exactly the intersection 
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areas of the polytopic prismahedrons during their translation. Translated 
the polytopic prismahedrons and polytopic prismahedrons located between 
translated polytopic prismahedrons naturally form the fundamental regions 
of partition of n - dimensional space by polytopic prismahedrons. An analytic 
description of the polytopic prismehedrons also allows one analytically 
describe the fundamental regions of partitions of n - dimensional spaces by 
the polytopic prismahedrons.

Due to the nature of the polytopic prismahedrons, the fundamental regions 
of partition of the n -dimensional spaces by the polytopic prismahedrons can 
contact each other along geometric elements of different dimensions: edges, 
flat surfaces, three - dimensional and multidimensional figures.

The presented principles of partition of n - dimensional spaces by 
the polytopic prismahedrons, based on the study of specific geometric 
constructions, radically differ from the simplified speculative representations 
of the theory of the stereohedrons of Delone (Delone, 1961).

THE CONNECTION BETWEEN HIERARCHICAL 
AND TRANSLATIONAL FILLING OF SPACE

The discovery of quasicrystals was associated with the detection of the 
absence in the diffraction patterns of intermetallic compounds of translational 
symmetry (Shechtman et al., 1984). This led to large the number of works 
on the study of the hierarchical and chaotic filling of the plane and space 
with various geometric figures, considering these ways of filling space as an 
opposition to the well - known method of translational space filling (Penrose, 
1974; Mackay, 2001; Lord, 1991; Lord et al., 2006; Audier & Duneau, 2000; 
Zhizhin, 2012; Zhizhin, 2014d). However, it was later discovered that the 
diffraction patterns of intermetallic compounds considered as projections 
of structures from spaces of higher dimension have a latent periodicity 
(Shevchenko, Zhizhin, Mackay, 2013a, b; Zhizhin, 2014 c). In the book of 
Zhizhin (2019) has already dealt with hierarchical filling of spaces. In this 
section, one show that there is a direct geometric relationship between the two 
types of filling the hierarchical and translational spaces. Let’s return to the 
hierarchical filling of the two - dimensional plane with the correct pentagon. 
Following the method outlined in this chapter, continue the sides of the red 
pentagon to the intersection (Figure 12).
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These intersections are the vertices of another regular red pentagon of a 
larger size. Continuing the sides of this pentagon to the intersection, can to 
get the vertices of an even larger pentagon. This is how the plane is filled with 
a regular pentagon. Now we continue the sides of the regular red pentagons 
into the whole foreseeable part of the plane (within the picture). One also 
draw part of the lines parallel to these sides. This leads to the formation of a 
series of intersection points that can be considered as vertices of other regular 
black pentagons (see Figure 12). It is found that these regular black pentagons 
translationally fill the plane. Thus, in Figure 12 there is also a hierarchical 
and translational filling of the plane by the same figures: regular pentagons.

Consider the second example.

Let there be a polytopic prismahedron the 5 - simplex - prism (Zhizhin, 
2019). This prismahedron has dimension 5. Can to introduce the coordinate 
system of the five - dimensional space in one of the vertices of the 5 - simplex 
- prism.

Figure 12. Hierarchical and translational filling of the plane with a regular pentagon
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Assuming the length of all edges of the 5 - simplex - prism per unit, one will 
translate the 5 -simplex prism by the length of the edge along each coordinate 
direction within the figure. There are four the 5 - simplex - prisms, which 
together with the original 5 - simplex - prism form a 5 -simplex - prism of a 
larger size. This process can be continued by combining the translation of a 5 
- simplex - prism with growth its size. This is hierarchically and translationally 
filling the five - dimensional space with a 5 - simplex - prism on the same 
system of parallel lines. Thus, there is no contradiction between hierarchical 
and translational filling of spaces.

MODERN CONCEPT OF DESCRIBING 
THE STRUCTURE OF MATTER

Can to recall briefly the main concepts and results of the classical theory of 
discrete systems. An example of the realization of constructing a space from 
congruent polytopes (18 Hilbert’s problem) to be the crystalline structures 
that are widespread in nature (Hilbert, 1901). A crystalline structure is 
called correct if the groups in all those space motions, like a rigid whole that 
combine this structure with itself, is discrete and has a fundamental domain. 
A group G of motions is said to be discrete, if there exists a point A and a 
positive number r such, that every point different from A and equivalent to A 
is relative to G (that is, the one into which the point A passes by the motion 

Figure 13. Hierarchical and translational filling of the five - dimensional space by 
the 5 - simplex - prism
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from G) lies no closer to A then on distance r. The fundamental domain of 
the group G is a set of points of space such that:

1.  All its points are not equivalent to each other with respect G.
2.  Any point of the space is equivalent to an equivalent point of this domain 

with respect G.

Such groups G are called crystallographic. These classical definitions 
(Delone, Padurov & Alexandrov, 1934) implicitly assume that the considered 
spaces are infinite, although all crystal structures in nature have a boundary 
and a finite volume. It was first established by Fedorov (Fedorov, 1890) and 
somewhat later by Schönfles (1891) that there are 17 on the two-dimensional 
plane, and 230 crystallographic groups in the three - dimensional space. If one 
add to the conditions of discreteness and finiteness of the fundamental domain 
the requirement that in the group G there exist an n - dimensional subgroup 
T of parallel transfers(if G is n -dimensional), then the proof of the finiteness 
of the number of such groups follows directly from the Frobenius argument 
(Frobenius, 1911). Evidence for the existence of such n - dimensional subgroups 
T was obtained in a number of papers (Schönfles, 1891; Bieberbach, 1910, 
1911, 1912). Delone (Delone, 1937) introduced the concept about system of 
the distribution of discrete matter, based on two conditions:

• The existence of a finite smallest radius of the ball inside which there 
are no points of the system (the concept of an empty ball).

• The existence of a radius of the ball inside which there is necessarily at 
least one point of the system.

The question arises as to what are the convex polytopes that play the role 
of fundamental domains in n - dimensional Euclidean space. Based on the 
introduced notion of a discrete system Delone proved (Delone, 1961) that a 
normal partition of a space (polytopes are adjacent to each other along entire (n 
- 1) - dimensional faces) for any n there are only a finite number of topologically 
different types of partition. In the definition of normal partitions is assumed 
that for every (n - 1) face of polytope P in the normal decomposition there is 
one and only one other polytope S having this same face. If we take the group 
G and repeat a point A, then we obtain a regular system of points. The Dirichlet 
domains of its points form some regular Dirichlet decomposition connected 
with the group G. It is normal. Delone and Sandakova proved (Delone & 
Sandakova, 1961) that the stereohedrons of these partitions for a fixed n can 
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only be of a finite number of topologically different types. The edge grids 
of the stereohedrons do not stretch to each other. If one do not require the 
normality of partitions into convex fundamental domains, then there can be 
infinitely many such topologically distinct partitions (Zamorzayev, 1965).

It is clear absolutely that the concept of discrete systems introduced by 
Delone clearly contradicts the existence of a scaling process, which has been 
proved experimentally when studying phase transitions of the second kind 
in condensed substances. The concept of an empty ball does not allow a 
continuous reduction in scale. In this connection, it is necessary to harmonize 
the theory of describing the structure of matter with scaling processes. We 
consider an arbitrary n - dimensional system of points in n - dimensional 
space. The system is discrete, i.e. between points there is always some distance, 
which can only tend asymptotically to zero, not reaching an exact equality 
to zero. The system has in the neighborhood of each point the hierarchical 
distribution of points (Mackay, 2001). The latter leads to the existence of a 
periodic distribution of points in space.

The introduction of such a method of describing the structure of matter 
corresponds to the diffraction patterns of the nanostructures and to the scaling 
process discovered in recent years. It is essential that the lattice of points 
of this system allows for the separation in it of all Platonic solids, Bravais 
and Delone cells. Thus, this discrete system is universal. Based on this new 
conception of describing the structure of matter, it was possible to obtain 
and systematize (Zhizhin, 2019) the polytopic prismahedrons of the higher 
dimension, which, as shown in this Chapter, allow filling an n - dimensional 
space without gaps. The direct construction of the polytopic prismahedrons 
showed that the obligatory condition accepted in the theory of the Delone 
stereohedrons (Tarasov, 1997), does not hold, the separation of vertices of 
neighboring stereohedrons along the n - 1 plane.

The discrete Delone system has so far not been able to obtain a single example 
of a stereohedron higher dimensional (Galiulin, 2003). Until no enumeration 
of the stereohedrons of Delone with dimension 3 of normal partitions has been 
obtained. There are only isolated examples of these stereohedrons (Shtogrin, 
1973; Peter, 1981). Moreover, the use of discrete Delone systems can lead to 
incorrect results. For example, in the work of Ryzhkov, Shushbaev (Ryzhkov 
& Shushbaev, 1981) is asserted on the basis of ideas about these systems, that 
with the help of a 4 - cross - polytope one can obtain the correct partition of 
the space 4D. However, a direct construction by the methods developed in 
this book can show that this is not so (Zhizhin, 2019).

 EBSCOhost - printed on 2/14/2023 2:34 PM via . All use subject to https://www.ebsco.com/terms-of-use



270

Nanostructures as Tillings of Higher Dimension Spaces

The most complete variants of normal monohedral, dihedral and polyhedral 
partitions of the two - dimensional Euclidean plane was considered by Zhizhin 
(Zhizhin, 1993, 2010).

The scaling process is inextricably linked with the hierarchical filling of 
space. In nature it corresponds, in particular, to the formation of clusters. 
In the hierarchical filling of space a natural restriction of the geometric 
analysis follows the restriction of the volume of the space occupied by such 
a filling. This is observed in clusters, which always have a limited volume. 
It is important that hierarchical filling of space can be coordinated with the 
translational filling of space. In this case, a model of a uniformly expanding 
universe appears.

Hierarchical filling of space leads to the existence of two types of clusters. 
In one of these types the entire volume of the cluster it is occupied by the 
polytope boundary complex. This corresponds to the notion that the cluster 
surface occupies all of its volume. In the cluster of second type boundary 
complex does not occupy the entire volume of the polytope, it has internal 
points. This corresponds to the fact that there is free space inside the cluster.

Thus, a modern description of the structure of matter leads to a new content 
of Hilbert’s 18th problem.

CONCLUSION

It is proved that clusters in the form of the polytopic prismahedrons have the 
necessary properties for partitioning the n - dimensional spaces of a face into 
a face, that is, they satisfy the conditions for solving the eighteenth Hilbert 
problem of the construction of n - dimensional spaces from congruent figures. 
Moreover, they create extended nanomaterials, in principle, of any size. General 
principles and an analytical method for constructing n - dimensional spaces 
with the help of the polytopic prismahedrons are developed. On the example 
of specific types of the polytopic prismahedrons (tetrahedral prism, triangular 
prismahedron), the possibility of such constructions is analytically proved. It 
was found that neighboring the polytopic prismahedrons in these constructions 
can have common geometric elements of any dimension less than n or do not 
have common elements. This refutes the speculatively accepted condition 
in the theory of the Delone stereohedrons that neighboring stereohedrons it 
is necessary to have common facets (that is, faces of dimension n - 1) in or 
not to have common elements. It is shown that the set of lines arising in the 
hierarchical filling of spaces allows the existence of translational symmetry. 
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Therefore, there are no fundamental contradictions between the hierarchical 
and translational filling of space, which the researchers so loved to speak 
of in the past. Based on the results of the research, a modern concept of 
describing the structure of matter is formulated, free from previously accepted 
conditions in the model of a discrete world. The new concept is consistent 
with a number of experimental data obtained in recent years on the structure 
of quasicrystals, phase transitions of the second kind, and so on. This leads 
to saturation of the eighteenth problem of Hilbert about the construction of 
spaces by geometric figures with a new content.
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KEY TERMS AND DEFINITIONS

5-Simplex-Prism: The product of a 4-simplex by a segment.
Congruent Polyhedrons: Polyhedrons that are compatible with motion.
New Paradigm of Discrete n-Dimension World: The elementary cells 

of the translational filling of the n-dimensional space are the polytopic 
prismahedrons-the stereohedrons, of which Delone spoke, but he did not 
give a single concrete example of stereohedron. Polytopic prismahedrons, 
filling the n-dimensional space, as shown by direct construction, can have 
common elements in the entire range of dimensions up to the dimension of the 
facets, or do not have any common elements. In addition to the translational 
filling of the n-dimensional space, there is a hierarchical filling of the space, 
which is inextricably linked with the scaling process, that is, discrete scale 
change of the figure. Translational filling of space can be combined with 
hierarchical filling of space. In this case, in principle, in each point of space 
there is an asymptotic decrease or increase in the scale of the figure (as an 
expansion of the Universe from each of its points). Delone’s provisions on 
an “empty” ball, the finite minimum and maximum distances between the 
points of a discrete system, are not used. Thus, Hilbert’s problem acquires a 
completely new content.

Polytopic Prismahedron: The product of polytopes.
Tetrahedral Prism: The product of a tetrahedron by a segment.
Triangular Prismahedron: The product of a triangle by a triangle.
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