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Preface

Convection (originating from the Latin word convectio, which means delivery) is un-
derstood as displacements of macroscopic volumes of the fluid (gas or liquid), result-
ing in transfer of mass, heat, and other physical quantities. Two types of convection
are distinguished: natural or free convection induced bymedium inhomogeneity (gra-
dients of temperature, density, and concentration) and forced convection induced by
externalmechanical actions on themedium (e. g., vibrations). Thus, owing to thepres-
ence of density gradients in the fluid, the potential gravitational energy transforms to
the energy ofmotion under the action of buoyancy forces. Changes in fluid density can
be caused by fluid heating or by the difference in concentration in mixtures, such as
salt solutions. The importance of such flows cannot be overestimated. We can recall
the circulationof airmasses in theEarth atmosphere,which cannot be explainedwith-
out taking into account convective motion induced by air heating by the Sun. On the
Sun itself, free convection arises in the form of granulation, i. e., granular structures
(granules) of the photosphere, which can be seen through a telescope. The granules
have sizes from 500 to 1000 km and cover the entire solar disk; an individual granule
forms and decomposes during 5–10 minutes. The development of space technologies
gave rise to studies of thermocapillary convection or Marangoni convection. This con-
vection arises because surface tension depends on temperature, which changes along
the free boundary of the fluid or along the interface between two fluids. Under on-
ground conditions, the Marangoni effect is usually localized in the vicinity of the free
surface. In layers approximately 1mm thick, however, thermocapillary convection be-
comes a dominating form of the convective fluid flow.

The range of problems dealing with flows that involve natural or free convection
has been extended recently. Natural convection is one of the forms ofmacroscopicmo-
tion, which is intensely studied in modern basic research. Though observations and
qualitative descriptions of natural convection date back to far–off times, the devel-
opment of quantitative models was started at the end of the 19th century. Based on
experimental and theoretical investigations of natural convection, it was identified as
a separate field of fluid mechanics.

Natural convection mechanisms determine various processes that have numer-
ous applications and a cognitive value. As high technologies were developed, the ap-
plied significance of results obtained increased. Achievements in studying natural
convection are applied in power engineering, metallurgy, environmental science, me-
teorology, geo- and astrophysics, aeronautics and space engineering, chemistry, crys-
tal physics, etc. Owing to the increased accuracy of measurements and detailedmath-
ematical models, it is possible to pose and successfully solve new problems in this
field, e. g., obtaining superpure materials under microgravity conditions.

In studying the fluid properties (it can be water, solution of a chemical reagent, or
metal melt) it is necessary to examine its internal state. Thus, for a quiescent fluid, it

https://doi.org/10.1515/9783110655469-201
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is important to formulate the laws of interaction of external factors capable of making
the fluid lose its mechanical equilibrium stability under certain conditions. Problems
of convection in liquids are of considerable interest for applications. The dynamics
of flow structure development depends substantially on the boundary conditions or
internal sources. Moreover, internal interfaces, chemical reaction fronts, heat fluxes,
and admixtures can also exert significant effects.

The above-mentioned processes in the fluid are usually unsteady and nonlinear;
for this reason, studying these phenomena involvesmany problems. The difficulties in
experimental investigations of these problems are mainly caused by difficulties in re-
construction of conditions inwhich the phenomenon is observed, necessity of provid-
ing high-accuracy measurements in the entire examined region, and significant con-
sumption of energy and other resources. Therefore, methods of mathematical mod-
eling are now considered as an important alternative for studying an extremely wide
range of convective flow problems.

It is also important to choose a correctmathematicalmodel for studying a particu-
lar phenomenon. In this way, it is possible to determine in advance those problem pa-
rameters where particular processes prevail. For instance, the Oberbeck–Boussinesq
model, which is often used to study natural convection problems, becomes inapplica-
ble under microgravity conditions or in microscopic-scale problems.

Another important aspect is the methodology of examining the mathematical
model proper. The development of numerical schemes and construction of optimal
computational algorithms, as well as performing calculations of flows with a compli-
cated internal structure should be directly related to analytical properties of model
equations determining asymptotic and limiting solutions of general equations.

Convective flow modeling comprises a set of problems arising in predicting nat-
ural phenomena and dynamics of various engineering processes. Studying velocity
fields near interfaces and in surface layers allows one to take into account temper-
ature and admixture transfer and to determine the forms of the affecting factors. To
describe such processes, one should use new mathematical models of thermal and
concentration convection, where the density depends not only on temperature, but
also onpressure and concentration. Itwas themain challenge of this book toperforma
comprehensive study of convection origination mechanisms, flow structure, and flow
stability to perturbations on the interface with due allowance for deformations of the
interface itself. Let us give a brief outline of the book.

Chapter 1. Equations of fluid motion. The goal of this chapter is to formulate equa-
tions of fluid motion under the action of mass and internal forces, as well as heat
sources. A number of formulas used in subsequent chapters are derived. As a whole,
this chapter dealing with the basic notions of hydrodynamics is written to make the
book consistent and logical.

Chapter 2. Conditions on the interface between fluids and on the solid walls.A prob-
lem ofmotion of two immiscible fluids with a common interface is formulated. Details
of derivation of dynamic and energetic conditions from integral conservation laws are
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given. An important notion of the free boundary and conditions on it are formulated.
Additional conditions associated with the presence of solid walls andmoving contact
boundaries are discussed.

Chapter 3. Models of convection of an isothermally incompressible fluid. In this
chapter, we consider convection in a situation where the viscosity and thermal con-
ductivity coefficients are temperature-dependent, and the density is a function of tem-
perature only. Based on the general thermodynamic relations, it is demonstrated that
the specific volume is always a linear function of temperature if the specific heat is
constant. Various possible formulations of initial-boundary problems for the system
of equations obtained are discussed. It turns out that the velocity, pressure, and tem-
perature fields at the initial time can be arbitrarily specified in the general case (they
should only be consistent with the boundary conditions). If the small term with the
derivative of pressure with respect to time in the energy equation is neglected, the ini-
tial pressure distribution cannot be specified arbitrarily. Moreover, it turns out that
elastic properties of the container should be taken into account in the problem of con-
vection in a closed volume, which allows the influence of the wall on the convective
flows to be described correctly. Properties of some models that include deformations
of the flow domain boundary are also considered.

Chapter 4.Hierarchy of convectionmodels in closed volumes. Models that describe
natural convection of the fluid in closed volumes with constant transfer coefficients
are studied. A theorem of existence and uniqueness is proved for themicroconvection
model. Possible generalizations and corollaries of formulations of initial-boundary
problems are discussed. Based on a hyposonic flow approximation, a comprehensive
analysis of the influence of changes in thermophysical parameters as functions of tem-
perature and pressure and thework of pressure forces on the formation of natural con-
vection in a weakly nonisothermal medium under conditions of extremely small ex-
ternal forces is performed. The limits of applicability of the Oberbeck–Boussinesq ap-
proximation for the description of convection of this kind are determined. An asymp-
totically exact mathematical model for convection in weak force fields with allowance
for small changes inmedium properties is constructed. Unique solvability of the basic
boundary-value problems is established, and theproblemof local exact controllability
is studied. A model of convection in a thermally nonuniformly weakly compressible
fluid is presented, where all transfer coefficients are nonlinear functions. The local
theorem of existence of the smooth solutions of the initial-boundary problem for the
equations of convection of a weakly compressible fluid is proved. Exact solutions of
the equations of convection of a weakly compressible fluid in an infinite band are con-
structed. For comparison, the trajectories of fluid particles predicted by the classical
Oberbeck–Boussinesqmodel of convection andby themicroconvectionmodel are pre-
sented.

Chapter 5. Invariant submodels of microconvection equations. This chapter deals
with groupproperties of themicroconvectionmodel equations. Optimal systems of the
subalgebras Θ1 and Θ2 are constructed, and all factor-systems are given. For some of
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them, initial-boundary problems are formulated and solved. The issue of invariance
of conditions on the interface and on the free boundary is considered. Solvability of
the non-standard initial-boundary problems of themicroconvection equations is stud-
ied in the classes of Holder functions. The unsteady solutions of the microconvection
equations in an infinite band are constructed.

Chapter 6. Group properties of equations of thermodiffusion motion. Group prop-
erties of equations of nonisothermal motion of binary mixtures are studied in this
chapter. The basic Lie algebras and equivalence transformations are found, and the
problem of group classification is solved. A classification of invariant solutions is per-
formed: optimal systems of subalgebras of the first and second orders are constructed
for an infinite-dimensional algebra of operators admitted by equations of plane mo-
tion. New classes of exact solutions and generalizations of the previously known so-
lutions of equations of thermal diffusion motion are constructed. Subgroups of con-
tinuous transformations are identified, for which the conditions on the interface or on
the free boundary remain invariant.

Chapter 7. Stability of equilibrium states in the Oberbeck–Boussinesq model. Con-
ditions of origination of convective flows in layers with a free boundary, interface,
and solid walls are considered in this chapter. A finite-thickness layer with a free up-
per boundary and a solid lower boundary is examined. The temperature of the lower
boundary is assumed to be constant, and the temperature of the upper boundary
varies periodically with time. As a result, an equilibrium temperature gradient, which
is nonuniform over the layer thickness and periodic in time, is formed; the influence
of this gradient is studied numerically. Convective stability of the equilibrium state
of a system of two immiscible fluids with similar densities is studied. A generalized
Boussinesq approximation is constructed, which allows interface deformations to be
correctly taken into account. Stability of the equilibrium state of a system of two fluids
in a horizontal layerwith a vertical temperature gradient is investigated. The existence
of several instability mechanisms is found: long-wave and cellular monotonic pertur-
bations, and oscillatory perturbations. The influence of boundary deformability on
instability characteristics is examined. It is demonstrated that an increase in deforma-
bility leads to a change in instability mechanisms. A problem of destabilization of a
rotating fluid owing to a temperature gradient is considered.

Chapter 8. Small perturbations and stability of plane layers in the microconvection
model. Equations of small perturbations of arbitrary motions of the fluid in the mi-
croconvection model are derived. Stability of the equilibrium state of a plane layer
bounded by solid walls or by a solid wall and a free boundary is studied with the use
of these equations. The asymptotic behavior of the complex decrement in the cases of
long-wave and short-wave perturbations is found. Results obtained by solving the full
spectral problem for a siliconmelt arepresented. In contrast to the classicalOberbeck–
Boussinesq model, the perturbations in the problem considered here are nonmono-
tonic because the boundary-value problem is not self-adjoint. For small Boussinesq
numbers, the spectrum of this problem is demonstrated to approximate the spectra of
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the corresponding problems for a viscous heat-conducting fluid or for thermal gravi-
tational convection with a finite Rayleigh number. Stability of steady flows in a plane
layer with linear and exponential distributions of temperature across the layer is stud-
ied. The flows are found to be stable to long-wave perturbations. Neutral curves are
constructed numerically, and critical Grashof numbers for a siliconmelt are obtained.
Instability in themicroconvectionmodel is shown to occur at lower values of the wave
number. This effect is caused by fluid compressibility.

Chapter 9.Numerical simulation of convective flows under microgravity conditions.
This chapter describes the basic numerical methods used to calculate convective
flows. In addition, adaptation of these methods to convection models is considered.
Based on the microconvection model, problems of the influence of unsteady and also
spatially nonuniform heating in canonical domains with solid and free boundaries
for a single-species fluid and for a binary fluid are considered. Typical flow structures,
trajectories of particle motion, and kinematic parameters of particles are determined
as functions of the fluid properties, boundary conditions, and computational domain
geometry. Quantitative and qualitative differences in flow characteristics calculated
within the framework of the classical model and the microconvection model of an
isothermally incompressible fluid are confirmed. For miscible fluids, a problem of
the influence of transitional zone thickness nonuniformity on convection formation
is studied. This problem is considered in the full formulation and also for a model
problem with a smaller spatial dimension. It is shown that initial perturbations of
the thickness propagate along the entire transitional zone, which affects the flow
structure and kinematic characteristics.

Chapter 10. Convective flows in tubes and layers. Solutions of equations of thermal
gravitational and thermocapillary convection,whichdescribe three-dimensional non-
isothermal motions of the fluid, are constructed on the basis of the group-theoretical
approach. The Oberbeck-Boussinesq equations admit solutions where the tempera-
ture and pressure are linear functions of one Cartesian coordinate, while all three
components of velocity are independent of this coordinate. These solutions are inter-
preted as flows in infinitely long tubes with an arbitrary cross section. They generalize
the knownBirikh’s solution of a plane problemof convection in a horizontal band. An-
other example of reduction of a three-dimensional problem to a two-dimensional one
is the problem of an axial convective flow in a circular rotating tube with a streamwise
temperature gradient and transverse gravity force. To use these solution for an ap-
proximate description of convection in finite-length tubes, with the tube length being
much greater than its diameter, it is necessary to specify the flow rate through the tube
cross section as a function of time. Thus, there arises an inverse problem, which is ef-
fectively solved in plane and axisymmetric cases. In the same cases, it is also possible
to construct exact solutions of problems of a convective flow of a two-layer system of
immiscible fluids. The thermocapillary effect on the interface is taken into account.
The problem of deformation of a plane layer of a viscous incompressible fluid by ther-
mocapillary forces is considered in the last section of this chapter. In this case, the
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buoyancy forces are ignored, and the source of motion is a nonuniform distribution
of temperature on the free boundaries of the layer. If the temperature is a quadratic
function of the streamwise coordinates, the initial-boundary problem for the Navier-
Stokes equations reduces to a one-dimensional problem with an unknown boundary
for a system of integrodifferential parabolic equations. The last problem can be effec-
tively studied by analytical and numerical methods.

By virtue of the facts discussed above, the book is appreciably different from pre-
vious books [10, 16, 42, 43, 45, 71, 140, 141, 149, 168] mainly dealing with only one
aspect of convection.

This book is an appreciably enlarged version of the book [20] published inRussian
in 2008. The English version has seven new sections and a considerably extended list
of references.

Chapters 1, 3, 4 (Sections 4.9 and4.10), 5 (Sections 5.1–5.3 and 5.6), 6, 7 (Sections 7.1
and 7.2), and 8 were written by V. K. Andreev; Chapter 9 (Sections 9.1, 9.4, and 9.5)
were written by Yu. A. Gaponenko; Chapters 4 (Sections 4.11 and 4.12), 5 (Sections 5.4
and 5.5), and 9 (Sections 9.2 and 9.3) were written by O.N. Goncharova; Chapters 2, 4
(Sections 4.1–4.8), 7 (Section 7.3), and 10 were written by V. V. Pukhnachev.

Thework on this bookwas supported by Grant No. 116 (2009–2011) of the Siberian
Branch of the Russian Academy of Sciences.

Russian Academy of Sciences
Siberian Branch

Institute of Computational Modelling
Lavrentyev Institute of Hydrodynamics

Altai State University
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Preface to the second edition
The first edition of the book “Mathematical Models of Convection” was published in
2012 (see [21] in the list of references). In the second edition, Section 10.5 is added to
Chapter 10, the list of references is supplemented and noticed typos are corrected.

The recent experiments (Birikh et al. 2011, Mizev et al. 2011) showed that in nar-
row channels at a local surfactant egress onto the surface the Marangoni convection
occurs only at a fairly high surfactant concentration gradient. The delay of the onset
of the surface motion can also be observed, when thermocapillary convection is ex-
cited by a point heat source in a horizontal channel with a bounded free surface, if
only its surface has not been thoroughly cleaned. The threshold nature of the convec-
tion onset is attributed to the presence of an uncontrolled surfactant film kept by the
channel walls. In this connection, it seems helpful to develop the models of thermo-
capillary convection in the presence of a temperature gradient along the free surface
with the threshold excitation of the convection flow. One of possible models of this
phenomenon is presented in Section 10.5.

https://doi.org/10.1515/9783110655469-202
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1 Equations of fluid motion

Equations of fluid motion under the influence of external and internal forces as well
as of thermal sources are formulated. This area of continuum mechanics, which has
long been a classical science, has been described in various textbooks [208, 225, 154,
64, 128]. This chapter briefly gives the basic notions of hydrodynamics, with the aim
of makes the material presented in this book more concise.

1.1 Basic hypotheses of continuum

Continuummechanics is actually based on three postulates:
1) the classical Newtonian mechanics is valid;
2) the classical thermodynamics is valid;
3) the continuity hypothesis is valid.

The first postulate implies thatmotion velocities are small compared to the light speed,
and that the study is focused on macroscopic objects, the sizes of which are substan-
tially greater than the microcosm size.

The second postulate implies that the medium in a certain vicinity of each point
is in the thermodynamically equilibrium state or close to it; for this reason, the laws
of classical thermodynamics can be applied.

The third postulate implies that the real medium with a discrete molecular struc-
ture is replaced by a model with a continuous distribution of matter over the volume
considered. The possibility of this replacement is called the continuity hypothesis.

Elementary particle
Let us identify a certain volume of the medium δΩ bounded by the surface δΣ, and
assume that this volume has a mass δm. The average density of the medium is ϱav =
δm/δΩ. If the volume δΩ is sufficiently large, then the average density depends on
the volume value by virtue of medium inhomogeneity. As the volume δΩ decreases,
the mass distribution becomes increasingly homogeneous, and ϱav gradually reaches
a constant value. As soon as the linear size of this volume becomes commensurable
with themolecule size, the average density again experiences violent oscillations [29],
because it may contain different numbers of molecules. It is therefore necessary to de-
fine an elementary particle (or simply a particle). The size of such a particle should
be negligibly small relative to characteristic scales of the phenomenon being studied,
so that the volume-averaged characteristics of the medium could be considered to be
constant. On the other hand, the particle size should be large enough for the molecu-
lar structure of the fluid to be ignored. What is meant in this case is an infinitely small
volume of themediumwhich is effectively equal to zero. The particle definition formu-

https://doi.org/10.1515/9783110655469-001
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2 | 1 Equations of fluid motion

lated above allows the value to be assigned at a certain point to continuum character-
istics. A principal difference between an elementary particle shrunk to a point and a
point in space should be noted: a point is a place in space, while a particle is a small
portion of a material volume.

A set of the same particles remaining during their motionwithin one contour, sur-
face, or volume is called a moving contour, a moving surface, or a moving volume,
respectively.

Thus, using the continuity hypothesis as a basis for the mathematical descrip-
tion of material behavior (in a wide sense) means that the functions characterizing
the state of the material should be sufficiently smooth, i. e., continuous and differ-
entiable in space and time. Violations of continuity are admitted only at individual
points, lines, or surfaces.

Density
Let us proceed to the definition of some basic quantities of continuummechanics. The
density of themediumat a givenpoint is found as the limit (which exists in accordance
with the continuity hypothesis):

ϱ = lim
δΩ→0

ϱav = lim
δΩ→0

δm
δΩ
. (1.1)

Thus, density is a function of the variables (x1, x2, x3) = x ∈ ℝ3 and time t. In the
international systemof units (SI), the dimensionof density is [ϱ] = kg/m3; engineering
applications often involve the specific weight γ = ϱg, where g is the acceleration due
to gravity ([γ] = N/m3).

Volume and surface forces
The forces acting on a continuous medium are classified into two types: volume and
surface forces.

Volume (ormass) forces include, for example, gravity forces and inertial forces, in
particular centrifugal forces. Mass forces of a different nature are not considered here.
Volume forces act at each point of the elementary volume of the continuum.

Let δf be the principal vector of volume forces acting in the volume δΩ. We then
introduce the concept of the distribution density of volume forces in the form of the
limit

f = lim
δΩ→0

δf
ϱδΩ

(1.2)

and f = f(x, t). The dimension of f is the dimension of acceleration ([f] = m/s2); the
weight is described by the equality f = g, where g is the acceleration due to grav-
ity.
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1.1 Basic hypotheses of continuum | 3

Surface forces are forces acting on a surface element (part of the boundary sur-
face or any internal surface). Examples of surface forces are pressure forces, internal
friction (viscosity) forces, and forces of contact interaction between bodies.

Let δpn be the principal vector of forces applied from the medium to a certain
small area δΣn identified in the medium. The subscript n means that the force acts
on the area δΣn arbitrarily oriented in the medium rather than the force projection.
Similar to eq. (1.2), surface forces are defined in terms of stress:

pn = lim
δΣn→0

δpn
δΣn
. (1.3)

A principal difference between the vectors f and pn should be noted: the vector f is a
one-valued vector function of space points and time, i. e., it forms a vector field, while
the vector pn takes an infinite number of values at each point in space, depending on
the orientation of the area δΣn to which this stress is applied; thus, no vector field is
formed.

In accordance with the third Newton law (see Postulate 1), eq. (1.3) yields
pn = −p−n. Following Cauchy, the dependence of the stress vector on the normal
can be substantially refined. For this purpose, we consider an elementary volume in
the formof a tetrahedronwith three faces being parallel to the coordinate axes and the
fourth face being arbitrarily oriented (Figure 1.1). The face areas are indicated by δΣx1 ,
δΣx2 , δΣx3 , and δΣn; the geometrical meaning is clear from the figure. The area orien-
tation is uniquely determined by the unit normal n = (cos(n, x1) cos(n, x2), cos(n, x3));
then, we have δΣx1 = cos(n, x1)δΣn, δΣx2 = cos(n, x2)δΣn, and δΣx3 = cos(n, x3)δΣn. Let
the tetrahedron height from the point ℳ onto δΣn be ε; then, the tetrahedron vol-
ume is δΩ = εδΣn/3. Applying the second Newton law (Postulate 1) to the elementary
volume δΩ, we obtain the equation of motion

1
3
εδΣnϱa =

1
3
εδΣnϱf + pnδΣn − px1δΣx1 − px2δΣx2 − px3δΣx3 ,

where a is the acceleration of the center of mass of the tetrahedron.

Figure 1.1: Elementary areas for mass pointM with elementary forces.
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4 | 1 Equations of fluid motion

Passing to the limit (as ε → 0) in accordancewith the continuity hypothesis,we obtain
the following relation at the pointM:

pn = px1 cos(n, x1) + px2 cos(n, x2) + px3 cos(n, x3). (1.4)

This is the Cauchy formula (derived in 1822), which states that the stresses on the faces
form a system of mutually balancing stresses. Thus, eq. (1.4) yields

pn = 𝒫 ⋅ n, (1.5)

where

𝒫 =(
𝒫11 𝒫12 𝒫13
𝒫21 𝒫22 𝒫23
𝒫31 𝒫32 𝒫33

) ≡ (px1 ,px2 ,px3 ) (1.6)

is the tensor of the second rank, which is called the stress tensor. Equations (1.4)–(1.6)
mean that the stress state at an arbitrary point of a continuous medium is character-
ized by nine components 𝒫ij (i, j = 1, 2, 3).

1.2 Two methods for the continuum description. Translation
formula

Let (x1, x2, x3) ∈ ℝ3 be a rectangular coordinate system,which is assumed to be inertial.
An arbitrary triad of numbers (x1, x2, x3) is identified with a point in space and is de-
noted by x. Let us consider a particle moving together with themedium. Let this parti-
cle be located at the point ξ = (ξ1, ξ2, ξ3) at the time t = 0, and at the pointx = (x1, x2, x3)
at the time t. Therefore, the following mapping characterizing the medium motion is
defined:

x = x(ξ , t). (1.7)

If ξ is fixed, then eq. (1.7) specifies the trajectory of the particle initially located at the
point ξ . On the other hand, for a fixed t, equality (1.7) determines the mapping of the
area occupied by the medium at the initial time t = 0 to the area occupied by the
medium at the time t.

The inverse mapping is assumed to exist:

ξ = ξ (x, t). (1.8)

It is assumed everywhere that x(ξ , t) and ξ (x, t) are sufficiently smooth vector func-
tions of their arguments.
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1.2 Two methods for the continuum description. Translation formula | 5

Remark 1.1. Instead of the Cartesian coordinates of the initial location of the point,
it is possible to use any other curvilinear coordinates a = (a1, a2, a3) related to
ξ = (ξ1, ξ2, ξ3) by the expression ξ = ξ (a), with the transformation Jacobian being
𝜕(ξ )/𝜕(a) ̸= 0.

The variables (ξ , t) (or (a, t)) are called the Lagrange variables, and (x, t) are called
theEuler variables. Themotion descriptions in the Lagrange andEuler coordinates ba-
sically differ by the fact that x1, x2, and x3 in the first case are the variable coordinates
of moving fluid particles; in the second case, they are the coordinates of fixed points
in space traversed by different fluid particles at a given time. In the Lagrangian de-
scription, the particle motion velocity ∘v is expressed via the radius vector derivative
as

∘v(ξ , t) = dx(ξ , t)
dt
=
𝜕x(ξ , t)
𝜕t
,

and the acceleration is expressed via the velocity derivative as

∘w(ξ , t) = d
∘v(ξ , t)
dt
=
𝜕2x(ξ , t)
𝜕t2
.

During differentiation, the parameters ξ1, ξ2, and ξ3 in these two formulas are fixed,
x and ∘v are functions of time only, and the differentiation operations d/dt and 𝜕/𝜕t
are identical. If the vector function ∘v(ξ , t) is known, then the particle trajectories are
found by using the quadrature

x = ξ +
t

∫
0

∘v(ξ , τ) dτ.

If the mapping (1.7) (and the inverse mapping (1.8)) is known, all functions F(x, t)
of the Euler (Lagrange) variables can be expressed in the Lagrange (Euler) variables

F(x(ξ , t), t) =
∘
F(ξ , t) (

∘
F(ξ (x, t), t) = F(x, t)).

Differentiating the first equality with respect to time, we obtain

𝜕
∘
F
𝜕t
=
𝜕F
𝜕t
+ v ⋅ ∇F,

where v(x, t) ≡ ∘v(ξ (x, t), t) is the velocity vector in the Euler variables and ∇ =
(𝜕/𝜕x1, 𝜕/𝜕x2, 𝜕/𝜕x3) is the gradient operator. The differential operator over F is called
the operator of total differentiation with respect to time, and the expression

dF
dt
=
𝜕F
𝜕t
+ v ⋅ ∇F (1.9)
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6 | 1 Equations of fluid motion

is called the total derivative (also called individual derivative,material derivative, sub-
stantial derivative, particle derivative, and derivative along the trajectory) of the func-
tion F(x, t). In particular, at F = xi, i = 1, 2, 3, eq. (1.9) yields

dx
dt
= v(x, t). (1.10)

The total derivative of velocity with respect to time is acceleration. In the Euler vari-
ables, according to eq. (1.9), we have

wi(x, t) ≡
dvi(x, t)

dt
=
𝜕vi
𝜕t
+ v ⋅ ∇vi,

or, in the invariant form,

w(x, t) = dv(x, t)
dt
=
𝜕v
𝜕t
+ v ⋅ ∇v. (1.11)

This means that the total acceleration dv/dt of the particle consists of two parts: local
acceleration 𝜕v/𝜕t, causedby variations of velocity in time at this point, and convective
acceleration v ⋅ ∇v, associated with inhomogeneity of the velocity field in the neigh-
borhood of this point.

Let the velocity vector in eq. (1.10) be knownas a function of the Euler coordinates.
Then, eq. (1.10) transforms to a system of ordinary differential equations for x1, x2,
and x3. Supplementing the system with the initial data at t = 0

x = ξ , (1.12)

we obtain the Cauchy problemwhose solution determines the mapping (1.7) and, cor-
respondingly, the particle trajectories.

Let us introduce the Jacobi matrix M = 𝜕(x)/𝜕(ξ ) of the mapping (1.7) at a fixed
value of t. By virtue of eqs. (1.10) and (1.12), it satisfies the linear Cauchy problem

dM
dt
=
𝜕(v)
𝜕(x)

M, Mt=0 = E, (1.13)

where 𝜕(v)/𝜕(x) is amatrixwith the elements 𝜕vi/𝜕xj, i, j = 1, 2, 3, andE is a unitmatrix.
As the Jacobian of this matrix J = detM is the Vronsky determinant for system (1.13)
[165], there follows the Euler formulas

dJ
dt
= J div v, (1.14)

because Sp(𝜕(v)/𝜕(x)) = div v.
Amoving ormaterial volume is understood as a volumeωt consisting of the same

particles for all t ≥ 0; the volume ω0 is the domain of variation of the Lagrange coor-
dinates ξ . For an arbitrary smooth function F(x, t), the integral

∫
ωt

F dω
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1.3 Integral conservation laws. Equations of continuous motion | 7

is a function of time. The translation formula yields an expression for the derivative of
this function, namely,

d
dt
∫
ωt

F dω = ∫
ωt

(
dF
dt
+ F div v) dω, (1.15)

where dF/dt is the total derivative of F from eq. (1.9).
The proof of eq. (1.15) is based on passing to the Lagrange coordinates in the inte-

gral in the left-hand side by eq. (1.7). As a result, the domain of integration ωt trans-
forms to the domainω0, which is independent of time, and the integral takes the form

∫
ω0

∘
F(ξ , t)

∘
J(ξ , t) dω0.

Here,
∘
J(ξ , t) = J(x(ξ , t), t) is the Jacobian of the mapping (1.7) expressed in the La-

grange variables. The derivative of the integrandwith respect to t, by virtue of eq. (1.14)
and the definition of the total derivative (1.9) is

𝜕
𝜕t
(
∘
F
∘
J) = d

dt
(FJ) = (dF

dt
+ F div v)J.

The reverse transition from the Lagrange to the Euler variables yields equation (1.15).

1.3 Integral conservation laws. Equations of continuous motion

Themost important characteristics of a material volume are itsmass,momentum,mo-
ment of momentum, and total energy. Being additive functions of sets, these quantities
in an arbitrary domain occupied by the medium Ω ⊂ ℝ3 have the form

M(Ω) = ∫
Ω

ϱ dΩ, K(Ω) = ∫
Ω

ϱv dΩ,

H(Ω) = ∫
Ω

ϱ(x × v) dΩ, E(Ω) = ∫
Ω

ϱ( |v|
2

2
+ U) dΩ,

where ϱ(x, t) is the medium density, v(x, t) is the velocity vector, and U(x, t) is the
specific internal energy.

Let ωt ⊂ Ω be an arbitrary moving volume. The values of K, H, and E during the
volume motion are changed under force and energy actions on the volume ωt (the
massM remains unchanged). These actions are performed through the principal vec-
tor of forces

F(ωt) = ∫
ωt

ϱf dω + ∫
𝜕ωt

pn dΣ,
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8 | 1 Equations of fluid motion

the principal moment of forces

G(ωt) = ∫
ωt

ϱ(x × f) dω + ∫
𝜕ωt

x × pn dΣ,

and the supplied power

N(ωt) = ∫
ωt

ϱv ⋅ f dω + ∫
𝜕ωt

v ⋅ pn dΣ + ∫
𝜕ωt

qn dΣ + ∫
ωt

ϱh dω.

Here, f(x, t) and pn(x, t) are the densities of mass and surface forces; Σ is the piecewise
smooth boundary of ωt (Σ = 𝜕ωt), so that the normal vector n is determined almost at
all points of this boundary; qn(x, t) is the surface density of the heat flux incoming into
the volume through 𝜕ωt; and h(x, t) is the volume density of internal (e. g., radioactive
or chemical) heat sources.

The following equalities are valid in amoving continuousmedium for an arbitrary
moving volume ωt:

d
dt

M(ωt) =
d
dt
∫
ωt

ϱ dω = 0; (1.16)

d
dt

K(ωt) =
d
dt
∫
ωt

ϱv dω = ∫
ωt

ϱf dω + ∫
𝜕ωt

pn dΣ; (1.17)

d
dt

H(ωt) =
d
dt
∫
ωt

ϱ(x × v) dω = ∫
ωt

ϱ(x × f) dω + ∫
𝜕ωt

x × pn dΣ; (1.18)

d
dt

E(ωt) =
d
dt
∫
ωt

ϱ( |v|
2

2
+ U) dω = ∫

ωt

ϱ(v × f) dω

+ ∫
𝜕ωt

v × pn dΣ + ∫
𝜕ωt

qn dΣ + ∫
ωt

ϱh dω. (1.19)

Each of these equalities is usually called the law of conservation of the corresponding
mechanical quantity.

Generally speaking, it is not obligatory for the functions pn, qn, f, and h in the
right-hand sides of eqs. (1.17)–(1.19) to be continuous, because this is not required for
integral conservation laws to be valid. Nevertheless, the class of motions for which
the basic quantities are rather smooth functions is of considerable interest for appli-
cations and can be studied using mathematical analysis tools. The mediummotion is
called continuous if the functions ϱ,U, u, pn, and qn are continuous and continuously
differentiable and if the functions f and h are continuous within the domain of their
definition. For suchmotions, the system of conservation laws (1.16)–(1.19) turns out to
be equivalent to a system of differential equations. Indeed, under the assumption that
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1.3 Integral conservation laws. Equations of continuous motion | 9

F = ϱ in the translation formula (1.15), eq. (1.16) yields

∫
ωt

(
dϱ
dt
+ ϱdiv v) dω = 0.

By virtue of arbitrariness of the volume ωt, we obtain the equality

dϱ
dt
+ ϱdiv v = 0, (1.20)

which is called the continuity equation. It is equivalent to the law of mass conserva-
tion on the class of continuous motions. In turn, using eq. (1.20) we can substantially
simplify eq. (1.15), and it takes the form (with the substitution F ↔ ϱF)

d
dt
∫
ωt

ϱF dω = ∫
ωt

ϱdF
dt

dω, (1.21)

which is convenient for transformations of the left-hand sides of eqs. (1.17)–(1.19).
Let us now consider the momentum conservation law (1.17). To transform its left-

hand side, we consecutively use eq. (1.21), assuming that F = vi, i = 1, 2, 3 in this
formula. The surface integral in the right-hand side is transformed by the Gauss–
Ostrogradskii formula, based on equality (1.5) for the stress vector. As a result, we
obtain

∫
ωt

ϱdv
dt

dω = ∫
ωt

(div𝒫 + ϱf) dω,

where div𝒫 is the vector with the components

(div𝒫)i =
3
∑
j=1
𝜕𝒫ij/𝜕xj

(see eq. (1.6)). Taking into account the arbitrariness of ωt, we obtain the equation

ϱdv
dt
= div𝒫 + ϱf, (1.22)

which is called themomentum equation.
For the integral law of conservation of the moment of momentum (1.18), the left-

hand side by virtue of eq. (1.21), (1.10) is

∫
ωt

ϱ(x × dv
dt
) dω.
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10 | 1 Equations of fluid motion

To transform the surface integral in the right-hand side of eq. (1.18), we use the Cauchy
formula (1.4) and the equality div𝒫 = 𝜕px1/𝜕x1 + 𝜕px2/𝜕x2 + 𝜕px3/𝜕x3. We obtain

∫
𝜕ωt

x × pn dΣ

= ∫
𝜕ωt

[cos(n, x1)x × px1 + cos(n, x2)x × px2 + cos(n, x3)x × px3] dΣ

= ∫
ωt

[
𝜕
𝜕x1
(x × px1 ) +

𝜕
𝜕x2
(x × px2 ) +

𝜕
𝜕x3
(x × px3 )] dω

= ∫
𝜕ωt

(x × div𝒫 + 𝜕x
𝜕x1
× px1 +

𝜕x
𝜕x2
× px2 +

𝜕x
𝜕x3
× px3) dω.

Therefore, the conservation law (1.18) takes the following form (𝜕x/𝜕x1 = e1,
𝜕x/𝜕x2 = e2, 𝜕x/𝜕x3 = e3, where e1, e2, and e3 are the unit orths along the x1, x2, and
x3 axes):

∫
ωt

[x × (ϱdv
dt
− div𝒫 − ϱf) − e1 × px1 − e2 × px2 − e3 × px3] dω = 0.

Taking into account eq. (1.22), we obtain the equality

e1 × px1 + e2 × px2 + e3 × px3 = 0, (1.23)

which is valid for all continuous media, independent of the character of application
of volume forces. Projecting (1.23) onto the coordinate axes e1, e2, and e3, we verify
the validity of the equalities

px1x2 = px2x1 , px2x3 = px3x2 , px3x1 = px1x3 , (1.24)

(px1x1 , px1x2 , px1x3 are the components of the vector px1 ; px2x1 , px2x2 , px2x3 are the compo-
nents of the vector px2 ; px3x1 , px3x2 , px3x3 are the components of the vector px3 ).

Thus, the stress tensor is symmetric: 𝒫 = 𝒫∗, 𝒫ij = 𝒫ji. Obviously, it is possible to
obtain the conservation law (1.18) by applying the inverse transformations to eq. (1.24).
In otherwords, in a continuousmedium that has noother internalmoments, the lawof
conservation of themoment of momentum (1.18) is equivalent to stress tensor symmetry.

The quantities px1x1 = 𝒫11, px2x2 = 𝒫22, and px3x3 = 𝒫33 are called normal stresses,
and px1x2 = 𝒫12, px2x3 = 𝒫23, px3x1 = 𝒫31, . . . are called shear stresses.

The essence of equalities (1.24) is the content of the so-called theorem on recipro-
cation of shear stresses. Now we have

(div𝒫)i =
3
∑
j=1
𝜕𝒫ij/𝜕xj =

3
∑
j=1
𝜕𝒫ji/𝜕xj,

i. e., the order of the subscripts in the coordinate form div𝒫 is irrelevant.
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1.3 Integral conservation laws. Equations of continuous motion | 11

Let us consider the Cauchy equality (1.4) for the case with no shear stresses, i. e.,
𝒫ij = 0, i ̸= j. Then, we obtain pnxj = 𝒫jj cos(n, xj); on the other hand, we have pnxj =
pn ⋅ ej = pn cos(n, xj), where pn is the projection of the stress vector onto the normal to
the area considered. Comparing these formulas, we obtain 𝒫11 = 𝒫22 = 𝒫33 = pn. Let
us introduce the notion of pressure p(x, t) in accordance with the equalities

p = −pn = −𝒫11 = −𝒫22 = −𝒫33.

If there are no shear stress, the pressure at a point is a scalar quantity, i. e., it is in-
dependent of the orientation of the area passing through the point M(x1, x2, x3). The
minus sign means that the pressure considered here is the compressive pressure. The
dimension of pressure in the SI system is [p] = N/m2, 1 N/m2 = 1 Pa (one pascal).
Other units of pressure are also used, for instance 1 kg ⋅ s/m2 = 9.80665 Pa ≈ 10 Pa,
1 atm = 101,325 Pa ≈ 0.1MPa, 1 bar = 105 Pa, 1mmHg ≈ 133 Pa, 1mmH2O ≈
10 Pa, as well as multiple and fractional units derived from the pascal: gigapascal
(1 GPa = 109 Pa), megapascal (1MPa = 106 Pa), kilopascal (1 kPa = 103 Pa), millipas-
cal (1mPa = 10−3 Pa), and picopascal (1 pPa = 10−12 Pa).

Remark 1.2. Continuous media with 𝒫 = −pI (I is the unit tensor, Iij = δij) are called
the idealmedia.

Using eqs. (1.21), the property of symmetry of the tensor 𝒫, and the formulas

∫
𝜕ωt

v ⋅ pn dΣ = ∫
𝜕ωt

𝒫v ⋅ n dΣ = ∫
ωt

div(𝒫v) dω,

div(𝒫v) ≡ v ⋅ div𝒫 + 𝒫 : 𝒟,

we can write the energy conservation law (1.19) in the form

∫
ωt

ϱ(v ⋅ dv
dt
+
dU
dt
) dω

= ∫
ωt

(v ⋅ div𝒫 + 𝒫 : 𝒟) dω + ∫
ωt

ϱv ⋅ f dω + ∫
𝜕ωt

qn dΣ + ∫
ωt

ϱh dω.

Using the momentum equation (1.22), we can simplify the previous equality to

∫
ωt

ϱdU
dt

dω = ∫
ωt

𝒫 : 𝒟 dω + ∫
𝜕ωt

qn dΣ + ∫
ωt

ϱh dω, (1.25)

where𝒟 is the so-called strain rate tensor with the elements

𝒟ij =
1
2
(
𝜕vi
𝜕xj
+
𝜕vj
𝜕xi
), i, j = 1, 2, 3. (1.26)
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12 | 1 Equations of fluid motion

Researchers often write𝒟(v) to emphasize its dependence on the velocity vector. The
expression 𝒫 : 𝒟 is called the convolution of the tensors 𝒫 and𝒟; it has the form

𝒫 : 𝒟 ≡
3
∑
j=1

𝒫ij𝒟ij. (1.27)

The conservation law (1.25) can be written as

∫
𝜕ωt

qn dΣ = ∫
ωt

ψdω, (1.28)

where ψ = ϱ dU/dt − 𝒫 : 𝒟 − ϱh. The density of the heat flux qn is a function of the
variablesx, t, and thenormaln; we assume that qn = q(x, t,n). Let us first demonstrate
that q(x, t,n) = −q(x, t,−n). As the domainωt has an arbitrary shape, we chooseωt in
the form of a sphere with the center M(x1, x2, x3), having a small radius ε. The plane
passing through the pointM orthogonally to the vector n divides this sphere into two
hemispheres, ω1t and ω2t, with n being directed toward ω2t .

Let Kε be a circle obtained in the section. We apply equality (1.28) to the volumes
ω1t, ω2t, and ωt:

∫
𝜕ω1t

q(x, t,n) dΣ + ∫
Kε

q(x, t,−n) dΣ = ∫
ω1t

ψdω,

∫
𝜕ω2t

q(x, t,n) dΣ + ∫
Kε

q(x, t,n) dΣ = ∫
ω2t

ψdω,

∫
𝜕ω1t∪𝜕ω2t

q(x, t,n) dΣ = ∫
ω1t

ψdω

(𝜕ω1t and 𝜕ω2t are the hemisphere surfaces, and 𝜕ω1t ∪𝜕ω2t = 𝜕ωt). By adding the first
two equalities and subtracting the third one, we obtain

∫
Kε

[q(x, t,n) + q(x, t,−n)] dΣ = 0.

Therefore, by virtue of the continuity of the scalar field q on Kε, it should be q(x, t,n)
= −q(x, t,−n) at pointM.

Let usnowassume thatωt is a tetrahedron (seeFigure 1.1).With the samenotation,
equality (1.28) yields the relation

∫
δΣn

q(x, t,n) dΣ + ∫
δΣx1

q(x, t,−e1) dΣ

+ ∫
δΣx2

q(x, t,−e2) dΣ + ∫
δΣx3

q(x, t,−e3) dΣ = ∫
ωt

ψdω.
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1.4 Thermodynamics aspects | 13

By virtue of the continuity of the integrands, the integrals on the left have the order
of ε2, and the integrals on the right have the order of ε3 as ε → 0. Therefore, the fol-
lowing equality is valid at point M (the formulas δΣxj = cos(n, xj)δΣn are taken into
account): q(x, t,n) = q(x, t, e1) cos(n, x1) + q(x, t, e2) cos(n, x2) + q(x, t, e3) cos(n, x3). In
other words, there exists a vector field q(x, t) such that

qn = −q ⋅ n. (1.29)

The vector q is called the heat flux vector. The minus sign is used for the vector q to
show the real direction of thermal energy transfer, becausen is the orth of the external
normal to the boundary 𝜕ωt of the volume to which the heat fluxwith the surface den-
sity q is inserted. Assuming again in eq. (1.25) that ωt is an arbitrary material volume,
and taking into account eq. (1.29), we obtain the heat inflow equation

ϱdU
dt
= 𝒫 : 𝒟 − divq + ϱh. (1.30)

Remark 1.3. The reasoningused above couldhave also been applied for the derivation
of the Cauchy formula (1.4) from the integral law of conservation of momentum (1.17)
[225, 154, 64].

The system of eqs. (1.20), (1.22), (1.30) forms the mathematical model for contin-
uous motions of a continuous medium. This model is not closed, because it contains
five scalar equations and fourteen (with allowance for symmetry of the stress tensor𝒫)
sought functions: ϱ, v1, v2, v3, 𝒫11, 𝒫12, 𝒫13, 𝒫22, 𝒫23, 𝒫33, U, q1, q2, and q3. The mass
densities of the external forces f and the volumeheat sources h are assumed to be spec-
ified functions; therefore, the problem of “closing” the model arises, which should be
solved by analyzing additional information.

1.4 Thermodynamics aspects

Taking into account the thermal energy in model (1.20), (1.22), (1.30) requires appli-
cation of thermodynamic laws (in the case considered, it would be more exact to say
“thermostatic laws”). Thermodynamics deals with relation between thermal energy
and other types of energy, firstly with mechanical energy, and establishes the laws of
mutual conversion of one type of energy into another.

The basic concept of thermodynamics is the notion of the state of themedium. The
phenomenological descriptionof the state is givenon thebasis of the state parameters.
Such parameters are, for example, the specific internal energy U and the density ϱ (or
specific volume V = 1/ϱ). Apart from these, other frequently-used state parameters
are the absolute temperature θ, specific entropy s, and pressure p. In the SI system, the
temperature is expressed in kelvins, K, θ K = 273, 15 + θ ∘C; the entropy dimension is
[s] = J/(kg ⋅ K). Sometimes, it is convenient to use the components of the stress tensor
𝒫 or some other quantities as the state parameters. If the set of the state parameters
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14 | 1 Equations of fluid motion

characterizing a certain medium is already established, the next task is to determine
all possible relations between these parameters. These relations should follow from
the general physical laws and empirical features which determine the behavior of the
examined medium.

Let Z = (z1, z2, . . .) be a set of characteristic state parameters zk for a certain
medium. The set of all admissible values of Z forms the state space. The dimension ν
of this space equals the minimum number of parameters determining the state of the
medium. The medium is called a one-parameter medium if ν = 1, a two-parameter
medium if ν = 2, etc.

Two states Z1 and Z2 can be connected by directed curves (paths) l(Z1, Z2) pass-
ing from Z1 to Z2. If the states on the curve are physically feasible in principle, then
these paths are called the processes. The process l(Z1, Z2) called reversible if the path
l(Z2, Z1) lying on the same curve is also a process. Otherwise, the process l(Z1, Z2) is
called irreversible.

The thermal energy Q (or the amount of heat), defined as the energy of random
motion of molecules, is, generally speaking, not a state parameter. It depends on the
process l(Z1, Z2) transforming the medium from Z1 to Z2. If we consider differentiable
processes transforming the medium from the state Z to Z + dZ, then the amount of
heat in this elementary process is calculated

δQ =∑
k
Bk(Z) dz

k .

Here, the process-dependence on the path ismanifested in the fact that the right-hand
side is not the total differential of some function. It is proved in thermodynamics, how-
ever, that there exists a state parameter called the absolute temperature θ with which
the relation δQ/θ for an arbitrary reversible process is the total differential of a certain
function called the entropy s. Thus, for any reversible process l(Z1, Z2), we have

s2 − s1 = ∫
l(Z1 ,Z2)

θ−1δQ (ds = θ−1δQ), (1.31)

where the curvilinear integral is independent of the path.
If the set of state parameters is formed for such amedium, the next important task

is to find all possible relations between the parameters. These relations should follow
from the general physical laws and empirical features determining the behavior of the
examined medium.

If a certain amount of heat δQ is imparted to the medium in a certain elementary
physical process, it performs a mechanical work δA, and the internal energy of the
medium is augmented by dU . The first law of thermodynamics states that the following
equality is always valid:

δQ = dU + δA. (1.32)

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.4 Thermodynamics aspects | 15

This physical law, which establishes the equivalence of thermal and mechanical en-
ergies, is a thermodynamic expression for the energy conservation law. The use of
different notations in eq. (1.32) means that dU is the differential of U, i. e., the linear
part of the increment of U, whereas δQ and δA are infinitesimal amounts of heat and
work.

The second law of thermodynamics states that the entropy of a thermally insulated
medium (without heat inflowor outflow)with an arbitrary process inside thismedium
does not decrease, i. e.,

θds ≥ δQ (1.33)

for elementary processes. Such a process is reversible if and only if the equality θds =
δQ is valid. For such processes, eqs. (1.31) and (1.32) yield the basic thermodynamic
identity

θds = dU + δA. (1.34)

An important class of media includes the so-called ideal continuous media. For
these media, the stress tensor is proportional to the unit tensor: P = −pI, p(x, t) is the
pressure. The elementary work is determined by the formula δA = pdV , and identity
(1.34) has the form

θds = dU + pdV . (1.35)

The state of the “ideal” medium in the general case depends on five parameters:

ϱ = 1/V , U , θ, s, p.

Let us assume that the “ideal” medium considered is a two-parameter medium.
Taking into account that there are total differentials in eq. (1.35), we can find two rela-
tions between these five state parameters. Therefore, to obtain a complete description
of the thermodynamic state of such a two-parametermedium, it is sufficient to specify
one more relation, which is called the state equation. State equations of the following
types are most frequently used in applications:

1) the internal energy is defined as a function of the parameters V and s:

U = U(V , s);

2) the heat content (enthalpy) is defined as a function of p and s:

i = i(p, s) = U + pV ;

3) the free energy F = U − θs is defined as a function of V and θ:

F = F(V , θ) = U − θs;
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16 | 1 Equations of fluid motion

4) the thermodynamic potential ψ = U − θs + pV is defined as a function of p and θ:

ψ = ψ(p, θ) = U − θs + pV .

As the main measure of the amount of heat is temperature, heat fluxes are initi-
ated by a difference in temperature. In thermodynamics, this fact is formulated as the
Fourier law

q = −k∇θ, (1.36)

where k is a new state parameter—thermal conductivity coefficient. Now theheat inflow
equation (1.30) is transformed to

ϱdU
dt
= 𝒫 : 𝒟 + div(k∇θ) + ϱh. (1.37)

Complete closure of the system of differential equations of continuummechanics
requires six more equations. These equations, which are also called the state equa-
tions, relate the stress tensor to motion (or displacement). These relations have differ-
ent forms for fluids and solids.

1.5 Classical models of liquids and gases

Stokes axioms
Fluids (liquids and gases) are easilymoving continuousmedia that do not retain equi-
libriumwhen affected by infinitesimal forces. Therefore, the internal stresses in fluids
do not depend on strain directly. As is known from the experience, however, these
stresses depend on how rapidly the strain occurs, i. e., on the strain rate. The phe-
nomenological theory offers the following definition: a liquid or a gas is such a con-
tinuous medium in which the stress tensor 𝒫 is a function of the strain rate tensor 𝒟.
In addition, the stress tensor may depend on a certain set of thermodynamic state pa-
rameters and, generally speaking, on the point in space x and time t.

Thus, the following relation is valid for fluids:

𝒫 = F(𝒟,Π,x, t) (1.38)

(Π = (ϱ,U , θ, s, p) is the set of the state parameters).
The Stokes axioms are assumed to be valid for fluids. These axioms specify depen-

dence (1.38):
a) the medium is homogeneous: F does not explicitly depend on x, t;
b) themedium is isotropic:F is an isotropic tensor function of the strain rate tensor𝒟;
c) the quiescent medium is ideal: F(0,Π) = −pI, p is the pressure.
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1.5 Classical models of liquids and gases | 17

The isotropic character of the tensor function F(𝒟)means that the following equality
is valid for an arbitrary orthogonal transformation O:

OF(𝒟)O∗ = F(O𝒟O∗),

whence the axiom b) yields the dependence [208, 225, 154, 64, 128, 29]

𝒫 = αI + β𝒟 + γ𝒟2. (1.39)

Here, α, β, and γ are, generally speaking, functions of the invariants J1, J2, and J3 of the
tensor𝒟, and also functions of the thermodynamic state parameters Π. The invariants
Jj, j = 1, 2, 3, are defined as follows: if𝒟ij are the components of the tensor𝒟, then

J1 = Sp𝒟 = 𝒟11 +𝒟22 +𝒟33,

J2 =
𝒟11 𝒟12
𝒟12 𝒟22

+
𝒟11 𝒟13
𝒟13 𝒟33

+
𝒟22 𝒟23
𝒟23 𝒟33

,

J3 = det(𝒟ij).

The tensor𝒟 satisfies the Cayley–Hamilton identity

𝒟3 − J1𝒟
2 + J2𝒟 − J3𝒟 = 0.

The thermodynamic state of fluids is fairly well described by eq. (1.35). Certainly,
the identity is valid for reversible processes only. The classical thermodynamics deals
with medium states close to equilibrium and with mutual conversions of one type of
energy to another in these states, which are expressed by identity (1.35). Liquids and
gases are usually assumed to be two-parameter media, which is valid for considering
single-phase one-component motions.

Independent parameters are often taken to be the density ϱ and specific entropy
s; then, the specific internal energy U = U(ϱ, s) is prescribed, and eq. (1.35) yields the
formulas

θ = 𝜕U(ϱ, s)
𝜕s
, p = ϱ2 𝜕U(ϱ, s)

𝜕ϱ
. (1.40)

The thermal conductivity coefficient k involved into the heat inflow equation (1.37) is
also assumed to be a known function of the state parameters: k = k(ϱ, s).

Sometimes it is convenient consider the absolute temperature and density as
independent parameters; in this case, U = U(ϱ, θ) is specified. Then, eq. (1.35)
yields

ds = 1
θ
Uθdθ +

1
θ
(Uϱ −

p
ϱ2
)dϱ,
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18 | 1 Equations of fluid motion

and the expression in the right-hand side of this identity is the total differential if and
only if there exists a function F(θ, ϱ) (free energy) such that

U = −θ2 𝜕
𝜕θ
(
F
θ
), p = ϱ2Fϱ; (1.41)

certainly, now we have k = k(ϱ, θ).
Of certain practical interest is the specific heat of the fluid, i. e., the amount of heat

that has to be imparted to a unit mass of the fluid in order to increase its temperature
by one degree with a reversible change in its state. The specific heat is written as c =
δQ/dθ. Two principal specific heats are identified: specific heats at constant pressure
cp and at constant volume cV :

cp = (
δQ
dθ
)
p=const
= (
𝜕U
𝜕θ
)
p
+ p(𝜕V
𝜕θ
)
p
,

cV = (
δQ
dθ
)
V=const
= (
𝜕U
𝜕θ
)
V
.

(1.42)

The conservation law (1.35) δQ = dU + p dV is taken into account here. The use of
entropy allows obtaining some other expressions for specific heats. Indeed, as δQ =
θ ds, then we have

cp = θ(
𝜕s
𝜕θ
)
p
, cV = θ(

𝜕s
𝜕θ
)
V
. (1.43)

To close the system of equations that describe fluid motion, we have to know the
dependences of the coefficients in eq. (1.39) on the invariants J = (J1, J2, J3) of the strain
rate tensor𝒟 and the state parameters ϱ, s (or others):

α = α(J, ϱ, s), β = β(J, ϱ, s),
γ = γ(J, ϱ, s), α(0, ϱ, s) = −p.

(1.44)

In other aspects, dependences (1.44) should follow either from some general as-
sumptions or from experimental data. Thus, the model consists of eqs. (1.20), (1.22),
(1.37), (1.39), and (1.44). It contains five equations (the tensor𝒫 is eliminated by using
eq. (1.39)) for five unknown functions: three components of the velocity vector v and
two independent state parameters. Nevertheless, this model is very rarely used in
applications, because it requires a very large amount of additional information (see
eq. (1.44)).

Newtonian fluids
The most widely used and rather general model is the so-called classical model of the
fluid. It is based on the fact that the stress tensor dependence (1.39) is linear: 𝒫 =
αI + β𝒟. Such fluids are also called the Newtonian fluids. First of all, we have γ = 0,
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1.5 Classical models of liquids and gases | 19

α = −p + λ div v and div𝒫 = ∇(−p + λ div v) + div(2μ𝒟), 𝒫 : 𝒟 = −pdiv v + Φ, where
the dissipative function is

Φ = (λ + 2
3
μ)(div v)2 + 2μ𝒟 : 𝒟, (1.45)

and 𝒟 = 𝒟 − 3−1 div vI is the deviator of the tensor 𝒟; here, the notation μ = β/2 is
introduced. Taking into account that

ϱdU
dt
= ϱθds

dt
− pdiv v,

we obtain the fluid motion model

ϱt + v ⋅ ∇ϱ + ϱdiv v = 0,
ϱ(vt + v ⋅ ∇v) = ∇(−p + λ div v) + div(2μ𝒟) + ϱf, (1.46)

θϱ(st + v ⋅ ∇s) = div(k∇θ) +Φ + ϱh,

in which λ, μ, and k are assumed to be known functions of two independent state
parameters, while p, ϱ, s, and θ are related by two expressions (1.40) or (1.41). Model
(1.45), (1.46) is closed, and the coefficients λ and μ are called the dynamic viscosity
coefficients and reflect the fluid property of resisting shear forces.

Particular models
Model (1.46) serves as the basis for obtaining thewell-knownNavier–Stokes equations
(λ, μ, k, ϱ = const), equations of an ideal incompressible fluid (μ = 0, ϱ = const), and
equations of gas dynamics (λ = μ = k = 0).

One of the simplest models proven in practice is the incompressible fluid model.
In this case, the moving volume ωt remains unchanged at all time instants, i. e.,

|ωt | ≡ ∫
ωt

dω = const.

Using equality (1.14), we find

d
dt
|ωt | = ∫

ω0

𝜕
∘
J
𝜕t

dω0 = ∫
ωt

div v dω = 0,

whence it follows that the condition of incompressibility is equivalent to solenoidity
of the velocity vector field:

div v = 0. (1.47)
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20 | 1 Equations of fluid motion

For such fluids, model (1.46) is now simplified to the following form (here𝒟 = 𝒟):

ϱt + v ⋅ ∇ϱ = 0, div v = 0,
ϱ(vt + v ⋅ ∇v) = −∇p + div(2μ𝒟) + ϱf, (1.48)
θϱ(st + v ⋅ ∇s) = div(k∇θ) +Φ + ϱh.

From the basic thermodynamic identity (1.35) and (1.43), we obtain

θds
dt
=
dU
dt
+ pdV

dt
=
dU
dt
=
dU
dθ

dθ
dt
= cV

dθ
dt
,

because the specific volume is retained in the particle (along the trajectory) by virtue
of the first equation of system (1.48). Specific heat should be considered as a known
function of the temperature θ, which is determined experimentally. The energy equa-
tion in system (1.48) can be written as

ϱcV (θt + v ⋅ ∇θ) = div(k∇θ) +Φ + ϱh. (1.49)

Model (1.48) is used to describe stratified flows and is called the model of inhomoge-
neous fluid flows.

The assumption about the constant fluid density (ϱ = const, homogeneous fluids)
can be further simplified. Firstly, themediumbecomes a one-parametermedium in the
thermodynamic aspect. The pressure p disappears from the thermodynamic relations
and can no longer be considered as a state parameter. The reason is that the work in
eq. (1.35) is p dV = 0; therefore, there remains one parameter: the temperature θ.

Let us introduce the kinematic viscosity ν = μ/ϱ. In the general case, ν = ν(θ),
but it can be assumed that ν = const for the simple model. The term div(2μ𝒟) in the
momentum equation is transformed as

div(2μ𝒟) = 2μdiv𝒟 ≡ μ[∇(div v) + Δv] = μΔv,

where Δ = ∑3j=1 𝜕
2/𝜕x2j is the Laplace operator. Thus, themodel of a viscous incompress-

ible fluid is obtained:

div v = 0,

vt + v ⋅ ∇v = −
1
ϱ
∇p + νΔv + f.

(1.50)

System (1.50) is also called the Navier–Stokes system.
It is of interest to note that thermodynamics is altogether not involved in model

(1.50). The temperature θ is determined from the heat inflow equation (1.49), which
can also be written in the form

θt + v ⋅ ∇θ =
1

ϱcV
div(k∇θ) +Φ + h

cV
, (1.51)
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where

Φ = 2ν c−1V 𝒟 : 𝒟.

Model (1.50) is fairly simple, because the fluid whose dynamics is studied by solv-
ing equations is described only by two quantities: density ϱ and viscosity ν. These
constants are determined from experiments. The Navier–Stokes model is widely used
for calculating particular motions of the fluid.

Sometimes effects caused by fluid viscosity are insignificant (tsunami, jet flows,
waves onwater, etc.). In this case, themodel of an ideal fluid is valid: ν = 0. The system
of equations is

div v = 0,

vt + v ⋅ ∇v = −
1
ϱ
∇p + f.

(1.52)

It is called the system of the Euler equations. Equation (1.51) for temperature is simpli-
fied. If we additionally assume that k and cV are constants, then we obtain

dθ
dt
= χΔθ + h

cV
,

where χ = k/ϱcV is the thermal diffusivity coefficient.
In contrast to liquids, gases are strongly compressible media, whereas gas viscos-

ity is often insignificant.Moreover, thermal conductivity can also be ignored in consid-
ering many fast processes in gases. Assuming that λ = μ = k = 0 in eqs. (1.45)–(1.46),
we obtain the system of gas-dynamic equations

ϱt + v ⋅ ∇ϱ + ϱdiv v = 0,

vt + v ⋅ ∇v +
1
ϱ
∇p = f,

st + v ⋅ s = 0,
p = f (ϱ, s).

(1.53)

The last relation is called the state equation of the gas and is determined experimen-
tally.

Energy dissipation
The properties of viscosity and thermal conductivity of liquids and gases are mani-
fested, in particular, as follows: mechanical energy imparted to the medium can be
irreversibly converted to thermal energy and scatter in random thermal motion of
molecules. This scattering of mechanical energy is called dissipation, and the pro-
cesses accompanied by energy dissipation are called dissipative processes.
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From the viewpoint of thermodynamics, a dissipative process is irreversible and
should be accompanied by an increase in entropy. Vice versa, an increase in entropy of
some part of a continuous medium without “pumping” thermal energy from outside
indicates that a dissipative process proceeds in this part of the medium.

Let us consider two examples to illustrate that the properties responsible for en-
ergy dissipation in liquids and gases are viscosity and thermal conductivity.

The first example is related to the entropy of the moving volume ωt:

S(ωt) = ∫
ωt

ϱs dω.

Let us calculate the derivative with respect to time, using the heat inflow equation
(1.46), equality (1.36), and the identity

1
θ
div(k∇θ) = div(k

θ
∇θ) + k

θ2
|∇θ|2.

We have

d
dt

S(ωt) = ∫
ωt

1
θ
Φ dω + ∫

ωt

k
θ2
|∇θ|2 dω

+ ∫
𝜕ωt

1
θ
qn dΣ + ∫

ωt

1
θ
h dω. (1.54)

Let the volumeωt be thermally insulated so that qn = 0 and there are no internal heat
sources (h = 0). Then, the right-hand side of eq. (1.54) is the sumof two quantities gen-
erated owing to different factors. The first term is generated bymotion, and the second
term is generated by a nonuniform distribution of temperature in the volume ωt . The
second law of thermodynamics required the quantity (1.54) to be nonnegative. As the
terms in the right-hand side of eq. (1.54) are independent, we obtain the inequalities

Φ ≥ 0, k|∇θ|2 ≥ 0, θ > 0.

From these inequalities, we obtain the inequalities for the coefficients of viscosity and
thermal conductivity:

k ≥ 0, μ ≥ 0, λ + 2
3
μ ≥ 0. (1.55)

Certainly, inequalities may be satisfied with the equality sign if 𝒟 = 0 and ∇θ = 0. In
this case, themediummoves as a solid: v = v0+ω×x (v0 andω are constant vectors);
the temperature is identical at all points. Formotions of a general character, equalities
(1.55) can be valid only if k = λ = μ = 0. This actually means that the medium is either
an inviscid heat-conducting gas or an ideal incompressible fluid.
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Therefore, in the general case of motion of liquids and gases, the entropy of a ther-
mally insulated volume increases.

The second example is related to the change in kinetic energy of amoving volume
for the Navier–Stokes equations (1.52).

Model (1.51), (1.52) is usually called the model of motion of a viscous heat-con-
ducting fluid. Generally speaking, the temperature and other characteristics ofmotion
are related not only by eq. (1.52), but also by the boundary conditions (see Chapter 2).

The kinetic energy for model (1.52) is

E(ωt) =
1
2
∫
ωt

ϱ|v|2 dω,

whence it follows that

dE
dt
= ∫
ωt

v ⋅ div𝒫 dω + ∫
ωt

ϱv ⋅ f dω.

As v ⋅ div𝒫 = div(𝒫v) + pdiv v −Φ, then, using the equality div v = 0 and the Gauss–
Ostrogradskii theorem, we obtain

dE
dt
= − ∫

ωt

Φ dω + ∫
𝜕ωt

v ⋅ pn dΣ + ∫
ωt

ϱv ⋅ f dω. (1.56)

Let us assume that the second and third integrals in eq. (1.56) are equal to zero, i. e.,
the surface stresses pn and external mass forces f do not perform any work over the
volume ωt as a whole. Then, eq. (1.56) yields the rate of change of kinetic energy

dE
dt
= − ∫

ωt

Φ dω. (1.57)

Equality (1.57) shows that the kinetic energy of the volumeωt does not always increase
despite the absence of work performed over it. Conservation of E(ωt) is equivalent to
the equality Φ = 0 in the volume ωt, which is possible either if 𝒟 = 0 or if μ = 0.
In the first case, the volume ωt moves as a solid; in the second case, we deal with
an ideal fluid. Therefore, except for these cases, the kinetic energy of a moving volume
decreases. This is manifestation of a dissipative process in a viscous incompressible
fluid; a responsible agent for that is the viscosity coefficient μ. The value of the integral
in eq. (1.57) yields the kinetic energy dissipation rate. Therefore, we can say that the
dissipative function Φ is equal to the kinetic energy dissipation rate density. This, in
particular, justifies the name “dissipative function” for the quantity Φ.
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2 Conditions on the interface between fluids and
on solid walls

In this chapter, a problem ofmotion of two immiscible fluids with a common interface
is formulated. Derivation of dynamic and energy conditions from integral conserva-
tion laws is described in detail. An important notion of a free boundary and condi-
tions on this boundary are formulated. Additional conditions related to the presence
of solid walls and moving contact lines are discussed.

This chapter is based on previous publications [147, 171].

2.1 Notion of the interface

Equations of motion of a homogeneous fluid were formulated in Chapter 1. Applica-
tions, however, often involve situations with joint motion of two liquid media (or a
liquid and a gas) contacting along a certain surface. If the contacting fluids do not
dissolve in each other, they form a more or less clearly expressed interface. A typical
example is a water–oil system. The interface between these media is stable as long as
the system is in a state close to stable equilibrium (e. g., an oil spot on the water reser-
voir surface). Even as the interface becomes unstable (whichmay occur, in particular,
during oil displacement by water in capillaries), the description of such a medium as
a system of immiscible fluids is often a fairly adequate one, including the range of pa-
rameters characterized by changes in the interface topology. It should be noted that
this approach is hardly feasible with the development of secondary instability and a
further decrease in characteristic scales of the flow; a rational description of the mo-
tion of such a system is given in terms of mechanics of heterogeneous media. Such a
description is outside the scope of this book.

Problems ofmotion of viscous fluids with interfaces in the exact formulation have
beenmathematically studied for about 35 years. A systematic derivation of conditions
on the interface of immiscible fluids during their unsteady nonisothermal motion was
first given in [171]. This section deals with this kind of derivation. The constructions
described here are modifications of considerations discussed in [147].

An important particular case of the interface is a free boundary, i. e., a surface sep-
arating a liquid and a gas. The influence of the dynamic characteristics of the gas on
liquidmotion can be often neglected, and the problemof liquidmotion description re-
duces to solving system (1.46) (for Newtonian fluids) under appropriate boundary and
initial conditions. In this case, in addition to the functions ϱ, v, and θ, it is necessary
to find the domains of their definition, with the free surface being some part of the
boundary (or the entire boundary) of this domain. In the general case, it is necessary
to solve a “doubled” system (1.46) under additional conditions including conditions
on the interface. Let us now derive these conditions.

https://doi.org/10.1515/9783110655469-002
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2.2 Kinematic condition

We consider the motion of a viscous heat-conducting fluid in a material domain
Ωt ⊂ ℝ

3 divided by a smooth surface Γt into two subdomains Ω1t and Ω2t . Let us as-
sume that sets of functions ϱ1, v1, θ1, and ϱ2, v2, θ2 satisfying system (1.46) are defined
in each subdomain, respectively. The coefficients of viscosity λ = λi, μ = μi and ther-
mal conductivity k = ki involved into the system are defined as smooth functions of
θi, and the free energy F = Fi is defined as a smooth function of ϱi and θi (i = 1, 2). The
acceleration of external forces f = fi(x, t) can take various values in the domains Ωit;
the function fi is assumed to be continuous in Ωit .

The motion examined can be treated as a flow of an inhomogeneous fluid the pa-
rameters of which change across Γt . It seems preferable, however, to consider it as
the motion of two fluids with the interface Γt . We assume that limiting values of the
functions ϱi, θi, and vi and their first derivatives with respect to all variables from the
subdomain Ωit (i = 1, 2) exist at each point of Γt at each time instant. It turns out that
these sets of functions cannot be arbitrary: they should be coupled by some relations
following conservation laws and thermodynamic postulates.

The first relations have a purely kinematic character. They are based on the as-
sumption that Γt is a moving material surface (in the same sense as the material vol-
ume in Section 1.1). Using this assumption, we do not need to consider such processes
as evaporation of the fluid from the free boundary or condensation of saturated va-
por, dissolution of one contacting fluid in the other, etc.; in other words, mass transfer
across the surface Γt is not allowed.

Let us denote the unit vector normal to the surface Γt and directed into the domain
Ω2t by n and the velocity of motion of the surface Γt in the direction of the normal n
by Vn. The material character of this surface is expressed by the equalities

v1 ⋅ n = v2 ⋅ n = Vn, x ∈ Γt . (2.1)

Equality (2.1) and the natural assumption that the surface Γt has zero mass, together
with the continuity equation from system (1.46), ensure the validity of the integral
mass conservation law in an arbitrary material subdomain Ω1t ∪ Ω2t .

Remark 2.1. If f (x, t) = 0 is an implicit equation of the surface Γt, then Vn = −ft/|∇xf |,
∇xf = (fx1 , fx2 , fx3 ).

2.3 Dynamic condition

Let us first introduce some notations. As previously, we assume that ωt ⊂ Ωt is an
arbitrary liquid volume having a nonempty intersection γt with the surface Γt, 𝜕ωt is
its boundary, andω1t andω2t are the parts ofωt that belong toΩ1t andΩ2t, respectively
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2.3 Dynamic condition | 27

(Figure 2.1). Let us denote Σit = 𝜕ωit/γt (i = 1, 2); νi is the unit vector of the external
(relative to ωt) normal to the surface Σit . The line 𝜕γt is the boundary of the domain
γt; νΓ, which is the unit vector determined at each point of 𝜕γt, lies in the tangential
plane to the surface γt at this point and, simultaneously, in the normal plane to the
curve 𝜕γt (the direction νΓ is external relative to the domainωt). The surface γt and the
curve 𝜕γt are assumed to have continuous curvature; 𝜕ωt can be a piecewise-smooth
surface.

Let us postulate the integral law of conservation of momentum of the moving vol-
ume ωt in the form

d
dt
∫
ω1t

ϱ1v1 dω1 +
d
dt
∫
ω2t

ϱ2v2 dω2 (2.2)

= ∫
ω1t

ϱ1f1 dω1 + ∫
ω2t

ϱ2f2 dω2 + ∫
Σ1t

𝒫1 ⋅ ν1 dΣ1 + ∫
Σ2t

𝒫2 ⋅ ν2 dΣ2 + ∫𝜕γt σνΓ dl.
Here, 𝒫i is the stress tensor in the i-th fluid (i = 1, 2), dl is a linear element of the curve
𝜕γt, and σ is a scalar function (generally speaking, temperature-dependent), which is
called the surface tension coefficient. The thermodynamic meaning of this function
will be clarified in the next section.

Let us emphasize that eq. (2.2) principally differs from the integral form of the
momentum conservation law (1.17) for a homogeneous fluid by the last term in the
right-hand side, which characterizes the total action of forces concentrated on the in-
terface 𝜕γt of the contact region of two fluids contained in the moving volume ωt . The
origin of these forces is caused by “elastic properties” of the interface, i. e., properties
of resisting its deformations. These forces are called the capillary forces or the surface
tension forces. If the fluid is homogeneous, then we have σ = 0, and the notion of
the interface becomes fictitious. In this case, the surface integrals and the related vol-
ume integrals in (2.2) are united into integrals over the surface 𝜕ωt and the volumeωt,
respectively, while equality (2.2) transforms to eq. (1.17).

Figure 2.1: Flow domain.
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28 | 2 Conditions on the interface between fluids and on solid walls

Let us now transform relation (2.2). The first step is based on the identities

d
dt
∫
ωit

ϱivi dωi − ∫
ωit

ϱifi dωi − ∫
Σit

𝒫i ⋅ νi dΣi = (−1)
i−1 ∫

γt

𝒫i ⋅ n dγ (2.3)

(i = 1, 2), which are valid owing to the momentum equations (1.17) satisfied indepen-
dently in each of the domainsωit, and to the assumption of continuous differentiabil-
ity of the functions ϱi, vi, and θi up to the boundary of the domain ωit and continuity
of the functions fi in ωit . Together with the previously postulated smoothness of the
functions Fi, λi, and μi, this assumption is sufficient to ensure continuity of the ele-
ments of the stress tensor 𝒫i = (−pi + λi div vi)I + 2μi𝒟(vi) in the domain ωit . Using
eq. (2.3), we can simplify equality (2.2) to

− ∫
γt

[𝒫 ⋅ n] dγ + ∫𝜕γt σνΓ dl = 0. (2.4)

Here [𝒫 ⋅ n] = 𝒫1|Γ ⋅ n − 𝒫2|Γ ⋅ n. The symbol [f ] is used hereinafter to indicate the
difference between the traces f1|Γ and f2|Γ of the functions f1 and f2 determined in the
domains Ω1t and Ω2t, respectively; the subscript t in the surface notation is omitted
here.

Before moving further, we define the surface gradient ∇Γ as a vector operator of
the form

∇Γ = ∇ − n(n ⋅ ∇).

As n ⋅ ∇Γf = 0 for an arbitrary smooth scalar function determined in the domain Γ,
then it is sufficient to know the values of the function f only at points of this surface to
calculate the vector-function ∇Γf . The “surface divergence” operator divΓ acts on the
vector function b = (b1, b2, b3) specified on the surface Γ in accordance with the rule

divΓ b ≡ ∇Γ ⋅ b =
3
∑
i=1[ 𝜕𝜕xi − ni(n ⋅ ∇)]bi.

Finally, ifT is a tensor of the second rankwith the elementsTij (i, j = 1, 2, 3), then divΓ T
is understood to be a vector with the components

(divΓ T)i =
3
∑
j=1[ 𝜕𝜕xj − nj(n ⋅ ∇)]Tji.

Using the equality

∫𝜕γt σνΓ dl = − ∫𝜕γt σn × dl,
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where dl is the oriented element of the tangent line to the curve 𝜕γt, we transform
the curvilinear integral in eq. (2.4). Applying the Stokes formula to the calculation of
each component of the vector in the right-hand side of the last equality, we obtain the
relation

∫𝜕γt σνΓ dl = ∫γt divΓ(σGΓ) dγ, (2.5)

in which the symbol GΓ means the tensor

GΓ = I − n ⊗ n,

where ⊗ means dyadic multiplication, (n ⊗ n)ij = (ninj)3i,j=1, ni are the components of
the normal n, and I is the unit tensor. By virtue of arbitrariness of the domain γt ⊂ Γ,
eqs. (2.4) and (2.5) yield the equality

[𝒫 ⋅ n] = divΓ(σGΓ), (2.6)

expressing the law of momentum conservation across the interface. Generally speak-
ing, in accordance with eq. (2.6), the stress vector 𝒫 ⋅ n is not continuous on the sur-
face Γ; at first glance, this contradicts the assumption of an “inertia-free” interface.
The seeming contradiction disappears if we take into account that the interface has a
nonzero surface density of internal energy (see Section 2.4).

The right-hand side of eq. (2.6) can be written in a more convenient form by using
an easily verified identity (analog to the vector analysis formula)

divΓ(σGΓ) = ∇Γσ ⋅ GΓ + σ divΓ GΓ.

It follows from the definition of the tensorGΓ and orthogonality of the vector∇Γσ andn
that ∇Γσ ⋅ GΓ = ∇Γσ. As is shown below, we have

divΓ GΓ = 2Hn, (2.7)

whereH is themean curvature of the surface Γ (it is assumed thatH > 0 if the surface Γ
is convex outward the domain Ω2t). Based on these considerations, equality (2.6) is
transformed to

[𝒫 ⋅ n] = 2σHn + ∇Γσ. (2.8)

Let us prove the validity of equality (2.7). We have a chain of almost obvious rela-
tions:

divΓ GΓ = divΓ(I − n ⊗ n) = −divΓ(n ⊗ n)

= −(divΓ n)n −
1
2
∇Γ|n|

2 = −(divΓ n)n.
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Equality (2.7) is valid if

divΓ n = −2H . (2.9)

To prove eq. (2.9), we need some notions from differential geometry of surfaces (see,
e. g., [49]).

Let the surface Γ = Γt be defined by the parametrization

x = x(η1, η2, t),

where η1 and η2 are curvilinear coordinates. The vectors

eα =
𝜕x
𝜕ηα
(α = 1, 2)

are covariant vectors of the tangential basis to this surface. The unit vector n of the
normal to Γ can be expressed via e1 and e2 by the formula

n = e1 × e2
√g
. (2.10)

Here g is the determinant of the metric tensor of the surface Γ with the elements gαβ =
eα ⋅ eβ (α, β = 1, 2). Formula (2.10) follows from the identity

g = g11g22 − g
2
12 = |e1 × e2|

2.

Let us denote the Euclidean distance from the point lying outside the surface Γ to
this surface by n. As Γ has a continuous curvature, the triple of the numbers (η1, η2, n)
determines the coordinates of such points, at least, for sufficiently small values of n.
With these notations, the operator gradient ∇Γ is written in the form ∇ = ∇Γ + n 𝜕/𝜕n,
and the surface gradient ∇Γ is written as

∇Γ = e
α 𝜕
𝜕ηα

(2.11)

(the sign of summation over repeated Greek superscripts and subscripts is omitted).
The symbol eα in eq. (2.11) means the vectors of the reciprocal (contravariant) basis
on Γ. The relation between the both bases is given by the formulas eα ⋅ eβ = δαβ (δ

α
β is

the Kronecker delta).
The vectors eα, like eα, are orthogonal to n. Differentiating the identity eα ⋅ n = 0

with respect to ηβ, we obtain

𝜕eα

𝜕ηβ
⋅ n + eα ⋅ 𝜕n

𝜕ηβ
= 0 (α, β = 1, 2).

The last equality together with eq. (2.11) shows that

divΓ n = −
𝜕eα

𝜕ηα
⋅ n. (2.12)
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Let us note now that

𝜕eα

𝜕ηβ
⋅ n = bαβ ,

wherebαβ are themixed components of the tensor associatedwith the secondquadratic
form of the surface Γ [49]. It is known that the trace of this tensor is equal to the
doubled mean surface curvature. From here and from eq. (2.12) we obtain the re-
quired relation (2.9) and, correspondingly, the dynamic condition on the interface
(2.8).

Equality (2.8) has an important corollary: if Γt is not a level surface of the function
σ(θ(x, t)), then the tangent line to Γt, which is the component of the vector [𝒫 ⋅ n],
differs from zero. In turn, this means that a system of two fluids with the interface Γ
cannot be in equilibrium if σ|Γ ̸= const. If θi ̸= const for x ∈ Ωit (i = 1, 2), the equi-
librium state is possible only in exceptional cases. Leaving these cases aside, let us
consider the conditions of equilibrium for a system of immiscible isothermal fluids. To
obtain these conditions, we should substitute the equalities vi = 0 into the continuity
and momentum equations in system (1.46). Thus, we obtain

𝜕ϱi/𝜕t = 0; (2.13)

ϱ−1i ∇pi = fi (i = 1, 2). (2.14)

By virtue of the equation of state (1.41), equality (2.13), and assumption that θi = const,
the left-hand side of eq. (2.14) for each i = 1, 2 is a gradient of a certain function inde-
pendent of t. Thus, the necessary condition of equilibrium is the potentiality of the
vectors fi,

fi = ∇Πi (i = 1, 2), (2.15)

and their independence of time. The function Πi involved in eq. (2.15) is called the po-
tential of acceleration of external forces (or,more often, simply the potential of external
forces).

The kinematic condition on the interface (2.1) requires the surface Γ to be steady.
The set of the equilibrium conditions becomes closed if eqs. (2.13)–(2.15) are supple-
mented with eq. (2.8); at vi = 0 and σ = const, the last equation becomes scalar. Let
us consider this relation for an important case of homogeneous incompressible fluids.
If ϱi = const (i = 1, 2), then equality (2.13) is satisfied automatically, and eqs. (2.14) and
(2.15) yield pi = ϱiΠi + ci, where ci = const (the potential possibility of an arbitrary
dependence of ci on t turns out to be incompatible, by virtue of eq. (2.8), with the con-
dition of steadiness of the surface Γ). Substituting the resultant expressions for pi and
the equalities vi = 0 and σ = const into condition (2.8), we obtain

2σH = −[ϱΠ]. (2.16)
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Equality (2.16) satisfied at the points of the surface Γ is actually a differential equation
for determining this surface. For instance, if the surface Γ is uniquely projected onto
the plane x3, i. e., its equation has the form x3 = f (x1, x2), then the mean curvature of
Γ is calculated by the formula [49]

2H = ∇2 ⋅ (
∇2f

√1 + |∇2f |2
),

where ∇2 is a gradient over the variables x1 and x2. In this case, eq. (2.16), which de-
scribes the equilibrium shape of the interface in a potential field of external forces,
takes the form

σ∇2 ⋅ (
∇2f

√1 + |∇2f |2
) = ϱ2Π2(x1, x2, f ) − ϱ1Π1(x1, x2, f ) + c, (2.17)

where c = c2 − c1 is a constant. The shapes of equilibrium of the capillary fluid in
vessels, based on eq. (2.17), are determined in [140, 55].

2.4 Elements of thermodynamics of the interface

According to the notions introduced by Gibbs, the interface between two liquids (or
a liquid and a gas) is a special thermodynamic medium characterized by additive
functions of the sets of this surface: entropy, internal energy, free energy, and oth-
ers. In this chapter, we consider only “pure” interfaces (i. e., those interfaces that do
not contain surface-active agents). This kind of surface is a one-parameter thermody-
namic medium with the state parameter usually chosen to be the absolute tempera-
ture θ.

Let us denote the specific (per unit area of the interface) surface entropy and in-
ternal energy by s and u, respectively. The quantities θ, s, and u are related by the ther-
modynamic identity

θ ds = du. (2.18)

Relation (2.18) is similar to the basic thermodynamic identity for another one-param-
eter medium: incompressible fluid (see Section 1.5) with dU = θ ds. At the same time,
it should be noted that this equality can be obtained from the first law of thermody-
namics (1.35) under the formal assumption ϱ = const. It is difficult to put the analog
of identity (1.35) into correspondence to relation (2.18), because the interface is as-
sumed to have no mass; therefore, the notion of density is meaningless for the inter-
face.

Following Gibbs, let us identify the specific free energy of the surface phase with
the surface tension coefficient σ(θ). For a two-parameter medium, as follows from
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eq. (1.41), the dependence between the free energy F, internal energy u, and entropy s
is described by the formula F = u − θs, which does not contain the second state pa-
rameter, i. e., the density ϱ (the first parameter is the temperature). Let us postulate a
similar dependence for the interface:

σ = u − θs. (2.19)

Then, eqs. (2.18) and (2.19) yield the relation

dσ + sdθ = 0, (2.20)

which is called the Gibbs–Duhem equation. An equivalent recording of eq. (2.20) is
dσ/dθ = −s. This relation is similar to the second equality in (1.41), which is valid for
two-parameter media.

As it will be demonstrated at the end of this section, the thermodynamic condi-
tion of interface stability implies that σ is positive. As the surface entropy is s > 0,
then the Gibbs–Duhem equation yields the inequality dσ/dθ < 0. For the majority
of pure interfaces, the relation σ(θ) is adequately approximated by the linear depen-
dence

σ = σ0 −æ(θ − θ0). (2.21)

Here σ0, θ0, and æ are positive constants; the latter is called the temperature coeffi-
cient of surface tension. (The requirement that bothσ andæ should be simultaneously
positive restricts the range of temperatures where eq. (2.21) can be used.) For most
interfaces, however, the value of æ is rather small, and the considered interval of
θ variation is a priori bounded by the melting and boiling temperatures of the flu-
ids. Thus, for the water–air interface at θ0 = 293 K, we have σ = σ0 = 72.8 dyn/cm,
whereas σ = 75.7 dyn/cm at θ = 273 K and σ = 58.8 dyn/cm at θ = 373 K. If we as-
sume that æ = 0.17 dyn/cm ⋅ deg, then the error of determining the values of σ by
eq. (2.21) at the extreme points of the above-indicated interval is within 0.7%. For
the linear dependence σ(θ), by virtue of eqs. (2.19) and (2.20), we obtain s = æ and
u = σ0 + æθ0 = const. If we define the interface heat capacity cΓ as cΓ = du/dθ,
then we obtain cΓ = 0 for interfaces with the dependence of σ on θ of the form
(2.21).

Let us recall that the surface tension coefficient was initially introduced in formu-
lating the momentum conservation law for a moving volume containing an interface.
The last term in eq. (2.2) induced by the capillary effect characterized the action of lin-
ear forces from the side of the supplement of the selected part of the interface γt to the
entire surface Γt . At the same time, the function σ(θ)was axiomatically determined as
the free energy of the interface. To check the equivalence of the two definitions of the
surface tension coefficient, let us consider a reversible isothermal change in the in-
terface area. Let us denote the element of the interface area increment in this process
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by dΣ and the corresponding elementary change in the surface energy by dEΓ. Using
eqs. (2.19) and (2.20) and the definition of the specific surface energy dEΓ = udΣ, we
obtain

dEΓ = (σ − θ
dσ
dθ
)dΣ.

The amount of heat δQ absorbed during elementary deformation of the interface
is

δQ = θ ds = −θdσ
dθ

dΣ.

The difference in the values of dEΓ and δQ is equal to the work dR performed by cap-
illary forces in the process considered; therefore, we obtain

dR = σ dΣ. (2.22)

Relation (2.22) corresponds to the formula dR = −pd(1/ϱ) for the elementary work in
the case of reversible deformation of a fluid volume with a pressure p, which is char-
acterized by a change in its density dϱ. Thus, there is an obvious analogy between the
quantities σ for the interface and −p for the fluid volume. During volume compression
(dϱ > 0), the mechanical work performed over this volume is known to be positive.
Concerning the work on changing the interface area, the experience shows that it is
positive if dΣ > 0. By virtue of eq. (2.22), this means that σ > 0.

Let us consider an element dl of the line 𝜕γt, which bounds the selected part of the
interface γt . Using dν to denote an elementary displacement of the point of the curve
𝜕γt in the direction of the vector νΓ (see Figure 2.1), we obtain dΣ = dνdl. It follows from
here and from eq. (2.22) that a force −σνΓdl acts on the element d from the side of the
external (relative to 𝜕γt) part of the interface. This conclusion precisely corresponds to
eq. (2.2), thus, supporting the equivalence of the “thermodynamic” and “mechanical”
definitions of the quantity σ(θ).

If we assume that σ < 0, then the forces acting on the curve 𝜕γt would tend to
increase the area of the surface γt, which would finally lead to an unlimited increase
in this area, i. e., to complete mixing of two fluids. This is the process observed for the
alcohol–water contact: these two fluidsmix in arbitrary proportions. Only those fluids
for which σ > 0 do not mix with each other.

2.5 Conditions of continuity

Apart from the conditions following from themass,momentum, and energy conserva-
tion laws, some additional conditions are satisfied on the interface. These conditions
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can be called the continuity conditions. One of them is the condition of continuity of
the total velocity vector:

v1 = v2, x ∈ Γt . (2.23)

Similar to the no-slip condition on the interface between a liquid and a solid (see Sec-
tion 2.8 below), condition (2.23) is simply postulated inmost cases. The following con-
siderations support the natural character of condition (2.23). If a Newtonian fluidwere
homogeneous, the presence of a velocity discontinuity on a certain surface inside the
flow domain would lead, in accordance with the equality 𝒫i = −piI + 2μi𝒟(vi), to infi-
nite values of the stress vector on this surface. The interface is a mathematical ideal-
ization of a rather thin layer of themixture of two fluids. It can be reasonably assumed
that the velocity in such a layer changes smoothly; otherwise, the previous rheological
relation would give rise to singularities of the stress field as the mixing zone becomes
thinner.

Note that eq. (2.23) actually contains only two additional scalar conditions, be-
cause the continuity of the normal component of the velocity vector is already implied
by condition (2.1).

Another continuity condition follows from the requirement of local thermody-
namic equilibrium of contacting media: this is the temperature continuity condi-
tion

θ1 = θ2, x ∈ Γt . (2.24)

From the viewpoint of the Fourier law, equality (2.24) is as natural as equality (2.23)
from the viewpoint of the Stokes postulates. Using eqs. (2.23) and (2.24), we can use
v and θ to denote the coinciding limiting values of the functions vi and θi (i = 1, 2) as
the points x ∈ Ωit tend to the point xi ∈ Γt .

A particular case of the interface is the boundary separating two phases of the
same substance, e. g., liquid and vapor formed from this liquid. In this case, there
arises an additional condition of thermodynamic equilibrium: continuity of the chem-
ical potential on the interface. By definition, the chemical potential is Ψ = F + p/ϱ,
where F is the free energy. This continuity condition has the form

[F + p/ϱ] = 0. (2.25)

Nevertheless, the interface between two phases can be considered as a material
surface only in some particular situations eliminating the possibility of the phase
transition. (In this case, one more condition of phase equilibrium of the form (2.16)
is added to conditions (2.24) and (2.25).)

Finally, it should be noted that the limiting values of the fluid densities ϱ1 and ϱ2
on the surface Γt are not mandatory coupled by some a priori relations.
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2.6 Energy transfer across the interface

The study of this issue is based on the integral law of conservation of the total energy
of a system of immiscible fluids enclosed in a moving volume ωt:

d
dt
∫
ω1t

ϱ1(
|v1|2

2
+ U1)dω1 +

d
dt
∫
ω2t

ϱ2(
| v2|2

2
+ U2)dω2 +

d
dt
∫
γt

u dγ

= ∫
ω1t

ϱ1v1 ⋅ f1 dω1 + ∫
ω2t

ϱ2v2 ⋅ f2 dω2 + ∫
Σ1

v1 ⋅ 𝒫1 ⋅ ν1 dΣ1

+ ∫
Σ2

v2 ⋅ 𝒫2 ⋅ ν2 dΣ2 + ∫𝜕γt v ⋅ (σνΓ) dl − ∫Σ1 q1 ⋅ ν1 dΣ1
− ∫
Σ2

q2 ⋅ ν2 dΣ2 + ∫
ω1t

ϱ1h1 dω1 + ∫
ω2t

ϱ2h2 dω2. (2.26)

Here v is the common limiting value of the vectors v1 and v2 on the surface Γt and qi
(i = 1, 2) is the heat-flux vector in the i-th fluid.

For a homogeneous medium obeying relations (1.5) and (1.29), equality (2.26)
turns to eq. (1.25), because the notion of the interface for such a medium becomes
fictitious, and we necessarily have u = 0 and σ = 0 in eq. (2.26). The additional (as
compared with eq. (1.25)) term in the left-hand side of eq. (2.26) expresses the rate
of energy of the selected part of the interface, whereas the curvilinear integral in the
right-hand side of this relation is the power of capillary forces spent on deformation
of the mentioned surface.

Equality (2.26) allows considerable simplifications. First of all, let us note that
the equations of continuity, momentum, and heat inflow (1.46) are satisfied in each
subdomain ωit where the functions ϱi, vi, and θi are sufficiently smooth. Therefore,
the identities

d
dt
∫
ωit

ϱi(
|vi|2

2
+ Ui) dωi − ∫

ωit

ϱivi ⋅ fi dωi − ∫
ωit

ϱihi dωi

− ∫
Σi

(vi ⋅ 𝒫i ⋅ νi − qi ⋅ νi) dΣi = (−1)
i−1 ∫

γt

(vi ⋅ 𝒫i ⋅ ni − qi ⋅ n) dγ (2.27)

are valid for i = 1, 2 (cf. eq. (2.3)). In writing the right-hand side of eq. (2.27), we used
the notation vi|Γ = v introduced in Section 2.5 based on equality (2.23). Taking into
account eqs. (2.26) and (2.27), we obtain

d
dt
∫
γt

u dγ = ∫
γt

([q ⋅ n] − v ⋅ [𝒫 ⋅ n]) dγ + ∫𝜕γt σv ⋅ νΓ dl. (2.28)

Further transformations are aimed at presenting the left-hand side of eq. (2.28)
and the last term in the right-hand side of this equality in the form of certain integrals
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over the domain γt . The transformation of the first expression is based on an analog
of the translation formula (see Section 1.2). Let γt be a smooth material surface, and
let f (x, t) be a smooth function determined in a certain neighborhood of this surface.
Then, we obtain

d
dt
∫
γt

f dγ = ∫
γt

(
df
dt
+ f divΓ v) dγ, (2.29)

where df /dt is the total derivative of the function f , and divΓ is the surface divergence
of the vector v, which was determined in Section 2.3.

Similar to the classical translation formula (1.15), relation (2.29) is proved by
passing to the Lagrange coordinates. Let the surface γ0 at t = 0 be defined by the
parametrization x = x0 (ξ 1, ξ 2), where ξ 1 and ξ 2 are curvilinear coordinates, and the
coordinate ξ 3 is counted along the normal to the surface γ0. The triple of the numbers
ξ 1, ξ 2, ξ 3 determines the Lagrange coordinates, at least in a certain neighborhood
of γ0. As γt is a moving surface, its location at a current time instant t is determined
as a constriction of the mapping ξ → x formed by solving the Cauchy problem (1.10),
(1.12) onto the domain γ0.

Let us pass to the Lagrange coordinates in the left-hand side of eq. (2.29). Then,
the integral whose derivative has to be calculated takes the form

∫
γ0

∘
f (ξ , t)

∘
JΓ(ξ , t) dγ0,

where, as in Section 1.2,
∘
f (ξ , t) = f (x(ξ , t), t), and

∘
JΓ is the determinant of the metric

tensor of the surface γ0. Let us note now that the parameters η1 and η2 introduced in
Section 2.3 to derive eq. (2.9) can be identifiedwith the Lagrange coordinates ξ 1 and ξ 2.
Therefore, the following equality is valid:∘

JΓ(ξ , t) = [g(x(ξ , t), t)]
1/2

(g = |e1 × e2| is the determinant of the metric tensor (gαβ)). For a fixed value of ξ , the
function satisfies the differential equation (see the Euler formula (1.14))

d
∘
JΓ
dt
=
∘
JΓ divΓ v. (2.30)

Let us prove the validity of eq. (2.30). As
∘
JΓ = (det gαβ)1/2, then

d
∘
JΓ
dt
=

1
2√g
𝜕g
𝜕gαβ

dgαβ
dt
=

1
2√g

ggβα
dgαβ
dt
, (2.31)

where gβα are the elements of a matrix inverse to gαβ. Further, as gαβ = (𝜕x/𝜕ξ
α) ⋅

(𝜕x/𝜕ξ β), then

dgαβ
dt
=
𝜕v
𝜕ξ α
⋅ eβ + eα ⋅

𝜕v
𝜕ξ β
= (eα ⋅ ∇Γv) ⋅ eβ + (eβ ⋅ ∇Γv) ⋅ eα, (2.32)
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where eα are the covariant vectors of the tangential basis of the surface Γ, and ∇Γ is
the surface gradient determined by eq. (2.11) in which ηα = ξ α should be assumed.
The symbol ∇Γv denotes a tensor of the form (summation is performed over the super-
script β)

∇Γv = e
β ⊗
𝜕v
𝜕ξ β
.

Let𝒟Γ be the symmetric part of the tensor: 2𝒟Γ = ∇Γv + (∇Γv)∗. Then equality (2.32) is
rewritten in the form

dgαβ
dt
= 2eβ ⋅𝒟Γ ⋅ eα.

From the last relation and eq. (2.31), we obtain

d
∘
JΓ
dt
=
∘
JΓe

α ⋅𝒟Γ ⋅ eα.

To derive eq. (2.30) we have to prove that

eα ⋅𝒟Γ ⋅ eα = divΓ v. (2.33)

Let us denote the normal component of the vector v by v3 (let us recall that the
directions of the ξ 3 axis and the normal n coincide); then we obtain v = vγeγ + v3n =
vΓ + v3n. We determine the tensor𝒟Γ through the relation 2𝒟Γ = ∇Γ(v3n) + (∇Γ(v3n))∗.
Thus, we have an obvious chain of equalities:

eα ⋅𝒟Γ ⋅ eα = 12 eα ⋅ eβ ⊗ ( 𝜕v3𝜕ξ β n + v3 𝜕n𝜕ξ β ) ⋅ eα
+
1
2
eα ⋅ ( 𝜕v

3

𝜕ξ β
n + v3 𝜕n
𝜕ξ β
) ⊗ eβ ⋅ eα

=
1
2
eα ⋅ eβ ⊗ (v3 𝜕n

𝜕ξ β
) ⋅ eβgαβ +

1
2
eα ⋅ (v3 𝜕n

𝜕ξ α
)

= v3 divΓ n + n ⋅ ∇Γv
3 = divΓ(v

3n).

In a similarmanner, we find that the following relation is valid for the tensor𝒟Γ =
𝒟Γ −𝒟


Γ:

eα ⋅𝒟Γ ⋅ eα = divΓ vΓ.
This and previous equalities show that formula (2.33) and, correspondingly, eq. (2.30)
are valid. Based on eq. (2.30), we can obtain formula (2.29) by almost completely re-
peating the considerations of Section 1.2 (with natural replacement of a moving vol-
ume by a moving surface and of the operator div by the operator divΓ).
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To transform the curvilinear integral in the right-hand side of eq. (2.28), we use
the formula

∫𝜕γt b ⋅ νΓ dl = ∫γt divΓ[b − (n ⋅ b)n] dγ, (2.34)

where b is an arbitrary smooth vector. To prove the validity of eq. (2.34), we note that
the following relation holds by virtue of the identity νΓ dl = −n×dl (whichwas already
used in Section 2.3):

∫𝜕γt b ⋅ νΓ dl = ∫𝜕γt (n × b) ⋅ dl. (2.35)

We transform the integral in the right-hand side of eq. (2.35) on the basis of the Stokes
theorem by taking into account the equality

n ⋅ [rot(n × b)] = div[b − (n ⋅ b)n]. (2.36)

In turn, equality (2.36) follows from the vector analysis formula rot(n × b) = b ⋅ ∇n −
n ⋅ ∇b+ndivb−bdivn and from the fact that ∇|n|2 = 0 and, therefore, n ⋅ (b ⋅ ∇n) = 0.
Finally, we have div[b − (n ⋅ b)n] = divΓ[b − (n ⋅ b)n], because the vector b − (n ⋅ b)n
has a zero normal component. The required equality (2.34) follows fromhere and from
eqs. (2.35) and (2.36).

Let us now assume that f = u in eq. (2.29) and b = σv in eq. (2.34). Using these
formulas, we write both sides of equality (2.28) as integrals over the domain γt . We
obtain

∫
γt

(
du
dt
+ udivΓ v)dγ

= ∫
γt

([q ⋅ n] − v ⋅ [𝒫 ⋅ n] + divΓ⟨σ{v − (n ⋅ v)n}⟩)dγ. (2.37)

As the domain γt ⊂ Γt is arbitrary, it follows from eqs. (2.37) that the integrands in both
sides of this equality coincide. In other words,

du
dt
+ udivΓ v = [q ⋅ n] − v ⋅ [𝒫 ⋅ n] + divΓ(σvΓ), (2.38)

where the notation vΓ = v − (n ⋅ v)n is used.
To find the final form of condition (2.38), we use the following relations: equality

u(θ) = σ − θdσ
dθ
,

which follows from eqs. (2.19) and (2.20); Fourier law (1.29); dynamic condition on
the interface (2.8), which implies that v ⋅ [𝒫 ⋅ n] = 2σH(n ⋅ v) + vΓ ⋅ ∇Γσ; formula

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



40 | 2 Conditions on the interface between fluids and on solid walls

divΓ(σvΓ) = σ divΓ vΓ + vΓ ⋅ ∇Γσ; equality divΓ{(n ⋅ v)n} = −2σH(n ⋅ v), which follows
from eq. (2.9). Based on all considerations discussed above, we can conclude that

− θσ(θ)dθ
dt
= θσ(θ)divΓ v − [k 𝜕θ𝜕n], (2.39)

where the prime denote differentiation with respect to θ.
Condition (2.39) can be called the energy condition on the interface Γt of two flu-

ids. It means that the jump of the heat flux into direction of the normal to Γt is com-
pensated by the change in the internal energy of this surface. In turn, this change is
related both to the change in temperature (and, correspondingly, in the specific inter-
nal energy) and to the change in the interface area: this circumstance is responsible
for the emergence of the first term in the right-hand side of eq. (2.39). In an important
particular case of a linear dependence of σ on θ of the form (2.21), condition (2.39) is
simplified to

[k 𝜕θ
𝜕n
] +æθ divΓ v = 0. (2.40)

Finally, if σ = const, then eq. (2.39) expresses the continuity of the surface density of
the heat flux qn = k𝜕θ/𝜕n across the interface.

To conclude this section, we note that the coefficient −θσ(θ) used as a multiplier
ahead of the derivativedθ/dt in condition (2.39) coincideswith the specific heat capac-
ity of the interface cΓ = du/dθ. Physically, the heat capacity is a nonnegative quantity;
this condition, together with the positiveness of the absolute temperature θ, yields the
inequality σ(θ) ≤ 0. The followingmathematical considerations support the fact that
the value of cΓ is nonnegative. If, for the sake of simplicity, we assume that the fluids
are incompressible and the surface Γt and the velocity fields v1 and v2 in the domains
Ω1t and Ω2t are specified (these domains are assumed to be compact), then condition
(2.39) with cΓ > 0 has a dissipative character with respect to the heat conduction oper-
ator. Therefore, problem (1.49), (2.24), (2.39), under additional initial conditions and
standard (Dirichlet or Neumann) conditions on fixed external boundaries of the do-
mainsΩit, can be considered to bewell-posed. (If cΓ = 0, thenwe obtain awell-studied
problem of diffraction for parabolic equations.) In the case with cΓ < 0, however, the
problem discussed here is ill-posed in the sense of Hadamard.

2.7 Free surfaces

Applications often involve liquid–gas contact boundaries. It is known that the dy-
namic coefficients of viscosity for gases are smaller by one or two orders of magnitude
than the corresponding coefficients for liquids. Therefore, in the case of gas motion
with moderate velocities, we can assume that the shear stresses arising on the inter-
face from the side of the gas are negligibly small and the normal stresses coincidewith
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the gas pressure with accuracy to their sign. In this paragraph, the fields of variables
that refer to the liquid are described by symbols without subscripts or superscripts,
and the gas pressure and temperature are denoted by pg and θg , respectively.

The notion of the free boundary appears when the problem of joint motion of a
liquid and a gas is replaced by a simpler problem where the functions pg and θg are
assumed to be specified, while the characteristics of the liquid and the interface lo-
cation have to be determined. It is important to emphasize that the issue of finding
the velocity field in the gas does not arise at all in this approach. Therefore, only one
condition from (2.1) is relevant here:

v ⋅ n = Vn, x ∈ Γt (2.41)

(in this paragraph, n is used to denote the unit vector of the normal to the surface Γt,
which is external relative to the domain Ωt).

The dynamic condition on the free boundary is obtained from eq. (2.8), if we set
𝒫g = −pgI in accordance with the discussion above. This yields

𝒫 ⋅ n + pgn = 2σHn + ∇Γσ, x ∈ Γt . (2.42)

As the velocity field in the gas is not determined, condition (2.23) becomes meaning-
less. Formally, conditions (2.42) with a known surface Γt (which is material by virtue
of eq. (2.41)) and a known temperature field θ in the domain Ωt are sufficient for the
boundary-value problem for ϱ(x, t), v(x, t), and p(x, t) from system (1.46), which is for-
mulated by adding initial conditions, to become well-posed. (In any case, this fol-
lows from considering a linearized version of this problem.) On the other hand, re-
lation (2.41) can be considered as an equation for determining the interface, based on
a known velocity field v: ft + v ⋅ ∇f = 0, x ∈ Γt, where f (x, t) = 0 is the equation of Γt .

Applying similar considerations to eq. (1.49), we conclude that only one boundary
condition for temperature should be imposed on the boundary of the domain Ωt if the
surface Γt and the functions ϱ and v in this domain are specified. In particular, we can
simply assume that

θ = θg , x ∈ Γt . (2.43)

If θg = const, then eq. (2.43) means isothermality of the free surface. Another, less
popular option is to use eq. (2.39), with k2𝜕θ2/𝜕n = qg being assumed to be a specified
function, as the initial condition instead of eq. (2.24). This yields

− θσ(θ)dθ
dt
− θσ(θ)divΓ v + k 𝜕θ𝜕n = qg . (2.44)

Atqg = 0, eq. (2.44) transforms to the conditionof a thermally insulated free boundary.
The approaches proposed above are vulnerable because the right-hand sides of

eqs. (2.43) and (2.44) include the values of temperature or heat flux along the normal
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to Γt on the free boundary unknown in advance. Therefore, eq. (2.43) or (2.44) is often
replaced in practice by the condition

k 𝜕θ
𝜕n
+ b(θ − θg) = 0, x ∈ Γt , (2.45)

where θg is a controlled value of temperature at a certain point of the gas phase (for
instance, the value of the gas temperature at infinity for an unbounded domain θg
external to Ωt) and b is an empirical function called the interphase heat-transfer coef-
ficient.

Determination of the function b(x, t) depending on the domain geometry, condi-
tions on the external boundaries, etc., is a problem difficult to formalize. An empirical
coefficient in condition (2.45) serves as a penalty for the lack of desire (or lack of skills)
to solve the problemwith a free boundary as a problem of joint motion of a liquid and
a gas and heat transfer between them.

2.8 Additional conditions

The problem of motion of immiscible fluids consists of determining the domains Ωit
(i = 1, 2) and two sets of functions ϱi, vi, θi satisfying system (1.46) in each domain Ωit .
Equations (2.1), (2.8), (2.23), (2.34), and (2.39) should be satisfied on the interface Γt .
Obviously, these conditions are insufficient to solve the problem under discussion for
the mere reason that the union of the domains Ω̄1t and Ω̄2t does not necessarily co-
incide with the entire space ℝ3. In a typical situation, each domain Ω1t, Ω2t has an
“external” boundary Sit (i = 1, 2) in addition to their common “internal” boundary Γt .
The case where the boundaries S1t and S2t are solid surfaces is particularly important.

We assume that the surfaces S1t and S2t are specified for all t ∈ [0,T], where T > 0
is a certain number. In addition, we first assume that Γ̄t ∩ S̄it = ⊘ for 0 ≤ t ≤ T (i =
1, 2); the bar means closure. As the location of the surface Γt is not known in advance,
it is difficult to verify the last condition. Nevertheless, if it is satisfied at t = 0 and
the velocity field is continuous in the domains Ω̄1t and Ω̄2t, then the validity of this
condition is guaranteed for sufficiently small values of T. The condition for velocities
on the external boundaries of the domains Ωit is usually imposed in the form

vi = ai(x, t), x ∈ Sit , (2.46)

where ai are known functions.
Now let Sit be the surface of a nondeformable solid. The velocity distribution in

such a solid is given by the formula ui = Ui(t)+Ωi(t)×x. Let us postulate that the fluid
velocity coincides with the boundary velocity on the solid part of the boundary of the
domain Ωit . It follows from the last formula and eq. (2.46) that

vi = Ui + Ωi × x, x ∈ Sit , (2.47)
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where Ui(t) is the translational velocity of the i-th solid and Ωi(t) is its instantaneous
angular velocity. If the solid boundaries are motionless, eq. (2.47) turns to

vi = 0, x ∈ Si. (2.48)

Condition (2.47) and its particular case (2.48) are called the no-slip conditions. If only
some part of the surface Sit is the fluid–solid boundary, the condition (2.47) is imposed
only on this part of the surface. On the remaining part of Sit, the function ai can be
rather arbitrary.

The no-slip condition reflects the fact that there are always molecular adhesion
forces between the solid surface and the fluid. These forces capture and arrest fluid
particles contacting the wall. In special situations (rarefied gas flow or motion near
the line of the liquid contact with a gas and a solid), these forces can be attenuated,
which results in modifications of the no-slip conditions. Rarefied gas dynamics issues
are not considered here; the flow near the three-phase contact line is considered in
[171, 50, 189, 28] (see also the end of this section).

As a condition for temperature on specified components of the interface between
the domains Ω1t and Ω2t, one of two equalities should be satisfied, either

θi = θSi (x, t), x ∈ Sit (2.49)

or

ki
𝜕θi
𝜕ni
= qSi (x, t), x ∈ Sit . (2.50)

Here θSi and qSi (i = 1, 2) are known functions, which actually are the temperature of
the surface Sit and the heat flux normal to this surface. The unit vector of the external
normal to the surface Sit is denoted by ni, and the operation of differentiation in the
direction ni is denoted by 𝜕/𝜕ni.

As the values of the vector vi on the surface Si are assumed to be known, let us
determine the sets Sit = {x ∈ vit , vi ⋅ni < Uni }, i = 1, 2, whereUni is the velocity ofmotion
of the surface Sit in the directionni. (Let us call them the sets or the inlet segments.) The
differential equation of continuity (the first equation of system (1.46)) can be formally
treated as a first-order equation with respect to density. The corresponding system
of equations of the characteristics coincides with eq. (1.10). Therefore, an additional
condition for the function ϱi appears:

ϱi = γi(x, t), x ∈ S+it (2.51)

(γi are known functions). Two cases where condition (2.51) is not imposed should be
mentioned. If a fluid contacts a solid, then there are no inlet segments owing to the
no-slip condition. The second case is the motion of a system of homogeneous incom-
pressible fluids. The continuity equation is replaced here by div vi = 0, and the quan-
tities ϱi become given constants instead of the sought functions; on the other hand,
the functions pi are added to the list of the sought functions.
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Finally, we need to formulate initial conditions for the solution of the evolution
problem described as definite. First, we have to impose the initial location of the in-
terface Γ0. Definition of Γ0 determines the domains Ω10 andΩ20. The initial conditions
for system (1.46) have the natural form

vi = vi0(x) at t = 0; (2.52)
θi = θi0(x) at t = 0; (2.53)
ϱi = ϱi0(x) at t = 0. (2.54)

The functions vi0, θi0, and ϱi0 determined in the domain Ωi0 (i = 1, 2) are assumed
to be known. If the fluid is incompressible and homogeneous, condition (2.54) is not
imposed.

An important class of problems of motion with interfaces also includes steady
problems. In such solutions, the surfaces Γ and the sought functions ϱi, vi, and θi are
independent of time. For steady solutions to exist, it is obvious that the external sur-
faces Si should be motionless, and the known functionals fi, hi, ai, etc., which are in-
volved into the equations and boundary conditions, should be also independent of t.
The issue of the initial conditions for steady problems is immaterial, although such
problems involve additional conditions of another kind: the specified quantities in-
clude the values of one or several functionals fixing the flow rates of the fluids, the
volume of the domain Ω1 or Ω2, etc.

We did not discuss here the issues of the smoothness and compatibility condi-
tions which the input data of the problem discussed for system (1.46) should obey.
Theymay be different in different problems. The example of amodel problem of plane
isothermal motion of a homogeneous fluid with moving contact points between the
free boundary and the solid wall clearly shows that these issues are nontrivial. Gen-
erally speaking, it turns out that the condition of continuity of the velocity field at
the three-phase contact point is incompatible with the no-slip condition and with the
kinematic condition on the free boundary. This incompatibilitywas first noted byDus-
san and Davis [51] (see also [50, 189]). A mathematically well-posed and physically
grounded method of closing the problem of motion of immiscible fluids (or the prob-
lem with a free boundary) is a disputable issue if the condition [Γt] ∩ [Sit] = ⊘ is not
satisfied. Alternative approaches for solving this issue are discussed in [28] as well as
in the works cited above. An original method for closing the problem of motion of the
three-phase contact line,which requires only one empirical constant to be known,was
proposed by Voinov [231] (see also [47]). The current state of wetting hydrodynamics
was described in [232].
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3 Models of convection of an isothermally
incompressible fluid

In this chapter, the case of convectionwith temperature-dependent viscosity and ther-
mal conductivity and with density only as a function of temperature is considered.
With the use of the thermodynamic identity, the specific volume at a constant specific
heat is demonstrated to be a linear function of temperature. Possible formulations
of initial-boundary problems for the systems of equations obtained are discussed. It
is shown that elastic properties of the container should be taken into account in the
problem of convection in a closed volume, which allows the influence of the container
walls on convective fluxes to be described correctly.

The results of this chapter are based on publications [237, 177, 13].

3.1 Isothermally incompressible fluid

It is well known from thermodynamics [132] that a comprehensive description of a
certain medium is obtained by defining a state equation of the formH(V , p, θ) = 0; for
instance, for a perfect gas, Vp = Rθ is the Clapeyron–Mendeleev equation, where R is
the universal gas constant. The caloric equation, which expresses the specific heat at
constant pressure cp via the basic thermodynamic parameters (see eq. (1.43)) is also
assumed to be known.

Let the state equation be resolved with respect to the specific volume:

V = V(θ, p). (3.1)

It is certainly not always possible to present the state equation in the form (3.1). In fact,
the assumption above eliminates the possibility of phase transitions in the substance
considered. It is the nonuniqueness, i. e., different values of V at identical values of θ
and p, that indicates the existence of different phases, for example, ice–water–steam.
Such a multiphase medium is described (though only approximately) by the van der
Waals equation [132]

(p + an
2

V2 )(V − bn) = nRθ,

where n is the number of moles; a and b are constants.
Let F = U − θs be the free Helmholtz energy, and let U = U(θ, p) and s = s(θ, p).

Then, the thermodynamic identity (1.35) yields the presentations (the expressions at
the differentials dθ and dp should be equated to each other)

s = −pVθ − Fθ − A; (3.2)
U = −pθVθ + F − θFθ + B; (3.3)

https://doi.org/10.1515/9783110655469-003
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F = −pV +
p

∫
p0

V(θ, p̄) dp̄ + G(θ) (3.4)

with certain constants A, B, p0, and an arbitrary function G(θ); in eqs. (3.2)–(3.4),
V(θ, p) is defined by equality (3.1). If, in addition to eq. (3.1), as mentioned above, the
dependence cp(θ, p) on the temperature θ is defined at least for one value of the pres-
sure p, then, using eqs. (1.35) and (3.2) we can find the function G(θ) in (3.4) from the
equality

Gθθ = −

p

∫
p0

Vθθ(θ, p̄) dp̄ −
1
θ
cp(θ, p). (3.5)

Let us again recall that p in eq. (3.5) is a certain fixed value of pressure.
A fluid is called isothermally incompressible if its density is independent of pres-

sure, but it may depend on temperature, i. e.,

V = V(θ) (ϱ = V−1(θ)). (3.6)

In this case, eqs. (3.2), (3.3), and (3.5) become the equalities

cp = −pθV
(θ) − θG(θ); (3.7)

s = −pV (θ) − G(θ); (3.8)
U = −pθV (θ) + G(θ) − θG(θ). (3.9)

Without loss of generality, the constants A, B, and p0 here are replaced by zeroes.
Expression (3.7) for cp yields a remarkable conclusion: the specific heat at con-

stant pressure for an isothermally incompressible fluid is independent of the pressure
p if and only if the specific volume V is a linear function of temperature,

V(θ) = V0(1 + βθ), (3.10)

where β > 0 is the coefficient of thermal (volume) expansion. Choosing a certain value
of the temperature θ0, we can write this volume as

V(θ) = V(θ0)[1 + β(θ − θ0)]. (3.11)

Formulas (3.7)–(3.9) are simplified to

cp = −θG
(θ); (3.12)

s = −βpV0 − G
(θ); (3.13)

U = −βθpV0 + G(θ) − θG
(θ). (3.14)
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3.2 Equations of thermal convection of an isothermally
incompressible fluid

We proceed from system (1.48), assuming that the coefficients λ, μ, and k depend on
the absolute temperature θ and pressure p. In addition, we introduce the coefficient of
volume viscosity

ζ = λ + 2
3
μ. (3.15)

By virtue of the last inequality of system (1.55), we have ζ ≥ 0. Another assumption
of principal importance is the dynamic validity of eqs. (3.7)–(3.9), which express the
dependence of cp, s, and U on p and θ. In reality, however, not only the particular
expressions (3.7)–(3.9), but also the mere fact of the existence of such functional de-
pendences is doubtful. The conditions of applicability of the assumption made above
have been little studied. In any case, it is clear that this assumption is valid only in
situations where the process is not too far from thermodynamic equilibrium and can
be considered to be a quasi-static process.

Let us rewrite the left-hand side of the energy equation (1.48) as

ϱθds
dt
= ϱθ[( 𝜕s
𝜕θ
)
p

dθ
dt
+ (
𝜕s
𝜕p
)
θ

dp
dt
]

= ϱcp
dθ
dt
+ ϱθ( 𝜕s
𝜕p
)
θ

dp
dt
= ϱcp

dθ
dt
+
θ
ϱ
(
𝜕ϱ
𝜕θ
)
dp
dt
,

because 𝜕s/𝜕p = ϱ−2𝜕ϱ/𝜕θ.
Let us now insert eqs. (3.6) and (3.8) into eqs. (1.48) and obtain amodel of convec-

tive motion of an isothermally incompressible fluid

V (θ)dθ
dt
= V(θ)div v; (3.16)

dv
dt
= V(θ)∇(−p + ζ div v) + V(θ)div[2μ(𝒟 − 1

3
div vI)] + f; (3.17)

cp
dθ
dt
− θV (θ)dp

dt
= V(θ)Φ + V(θ)div(k∇θ) + h, (3.18)

where I is the unit tensor in eq. (3.17), cp is defined by eq. (3.7), and the dissipative
function Φ (see eq. (1.47)) is

Φ = ζ (div v)2 + 2μ𝒟 : 𝒟. (3.19)

Equations (3.16)–(3.18) with known dependences (3.6) and (3.7) form a closed sys-
tem for determining v1, v2, v3, θ, andp. If the valueof thederivativedθ/dt fromeq. (3.16)
is substituted into eq. (3.18), then system (3.16)–(3.18) transforms to a system resolved
relative to derivatives with respect to time for the unknown velocity vector v, temper-
ature θ, and pressure p. Thus, the issue of initial conditions is clarified: it is necessary
to specify v, θ, and p at the initial time. The issue of boundary conditions is more com-
plicated; it is discussed later in Section 3.5.
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3.3 Model of linear thermal expansion

Let us consider the casewhere the state equation has the form (3.10). As it was demon-
strated above, this linear law corresponds exactly to the case where the specific heat
cp is independent of the pressure p. In this case, eqs. (3.12)–(3.14) are valid. We also
need to define the caloric equation or, in accordance with eqs. (3.4) and (3.5), the free
energy F(θ) = G(θ). Let us define it in the simplest form as

cp = const, (3.20)

i. e., cp is also assumed to be temperature independent. This assumption is justified by
the fact that the dependence of specific heat on temperature, and on pressure as well,
is much weaker for the majority of real fluids than the corresponding dependences of
viscosity and thermal conductivity. For example, for water at atmospheric pressure
with θ varying from 273K to 373 K, the deviation of cp from its mean value does not
exceed 1%.

From eqs. (3.20), (3.5), and (3.4), we find

F(θ) = G(θ) = −cp(θ ln θ − θ) + Aθ + B, (3.21)

where A and B are constants. Substitution of eq. (3.21) into eqs. (3.13) and (3.14) yields
the relations

s = −βV0p + cp ln θ − A; (3.22)
U = −βV0θp + B. (3.23)

Obviously, the values of the constants A and B are unimportant: they only determine
the reference point for calculating the values of s and U .

Equations (3.16)–(3.18) now take the form

βdθ
dt
= (1 + βθ)div v; (3.24)

dv
dt
= V0(1 + βθ){∇(−p + ζ div v) div[2μ(𝒟 −

1
3
div vI)]} + f; (3.25)

dθ
dt
−
βV0θ
cp

dp
dt
=
V0
cp
(1 + βθ)[Φ + div(k∇θ)] + h

cp
. (3.26)

Let us bring system (3.24)–(3.26) to the dimensionless form. There is a certain ar-
bitrariness in choosing the characteristic scales that allow us to pass to dimensionless
equations, but common sense suggests which scales should be used in each particu-
lar problem. The choice of such scales eliminates insignificant variables, so that in the
end only the basic variables are left. It is particularly important to choose appropriate
basic dimensionless parameters in studying themodel of convection in the “limiting”
cases where one or several parameters tend to zero (infinity).
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Let us introduce some characteristic quantities: l is the length, e. g., the linear
size of the domain occupied by the fluid, θ∗ is the difference in temperatures, μ0 is
the dynamic viscosity, μ = μ0μ(θ), k0 is the thermal conductivity, k = k0k(θ), ζ0 is
the volume viscosity, ζ = ζ0ζ (θ), and χ0 = k0/ϱ0cp is the thermal diffusivity, where
ϱ0 = 1/V0. Following the discussion above and the reasoning of [13], we introduce
dimensionless (primed) variables by the formulas

x = lx, t = l2

χ0
t, v = χ0

l
v, p = ϱ0ν0χ0

l2
p, θ = θ∗θ

 (ν0 =
μ0
ϱ0
). (3.27)

Substituting eqs. (3.27) into eqs. (3.24)–(3.26) and omitting the primes, we obtain the
system

εdθ
dt
= (1 + εθ)div v, (3.28)

dv
dt
= Pr(1 + εθ){∇(−p + ξζ div v) + 2 div[μ(𝒟 − 1

3
div vI)]} + f1, (3.29)

dθ
dt
− εε1θ

dp
dt
= (1 + εθ)[div(k∇θ) + ε1Φ + h1], (3.30)

where

ε = βθ∗, ξ = ζ0
μ0
, Pr = ν0

χ0
, ε1 =

ν0χ0
l2cpθ∗
, (3.31)

f1 =
l3

χ20
f, h1 =

l2h
cpk0θ∗
, (3.32)

ε is the Boussinesq parameter, and Pr is the Prandtl number. The dimensionless dissi-
pative function is described by the equality

Φ = ξ (div v)2 + 2𝒟 : 𝒟

ε1 is called the dissipation parameter.
Let the field of mass forces depend on time only: f = f(t). Then, the replacement

(where p̄ is themodified pressure)

p = p̄ + x ⋅ f1(t)Pr
−1 (3.33)

allows us to rewrite the equations of momentum (3.29) and energy (3.30) in the form

dv
dt
= Pr(1 + εθ){∇(−p̄ + ξζ div v) (3.29)

+ 2 div[μ(𝒟 − 1
3
div vI)]} − ε Pr θη(t);

dθ
dt
− εε1θ

dp̄
dt
= (1 + εθ)[div(k∇θ) + ε1Φ + h1] + εε1 Pr

−1 θ d
dt
(x ⋅ f 1(t)), (3.30)
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η(t) = l3f(t)/(ν0χ0) being the vector parameter of microconvection. Note that
εη(t) = Ra(t) is the vector of the Rayleigh numbers and the product Pr εη(t) = Gr
is the vector of the Grashof numbers.

Let us assume that f = (0,0,−g), where g = const is the acceleration due to gravity.
In this case, convection is called the thermogravitational convection, the parameter
η = l3g/(ν0χ0) is simply the microconvection parameter [177], while the Rayleigh and
Grashof numbers take the form

Ra = βθ∗l
3g/(ν0χ0), Gr = βθ∗l

3g/χ20, (3.34)

they play an important role in studying free convection.
To gain a certain idea about possible values of the parameters ξ , ε, ε1, Pr, and η,

let us consider one particular example (more details on dimensionless parameters are
given in the Chapter 4). As g ∼ 9.81m/s2, ϱ0 ∼ 103 kg/m3, μ0 ∼ 10−4–10−3 kg/(s⋅m),
χ0 ∼ 14 ⋅ 10−7m2/s, cp ∼ 103 J/(kg⋅deg), and β ∼ 10−4–10−3 deg

−1 for real fluids [234],
the dimensionless parameters can be estimated at θ∗ = 10 °C as ε ∼ 2.1 ⋅10−3, Pr ∼ 0.72,
η ∼ 7 ⋅ 106l3m−3, ξ ∼ 1, and ε1 ∼ 14 ⋅ 10−13l−2m2. As shown by [13] (see also Chapter 4),
this choice of parameters leads to “correct submodels” as ε → 0, whereas another
transition to dimensionless variables should beused in particular calculations. In par-
ticular, the time scale is defined in [237] as (βgθ∗l−1)−1/2. It describes the typical upfloat-
ing of ahot fluidparticle (or submersionof a coldfluidparticle); at θ∗ = 10 °C, the char-
acteristic velocity for a water pool with a depth l = 10m is v∗ = l(βgθ∗l−1)1/2 ≈ 30 cm/s.
In this case, however, there arises a singularity in pressure determinationwhen ε → 0.
In other words, there are some difficulties in comparing the results with the “limiting”
models.

3.4 Some submodels

At moderate Prandtl numbers and ε → 0, system (3.28), (3.29), (3.30) approximates
the system of equations

dv
dt
= Pr[−∇p̄ + 2 div(μ𝒟)]; (3.35)

div v = 0; (3.36)
dθ
dt
= div(k∇θ) + h1. (3.37)

This system is called the model of convection of a viscous heat-conducting fluid. It is
often used with constant values of μ and k (equal to unity); then, 2 div𝒟 = Δv and
div∇θ = Δθ in this model.

Remark 3.1. The velocity and pressure fields in model (3.35)–(3.37) form a closed sys-
tem. Nevertheless, they can be related to the temperature field bymeans of the bound-
ary conditions on the interface or free boundary (see Chapter 4, equality (4.147)).
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Let εη(t) → Ra(t) ̸= 0; then, system (3.28), (3.29), (3.30) in the limit as ε → 0
reduces to the system

dv
dt
= Pr[−∇p̄ + 2 div(μ𝒟)] − PrRa θ; (3.38)

div v = 0; (3.39)
dθ
dt
= div(k∇θ) + ε1Φ + h1. (3.40)

At constant μ, k, and ε1 = 0 (for many processes, ε1 is negligibly small), we have
Ra = Ra e3, and, from eqs. (3.38)–(3.40), we obtain the classical Oberbeck–Boussinesq
model

dv
dt
= Pr(−∇p̄ + Δv) − Pr Ra θe3; (3.41)

div v = 0; (3.42)
dθ
dt
= Δθ + h1. (3.43)

Let us assume that ε1 = 0 and h1 = 0; then, system (3.28), (3.29), (3.30) is called
themicroconvection model (see Chapter 4 for more details).

If the Prandtl number is high (Pr ≫ 1), andother parameters are fixed, then system
(3.28), (3.29), (3.30) in the limit as Pr→∞ yields a system of equations that describe
“creeping” motions:

εdθ
dt
= (1 + εθ)div v; (3.44)

[∇(−p̄ + ξζ div v)] + 2 div[μ(𝒟 − 1
3
div vI)] = ε(1 + εθ)−1θη(t); (3.45)

dθ
dt
− εε1

dp̄
dt
= (1 + εθ)[div(k∇θ) + ε1Φ + h1]. (3.46)

3.5 On boundary conditions

It is well known in hydrodynamics (see Chapter 2) which conditions should be im-
posed on the solid walls, on the free boundaries, and on the interfaces. Every time,
however, that the object under study is a compressible (and capable of expansion)
fluid, the question arises whether or not it is feasible to formulate the problem for a
domain with an impermeable solid boundary in such a case.

In any case, this formulation implies that the fluid volume is constant, which fact
may turn out to be incompatible with the condition of compressibility. In the course
of fluid motion, its volume can decrease, and then voids (cavities) should appear in a
real fluid; the fluid volume can also increase, owing to thermal expansion. Indeed, let
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52 | 3 Models of convection of an isothermally incompressible fluid

|ωt | be a volume consisting of the same particles at all time instants. Then we have

d|ωt |
dt
=

d
dt
∫
ωt

dω = ∫
ωt

div v dω. (3.47)

(Here, we use the Euler formula (1.14).) Let us assume that ε1 = 0 and h1 = 0 in the
energy equation (3.30). If we also take eq. (3.28) into account, we obtain the equation
of the change in the fluid volume from eq. (3.47):

d|ωt |
dt
= ε ∫
𝜕ωt

k 𝜕θ
𝜕n

dΓ, (3.48)

i. e., the rate of change of the volume of a given fluid mass is proportional to the heat
flux through its boundary. Obviously, the fluid volume can remain unchanged only in
some exclusive cases, e. g., when the boundary is thermally insulated (𝜕θ/𝜕n = 0). If
the boundary 𝜕ωt is isothermal (θ = θ0(x, t)), the volume changes. We therefore con-
clude that the problem for an isothermally incompressible fluid cannot be formulated
in a domain with a time-independent impermeable boundary, not even in a domain
with a constant volume. Note that if an infinite domain (e. g., an infinite layer) is con-
sidered, it is possible to avoid the contradiction under the assumption that the wall is
solid and undeformable. It is also reasonable to solve problems of the fluid flow in a
domain with some part of its boundary being free.

Poor or incompatibility of compressibility with the assumption of a constant total
volume of the fluid forces us to take the property of deformability of the walls under
consideration. The condition that should be imposed on the solid impermeable wall
is the velocity (by eqs. (2.46)), and this condition is independent of whether or not the
wall is fixed or deforms with time. The free boundary is subjected to the kinematic
(2.41) and dynamic (2.42) conditions, and also to one of the two conditions (2.43) or
(2.45). The latter conditions are also imposed on the solid walls. An essentially new
factor is the allowance for the properties of the deformable wall, and this offers many
possibilities. Now we need to consider a combined fluid–solid system, write a sys-
tem of equations for an elastic (or perhaps viscoelastic or plastic) body, and write the
conditions on the external part of this body (container) as well as on the fluid–solid
interface.

Among these problems, two are worth mentioning:
1) convection of a fluid filling a cavity in an elastic array;
2) convection of a fluid in a container, which is an elastic shell.

We can use, for example, the Marger–Vlasov equation system, with the addition of
temperature stresses if necessary. In the case of small deformations, it is also possible
to use the linear theory of shells. Both models are rather complicated and have not
been thoroughly studied. Therefore, it seems reasonable to consider a simple model
for elucidating the role of container elasticity in the problem of convection.
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In addition to the unknowns already introduced, we define a function ζ (x, t) on
the boundary S (solid wall or its part) of the domain Ω. This function describes the
normal displacement of the boundary point. Let us assume as a hypothesis that the
normal displacement ζ is proportional to the normal stress

𝒫nn = −γζ , (3.49)

where 𝒫nn = −p + 2μ(𝒟 − 3−1 div vI)n ⋅ n, n is the normal to S and γ is the stiffness
coefficient characterizing the boundary and, generally speaking, depending on x ∈ S.
It is positive, and we have ζ = 0 at γ =∞, i. e., the case with a nondeformable bound-
ary. Assuming the displacement ζ to be small, we obtain a problem for a fixed domain
Ω by shifting all boundary conditions (for velocity, temperature, and eq. (3.49)) to the
boundary S. Moreover the boundary S should obey the kinematic boundary condition

𝜕ζ
𝜕t
= −v ⋅ n (3.50)

and the no-slip condition for the tangential component of velocity

v ⋅ τ = 0, (3.51)

whereτ is the tangential vector toS. Certainly, theboundarydeformationsdue to shear
stresses are actually neglected here: in the case of fast rotation of the fluid, equality
(3.51) can be violated.

In the formulation considered, the function ζ is involved only into the boundary
conditions (3.49) and (3.50). Differentiating eq. (3.49) with respect to time and taking
into account eq. (3.50), we obtain a boundary condition for velocity in the form

𝜕𝒫nn
𝜕t
= −γv ⋅ n. (3.52)

3.6 Two problems of convection

Mechanical equilibrium
Let us find all possiblemechanical equilibrium states for system (3.28), (3.29), (3.30),
assuming convection to be thermogravitational, i. e., f = (0,0,−g), g = const. The
condition v = 0 in the convection problem imposes severe constraints on possible
temperature and pressure profiles, independent of the boundary conditions. Thus, we
assume that v = 0 in eqs. (3.28), (3.29), (3.30). As d/dt = 𝜕/𝜕t + ( v ⋅ ∇), it follows from
eq. (3.28) that θ is independent of time. Equations (3.29) and (3.30) take the form

∇p̄ = εηθ
1 + εθ

e3, e3 = (0,0, 1), (3.53)

−εε1θ
𝜕p̄
𝜕t
= div(k∇θ)(1 + εθ). (3.54)
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In deriving the last equation, we take into account that dx/dt = v = 0 and, for the sake
of simplicity, assume that h1 = 0, i. e., there are no internal sources of heat. It follows
from eq. (3.53) that p̄ = p̄(z, t), θ = θ(z, t) and

𝜕p̄
𝜕z
=

εηθ
1 + εθ
. (3.55)

Equation (3.54) reduces to

𝜕p̄
𝜕t
= −

1
εε1
⋅
1 + εθ
θ

d
dz
(k dθ

dz
). (3.56)

The right-hand side of eq. (3.56) is independent of time, p̄ = A(z)t+B(z), and it follows
from eq. (3.55) that A(z) = A = const. Therefore, the modified pressure p̄ in the case of
mechanical equilibrium is

p̄(z, t) = At + B(z), (3.57)

where the function B(z) is the solution of the equation

dB
dz
=

εηθ
1 + εθ
. (3.58)

In accordance with eqs. (3.57) and (3.56), the temperature satisfies the equation

d
dz
(k dθ

dz
) = −

εε1Aθ
1 + εθ
. (3.59)

The pressure in the mechanical equilibrium state can increase linearly with time if
ε1 > 0. If ε1 = 0, then p̄ is determined with accuracy to an arbitrary term—a function
of time. If ε1 = 0 (or ε1 > 0, A = 0), eq. (3.59) is integrated. Introducing a function K(θ)
such that K(θ) = k(θ), we obtain from eq. (3.59) at ε1A = 0

K(θ) = Cz +𝒟 (3.60)

with constants C and 𝒟. Note that the function K(θ) increases strictly monotoni-
cally for k(θ) > 0 everywhere. It follows from here that θ(z) is uniquely found from
eq. (3.60) with given C and 𝒟. Therefore, the solution of the boundary-value problem
for eq. (3.59) with specified values of θ(0) and θ(l) at the ends of the interval (0, l),
l > 0 is unique.

The situationbecomesmore complicated in the case of the boundary conditions of
the second or third kind (θ(0) = q1, θ(h) = q2 or θ(0)+b1θ(0) = q1, θ(l)+b2θ(l) = q2):
the solution may even fail to exist. If the boundary is thermally insulated (θ(0) =
θ(l) = 0), then the solution is an arbitrary constant.

It is interesting to compare these results for mechanical equilibrium with the re-
sults obtained for the Oberbeck–Boussinesq model (3.38)–(3.40) under the same as-
sumptions: f = (0,0,−g), h1 = 0. The previous conclusion that θ is independent of time
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is based on the assumption that ε ̸= 0 in eq. (3.28). If ε = 0, however, then at v = 0 it
follows from eqs. (3.38)–(3.40) that θ(z, t) is the solution of the one-dimensional heat-
conduction equation

𝜕θ
𝜕t
=
𝜕
𝜕z
(k 𝜕θ
𝜕z
). (3.61)

In this case, p̄ is determined from eq. (3.55), where it should be assumed that εη =
Ra (Rayleigh number) in the numerator and ε = 0 in the denominator (the Rayleigh
number is assumed to be finite as ε → 0).

Let us now draw some conclusions
At ε1 > 0, in the mechanical equilibrium state (v = 0), the modified pressure p̄ is
determined by equalities (3.57) and (3.58), while the temperature θ is determined by
eq. (3.59). For the temperature, a pair of boundary conditions at the ends of the interval
(0, l) should be imposed. Moreover, it is necessary to impose two more conditions to
fix the constant A and the additive constant, which is the initial condition of the value
of the function B(z).

If ε = 0, then the temperature is found from eq. (3.61), and it is necessary to im-
pose two conditions determining the constants C and𝒟. The pressure p̄ is found from
eq. (3.57), and one more condition is needed to determine the constant of integration.

It was already mentioned that the temperature is uniquely determined at A = 0
if the domain boundaries are isothermal. In the general case, it may turn out that the
distributions of θ and p̄ are reconstructed nonuniquely.

In the case of a non-heat-conducting fluid (ε1 = 0, k = 0), an arbitrary profile of
the temperature θ(z) is possible in mechanical equilibrium, and the pressure is found
from eq. (3.55).

Convection of the fluid in a finite cylinder
Let us consider one possible formulation of the problem of free convection in model
(3.28), (3.29), (3.30) in the case where a fluid fills a cylinder Ω = S × (0, l) with hori-
zontal end faces Σ0 = S × {0} and Σ1 = S × {l} (Figure 3.1). We assume that the end faces
are solid walls; the bottom Σ0 is absolutely solid, and the cover Σ1 is deformable. The
side surface 𝜕S × (0, l) is assumed to be an absolutely solid, thermally insulated wall.

Thus, after the transition to the dimensionless variableswith the use of eqs. (3.27),
the boundary conditions for temperature have the form

θ(0) = θ̄1, θ(1) = ̄θ2, (3.62)

with specified constants θ̄j = θj/θ∗. On the side surface 𝜕S × (0, 1), we have

𝜕θ
𝜕n
= 0, v = 0. (3.63)
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Figure 3.1: Domain of convection.

On the deformable cover Σ1 = S × {1}, the tangential components of velocity vanish:

v1 = v2 = 0; (3.64)

in addition, the kinematic and dynamic conditions (3.50) and (3.49) are satisfied (it is
taken into account that v1x = v2y = 0 at z = 1 by virtue of eq. (3.64)):

𝜕ζ
𝜕t
= v3; (3.65)

p − 4
3
μ
𝜕v3
𝜕z
= γζ . (3.66)

Here, ζ is the normal displacement (more exactly, the displacement in the z di-
rection) of the boundary point and γ is a positive constant—the stiffness coefficient
of the boundary. Conditions (3.65) and (3.66) are written in the dimensionless form.
The relationship with dimensional variables is described by the equalities ζ  = lζ ,
γ = ρ0ν0χ0γ/l3. According to eq. (3.33), the total pressure p is

p = p̄ − ηz, (3.67)

where η = l3g/ν0χ0 is the microconvection parameter. The no-slip condition is satis-
fied on the solid motionless bottom Σ0:

v = 0. (3.68)

We should also specify the total massM of the fluid. If Ωζ is the domain occupied
by the fluid at a given normal displacement ζ = ζ (x, y, t) of the cover, we have the
equality

∫
Ωζ

ρ(x, t) dxdydz = ∫
Ωζ

dxdydz
1 + εθ
= M. (3.69)

Here, we take into account equality (3.10), written in the form (in dimensionless vari-
ables) ρ = (1 + εθ)−1; therefore, the dimensional mass isMρ0l3. As ζ is assumed to be
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small, the temperature in a layer of thickness O(ζ ) near the cover can be assumed to
be constant and equal to θ̄2, with an error of the orderO(ζ 2). Then the condition of the
constant mass (3.69) is rewritten as

1

∫
0

∫
S

dxdydz
1 + εθ
+

1
1 + εθ̄2
∫
S

ζ (x, y, t) dxdy = M. (3.70)

The boundary conditions (3.62)–(3.66), (3.68), (3.70) together with the initial condi-
tions for v, p, θ, and ζ , and equations (3.28), (3.29), (3.30) form the initial-boundary
problem which describes the time evolution of the thermohydrodynamic field.

It turns out that the imposed conditions uniquely determine themechanical equi-
librium considered above. To find it, we substitute eqs. (3.67) and (3.57) into eq. (3.66).
As eq. (3.65) predicts that ζ is independent of time, then it follows from the resultant
equality At + B(1) − η = γζ that A = 0, while ζ = const and

B(1) − η = γζ . (3.71)

To find the temperature, we use equality (3.60), which takes the following form after
the constants C and𝒟 are found from the boundary conditions (3.62):

K(θ) = K(θ̄2)z + K(θ̄1)(1 − z). (3.72)

As K(θ) = k(θ) > 0, the implicit equation (3.72) uniquely determines the function
θ0(z), z ∈ [0, 1]. In particular, for the case with a constant thermal conductivity we
have k = 1, and the temperature profile is linear: θ0(z) = zθ̄2 + (1 − z)θ̄1 (as in the
classical meaning).

From the condition of a constant mass (3.70), we find ζ = ζ0:

ζ0 = (1 + εθ̄2)[
M
|S|
−

1

∫
0

dz
1 + εθ0(z)

]. (3.73)

In equilibrium, therefore, the cover is shifted over the vertical as a whole. Thus, the
question arises: What happens at the cover boundary? We can imagine that the side
surface is slightly stretched, as if the cover were attached by elastic springs. In fact,
the proposed model certainly does not describe phenomena that occur near the cover
boundary and can be used only in cases where this edge effect does not exert any
pronounced influence on the fluid flow inside the cylinder.

As the fluid cannot withstand negative pressures (at least, high negative pres-
sures) and p = γζ0 at z = 1 in accordance with eq. (3.66), the massM should be large.
Otherwise, we obtain ζ0 in accordance with eq. (3.73), the pressure p is negative, the
fluid separates from the cover, and a free surface is formed. The function p̄0(z) = B(z)
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is found from eq. (3.58), with the initial condition B(1) = η+ γζ0 (see equality (3.71)); it
is equal to

p̄0(z) = η + γζ0 − εη
1

∫
z

θ0(z)dz
1 + εθ0(z)

. (3.74)

For convenience, let us note two formulas for the integrals in eqs. (3.73) and (3.74):

1

∫
0

dz
1 + εθ0(z)

=
1
m

θ̄2

∫

θ̄1

K(θ)dθ
1 + εθ
,

1

∫
z

θ0(z)dz
1 + εθ0(z)

=
1
m

θ̄2

∫

θ̄0(z)

K(θ)θ
1 + εθ

dθ.

They are obtained with the use of the replacement

z = K(θ0) − K(θ̄1)
m

, m = K(θ̄2) − K(θ̄1).

Thus, we found that the unique solution corresponds to mechanical equilibrium
v0 = 0, p̄0(z), θ0(z), ζ0 = const.

The cover is an elastic plate
Let us consider a physically more exact model, retaining all conditions of the previ-
ous problem, except for the rather rough condition (3.66). Instead of that, we assume
that the cover is an elastic plate. If it has a thickness hp and density ρp and is fabri-
cated from a material with known Young’s modulus E and Poisson’s ratio ν, then its
dimensional stiffness is [118]

𝒟 =
Eh3p

12(1 − ν2)
.

The plate deflection ζ (x, y, t) is assumed to be so small that the linear theory can be
used; then, the equation of motion can be written as

ρphp
𝜕2ζ
𝜕t2
+𝒟Δ2ζ = p − 4

3
μ
𝜕v3
𝜕z
, (3.75)

where Δ2 is a biharmonic operator over the variables x and y. The dimensional hydro-
dynamic pressure on the cover z = l is indicated by p. This equation plays the role of
the boundary condition replacing eq. (3.66). We only need to pass to dimensionless
quantities and fix the boundary condition on the line of cover attachment 𝜕S × {l}. We
determine the dimensionless unknown ζ  by assuming that ζ = hpζ , and we retain
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the previously used scales for the remaining variables (see eq. (3.27)). Then, eq. (3.75),
which is the boundary condition at z = 1, is rewritten in the dimensionless form (the
primes are omitted) as

dζtt + �̄�Δ
2ζ = p − 4

3
μ
𝜕v3
𝜕z
,

p|z=1 = p̄(x, y, 1, t) − η.
(3.76)

Here we use equality (3.67). The parameters d and �̄� have the meaning of the di-
mensionless density and stiffness of the plate, respectively, and are equal to

d =
ρpχ0
ρ0ν0
(
hp
l
)
2
, �̄� = (

hp
l
)
4 l2E
12ρ0ν0χ0(1 − ν2)

.

Equation (3.76) should be satisfied in the domain S, and two boundary conditions
have to be imposed on the boundary 𝜕S of this domain. If, for instance, the side bound-
ary is absolutely stiff and the cover is rigidly attached to it, these conditions are

ζ = 0, 𝜕ζ
𝜕n
= 0. (3.77)

The initial conditions include specifying the functions ζ and ζt everywhere in S at
t = 0.

Obviously, the boundary condition (3.76) can be further improved by taking into
account the geometrical and physical nonlinearity and thermal stresses, by consider-
ing a shell instead of a plate, or by introducing this or that property of material viscos-
ity and external friction.

In the case with d/�̄� ≪ 1, condition (3.76) can be simplified (physically, it means
that the period of inherent oscillations of the plate ismuch smaller than the convective
time scale). Equation (3.76) becomes

�̄�Δ2ζ = p̄(x, y, 1, t) − η − 4
3
μ
𝜕v3
𝜕z
(x, y, 1, t) (3.78)

and no initial conditions for ζ are needed.
Note that the use of the boundary condition (3.76) or (3.78) in mechanical equi-

librium should lead to ζ0 = 0. Indeed, we have p̄ = p̄(z) in the equilibrium state; if
p̄(1) ̸= η, then the boundary condition (3.78) (for the equilibrium state, it coincides
with eq. (3.76)) cannot be satisfied. Thus, ζ0 = 0 and p̄(1) = η in equilibrium. Accord-
ing to eq. (3.69), the equilibrium state is only possible if the fluid mass is determined
by the equality

M = |S|
1

∫
0

dz
1 + εθ0(z)

. (3.79)
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Thus, the formulation of the problem of free convection, which is conventional for the
Oberbeck–Boussinesq model, is impossible here: with additional heating, the equi-
librium is instantly destroyed. It is possible, however, to consider a similar problem,
assuming that the extra fluid leaves the container through thin pores.

There are possible variations with regard to the deformable cover. A problem of
an absolutely solid cover on springs can be posed, assuming that conditions (3.65)
and (3.66) are satisfied, but the normal displacement ζ is independent of x and y, i. e.,
ζ = ζ (t). Another interesting problem can be posed, in which a membrane is used as
the cover. In this case, the term �̄�Δ2ζ in eq. (3.76) should be replaced by −TmΔζ , where
Tm is the tension force of the membrane. As a result, the boundary condition (3.76) is
replaced by

dmζtt − T̄mΔζ = p̄ − η −
4
3
μ
𝜕v3
𝜕z
, (3.80)

where dm and Tm are dimensionless constants:

dm =
ρmχ0
lρ0ν0
, T̄m =

Tml
ρ0ν0χ0
,

and ρm is the surface density of the membrane. Equation (3.80) should be supple-
mented with one more boundary condition on 𝜕S (of the first, second, or third kind).
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4 Hierarchy of convection models in closed volumes
In this chapter, threemodels that describe natural convection of the fluid in closed vol-
umes with constant transfer coefficients (Sections 4.1–4.8) are considered. The theory
of existence and uniqueness is proved for themicroconvectionmodel. Possible gener-
alizations and corollaries of resultant initial-boundary problems are discussed [172].
A comprehensive analysis of the comparative influence of temperature- and pressure-
induced changes in thermophysical parameters and of the work of pressure forces on
formation of natural convection in a weakly nonisothermal medium with extremely
small mass forces is performed in Section 4.9 in the subsonic flow approximation.
The limits of applicability of the Oberbeck–Boussinesq approximation for the descrip-
tion of this type of convection are determined. An asymptotically exact mathemati-
cal model for convection in weak force fields, with allowance for small changes in
the medium properties, is developed. One-value solvability of the basic boundary-
value problems is formulated, and the problem of local exact controllability is stud-
ied [77, 240]. Section 4.10 describes the convection model for a thermally inhomoge-
neously weakly compressible fluid [139] where all transfer coefficients are nonlinear
functions.

4.1 Initial relations

A viscous heat-conducting fluid is assumed to fill a finite vessel Ω whose boundary
is a solid nondeformable impermeable wall with a specified heat-flux or temperature
distribution. The fluid is subjected to the gravity force with the acceleration g. It is
known that the fluid can be in equilibrium under these conditions only if the thermal
regime on the boundary is chosen in a special manner. The “general location case”
corresponds to the emergence of convection.

In the following, the fluid is considered as a two-parameter thermodynamic
medium with the state parameters θ (absolute temperature) and p (pressure). The
fluid density ϱ is determined by the state equation (see eq. (3.1))

ϱ = R(θ, p), (4.1)

where the functionR is specifiedbelow.As thebasicmodel,weusemodel (1.46),where
f = g, h = 0, while λ, k, and μ are positive constants. Then, the functions v, p, and θ
satisfy the system of equations

dϱ
dt
+ ϱdiv v = 0; (4.2)

ϱdv
dt
= ∇(−p + λ div v) + μΔv + ϱg; (4.3)

ϱθds
dt
= kΔθ +Φ,

https://doi.org/10.1515/9783110655469-004
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and the dissipative function is determined by equality (1.45). The last equation of this
system canbe rewritten in amore convenient form (see the beginning of Section 3.2) as

ϱcp
dθ
dt
+
θ
ϱ
(
𝜕ϱ
𝜕θ
)
dp
dt
= kΔθ +Φ, (4.4)

where cp = θ𝜕s/𝜕θ is the specific heat at constant pressure.
System (4.1)–(4.4) becomes closed if the dependence of the specific heat cp on θ

and p is known. The simplest form of this dependence, cp = const > 0 (see eq. (3.20)),
is considered below.

Let us now discuss the state equation. The writing of it in the form (4.1) is dictated
by the fact that significant variations of temperature (and even greater variations of
pressure) in true (“droplet”-type) liquids, in contrast to gases, lead to small variations
in density. We can naturally assume that R is a nondecreasing function of p. Elimi-
nating anomalous situations from our consideration (the classical example is water
close to the temperature of 273 K, see [144, 226]), we assume that the function R(θ, p)
monotonically decreaseswith increasing θ. In consideringflows initiatedbybuoyancy
forces (they constitute the essence of the theory of thermal gravitational convection),
the dependence of ϱ on θ is usually approximated by the linear function

ϱ = ϱ0[1 − β1(θ − θ0) + β2(p − p0)],

where β1 and β2 are positive constants, while ϱ0, θ0, and p0 are the characteristic val-
ues of density, temperature, and pressure, respectively. In our case, however, we use
another approximation of the state equation:

ϱ = ϱ0[1 + β1(θ − θ0)]
−1[1 + β2(p − p0)]. (4.5)

From the viewpoint of applications, the fact that dependence (4.5) differs from a
linear function is insignificant. Indeed, the relative error here has the order (β1θ∗)2,
where θ∗ is the maximum difference in temperature in the motion considered. In par-
ticular, its value for water is within 10−5.

System (4.2)–(4.5) is the starting point for further considerations (Sections 4.2–
4.8). It can be resolved with respect to the derivatives dv/dt, dθ/dt, and dp/dt; there-
fore, we need to specify the initial values of all sought functions:

v = v0(x), x ∈ Ω, t = 0; (4.6)
θ = θ0(x), x ∈ Ω, t = 0; (4.7)
p = p0(x), x ∈ Ω, t = 0. (4.8)

The boundary Σ of the domain Ω is subjected to the no-slip condition for velocity

v = 0, x ∈ Σ, t > 0, (4.9)
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and one of two temperature conditions, either

k 𝜕θ
𝜕n
= q(x, t), x ∈ Σ, t > 0 (4.10)

or

θ = h(x, t), x ∈ Σ, t > 0, (4.10)

where 𝜕/𝜕n is the derivative along the external normal to Σ.
It is not our purpose here to review the results of how well problems (4.2)–(4.10)

and (4.2)–(4.10) are posed. Note that the theorem of uniqueness of the classical solu-
tion of each of these problems is actually contained in [209]. If the functions v0, θ0,
p0, q, and h, and the surface Σ are rather smooth, the theorem of existence is also valid
for these problems, at least on a small interval of time [218].

4.2 Similarity criteria

Assuming the hypothesis on a constant specific heat cp and specifying the state equa-
tion (4.5), we eliminate functional arbitrariness in the system of hydrodynamic equa-
tions. The resultant system (4.2)–(4.5) includes nine dimensional parameters: g = |g|,
μ, λ, k, cp, ϱ0, β1, β2, θ0, and p0. These parameters can be combined into six indepen-
dent dimensionless combinations, and each combination can be considered as a sim-
ilarity criterion for convective flows. The total set of the governing parameters (and,
consequently, similarity criteria) becomes greater if we consider the motion emerging
from a given initial state and supported by a specified heat-flux or temperature dis-
tribution on the boundary. In particular, setting the flow domain Ω defines the char-
acteristic linear size l = diamΩ. Other important dimensional characteristics are the
characteristic time τ of changes in the functions f (x, t) or h(x, t) determining the ther-
mal regime on the boundary and also the characteristic difference in temperature θ∗
in the considered flow. The latter quantity has the same order as (qmax − qmin)l/k or
hmax − hmin, where max andmin are calculated over the domain Σ× [0, ̄t] ( ̄t is the time
interval in which problem (4.2)–(4.10) or (4.2)–(4.10) is considered).

Considering the quantity θ∗ as the characteristic temperature scale, we can form
one important similarity criterion (Boussinesq number)

ε = β1θ∗, (4.11)

characterizing the response of density to a change in temperature. Another temper-
ature characteristic of the process θ0, which is involved into the state equation (4.5),
can be identifiedwith themean temperature of the fluid. Obviously, the parameters θ∗
and θ0 are independent. Another dimensional parameter p0 in eq. (4.5) can be set to
zero without loss of generality, because eqs. (4.2)–(4.4) admit the equivalence trans-
formation p̂ = p − p0.
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Let us introduce the notations ν = μ/ϱ0 (kinematic viscosity coefficient) and χ =
k/ϱ0cp (thermal diffusivity coefficient). They are used to compose two more similarity
criteria:

Pr = ν/χ, ξ = λ/μ. (4.12)

We further assume that the parameters Pr (Prandtl number) and ξ have the order of
unity. At the same time, the parameter ε is always small, which serves as a basis for
asymptotic expansions used to derive equations of thermal gravitational convection
from exact hydrodynamic equations. (The procedure of expansion with respect to the
parameter ε in the convection theory was performed for the first time in [133] for the
case where the function R in eq. (4.1) is linear with respect to θ and is independent
of p.) Nowwemust determine the characteristic “internal” time scale (it does not nec-
essarily coincide with the previously introduced quantity τ). The so-called convective
scale tc = (l/gε)1/2 is usually used for this purpose. In order of magnitude, it coin-
cides with the time of up-floating of a hot fluid particle to a height l. As tc →∞ when
g → 0, while wewant to construct a convectionmodel uniformly suitable for arbitrary
infinitesimal values of g, we choose the characteristic time in the form tf = l2/χ, which
is the temperature relaxation time. As the Prandtl number is Pr ∼ 1, then the time of
relaxation of viscous stresses ts = l2/ν has the same order as tf .

Using the characteristic time, we can determine two characteristic velocities. One
of them, Ve = εχ/l, is introduced on the basis of the continuity equation (4.2) and
characterizes the velocity of uniform expansion of the fluid owing to the local heat
source placed into this fluid. The other velocity, Vb = gεl2/ν, is determined from the
momentum equation (4.3) with equated orders of the terms μΔv and ϱ0β1(θ − θ0)g
(the latter term characterizes the contribution of buoyancy forces to the total force
balance). Owing to the condition Pr ∼ 1, the left-hand side of eq. (4.3) has the same
order.

The steady component in the momentum equation (it is also present in the state
at rest) is compensated by the hydrostatic pressure phs(x). Let us consider the func-
tion p̄ = p − phs(x). We can naturally assume that the term ∇p̄ has the same order
as the remaining dynamic components of forces acting on the fluid particle. This fact
determines the characteristic scale of the quantity p̄: ϱ0gεl.

Let us denote the ratio of the characteristic velocities Vb and Ve by η. The param-
eter

η = gl
3

νχ
(4.13)

plays an important role in the microconvection theory [177, 176, 161]. It was shown
in these papers that the classical Oberbeck–Boussinesq model cannot be used to de-
scribe thermal gravitational convection if the parameter η has the order smaller than
or equal to unity. The quantity η has a simple physical meaning: it characterizes the
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relative contribution of the factors of buoyancy and volume expansion of the fluid to
velocity field formation. Our further considerations will involve an important dimen-
sionless quantity

δ = β2ϱ0νχ
l2
, (4.14)

which can be called the compressibility parameter.
Two more similarity criteria,

ε1 =
νχ

l2cpθ∗
, ε2 =

νχβ1θ0
l2cpθ∗
, (4.15)

characterize the relative contribution of the dissipative function Φ and the term pro-
portional to dp/dt to the energy equation (4.4). Finally, the ratio of the previously in-
troduced characteristic times tq and τ yields the similarity criterion ζ = tq/τ. Note that
another possible similarity criterion, which includes p0, is irrelevant, because p0 can
be eliminated from the state equation (4.5) with the use of the equivalence transfor-
mation.

Thus, we have eight similarity criteria: Pr, ξ , ε, η, δ, ε1, ε2, and ζ . They are inde-
pendent and can be called the basic criteria. Certainly, the choice of the basic criteria
is not unique. For instance, instead of ε, δ, and ε1, it is possible to use the parameters
ε̂ = β1θ0, ϱ

1/3
0 (µg)

2/3β2 (analog to the compressibility parameter), and cpθ0(ϱ0/µg)2/3

(dimensionless heat capacity). Then, these three parameters, together with Pr and ξ ,
form five (i. e., the greatest possible number) “internal” similarity criteria determined
only by the fluid properties and by the acceleration due to gravity g. The remaining
three parameters η, ε2, and ζ can be naturally called the external parameters, be-
cause they involve the characteristics of the flow domain and the thermal regime on
the boundary. The initial choice of the basic similarity criteria, however, is more con-
venient, because it is these criteria that are formed during nondimensionalization of
eqs. (4.2)–(4.5), which will be performed in the next section.

4.3 Transition to dimensional variables

Let us choose the quantities l, l2/χ, χ/l, ϱ0νχ/l2, and θ∗ as the characteristic scales of
length, time, velocity, pressure, and temperature, respectively, and again indicate the
differences θ − θ0 and p − p0 by θ and p. Note that the characteristic velocity V =
χ/l differs from the previously introduced quantities Ve and Vb. This is caused by our
desire, by analogy with [68], to make the characteristic velocity independent of the
temperature condition on the domain boundary and thus give “equal rights” to the
velocity scale and the length and time scales.

We introduce dimensionless (primed) variables by the formulas (see eqs. (3.27))

x = lx, t = l
2

χ
t, v = χ

l
v, p̂ = ϱ0νχ

l2
p, θ = θ∗θ

. (4.16)
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We substitute eqs. (4.16) into eqs. (4.2)–(4.5) and omit the primes. The state equation
(4.5) in dimensionless variables takes the form

ϱ = (1 + εθ)−1(1 + δp) (4.17)

(the density scale here is ϱ0). Owing to eqs. (4.16) and (4.17), the dimensionless form
of the continuity equation (4.2) is

δ
1 + δp
⋅
dp
dt
−

ε
1 + εθ
⋅
dθ
dt
+ div v = 0, (4.18)

and the momentum equation (4.3) becomes

1 + δp
1 + εθ
⋅
dv
dt
= Pr[∇(−p + ξ div v) + Δv] + ηPr(1 + δp)

1 + εθ
e, (4.19)

with the notation e = |g|/g. Finally, the energy equation (4.4) in dimensionless vari-
ables is written in the form

1 + δp
1 + εθ
⋅
dθ
dt
−
ε2 + εε1θ
1 + εθ

⋅
dp
dt
= Δθ + ε1Φ, (4.20)

where the dimensionless dissipative function Φ is determined by the equality

Φ = (ξ + 2
3
)(div v)2 + 2D : D

(here D is the dimensionless deviator of the strain rate tensor). Equations (4.18)–
(4.20) contain seven parameters, which can be divided into four groups in order of
decreasing of their typical values. The first group consists of one element η. Under the
terrestrial conditions and for usual fluids, the value of η is rather high. Thus, if the
vessel diameter is l = 10−2m (this typical size will also be used in what follows), and
the fluid filling this vessel is water at a temperature of 293 K, then we have η = 6.9 ⋅ 107

for g = 9.81m/s2 in accordance with eq. (4.13). Under the microgravity conditions,
however, in the range of small sizes, and also for high-viscosity fluids, the values of η
can be of the order of unity, which gives us the grounds to call η the microconvection
parameter.

The second group is formed by the parameters Pr and ξ determined by eqs. (4.12).
As was noted above, both these quantities are assumed to be of the order of unity. We
are not aware of any liquids with high values of ξ (i. e., the ratio of the coefficients of
the second and first viscosities). Concerning the Prandtl number Pr, this parameter
varies within wide limits for real liquids (in contrast to gases). Nevertheless, the as-
sumption Pr ∼ 1 unites a large group of fluid media, including water, ethyl alcohol,
carbon tetrachloride, and all gases.

The third group again consists of one parameter ε (Boussinesq number) deter-
mined by eq. (4.11). As the volume coefficient of thermal expansion β for usual liquids
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does not exceed 2 ⋅ 10−3 1/K, the value of ε is small even for the characteristic tempera-
ture difference θ∗ = 50K. For θ∗ = 10 K (this value of θ∗will also be used for estimating
the values of ε1 and ε2), however, we have ε = 2.1 ⋅ 10−3 for water at room temperature.

Finally, the fourth group of parameters consists of δ, ε1, and ε2 determined by
eqs. (4.14) and (4.15). Let us first estimate the value of δ. This parameter is proportional
to the isothermal compressibility coefficient β2 involved into the state equation (4.5).
For usual liquids, β2 lies in the interval 10−9–10−10m2/N. Taking into account that β2 =
4.9 ⋅ 10−10m2/N for water, eq. (4.14) with l = 10−2m yields the value δ = 6.9 ⋅ 10−15. The
value of the parameter ε1 under the same conditions is slightly greater (but still small
as compared with ε): ε1 = 3.4 ⋅ 10−14, and ε2 = 1.8 ⋅ 10−15 has the same order as δ.

Then, we use the fact that the parameters δ, ε1, and ε2 are small for asymptotic
simplification of system (4.18)–(4.20). Taking into account that the quantities εi (i =
1, 2) in typical situations have the same order as δ andwanting to reduce the procedure
to expansion in one small parameter, we assume that εi = αiδ, where αi = O(1) as
δ → 0. Then, eq. (4.20) can be presented as

1 + δp
1 + εθ
⋅
dθ
dt
− δα2 + εα1θ

1 + εθ
⋅
dp
dt
= Δθ + δα1Φ. (4.20)

The boundary conditions for system (4.18)–(4.20) are conditions (4.9) and (4.10) or
(4.9) and (4.10) rewritten in dimensionless variables. Retaining the previous nota-
tions for the dimensionless heat flux or temperature specified on the domain bound-
ary, we rewrite the boundary conditions in the form

v = 0, x ∈ Σ, t > 0; (4.21)
𝜕θ
𝜕n
= f (x, ζt), x ∈ Σ, t > 0, or (4.22)

θ = h(x, ζt), x ∈ Σ, t > 0. (4.22)

We introduce the parameter ζ into the right-hand sides of eqs. (4.22) and (4.22)
because we want to consider situations with appreciably different values of tq (time
of temperature relaxation in the volume Ω) and τ (characteristic time of change in
the heat flux or temperature specified on the boundary Σ). For example, let the vessel
diameter be l = 10−2m, let the fluid be water at room temperature, and let the temper-
ature on the vessel surface be a periodic function of time with a period τ = 14 s; then,
we have ζ = tq/τ = 50.

To close the formulation of the problem, we need to rewrite the initial conditions
(4.6)–(4.8) in dimensionless variables:

v = v0(x), x ∈ Ω, t = 0; (4.23)
θ = θ0(x), x ∈ Ω, t = 0; (4.24)
p = p0(x), x ∈ Ω, t = 0. (4.25)

As before, the dimensionless functions determining the initial distributions of veloc-
ity, temperature, and pressure again retain their previous notations.
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4.4 Expansion in the small parameter

Below, we construct an asymptotic expansion of the solution of system (4.18)–(4.20)
in the compressibility parameter δ → 0 under the assumption that the remaining
parameters involved into this system (ε, Pr, ξ , η, α1, and α2) retain finite values.

System (4.18)–(4.20) is singularly perturbed, because the small parameter δ in
the first and third equations of this system is amultiplier at the evolutionary derivative
dp/dt. It is clear a priori that the presentation of the solution of this system in the form
of series in powers of δ cannot exactly satisfy all required conditions asymptotically.
Using this expansion, however, it is possible to satisfy the equations of the system, all
boundary conditions, and twofirst initial conditions (4.23) and (4.24)with an arbitrary
power accuracy in terms of the parameter δ. Thus, we seek for the solution of system
(4.18)–(4.20) in the form of formal power series

v =
∞
∑
k=0

δkv(k)(x, t), θ =
∞
∑
k=0

δkθ(k)(x, t),

p = P(t) − 1
δ
+
∞
∑
k=0

δkp(k)(x, t).
(4.26)

In contrast to v and θ, the function p has a singular component when δ → 0. Its origi-
nation has a clear physical meaning. The quantity δ−1[P(t) − 1] can be identified with
the fluid pressure averaged over the domainΩ. If the total heat flux through the bound-
ary Σ of the domainΩdiffers fromzero, the fluid temperature averaged overΩ changes.
As the vessel walls are motionless and impermeable, the mass of the enclosed fluid
is retained. By virtue of the state equation (4.17) and the assumption concerning the
small value of δ, finite changes in the mean temperature will lead to mean pressure
changes of the order of δ−1 as δ → 0.

Substitution of series (4.26) into eqs. (4.18)–(4.20) yields a recurrent system for
the functions v(k), θ(k), and p(k) (k = 0, 1, . . . ). The system satisfied by the functions
v(0), θ(0), and p(0) is nonlinear. All subsequent triples of the functions v(j), θ(j), p(j)

(j = 1, 2, . . . ) are determined from linear systems of equations with homogeneous
boundary and initial conditions. As our attention is mainly focused on the principal
terms of expansions (4.26), we consider the system satisfied by the functions v(0),
θ(0), and p(0). Substituting eqs. (4.26) into eqs. (4.18)–(4.20) and passing to the limit
at δ → 0, we obtain

Ṗ
P
−

ε
1 + εθ(0)

(θ(0)t + v
(0) ⋅ ∇θ(0)) + div v(j) = 0; (4.27)

P
1 + εθ(0)

(v(0)t + v
(0) ⋅ ∇v(0)) = Pr[∇(−p(0) + ξ div v(0)) + Δv(0)] + ηPrPe

1 + εη(0)
; (4.28)

P
1 + εθ(0)

(θ(0)t + v
(0) ⋅ ∇θ(0)) − Ṗ α2 + εα1θ

(0)

1 + εθ(0)
= Δθ(0), (4.29)

where Ṗ means the derivative of the function P(t).

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.4 Expansion in the small parameter | 69

Let us formulate the initial-boundary problem for system (4.27)–(4.29). In order
to be certain, we further assume that a condition of the second kind is imposed for
temperature on the surface Σ. By virtue of eqs. (4.21), (4.22), and (4.26), we have

v(0) = 0, x ∈ Σ, t > 0; (4.30)

𝜕θ(0)

𝜕n
= q(x, ζt), x ∈ Σ, t > 0. (4.31)

Conditions (4.23) and (4.24) yield the initial conditions for the functions v(0) and θ(0):

v(0) = v0(x), x ∈ Ω, t = 0; (4.32)

θ(0) = θ0(x), x ∈ Ω, t = 0. (4.33)

The initial condition for the pressure p(0) is not imposed, because system (4.27)–(4.29)
is not evolutionary with respect to p(0). Moreover, eqs. (4.27)–(4.33) determine the
function p(0) with accuracy to an arbitrary time-dependent summand. (The functions
p(j), j = 1, 2, . . . possess similar arbitrariness.) Using this arbitrariness, we can ensure
that the relations

∫
Ω

p(k)(x, t) dx = 0, k = 0, 1, . . . ,

are satisfied for all t ≥ 0. With such normalization of p(k), the value of δ−1[P(t) − 1]
exactly coincides with the mean pressure of the fluid in the domain Ω for all t ≥ 0.

To close the formulation of the initial-boundary problem, we need to derive an
equation determining the function P(t). For this purpose, we multiply eq. (4.27) by P
and eq. (4.29) by ε and sum up the resultant equalities. This yields

[1 − ε(α2 + εα1θ
(0))

1 + εθ(0)
]Ṗ + div(Pv(0) − ε∇θ(0)) = 0.

Integrating this relation over the domain Ω and taking into account conditions (4.30)
and (4.31), we obtain the required equation:

Ṗ ∫
Ω

[1 − ε(α2 + εα1θ
(0))

1 + εθ(0)
] dx = ε∫

Σ

q dΣ. (4.34)

As the initial condition for eq. (4.34), we choose

P(0) = 1, (4.35)

which, by virtue of eq. (4.26), is consistentwith the natural assumption that the values
of the function p0(x) are finite as δ → 0.
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Problem (4.27)–(4.35) is a rather complicated object for studying. It suffices to tell
that eqs. (4.27) and (4.28) in the limiting case with ε = 0 (then, P = 0 by virtue of
eqs. (4.34) and (4.35)) transform to the Navier–Stokes equations for an incompressible
fluid. It is known that the issue of one-value solvability “as a whole” of the initial-
boundary problem for this system in the general three-dimensional case is still open.
Therefore, local theorems of existence are of interest for problem (4.27)–(4.35). Let us
formulate one of them.

Assuming the problem data (v0, θ0, q) to be rather smooth, wemake them comply
with the local matching conditions

v0 = 0, x ∈ Σ; (4.36)

qt(x,0) =
𝜕G
𝜕n
, x ∈ Σ; (4.37)

[1 − ε(α2 + εα1θ0)
1 + εθ0

]Ṗ0 + div(v0 − ε∇θ0) = 0, x ∈ Ω, (4.38)

where

Ṗ0 = ε{∫
Ω

[1 − ε(α2 + εα1θ0)
1 + εθ0

] dx}
−1
∫
Σ

q(x,0) dΣ; (4.39)

G(x) = (1 + εθ0)Δθ0 − v0 ⋅ ∇θ0 + Ṗ0(α2 + εα1θ0) ≡ θ
(0)
t (x,0)

and a nonlocal condition formulated in terms of the function π0(x) = p(0)(x,0). This
function is the solution of the boundary-value problem

div[(1 + εθ0)∇π0] = divF − Pr
−1 PH , x ∈ Ω;

(1 + εθ0)
𝜕π0
𝜕n
= F ⋅ n, x ∈ Σ,

where the following notations are introduced:

F = (1 + εθ0)(ξ∇div v0 + Δv0) + ηPe3 − Pr
−1Pv0 ⋅ ∇v0;

H = Ṗ0[G
ε2(α1 − α2)
(1 + εθ0)2

− div v0] − P̈0[1 −
ε(α2 + εα1θ0)

1 + εθ0
] ≡ div v(0)t (x,0);

P̈0 = {∫
Ω

[1 − ε(α2 + εα1θ0)
1 + εθ0

] dx}
−1
[ε∫

Σ

qt(x,0) dΣ − Ṗ0ε
2(α1 − α2)∫

Ω

G dx
(1 + εθ0)2

].

The required non-local condition has the form

(1 + εθ0)[∇π0 = (∇π0 ⋅ n)n] = F − (F ⋅ n)n, x ∈ Σ. (4.40)

It is similar to Solonnikov’s condition [216] obtained in studying solvability of the
initial-boundary problem for the Stokes system in classes of smooth functions.
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Statement 4.1. Let the surface Σ belong to the Hölder class C4+α, 0 < α < 1, and let the
functions involved into conditions (4.31)–(4.33) satisfy the smoothness requirements
q ∈ C3+α,(3+α)/2(Σ × [∞)), v0 ∈ C2+α(Ω̄), θ0 ∈ C4+α(Ω̄) and the matching conditions
(4.36)–(4.40). Then, there exists N > 0 such that problem (4.27)–(4.35) has a solution
v(0) ∈ C2+α,(1+α)/2(Q̄N ), θ(0) ∈ C3+α,(3+α)/2(Q̄N ), ∇p(0) ∈ Cα,α/2(Q̄N ), P ∈ C(2+α)/2[0,N],
where QN = {x, t : x ∈ Ω,0 < t < N}. The functions v(0), θ(0), and P are uniquely deter-
mined, and the function p(0) is uniquely determined under the additional condition

∫
Ω

p(0) dx = 0, 0 ≤ t ≤ N . (4.41)

In what follows, we refer to eqs. (4.27)–(4.29), (4.34) the equations of convection
of a weakly compressible fluid. These equations are naturally obtained by generalizing
the equations of convection of an isothermally incompressible fluid (see Chapter 3).

Similar to Statement 4.1, the local theorem of existence of a smooth solution of the
initial-boundary problem for the equations of convection of a weakly compressible
fluid with a general temperature condition of the third kind instead of eq. (4.10) or
eq. (4.10) was proved in [77].

Substitution of the expressions v = v(0), p = δ−1(P − 1) + p(0), and θ = θ(0) into
system (4.18)–(4.20) yields residues of the order ofO(δ) as δ → 0. The boundary condi-
tions (4.21) and (4.22) and the initial conditions (4.23) and (4.24) are satisfied exactly
in this case. The constructed approximate solution can be expected to approximate
the solution of the initial-boundary problem (4.18)–(4.25) at large times with the same
order of approximation as δ → 0.

As the function π0(x) = p(0)(x,0) obtained by solving problem (4.27)–(4.35),
(4.40) does not necessarily coincide with the function p0(x) specifying the initial
pressure distribution in the initial problem, the formal asymptotics (4.26) does not
work at small times. It is extremely difficult to describe the transitional process ac-
companied by propagation of high-frequency, nonlinear acoustic waves in a viscous
heat-conducting fluid, and this has not yet been done. A certain idea about this pro-
cess can be obtained by studying its linear model.

4.5 Equations of microconvection of an isothermally
incompressible fluid

This is term for a fluid whose density depends on temperature only. We write the state
equation of an isothermally incompressible fluid in the form (see eq. (3.10))

ϱ = ϱ0(1 + εθ)
−1. (4.42)

Equality (4.42) is obtained from eq. (4.17) in the limit as δ → 0. As was already noted
in Section 4.1, owing to the small value of the Boussinesq number ε = βθ∗ (here we
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assume that β1 ≡ β), the differences between approximations of the state equation
ϱ(θ) by a linear function or by a function of the form (4.42) are insignificant. At the
same time, among numerous possible approximations of the function ϱ(θ), the de-
pendence (4.42) has some wonderful properties, which were noted in [177, 237] (see
also Chapter 3). In particular, the specific heat at constant pressure cp of an isother-
mally incompressible fluid is independent of pressure if and only if the state equation
has the form (4.42). Another important property of the chosen state equation is the
possibility of drastic simplifications of the equations of convection of an isothermally
incompressible fluid. Before applying these simplifications, we obtain the condition
of solvability of the initial-boundary problem for such equations. Assuming that δ = 0
in eqs. (4.18)–(4.20) (which corresponds to the case where density is independent of
pressure), we obtain

−
ε

1 + εθ
⋅
dθ
dt
+ div v = 0; (4.43)

1
1 + εθ
⋅
dv
dt
= Pr[∇(−p + ξ div v) + Δv] + ηPr

1 + εθ
e; (4.44)

1
1 + εθ
⋅
dθ
dt
= Δθ. (4.45)

System (4.43)–(4.45) is supplemented with the boundary conditions (4.21) and (4.22)
and with the initial conditions (4.23) and (4.24).

It follows from eqs. (4.43) and (4.45) that

div(v − ε∇θ) = 0. (4.46)

Integrating the last equality over the domain Ω and using conditions (4.21) and (4.22),
we find

∫
Σ

q dΣ = 0, t ≥ 0. (4.47)

This is the necessary condition for the solvability of problem (4.43)–(4.45), (4.21)–
(4.24). The physical treatment of condition (4.47) is rather obvious. For an isother-
mally incompressible fluid which completely fills a bounded domain, a nonzero total
heat flux through its boundary induces amass flux, which is impossible if the domain
boundary is a nondeformable impermeable wall.

The same reasoning shows that the problem of convection of an isothermally in-
compressible fluid in a closed volume becomes only conditionally well-posed if con-
dition (4.22) for temperature is replaced by the condition of the first kind (4.22) or by
a condition of the third kind. The model of convection of a weakly compressible fluid
does not have this drawback. It should also be noted that the satisfaction of condi-
tion (4.47) leads to the exact coincidence of eqs. (4.43)–(4.45) with eqs. (4.27)–(4.29),
which are satisfied by the principal terms of expansion (4.26). In this case, according
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to eqs. (4.34), (4.35), we have P = 1, and there is no singular component in expansion
(4.26) for pressure.

Let us return to system (4.43)–(4.45). Equality (4.46), which follows from this sys-
tem, means that the vector v − ε∇θ is a solenoidal vector. This fact suggests that we
can pass to new sought functionsw and q in the system considered. These functions
are determined by the relations

w = v − ε∇θ, q̄ = p − ε(1 + ξ − Pr−1)Δθ. (4.48)

In the new variables, system (4.43) takes the form

wt +w ⋅ ∇w + ε[∇θ ⋅ ∇w + (w ⋅ ∇)∇θ − ∇(w ⋅ ∇θ)]

+ ε2[(∇θ ⋅ ∇)∇θ + Δθ∇θ − ∇(|∇θ|2)]
= Pr(1 + εθ)(−∇q̄ + Δw) + ηPr e3; (4.49)

divw = 0; (4.50)

θt +w ⋅ ∇θ + ε|∇θ|
2 = (1 + εθ)Δθ. (4.51)

Equations (4.49)–(4.51)were derived in [133] andwere later called themicroconvection
equations. Andreev et al. [17] demonstrated that the momentum equation (4.49) can
be transformed to a more compact form:

wt +w ⋅ ∇w + ε rotw × ∇θ + ε
2 div(∇θ ⊗ ∇θ − |∇θ|2I)

= Pr(1 + εθ)(−∇q̄ + Δw) + ηPr e3. (4.52)

If we replace θ in eqs. (4.50)–(4.52) by c (concentration of the passive admixture), we
obtain equations that describe the concentration convection under microgravity con-
ditions or at microscales. These equations were derived in [161].

Themost natural problem for system (4.50)–(4.52) is the initial-boundary problem

w = −ε∇θ, x ∈ Σ, t > 0; (4.53)
𝜕θ
𝜕n
= q(x, ζt), x ∈ Σ, t > 0; (4.54)

w = w0(x), x ∈ Ω, t = 0; (4.55)
θ = θ0(x), x ∈ Ω, t = 0. (4.56)

The boundary condition (4.53) is the no-slip condition rewritten in terms of the mod-
ified velocity w. The function w0(x) involved into the initial condition (4.55) is equal
to v0(x) − ε∇θ0(x) by virtue of eqs. (4.23) and (4.48).

We further assume that w0 = εu0, where the function u0 is independent of ε. In
this case, the initial velocity field v0 = ε(u0 + ∇θ0) as ε → 0 has the same order as
the characteristic velocity of up-floating of a nonuniformly heated fluid in the gravity
field as well as the characteristic velocity of uniform expansion of the fluid induced by
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a local heat source (let us recall that the two last quantities have an identical order at
η ∼ 1). The assumption made above allows us to seek the solution of problem (4.50)–
(4.56) in the form of series in powers of the small parameter ε (Boussinesq number):

θ =
∞
∑
i=0

εiθ(i)(x, t), w =
∞
∑
i=1

εiw(i)(x, t),

q = ηe3 ⋅ x +
∞
∑
i=1

εiq(i)(x, t).
(4.57)

The function θ(0) (here, it has a differentmeaning from that in the previous paragraph)
is determined as the solution of the second initial-boundary problem for the linear ho-
mogeneous equation of heat conduction. The functionsw(i) and q(i) and the functions
θ(i) (i = 1, 2, . . .) are found from the consecutively solved first initial-boundary problem
for the Stokes system and second initial-boundary problem for the linear inhomoge-
neous heat-conduction equation.

The results of Solonnikov and his colleagues [216, 116] imply the solvability of
the problems arising in the Holder class if the natural conditions of smoothness and
matching imposed on the surface Σ and the functions q,w0, and θ0 are satisfied. These
conditions are similar to those indicated in the formulation of Statement 4.1. The func-
tionsw(i) and θ(i) are determined in auniquemanner, and for one-value determination
of the functions it is sufficient to require that themeanvalueof these functions over the
domain Ω is equal to zero for any t > 0. Convergence of expansions (4.57) in suitable
Holder norms at small values of the parameter ε was established in [183]. A key role
in proving convergence belongs to the solenoidal nature of the modified velocity vec-
tor w. The same property allows us to use the “stream function—vorticity” variables
for constructing effective algorithms of the numerical solution of two-dimensional
problems of microconvection. Some problems of this kind were studied numerically
in [79, 80, 81]. The results of these works revealed not only quantitative, but also qual-
itative differences in the behavior of velocity fields calculated by the microconvection
model and by the conventional Oberbeck–Boussinesq model in the case where the
microconvection parameter η = gl3/νχ is of the order of unity.

To conclude this section, we should note that eqs. (4.50)–(4.52) admit a large
group of transformations [17]. On this basis, a number of exact solutions of microcon-
vection equations was constructed in [77, 176, 30, 197] (see Chapter 5).

4.6 Oberbeck–Boussinesq equations

In the previous sections, based on exact equations ofmotion of a viscous compressible
heat-conducting fluid (4.18)–(4.20) we formulated two approximate models of con-
vection. One of them (system (4.27)–(4.29), (4.34)) was derived under the assumption
of weak compressibility of the fluid. In this case, high-frequency acoustic oscillations
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were “filtered” in the resulting equations (they should be taken into account only at
the initial stage of motion), and the contribution of compressibility was of an integral
character. If we assume that P = 1 in system (4.27)–(4.29), which corresponds to an
isothermally incompressible fluid, and pass to the modified velocity and pressure in
accordance with eqs. (4.48), we obtain the microconvection equations (4.50)–(4.52).
As a result, there arises a certain hierarchy of models (under the assumptionsmade in
Section 4.1) in the convection theory. The third chain of this hierarchy is the classical
Oberbeck–Boussinesqmodel. The equations of thismodel can be readily derived from
eqs. (4.50)–(4.52) with the use of the limiting transition ε → 0, η→∞.

The continuity equation (4.50) retains the previous form

divw = 0, (4.58)

and eq. (4.51) in the limit ε → 0 transforms to the heat-transfer equation for an incom-
pressible fluid

θt +w ⋅ ∇θ = Δθ, (4.59)

which contains no term with the dissipative function (the assumption of smallness of
this term is one of the basic assumptions in the classical convection theory). In the
momentum equation, we first use the substitution q̄ = ηe3 ⋅ x + r (i. e., identify the
hydrostatic component of pressure) and then make ε tend to zero and the parameter
η tend to infinity, so that their product εη = βθ∗gl3/νχ (Rayleigh number) retains a
constant positive value. As a result, we obtain

wt +w ⋅ ∇w = Pr(−∇r + Δw − Ra θ e). (4.60)

With accuracy to notations, system (4.58)–(4.60) coincideswith theOberbeck–Boussi-
nesq system of equations (3.41)–(3.43), where h1 = 0. Let us also note that themodified
velocityw at ε = 0 turns by virtue of eq. (4.48) to the usual variable v; the same refers
to the modified pressure.

4.7 Linear model of the transitional process

As was noted in Section 4.4, the approximate solution of system (4.18)–(4.20) con-
structed there does not satisfy the initial condition for pressure, because the function
p0(x) involved into it does not generally coincide with the function π0(x) = p(0)(x,0)
(the latter is determined from the initial values of velocity v0(x) and temperature θ0(x)
as a solution of the elliptical boundary-value problem formulated in Section 4.4). If we
assume,however, that the functionΠ0(x) = p0(x)−π0(x) is small and take into account
that the initial conditions for velocity and temperature in the approximate solution are

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



76 | 4 Hierarchy of convection models in closed volumes

exactly satisfied, we can linearize eqs. (4.18)–(4.20) in the vicinity of the isothermal
equilibrium state and consider the following linear initial-boundary problem:

δΠt − εΞt + divU = 0, x ∈ Ω, t > 0; (4.61)
Ut = Pr[Δ(−Π + ξ divU) + ΔU], x ∈ Ω, t > 0; (4.62)

Ξt − δα2Πt = ΔΞ, x ∈ Ω, t > 0; (4.63)
U = 0, x ∈ Σ, t > 0; (4.64)
𝜕Ξ
𝜕n
= 0, x ∈ Σ, t > 0; (4.65)

U = 0, x ∈ Ω, t = 0; (4.66)
Ξ = 0, x ∈ Ω, t = 0; (4.67)
Π = Π0(x), x ∈ Ω, t = 0. (4.68)

Here, the symbols U, Ξ, and Π indicate perturbations of velocity, temperature, and
pressure, respectively. In the following, we assume that Π0 ∈ W2

2 (Ω).
Despite its linearity, problem (4.61)–(4.68) is still rather complicated because of

the presence of the small parameter δ at the derivative Πt . Nevertheless, an idea about
its qualitative behavior as δ → 0 can be obtained by using decomposition of the vector
U into the potential and solenoidal components:

U = ∇φ + V, divV = 0.

Omitting simple calculations, we write relations satisfied by the function φ:

δ 𝜕
𝜕t
[
𝜕
𝜕t
− (ξ + 1)Δ][(1 − α2ε)φt − Δφ] − (

𝜕
𝜕t
− Δ)Δφ = 0,

x ∈ Ω, t > 0; (4.69)
𝜕φ
𝜕n
= 0, 𝜕Δφ
𝜕n
= 0, x ∈ Σ, t > 0; (4.70)

φ = 0, φt = −Π0(x), φtt = −(ξ + 1)ΔΠ0, x ∈ Ω, t = 0. (4.71)

For a known value of φ, the functions Π and Ξ are described by the explicit relations

Π = (ξ + 1)Δφ − φt , Ξ = ε−1{δ[(ξ + 1)Δφ − φt] +
t

∫
0

Δφdτ}.

The solution of problem (4.69)–(4.71) is sought in the form of the Fourier series

φ =
∞
∑
k=1

Ak(t)φk(x),

where {φk} is the system of eigenfunctions of the Laplace operator with the Neumann
condition, which is orthonormalized to L2(Ω), i. e., Δφk = −μ2kφk, x ∈ Ω; 𝜕φk/𝜕n =
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0, x ∈ Σ, and −μ2k are the corresponding eigenvalues, 0 < μ1 < μ2 < ⋅ ⋅ ⋅ . Without
loss of generality, we can assume that the value of the function Π0 averaged over Ω
is equal to zero. In this case, the expansion for φ has no term with the function φ =
const corresponding to the eigenvalue μ0 = 0. The functions Ak(t) are found from
the solution of the Cauchy problem for the third-order linear ordinary equation with
constant coefficients whose solution is found in the form Ak = eλt . The characteristic
equation for λ has the following form (it follows from eq. (4.69)):

δλ[λ + (ξ + 1)μ2k][(1 − α2ε)λ + μ
2
k] + (λ + μ

2
k)μ

2
k = 0. (4.72)

Equation (4.72) contains two small parameters, δ and ε. If ε = 0, it decomposes into a
linear and a quadratic equation. This permits us to obtain a presentation of the roots
of eq. (4.72) in the form

λ1,2 = {−
(ξ + 1)2μ2k

2
± μk[
(ξ + 1)2μ2k

4
−
1
δ
]
1/2
}[1 + O(ε)],

λ3 = −μ
2
k[1 + O(ε)].

The root λ3 < 0 corresponds to the thermal mode, and the roots λ1 and λ2 correspond
to the acoustic modes. As δ → 0, the calculations show that the contribution of the
thermal mode to the amplitude Ak(t) of each harmonic over which the function φ is
expanded has the order of δ, whereas the acoustic modesmake themain contribution
O(δ1/2). The decrement of thermal mode decay is independent of δ as δ → 0. The
dependence of the characteristic numbers λ1 and λ2 on δ is rather significant. If δ <
δ0 = 4[(ξ + 1)μ1]−2, where −μ21 is the Laplace operator eigenvalue with the smallest
absolute value, then there exists a natural n = n(δ) such that the roots λ1,2 at k < n
have a nonzero imaginary part, while Im λ1,2 = O(δ−1/2), and Re λ1,2 < 0, and also
Re λ1,2 = O(1) as δ → 0. If k ≥ n, then the roots λ1 and λ2 are real and negative, with
λ2 = O(δ−1) as δ → 0, whereas the estimate of the first root uniform with respect to
k ≥ n, which cannot be improved, has the form λ1 = O(1), but the contribution of the
corresponding mode to the amplitude Ak(t) has the order of δ as δ → 0.

Thus, the solution to problem (4.69)–(4.71) admits the presentation

φ =
n
∑
k=1

Bk(t)φk(x) + ω(x, t),

where Bk are rapidly oscillating functions of t, and the norm of the functionω(x, ⋅ ) in
the spaceW2

2 (Ω) (or its stronger norm if the function Π0(x) possesses greater smooth-
ness) is estimated as Cδ exp(æt) uniformly over t ≥ 0, where the positive constants
æ and C are independent of δ as δ → 0. In this case, n(δ) → ∞ as δ → 0. Each of
the functions Bk(t) exponentially decreases as t → ∞, but these functions have no
pointwise limits as δ tends to zero: in this sense, they are rather similar to the func-
tions exp(−akt)×sin(bkδ−1/2t), where ak and bk are independent of δ. Nevertheless, as
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δ → 0, there exists a weak limit of constriction of the functions Bk(t) to an arbitrary
interval [0,N], and this limit is equal to zero.

Thus, we determined the potential component of the vector U and as well as the
functions Π and Ξ. To satisfy the no-slip condition (4.66), we introduce a solenoidal
component of V and a corresponding pressure Q. These functions form the solution
of the Stokes system

Vt = Pr(−∇Q + ΔV), divV = 0, x ∈ Ω, t > 0, (4.73)

for which the following initial-boundary problem is posed:

Vt = a(x, t), x ∈ Σ, t > 0; (4.74)
V = 0, x ∈ Ω, t = 0. (4.75)

The function a is determined by the equality a = −∇φ|Σ and, by virtue of eq. (4.70),
has a zero normal component on the surface Σ. From here and from eqs. (4.73) and
(4.75), it follows that the function Q(x,0) as a solution of the homogeneous Neumann
problem for the Laplace equation is constant; without loss of generality, this constant
can be taken equal to zero. Therefore, the total pressure in the linearized problemΠ+Q
satisfies the original initial condition (4.68).

The solution of problem (4.73)–(4.75) can be obtained in the form of an expansion
in eigenfunctions of the Stokes operator [114] after introduction of an auxiliary func-
tion b(x, t) that ensures a solenoidal continuation of the vector a to the domain Ω.
Leaving out the details, we only mention that rapid oscillations of the function a in
time at small values of δ give rise to oscillations of the functions V and Q. These os-
cillations, however, are dampened by viscosity. This is manifested not only in a com-
paratively slow decay of the solution of problem (4.73)–(4.75) with time, but also in
localization of high-frequency oscillations near the boundary of the domain Ω (the
characteristic thickness of the unsteady boundary layer has the order of δ1/4 as δ → 0).

Remark 4.1. The last chain of this hierarchy is themodel of a viscous heat-conducting
fluid (3.35)–(3.37). It is obtained from eqs. (4.50)–(4.52) as ε → 0 and other parameters
being fixed.

4.8 Some conclusions

Let us now draw some conclusions from Sections 4.1–4.7.

1. As was noted above, the asymptotic solution of the linear problem (4.61)–(4.68) has
no pointwise limit as δ → 0. Nevertheless, it can be considered to be the principal
term of the internal (i. e., describing the initial stage of convection) expansion of the
solution of linearized equations of motion (4.18)–(4.20), if the traditional principle of
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matching of asymptotic expansions is extended to matching on functionals. Indeed,
as δ → 0, the following relation is valid for an arbitrary test function σ(t) ∈ C∞0 [0,∞):

∞

∫
0

σ(t)W(x, t) dt = O(δ), x ∈ Ω.

In this relation,W can be taken to be the components Uk (k = 1, 2, 3) of the vector U,
Π + Q, or Ξ.

2. The reason for the emergence of high-frequency acoustic oscillations considered in
Section 4.7 is the disagreement between the initial pressure distribution p0(x) and the
distribution thatwill be obtained in the course of solvingproblem (4.27)–(4.35), (4.40),
i. e., π0(x) = p(0)(x,0). To avoid these oscillations, it suffices to set p0(x) = π0(x).
This will lead to a differential relation between the functions v0, θ0, and p0 defining
the initial state of the fluid, which also involves the values of the functions q(x,0)
and qt(x,0) averaged over the surface Σ. In the simplest case of homogeneous initial
conditions (4.23)–(4.25), this relation is satisfied if

∫
Σ

qt(x,0) dΣ = 0,

i. e., if the heating of the initially quiescent fluid with constant temperature and pres-
sure begins smoothly.

3. It should be noted that the procedure of “sound filtration” in the convection equa-
tions was also performed previously [159, 151, 44, 120]. In these works, however, con-
vection in gases was considered, where the assumption of weak compressibility of the
medium is not natural. It is therefore difficult to give an asymptotic meaning to the
operation of dividing the pressure into a component averaged over the flow domain
(which leads to the emergence of the “source” term in the continuity equation of the
type of the expression P−1Ṗ in eq. (4.27)) and an inhomogeneous component (analog
to the function p(0) in the momentum equation (4.28)).

4. Relations (4.34) and (4.35) yield the presentation for themeanpressureP(t) involved
into the equations of convection of a weakly compressible fluid (4.27)–(4.29)

P = 1 + ε
|Ω|

t

∫
0

(∫
Σ

q dΣ) dt + O(ε2)

as ε → 0 (here, |Ω| indicates the volume of the domain Ω). This permits the simplifi-
cation of the above-mentioned equations, if only terms of the zero-th and first orders
with respect to ε are retained. Let us recall that the parameter ε in typical situations
(see Section 4.3) has the order of 10−3; therefore, the neglect of the quantities O(ε2) is
more than justified from the viewpoint of applications.
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5. In Section 4.4, we considered the initial-boundary problem for system (4.27)–(4.29)
with the boundary condition of the second kind for temperature (4.31). The problem
with the condition of the first kind (eq. (4.22)) is more difficult to study. In this case,
the right-hand side of eq. (4.34) should be replaced by

ε ∫
Σ

𝜕θ(0)

𝜕n
dΣ ≡ H[P(t)],

where H is an operator that puts into correspondence the function P(t) and the mean
(with accuracy to a constant factor) value of the heat flux on the surface Σ calculated
at the time t, based on the solution of problem (4.27)–(4.30), (4.22), (4.32)–(4.35). The
operator H is continuous (and even compact) in the space C(1+β)/2[0,N] if the value of
N is rather small. This allows us to prove local one-valued solvability of the problem
considered.

6. In contrast to that, the unsteady problem for equations of microconvection of an
isothermally incompressible fluid with the boundary condition of the first kind for
temperature (4.22) has no solution for an arbitrarily specified function h, because it
is impossible to ensure a priori the necessary condition of its solvability

∫
Σ

𝜕θ
𝜕n

dΣ = ∫
Σ

q dΣ = 0, t > 0, (4.76)

following from eqs. (4.46) and (4.21). At the same time, the steady problem for micro-
convection equations is well posed with temperature conditions of both the second
and first kinds on the boundary of the domain Ω.

Let us here give the basic results of [178] under this aspect. We consider a steady
analog of system (4.49)–(4.51): the functionsw, q̄, and θ are independent of time. For
this system, we pose the boundary-value problem (4.53), (4.54), which is called prob-
lem A, or (4.53), (4.22), which is called problem B (the functions q and h are indepen-
dent of t).

Statement 4.2. Let the boundary Σ of the domain Ω belong to the Hölder class C3+β,
0 < β < 1, the function q belong to C2+β(Σ), and eq. (4.76) be satisfied. There exists
ε0 > 0 such that problem A has a solution w ∈ C2+α(Ω̄), θ ∈ C3+α(Ω̄), q̄ ∈ C1+α(Ω̄) for
ε ∈ (0, ε0]. This solution is unique with accuracy to adding a constant to q̄ in a certain
sphere with the center at the zero product of the spaces C2+α(Ω̄)×C3+α(Ω̄)×C1+α(Ω̄). In
addition, the solution of problem A is an analytical vector-function of the parameter
ε at the point ε = 0.

Statement 4.3. Let the conditions Σ ∈ C3+α and h(x) ∈ C3+α(Σ) be satisfied. There
exists ε0 > 0 such that problem B has a solutionw ∈ C2+α(Ω̄), θ ∈ C3+α(Ω̄), q̄ ∈ C1+α(Ω̄)
for ε ∈ (0, ε0]. This solution is isolated if themeanvalue of the function q̄ in thedomain
Ω is fixed and is an analytical vector-function of the parameter ε at the point ε = 0.
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These statements are proved by expanding the solution into series of the form (4.57)
and by estimating the series terms. Note that condition (4.76) should also be satisfied
for problem B, but no additional relations for the function h are required.

7. Well-posedness of the initial-boundary problem for equations of an isothermally
incompressible fluid can be provided by changing its formulation, as was mentioned
in Chapter 3.

4.9 Convection of nonisothermal liquids and gases under
microgravity conditions

Let us consider natural convective flows under conditions where external mass forces
are rather small and there are no large drops of temperature and pressure in the
medium. The characteristic size of the domain where convection occurs is assumed
not to be too large. The equations that describe the motion and heat transfer in the
Newtonian fluid have the form

dϱ
dt
+ ϱdiv v = 0, ϱdv

dt
= −∇p + div(μT) + ϱge3,

ϱcp
dθ
dt
− βθdp

dt
= div(k∇θ) + μΦ, (4.77)

ϱ = ϱ(θ, p), μ = μ(θ, p), k = k(θ, p), β = β(θ, p), cp = cp(θ, p).

For convenience, we indicate T = 2𝒟(v) − 2 div vI/3; then, Φ = T : T/2; the volume
viscosity is assumed to be equal to zero, and there are no internal heat sources.

It is more convenient to write the continuity equation in the following form with
the use of the energy equation:

1
ϱ
𝜕ϱ
𝜕θ

1
ϱcp
(βθdp

dt
+ div(k∇θ) + μΦ) + 1

ϱ
𝜕ϱ
𝜕p

dp
dt
= −div v. (4.78)

Let us now simplify the initial full equations step by step. For a weakly noniso-
thermal mediumwith small variations of pressure far from the stagnation point and in
the absence of such phenomena as the thermal anomaly, it is possible to use linearized
equations determining the changes in the thermophysical parameters of the medium

V = V0(1 + β0(θ − θ0) − fϱ0(p − p0)),
μ = μ0(1 + eμ0(θ − θ0) + fμ0(p − p0)),

k = k0(1 + ek0(θ − θ0) + fk0(p − p0)), (4.79)
β = β0(1 + eβ0(θ − θ0) + fβ0(p − p0)),

cp = cp0(1 + ec0(θ − θ0) + fc0(p − p0)),
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where V = 1/ϱ is the specific volume; the subscript 0 refers to quantities in the state
θ0, p0 (θ0 and p0 are the characteristic (constant) values of temperature and pressure
in the system). For convenience, we introduce one more notation for isothermal com-
pressibility: α0 = fϱ0, and we also indicate ϱ0 = 1/V0.

The flows under considerations are characterized by extremely low velocities. To
describe convection for velocities much smaller than the velocity of sound, it is rea-
sonable to use the approximation of essentially subsonic flows [120]. Owing to this
approximation, the analysis of the comparative influence of physical effects and re-
sultant equations can be substantially simplified.

Let us consider the variables whose variations definitely occur in an interval of
the order of unity. The corresponding scales for velocity and time will be refined later;
for the moment, they are assumed to be equal to a certain characteristic value of the
flow velocity u∗ and characteristic time t∗. Let the convection occur in a domainwith a
characteristic size l, and let the characteristic difference of temperatures have a value
of the order of θ∗. The scales for density, viscosity, thermal conductivity, volume ex-
pansion coefficient, and specific heats at constant pressure and constant volume are
chosen to be ϱ0, μ0, k0, β0, cp0, and cv0, respectively; the scale for the acceleration of
external mass forces is taken as a certain characteristic (constant) value of this quan-
tity equal to g0. We assume that

x = lx, t = t∗t
, v = u∗v

, T = u∗
l
T,

θ − θ0 = θ∗T
, Φ =

u2∗
l2

Φ.
(4.80)

The dimensionless pressure p/p0 in subsonic flows changes only weakly. Following
[120],we introduce adynamicpressurenormalized toμ0u∗/l,whichdefinitely changes
in an interval of the order of unity, independent of the flowMach number. At the same
time, as is seen from eq. (4.78) integrated over the considered domain, the domain-
averaged pressure is proportional to the total heat flux through the domain boundary.
We assume that

p − p0 =
ϱ0c20
γ0
(AP + γ0M

2

Re
Π) ≡ β0q

k0lα0
P + μ0u∗

l
Π, (4.81)

where c20 = γ0(𝜕p/𝜕ϱ)θ ≡ γ0/ϱ0α0 is the squared velocity of sound in the medium, γ0 =
cp0/cv0, M = u∗/c0 is the Mach number, A = β0q/(k0l) is a parameter characterizing
the rate of change of themean pressure, q = ∫Σ k0∇θ ⋅n dΣ is the total heat flux through
the boundary Σ of the domainΩ, andRe = ϱ0u∗l/μ0 is theReynolds number. The factor
A is introduced for more exact normalization of the pressure P (see eq. (4.87)).

The changes in the parameters due to variations of hydrostatic pressure (in par-
ticular, hydrostatic compressibility) are ignored, because the acceleration of exter-
nal mass forces is assumed to be rather small, so that the condition fj0ϱ0g0l ≪ 1
(j = ϱ, μ, k, β, c) is satisfied.
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As a result, system (4.77)–(4.79) is written in the following form (the dimension-
less quantities are primed):

Sh 𝜕ϱ


𝜕t
+ v ⋅ ∇ϱ = −ϱ div v,

Re(Sh ϱ 𝜕v


𝜕t
+ ϱv ⋅ ∇v) = −∇Π − ReA

γ0M2 ∇
P + div(μT) + Re

Fr
ϱge3,

Sh ϱcp
𝜕T

𝜕t
+ ϱcpv

 ⋅ ∇T = 1
Re Pr

div(k∇T)

+
B
εT

β(1 + εTT
)[A(Sh 𝜕P



𝜕t
+ v ⋅ ∇P)

+
γ0M2

Re
(Sh 𝜕Π



𝜕t
+ v ⋅ ∇Π)]

−
γ0M2

Re
B
εϱ

μΦ,

ϱ = [1 − εϱT
 − φϱ(P

 +
γ0M2

ReA
Π)]
−1
,

μ, k, β, cp = 1 + εμ,k,β,cT
 + φμ,k,β,c(P

 +
γ0M2

ReA
Π).

(4.82)

Here,

Sh = l
u∗t∗
, Re = ϱ0u∗l

μ0
, M2 =

u2∗
c20
, Fr =

u2∗
g0l
, Pr = μ0

ϱ0χ0
,

εT =
θ∗
θ0
, A = β0q

k0l
, B = β0

α0cp0ϱ0
, εj = ej0θ∗,

φj =
fj0
α0

β0q
k0l
(j = ϱ, μ, k, β, c).

In the case of a perfect gas, we have B = (γ0 − 1)/γ0; β(1 + εTT) ≡ 1; εϱ = −εT .
Passing to the limit as γ0M2/Re → 0 in eqs. (4.82) and returning to dimensional

quantities, we obtain

β0(1 + ec0(θ − θ0) + fc0(P − P0))
−1

× {
β0

ϱ0cp0
[1 + eβ0(θ − θ0) + fβ0(P − P0)]θ

dP
dt

+ χ0[1 + ek0(θ − θ0) + fk0(P − P0)]Δθ + χ0ek0∇θ ⋅ ∇θ}

− [1 + β0(θ − θ0) − α0(P − P0)]
−1α0

dP
dt
= div v; (4.83)

𝜕v
𝜕t
+ v ⋅ ∇v = [−β0(θ − θ0) + α0(P − P0)]ge3 + [1 + β0(θ − θ0) − α0(P − P0)]
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× {−
1
ϱ0
∇Π∗ + ν0[1 + eμ0(θ − θ0) + fμ0(P − P0)]divT + ν0eμ0∇θ ⋅ T}; (4.84)

𝜕θ
𝜕t
+ v ⋅ ∇θ = 1 + β0(θ − θ0) − α0(P − P0)

1 + ec0(θ − θ0) + fc0(P − P0)

× {
β0

ϱ0cp0
[1 + eβ0(θ − θ0) + fβ0(P − P0)]θ

dP
dt

+ χ0[1 + ek0(θ − θ0) + fk0(P − P0)]Δθ + χ0ek0∇θ ⋅ ∇θ}. (4.85)

Here, P = P(t), Π∗ = Π − ϱ0ge3 ⋅ x; ν0 = μ0/ϱ0; χ0 = k0/(ϱ0cp0).
Thus,within the frameworkof the subsonicflowapproximation, the total pressure

p is presented as the sum of a spatially homogeneous thermodynamic component P(t)
and a component that takes into account the dynamic and hydrostatic effects Π(x, t).
The influence of viscous dissipation of kinetic energy is ignored here.

System (4.83)–(4.85) is closed by the relation determining the evolution of P(t).
In the case of convection in a domain bounded by solid walls, integration over the
considered domain Ω of the continuity equation (4.83) yields

dP
dt
∫
Ω

{−
β20θ[1 + eβ(θ − θ0) + fβ(P − P0)]
cp0[1 + ec(θ − θ0) + fc(P − P0)]

+
α0ϱ0

1 + β0(θ − θ0) − α0(P − P0)
}dx

= ∫
Ω

β0 div{k0[1 + ek(θ − θ0) + fk(P − P0)]∇θ}
cp0[1 + ec(θ − θ0) + fc(P − P0)]

dx − ∫
Σ

ϱ0v ⋅ n dΣ. (4.86)

For a domain opened into the atmosphere or into one rather large reservoir, it can
be assumed that P(t) = P0, where P0 is the ambient pressure.

Note, if A ≤ O(γ0M2/Re), then the dependence of the parameters on pressure and
the work of pressure forces are not reflected by the resultant system; this case will be
considered in detail below. The dependence of the parameter on pressure, however,
cannot be always neglected, e. g., if convection in a domain bounded by solid imper-
meable walls with a given power of external heat sources is considered. According to
eq. (4.82), the full system (4.77) should be used in such cases; this system involves, in
particular, viscous dissipation of kinetic energy.

Let the values of ej0, fj0 (j = ϱ, μ, k, β, c), θ − θ0, P − P0, and g0, as well as the ve-
locity on the boundaries of the domain occupied by the fluid be rather small at the
initial time, so that the characteristic values of flow velocities and acceleration are
also small. In the case where convection is a closed domain bounded by solid imper-
meable walls, the time evolution of the pressure P is determined by eq. (4.86), which
has the following form in the principal order: dP/dt = B|Ω|/(1 − β0θ0B)q (|Ω| = ∫Ω dx
is the volume of the domain Ω). The value of Bβ0θ0 is usually smaller than unity; for
instance, 0.29 for air and 3.2 ⋅ 10−3 for water. We therefore choose Bq/l3 as a scale for
the rate of change of thermodynamic pressure (dP/dt)∗. For time, it seems natural to
choose a scale corresponding to molecular thermal conductivity, because convection
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is rather weak: t∗ = l2/χ0. Then the scale for thermodynamic pressure variations is
determined as

P∗ = (
dP
dt
)
∗
t∗ =

A
α0

(4.87)

in accordance with eq. (4.81). Using eqs. (4.83)–(4.85), we can estimate the contribu-
tions of the changes in density uϱ, viscosity uμ, thermal conductivity uk, and specific
heat uc induced by small variations of temperature (indicated by the superscript (T))
and pressure (indicated by the superscript (P)) and the contribution of the work of
pressure forces uP to formation of the velocity field. From the continuity equation
(4.83) (or from eq. (4.86)), we obtain the following estimates: u(T)ϱ = β0θ∗χ0/l, u1P =
α0(dP/dt)∗l, u2P = β20θ0(dP/dt)∗l/(ϱ0cp0). From the momentum equation (4.84), we
have u(T)μ = eμ0θ∗ν0/l, u

(P)
μ = fμ0P∗ν0/l, u

(T)
ϱ2 = β0θ∗ν0/l, u

(P)
ϱ2 = α0P∗ν0/l. From the

energy equation (4.85), we obtain uP = β0θ0(dP/dt)∗l/(ϱ0cp0θ∗), u
(T)
k = ek0θ∗χ0/l,

u(P)k = fk0P∗χ0/l, u
(T)
c = ec0θ∗χ0/l, u

(P)
c = fc0P∗χ0/l, u

(T)
ϱ3 = β0θ∗χ0/l, u

(P)
ϱ3 = α0P∗χ0/l.

The contribution of the pressure forces to velocity field formation is estimated as uP,
because u2P/uP = β0θ∗ ≪ 1; u1P/uP = εT/B. The contribution of the buoyancy forces
ub to the velocity field at low Rayleigh numbers is estimated in a standard manner:
ub = β0θ∗g0l2/ν0 (the scale (β0θ∗g0l)1/2 is less appropriate at low velocities).

Obviously, if one of the conditions

ub
u(T)j
≤ O(1), ub

u(P)j
≤ O(1) (j = ϱ, μ, k, c), ub

uP
≤ O(1), (4.88)

which have the following form in terms of the basic governing parameters (Rayleigh
number Ra = β0θ∗g0l3/(ν0χ0), εj, and φj):

Ra ≤ εj (j = ϱ, k, c), Ra ≤ Pr εj (j = ϱ, μ); (4.89)
Ra ≤ φj (j = ϱ, k, c), Ra ≤ Prφj (j = ϱ, μ); (4.90)

Ra ≤ AB
εT
, (4.91)

is satisfied, then the Oberbeck–Boussinesq approximation is inapplicable for the de-
scription of thermal convection. The condition Ra ≤ εϱ reflecting the influence of
changes in density was obtained in [177]. Note that other conditions (4.89), for exam-
ple, those reflecting the change in viscosity and thermal conductivity, Ra ≤ Pr εμ and
Ra ≤ εk, can be much less rigorous than those in [177] (e. g., for water at a tempera-
ture θ0 = 15 °C and pressure P0 = 1 atm, we have εϱ/(Pr εμ) = 6.9 ⋅ 10−4 and εϱ/εk =
−8.8 ⋅ 10−2). Under conditions (4.88), it is not only the Oberbeck–Boussinesq approxi-
mation proper that is invalid, but also its various generalizations with constant ther-
mophysical parameters, except for density.
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In some cases of practical importance, thermodynamic pressure is almost con-
stant. Let us consider the case with P = P0 = const. We nondimensionalize the equa-
tions so that the values of all field variables change within intervals of the order of
unity. The scales for the spatial variables, temperature, and pressure were defined in
eqs. (4.80) and (4.81). The scale for velocity should be related to the motion inten-
sity: the scales related to the molecular diffusion characteristics, ν0/l and χ0/l, are not
suitable for this purpose [89]. In accordance with estimates (4.88)–(4.91), one of the
quantities uϱ, uμ, uk, or uc should be chosen as the scale of velocity of themicroconvec-
tive flow. Let us assume that u∗ = εχ0/l, where ε = maxj(|εj|) (j = ϱ, μ, k, c). As the time
scale, it seems reasonable to take the characteristic time of heat diffusion t∗ = l2/χ0,
because it is smaller than the convective time scale l/u∗. In this case, we have

Sh = 1
ε
, Re = ε

Pr
, Fr =

ε2χ20
g0l3
,

γ0M2

Re
=
εϱ0α0ν0χ0

l2
.

For microconvective flows, we have γ0M2/Re ≪ εj. Thus, γ0M2 Re−1 = ε ⋅ 7.3 ⋅
10−16 cm2/l2 for water at a temperature θ0 = 15 °C and pressure P0 = 1 atm and
γ0M2 Re−1 = ε ⋅ 3.5 ⋅ 10−11 cm2/l2 for air. Let us assume that ε ≪ 1 and γ0M2/Re ≪ εj.
Omitting terms of the order of smallness greater thanO(εj) in eqs. (4.82) (automatically
passing to the limit of the subsonic flow approximation γ0M2/Re→ 0), we obtain

−
εϱ
ε
[(1 + εkT

 − εcT
)ΔT + εk∇

T ⋅ ∇T] = div v,

Pr−1(𝜕v


𝜕t
+ εv ⋅ ∇v) =

TΣ − T


1 − εϱTΣ
Gge3 − (1 − εϱT

)∇Π∗

+ (1 + εμT
 − εϱT

)divT + εμ∇
T ⋅ T,

𝜕T

𝜕t
+ εv ⋅ ∇T = (1 + εkT

 − εϱT
 − εcT

)ΔT + εk∇
T ⋅ ∇T,

(4.92)

where TΣ = (θΣ − θ0)/θ∗; Π∗ = Π
 − ΠΣ.

Inmanycases, specificheat changeswith temperature to a smaller extent thanvis-
cosity, thermal conductivity, or density. At εc = 0, instead of a nonsolenoidal velocity
field, we can determine a new solenoidal vector fieldw = v + (εϱ/ε)(∇T + εkT∇T),
which simplifies studying some aspects of the problem. In the case with εc = εk = εμ =
0, system (4.92) coincides with eqs. (4.49)–(4.51) in natural variables.

Basedon theprinciple of compressivemappings, by analogywith [183], solvability
of the basic boundary-value problems for system (4.92) with rather small values of ε is
proved (it is assumed that ϱ0, μ0, k0, and cp0 are positive, and β0 ≥ 0). Let us give here
the following results. We consider a boundary-value problem for the steady system of
equations (4.92) in the case with εc = 0, which is posed in a bounded domain Ω of the
Euclidean space ℝ3 with a smooth boundary Σ and with the following conditions on
this boundary:

v = a(x), (1 + εkT
)∇T ⋅ n = Γ(x), x ∈ Σ
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(a = (a1, a2, a3) and Γ are known functions of the variable x). This problem (let us call
it problem A) corresponds to the model of convection in a reservoir with solid imper-
meable walls with a specified heat-flux distribution on them. The following statement
is valid.

Statement 4.4. Let Σ ∈ Cl+3, Γ ∈ Cl+2(Σ), ai ∈ Cl+2(Σ) (Cl(Σ) and Cl(Ω̄) indicate the
corresponding Holder classes of functions); let l > 0 be an integer number, and let
the condition ∫Σ(n ⋅ a + (εϱ/ε)Γ) dΣ = 0 be satisfied. Then, there exists ε0 > 0 such
that problem A at ε ∈ [0, ε0] has a unique solution with vi ∈ C

l+2(Ω̄), 𝜕Π∗/𝜕xi ∈ Cl(Ω̄),
T ∈ Cl+3(Ω̄). This solution is an analytical vector function of the parameter ε at the
point ε = 0.

The proof of this statement involves the estimates of solutions of systems elliptical
in the Douglis–Nirenberg sense in the Hölder classes. It can be easily demonstrated
that the Hölder norms of the difference between the components of the solutions of
problemA and the corresponding problem for the Boussinesq equation tend to zero as
ε → 0. Convective effects at finite values of ε, however, can exert a significant influence
on microconvection formation.

In the functional spaces L2l,lp x t( ̄D4) and L2l+2−2/pp (ℝ3) (see the definitions in [215]),
we consider the Cauchy problem for system (4.92) in the casewith εc = 0 in the domain
D4 = {(x, t) : x ∈ ℝ3, t > 0} with the initial conditions (problem B)

v = v0(x), T = T0(x) (t
 = 0); div v0 = 0,

where T0 and v

0 are specified functions.

Statement 4.5. Let T0 ∈ L
2l+2−2/p
p (ℝ3), v0i ∈ L

2l+2−2/p
p (ℝ3), gi ∈ L

2l,l
p x t( ̄D4) (l ≥ 0 is an

integer number). Then, there exists ε0 > 0 such that problem B at ε ∈ [0, ε0] has a
unique solution with vi ∈ L

2l+2,l+1
p x t ( ̄D4), 𝜕Π∗/𝜕xi ∈ L2l,lp x t( ̄D4), T ∈ L2l+2,l+1p x t ( ̄D4). This

solution is an analytical vector-function of the parameter ε at the point ε = 0.
The proof involves the estimates of the solutions of the Cauchy problem for the

heat-conduction equation and the linearized Navier–Stokes equations.
One-valued solvability of the boundary-value problems for the linearized system

(4.92) in various functional spaces is establishedwith the use of well-knownmethods.
By analogywith [58],we can obtain results on local exact controllability by system

(4.92) for the control distributed over the boundary. In the casewith εc = 0,we perform
the following replacement in eqs. (4.92):w = v+ (εϱ/ε)× (∇T+εkT∇T); the system
of the transformed equations is denoted by (4.92).

Statement 4.6. Let a solution w∗ ∈ H1,2(2)(Q), T ∈ W 1,2(2)(Q), ∇q ∈ L2(0, τ;W2
2 (Ω)) of

eqs. (4.92), such that ∫Σ n⋅w dΣ = 0 be given, aswell as the initial conditions forwhich
w0 ∈ H1(Ω), T0 ∈ W 1

2 (Ω), ∫Σ n ⋅ w0 dΣ = 0 and ||w∗ − w0||H1(Ω) + ||T∗ − T0||H1(Ω) < ε,
where ε > 0 is a rather small quantity (notations of the functional spaces can be found
in [58]). There then exists a boundary control (uw , uT ) ∈ (L2(Σ))3 × L2(Σ) such that the
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solution of problem (4.92)

w = w0(x), T = T0(x) (t = 0);
w = uw , (1 + εkT

)∇T ⋅ n = uT (x ∈ Σ),

(where T0 and v

0 are given functions) exists and satisfies the condition

w(τ,x) ≡ w∗(τ,x), T(τ,x) ≡ T∗(τ,x).

4.10 Convection of a thermally inhomogeneous weakly
compressible fluid

Here we describe the convection model proposed and studied in [139]. The initial sys-
tem is the general system of hydrodynamic equations (1.46) in which f = g + F (the
acceleration of the gravity force g is singled out) and the left-hand side of the last
equation (energy equation) is replaced by ϱcpdθ/dt + θϱ−1ϱθdp/dt:

dϱ
dt
+ ϱdiv v = 0; (4.93)

ϱdv
dt
= ∇(−p + ζ div v) + 2 div(μ𝒟) + g + F; (4.94)

ϱcp
dθ
dt
+
θ
ϱ
ϱθ
dp
dt
= div(k∇θ) + ζ (div v)2 + 2μ𝒟 : 𝒟 + h (4.95)

(ζ = λ + 2μ/3 is the volume viscosity coefficient, eq. (3.15), and𝒟 = 𝒟 − div vI/3 is the
deviator of the strain rate tensor𝒟).

Let us write system (4.93)–(4.95) in an arbitrary curvilinear coordinate system
Oq1q2q3 fitted to the Cartesian coordinate system through one-to-one dependences
x = x(q1, q2, q3). Let e1, e2, and e3 be the unit vectors of the system Oq1q2q3, v =
v1e1 + v2e2 + v3e3. We introduce the Lamé parametersHi = |xqi |, i = 1, 2, 3,H = H1H2H3.
Then, we have [110]

∇ =
3
∑
i=1

ei
Hi

𝜕
𝜕qi
, div v = 1

H

3
∑
i=1

𝜕
𝜕qi
(vi

H
Hi
),

div𝒫 = 1
H

3
∑
i=1

𝜕
𝜕qi
(𝒫ij

H
Hi

ej), Δ = div∇; (4.96)

𝜕ej
𝜕qi
=
ei
Hj

𝜕Hi
𝜕qj
− δij

3
∑
k=1

ek
Hk

𝜕Hj

𝜕qk
, δij = {

1, i = j,
0, i ̸= j;

𝒟ij =
Hi
Hj

𝜕
𝜕qj
(
vi
Hi
) +

Hj

Hi

𝜕
𝜕qi
(
vj
Hj
) + 2δij

3
∑
k=1

vk
HiHk

𝜕Hi
𝜕xk
. (4.97)
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In new variables, the form of the scalar equations (4.93) and (4.95) is not changed
(certainly ∇ and div have to be written in accordance with eqs. (4.96)). Concerning the
momentum equation (4.94), it becomes

ϱdv
dt
= 2μdiv𝒟 + 2𝒟∇μ + μS + ∇(−p + ζ div v) + ϱ(g + F), (4.98)

where the elements 𝒟 are determined by eq. (4.97), and the projections of the vector
S onto the axes ei (i = 1, 2, 3) are

Si =
2
Hi

3
∑
j=1
[𝒟ij(

1
H
𝜕H
𝜕qi
−

1
Hi

𝜕Hi
𝜕qj
+

1
Hj

𝜕Hi
𝜕qj
) −

𝒟jj
Hj

𝜕Hj

𝜕qj
]. (4.99)

To close this system, as was already noted in Chapter 1, it is necessary to set ϱ = ϱ(θ, p)
(state equation), μ = μ(θ, p), ζ = ζ (θ, p), cp = cp(θ, p), and k = k(θ, p). Following [139],
the fluid is called weakly compressible if the following conditions are satisfied:

1) the functions

ϱ = ϱ(ε1θ, ε2p), μ = μ(ε1θ, ε2p), ζ = ζ (ε1θ, ε2p),
cp = cp(ε1θ, ε2p), k = k(ε1θ, ε1|∇θ|, ε2p)

(4.100)

are positive and continuously differentiable; ε1 and ε2 are small nonnegative parame-
ters;

2)

𝜕ϱ(ξ , η)
𝜕ξ
< 0, 𝜕ϱ(ξ , η)

𝜕η
> 0; (4.101)

3)

𝜕μ(ξ , η)
𝜕ξ
< 0, 𝜕μ(ξ , η)

𝜕η
> 0; (4.102)

4)

𝜕cp(ξ , η)
𝜕ξ
> 0,
𝜕cp(ξ , η)
𝜕η
< 0 (4.103)

for all admissible ξ and μ.
If all of these functions are independent of p (ε2 = 0), then the fluid is called

thermally inhomogeneous and weakly compressible.
In the linear approximation, we have ϱ = ϱ0(1 − ε1θ + ε2p), and the parameters

ε1 and ε2 are actually the coefficients of thermal expansion (β1) and isothermal com-
pressibility (β2) (see Section 4.1).
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To identify the characteristic quantities providing unified information about
the convection process, we introduce the following dimensionless quantities in
eqs. (4.93), (4.95), and (4.98):

x = x


l
, t = μ0

ϱ0l2
t, v = lϱ0

μ0
v, p = ϱ0l

2

μ20
p, θ =

l3|g|ϱ20ε1
μ20

θ,

ϱ = ϱ
ϱ0
, cp =

cp
cp0
, k = k

cp0μ0
, μ = μ

μ0
, g = g

|g|
,

ε1 =
μ20

l3|g|ϱ20
, ε2 =

μ20ε2
l2ϱ0
= l|g|ε1ε2, ε3 =

l|g|ε1
cp0
,

F =
ϱ20l

3

μ20
F(lx, ϱ0l

2

μ0
t), h = |g|ϱ30l

5ε1h(lx
,
ϱ0l2

μ0
t,

μ20
l3|g|ϱ20ε1

θ).

In these equations, ϱ0 = ϱ(0,0), μ0 = μ(0,0), cp0 = cp(0,0), ζ0 = ζ (0,0). We also
introduce the notation ξ = ξ0/μ0.

Remark 4.2. For real fluids [234], |g| ∼ 10m⋅s2, ϱ0 ∼ 103 kg/m3, cp ∼ 103 J/(kg⋅deg),
μ0 ∼ 10−4–10−3 kg/(m⋅s), ε1 ∼ 10−4–10−3 deg−1, ε2 ∼ 10−10–10−8m2⋅N−1 (ε2 ≪ ε1),
and the dimensionless parameter ε1, ε


2, and ε3 are estimated as ε1 ∼ 10

−15–10−13l−3,
ε2 ∼ 10

−23–10−17l−2, ε3 ∼ 10
−6–10−5l.

Omitting the primes, we can write eqs. (4.93), (4.95), and (4.98) in the dimension-
less form as the system

dϱ
dt
+ ϱdiv v = 0; (4.104)

ϱdv
dt
= 2ν div𝒟 + 2

ϱ
𝒟∇μ − 1

ϱ
∇q + g

ε1
(1 − 1

ϱ
) +

ξ
ϱ
∇(ζ div v) + νS + F; (4.105)

ϱcp
dθ
dt
= div(k∇θ) + ε3[2μ𝒟

 : 𝒟 + ξζ (div v)2 − θ
ϱ
𝜕ϱ
𝜕θ

dp
dt
] + h, (4.106)

where ϱ, ν = μ/ϱ, μ, ζ , and cp are known functions of two variables ε1θ and ε2p,
which are equal to unity at the point (0,0) and satisfy conditions (4.101)–(4.103); k =
k(ε1θ, ε1|∇θ|, ε2p), k(0,0,0) = K = const > 0, q = p − p0, p0 is the dimensionless
hydrostatic pressure: ∇p0 = ε−11 g.

From eqs. (4.104)–(4.106), neglecting terms of the order of εiεj (i, j = 1, 2, 3), we
obtain a system that describes convection of a viscous weakly compressible fluid

div v = ε1a1
dθ
dt
− ε2a2

dq
dt
−
ε2
ε1

a2v ⋅ g; (4.107)

dv
dt
= 2ν div𝒟 + 2(−ε1a3∇θ + ε2a4∇q +

ε2
ε1

a4g)𝒟


+ ξ∇(ε1a1
dθ
dt
− ε2a2

dq
dt
− ε2a2v ⋅ g)
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+
g
ε1
(1 − 1

ϱ
) −

1
ϱ
∇q + νS + F; (4.108)

ϱcp
dθ
dt
= div(k∇θ) + 2ε3𝒟

 : 𝒟 + h, (4.109)

where a1 = −ϱξ (0,0), a2 = ϱη(0,0), a3 = −μξ (0,0), and a4 = μη(0,0) are known
positive constants.

For a thermally inhomogeneous (ε2 = 0) weakly compressible fluid, system
(4.107)–(4.109) is simplified:

div v = ε1a1
dθ
dt
; (4.110)

dv
dt
= 2ν div𝒟 − 2ε1a3𝒟

∇θ + ε1a1ξ∇
dθ
dt

+ νS − g
ε1

𝒫(ε1θ) −
1
ϱ
∇q + F; (4.111)

ϱcp
dθ
dt
= div(k∇θ) + 2ε3𝒟

 : 𝒟 + h, (4.112)

here ϱ = ϱ(ε1θ), ν = ν(ε1θ), cp = cp(ε1θ), k = k(ε1θ, ε1|∇θ|), ϱ(0) = ν(0) = cp(0) = 1,
k(0,0) = K, 𝒫 = ϱ−1 − 1.

Remark 4.3. If ε2 is a quantity of the order of ε21 , then terms with the coefficient ε4 =
ε2ε−11 have to be retained in this system.

Remark 4.4. According to eqs. (4.101) and (4.103), we have

ϱ̇(ξ ) < 0, ċp > 0. (4.113)

Inequalities (4.113) together with ϱ(0) = cp(0) = 1 allow us to assume that

ϱ(ε1θ)cp(ε1θ) = 1 + O(ε
2
1), (4.114)

and we can set ϱcp = 1 in eq. (4.112) (note that eq. (4.114) is valid for −ϱ̇(0) = ċp(0)).

If eq. (4.114) is not satisfied, i. e.,

ϱ(ε1θ)cp(ε1θ) = 1 + ε1aθ + O(ε
2
1), 1 + ε1aθ > 0, a = const, (4.115)

then, introducing a new variable τ = θ + ε1aθ2/2, we obtain

θ = 1
aε1
(√1 + 2aε1τ − 1), 1 + 2aε1τ > 0,

(1 + ε1aθ)
dθ
dt
=
dτ
dt
, ε1a3∇θ = ε1a3∇τ + O(ε

2
1),

𝒫(ε1θ) = 𝒫(
1
a
(√1 + 2aε1τ − 1)) ≡ 𝒫(ε1τ),
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div(k∇θ) = div(k̃∇τ),

k̃(ε1θ, ε1|∇θ|) =
1

√1 + 2aε1τ
k(
√1 + 2aε1τ − 1

a
,

ε1|∇τ|
√1 + 2aε1τ

).

Therefore, we again obtain system (4.110)–(4.112) with the coefficient at dτ/dt in
eq. (4.112) being equal to unity.

Remark 4.5. System (4.110)–(4.112) refines and generalizes the Oberbeck–Boussinesq
equations (4.58)–(4.60); it is more rigorous and physical, because the change in den-
sity is taken into account in all equations of this system. On the other hand, the
Oberbeck–Boussinesq model is obtained from this system by the limiting transition
as ε1 → 0 and ε3 → 0 under the condition that

lim
ξ→0

𝒫(ξ )
ξ
= 1.

The global theorems of existence and uniqueness of weak solutions for various
initial-boundary problems of convection with axial symmetry (Oberbeck–Boussinesq
problem, problem for a viscous incompressible fluid with energy dissipation, and
problem (4.110)–(4.112)) were proved in [139]. In the general three-dimensional case,
theorems such as these were established for the modified Oberbeck–Boussinesq
model and for the problem of convection of a weakly compressible fluid under the
condition of small initial data. For all of these problems, the theorems of a continuous
dependence of the generalized solutions on the problem data and on their asymptotic
stability were proved, and a priori estimates characterizing the decay of the solutions
with time were obtained.

4.11 Exact solutions in an infinite band

A mathematical model of fluid convection under microgravity conditions is consid-
ered. The equation of state is used in a form that allows the fluid to be considered as a
weakly compressiblemedium. Based on the previously proposedmathematicalmodel
of convection of a weakly compressible fluid, unsteady convective motion in a vertical
band, with a heat flux periodic in time set on the solid boundaries of this band, is con-
sidered. This model of convection allows the study of the problem with the boundary
thermal regime oscillating in an antiphase rather than in-phase mode, while the lat-
ter was required for the model of microconvection of an isothermally incompressible
fluid (see Section 5.5).

Exact solutions for velocity components and temperature are derived, and the tra-
jectories of fluid particles are constructed. For comparison, the trajectories predicted
by the classical Oberbeck–Boussinesq model of convection and by the microconvec-
tion model are presented.
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Let us consider the system of equations for a weakly compressible fluid (4.27)–
(4.29) rewritten as follows:

P
1 + εT
(Vt + V ⋅ ∇V) = Pr[∇(−p + ̄ξ divV) + ΔV] +

ηPrP
1 + εT

g0, (4.116)

Ṗ
P
−

ε
1 + εT
(Tt + V ⋅ ∇T) + divV = 0, (4.117)

P
1 + εT
(Tt + V ⋅ ∇T) − Ṗ

α2 + εα1T
1 + εT

= ΔT . (4.118)

Here Ṗ = dP(t)/dt, the function P(t) satisfies the equation

Ṗ ∫
Ω

[1 − ε(α2 + εα1T)
1 + εT

] dx = ε∫
Σ

f dΣ (4.119)

and the initial condition

P(0) = 1. (4.120)

The initial-boundary problem for system (4.116)–(4.118) is formulated as follows.
We consider the no-slip conditions for the velocity vector

V = 0, x ∈ Σ, t > 0,

and the conditions of the second kind for temperature, which define the heat flux at
the boundary of the domain Σ:

𝜕T
𝜕n
= f (x, t), x ∈ Σ, t > 0. (4.121)

At the initial time, we set the velocity vector and the temperature:

V = V0(x), T = T0(x), x ∈ Ω, t = 0.

It was noted that the equations of convection of a weakly compressible fluid
(4.116)–(4.118) admit a group with addition of an arbitrary function of time to pres-
sure. Let us construct the solutions of these equations, which are invariant with
respect to the operator 𝜕𝜕y + φ(t)

𝜕
𝜕p , where φ(t) is an arbitrary function of time. The

construction is performed in a manner similar to that in [17, 18].
We denote the Cartesian coordinates in space by x, y, z. Let the coordinate system

be chosen so that g⃗0 = (0,−1,0), and the fluid fill the layer |x| ≤ 1 with the heat flux
according to eq. (4.121) being set at the solid boundaries of this layer. Let the heat-flux
value be independent of z. The invariant solutions should have the form

V = (u, v), u = u(x, t), v = v(x, t),
T = T(x, t), p = φ(t)y + r(x, t).
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Then, system (4.116)–(4.118) transforms to

Ṗ
P
−

ε
1 + εT
(Tt + uTx) + ux = 0, (4.122)

P
1 + εT
(ut + uux) = Pr(−rx +

̄̄ξuxx), (4.123)

P
1 + εT
(vt + uvx) = Pr(−φ + vxx −

η
1 + εT
), (4.124)

P
1 + εT
(Tt + uTx) − Ṗ

α2 + εα1T
1 + εT

= Txx . (4.125)

Here ̄̄ξ = ̄ξ +1.We assume that the functions u, v, and Ṗ are functions of the order of the
Boussinesq number ε, and the temperature T is a function of the order of unity, i. e.,
u = εU(x, t), v = εV(x, t), and Ṗ = εf (t). In other words, the expansions of the func-
tions u and v into series in powers of the small parameter ε begin from the first-order
terms U and V , and the expansions of the functions T and P begin from the zeroth-
order terms T0 and 1, respectively. Then, the corollary of eq. (4.122) is the relation

f (t) − T0t + Ux = 0,

and the corollary of the heat transfer equation (4.125) is the relation

T0t = T
0
xx , (4.126)

hence

Ux = T
0
xx − f (t),

or

U = T0x − xf (t) + b(t).

According to the no-slip conditions, we haveU(1, t) = U(−1, t) = 0, so we first consider
the case where

T0x (−1, t) = a−(t), T0x (1, t) = a+(t), a−(t) = a+(t) = a(t).

In this case, f = 0, which corresponds to the condition of the zero total heat flux (see
the situation described in [17, 18, 81]).

Let now a−(t) = −a+(t) = a(t). Then, we have b = 0 and

U = T0x − xf (t), (4.127)

T0x (−1, t) = a(t), T0x (1, t) = −a(t), (4.128)

with, e. g., a(t) = 𝒜 sinωt.
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Thus, T0 is the solution of eq. (4.126) in the domain |x| ≤ 1, t ∈ [0, tend], with
condition (4.128) fulfilled at the boundary, and the following initial condition can be
set at the initial time:

T0(x,0) = T0(x), |x| ≤ 1. (4.129)

The functionU is found from eq. (4.127). Note that because of condition (4.128) we
have f (t) = −a(t). Equation (4.123) now determines the function r(x, t) with accuracy
to an arbitrary function of time:

rx = −
1
Pr
Ut +
̄̄ξUxx .

Equation (4.124) for the function V(x, t) involves the functionφ(t), which is found
from the condition of the zero flow rate of the fluid through an arbitrary cross section
of the band y = const (see [176]).

For this purpose, we differentiate the condition ∫1−1 ρv dx = 0 with respect to t and
use eqs. (4.122), (4.124), and the equation of state ρ = P(t)

1+εT in the situation considered.
Then we obtain

ρtv =
εP
(1 + εT)2

Txuv −
P

1 + εT
uxv,

ρvt =
P

1 + εT
vt = Pr[−φ + vxx −

η
1 + εT
] −

P
1 + εT

uvx ,

and, as a consequence, we determine the function

φ(t) = 1
2
[vx(1, t) − vx(−1, t)] −

η
2

1

∫
−1

dx
1 + εT0
. (4.130)

Now eq. (4.124), with allowance for eq. (4.130), enables us to determine V(x, t) as

Vt = −Pr φ̃ + PrVxx + Pr ηT
0,

where

φ̃ = 1
2
[Vx]|

1
−1 +

η
2

1

∫
−1

T0dx,

and hence

Vt = Pr[−
1
2
[Vx(1, t) − Vx(−1, t)] + Vxx + ηT

0 −
η
2

1

∫
−1

T0dx]. (4.131)
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For this equation, we consider the following initial and boundary conditions:

V(x,0) = V0(x), |x| ≤ 1, (4.132)
V(−1, t) = 0, V(1, t) = 0, t ∈ [0, tend]. (4.133)

Each of the problems (4.126), (4.128), (4.129), and (4.131)–(4.133) is solved using the
Fourier method. Let us consider periodic solutions of these problem, where the initial
conditions are not set, the boundary conditions are described by the function a(t) =
𝒜 sinωt, and the functions T0 and V have the form

T0 = Ts(x) sinωt + Tc(x) cosωt, (4.134)
V = Vs(x) sinωt + Vc(x) cosωt. (4.135)

Then, from the functions U and V we determine the components of dimension-
less velocity u = εU(x, t) and v = εV(x, t). In further comparisons with the results of
the classical Oberbeck–Boussinesq model, we should bear in mind that the velocity
component u in the invariant solution is constant at each time instant (and can be
set equal to zero with allowance for satisfaction of the initial condition). The second
velocity component v is determined by the relations written above.

Solution of problem for temperature
Let us consider the equation

T0t = T
0
xx

in an infinite band −1 ≤ x ≤ 1 and consider the boundary conditions that determine
the heat flux in antiphase at the band boundaries:

T0x (−1, t) = a(t), T0x (1, t) = −a(t).

Here a(t) = 𝒜 sinωt. The search for a solution in the form (4.134) yields the following
problem for Tc:

T(IV)c + ω
2Tc = 0, (4.136)

Tc(−1) = 0, Tc(1) = 0, Tc (−1) = ω𝒜, Tc (1) = −ω𝒜, (4.137)

whereas Ts is determined in terms of Tc as

Ts = T

c /ω

and the following boundary conditions are satisfied for Ts:

Ts(−1) = 𝒜, Ts(1) = −𝒜.
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We introduce the notation ϑ = √ω/2, κ = √ω/(2 Pr), where Pr ̸= 1. The solution of
problem (4.136), (4.137) yields a linear system of algebraic equations of the form

−DC1 + CC2 − BC3 + AC4 = 𝒜ω/(2ϑ
3),

DC1 + CC2 − BC3 − AC4 = −𝒜ω/(2ϑ
3),

AC1 + BC2 + CC3 + DC4 = 0,
−AC1 + BC2 + CC3 − DC4 = 0.

The coefficients of the system are determined as

A = − sinh ϑ cos ϑ + cosh ϑ sin ϑ, B = sinh ϑ sin ϑ + cosh ϑ cos ϑ,
C = cosh ϑ cos ϑ − sinh ϑ sin ϑ, D = −(cosh ϑ sin ϑ + sinh ϑ cos ϑ),

(4.138)

and the solution of problem (4.136), (4.137) is the function

Tc = C1 cosh ϑx cos ϑx + C4 sinh ϑx sin ϑx,

where

C1 =
𝒜ω
4ϑ3

cosh ϑ sin ϑ + sinh ϑ cos ϑ
sinh2 ϑ cos2 ϑ + cosh2 ϑ sin2 ϑ

,

C4 =
𝒜ω
4ϑ3
− sinh ϑ cos ϑ + cosh ϑ sin ϑ
sinh2 ϑ cos2 ϑ + cosh2 ϑ sin2 ϑ

.
(4.139)

The function Ts has the form

Ts = [−C1 sinh ϑx sin ϑx + C4 cosh ϑx cos ϑx].

Solution of problem for velocity
We consider the problem of finding a periodic solution of the form (4.135) for system
(4.131)–(4.133), which can be rewritten in the following form for convenience:

Vt = PrVxx −
Pr
2
[Vx(1, t) − Vx(−1, t)] −

Pr η
2

1

∫
−1

T0 + Pr ηT0,

V(−1, t) = 0, V(1, t) = 0, t ∈ [0, tend].

The functionVc is found by solving the inhomogeneous ordinary differential equation

V (IV)c +
ω2

Pr2
Vc =

1
2
[V c (1) − V


c (−1)] − η T


c +

ηω
Pr

Ts +
ηω
2 Pr

I1. (4.140)

The function Vs is determined from the relation

Vs =
Pr
ω
V c −

Pr
2ω
[V c(1) − V


c(−1)] −

Pr η
2ω

I2 +
Pr η
ω

Tc.
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Here

I1 =
1

∫
−1

Ts(x) dx, I2 =
1

∫
−1

Tc(x) dx.

The solution of eq. (4.140) is constructed as the sum of the general solution of
the homogeneous equation and the partial solution determined by the right side of
eq. (4.140):

Vc = C̄1 cosh κx cos κx + C̄2 cosh κx sin κx + C̄3 sinh κx cos κx + C̄4 sinh κx sin κx + Ṽ ,
Ṽ = G0 + G1 sinh ϑx sin ϑx + G2 cosh ϑx cos ϑx.

With allowance for the boundary conditions

Vc(−1) = 0, Vc(1) = 0, Vs(−1) = 0, Vs(1) = 0

the coefficients C̄1, C̄2, C̄3, and C̄4 are found as the solutions of the linear algebraic
system

ÃC̄1 + B̃C̄2 + C̃C̄3 + D̃C̄4 = Ẽ, ÃC̄1 − B̃C̄2 − C̃C̄3 + D̃C̄4 = Ẽ,
KC̄1 + LC̄2 +MC̄3 + NC̄4 = F, KC̄1 − LC̄2 −MC̄3 + NC̄4 = F.

(4.141)

The coefficients of this system are determined as follows:

Ã = Ā + Φ̄1, Ā = cosh κ cos κ, D̃ = D̄ + Φ̄4, D̄ = sinh κ sin κ,
B̃ = B̄ = cosh κ sin κ, C̃ = C̄ = sinh κ cos κ,
Ẽ = −(Φ0 + G1 sinh ϑ sin ϑ + G4 cosh ϑ cos ϑ),

K = −2κ2D̄Pr
ω
− κ(C̄ − B̄)Pr

ω
, L = 2κ2C̄Pr

ω
,

M = −2κ2B̄Pr
ω
, N = 2κ2ĀPr

ω
− κ(C̄ + B̄)Pr

ω
,

F = Pr η
2ω

I2 −
Pr η
ω
(C1Φ̄c + C4Φ̄s) −

Pr
ω
ϑ(G1D + G4A) − Pr(G1Φ̄c − G4Φ̄s).

The coefficientsA andD are calculated by formulas (4.138), and the coefficients C1 and
C4 are calculated by formulas (4.139). Here we calculate

I1 =
2ϑ
ω
(C4 − C1) cosh ϑ sin ϑ +

2ϑ
ω
(C4 + C1) sinh ϑ cos ϑ,

I2 =
1
ϑ
(C1 + C4) cosh ϑ sin ϑ +

1
ϑ
(C1 − C4) sinh ϑ cos ϑ,

and introduce the following notation for convenience:

Φ0 =
ηω

8Pr κ4
I1, Φ̄1 =

Φ1
4κ4
, Φ̄4 =

Φ4
4κ4
,
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Φ̄c = cosh ϑ cos ϑ, Φ̄s = sinh ϑ sin ϑ,

Φ1 = (−2κ
3)(cosh κ sin κ + sinh κ cos κ),

Φ4 = (−2κ
3)(sinh κ cos κ − cosh κ sin κ),

G0 = Φ0 + Φ̄1C̄1 + Φ̄4C̄4, G1 =
F1

4(κ4 − ϑ4)
, G4 =

F4
4(κ4 − ϑ4)

,

F1 = −η(−2ϑ
2C1) +

ηω
Pr
(−C1),

F4 = −η(2ϑ
2C4) +

ηω
Pr
(C4).

The solution of system (4.141) has the form

C̄1 = Δ̄1/Δ̄, C̄4 = Δ̄4/Δ̄, C̄2 = C̄3 = 0,

where the denominator is determined as

Δ̄ = (Ā + Φ̄1)
Pr
ω
(2κ2Ā − κ(C̄ + B̄)) − (D̄ + Φ̄4)

Pr
ω
(−2κ2D̄ − κ(C̄ − B̄)),

and the numerators are written as

Δ̄1 = −(Φ0 + G1 sinh ϑ sin ϑ + G4 cosh ϑ cos ϑ)
Pr
ω
(2κ2Ā − κ(C̄ + B̄))

−
Pr
ω
(
η
2
I2 − η(C1Φ̄c + C4Φ̄s) − ϑ(G1D + G4A) − 2ϑ

2(G1Φ̄c − G4Φ̄s))(D̄ + Φ̄4),

Δ̄4 = (Ā + Φ̄1)
Pr
ω
(
η
2
I2 − η(C1Φ̄c + C4Φ̄s) − ϑ(G1D + G4A) − 2ϑ

2(G1Φ̄c − G4Φ̄s))

+
Pr
ω
(−2κ2D̄ − κ(C̄ − B̄))(Φ0 + G1 sinh ϑ sin ϑ + G4 cosh ϑ cos ϑ),

and hence, we have

Vc(x) = C̄1 cosh κx cos κx + C̄4 sinh κx sin κx + Ṽ(x),
Ṽ(x) = G0 + G1 sinh ϑx sin ϑx + G4 cosh ϑx cos ϑx.

The following relation is valid for the function Vs:

Vs(x) =
Pr
ω
[−2C̄1κ

2 sinh κx sin κx + 2C̄4κ
2 cosh κx cos κx

+ 2ϑ2(G1 cosh ϑx cos ϑx − G4 sinh ϑx sin ϑx)]

−
Pr
ω
[κC̄1(C̄ − B̄) + κC̄4(C̄ + B̄) − ϑ(G1D + G4A)] −

Pr η
2ω

I2

+
Pr η
ω
[C1 cosh ϑx cos ϑx + C4 sinh ϑx sin ϑx].

Thus, we determine the functions Vc and Vs, and simultaneously, V(x, t) of the
form (4.135).
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Note, in real situations, the Boussinesq numbers ε are small. The present analysis
of the linearized problem is fairly justified because its solution is given by the main
term of the asymptotic solution as ε → 0 (see a similar justification for the microcon-
vection model in [17, 18]).

Trajectory calculations
The components of the physical (dimensional) velocity are determined as v1 = v∗u
and v2 = v∗v, where u = εU, v = εV , v∗ = χ/l, and formulas (4.135) and (4.127) are used
forU and V . Knowing the functions v1 and v2, we can calculate the trajectories of fluid
particles. For this purpose, we have to solve the Cauchy problem

dx
dt
= v1(x, t),

dy
dt
= v2(x, t), t > 0; x(0) = x0, y(0) = 0. (4.142)

Note that in constructing trajectories of fluid particles by the Oberbeck–Boussinesq
model we must use v1 = 0, whereas the expression for v2 remains unchanged.

The objective of the present work was to determine the trajectories of fluid parti-
cles from the calculation results based on the model of convection of a weakly com-
pressible fluid. The differences from the results predicted by the classical convection
model allow us to conclude that there are non-Boussinesq effects and allow us jus-
tify the use of new mathematical models of convection. In addition, the problem of
comparing the results with the data obtained by the model of microconvection of an
isothermally incompressible fluid is posed. Formulation of the initial-boundary prob-
lem for microconvection equations implies setting the boundary heat flux under the
condition that the integral heat flux equals zero. In the problem of convection of a
heat-conducting fluid in an infinite band, this is manifested in the phase changes in
the boundary thermal mode, i. e., one lateral boundary is heated and the other lateral
boundary is simultaneously cooled. It became possible to consider the boundary heat
flux periodic in time and to change in antiphase in simulating convection under mi-
crogravity conditions, owing to thenewmathematicalmodel of convection of aweakly
compressible fluid.

Projections of the integral curves of system (4.142) onto the plane (x, y), which
were calculated by the microconvection model with the parameters ε = 0.01 and 0.02,
ω = 0.5 and 2 sec−1, are given in [17, 18] and demonstrate the helical (the main coil is
an ellipse) periodic motion of the fluid particle. As was noted in [17], it is rather diffi-
cult to analyze the behavior of the trajectories because of the variety of dimensionless
parameters that affect the solution of the Cauchy problem (4.142). Nevertheless, we
can assume that, under conditions of applicability of the microconvection model and
with the use of themodel of convection of a weakly compressible fluid under the same
conditions, the intensity of periodic motion and the particle drift are primarily deter-
mined by the values of the angular frequency ω, the Boussinesq parameter ε, and,
naturally, by the position of the point (x0, y0) relative to the lateral boundaries of the
domain. These assumptions were validated in [81].
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Table 4.1: Basic parameters of the problem (4.142).

Calculation variant Pr η ε ν χ g β ω
cm2/sec cm2/sec cm/sec2 deg−1 sec−1

1 0.75 1.0 0.01; 0.5 0.150 0.2 0.030 0.0003 0.5; 2.5; 5
2 0.01 0.4 0.01; 0.5 0.015 1.5 0.009 0.0006 0.5; 2.5; 5
3 0.10 0.4 0.02; 0.5 0.150 1.5 0.090 0.0006 0.5; 5

The main parameters of the problem are listed in Table 4.1 and are conventionally
presented by three models of fluid media and physical situations with different val-
ues of Pr, η, and g, similarly to that considered in [81]. The characteristic velocities,
Reynolds numbers, and times of the process are also different. To demonstrate the be-
havior of the trajectories, whose time evolution is rather complicated, we choose the
values ε = 0.5 and 0.02, ω = 0.5 and 5 sec−1. The value ε = 0.5 is chosen in order to
demonstrate the dependence on the Boussinesq number, which is most important for
trajectory development, and to obtain illustrative results.

The calculations were performed for𝒜 = −1 (see the boundary condition (4.138)),
which implies heating of the right boundary x = 1 both in the microconvection model
and in themodel of a weakly compressible fluid. This allows simple comparisons with
the results described in [17, 18, 81].

Figures 4.1–4.3 for variants 1–3, respectively, show the trajectories of fluid parti-
cles calculated by three convectionmodels. The trajectories calculated by the classical
Oberbeck–Boussinesqmodel are shown as vertical segments of straight lines, and the
trajectories calculated by themicroconvectionmodel display helical motion. They are
marked by the dashed curves. The trajectories calculated by the model of convection
of a weakly compressible fluid are also of the helical type and are marked by the solid
curves. Figures 4.1 and 4.2 for ε = 0.5 and ω = 5 sec−1 show the trajectories in the time
interval from 0 to 24 sec, for the fluid particle located at the initial time t = 0 at the

Figure 4.1: Trajectory of the fluid particle for variant 1 with t = 0–24 sec, x0 = 0.95, y0 = 0, ε = 0.5,
ω = 5 sec−1, and𝒜 = −1.
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Figure 4.2: Trajectory of the fluid particle for variant 2 with t = 0–24 sec, x0 = 0.95, y0 = 0, ε = 0.5,
ω = 5 sec−1, and𝒜 = −1.

Figure 4.3: Trajectory of the fluid particle for variant 3 with t = 0–240 sec, x0 = 0.8, y0 = 0, ε = 0.5,
ω = 0.5 sec−1, and𝒜 = −1.

point x0 = 0.95, y0 = 0. For ε = 0.5 and ω = 0.5 sec−1, Figure 4.3 shows the trajectories
of the fluid particle in the time interval from 0 to 240 sec (at the initial time t = 0,
the particle is located at the point x0 = 0.8, y0 = 0). The Oberbeck–Boussinesq model
describes themotion over the vertical segment of the straight line x = 0.95 (Figures 4.1
and 4.2) or x = 0.8 (Figure 4.3).

Figure 4.4 shows the calculation results for variant 2 for ε = 0.5 and ω = 2.5 sec−1

the fluid particle at the initial time is located at the point (0.95,0). The particle drift
is tracked in the time interval from 0 to 600 sec. This figure shows the complicated
helical motion in accordance with the model of convection of a weakly compressible
fluid. Figure 4.5 shows the particle trajectory for 𝒜 = 1 (see condition (4.138)), which
corresponds to cooling of the right boundary x = 1. For comparison with the micro-
convectionmodel, we should say that the particle-drift direction changes in themodel
of a weakly compressible fluid and remains unchanged in the microconvectionmodel
(see Figure 4.4: the downward motion is replaced by the upward motion).
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Figure 4.4: Trajectory of the fluid particle for variant 2 with t = 0–600 sec, x0 = 0.95, y0 = 0, ε = 0.5,
ω = 2.5 sec−1, and𝒜 = −1.

Figure 4.5: Trajectory of the fluid particle for variant 2 with t = 0–600 sec, x0 = 0.95, y0 = 0, ε = 0.5,
ω = 2.5 sec−1, and𝒜 = 1.

Figure 4.6: Trajectory of the fluid particle for variant 3 with t = 0–24 sec, x0 = 0.95, y0 = 0, ε = 0.02,
ω = 5 sec−1, and𝒜 = −1.
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Figure 4.6 shows the trajectories calculated for variant 3 in the time interval from 0 to
24 sec for ε = 0.02 and ω = 5 sec−1. At the initial time, the fluid particle is located at
the point (0.95,0). By comparing the trajectories, we note that the microconvection
model predicts a helical trajectory with a larger diameter than that in calculations by
the model of a weakly compressible fluid.

All calculations were performed until the final time tend = 2400 sec. The Cauchy
problem for the system of ordinary differential equations (4.142) was numerically ex-
amined using the Runge–Kutta method [103].

4.12 Analysis of well-posedness of the initial-boundary problem
for equations of convection of a weakly compressible fluid

The theorem of existence of a smooth solution proved in this section refers to the so-
called local theorems and is satisfied for small values of the Boussinesq number. The
proof is based on constructing the problem solution in the form of series in the small
parameter ε (Boussinesq number) and proving the solvability of the resultant recur-
rent problems. The third initial-boundary problem for a linear inhomogeneous heat
conduction equation, the Cauchy problem for an ordinary differential equation, and
the first initial-boundary problem for an unsteady Stokes system are all solved con-
secutively. The known Solonnikov’s results on solvability of the problems mentioned
above in classes of the Hölder functions are used. A principal issue is using the veloc-
ity representation (for each approximation) in the form of the sum of the solenoidal
and gradient parts and finding the potential (for each approximation) as a solution of
the Neumann problem for the Poisson equation. The convergence of the chosen ex-
pansions in the powers of the parameter ε is established in suitable Hölder norms at
small values of ε.

Let us rewrite the systemof equations for aweakly compressible fluid (4.27)–(4.29)
with the zero subscript being omitted:

P (vt + v ⋅ ∇v) = Pr(1 + εT) [∇(−p + ̄ξ div v) + Δv] + ηPrP g0, (4.143)
(1 + εT) Ṗ − ε P (Tt + v ⋅ ∇T) + P (1 + εT)div v = 0, (4.144)

P (Tt + v ⋅ ∇T) − Ṗ (α2 + εα1T) = (1 + εT)ΔT . (4.145)

We consider the following initial-boundaryproblem for system (4.143)–(4.145). Theno-
slip condition for velocity is imposed on the boundary Σ of the domain Ω at all time
instants:

v(x, t) = 0, x ∈ Σ, t > 0. (4.146)

For the temperature on the boundary Σ, we consider the boundary condition of the
third kind

𝜕T
𝜕n
+ κT = f (x, t), x ∈ Σ, t > 0, (4.147)
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where the dimensionless coefficient κ is expressed via the coefficients of heat transfer
of the fluid and heat exchange with the ambient medium.

At the initial time t = 0, the velocity vector and temperature are prescribed as

v(x,0) = v0(x), T(x,0) = T0(x), x ∈ Ω. (4.148)

The function P(t) satisfies the equation

Ṗ ∫
Ω

[1 − ε(α2 + εα1T)
1 + εT

] dx = ε∫
Σ

(f − κT) dΣ. (4.149)

The initial condition for eq. (4.149) has the form

P(0) = 1. (4.150)

We seek for the solution of system (4.143)–(4.145) in the form of formal power series in
the small parameter ε:

v =
∞
∑
n=1

εnv(n)(x, t), p =
∞
∑
n=0

εnp(n)(x, t) (p(0)(x, t) = ηg0 ⋅ x),

T =
∞
∑
n=0

εnT(n)(x, t), P =
∞
∑
n=0

εnP(n)(t) (P(0)(t) = 1).
(4.151)

Substituting expansions (4.151) into eqs. (4.143), (4.144), (4.145), we obtain a recurrent
system for the functions v(n), p(n), T(n), and P(n). The principal terms of the expansions
v(1), p(1), T(0), and P(1) are solutions of the linear initial-boundary problems given be-
low.

The function T(0) is a solution of the initial-boundary problem for the homoge-
neous heat-conduction equation

Tt
(0) = ΔT(0), (4.152)

where the initial and boundary conditions are imposed on the basis of eqs. (4.147),
(4.148):

T(0)(x,0) = T0(x), x ∈ Ω, (4.153)

𝜕T(0)

𝜕n
+ κT(0) = f (x, t), x ∈ Σ, t > 0. (4.154)

The function P(1) is found as a solution of the Cauchy problem for the first-order
ordinary differential equation

Ṗ(1) = 1
|Ω|
∫
Σ

(f − κT(0))dΣ, P(1)(0) = 0. (4.155)
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The pair of the functions (v(1), p(1)) satisfies the unsteady inhomogeneous system
of equations

v(1)t = −Pr∇p
(1) + Pr Δv(1) + Fv

1(p0,T(0),P(1)),

div v(1) = Fd
1(T(0),P(1)),

(4.156)

with the notation

Fd
1(T(0),P(1)) = Tt

(0) − Ṗ(1),

Fv
1(p(0),T(0),P(1)) = −PrT(0)∇p(0) + Pr ̄ξ ∇[Tt

(0) − Ṗ(1)] + Pr ηg0P
(1).

(4.157)

The function v(1) satisfies the initial and boundary conditions of the form (see eqs.
(4.146) and (4.148))

v(1)(x,0) = v0(x), x ∈ Ω,

v(1)(x, t) = 0, x ∈ Σ, t > 0.
(4.158)

Note that the necessary condition of solvability of problem (4.156)–(4.158) is satisfied
by virtue of eq. (4.155).

To make further considerations more convenient, we introduce the notations

FT
n(v(1), . . . , v(n);T(0), . . . ,T(n−1);P(1), . . . ,P(n))

= −
n
∑
j=1

v(j)∇T(n−j) − [
n−1
∑
j=1

P(j)Cn−j + P
(n)T(0)t ]

+ [α2Ṗ
(n) + α1

n−2
∑
j=0

T(j)Ṗ(n−1−j)]

+
n−1
∑
j=0

T(j)ΔT(n−1−j) (n ≥ 2); (4.159)

Fd
n(v(1), . . . , v(n−1);T(0), . . . ,T(n−1);P(1), . . . ,P(n))

= −Ṗ(n) −
n−2
∑
j=0

T(j)Ṗ(n−1−j) + [
n−2
∑
j=1

CjP
(n−1−j) + P(n−1)Tt

(0)]

−
n−1
∑
j=1

Aj div v
(n−j) (n ≥ 2); (4.160)

Fv
n(p(0), . . . , p(n−1); v(1), . . . , v(n−1);T(0), . . . ,T(n−1);P(n))

= −
n−1
∑
j=1

v(j)∇v(n−j) −
n−1
∑
j=1

P(j)Bn−j − Pr
n−1
∑
j=0
∇p(j)T(n−1−j)

+ Pr ̄ξ[∇div v(n) +
n−2
∑
j=0

T(j)∇div v(n−1−j)]
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+ Pr
n−2
∑
j=0

T(j)Δv(n−1−j) + Pr ηg0P
(n) (n ≥ 2), (4.161)

where

Cn = Tt
(n) +

n
∑
j=1

v(j)∇T(n−j) (n ≥ 2), C1 = Tt
(1) + v(1)∇T(0);

An = P
(n) + T(n−1) +

n−1
∑
j=1

P(j)T(n−1−j) (n ≥ 2), A1 = P
(1) + T(0);

Bn = vt
(n) +

n−1
∑
j=1

v(j)∇v(n−j) (n ≥ 2), B1 = vt
(1).

(4.162)

The recurrent system of equations determining the functions v(n), p(n), T(n), and P(n)

looks as follows. Let us start from the Cauchy problem of finding the function P(n),
namely

Ṗ(n)E0 +
n−1
∑
j=1

Ṗ(j)En−j = −κ∫
Σ

T(n−1)dΣ, P(n)(0) = 0 (n ≥ 2), (4.163)

where

En = (α2 − α1)∫
Ω

T(n−2)dx + α1 ∫
Ω

n−3
∑
j=0

T(j)T(n−3−j)dx (n ≥ 3),

E0 = |Ω|, E1 = −α2E0, E2 = (α2 − α1)∫
Ω

T(0)dx.
(4.164)

Then, we consider the initial-boundary problem for finding the n-th term of the tem-
perature expansion

Tt
(n) = ΔT(n) + FT

n(v(1), . . . , v(n);T(0), . . . ,T(n−1);P(1), . . . ,P(n)) (n ≥ 1),

T(n)(x,0) = 0, x ∈ Ω,

𝜕T(n)

𝜕n
+ κT(n) = 0, x ∈ Σ, t > 0.

(4.165)

Finally, the unsteady inhomogeneous system of equations for determining the func-
tions v⃗(n) and p(n) has the form

vt
(n) = −Pr∇p(n) + Pr Δv(n)

+ Fv
n(p(0), . . . , p(n−1); v(1), . . . , v(n−1);T(0), . . . ,T(n−1);P(n)),

div v(n) = Fd
n(v(1), . . . , v(n−1);T(0), . . . ,T(n−1);P(1), . . . ,P(n)) (n ≥ 2).

(4.166)
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The following initial and boundary conditions are imposed for system (4.166):

v(n)(x,0) = 0, x ∈ Ω,

v(n)(x, t) = 0, x ∈ Σ, t > 0.
(4.167)

It shouldbenoted that thenecessary conditionof solvability of problem (4.166), (4.167)
is satisfied, at which ∫Ω Fd

ndx = 0. This condition is valid by virtue of eqs. (4.163) and
(4.165).

Let us now consider solvability of problems (4.152)–(4.154); (4.155); (4.156)–
(4.158); (4.163); (4.165); (4.166), (4.167) in the spaces of the functions Cl+α,(l+α)/2 whose
elements have continuous derivatives in accordance to Hölder. The notations for
continuous functions in accordance to Hölder, the norms in these spaces, and the
properties of the functions can be found, for instance, in [25, 116, 216].

As in [172], we assume that the initial data for problem (4.143)–(4.150) are suffi-
ciently smooth and obey the local compatibility conditions

v0(x) = 0, x ∈ Σ, (4.168)

f (x,0) = 𝜕T0
𝜕n
+ κT0, ft(x,0) =

𝜕F
𝜕n
+ κF, x ∈ Σ, (4.169)

where

F(x) = (1 + εT0)ΔT0 − v0 ⋅ ∇T0 + Ṗ0(α2 + εα1T0).

Moreover, we have

div(v0 − ε∇T0) + [1 −
ε(α2 + εα1T0)

1 + εT0
]Ṗ0 = 0, x ∈ Ω, (4.170)

where

Ṗ0 = ε
∫Σ(f (x,0) − κT0) dΣ

∫Ω[1 −
ε(α2+εα1T0)

1+εT0
] dx
.

We also make the initial data obey the nonlocal compatibility condition in terms of
the function π0(x) = p(x,0) [172]

div[(1 + εT0)∇π0] = H −
1
Pr
D − 1

Pr
div(v0 ⋅ ∇v0), x ∈ Ω,

(1 + εT0)
𝜕π0
𝜕n
= G ⋅ n⃗, x ∈ Σ,

where the following notations are used:

G = (1 + εT0)( ̄ξ∇div v0 + Δv0) + η g0 −
1
Pr
v0 ⋅ ∇v0,

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.12 Analysis of well-posedness of the initial-boundary problem | 109

D = Ṗ0[F
ε2(α1 − α2)
(1 + εT0)2

− div v0] − P̈0[1 −
ε(α2 + εα1T0)

1 + εT0
] + εΔF,

H = ε2∇T0 ⋅ ∇( ̄ξ Ṗ0
α2 + εα1T0
1 + εT0

+ ΔT0)

+ (1 + ̄ξ )ε(1 + εT0)Δ(Ṗ0
α2 + εα1T0
1 + εT0

+ ΔT0),

P̈0 =
ε ∫Σ(ft(x,0) − κF) dΣ + Ṗ0ε

2(α1 − α2)∫Ω
F
(1+εT0)2

dx

∫Ω[1 −
ε(α2+εα1T0)

1+εT0
] dx

.

Then, the required nonlocal condition has the form

(1 + εT0)[∇π0 − (∇π0 ⋅ n)n] = G − (G ⋅ n)n, x ∈ Σ. (4.171)

Let the following assumptions be satisfied:
(i) the surface Σ belongs to the Hölder class C4+α, 0 < α < 1,
(ii) the functions involved into conditions (4.146)–(4.148) satisfy the smoothness con-

ditions

f (x, t) ∈ C3+α,1+(1+α)/2(Σ × [0, t∗]),

v0(x) ∈ C
2+α(Ω̄), T0(x) ∈ C

4+α(Ω̄)

and the compatibility conditions (4.168)–(4.171).

Then, based on the results of [116, 216], we can demonstrate that there exists a value
of t0, 0 < t0 < t∗ such that problems (4.152)–(4.154), (4.155), (4.156)–(4.158) have the
following solution:

v(1) ∈ C2+α,1+α/2(Q̄t0 ), ∇p
(1) ∈ Cα,α/2(Q̄t0 ),

T(0) ∈ C4+α,2+α/2(Q̄t0 ), P(1) ∈ C2+(1+α)/2([0, t0]).

Unique solvability of problem (4.152)–(4.154) follows from [116], and the following es-
timate of the norm of the solution T(0) is valid:

T
(0)

4+α,2+α/2 ≤ c1[|T0|
4+α + |f |3+α,1+(1+α)/2] = CT .

Here, c1 depends on the domain Ω, t∗ and the coefficient κ.
We note that the right-hand side of the ordinary differential equation (4.155) be-

longs to the class C1+(1+α)/2([0, t0]) and conclude that the Cauchy problem (4.155) is
uniquely solvable in the class C2+(1+α)/2([0, t0]), in accordance, for instance, with [105,
222], and

P
(1)

2+(1+α)/2 ≤ c2[|f |
3+α,1+(1+α)/2 + T

(0)
4+α]

≤ c2[|f |
3+α,1+(1+α)/2 + CT] = CP ,

where c2 depends on Ω, t∗, and κ.
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Belonging of the functions T(0) and P(1) to the classes C4+α,2+α/2(Q̄t0 ) and
C2+(1+α)/2([0, t0]), respectively, guarantees belonging of the right-hand side Fd1 in
the second equation of system (3.17) to the class C2+α,1+α/2(Q̄t0 ). Then,∇Fd

1 in the right-
hand-side of the first equation of system (4.156) is a function of the class
C1+α,(1+α)/2(Q̄t0 ).

Let us represent the vector v1 as the sum v1 = u+w, where divu = 0, andw = ∇φ;
for finding φ, we have the following Neumann problem for the Poisson equation:

Δφ = Fd
1(x, t), x ∈ Ω, t ∈ [0, t0], (4.172)

𝜕φ
𝜕n
= 0, x ∈ Σ, t ∈ [0, t0], (4.173)

∫
Ω

φ(x, t) dx = 0, t ∈ [0, t0]. (4.174)

Note that the condition of solvability of this problem is satisfied; therefore, in accor-
dance with [115, 237], problem (4.172)–(4.174) has a unique solution. This solution is
characterized by the same properties of smoothness in terms of the variable t as the
right-hand side Fd1 and belongs at least to the classC4+α,1+α/2(Q̄t0 ). Therefore, the func-
tionw = ∇φbelongs to the classC3+α,1+α/2(Q̄t0 ); hence,wt andΔware functions at least
of the class Cα,α/2(Q̄t0 ).

To determine the functions u and ∇p(1), we have an initial-boundary problem
for the system of the Stokes equations, which looks as follows with allowance for
eqs. (4.156)–(4.158):

ut = −Pr∇p
(1) + Pr Δu + Fu(p

(0),T(0),P(1),w),
divu = 0, (4.175)

u(x,0) = u0(x), x ∈ Ω,
u(x, t) = 0, x ∈ Σ, t > 0, (4.176)

where

Fu(p
(0),T(0),P(1),w) = −wt + Pr Δw − PrT

(0)∇p(0) + Pr ̄ξ∇Fd
1 + Pr η g0 P

(1),

u0(x) = v0(x) −w0(x), w0(x) = ∇φ(x,0).

Solvability of problem (4.175), (4.176) for the pair of the functions (u,∇p(1)) (and, there-
fore, also for (v(1), ∇p(1))) in the classes of functions C2+α,1+α/2(Q̄t0 ) and C

α,α/2(Q̄t0 ), re-
spectively, follows from the results of [216], and the following estimates are valid:

v
(1)

2+α,1+α/2 ≤ c3[
T
(0)

4+α,2α/2 + P
(1)

2+(1+α)/2 + |v0|
2+α]

≤ c3[CT + CP + |v0|
2+α] = Cv ,

∇p
(1)

α,α/2 ≤ Cv ,

where c3 depends on the domain Ω, t∗, and the parameters Pr, ̄ξ , η, and g0.
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Note that the function v(1) is determined uniquely, and the function p(1) is deter-
mined uniquely under the additional condition ∫Ω p

(1)dx = 0.
Solvability of the initial-boundary problems (4.163), (4.165), (4.166)–(4.167) for an

arbitrary value of n can be demonstrated by induction, based on the results of [116,
216], with allowance for satisfaction of eqs. (4.168)–(4.171) for obtaining appropriate
compatibility conditions. In this case, we have

T(n) ∈ C4+α,2+α/2(Q̄t0 ), P(n) ∈ C2+(1+α)/2([0, t0]).

The initial-boundary problem for (v(n), ∇p(n)) reduces to the first initial-boundary
problem for the system of the Stokes equations, similar to that described for the prin-
cipal term of the expansion (v(1), ∇p(1)). In this case, we have v(n) ∈ C2+α,1+α/2(Q̄t0 ) and
∇p(n) ∈ Cα,α/2(Q̄t0 ). The functions p

(n) are uniquely determined under the additional
condition ∫Ω p

(n)dx = 0.
To verify the convergence of series (4.151) at sufficiently small values of ε > 0, we

consider simultaneously, as was done in [183], the power series with constant coeffi-
cients

ϑ = ϑ0 + εϑ1 + ε
2ϑ2 +

∞
∑
j=3

εjϑj,

U = εU1 + ε
2U2 +

∞
∑
j=3

εjUj, q = q0 + εq1 + ε
2q2 +

∞
∑
j=3

εjqj,

Q = Q0 + εQ1 + ε
2Q2 +

∞
∑
j=3

εjQj.

(4.177)

Note that the series with constant coefficients (4.177) are majorant for series obtained
from the corresponding series (4.151) with the functions v(n),∇p(n), T(n), and P(n) being
replaced by their norms in theHölder spaces C2+α,1+α/2, Cα,α/2, C4+α,2+α/2, and C2+(1+α)/2,
respectively.

It is shown further that there exists ε0 > 0 such that, for an arbitrary value of
ε ∈ [0, ε0], series (4.177) converge to a positive solution (ϑ,U , q,Q) of the system

ϑ − ϑ0 − εϑ1 − ε
2ϑ2

= ε3 c1{ϑ (ϑ − ϑ0 − εϑ1) + U ϑ + (Q − Q0) (ϑ − ϑ0 + U ϑ)

+ (Q − Q0 − εQ1 − ε
2Q2) ϑ0 + α2(Q − Q0 − εQ1 − ε

2Q2)

+ α1(ϑ − ϑ0) (Q − Q0)} (4.178)

U − εU1 − ε
2U2

= ε3c3{U
2 + (Q − Q0) (U + U

2)

+ Pr q ϑ + Pr ̄ξ [ϑ (Q − Q0) + (Q − Q0)(ϑ − ϑ0 + 2U ϑ)
+ (Q − Q0 − εQ1) ϑ0 + U(Q − Q0 + 2ϑ + 2(Q − Q0) ϑ)]
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+ Pr( ̄ξ + 1)ϑ U + Pr ηg0 (Q − Q0 − εQ1 − ε
2Q2)

+ (1 + Pr)[Q − Q0 − εQ1 − ε
2Q2 + ϑ (Q − Q0)

+ (ϑ − ϑ0 + U ϑ) (Q − Q0)

+ ϑ0(Q − Q0 − εQ1) + (Q − Q0 + ϑ + (Q − Q0) ϑ)U]}; (4.179)

q − q0 − εq1 − ε
2q2

= ε3c3{U
2 + (Q − Q0) (U + U

2) + Pr q ϑ
+ Pr ̄ξ [ϑ (Q − Q0) + (Q − Q0)(ϑ − ϑ0 + 2U ϑ)
+ (Q − Q0 − εQ1) ϑ0 + U(Q − Q0 + 2ϑ + 2(Q − Q0) ϑ)]

+ Pr( ̄ξ + 1)ϑ U + Pr ηg0 (Q − Q0 − εQ1 − ε
2Q2)

+ (1 + Pr)[Q − Q0 − εQ1 − ε
2Q2

+ ϑ (Q − Q0) + (ϑ − ϑ0 + U ϑ) (Q − Q0)

+ ϑ0(Q − Q0 − εQ1)

+ (Q − Q0 + ϑ + (Q − Q0) ϑ)U]}; (4.180)

Q − Q0 − εQ1 − ε
2Q2

= ε3c2{(Q − Q0)[|α2 − α1| |Ω| ϑ + α1 |Ω| ϑ
2]

+ κ |Σ| (ϑ − ϑ0 − εϑ1)}. (4.181)

Here, we have

ϑ0 = |T
(0)|4+α,2+α/2, ϑ1 = |T

(1)|4+α,2+α/2, ϑ2 = |T
(2)|4+α,2+α/2,

U1 = |v
(1)|2+α,1+α/2, U2 = |v

(2)|2+α,1+α/2,

q0 = |∇p
(0)|α,α/2, q1 = |∇p

(1)|α,α/2, q2 = |∇p
(2)|α,α/2,

Q0 = |P
(0)|2+(1+α)/2, Q1 = |P

(1)|2+(1+α)/2, Q2 = |P
(2)|2+(1+α)/2.

In accordance with the theorem of the implicit function [54], system (4.178)–(4.181)
has a unique solution at ε ∈ [0, ε0] in the neighborhood (ϑ0, 0, q0, Q0). This solution
is analytical in terms of ε and can be represented as series (4.177). Therefore, series
(4.151) converge to the solution of problem (4.143)–(4.150) if ε ∈ [0, ε0].

Thus, we obtain the following theorem.

Theorem 4.1. Let the surface Σ belong to the Hölder class C4+α (0 < α < 1), and let
the functions involved into conditions (4.147)–(4.149) satisfy requirements (i), (ii) and
compatibility conditions (4.168)–(4.171). Let also 0 ≤ ε ≤ ε0, where ε0 is determined
by the solution of eqs. (4.178)–(4.181). Then, problem (4.143)–(4.150) has a solution v ∈
C2+α,1+α/2(Q̄t0 ), ∇p ∈ C

α,α/2(Q̄t0 ), T ∈ C
4+α,2+α/2(Q̄t0 ), P ∈ C

2+(1+α)/2([0, t0]). This solution
is an analytical function of the parameter ε at the point ε = 0.

The issue of uniqueness of the solution of problem (4.143)–(4.150) can be studied
separately with the use of the proof by contradiction.
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5 Invariant submodels of microconvection equations
This chapter describes group properties of equations of a new micrconvection model
proposed by Pukhnachov [177]. Optimal systems of subalgebras θ1 and θ2 are con-
structed; all factor-systems are written. For some of them, initial-boundary problems
are posed and solved. The issue of invariance of conditions on the interface and free
boundary is considered.

5.1 Basic model and its group properties

The overall system of differential equations of motion consists of the following equa-
tions:
– mass conservation equation

dρ
dt
+ ρdivu = 0; (5.1)

– momentum conservation equation

ρdu
dt
= ∇(−p + λ divu) + div(2μD) + ρg; (5.2)

– energy conservation equation

ρcp
dθ
dt
+
θ
ρ
(
𝜕ρ
𝜕θ
)
dp
dt
= div(k∇θ) +Φ. (5.3)

Here u = (u1, u2, u3) is the velocity vector, p is the pressure, θ is the absolute temper-
ature, ρ is the fluid density, d/dt = 𝜕/𝜕t + u ⋅ ∇ is the total derivative with respect to
time, λ and μ are the dynamic coefficients of the first and second viscosities, D is the
strain rate tensor with the elements

Dij =
1
2
(
𝜕ui
𝜕xj
+
𝜕uj
𝜕xi
), i, j = 1, 2, 3,

g is the density of external mass forces, cp is the specific heat at constant pressure,
Φ = λ(divu)2 + 2μD : D is the dissipative function, and k is the thermal conductivity
coefficient.

Let us take the pressure p and the absolute temperature θ as the basic thermody-
namic variables. Then, the dependence

ρ = ρ(p, θ) (5.4)

determines the equations of state of thefluid,while cp and the transfer coefficients λ, μ,
and k are given functions of p and θ. We assume that cp > 0 and ρ > 0, the functions

https://doi.org/10.1515/9783110655469-005
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μ and k are nonnegative, and λ + 2μ/3 ≥ 0. The function g is a known function of the
variables x1, x2, x3, and t.

Let g = g(t) and (a) the fluid is isothermally incompressible, and the dependence
of density on temperature has the form

ρ = ρ0(1 + βT)
−1, (5.5)

whereT = θ−θ0, θ0 is the characteristic temperature, and β is the coefficient of volume
expansion, (b) the contribution of the dissipative function and the pressure forces to
the heat inflow equation (5.3) is negligibly small, and (c) μ, k, and cp have constant
values.

Under these assumptions, the following system of equationswas obtained in [177]
from the exact equations of motion (5.1)–(5.3):

wt +w∇w + βχ(∇T ⋅w − ∇w ⋅ ∇T) + β
2χ2(ΔT∇T − ∇|∇T|2/2)

= (1 + βT)(−∇q + νΔw) + g; (5.6)

divw = 0; (5.7)

Tt +w ⋅ ∇T + βχ|∇T|
2 = (1 + βT)χΔT . (5.8)

The new functionsw and q are related to the true velocity and pressure as

w = u − βχ∇T ,

q = ρ−10 (p − λ divu) − β(ν − χ)χΔ = Tρ
−1
0 p − βχ(ρ−10 λ + ν − χ)ΔT (5.9)

(χ = k/(cpρ0) is the thermal diffusivity).
If we use the dependence ρ = ρ0(1 + βT) instead of eq. (5.5) and assume that the

velocity field is solenoidal and the change in density is taken into account only in the
buoyancy force,we obtain the classical Oberbeck–Boussinesqmodel [101, 133]. Aswas
shown in [177], however, the Oberbeck–Boussinesq approximation is inapplicable to
describing convection if η = max |g(t)|l3/(νχ) < 1, where l is the characteristic scale.
The parameter η is smaller than unity inweak force fields, atmicroscales, and in fluids
with a large product of the viscosity coefficient and thermal diffusivity.

Note that system (5.6)–(5.8) can be written in a more compact form as [9]

wt +w∇w + βχ rotw × ∇θ + β
2χ2(∇θ ⊗ ∇θ − |∇θ|2I) = (1 + βθ)(−∇q + νΔw) + g; (5.10)

divw = 0; (5.11)

θt +w ⋅ ∇θ + βχ|∇θ|
2 = (1 + βθ)χΔθ (5.12)

(we returned to the previous notation T ↔ θ).
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The main group of the system was calculated in [196] for g = (0,0,−g), g = const.
If we apply the substitution χ(1 + βθ) → θ, q → χq, ν → χν in eqs. (5.10)–(5.12), then
the thermal diffusivity χ is eliminated from the equations. Therefore, we can set χ = 1
in system (5.10)–(5.12).

At the first stage of the group analysis of system (5.10)–(5.12), we study the prop-
erties of its invariance with respect to transformations of the space of all independent
and dependent variables R9(t, x, y, z, u, v,w, q, θ). The greatest Lie group of transfor-
mations of the space R9 admitted by this system is infinite-dimensional, because the
transformation q → q + φ(t) with an arbitrary function φ conserves the system. The
corresponding Lie algebra of the operators is calculated by a standard method [158],
and its basis is formed by the following operators:

X1 = 𝜕x ,
X2 = 𝜕y ,
X3 = 𝜕z ,
X4 = t𝜕x + 𝜕u,
X5 = t𝜕y + 𝜕v ,
X6 = t𝜕z + 𝜕w ,
X7 = 𝜕t ,

X8 = x𝜕x + y𝜕y + (z + gt
2/2)𝜕z + u𝜕u + v𝜕v + (w + gt)𝜕w + 2θ𝜕θ ,

X9 = x𝜕x + y𝜕y + (z − gt
2/2)𝜕z + t𝜕t − gt𝜕w + θ𝜕θ − q𝜕q,

X10 = (z + gt
2/2)𝜕y − y𝜕z + (w + gt)𝜕v − v𝜕w ,

X11 = x𝜕z − (z + gt
2/2)𝜕x + u𝜕w − (w + gt)𝜕u,

X12 = y𝜕x − x𝜕y + v𝜕u − u𝜕v , X13(φ) = φ(t)𝜕q

(5.13)

(𝜕s is the operator of differentiation of the space R9 with respect to the coordinate s).
Let us indicate the Lie algebra of the operators (5.13) by L.

To describe unsteady motion of the fluid in a constant gravity field, we can use
the equivalence transformation

z → z − gt2/2, w → w − gt, (5.14)

which simplifies system (5.10)–(5.12) by eliminating the acceleration due to gravity
in the first equation. The structure of the equations is not distorted by this replace-
ment. Any exact solution of eqs. (5.10)–(5.13) with g = 0 is transformed by the reverse
replacement (5.14) to the exact solution of eqs. (5.10)–(5.12) with g ̸= 0. In what fol-
lows, we consider system (5.10)–(5.12) with g = 0. The corresponding Lie algebra of
the admissible operators (5.13) is simplified: in the basis operators X8,X9,X10,X11, it is
necessary to set g = 0.
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5.2 Optimal subsystems of the subalgebras Θ1 and Θ2,
factor-systems, and some solutions

An optimal system of the subalgebras Θ1 for eqs. (5.10)–(5.12) has the form [197]

εX1 + X6 + X13(φ), εX3 + δX12 + X13(φ),
νX6 + X12 + X13(φ), X8 + X13(φ),
εX1 + X8 + cX12 + X13(φ), νX4 + X8 + cX12 + X13(φ),
ε1X6 + X7 + ε2X12, εX1 + νX7 + X8 + cX12,
ν1X4 + ν2X7 + X8 + cX12, νX7 + X8, εX6 + X9,
ε1X1 + ε2X6 + X9 + cX12, νX3 + X8 − X9,
X8 + bX9, νX3 + X8 − X9 + cX12,
εX3 + νX4 + X8 − X9 + cX12, ε1X1 + ε2X4 + X8 + bX9 + cX12,

(5.15)

where δ = {0; 1}; ε, ε1, ε2 = {−1;0; 1}; ν, ν1, ν2 = {−1; 1}; b, c ∈ R, b ̸= 0, c ̸= 0, and φ(t) is
an arbitrary smooth function.

Note that eqs. (5.10)–(5.12)with g ̸= 0admit the followingdiscrete transformations
of their variables:

E1 : (t, u, v,w, θ, q)→ (−t,−u,−v,−w,−θ,−q),

E2 : (x, u)→ (−x,−u),

E3 : (y, v)→ (−y,−v),

E4 : (t, z,w)→ (t,−z − gt,−w − 2gt),

though the first transformation has no physical meaning. For system (5.10)–(5.12) with
g = 0, the transformations E1,E2,E3 are admitted in the same form, while the transfor-
mation E4 is simplified: (z,w)→ (−z,−w).

The optimal system of the second-order subalgebras Θ2 is given in Table 5.1.
Using the operators of the optimal systems of the subalgebras Θ1 and Θ2, we con-

struct several examples of factor-systems in invariant variables [197].

Example 5.1. Let us consider the operators

⟨X9, X6 + X13(c0t
−1)⟩ = ⟨t𝜕t + x𝜕x + y𝜕y + z𝜕z + θ𝜕θ − q𝜕q, t𝜕z + 𝜕w + c0t

−1𝜕q⟩,

where c0 = const. Invariants of these operators are the variables {xt−1, yt−1, u, v,w −
zt−1, θt−1, qt − c0zt−1}. The solution of system (5.10)–(5.12) is sought in the form
(u, v,w, q, θ) = (U ,V ,W + zt−1, t−1Q + c0zt−2, tT), where U ,V ,W ,Q, and T depend
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on ξ = xt−1, η = yt−1. The factor-system is written as

(U − ξ )Uξ + (V − η)Uη + (Uη − Vξ )Tη + TξTηη − TηTξη = T(−Qξ + ν(Uξξ + Uηη)),

(U − ξ )Vξ + (V − η)Vη + (Vξ − Uη)Tξ + TηTξξ − TξTξη = T(−Qη + ν(Vξξ + Vηη)),

W + (U − ξ )Wξ + (V − η)Wη +WξTξ +WηTη = T(−c0 + ν(Wξξ +Wηη)),

T + (U − ξ )Tξ + (V − η)Tη + Tξ
2 + Tη

2 = T(Tξξ + Tηη), Uξ + Vη + 1 = 0.

(5.16)

Let us assume that the functionsU ,V ,W ,Q, and T are independent of η. Then, the
last equation of system (5.16) yields U = C1 − ξ , C1 = const. Let us indicate 2ξ − C1 = h.
The remaining equations are rewritten as

2TQh = −h, −2hVh + 4VhTh = 4νTVhh,
W − 2hWh + 4WhTh = T(−c0 + 4νWhh),

T − 2hTh + 4(Th)
2 = 4TThh.

(5.17)

Seeking for the solution of the third equation of system (5.17) in the form T = ah2+
bh + d, we obtain

T = 3
8
h2, Q = C2 −

4
3
ln |h|, V = C3h

2/3ν+1 + C4.

The functionW satisfies the Euler equation

3
2
νh2Whh − hWh −W =

3
8
c0h

2

and has the following presentation:

W = (C5 +
3c0
28

ln |h|)h2 + C6h
−1/3 at ν = 1,

W = C5h
λ1 + C6h

λ2 +
c0

8(ν − 1)
h2 at ν ̸= 1,

λ1,2 =
(3ν + 2) ±√(3ν + 2)2 + 24ν

6ν
.

Here, Ci, i = 1, . . . , 6 are arbitrary constants.

Example 5.2. Let us consider the following combination of the operators:

⟨αX7 + X8,X3 + X13(ce
−αt)⟩

= ⟨α𝜕t + x𝜕x + y𝜕y + z𝜕z + u𝜕u + v𝜕v + w𝜕w + 2θ𝜕θ , 𝜕z + ce
−αt𝜕q⟩

(α ̸= 0 and c = const). Invariants of these operators are the variables {(x, y, u, v,w)
× e−αt , θe−2αt , q − cze−αt}. The solution of system (5.10)–(5.12) is sought in the form

(u, v,w, q, θ) = (Ueαt ,Veαt ,Weαt ,Q + cze−αt ,Te2αt),
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where U ,V ,W ,Q, and T depend on ξ = xe−αt and η = ye−αt . The factor-system is

αU + (U − αξ )Uξ + (V − αη)Uη + (Uη − Vξ )Tη + TξTηη − TηTξη = T(−Qξ + ν(Uξξ + Uηη)),

αV + (U − αξ )Vξ + (V − αη)Vη + (Vξ − Uη)Tξ + TηTξξ − TξTξη = T(−Qη + ν(Vξξ + Vηη)),

αW + (U − αξ )Wξ + (V − αη)Wη +WξTξ +WηTη = T(−c + ν(Wξξ +Wηη)),

αT + (U − αξ )Tξ + (V − αη)Tη + Tξ
2 + Tη

2 = T(Tξξ + Tηη),

Uξ + Vη = 0.
(5.18)

As in Example 5.1, we assume that the functions U ,V ,W ,Q, and T are independent
of η. Then, the last equation of system (5.18) yields U = U0 = const. Using the replace-
ment of variables αξ − U0 = h, we rewrite the remaining equations as

TQh = −U0, V − hVh + αVhTh = ναTVhh,

W − hWh + αWhTh = T(−
c
α
+ ναWhh),

T − hTh + αTh
2 = αTThh.

(5.19)

The solution of the last equation of system (5.19) is sought in the form T = ah2 +
bh + d (a, b, and d are arbitrary constants). Three types of solutions are obtained:

T = 0; T = bh − αb2; T = 1
2α

h2 + c.

The first case yields a simple solution of system (5.10)–(5.12)

u = 0, v = V0x, w = W0x, q = Q(xe−αt) + cze−αt , θ = 0,

where V0 andW0 are arbitrary constants, and Q(ξ ) is an arbitrary function.
In the second case (b ̸= 0), we have

Q = −U0
b

ln |bh − αb2| + Q0,

V = C1λ − C0[e
−λ/ναb −

λ
ναb
∫
1
λ
e−λ/ναb dλ].

In the third case, we obtain

Q(h) = 1
√2cα

arctg h
√2cα
, if 2α > 0,

Q(h) = − 1
2√−2cα

ln


√−2cα − h
√−2cα − h


, if 2α < 0,

Q(h) = 2αU0
h
, if c = 0.

The functions V(h) andW(h) satisfy second-order ordinary differential equations.
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Example 5.3. Let us consider a subalgebra of the operators ⟨αX3 + X7,X1,X2⟩ = ⟨α𝜕z +
𝜕t , 𝜕x , 𝜕y⟩, α = const. Invariants of these operators are the variables {z −αt, u, v,w, q, θ}.
We assume that the functions u, v,w, q, and θ depend on one variable ζ = z − αt. After
the substitution, system (5.10)–(5.12) transforms to the factor-system

(−α + w + θ)u = νθu, (−α + w + θ)v = νθv,
(−α + w)w = θ(−q + νw), w = 0, (5.20)
(−α + w + θ)θ = θθ,

where the prime denotes differentiation with respect to the variable ζ .
System (5.20) is integrated and has two variants of solutions:

u = U0 + U1ζ , v = V0 + V1ζ , w = W0,

q = Q0, θ = −(W0 − α)ζ + T1; (5.21)

u = U0 + U1e
T0ζ /ν , v = V0 + V1e

T0ζ /ν , w = W0,

q = Q0, θ = W0 − α
T0
+ T1e

T0ζ (5.22)

(U0,U1,V0,V1,W0,Q0,T0, and T1 are arbitrary constants; T0 ̸= 0).
Returning to natural, physical, functions v, p, and T (velocity, pressure, and tem-

perature) by means of the reverse replacement in eqs. (5.2) and (5.3), we obtain solu-
tions for eqs. (5.21):

v1 = U0 + U1ζ , v2 = V0 + V1ζ , v3 = α − gt, p = ρ0χQ0,

T = −(W0 − α)ζ + T1 − χ
χβ

,

and solutions for eqs. (5.22):

v1 = U0 + U1e
χT0ζ /ν , v2 = V0 + V1e

χT0ζ /ν , v3 = W0 − gt + T1T0e
T0ζ ,

p = ρ0χQ0 + (ρ0(ν − χ) + λ)T1T0
2eT0ζ ,

T = 1
χβT0
(−χT0 +W0 − α + T1T0e

T0ζ ).

Here, T0 ̸= 0 and ζ = z − αt + (gt2)/2. Similar solutions can be constructed on the
subalgebras ⟨βX1 + X7,X2, X3⟩ and ⟨γX2 + X7, X1, X3⟩.

Example 5.4. Weconstruct the solution on the operators ⟨X2;X5;X7;X3+X13(ψ0)⟩,ψ0 =
const. Invariants of these operators are the variables {x, u, v,w, θ, q − ψ0z}; therefore,
the partially invariant solution of rank 1 and defect 1 is sought in the form u = U(x),
v = v(t, x, y, z), w = W(x), θ = θ(x), q = ψ0z + Q(x). System (5.10)–(5.12) transforms to
the system
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UUx = θ(−Qx + νUxx) = 0,
vt + Uvx + vvy +Wvz + χvxθx = νθ(vxx + vyy + vzz), (5.23)

UWx + χWxθx = θ(−ψ0 + νWxx) − g, Uθx + χθ
2
x = χθθxx , Ux = 0,

which yields U ≡ U0 = const and Q ≡ Q0 = const.
System (5.23) is split with respect to the functions θ,W , and v and has two solu-

tions

θ1(x) =
1
C1
+ C2 exp(

C1U0x
χ
), θ2(x) = θ0 −

U0x
χ
,

where C1, C2, θ0 = const, and C1 ̸= 0.
The function v = const = 0 (plane motion) is a solution of system (5.23). This

case was considered in detail in [12] (see the next section). The fluid flow in a band
−a ≤ x ≤ a with a given heat flux on the boundary 𝜕θ/𝜕n = δ(θ − θext) = d (θext is
the external temperature of the fluid, i. e., the temperature of the fluid boundary) was
studied.

Let us consider the function θ2(x); then, the third equation in system (5.23) is in-
tegrated:

W(x) = 1
ν
{ψ0

x2

2
+ C1x + C2 +

gχ2

U2
0
(θ0 −

U0x
χ
)[ln |θ0 −

U0x
χ
| − 1]}.

Note that the solution obtained differs substantially from the known solution of
the steady problem in the Oberbeck–Boussinesq approximation

Wob(x) = −
gU0
6νχ

x(a2 − x2).

Example 5.5. On the operators ⟨αX1 + X7;X2;X3⟩, α = const, the invariant solution is
sought in the form

u = u(ξ ), v = v(ξ ), w = w(ξ ), q = q(ξ ), θ = θ(ξ ), ξ = x − αt.

System (5.10)–(5.12) is rewritten as the factor-system

uξ = 0, (u − α)uξ = θ(−qξ + νuξξ ), (u − α)vξ + χvξ = νθvξξ ,

(u − α)wξ + χwξθξ = νθwξξ − g, (u − α)θξ + χθ
2
ξ = χθθξξ .

(5.24)

Therefore, we have u ≡ u0 = const and q ≡ q0 = const. Let us assume that u0 − α = a0.
Then, we obtain

a0vξ + χvξθξ = νθvξξ , a0wξ + χwξθξ = νθwξξ − g,
a0θξ + χθ2ξ = χθθξξ .

(5.25)
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The structure of eqs. (5.25) is similar to that of eqs. (5.23), the equation for the function
θ(ξ ) is “split off,” and, therefore, we have

θ1(ξ ) =
1
C1
+ C2 exp(

C1a0ξ
χ
), θ2(ξ ) = θ0 −

a0ξ
χ
,

where C1, C2, θ0 = const, and C1 ̸= 0. For the solution θ2(ξ ), we easily obtain

v2(ξ ) = B1ξ + B2, B1,B2 = const,

w2(ξ ) =
1
ν
{ε1ξ + ε2 +

gχ2

a20
(θ0 −

a0ξ
χ
)(ln |θ0 −

a0ξ
χ
| − 1)}.

5.3 On one steady solution of microconvection equations in a
vertical layer

1. Solution of the steady problem in the case with a special temperature distribution.
Let us choose the coordinate system so that g = (0,−g,0). Let the fluid fill a layer
|x| < a; the boundaries of this layer are solid surfaces with a specified heat flux. If the
heat flux value is independent of z, then plane flows in the vertical layer are possible.
They occur in the case where the initial velocity and temperature distributions are
independent of z, and the velocity component is v3 = 0 at t = 0. In what follows, only
steady flows in the layer are considered [12].

System (5.10)–(5.12) in the plane case for a steady flow (wt = 0, Θt = 0) admits
the operators 𝜕/𝜕y andψ𝜕/𝜕q, which reflects the system invariance to transformations
of shifting along the y axis and addition of an arbitrary constant ψ to the analog of
pressure q. The invariant solutions of system (5.10)–(5.12) with respect to the operator
𝜕/𝜕y + ψ𝜕/𝜕q can be presented as

w = (w1,w2,0), w1(x) ≡ u, w2(x) ≡ v,
Θ = Θ(x), q = (φ − g)y + r(x),

(5.26)

where φ = ψ + g. The term −gy in the expression for q corresponds to the hydrostatic
component in the presentation of the true pressure p. If eq. (5.26) is substituted into
system (5.10)–(5.12), the system decomposes into consecutively solved equations of
the functions u, v,Θ, and r of the variable x, φ = const, g = const is the acceleration
due to gravity, and w1(x), w2(x), Θ(x), r(x), and φ are unknown functions.

It follows from the continuity equation (5.11) that w1 = const, and w2(x) is an ar-
bitrary function. Let us assume that u ≡ w1 = u0 = const and v ≡ w2 is an arbitrary
function.

The energy equation (5.12) with allowance for eq. (5.26) becomes

(u0 + βχΘx)Θx = (1 + βΘ)χΘxx . (5.27)
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The last equation of the second order has a two-parameter family of steady solu-
tions

Θ(x) = 1
β
[
1
c1
− 1 + c2 exp(c1u0x/χ)], c1 ̸= 0, (5.28)

and a singular solution

Θ0(x) = Θ̄ − u0x/βχ, Θ̄ = const. (5.29)

The boundary condition on the walls x = ±a, 𝜕θ/𝜕n = d for solution (5.26) takes
the form

Θx = −u0/βχ ≡ d. (5.30)

Obviously, this condition is satisfied only by the temperature field (5.29) with an arbi-
trary constant Θ̄.

Projecting eq. (5.10) onto the x axis, we obtain (1 + βΘ0)(−rx) = 0, i. e., r = r0 =
const. The function q(x, y) is determined with accuracy to a constant, and we can as-
sume that r0 ≡ 0. Projecting eq. (5.10) onto the y yields the equation

(u0 + βχΘ0x)vx = (1 + βΘ0)(νvxx − φ) + (1 + βΘ0)g − g
= (1 + βΘ0)(νvxx − φ) + βΘ0g. (5.31)

According to eq. (5.29), we have u0 + βχΘ0x = 0, and eq. (5.31) is simplified to

(1 + βΘ̄ − u0x
χ
)(νvxx − φ) + βΘ̄g −

u0g
χ

x = 0. (5.32)

Equation (5.32) is a second-order ordinary differential equation, where φ is an un-
known constant; therefore, three conditions are needed. As ∇Θ = (Θ0x ,0), we obtain

v(x) = 0, x = ±a. (5.33)

To determine v(x) unambiguously, we have to know the constant φ. Using the in-
terpretation of solution (5.26) as a solution that approximately describes convection in
the central part of a finite, but rather long closed cavity (as compared with the cavity
width 2a), we impose the condition of a zero mass flow rate of the fluid through any
cross section of the layer y = const onto this solution. In other words, we have

a

∫
−a

ρ(x)v2(x) dx = 0, (5.34)

where v2(x) is the true velocity and ρ(x) is the fluid density. In solution (5.26), v2(x) =
v(x); therefore, taking into account the state equation (5.5) accepted in this model, we
obtain

a

∫
−a

v(x)
1 + βΘ0(x)

dx = 0. (5.35)
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The general solution of eq. (5.32) is

v = 1
ν
[(φ − g)x

2

2
+ c1x + c2 +

gχ2

u20
(1 + βΘ̄ − u0x

χ
)(ln(1 + βΘ̄ − u0x

χ
) − 1)] (5.36)

with arbitrary constants c1 and c2. They are found from eq. (5.33):

c1 = −
gχ2

2au20
[(1 + βΘ̄ − u0a

χ
) ln(1 + βΘ̄ − u0a

χ
)

− (1 + βΘ̄ + u0a
χ
) ln(1 + βΘ̄ + u0a

χ
) + 2u0a

χ
],

c2 =
(g − φ)a2

2
−
gχ2

2u20
((1 + βΘ̄ − u0a

χ
) ln(1 + βΘ̄ − u0a

χ
)

+ (1 + βΘ̄ + u0a
χ
) ln(1 + βΘ̄ + u0a

χ
) − 2(1 + βΘ̄)).

(5.37)

Substituting eq. (5.36) into equality (5.35) and taking into account eq. (5.37), we
can determine the constant φ as φ = g +Φ, where

Φ = [4g(u0a
χ
)
2
+ 2g u0a

χ
(1 + βΘ̄) ln( 1 + βΘ̄ − u0a/χ

1 + βΘ̄ + u0a/χ
)

+ g(u0a
χ
)
2
ln2( 1 + βΘ̄ − u0a/χ

1 + βΘ̄ + u0a/χ
)

− g(1 + βΘ̄)2 ln2( 1 + βΘ̄ − u0a/χ
1 + βΘ̄ + u0a/χ

)]

× [(
u0a
χ
)
3
ln( 1 + βΘ̄ − u0a/χ

1 + βΘ̄ + u0a/χ
)]
−1
+ 2(u0a

χ
)
2
(1 + βΘ̄)

−
u0a
χ
(1 + βΘ̄)2 ln( 1 + βΘ̄ − u0a/χ

1 + βΘ̄ + u0a/χ
).

Let us compare the resultant solution with the solution of the steady problem in
the Oberbeck–Boussinesq approximation. It turns out that the temperature fields in
both solutions coincide. Similarly, the horizontal component of velocity is equal to
zero in both the classical and new formulations. The difference between these models
lies in the vertical component: in the Oberbeck–Boussinesq model, it has the form

v = −gu0
6νχ

x(a2 − x2). (5.38)

To compare eqs. (5.36) and (5.38), we write them in the dimensionless form. For
this purpose, we choose the unit for distance measurements (the characteristic linear
scale x = ηa) and introduce the dimensionless parameters γ = u0a/χ and ε = βΘ̄.
Passing to the dimensionless variable, we obtain

v = −gu0
6νχ

a3η(1 − η2).
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Here, the coefficient −gu0a3/6νχ has the dimension [cm/s]. Dividing the expression
givenaboveby this coefficient (anddenoting the resultant expressionby vb),weobtain

vb = −
6νχ
gu0a3

v = η − η3. (5.39)

Using eq. (5.36), we write the expression for velocity in the new model (denoting
it by vn) in the form

vn = −
ν
ga2

v = A(ε, γ)η2 + B(ε, γ)η − A − C + 1
γ2
(1 + ε − γη)[ln(1 + ε − γη) − 1], (5.40)

where

A = {4gγ2 + 2gγ(1 + ε) ln( 1 + ε − γ
1 + ε + γ

)

+ [gγ2 − g(1 + ε)2][ln( 1 + ε − γ
1 + ε + γ

)]
2
}

× {[2γ3 − 2γ(1 + ε)2] ln( 1 + ε − γ
1 + ε + γ

) − 4γ2(1 + ε)}
−1
,

B = − 1
2γ2
[(1 + ε) ln( 1 + ε − γ

1 + ε + γ
) − γ[ln((1 + ε)2 − γ2) − 2]],

C = 1
2γ2
[ln((1 + ε)2 − γ2) − 2] − γ ln( 1 + ε − γ

1 + ε + γ
).

A comparison of eqs. (5.39) and (5.40) shows that the function vn loses the prop-
erty of oddness, which is inherent in the distribution of vertical velocity of a steady
stratified convective flow in a vertical layer in accordance with the classical convec-
tion model. The velocity profiles are shown in Figure 5.1. It is seen that the value of
vn(0) decreases with increasing difference in temperature, and the velocity profile be-
comes almost parabolic, as in the Poiseuille flow.

Figure 5.1: Velocity profiles in vertically layer.
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Remark 5.1. The motion in a vertical slot with the temperature having the form (5.29)
(and also its unsteady variant) was studied in [176], and the boundary conditionswere
taken in the form (5.30). There are some inaccuracies in the formulas for temperature
and, hence, for velocity, and there are no explicit formulas for velocity.

2. Analysis of the steady solution for a specified temperature on the walls
Let us consider the case with the boundary conditions taken in the form θ = θw(x, t),
w + βχ∇θ = 0, i. e., the temperatures θ1 and θ2 are specified on the walls x = ±a.
Therefore, we have

Θ|x=−a = θ1, Θ|x=a = θ2.

Fromeq. (5.29), we obtain θ1 = Θ̄+u0a/βχ è θ2 = Θ̄−u0a/βχ. Thus, the singular solution
(5.29) satisfies these conditions if the constants u0 and Θ̄ depend on the values of θ1
and θ2:

Θ̄ = θ1 + θ2
2
, u0 =

(θ1 − θ2)βχ
2a
.

It is easily seen that the density is positive (βΘ̄ > −1) and Θ > 0 in the layer |x| < a.
The following conditions should be satisfied on the walls for steady solutions of

the form (5.28):

1
β
[
1
c1
− 1 + c2 exp(−

c1u0a
χ
)] = θ1,

1
β
[
1
c1
− 1 + c2 exp(

c1u0a
χ
)] = θ2.

(5.41)

Subtracting the first equation of system (5.41) from the second equation, we obtain

c2
β
=

θ2 − θ1
exp(μ) − exp(−μ)

, (5.42)

where μ = c1u0a/χ.
Let us consider possible variants.

A) If θ1 = θ2, then c2 = 0 and c1 = 1/(1 + βθ1), i. e., the temperature in the layer is
constant.

B) Let θ1 ̸= θ2. We substitute eq. (5.42) into the first equation of system (5.41), perform
the replacements

ω = βχ(θ2 − θ1)
u0a
, σ = (1 + βθ1)

χ
u0a

and obtain the equation

1
μ
+

ω
exp(2μ) − 1

= σ. (5.43)
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Figure 5.2: Function f vs μ for ω > 0.

Note that σ > 0 (we assume that u0 > 0). Are there any solutions for eq. (5.43)? Let

f (μ) = 1
μ
+

ω
exp(2μ) − 1

.

The derivative of the function f (μ) is

f (μ) = − 1
μ2
−

2ω exp(2μ)
(exp(2μ) − 1)2

. (5.44)

B1) At ω > 0 (θ2 > θ1), the function f (μ) monotonically decreases (f (μ) < 0) in the
domain of its definition. Therefore, there exists a unique solution f (μ1) = σ and μ1 > 0,
i. e., the only possible constants (Figure 5.2) are

c1 =
χ
u0a

μ1 > 0, c2 =
2β(θ2 − θ1)

sh μ1
. (5.45)

Let ω < 0. As μ→ 0, we have

f (μ) ≈ 1
μ
[1 + ω

2
−
ω
2
μ],

therefore, we have to consider the cases with 1 + ω/2 = 0, −2 < ω < 0, and ω < −2.

C) Let 1 + ω/2 = 0, i. e., ω = −2. Then, we have f (+∞) = 0, f (−∞) = 2, and f → 1 as
μ→ ±0. According to eq. (5.44), the derivative f (μ) at ω = −2 has the form

f (μ) = −1/μ2 + 4 exp(2μ)/(exp(2μ) − 1)2.

Does the function f (μ) have local extreme points?We can calculate that f (μ∗) = 0
if and only if | sh μ∗| = |μ∗|. The latter equality is satisfied only at μ∗ = 0, but in our
case we have f (0) = 1 at the point μ = 0. The derivative is f (μ) ≤ 0 (it is equal to
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Figure 5.3: Function f vs μ for ω = −2.

zero only at μ = 0); therefore, the function f (μ) decreases over the entire axis, i. e., the
unique solution of eq. (5.43) atω = −2 is μ1, and it exists only at 0 < σ < 2. This means
that there exist uniquely determined constants c1 and c2 for the indicated values of σ
(Figure 5.3).

D) Let 1+ω/2 > 0, i. e.,ω > −2. Then, we have f (μ) ∼ (1+ω/2)/μ. The function f (μ) has
a discontinuity at the point μ = 0, and f (±0) = ±∞. If f (μ∗) = 0, then we consider the
following cases:D1) −2 < ω < 0 andD2)ω > 0. The latter case reduces to the case B1).

In the case D1) we have −ω = |ω|. Let us consider the equation f (μ) = 0:

f (μ) = − 1
μ2
+
|ω|

2 sh2 μ
= 0. (5.46)

The derivative is equal to zero only at sh2 μ∗ = |ω|μ2∗/2 (μ∗ ̸= 0). Note that if μ is a
solution of eq. (5.46), then −μ is also a solution for eq. (5.46). We assume that μ∗ > 0.
Then, we have sh μ∗ = √|ω|/2 μ∗. We can easily show that the solution for eq. (5.46)
exists only at |ω| > 2; as −2 < ω < 0, the latter equation has no solutions. Thus, f (μ)
does not change its sign in the domain of its definition, f (μ) < 0, and f (μ)decreases. If
0 < σ < −ω, then eq. (5.43) has two solutions: μ1 > 0 and μ2 < 0. Therefore, there exist
two pairs of constants (c11 , c

1
2) and (c

2
1 , c

2
2). If σ ≥ −ω, then eq. (5.43) has one solution

(Figure 5.4).

E) Now let 1 + ω/2 < 0, i. e., ω < −2 and −ω = |ω|. The function is f (μ) ∼ (1 + ω/2)/
μ; as μ → 0, in accordance with the definition, the functions are f (+0) → −∞ and

Figure 5.4: Function f vs μ for −2 < ω < 0.
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f (−0)→ +∞. We can easily show that the solutions of the equation

f (μ) = 1
μ2 sh2 μ

[
|ω|
2

μ2 − sh2 μ] = 0

are μ∗ > 0,−μ∗, if the inequality |ω| > 2 is satisfied.
Thus, we have f (−μ∗) = −1/μ∗ − |ω|(exp(−2μ∗) − 1) and f (μ∗) = ω(exp(2μ∗) −

1) + 1/μ∗. Generally speaking, eq. (5.43) at f (−μ∗) < f (μ∗) may have four solutions if
f (−μ∗) < σ < f (μ∗). Let us demonstrate that f (μ∗) < f (−μ∗). In other words, we have
to verify that 2/μ∗ < |ω| cth μ∗. The latter inequality is equivalent to th μ∗ < |ω|μ∗/2
(μ∗ > 0). To verify this inequality, we consider the function h(μ) = th μ − |ω|μ/2. We
have h(0) = 0, h(μ) = 1/ ch2 μ − |ω|/2. Let us check the sign of the derivative at the
point μ = 0: obviously, h(0) = 1 − |ω|/2 < 0. Moreover, as ch μ > 1, we have h(μ) < 0,
i. e., the function h(μ) decreases. Therefore, we obtain h(μ) < 0 for all values μ > 0,
i. e., th μ∗ < |ω|μ∗/2 or, which is the same, f (μ∗) < f (−μ∗). Thus, if f (μ∗) < σ < f (−μ∗),
then eq. (5.43) has no solutions. If f (−μ∗) < σ < −ω or 0 < σ < f (μ∗), then eq. (5.43)
has two solutions. At σ = f (μ∗), σ = f (−μ∗), or σ ≥ −ω, this equation has one solution
(Figure 5.5).

Let us check whether conditions responsible for nonuniqueness of solutions of
eq. (5.43) are satisfied. The inequality σ < −ω should be valid for all cases considered:

(1 + βθ1)
χ
u0a
< −

βχ(θ2 − θ1)
u0a
, (5.47)

whence we obtain θ2 < 0. Thus, none of the conditions at which eq. (5.43) can have
two solutions is satisfied. Therefore, eq. (5.43) has only one solution for all possible
values of θ1 and θ2. The unique values of c1 and c2 are determined from eq. (5.45).

Taking Θ(x) in the form (5.28) with the indicated values of c1 and c2, we project
eq. (5.10) onto the y axis. As a result, we obtain the equation for determining the ver-
tical velocity component v:

(
1
c1
+ c2 exp(kx))νvxx − c1c2u0 exp(kx)vx = f (x), (5.48)

Figure 5.5: Function f vs μ for ω < −2.
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k = c1u0
χ
, f (x) = φ( 1

c1
+ c2 exp(kx)) − g(

1
c1
− 1 + c2 exp(kx)).

After the replacement z = 1 + c1c2 exp(kx), the general solution of eq. (5.48) has the
form

v =
z

∫
h1

zα

z − 1
[
φ − g
νk2
∫

dz
zα(z − 1)

+
gc1
νk2
∫

dz
zα+1(z − 1)

+ D1]dz + D2, (5.49)

where D1 and D2 are constants, h1 = 1 + c1c2 exp(−ak), α = χ/ν ≡ 1/Pr.
The unknown constant φ is determined from eq. (5.34):

φ = g(1 − c1F1) − D1νk
2F2, (5.50)

F1 =
∫
h2
h1

1
z ∫

z
h1

σα
σ−1 ∫

σ
h1

dτ
τα+1(τ−1) dσdz

∫
h2
h1

1
z ∫

z
h1

σα
σ−1 ∫

σ
h1

dτ
τα(τ−1) dσdz

,

F2 =
∫
h2
h1

1
z ∫

z
h1

σα
σ−1 dσdz

∫
h2
h1

1
z ∫

z
h1

σα
σ−1 ∫

σ
h1

dτ
τα(τ−1) dσdz

.

The integration constants D1 and D2 are found from the no-slip condition on the mo-
tionless solid wall: D2 = 0 and

D1 =

c1F1
νk2 ∫

h2
h1

zα
z−1 ∫

z
h1

dσ
σα(σ−1) dz −

gc1
νk2 ∫

h2
h1

zα
z−1 ∫

z
h1

dσ
σα+1(σ−1) dz

∫
h2
h1

zα
z−1 dz − F2 ∫

h2
h1

zα
z−1 ∫

z
h1

dσ
σα(σ−1) dz

,

where h2 = 1 + c1c2 exp(ak).
To compare the solution obtained for the vertical component with a similar solu-

tionof the steadyproblem in the classical formulation,wewrite eq. (5.49) in thedimen-
sionless form. For this purpose, we introduce the dimensionless parameter γ1 = ak
and, performing the replacement z = 1 + c1c2 exp(γ1η), obtain

vn =
νk2

g
v(η), −1 ≤ η ≤ 1, (5.51)

where

v(η) =
η

∫
−1

(1 + c1c2 exp(akη))
α
[
φ − g
νk2
∫

dσ
(1 + c1c2 exp(akσ))α

+ H(η) + D(η)]dη, (5.52)

H(η) = gc1
νk2
∫

dσ
(1 + c1c2 exp(akη))α+1

,

D(η) = − 1
∫
1
−1(1 + c1c2 exp(akη))

αdη
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× [
φ − g
νk2

1

∫
−1

(1 + c1c2 exp(akη))
α

η

∫
−1

dσ
(1 + c1c2 exp(akσ))α

dη

+
gc1
νk2

1

∫
−1

(1 + c1c2 exp(akη))
α

η

∫
−1

dσ
(1 + c1c2 exp(akσ))α+1

dη].

The velocity profiles are illustrated in Figure 5.6. The solid curves show the ve-
locities for a = 4. It is seen that the maximum value vmax increases with increasing
temperature difference. A typical feature of eq. (5.51) is the shift of the value vmax to-
ward the heated wall. The calculations were performed for silicon melts with u0 = 1.

The following values were obtained:
1) a = 4 and ΔΘ = 10:

c1 = 9.8741051593 ⋅ 10
−1, c2 = 9.4731241528 ⋅ 10

−8,

φ = 1.2338930230 ⋅ 10−1, D1 = 7.4033132577 ⋅ 10
−3;

2) a = 4 and ΔΘ = 50:

c1 = 9.8741051596 ⋅ 10
−1, c2 = 4.7365620753 ⋅ 10

−7,

φ = 1.2343666848 ⋅ 10−1, D1 = 4.1672399233 ⋅ 10
−2;

3) a = 4 and ΔΘ = 80:

c1 = 9.8741051598 ⋅ 10
−1, c2 = 7.5784993191 ⋅ 10

−7,

φ = 1.2347011449 ⋅ 10−1, D1 = 7.2380171987 ⋅ 10
−2;

4) a = 2 and ΔΘ = 10:

c1 = 9.8741053902 ⋅ 10
−1, c2 = 5.3326654478 ⋅ 10

−6,

Figure 5.6: Velocity profiles given by (5.40) and (5.32).
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φ = 1.2343236676 ⋅ 10−1, D1 = 1.2276678568 ⋅ 10
−2;

5) a = 2 and ΔΘ = 50:

c1 = 9.8741063141 ⋅ 10
−1, c2 = 2.6663317178 ⋅ 10

−5,

φ = 1.2364533464 ⋅ 10−1, D1 = 6.7828046692 ⋅ 10
−2;

6) a = 2 and ΔΘ = 80:

c1 = 9.8741070070 ⋅ 10
−1, c2 = 4.2661295412 ⋅ 10

−5,

φ = 1.2379651505 ⋅ 10−1, D1 = 1.1615778966 ⋅ 10
−1.

5.4 Solvability of a nonstandard boundary-value problem

1. Formulation of the problem
Finding the invariant solution of the microconvection problem (5.6)–(5.8) in a verti-
cal band reduces to solving nonstandard initial-boundary problems. Themethods de-
veloped in [17, 116, 174] allow us to prove unique solvability of each problem under
appropriate conditions of smoothness and compatibility of initial and boundary data.

The initial-boundary problems for the nonlinear heat-conduction equation and
the y component of velocity have the form

PrTt + ε(U + Tx)Tx = (1 + εT)Txx , (5.53)

T(x,0) = T0(x), |x| ≤ 1; Tx(−1, t) = Tx(2, t) = −U(t), t ≥ 0, (5.54)

vt +
ε
Pr
(U + Tx)vx = (1 + εT)(vxx − φ) + εTg, (5.55)

v(x,0) = v0(x), |x| ≤ 1; v(−1, t) = v(1, t) = 0, t ≥ 0. (5.56)

As the quantity Tx(±1, t) is proportional to the heat flux on the boundary, which is
assumed to be given, then, based on problem (5.53), the function U(t) can also be
assumed to be given. The function φ satisfies the relation

φ(t) = 1
2
(vx(1, t) − vx(−1, t)) +

ε
2

1

∫
−1

T0
1 + εT0

dx. (5.57)

Let the conditions

U(t) ∈ C1+α/2([0, tf ]), T0(x) ∈ C
3+α([−1, 1]), v0(x) ∈ C

2+α([−1, 1]), (5.58)
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be satisfied for an arbitrary finite value of tf . We use the compatibility conditions in
the form

−U(0) = T0x(±1),
1
Pr
[1 + εT0(±1)]T0xxx(±1) + U

(0) = 0,

v0(±1) = 0, (1 + εT0(±1))[v0xx(±1) − φ(0)] + εT0(±1)g = 0,

φ(0) = 1
0
(v0x(1) − v0x(−1)) +

ε
2

1

∫
−1

T0
1 + εT0

dx.

(5.59)

2. Solvability of initial-boundary problems for the heat-conduction equation and
loaded equation
If we seek the functions T and v in the form of expansions into series in powers of the
small parameter ε, then the expansion of the function T in powers of ε begins from
the zero-th-order term, and the expansion of the function v begins from the first-order
term:

T =
∞

∑
k=1

εkT(k), v =
∞

∑
k=1

εkv(k). (5.60)

The principal terms of the expansions are solutions of the problem

PrT(0)t = T
(0)
xx , T(0)(x,0) = T0(x),

T(0)x (−1, t) = T
(0)
x (1, t) = −U(t), (5.61)

v(1)t = v
(1)
xx −

1
2
[v(1)x (1, t) − v

(1)
x (−1, t) +

1

∫
−1

T0dx] + gT
(0), (5.62)

v(1)(x,0) = v0(x), v(1)(−1, t) = v(1)(1, t) = 0 (5.63)

with compatibility conditions that follow from conditions (5.59) as a result of their
splitting in terms of ε.

The function T(0) is a solution of the standard problem for the heat-conduction
equation (5.61); the issue of its solvability can be studied with the known approach
[116].

For the function v(1), the issue of solvability of problem (5.62), (5.63) in the general
case is rather difficult. Similar equations (5.62) have been called in [145] the loaded
ones. This problem is nonstandard because of the presence of the derivative of the
sought function at the boundary points; it will be studied with an additional repre-
sentation of v(1) in the form of an expansion into even and odd components.
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Note that all remaining functions T(k) and v(k) can be determined in a recurrent
manner as solutions of the following boundary-value problems:

PrT(k)t = T
(k)
xx − U(t)T

(k−1)
x +

k−1
∑
j=0
[T(j)x T(k−1−j)xx − T(j)x T(k−1−j)x ], (5.64)

T(k)(x,0) = 0, T(k)x (−1, t) = T
(k)
x (1, t) = 0; k ≥ 1,

v(k)t = v
(k)
xx −

1
4
[v(k)x (1, t) − v

(k)
x (−1, t)] −

1
2

1

∫
−1

(−1)k−1Tk0 dx

−
1
Pr
(U + T(0)x )v

(k−1)
x −

1
2

k−2
∑
j=0

T(j)v(k−1−j)x |1−1

−
1
2

k−1
∑
j=0

T(k−1−j)
1

∫
−1

(−1)j−1T j0 dx −
1
Pr
[
k−2
∑
j=1

T(j)x v(k−1−j)x ]

+
k−2
∑
j=0

T(j)v(k−1−j)xx + gT(k−1), (5.65)

v(k)(x, 1) = 0, v(k)(−1, t) = v(k)(1, t) = 0; k ≥ 2.

The necessary compatibility conditions are satisfied thereby as a consequence of con-
ditions (5.59).

Solvability of initial-boundary problems for the principal terms of the expansion
Let us introduce brief notations for some spaces extensively used below:

C̃m = Cm+α,(m+α)/2([−1, 1] × [0, tf ]), m = 2, 3.

If conditions (5.58) and compatibility conditions (5.59) are satisfied, the boundary-
value problem (5.53) for temperature is solvable, and T(0) ∈ C̃3 [116].

Further, let v(1) = v1 + v2, where v1 and v2 are the even and odd components of the
velocity v(1) in terms of the variable x. For v2, we have the classical first boundary-value
problem

v2t = v2xx + F2(x, t), t ∈ [0, tf ], x ∈ [−1, 1];
v2(x,0) = v20(x), v2(±1, t) = 0.

Here, F2(x, t) and v20(x) are the odd components of the functions ∫1−1 T0(x)dx +
gT(0)(x, t) and v0(x), respectively.

Solvability of theproblem for v2 canbeprovedbyusing theknownprocedure [116].
In this case, the function v2(x, t)belongs at least to the class C̃2, as v20(x) ∈ C2+α([−1, 1]),
and F2(x, t) ∈ C̃3.
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Let us consider the problem for the even component of velocity, where the equa-
tion has the nonlocal derivative:

v1t = v1xx − v1x(1, t) + F1(x, t), t ∈ [0, tf ], x ∈ [−1, 1], (5.66)
v1(x,0) = v10(x), |x| ≤ 1, (5.67)

v1(−1, t) = v1(1, t) = 0, t ≥ 0. (5.68)

Here F1 = F1(x, t) is the even component of the function ∫1−1 T0(x)dx + gT
(0)(x, t) of

the class C̃3 in eq. (5.62). The initial function v10(x) (even components of the initial
velocity) is a function of the class C2+α([−1, 1]). In this case, in particular, the equality
v10(±1) = 0 is satisfied, owing to the conditions v0(±1) = 0 (see the corresponding
condition (5.59)).

We expand the function v1 into a generalized Fourier series with due allowance
for its evenness, so that the boundary conditions (5.68) are automatically satisfied,
namely,

v1 =
∞

∑
n=0

un(t) cos(λnx), λn = π(n +
1
2
).

Taking into account orthonormality of the functions cos λnx on the segment [−1, 1], we
write eq. (5.66) in the form

∞

∑
n=0
[un(t) + λ

2
nun(t) + enf (t) − Fn(t)] cos λnx = 0 (5.69)

where f (t) is an unknown function of the derivative of the sought function on the
boundary f (t) = v1x(1, t). It follows from eq. (5.69) that the following representation
is valid for all values of n:

un(t) = Cn exp(−λ
2
nt) +

t

∫
0

(−enf (τ) + Fn(τ)) exp(−λ
2
n(t − τ)) dτ. (5.70)

The following notations are introduced for the generalized coefficients of the Fourier
expansions of the unity, the right-hand side of eq. (5.66), and the initial function (5.67)
into a series in cos λnx:

en = (−1)
n 2
λn
, Fn(t) = 2

1

∫
0

F1(x, t) cos λnx dx,

Cn = 2
1

∫
0

v10(x) cos λnx dx.
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The properties of the Fourier coefficients are determined by the properties of the corre-
sponding functions forwhich expansions are obtained; theywill be taken into account
below. We should also note that

f (t) =
∞

∑
n=0
(−1)n+1λnun(t), f (0) =

∞

∑
n=0
(−1)n+1λnCn.

Wemultiply each equation of system (5.70) by (−1)n+1λn and sum up in terms of n
from 0 to∞. Then, for finding the function f (t), we have the integral equation

f (t) = 2
t

∫
0

f (τ)
∞

∑
n=0

exp(−λ2n(t − τ))dτ + Q(t) (5.71)

where

Q(t) =
∞

∑
n=0
[(−1)n+1λn(Cn exp(−λ

2
nt) +

t

∫
0

Fn(τ) exp(−λ
2
n(t − τ)) dτ)]. (5.72)

In this case, we have Q(0) = f (0), and the kernel of the integral equation is a function
of the form

K(z) =
∞

∑
n=0

exp(−λ2n z); z = t − τ, τ ∈ [0, t], t ∈ [0, tf ]. (5.73)

It should be noted that kernel convergence is equivalent to convergence of the im-
proper integral

∞

∫
0

exp(−π2(x + 1
2
)
2
z) dx = 1

2√πz
−

1
2√πz

Φ(π
√z
2
);

Φ(α) = 2
√π

α

∫
0

exp(−y2)dy.

Here, Φ(α) is the Laplace function [53]. The second term is a smooth function at z ≥ 0.
Representing series (5.73) as an integral of the stepwise function

c(z, x) = cn, n ≤ x < n + 1, n = 0, 1, . . . ; cn = exp(−π
2(

2n + 1
2
)
2
z)

we can obtain the estimate

0 ≤
∞

∫
0

c(z, x) dx − 1
2√πz
+

1
2√πz

Φ(π
√z
2
) ≤

1
√πz

Φ(π
√z
2
)
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which allows us to identify a weak singularity of the form 1/√z from kernel (5.73) and
rewrite eq. (5.71) in the form

f (t) = λ
t

∫
0

f (τ)
√t − τ

dτ + Q(t), Q(t) =
t

∫
0

L(t − τ)f (τ)dτ + Q(t). (5.74)

Here, λ = 1/(2√π), and L(t − τ) is the smooth component of the polar kernel. Equa-
tion (5.74) refers to the Volterra integral equations of the second kind of the Abel type
[169, 224]. Iteration of the kernel component𝒦(t, τ) = 1/√t − τ of the integral equation
(5.74) yields the expression 𝒦2(t, τ) = ∫

t
τ

ds
√t−s√s−τ = π. Using the composition of both

sides of eq. (5.74) and the function λ𝒦(t, τ), we obtain the Volterra equation

f (t) = λ2π
t

∫
0

f (τ)dτ + Q2(t) (5.75)

with aboundedkernel consisting of𝒦2(t, τ) and the result of the compositionof∫t0 L(t−
τ)f (τ)dτ and λ𝒦(t, τ), where Q2(t) = Q(t) + λ2 ∫

t
0

Q(s)
√t−sds. Solving eq. (5.75), we obtain

a solution of the initial equation (5.74). Note that the Fourier coefficients Cn and Fn(t)
of the functions v10(x) ∈ C2+α([−1, 1]) (v10(±1) = 0) and F1(x, t) ∈ C̃3 possess properties
that ensure convergence of the integrals in relation (5.72) owing to validity of the in-
equalities |Cn| ≤ MC/n3, |Fn(t)| ≤ MF/n [213]. Based on these estimates, we conclude
that the series in relation (5.72) converge, because there are convergingmajorant series
of the form∑∞n=1MC/n2 and∑

∞
n=1MF/n2, respectively, at t ≥ 0 and x ∈ [−1, 1], whence it

follows thatQ(t) ∈ C2+(1+α)/2[0, tf ] (this is ensured by the properties of the function F1).
Thus, the integral equation (5.75) is solvable [224]. The function f (t) belongs at

least to the class C1+α/2([0, tf ]), which allows us to argue that problem (5.66)–(5.68) is
solvable in the class of functions C̃2, in accordance with the known results [116].

The solution of problem (5.53), (5.55), which can be represented by the power
series (5.60), is consecutively determined by the solutions of problems (5.61), (5.62)
and (5.64), (5.65). A principally important issue of the proof of solvability of problem
(5.66)–(5.68) for the higher approximation in terms of v(1) is the search for the solution
in the form of the sum of the odd and even components and the subsequentmethod of
determining the function f (t). The kernel of the integral equation for finding f (t) is de-
termined by the structure of the preceding differential equation, and the properties of
smoothness of the sought function mainly depend on smoothness of the correspond-
ing approximation for temperature. By means of induction, solvability of the recur-
rent boundary-value problems (5.64), (5.65) in the Hölder classes C̃m can be proved by
the method demonstrated above. We require that the initial temperature T0 = T0(x)
should satisfy the inequality

C0 = |T0|
3+α ≤ 1. (5.76)
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For series (5.60), we can construct majorant power series, which are obtained by
replacing T(k) and v(k) by their norms in the spaces C(3+α) and C(2+α), respectively. The
series converge if the condition ε ∈ [0, ε̃] is satisfied. Thus, series (5.60) converges
to the solution of problems (5.53), (5.55) only if ε ∈ [0, ε̃] (ε̃ is determined during the
proof).

Thus, we obtain the following theorem.

Theorem 5.1. Let conditions (5.58), (5.59), and (5.76) be satisfied. There then exists ε̃ > 0
such that problems (5.53) and (5.55) at 0 ≤ ε ≤ ε̃ have a solution of the form

v(1) ∈ C2+α,1+α/2([−1, 1] × [0, tf ]), T(0) ∈ C3+α,(3+α)/2([−1, 1] × [0, tf ])

This solution is an analytical function of the parameter ε at the point ε = 0.

Uniqueness of the solution can be found by the proof by contradiction.

5.5 Unsteady solution of microconvection equations in an infinite
band

Let us consider system (5.6)–(5.8) for themicroconvectionmodel.We denote the Carte-
sian coordinates in space by x, y, z, so that g = (0,−g,0), and the fluid is located in the
layer |x| ≤ awith a specified heat flux on the solid boundaries of this layer. If the heat
flux value is independent of z, then plane flows can exist in the vertical layer. These
flows occur if the initial velocity and temperature distributions are independent of z,
and the third velocity component is equal to zero. We consider a special class of solu-
tions of the system ofmicroconvection equations that are invariant with respect to the
operator 𝜕/𝜕y + φ(t) 𝜕/𝜕q, where φ(t) is an arbitrary function of time (see Section 5.3,
where a steady case was studied). Solutions such as these have the form

W = (u, v), u = U(t), v = v(x, t),
θ = θ(x, t), q = (φ(t) − g)y + h(x, t).

(5.77)

Let us write the problem formulation for the sought functions of velocity v and
temperature θ in the dimensionless form, using the characteristic length l = a, char-
acteristic time t∗ = l2/ν, characteristic velocity U∗ = εχ/a, and characteristic temper-
ature T∗, introducing the dimensionless parameters Pr = ν/χ (Prandtl number) and
ε = βT∗ (Boussinesq number), and indicating the dimensionless temperature by T:

vt +
ε
Pr
(U + Tx)vx = (1 + εT)(vxx − φ(t)) + εTg, (5.78)

φ(t) = 1
2
(vx(1, t) − vx(−1, t)) +

ε
2

1

∫
−1

T0
1 + εT0

dx,

v = v0(x), t = 0, |x| ≤ 1,
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v(−1, t) = v(1, t) = 0, t ≥ 0.
PrTt + ε(U + Tx)Tx = (1 + εT)Txx , (5.79)
T = T0(x), t = 0, |x| ≤ 1,

Tx(−1, t) = Tx(1, t) = −U(t), t ≥ 0.

The initial velocity v0(x) and initial temperature T0(x) are known functions. The
value of Tx, proportional to the heat flux on the interface between the fluid and the
solid, is also assumed to be specified. Then, the function U(t) can also be considered
as being specified. Independence of the heat flux on the layer boundaries x = ±a of the
coordinate y is conditioned by the structure of the invariant solution. If the problem
for temperature is solved, then the coefficients of the linear equation with respect to
v are known, and the free term also becomes known if φ(t) is specified. The natural
problem for this equation is the first initial-boundary problemwith conditions that are
no-slip conditions for the original physical velocity.

Finding an invariant solution of the problem of convection in a vertical band re-
duces to solving the second boundary-value problem for the nonlinear heat-conduc-
tion equation (5.79) and the subsequent solving of the first boundary-value problem
for the linear equation (5.78). Note that eq. (5.78) is not differential in the usual mean-
ing. Solvability of problems (5.78) and (5.79) in classes of the Hölder functions was
proved in [77].

To construct the asymptotic solution, we choose the Boussinesq number as a
small parameter ε (T∗ = maxx∈(−a,a) T0). Then, the principal terms of the expansions
T = ∑∞k=0 ε

kT(k), v = ∑∞k=1 ε
kv(k) are solutions of the following problems:

PrT(0)t = T
(0)
xx , (5.80)

T(0)(x,0) = T0(x), T(0)x (−1, t) = T
(0)
x (1, t) = −U(t).

v(1)t = v
(1)
xx −

1
2
[v(1)x (1, t) − v

(1)
x (−1, t) +

1

∫
−1

T0dx] + gT
(0), (5.81)

v(1)(x,0) = v0(x), v(1)(−1, t) = v(1)(−1, t) = 0.

Calculation of trajectories
Following [176, 17], let us consider periodic solutions of problems (5.80) and (5.81). Let
U(t) = sin γt. Then, the functions T(0), v(1) have the form

T(0) = Ts(x) sin γt + Tc(x) cos γt, v(1) = vs(x) sin γt + vc(x) cos γt,

and the components of physical velocity (which is now a dimensional quantity for
convenience of further discussions) are determined as

v1 = εv̄1 = ε(v1s sin γt + v1c cos γt),

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



142 | 5 Invariant submodels of microconvection equations

v2 = εv̄2 = ε(v2s sin γt + v2c cos γt),

v1s = χa
−1Δ−1(cosh λa cos λa cosh λx cos λx

+ sinh λa sin λa sinh λx sin λx − Δ),

v1c = χa
−1Δ−1(sinh λ a sin λa cosh λx cos λx

− cosh λa cos λa sinh λx sin λx),

v2s = χa
−1(A sinh λx cos λx + B cosh λx sin λx

+ C sinh μx cos μx + D cosh μx sin μx),

v2c = χa
−1(A sinh λx cos λx − B cosh λx sin λx

+ C cosh μx sin μx − D sinh μx cos μx).

Here, λ = √γ/2χ, μ = √γ/2ν, and the coefficients δ, Δ, A, B, C, and D are expressed in
a rather complicated manner via λ, μ, χ, ν, and a; these coefficients were obtained in
[17].

Knowing the functions v1 and v2, we can calculate the trajectories of fluid parti-
cles. For this, we need to solve the Cauchy problem

dx
dt
= v1(x, t),

dy
dt
= v2(x, t); (5.82)

x = x0, y = 0 at t = 0. (5.83)

Note that we should use v1 = 0 in constructing the trajectories of the fluid parti-
cles by the Oberbeck–Boussinesq model, whereas the expression for v2 = 0 remains
unchanged. In addition, the dependence of v2 on x, t is now exact rather than approx-
imate.

Theprojections of the integral curves of system (5.82) onto theplane x, y at ε = 0.01
and 0.02, and γ = 0.5 and 2 s−1 [176] demonstrate helical periodic motion (with the
main coil being an ellipse) of the fluid particle. As was noted in [176], the analysis of
the trajectory behavior is a rather complicated task because of the variety of dimen-
sionless parameters that affect the solution of the Cauchy problem (5.82), (5.83). We
can assume, however, that the intensity of periodicmotion and particle drift under the
conditions of applicability of the microconvection model are primarily determined by
the angular frequency γ, Boussinesq parameter ε, and, certainly, location of the point
(x0, y0) with respect to the lateral boundaries of the domain [81]. If the values of ε are
extremely small and the values of γ are commensurable with unity, we can conclude
that a typical flow regime is microconvection with a slow drift of fluid particles in the
vertical direction. This fact is also confirmed by the analysis of the nontrivial compo-
nent of motion, which was performed in [77] on the basis of the Krylov–Bogolyubov
averaging technique [39]. Let us indicate the mean value of the function f averaged
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over the time t by

M[f (x, t)] = lim
T→∞

1
T

T

∫
0

f (x, t) dt.

Then, the system of equations in the first approximation (or the averaged system cor-
responding to system (5.82)) has the form

dx̄
dt
= εM[v̄1],

dȳ
dt
= εM[v̄2].

This system, however, yields a trivial result because of the zero mean for cos γt and
sin γt. To obtain a nontrivial result, we can write a system of equations in the second
approximation [39] corresponding to system (5.82). Thus, for the first equation of sys-
tem (5.82), the equation in the second approximation is obtained as

dξ
dt
= ε2M[(X̃ 𝜕

𝜕ξ
)X(t, ξ )],

with the conventional notations of the averaging theory:

X = Xγe
iγt + X−γe

−iγt , X̃ = e
iγt

iγ
Xγ +

e−iγt

−iγ
X−γ

Xγ = (
v1s
2i
+
v1c
2i
), X−γ = (−

v1s
2i
+
v1c
2i
).

The system of equations in the second approximation, which is sometimes called
the improvement of the first approximation, finally takes the form

dξ
dt
=
ε2

2γ
[v1cv

1s − v1sv


1c],

dζ
dt
=
ε2

2γ
[v2cv

2s − v2sv


2c]. (5.84)

Here, the prime indicates the derivativewith respect to ξ . As the secondapproximation
[39], we finally use

x = ξ + ε 1
γ
[v1c(ξ ) sin γt − v1s(ξ ) cos γt];

y = ζ + ε 1
γ
[v2c(ξ ) sin γt − v2s(ξ ) cos γt],

where ξ and ζ satisfy the system of equations in the second approximation. These re-
lations allow us to speak about an elliptical trajectory and its transformation both in
time and in space. It should be noted that the issue of proximity of the solutions of the
averaged and initial systems is rather delicate, because (x̄, ȳ) here depends on t via εt
(slow time). According to [134], the proximity of the solution under the minimum as-
sumptions about the right-hand side smoothness that ensures solvability of problem
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Figure 5.7: Coincidence of the particle trajectories in the time interval [0, 24] s. The particle is ini-
tially located at the point (0.8,0). Model medium N1; ε = 0.01 and γ = 0.5.

(5.82) can be guaranteed within a certain interval of variation of t of the form [0, tε],
where tε = r/Lε√n, r is the distance between the initial point and the domain bound-
ary, L is the estimate of the maximum absolute value of the right-hand side, and n is
the space dimension.

Figure 5.7 illustrates the coincidence of the trajectory of the particle initially lo-
cated at the point (0.8,0), with the trajectory obtained by solving the initial system
(5.82) and the system of its second approximation for the modelN1 (see Table 5.2), but
with ε = 0.01 and γ = 0.5 at the time of 24 s. No coincidence is observed at later times.

The trajectories of motion of fluid particles calculated by the full system (5.82) are
presented in what follows. Themain parameters of the problem are listed in Table 5.2.
They are conventionally classified as threemodelswith different values of Pr, η, and g.
The characteristic velocities, Reynolds numbers, and durations of the process are also
different (see Table 5.3). For the model N1, the characteristic quantities of the process
are determined for ε = 0.5 and 0.1. To demonstrate trajectories that differ from those
in [176], we choose the values ε = 0.5 and 0.1, γ = ε or ε2.

Table 5.2: Basic parameters (in the centimeter-gram-second unit system).

Pr η ε ν χ g β γ

N1 0.75 1 0.5;0.1 0.15 0.2 0.03 0.0003 2;0.5;0.25;0.1
N2 0.01 0.4 0.5 0.015 1.5 0.009 0.0006 0.5;0.25
N3 0.1 0.4 0.5 0.15 1.5 0.09 0.0006 0.5;0.25
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Table 5.3: Characteristic values.

Re U∗ t∗

N1 0.67/0.13 0.1/0.02 6.67/6.67
N2 50 0.75 66.7
N3 5 0.75 6.67

Figure 5.8: Particle trajectory in the time interval [0, 240] s. Model medium N1; ε = 0.5 and γ = 2. The
particle is initially located at the point x0 = 0.8; y0 = 0.

Figures 5.8 (for ε = 0.5 and γ = 2) and 5.9 (for ε = γ = 0.5 and for ε = 0.5 and γ = 0.25)
show the trajectories of motion of the fluid particles initially located at the points with
the coordinates x0 = 0.3, y0 = 0 or x0 = 0.8, y0 = 0 up to the time t = 240 s.

It is of particular interest to trace the particle drift in a rather extended time in-
terval. To demonstrate trajectories that differ from those described in [176], we choose
the values ε = 0.5 and 0.1; γ = ε or ε2.

Let the fluid medium parameters be determined by the model N1. Figure 5.10a
(ε = γ = 0.5) shows the fluid particle trajectory up to the time t = 2400 s. The particle
is initially located at the point with the coordinates x0 = 0.8; y0 = 0 and demonstrates
a vertical drift toward the boundary. For smaller values of ε and γ, the particle drift is
less interesting from the viewpoint of differences from the trajectories studied in [176].

Figure 5.10b shows the fluid particle trajectory at the time t = 2400 s for ε = γ = 0.5
(x0 = 0.8; y0 = 0), for the fluid medium parameters being determined by the model
N2. Firstly, it should be noted that the vertical drift changes its direction (the upward
vertical motion changes to the downward motion). The motion toward the boundary
is continued. Secondly, the downward motion can start earlier in time (at γ = 0.25).

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



146 | 5 Invariant submodels of microconvection equations

Figure 5.9: Particle trajectory in the time interval [0, 240] s. The particle is initially located at the
point x0 = 0.3; y0 = 0. Model medium (a) N1; ε = 0.5; γ = 0.5 and (b) γ = 0.25.

Figure 5.10: Particle trajectories in the time interval [0, 2400] s. (The trajectory calculated by the
Oberbeck–Boussinesq model is a segment of the straight line x = x0). The particle is initially located
at the point x0 = 0.8; y0 = 0; ε = γ = 0.5; (a) model medium N1, (b) model medium N2, and (c) model
medium N3.

If the fluid medium parameters are determined by the model N3, then the pattern at
ε = γ = 0.5 is again interesting, and the upward vertical motion again changes to the
downward verticalmotion; this change, however, occursmuch earlier than in the case
illustrated in Figure 5.10b. The trajectory is plotted in Figure 5.10c. The downward drift
begins immediately at γ = 0.25.

Note that the trajectories calculated by the Oberbeck–Boussinesq model and
shown in Figures 5.10a and b are segments of the straight line x = x0. The trajectories
calculated for the linear approximation of the microconvection model demonstrate a
much more complicated and versatile drift of the fluid particle.

TheCauchyproblem for the systemsof ordinarydifferential equations (5.82), (5.83)
were studied numerically by the Runge–Kutta method in [103].
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5.6 Invariant solutions of microconvection equations that
describe the motion with an interface

1. Governing equations
Let us consider the system of microconvection equations (5.10)–(5.12). We study the
motion of two immiscible incompressible fluids that obey the equations of this model
and have a common interface Γ. The domains occupied by the fluids are indicated by
Ωj (j = 1, 2); inwhat follows, the indices “1” and “2” refer to the values of the quantities
w, q, θ, and the constants in these domains.

Let the surface tension coefficient σ on the surface Γ be temperature-dependent:
σ = σ(θ). For the true velocities and pressures on Γ, we have [19]

u1 = u2; (5.85)
θ1 = θ2; (5.86)

u ⋅ n = Vn; (5.87)
(T2 − T1)n = 2σKn + ∇IIσ; (5.88)

k2
𝜕θ2
𝜕n
− k1
𝜕θ1
𝜕n
= æθ∇II ⋅ u + ω(θt + u ⋅ ∇IIθ). (5.89)

In eqs. (5.87)–(5.89), n is the unit vector of the external normal to Γ, which is directed
from Ω1 to Ω2, Vn is the velocity of motion of Γ in the direction of n,

Tj = −(pj + λj divuj)I + 2ρjνjD(uj) (5.90)

are the stress tensors in the fluids, K is the mean curvature of the surface Γ (K > 0 if
Γ is convex outward the domain Ω1), ∇II = ∇ − (n ⋅ ∇)n is the surface gradient, and
kj are the constant thermal conductivity coefficients. The velocity vector and temper-
atures of both fluids on Γ are indicated by u and θ; these values coincide in pairs by
virtue of eqs. (5.85) and (5.86), so that ∇II ⋅ u is the surface divergence of the vector
u. The functions æ(θ) and ω(θ) inserted into eq. (5.89) are determined by the equali-
ties

æ = −dσ
dθ
, ω = d

dθ
(σ +æθ) = θdæ

dθ
. (5.91)

For many real fluids (e. g., metal melts), the dependence σ(θ) in a wide range is
adequately approximated by the linear function σ(θ) = σ0 − σT (θ − θ0), where σT =
const > 0 is the temperature coefficient of surface tension. In this case,wehaveæ = σT
and, according to eq. (5.91), ω = 0.

Remark 5.2. Instead of eq. (5.89),many researchers use the condition of identical heat
fluxes

k1
𝜕θ1
𝜕n
= k2
𝜕θ2
𝜕n
, (5.92)
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because the contributions of the terms in the right-hand side of eq. (5.89) are usually
small [184].

Remark 5.3. If Γ is implicitly defined by the equation f (x, t) = 0, then we have

n = ∇f
|∇f |
, Vn = −

ft
|∇f |

and the kinematic condition (5.87) takes the following form on Γ:

ft + u ⋅ ∇f = 0. (5.93)

Let the fluid indicated by “1” be a gas with the pressure p0 and temperature θ0.
Neglecting the transport processes in the gas (passive gas), we assume that T1 = −p0I
in eq. (5.88) and replace eq. (5.89) by the thermal contact condition

k2
𝜕θ2
𝜕n
+ δ(θ2 − θ0) = 0. (5.94)

Here, δ ≥ 0 is the interphase heat-transfer coefficient, which is assumed to be con-
stant. In this case, the surface Γ is called the free boundary.

We now need to perform the replacement in relations (5.85)–(5.90), (5.93) in ac-
cordance with eq. (5.9). As divwj = 0, we obtain

pj = ρ0jqj + λj divuj + βjρ0j(νj − χj)χjΔθj
= ρj0qj + λjβjχjΔθj + βjρ0j(νj − χj)χjΔθj = ρ0jqj + γjΔθj,

where γj = βjχj[λj + ρ0j(νj − χj)]. From eq. (5.90) we find the relations for the stress
tensors

Tj = −[ρ0jqj + (βjχjλj + γj)Δθj]I + 2μj[D(wj) + βjχjD(∇θj)].

Thus, the conditions on the interface Γ in the new variables take the form

w1 + β1χ1∇θ1 = w2 + β2χ2∇θ2; (5.95)
θ1 = θ2; (5.96)

{[ρ01q1 − ρ02q2 + (β1χ1λ1 + γ1)Δθ1 − (β2χ2λ2 + γ2)Δθ2]I
+ 2μ2[D(w2) + β2χ2D(∇θ2)] − 2μ1[D(w1) + β1χ1D(∇θ1)]}n
= 2σ(θ)Kn + ∇IIσ(θ); (5.97)

ft + (w1 + β1χ1∇θ1) ⋅ ∇f = 0. (5.98)

By virtue of the equalities

∇11 ⋅ u = ∇11 ⋅ u2 = β2χ2Δθ2 − n ⋅
𝜕w2
𝜕n
− β2χ2n ⋅

𝜕
𝜕n
∇θ2
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the energy condition (5.89) transforms to

k2
𝜕θ2
𝜕n
− k1
𝜕θ1
𝜕n
= æθ[β2χ2Δθ2 − n ⋅ (

𝜕w2
𝜕n
+ β2χ2
𝜕∇θ2
𝜕n
)]

+ ω[θt + (w2 + β2χ2∇θ2) ⋅ ∇IIθ]. (5.99)

If the energy condition on Γ is taken in the form (5.92), it remains unchanged.
For problems with the free boundary, the dynamic condition transforms to

[p0 − ρ20q2 − (β2χ2λ2 + γ2)Δθ2]n + 2μ2[D(w2) + β2χ2D(∇θ2)]n = 2σ(θ)Kn + ∇IIσ(θ).
(5.100)

In further considerations of problemswith the free boundary, the index “2” is omitted.

Remark 5.4. If there is a solid wall Σj, then the conditions on it are

wj + βjχj∇θj = vjcm; (5.101)

θj = θjcm or
𝜕θj
𝜕n
= Qj, (5.102)

where vjcm is the wall velocity and Qj is the heat flux.

2. Basic Lie algebra
Here, we assume that the vector of external mass forces in eq. (5.10) depends only on
time:

g = −(g1(t), g2(t), g3(t)), (5.103)

with known functions g1(t), g2(t), and g3(t). Then, the transformation

̄t = t, x̄ = x +∬ g1(t) dtdτ, ū = u + ∫ g1(t) dt,

ȳ = y +∬ g2(t) dtdτ, v̄ = v + ∫ g2(t) dt, (5.104)

̄z = z +∬ g3(t) dtdτ, w̄ = w + ∫ g3(t) dt

is an equivalence transformation, and we can assume that g = 0 in system (5.10)–
(5.12).

Remark 5.5. In many situations, g = (0,0,−g); then, ̄t = t, x̄ = x, ȳ = y, ū = u, v̄ = v,
̄z = z + gt2/2, w̄ = w + gt is an equivalence transformation.
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System (5.10)–(5.12) with g = 0 admits the following basic Lie algebra of operators
(w = (u, v,w); see eq. (5.13) with g = 0):

X1 = 𝜕x , X2 = 𝜕y , X3 = 𝜕z , X4 = t𝜕x + 𝜕u,
X5 = t𝜕y + 𝜕v , X6 = t𝜕z + 𝜕w , X7 = 𝜕t ,

X8 = x𝜕x + y𝜕y + z𝜕z + u𝜕u + v𝜕v + w𝜕w +
2
β
(1 + βθ)𝜕θ ,

X9 = x𝜕x + y𝜕y + z𝜕z + t𝜕t +
1
β
(1 + βθ)𝜕θ − q𝜕q,

X10 = z𝜕y − y𝜕z + w𝜕v − v𝜕w , X11 = x𝜕z − z𝜕x + u𝜕w − w𝜕u,
X12 = y𝜕x − x𝜕y + v𝜕u − u𝜕v , X13(φ) = φ(t)𝜕q.

(5.105)

The Lie algebra (5.105) is infinite-dimensional by virtue of the presence of the op-
erator X13(φ) with an arbitrary function φ(t) ∈ C∞. Let us explicitly write groups of
transformations in the space R9 of the variables (t, x, y, z; u, v,w; q; θ) (only the trans-
formed variables are indicated):

X1 : x̄ = x + a1;
X2 : ȳ = y + a2;
X3 : ̄z = z + a3;
X4 : x̄ = x + a4t, ū = u + a4;
X5 : ȳ = y + a5t, v̄ = v + a5;
X6 : ̄z = z + a6t, w̄ = w + a6;
X7 : ̄t = t + a7;
X8 : x̄ = ea8x, ȳ = ea8y, ̄z = ea8z, ū = ea8u, v̄ = ea8v,

w̄ = ea8w, θ̄ = − 1
β
+ (

1
β
+ θ)e2a8 ; (5.106)

X9 : x̄ = ea9x, ȳ = ea9y, ̄z = ea9z, ̄t = ea9 t, q̄ = e−a9q,

θ̄ = − 1
β
+ (

1
β
+ θ)ea9 ;

X10 : ȳ = cos a10y + sin a10z, ̄z = cos a10z − sin a10y,
v̄ = cos a10v + sin a10w, w̄ = cos a10w − sin a10v;

X11 : x̄ = cos a11x − sin a11z, ̄z = z cos a11z + sin a11x,
ū = cos a11u − sin a11w, w̄ = cos a11w + sin a11u;

X12 : x̄ = cos a12x + sin a12y, ȳ = cos a12y − sin a12x,
ū = cos a12u + sin a12v, v̄ = cos a12v − sin a12u;

X13 : q̄ = q + a13φ(t)
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(a1, . . . , a13 are group constants). In what follows, this group is indicated by Gj (the
index j refers to the flow domain).

3. Invariance of conditions on the interface
The action of the external forces (5.103) is assumed to be identical in the domains Ωj.
In this case, the boundary conditions (5.95)–(5.100), (5.94) are invariant with respect
to the equivalence transformation (5.104). Let us demonstrate this with an example of
the boundary condition (5.98).

Let

f (x, t) = f(x̄ −∬ g(t) dtdτ, t) = ̄f (x̄, ̄t) = 0

be the interface equation, then we obtain

ft + u ⋅ ∇xf = ̄f ̄t + ∇x̄ ̄f ⋅
dx̄
dt
+ (ū − ∫ g(t) dt) ⋅ ∇x̄ ̄f

= ̄f ̄t + ū ⋅ ∇x̄ ̄f = 0.

Therefore, the usual notations of the dependent and independent variables x, f ,w, q,
and θ can be used in the boundary conditions on the interface.

Remark 5.6. Condition (5.101) on the solid wall is not invariant with respect to trans-
formations (5.98):

w̄j − ∫ g(t) dt + βjχj∇θj = vjcm.

Let us choose the following set of operators:

⟨Xj
1,X

j
2,X

j
3,X

j
4,X

j
5,X

j
6,X

j
7,X

j
10,X

j
11,X

j
12⟩.

This forms the basis for the Lie algebra generating a ten-parameter group Gj
10,

which is the Galileo group (j = 1, 2).

Statement 5.1. LetH be an intransitive subgroup of the Galileo group Gj
10, and let the

interface Γ be a nonsingular invariant manifold of the group H in the space {t, x, y, z}.
Then, conditions (5.95)–(5.99), which are satisfied on this surface, are also invariant
with respect to H.

The proof is performed directly by formulas (5.106) corresponding to the group
Gj
10 [173].

Note that the group Gj
10 acts identically in the spaces R91 and R92 ; therefore, the

index j for the subgroup H can be omitted.
In the general case, in formulating Statement 5.1, the groupGj

10 cannot be replaced
by a wider subgroup of the group Gj of transformations (5.106). There are, however,
some particular cases where such an extension is possible.
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The first case corresponds to identical densities ρ01 = ρ02. Statement 5.1 remains
valid ifH ⊂ Gj

10⊗G
j
φ, whereG

j
φ is an infinite group generated by the operatorsX

j
13(φ) =

φ(t)𝜕qj .
The boundary conditions (5.95) and (5.98) are obviously invariant with respect

to transformations generated by the operators X8 and X9. Concerning the equality of
temperatures (5.96) on Γ, we should have β1 = β2. In this case, the dynamic condition
(5.97) is invariant with respect to X8, if the dependence σ(θ) has the form

σ(θ) = ( 1
β1
+ θ)

1/2
c1

(c1 > 0 is a constant). Invariance of eq. (5.97) with respect to X9 is possible only if
σ(θ) = σ0 = const; here, the right-hand side of the energy condition (5.99) is equal to
zero (condition (5.92) is satisfied), and this permits a transformation related to X9. If
the condition of identical heat fluxes (5.92) is satisfied, then it is invariant with respect
to the operator X8. For other dependences σ(θ), invariance of eq. (5.99) is violated for
the group related to the operator X8.

Thus, extension to the group Gj
X8
occurs if β1 = β2, σ(θ) = (1/β1 + θ)1/2c1, and the

energy condition (5.92) is satisfied. For the group Gj
X9
, the boundary conditions are

invariant only at β1 = β2 and σ(θ) = σ0 = const.
In considering the problem with the free boundary, it is necessary to know the

properties of invariance of conditions (5.98), (5.94), and (5.100), where the indices “1”
and “2” should be omitted. Let us assume that θ0 = const and p0 = p0(t); then, apply-
ing the replacement

ρ0q → ρ0q + p0(t), θ → θ + θ0,

we can assume that p0 = 0 and θ0 = 0.
Thus, we can formulate the following statement.

Statement 5.2. If the free boundary Γ is invariant with respect to the subgroup H of
theGalileo groupG10, then conditions (5.94), (5.98), and (5.100)with p0 = 0 and θ0 = 0
are also invariant with respect to H.

In formulating this statement, the Galileo group can be replaced by a wider group
if two conditions are satisfied simultaneously:

σ = 0, σ(θ) = c1(1/β1 + θ)
1/2

or
σ = 0, σ(θ) = σ0 = const.

The resultant group is G10 ⊗ GX8 in the first case and G10 ⊗ GX9 in the second case.
The above-formulated statements allow finding invariant and partially invariant

solutions, which are correlated in advancewith conditions on the interface and on the
free boundary. Certainly, if the problem includes solid walls and external mass forces,
it is necessary to take into account Remark 5.6 in analyzing the exact solution.
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6 Group properties of equations of thermodiffusion
motion

In this chapter, group properties of equations of nonisothermal motion of binary mix-
tures are studied. The basic Lie algebras and equivalence transformations are found;
the problem of the group classification is solved. The classification of invariant solu-
tions is performed; optimal systems of first- and second-order subalgebras are con-
structed for an infinite-dimensional algebra of operators admitted by the equations
of plane motions. New classes of exact solutions and generalizations of previously
known solutions of equations of thermodiffusion motion are constructed. Subgroups
of continuous transformations to which the conditions on the interface or free bound-
ary remain invariant are identified. This chapter is based on previous publications
[6, 22, 200, 201, 202, 203, 204].

6.1 Lie group of thermodiffusion equations

Equations of convection of a binary mixture
Thermodiffusion is understood to be the molecular transport of matter induced by a
temperature gradient in the medium (liquid solution or gas mixture). In the case of
thermodiffusion, the species have different concentrations in areas with elevated and
reduced temperatures. The presence of a concentration gradient leads to the emer-
gence of conventional diffusion. The steady state is established when the balance of
diffusion and thermodiffusion processes is reached, i. e., the process of mixing of the
species in themixture is compensated by the process of their separation. Normal ther-
modiffusion,where the heavy species tend to pass to colder areas and the light species
tend to pass to more heated areas, is often observed in practice. In some cases, abnor-
mal thermodiffusionwith the opposite directions of motion of the species is observed.
Thermodiffusion in solutions is also called the Soret effect.

Thermodiffusion is often encountered in nature; there are also numerous appli-
cations in engineering. Combined with thermal convection, this effect is used to sep-
arate isotopes in liquid and gaseous mixtures [190, 191]. Separation is performed in
a thermodiffusion column, which consists of two coaxial tubes heated to different
temperatures. Thermodiffusion is used to determine the oil composition and separate
its components [233], to deposit various coatings onto metallic articles, and to grow
crystals. Another example of the application of the effect considered here is a heat
pump [40]. Thermodiffusion also affects currents in seas and oceans, where salt water
masses experience various heating regimes [97, 223].

The model of thermodiffusion of a binary mixture is based on the Navier–Stokes
equations, supplemented with equations of heat and mass transfer. The Oberbeck–
Boussinesq approximation derived to describe convective flows under natural Earth’s

https://doi.org/10.1515/9783110655469-006
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conditions is used. The mixture density is assumed to be a linear function of temper-
ature and concentration of the light species:

ρ = ρ0(1 − β1T − β2C).

Here, ρ0 is the density of the mixture at mean values of temperature and concentra-
tion,T andC are small deviations from themean values, β1 is the coefficient of thermal
expansion of the mixture, and β2 is the concentration coefficient of density (β2 > 0,
because C is the concentration of the light species). The motion of the mixture is de-
scribed by the system of equations [68, 210]

ut + (u ⋅ ∇)u = −
1
ρ0
∇p + νΔu − g(β1T + β2C), (6.1)

Tt + u ⋅ ∇T = χΔT , (6.2)
Ct + u ⋅ ∇C = dΔC + αdΔT , (6.3)

divu = 0, (6.4)

where u is the velocity vector, p is the deviation of the pressure from the hydrostatic
pressure, ν is the coefficient of kinematic viscosity, χ is the coefficient of thermal diffu-
sivity, d is the diffusion coefficient, α is the thermodiffusion parameter, and g = const
is the vector of acceleration due to gravity. All characteristics of the medium are as-
sumed to be constant and correspond to the mean values of temperature and concen-
tration. The thermodiffusion parameter has the form α = −dT/d T0, where dT is the
thermodiffusion coefficient and T0 is the mean temperature. The values α < 0 and
α > 0 refer to normal and abnormal thermodiffusion, respectively.

In a particular case (C = 0 and α = 0), system (6.1)–(6.4) transforms into a sys-
tem of equations of free convection of a homogeneous fluid (Oberbeck–Boussinesq
model). A fairly large number of exact solutions are known for this model; many of
them can be found in [68, 71]. These works contain studies of the stability of various
types of convective flows as well as mechanical equilibrium. Group properties of free
convection equations were examined in [76] for the plane case and in an earlier pub-
lication [106] for steady plane flows (see also [18]). A number of exact solutions were
constructed in those publications; some of these solutions had been previously found
by other methods.

Exact solutions of equations of convection in a binary mixture were considered
in [72, 235], which mainly deal with investigations of the stability of the correspond-
ing motions. Results of studying the stability of mechanical equilibrium of a binary
mixture, with due allowance for thermodiffusion, can be found in [68]. Stability of
thermodiffusion motion in a vertical layer with a transverse difference in temperature
was considered in [73]; the same problem, complicated by the presence of a stream-
wise gradient of concentration,was examined in [150]. Instability of aplanehorizontal
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layer of an incompressible binary gasmixture under the action of a transverse temper-
ature gradient modulated in time was studied in [214]. We should also note the publi-
cation [65], in which the stability of a horizontal layer under the action of vibrations
and with allowance for thermodiffusion was considered.

The authors of the these works found exact solutions of eqs. (6.1)–(6.4), which
describe the main flow. Methods of group analysis of differential equations were not
used. As it will be demonstrated in this chapter, however, all of these solutions have
group nature.

Group properties of model equations
In system (6.1)–(6.4), let us assume that x = (x1, x2, x3) is the coordinate vector, u =
(u1, u2, u3) is the velocity vector, g = (0,0,−g), and g is the acceleration due to grav-
ity (the x3 axis is directed vertically upward). Let us pose the problem of finding an
admissible Lie algebra of operators for system (6.1)–(6.4). In our calculations, we as-
sume that the parameters α, β1, and β2 can vanish, which means the absence of the
corresponding terms in the equations. This approach allows us to study the problem,
taking into account or ignoring the dependence of the group properties of the model
on various effects in constructing the model (thermodiffusion, dependence of density
on temperature and concentration). Note that, from the viewpoint of the group anal-
ysis, the case with g = 0 is equivalent to the case with β1 = β2 = 0. Therefore, the
vector of acceleration due to gravity and the constants χ and d are further assumed
to differ from zero. The formulated problem is a problem of the group classification of
system (6.1)–(6.4) with respect to the parameters involved.

Let f (t, x) be a certain function; its derivatives are then indicated in accordance
with the equalities

𝜕f
𝜕t
= ft ,
𝜕f
𝜕xi
= fi,

𝜕2f
𝜕t 𝜕xi
= fti,

𝜕2f
𝜕xi𝜕xj
= fij, i, j = 1, 2, 3, i ≤ j.

Using these equalities, we write system (6.1)–(6.4) in the coordinate form:

u1t + u
1u11 + u

2u12 + u
3u13 +

1
ρ0

p1 − ν(u
1
11 + u

1
22 + u

1
33) = 0; (6.5)

u2t + u
1u21 + u

2u22 + u
3u23 +

1
ρ0

p2 − ν(u
2
11 + u

2
22 + u

2
33) = 0; (6.6)

u3t + u
1u31 + u

2u32 + u
3u33 +

1
ρ0

p3 − ν(u
3
11 + u

3
22 + u

3
33) − g(β1T + β2C) = 0; (6.7)

Tt + u
1T1 + u

2T2 + u
3T3 − χ(T11 + T22 + T33) = 0; (6.8)

Ct + u
1C1 + u

2C2 + u
3C3 − d(C11 + C22 + C33) − αd(T11 + T22 + T33) = 0; (6.9)

u11 + u
2
2 + u

3
3 = 0. (6.10)
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We seek the infinitesimal operator admitted by the system in the form

X = ξ t 𝜕
𝜕t
+ ξ i 𝜕
𝜕xi
+ ηi 𝜕
𝜕ui
+ ηp 𝜕
𝜕p
+ ηT 𝜕
𝜕T
+ ηC 𝜕
𝜕C
, (6.11)

assuming that its components depend upon all dependent and independent variables
(summation over the repeated index i = 1, 2, 3 is implied). To form the governing equa-
tions, we need to apply the extended operator X

2
to eqs. (6.5)—(6.10) and pass to the

manifold defined by the system. The equations considered here, however, are not in
involution, which complicates identification of external and internal variables. Let us
supplement the system with its differential corollary [212]

(u11)
2 + (u22)

2 + (u33)
2 + 2(u12u

2
1 + u

1
3u

3
1 + u

2
3u

3
2)

+
1
ρ0
(p11 + p22 + p33) − g(β1T3 + β2C3) = 0, (6.12)

obtained by differentiating eqs. (6.5), (6.6), and (6.7) with respect to x1, x2, and x3, re-
spectively, and by using eq. (6.10). In passing to the manifold, we also take into ac-
count the differential corollaries of eq. (6.10):

u1t1 + u
2
t2 + u

3
t3 = 0, u11i + u

2
2i + u

3
3i = 0, i = 1, 2, 3. (6.13)

System (6.5)—(6.10), (6.12), (6.13) is in involution. Nowwe can easily identify the exter-
nal variables: u111, u

2
11, u

3
11, p11, T11, C11, u

3
t3, u

3
13, u

3
23, u

3
33, and u

1
1. Applying the operator

X
2
to the system and substituting the expressions for the external variables into the re-

sultant equations, we obtain the system of the governing equations. After rather long
transformations, the solution of this system is presented as

ξ t = 2c4t + c0, ξ 1 = c4x
1 + c1x

2 + c2x
3 + f 1(t),

ξ 2 = −c1x
1 + c4x

2 + c3x
3 + f 2(t), ξ 3 = −c2x

1 − c3x
2 + c4x

3 + f 3(t),

η1 = −c4u
1 + c1u

2 + c2u
3 + f 1t (t), η2 = −c1u

1 − c4u
2 + c3u

3 + f 2t (t),

η3 = −c2u
1 − c3u

2 − c4u
3 + f 3t (t),

ηp = ρ0[c5gβ1x
3 + c6gβ2x

3 − f 1tt(t)x
1 − f 2tt(t)x

2 − f 3tt(t)x
3] − 2c4p + f

0(t),

ηT = c7T + c9C + c5, ηC = c8C + c10T + c6.

(6.14)

Here, c0, . . . , c10 are the group constants and f i(t) ∈ T∞, i = 0, 1, 2, 3, are arbitrary
smooth functions. The group constants are related to the parameters α, β1, β2, χ, and
d by the system of the classifying equations

β1(c7 + 3c4) + β2c10 = 0, β2(c8 + 3c4) + β1c9 = 0,
αd(c8 − c7) + (χ − d)c10 = 0, (χ − d)c9 = 0,

αc9 = 0, β1c2 = 0, β1c3 = 0, β2c2 = 0, β2c3 = 0.
(6.15)
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Using eqs. (6.14) and system (6.15), we find the algebras of operators admitted by the
system, depending on the values of the parameters involved. The results of the group
classification are summarized in Table 6.1.

The first three columns show the values of the constants α, β1, and β2; the fourth
column contains the basis operators, and the fifth column shows additional operators
admitted by the system in the case with d = χ. If all constants differ from zero (last
row of the table), then the system admits the operator R1 at the indicated value of the
parameter α.

The operators have the form

X0 =
𝜕
𝜕t
, Xij = x

i 𝜕
𝜕xj
− xj 𝜕
𝜕xi
+ ui 𝜕
𝜕uj
− uj 𝜕
𝜕ui
,

Hi(f
i(t)) = f i(t) 𝜕

𝜕xi
+ f it (t)
𝜕
𝜕ui
− ρ0x

if itt(t)
𝜕
𝜕p
, i, j = 1, 2, 3, i < j,

H0(f
0(t)) = f 0(t) 𝜕

𝜕p
, Z = 2t 𝜕

𝜕t
+

3
∑
i=1
(xi 𝜕
𝜕xi
− ui 𝜕
𝜕ui
) − 2p 𝜕
𝜕p
,

U1 = ρ0gx
3 𝜕
𝜕p
+

1
β1
𝜕
𝜕T
, U2 = ρ0gx

3 𝜕
𝜕p
+

1
β2
𝜕
𝜕C
,

T1 = T 𝜕
𝜕T
, T2 = C 𝜕

𝜕T
, T3 = 𝜕

𝜕T
,

C1 = C 𝜕
𝜕C
, C2 = T 𝜕

𝜕C
, C3 = 𝜕

𝜕C
,

R = T1 + C1, R1 = T
1 −

β1
β2

C2, R2 = C
1 −

β2
β1

T2,

Z1 = Z − 3T
1, Z2 = Z − 3C

1, Z3 = Z − 3R,

L = [αT + (1 − χ/d)C] 𝜕
𝜕C
.

(6.16)

Note that the transformations of equivalence of the parameters are ignored in this
problem of the group classification. The reason is the necessity of knowing the group

Table 6.1: Results of the group classification of the three-dimensional model.

α β1 β2 Operators d = χ

0 0 0 X0, Xij ,Hi ,H0, Z, T 1, T 3,C1,C3 T 2,C2

0 0 ̸= 0 X0, X12,Hi ,H0, Z2,U2, T 1, T 3 T 2

0 ̸= 0 0 X0, X12,Hi ,H0, Z1,U1,C1,C3 C2

0 ̸= 0 ̸= 0 X0, X12,Hi ,H0, Z3,U1,U2 R1, R2
̸= 0 0 0 X0, Xij ,Hi ,H0, Z, R, L, T 3,C3

̸= 0 0 ̸= 0 X0, X12,Hi ,H0, Z3,U2, T 3

̸= 0 ̸= 0 0 X0, X12,Hi ,H0, Z3,U1,C3, L
̸= 0 ̸= 0 ̸= 0 X0, X12,Hi ,H0, Z3,U1,U2

α = β1(d − χ)/β2d, d ̸= χ : R1
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properties of the model, including all necessary physical parameters for construction
of exact solutions and their physical interpretation. The solution of the problem of the
group classificationwith allowance for equivalence transformations will be described
in the next section.

Let us describe transformations of one-parameter subgroups generated by the op-
erators from Table 6.1. The shift in time t corresponds to the operator X0, and rotation
by an identical angle in the planes xi, xj and ui, uj corresponds to the operators Xij.
The operators Hi express the property of invariance of the equations with respect to
the transition to a coordinate system moving along the xi axis with acceleration that
is an arbitrary function of time. Addition of an arbitrary function of time to pressure
corresponds to the operator H0. The final formulas of these transformations are well
known [18] and are not shown here. The transformations generated by the remaining
operators have the form

Z : t̃ = e2at, x̃i = eaxi, ũi = e−aui, p̃ = e−2ap;

U1 : p̃ = p + aρ0gx
3, T̃ = T + a

β1
;

U2 : p̃ = p + aρ0gx
3, C̃ = C + a

β2
;

T1 : T̃ = eaT ; T2 : T̃ = T + aC; T3 : T̃ = T + a;

C1 : C̃ = eaC; C2 : C̃ = C + aT ; C3 : C̃ = C + a;

R1 : T̃ = e
aT , C̃ = C + β1

β2
(1 − ea)T ;

R2 : C̃ = e
aC, T̃ = T + β2

β1
(1 − ea)C;

R : T̃ = eaT , C̃ = eaC;

L : C̃ = (C + αd
d − χ

T)e(1−χ/d) a − αd
d − χ

T .

(6.17)

The variables whose transformation principle is not indicated are transformed iden-
tically (this is also implied in what follows). In eqs. (6.17), a is a real parameter of the
one-parameter subgroup, which is specific for each operator. Transformations gener-
ated by the operators Z1, Z2, and Z3 are obtained by extension of the one-parameter
subgroup corresponding to the operator Z with the use of the following transforma-
tions:

Z1 : T̃ = e
−3aT ; Z2 : C̃ = e

−3aC; Z3 : T̃ = e
−3aT , C̃ = e−3aC.

Note that the operators U1, U2, T i, Ci, R, R1, R2, L, and Zi are specific for the equations
of convection of a binary mixture with allowance for thermodiffusion, in contrast to
the operators X0, Xij, Hi, and H0 admitted by many models of hydrodynamics.
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Equivalence transformations
Before finding the equivalence transformations for thermodiffusion equations, we
should establish one other useful fact. We consider a system of differential equations
defined by the equality

E(x, u, u
1
, . . . , u

k
, c) = 0. (6.18)

Here, x is the vector of independent variables, u is the vector of dependent variables,
u
s
is the set of derivatives of u with respect to x of the order s = 1, . . . , k, and c is the

vector of parameters (constants). In the following, the vector s is assumed to take the
values indicated above.

Let X be an infinitesimal operator of the form

X = ξ ⋅ 𝜕
𝜕x
+ η ⋅ 𝜕
𝜕u
+ τ ⋅ 𝜕
𝜕c
.

If system (6.18) admits the operator X, then this operator generates a one-parameter
group of equivalence transformations for this system. Since constants should trans-
form to constants in equivalence transformations, the components of the operator X
have the form ξ = ξ (x, u, c), η = η(x, u, c), τ = τ(c). We can easily prove the following
statement.

Statement 6.1. If system (6.18) admits the operator X, then this system also admits
the operator FX with an arbitrary function F = F(c).

It follows from Statement 6.1 that the operator of the group of equivalence trans-
formations of constants is determined with accuracy to a factor arbitrarily depending
on these constants. For particular equations, this fact was established in [98, 113]. The
group of equivalence transformations was found for Navier–Stokes equations in [98]
and for amodified Burgers equation depending on two parameters in [113]. We should
also note [157], where the equivalence transformations for constants were found for a
system of equations equivalent to gas dynamics equations with barochronous motion
of the gas. In the case considered there, the solution of the governing equations did
not include arbitrary functions of constants involved into the system. This happened
because the conditions of zero derivatives of the constants with respect to indepen-
dent variables were not added to the system during the calculations. The infinitesi-
mal operator components corresponding to constants were assumed to be functions
of those constants, as well as of dependent and independent variables. The condition
that these components depend only on constants was imposed only after the solution
of the governing equations was found.

Let us now calculate the equivalence transformations for the thermodiffusion
equations (6.1)–(6.4). We seek for the infinitesimal operator of the group in the
form

X̃ = X + ηα 𝜕
𝜕α
+ ηβ1 𝜕
𝜕β1
+ ηβ2 𝜕
𝜕β2
+ ηχ 𝜕
𝜕χ
+ ηd 𝜕
𝜕d
+ ηρ0 𝜕
𝜕ρ0
+ ην 𝜕
𝜕ν
+ ηg 𝜕
𝜕g
,
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assuming that its components depend on all dependent and independent variables,
and also on the parameters involved into the system (here, X is an operator of the
form (6.11)). Note that eqs. (6.1)–(6.4) should be supplemented with the conditions of
zero derivatives of α, β1, β2, χ, d, ρ0, ν, and g with respect to the variables t, xi, ui, p,T,
and C, i = 1, 2, 3. The components of the extended operator X̃

2
are calculated by the

formulas derived in [129, 130]. Applying the extended operator to the system and
passing to the corresponding manifold, we obtain the governing equations. It follows
from these equations that the components of the operator X̃ corresponding to the
parameters are independent of the variables t, xi, ui, p,T, and C. The solution of the
governing equations is given by the formulas

ξ t = (2c4 + η
νν−1)t + c0,

ξ 1 = (c4 + η
νν−1)x1 + c1x

2 + c2x
3 + f 1(t),

ξ 2 = −c1x
1 + (c4 + η

νν−1)x2 + c3x
3 + f 2(t),

ξ 3 = −c2x
1 − c3x

2 + (c4 + η
νν−1)x3 + f 3(t),

η1 = −c4u
1 + c1u

2 + c2u
3 + f 1t (t), η2 = −c1u

1 − c4u
2 + c3u

3 + f 2t (t),

η3 = −c2u
1 − c3u

2 − c4u
3 + f 3t (t),

ηp = ρ0(c5gβ1x
3 + c6gβ2x

3 − f 1tt(t)x
1 − f 2tt(t)x

2 − f 3tt(t)x
3) + (ηρ0ρ−10 − 2c4)p + f

0(t),

ηT = c7T + c9C + c5, ηC = c8C + c10T + c6,

ηα = (c8 − c7)α + c10(χd
−1 − 1),

ηβ1 = −(3c4 + c7 + η
νν−1 + ηgg−1)β1 − c10β2,

ηβ2 = −(3c4 + c8 + η
νν−1 + ηgg−1)β2 − c9β1,

ηχ = χ ηνν−1, ηd = d ηνν−1,

and the following conditions should be satisfied:

(χ − d)c9 = αc9 = 0, β1c2 = β1c3 = β2c2 = β2c3 = 0. (6.19)

In these formulas, the quantities ci, i = 1, . . . , 10, and also the components ην, ηρ0 ,
and ηg are arbitrary functions of the parameters α, β1, β2, χ, d, ρ0, ν, and g. More-
over, the functions f i(t), i = 0, 1, 2, 3, also depend on these parameters in an arbitrary
manner. According to Statement 6.1, the quantities ci can be considered as constants
without loss of generality, and the undetermined components of the infinitesimal op-
erator can be chosen as ην = c11ν, ηρ0 = c12ρ0, ηg = c13g, where c11, c12, and c13 are
arbitrary constants. Further, the constant c4 can be eliminated from the expressions
for ηβ1 and ηβ2 by introducing new constants c̃7 = 3c4 + c7 and c̃8 = 3c4 + c8. Then, the
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operators generating one-parameter groups of equivalence transformations are writ-
ten as

E1 = T
𝜕
𝜕T
− α 𝜕
𝜕α
− β1
𝜕
𝜕β1
,

E2 = C
𝜕
𝜕C
+ α 𝜕
𝜕α
− β2
𝜕
𝜕β2
,

E3 = C
𝜕
𝜕T
− β1
𝜕
𝜕β2
,

E4 = T
𝜕
𝜕C
+ (χd−1 − 1) 𝜕

𝜕α
− β2
𝜕
𝜕β1
,

E5 = t
𝜕
𝜕t
+ xi 𝜕
𝜕xi
− β1
𝜕
𝜕β1
− β2
𝜕
𝜕β2
+ χ 𝜕
𝜕χ
+ d 𝜕
𝜕d
+ ν 𝜕
𝜕ν
,

E6 = p
𝜕
𝜕p
+ ρ0
𝜕
𝜕ρ0
,

E7 = β1
𝜕
𝜕β1
+ β2
𝜕
𝜕β2
− g 𝜕
𝜕g
.

The equivalence transformations defined by these operators are

E1 : α̃ = e1α, β̃1 = e1β1;

E2 : α̃ = e
−1
2 α, β̃2 = e2β2;

E3 : β̃2 = β2 − e3β1;

E4 : α̃ = α + e4(χd
−1 − 1), β̃1 = β1 − e4β2; (6.20)

E5 : β̃1 = e5β1, β̃2 = e5β2, χ̃ = e−15 χ, d̃ = e−15 d, ν̃ = e−15 ν;
E6 : ρ̃0 = e6ρ0;

E7 : β̃1 = e7β1, β̃2 = e7β2, g̃ = e−17 g.

Here, ei > 0, i = 1, 2, 5, 6, 7, e3, e4 ∈ ℝ are the group parameters of equivalence trans-
formations. According to conditions (6.19), the operator E3 (and the corresponding
transformation) is admitted only if α = 0 and d = χ.

Let us nowmove on to the problem of the group classification of thermodiffusion
equations. Firstly, it should be noted that the use of the transformations E5,E6, and
E7 allows us to assume that ν = 1, ρ0 = 1, and g = 1. Let us consider the classifying
equations (6.15). As it follows from these equations, independent of the values of the
parameters, system (6.1)–(6.4) admits the operators (see eq. (6.16))

X0, X12, H1, H2, H3, H0. (6.21)

We can demonstrate that operators (6.21) form the Lie algebra. Let find possible exten-
sions of this algebra.
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A. Let us assume that d ̸= χ. In this case, using the transformation E4 with the param-
eter e4 = αd/(d − χ), we can obtain α = 0. Then, eqs. (6.15) yield c9 = c10 = 0. After
that, we consider possible values of the constants β1 and β2. If any of these constants
is not equal to zero, then the use of the transformations E1 or E2 allows us to take its
value to be equal to unity. In this case, from the classifying equations it follows that
c2 = c3 = 0.
1. Let β1 ̸= 0 and β2 ̸= 0; then, we can assume that β1 = β2 = 1. Equations (6.15) yield

c8 = c7 = −3c4. The list (6.21) is supplemented with the operators Z3,U1, and U2.
In the last two operators, we should assume that β1 = β2 = 1 and ρ0 = g = 1 (this
is also implied in what follows).

2. If β1 ̸= 0 and β2 = 0, we assume that β1 = 1; then, we have c7 = −3c4, and alge-
bra (6.21) is extended by the operators Z1,U1,C1, and C3.

3. If β1 = 0 and β2 ̸= 0, then, assuming that β2 = 1, we obtain c8 = −3c4. Here, the
additional operators are Z2,U2, T1, and T3.

4. Let β1 = β2 = 0. Then, algebra (6.21) is extended by the operators X13,X23, Z,
T1,T3,C1, and C3.

B. Now let d = χ and α ̸= 0. The classifying equations yield c8 = c7 and c9 = 0.
1. If β2 ̸= 0, then, by applying the transformations E4,E2, and E1, we can obtain

β1 = 0, β2 = 1, and α = ±1, respectively. Then, we have c8 = c7 = −3c4 and c10 = 0;
the list (6.21) is supplemented with the operators Z3,U2, and T3.

2. Let β2 = 0and β1 ̸= 0. Theuse of the transformationsE1 andE2 allowsus to assume
that β1 = 1 and α = ±1, respectively. As a result, we obtain c8 = c7 = −3c4. Here,
the additional operators are Z3, U1, C2, and C3.

3. If β1 = β2 = 0, by applying the transformation E2, we can obtain α = ±1, and
algebra (6.21) is extended by the operators X13, X23, Z, R, T3, C2, and C3.

C. Let us consider the case with d = χ and α = 0.
1. Let β2 ̸= 0. Using the transformations E4 and E2, we can obtain β1 = 0 and β2 =

1. Then, eqs. (6.15) yield c8 = −3c4 and c10 = 0; the list of additional operators
consists of Z2, U2, T1, T2, and T3.

2. If β2 = 0 and β1 ̸= 0, then, assuming that β1 = 1, we obtain c7 = −3c4 and c9 = 0.
As a result, algebra (6.21) is extended by the operators Z1, U1, C1, C2, and C3.

3. If β1 = β2 = 0, the following additional operators are obtained: X13, X23, Z, T1, T2,
T3, C1, C2, and C3.

The results of the group classification are summarized in Tables 6.2 and 6.3. The first
two columns show the values of the constants β1 and β2, the third column contains
the admitted operators, and the fourth column shows additional operators admitted
in the casewithd = χ (Table 6.2). The operators listed in the tables have the form (6.16),
where β1 = β2 = ρ0 = g = 1 should be assumed. Let us consider the following case in
more detail: the parameters α, β1, and β2 in system (6.1)–(6.4) are not equal to zero, and
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Table 6.2: Results of the classification in the case with α = 0.

β1 β2 Operators d = χ

0 0 X0, Xij , Hi , H0, Z, T 1, T 3, C1, C3 T 2,C2

0 1 X0, X12,Hi ,H0, Z2,U2, T 1, T 3 T 2

1 0 X0, X12,Hi ,H0, Z1,U1,C1,C3 C2

1 1 X0, X12,Hi ,H0, Z3,U1,U2

Table 6.3: Results of the classification in the case with α = ±1 and d = χ.

β1 β2 Operators

0 0 X0, Xij ,Hi ,H0, Z, R, T 3,C2,C3

0 1 X0, X12,Hi ,H0, Z3,U2, T 3

1 0 X0, X12,Hi ,H0, Z3,U1,C2,C3

d ̸= χ (thus, the thermodiffusion effect and the dependence of density on temperature
and concentration are taken into account).

It follows from the results of the group classification that the system in the case
considered can be brought to the form

ut + (u ⋅ ∇)u = −∇p + Δu + (T + C) γ,
Tt + u ⋅ ∇T = χΔT ,
Ct + u ⋅ ∇C = dΔC,

divu = 0,

(6.22)

where γ = (0,0, 1). The transformation of dependent variables, which allows the term
αdΔT in eq. (6.3) to be eliminated, is generated by the operator E4 and is described by
the formula

C = C̃ + αd
χ − d

T .

This transformation reduces the diffusion equation to a homogeneous equation with
respect to the function C̃ (the bar in eqs. (6.22) is omitted).

System (6.22) admits the Lie algebra of operators with the basis

X0 =
𝜕
𝜕t
, X12 = x

1 𝜕
𝜕x2
− x2 𝜕
𝜕x1
+ u1 𝜕
𝜕u2
− u2 𝜕
𝜕u1
,

Z3 = 2t
𝜕
𝜕t
+

3
∑
i=1
(xi 𝜕
𝜕xi
− ui 𝜕
𝜕ui
) − 2p 𝜕
𝜕p
− 3T 𝜕
𝜕T
− 3C 𝜕
𝜕C
,

U1 = x
3 𝜕
𝜕p
+
𝜕
𝜕T
, U2 = x

3 𝜕
𝜕p
+
𝜕
𝜕C
,
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Hi(f
i(t)) = f i(t) 𝜕

𝜕xi
+ f it (t)
𝜕
𝜕ui
− xif itt(t)

𝜕
𝜕p
, i = 1, 2, 3,

H0(f
0(t)) = f 0(t) 𝜕

𝜕p
.

Let u(t, x, χ, d), p(t, x, χ, d), T(t, x, χ, d), C(t, x, χ, d) be a solution of system (6.22).
The corresponding solution of system (6.1)–(6.4) is obtained by replacing the depen-
dent and independent variables, and also the parameters χ and d by the following
formulas:

t → t
ν
, x → x

ν
, χ → χ

ν
, d → d

ν
, u→ u, p→ ρ0p,

T → χ − d
νg(β1(χ − d) + β2αd)

T ,

C → 1
νgβ2

C + αd
νg(β1(χ − d) + β2αd)

T .

(6.23)

These formulas mean that t should be replaced by t/ν in the solution; instead of the
functionp, it is necessary to take the function ρ0p, etc. Note that the equivalence trans-
formations allow the initial system of equations to be substantially simplified.

Let β1 = β2 = 0 (or g = 0) in system (6.1)–(6.4). Then, eqs. (6.1), (6.4) form a sys-
tem of Navier–Stokes equations whose solution is described by the functions u(t, x) =
(u1(t, x), u2(t, x), u3(t, x)), p (t, x). Substituting this solution into eqs. (6.2), (6.3), we ob-
tain the system

Tt + u(t, x) ⋅ ∇T = χΔT ; (6.24)
Ct + u(t, x) ⋅ ∇C = dΔC + αdΔT . (6.25)

It is of interest to consider the following issue:Which transformations are admitted by
this system, depending on the form of the function u(t, x)? Thus, there arises the prob-
lem of the group classification of the diffusion and heat conduction equations with re-
spect to comparatively arbitrary elements: velocity vector components u1, u2, u3. This
problem in the full formulation is not considered here. We only study the group prop-
erties of eqs. (6.24), (6.25) in the case where u(t, x) is an arbitrary solution of Navier–
Stokes equations.

The results of the group classification are summarized in Table 6.4. The opera-
tors T0 and C0 have the form T0 = T0(t, x)(𝜕/𝜕T) and C0 = C0(t, x)(𝜕/𝜕C), where the
functions T0 and C0 are arbitrary solutions of eqs. (6.24) and (6.25).

Table 6.4: Group properties of the diffusion and heat conduction equations.

α Operators d = χ

0 T 1,C1, T 0,C0 T 2,C2

̸= 0 R, L, T 0,C0
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Let us now consider the case with where α = 0, and the constants β1 and β2 can differ
from zero. In particular, if β1 = 0 and β2 ̸= 0 (β1 ̸= 0 and β2 = 0), eqs. (6.1), (6.3), (6.4)
[(6.1), (6.2), (6.4)] form a closed systemwhose solution is given by the functions u(t, x),
p(t, x), C(t, x) [T(t, x)] and can be found independent of eq. (6.2) [(6.3)]. Let us study
the group properties of the latter equations. It follows from Table 6.4 (case with α = 0)
that eq. (6.24) admits the operators T1 and T0, while eq. (6.25) admits the operators C1

and C0 under similar assumptions about the function u(t, x).

Optimal systems of the subalgebras ΘL4 and ΘL5

As is seen from Table 6.1, system (6.1)–(6.4) in the case considered admits an infinite-
dimensional Lie algebra of operators L. This algebra corresponds to an infinite-
dimensional group of transformations that leave the system unchanged. For the
convenience of further calculations, we introduce new notations for the operators.
The algebra L can be presented in the form of a subdirect sum L = L5 ⊕ L∞, where the
finite-dimensional subalgebra L5 is formed by the operators

X1 =
𝜕
𝜕t
, X2 = ρ0gx

3 𝜕
𝜕p
+

1
β2
𝜕
𝜕C
, X3 = ρ0gx

3 𝜕
𝜕p
+

1
β1
𝜕
𝜕T
,

X4 = 2t
𝜕
𝜕t
+

3
∑
i=1
(xi 𝜕
𝜕xi
− ui 𝜕
𝜕ui
) − 2p 𝜕
𝜕p
− 3T 𝜕
𝜕T
− 3C 𝜕
𝜕C
,

X5 = x
1 𝜕
𝜕x2
− x2 𝜕
𝜕x1
+ u1 𝜕
𝜕u2
− u2 𝜕
𝜕u1
,

(6.26)

and the infinite-dimensional ideal L∞ has the basis

Hi(f
i(t)) = f i(t) 𝜕

𝜕xi
+ f it (t)
𝜕
𝜕ui
− ρ0x

if itt(t)
𝜕
𝜕p
, i = 1, 2, 3,

H0(f
0(t)) = f 0(t) 𝜕

𝜕p
. (6.27)

If the constants included into the system are related as α = β1(d − χ)/β2d, d ̸= χ, then
the system is also invariant with respect to the operator

R1 = T
𝜕
𝜕T
−
β1
β2

T 𝜕
𝜕C
.

In what follows, this particular case is not considered (it is assumed that the above-
indicated relation is not satisfied, and the operator R1 is not admitted). Note that the
algebra of operators admitted by the initial systemwith α = 0, β1 ̸= 0, β2 ̸= 0, and d ̸= χ
(the thermodiffusion effect is ignored) coincides with the algebra L (see Table 6.1).
Thus, all the results obtained below are also valid for this case.

Let us start constructing anoptimal system for the Lie algebraL = L5⊕L∞ admitted
by the thermodiffusion equations. Note that finding optimal systems requires large
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Table 6.5: Optimal system of the subalgebras ΘL4.

p. q Basis Rpq NorRpq p. q Basis Rpq NorRpq

4.1 1, 2, 3, 4 = 4.1 2.6 1, 4 = 2.6
3.1 1, 2, 3 4.1 2.7 2, 4 = 2.7
3.2 1, 2, 4 = 3.2 2.8 λ2 + 3, 4 = 2.8
3.3 2, 3, 4 = 3.3 1.1 1 4.1
3.4 1, λ2 + 3, 4 = 3.4 1.2 2 4.1
2.1 1, 2 4.1 1.3 λ2 + 3 4.1
2.2 2, 3 4.1 1.4 1 + 2 3.1
2.3 1, λ2 + 3 4.1 1.5 1 + λ2 + 3 3.1
2.4 1 + 2, λ1 + 3 3.1 1.6 4 = 1.6
2.5 1 + 3, 2 3.1 0.1 0 4.1

amounts of analytical calculations, and a detailed description of the work performed
would take a large number of pages. The optimal system ΘL4 is given in Table 6.5.

The first column shows the subalgebra number, which has the form p. q, where
p is the subalgebra dimension and q is the ordinal number of the subalgebra of dimen-
sion p. Subalgebra bases written symbolically with the numbers of the corresponding
operators are listed in the second column. The symbol λ2 + 3 means λX2 + X3, etc. The
constant λ can take any real value. The third column shows the number of the sub-
algebra normalizer in L4; the sign of equality indicates self-normalized subalgebras.
The optimal system ΘL5 is given in Table 6.6. Here, the constant λ also takes any real
values, and the constant μ is equal to or greater than zero (μ ≥ 0).

Optimal system of the first-order subalgebras
In this section, we construct an optimal system Θ1L for the algebra L. Finding this
system reduces to the classification of subalgebras of two classes:

1) {H(f ) + H0(f
0)}, 2) {Ki + H(f ) + H0(f

0)}, (6.28)

where {Ki} ∈ Θ1L5, i = 1, . . . , 10. The first class lies in the ideal L∞, and the second class
has a zero intersection with the ideal L∞. The following notation is used here:

H(f ) = H1(f
1) + H2(f

2) + H3(f
3), f = (f 1, f 2, f 3).

In what follows, we assume that f 0, f 1, f 2, f 3 ∈ Cn(t0, t1), where −∞ ≤ t0 < t1 ≤ ∞,
n ∈ ℕ ∪ {∞}. The following lemmas are used in the classification of subalgebras [59].

Lemma 6.1. Let f ∈ Cn(t0, t1). Then, there exists a solution h ∈ Cn(t0, t1) of the equation
tht + h + f = 0.

Lemma 6.2. Let f ∈ Cn(t0, t1). Then, there exists a solution h ∈ Cn(t0, t1) of the equation
2tht − h + f = 0.
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Table 6.6: Optimal system of the subalgebras ΘL5.

p. q Basis Kpq NorKpq p. q Basis Kpq NorKpq

5.1 1, 2, 3, 4, 5 = 5.1 2.7 1 + 2, 5 4.1
4.1 1, 2, 3, 5 5.1 2.8 1 + λ2 + 3, 5 4.1
4.2 1, 2, 3, 4 + μ5, μ ≥ 0 5.1 2.9 1 + 5, 2 4.1
4.3 1, 2, 4, 5 = 4.3 2.10 1, 2 + 5 4.1
4.4 1, λ2 + 3, 4, 5 = 4.4 2.11 1 + 5, λ2 + 3 4.1
4.5 2, 3, 4, 5 = 4.5 2.12 1, λ2 + 3 + 5 4.1
3.1 1, 2, 3 5.1 2.13 2 + 5, 3 4.1
3.2 1, 2, 5 5.1 2.14 2, 3 + 5 4.1
3.3 1, λ2 + 3, 5 5.1 2.15 1 + 2 + μ5, λ1 + 3, μ ≥ 0 4.1
3.4 2, 3, 5 5.1 2.16 1 + 2, λ1 + 3 + μ5, μ > 0 4.1
3.5 1 + 5, 2, 3 4.1 2.17 1 + 3 + μ5, 2, μ ≥ 0 4.1
3.6 1, 2 + 5, 3 4.1 2.18 1 + 3, 2 + μ5, μ > 0 4.1
3.7 1, 2, 3 + 5 4.1 2.19 1, 4 + μ5, μ ≥ 0 3.13
3.8 1 + 2, λ1 + 3, 5 4.1 2.20 2, 4 + μ5, μ ≥ 0 3.14
3.9 1 + 3, 2, 5 4.1 2.21 λ2 + 3, 4 + μ5, μ ≥ 0 3.15

3.10 1, 2, 4 + μ5, μ ≥ 0 4.3 2.22 4, 5 = 2.22
3.11 1, λ2 + 3,4 + μ5, μ ≥ 0 4.4 1.1 1 5.1
3.12 2, 3, 4 + μ5, μ ≥ 0 4.5 1.2 2 5.1
3.13 1, 4, 5 = 3.13 1.3 λ2 + 3 5.1
3.14 2, 4, 5 = 3.14 1.4 5 5.1
3.15 λ2 + 3, 4, 5 = 3.15 1.5 1 + 5 4.1
2.1 1, 2 5.1 1.6 1 + 2 + μ5, μ ≥ 0 4.1
2.2 1, λ2 + 3 5.1 1.7 1 + λ2 + 3 + μ5, μ ≥ 0 4.1
2.3 1, 5 5.1 1.8 2 + 5 4.1
2.4 2, 3 5.1 1.9 λ2 + 3 + 5 4.1
2.5 2, 5 5.1 1.10 4 + μ5, μ ≥ 0 2.22
2.6 λ2 + 3, 5 5.1 0.1 0 5.1

Lemma 6.3. Let f 1, f 2 ∈ Cn(t0, t1) and μ ∈ ℝ. Then, there exists a solution h1, h2 ∈
Cn(t0, t1) of the system of equations

2th1t − h
1 + μh2 + f 1 = 0, 2th2t − h

2 − μh1 + f 2 = 0. (6.29)

Note that subalgebras obtained as a result of the classification, whose basis de-
pends on nondetermined functions, may include similar subalgebras. For instance,
by consecutive actions of the automorphisms A1(a1), A4(a4), and Ad1 (δ1) and a linear
transformation of the basis, the subalgebra {X5 + H0(f 0)} can be brought to the form
{X5 + H0(f̃ 0)}, where

f̃ 0(t) = (−1)δ1e−2a4 f 0(e−2a4 (t − a1)), (6.30)

the resultant subalgebra is similar to the initial one. Here, Ai(ai) are the automor-
phisms corresponding to the basis operators Xi, and Adi (δi) correspond to the discrete

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



168 | 6 Group properties of equations of thermodiffusion motion

Table 6.7: Optimal system of the subalgebras Θ1L.

i Basis Comment Similarity transformation

1 X1
2 X1 + X5
3 X4 + μX5 μ ≥ 0
4 X1 + X2 + μX5 μ ≥ 0
5 X1 + λX2 + X3 + μX5 μ ≥ 0
6 H0(f 0) f̃ 0(t) = cf 0(at + b)
7 X5 + H0(f 0) f 0 ̸≡ 0 f̃ 0(t) = (−1)δaf 0(at + b)
8 X2 − X3 + H0(f 0) f 0 ̸≡ 0 f̃ 0(t) = (−1)δa−1/2f 0(at + b)
9 X2 − X3 + X5 + H0(f 0) f 0 ̸≡ 0 f̃ 0(t) = (−1)δf 0(t + b)

10 X5 + H3(f 3) f̃ 3(t) = (−1)δa−1/2f 3(at + b)
11 X2 + X5 + H3(f 3) f̃ 3(t) = f 3(t + b)
12 λX2 + X3 + X5 + H3(f 3) f̃ 3(t) = f 3(t + b)
13 H(f ) f̃ (t) = D(δ1, δ2, δ3)R(γ) cf (at + b)
14 X2 + H(f ) f̃ (t) = D(δ1, δ2,0)R(γ) a−2f (at + b)
15 λX2 + X3 + H(f ) f̃ (t) = D(δ1, δ2,0)R(γ) a−2f (at + b)

symmetries di:

d1 : x̃1 = −x
1, ũ1 = −u1; d2 : x̃2 = −x

2, ũ2 = −u2;

d3 : x̃3 = −x
3, ũ3 = −u3, T̃ = −T , C̃ = −C.

Thus, the action of internal automorphisms and linear transformations of the ba-
sis divides each subalgebra in the optimal system Θ1L into classes of similar subalge-
bras. Note that only those transformations that do not change the finite-dimensional
component of the basis operators should be considered here. Each class is uniquely
determined by a particular form of functions on which these basis operators depend
and includes subalgebras in which these functions are related by a certain expres-
sion, for instance, eq. (6.30). This expression, which is independent of the form of
the functions, is called the similarity transformation. The optimal system Θ1L is given
in Table 6.7. For convenience of presentation of results, some changes were made
in the classification. In particular, the pair of the subalgebras {H(f )}, f ̸≡ 0, and
{H0(f 0)} was replaced by an equivalent pair {H(f )} and {H0(f 0)}, f 0 ̸≡ 0. A similar
replacement was performed in the pair of the subalgebras with the numbers 7 and
10. In the subalgebra No. 8, we can assume that f 0 ̸≡ 0, referring the case with f 0 ≡
0 to the subalgebra No. 15, where λ = −1 and f = 0 should be assumed. Similar
considerations are also applicable to the pair of the subalgebras with the numbers 9
and 12.

The similarity transformations found in this work are shown in the fourth column
of the table. The following notations are used: a > 0, b ∈ ℝ, c ̸= 0 are arbitrary

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.2 Group properties of two-dimensional equations | 169

constants,

R(γ) =(
cos γ − sin γ 0
sin γ cos γ 0
0 0 1

) ,

D(δ1, δ2, δ3) =(
(−1)δ1 0 0
0 (−1)δ2 0
0 0 (−1)δ3

) ,

and the parameter δ takes the values {0, 1}.

6.2 Group properties of two-dimensional equations

Group classification
In this paragraph, we consider the group analysis of equations of two-dimensional
(plane) thermodiffusion motion

ut + (u ⋅ ∇)u = −
1
ρ0
∇p + νΔu − g(β1T + β2C),

Tt + u ⋅ ∇T = χΔT , (6.31)
Ct + u ⋅ ∇C = dΔC + αdΔT ,

divu = 0.

The necessity of a separate study of the two-dimensional case is conditioned by the
following considerations. As the systemdimension decreases, the number of the basis
operators of the admitted Lie algebra, which is infinite-dimensional, also decreases.
Construction of optimal systems for such subalgebras is a rather complicated and la-
borious task which often cannot be fully solved. As demonstrated below, the smaller
number of the basis operators (seven against nine for three-dimensional equations
in the case with the constants α, β1, and β2 simultaneously being other than zero) al-
lows construction of an optimal system of subalgebras not only of the first, but also
of the second order. Subalgebras of dimension 2 yield invariant submodels of rank 1
of the initial system (6.1)–(6.4). These submodels are systems of ordinary differential
equations and serve as a source of numerous physically meaningful exact solutions.
In addition, using a comparatively simple example of two-dimensional equations, we
need to clarify which types of solutions can be constructed by using the model sym-
metry properties. In the following, the possibility of generalizing these solutions to
the three-dimensional case will be considered.

Calculations show that the results of the group analysis of three-dimensional
equations can be transferred to the two-dimensional case by restricting the action
of the admitted group on the corresponding space of dependent and independent
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variables. Under this aspect, it is convenient to use the following notations: coordi-
nate vector x = (x1, x3), velocity vector u = (u1, u3), and acceleration due to gravity
g = (0,−g). In this section we describe the results of the group classification of the
two-dimensional equations (6.31) with respect to the parameters included into the
system (it is assumed that the constants α, β1, and β2 can vanish).

In the coordinate form, system (6.31) is written as

u1t + u
1u11 + u

3u13 +
1
ρ0

p1 − ν(u
1
11 + u

1
33) = 0; (6.32)

u3t + u
1u31 + u

3u33 +
1
ρ0

p3 − ν(u
3
11 + u

3
33) − g(β1T + β2C) = 0; (6.33)

Tt + u
1T1 + u

3T3 − χ(T11 + T33) = 0; (6.34)

Ct + u
1C1 + u

3C3 − d(C11 + C33) − αd(T11 + T33) = 0; (6.35)

u11 + u
3
3 = 0. (6.36)

These equations are supplemented with their differential corollaries

(u11)
2 + (u33)

2 + 2u13u
3
1 +

1
ρ0
(p11 + p33) − g(β1T3 + β2C3) = 0; (6.37)

u1t1 + u
3
t3 = 0, u111 + u

3
13 = 0, u113 + u

3
33 = 0. (6.38)

The infinitesimal operator admitted by the system is sought in the form

X = ξ t 𝜕
𝜕t
+ ξ 1 𝜕
𝜕x1
+ ξ 3 𝜕
𝜕x3
+ η1 𝜕
𝜕u1
+ η3 𝜕
𝜕u3
+ ηp 𝜕
𝜕p
+ ηT 𝜕
𝜕T
+ ηC 𝜕
𝜕C
.

The governing equations are obtained by applying the extended operator X
2
to sys-

tem (6.32)–(6.38) and passing to the corresponding manifold. The quantities u111, u
3
11,

p11, T11, C11, u3t3, u
3
13, u

3
33, and u

1
1 are used as the external variables. The solution of the

governing equations is given by the formulas

ξ t = 2c4t + c0, ξ 1 = c4x
1 + c2x

3 + f 1(t),

ξ 3 = −c2x
1 + c4x

3 + f 3(t),

η1 = −c4u
1 + c2u

3 + f 1t (t), η3 = −c2u
1 − c4u

3 + f 3t (t), (6.39)

ηp = ρ0(c5gβ1x
3 + c6gβ2x

3 − f 1tt(t)x
1 − f 3tt(t)x

3) − 2c4p + f
0(t),

ηT = c7T + c9C + c5, ηC = c8C + c10T + c6,

where c0, c2, c4, c5 − c10 are group constants and f i(t) ∈ C∞, i = 0, 1, 3 are arbitrary
smooth functions. The system of the classifying equations relating the group con-
stants to the parameters α, β1, β2, χ, and d has the form

β1(c7 + 3c4) + β2c10 = 0, β2(c8 + 3c4) + β1c9 = 0,
αd(c8 − c7) + (χ − d)c10 = 0, (χ − d)c9 = 0,

αc9 = 0, β1c2 = 0, β2c2 = 0.
(6.40)
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Table 6.8: Results of the group classification of the two-dimensional model.

α β1 β2 Operators d = χ

0 0 0 X0,Hi ,H0, X13, Z, T 1, T 3,C1,C3 T 2,C2

0 0 ̸= 0 X0,Hi ,H0, Z2,U2, T 1, T 3 T 2

0 ̸= 0 0 X0,Hi ,H0, Z1,U1,C1,C3 C2

0 ̸= 0 ̸= 0 X0,Hi ,H0, Z3,U1,U2 R1, R2
̸= 0 0 0 X0,Hi ,H0, X13, Z, R, L, T 3,C3

̸= 0 0 ̸= 0 X0,Hi ,H0, Z3,U2, T 3

̸= 0 ̸= 0 0 X0,Hi ,H0, Z3,U1,C3, L
̸= 0 ̸= 0 ̸= 0 X0,Hi ,H0, Z3,U1,U2

α = β1(d − χ)/β2d, d ̸= χ : R1

The algebras of operators admitted by system (6.31), depending on the values of the
parameters, are obtained by analyzing eqs. (6.40) and using formulas (6.39). The re-
sults of the group classification are summarized in Table 6.8. The first three columns
show the values of the constants α, β1, and β2, the fourth column contains the basis
operators, and the fifth column shows additional operators admitted by the system in
the case with d = χ. If all constants differ from zero (last row of the table), then the op-
erator R1 is admitted for the indicated value of the parameter α. Note that only one ro-
tation operator X13 admitted in the case with β1 = β2 = 0 is left in the two-dimensional
case.

X0 =
𝜕
𝜕t
, X13 = x

1 𝜕
𝜕x3
− x3 𝜕
𝜕x1
+ u1 𝜕
𝜕u3
− u3 𝜕
𝜕u1
,

Hi(f
i(t)) = f i(t) 𝜕

𝜕xi
+ f it (t)
𝜕
𝜕ui
− ρ0x

if itt(t)
𝜕
𝜕p
, i = 1, 3,

H0(f
0(t)) = f 0(t) 𝜕

𝜕p
,

Z = 2t 𝜕
𝜕t
+ x1 𝜕
𝜕x1
+ x3 𝜕
𝜕x3
− u1 𝜕
𝜕u1
− u3 𝜕
𝜕u3
− 2p 𝜕
𝜕p
,

U1 = ρ0gx
3 𝜕
𝜕p
+

1
β1
𝜕
𝜕T
, U2 = ρ0gx

3 𝜕
𝜕p
+

1
β2
𝜕
𝜕C
,

T1 = T 𝜕
𝜕T
, T2 = C 𝜕

𝜕T
, T3 = 𝜕

𝜕T
, C1 = C 𝜕

𝜕C
,

C2 = T 𝜕
𝜕C
, C3 = 𝜕

𝜕C
, R = T1 + C1,

R1 = T
1 −

β1
β2

C2, R2 = C
1 −

β2
β1

T2, Z1 = Z − 3T
1,

Z2 = Z − 3C
1, Z3 = Z − 3R, L = [αT + (1 − χ/d)C] 𝜕

𝜕C
.

(6.41)

It should be noted that the results obtained at α = 0, β1 ̸= 0, and β2 = 0 agree with
the results of the group analysis of the Oberbeck–Boussinesq equations in the two-
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Table 6.9: Results of the classification in the case with α = 0.

β1 β2 Operators d = χ

0 0 X0,Hi ,H0, X13, Z, T 1, T 3, C1, C3 T 2,C2

0 1 X0,Hi ,H0, Z2,U2, T 1, T 3 T 2

1 0 X0,Hi ,H0, Z1,U1,C1,C3 C2

1 1 X0,Hi ,H0, Z3,U1,U2

Table 6.10: Results of the classification in the case with α = ±1, d = χ.

β1 β2 Operators

0 0 X0,Hi ,H0, X13, Z, R, T 3,C2,C3

0 1 X0,Hi ,H0, Z3,U2, T 3

1 0 X0,Hi ,H0, Z3,U1,C2,C3

dimensional case [76, 106]. These equations admit the Lie algebra of operators with
the basis X0,H1,H3,H0, Z1,U1.

The group of equivalence transformations of parameters for the two-dimensional
equations (6.31) coincides with the corresponding group for the three-dimensional
case (see eqs. (6.20)). Repeating the reasoning described in Section 6.1 (with the sys-
tem of the classifying equations being considered), we obtain a solution of the group
classification problem with allowance for equivalence transformations. The corre-
sponding results are listed in Tables 6.9 and 6.10. The first two columns show the
values of the constants β1 and β2, the third column contains the admitted opera-
tors, and the fourth column shows additional operators admitted in the case with
d = χ (Table 6.9). The operators listed in the tables have the form (6.40), (6.41), where
β1 = β2 = ρ0 = g = 1 should be assumed.

Remark 6.1. In describing the results of the group analysis of the two-dimensional
equations (6.31), we retained the notations used in the three-dimensional case (e. g.,
for the extension operator Z). To emphasize the analogy between the plane and spa-
tial cases, this principle is also used in the following. The discussion is nonetheless
unambiguous, because it is clear from the context of the section which case is consid-
ered.

Optimal system of the first-order subalgebras
Here we consider the two-dimensional system (6.31), which takes into account the
thermodiffusion effect and the linear dependence of density on temperature and con-
centration perturbations (thus, the parameters α, β1, and β2 differ from zero). Accord-
ing to the results of the group classification, system (6.31) in this case admits the
infinite-dimensional Lie algebras of operators L. The expansion L = L4 ⊕ L∞ into a
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subdirect sum of the finite-dimensional subalgebra L4 with the basis

X1 =
𝜕
𝜕t
, X2 = ρ0gx

3 𝜕
𝜕p
+

1
β2
𝜕
𝜕C
, X3 = ρ0gx

3 𝜕
𝜕p
+

1
β1
𝜕
𝜕T
,

X4 = 2t
𝜕
𝜕t
+ x1 𝜕
𝜕x1
+ x3 𝜕
𝜕x3
− u1 𝜕
𝜕u1
− u3 𝜕
𝜕u3
− 2p 𝜕
𝜕p
− 3T 𝜕
𝜕T
− 3C 𝜕
𝜕C

(6.42)

and an infinite-dimensional ideal L∞ formed by the operators

H1(f
1(t)) = f 1(t) 𝜕

𝜕x1
+ f 1t (t)

𝜕
𝜕u1
− ρ0x

1f 1tt(t)
𝜕
𝜕p
,

H3(f
3(t)) = f 3(t) 𝜕

𝜕x3
+ f 3t (t)

𝜕
𝜕u3
− ρ0x

3f 3tt(t)
𝜕
𝜕p
, (6.43)

H0(f
0(t)) = f 0(t) 𝜕

𝜕p

is valid for this algebra. For convenience of further calculations, we introduce new
notations for the operators here. If the constants involved into the system are related
as α = β1(d − χ)/β2d, d ̸= χ, then the basis (6.42), (6.43) is supplemented with the
operator

R1 = T
𝜕
𝜕T
−
β1
β2

T 𝜕
𝜕C
.

In the following, this particular case is not considered, and the above-given relation
is assumed to be not satisfied.

Equations (6.31) also possess discrete symmetry:

d1 : x̃1 = −x
1, ũ1 = −u1; d3 : x̃3 = −x

3,

ũ3 = −u3, T̃ = −T , C̃ = −C.
(6.44)

Let us nowpass to constructing the optimal systemof subalgebras for the Lie alge-
bra L. Firstly, we construct the optimal system ΘL4 for the algebra L4. This systemwas
found in Section 6.1 (see Table 6.5). The optimal system Θ1L is given in Table 6.11. The
subalgebra number has the form r.i, where r is the subalgebra dimension and i is its or-
dinal number. For convenience sake in the presentation of the results, some changes
were made in the classification described here. In particular, the pair of the subal-
gebras {H(f )}, f ̸≡ 0, and {H0(f 0)} was replaced by an equivalent pair {H(f )} and
{H0(f 0)}, f 0 ̸≡ 0. Further, we can assume that f 0 ̸≡ 0 in the subalgebra 1.6, referring
the case f 0 ≡ 0 to the subalgebra 1.9, where λ = −1 and f 1 = f 3 = 0 should be assumed.
The similarity transformations of the subalgebras are listed in the fourth column. The
following notations are used: a > 0, b ∈ ℝ, c ̸= 0 are arbitrary constants, and the
parameter δ takes the values {0, 1}.

To construct the second-order optimal systemΘ2L,wehave to classify subalgebras
from three classes:
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Table 6.11: Optimal system of the subalgebras Θ1L.

r.i Basis Comment Similarity transformation

1.1 X1
1.2 X1 + X2
1.3 X1 + λX2 + X3
1.4 X4
1.5 H0(f 0) f 0 ̸≡ 0 f̃ 0(t) = cf 0(at + b)
1.6 X2 − X3 + H0(f 0) f 0 ̸≡ 0 f̃ 0(t) = (−1)δa−1/2f 0(at + b)
1.7 H1(f 1) + H3(f 3) f̃ 1(t) = (−1)δcf 1(at + b)

f̃ 3(t) = cf 3(at + b)
1.8 X2 + H1(f 1) + H3(f 3) f̃ 1(t) = (−1)δa−2f 1(at + b)

f̃ 3(t) = a−2f 3(at + b)
1.9 λX2 + X3 + H1(f 1) + H3(f 3) f̃ 1(t) = (−1)δa−2f 1(at + b)

f̃ 3(t) = a−2f 3(at + b)

1) {H(f ) + H0(f 0), H(g) + H0(g0)},
2) {Ri + H(f ) + H0(f 0), H(g) + H0(g0)},
3) {Pj + H(f ) + H0(f 0), Qj + H(g) + H0(g0)},

where {Ri} ∈ Θ1L4, {Pj, Qj} ∈ Θ2L4, i = 1, . . . , 6, j = 1, . . . , 8. Here, the first class belongs
to the ideal L∞, while the second and third classes have one-dimensional and zero
intersections with the ideal L∞, respectively.

The optimal system Θ2L is given in Table 6.12. Here, we use the same principle
of subalgebra numeration as that in Table 6.11. The constants λ, μ, γ, and σ take any
real values if not stated otherwise. The arbitrary functions in the subalgebras with
the numbers 2.42–2.58 satisfy the conditions indicated in the third column. Some of
these conditions are ordinary differential equations whose solution is written explic-
itly. These equations, however, can be resolved with respect to various functions,
which involves rather cumbersome transformations. Therefore, the presentation of
the results used in this table is preferable.

6.3 Invariant submodels and exact solutions of thermodiffusion
equations

Standard notations of the coordinate vector x = (x, y) and velocity vector u = (u, v) are
used in constructing invariant submodels of two-dimensional equations. Correspond-
ingly, system (6.31) takes the form

ut + uux + vuy = −
1
ρ0

px + ν(uxx + uyy); (6.45)
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Table 6.12: Optimal system of the subalgebras Θ2L.

r.i Basis Comment

2.1 X1, H0(1)
2.2 X1, H3(1)
2.3 X1, H1(1) + H0(1)
2.4 X1, H1(1) + H3(λ) λ ≥ 0
2.5 X1, H0(e±t )
2.6 X1, H3(e±t )
2.7 X1, H1(e±t ) + H3(λe±t ) λ ≥ 0
2.8 X1, X2
2.9 X1, X2 ± H3(1)

2.10 X1, X2 + H1(1) + H3(μ)
2.11 X1, λX2 + X3
2.12 X1, λX2 + X3 ± H3(1)
2.13 X1, λX2 + X3 + H1(1) + H3(μ)
2.14 X1, X2 − X3 + H0(1)
2.15 X1, X2 − X3 + H1(1) + H0(λ) λ > 0
2.16 X1, X4
2.17 X4, H0(tγ)
2.18 X4, H3(tγ)
2.19 X4, H1(tγ) + H3(μtγ) μ ≥ 0
2.20 X4, H3(√t) + H0(λ/t) λ > 0
2.21 X4, H1(√t) + H3(μ√t) + H0(λ/t) λ > 0, μ ≥ 0
2.22 X4, X2
2.23 X4, λX2 + X3 + H0(μ√t) μ ≥ 0
2.24 X4, λX2 + σX3 + H3(t2) λ2 + σ2 ̸= 0
2.25 X4, λX2 + σX3 + H1(t2) + H3(μt2) λ2 + σ2 ̸= 0, μ ≥ 0
2.26 X4, λX2 + (

9
4g − λ)X3 + H3(t

2) + H0(μ√t) μ > 0
2.27 X1 + X2, H0(1)
2.28 X1 + X2, H1(1) + H0(λ) λ ≥ 0
2.29 X1 + X2, H1(λ) + H3(1) + H0(ρ0gt) λ ≥ 0
2.30 X1 + λX2, H0(e±t ) λ > 0
2.31 X1 + λX2, H1(e±t ) λ > 0
2.32 X1 + λX2, H1(μe±t ) + H3(e±t ) + H0(λρ0gte±t ) λ > 0, μ ≥ 0
2.33 X1 + λX2 + X3, H0(1)
2.34 X1 + λX2 + X3, H1(1) + H0(μ) μ ≥ 0
2.35 X1 + λX2 + X3, H1(μ) + H3(1) + H0(ρ0g(λ + 1)t) μ ≥ 0
2.36 X1 + λX2 + μX3, H0(e±t ) μ > 0
2.37 X1 + λX2 + μX3, H1(e±t ) μ > 0
2.38 X1 + λX2 + μX3, H1(σe±t ) + H3(e±t ) + H0(ρ0g(λ + μ)te±t ) μ > 0, σ ≥ 0
2.39 X1 + X2, X1 + X3 + H1(λ) + H0(μ) λ ≥ 0, μ ̸= 0
2.40 X1 + X2, λX1 + X3 + H1(μ) + H3(σ) + H0(σρ0gt) μ ≥ 0
2.41 X1 + X3, X2 + H1(λ) + H3(μ) + H0(μρ0gt) λ ≥ 0
2.42 H0(f 0), H0(g0)
2.43 H1(f 1) + H3(f 3), H0(g0)
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Table 6.12: (continued)

r.i Basis Comment

2.44 H3(f 3), H3(g3) + H0(g0) f 3tt g
3 − f 3g3tt = 0,

g3 ̸≡ cf 3, g0 ̸≡ 0
2.45 H1(f 1) + H3(λf 1), H1(g1) + H3(λg1) + H0(g0) f 1tt g

1 − f 1g1tt = 0,
g1 ̸≡ cf 1,
g0 ̸≡ 0, λ ≥ 0

2.46 H1(f 1) + H3(f 3), H1(g1) + H3(g3) f 1tt g
1 − f 1g1tt + f

3
tt g

3 − f 3g3tt = 0
2.47 X2 + H1(f 1), H0(g0)
2.48 X2 + H1(f 1) + H3(f 3), H1(g1) + H3(g3) + H0(g0) f 1tt g

1 − f 1g1tt = 0,
(f 3tt − g)g

3 − f 3g3tt = 0,
f 1g3 − f 3g1 = 0,
f 3, g0 ̸≡ 0

2.49 X2 + H1(f 1) + H3(f 3), H1(g1) + H3(g3) f 1tt g
1 − f 1g1tt + (f

3
tt − g)g

3 − f 3g3tt = 0
2.50 X2 − X3 + H0(f 0), H0(g0)
2.51 X2 − X3 + H0(f 0), H1(g1) + H3(g3) f 0 ̸≡ 0
2.52 X2 − X3 + H1(f 1), H1(g1) + H0(g0) f 1tt g

1 − f 1g1tt = 0,
f 1, g0 ̸≡ 0

2.53 λX2 + X3 + H1(f 1), H0(g0) λ ̸= −1
2.54 λX2 + X3 + H1(f 1) + H3(f 3), f 1tt g

1 − f 1g1tt = 0,
H1(g1) + H3(g3) + H0(g0) (f 3tt − g(λ + 1))g

3 − f 3g3tt = 0,
f 1g3 − f 3g1 = 0, f 3, g0 ̸≡ 0

2.55 λX2 + X3 + H1(f 1) + H3(f 3), H1(g1) + H3(g3) f 1tt g
1 − f 1g1tt + (f

3
tt − g(λ + 1))g

3 − f 3g3tt = 0
2.56 X2 + H1(f 1), X3 + H1(f 1) + H0(g0) g0 ̸≡ 0
2.57 X2 + H1(f 1) + H3(f 3), f 1tt g

1 − f 1g1tt = 0,
X3 + H1(g1) + H3(g3) + H0(g0) (f 3tt − g)g

3 − f 3(g3tt − g) = 0,
f 1g3 − f 3g1 = 0, f 3,g0 ̸≡ 0

2.58 X2 + H1(f 1) + H3(f 3), X3 + H1(g1) + H3(g3) f 1tt g
1 − f 1g1tt + (f

3
tt − g)g

3 − f 3(g3tt − g) = 0

vt + uvx + vvy = −
1
ρ0

py + ν(vxx + vyy) + g(β1T + β2C); (6.46)

Tt + uTx + vTy = χ(Txx + Tyy); (6.47)

Ct + uCx + vCy = d(Cxx + Cyy) + αd(Txx + Tyy); (6.48)

ux + vy = 0. (6.49)

The operators (6.42) and (6.43) admitted by the system are written as

X1 =
𝜕
𝜕t
, X2 = ρ0gy

𝜕
𝜕p
+

1
β2
𝜕
𝜕C
, X3 = ρ0gy

𝜕
𝜕p
+

1
β1
𝜕
𝜕T
,

X4 = 2t
𝜕
𝜕t
+ x 𝜕
𝜕x
+ y 𝜕
𝜕y
− u 𝜕
𝜕u
− v 𝜕
𝜕v
− 2p 𝜕
𝜕p
− 3T 𝜕
𝜕T
− 3C 𝜕
𝜕C
,
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H1(f ) = f
𝜕
𝜕x
+ ft
𝜕
𝜕u
− ρ0xftt

𝜕
𝜕p
,

H3(g) = g
𝜕
𝜕y
+ gt
𝜕
𝜕v
− ρ0ygtt

𝜕
𝜕p
,

H0(h) = h
𝜕
𝜕p
,

(6.50)

where f = f (t), g = g(t), and h = h(t) are arbitrary smooth functions. These operators
form the Lie algebra L.

Submodels of ranks 2 and 1 are constructed on the basis of subalgebras from the
optimal systems Θ1L and Θ2L, respectively (see Tables 6.11 and 6.12). The numeration
of these submodels coincides with the numeration of the corresponding subalgebras
in the tables. Note that some subalgebras do not satisfy the necessary condition of ex-
istence of invariant solutions [157], but the number of the remaining subalgebras (34)
is still rather large. Therefore it seems reasonable to start the analysis from consid-
ering submodels corresponding to steady and self-similar solutions. Steady solutions
are invariant with respect to the shift in time (operator X1), and self-similar solutions
are invariant with respect to extension of dependent and independent variables (op-
erator X4). These classes of solutions are of undoubted physical interest owing to nu-
merous applications [68, 71].

We should note another class of invariant solutions generated by subalgebras
from the optimal systems. This class is formed by solutions where the temperature
or concentration is a linear function of time. As an example, let us consider the sub-
model 1.3 generated by the subalgebra with the operator

X1 + λX2 + X3 =
𝜕
𝜕t
+ ρ0g(λ + 1)y

𝜕
𝜕p
+

1
β1
𝜕
𝜕T
+

λ
β2
𝜕
𝜕C
.

Invariants of the corresponding subgroup are

x, y, u, v, p − ρ0g(λ + 1)yt, T − t
β1
, C − λt

β2
.

The invariant solution has the following presentation:

u = u(x, y), v = v(x, y), p = P(x, y) + ρ0g(λ + 1)yt,

T = T(x, y) + t
β1
, C = C(x, y) + λt

β2
.

Obviously, such solutions can describe a certain physical process only on a finite time
interval (as the functions T and C are small deviations from the mean values of tem-
perature and concentration and should be bounded). Examples of such solutions are
provided by the submodel 1.2 and also by those submodels from the list 2.27–2.41 for
which the condition of existence of invariant solutions is satisfied. These submodels
are not considered in the present study.
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Table 6.13: Subalgebras from the optimal system Θ2L.

r.i Basis Comment

2.2 X1, H3(1)
2.3 X1, H1(1) + H0(1)
2.4 X1, H1(1) + H3(λ) λ ≥ 0
2.6 X1, H3(e±t )
2.7 X1, H1(e±t ) + H3(λe±t ) λ ≥ 0
2.9 X1, X2 ± H3(1)

2.10 X1, X2 + H1(1) + H3(μ)
2.12 X1, λX2 + X3 ± H3(1)
2.13 X1, λX2 + X3 + H1(1) + H3(μ)
2.15 X1, X2 − X3 + H1(1) + H0(λ) λ > 0
2.16 X1, X4
2.18 X4, H3(tγ)
2.19 X4, H1(tγ) + H3(μtγ) μ ≥ 0
2.20 X4, H3(√t) + H0(λ/t) λ > 0
2.21 X4, H1(√t) + H3(μ√t) + H0(λ/t) λ > 0, μ ≥ 0
2.24 X4, λX2 + σX3 + H3(t2) λ2 + σ2 ̸= 0
2.25 X4, λX2 + σX3 + H1(t2) + H3(μt2) λ2 + σ2 ̸= 0, μ ≥ 0
2.26 X4, λX2 + [(9/4g) − λ]X3 + H3(t2) + H0(μ√t) μ > 0

Another class of invariant solutions is provided by the submodels 2.42–2.58 generated
by subalgebraswhose basis operators depend on arbitrary (nonfixed) functions. Here,
we have only one variable: time t. Such submodels are also not considered here.

Thus, in the following we study submodels of rank 2 with the numbers 1.1, 1.4,
1.5–1.9 and submodels of rank 1 from the list 2.1–2.26. It should be noted here that the
subalgebras 1.5 and 1.6 do not satisfy the necessary condition of existence of invari-
ant solutions. Two-dimensional subalgebras that satisfy this condition are listed in
Table 6.13. We should also note one important circumstance. It was demonstrated in
Section 6.1 that the transformation C = C̃ +αdT/(χ −d) allows the term αd(Txx +Tyy) to
be eliminated from eq. (6.48); as a result, this equation becomes homogeneous with
respect to C̃. It follows from here that the function

C − C̃ = αd
χ − d

T (6.51)

is a particular solution of eq. (6.48) under the condition that T satisfies eq. (6.47). This
fact is widely used in constructing invariant solutions.

Thermodiffusion in plane layers
Let us give a physical interpretation of two solutions obtained by integrating invariant
submodels of rank 1.

1. Thermodiffusion in a vertical layer. Let us consider the submodel 2.12.
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The basis operators of the subalgebra are

X1 =
𝜕
𝜕t
,

λX2 + X3 ± H3(1) = ±
𝜕
𝜕y
+ ρ0g(λ + 1)y

𝜕
𝜕p
+

1
β1
𝜕
𝜕T
+

λ
β2
𝜕
𝜕C
.

The invariants of the subgroup are

x, u, v, p ∓ ρ0g
2
(λ + 1)y2, T ∓ y

β1
, C ∓ λy

β2
.

The solution is presented as

u = u(x), v = v(x), p = P(x) ± ρ0g
2
(λ + 1)y2,

T = T(x) ± y
β1
, C = C(x) ± λy

β2
.

The factor-system is

u = u0, P = p0, νvxx − u0vx + g(β1T
 + β2C

) = 0,

χTxx − u0T

x ∓

v
β1
= 0, dCxx − u0C


x + αdT


xx ∓

λv
β2
= 0.

(6.52)

If u0 = 0, then system (6.52) takes the form

νvxx + g(β1T
 + β2C

) = 0; (6.53)

χTxx ∓
v
β1
= 0; (6.54)

dCxx + αdT

xx ∓

λv
β2
= 0. (6.55)

We express the function v from eq. (6.54) and substitute it into eq. (6.55). Then, the last
equation is integrated:

v = ±β1χT

xx , C = (λβ1χ

β2d
− α)T + c̃1x + c̃2. (6.56)

Substituting the resultant expressions for v and C into eq. (6.53), we obtain

Txxxx ±
g(d(β1 − β2α) + λβ1χ)

β1νχd
T ± β2g

β1νχ
(c̃1x + c̃2) = 0. (6.57)

Let us introduce a formula for the coefficient at T:

a = ±g(d(β1 − β2α) + λβ1χ)
β1νχd

.
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Equation (6.57) has three different solutions for the cases with a < 0, a > 0, and a = 0
[239]. The functions v and C are determined by eqs. (6.56). Let us write the solutions
of the initial system for all three cases.

1) a < 0, γ = ± 4√−a :

u = 0, p = p0 ±
ρ0g
2
(λ + 1)y2,

v = ±β1χγ
2(c3 cosh γx + c4 sinh γx − c5 cos γx − c6 sin γx),

T = c3 cosh γx + c4 sinh γx + c5 cos γx + c6 sin γx + β2(c1x + c2) ±
y
β1
,

C = (λβ1χ
β2d
− α)(c3 cosh γx + c4 sinh γx + c5 cos γx + c6 sin γx)

− β1(c1x + c2) ±
λy
β2
.

(6.58)

2) a > 0, γ = ± 4√a/4 :

u = 0, p = p0 ±
ρ0g
2
(λ + 1)y2,

v = ±2β1χγ
2(c4 sinh γx cos γx − c3 sinh γx sin γx

+ c6 cosh γx cos γx − c5 cosh γx sin γx),
T = c3 cosh γx cos γx + c4 cosh γx sin γx + c5 sinh γx cos γx

+ c6 sinh γx sin γx + β2(c1x + c2) ±
y
β1
,

C = (λβ1χ
β2d
− α)(c3 cosh γx cos γx + c4 cosh γx sin γx

+ c5 sinh γx cos γx + c6 sinh γx sin γx) − β1(c1x + c2) ±
λy
β2
.

(6.59)

Solutions (6.58), (6.59) involve new constants c1 and c2 introduced by the formula

ci = −
d

d(β1 − β2α) + λβ1χ
c̃i, i = 1, 2.

3) a = 0, λ = d(β2α − β1)(β1χ)−1:

u = 0, v = β1χ(
c5
6
x3 +

c4
2
x2 ± c3x ± c2),

p = p0 ± ρ0g
d(β2α − β1) + β1χ

2β1χ
y2,

C = −β1
β2
(±

c5
120

x5 ±
c4
24

x4 +
c3
6
x3 + c2

2
x2 + c1x + c0)

−
β1νχ
β2g
(c5x + c4) ±

d(β2α − β1)
β1β2χ

y,

T = ±
c5
120

x5 ±
c4
24

x4 +
c3
6
x3 + c2

2
x2 + c1x + c0 ±

y
β1
.

(6.60)
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Figure 6.1: Definition sketch for vertically layer flow.

These equations involve new constants c5 and c4 in accordance with the formulas

c5 = −
β2g
β1νχ

c̃1, c4 = −
β2g
β1νχ

c̃2.

For interpretation of the model 2.12, we pose the following steady problem. We
consider an infinite vertical fluid layer of thickness 2h between two solid walls with a
unit normal vectorn (Figure 6.1). A linear distribution of temperature in the y direction
is imposed on the walls. In addition, there is a constant difference in temperatures
of the boundaries 2Θ in all cross sections of the layer. The no-slip condition and the
absence of the matter flux through the boundary should be satisfied on the walls.

Thus, the boundary conditions at x = ±h have the form

u = v = 0, T = Ay ± Θ, −d(𝜕C
𝜕n
+ α𝜕T
𝜕n
) = 0. (6.61)

Let us assume that there is also an asymptotically constant vertical gradient of the
light species concentration in the layer:

lim
l→∞

1
2l

l

∫
−l

𝜕C
𝜕y

dy = B. (6.62)

We assume that the flow rate of the fluid through an arbitrary cross section of the
layer is equal to zero. In the Oberbeck–Boussinesq approximation, this condition is
written as

h

∫
−h

v dx = 0. (6.63)

Condition (6.63) is satisfied in a closed finite-length layer. Instead of this layer, we con-
sider here an infinite layer in the vertical direction. This approximation is allowed if
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the length of the layer is much greater than its thickness. The solution of the posed
problem provides an approximate description of fluid motion in the central part of
the closed finite layer.

Note that the choice of one of the three solutions (6.58)–(6.60) depends on the
values of parameters involved into the equations and boundary conditions. The dis-
cussion below refers to solution (6.58) (the remaining cases are considered in a similar
manner). This solution includes an arbitrary parameter λ, which determines the coef-
ficient at y in the expression for the concentration. A similar coefficient in the expres-
sion for temperature is fixed. Setting the expressions for the temperature gradient A
and concentration gradient B, however, requires two arbitrary parameters determin-
ing the coefficients at y in formulas for T and C. The necessary parameter can be in-
troduced into the solution by applying a transformation determined by the extension
operator X4. This transformation is described by the formula

x̃ = eax, ỹ = eay, ũ = e−au, ṽ = e−av,

p̃ = e−2ap, T̃ = e−3aT , C̃ = e−3aC
(6.64)

and transforms any solution of the system again into a solution. Let a = −1/4 ln μ and
μ > 0; then, transformations (6.64) can be presented in the form

x → μ−1/4x, y → μ−1/4y, u→ μ1/4u, v → μ1/4v,

p→ μ1/2p, T → μ3/4T , C → μ3/4C.
(6.65)

These formulas mean that x in the solution should be replaced by μ−1/4x; the func-
tion μ1/4u should be considered instead of u, etc. In the solution thus obtained, the
replacement ±λμ→ λ, ±μ→ μ is performed, and formulas (6.58) take the form

u = 0, p = p0 +
ρ0g
2
(λ + μ)y2,

v = β1χγ
2

μ
(c3 cosh γx + c4 sinh γx − c5 cos γx − c6 sin γx),

T = c3 cosh γx + c4 sinh γx + c5 cos γx + c6 sin γx + β2(c1x + c2) +
μ
β1

y,

C = ( λβ1χ
μβ2d
− α)(c3 cosh γx + c4 sinh γx + c5 cos γx + c6 sin γx) − β1(c1x + c2) +

λ
β2

y,

γ = ± 4√−
g(μd(β1 − β2α) + λβ1χ)

β1νχd
, μd(β1 − β2α) + λβ1χ < 0.

(6.66)

Here, the coefficients at y in the expressions for T and C are determined by two in-
dependent parameters μ and λ, respectively, and μ ̸= 0. Note that the replacement of
the constants p0 and ci, i = 1, . . . , 6 is also performed during this transformation.
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For determining the unknown constants, the initial system of equations, bound-
ary conditions, and solution (6.66) are rewritten in the dimensionless form. We in-
troduce the characteristic scales of distance h, velocity gβ1Θh2/ν, pressure ρ0ghβ1Θ,
temperature Θ, and concentration β1Θ/β2. In the dimensionless variables, the steady
equations (6.31) take the form

Gr(u ⋅ ∇)u = −∇p + Δu + (T + C) γ,

Gr(u ⋅ ∇T) = 1
Pr

ΔT ,

Gr(u ⋅ ∇C) = 1
Sc
(ΔC − εΔT),

divu = 0,

(6.67)

where x = (x, y), u = (u, v), and γ = (0, 1) should be assumed. The system contains four
dimensionless parameters: Grashof number Gr, Prandtl number Pr, Schmidt number
Sc, and parameter ε responsible for the thermodiffusion effect:

Gr = gβ1Θh
3

ν2
, Pr = ν

χ
, Sc = ν

d
, ε = −αβ2

β1
. (6.68)

The boundary conditions (6.61) at x = ±1 are written as

u = v = 0; (6.69)

T = Ra
Gr Pr

y ± 1; (6.70)

𝜕C
𝜕x
− ε𝜕T
𝜕x
= 0. (6.71)

Equalities (6.62) and (6.63) take the form

lim
l→∞

1
2l

l

∫
−l

𝜕C
𝜕y

dy = Rad
Gr Sc
,

1

∫
−1

v dx = 0. (6.72)

Here, we have two new dimensionless parameters: Rayleigh number Ra and concen-
trationRayleigh number Rad, which are determined from the vertical gradients of tem-
perature and concentration, respectively:

Ra = gβ1Ah
4

νχ
, Rad =

gβ2Bh4

νd
. (6.73)

Solution (6.66) in the dimensionless variables is described by the formulas

u = 0, p = p0 +
A + B

2
y2,

v = γ2

A Gr Pr
(c3 cosh γx + c4 sinh γx − c5 cos γx − c6 sin γx),

T = c3 cosh γx + c4 sinh γx + c5 cos γx + c6 sin γx + c1x + c2 + A
y,

C = (B
 Sc

A Pr
+ ε)(c3 cosh γx + c4 sinh γx + c5 cos γx + c6 sin γx) − c1x − c2 + B

y,

γ = ± 4√−Gr(A Pr(ε + 1) + B Sc),

(6.74)
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where A Pr(ε + 1) +B Sc < 0, A = μh (β1Θ)−1, B = λh (β1Θ)−1. The constants c1–c6 are
determined from conditions (6.69)–(6.71), after which the last condition in eqs. (6.72)
is satisfied identically. Further, eqs. (6.70), (6.72), and (6.74) yield

A = Ra
Gr Pr
, B = Rad

Gr Sc
; (6.75)

then, we have γ = ± 4√−Ra(ε + 1) − Rad, and the condition Ra(ε + 1) + Rad < 0 should
be satisfied. Applying similar considerations to solutions (6.59) and (6.60) of the sub-
model 2.12, we find that these solutions correspond to the values Ra(ε + 1) + Rad > 0
and Ra(ε + 1) + Rad = 0, respectively. Let us write the solutions of the posed problem
for all three cases (the velocity component u = 0 is omitted).

1) Let Ra(ε + 1) + Rad < 0.

v = γ
2(ε + 1)
D
[
sinh γx
sinh γ
−
sin γx
sin γ
], p = p0 +

1
2
[

Ra
Gr Pr
+

Rad
Gr Sc
]y2,

T = Ra(ε + 1)
D
[
sinh γx
sinh γ
+
sin γx
sin γ
] +

γ Rad
D
(cot γ + coth γ)x + Ra

Gr Pr
y,

C = (Ra ε + Rad)(ε + 1)
D

[
sinh γx
sinh γ
+
sin γx
sin γ
] −

γ Rad
D
(cot γ + coth γ)x + Rad

Gr Sc
y,

γ = 4√−Ra(ε + 1) − Rad, D = 2 Ra(ε + 1) + γ Rad(cot γ + coth γ).

(6.76)

2) Let Ra(ε + 1) + Rad > 0.

v = 4γ
2(ε + 1)
D
(sin γ cosh γ cos γx sinh γx − cos γ sinh γ sin γx cosh γx),

p = p0 +
1
2
[

Ra
Gr Pr
+

Rad
Gr Sc
]y2,

T = 2 Ra(ε + 1)
D
(cos γ sinh γ cos γx sinh γx + sin γ cosh γ sin γx cosh γx)

+
γ Rad
D
(sin 2γ + sinh 2γ)x + Ra

Gr Pr
y,

C = 2(Ra ε + Rad)(ε + 1)
D

(cos γ sinh γ cos γx sinh γx + sin γ cosh γ sin γx cosh γx)

−
γ Rad
D
(sin 2γ + sinh 2γ)x + Rad

Gr Sc
y,

γ = 4√Ra(ε + 1) + Rad
4

,

D = Ra(ε + 1)(cosh 2γ − cos 2γ) + γ Rad(sin 2γ + sinh 2γ).
(6.77)
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3) Let Ra(ε + 1) + Rad = 0.

v = 15(ε + 1)
2 Ra(ε + 1) − 90

(x3 − x), p = p0 +
Ra

2Gr Pr
(1 − Pr

Sc
(ε + 1))y2,

T = Ra(ε + 1)
8Ra(ε + 1) − 360

(3x5 − 10x3 + 15x) − 45
Ra(ε + 1) − 45

x + Ra
Gr Pr

y,

C = − Ra(ε + 1)
8Ra(ε + 1) − 360

(3x5 − 10x3 + 15x) − 45ε
Ra(ε + 1) − 45

x − Ra(ε + 1)
Gr Sc

y.

(6.78)

In cases 1 and 2, the form of the solution is independent of the sign of the pa-
rameter γ (therefore, we chose the plus sign for certainty). Note that the assumption
μ ̸= 0 in solution (6.66) leads to Ra ̸= 0 (see eqs. (6.74) and (6.75)). If we assume that
Ra = 0 in the solutions (absence of the temperature gradient), we obtain the following
formulas:

1) Let Rad < 0, γ = 4√−Rad.

v = γ (ε + 1) (sin γ sinh γx − sinh γ sin γx)
Rad(sin γ cosh γ + cos γ sinh γ)

,

p = p0 +
Rad
2Gr Sc

y2, T = x, (6.79)

C = (ε + 1) (sin γ sinh γx + sinh γ sin γx)
γ (sin γ cosh γ + cos γ sinh γ)

− x + Rad
Gr Sc

y.

2) Let Rad > 0, γ = 4√Rad /4.

v = 4γ(ε + 1)
Rad(sin 2γ + sinh 2γ)

(sin γ cosh γ cos γx sinh γx − cos γ sinh γ sin γx cosh γx),

p = p0 +
Rad
2Gr Sc

y2, T = x,

C = 2(ε + 1)
γ (sin 2γ + sinh 2γ)

(cos γ sinh γ cos γx sinh γx + sin γ cosh γ sin γx cosh γx)

− x + Rad
Gr Sc

y,

(6.80)

3) Let Rad = 0.

v = − 1
6
(ε + 1)(x3 − x), p = p0, T = x, C = εx. (6.81)

Solution (6.80) was considered in [72, 150], where its stability to small perturba-
tions was studied. In [72], the thermodiffusion effect was ignored (ε = 0). Stability
of solution (6.81) was studied in [73]. Moreover, if we assume that Rad = ε = 0 in
eqs. (6.76)–(6.77), the resultant solution describes the motion of a homogeneous fluid
in a vertical channel with a streamwise gradient of temperature [71]. We should also
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Figure 6.2: Velocity profiles given by (6.74) for Ra = 300, Rad = 0.

note the publication [235], which deals with the stability of solutions (6.76)–(6.78) in
the cases with ε = 0, Ra > 0, and Rad > 0. Thus, these solutions generalize some
previously known solutions to the case of thermodiffusionmotion of a binary mixture
in a vertical layer under various boundary conditions.

It is seen from the derived formulas that the velocity vanishes in all cases at ε = −1,
while the temperature and concentration distributions become linear along the x co-
ordinate. Thus, mechanical equilibrium in the system is possible. Moreover, the tem-
perature and concentration gradients (or appropriate numbers Ra and Rad) in solu-
tions (6.76) and (6.77) can be chosen in such a manner that the pressure in the layer is
constant with accuracy to the hydrostatic pressure. Note that these solutions are not
determined for all values of parameters. For example, the velocity v in solution (6.78)
at Ra(ε + 1) = 45 turns to infinity. As demonstrated in [71, 235], however, the steady
flow at such values of parameters is unstable and does not occur in practice.

Let us now give an example of velocity, temperature, and concentration profiles
in the cross section y = 0 for different values of the thermodiffusion parameter (Fig-
ure 6.2). These profiles correspond to the Rayleigh numbers Ra = 300 and Rad = 0.
The functions v, T, and C at y = 0 are uniquely determined by setting the parameters
mentioned above.

In the absence of thermodiffusion (curve ε = 0), the fluid moves upward near the
heated boundary and moves downward near the cold boundary. In this case, there
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are no concentration inhomogeneities (C = 0). If the parameter ε is positive, then nor-
mal thermodiffusion occurs, and the light species diffuses toward the heated bound-
ary. This leads to an increase in velocity (curve ε = 1.5). At negative values of the
thermodiffusion parameter, abnormal thermodiffusion takes place. The light species
moves toward the cold boundary; as a result, themotion velocity decreases. At ε = −1,
mechanical equilibrium occurs. A further decrease in the thermodiffusion parameter
leads to inversion of the velocity profile (curve ε = −1.1). The concentration of the light
species near the cold boundary becomes high enough for the fluid to begin moving
upward near this boundary and to move downward near the heated boundary. With a
further decrease in the thermodiffusion parameter, velocity profile inversion is again
observed (curve ε = −2). The fluid moves upward and downward near the cold and
heated boundaries, respectively, and themotion direction in the remaining part of the
layer changes to the opposite. Significant inhomogeneities of temperature and con-
centration in the layer are observed.

2. Thermodiffusion in an inclined layer with a free boundary. Let us now consider the
submodel 2.4. The basis operators of the subalgebra are

X1 =
𝜕
𝜕t
, H1(1) + H3(λ) =

𝜕
𝜕x
+ λ 𝜕
𝜕y
, λ ≥ 0.

The invariants of the subgroup are

y − λx, u, v, p, T , C.

The solution is presented as

ξ = y − λx, u = u(ξ ), v = v(ξ ), p = p(ξ ), T = T(ξ ), C = C(ξ ).

The factor-system is

v = λu + v0, ν(λ2 + 1)uξξ − v0uξ +
λg

λ2 + 1
(β1T + β2C) = 0,

χ(λ2 + 1)Tξξ − v0Tξ = 0, d(λ2 + 1)(Cξξ + αTξξ ) − v0Cξ = 0,

pξ =
ρ0g
λ2 + 1
(β1T + β2C).

The solution in the case with v0 = 0 is

u = − λg
6ν(λ2 + 1)2

((β1c1 + β2c3)ξ
3 + 3(β1c2 + β2c4)ξ

2) + c5ξ + c6,

p = ρ0g
2(λ2 + 1)

((β1c1 + β2c3)ξ
2 + 2(β1c2 + β2c4)ξ ) + p0, (6.82)

v = λu, T = c1ξ + c2, C = c3ξ + c4, ξ = y − λx.

In this solution, all sought functions retain constant values on the straight lines ξ =
y − λx = const, which suggests a possible physical interpretation.
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Figure 6.3: Inclined layer of the fluid.

We consider a fluid layer of thickness 2h, which is aligned at an angle 0 ≤ φ < 90°
to the horizon. The fluid is bounded from the bottom and from the top by a heated
solid wall and a free boundary, respectively. These boundaries are straight lines with
a unit normal vector n (Figure 6.3). It is assumed that there is a constant temperature
difference 2Θ between the solid wall and the free boundary in all cross sections; the
solid wall and the free boundary also retain a constant temperature. If we assume
that λ = tanφ in solution (6.82), then the functions sought are constant on straight
lines parallel to the layer boundaries, and the problem conditions can be satisfied.
For the convenience of further calculations, we introduce a new coordinate system,
where one axis is directed along the layer, and another axis (z) is perpendicular to
the layer. Taking into account that ξ = y − x tanφ and v = u tanφ, we replace the
variables as z = −x sinφ + y cosφ = ξ cosφ, u → u cosφ + v sinφ = u/ cosφ, v →
−u sinφ + v cosφ = 0; as a result, the solution considered takes the form

u = −g sinφ
6ν
((β1c1 + β2c3)z

3 + 3(β1c2 + β2c4)z
2) + c5z + c6,

p = ρ0g cosφ
2
((β1c1 + β2c3)z

2 + 2(β1c2 + β2c4)z) + p0, (6.83)

v = 0, T = c1z + c2, C = c3z + c4.

To avoid using new notations, we retained those of the velocity components and the
constants ci, i = 1, . . . , 6 in the solution. In eqs. (6.83), the function u is the velocity in
the direction parallel to the layer axis (there is no motion in the perpendicular direc-
tion).

Let us formulate the boundary conditions of the problem considered. On the wall
and free boundary, we impose the temperature distribution and the absence of the
matter flux:

z = ±h : T = ∓Θ, −d(𝜕C
𝜕n
+ α𝜕T
𝜕n
) = 0.
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In addition, the no-slip condition (i. e., u = 0 at z = −h) should be satisfied on the
wall. On the free boundary, we impose the kinematic condition (which is satisfied
identically in the case considered) and the dynamic condition

z = h : ((p − pg)E − 2νρ0D(u))n = 2σHn + ∇Γσ.

Here pg is the pressure on the free boundary, E is the unit matrix, D(u) is the strain
rate tensor, n = (0, 1) is the external normal vector, σ = σ(T ,C) is the surface ten-
sion coefficient, H is the mean curvature of the free surface, and ∇Γ = ∇ − n(n ⋅ ∇) is
the surface gradient. As the temperature and concentration on the free boundary in
solution (6.83) are constant, the surface gradient is equal to zero. The free surface is
a straight line; therefore, H = 0. Thus, the dynamic condition does not impose con-
straints on the dependence σ = σ(T ,C). The strain rate tensor for solution (6.83) takes
the form

D(u) = ( 0 uz/2
uz/2 0

) ,

and the dynamic condition reduces to satisfying the relations

z = h : 𝜕u
𝜕z
= 0, p = pg .

Let us specify the mean concentration in the cross section and assume that it remains
constant along the layer:

1
2h

h

∫
−h

(C0 + C) dz = C0.

Fromhere, we can easily obtain the condition on the function C, which determines the
deviations from the mean value (see below). The transition to the dimensionless vari-
ables is performed in the same manner as previously (see eq. (6.67)). Solution (6.83)
takes the form

u = −sinφ
6
[(c1 + c3)z

3 + 3(c2 + c4)z
2] + c5z + c6, (6.84)

p = cosφ
2
[(c1 + c3)z

2 + 2(c2 + c4)z] + p0, T = c1z + c2, C = c3z + c4,

and the problem condition are written as

z = ±1 : T = ∓1, 𝜕C
𝜕z
− ε𝜕T
𝜕z
= 0;

z = −1 : u = 0; z = 1 : 𝜕u
𝜕z
= 0, p = pg ;

1

∫
−1

C dz = 0.
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Figure 6.4: Velocity profiles given by (6.84) for φ = 30°.

Here, ε is the dimensionless parameter determining the thermodiffusion effect and
pg = pg(ρ0ghβ1Θ)

−1. Determining the unknown constants from the boundary condi-
tions, we obtain

u = sinφ
6
(ε + 1)(z3 − 3z − 2),

p = cosφ
2
(ε + 1)(−z2 + 1) + pg , T = −z, C = −εz.

As is seen from these formulas, the flow intensity increases with increasing angle of
inclination.

Figure 6.4 shows the velocity profiles for different values of the thermodiffusion
parameter for the angle of inclination φ = 30∘ (see also Figure 6.3). If there is no ther-
modiffusion (curve ε = 0), the flowmoves downward along the layer under the action
of the gravity force. In the case of normal thermodiffusion (ε > 0), the concentration
of the light species near the heated boundary increases, while the heavy and cold fluid
stays on the top. As a result, the motion velocity increases, but its profile is similar to
the velocity profile for ε = 0. At negative values of ε, abnormal thermodiffusion occurs.
The light species moves toward the cold free boundary, which leads to a decrease in
velocity. The value ε = −1 corresponds to mechanical equilibrium.
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Witha further decrease in the thermodiffusionparameter, the concentrationof the
light species near the free boundary reaches significant values. As a result, the velocity
changes its sign, and the fluid starts moving upward along the layer (curve ε = −2).
To conclude, we should note that the problem solution has the following form in the
case of heating from above (T = ±1 at z = ±1):

u = −sinφ
6
(ε + 1)(z3 − 3z − 2),

p = cosφ
2
(ε + 1)(z2 − 1) + pg , T = z, C = εz,

and the motion direction changes to the opposite one.
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7 Stability of equilibrium states in the
Oberbeck–Boussinesq model

Stability of both equilibrium states and steady flows in the Oberbeck–Boussinesq
model has been considered in a large number of works. As an illustration, we cite
only three of them [143, 125, 179], in which the conditions of the emergence of convec-
tive flows in layers with a free boundary, an interface, and solid walls are examined.
A review and analysis of earlier publications can be found in [68]. A finite-depth layer
with a free upper boundary and a solid lower boundary is considered in Section 7.1.
The temperature of the lower surface is assumed to be constant, and the temperature
of the upper surface changes periodically in time. As a result, the equilibrium temper-
ature gradient is nonuniform in terms of depth and periodic in time. The influence of
this temperature gradient is studied numerically.

Convective stability of the equilibrium state of a system of two immiscible fluids
with close values of density is considered in Section 7.2. A generalized Boussinesq ap-
proximation is constructed, which allows interface deformation to be correctly taken
into account. Stability of the equilibrium state of a system of two fluids in a horizontal
layer with a vertical temperature gradient is studied. Several instability mechanisms
are found to exist: long-wave and cellular monotonic perturbations, as well as vibra-
tional perturbations. The influence of interface deformability on instability character-
istics is considered. Enhancement of deformability is demonstrated to change insta-
bility mechanisms.

The problem of destabilization of a rotating fluid owing to the temperature gradi-
ent is considered in Section 7.3.

7.1 Convective instability of a horizontal layer with oscillations of
temperature on the free boundary

The problem of the emergence of convection in an infinite horizontal layer of a vis-
cous fluid under the condition of periodic variations of temperature on the free upper
boundary is of interest for studying mechanisms which affect the thermal situation in
stagnant natural reservoirs. The temperature distribution over the reservoir depth in
the absence of forced circulation induced, for example, by the action of wind is de-
termined by free convective motions arising because of nonuniform heating of water
masses due to daily and seasonal oscillations of temperature on the surface.

The study of parametric excitation of convective instability in a fluid layer due
to periodic changes in the temperature regime was inspired by the publication of
Gershuni and Zhukhovitskii [66], who posed and studied the problem of stability of
a finite-depth layer with a periodically changing equilibrium temperature gradient.
Boundary conditions corresponding to plane free boundaries were considered, which

https://doi.org/10.1515/9783110655469-007
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made it possible to perform an analytical study. The case of a layer with solid bound-
aries was considered in [74], and stability of an infinite-depth layer with periodically
changing temperature on the boundary was studied in [67].

The influence of modulation of the boundary temperature on convective stability
of a horizontal layer was investigated in [227, 198, 236]. Venezian [227] considered a
layer with free boundaries, the temperatures of which oscillate simultaneously with
an infinitesimal amplitude. Rosenblat and Herbert [198] studied low-amplitude oscil-
lations of temperature on the lower boundary with finite amplitudes of modulation.
Yin and Li [236] considered a layer with solid boundaries with simultaneously oscil-
lating temperatures.

Note that the problem of stability of a fluid layer under the condition of a period-
ically varying equilibrium temperature gradient is similar to the problem of stability
of the layer in a field of external volume forces periodic in time [68, 127].

1. Formulation of the problem
Let a viscous incompressible fluid fill an infinite horizontal layer of thickness l. The
bottom temperature is constant and equal to θ1, and the upper surface temperature
varies in accordance with the law θ2 + A sinΩt. The free surface and the bottom are
assumed to be nondeformable and solid, respectively. Let us introduce a coordinate
system x, y, z, such that the z axis is directed vertically upward, while the x and y axes
are in the plane of the lower boundary of the layer. Let us count temperature from θ2
and use l, χl−1, l2χ−1, |θ1 − θ2|, and ϱνχl−2 as scales of length, velocity, time, temper-
ature, and pressure, respectively. Here, ϱ, χ, and ν are the constant density, thermal
diffusivity, and kinematic viscosity of the fluid, respectively.

The free convection equations in the Oberbeck–Boussinesq approximation have
the following form in the dimensionless variables:

1
Pr
(
𝜕v
𝜕t
+ v ⋅ ∇v) = −∇p + Δv + Ra θe3,

div v = 0, 𝜕θ
𝜕t
+ v ⋅ ∇θ = Δθ.

(7.1)

Here, v = (u, v,w) is the velocity vector, θ is the temperature, p is the deviation of
pressure from the hydrostatic value, e3 stand for the z axes, Pr and Ra are the Prandtl
and Reynolds numbers, respectively,

Pr = ν
χ
, Ra = gβ|θ1 − θ2|l

3

νχ
,

where g is the acceleration due to gravity and β is the coefficient of thermal expansion
of the fluid.

The boundary conditions for temperature and velocity on the lower solid bound-
ary and on the upper free boundary have the respective forms

θ = c, v = 0; (7.2)
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θ = a sinωt, 𝜕u
𝜕z
=
𝜕v
𝜕z
= w = 0, a = A

|θ1 − θ2|
, ω = Ωl

2

χ
, (7.3)

where c = ±1 is the dimensionless temperature of the lower boundary, and a and ω
are the dimensionless amplitude and frequency of temperature oscillations on the free
boundary, respectively.

2. Equations for perturbations
The boundary-value problem (7.1)–(7.3) has a solution corresponding to conductive
heat transfer, i. e., to the quiescent state of the fluid (v0 = 0). The periodically varying
temperature distribution can be found from a boundary-value problem of the form

𝜕θ0
𝜕t
=
𝜕2θ0
𝜕z2
, θ0|z=0 = c, θ0|z=1 = a sinωt, (7.4)

whose solution is well known [112].
After determining θ0(z, t), we find the function of pressure p0(z, t) by integrating

the equation

𝜕p0
𝜕z
= Ra θ0.

The final solution of problem (7.1)–(7.3), which corresponds to the conductive heat-
transfer mode, has the form

v0 = 0,

p0 = Ra[cz(1 −
1
2
z) + a

2
z2 sinωt −

∞
∑
n=1
(−1)n 2aω
(πn)4 + ω2

× (cosωt + ω
(πn)2

sinωt) cosπnz] + C(t),

θ0 = c(1 − z) + az sinωt +
∞
∑
n=1
(−1)n 2aω
(πn)4 + ω2 (πn cosωt +

ω
πn

sinωt) sinπnz.

(7.5)

The excess pressure distribution p0(z, t) is determined with accuracy to an arbitrary
function of time C(t), which can be assumed to have a zero value.

Substituting v0 +V , p0 + P, and θ0 + T into the system (7.1)–(7.3), we obtain equa-
tions for perturbations of V ,P, and T in the conductive mode (7.5):

1
Pr
(
𝜕V
𝜕t
+ V ⋅ ∇V) = −∇P + ΔV + RaTe3,

divV = 0, 𝜕T
𝜕t
+ V ⋅ ∇T = ΔT − θ0(z, t)V ⋅ e3, (7.6)

θ0(z, t) = −c + a[1 + 2ω
2ψω(z)] sinωt − 2aωψ


ω(z) cosωt,
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ψω(z) =
∞
∑
n=1
(−1)n 1
(πn)4 + ω2 cosπnz.

In the following, the prime denotes differentiation with respect to the z coordinate.
The boundary conditions for perturbations are imposed on the solid bottom and

free surface:

T = 0, V = 0; (7.7)

T = 0, 𝜕U
𝜕z
=
𝜕V
𝜕z
= W = 0. (7.8)

3. Linearization
To answer the question on stability of the ω-periodic solution (7.5) of problem (7.1)–
(7.3), we use the method of linearization [238]. The linearized problem for small per-
turbations of the conductive mode (7.5) has the form

1
Pr
𝜕V
𝜕t
= −∇P + ΔV + RaTe3, divV = 0,

𝜕T
𝜕t
= ΔT − θ0(z, t)V ⋅ e3.

(7.9)

Note that, in contrast to [66, 74], the equilibrium temperature gradient in system
(7.6) depends not only on time, but also on the spatial coordinate z. For convenience
when analyzing the results, we write θ0(z, t) in the form

θ0(z, t) = −c + a[1 + 2ξω
2ψω(z)] sinωt − 2aξωψ


ω(z) cosωt. (7.10)

Presentation (7.10) contains a formal parameter ξ . At ξ = 0, we have a problem
with modulation of the gradient of equilibrium temperature or gravity force field [74,
127]; at ξ = 1, we obtain problem (7.7)–(7.9) of interest.

For the linear system with periodic coefficients (7.7)–(7.9), we find the Floquet so-
lution with the increment λ under the usual assumptions on the spatial periodicity of
perturbations along the layer with the absolute value of the wave vector k = (α1, α2).
Presenting the unknown functions in system (7.7)–(7.9) in the form

(
V
T
P
) (x, y, z, t) =(

V
T
P
) (z, t) eλt+i(α1x+α2y),

where the amplitudes (V ,T ,P)(z, t) are functions periodic in time,we obtain a spectral
problem with respect to the parameter λ

1
Pr

Ẇ = −P +W  − (k2 + λ)W + RaT ,

1
Pr

Ḟ = k2P + F − (k2 + λ)F, W  = −F, (7.11)
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Ṫ = T − (k2 + λ)T −Wθ0(z, t).

Here, the dot signifies differentiation with respect to time. The boundary conditions
(7.7) and (7.8) take the form

T = W = F = 0; (7.12)
T = W = F = 0. (7.13)

Eliminating the pressure, we can present system (7.11)–(7.8) in the form

qℒẆ = (ℒ − λ)ℒW − k2 RaT , Ṫ = (ℒ − λ)T − θ0(z, t)W ; (7.14)
W = 𝒟W = T = 0; (7.15)

W = 𝒟2W = T = 0, (7.16)

where q = Pr−1; ℒ = 𝒟2 − k2, 𝒟 = d/dz is the operator of differentiation. System (7.14)
can be reduced to one equation

qℒẄ − (1 + q)(ℒ − λ)ℒẆ + (ℒ − λ)2ℒW − k2 Ra θ0(z, t)W = 0. (7.17)

From the boundary conditions (7.15) and (7.16), we obtain, respectively,

W = 𝒟W = (𝒟2 − 2k2 − λ)𝒟2W − q𝒟2Ẇ = 0; (7.18)

W = 𝒟2W = 𝒟4W = 0. (7.19)

The critical regime of heat transfer is determined by the condition Re(λ) = 0 or, in
the case of monotonic instability of solution (7.5), by the condition λ = 0.

4. Galerkin method and Fourier method
Let us present the spectral problem (7.14)–(7.16) in the operator-matrix form as

Bu̇ = eiωtA1u + A0u + e
−iωtĀ1u, (7.20)

u = ( W
T
) (z, t), B = ( qℒ 0

0 1
) ,

A1 = (
0 0
Φ(z) 0

) , A0 = (
(ℒ − λ)ℒ −k2 Ra

c ℒ − λ
) ,

which involves the presentation of the conductive temperature gradient (7.10) as an
ω-periodic function of time:

θ0(z, t) = −c −Φ(z) e
iωt − Φ̄(z) e−iωt ,

Φ(z) = aξωψω(z) + i
a
2
[1 + 2ξω2ψω(z)].

(7.21)
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We look for the solution of eq. (7.20) in the form

u(z, t) =
M
∑
m=1

um(t)ϕm(z), (7.22)

where the basis vector functionsϕm(z) : R→ R2 satisfy the boundary conditions

ϕm(0) = ϕm(1) = 0, 𝒟ϕm,1(0) = 𝒟
2ϕm,1(1) = 0. (7.23)

To determine a nontrivial set of the functions um(t), we have the Galerkin system
of equations

M
∑
m=1
(Bϕm,ϕj)u̇m(t) =

M
∑
m=1
(A0ϕm,ϕj)um(t)

+ eiωt
M
∑
m=1
(A1ϕm,ϕj)um(t) + e

−iωt
M
∑
m=1
(Ā1ϕm,ϕj)um(t),

(7.24)

j = 1, . . . ,M. Here, we use a scalar product in L2:

(f , g) =
1

∫
0

[f1(z)q1(z) + f2(z)q2(z)] dz.

Seeking the ω-periodic (in time) solution of system (7.24) in the form

um(t) =
∞
∑

n=−∞
umn e

iωnt , (7.25)

we obtain a homogeneous infinite system of linear algebraic equations

M
∑
m=1

amnjum,n−1 + bmnjumn + āmnjum,n+1 = 0,

bmnj = (A0ϕm,ϕj) + iωn(Bϕm,ϕj),

j = 1, 2, . . . ,M, n = 1,±1,±2, . . . .

(7.26)

Below, we consider the simplest case where the basis functions have the form

ϕ1(z) = (
f (z)
0
) , ϕ2(z) = (

0
g(z)
) .

We write system (7.26) as

b1n1u1,n + b2n1u2,n = 0,
a1n2u1,n−1 + b1n2u1,n + ā1n2u1,n+1 + b2n2u2,n = 0,

n = 0,±1,±2, . . . .
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Eliminating u2,n from the first equation, we obtain a homogeneous infinite system
of linear algebraic equations with a three-diagonal matrix

Anu1,n−1 + Bnu1,n + Ānu1,n+1 = 0, An = k
2 Ra(f , g)(fΦ, g),

Bn = ck
2 Ra(f , g)2 − q(ωn)2(ℒf , f )(g, g)
+ ((ℒ − λ)ℒf , f )((ℒ − λ)g, g)
− iωn[((ℒ − λ)ℒf , f )(g, g) + q((ℒ − λ)g, g)(ℒf , f )],

(7.27)

where (f , g) = ∫10 f (z)g(z) dz.
In the case of monotonic instability (λ = 0), we obtain the following expressions

for the coefficients Bn:

Bn = ck
2 Ra(f , g)2 + q(ωn)2(||𝒟f ||2 + k2||f ||2)||g||2

− ||ℒf ||2(||𝒟g||2 + k2||g||2) − iωn[||ℒf ||2||g||2

+ q(||𝒟g||2 + k2||g||2)(||𝒟f ||2 + k2||f ||2)].

The coefficients of system (7.27) depend on the parameters of problem (7.10)–(7.13)
λ,Ra,Pr, k2, a, and ω. To determine their critical values providing the existence of a
nontrivial solution of system (7.27), we use the reduction method [104] based on trun-
cated systems.

Another approach to studying the linearizedproblem (7.11)–(7.13) canalsobeused.
As the solution for problem (7.11)–(7.13) is ω-periodic in time, we can expand the un-
known functions into the Fourier series of the form

(

W
F
T
P

) (z, t) =
∞
∑

n=−∞
(

Wn
Fn
Tn
Pn

) (z) eiωnt .

As a result, we obtain a spectral boundary value problem for an infinite system of
ordinary differential equations

W n − (k
2 + λ + i nω

Pr
)Wn − P


n + RaTn = 0, n = 0,±1,±1, . . .

Fn − (k
2 + λ + i nω

Pr
)Fn + k

2Pn = 0, W n = −Fn, (7.28)

Tn − (k
2 + λ + inω)Tn + cWn +Φ(z)Wn−1 + Φ̄(z)Wn+1 = 0,

with the boundary conditions

Wn = Fn = Tn = 0; (7.29)
Wn = F


n = Tn = 0. (7.30)

For a fixed value of n, the spectral problem (7.28)–(7.30) can be studied numeri-
cally.
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Figure 7.1: Neutral curves for monotone disturbances for Pr = 7 and ω = 10, a = 0.1.

5. Numerical results
The neutral curves Ra(k) of monotonic instability were calculated on the basis of the
truncated systems (7.27) and (7.28)–(7.30). The values Pr = 7 and ω = 10 were used in
all cases.

The results obtained for a = 0.1 are shown in Table 7.1 and Figure 7.1. For equa-
tions (7.27), we considered truncated systems up to the 11th order, which were stud-
ied with the Maple package for analytical computations. The coordinate functions
f (z) = z2(z − 1)(2z − 3) and g(z) = z(1 − z)were used. The computed results are shown
in column I of Table 7.1 and by curve 1 in Figure 7.1. For equations (7.28), we considered
truncated spectral problems up to the 30th order, which were studied by the shooting
method. The computed results are shown in column II of Table 7.1 and by curve 2 in
Figure 7.1.

Column III of Table 7.1 shows the critical values obtained at ξ = 0 in equation
(7.10), which corresponds to the case of modulation of the equilibrium tempera-
ture gradient. The last column (column IV) shows, for comparison, the data of the
Rayleigh–Benard problem for the solid lower surface and the free upper surface of
the layer [142]. It is seen that the numerical values from columns II–IV of Table 7.1 on
curve 2 in Figure 7.1 cannot be distinguished.

Obviously, the calculation of the neutral curve on the basis of the truncated sys-
tems (7.27) with the basis functions (7.30) yields overpredicted results, although the
character of the curve remains the same. Columns I–III of Table 7.2 and curves 1–3 in
Figure 7.2 show the results calculated for the amplitude modulation values a = 0.1,
a = 0.5, and a = 0.9, respectively. An increase in the amplitude of temperature mod-
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Table 7.1: Rayleigh number Ra vs wave number k for different shortened equations (7.28).

Ra(k)
k I II III IV

2 1269.5 1230.6 1230.7 1230.3
2.2 1197.5 1160.1 1160.2 1159.8
2.4 1156.7 1119.6 1119.8 1119.4
2.6 1139.8 1102.3 1102.6 1102.1
2.8 1142.4 1103.8 1104 1103.6
3 1161.6 1121.1 1121.3 1120.8

3.2 1195.5 1152.5 1152.7 1152.2
3.4 1243.1 1197.1 1197.1 1196.6
3.6 1303.8 1253.5 1254 1253.5
3.8 1377.4 1323.2 1323.1 1322.5
4 1463.9 1403.9 1404.5 1403.8

Table 7.2: Rayleigh number Ra vs wave number k for α = 0.1, α = 0.5, α = 0.9 respectively.

Ra(k)
k I II III

2 1230.6 1237.3 1247.7
2.2 1160.1 1166.5 1175.2
2.4 1119.6 1126 1132.7
2.6 1102.3 1108.6 1113.5
2.8 1103.8 1109.9 1112.1
3 1121.1 1127.2 1125.8

3.2 1152.5 1158.6 1152.7
3.4 1197.1 1202.9 1192.1
3.6 1253.5 1259.6 1242.7
3.8 1323.2 1328.5 1304.5
4 1403.9 1409.4 1377.9

ulation on the free boundary leads to insignificant stabilization of conductive heat
transfer with respect to perturbations with wave numbers smaller than, at least, the
minimum critical wave number. For a = 0.9, the neutral curve is less steep; at wave
numbers greater than a certain value, it lies lower than the neutral curves correspond-
ing to a = 0.1 and a = 0.5.

7.2 Instability of a liquid layers with an interface

An important class of problems of the convective stability theory includes problems
arising in studying two-layer systems. Themajority of these studies are performed un-
der the assumption that the interface is nondeformable (see, e. g., [33, 69, 70]). Inmany
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Figure 7.2: Neutral curves for monotone disturbances for Pr = 7, ω = 10, a = 0.1 (curve 1), a = 0.5
(curve 2), a = 0.9 (curve 3).

situations this assumption iswell justified, because the influenceof interfacedeforma-
bility on convective stability is rather small for accelerations, due to gravity typical
for Earth conditions and for sufficiently different fluid densities. At the same time,
the assumption on interface nondeformability appreciably simplifies the procedure
of finding the problem solution, taking into account that interface deformability is of
principal importance from the viewpoint of studying new mechanisms of instability.
Convective stability with allowance for interface deformability within the Boussinesq
approximation has been studied by various authors (see, e. g., [46, 99, 192, 193]). Nev-
ertheless, the assumption of interface deformability contradicts the standard Boussi-
nesq approximation (see the analysis in [148]) and can lead to physically invalid re-
sults. The objective of this section is to construct a more correct approximation.

1. Generalized Boussinesq approximation
Let us consider the gravitational thermal convection in a system of two immiscible
fluids with a deformable interface. We write the equations of fluid motion and heat
conduction, assuming that the density is a function of temperature only (“Boussinesq
fluid”) and that the coefficients of dynamic viscosity and thermal conductivity are con-
stant:

ϱj
𝜕vj
𝜕t
+ ϱj(vj∇)vj = −∇pj + μjΔvj − ϱjge3; (7.31)

ϱjcpj[
𝜕θj
𝜕t
+ (vj∇)θj] = κjΔθj; (7.32)
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𝜕ϱj
𝜕t
+ div(ϱjvj) = 0. (7.33)

Here we use the standard notations; e3 is the unit vector directed vertically upward.
The fluids aremarked by the subscript j; the fluidwith j = 1 is located at the bottom.On
the interface z = ζ (x, y, t) (z is the vertical Cartesian coordinate), we impose the usual
conditions of continuity of velocity, normal and tangential stresses, temperature, and
heat flux, as well as the kinematic condition

[v] = 0, −[p]n + [𝒟]n = 2σHn,

[θ] = 0, [κ∇θ]n = 0, 𝜕ζ
𝜕t
+ v ⋅ ∇ζ = v ⋅ e3.

(7.34)

Here [f ] is the jump of the value of f on the interface, i. e., [f ] = f1 − f2,𝒟 is the viscous
stress tensor, n is the normal vector to the interface between the fluids, σ is the surface
tension coefficient, and H is the mean curvature of the surface.

Problem (7.31)–(7.34), supplemented with appropriate conditions on external
boundaries, is characterized by a number of dimensionless parameters. Among these
parameters, we now consider the parameter of density inhomogeneity β∗θ and the
parameter characterizing the gravity force Ga = gl3∗/ν

2
∗. Here, β∗ is the characteristic

value of the coefficient of volume expansion β = −(1/ϱ) dϱ/dt, θ∗ is the characteristic
temperature difference, ν∗ is the characteristic coefficient of kinematic viscosity, and
l∗ is the characteristic size.

Investigations of convection problems are usually based on the Boussinesq ap-
proximation [68], where the dependence of density on temperature is neglected ev-
erywhere except for the term with the gravity force in the equation of motion (7.31).
Formally, this means performing the limiting transition β∗θ∗ → 0 and Ga → ∞;
the product β∗θ∗ whereby Ga remains finite. Generally speaking, this kind of limit-
ing transition leads to the requirement of interface nondeformability. Indeed, in this
transition, the main terms in the equation of motion (7.31) determine the hydrostatic
pressure pj = −ϱj gz +const. Then, themain terms in the balance condition for normal
stresses yield [ϱ]gζ = const. This means that the interface remains flat and horizon-
tal. It follows from the kinematic condition that v ⋅ e3 = 0 on the interface, i. e., the
condition of impermeability is satisfied.

In the next order in terms of 1/Ga and β∗θ∗, the equations ofmotion and heat con-
duction transform to the conventional equations of thermal convection in the Boussi-
nesq approximation:

𝜕vj
𝜕t
+ (vj∇)vj = −

1
ϱ0j
∇pj + νjΔvj + gβjθje3; (7.35)

𝜕θj
𝜕t
+ (vj∇)θj = χjΔθj, div vj = 0. (7.36)

Here, pj is the additive to the hydrostatic pressure; the point from which the tempera-
ture is counted is chosen so that ϱ0j is the density of the j-th fluid at θ = 0.
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In the next order in terms of 1/Ga, the shape of interface perturbations can be
found from the stress balance condition, but this does not affect the solution of the
convective problem (7.35)–(7.36). Thus, in the conventional Boussinesq approxima-
tion, convective motion is not affected by interface deformation.

The physicalmeaning of this result is extremely simple: in the case of a large grav-
ity force and a finite difference in densities, the gravity forces suppress perturbations
of the horizontal interface. This conclusion is invalid if the difference in the fluid den-
sities is small. If the difference in the fluid densities is comparable to the difference
in the densities due to nonisothermality, the interface can be expected to deform sig-
nificantly, and these deformations have a significant effect on convective phenomena.
Thus, it becomes clear which method should be used to generalize the Boussinesq
approximation to the case of a deformable interface. Simultaneously with the limit-
ing transition Ga→∞, it is necessary to direct to zero not only β∗θ∗, i. e., the relative
temperature inhomogeneity of density, but also the relative difference in the fluid den-
sities

ε = (ϱ01 − ϱ02)/(ϱ01 + ϱ02). (7.37)

At such a limiting transition, the products Ga β∗θ∗ and Ga ε should remain finite. The
use of equations of free convection of a compressible fluid does not seem reasonable
because they are too cumbersome.Moreover, they contain certain phenomena that are
not relevant for our analysis and do not permit the effective study of many problems
of practical importance.

The procedure described above for limiting transition yields thermal convection
equations that coincidewith equations (7.35)–(7.36); however, nowwehave ϱ01 = ϱ02 =
ϱ0 in equation (7.35).

The boundary conditions (7.34) remain unchanged, except for the balance condi-
tion of stresses on the interface, which acquires the following form:

− [p]n + [𝒟]n + [ϱ]gζn = 2σHn. (7.38)

Thus, the difference in the fluid densities ϱ01 − ϱ02 is taken into account only in
one place: in the term containing the gravity force in condition (7.38).

2. Stability of convective equilibrium of a two-layer system
Let us consider a system of two immiscible fluids bounded by two horizontal solid sur-
faces z = ±h. The boundaries have different constant temperatures θ10 and θ20. The
convection equations and boundary conditions on the interface formulated above ad-
mit a steady solution corresponding to the mechanical equilibrium of the fluids with
a flat horizontal interface. Let the fluids occupy identical fractions of the system vol-
ume, so that ζ = 0 in equilibrium. The temperature distributions in the layers are
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determined by thermal conduction:

θ1 = θ10 + (h + z)A1,
θ2 = θ20 + (h − z)A2,
A1 = κ2(θ20 − θ10)/[h(κ1 + κ2)],
A2 = κ1(θ20 − θ10)/[h(κ1 + κ2)],

(7.39)

whereby the velocity is vj = 0.
Let us formulate the problem of stability of mechanical equilibrium to small per-

turbations. Linearizing the full problem, we obtain the following boundary-value
problem for perturbations of velocity, temperature, and pressure in each fluid:

1
Pr
𝜕V j

𝜕t
= −∇𝒫j + νjΔV j + Ra βjTje3,

𝜕Tj
𝜕t
= χjΔTj + AjV j ⋅ e3, divV j = 0;

(7.40)

z = ±1 : V = 0, T = 0,
z = 0 : V 1 = V 2, −A1N + T1 = −A2N + T2,

κ1
𝜕T1
𝜕z
= κ2
𝜕T2
𝜕z
, ν1
𝜕V1τ
𝜕z
= ν2
𝜕V2τ
𝜕z
, (7.41)

−(p1 − p2) − GaN + 2(ν1
𝜕V1z
𝜕z
− ν2
𝜕V2z
𝜕z
) = WeΔ2N ,

𝜕N
𝜕t
= V ⋅ e3.

Here, Δ2 is the Laplace operator in the variables x, y. Equations (7.40)–(7.41) are writ-
ten in the dimensionless form. The following scales are used: h for distance, h2/χ∗ for
time, χ∗/h for velocity, χ∗ν∗ϱ0/h2 for pressure, and θ = (θ10 − θ20)/2 for temperature.
The scales for the coefficients of kinematic viscosity ν∗, thermal diffusivity χ∗, thermal
conductivity κ∗, thermal expansion β∗, and equilibrium temperature gradients A∗ are
their mean arithmetic values.

The boundary-value problem (7.40)–(7.41) also involves the following dimension-
less parameters: Prandtl number Pr, Rayleigh number Ra, Weber number We, and
Galileo number Ga:

Pr = ν∗
χ∗
, Ca = gβΘh

3

ν∗χ∗
, We = σh

ν∗χ∗ϱ0
, Ga = (ϱ2 − ϱ1)gh

3

μ∗χ∗
.

The Galileo number Ga is defined so that the positive value refers to the case where
the heavier fluid is located above the less heavy fluid, i. e., stratification is potentially
unstable. With this choice of the scales, the following relations are satisfied:

ν1 + ν2 = 2, β1 + β2 = 2, χ1 + χ2 = 2, κ1 + κ2 = 2,
A1 + A2 = 2, A1κ1 = A2κ2.
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Thus, the problem is characterized by seven independent dimensionless parame-
ters; if the fluid parameters are fixed, the following three independent parameters are
left: Ra,Ga, and We.

Let us consider normal perturbations proportional to exp(λt + ik ⋅ x), where λ is
the increment and k is the wave vector. For the amplitudes of normal perturbations,
we obtain the spectral boundary-value problem

λ
Pr

Uj = −ikQj + νjLUj,

λ
Pr

Wj = −Q

j + νjLWj + Ra βjTj, (7.42)

λTj = χjLTj + AjWj, W j + ikUj = 0;

z = ±1 : Uj = Wj = 0, Tj = 0,
z = 0 : U1 = U2, W1 = W2 = λN ,

T1 − A1N = T2 − A2N , κ1T

1 = κ2T


2, ν1U


1 = ν2U


2 ,

−(Q1 − Q2) − GaN + 2(ν1W

1 − ν2W


2) = −We k2N .

(7.43)

Here, we use the following notations for the amplitudes of normal perturbations:
U, W , T, and Q are the projections of velocity, vertical components of velocity, tem-
peratures, and pressures onto the wave vector direction. The prime denotes differ-
entiation with respect to the z coordinate, and L = d2/dz2 − k2. The eigenvalues of
the spectral problem (7.42)–(7.43) are the increments λ as functions of the problem
parameters and the wave number k.

3. Long-wave instability of equilibrium
Problem (7.42)–(7.43) does not permit an analytical solution for arbitrary values of the
parameters. Nevertheless, there is an important particular case which does permit a
fairly deep analytical analysis: long-wave perturbations.

At k = 0, the problem has a solution which describes neutral monotonic pertur-
bations corresponding to the shifting of the horizontal interface as a whole along the
vertical coordinate:

Uj = 0, Wj = 0, Tj = (κ2 − κ1)Aj N(z − (−1)
j)/2. (7.44)

We can see that all remaining perturbations at k = 0 are decaying. In passing to
small non-zero wave numbers, the perturbations, generally speaking, are no longer
neutral. Let us present the solution of the spectral problem (7.42)–(7.43) in the form of
series in the small parameter k:

λ = kλ1 + k
2λ2 + ⋅ ⋅ ⋅ , Uj = kU1j + k

2U2j + ⋅ ⋅ ⋅ ,

Wj = kW1j + k
2W2j + ⋅ ⋅ ⋅ , Tj = T0j + kT1j + ⋅ ⋅ ⋅ ,

N = N0 + kN1 + ⋅ ⋅ ⋅ .
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The calculations show that λ1 = 0; for λ2, we have the expression

λ2 =
12[ν] + 56[κ] − 56[β] − 3[κ][β][ν]

480(16 − 3[ν]2)
[κ]Ra+ 2 Ga

3(16 − 3[ν]2)
. (7.45)

The correction to the increment λ2 depends linearly on the Rayleigh number Ra and
Galileo number Ga; it also depends in amore complicatedmanner on the ratios of vis-
cosities ν1/ν2, thermal conductivities κ1/κ2, and volume expansion coefficients β1/β2.
The Prandtl number Pr, theWeber numberWe, and the thermal diffusivities of the flu-
ids χ1 and χ2 do not affect the stability of the system under long-wave perturbations.
The coefficient at Ga is positive, i. e., as could be expected, the excess of the density
of the lower fluid over the density of the upper fluid is a stabilizing factor. At identical
thermal conductivities, long-wave instability is absent (at Ga < 0); the mechanism of
instability is possibly related to the difference in the temperature gradients in different
fluids. In the particular case of identical viscosities, we have

λ2 = 7 Ra[κ]([κ] − [β])/960 + Ga /24. (7.46)

Long-wave instability can occur under heating both from below and from above,
depending on the ratios of the coefficients of thermal conductivity and volume expan-
sion. The expression for the increment (7.45) determines the boundary of long-wave
instability on the plane determined by the Galileo number Ga and the Rayleigh num-
ber Ra. This boundary is a straight line passing through the origin; the domain of in-
stability is located to the right of the boundary (at large values of Ga). To the left of this
boundary the long-wave perturbations decay, but cellular perturbations with a finite
wavelength can increase.

4. Instability of cellular perturbations
The analysis of instability at finite wave numbers requires numerical calculations.
To analyze the boundary-value problem (7.42)–(7.43), we constructed a system of
independent partial solutions satisfying the conditions on the solid boundaries
z = ±1. Requiring the boundary conditions on the interface to be satisfied, we ob-
tain a characteristic equation which allows us to determine the boundaries of sys-
tem stability. Detailed calculations in the full statement were performed for a sys-
tem consisting of formic acid and transformer oil. Stability of this two-layer system
was previously studied in [69] under the assumption that the interface is nonde-
formable. The system has the following parameters: [κ] = −0.838, [χ] = −0.334,
[ν] = 1.756, and [β] = −0.393. The Prandtl number for this pair of fluids is 176. The
boundary-value problem (7.42)–(7.43)was solved numerically by the differential sweep
method.

Figures 7.3–7.5 show the neutral curves Ga(k) for the Weber number We = 0 and
different values of the Rayleigh number. It follows from the structure of the general
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Figure 7.3: Neutral curves Ga vs wave number k for Weber number We = 0 and different values of
Rayleigh number Ra.

Figure 7.4: Neutral curves Ga vs wave number k for We = 0, Ra = 300.

dispersion relation that the neutral curves of monotonic instability Ga(k) are single-
valued. Figure 7.3 shows the neutral curves Ga(k) for Ra = 50 (curve 1), 100 (2 and 3),
and 200 (4 and 5)withCa = 0. Curve 1 is the boundary of stability tomonotonic cellular
perturbations. The domain of instability is located above the neutral curve. As the
Rayleigh number increases, the local maximum on the curve Ga(k) at k = 0 turns
to a minimum, but long-wave perturbations still remain less dangerous than cellular
perturbations (solid curves 2 and 4). A domain of vibrational instability appears in
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Figure 7.5: Neutral curves Ga(k) for Ca = 0 and Ra = 350; curves 1–3 refer to monotonic perturba-
tions; curves 4 and 5 refer to vibrational perturbations.

the vicinity of the local maximum of the curve Ga(k) (dashed curves 3 and 5). With
increasing Ra, theminimums of these curves rapidly decrease in the plane Ga−k, and
vibrational perturbations become more dangerous than monotonic perturbations. At
high values of Ra, the neutral curve has two discontinuities.

Figure 7.4 shows the neutral curves Ga(k) for Ra = 300 and Ca = 0. Curves 1–3
mark the boundaries of stability tomonotonic perturbations. The domains of instabil-
ity are located above curves 1 and 2 and below curve 3. The neutral curve of vibrational
perturbations (curve 4) connects the neutral curves of monotonic perturbations. For
this value of Ra, the interval of the values of Ga at which all perturbations decay is
bounded both from above and from below. With a further increase in Ra, (Figure 7.5),
the interval of stability vanishes, and the equilibrium state is unstable for all values
of Ga. The connection of the neutral curves changes: the neutral curve of vibrational
perturbations (curves 4 and 5) consists of two components connecting curves 1, 3 and
2, 3. The neutral curves shown here correspond to Ra = 350.

Figure 7.6 shows the pattern of stability in the plane Ga−Ra for We = 0. The
boundaries of stability to the most dangerous monotonic (solid curves) and vibra-
tional (dashed curve) perturbations are marked. Curve 1 is the boundary of stability to
cellular monotonic perturbations with finite values of k. With increasing |Ga|, curve 1
transforms to a horizontal asymptotic curve Ra ≈ 282 (dot-and-dashed curve in Fig-
ure 7.6). The wave number of themost dangerous perturbations tends to k ≈ 2.7. Let us
recall that the casewith large values of |Ga| corresponds to a nondeformable interface.
The asymptotic value of Ra indicated above generally agrees with the results of [69].
The instability mechanism over the entire curve 1 seems to be the same as in the case
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Figure 7.6: General forms of stability for equilibrium state (7.39).

of a nondeformable interface [69]. It is of interest to increase the critical value of Ra
with decreasing |Ga| (with increasing interface deformability).

In the range of small values of |Ga|, the most dangerous perturbations are of a
different nature: they are traveling waves. The critical values of Ra decrease with de-
creasing |Ga| (curve 2 bounds thedomainof instability fromabove). Thephase velocity
of the traveling perturbations is smaller than the phase velocity of gravitational waves
on the interface by several orders of magnitude.

In the interval |Ga| < 2, the most dangerous perturbations are again monotonic
perturbations. The corresponding boundary of stability in the plane Ga−Ra is almost
a straight line (curve 3), which passes through the origin and merges with the axis Ra
in the scale used in Figure 7.6. Its angular coefficient is approximately 38.8.

In the case of heating from above (Ra < 0), the domain of instability is bounded
on the right by the axis Ra. This result is trivial: if the upper fluid is less heavy (Ga < 0),
then stratification is potentially stable in the entire volume. At Ga > 0, the usual
Rayleigh–Taylor instability occurs, and the wavelength of the most dangerous pertur-
bations is extremely small. The reason is obvious: at small values of Ga and heating
from above, unstable stratification is possible in a small area near the interface, which
imposes the spatial scale of the growing perturbations. As Ga→ 0, the wavelength of
the most dangerous perturbations tends to zero.

Let us now discuss the effect of capillarity on equilibrium stability. The structure
of the boundary-value problem on equilibrium stability is such that the parameterWe
is involved only within the boundary conditions in the combination Ga−k2We. It is
clear from this how the neutral curves Ga(k) behave as the Weber number increases:
the critical Galileo number also increases; the greater the wave number, the more in-
tense the increase in the Galileo number.
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For all values of Ra and rather large values of We, the most dangerous perturba-
tions are the long-waveperturbations forwhich theminimumcritical Rayleighnumber
is determined by the simple expression Ra ≈ −68.15 Ga.

At intermediate values of We, the order of the changing of the most dangerous
perturbations is determined by the Rayleigh number. At Ra < 80, there is no vibra-
tional instability, and instability to cellular perturbations changes at a certain critical
value of We to long-wave instability. As is seen from Figure 7.3, at Ra = 50 this change
occurs at We ≈ 9. At high values of Ra, when vibrational instability occurs it is also
replaced by long-wave monotonic instability.

At Ra > 282, when a discontinuity of the neutral curve appears at We = 0 (see
Figure 7.4), the domain of stability vanishes with enhancement of capillarity, i. e., in-
stability is observed for all values of Ga.

For real media and real laboratory conditions, the parameter We is usually rather
large; therefore, the domain of stability in the Ga−Ra diagram can be expected to be
bounded by two straight lines: Ra = 282 and Ra = −68.15 Ga. The numerical calcula-
tions performed at We = 105 support this conclusion.

7.3 Convection in a rotating fluid layer under microgravity
conditions

1. Formulation of the problem
It is known that the state of solid rotation of a viscous incompressible homogeneous
fluid possesses a large stability margin. A natural question arises: Is it possible to
destabilize this state by cooling the fluid near the axis of revolution and heating the
fluid at the periphery? This issue is discussed in this section. It is especially important
in studying thermal convection under microgravity conditions.

To simplify the problem formulation, we assume that the field of velocities, pres-
sure, and temperature possesses rotational symmetry. In addition, we assume that the
only external mass force acting on the fluid is the centrifugal force. Applying usual as-
sumptions used in deriving the Oberbeck–Boussinesq equations from the full Navier–
Stokes equations [68], we can write the equations of momentum, continuity, and en-
ergy in the form

ut + uur + wuz − 2ωv −
v2

r
= −

1
ϱ0

pr + ν(Δu −
u
r2
) − ω2βrθ,

vt + uvr + wvz + 2ωu +
uv
r
= ν(Δv − v

r2
),

wt + uwr + wwz =
1
ϱ0

pz + νΔw,

ur +
u
r
+ wz = 0,

θt + uθr + wθz = χΔθ,

(7.47)
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where

Δ = 𝜕
2

𝜕r2
+
1
r
𝜕
𝜕r
+
𝜕2

𝜕z2

means the axisymmetric part of the Laplace operator.
Equations (7.47) are written in a coordinate system rotating with a constant an-

gular velocity ω relative to the initial inertial system. The axis of revolution coincides
with the z axis of the cylindrical coordinate system r, θ, z. The radial and axial com-
ponents of velocity and the deviation of the angular component of the velocity vector
from the solid rotation velocityωr are indicated by u,w, and v, respectively. The quan-
tity p characterizes the deviation of pressure from the equilibrium value, ϱ0 ω2r2/2,
and θ is the deviation of temperature from a certain mean value.

The next simplification of the problem is related to choosing the geometry of the
flow domain Ω. Let Ω be a cylindrical layer b1 < r < b2, |z| < a. The following condi-
tions have to be satisfied: the no-slip condition for velocity on the boundary 𝜕 Ω,

u = v = w = 0, (r, z) ∈ 𝜕Ω, t ≥ 0, (7.48)

the condition for temperature on the cylindrical boundaries of the layer

θ = θ1, r = b1, |z| ≤ a; θ = θ2, r = b2, |z| ≤ a, t ≥ 0 (7.49)

(θ1 and θ2 are specified constants), and one of the conditions on the flat boundaries:

θ = γ(r) ≡ 1
ln(b2/b1)

[(θ2 − θ1) ln(r/a) + θ1 ln(b2/a) − θ2 ln(b1/a)],

b1 ≤ r ≤ b2, z = ±a, t ≥ 0
(7.50)

(ideally conducting boundaries) or

θz = 0, b1 ≤ r ≤ b2, z = ±a, t ≥ 0 (7.51)

(thermally insulated boundaries). The problem formulation is closed by the initial
conditions

u = u0(r, z), v = v0(r, z), w = w0(r, z),
θ = θ0(r, z), (r, z) ∈ Ω, t = 0.

(7.52)

Here, we do not discuss the issues of solvability and the qualitative properties of
the solution of the initial-boundary problem (7.47)–(7.52) (or (7.47)–(7.49), (7.51), (7.52));
we consider rather its limiting variant with b1 → 0, b2 →∞ below. Here, we only note
that system (7.47) for all values of the parameters admits the exact solution

u = v = w = 0, p = −ϱ0ω
2β

r

∫
0

sγ(s)ds, θ = γ(r); (7.53)

here the function γ(r) is determined by equality (7.50). This solution satisfies both the
boundary conditions (7.48)–(7.50) and (7.48), (7.50), (7.51).
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2. Linear model
Denoting

F = θ − γ(r), q = p + ϱ0ω
2β

r

∫
0

sγ(s) ds (7.54)

and linearizing system (7.47) on its solution (7.53), we obtain

ut − 2ωv = −
1
ϱ0

qr + ν(Δu −
u
r2
) − ω2βrθ,

vt + 2ωu = ν(Δv −
v
r2
), wt = −

1
ϱ0

qz + νΔw, (7.55)

ur +
u
r
+ wz = 0, Ft +

Bu
r
= χΔF,

where B = (θ2 − θ1)[ln(b2/b1)]−1. In what follows, we assume that the planes z = ±a
have an infinite thermal conductivity (this assumption allows further simplifications).
Then, it follows from eqs. (7.49), (7.50), and (7.54) that

F = 0, (r, z) ∈ 𝜕Ω. (7.56)

Seeking for the solution of system (7.55) in the form of normal oscillations, we ob-
tain (by virtue of eqs. (7.48) and (7.56)) a spectral problem for determining the complex
(generally speaking) frequency λ and the amplitudes of normal oscillations.We do not
write this problem here, but we assume that it satisfies the “principle of monotonicity
of perturbations” [68]: λ = 0. Thus, a complicated spectral problem is replaced by a
simpler problem: we need to find the values of the parameter B at which the system

−2ωv = − 1
ϱ0

qr + ν(Δu −
u
r2
) − ω2βrF, 2ωu = ν(Δv − v

r2
),

0 = − 1
ϱ0

qz + νΔw, (7.57)

ur +
u
r
+ wz = 0,

Bu
r
= χΔF

has a nontrivial solution satisfying the homogeneous conditions (7.48) and (7.56).
Let us demonstrate that there is a linear dependence between the functions F and

Γ = rv in the solution of the posed problem. Indeed, by virtue of the second equation
in (7.57), we have

2ωu
r
= νΔΓ

and, moreover, Γ = 0 for (r, z) ∈ 𝜕Ω, as it follows from eq. (7.48). It follows from this
and from the last equation of system (7.57) that the function G = BνΓ − 2ωχF is an
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axisymmetric harmonic function in the domain Ω. As we have G = 0 on the boundary
of this domain, then G = 0 everywhere in Ω; therefore, we obtain

F = BPr Γ
2ω
, (r, z) ∈ Ω, (7.58)

where Pr = ν/χ is the Prandtl number.
Let us introduce dimensionless variables, using a, aω, ϱ0 aω2, and B as scales of

length, velocity, pressure, and temperature, respectively. Then we substitute the ex-
pressions r = a ̄r, z = a ̄z, u = aωū, v = aωv̄, w = aωw̄, q = ϱ0a2ω2q̄, and F = BF̄ into
eqs. (7.57) and take into account equality (7.58). Omitting the bar over the dimension-
less independent variables and the sought functions, we obtain the system of equa-
tions

R
2
(ε Pr−4)v = −qr + Δu −

u
r2
, 2Ru = Δv − v

r2
,

0 = −qz + Δw, ur +
u
r
+ wz = 0,

(7.59)

where R = a2ω/ν is the Reynolds number and ε = βB is the Boussinesq number. The
system should be solved in the domain Π = {r, z : α1 < r < α2, |z| < 1} under the
conditions

u = v = w = 0, (r, z) ∈ 𝜕Π (7.60)

(α1 = b1/a and α2 = b2/a).
Let us demonstrate that the boundary-value problem (7.59), (7.60) has no nontriv-

ial solutions if ε Pr < 4. We multiply the first equation in (7.60) by u, the second equa-
tion by (1 − ε Pr /4)v, and the third equation by w; then, we sum up the results and
integrate the resultant equality over the domain Π with the weight r. After that, we
perform integration by parts with the use of the continuity equation (7.59) and the
boundary conditions (7.60). Finally, we obtain the relation

α2

∫
α1

1

∫
−1

[u2r +
u2

r2
+ u2z + (1 −

1
4
ε Pr)(v2r +

v2

r2
+ v2z) + w

2
r + w

2
z]r dr dz = 0,

which yields the needed statement. Thus, under the assumption that perturbations
aremonotonic, we obtain the necessary condition of instability of quasi-solid rotation
of the fluid under the action of the radial heat flux along ideally conducting bound-
aries to axisymmetric perturbations:

ε Pr > 4. (7.61)
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3. Infinite layer
The last simplification implies that α1 tends to zero and α2 tends to infinity. In this
case, the domain Π transforms to an infinite layer Σ = {r, z : r > 0, |z| < 1}, and the
only possible equilibrium distribution of temperature has the form

θ = A ln r + C,

where A and C are constants. The equations of the spectral problem retain the form
(7.59), but they should be solved in the domain Σ; in addition, the definition of the
Boussinesq number becomes different: ε = βA. System (7.59) is supplemented with
the boundary conditions

u = v = w = 0, r > 0, z = ±1. (7.62)

It turns out that problem (7.59), (7.62) has a simple exact solution

u = rξ (z), v = rη(z), w = ζ (z), q = σ(z) − kr2/2, (7.63)

where k = const. Substituting eqs. (7.63) into eqs. (7.59), we obtain

R
2
(ε Pr−4)η = −k + ξ , 2Rξ = η,

2ξ + ζ  = 0, ζ  − σ = 0, |z| < 1,
(7.64)

where the prime means differentiation with respect to z. Conditions (7.62) lead to the
following boundary conditions for the functions ξ , η, and ζ :

ξ = η = ζ = 0, r > 0, z = ±1. (7.65)

Thus, after numerous simplifications of the initial formulation of the problem, we ob-
tain a very simple, but still meaningful spectral problem (7.64), (7.65).

Eliminating the function η and the constant k from the first two equations of sys-
tem (7.64), we obtain the equation

ξ IV − μ4ξ = 0, (7.66)

where μ4 = R2 (ε Pr−4). For this equation, however, it is impossible to formulate a
self-adjoint eigenvalue problem. Therefore, we pass from eq. (7.66) to its corollary

ξ (VI) − μ4ξ  = 0. (7.67)

The boundary conditions for eq. (7.67) have the form

ξ = ξ IV = 0, z = ±1, ξ (−1) = ξ (1), ξ (−1) = ξ (1). (7.68)
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The second condition in system (7.68) is a corollary of eq. (7.66). The condition relating
the values of ξ  at the end points of the segment [−1, 1] follows from the first equation
of system (7.64) and from the equalities η(−1) = η(1) = 0. Finally, one more nonlocal
condition (the last equality of system (7.68)) is obtained from eq. (7.66) and from the
relation

1

∫
−1

ξ dz = 0,

which follows from the third equation of system (7.64) and from the conditions ζ (−1) =
ζ (1) = 0.

It is convenient to divide the eigenfunctions of problem (7.67), (7.68) into two
groups: even and odd eigenfunctions. For even values of ξ , we have ξ = C0+C1 ch μz+
C2 cos μz, and the corresponding characteristic equation is

th μ = tg μ. (7.69)

The smallest positive root of eq. (7.69) is μ1,e ≈ 3.927. The presentation of the odd eigen-
functions of problem (7.67), (7.68) has the form ξ = C3 sh μz+C4 sin μz. They correspond
to eigenvalues that are the roots of the equation

sin μ = 0. (7.70)

The smallest positive root of eq. (7.70) is μ1,0 = π < μ1,e. Thus, odd perturbations are
the most dangerous perturbations in the problem considered.

It is of interest that the spectrum of problem (7.67), (7.68), which is determined by
eqs. (7.69), (7.70), exactly coincides with the spectrum of the problem of plane pertur-
bations of the equilibrium state of the fluid between ideally heat-conducting vertical
parallel infinite planes [68, 153]. The conditions of stability of the equilibrium state of
a nonisothermal rotating layer and a plane vertical layer of a heavy fluid, however, are
essentially different.

Recalling the definition of the parameter μ and using the Rayleigh number Ra =
εR2 Pr in our considerations,we canwrite the expression for the critical Rayleigh num-
ber Ra∗ in the form

Ra∗ = π
4 + 4R2. (7.71)

In the case of a plane layer, the Rayleigh number is defined as Ra = ga3βA/νχ,
where g is the acceleration due to gravity, a is the half-width of the layer, and A is the
coefficient in the linear dependence of the temperature of the layer boundaries on the
vertical coordinate. In this case, the critical Rayleigh number for plane perturbations
is π4, and it is always possible to surpass this valuewith a fixed Boussinesq parameter
ε = βA by increasing the width of the layer.
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Concerning the rotating fluid layer, we can see that it can be destabilized by in-
ducing a radial heat flux from the periphery toward the axis of revolution only if in-
equality (7.61) is satisfied. A corollary of this inequality is the presence of the term 4R2

in eq. (7.71), which characterizes the “stability margin” of solid rotation of the fluid.
Inequality (7.61) imposes extremely severe requirements to the fluid nature. It is obvi-
ously invalid for media such as air and water. Taking into account that the value of ε
usually does not exceed 10−3, we can expect that the condition Ra > Ra∗ is satisfied
only for fluids with extremely high Prandtl numbers.

4. Effectively one-dimensional motions
In this section, we discuss the exact solutions of system (7.47), in which the depen-
dence of the sought function on r has a special form

u = rf (z, t), v = rg(z, t), w = w(z, t),

p = 1
2
K(t)r2 + Aϱ0 βω

2(
r2

2
ln r

a
−
r2

4
) + h(z, t), (7.72)

θ = A ln r
a
+ S(z, t),

where A and a are the constant dimensions of temperature and length, respectively.
Solution (7.72) was obtained in [180] by using the approach proposed there, which
allows obtaining new solutions of hydrodynamic equations on the basis of partially
invariant solutions.

The system for determining the functions f , g, w, K, h, and S is

ft + wfz − 2ωg + f
2 − g2 = −ϱ−10 K + νfzz − ω

2βS,
gt + wgz + 2ωf + 2fg = νgzz , 2f + ωz = 0, (7.73)

St + wSz + Af = χSzz , wt + wwz = −ϱ
−1
0 hz + ν wzz .

The form of solution (7.72) suggests its possible physical interpretation. The fluid fills
the layer between the solid planes z = ±a rotating with the angular velocity ω around
the z axis. The no-slip condition is satisfied on these planes. A velocity distribution
correlated with eqs. (7.72) is prescribed in the layer at the initial time. Heat sinks or
sourceswith a constant linear density−2π Ak (k is the thermal conductivity coefficient
of the fluid) are distributed over the axis of revolution. The planes bounding the fluid
ensure ideal heat conduction. These conditions induce the following formulation of
the initial-boundary problem for system (7.73):

f = − 1
2
w0(z), g = g0(z), w = w0(z),

S = S0(z), |z| ≤ a, t = 0;
(7.74)

f = g = 0, w = 0, S = 0, z = ±a, t > 0 (7.75)
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(w0, g0, and S0 are given functions of z). Instead of the last condition of system (7.75),
it is possible to use the condition Sz = 0 at z = ±a, t > 0, which means that the planes
z = ±a are thermally insulated.

Let us now transform the equations of system (7.73). Firstly, we have to note that
the function h is involved only into the last equation of this system. If w is known,
this function is reconstructed by the quadrature and is determined with accuracy to
an arbitrary term depending on t only. The function K(t) involved into the first equa-
tion of system (7.73) can be also eliminated from considerations. For this purpose, we
integrate the equation containingK from −a to awith respect to z and use the equality

a

∫
−a

f (z, t) dz = 0, t ≥ 0,

which follows from the third equation of the system and from conditions (7.75) for w.
The resultant relation can be written in the form

−2ωḡ + 3 ̄f 2 − ḡ2 = −ϱ−10 K + ν
2a
[fz(a, t) − fz(−a, t)] − ω

2 βS̄ = 0.

The bar over the functionmeans its mean value over z in the interval [−a, a]. It follows
from here and from the first equation of system (7.73) that

ft − 2fz

z

∫
−a

f (x, t) dx − 2ω(g − ḡ) + f 2 − 3 ̄f 2 − g2 + ḡ2

= νfzz −
ν
2a
[fz(a, t) − fz(−a, t)] − ω

2 β(S − S̄). (7.76)

In deriving eq. (7.76), we used the equality

w(z, t) = −2
z

∫
−a

f (x, t) dx, t ≥ 0,

which follows from the third equation of system (7.73) and from the condition
w(−a, t) = 0.

Substituting the expression for w into the second and fourth equations of system
(7.73), we obtain the relations

gt − 2gz

z

∫
−a

f (x, t) dx + 2ωf + 2fg = νgzz ; (7.77)

St − 2Sz

z

∫
−a

f (x, t) dx + Af = χSzz . (7.78)
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Equations (7.76)–(7.78) form a closed system, which should be supplemented with ini-
tial andboundary conditions. These conditions are actually contained in system (7.74),
(7.75); for continuity of presentation, however, we write them again:

f = f0(z), g = g0(z), S = S0(z), |z| ≤ a, t = 0; (7.79)
f = g = 0, S = 0, z = ±a, t > 0 (7.80)

(here, we have f0 = −w0/2).
System (7.76), (7.77) is not standard because of the presence of the expression

fz(a, t) − fz(−a, t) in eq. (7.76) rather than because of the presence of integral terms.
Nevertheless, the estimates of solutions in theHölder classes similar to those obtained
in [116] are valid for its linearized version. This fact allows us to prove a local theorem
of existence of the solution of problem (7.76)–(7.80).

Statement 7.1. Let us assume that the functions f0, g0, and S0 belong to the Hölder
class C2+α[−a, a], 0 < α < 1, and the matching conditions f0 = g0 = 0, S0 = 0, g0 = 0,
and S0 = 0 are satisfied at z = ±a,

2ωḡ0 − 3 ̄f
2
0 + ḡ

2
0 = νf


0 (±a) − ν[f

(a) − f (−a)] + ω2 βS̄0.

Then, there exists a value of τ > 0 such that problem (7.76)–(7.80) has a solution and
this solution is unique: (f , g, S) ∈ C2+α,1+α/2([−a, a] × [0, τ]).

The proof of this statement has a routine character and is not presented here.

5. Concluding remarks
The main conclusion is that thermal convection in a rotating cylindrical layer of an
imponderous fluid under axisymmetric heating can be excited by perturbations of
the same symmetry only if the fluid has a large Prandtl number. In Section 7.2, this
statement is proved under the assumption that the flat boundaries of the layer ensure
ideal heat conduction. If these boundaries are thermally insulated, then the statement
is still valid, but the necessary condition of instability has a more complicated form
than eq. (7.61) and is not given here.

It is theoretically possible that nonaxisymmetric perturbations can turn out to be
more dangerous than axisymmetric perturbations. By intuition, we can tell that this
may happen if the gap between the cylinders is small (b2 − b1 ≪ a) if it is possible
at all. It would be interesting to prove this hypothesis or to confirm its validity by nu-
merical experiments. The principle of monotonicity of perturbations also has to be
proved, though there are no grounds to doubt its validity for the problem considered
here.

The existence of real eigenvalues of problem (7.59), (7.60) deserves special consid-
eration. Here, it may be useful to re-formulate the problem considered in terms of the
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stream function ψ as

E3ψ = μ4ψzz , (r, z) ∈ Π; (7.81)
ψ = 0, (r, z) ∈ 𝜕Π; (7.82)

ψr = 0, E2ψ = 0, r = α1, r = α2, |z| ≤ 1; (7.83)
ψz = 0, α1 ≤ r ≤ α2, z = ±1; (7.84)

Eψ(−1, r) = Eψ(1, r), α1 ≤ r ≤ α2; (7.85)
Eψz(−1, r) = −Eψz(1, r), α1 ≤ r ≤ α2, (7.86)

if ψ is an even function of z or

Eψ(−1, r) = −Eψ(1, r), α1 ≤ r ≤ α2; (7.85)
Eψz(−1, r) = Eψz(1, r), α1 ≤ r ≤ α2, (7.86)

ifψ is an odd function of z. As previously, we have μ4 = R2(ε Pr−4), and E is the Stokes
operator:

E = r 𝜕
𝜕r
(
1
r
𝜕
𝜕r
) +
𝜕2

𝜕z2
.

If the solution of problem (7.81)–(7.86) or (7.81)–(7.84), (7.85), (7.86) is known, then
the velocity field is determined by the formulas

u = r−1ψz , w = −r−1ψr , v = 2Rμ−4 E2ψ.

The latter comment refers to the nonlinear one-dimensional model of convective
flows in an infinite rotating layer (7.76)–(7.80). In addition to obtaining the conditions
of solvability of this problem as a whole with respect to time, it is also of interest to
perform numerical experiments to trace the evolution of nonlinear perturbations of
the trivial solution of the problem in a situation where it is unstable (i. e., at Ra > Ra∗,
where the critical Rayleigh number is determined by eq. (7.71)).
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8 Small perturbations and stability of plane layers in
the microconvection model

In this chapter, equations of small perturbations of arbitrary motions of the fluid in
the microconvection model are derived. Stability of the equilibrium state of a plane
layer bounded by solid walls or by a solid wall and a free boundary is studied with
the use of these equations. The asymptotic behavior of the complex decrement in the
cases of long-wave and short-wave perturbations is found. Results obtained by solv-
ing the full spectral problem for a silicon melt are presented. In contrast to the clas-
sical Oberbeck–Boussinesq model, the perturbations in the problem considered here
are nonmonotonic, because the boundary-value problem is not self-adjoint. For small
Boussinesq numbers, the spectrum of this problem is demonstrated in order to ap-
proximate the spectra of the corresponding problems for a viscous heat-conducting
fluid or for thermal gravitational convection with a finite Rayleigh number.

Stability of steady flows in a plane layer with linear and exponential distributions
of temperature across the layer is studied. The flows are found to be stable to long-
wave perturbations. Neutral curves are constructed numerically, and critical Grashof
numbers for a silicon melt are obtained. Instability in the microconvection model is
shown to occur at lower values of the wave number. This effect is caused by fluid com-
pressibility. The results described in this chapter are based on previous publications
[9, 11, 13, 31, 14, 23, 15].

8.1 Equations of small perturbations

Let us assume that w(x, t) = w(x, t) +W(x, t), q̃(x, t) = q(x, t) + Q(x, t), Θ̃ = Θ(x, t) +
T(x, t),whereW,Q, andT are theperturbations andw(x, t),q(x, t), andΘ(x, t) form the
main solution of the microconvection system (4.49)–(4.51) written in the dimensional
form; the functions w, q̃, and Θ̃ are the solutions of the same equations. It obvious
that

divW = 0. (8.1)

In the linear approximation, we have

Θ̃ ⋅ ∇w − ∇w̃ ⋅ ∇Θ̃ = (∇Θ + ∇T) ⋅ (∇w + ∇W) − (∇w + ∇W) × (∇Θ + ∇T)
≈ ∇Θ ⋅ ∇w + ∇Θ ⋅ ∇W
+ ∇T ⋅ ∇w − ∇w ⋅ ∇Θ − ∇w ⋅ ∇T − ∇W ⋅ ∇Θ
= (∇Θ ⋅ ∇w − ∇w ⋅ ∇Θ)
+ (∇Θ ⋅ ∇W − ∇W ⋅ ∇Θ) + (∇T ⋅ ∇w − ∇w ⋅ ∇T). (8.2)

https://doi.org/10.1515/9783110655469-008
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Therefore (⊗means tensor multiplication), we obtain

∇Θ̃ ⊗ ∇Θ̃ − ∇|∇Θ̃|2/2 = (∇Θ + ∇T)(∇Θ + ∇T) − ∇|∇Θ + ∇T|2/2
≈ ∇Θ ⊗ ∇Θ + ∇Θ∇T

+ ∇T∇Θ − ∇(∇Θ ⋅ ∇T) − ∇|∇Θ|2/2

= (∇Θ∇Θ − ∇|Θ|2/2)
+ ∇Θ∇T + ∇T∇Θ − ∇(∇Θ ⋅ ∇T).

The vector analysis formula predicts that

∇(a ⋅ b) = a ⋅ ∇b + b ⋅ ∇a + a × rot b + b × rot a.

If a = ∇Θ, b = ∇T, then rot a = rot b = 0; therefore, we obtain

∇Θ̃ ⊗ ∇Θ̃ − ∇|∇Θ̃|2/2 ≈ (∇Θ ⊗ ∇Θ − ∇|Θ|2/2) + ∇Θ∇T
+ ∇T∇Θ − ∇Θ ⋅ ∇(∇T) − ∇T ⋅ ∇(∇Θ) (8.3)

in the same approximation. For the right-hand side of eq. (4.49), we have

(1 + βΘ̃)(−∇q̃ + ν∇ ̃w̄) = (1 + βΘ + βT)(−∇q − ∇Q
+ ν∇w + ν∇W)
≈ (1 + βΘ)(−∇q + ν∇w)
+ (1 + βΘ)(−∇Q + ν∇W) + βT(−∇q + ν∇w). (8.4)

For the energy equation (4.51), we obtain

|∇Θ̃|2 = |∇Θ + ∇T|2 ≈ |∇Θ|2 + 2∇Θ ⋅ ∇T ; (8.5)
(1 + βΘ + βT)(∇Θ + ∇T) ≈ (1 + βΘ)∇Θ + (1 + βΘ)∇T + βT∇Θ. (8.6)

Now, the equation of momentum in the linear approximation becomes

Wt +w ⋅ ∇W +W ⋅ ∇w + βχ(∇Θ ⋅ ∇W − ∇W ⋅ ∇Θ + ∇T ⋅ ∇w − ∇w ⋅ ∇T)

+ β2χ2(∇Θ∇T + ∇T∇Θ − ∇Θ ⋅ ∇(∇T) − ∇T ⋅ ∇(∇Θ))
= (1 + βΘ)(−∇Q + ν∇W) + βT(−∇q + ν∇w). (8.7)

Here, we take into account thatw, q, and Θ form the solution of eq. (4.49) and the
“equalities” (8.2)–(8.4).

The energy equation (4.51) in the same approximation, with allowance for eqs.
(8.5) and (8.6), takes the form

Tt +w ⋅ ∇T +W ⋅ ∇Θ + 2βχ∇Θ ⋅ ∇T = (1 + βΘ)χ∇T + βχT∇Θ. (8.8)
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The boundary condition (4.53) and θ̃ = θ|Σ (the first boundary condition for tem-
perature) are

W + βχ∇T = 0, T = 0. (8.9)

We have to add the initial conditions

W =W0(x), divW0 = 0, T = T0(x) at T = 0. (8.10)

It should be noted that

∇Θ ⋅ ∇W − ∇W ⋅ ∇Θ = ∇Θ ⋅ ∇W − ∇Θ ⋅ (∇W)∗
= ∇Θ ⋅ ∇W − ∇Θ ⋅W − ∇Θ × rotW
= rotW × ∇Θ.

Similarly, we have

∇T ⋅ ∇w − ∇w ⋅ ∇T = rotw × ∇T

(in eq. (4.49), we have ∇Θ ⋅ ∇w − ∇w ⋅ Θ = rotw × ∇Θ).
The identity a ⋅ (∇b)∗ = a ⋅ ∇b + a × rot b is used here.
Taking into account the last equalities, we write the full problem as

divW = 0; (8.11)

Wt +w ⋅ ∇W +W ⋅ ∇w + βχ(rotW × ∇Θ + rotw × ∇T)

+ β2χ2[∇Θ∇T + ∇T∇Θ − ∇Θ ⋅ ∇(∇T) − ∇T ⋅ ∇(∇Θ)]
= (1 + βΘ)(−∇Q + +ν∇W) + βT(−∇q + ν∇w); (8.12)

Tt +w ⋅ ∇T +W ⋅ ∇Θ + 2βχ∇Θ ⋅ ∇T = (1 + βΘ)χ∇T + βχT∇Θ (8.13)

in the domain Ω;

W + βχ∇T = 0, T = 0, (8.14)

or

W + βχ∇T = 0, 𝜕T
𝜕n
+ bT = 0 (8.15)

on the solid surface Γ.
In eq. (8.12), we can assume that ∇Θ ⋅ (∇T) − ∇T ⋅ ∇(∇Θ) = ∇(∇Θ ⋅ ∇T), and the

expression at β2χ2 is (see (4.52))

div[∇Θ ⊗ ∇T + ∇T ⊗ ∇Θ − 2I∇Θ ⋅ ∇T].
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For convenience, we write here the linearized system (8.11)–(8.14) in the coordi-
nates. For this purpose, we use the equalities

rotW = (W3y −W2z ,W1z −W3x ,W2x −W1y) ≡ (Ω1,Ω2,Ω3),

rotw = (w3y − w2z ,w1z − w3x ,w2x − w1y) ≡ (ω1,ω2,ω3),

rotW × ∇Θ = (Ω2Θz − Ω3Θy ,Ω3Θx − Ω1Θz ,Ω1Θy − Ω2Θx)

and a similar equality for rotw×∇T (in the latter equality, we have to use the replace-
mentsW↔ w and Θ↔ T).

The system takes the following form:

W1t + w1W1x + w2W1y + w3W1z +W1w1x +W2w1y +W3w1z

+ βχ[(W1z −W3x)Θz − (W2x −W1y)Θy + (w1z − w3x)Tz
− (w2x − w1y)Ty] + β

2χ2[∇ΘTx + ∇TΘx − (∇Θ ⋅ ∇T)x]
= (1 + βΘ)(−Qx + ν∇W1) + βT(−qx + ν∇w1),

W2t + w1W2x + w2W2y + w3W2z +W1w2x +W2w2y +W3w2z

+ βχ[(W2x −W1y)Θx − (W3y −W2z)Θz + (w2x − w1y)Tx
− (w3y − w2z)Tz] + β

2χ2[∇ΘTy + ∇TΘy − (∇Θ ⋅ ∇T)y]
= (1 + βΘ)(−Qy + ν∇W2) + βT(−qy + ν∇w2),

W3t + w1W3x + w2W3y + w3W3z +W1w3x +W2w3y +W3w3z

+ βχ[(W3y −W2z)Θy − (W1z −W3x)Θx + (w3y − w2z)Ty
− (w1z − w3x)Tx] + β

2χ2[∇ΘTz + ∇TΘz − (∇Θ ⋅ ∇T)z]
= (1 + βΘ)(−Qz + ν∇W3) + βT(−qz + ν∇w3),

Tt + w1Tx + w2Ty + w3Tz +W1Θx +W2Θy +W3Θz + 2βχ∇Θ ⋅ ∇T
= (1 + βΘ)χ∇T + βχT∇Θ, W1x +W2y +W3z = 0.

(8.16)

For two-dimensional flows, the equations of small perturbations in system (8.16)
take the form

W1t + w1W1x + w2W1y +W1w1x +W2w1y

+ βχ[−(W2x −W1y)Θy − (w2x − w1y)Ty]

+ β2χ2[∇ΘTx + ∇TΘx − (∇Θ ⋅ ∇T)x]
= (1 + βΘ)(−Qx + ν∇W1) + βT(−qx + ν∇w1),

W2t + w1W2x + w2W2y +W1w2x +W2w2y

+ βχ[(W2x −W1y) + (w2x − w1y)Tx]

+ β2χ2[∇ΘTy + ∇TΘy − (∇Θ ⋅ ∇T)y]
= (1 + βΘ)(−Qy + ν∇W2) + βT(−qy + ν∇w2),

Tt + w1Tx + w2Ty +W1Θx +W2Θy + 2βχ∇Θ ⋅ ∇T
= (1 + βΘ)χ∇T + βχT∇Θ, W1x +W2y = 0.

(8.17)
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These systems are used below to analyze stability of the equilibrium states or mo-
tion.

8.2 Stability of the equilibrium state of a plane layer with solid
walls

1. Equilibrium state
In the equilibrium state, we have u = 0 and θt = pt = 0. Therefore, it follows from eq.
(4.48) that

w0 = −βχ∇θ0,

(the zero subscript refers to the equilibrium state); according to eq. (4.50), the temper-
ature is a harmonic function:

Δθ0 = 0. (8.18)

Equation (4.51) is satisfied identically, and eq. (4.49) is equivalent to

∇q0 = g/(1 + βθ0). (8.19)

Note that by virtue of eqs. (4.48) and (8.18) we have q0 = p0/ϱ1. Therefore, the neces-
sary condition of equilibrium has the form g ⋅ rot g = 0. This condition is satisfied for
a constant vector of external forces, and it follows from eq. (8.19) that

∇θ0 × g = 0. (8.20)

If g = (0,0,−g) (g = const > 0), then eq. (8.20) is valid only for θ0 = θ0(z). In this
case, we obtain θ0(z) = c1z + c2 (c1, c2 = const) from eq. (8.18). In particular, the equi-
librium state of the layer with the solid walls (|z| = l) having constant temperatures θ1
and θ2 is described by the formulas

w0 = (0,0,
βχ(θ2 − θ1)

2l
), θ0 =

(θ1 − θ2)z
2l
+
θ1 + θ2

2
,

q0 = −
2lg

β(θ1 − θ2)
ln(1 + βθ1 + θ2

2
+ βθ1 − θ2

2l
z) + c3,

c3 = const.

(8.21)

In contrast to the classical case, the function q0(z), which is an analog of pressure, is
distributed here in accordance with a logarithmic rather than linear law.

Remark 8.1. Equations (8.21) with β → 0 yield

w0 = u0 = 0, θ0 =
(θ1 − θ2)z

2l
+
(θ1 + θ2)

2
,

q0 = c4 − gz, c4 = const.
(8.22)
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As the pressure is p0 = q0ϱ1, system (8.22) corresponds to the equilibrium state of a
layer of a viscous heat-conducting fluid. It follows from the fact that, in accordance
with replacement (4.48), system (4.49)–(4.51) with β → 0 approximates the Navier–
Stokes equations for a viscous heat-conducting fluid (see Chapter 3, Section 3.4).

Remark 8.2. Retaining terms of the second order of smallness with respect to β in
the expression for q0(z) in system (8.21) and denoting the deviation of pressure from
the hydrostatic value by p̄0(z), we obtain the equilibrium state in the Oberbeck–
Boussinesq model (see [68, 119]):

w0 = u0 = 0, θ0 =
θ1 − θ2
2l

z + θ1 + θ2
2
,

dp̄0
dz
= ϱ1gβθ0(z). (8.23)

2. Linearized problem of small perturbations for a layer
Let us consider problem (8.16) in the equilibrium case for a layer with solid walls,
which is described by eqs. (8.21). Let us introduce the dimensionless variables (W =
(U ,V ,W) ≡ (W1,W2,W3))

ξ = x
2l
, η = y

2l
, ζ = z

2l
, τ = χ

4l2
t,

U1 =
2lU
χ
, V1 =

2lV
χ
, W1 =

2lW
χ
, Q1 =

4l2Q
νχ
,

T1 =
T

μ(θ1 − θ2)
(l∗ = 2l, θ∗ = μ(θ1 − θ2)),

(μ = 1 if θ1 > θ2 and μ = −1 if θ1 < θ2). After substitution into eqs. (8.16), we obtain the
system (the subscript “1” is omitted)

Uτ − εμWξ − με
2Tξζ = (1 + βθ0)(−Qξ + ΔU)Pr,

Vτ − εμWη − με
2Tηζ = (1 + βθ0)(−Qη + ΔV)Pr,

Wτ − εμWζ + με
2(Tξξ + Tηη) = (1 + βθ0)(−Qζ + ΔW)Pr+

Gr
1 + βθ0

T ,

Uξ + Vη +Wζ = 0,

Tτ + εμTζ + μW = (1 + βθ0)ΔT ,

(8.24)

where θ0(ζ ) = (θ1 − θ2)ζ + (θ1 + θ2)/2, ε = β|θ1 − θ2| is the Boussinesq parameter;
Gr = μβ(θ1 − θ2)(2l)3g/χ2 is the Grashof number.

The boundary conditions (8.14) on the solid walls ζ = −1/2 and ζ = 1/2 take the
form

U + εTξ = 0, V + εTη = 0, W + εTζ = 0, T = 0. (8.25)

We seek for the solution of the boundary-value problem (8.24), (8.25) in the form
of normal waves as
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(U ,V ,W ,Q,T)
= (U(ζ ),V(ζ ),W(ζ ),Q(ζ ),T(ζ )) ⋅ exp[i(α1ξ + α2η − Cτ)]. (8.26)

Here, α1 and α2 are the dimensionless wave numbers in the x and y directions, respec-
tively, and C is the complex decrement determining the time evolution of the pertur-
bation.

Substituting eq. (8.26) into eqs. (8.24), we obtain a spectral problem with respect
to the parameter C for the system of ordinary differential equations

−iCU − iα1μεW − iα1με
2T = (1 + βθ0)[U  − (α21 + α22)U − iα1Q]Pr; (8.27)

−iCV − iα2μεW − iα2με
2T = (1 + βθ0)[V  − (α21 + α22)V − iα2Q]Pr; (8.28)

−iCW − μεW  − [με2(α21 + α22) + Gr
1 + βθ0
]T = (1 + βθ0)[W

 − (α21 + α22)W − Q]Pr;
(8.29)

iα1U + iα2V +W
 = 0; (8.30)

−iCT + μεT + μW = (1 + βθ0)[T − (α21 + α22)T] (8.31)

at |ζ | < 1/2 (the prime means differentiation with respect to ζ ).
The boundary conditions (8.25) at |ζ | = 1/2 are

U = 0, V = 0, W + εT = 0, T = 0. (8.32)

Problem (8.27)–(8.32) can be subjected to the Squire transform [138]. Multiplying
eq. (8.27) by iα1 and eq. (8.28) by iα2 and denoting Z = iα1U + iα2V , we obtain the
problem

−iCZ + μεk2W + με2k2T = (1 + βθ0)[Z − k2Z + k2Q]Pr; (8.33)

−iCW − μεW  − (με2k2 + Gr
1 + βθ0
)T = (1 + βθ0)(W

 − k2W − Q)Pr; (8.34)

Z +W  = 0; (8.35)

−iCT + μεT + μW = (1 + βθ0)(T − k2T), (8.36)

where k = √α21 + α22 is the modified wave number.
At |ζ | = 1/2, we have

Z = 0, W + εT = 0, T = 0. (8.37)

For “rough” instability of the equilibrium state (8.21) (i. e., instability in the first
approximation), a necessary and sufficient condition is satisfaction of the inequality
ImC > 0 at least for one eigenvalue.
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Remark 8.3. System (8.33)–(8.36) at C = 0 can be reduced to one sixth-order equation
for the temperature perturbation

L2(xLT − ε2T) + k2 Ra
x2

T = 0, T = T = T = 0, x = 1 + βθ1,2,
where x = 1 + βθ0(ζ ) and L = ε2d2/dx2 − k2. Even in this case, however, the latter
equation cannot be explicitly integrated and the critical Rayleigh number Ra in the
explicit form cannot be found.

Remark 8.4. As Gr = εηPr (η = (2l)3g/νχ is the microconvection parameter), the
boundary-value problem (8.33)–(8.37) with ε → 0 at moderate Prandtl numbers ap-
proximates the problem of stability of the equilibrium state (8.22) (see Remark 8.1). If
Gr → Gr0 > 0 as ε → 0, then we obtain the problem of stability of the equilibrium
state (8.23) in the Oberbeck–Boussinesq model.

3. Asymptotic behavior of long waves
Let us consider the asymptotic behavior of the amplitude equations for k → 0.

As the system involves k2 everywhere, we assume that

Z = Z0 + k
2Z1 + ⋅ ⋅ ⋅ , W = W0 + k

2W1 + ⋅ ⋅ ⋅ , Q = Q0 + k
2Q1 + ⋅ ⋅ ⋅ ,

T = T0 + k
2T1 + ⋅ ⋅ ⋅ , C = C0 + k

2C1 + ⋅ ⋅ ⋅ .

Substitution of these expressions into eqs. (8.33)–(8.36) in the zeroth approximation
yields the system

−iC0Z0 = (1 + βθ0)Z

0 Pr,

−iC0W0 − μεW

0 −

Gr
1 + βθ0

T0 = (1 + βθ0)(W

0 − Q


0)Pr, (8.38)

Z0 +W

0 = 0,

−iC0T0 + μεT

0 + μW0 = (1 + βθ0)T


0 .

The boundary conditions for Zi,Wi,Qi, and Ti (i = 0, 1) coincide with eqs. (8.37).
Let us write the equation for Z0 in the form Z0 = −iC0Z0/[(1+βθ0)Pr]. Multiplying

it by the complex-conjugate value Z∗0 and integrating over the segment [−1/2; 1/2], we
obtain

iC0
Pr

1/2
∫−1/2 |Z0|

2 dζ
1 + βθ0

=

1/2
∫−1/2 |Z0|2 dζ .

It follows from here that the quantity C0 is imaginary (C0 = iCoi, and Coi < 0). There-
fore, long-wave perturbations decaymonotonically, independent of the sign of the dif-
ference θ1 − θ2. The form of Coi can be easily refined. Indeed, the replacement x =
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1 + βθ0(ζ ) = 1 + β(θ1 − θ2)ζ + β(θ1 + θ2)/2 yields the equation xZ0 + μ0Z0 = 0, where
μ0 = iC0/Pr ε2; as was proved above, μ0 > 0. In turn, the last equation has the general
solution

Z0 = √x [h1J1(2√μ0x) + h2Y1(2√μ0x)] (h1, h2 = const),

where J1 and Y1 are the Bessel functions of the first and second kind. As Z0(x1,2) = 0
(x1,2 = 1 + βθ1,2 > 0), then τ = 2√μ0x1 is the root of the transcendental equation

J1(τ)Y1(λ0τ) − J1(λ0τ)Y1(τ) = 0, λ0 = √x2/x1.

The latter equation has a countable number of roots τn [100]. Therefore, we obtain

Con = −
Pr ε2τ2n
4x1

i ≡ iCoi. (8.39)

Let us consider the system of the first approximation in terms of k2. Instead of
eqs. (8.38), we obtain the system

−i(C0Z1 + C1Z0) + εμW0 + με
2T0 = (1 + βθ0)(Z1 − Z0 + Q0)Pr,

−i(C0W1 + C1W0) − μεW

1 −

Gr
1 + βθ0

T1 − με
2T0 = (1 + βθ0)(W


1 −W0 − Q


1)Pr,

Z1 +W

1 = 0,

−i(C1T0 + C0T1) + μεT

1 + μW1 = (1 + βθ0)(T


1 − T0).

(8.40)

Using eqs. (8.40), we obtain the following boundary-value problem for Z1:

Z1 + iC0
Pr(1 + βθ0)

Z1 =
1

Pr(1 + βθ0)
(−iC1Z0 + μεW0 + με

2T0) + Z0 − Q0,

Z1(±1/2) = 0.

For this problem to be solved uniquely, a necessary and sufficient condition is orthog-
onality of the right-hand side of the last equation and the solution of the homogeneous
adjoint equation, i. e., Z∗0 . Thus, we obtain

iC1 =
∫
1/2−1/2( μεW0+με2T0(1+βθ0)Pr − Q0 + Z0)Z∗0 dζ

∫
1/2−1/2 |Z0|21+βθ0 dζ . (8.41)

It is possible to demonstrate that iC1 is a real number.

4. Numerical solution of the eigenvalue problem
To find the numerical solution by the method of orthogonalization [75, 1], we convert
system (8.33)–(8.36) to the form y = Ay, where y(ξ ) is the vector of unknowns, A(ξ )
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is the matrix of coefficients, and 0 ≤ ξ ≤ 1. The following replacement is applied:

ξ = ζ + 1/2, y1 = Z, y2 = Z
, y3 = Z

,
y4 = W , y5 = T , y6 = T

. (8.42)

Eliminating Q from eqs. (8.33)–(8.34), we obtain the following system of equations:

y1 = y2, y2 = y3, y4 = −y1, y5 = y6,
y3 = εCi
(1 + βθ0)2 Pr

y1 + (2k
2 −

Ci
(1 + βθ0)Pr

)y2

+ (k4 − k2Ci
(1 + βθ0)Pr

+
εk2(ε − μ)
Pr(1 + βθ0)2

)y4 (8.43)

−
με2k2Ci + k2Gr
(1 + βθ0)2 Pr

y5 +
ε3k2(1 − μ)
Pr(1 + βθ0)2

y6,

y6 = μ
1 + βθ0

y4 + (k
2 −

Ci
1 + βθ0
)y5 +

εμ
(1 + βθ0)

y6.

Here, we have θ0 = θ2 + (θ1 − θ2)ξ . By virtue of replacement (8.42), the boundary con-
ditions (8.37) take the form y1 = 0, y4 + εy6 = 0, and y5 = 0 at ξ = 0 and ξ = 1.

Thus, a system of the form y = A(ξ )y with the boundary conditions is solved at
ξ = 0 and ξ = 1, By(0) = 0 andDy(1) = 0, respectively. ThematrixA of dimension 6×6
has the following elements:

a11 = a13 = a14 = a15 = a16 = 0, a12 = 1,
a21 = a22 = a24 = a25 = a26 = 0, a23 = 1,

a31 =
εCi

(1 + βθ0)2 Pr
, a32 = 2k

2 −
Ci

(1 + βθ0)Pr
,

a33 = 0, a34 = k
4 −

k2Ci
(1 + βθ0)Pr

+
εk2(ε − μ)
Pr(1 + βθ0)2

,

a35 = −
με2k2Ci + k2Gr
(1 + βθ0)2 Pr

, a36 =
ε3k2(1 − μ)
Pr(1 + βθ0)2

,

a41 = −1, a42 = a43 = a44 = a45 = a46 = 0,
a51 = a52 = a53 = a54 = a55 = 0, a56 = 1,

a61 = a62 = a63 = 0, a64 =
μ

1 + βθ0
,

a65 = k
2 −

Ci
1 + βθ0
, a66 =

εμ
(1 + βθ0)

.

The matrices B and D of dimension 3 × 6 coincide, and their elements have the values

b11 = d11 = b24 = d24 = b35 = d35 = 1, b26 = d26 = ε.

The remaining elements of both matrices are equal to zero.
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The solution is sought in the form

y =
3
∑
j=1 pjyj, (8.44)

where the coefficients pj are found from the system Dy(1) = 0, and y1, y2, and y3 are
linearly independent vectors such that y1(0) = (0,0,0,−ε,0, 1), y2(0) = (0, 1,0,0,0,0),
y3(0) = (0,0, 1,0,0,0).

To determine the eigenvalue C, we need two initial approximations, C0 and C1,
which are chosen from conditions (8.39) and (8.41). We integrate the equations for
y1, y2, and y3 with a given step in terms of ξ over the extreme left segment. The vectors
obtained on the right end of the segment are orthogonalized. The solutions for which
the initial data are the vectors obtained by means of orthogonalization are integrated
over the next segment. The solutions on the right end of the second segment are again
orthogonalized. We repeat this procedure until we reach the point ξ = 1.

For integration, we use the fourth-order Runge–Kutta–Mersonmethod with auto-
matic selection of the integration step. As the integration step can be specific for each
of the vectors yj, we choose the least integration step among the three values obtained
by automatic selection. When we reach the right end of the integration segment, i. e.,
the point ξ = 1, we obtain a system of three equations Dy(1) = 0 for finding three un-
knowns pj, where y is taken in the form (8.44). The determinant of the system,which is
composed from the coefficients yji (j = 1, 2, 3, i = 1, . . . , 6), is taken as the characteristic
polynomial F(C). For the system Dy(1) = 0 to have a nontrivial solution, a necessary
and sufficient condition is the equality of the determinant of the system (in the case
considered, F(C)) to zero.

Thus, the problem is reduced to solving the nonlinear equation F(C) = 0.We solve
this equation by the method of secants, using the chosen values of C0 and C1 as the
initial approximations. The root of the equation F(C) = 0 is the sought eigenvalue for
a specified wave number k.

We consider long-wave perturbations, i. e., a situation with k → 0. Moving in
terms of k from k = 10−5, we find the dependence C(k). Based on the sign of the imag-
inary parts of C, obtained at each step in terms of k, we determine the intervals of
stability.

We study stability of a layer with solid walls for a silicon melt with the follow-
ing parameter values: ν = 2.65 ⋅ 10−3 cm2/s, χ = 0.49 cm2/s, β = 0.75 ⋅ 10−5 °C−1,
Pr = 5.41 ⋅ 10−3. The calculations are performed for the absolute difference of the wall
temperatures |θ1 − θ2| = 10, 100, and 1000 °C. This actually means a change in the di-
mensionless parameter ε = β|θ1 − θ2|. The linear size of the layer was chosen to satisfy
the inequality (2l)3g/νχ < 1, which is the criterion of applicability of the microconvec-
tion model considered (see [176]). The smallness of the parameter η = (2l)3g/νχ can
be reached both by decreasing the length scale and by decreasing the acceleration
due to gravity g (e. g., under microgravity conditions with g ≈ (10−2–10−3)g0, where
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Figure 8.1: Imaginary part of complex decrement vs. wave number k at ε = 7.5 ⋅ 10−5, Ra = 4.21 ⋅ 10−4.

Figure 8.2: Real part of complex decrement vs. wave number k.

g0 = 981 cm/s2 is the acceleration due to gravity near the Earth’s surface). In these
calculations, we consider g ∼ 10−3g0, i. e., 2l < 0.11 cm. For the values of l, β, χ, and ν
given above, we find the dependence of the parameters Ci = ImC and Cr = ReC on the
wave number k.

Figure 8.1 shows the dependence Ci(k) at ε = 7.5 ⋅ 10−5 (which corresponds to
|θ1 − θ2| = 10 °C) and Ra = 4.21 ⋅ 10−4. The dashed and solid curves refer to situations
with heating from above (θ1 > θ2) and from below (θ1 < θ2), respectively. In the fol-
lowing, the curves that describe the results in situations with heating from above and
from below are indicated by C−i and C+i , respectively.

Figure 8.2 shows the dependence Cr(k) for the same values of the parameters ε
and Ra as those used in Figure 8.1. As the values of C+r (k) and C−r (k) differ by no more
than 10−6, the corresponding curves in Figure 8.2 coincide.

Figure 8.3 shows the dependences C+i and C−i (solid and dashed curves, respec-
tively) at ε = 7.5 ⋅ 10−3 (|θ1 − θ2| = 1000 °C) and Ra = 4.21 ⋅ 10−2. Figure 8.4 shows
the dependence Cr(k) for the same values of the parameters ε and Ra as those used in
Figure 8.3.

Note that the curves Ci(k) change with a greater amplitude and faster increase
from the value C0i with increasing ε (i. e., the difference in the wall temperatures).

A typical feature of all curves C−i is their slower increase, as compared with the
corresponding curves C+i . With increasing ε, the absolute value of the difference |C+i −
C−i | increases. We obtain Ci < 0 for all values of k, i. e., the equilibrium state is stable.

A typical feature of all curves Cr is their minor increase with increasing k (10−7 ≤
k ≤ 1). The following conditions are satisfied for all values of ε considered: 1) Cr > 0 for
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Figure 8.3: Imaginary part of complex decrement vs. wave number k at ε = 7.5 ⋅ 10−3, Ra = 4.21 ⋅ 10−2.

Figure 8.4: Real part of complex decrement vs. wave number k.

all values of k; moreover, the values of Cr are close to zero (Cr ∼ 10−12) up to k = 0.05;
2) the values of Cr are almost unchanged at k ≥ 5, |Cr(5) − Cr(20)| ≤ 10−12; 3) all values
of C−r lie lower than the corresponding values of C+r , |C+r (k) − C−r (k)| < 10−6.

Stability of the equilibrium state (8.21) for the silicon melt is not unexpected, be-
cause Pr = 5.41⋅10−3 (see Remark 8.4). Assuming that ε = 0 in eqs. (8.33)–(8.37), we ob-
tain a problem of stability of the equilibrium state (8.22) of a viscous heat-conducting
fluid

−iCZ = (Z − k2Z + k2Q)Pr, −iCW = (W  − k2W − Q)Pr,
−iCT + μW = (T − k2T), Z +W  = 0 (−1/2 < ξ < 1/2),

Z = W = T = 0 (ξ = ±1/2).

This spectral problem is easily solved: first, we find Z andW , and then we deter-
mine the temperature perturbation. We do not give the explicit expressions here, but
we should note that the following integral identity is valid:

(k2 − iC Pr−1) 1/2∫−1/2(k2|W |2 + |Z|2) dξ +
1/2
∫−1/2(k2|W |2 + |Z|2) dξ = 0.
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Figure 8.5: Dependence of Ci(k) for microconvection model (solid line) and for Oberbeck–
Boussinesq model (dashed line).

It follows from here that −iC < 0 is a real number. In other words, the limiting equilib-
rium state (8.22) as β → 0 for eq. (8.21) is always stable. We can demonstrate that the
complex decrement is a solution of one of the following equations:

x tg x = −k th(k/2), (1/x) tg x = (1/k) th(k/2)

(x = (iC/Pr − k2)1/2/2). The last equations have a countable number of real solutions.
It is known that the linearizedproblemof convective instability of a quiescent fluid

in the Oberbeck–Boussinesq model is self-adjoint (in the case of heating from below)
[68]; therefore, the real part of the eigenvalue Cr is equal to zero. The perturbations
decay or enhance monotonically, and the resultant motion is steady. The equilibrium
state (8.23) of a horizontal fluid layer of thickness 2l with a downward directed tem-
perature gradient ((θ2 − θ1)/2l > 0) becomes unstable if Ra = gβ(θ2 − θ1)(2l)3/(νχ) >
Ra∗ = 1708, and the corresponding dimensionless wave number is k∗ = 3.12.

It is of interest (see Remarks 8.2 and 8.4) to compare this classical result with
the result of the numerical solution of the spectral problem (8.33)–(8.37), with the
Rayleigh number Ra = εη being finite at ε ≪ 1. The calculations are performed for
the siliconmelt with the same values of the physical parameters and θ2−θ1 = 1000 °C.
As η increases, the curve Ci(k) approaches the axis Ci = 0 and crosses this axis for the
first time at k = k1 = 2.84 < k∗, at η1 = 225193.33. In this case, the Rayleigh number is
Ra1 = εη1 = 1688.95 < Ra∗, and the layer thickness is 2l1 = 6.68 cm at g = 10−3g0.

The solid and dashed curves in Figure 8.5 show the dependence Ci(k) for the
microconvection model and for the Oberbeck–Boussinesq model, respectively. Thus,
in themicroconvectionmodel the equilibrium state becomes unstable at smaller wave
numbers. Apparently this is caused by the greater mobility (compressibility) of the
fluid in the case considered. The values of Cr(k) at Ra > 103 for all values of k are
close to 10−12, and the spectral problem (8.33)–(8.37) becomes “more self-adjoint.” As
the Boussinesq parameter ε decreases, the critical values of the Rayleigh number and
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wave number increase. Thus, at ε = 0.75 ⋅ 10−4 and θ2 − θ1 = 10 °C, we have k1 = 2.99,
Ra1 = 1694.54, which agrees with Remark 8.4.

8.3 Emergence of microconvection in a plane layer with a free
boundary

1. Equilibrium state
Let us assume that f (x, t) = 0 is an implicit equation of the free boundary Γ. Then,
the following relations are satisfied on this boundary with allowance for replacement
(4.48) [11]:

ft + (w + βχ∇θ) ⋅ ∇f = 0; (8.45)
[pgas − ϱ0q − βχϱ0(ν − χ)Δθ]n + 2ϱ0ν[D(w) + βχD(∇θ)]n = 2σ(θ)Hn + ∇11σ; (8.46)

k 𝜕θ
𝜕n
+ b(θ − θgas) = Q. (8.47)

Equation (8.45) is the kinematic condition, eq. (8.46) is the dynamic condition,
and eq. (8.47) defines the heat transfer between the fluid and the gasmedium,which is
here assumed to be passive (k is the thermal conductivity coefficient of the fluid, b ≥ 0
is the heat-transfer coefficient, andQ is the heat flux). In eqs. (8.46) and (8.47),pgas and
θgas are the specified pressure and temperature in the gas (in what follows, pgas and
θgas are constants), n = ∇f /|∇f | is the external normal to Γ, and σ(θ) is approximated
by the linear dependence

σ(θ) = σ1 −æ(θ − θ1), (8.48)

where σ1 and θ1 are the values of surface tension and temperature at a certain point
of Γ, H is the mean curvature, and ∇11 = ∇ − n(n ⋅ ∇) is the surface gradient. In what
follows, the free boundary has no common points with the solid wall; therefore, the
conditions on the contact line are not considered (see [189, 171]).

In all equations below, we have g = (0,0,−g) and g = const > 0. We can easily
verify that the fluid can be in the equilibrium state [11] in the layer 0 < z < l, |x|, |y| <
∞; the upper boundary of the layer is the free boundary, and the lower boundary of
the layer z = 0 is the solid wall. The equilibrium state is described by the equations

w0 = (0,0,−βχθ01), θ0(z) = θ00 + θ01z,

q0 = −
g

βθ01
ln[1 + βθ0(z)] + c1, (8.49)

θ01 =
Q + b(θgas − θ00)

k + bl
, c1 =

pgas
ϱ0
+

g
βθ01

ln[1 + βθ0(l)],

where θ00 = const is the temperature of the solid wall; without loss of generality, we
assume that θ00 = 0. Thus, eqs. (8.49) yield the exact solution of problem (4.49)–(4.51),
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(8.45)–(8.48) with a plane free boundary z = l. In contrast to the classical case, the
functionq0(z) (analog of pressure) is distributedhere in accordancewith a logarithmic
rather than linear law.

From eqs. (8.49) with β → 0 and other parameters being fixed, we obtain

w0 = 0, θ0 = θ01z, q0 =
pgas
ϱ0
+ gl − gz. (8.50)

As the pressure is p0 = ϱ0q0, then eqs. (8.50) describe the equilibrium state of
a layer of a viscous heat-conducting fluid. This is not surprising, because, in accor-
dance with replacement (4.48), system (4.49)–(4.51) approximates the Navier–Stokes
equations for such a fluid in the case considered.

If now we retain terms of the second order of smallness with respect to β in
eq. (8.49) for q0(z) and denote the deviation of pressure from the hydrostatic value
by p̄0(z) = ϱ0q̄0(z) (q̄0(z) = q0(z) + gz by virtue of replacement (4.48)), we obtain the
equilibrium state of the plane layer in the Oberbeck–Boussinesq model [119]:

w0 = 0, θ0(z) = θ01z, p̄0 = pgas +
ϱ0gβ
2θ01
[θ20(z) − θ

2
0(l)]. (8.51)

The equality for p̄0(z) is usually written as

dp̄0/dz = ϱ0gβθ0(z).

Stability of the equilibrium state (8.49) is studied below in the linear approxima-
tion.

2. Small perturbations
Equations of small perturbations for arbitrary solutions of the problem with the free
boundary for the microconvection model were obtained in [11]. Here we apply these
equations to the equilibrium state (8.49). Let U(x, t) = (U ,V ,W), T(x, t), Q(x, t) be
perturbations of the basic equilibrium statew0, θ0, q0 (8.49). We introduce the dimen-
sionless variables

x = x/l, t = νt/l2, U = lU/ν,
T = T/(μθ01l Pr), Q = l2Q/ν2, (8.52)

where μ = 1 for θ01 > 0 and μ = −1 for θ01 < 0.
Substituting eqs. (8.52) into eqs. (8.16), (8.45)–(8.47), we obtain a problemof small

perturbations in the dimensionless variables (the primes are omitted):
– at −∞ < x <∞, −∞ < y <∞, 0 < z < 1,

Ut −
με
Pr

Wx −
με2

Pr
Txz = (1 + μεz)(−Qx + ΔU); (8.53)
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Vt −
με
Pr

Wy −
με2

Pr
Tyz = (1 + μεz)(−Qy + ΔV); (8.54)

Wt −
με
Pr

Wz +
με2

Pr
(Txx + Tyy) = (1 + μεz)(−Qz + ΔW) +

Ra
1 + μεz
; (8.55)

Tt +
με
Pr

Tz +
μW
Pr
= (1 + μεz) 1

Pr
ΔT ; (8.56)

Ux + Vy +Wz = 0; (8.57)

– on the free boundary z = 1,

γ
1 + με

R − Q + ε( 1
Pr
− 1)ΔT + 2Wz + 2εTzz = We(Rxx + Ryy); (8.58)

Uz + 2εTxz +Wx = −M(T +
μ
Pr

R)
x
; (8.59)

Vz + 2εTyz +Wy = −M(T +
μ
Pr

R)
y
; (8.60)

Tz + B(T +
μ
Pr

R) = 0; (8.61)

Rt = W + εTz ; (8.62)

– on the solid wall z = 0,

U + εTx = 0, V + εTy = 0, W + εTz = 0, T = 0; (8.63)

– at t = 0,

U = U1(x, y, z), V = V1(x, y, z), W = W1(x, y, z);
T = T1(x, y, z), R = R0(x, y), U1x + V1y +W1z = 0.

(8.64)

The following notations are introduced in problem (8.53)–(8.64): Boussinesq para-
meter ε = μθ01lβ > 0, Prandtl number Pr = ν/χ, Rayleigh number Ra = μθ01l4βg/νχ ≡
εη (η = gl3/νχ is the microconvection parameter), Galileo number γ = gl3/ν2 = η/Pr,
modified Weber number We = σ(θ0(l))l/ϱ0ν2, Marangoni number M = μæθ01l2/ϱ0νχ,
and Biot number B = bl/k.

The function R(x, y, t) describes the perturbation of the free boundary z = 1, i. e.,
deviation from this plane along the normal at each point of the plane.

We seek the solution of problem (8.53)–(8.63) in the form of the normal waves

(U,Q,T ,R) = (U(z),Q(z),T(z),R) exp[i(α1x + α2y − Ct)], (8.65)

where α1 and α2 are the dimensionless wave numbers along the x and y axes, respec-
tively; C is the complex decrement determining the time evolution of the perturba-
tion. It is possible to not consider the initial data (8.64). Substituting eq. (8.65) into
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eqs. (8.53)–(8.63), we obtain a homogeneous problem with respect to U ,V ,W ,Q,T,
and R. It turns out that the Squire transform is applicable to this problem [138]. Name-
ly, if we assume that

Z = α1U + α2V , k2 = α21 + α
2
2,

then we obtain the following boundary-value problem for Z,W ,Q,T ,R, and the pa-
rameter C:
– at 0 < z < 1,

−iCZ − μεk
2i

Pr
W − με

2k2i
Pr

T = (1 + εμz)(Z − k2Z − ik2Q); (8.66)

−iCW − με
Pr

W  − με2k2
Pr

T = (1 + εμz)(W  − k2W − Q) + Ra
1 + εμz

T ; (8.67)

−iCT + με
Pr

T + μ
Pr

W = (1 + εμz) 1
Pr
(T − k2T); (8.68)

iZ +W  = 0; (8.69)

– at z = 1,

−Q + γ
1 + με

R + 2W  + ε(1 + 1
Pr
)T + εk2(1 − 1

Pr
)T = −We k2R; (8.70)

Z + 2εk2iT + k2iW = −Mk2i( μ
Pr

R + T); (8.71)

T + B(T + μ
Pr

R) = 0; (8.72)

−iCR = W + εT; (8.73)

– at z = 0

Z = T = 0, W + εT = 0. (8.74)

The prime here means differentiation with respect to z.

3. Long waves
We find the asymptotic behavior of the spectral problem (8.66)–(8.74) as k → 0. Let us
assume that

Z = Z0 + k
2Z1 + ⋅ ⋅ ⋅ , W = W0 + k

2W1 + ⋅ ⋅ ⋅ , Q = Q0 + k
2Q1 + ⋅ ⋅ ⋅ ,

T = T0 + k
2T1 + ⋅ ⋅ ⋅ , C = C0 + k

2C1 + ⋅ ⋅ ⋅ , R = R0 + k
2R1 + ⋅ ⋅ ⋅ .

In the zeroth approximation, we obtain the problem

−iC0Z0 = (1 + εμz)Z

0 ,
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−iC0W0 −
με
Pr

W 0 = (1 + εμz)(W 0 − Q) + Ra
1 + εμz

T0, (8.75)

−iC0T0 +
με
Pr

T0 + μ
Pr

W0 = (1 + εμz)
1
Pr

T0 ,
iZ0 +W


0 = 0 (0 < z < 1);

−Q0 +
γ

1 + με
R0 + ε(1 +

1
Pr
)T0 = 0,

Z0 = 0, μPrT0 + B(μPrT0 + R0) = 0, (8.76)
−iC0R0 = W0 + εT


0 (z = 1);

Z0 = W0 = T0 = 0, W0 + εT

0 = 0 (z = 0). (8.77)

Clearly, the spectral parameterC0 is determined from theboundary-valueproblem
for Z0. As we have

iC0

1

∫
0

|Z0|2

1 + εμz
dz =

1

∫
0

|Z0|2 dz,
then C0 is a purely imaginary number and iC0 > 0. We can easily refine the value
of C0. For this purpose, we introduce a new variable s = 1 + εμz; then, we obtain
sZ0ss + d2Z0 = 0, Z0(1) = Z0(s1) = 0, s1 = 1 + εμ, d2 = iC/ε2 > 0. The equation for Z0(s)
has the general solution

Z0 = √s [h1J1(2d√s ) + h2Y1(2d√s )] (h1, h2 = const),

where J1 and Y1 are the Bessel functions of the first and second kind. The boundary
conditions for Z0 show that τ = 2d is the root of the transcendental equation

J1(τ)Y0(τ√s1 ) − Y1(τ)J0(τ√s1 ) = 0, (8.78)

which has a countable number of real roots τn [100]. Therefore, we have

iC0n = ε
2τ2n/4, n = 1, 2, . . . . (8.79)

Thus, long-wave perturbations decay monotonically, independent of the sign
of θ01.

4. Layer of a viscous heat-conducting fluid
In this case we have ε = 0 (β = 0), and problem (8.66)–(8.74) is simplified to

−iCZ = Z − k2Z − ik2Q, −iCW = W  − k2W − Q,
−iC PrT + μW = T − k2T , iZ +W  = 0 (0 < z < 1); (8.80)
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−Q + γR + 2W  = −We k2R, Z + ik2W = −ik2M( μ
Pr

R + T),

T + B( μ
Pr

R + T) = 0, −iCR = W (z = 1);
(8.81)

Z = W = T = 0 (z = 0). (8.82)

System (8.80) has the general solution

Z = id(b1 cos dz − b2 sin dz) +
ik2

k2 + d2
(a1 sh kz + a2 ch kz),

W = b1 sin dz + b2 cos dz +
k

k2 + d2
(a1 ch kz + a2 sh kz),

Q = a1 sh kz + a2 ch kz, (8.83)

T = h1 sin qz + h2 cos qz +
μb1 sin dz
q2 − d2

+
μb2 cos dz
q2 − d2

+
kμ

(k2 + d2)(k2 + q2)
(a1 ch kz + a2 sh kz),

where a1, a2, b1, b2, h1, and h2 are constants; q2 = iC Pr−k2, d2 = iC − k2 (Pr ̸= 1).
Let iC = τ, thenwe have q2+k2 = τ Pr, k2+d2 = τ, q2−d2 = (Pr−1)τ, andwe obtain

the following equations from the boundary conditions (8.82):

b1 = −
k2a2
dτ
, b2 = −

ka1
τ
, h2 =

kμa1
τ2 Pr(Pr−1)

. (8.84)

As R = −W/τ, conditions (8.81) on the free boundary z = 1 reduce to the following
conditions (μ2 = 1):

2W  − Q − (γ + k2We)W
τ
= 0,

Z + ik2W + iμk2M(μT − W
τ Pr
) = 0,

μPrT + B(μPrT − W
τ
) = 0.

(8.85)

System (8.85), togetherwith eqs. (8.84), allowsus to determine the complex decre-
ment C at Pr ̸= 1. The corresponding characteristic determinant, however, is rather
complicated, and problem (8.80)–(8.82) at γ = 0 was solved numerically in [199] by
using themethodof orthogonalization.Herewe give the dependence of theMarangoni
number as γ ̸= 0 for monotonic perturbations with C = 0. The calculations show that

M = − 8μk(k − sh k ch k)(k ch k + B sh k)
k3 ch k − sh3 k − 8k5 ch k[Pr(γ + k2We)]−1 . (8.86)
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At γ = 0, this equation coincides with the expression derived in [199]. At small values
of k, eq. (8.86) yields

M ∼ −2μγ Pr(B + 1)/3. (8.87)

Performing similar transformations for the Oberbeck–Boussinesq model, we ob-
tain, instead of eq. (8.87),

M ∼ − 2
3
μγ Pr(B + 1) − 11

60
BRa, (8.88)

where Ra is the Rayleigh number. Note that Ra ≤ 40γ(B + 1)/11B = Ra∗ in the case of
heating from below (μ = −1), and there is no neutral curve for Ra > Ra∗. As B → ∞,
the limiting value of Ra∗ coincideswith that calculated in [99] forM = 0. The casewith
B = ∞ means that the temperature rather than the heat exchange with the ambient
medium is specified on the free surface.

5. Analysis of numerical results
Firstly, we should note that the Boussinesq parameter, the Rayleigh number, and the
Marangoni number are proportional to each other, because they depend on a con-
trolled parameter, which is the temperature gradient θ01. Therefore, it is convenient to
use new parameters α = ϱ0νβχ/æl, Γ = ϱ0βgl2/χ, then ε = αM, Ra = ΓM = Pr αγM, and
to calculate the Marangoni number. For the Oberbeck–Boussinesq model, stability of
the layer with a linear dependence of Ra and M was studied in [32, 95, 99, 162].

Problem (8.66)–(8.74) with arbitrary perturbations was numerically solved by the
method of orthogonalization. Expression (8.86) was used as a test in numerically con-
structing neutral curves. The results calculated for α = 0 and Γ ̸= 0 coincide with the
numerical data obtained within the framework of the Oberbeck–Boussinesq model in
[199].

Figure 8.6 shows the neutral curves constructed at γ = 103, We = 104, Pr =
5.41 ⋅ 10−3, and α = 10−4. Curves 1 and 2 refer to monotonic and oscillatory perturba-
tions, respectively. The asymptotic expressions (8.79) and (8.88) are used to construct

Figure 8.6: Neutral curves vs. wave number k at γ = 103, We = 104, Pr = 5.41 ⋅ 10−3, α = 10−4.
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Table 8.1:Minimal values of Marangoni and wave numbers vs. α and γ.

α γ M∗ k∗

0 0 224.93 5.35
0 103 226.51 5.35

10−4 0 230.88 5.50
10−4 103 232.47 5.50

the neutral curve 2. The domain of stability to monotonic perturbations lies above
curve 1, and the domain of stability to oscillatory perturbations lies inside curve 2. The
calculations show that the qualitative behavior of the neutral curves at small values
of the parameters α and Γ coincides with the behavior of the corresponding curves for
a viscous heat-conducting fluid (α = 0 and γ = 0) [199]. As was found in [199], curve 1
corresponds to thermocapillary perturbations associated with nonuniformity of fluid
heating and curve 2 is the boundary of stability to capillary perturbations induced by
deformations of the free boundary.

For several values of α and γ, Table 8.1 shows the minimum values of M∗ of the
capillary neutral curve (curve 2) and the value of the wave number k∗ at which this
minimum is reached. Thus, taking into account fluid compressibility (α ̸= 0), we ob-
tain stabilization of capillary perturbations; even for small values of the parameter α,
the values of the critical Marangoni numbers can be noticeably different.

Another specific feature of the model considered is the emergence of new neutral
curves with enhancement of gravity forces, which is caused by taking fluid compress-
ibility into account. Perturbations corresponding to the newmechanism of instability
growmonotonically, and the domain of instability is located above the corresponding
neutral curve.

These new curves are indicated by the numbers 3 to 5 in Figure 8.7, where γ = 106,
Pr = 5.41 ⋅ 10−3, We = 104, and α = 10−4; curves 1 and 2 are the same as those in
Figure 8.6.

As is seen from Figure 8.8, where γ = 107, capillary perturbations become fur-
ther stabilized as the gravity force increases, and the threshold of stability for thermo-

Figure 8.7: New neutral curves 3–5 for γ = 106.
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Figure 8.8: New neutral curves 3–5 for γ = 107.
Table 8.2:Minimal values of Marangoni numbers related with neutral curves of Figures 8.1 and 8.2.

γ M∗1 M∗2 M∗3 M∗4 M∗5

106 74.3 739.3 362.7 8032 9825.6
107 49.1 2357 767.3 3214.5 6122

capillary perturbations and new perturbations caused by fluid compressibility de-
creases. The minimum values of M∗j corresponding to j neutral curves in Figures 8.7
and 8.8 are listed in Table 8.2.

Figure 8.9, where γ = 107, We = 104, M = 3400, α = 10−4, and Pr = 5.41 ⋅ 10−3,
shows the behavior of the complex decrement of the problem as a function of thewave
number. Here, curves 1 and 2 refer to the thermocapillary monotonic and capillary
oscillatory modes, respectively. Curves 3 and 4 refer to the new perturbations caused
byfluid compressibility. The problemeigenvalues corresponding to theneutral curve 5
(in Figures 8.7 and 8.8) lie in the negative half-plane and are not shown in Figure 8.9.

The influence of the Prandtl number on stability of the equilibrium state is illus-
trated in Figure 8.10 constructed for γ = 106, Pr = 1, We = 104, and α = 10−4; the neu-
tral curves are enumerated in the same manner as in the previous figures. Figure 8.10
does not show the neutral curve for capillary perturbations.

Figure 8.9: Dependence of Ci vs. wave number k for different modes.
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Figure 8.10: Neutral curves vs. wave number k at γ = 106, We = 104, Pr = 1, α = 10−4.
Here, the domain of instability is shifted toward extremely short waves with increas-
ing Prandtl number, and the minimum value of the Marangoni number drastically
increases. As is seen from the figure, an increase in Pr leads to intense destabilization
of monotonic perturbations. The threshold of stability for all perturbations decreases.
Thus, the loss of stabilitywith respect to thermocapillary perturbations occurs already
at M = 6.2.

The influence of deformability of the free boundary on stability of the equilibrium
state is illustrated in Table 8.3, composed for γ = 106, Pr = 5.41 ⋅ 10−3, and α = 10−4.
As the Weber number decreases, the threshold of stability to capillary perturbations
appreciably decreases; correspondingly, the equilibrium state with respect to these
perturbations becomes stabilized with increasing We. Capillary instability is absent
altogether for We = 106. For monotonic perturbations, the change in the Weber num-
ber has practically no effect on the stability threshold.

Based on the results presented above, we can conclude that the most dangerous
perturbations in wide ranges of problem parameters are thermocapillary ones. In the
domain of extremely short waves with small values of Pr andWe, however, oscillatory
capillary perturbations dominate.

Let us estimate the areas of applicability of different models (microconvection,
Oberbeck–Boussinesq, and viscous heat-conducting fluid models) in the problem un-
der consideration of stability of the equilibrium state (8.49). The influence of the buoy-
ancy forces is studied with fixed values: α = 10−4, Pr = 5.41 ⋅ 10−3, and We = 104. The
criterion is the relation mink |M(k) − Mt(k)|/M(k) ≤ 0.05, where Mt(k) is the neutral
curve constructed within the framework of the viscous heat-conducting fluid model
(α = 0). The calculations show that allowance for buoyancy forces leads to noticeable

Table 8.3:Minimal values of Marangoni numbers vs. Weber number.

We M∗1 M∗2 M∗3 M∗4 M∗5

102 74.3 209.8 361.3 8032 9825.6
106 74.6 – 373.4 8165.6 9831.7
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differences in the Marangoni numbers (more than 5%) at γ = 8 ⋅ 105. The relative error
of finding the critical Marangoni number decreases with decreasing γ.

In studying fluid compressibility, the criterion is the relation mink |M(k) −Mb(k)|/
M(k) ≤ 0.05, where Mb(k) is the neutral curve constructed within the framework of
the Oberbeck–Boussinesq model (α = 0 and Γ ̸= 0). The calculations are performed
for γ = 104, Pr = 5.41 ⋅ 10−3, and We = 104. It is demonstrated that allowance for
compressibility begins playing a noticeable role at α > 2 ⋅ 10−4. Here, the relative error
again decreases with decreasing α.

8.4 Stability of a steady flow in a vertical layer

1. Main steady motion
We consider the solution of system (4.49)–(4.51) in a vertical layer −a < x < a, −∞ <
y <∞, −∞ < z <∞ with solid walls x = ±a. The boundary conditions are written as

w + βχ∇θ = 0, θ = θw(x, t). (8.89)

The first condition is the no-slip condition u = 0 on the motionless solid wall. The
second condition defines the temperatures on the walls. We assume that the walls
x = −a and x = a are heated to the temperatures θ1 and θ2, respectively. Without loss
of generality, we assume that θ1 > θ2.

The steady solution of the posed problem is sought in the form

w = (u0, v(x),0), θ = θ0 − u0x/βχ, q = (φ − g)y,
u0 = βχ(θ1 − θ2)/2a, θ0 = (θ1 + θ2)/2,

(8.90)

where u0, θ0, and φ are constants (l∗ = a). Interpreting solution (8.90) as a solution
that approximately describes convection in the central region of a finite closed cavity,
which is still rather long as compared with its width 2a, we impose the condition of a
zero mass flow rate of the fluid through all cross sections of the cavity y = const onto
this solution. As ϱ = ϱ1(1 + βθ)−1, we obtain

a

∫−a v(x)
1 + βθ(x)

dx = 0. (8.91)

For eqs. (8.90), the true velocity vector is u = w + βχ∇θ = (0, v(x),0), i. e., the
motion occurs along the y axis. Solution (8.90) can also be interpreted as a steady
flow in a vertical slot with given identical heat fluxes on the solid walls: θx = −u0/βχ ≡
−d/k, where k is the thermal conductivity coefficient and d is the heat flux; therefore,
we have u0 = βχd/k.

Thus, convective circulation occurs: the fluid moves upward near the heated wall
x = −a and downward near the cold wall x = a. The flow consists of two opposing
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convective fluxes; the temperature varies in accordance with the formula

θ = θ0 − θ∗x/a, θ∗ = (θ1 − θ2)/2. (8.92)

Substituting eqs. (8.90) into eqs. (4.49)–(4.51), we can present the function v(x) as

v = 1
ν
{(φ − g)x

2

2
+ c1x + c2 +

gχ2

u20
(1 + βθ)[ln(1 + βθ) − 1]},

where the constants c1, c2, and φ are determined from the no-slip conditions (8.89)
and conditions of a closed flow (8.91)

In what follows, we perform comparisons with the results obtained for the Ober-
beck–Boussinesq model in the same situation [8, pp. 301, 302]. It was assumed there
that θ2 = −θ1; therefore, θ0 = 0, and θ∗ = θ1. Thus, below we have θ = −θ∗x/a =
−θ1x/a.

We use χ/a as the dimensionless velocity and denote the Boussinesq parameter
by ε = βθ∗ = βθ1. After certain calculations, we obtain (x ↔ x/a is the dimensionless
variable)

v = χ
a
v̄(x) = χ

2a
Ra{ 1

ε2
f3(ε)(1 − x

2) +
1
ε3
[f1(ε)x − f2(ε) + 2(1 − εx)(ln(1 − εx) − 1)]};

(8.93)

Ra = gβθ1a
3/νχ = εη;

f1(ε) = (1 + ε) ln(1 + ε) − (1 − ε) ln(1 − ε) − 2ε,
f2(ε) = (1 + ε) ln(1 + ε) + (1 − ε) ln(1 − ε) − 2, (8.94)

f3(ε) =
4ε2 − (1 − ε2)[ln(1 − ε) − ln(1 + ε)]2

2ε + (1 − ε2)[ln(1 − ε) − ln(1 + ε)]
.

Here, Ra is the Rayleigh number.
Using eqs. (8.94) for f1(ε), f2(ε), and f3(ε), we can show that

v(x) = χ Ra
6a
(x3 − x + O(ε)) = vb(x) +

χ Ra
6a

O(ε), (8.95)

if the Rayleigh number remains finite as ε → 0. In eq. (8.95), vb(x) is the velocity along
the layer in the Oberbeck–Boussinesq model, i. e., solution (8.90) with ε → 0 approx-
imates the known solution ([68], p. 302)

vb =
χ Ra
6a
(x3 − x), p = p̄ − ρ1gay, y ↔ y

a
, θ = −θ1x, (8.96)

where p̄ = const is the excess of pressure above the hydrostatic value. The velocity pro-
file v(x) (8.93) is not an odd function in terms of x, in contrast to the classical velocity
vb(x) from eqs. (8.96) (see Figure 8.11).
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Figure 8.11: Flow pattern: θ1 and θ2 are the temperatures on the walls x = −a and x = a, respectively;
v(x) is the vertical velocity profile. The vector g has the coordinates (0,−g,0).
If the parameter η is not too large, then both the velocity profile (8.93) and vb(x) tend
to zero as ε → 0, i. e., to the equilibrium state in the viscous heat-conducting fluid
model:

u ≡ w = 0,
p = p̄ − ρ1gay,
θ = −θ1x.

(8.97)

The flow described by eq. (8.90) is accompanied by convective heat transfer along the
layer, and the flux of this heat per unit length along the y axis is

Q = ρ1cp

a

∫−a v(x)θ(x) dx = − 12 ρ1cpθ1χ Ra
1

∫−1 v̄(x)x dx = 12 ρ1cpθ1χ Ra F(ε),
F(ε) = − 1

3ε3
[(1 − 1

ε2
) ln( 1 − ε

1 + ε
) +

2ε
3
−
2
ε
],

where v̄(x) is determined by eq. (8.93), and cp is the specific heat at constant pressure.
We can verify that F(ε) → 4/45 as ε → 0; therefore, we have Q → Qb = 2ρ1cpθ1χR/45
[68].

2. Equations of small perturbations
LetW = (U ,V), T, andQ be perturbations of themainmotion (8.90), (8.92).We use the
equations of small perturbations (8.17), bearing in mind that u = u0 = const, v = v(x),
w = 0, and qy = φ − g. We obtain the system of equations

Ut + u0Ux + vUy − βχvxTy + β
2χ2θxTyy = (1 + βθ)(−Qx + νΔU),

Vt + u0Vx + vVy + vxU + βχ[θx(Vx − Uy) + vxTx] − β
2χ2θxTxy

= (1 + βθ)(−Qy + νΔV) + βT(g − φ + νvxx);

(8.98)
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Ux + Vy = 0,
Tt + u0Tx + vTy + θxU + 2βχθxTx = (1 + βθ)χΔT ,

−a < x < a, −∞ < y <∞,
W + βχ∇T = 0, T = 0, |x| = a.

(8.99)

We introduce the dimensionless variables

t = tχ
a2
, x = x

a
, W = Wa

χ
, T = T

θ∗
Q = Qa2

νχ
, θ̄ = θ

θ∗ , v̄ = va
χ
.

(8.100)

Substituting eqs. (8.100) into eqs. (8.98), (8.99) and omitting the primes,we obtain
the problem

Ut + εUx + v̄Uy − εv̄xTy + ε
2θ̄xTyy = (1 + εθ̄)(−Qx + ΔU)Pr,

Vt + εVx + v̄Vy + v̄xU + ε[θ̄x(Vx − Uy) + v̄xTx] − ε
2θ̄xTxy(1 + εθ̄)(−Qy + ΔV)Pr+

GrT
1 + εθ̄
;

(8.101)Ux + Vy = 0,
Tt + εTx + v̄Ty + θ̄xU + 2εθ̄xTx = (1 + εθ̄)ΔT ,
−1 < x < 1, −∞ < y <∞, −∞ < z <∞,

W + ε∇T = 0, T = 0, |x| = 1,

ε = βθ∗, Pr = ν/χ, Gr = βθ∗ga3/χ2 = εηPr, η = a3g/νχ,

(8.102)

where ε is the Boussinesq parameter, Pr is the Prandtl number, Gr is the Grashof num-
ber, and η is the microconvection parameter. In transforming system (8.98), we take
into account formula (8.90) for u0 and the relation νvxx−φ+g = g/(1+βθ). As it follows
from eq. (8.92) that θ̄ = θ0/θ∗ − x in the dimensionless variables, we obtain θ̄x = −1.

We seek the solution of the boundary-value problem (8.101)–(8.102) in the form of
normal waves

(W,Q,T) = (W(x),Q(x),T(x)) exp[i(αy − Ct)], (8.103)

where α is the wave number along the y axis and C is the complex decrement. Substi-
tution of eq. (8.103) into eqs. (8.101)–(8.102) yields the spectral problem

[i(αv̄ − C) + (1 + εθ̄)α2 Pr]U + εU  + (ε2α2 − εαiv̄x)T = (1 + εθ̄)Pr(−Q + U ),
[i(αv̄ − C) + (1 + εθ̄)α2 Pr]V + (v̄x + εiα)U + (εv̄x + ε

2iα)T
= (1 + εθ̄)(V  − iαQ)Pr+ GrT

1 + εθ̄
;

(8.104)

U  + iαV = 0,
[i(αv̄ − C) + α2(1 + εθ̄)]T − εT − U = (1 + εθ̄)T, −1 < x < 1,

U + εT = 0, V = 0, T = 0, |x| = 1.

(8.105)
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3. Long-wave perturbations
Taking into account the mass conservation law, we assume that

U = αU0 + α
2U1 + ⋅ ⋅ ⋅ , V = V0 + αV1 + ⋅ ⋅ ⋅ , Q = Q0 + αQ1 + ⋅ ⋅ ⋅ ,

T = αT0 + α
2T1 + ⋅ ⋅ ⋅ , C = C0 + αC1 + ⋅ ⋅ ⋅ .

(8.106)

Substitution into the first equation of system (8.104) yields Q0 = const. Without
loss of generality, we can assume that Q0 = 0. The remaining functions of the zeroth
approximation satisfy the boundary-value problem

U 0 + iV0 = 0, −iC0V0 = (1 + εθ̄)PrV 0 ; (8.107)
−iC0T0 − εT


0 − U0 = (1 + εθ̄)T


0 , −1 < x < 1;

T0 = V0 = 0, U0 + εT

0 = 0, |x| = 1. (8.108)

It is seen from eqs. (8.107) that C0 is found by solving the problem

V 0 + iC0
Pr(1 + εθ̄)

V0 = 0, V0(±1) = 0. (8.109)

Obviously, C0 is purely imaginary, C0 = iC0i:

C0i = −
Pr ε2τ2n
4(1 + ε)

< 0, n ∈ N , (8.110)

where τn is the root of the equation

J1(τ)Y1(λ0τ) − J1(λ0τ)Y1(τ) = 0, λ0 = √
1 − ε
1 + ε
. (8.111)

Equation (8.111) has a countable number of real roots. As C0i < 0, long-wave perturba-
tions decay monotonically.

The equations of the first approximation are

−C0U0 + εU

0 = Pr(1 + εθ̄)(U


0 − Q

1),

V 1 + iC0
Pr(1 + θ̄ε)

V1 =
1

Pr(1 + εθ̄)
[ i(v̄ − C1)V0 + v̄

(U0 + εT

0) −

GrT0
1 + εθ̄
]; (8.112)

(1 + εθ̄)T1 + iC0T1 + εT1 = i(v̄ − C1)T0 − U1, −1 < x < 1,
V1 = T1 = 0, U1 + εT1 = 0, x = ±1. (8.113)

Therefore, the first correction to the complex decrement is determined from the
condition of solvability of the boundary-value problem for the function V1:

iC1 = {i
1

∫−1 v̄|V0|
2

1 + εθ̄
dx +

1

∫−1 1
1 + εθ̄
[v̄(U0 + εT


0) −

GrT0
1 + εθ̄
]V∗0 dx}( 1

∫−1 |V0|
2

1 + εθ̄
dx)
−1
(8.114)

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



250 | 8 Small perturbations and stability of plane layers in the microconvection model

(V∗0 is the complex-conjugate solution of the homogeneous problem (8.109)).
In particular, for the Oberbeck–Boussinesq model (ε = 0, Gr > 0), with allowance

for the boundary conditions (8.108), we obtain

U0 =
ia
μ
[cos μ(x + 1) − 1], V0 = a sin μ(x + 1), Q0 = 0; (8.115)

a = const, μ = nπ, iC0 = Pr n
2π2, n ∈ N ; (8.116)

Pr ̸= 1 : T0 =
ia
μ3
[
1
Pr
+
cos μ(x + 1)

1 − Pr
−
2 tg(μ√Pr) sin(x + 1)

Pr(1 − Pr)
−
2 cos(μ√Pr)(x + 1)

Pr(1 − Pr)
];

(8.117)

Pr = 1 : T0 =
ia
2μ2
[
2
μ
− (x + 1) sin μ(x + 1) − 2

μ
cos μ(x + 1)]. (8.118)

Substitution of eqs. (8.115)–(8.118) into eq. (8.114) yields the following presenta-
tion for iC1 (let us recall that v̄b = R(x3 − x)/6):

Pr ̸= 1 : C1 = −
2Gr

μ4 Pr(1 − Pr)2
[
cos(2μ√Pr) cos μ(2 +√Pr)

cos(μ√Pr)
(8.119)

+ 2√Pr sin(μ√Pr) cos μ(2 +√Pr) − 1], μ = nπ, n ∈ N ;

Pr = 1 : C1 =
Gr
2μ2
. (8.120)

Thus, as α→ 0, we have

C = −i Pr μ2 + αC1, (8.121)

where C1 is determined by eqs. (8.119) and (8.120), respectively.

4. Numerical solution of the eigenvalue problem
To find the numerical solution by the method of orthogonalization [75], we convert
system (8.104) to the form y = Ay, where y(ξ ) is the vector of unknowns and A(ξ ) is
the matrix of coefficients, 0 ≤ ξ ≤ 1. For this purpose, we make the replacement

ξ = x/2 + 1/2, y1 = V , y2 = V , y3 = V ,
y4 = U , y5 = T , y6 = T. (8.122)

Eliminating Q from eqs. (8.104), we obtain the following system of equations:

y1 = y2, y2 = y3, y4 = −2iαy1, y5 = y6,
y3 = (8iαh1 + 8α2h4)y1 + (4iαh2 + 4α2)y2 + (8iαh3 − 8iαh61 + εθ̄

)y4
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+{8iαh6[
i(αv̄ − C)
1 + εθ̄

+ α2] − 8iαh7}y5 + (4iαh5 −
4iαh6ε
1 + εθ̄
)y6,

y6 = − 4
1 + εθ̄

y4 + 4[
i(αv̄ − C)
1 + εθ̄

+ α2]y5 −
2ε

1 + εθ̄
y6,

h1 =
αv̄ξ (1 + εθ̄) + (αv̄ − C)εθ̄ξ

Pr α(1 + εθ̄)2
, h2 =

(αv̄ − C)
Pr α(1 + εθ̄)

− iα,

h3 = −
iv̄ξξ (1 + εθ̄) − iv̄ξ εθ̄ξ

Pr α(1 + εθ̄)2
−

ε2θ̄ξ
Pr(1 + εθ̄)2

−
i(αv̄ − C)
Pr(1 + εθ̄)

− α2,

h4 = −
i ̄vξ

Pr α(1 + εθ̄)
, (8.123)

h5 = −
εiv̄ξξ (1 + εθ̄) − ε2iv̄ξ θ̄ξ

Pr α(1 + εθ̄)2
−

ε3θ̄ξ
Pr(1 + εθ̄)2

+
iR

α(1 + εθ̄)2
,

h6 = −
εiv̄ξ

Pr α(1 + εθ̄)
+

ε2

Pr(1 + εθ̄)
, h7 =

ε2α2 − εαiv̄ξ
Pr(1 + εθ̄)

+
2iRεθ̄ξ

α(1 + εθ̄)3
,

θ̄ = θ̄(ξ ) = θ0
θ∗ − (2ξ − 1), θ̄ξ = −1,

v̄ = v̄(ξ ) = R
2
{
1
ε2

f3(ε)(−4ξ
2 + 4ξ ) + 1

ε3
[f1(ε)(2ξ − 1) − f2(ε)

+2(1 − ε(2ξ − 1))(ln(1 − ε(2ξ − 1)) − 1)]},

v̄ξ = R{−
2
ε2

f3(ε)(2ξ − 1) +
1
ε3
[f1(ε) − 2ε ln(1 − ε(2ξ − 1))]},

v̄ξξ = R{−
4
ε2

f3(ε) +
4

ε(1 − ε(2ξ − 1))
} (8.124)

(f1(ε), f2(ε), and f3(ε) are determined from eqs. (8.94)). By virtue of replacement (8.122),
the boundary conditions (8.105) take the form

y1 = 0, y4 + εy6 = 0, y5 = 0 (ξ = 0, ξ = 1). (8.125)

Thus, we solve a system of the form y = A(ξ )y with the boundary conditions
specified at ξ = 0 and ξ = 1, By(0) = 0 and Dy(1) = 0, respectively. The matrices
B and D of dimension 3 × 6 coincide, and their elements have the following values:
b11 = d11 = b24 = d24 = b35 = d35 = 1, b26 = d26 = ε, while the remaining elements of
both matrices are equal to zero.

The solution is sought in the form

y =
3
∑
j=1 pjyj, (8.126)

where the coefficientspj are found from the systemDy(1) = 0, andy1,y2, andy3 are lin-
early independent vectors, such that y1(0) = (0,0,0,−ε,0, 1), y2(0) = (0, 1,0,0,0,0),
and y3(0) = (0,0, 1,0,0,0).
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Figure 8.12: Imaginary part of the complex decrement ImC versus the wave number α: a) Δθ = 10 °C;
b) Δθ = 100 °C.
To find the eigenvalue C, we have to use two initial approximations C0 and C1, which
are chosen from conditions (8.110) and (8.119).

We study stability of the layer with the solid walls for the silicon melt SiO3. The
following parameters values are used: ν = 2.65 ⋅ 10−3, χ = 0.49, β = 0.75 ⋅ 10−5, and
Pr = 5.41 ⋅ 10−3. The calculations are performed for the absolute value of the difference
in the wall temperatures |θ1 − θ2| equal to 10 and 100 degrees. This means that vari-
ation of the dimensionless parameter ε = β|θ1 − θ2|/2. The linear size of the layer is
chosen to satisfy the inequality η = (2a)3g/νχ < 1, which is the criterion of applicabil-
ity of the microconvection model considered [176]. The smallness of the parameter η
can be ensured by decreasing both the length scale and the acceleration due to grav-
ity g (e. g., under microgravity conditions, with g of the order of 10−2–10−3g0, where
g0 = 981 cm/s2 is the acceleration due to gravity near the Earth’s surface). In these
calculations, we consider g ∼ 10−3g0, i. e., 2l < 0.11 cm. For the values of a, β, χ, and ν
given above, we find the dependence of the imaginary (ImC) and real (ReC) parts on
the wave number α.

Figure 8.12 shows the curves ImC(α) for different values of ε and a. The results are
presented for a = 0.025 cm (dashed curve) and a = 0.05 cm (solid curve) for the wall
temperature differences Δθ = 10 °C (ε = 3.75 ⋅ 10−5) and Δθ = 100 °C (ε = 3.75 ⋅ 10−4)
(Figures 8.12a and b, respectively). The slower variation of the curves ImC(α) corre-
sponding to smaller values of the characteristic size a allows us to speak of a stabi-
lizing effect of viscosity. The values of ReC for the indicated values of the parameters
do not exceed 10−12. Thus, for all values of α, we have ImC < 0, i. e., the motion is
stable. We compared the results of solving the Oberbeck–Boussinesq problem with
the numerical solution of the spectral problem (8.104) for the case where the Grashof
number Gr = εηPr is finite at ε ≪ 1. The calculations are performed for the silicon
melt with the same physical parameters and θ2 − θ1 = 100 °C (see Figure 8.13).
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Figure 8.13: Complex decrement ImC vs. the wave number α: curves 1 and 2 refer to the microcon-
vection model (α1 = 1.14) and the Oberbeck–Boussinesq model (α∗ = 1.34), respectively.

Figure 8.14: Neutral curves for the Oberbeck–Boussinesq model (1) and for the microconvection
model (2).

As η increases, the curve ImC approaches the axis ImC = 0 and crosses this axis for
the first time at α = α1 = 1.14, and η1 = 2.32409 ⋅ 108. At α1 < α < 1.80 = α2, the curve
ImC takes positive values, then vanishes again at the point α2, and decreases with
increasing α. In this case, the Grashof number is Gr1 = εη1 Pr = 471.34 < Gr∗, where
Gr∗ = 495.6 (at α∗ = 1.34) is the critical Grashof number for the classical problem ([68],
p. 321). The layer thickness in this case is 2a = 33.7 cm for g = 10−3g0. Thus, themotion
becomes unstable in the microconvection model at smaller wave numbers, which is
apparently attributed to nonsolenoidity of the velocity field.

We also compare the neutral curves (Figure 8.14). Note that the minimum of
curve 2 (let us denote it by Gr1∗) is shifted to the left along the α axis, i. e., instabil-
ity occurs at smaller wave numbers, which is also related to nonsolenoidity of the
velocity field.
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Figure 8.15: Dependences of ImC vs. wave number α at ε = 0 (curve 1) and ε = 10−7 (curve 2).
It was shown in Section 8.1 that solutions (8.93) and (8.96) at ε → 0 both approximate
the equilibrium state of the layer (8.97) of a viscous heat-conducting fluid. Therefore,
it seems of interest to study stability of the quiescent state (8.97). For this purpose, it
is sufficient to set ε = 0 and Gr = 0 in problem (8.104), (8.105). We obtain the problem

(−iC + α2 Pr)U = Pr(U  − Q), U  + iαV = 0,
(−iC + α2 Pr)V = Pr(V  − iαQ); (8.127)

(−iC + α2)T − U = T, −1 < x < 1,
U = V = T = 0, |x| = 1. (8.128)

This spectral problem can be solved in the explicit form. The conclusion about
stability of the equilibrium state (8.97) can be easily made on the basis of the integral
identity valid for problem (8.127), (8.128):

( α2 − iC
Pr
)

1

∫−1(α2|U |2 + |V |2) dx +
1

∫−1(α2|U |2 + |V |2) dx = 0,
whence it follows that −iC is real and −iC < 0, which means stability.

Figure 8.15 shows the complex decrement ImC as a function of the wave num-
ber α. Thus, the spectrum of the problem of stability in themicroconvectionmodel ap-
proximates the corresponding spectrum for the viscous heat-conducting fluid model.
Curve 1 is obtained analytically for a viscous heat-conducting fluid (ε = 0), and curve 2
is obtained by means of numerical integration for the microconvection model (ε =
10−7).

The results of studying stability of the flow in the vertical layer in themicroconvec-
tion model differ from the results for a similar flow in the classical Oberbeck–Bous-
sinesq model. Here we always have oscillatory perturbations. If the Boussinesq pa-
rameter tends to zero (ε → 0) and the microconvection parameter η is of the order of
unity, the flow is always stable. In this case, it is similar to the equilibrium state in the
viscous heat-conducting fluid model, which is always stable, as demonstrated above.
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At large values of η and R = εη → R0 < ∞, as ε → 0, the values of the decay decre-
ments (or growth increments) of perturbations are close to the corresponding values
of ImC calculated for the Oberbeck–Boussinesq model.

The neutral curves are constructed, and the critical Grashof number Gr1∗ is found;
it turns out that Gr1∗ < Gr∗, where Gr∗ is the critical Grashof number for theOberbeck–
Boussinesq model.
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9 Numerical simulation of convective flows under
microgravity conditions

Heat and mass transfer phenomena in engineering and processing refer to the most
important forms of affecting the process medium in those applications where con-
vection should be taken into account. By studying velocity fields arising in various
devices, one can effectively take into account the temperature and species transport
phenomena anddetermine the necessary actions on themedium.One directionwhere
convection is studied in order to minimize its action on the production cycle is space
material science.

Note that the processes considered in this case occur under specific conditions
characterized by weak fields of mass forces and extremely low velocities of the flow
(about 1µm/s). In such situations, the influence of buoyancy forces becomes com-
mensurable with or much smaller than those forces that are usually neglected under
standard on-ground conditions. The range of problems to be studied is fairly wide,
owing to the existence of alternative fluid models that adequately describe the fluid
state under microgravity conditions and mechanisms of convective flow formation
that differ from buoyancy forces. The role of numerical simulations of these processes
is particularly important, because they allow the most complete modeling of physi-
cal experiments, which cannot be performed under on-ground conditions, while real
experiments in space laboratories are extremely expensive.

In this chapter, we consider some problems, numerical methods used to solve
them, and basic results.

9.1 Numerical methods used for calculations

The numerical methods of fluid flow calculations described in this chapter refer pri-
marily to the microconvection model.

Governing equations
Let the physical system to be considered be an isotropic Newtonian fluid consisting of
two nonreacting species located in an external force field.

Let x = (x1, x2, x3) ∈ R3 be the Cartesian coordinates, ϱk(x, t) be the mass density
(i. e., the mass of a unit volume) of the species k (k = 1, 2) at a point x at a time t,
and vk(x, t) be the velocity of the species k. The state of the system is describes by the
field of total density ϱ(x, t), velocity of the center of mass of the fluid element v(x, t) =
(v1, v2, v3), pressure p∗ = p∗(x, t), absolute temperature θ(x, t), and concentration of
mass of one species c(x, t):

ϱ = ϱ1 + ϱ2, v = ϱ1v1 + ϱ2v2
ϱ
, c = ϱ1

ϱ
.

https://doi.org/10.1515/9783110655469-009

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



258 | 9 Numerical simulation of convective flows under microgravity conditions

The species concentrations and temperature of themixture are assumed to change
weakly, and all physical properties of the mixture except for density are assumed to
be constant. The heat flux and the diffusion flux of the substance are linear functions
of ∇c and ∇θ, and the coefficients in these expressions are constant. In particular, the
density of the diffusion flux of the substance Jc is Jc = −kc(∇c − α∇θ), where the con-
stant coefficients kc and α characterize the diffusion and thermodiffusion (thus, kc/ϱ
is the coefficient of molecular diffusion). These assumptions allow us to consider the
basic properties andmechanisms of the influence of volume expansion of themedium
on formation of extremely weak convection in a simple and clear formulation.

Microconvective flows characterized by velocities of the order of 10µm/s and
smaller can be described by the model of essentially subsonic flows with arbitrary
variations of density. Thismodel is the limiting case of the full systemofNavier–Stokes
and heat-transfer equations with the Mach number and the parameter characterizing
hydrostatic compressibility tending to zero [120, 44].

In the subsonic flow approximation, the total pressure is presented as a sum of
the spatially uniform thermodynamic component P(t) and a component that takes
into account the dynamic and hydrostatic effects p(x, t); the latter is eliminated from
the state equation, thus ensuring “filtration” of acoustics. Our analysis is restricted to
situations in which the thermodynamic pressure P is constant, which corresponds to
an isothermally incompressible fluid. This situation is observed in some typical cases:
if the domain occupied by the fluid is open to the atmosphere, or if the total normal
heat flux through impermeable solid walls of a closed reservoir is equal to zero (in
particular, if the system is insulated). Under the assumptions made above, the system
of equations has the form [120]

dϱ
dt
+ ϱdiv v = 0, ϱdv

dt
= −∇p + μdivD + (ϱ − ϱ0)ge3,

ϱdc
dt
= kc(Δc + αΔθ), ϱcp

dθ
dt
= k(Δθ + αΔc),

ϱ = ϱ(θ, c), p = p − ϱ0ge3 ⋅ x,
Dij = (
𝜕vi
𝜕xj
+
𝜕vj
𝜕xi
−
2
3
δij div v).

(9.1)

Here, the coefficient kc characterizes molecular diffusion, α and α characterize
thermodiffusion and the Dufour effect, respectively, e3 is the unit vector co-directed
with the vector of acceleration due to external mass forces, D is the Cartesian tensor
with the components Dij, and δij is the unit tensor. The volume viscosity is assumed
to be equal to zero.

The state equation is chosen in the form of a linear dependence of the specific
volume of the fluid on variations of temperatures and concentrations of the chemical
species

ϱ = ϱ0(1 + βT + γC)
−1, T = θ − θ0, C = c − c0, (9.2)
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where θ0 and c0 are certain mean values of the temperature and concentration, ϱ0
is the mean density of the mixture, and β and γ are the constant temperature and
concentration coefficients of density.

As a result, the equations of convection of a nonisothermal binary mixture take
the form

div v = (βχ + γδα)ΔT + (γδ + βχα)ΔC,
dv
dt
= (1 + βT + γC){−∇p/ϱ0 + νΔv} − g(βT + γC),

dC
dt
= δ(1 + βT + γC)(ΔC + αΔT),

dT
dt
= χ(1 + βT + γC)(ΔT + αΔC),

(9.3)

where p = p − ϱ0gl ⋅ x − (μ/3)div v, χ = k/(ϱ0cp) is the thermal diffusivity, δ = kc/ϱ0
is the diffusion coefficient, and ν = μ/ϱ0 is the kinematic coefficient of viscosity.

System (9.2), (9.3) corresponds to the microconvection model (MM) for a single-
species fluid [177, 176] (see also [161]) derived from the axioms of mechanics of contin-
uous media by means of a priori assumptions. The MM extends the classical Boussi-
nesq model, which is usually used to describe natural convection.

Numerical methods
In plane cases, themethods of the numerical solution of system (9.2), (9.3) can be con-
ventionally divided into twomain groups. The first group involves the stream function
ψ and vorticity ω, and the original system of equations is transformed to a system in
the variables (ψ,ω). The second group includes methods based on using numerical
procedures of calculations in natural variables: velocity and pressure. The basic infor-
mation on numericalmethods can be found in [120, 160, 219, 195, 56, 5, 206, 79, 80, 82,
83, 78, 90, 220]. Numerical methods applicable to flows with the fluid considered in
the Oberbeck–Boussinesq model were described in detail in [160, 219, 195, 56, 5, 206].

Let us consider the use of these numerical methods by an example of studying
convection in a rectangular domain 0 ≤ x ≤ l, 0 ≤ y ≤ h bounded by solid walls
impermeable for the substance, with no-slip conditions for velocity.

It should be noted that the use of the MM requires the integral heat flux normal to
thedomainboundary tobe equal to zero [177]. Therefore, theheat fluxeson thedomain
boundaries have to be known in problems considered in theMMapproximation. In the
general case, the heat flux functions can depend on spatial coordinates and also on
time. For certainty, we assume that the vertical boundaries are thermally insulated,
and a periodic heat flux is prescribed on the horizontal boundaries.

The boundary conditions for species concentrations are determined by using the
expression for the diffusion flux of the substance J. We also assume that α = 0 (the
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Dufour effect is ignored). In this case, the boundary conditions can be presented as

y = 0, l : v = 0, Tx = 0, Cx = 0;
y = 0, h : v = 0, Ty = Θcos(Ωt), Cy = −αΘcos(Ωt). (9.4)

For numerical simulations in the variables (ψ,ω),we introduce a solenoidal vector
field (modified velocity)w and modified pressure q:

w = (w1,w2) = v − (βχ + γδα)∇T − γδ∇C; (9.5)

q = p

ϱ0
− (βχ + γδα)(ν − χ)ΔT − γδ(ν − δ)ΔC. (9.6)

Equations (9.2), (9.3) are written in the variables T (temperature), C (concentra-
tion), ω (vorticity), and ψ (stream function) for the fieldw as

ω = w2x − w1y ,
𝜕ψ
𝜕y
= w1,

𝜕ψ
𝜕x
= −w2.

The scale factor for temperature is assumed to be T∗ = Θh. The scale factors for length,
velocity, time, modified pressure, and concentration are

h, χ
h
,

h2

χ
, ϱ0

νχ
h2
,

β
γ
T∗. (9.7)

As a result, system (9.2), (9.3) in the dimensionless variables takes the form (0 ≤
x ≤ A, 0 ≤ y ≤ 1)

Δψ = −ω; (9.8)
ωt + w1ωx + w2ωy = KωΔω + Fω; (9.9)

Ct + w1Cx + w2Cy = KC(ΔC − sΔT) + FC ; (9.10)
Tt + w1Tx + w2Ty = KTΔT + FT ; (9.11)

Kω = Pr(1 + εT + εC), KC = Le(1 + εT + εC), KT = (1 + εT + εC);
Fω = − ε(1 − s Le){ωΔT + ∇ω ⋅ ∇T} − ε Le{ωΔC + ∇ω ⋅ ∇C}

− (ε − εs Le)2{TyΔTx − TxΔTy} − (ε Le)
2{CyΔCx − CxΔCy}

− ε(ε − εs Le){(CyΔTx − CxΔTy) + Le
2(TyΔCx − TxΔCy)}

+ εηPr{l1Ty − l2Tx} + εηPr{l1Cy − l2Cx} + ε Pr{qx(Ty + Cy)
− qy(Tx + Cx) + Δw2(Tx + Cx) − Δw1(Ty + Cy)};

FC = −ε Le|∇C|
2 − ε(1 − s Le)(∇C ⋅ ∇T),

FT = −ε(1 − s Le)|∇T|
2 − ε Le(∇C ⋅ ∇T),
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where A = l/h is the aspect ratio, the components of the normalized vector of accel-
eration due to external forces e3 are denoted by e1 and e2, ε = βT∗ is the Boussinesq
parameter, η = gh3/(νχ) is the microconvection parameter, Pr = ν/χ is the Prandtl
number, Le = δ/χ is the Lewis number, and s = −αγ/β is the separation ratio.

The approach that involves the vorticity ω and the stream function ψ has the ad-
vantage that there is no need to ensure solenoidity of the modified velocity vector,
because this condition is satisfied automatically. There are some difficulties, however,
in imposing the boundary condition for vorticity on the boundary subjected to no-slip
conditions, which is absent in the physical formulation of the problem.

There are many numerical methods for solving system (9.8)–(9.11). These meth-
ods differ in the choice of the difference scheme, type of the boundary conditions, and
method used to solve Poisson’s equation. Specific features of the numerical solution
of convective flow problems as applied to themicroconvectionmodel that involves the
stream function and vorticity variables were considered in [79, 78] for both rectangu-
lar geometry and for problems in annular domains with the use of cylindrical coordi-
nates. The majority of algorithms have separate procedures for solving eqs. (9.8)–(9.9)
and (9.10)–(9.11). This way of arrangement of calculations is also called the two-field
method ([220]).

When the modified velocity w, its stream function ψ, and vorticity ω are used, it
is necessary to impose new boundary conditions absent in the physical formulation
of the problem. Equation (9.5) defines the components of the modified velocity on the
boundary:

w1 = −ε(1 − s Le)Tx − ε LeCx , w2 = ε(1 − s Le)Ty + ε LeCy . (9.12)

Then the stream function is found by integrating the function (9.12) along the cor-
responding boundary. Thus, for the domain boundary y = const, the stream function
is determined by the equation

ψ =
x=l
∫
x=0 w2 dx.

Taking into account the boundary conditions (9.4), we obtain

ψ = xε cos(Ωt), (9.13)

where Ω is the dimensionless frequency of heat flux oscillations.
The vorticity on the domain boundary is determined by using the boundary con-

ditions for the tangential component of velocity. Note that this condition is actually an
approximate equivalent of the usual no-slip condition. A conventional approach to de-
riving the boundary condition for vorticity is expanding into a Taylor series along the
normal to the boundary. As an example, let us consider the condition for vorticity on
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the boundary y = 0. Assuming that Δy is small and that all necessary derivatives exist,
we expand the stream function at point 1 (point 1 is located at a distance Δy along the
y axis from point 0 located on the domain boundary) into the Taylor series:

ψ1 ≈ ψ0 + Δy(
𝜕ψ
𝜕y
)
0
+
Δy2

2
(
𝜕2ψ
𝜕y2
)
0
. (9.14)

The first derivative of the stream function in eq. (9.14) is determined fromeq. (9.12):

(
𝜕ψ
𝜕y
)
0
= −ε(1 − s Le)Tx − ε LeCx . (9.15)

Writing Poisson’s equation for the stream function, we find (taking into account
eq. (9.13) for calculating ψxx)

ω0 = −(
𝜕2ψ
𝜕x2
)
0
− (
𝜕2ψ
𝜕y2
)
0
= −(
𝜕2ψ
𝜕y2
)
0
. (9.16)

Substituting eqs. (9.15) and (9.16) into eq. (9.14), we obtain the Thom formula for
calculating the vorticity on the domain boundary:

ω0 = −
2
Δy2
[ψ1 − ψ0 + Δy(ε(1 − s Le)Tx + ε LeCx)].

The Tom formula has the first order of accuracy. Considering the next terms of the
series in the Taylor expansion (9.14), we find the expressions for the second order of
accuracy (e. g., theWoods formulas [80]). The properties of these and other boundary
conditions were studied in [90, 220] for the fluid model in the Boussinesq approxima-
tion. Particular attention should be paid to calculating the vorticity on the boundary,
because this procedure exerts a considerable effect on computational process stabil-
ity.

Performing generalization for the problem considered, we canwrite the boundary
conditions in the form

x = 0 : ψ = 0, ψx = ε(1 − s Le)Ty + ε LeCy , Tx = 0, Cx = 0;
x = A : ψ = Aε cos(Ωt), ψx = ε(1 − s Le)Ty + ε LeCy , Tx = 0, Cx = 0;

y = 0, 1 : ψ = xε cos(Ωt), ψy = −ε(1 − s Le)Tx − ε LeCx , (9.17)
Ty = cos(Ωt), Cy = s cos(Ωt).

Let us perform a numerical study of problem (9.8)–(9.11), (9.17), using the ap-
proach developed in [80]. Integration is performed by using a class of two-layer
implicit difference schemes of the method of alternating directions, which formally
has the second order of approximation.

Performing discretization in time with a constant time step τ, we seek for the so-
lution of the system of equations at each time step tn = nτ, where n = 1, 2, . . . is the
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ordinal number of the time layer. For eqs. (9.9)–(9.11), the calculation scheme is writ-
ten in the general form as

Φn+1/2 −Φn

τ/2
= [K̃Φx − w1Φ]

n
x + [K̃Φy − w2Φ]

n+1/2
y + F̄

n,

Φn+1 −Φn+1/2
τ/2

= [K̃Φx − w1Φ]
n+1
x + [K̃Φy − w2Φ]

n+1/2
y + F̄

n,

(9.18)

if Φ = ω, then F̄ = Fω − ε Pr(∇T ⋅ ∇ω + ∇C ⋅ ∇ω), K̃ = Kn
ω;

if Φ = C, then F̄ = FC − ε Le(∇T ⋅ ∇C + |∇C|2) − KCsΔT, K̃ = Kn
C;

finally, if Φ = T, then F̄ = FT − ε(∇T ⋅ ∇C + |∇T|2), K̃ = Kn
T .

To solve eq. (9.8), we use the following iterative scheme at each time step tn:

ψm+1/2 − ψm

τ/2
= λ̃[ψm+1/2

xx + ψ
m
yy + ω

n+1],
ψm+1 − ψm+1/2

τ/2
= λ̃[ψm+1/2

xx + ψ
m+1
yy + ω

n+1] (9.19)

(λ̃ is the iteration parameter, the choice of which affects the rate of convergence of the
iterative process).

For approximating the spatial variables involved into the system of equations, we
introduce a grid with the coordinates

xi = (i − 1)Δx, i = 1, 2, . . . , I ; Δx = A
I − 1
;

yj = (j − 1)Δy, j = 1, 2, . . . , J; Δy = 1
J − 1
.

The values of the variables at the point with the coordinates (xi, yj) at the time tn are
denoted by Φ(tn, xi, yj) = Φn

i,j. The spatial derivatives inside the computational do-
main are approximated during the expansion into the Taylor series by central finite-
difference analogs with the second order of accuracy. For example, we have

𝜕Φ
𝜕x
≈
Φi+1,j −Φi−1,j

2Δx
,
𝜕2Φ
𝜕x2
≈
Φi+1,j − 2Φi,j +Φi−1,j

Δx2
.

Nevertheless, themethod of approximation is determined to a large extent by spe-
cific features of calculations as well as by the properties of solutions.

Particular attention should be paid to the use of methods of approximations on
the computational domain boundary and on their implementation in the computa-
tional algorithm. Asymmetric second-order approximations are usually used for this
purpose. By calculating the derivatives at the computational domain boundary y = 0,
we obtain the expressions

𝜕Φ
𝜕x

y=0 ≈ −3Φ1,j + 4Φ2,j −Φ3,j
2Δx

,
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𝜕2Φ
𝜕x2
y=0 ≈ −7Φ1,j + 8Φ2,j −Φi,j

2Δx2
−

3
Δx

Φx

y=0.
The use of three-point finite-difference approximation of spatial variables leads to

a system of linear algebraic equations obtained from eqs. (9.18)–(9.19), which can be
presented in the form

−Ayi,jΦn+1/2
i,j−1 + Byi,jΦn+1/2

i,j − Cyi,jΦn+1/2
i,j+1 = Dy

i,j, i = 2, . . . , I − 1;

−Axi,jΦn+1
i−1,j + Bxi,jΦn+1

i,j − Cxi,jΦn+1
i+1,j = Dx

i,j, j = 2, . . . , J − 1,

and are solved by the method of consecutive elimination of unknowns with the use of
sweeping procedures [205].

The full computational procedure of the transition to the new time layer tn+1 is
arranged as follows.

1. The transition to the new time layer tn+1 begins from calculating the temperature
Tn+1 and concentration Cn+1 from eqs. (9.10)–(9.11) and the difference scheme (9.18).
The values of the modified velocity w corresponding to the time layer tn are used in
convective terms.

2. Based on the resultant values of Tn+1 and Cn+1, Fω is calculated. In order to deter-
mine the values of qx and qy involved into Fω, we use the momentum conservation
equation for the modified velocity, where all values are taken from the time layer tn

(for the sake of simplicity, the superscript n is omitted):

wt +w ⋅ ∇w + ε(1 − s Le){∇T ⋅ ∇w − ∇w ⋅ ∇T} + ε Le{∇C ⋅ ∇w − ∇w ⋅ ∇C}

+ (ε − εs Le)2{ΔT∇T − 1
2
∇|∇T|2} + (ε Le)2{ΔC∇C − 1

2
∇|∇C|2}

+ ε(ε − εs Le){ΔT∇C + Le2Δ∇T − Le∇(∇T ⋅ ∇C)}
= εηPr(T + C) + (1 + εT + εC)Pr(−∇q + Δw).

3. Based on the solution of eq. (9.9) and the difference scheme (9.18), the vorticityωn+1
is found. The values of ψn are used in the boundary conditions for ωn+1.
4. To solve eq. (9.8), an internal iterative process of calculating ψm+1 using the dif-
ference scheme (9.19) is used. After the iterations are finalized at m = M, the values
of ψ on the time layer n + 1 are assumed to be determined with prescribed accuracy
εψ: ψn+1 = ψM . The iterative process is assumed to converge if the convergence crite-
rion

max
i,j ψm+1

i,j − ψm
i,j < εrelψ max

i,j ψm+1
i,j 

or
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max
i,j ψm+1

i,j − ψm
i,j < εabsψ

(or someother criteria [219, 195, 56, 5, 206]) is satisfied.Here,m is the iterationnumber;
εabsψ and εrelψ are the prescribed absolute and relative errors of calculating ψm+1.
5. The accuracy of satisfying the boundary conditions for the vorticity εω is deter-
mined. For instance, for the horizontal boundary of the computational domain, we
obtain

εω = max
i
ωi,1(ψn+1

i,2 ) − ωi,1(ψn
i,2).

If the prescribed accuracy of calculating εω is not reached, the procedure returns to
step 3. Otherwise, satisfaction of the prescribed condition means the end of calculat-
ing the parameters on the time layer tn+1.

Let us now consider the main procedures of calculating convective flows of a
weakly compressible fluid with the use of the “natural” variables of velocity and
pressure. System (9.1), with allowance for eqs. (9.7), can be presented as

div v = ε(1 − s Le)ΔT + ε Le ΔC,
vt + v ⋅ ∇v = (1 + εT + εC)Pr{−∇p + divD} + εηPr l (T + C),

Ct + v ⋅ ∇C = (1 + εT + εC) Le(ΔC − sΔT),
Tt + v ⋅ ∇T = (1 + εT + εC)ΔT .

(9.20)

The main difficulty in numerical simulations with the use of the “natural” vari-
ables is to developamethodof determining thepressure thatwould ensure sufficiently
effective satisfaction of the continuity equation. One possible approach for pressure
calculations is the procedure that involves solving Poisson’s equation. This method
is most frequently used in studying incompressible fluid flows. For this class of prob-
lems, the method of markers and cells (MAC method) [94], which was further devel-
oped as the SMAC method [3], and their modification [96] were developed and are
successfully used. In particular, instead of solving Poisson’s equation, it was proposed
[96] to use an iterative procedure for determining pressure,which is equivalent to solv-
ing Poisson’s equation for pressure by the over-relaxation method. In [120], the use of
the SMAC method was considered for essentially subsonic flows. As applied to con-
vective flows within the framework of the microconvection model, this method was
used in [63].

It should be noted that numerical methods with the use of (p, v) offer appreciable
advantages over computational procedures based on the variables (ψ,ω): the major
advantages are the simplicity of imposing the boundary conditions and the possibility
of calculating three-dimensional flows.

The calculation of the parameters on the time layer tn+1 consists of the following
stages.
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1. The initial velocityvn+11 is calculated,which is further used in the iterative procedure
as the initial value:

vn+11 = v
n + τ[−vn ⋅ ∇vn+11 − (1 + εT

n + εCn)Pr∇pn

+ (1 + εTn + εCn)divDn+1
1 + εηPr l (T

n + Cn)].

2. The pressure p and refined velocity v are calculated by the following iterative pro-
cedure (m is the iteration number):

pn+1m = p
n+1
m−1 − γn(∇vn+1m − ε(1 − s Le)ΔT

n − ε Le ΔCn),

vn+1m+1 = vn+1m − τ(1 + εT
n + εCn)Pr(∇pn+1m − ∇p

n+1
m−1).

The iterations are repeated until the inequality |pn+1m − p
n+1
m−1| < εp is satisfied (εp is

the prescribed calculation accuracy). The initial value of pressure for the iterations is
pn+11 = p

n. The parameter γ responsible for the rate of process convergence is

γn = 1
τ Pr(1 + εTn + εCn)

(
2
Δx2
+

2
Δy2
)
−1
.

When the iterative procedure is finished, the velocity v andpressurep on the time layer
tn+1 are assumed to be finally determined.

3. The temperature and concentration on the new time layer are found from the equa-
tions

Tn+1 = Tn − τvn+1 ⋅ ∇Tn+1 + τ(1 + εTn + εTn)ΔTn+1,
Cn+1 = Cn − τvn+1 ⋅ ∇Cn+1 + τ(1 + εTn + εCn) Le(ΔCn+1 − sΔTk+1).

The computational procedure for calculating the initial velocity vn+11 as well as
the temperature Tn+1 and concentration Cn+1 involve the class of two-layer implicit
difference schemesof themethodof alternatingdirections; as awhole, they are similar
to those used for calculating equations in the variables (ψ,ω). A specific feature of
the method considered here, however, is the use of the MAC grid [94], which leads
to some specific features of the spatial approximation of the equations. A fragment
of the MAC grid is shown in Figure 9.1. The MAC grid consists of a system including
the basic nodes with the coordinates xi, yj and two types of auxiliary nodes: xi+1/2, yj
and xi, yj+1/2, which are shifted with respect to the system of the basic nodes by one
half of the grid step in the x and y directions, respectively. The functions of pressure,
temperature, and concentration are determined in the nodes of the basic grid.

Theauxiliary grids are introduced for the correspondingprojectionsof the velocity
vector on the coordinate axes: shifted along the x axis for the horizontal component
v1 and shifted along the y axis for the component v2 (see Figure 9.1, where the velocity
vector components are indicated by v(x, t) = (u, v); the same notation is used below

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.1 Numerical methods used for calculations | 267

Figure 9.1: Fragment of the MAC grid.

when analyzing the realization of the spatial derivatives and boundary conditions for
velocity).

The coordinates of the basic grid are determined by the equations

xi = (i − 1/2)Δx, i = 1, 2, . . . , I ; Δx = A
I
;

yj = (j − 1/2)Δy, j = 1, 2, . . . , J; Δy = 1
J
.

The grid is arranged so that the auxiliary nodes of the first and last lines coincide with
the corresponding boundaries of the computational domain.

If the MAC grid is used inside the computational domain, the spatial derivatives
are approximated in a standard manner by central differences with the second order
of accuracy. The major advantage of using the MAC grid is the use of a smaller grid
space in calculating the first derivatives of velocity:

𝜕u
𝜕x
≈
ui+1/2,j − ui−1/2,j

Δx
,
𝜕v
𝜕y
≈
vi,j+1/2 − vi,j−1/2

Δy
.

The velocity components at the cell center are approximated as

ui,j ≈ 0.5(ui+1/2,j + ui−1/2,j), vi,j ≈ 0.5(vi,j+1/2 + vi,j−1/2).
A specific feature of using the MAC grid is also observed in approximating the deriva-
tives at the domain boundary, where “dummy” cells outside the computational grid
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are used. The heat flux on the domain boundary is specified for the temperature ap-
proximation in the considered problems. Therefore, the temperature in the “dummy”
cells is determined by the relation T0,j = T1,j − fΔx, where f is the heat flux specified
on the boundary.

In calculating the values in the “dummy” cells, we use the known values of the
velocity components on the domain boundaries. For instance, let us determine the
values of ui+1/2,0 along the horizontal boundaries by using the no-slip condition:

ui+1/2,1/2 = 0 = (ui+1/2,1 + ui+1/2,0)/2 or ui+1/2,0 = −ui+1/2,1.
These methods and procedures of studying problems of fluid motion in the ap-

proximation of themicroconvectionmodel aswell as their details and specific features
are not the only possible and exhaustive ones. For example, such problems can also
be solved by using a numerical method with the variables (w, q), based on the SMAC
method [3] for an incompressible fluid.

9.2 Numerical study of unsteady microconvection in canonical
domains with solid boundaries

Unsteady regimes of convectionundermicrogravity conditions are studied in domains
shaped as a ring and as a rectangle extended in the gravity force direction.

The domain boundary is solid and impermeable, so that the no-slip condition is
satisfied for physical velocity. In the case of annular domains, the acceleration in-
duced by the gravity force produces time-periodic oscillations. Convection in an ex-
tended rectangle is studied for the case of thermally insulated short sides of the rect-
angle and a periodic heat flux through the long sides. The condition of the zero total
(integral) heat flux through the domain boundary is satisfied in this case.

Mathematical models of convective flows are based on initial-boundary problems
for the classical Oberbeck–Boussinesq equations (3.41)–(3.43) and equations ofmicro-
convection of an isothermally incompressible fluid (5.6)–(5.8). The solenoidity of the
modified velocity w in the microconvection model permits an analog of the stream
function for plane and axisymmetric problems to be introduced, as in the classical
equations. The method of alternating directions is used for the numerical solution of
equations written for the stream function and vorticity sought. The calculations are
performed for model fluids, such as glycerin, silicon, and glass melts, thus, for differ-
ent values of the Prandtl, Rayleigh, and Boussinesq numbers, and, simultaneously, in
the casewhere themicroconvection parameter is rather small. The temperature fields,
calculated by different mathematical models and used as one of the most important
characteristics of the convective process, do not exhibit significant differences. At the
same time, the influence of the nonsolenoidity of the velocity field in the microcon-
vection model could not fail to manifest itself. The calculations confirm the qualita-
tive and quantitative differences in flow characteristics calculated by the two models
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mentioned above. In particular, the values of velocity calculated by the new model
can exceed those predicted by the conventional model by three orders of magnitude.
Moreover, the flow structure, its topology, time evolution, and trajectories of motion
of fluid particles are also different.

To illustrate this, we present figures that show the flow topology: fields of veloci-
ties, streamlines, and isotherms. The trajectories of fluid particles are also shown.

1. Unsteady microconvection in an extended rectangle
Unsteady microconvection is studied in a domain 0 ≤ x ≤ x0, 0 ≤ y ≤ y0 with solid
impermeable boundaries. Two boundaries (x = 0 and x = x0) are thermally insulated,
and the two remaining boundaries are subjected to the condition of a periodic heat
flux. The gravity force is directed along the Ox axis. The classical convection and mi-
croconvection equations are considered in the variables ω–ψ (ω is the vorticity and
ψ is the stream function or modified stream function). The components of the physi-
cal or modified velocity are v1 and v2. The system of equations in the variables ψ–ω is
written as

v1 = ψy , v2 = −ψx ,

ωt + v1ωx + v2ωy = ν̃Δω + βgTy + Fω, (9.21)
Δψ = −ω, (9.22)

Tt + v1Tx + v2Ty = ̃χΔT + FT . (9.23)

The following relations are valid for the microconvection model:

ν̃ = (1 + βT)ν, ̃χ = (1 + βT)χ,
Fω = β(−Txqy + Tyqx) + νβ(Δv2Tx − Δv1Ty)

+ (−βχ)(ω ΔT + ∇T ⋅ ∇ω) + (−β2χ2)(ΔTx Ty − ΔTy Tx),

FT = −βχ|∇T|
2.

For the Oberbeck–Boussinesq model, we have, respectively,

ν̃ = ν, ̃χ = χ, Fω = 0, FT = 0.

The boundary conditions for the microconvection model are formulated in terms of
the stream function and have the form

x = 0 : ψ = 0, ψx = βχTy , Tx = 0; (9.24)
x = x0 : ψ = βχx0A sin γt, ψx = βχTy , Tx = 0; (9.25)
y = 0 : ψ = βχxA sin γt, ψy = −βχTx , Ty = A sin γt; (9.26)
y = 1 : ψ = βχxA sin γt, ψy = −βχTx , Ty = A sin γt. (9.27)
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The boundary conditions for the Oberbeck–Boussinesq model are

x = 0 : ψ = 0, ψx = 0, Tx = 0; (9.28)
x = x0 : ψ = 0, ψx = 0, Tx = 0; (9.29)
y = 0 : ψ = 0, ψy = 0, Ty = A sin γt; (9.30)
y = 1 : ψ = 0, ψy = 0, Ty = A sin γt. (9.31)

The initial conditions for both models are

t = 0 : ω = 0, ψ = 0, T = T0. (9.32)

Numerical implementation. Calculation scheme
Problems (9.21)–(9.27), (9.32) and (9.21)–(9.23), (9.28)–(9.32) are numerically stud-
ied with the use of a longitudinal-transverse finite-difference scheme, which is also
known as the method of alternating directions formally having the second order of
approximation [126, 207].

The calculation scheme for eqs. (9.21), (9.23) is written in the general form as

Φk+1/2 −Φk

0.5τ
= [ν̃Φx − v1Φ]

k
x + [ν̃Φy − v2Φ]

k+1/2
y + F̄

k ,

Φk+1 −Φk+1/2
0.5τ

= [ν̃Φx − v1Φ]
k+1
x + [ν̃Φy − v2Φ]

k+1/2
y + F̄

k .

(9.33)

For the microconvection model, we have the following variants: if Φ = ω, then
F̄ = βgTy + Fω − βν∇T ⋅ ∇ω; if Φ = T, then F̄ = FT − βχ|∇T|2.

For the Oberbeck–Boussinesq model, we assume the following options: if Φ = ω,
then F̄ = βgTy + Fω; if Φ = T, then F̄ = FT .

To solve Poisson’s equation (9.22), we use the following iterative scheme at each
time step tk = kτ (k = 1, 2, . . .):

ψs+1/2 − ψs

0.5τ
= λ̃[ψs+1/2

xx + ψ
s
yy + ω

k+1],
ψs+1 − ψs+1/2

0.5τ
= λ̃[ψs+1/2

xx + ψ
s+1
yy + ω

k+1] (9.34)

(λ̃ is the iteration parameter).
To implement the above-described calculation scheme in a standard manner, we

introduce the difference grid

xn = (n − 1)hx , n = 1, 2, . . . ,N1; hx = x0/N , N1 = N + 1;
ym = (m − 1)hy , m = 1, 2, . . . ,M1; hy = y0/M, M1 = M + 1.
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We use the notation Φk
n,m = Φ(tk , xn, ym). Then, the systems of linear algebraic equa-

tions (9.33), (9.34) are presented as

−an,mΦk+1/2
n,m−1 + bn,mΦk+1/2

n,m − cn,mΦk+1/2
n,m+1 = dn,m, n = 2, . . . ,N ;

−an,mΦk+1
n−1,m + bn,mΦk+1

n,m − cn,mΦk+1
n+1,m = dn,m, m = 2, . . . ,M,

and are solved by the sweepingmethod [205]. The following difference approximation
for terms of eqs. (9.33) is used:

[ν̃Φx − ψyΦ]x ≈ ̄ν̃n+1Φn+1,m −Φn,m
h2x

− ̄ν̃n
Φn,m −Φn−1,m

h2x

−
(ψy)n+1,mΦn+1,m − (ψy)n−1,mΦn−1,m

2hx
,

( ̄ν̃)n+1,m = 0.5(ν̃n+1,m + ν̃n,m).
The convective terms on the actual layer are approximated by central differences. The
first derivatives involved into F̄k inside the computational domain are approximated
in a standard manner by symmetric finite-difference analogs with the second order
of accuracy. The first derivatives on the computational domain boundary are also ap-
proximated by asymmetric finite-difference analogs of the second order [205, 207]. For
example, we have

Tx ≈
1
2hx
(4T2,m − T3,m − 3T1,m).

For approximation of the boundary conditions for temperature, which define the
heat flux (see eqs. (9.28)–(9.31)), it is possible to use additionally the heat-transfer
equations (9.23). For instance, the following relation is valid for approximation of the
boundary condition for temperature at y = 0:

(1 +
h2y

2χτ/2
)Tk+1/2n,1 = Tk+1/2n,2 − hy A sin γtk+1/2 + h2y

2χτ/2
Tkn,1.

To impose the boundary conditions for vorticity, we derive conditions of the Thom or
Woods type [195]. For the microconvection model, these conditions at y = 0 have the
form

ωk+1/2
n,1 = − 2h2y (ψk

n,2 − ψk
n,1 + hy(βχTk+1x )),

ωk+1/2
n,1 + 12ωk+1/2

n,2 = − 3h2y (ψk
n,2 − ψk

n,1 + hy(βχTk+1x ));
(9.35)

for the Oberbeck–Boussinesq model, respectively, we have

ωk+1/2
n,1 = − 2h2yψk

n,2 and ωk+1/2
n,1 + 12ωk+1/2

n,2 = − 3h2yψk
n,2. (9.36)
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The general scheme of solving the problem consists of the following stages:

1. The transition to the new time layer tk+1 begins with the calculation of the tem-
perature Tk+1, and only after that is the vorticity ωk+1 found from system (9.33).
Sweeping in the y direction is performed on the intermediate layer (k + 1/2), and
sweeping in the x direction is performed on the basic layer (k + 1). (The starting
values are determined by the initial data T := T0 = const, ω := 0, ψ := 0.)

2. On each time layer k, an internal iterative process of calculatingψs+1 by the system
(9.34) with an alternated sequence of sweeping is introduced. After the iterations
are finalized at s = S, the values of ψ on the time layer (k + 1) (ψk+1 = ψS) are
assumed to be determined with prescribed accuracy εψ.

The iterative process is assumed to converge if the convergence criterion of the form
[195, 219]

max
n,m ψs+1

n,m − ψs
n,m < εψmax

n,m ψs+1
n,m (9.37)

is satisfied (s is the iteration number and εψ is the prescribed accuracy of calculat-
ing ψs+1).

The accuracy of satisfaction of the boundary conditions for vorticity is deter-
mined, for example, for conditions (9.35), (9.36) on the basis of the value of ε̄ [195, 219]:

ε̄ = max
n
ωn,1(ψk+1

n,2 ) − ωn,1(ψk
n,2). (9.38)

Results of the numerical study of microconvection in an extended rectangle
The calculations are performed on a 200 × 20 grid for a domain 0 ≤ x ≤ x0; 0 ≤ y ≤ y0
at x0 = 10 cm and y0 = 1 cm.

The stability of the algorithm and the order of convergence are checked in a
numerical experiment on a sequence of grids (i = 1: 200 × 20, i = 2: 400 × 40,
i = 3: 800 × 80; εψ = 10−4); the behavior of the quantity ri is noted, which charac-
terizes the motion intensity maxn,m |ψn,m| for each grid with the number i or which
is the integral norm ‖ψ‖ = √Σn,mψ2

n,mhxhy. The experimentally determined order of
convergence r and the approximately determined relative error ϵ are calculated in the
following manner, in accordance with the Runge rule (see, e. g., [48, 103, 152]):

r =
ln(|r2 − r1|/|r3 − r2|)

ln 2
, ϵ = 1

1 − (1/2)r
⋅


r1 − r2
r2


. (9.39)

If the main quantity being observed is the motion intensity, we obtain r ≈ 1.8 and
ϵ̄ ≈ 3% (relative error in percent). If the main quantity being observed is the integral
L2-norm of the stream function, then we have r ≈ 2 and ϵ̄ ≈ 3%.

The basic values of parameters in the boundary conditions for temperature are
assumed to be identical: T0 = 35, A = 70, γ = 2 or γ = 0.5. The basic parameters of the
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Table 9.1: Basic parameters.

Pr Re η ε ν χ g β

N1 0.75 0.014 1 0.01 0.15 0.2 0.03 0.0003
N2 0.01 2.1 0.4 0.02 0.015 1.5 0.009 0.0006
N3 0.1 0.21 0.4 0.02 0.15 1.5 0.09 0.0006
N4 (sil) 0.0054 0.049 0.77 2.6 ⋅ 10−5 0.00265 0.49 0.001 7.5 ⋅ 10−6
problemare listed in Table 9.1 (the dimensional quantities are given in the centimeter–
gram–second system [226]).

Thus, the calculations are performed for several model fluids (N1, N2, N3, and
N4) under the action ofmicroaccelerations reachable on an orbital station, i. e., under
the condition of a small value of the parameter η, and for different values of g. The
models differ in terms of the Prandtl number Pr and Reynolds number Re = v∗l/ν.
The characteristic velocity is taken to be the characteristic rate of volume expansion
v∗ = εχ/l (ε = βT∗ is the Boussinesq number), and l = y0 = 1. The value t∗ = l/v∗ can be
naturally chosen as the characteristic time of the process. It should be noted that the
name “model fluid” is rather conventional. Model N4 is the silicon melt, while model
N1 is air (in accordance with the values of the basic parameters) frequently used for
real experiments on convection (see [27]).

The calculations performed using the two alternative models demonstrate con-
vincing differences in the behavior of the trajectories of microconvective motion in an
extended rectangle. The trajectories of motion of fluid particles are reconstructed as
solutions of the Cauchy problem for the system of ordinary differential equations

dx
dt
= v1,

dy
dt
= v2; x(0) = x̄, y(0) = ȳ. (9.40)

The calculations are performed by an improved Euler method with the second order
of accuracy [103]. Here, v1 and v2 are the components of physical velocity.

Figures 9.2–9.7 show the fluid particle trajectories up to the time instant t = 240 s.
Figure 9.3 shows the particle trajectories at the time t = 60 s. The axes give the x and y
values multiplied by 104.

Figure 9.2 (model N3; initial coordinates (5;0.1); calculation parameters Pr = 0.1,
ε = 0.02, η = 0.4, and γ = 2), Figure 9.4 (model N1; initial coordinates (5;0.6); cal-
culation parameters Pr = 0.75, ε = 0.01, η = 1, and γ = 2), and Figure 9.5 (model
N4 (sil); initial coordinates (5;0.6); calculation parameters Pr = 0.0054, ε = 0.000026,
η = 0.77, and γ = 2) illustrate the qualitative differences in the particle trajectories for
models N1, N2, N3, and N4; the particles in these calculations were located at the
same point at the initial time.

Figure 9.3 (model N3; initial coordinates (5;0.1); calculation parameters Pr = 0.1,
ε = 0.02, η = 0.4, and γ = 2) shows the trajectories of a particle initially located at the
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Figure 9.2:Model N3; calculation parameters Pr = 0.1, ε = 0.02, and η = 0.4. Trajectories: γ = 2;
initial coordinates (5;0.1) (Oberbeck–Boussinesq model: segments of straight lines parallel to Ox).
point (5;0.1) to illustrate the influence of the amplitude coefficient A in the thermal
mode on the boundary: the greater the coefficient A, the more intense the motion.

The trajectories calculated by the Oberbeck–Boussinesq model fill segments of
straight lines parallel toOx; they are shown as bold curves. The trajectories calculated
by the microconvection model obviously have a more complicated structure.

Thus, in addition to the differences caused by the use of different mathematical
models and to the differences in the behavior of the trajectories as functions of the an-
gular frequency γ and amplitude coefficientA, there are also differences in trajectories
of particles initially located at different points: see Figure 9.2 (modelN3; initial coordi-
nates (5;0.1); calculation parameters Pr = 0.1, ε = 0.02, η = 0.4, and γ = 2), Figure 9.6
(model N3; initial coordinates (9.75;0.5); calculation parameters Pr = 0.1, ε = 0.02,
η = 0.4, and γ = 2), and Figure 9.7 (model N3; initial coordinates (0.25;0.1); calcula-
tion parameters Pr = 0.1, ε = 0.02, η = 0.4, γ = 2). For a point located in the vicinity
of the thermally insulated short side, Figures 9.6 and 9.7 display qualitatively similar
trajectories, but there are significant differences in the amplitudes, which are caused
by the difference in the order of velocities, in the direction of motion (see Figure 9.7a)
and in the angle of inclination of the curves (see Figure 9.7b).

In addition to the qualitative difference in trajectories predicted by differentmath-
ematical models, there are also quantitative differences in velocities. These results are
summarized in Table 9.2, togetherwith the characteristic velocities and the timeofmo-
tion for differentmodels. The velocities calculatedby themicroconvectionmodel (MM)
are greater by one or two orders of magnitude than those predicted by the Oberbeck–
Boussinesq model (OBM). The values of the characteristic velocities are consistent
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Figure 9.3: (a) Model N3; calculation parameters Pr = 0.1, ε = 0.02, η = 0.4, and γ = 2; initial coordi-
nates (5;0.1). Trajectories at A = 1 (a), 35 (b), and 70 (c) (Oberbeck–Boussinesq model: segments of
straight lines parallel to Ox).

Table 9.2: Absolute velocities (maximum orders): (MM/OBM).

t∗ v∗ |v1| |v2|
N1 476 0.0021 10−4/10−4 10−3/10−5
N2 31 0.0315 10−3/10−4 10−2/10−4
N3 31 0.0315 10−2/10−3 10−2/10−4
N3 (γ = 0.5) 31 0.0315 10−3/10−4 10−2/10−4
N4 (sil) 7774 0.000129 10−5/10−7 10−4/10−7
with the calculated values. Note that the characteristic times of the process require
the calculations to be continued (at least, for models N1 and N4) for obtaining the
real flow pattern and further observations of the trajectories.
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Figure 9.4:Model N1; calculation parameters Pr = 0.75, ε = 0.01, η = 1, and γ = 2; initial coordinates(5;0.6). Particle trajectories (Oberbeck–Boussinesq model: segment of a straight line parallel to
Ox).

Figure 9.5:Model N4 (sil); calculation parameters Pr = 0.0054, ε = 0.000026, η = 0.77, and γ = 2;
initial coordinates (5;0.6). Particle trajectories (Oberbeck–Boussinesq model: segment of a straight
line parallel to Ox).

The temperature fields calculated by both models have almost identical qualitative
and quantitative characteristics (Table 9.3). The isotherms have the form typical for
convection and are almost parallel to the long sides of the rectangle, which confirms
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Figure 9.6:Model N3; calculation parameters Pr = 0.1, ε = 0.02, η = 0.4, and γ = 2; initial co-
ordinates (9.75;0.5). Particle trajectories calculated by the microconvection model (a) and by the
Oberbeck–Boussinesq model (b).

Table 9.3: Change in temperature.

T (MM) T (OBM)

N1 11.02–59.83 10.65–59.30
N2 11.27–60.69 10.24–59.76
N3 11.27–60.70 10.24–59.76
N3 (γ = 0.5) 15.75–54.52 15.63–54.37
N4 (sil) 7.62–62.41 7.61–62.39
the assumption about the dominating change in temperature in the Oy direction and
a minor change in the Ox direction.

2. Unsteady microconvection in an annular domain
Let us consider unsteady microconvection in an annular domain R1 ≤ r ≤ R2, 0 ≤
θ < 2π under the conditions of a variable gravity field and time-dependent thermal
mode on the boundary. The gravity force is directed along the Oy axis. Let us write
the Oberbeck–Boussinesq equations (3.41)–(3.43) and the microconvection equations
(5.6)–(5.8) in polar coordinates for the new sought functions (stream function and vor-
ticity). These equations have the general form

ωt = ν̃Δω + fω, (9.41)
Δψ = −ω, (9.42)
Tt = ̃χΔT + fT , (9.43)

where the functions fω and fT , the coefficients ν̃ and ̃χ, and the initial and boundary
conditions are specified for both models as follows.
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Figure 9.7:Model N3; calculation parameters Pr = 0.1, ε = 0.02, η = 0.4, and γ = 2; initial coor-
dinates (0.25;0.1). Particle trajectories calculated by (a) the microconvection model and (b) by the
Oberbeck–Boussinesq model.

For the microconvection model, we have

fω = −(v
𝜕ω
𝜕r
+
u
r
𝜕ω
𝜕θ
)

+ β[ 1
r
𝜕T
𝜕θ
𝜕q
𝜕r
−
1
r
𝜕T
𝜕r
𝜕q
𝜕θ
+ ν(𝜕T
𝜕r
(Δu − u

r2
) −

1
r
𝜕T
𝜕θ
(Δv − v

r2
))]

+ β(gθ
𝜕T
𝜕r
−
gr
r
𝜕T
𝜕θ
) − βχ(ωΔT + 𝜕T

𝜕r
𝜕ω
𝜕r
+

1
r2
𝜕T
𝜕θ
𝜕ω
𝜕θ
)

− β2χ2[ 1
r
(−
𝜕T
𝜕r
𝜕ΔT
𝜕θ
+
𝜕T
𝜕θ
𝜕ΔT
𝜕r
)],

fT = −(v
𝜕T
𝜕r
+
u
r
𝜕T
𝜕θ
) − βχ|∇T|2.

Here, gr = g0 cos(γt) sin θ, gθ = g0 cos(γt) cos θ, ν̃ = (1 + βT)ν, ̃χ = (1 + βT)χ. The
components of the modified velocity W = (v, u) are related to the modified stream
function ψ as

v = 1
r
𝜕ψ
𝜕θ
, u = −𝜕ψ

𝜕r
.

The initial conditions at t = 0 are determined by the state at rest:

ω = 0, ψ = 0, T = T0.

Let us consider two types of the boundary conditions corresponding to two types
of the temperature regime:

(a) Case I = 0: heat flux through the external boundary of the domain and thermal
insulation of the internal boundary;
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(b) Case I = 1: vice versa — heat flux through the internal boundary of the domain
and thermal insulation of the external boundary.

Thus, the boundary conditions for the microconvection model are imposed in the fol-
lowing manner.
– For case I = 0, we have

ψ = 0, 𝜕ψ
𝜕r
= βχR−11 𝜕T𝜕θ , 𝜕T𝜕r = 0, r = R1,

ψ = −βχR2H(t) sin θ,
𝜕ψ
𝜕r
= βχR−12 𝜕T𝜕θ , 𝜕T𝜕r = H(t) cos θ, r = R2.

– For case I = 1, we have

ψ = −βχR1H(t) sin θ,
𝜕ψ
𝜕r
= βχR−11 𝜕T𝜕θ , 𝜕T𝜕r = H(t) cos θ, r = R1,

ψ = 0, 𝜕ψ
𝜕r
= βχR−12 𝜕T𝜕θ , 𝜕T𝜕r = 0, r = R2.

For theOberbeck–Boussinesqmodel, the right-hand sides of eqs. (9.41) and (9.43) have
the form

fω = −(v
𝜕ω
𝜕r
+
u
r
𝜕ω
𝜕θ
) + β(gθ

𝜕T
𝜕r
−
gr
r
𝜕T
𝜕θ
),

fT = −(v
𝜕T
𝜕r
+
u
r
𝜕T
𝜕θ
).

As previously, we have gr = g0 cos(γt) sin θ and gθ = g0 cos(γt) cos θ. In addition, we
also have ν̃ = ν and ̃χ = χ. The components of the physical velocity V = (v, u) are
related to the stream function ψ as

v = 1
r
𝜕ψ
𝜕θ
, u = −𝜕ψ

𝜕r
.

The initial conditions at t = 0 are also determined by the state at rest:

ω = 0, ψ = 0, T = T0.

The boundary conditions in these two cases are imposed as follows.
– For case I = 0, we have

ψ = 0, 𝜕ψ
𝜕r
= 0, 𝜕T
𝜕r
= 0, r = R1,

ψ = 0, 𝜕ψ
𝜕r
= 0, 𝜕T
𝜕r
= H(t) cos θ, r = R2.

– For case I = 1, we have

ψ = 0, 𝜕ψ
𝜕r
= 0, 𝜕T
𝜕r
= H(t) cos θ, r = R1,

ψ = 0, 𝜕ψ
𝜕r
= 0, 𝜕T
𝜕r
= 0, r = R2.
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In eqs. (9.41)–(9.43), we use the conventional notations for the differential operators
in polar coordinates, namely,

Δ = 1
r
𝜕
𝜕r
r 𝜕
𝜕r
+

1
r2
𝜕2

𝜕θ2
, ∇ = (

𝜕
𝜕r
,
1
r
𝜕
𝜕θ
)

(see the remark at the end of this section on imposing the boundary conditions for
doubly connected domains).

Numerical implementation. Calculation scheme
The problem is solved numerically by the method of calculating convective flows in
doubly connected domains,whichwas tested in [229]. The longitudinal-transverse dif-
ference scheme for eqs. (9.41)–(9.43) is written in the form

Uk+1/2 − Uk

0.5τ
= λ(Λ1U

k + Λ2U
k+1/2) + Fk ,

Uk+1 − Uk+1/2
0.5τ

= λ(Λ1U
k+1 + Λ2U

k+1/2) + Fk .
Here, Uk = U(tk), U = (ωT); Λ1 and Λ2 are the difference operators approximating,
respectively, the differential operators

1
r
𝜕
𝜕r

r 𝜕
𝜕r
,

1
r2
𝜕2

𝜕θ2
.

Here, λ is determined for vorticity and temperature calculations by ν̃ and ̃χ, respec-
tively. The convective terms are calculated on the lower time layer and are included
into Fk .

To solve Poisson’s equation (9.42), we use an iterative scheme with an alternated
sequence of sweeping at each time step:

ψs+1/2 − ψk

0.5τ
= λs(Λ1ψ

s+1/2 + Λ2ψ
s + ωk+1),

ψs+1 − ψs+1/2
0.5τ

= λs(Λ1ψ
s+1/2 + Λ2ψ

s+1 + ωk+1)
(λs is the iteration parameter). At the end of the iteration cycle, we assume that
ψk+1 = ψs+1. The Tom difference boundary conditions relate the functions ω and
ψ on the boundaries r = R1 and r = R2. The iterative process is terminated when
condition (9.37) is satisfied.

To find Tk+1/2, ωk+1/2, and ψs+1, we use cyclic sweeping. The difference equations
for ωk+1 and ψs+1/2 are solved with the use of the so-called sweeping with parameters
[229, 230], which implies that the following presentations are valid:
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ωn,m = Pn,mωN+1,m + Qn,mω1,m + Rn,m,
ψn,m = ψ̄n,mωN+1,m + ̄ψ̄n,mω1,m + ̄̄ψ̄n,m

(the parameters here are the unknown values of vorticity on the domain boundaries).
Details of implementation of this method of sweeping with parameters can be found
in [229].

To implement the numerical algorithm in the computational domain, we intro-
duce the difference grid

rn = R1 + (n − 1)h, n = 1, . . . ,N + 1, h = (R2 − R1)/N ;
θm = (m − 1)α, m = 1, . . . ,M + 1, α = 2π/M;

tk = kτ, k = 1, 2, . . .

Results of the numerical study of microconvection in annular domains
Convective flows in a variable field of microaccelerations g = g0 cos(γt), g0 =
10−3 cm/s2, γ = 10−1 1/s are calculated on 21 × 21, 41 × 41, and 81 × 81 grids in the
annular domain R1 ≤ r ≤ R2, 0 ≤ θ < 2π at R1 = 0.1 cm and R2 = 1.1 cm for silicon,
glycerin, and glass. The values of the Prandtl number Pr, Rayleigh number Ra, and
microconvection parameter η are listed in Table 9.4. The heat flux through the external
or internal boundary of the domain is

𝜕T
𝜕r
= H(t) cos θ, H(t) = (T1 − T0)

t
t1
+ T0, t ≤ t1; H(t) = T1, t > t1,

where

t1 = 60 c, T0 = 35 °C, T1 = 70 °C.

The calculations reveal qualitative differences in the flow patterns calculated by
twodifferentmodels. First of all, these differences aremanifested in the flow structure,
its topology, and time evolution.

Figures 9.8 and9.10 show the velocity fields and isotherms for silicon at the instant
of time t = 120 s. The flow topology is also typical for glycerin and glass. Figures 9.8
and 9.9 demonstrate the field of velocities in the silicon melt at the time t = 120 s

Table 9.4: Basic parameters of the problem.

Substance Pr Ra η

Silicon 10−1 10−4 1
Glycerin 104 10−3 10−1
Glass 104 10−6 10−2
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Figure 9.8: Case I = 0 (heat flux through the external boundary of the domain and thermal insulation
of the internal boundary); velocity field: (a) Oberbeck–Boussinesq model and (b) microconvection
model.

Figure 9.9: Case I = 1 (heat flux through the internal boundary of the domain and thermal insulation
of the external boundary); velocity field: (a) Oberbeck–Boussinesq model and (b) microconvection
model.

for η = 1, and Figure 9.10 shows the behavior of isotherms for these conditions. Fig-
ure 9.8a (Oberbeck–Boussinesq model, I = 0) shows the field of velocities, which has
the structure of rotational motion with axial symmetry; it should be noted that the
external and internal fluid layers rotate in different directions. There are two small
symmetric vortices between these layers: in the upper and lower half-circles for sili-
con and in the right and left half-circles for glycerin and glass. The flow structure in
Figure 9.9a (Oberbeck–Boussinesq model, I = 1) has four vortices. The domains oc-
cupied by the upper and lower vortices are more extended for the case with silicon.
For glycerin, the domains occupied by the right and left vortices are more extended.
Figure 9.8b (microconvection model, I = 0) clearly shows the flow structure with two
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Figure 9.10: Families of isotherms. Oberbeck–Boussinesq model and microconvection model;
(a) case I = 0 and (b) case I = 1.
vortices. The vortices located in the upper and lower half-planes rotate in the clock-
wise and counterclockwise directions, respectively.

The field of velocities in Figure 9.9b (microconvection model, I = 1) has two vor-
tices, as in the case with I = 0, but with the opposite direction. The calculations re-
vealed only some quantitative differences in the temperature fields obtained by two
different models.

Qualitatively, there are two types of families of isotherms corresponding to two
different types of the boundary conditions (Figure 9.10a: I = 0 and Figure 9.10b: I = 1).
The qualitative characteristics, namely, the orders of velocities, are listed for all fluids
and two models in Table 9.5 (t = 120 s). Here, the Oberbeck–Boussinesq and micro-
convection models are denoted by OBM and MM, respectively.

Remark 9.1. In the case of a doubly connected domain, the condition ψ = c(t) is im-
posed on one of the boundary components, for example r = R1. Here, c(t) is an un-
known function of time which is determined from a nonlocal condition, as a conse-
quence of the unique value of pressure. This condition has the form

∮
r=R1 𝜕ω𝜕n dl = 0

Table 9.5: Absolute values of velocities (cm/s).

Substance OBM MM

Silicon 10−8–10−6 10−5–10−4
Glycerin 10−9–10−8 10−6–10−5
Glass 10−13–10−10 10−7–10−6
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(see, e. g., [217, 221, 228]). In the case of axisymmetric ring considered here, ψ is as-
sumed to be equal to zero on both boundaries, which is possible by virtue of flow
symmetry. When the algorithm was tested in [229], it was verified by calculation that
c(t) = 0.

9.3 Numerical study of steady microconvection in domains with
free boundaries

Steady two-dimensional gravitational-thermal convection in a semicircle and in an
annular domainwith a free boundary is numerically studiedwith the use of twomath-
ematical models. One boundary is assumed to be solid and impermeable. In the half-
circle, the solid (fixed) boundary is the half-circumference. In the annular domain,
the solid boundary is one of the circumferences. The other boundary is assumed to
be free and subject to a thermocapillary effect. Under microgravity conditions, and
in the case where the parameter responsible for free surface deformation by thermo-
capillary forces (capillary number) is rather small, we consider nondeformable free
boundaries, which are approximately determined as capillary equilibrium surfaces.
Following [140, 241], we determine the correction to the free boundary from the dy-
namic condition on it. Both problems with free boundaries are model problems; in
physical experiments, thermocapillary convection in a half-circle can be more proba-
bly obtained. Numerical experiments are performed for different values of the Prandtl
number Pr, Marangoni number M, Rayleigh number Ra, and with due allowance for
the drastically changing temperature regime on the boundary in the case of the half-
circle. It is known from theoretical investigations that allowance for nonsolenoidity in
modeling steady convection yields corrections of the order of the Boussinesq number
[178].

In this section we perform a numerical study of the structure of convective flows
andanalyze situations inwhich the flow topology canbe substantially different. These
situations involve additional modeling of large gradients in the thermal regime on the
boundary. Quantitative differences in the values of velocities here are less pronounced
than in the unsteady case. The calculations are performed by the method approved
in studying free convection and microconvection of the fluid in domains with fixed
boundaries. The property of velocity vector solenoidity allows us to introduce a stream
function for the Oberbeck–Boussinesq equations and an analog of the stream func-
tion for the microconvection equations. The second sought function or vorticity is the
physical rather than modified vorticity for the microconvection model as well.

1. Microconvection in a semicircle with a free boundary
Wewrite the classical Oberbeck–Boussinesq equations in the dimensionless form, us-
ing the characteristic size l, characteristic time of the process t∗, characteristic veloc-
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ity v∗ (so that l = v∗t∗), and characteristic pressure p∗ (p∗ = ϱ0v2∗) for normalization.
Then, system (3.41)–(3.43) in the dimensionless form becomes

divV = 0, (9.44)

Vt + V ⋅ ∇V = −∇p
 + 1

Re
ΔV − Ra

Re2 Pr
g0 T , (9.45)

Tt + V ⋅ ∇T =
1

Re Pr
ΔT . (9.46)

Here, p is used to denote the modified pressure

p = p − η
Re2 Pr

g0 ⋅ x,

Re is the Reynolds number, and g0 = g/g (the gravity force is directed opposite to the
Oy axis). The characteristic quantities for the thermocapillary convection model can
be chosen ([241]) as

l = R, v∗ = σTT∗/μ, p∗ = σTT∗/R.
Here we assume that the dimensional coefficient of surface tension depends on tem-
perature as σ = σ0 − σT (T − T0).

The system of microconvection equations (5.6)–(5.8) converted to the dimension-
less form is rewritten as

divW = 0, (9.47)

Wt +W ⋅ ∇W +
ε

RePr
(∇T ⋅ ∇W − ∇W ⋅ ∇T) + ε2

Re2 Pr2
(ΔT ⋅ ∇T − ∇|∇T|2)

= (1 + εT)(−∇q + 1
Re

ΔW) − Ra
Re2 Pr

g0 T , (9.48)

Tt +W ⋅ ∇T +
ε

RePr
|∇T|2 = (1 + εT) 1

Re Pr
ΔT . (9.49)

Here, q is the modified pressure

q = p − (1 − ν
ν
−

1
Pr
)

ε
Re2 Pr

ΔT ,

ν is the second viscosity, and W = V − ε
RePr∇T is the dimensionless modified

solenoidal velocity.
To formulate the problem, we use the conventional notations for polar coordi-

nates: radial coordinate r and angular coordinate φ. If ω is the vorticity and ψ is the
stream function or modified stream function, then v = 1/r 𝜕ψ/𝜕φ is the radial compo-
nent of velocity and u = −𝜕ψ/𝜕r is the tangential component of velocity.
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Steady gravitational-thermocapillary convection is studied in the semicircle

0 ≤ r ≤ R < +∞, π ≤ φ ≤ 2π

with the free boundary, which is the diameter of the semicircle

φ = π, φ = 2π, 0 ≤ r ≤ R.

The semicircumference r = R, π ≤ φ ≤ 2π is a solid impermeable boundary with a
heat flux through it.

The equations of convection for both models (9.44)–(9.46) and (9.47)–(9.49) can
be rewritten in terms of ψ and ω.

Formulation of the problem. Classical Oberbeck–Boussinesq model in terms of ψ
and ω (dimensionless form, polar coordinates)
Equations (9.44)–(9.46) considered in the steady case are written in the polar coordi-
nates in the form

Δω − Re(v 𝜕ω
𝜕r
+
u
r
𝜕ω
𝜕φ
) +

Ra
M
(
𝜕T
𝜕r

cosφ − 1
r
𝜕T
𝜕φ

sinφ) = 0, (9.50)

Δψ + ω = 0, (9.51)

ΔT −M(v 𝜕T
𝜕r
+
u
r
𝜕T
𝜕φ
) = 0, (9.52)

where M = RePr is the Marangoni number.
To realize rapidly changing temperature fields, wemodel a local singularity of the

heat flux both through the free boundary and through the solid boundary. Thus, we
consider three types of the boundary conditions for both models. We conventionally
denote them as case II (singularity of the Gaussian type in the thermal regime on the
free boundary), case III (local singularity in the thermal regime on the solid bound-
ary), and basic case I with no singularities.

In addition, we can also consider different variations of the temperature regime
on the solid boundary, which is reflected in the boundary condition for temperature,
namely,

𝜕T
𝜕r
= TG cos γφ, γ = {1, 2, 4}. (9.53)

– Case I (basic case without singularities in the temperature regime on the bound-
ary): The basic case of the boundary conditions is characterized by the absence
of “spikes” on the solid and free boundaries. Then, the boundary conditions at
0 ≤ r ≤ R, φ = π, φ = 2π for the stream function and vorticity are presented as

ψ = 0, ω =
{
{
{

𝜕T
𝜕r , φ = 2π,

−𝜕T𝜕r , φ = π.
(9.54)
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The boundary condition for temperature characterizes the state of thermal insu-
lation of the free boundary:

𝜕T
𝜕φ
= 0. (9.55)

The boundary conditions for the stream function and vorticity on the solid bound-
ary r = R are natural consequences of the no-slip condition,

ψ = 0, 𝜕ψ
𝜕r
= 0, (9.56)

and the boundary conditions for temperature are considered in the form of
eqs. (9.53).

– Case II (singularity in the temperature regime on the free boundary): The bound-
ary conditions for the Oberbeck–Boussinesq equations on the free boundary 0 ≤
r ≤ R, φ = π, φ = 2π can be presented in the form of eqs. (9.54), and the boundary
conditions for temperature are modeled as

𝜕T
𝜕φ
= {

0, φ = π, φ = 2π (r ̸= R∗),
R∗TB, φ = 2π (r = R∗). (9.57)

The boundary conditions for the stream function and vorticity on the solid bound-
ary r = R are natural consequences of the no-slip condition and have the form of
eqs. (9.56). The boundary conditions for temperature are imposed in accordance
with eqs. (9.53).

– Case III (singularity in the temperature regime on the solid boundary): In the case
of a local singularity (“spike”) on the solid boundary and under the assumption
of a thermally insulated free boundary, the boundary conditions at 0 ≤ r ≤ R,
φ = π, φ = 2π for the stream function and vorticity can be presented in the form
of eqs. (9.54). Equation (9.55) is valid for temperature.
The boundary conditions for the stream function and vorticity on the solid
boundary r = R are consequences of the no-slip condition and have the form
of eqs. (9.56); for temperature, we impose the conditions

𝜕T
𝜕r
= {

TG cosφ, φ ̸= φ∗,
T̄G cosφ, φ = φ∗. (9.58)

The boundary conditions on the free boundary are the kinematic and dynamic condi-
tions on the free boundaries written in terms of ψ and ω (see, e. g., [180, 171]).

Thus, for eqs. (9.50)–(9.52), we can consider the boundary-value problems (9.53)–
(9.56) (for Case I), (9.53), (9.54), (9.56), (9.57) (for Case II), and (9.54), (9.55), (9.56), (9.58)
(for Case III).
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Formulation of the problem. Microconvection model in terms of ψ and ω
(dimensionless form, polar coordinates)
The dimensionless form of the microconvection equations (9.47)–(9.49) in terms of ψ
and ω in the polar coordinates is

[1 + εT]Δω − Re(v 𝜕ω
𝜕r
+
u
r
𝜕ω
𝜕φ
)

+ ε{ 1
r
𝜕T
𝜕φ
𝜕q̄
𝜕r
−
1
r
𝜕T
𝜕r
𝜕q̄
𝜕φ
+ [
𝜕T
𝜕r
(Δu − u

r2
) −

1
r
𝜕T
𝜕φ
(Δv − v

r2
)]}

+
Ra
M
(
𝜕T
𝜕r

cosφ − 1
r
𝜕T
𝜕φ

sinφ) − ε
Pr
(ωΔT + 𝜕T

𝜕r
𝜕ω
𝜕r
+

1
r2
𝜕T
𝜕φ
𝜕ω
𝜕φ
)

−
ε2

MPr
(−

1
r
𝜕T
𝜕r
𝜕ΔT
𝜕φ
+
1
r
𝜕T
𝜕φ
𝜕ΔT
𝜕r
) = 0, (9.59)

Δψ + ω = 0, (9.60)

[1 + εT]ΔT −M(v 𝜕T
𝜕r
+
u
r
𝜕T
𝜕φ
) − ε|∇T|2 = 0. (9.61)

Here, q̄ = Re q.
To impose the boundary conditions, we again classify the possible cases of spec-

ifying singularities for heat fluxes on the boundaries.
– Case I (basic case without singularities in the temperature regime): In the basic

case, the boundary conditions on the free boundary 0 ≤ r ≤ R, φ = π, φ = 2π
have the forms of eqs. (9.54), (9.55) for the stream function and vorticity. The con-
dition on the solid boundary r = R follows from the no-slip condition for physical
velocity, so that

ψ = −R ε
M

TG
1
γ
sin γφ, 𝜕ψ

𝜕r
=
1
R

ε
M
𝜕T
𝜕φ
. (9.62)

For the temperature on the solid boundary, we consider the condition for the heat
flux (9.53).

– Case II (singularity in the temperature regime on the free boundary): The bound-
ary conditions at 0 ≤ r ≤ R,φ = π,φ = 2π have the formof eqs. (9.54) for the stream
function and vorticity; condition (9.57) is valid for temperature. Conditions (9.62)
on the solid boundary r = R are a consequence of the no-slip condition. The heat
flux (9.53) is set as the condition for temperature.

– Case III (singularity in the temperature regime on the solid boundary): The
boundary conditions on the free boundary 0 ≤ r ≤ R, φ = π, φ = 2π have the
form of eqs. (9.54) and (9.55). The conditions on the solid boundary r = R are a
consequence of the no-slip condition, i. e.,

ψ =
{{
{{
{

−R ε
M

TG sinφ, φ ̸= φ∗,
−R ε

M
T̄G sinφ, φ = φ∗, (9.63)
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𝜕ψ
𝜕r
=
1
R

ε
M
𝜕T
𝜕φ
, (9.64)

and a “spike” on the solid boundary is modeled by imposing the condition

𝜕T
𝜕r
= {

TG cosφ, φ ̸= φ∗,
T̄G cosφ, φ = φ∗. (9.65)

For eqs. (9.59)–(9.61), we can consider the boundary-value problems (9.53)–(9.55),
(9.62) (for Case I), (9.53), (9.54), (9.57), (9.62) (for Case II), and (9.54), (9.55), (9.63),
(9.64), (9.65) (for Case III).

Numerical study. Calculation scheme
The posed problems for systems (9.50)–(9.52) and (9.59)–(9.61) are numerically stud-
ied by a time-dependent method, using the longitudinal-transverse finite-difference
scheme [207] with the second order of approximation. The convective terms are taken
from the previous iteration layer and are approximated upwind. Thus, the first-order
scheme is actually used. Themethod proposed for this studywas previously approved
on the basis of test problems [229] and calculations of unsteady convection (see, e. g.,
[79, 80]).

For eqs. (9.50), (9.52) or (9.59), (9.61), the calculation scheme is written in the gen-
eral form as

Uk+1/2 − Uk

0.5τ
= λ̃U [Λ1U

k + Λ2U
k+1/2] + λUFk ,

Uk+1 − Uk+1/2
0.5τ

= λ̃U [Λ1U
k+1 + Λ2U

k+1/2] + λUFk , (9.66)

where U = (ωT), U
k = U(tk); Λ1 and Λ2 are the difference operators approximating the

differential operators

1
r
𝜕
𝜕r
r 𝜕
𝜕r
,

1
r2
𝜕2

𝜕φ2 ,

respectively. In addition, we have λ̃U = λU for the Oberbeck–Boussinesq model and
λ̃U = λU (1 + εTk) for the microconvection model. Here, λU is the iteration parameter,
and Fk includes all terms in the left-hand sides of eqs. (9.50), (9.52), (9.59), (9.61), be-
ginning from the second one, which were calculated on the previous layer.

To solve Poisson’s equations (9.51) or (9.60), we use the following iterative scheme
at each iteration step tk = kτ (k = 1, 2, . . .):

ψs+1/2 − ψs

0.5τ
= λψ(Λ1ψ

s+1/2 + Λ2ψ
s + ωk+1),

ψs+1 − ψs+1/2
0.5τ

= λψ(Λ1ψ
s+1/2 + Λ2ψ

s+1 + ωk+1) (9.67)

(λψ is the iteration parameter).
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To implement the above-described scheme, we introduce the difference grid

rn = (n − 1)h, (n = 1, . . . ,N + 1), h = R/N ;
φm = (m − 1)α, (m = m̄, . . . ,M + 1), α = 2π/M, (m̄α = π).

We use the notations fn,m = f (rn and φm). In this case, we use the conventional pre-
sentations for the difference analog of differential operations:

Λ1f =
1
rn
[rn+1/2 fn+1,m − fn,mh2

− rn−1/2 fn,m − fn−1,mh2
],

Λ2f =
fn,m+1 − 2fn,m + fn,m−1

r2nα2
.

Approximation of the convective terms is based on the idea of upwind approximation

− [v 𝜕f
𝜕r
+
u
r
𝜕f
𝜕φ
] ∼ −[vn,m fn+1,m − fn−1,m2h

+
un,m
rn

fn,m+1 − fn,m−1
2α

]

+ |v|n,m fn+1,m − 2fn,m + fn−1,m2h
+


u
r

n,m fn,m+1 − 2fn,m + fn,m−12α
.

The first derivatives on the computational domain boundary are approximated by
asymmetric finite-difference analogs.

To impose the boundary condition for vorticity on the solid boundary, we derive
conditionsof theTomtype [195, 219]with theuseof theTaylor expansionandPoisson’s
equation considered on the boundary, for instance,

ωN+1,m = − 2h2ψN ,m,
ωN+1,m = − 2h2ψN ,m − ε

M
𝜕T
𝜕φ
(
1
R2
+

2
hR
) −

ε
M
TG sin γφm(

1
R
γ + 2R

h2
γ).

These conditions are written for the classical model and microconvection model, re-
spectively. For Case III, we must replace TG by T̄G for φ = φ∗.

The general scheme of solving the problem consists of the following stages:
1. the external iterative process consists of parallel calculations of the functionsTk+1

andωk+1 by eqs. (9.66). The sweeping is performed in the direction φ on the inter-
mediate layer (k + 1/2) and in the direction r on the basic layer (k + 1). The starting
values are determined by the state at rest T := T0 = const, ω := 0, ψ := 0;

2. on each iteration layer (k + 1), we introduce an internal iterative process of cal-
culatingψs+1 from systems (9.67) with an alternated sequence of sweeping. When
the iterations are finalized at s = S, the values of ψ on the layer (k + 1) (ψk+1 = ψS)
are assumed to be determined with specified accuracy εψ.

The iterative processes are assumed to converge if the convergence criterion of the
form (9.37) is satisfied:

max
n,m f i+1n,m − f in,m < εf max

n,m f i+1n,m
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(i is the iteration number and εf is the prescribed accuracy of calculating the grid func-
tion f i+1 ([195, 219])).

It should be noted that the external iterative process can also be organized so that
an iterative process for ω is introduced on each iteration layer in calculating the tem-
perature T l+1. The steady regimes calculated by the two methods were found to coin-
cide, and the first method was chosen as the basic technique.

In addition to verifying satisfaction of the convergence criterion for the iterative
processes, the steady flow is considered to be established if at least K external itera-
tions are performed and

max
n,m f K+kn,m − f Kn,m < εf .

We use an additional check of satisfaction of the boundary conditions in terms of
the value of ε̄ (9.38):

ε̄ = max
m
ωN+1,m(ψk+1

N ,m) − ωN+1,m(ψk
N ,m).

Because obtaining a steady solution is a rather delicate issue, we also checked
reaching the steady regime by the method of perturbing the solution. A return to the
initial state was observed. Stability of the algorithm was also checked in a computa-
tional experiment on a sequence of grids (N2 ×

N
2 , N ×N, 2N × 2N), and the behavior of

the quantity characterizing the motion intensity maxn,m |f k+1n,m | was observed.
We should note that, if necessary, the issues associated with the correction of the

free boundary and flow stability can be solved, in accordance with [140, 241]. IfH(x) is
the deviation of the free boundary from the position y = 0, −R ≤ x ≤ R, then the
equation for this correction can be written in the form

δP − 2
Re
𝜕v2
𝜕y
= −

σ
CaRe

H, H(±R) = 0,
R

∫−R Hdx = 0.
Here the primemeans the derivativewith respect to x, v2 is expressed via the radial and
tangential velocity components v and u, δP is the deviation of pressure from the equi-
librium level, σ is the surface tension, and Ca is the capillary number (Ca = ϱ0v∗ν/σ0,
which is equal to σTT∗/σ0 if the characteristic quantities are chosen in accordance
with [241]).

Results of the numerical study of microconvection in a semicircle with a free
boundary
We solved the posed problems for model fluids, such as glycerin and glass and silicon
melts, which were conventionally called Glyc1, Glyc3, and Sil, under the action of mi-
croaccelerations reached on the orbital station, by using both the conventional model
and the microconvectionmodel. The basic parameters of the problem can be found in
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Table 9.6: Parameters of free boundary problem.

Pr M Re Ra η ε

Glyc1 104 3 ⋅ 102 3 ⋅ 10−2 1.5 ⋅ 10−3 10−1 1.2 ⋅ 10−2
Glyc3 104 1 10−4 1.5 ⋅ 10−3 10−1 1.5 ⋅ 10−2
Sil 4 ⋅ 10−3 1 2.5 ⋅ 102 2 ⋅ 10−4 1 2 ⋅ 10−4

Figure 9.11: Case I; γ = 4; Oberbeck–Boussinesq model and microconvection model, (a) flow struc-
ture for Glyc1; (b) family of isotherms for Glyc1; (c) flow structure for Sil.

Table 9.6. The calculations were performed on the following grids: (i = 1) : 41 × 41,
(i = 2) : 81 × 81, and (i = 3) : 161 × 161. The initial data were determined by the semi-
circle radius R = 1 cm. The parameters in the boundary conditions had the following
values: TB = 70, TB = 150, T0 = 35, TG = 35, T̄G = ATG, A = 10, R∗ = 0.45 cm, and
φ∗ = 1.7π. The necessary dimensionless parameters of the problem are summarized
in Table 9.6.

The results for Case I (basic case) with γ = 1 calculated by two alternative models
demonstrate only minor quantitative differences and an almost identical qualitative
structure of the flow. The steady solution is the structure with one vortex for the fluids
Glyc3 and Sil and the structure with “two small vortices in one” for the fluid Glyc1.

During the analysis of Case I, stability of the algorithmand the experimental order
of convergence r were checked in a computational experiment by the Runge rule (see
[103, 152, 48]) on a sequence of grids. The quantity ri characterizing the motion inten-
sity for each grid with the number i, or maxn,m |ψn,m|, was calculated. The calculations
were performed for the model fluid Glyc1: r1 = 0.0345, r2 = 0.0303, and r3 = 0.0291.
The experimental order of convergence r and the relative error calculated by eqs. (9.39)
were found to be r ≈ 1.8 and ϵ̄ ≈ 5% (relative error in percent).

In the case with γ = 2, the calculations were performed for Glyc1, Glyc3, and Sil;
the flow structure includes two vortices, and the field of isotherms is identical for both
mathematical models.

For the case with γ = 4, Figure 9.11 shows the flow topology and the temperature
field. The calculations performed for Glyc1 reveal the flow structure with four vortices
(Figure 9.11a). Figure 9.11c shows the flow structure with two vortices for the fluid Sil.
A typical pattern of isotherms is shown inFigure 9.11b. The orders of the dimensionless
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Figure 9.12: Case II; γ = 1; Oberbeck–Boussinesq model and microconvection model; (a) flow struc-
ture for Sil; (b) flow structure for Glyc3; (c) family of isotherms for Glyc3.

Figure 9.13: Case II; Sil; γ = 4; (a) flow structure; (b) microconvection model and (c) Oberbeck–
Boussinesq model; family of isotherms: Oberbeck–Boussinesq model and microconvection
model (b).

velocities are ∼ 10−2 to 100 inside the domain and ∼ 10−1 on the free surface for Glyc1;
∼ 10−1 to 100 inside the domain and ∼ 100 on the free boundary for Sil.

Thus, for the basic Case I, there are no qualitative differences in the flow topology
predicted by two alternative mathematical models.

Case II includes additional modeling of a rapidly changing temperature field by
generating a local singularity of the heat flux on the free boundary.

In the case with γ = 1, a rather weak singularity of the Gaussian type at TB = 70
is modeled. The differences in results are observed for different fluids. Thus, for Sil,
we obtained the flow structure with two vortices of the type “two vortices in one,”
where the small internal vortex is located near the singular point (see Figure 9.12a). For
Glyc3, bothmathematical models demonstrate the flow structure with one vortex (Fig-
ure 9.12b). The temperature field calculated forGlyc3 is shown in Figure 9.12c. The tem-
perature for Glyc3 changes in the interval from 21 to 50 in the Oberbeck–Boussinesq
model and from 18.5 to 55 in the microconvection model. The change in temperature
for Sil occurs in the interval [25, 45] in the Oberbeck–Boussinesq model and in the in-
terval [21, 50] in themicroconvectionmodel. Theorders of thedimensionless velocities
are ∼ 10−1 to 101 inside the domain and ∼ 101 on the free boundary for Glyc3; ∼ 10−1 to
100 inside the domain and ∼ 100 on the free boundary for Sil.

In the casewith γ = 4, themost pronounced differences in the results predicted by
different mathematical models are observed for the fluid Sil with the singularity TB =
150. Figure 9.13a shows the flow pattern calculated by the microconvection model.
A rather complicated flow structure with two vortices is observed. The large vortex on
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the right is the vortex of the “two-vortices-in-one” type. Figure 9.13c shows the flow
topology predicted by the Oberbeck–Boussinesq model. In this case, the flow con-
tains two vortices of different sizes, which have approximately identical intensity. The
isotherms are plotted in Figure 9.13b. The temperature fields are almost identical. The
change in temperature occurs in the interval from26 to 45 in theOberbeck–Boussinesq
model and from 26 to 49 in the microconvection model. The orders of the dimension-
less velocities are ∼ 10−2 to 100 inside the domain and ∼ 100 on the free boundary. The
quantitative characteristics obtained by two mathematical models are almost identi-
cal. The values of the velocities differ approximately by 15%.

In considering this Case II, we can conclude that there are certain differences in
the results for steady problems predicted by two mathematical models of convection.
Modeling of the local singularity of the Gaussian type should be accompanied by a
variable temperature regime on the solid boundary (at γ > 1). The quantitative dif-
ferences in the flow characteristics calculated by two alternative models are not so
significant as in unsteady problems.

The calculations for Case III with a singularity of the heat flux on the solid bound-
ary were performed only for γ = 1 and φ = 1.7π. There are practically no qualitative
differences in the flow structures calculated by twomathematicalmodels. It should be
noted that the microconvection model predicts a more intense character of the flow
structure with two vortices (“two vortices in one”) for the fluid Glyc1. For the fluid
Glyc3, the flow structure with one vortex is obtained in both models, but the vortex
center is shifted to the right, toward the “spike” point.

2. Microconvection in an annular domain with a free boundary
Steady gravitational-thermocapillary convection is studied in an annular domain 0 <
R1 ≤ r ≤ R2 < +∞, 0 ≤ φ < 2π for two cases:
– case I = 0: the internal circumference r = R1 is the solid boundary with the heat

flux through it; the external circumference r = R2 is the free boundary, which is
assumed to be thermally insulated;

– case I = 1: the external circumference r = R2 is the solid surface with the heat
flux through it; the internal circumference r = R1 is the free boundary, which is
assumed to be thermally insulated.

The classical Oberbeck–Boussinesq equations of convection and the equations of
microconvection of an isothermally incompressible fluid (see eqs. (9.44)–(9.46) and
(9.47)–(9.49)) are considered in the dimensionless form in polar coordinates. The
characteristic size, velocity, temperature, and pressure are chosen in the form R2 −R1,
σTT∗/μ, T∗, and σTT∗/l, respectively, where σT is the temperature coefficient of sur-
face tension andT∗ is the characteristic difference in temperatures (the choice of these
characteristic quantities is explained, e. g., in [241]).
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Formulation of the problem
For the classical Oberbeck–Boussinesqmodel, the stream functionψ, vorticityω, and
temperature T in the polar coordinates (r,φ) satisfy system (9.50)–(9.52).

The boundary conditions are formulated in accordance with the cases of consid-
ering the domain boundaries.

The boundary conditions in case I = 0 have the following form:
1) on the internal boundary of the ring, which is the solid boundary,

r = R1 : ψ = 0, 𝜕ψ
𝜕r
= 0, 𝜕T
𝜕r
= H cosφ, (H = const), (9.68)

2) on the external boundary of the ring, which is the free boundary,

r = R2 : ψ = 0, R2ω + 2
𝜕ψ
𝜕r
= −
𝜕T
𝜕φ
,
𝜕T
𝜕r
= 0. (9.69)

The boundary conditions in case I = 1 have the following form:
1) on the internal boundary of the ring (free boundary),

r = R1 : ψ = 0, R1ω + 2
𝜕ψ
𝜕r
=
𝜕T
𝜕φ
,
𝜕T
𝜕r
= 0; (9.70)

2) on the external boundary of the ring (solid boundary),

r = R2 : ψ = 0, 𝜕ψ
𝜕r
= 0, 𝜕T
𝜕r
= H cosφ. (9.71)

Thus, for system (9.50)–(9.52), we consider the boundary-value problems (9.68), (9.69)
or (9.70), (9.71) in cases I = 0 or I = 1, respectively.

For the microconvection model, the dimensionless equations for the functions
ψ, ω, and T in the polar coordinates are written in the form of eqs. (9.59)–(9.61).

The boundary conditions in the microconvection model in case I = 0 have the
following form:
1) on the internal boundary of the ring, which is the solid boundary,

r = R1 : ψ = −R1
ε
M
H sinφ,

𝜕ψ
𝜕r
=

ε
M

1
R1
𝜕T
𝜕φ
,
𝜕T
𝜕r
= H cosφ, (H = const); (9.72)

2) on the external boundary of the ring, which is the free boundary,

r = R2 : ψ = 0, ω + 2
R2
𝜕ψ
𝜕r
=
𝜕T
𝜕φ
(2 ε

M
1
R22
−

1
R2
),
𝜕T
𝜕r
= 0. (9.73)

The boundary conditions in case I = 1 have the following form:
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1) on the internal boundary of the ring (free boundary),

r = R1 : ψ = 0, ω + 2
R1
𝜕ψ
𝜕r
=
𝜕T
𝜕φ
(2 ε

M
1
R21
−

1
R1
),
𝜕T
𝜕r
= 0; (9.74)

2) on the external boundary of the ring (solid boundary),

r = R2 : ψ = −R2
ε
M
H sinφ, 𝜕ψ

𝜕r
=

ε
M

1
R2
𝜕T
𝜕φ
,
𝜕T
𝜕r
= H cosφ. (9.75)

For system (9.59)–(9.61), we consider the boundary-value problems (9.72), (9.73) or
(9.74), (9.75) for cases I = 0 or I = 1, respectively.

Corrections to the free boundary can be calculated in the following manner.
Let h(φ) be the deviation of the free surface from r = R1 (or r = R2); then, at
Ca = σTT∗/σ0 → 0 and Ra/(Mε) → 0, the condition of the balance of normal stresses
on the internal (or external) boundary yields

δP − 2𝜕v
𝜕r
= ±{−(T − T0)

1
R
−

1
Ca
(h + h)

R2
} −

Ra
Mε

R sinφ, R = R1(R2),

where the prime means differentiation with respect to the variable φ, and the quan-
tity δP is the deviation of pressure from the equilibrium level δP0 = 1/(CaR) at σT = 0
and g = 0.

Scheme of the numerical study
For implementation of the numerical algorithm, we introduce a difference grid of the
form

rn = R1 + (n − 1)h, n = 1, . . . ,N + 1, h = (R2 − R1)/N ,
φm = (m − 1)α, m = 1, . . . ,M + 1, α = 2π/M.

The boundary-value problems (9.68), (9.69) and (9.70), (9.71) for systems (9.50)–
(9.52) and problems (9.72), (9.73) and (9.74), (9.75) for systems (9.59)–(9.61) are numer-
ically studied by a time-dependent method with the use of a longitudinal-transverse
finite-difference scheme similar to (9.66), (9.67). For calculating the temperature
(eqs. (9.52) and (9.61)) or vorticity (eqs. (9.50) and (9.59)), the calculation scheme
is written in the general form as

Uk+1/2 − Uk

0.5τ
= λ̃U [Λ1U

k + Λ2U
k+1/2] + λUFk ,

Uk+1 − Uk+1/2
0.5τ

= λ̃U [Λ1U
k+1 + Λ2U

k+1/2] + λUFk ,
where the coefficient λ̃U is equal to the iteration parameter λU in the Oberbeck–
Boussinesq model and to the iteration parameter multiplied by (1 + εTk) in the micro-
convection model.
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Figure 9.14: Case I = 0 (the internal circumference is the solid boundary, and the external circumfer-
ence is the free boundary).

To solve Poisson’s equations (9.51) or (9.60), we use an iterative scheme similar to that
described above at each iteration step tk = kτ (k = 1, 2, . . .):

ψs+1/2 − ψs

0.5τ
= λψ(Λ1ψ

s+1/2 + Λ2ψ
s + ωk+1),

ψs+1 − ψs+1/2
0.5τ

= λψ(Λ1ψ
s+1/2 + Λ2ψ

s+1 + ωk+1).
This scheme has the iteration parameter λψ and the alternated sequence of sweeping.

We use cyclic sweeping to find Tk+1/2,ωk+1/2, andψs+1, and sweeping with param-
eters [230, 229] to find ωk+1 and ψs+1/2.
Results of the numerical study of microconvection in a ring with a free boundary
The calculations are performed for silicon, glycerin, and glass on 21 × 21, 41 × 41, and
81×81 grids. The internal radius is assumed to be R1 = 0.1 cm (in some cases, we used
R1 = 0.5 cm), and the external radius is assumed to be R2 = 1.1 cm.

Figures 9.14 and 9.15 show the velocity fields (a) and the families of isotherms (b)
for a glycerin-typefluid at Pr = 104 andM = 3⋅102 (Re = 3⋅10−2). Theflowstructures and
temperature fields presented in these figures are typical for both the microconvection
model and for the Oberbeck–Boussinesq model. The calculations show that the ve-
locities predicted by the microconvection model are approximately 20% higher than
the velocities calculated by the Oberbeck–Boussinesq model (the absolute values are
compared). For glass-type fluids, and especially for silicon, however, the contours
of the isotherms are less deformed and resemble isotherms obtained in calculations
of convective flows in domains with fixed boundaries. Figures 9.16 and 9.17 demon-
strate the velocity fields (a) and isotherms (b) for silicon, which are typical for both
models with the values of the parameters Pr = 4 ⋅ 10−3 and M = 1 (Re = 2.5 ⋅ 102).
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Figure 9.15: Case I = 1 (the external circumference is the solid boundary, and the internal circumfer-
ence is the free boundary).

Figure 9.16: Case I = 0 (the internal circumference is the solid boundary, and the external circumfer-
ence is the free boundary).

It is seen from these figures that the vortex centers are shifted to the right in this
case.

The dimensionless parameters of the problem are listed in Table 9.7. If the cap-
illary number Ca changes in the interval 10−5 ≤ Ca ≤ 10−2 and σT ∼ 10−1 g/(s2⋅K)
(see, e. g., [180]), there are only some quantitative differences in flow characteristics
calculated by two models.

In all cases, the calculations predict the velocity field structure with two vortices,
with a certain displacement of the vortex centers to the left in the cases with glycerin.

Somequalitative andquantitative differences between the calculations performed
by two alternative models of convection are manifested at 10−5 ≤ Ca ≤ 10−4 and σT ∼
10−3 and 10−4 g/(s2⋅K). The parameters used in the numerical simulations are listed in
Table 9.8.
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Figure 9.17: Case I = 1 (the external circumference is the solid boundary, and the internal circumfer-
ence is the free boundary).

Figures 9.18 and 9.19 show the velocity fields for Pr = 104 andM = 1 (Re = 10−4), which
were calculated by two models. For glycerin with the boundary conditions at I = 0 (if
the external circumference is the free boundary), the microconvection model predicts
the structure with two vortices in each semi-circular domain; in contrast to the results
predicted by the Oberbeck–Boussinesq model, the vortex centers are shifted toward
the internal boundary. At I = 1 (Figure 9.19) (if the external circumference is the solid
boundary), both models predict a qualitatively identical flow pattern, and there are
some quantitative differences, regardless of the internal radius of the computational
domain.

It should be noted that the problem of convection stability in domains with free
boundaries is a rather interesting one (see, e. g., [140]). The results calculated in [140]

Table 9.7: Basic parameters.

Substance Pr M Re Ra η ε

Glycerin 104 3 ⋅ 102 3 ⋅ 10−2 1.5 ⋅ 10−3 10−1 1.5 ⋅ 10−2
Glycerin 104 1 10−4 0.5 ⋅ 10−5 10−1 0.5 ⋅ 10−4
Glass 104 10 10−3 0.5 ⋅ 10−6 10−2 4.5 ⋅ 10−5
Silicon 4 ⋅ 10−3 1 2.5 ⋅ 102 0.3 ⋅ 10−7 1 0.3 ⋅ 10−7
Table 9.8: Basic parameters.

Substance Pr M Re Ra η ε

Glycerin 104 1 10−4 1.5 ⋅ 10−3 10−1 1.5 ⋅ 10−2
Silicon 4 ⋅ 10−3 1 2.5 ⋅ 102 2 ⋅ 10−4 1 2 ⋅ 10−4

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



300 | 9 Numerical simulation of convective flows under microgravity conditions

Figure 9.18: Case I = 0 (the internal circumference is the solid boundary, and the external circumfer-
ence is the free boundary). Velocity fields: (a) Oberbeck–Boussinesq model and (b) microconvection
model.

Figure 9.19: Case I = 1 (the external circumference is the solid boundary, and the internal circumfer-
ence is the free boundary); (a) R1 = 0.1 cm, and (b) 0.5 cm.
show that instability can be manifested at greater values of Re and M than those dis-
cussed in this section.

9.4 Study of convection induced by volume expansion

Under conditions of weak force fields, the fluid flow structure can form under the ac-
tion of factors that are insignificant compared to the buoyancy forces under on-ground
conditions. In this case, the nature of the forces acting on the fluid can be related to
small changes in thermophysical properties of the medium: for example, volume ex-
pansion can exert an appreciable effect on fluid convection under certain conditions.
A nonuniformdistribution of temperature or admixture species in the fluid can induce
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actions of this kind and, theoretically, can be the reason for some convective phenom-
ena observed in experiments on board space vehicles [91, 92, 121]. In this section, we
consider the results of the numerical study of convection induced by forces of volume
expansion of the fluid.

In studying convectionundermicrogravity conditions, research interest in the last
decade was aroused by an isothermally incompressible fluid in the case where the
dependence of the medium properties on pressure can be neglected. For this case,
Pukhnachov [177, 176] determined the limits of applicability of the Oberbeck–Bous-
sinesq approximation at a reduced gravity force with respect to the effect of volume
expansion and, using a priori assumptions, constructed a thermal convection model
generalizing the Oberbeck–Boussinesq model based on the general principles of me-
chanics of continuous media (see also [161]). This model became known as themicro-
convection model (MM).

The estimates of the orders of the quantities in the full Navier–Stokes equations
andheat transfer equations, aswell as thenumerical study, show that the contribution
of changes in density caused by thermal expansion of the medium to the formation of
the velocity field is commensurable with or greater than the contribution of buoyancy
forces if the parameter η is rather small, namely [177, 176]

η = gh3/(νχ) ≤ O(1), (9.76)

where h is the characteristic linear size, g is the acceleration induced by the external
force field, ν is the kinematic viscosity, and χ is the thermal diffusivity of the medium
at a certain characteristic temperature. In this case, the Oberbeck–Boussinesq model
(OBM) is inapplicable to describe thermal convection. Conditions (9.76) are realistic at
a level of microaccelerations reachable on board modern space vehicles. Convective
flows formed under conditions (9.76) and usually characterized by velocities of the or-
der of 10µm/s and smaller are united under the term “microconvection” [176]. More-
over, microconvection can be described by the model of essentially subsonic flows
with arbitrary changes in density, which is obtained as the limiting form of the full
Navier–Stokes equations and heat transfer equations as the Mach number and the
parameter characterizing hydrostatic compressibility tend to zero [120, 44].

In studying microconvection by numerical modeling methods, Goncharova [79,
80] focused her attention on studying the influence of external actions rapidly chang-
ing in time, because such actions can induce appreciable changes in themediumden-
sity. She considered the flow structure formed in annular [79] and rectangular [80] do-
mains. The results obtained showed that there are significant differences in the predic-
tions of the classical OBM andMM for unsteady regimes. The influence of local spatial
singularities of the heat flux through the domain boundary, which model the rapidly
changing temperature fields, on gravitational-thermocapillary convection was stud-
ied in [82, 78]. Generation of rapidly changing heating conditions was used as a basis
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in some experimental investigations on finding and studying the effects of microcon-
vection. Nevertheless, the correspondingmethods turned out to be rather complicated
and did not allow unique identification of the effect under discussion.

GaponenkoandZakhvataev [63] proposed theuse of spatially nonuniformheating
in experiments on microconvection, which allowed them to control the structure and
characteristics of convective flows owing to thermal expansion of the medium. Here
we consider the influence of spatially periodic heating on formation of microconvec-
tion in a rectangular domain and numerically study the dependence of the structure
and properties of microconvective flows of this type on physical and geometrical gov-
erning parameters.

Microconvection in a single-species fluid with nonuniform heating
We consider two-dimensional microconvective flows of a fluid with an isobaric coeffi-
cient of volume expansion β, viscosity μ, thermal conductivity k, and specific heat at
constant pressure cp (the volume viscosity is assumed to be equal to zero); the ther-
mophysical properties mentioned above are assumed to be constant. The fluid fills a
rectangular domain 0 ≤ x ≤ L, 0 ≤ y ≤ H (x, y are the Cartesian coordinates) bounded
by impermeable solidwalls. The system is located in a constant uniform external force
field; the direction of the vector g of acceleration due to externalmass forces coincides
with the x axis. The state of the system is described by the density field ϱ(x, t) at the
time t at the point x = (x, y), velocity field v(x, t) = (v1, v2), pressure p(x, t), and devia-
tion of the temperature θ from its characteristic value θ0 T(x, t) = θ − θ0.

Initially, all walls, except for y = 0, are thermally insulated. Beginning from a
certain time, a heat flux periodic in space and time

Ty = Θcos(Ωt) cos(nxπ/L) (9.77)

is instantaneously applied on the domain boundary y = 0. Here, Ω is the frequency
of variations of the heat flux and n is the number of half-periods of heat flux oscilla-
tions. A condition of thermal insulation or condition (9.77) is imposed on the boundary
y = H. The walls x = 0, L remain thermally insulated.

The state equation is chosen in the form of a linear dependence of specific volume
on temperature [177, 176] ϱ = ϱ0(1+βT)−1, where ϱ0 > 0 is the characteristic (constant)
density and β is the volumetric coefficient of thermal expansion.

The scales of length, velocity, time, and modified pressure and temperature are
taken to be h, χ/h, h2/χ, ϱ0νχ/h2, and ΘH(= ΔT), respectively. As a result, the system
of equations in the dimensionless variables takes the form (0 ≤ x ≤ A, 0 ≤ y ≤ 1):

div v = εΔT , dT
dt
= (1 + εT)ΔT ,

dv
dt
= (1 + εT)Pr{−∇p + divD} + εηPr e3 T ,

(9.78)
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where Pr = ν/χ, A = L/H is the aspect ratio, and D is the Cartesian tensor with the
components Dik = 𝜕vi/𝜕xk + 𝜕vk/𝜕xi − 2/3 δik∇ ⋅ v; e3 = g/|g|.

Two variants of the boundary conditions for temperature are used. The boundary
conditions for one-sided heating have the form

x = 0, x = A : Tx = 0; (9.79)
y = 1 : qTy = 0; y = 0 : Ty = cos(Ωt) cos(πnx/A); (9.80)

for two-sided heating, the boundary conditions have the form of eqs. (9.79) and

y = 0, 1 : Ty = cos(Ωt) cos(πnx/A). (9.81)

The velocity on the computational domain boundary is subjected to the no-slip con-
dition

v = 0. (9.82)

The initial conditions correspond to the equilibrium state

t = 0 : v = 0, T = T0. (9.83)

The temperature field is determined by solving the heat-conduction equation
T0t = ΔT0 under the boundary conditions corresponding to the problem considered
(9.79)–(9.81).

The results of the numerical study of problem (9.78)–(9.83) are compared with the
results for a similar problem in the OBM approximation. The corresponding equations
and boundary conditions for the OBM problem can be obtained under the formal as-
sumption ε = 0 in system (9.78), continuity equation, and term (1 + εT), in addition to
the buoyancy force term.

Equations (9.78) are solved by the finite-difference method, which is described in
Section 9.1 and also in [63].

Results of numerical modeling and discussion
The calculations of convective flows are performed for fluids whose parameters are
listed inTable 9.9.Modelmedia, suchaswaterH2O (N .1), siliconoils PMS-100 (N .2) and
PMS-200 (N .3) [52] at a temperature of 300K, and also media with a low Prandtl num-
ber, such as melted metal or semiconductor (N .4), are considered. The spatial scaleH
is assumed to be equal to 1 cm. The dimensionless angular frequencyω of oscillations
of the heat flux through the boundary is taken to be equal to unity. Themechanisms of
formation of microconvective flows and the dependence of their structure and prop-
erties on the governing parameters in the presence of an unsteady spatially periodic
distribution of heat fluxes on the boundary of the closed domain occupied by the fluid
were studied.
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Table 9.9: Physical parameters of model media.

χ, cm2/s β, K−1 Pr

N.1 0.001518 0.0002 5.4
N.2 0.001098 0.001 838
N.3 0.001120 0.001 1625
N.4 0.49 7.5 ⋅ 10−6 0.0054

The basic parameter of the problem, which reflects the comparative influence of
the buoyancy forces and volume expansion, is the Galileo number (microconvection
parameter [177, 176]), η = R/ε.

Absence of external forces. Basic mechanism
The effect of thermal expansionof the fluid ismost pronounced in the absence of exter-
nal force fields. In this case, the only external factor capable of inducing macroscopic
motion is the unsteady nonuniform thermal action on the cavity walls, and the emer-
gence of convection is related only to thermal expansion of the fluid. The mechanism
of development of the microconvective flow operates as follows. The effect of thermal
expansion reflected by the right-hand side of eq. (9.5), βχΔT, induces the emergence
of the flow as a necessary condition of mass conservation. In turn, the fact that ΔT dif-
fers from zero is caused both by unsteady changes in temperaturewith time and by the
configuration of the temperature and velocity fields such that v ⋅∇T differs appreciably
from zero in some parts of the domain occupied by the fluid.

Effect of the microconvection parameter η
In experiments performed on boardmodern space vehicles, the parameter η can differ
from zero. Numerical calculations confirm that the effect of thermal expansion dom-
inates if η is sufficiently small, in accordance with eq. (9.1). Typical flow structures
calculated by the MM and OBM are shown in Figure 9.20 for the parameters η = 0.01,
ε = 7.5 ⋅ 10−4, and Pr = 0.0054. The figures show the isolines of the temperature field
at the initial time (Figure 9.20a), the symmetric velocity field with two vortices, which
is typical for the OBM (Figure 9.20b), and the velocity fields predicted the MM at the
times t1 (Figure 9.20c), t2 (d), and t3 (Figure 9.20e). The vector of acceleration due to
the external force field is directed along the x axis. Figure 9.21 shows the time evo-
lution of the quantity Ty(x = 0) (Figure 9.21a) and of the maximum velocity for the
microconvection model (Figure 9.21b).

Figure 9.21 also shows the time instants t1, t2, and t3 corresponding to the flow
structures illustrated in Figure 9.20 for the MM. The results show that the MM predicts
regimes of a unidirectional flow from the heated to the cooled regions, which are in-
duced by volume expansion (Figure 9.20c, e). Such flows are formed at time instants
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Figure 9.20: Isolines of temperature (a) and velocity fields for the Oberbeck–Boussinesq model (b)
and microconvection model (c, d, e) at different time instants.

when the temperature field exhibits the most pronounced dynamic changes and the
flow has the maximum velocity (see Figure 9.21). It is only when the time-dependent
heat flux through the boundary is close to its extremevalue that the flowstructurewith
two vortices is formed (Figure 9.20d), where the compressed fluid leaves the region
with a greater density, by virtue of the continuity equation (Figure 9.20c–e). Qualita-
tive differences in the flow structures calculated by the MM and OBM are obvious; in
the OBM, a symmetric structure with two vortices (Figure 9.20b) is formed only under
the action of buoyancy forces; the vortex centers stay almost at the same place as the
temperature field changes with time, but the direction of vortex rotation changes.

In addition, the maximum velocities calculated by these models are appreciably
different, especially at low values of η. The maximum velocities for fluid N .4 at A = 2,
n = 1, and Θ = 100K/cm are given in Table 9.10.
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Figure 9.21: Time evolution of the heat flux Ty at x = 0 (a) and maximum velocity Vmax (b).

Table 9.10:Maximum velocity Vmax, cm/s.

Model η = 0.01 η = 1
MM 1.09 ⋅ 10−4 1.10 ⋅ 10−4
OBM 3.55 ⋅ 10−9 3.57 ⋅ 10−7
Influence of the spatial structure of the external heat flux on the microconvective
flow
The dominating effect on the microconvective flow structure is exerted by the char-
acter of spatial nonuniformity of the external temperature field. Let us consider the
influence of the number n of half-periods of oscillations of the temperature gradi-
ent on the wall on the qualitative and quantitative characteristics of microconvec-
tion.

Figure 9.22 shows the results of the calculation of the flow of fluid N .4 with the
number of half-periods of oscillations of Ty on the wall equal to n = 5 at η = 0.01,
A = 5, and ε = 7.5 ⋅ 10−4.

Figure 9.22 shows the isolines of temperature (a) and the velocity field (b). If the
aspect ratio A is sufficiently large, then one half-period of oscillations of Ty usually
generates one cell with two vortices in the fluid. Therefore, there are five structures
with two vortices in Figure 9.22, each induced by one half-period of oscillations of the
heat flux on the boundary. The calculations show that the flow velocity decreaseswith
increasing n. For instance, for fluid N .4, we have Vmax = 6.05 ⋅ 10−4 (n = 1), 1.8 ⋅ 10−4
(n = 2), and 1.9 ⋅ 10−5 (n = 5) cm/s (note that the maximum difference in temperature
over the domain decreases with increasing n).
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Figure 9.22: Isolines of (a) temperature and (b) velocity field. The vector of acceleration due to the
external force field is directed along the x axis.

Figure 9.23: Temperature isolines (a) and velocity field (b). The vector of acceleration due to the
external force field is directed along the x axis.

Two-sided heating
The influence of two-sided heating on the flow structure is illustrated in Figure 9.23,
which shows the results calculated for fluid N .4 (with the boundary conditions (9.79),
(9.81)) during one half-period of heat flux oscillations n = 1 at η = 0.01, A = 2, and
ε = 7.5 ⋅ 10−4. The figure shows the temperature isolines (a) and velocity field (b).
A change in the temperature field alters the flow structure in the microconvection
model. As shown in Figure 9.23, a structure with four vortices is formed in the cavity,
and the most intense vortices are observed near the thermally insulated walls, i. e., in
those places where the temperature field has a large gradient (which is seen from con-
densation of the temperature isolines). The maximum velocity, however, decreases:
Vmax = 3.02 ⋅ 10−5 cm/s, whereas Vmax = 1.09 ⋅ 10−4 cm/s for the structure with one
vortex. The reason is a smaller difference in temperature, as comparedwith one-sided
heating.
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Effect of the aspect ratio A on the microconvective flow
Numerical calculations show that an increase in the aspect ratio leads to an increase in
themaximumvelocity. Thus, for fluidN .4, this increase isVmax = 1.89 ⋅10−5, 1.09 ⋅10−4,
and 6.04 ⋅ 10−4 cm/s for A = 1, 2, and 5, respectively. This effect is related to the in-
crease in specific power of heating and difference in temperature over the domain,
which also increases with increasing A. Moreover, for different values of A, the for-
mation of the flow structure with two vortices in the microconvection model occurs
at different times: the greater the value of A, the later the instant of formation of this
structure, compared to the instant when the heat flux reaches the extreme value on
the boundary. This can be related to flow inertia, which prevents instantaneous ther-
mal expansion as the heat flux on the boundary changes its direction to the opposite
one.

The results calculated for fluids N .1, N .2, and N .3 differ only quantitatively. The
maximum physical velocities Vmax for these fluids at η = 0.01, n = 1, and Θ = 50K/cm
are given in Table 9.11.

Thus, for typical substances and geometric configurations of physical systems
used in experiments on convection under microgravity conditions and space mate-
rial science, we considered the effect of thermal expansion of the fluid on convection
at extremely low Rayleigh numbers, which is related to spatial nonuniformity of the
thermal field on the reservoir boundary. Based on numerical results obtained in [63],
we can conclude that the spatial nonuniformity of the external thermal field can con-
tribute to convection in experiments with accelerations reachable on modern space
vehicles, which are lower than the on-ground acceleration by a factor of 105 to 106,
and this contribution is appreciably different from that predicted by the Oberbeck–
Boussinesq model.

At the same time, microconvection phenomena can be effectively studied in
experiments under conditions of spatial nonuniformity of heating. This approach
supplements the approach based on using external actions rapidly changing in
time [80]. The approach proposed in [63] has the advantage of forming configura-
tions of physical systems which facilitate the emergence of stable, easily predictable
qualitative changes in convection modes generated by thermal expansion of the
fluid.

Table 9.11:Maximum velocity Vmax, cm/s.

Fluid A = 1 A = 2
N.1 7.82 ⋅ 10−7 5.23 ⋅ 10−6
N.2 2.31 ⋅ 10−6 1.65 ⋅ 10−5
N.3 2.53 ⋅ 10−6 1.83 ⋅ 10−5
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Microconvection of a binary mixture
Gaponenko and Zakhvataev [62] studiedmicroconvective flows of a nonisothermal bi-
nary fluid mixture subjected to the Soret effect. The study of natural convection in
media with gradients of two and more characteristics with different coefficients of
molecular diffusion (temperature, concentrations of chemical species) is interesting
for many laboratory and engineering processes. On the other hand, interaction of the
gradients of these characteristics forming the distribution of mass density in the grav-
ity field generates convectionmodes that aremuchmore versatile in terms of their spa-
tial structure, dynamics, and conditions andmechanisms of evolution in time than in
the single-species case.

Let us now assume that the physical system is a Newtonian isotropic fluid con-
sisting of two nonreacting species located in an external force field. Let x = (x1, x2) be
the Cartesian coordinates, ϱk(x, t) be the mass density of the species k (k = 1, 2) at the
point x at the time t, and vk(x, t) be the velocity of the species k. The state of the system
is described by the total density field ϱ(x, t), field of velocity of the center of mass of
the fluid element v(x, t) = (v1, v2), pressure p∗ = p∗(x, t), absolute temperature θ(x, t),
and mass concentration of one of the species c(x, t),

ϱ = ϱ1 + ϱ2; v = ϱ1v1 + ϱ2v2
ϱ
; c = ϱ1

ϱ
.

Thedensity of the diffusionfluxof the substance Jc is determined as Jc = −kc(∇c−α∇θ),
where the constant coefficients kc and α characterize diffusion and thermal diffusion
(thus, kc/ϱ is the coefficient of molecular diffusion).

The state equation is taken in the form of a linear dependence of the specific vol-
ume of the fluid not only on changes in temperature, but also on changes in chemical
species concentrations:

ϱ = ϱ0(1 + βT + γC)
−1, T = θ − θ0, C = c − c0. (9.84)

After normalization, the equations of convection of a nonisothermal binary mix-
ture can be presented in the form (details of system derivation are described in [62],
and also in Section 9.1)

div v = ε(1 − s Le)ΔT + ε Le ΔC,
dv
dt
= (1 + εT + εC)Pr{−∇p + divD} + εηPr e3(T + C),

dC
dt
= (1 + εT + εC) Le(ΔC − sΔT),

dT
dt
= (1 + εT + εC)ΔT ,

(9.85)

where Le = δ/χ is the Lewis number, δ = kc/ϱ0 is the diffusion coefficient, and s =
−αγ/β is the separation ratio.
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Based on the estimates obtained in [62], we can conclude that the Oberbeck–
Boussinesq approximation is inapplicable to describe natural convection under the
condition

η 1 + ξ
1 + ξ Le

≤ O(1), (9.86)

where ξ = γC∗(βT∗)−1 is the ratio of the characteristic accelerations due to buoyancy
forces, which are induced by nonuniformity of the concentration and temperature
fields, and C∗ is the characteristic difference in concentrations. Under the condition
Le ≪ 1, which is typical for water solutions and many other liquid solutions, we have
η(1 + ξ ) ≤ O(1) instead of eq. (9.86). If, in addition, ξ = O(1), which is typical for many
liquid solutions with changes in concentrations induced by the Soret effect, then the
Boussinesq approximation becomes physically invalid under the condition η ≤ O(1).
The last condition of applicability of the Boussinesq approximation is similar to the
case of a single-species fluid [177].

Results of numerical modeling and discussion
Let us consider two basic problems of microconvection in a rectangular domain 0 ≤
x ≤ l, 0 ≤ y ≤ h bounded by impermeable solid walls. In the first problem, the domain
is insulated: Ty = 0 at y = 0, h, Tx = 0 at x = 0, l, and the initial data correspond to a
contact of twomediawith different constant values of temperature and concentration:

T = T1, C = C1 (0 ≤ x ≤ l/2); T = T2, C = C2 (l/2 ≤ x ≤ l);
v = 0 (0 ≤ x ≤ l, 0 ≤ y ≤ h).

(A similar problem for an isothermal binary mixture was considered in [161].) In the
secondproblem, aheat fluxperiodic in time is imposedon theupper and lower bound-
aries of the domain: Ty = Θcos(Ωt) at y = 0, h, Tx = 0 at x = 0, l, and the initial
conditions correspond to the equilibrium state.

After normalization, the boundary conditions take the form

x = 0 : v = 0, Tx = 0, Cx = 0;
x = A : v = 0, Tx = 0, Cx = 0;
y = 0, 1 : v = 0, Ty = f (t), Cy = sf (t).

We have f (t) ≡ 0 for the first problem and f (t) = cos(Ωt) for the second problem (Ω is
the dimensionless frequency).

In problem 1, the initial values of temperature and concentration responsible for
the discontinuity of these quantities at t = 0 in the middle of the domain x = A/2
are defined as 0.5 and −0.5. The vector of external forces is directed along the x axis,
l = (1,0). The linear size l along the x axis is 1 cm.
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In problem 2, the following distributions of the temperature and concentration
fields are specified at the time t = 0: T = y − 0.5 and C = s(y − 0.5). The vector is
l = (0, 1).

For integrating the systemof equations, we use a numericalmethod of calculating
microconvective flows in the variablesω−ψ, whichwas proposed in [80] andwas gen-
eralized to the case of a binary nonisothermal system. A description of this numerical
method can be found in Section 9.1.

Below we present the results obtained in [62] by studying the influence of the
governing parameters Ω, ε, Le, and s on the microconvection characteristics at η = 1,
Pr = 13.48, and A = 2.

Results of the numerical study of problem 1
The flow structure in problem 1 is determined by volume expansion of the fluid related
to the temperature and concentration distributions in the computational domain and
has a unidirectional character until thermodynamic equilibrium is established. The
process of flow formation at ε = 7.5 ⋅ 10−3, s = 0.38, and Le = 0.01 is illustrated in
Figure 9.24, which shows the velocity field and the distributions of temperature and
concentration at the time instants t = 102 (a), 2 ⋅ 103 (b), and 14 ⋅ 103 (c).

At small values Le ∼ 0.01, the concentration field changesmuchmore slowly than
the temperature field; therefore, the flow is formed at the initial time mainly owing to
changes in the temperature field (Figure 9.24a). When the temperature equilibrium
is established in the domain (as seen in Figure 9.24b, c) that the temperature is close
to zero in the entire domain, the main factor affecting the microconvective flow is the
change in the concentrationfield. For this reason,more intense convection is observed
in regions of more pronounced changes in concentration. In Figure 9.24b we see that
the flow structure formation in the middle part of the domain is consistent with the
concentration distribution at the time instant considered. Thus, the presence of two
characteristics with different coefficients of molecular diffusion in the system leads to
the emergence of new qualitative and quantitative effects, as compared with micro-
convection in a single-species medium.

Figure 9.25 shows the influence of Le on the time evolution of the maximum ve-
locity of the microconvective flow in the computational domain at ε = 7.5 ⋅ 10−3 and
s = 0.38. It is seen that the microconvective flow exists for a longer time than in a pure
fluid with decreasing Le. This result completely agrees with the analysis of the exact
solution [62].

Figure 9.26 shows the time evolution of the convective flux of the substance F for
different values of Le in the cross section x = 1.8, where F is determined as

F =
H

∫
0

(ϱvC) dy.
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Figure 9.24: Field of velocities and distributions of temperature and concentration along the x axis
for different time instants.

For Le ≤ 0.01, it is possible to identify a short-time initial peak of the convective flux of
the substance due to thermal expansion and a second peak of F, which is less intense,
but more extended, due to changes in the concentration field. A change in Le leads to
a change in the intensity and duration of each of these segments. At small values of Le,
the concentration field changes in time too slowly, which results in separation of the
temperature and concentration effects on the velocity field and, as a consequence, in
a second peak of the convective flux. For values of Le close to unity, the second peak of
F is absent because the equilibrium states of the concentration and temperature fields
are established more or less simultaneously.

The calculated results also show that an increase in the Boussinesq number ε
within the framework of problem 1 leads to a proportional increase in the characteris-

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.4 Study of convection induced by volume expansion | 313

Figure 9.25: Time evolution of the maximum velocity Vmax for different values of Le.

Figure 9.26: Dependence of F [g/(cm s)] on time.
tic velocity in the domain, and an increase in the thermodiffusion parameter s leads to
aminor increase in flow intensity (less than 5% for s = 1.9 as comparedwith s = 0.38).

Results of the numerical study of problem 2
The second problem considered in this chapter deals with the influence of unsteady
heat fluxes on the flow characteristics in binary nonisothermal systems. As in prob-
lem 1, the flow structure is formed here mainly under the action of volume expansion
forces.
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Figure 9.27:Maximum velocity Vmax vs. the dimensionless frequency Ω.

Figure 9.27 shows the maximum flow velocity as a function of the dimensionless fre-
quency Ω at ε = 7.5 ⋅ 10−3, s = 0.38, and different values of Le. The microconvection
intensity increases with increasing frequency of variations of the external heat flux,
and this dependence is close to linear. Similar results are obtained under a pulsed (in
time) action of the external heat flux. Thus, if the pulse amplitude is inversely pro-
portional to its duration, then the maximum velocity of microconvection increases in
proportion to the pulse amplitude.

The results presented in Figure 9.27 also show that the characteristic velocity of
microconvection in unsteady temperature fields increaseswith increasing Lewis num-
ber Le.

In addition to the parameter determining the rate of variations of the external tem-
perature actions, the Boussinesq parameter ε has a significant effect on themicrocon-
vective flow. If the external action frequency is sufficiently large, the calculations pre-
dict that an increase in ε leads to an approximately linear increase in the maximum
velocity of convection.

The influence of the parameters s and Le on microconvection is illustrated in Fig-
ure 9.28, which shows a typical dependence of the maximum flow velocity on the
separation ratio s for different values of Le at ε = 7.5 ⋅ 10−3, and Ω = 1. The results
demonstrate that the characteristic velocity of the microconvective flow increases in
proportion to s. Moreover, it also increases with increasing Le.

In addition to the basic problems described above, we also studied microcon-
vective effects for other system configurations. Significant qualitative and quantita-
tive differences in the transitional and limiting convection modes calculated by the
Oberbeck–Boussinesq and microconvection models were found at low values of η ≤
10–100 in wide ranges of the orders of the governing parameters: ε = 10−6–10−1,
Pr = 10−3–104, Le = 10−4–1, s = −3–3. At sufficiently small values of η, the mech-
anism based on volume expansion dominates, and buoyancy forces do not exert any
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Figure 9.28:Maximum velocity Vmax versus the separation ratio s for different values of Le.

appreciable influence on convection evolution. For such values of η, the flow structure
calculatedby themicroconvectionmodel is qualitatively different from theBoussinesq
convection, and the characteristic velocities ofmicroconvection for the parameter val-
ues corresponding to those reached in space experiments can exceed the values pre-
dicted by the Oberbeck–Boussinesq model by two orders of magnitude. At the same
time, the temperature and concentration fields do not exhibit essential differences
from the classical case. These results are similar to conclusions obtained for micro-
convection in a single-species fluid [79, 80].

Microconvection in thin layers of a binary fluid with a free boundary
The microconvection model constructed in [177] is used to describe convective flows
with low values of the microconvection parameter η. In previous sections we consid-
ered convective flows where the MM applicability condition (η < 1) was satisfied, ow-
ing to the small gravity force. Another possible example of using this model is the
flow in fluid layers with microscopic values of the characteristic linear size l (which is
involved into the parameter η as a multiplier to the third power). In this case, the con-
dition η < 1 is satisfied even at g = g0, where g0 is the acceleration due to the gravity
force on the Earth surface.

An important application of such flows is the case of thin layers of the fluid with a
free boundary. Because of the small value of l (and, as a consequence, η ≪ 1), it is pos-
sible to neglect the effect of the gravity force and to consider interaction of two basic
factors in the fluid: volume expansion and surface tension (Marangoni convection).

The study of convective flows in a fluidwith a free boundarywith the use of themi-
croconvectionmodel was performed previously in [82, 83, 78]. Problems in cylindrical
domains for a single-species fluidwith different temperature regimes on the boundary
were considered. Qualitative and quantitative differences in results predicted by the
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MM and OBM were found already at characteristic sizes of the domain of the order of
1 cm, and the Marangoni numbers were sufficiently high.

Gaponenko [61] considered a convective flow in a rectangular domain with a free
boundary in a binary fluidmixture with allowance for the Soret effect. In this case, the
nonuniformity of the temperature distribution gives rise to flows induced by volume
expansion and gradients of surface tension forces. The free boundary was assumed
to be flat and nondeformable. The study of convective flows was performed for micro-
systems with the characteristic linear size of the order of several micrometers with the
use of two models of the fluid: classical OBM and MM. Let us consider some results.

Formulation of the problem and governing equations
The convective flows are studied in a rectangular domain 0 ≤ x ≤ l, 0 ≤ y ≤ h. The
following boundary conditions for temperature are considered:

B1: spatially nonuniform heat flux Tx = Θcos(yπ/h) on the boundaries x = const. The
domain boundaries y = const are assumed to be thermally insulated;

B2: spatially nonuniform heat flux Ty = Θcos(xπ/l) on the boundary y = 0. In this
case, the conditions of thermal insulation are imposed on all other boundaries of
the domain.

The boundary conditions for concentrations are determined from the condition of a
zero diffusion flux of the substance on the boundary. The conditions for velocity on
the boundary y = h are the conditions of a free nondeformable surface:

μ𝜕v1
𝜕y
= σT
𝜕T
𝜕x
+ σc
𝜕c
𝜕x
, v2 = 0.

Here, σT (σc) is the temperature (concentration) coefficient of surface tension and μ
is the dynamic viscosity coefficient. All other boundaries are subjected to the no-slip
condition: v = 0.

After normalization, the boundary conditions take the form

B1 : x = 0, x = A : v = 0, Tx = cos(yπ),Cx = sTx .
y = 0 : v = 0, Ty = 0,Cy = 0;

y = 1 : 𝜕v1
𝜕y
= MT
𝜕T
𝜕x
+Mc
𝜕c
𝜕x
, v2 = 0, Ty = 0, Cy = 0;

B2 : x = 0, x = A : v = 0, Tx = 0, Cx = 0.
y = 0 : v = 0, Ty = cos(xπ/A), Cy = sTy ;

y = 1 : 𝜕v1
𝜕y
= MT
𝜕T
𝜕x
+Mc
𝜕c
𝜕x
, v2 = 0, Ty = 0, Cy = 0.
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Figure 9.29: Temperature isolines (a) and stream functions (b) for the Oberbeck–Boussinesq micro-
convection model (condition B1).

In these equations,MT andMc are the temperature and concentrationMarangoni num-
bers: MT = σTT∗l/(μχ) and Mc = σcC∗l/(μχ), and A = l/h is the aspect ratio of the
computational domain sides.

The system of MM equations for a binary mixture has the form of eqs. (9.85). It is
solved by using the variables ω–ψ (vorticity–stream function) for the modified veloc-
ity. The main computational procedures are described in Section 9.1.

Results of numerical modeling and discussion
The results presented herewere calculated for amodel fluidwith the parameters taken
at a temperature of 300K: χ = 0.00112 cm2/s, μ = 1.758 g/(cm⋅s), ϱ = 0.996 g/cm3,
β = 0.005K−1, σT = −0.08dyn/(cm⋅K), Pr = 1625, and Le = 0.01. The gradient of the
temperature Θ, the parameter ε, and the Marangoni numbers MT and Mc were deter-
mined on the basis of the characteristic linear size of the domain and the value of T∗.
The condition Mc = 0.5MT was conventionally chosen. The values of the separation
ratio were taken in the interval s = 0–1.5.

Figures 9.29, 9.30, and 9.31 show the results of flow calculations for the boundary
conditions B1 and parameters ε = 0.005 and T∗ = 1 K. The characteristic linear size l
was 10, 1, and 0.1µm (MT = −4.063 ⋅10−2, 10−3, and 10−4, respectively). The aspect ratio
was A = 5. The influence of thermodiffusion was ignored (s = 0).

The figures show the temperature fields (Figure 9.29a, step between the isolines
0.1), isolines of the stream function of the physical velocity for the OBM (Figure 9.29b),
and also the flow structures predicted by the MM (Figure 9.30). Note that the temper-
ature and concentration fields for two models are practically identical, in contrast to
the velocities and flow structures. In the OBM, the flow structure and the maximum
velocity (V = 1.26 ⋅ 10−3) remained unchanged as l was varied. Vice versa, the results
predicted by theMMshow that both the flow structure and themaximumvelocity sub-
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Figure 9.30: Isolines of the stream function for the Oberbeck–Boussinesq microconvection model
(condition B1).

stantially depend on l: 1.32 ⋅ 10−3 (L = 10µm), 2.86 ⋅ 10−3 (1µm), and 29.97 ⋅ 10−3 cm/s
(0.1µm).

It is seen that the dominating factor at low values of l is the volume expansion of
the fluid caused by changes in the temperature and concentration fields; the influence
of this factor is attenuated with increasing l. Therefore, the flow structures and the
maximum velocities in the MM and OBM become close to each other.

Figure 9.31 shows the time evolution of the maximum velocity in the computa-
tional domain for different models. It is seen that the maximum velocity in the MM is
appreciably higher than that in the OBM. This effect, however, lasts for a short time,
and its duration is determined by the value of ε. The maximum velocity in the MM
approaches the value predicted by the OBM with time.

Figure 9.32 demonstrates the estimated influence of thermodiffusion on themaxi-
mum velocity for MT = −4.063 ⋅ 10−2 (a) andMT = −4.063 ⋅ 10−4 (b) under the boundary
conditions B1. As is seen from the figure, the effect of the separation ratio substantially
depends on the Marangoni number MT. At large values of MT (i. e., those at which the
influenceof volumeexpansion is insignificant), the thermodiffusion effect ismorepro-
nounced (see Figure 9.32a), because the concentration gradient along the free bound-
ary increases with increasing s; therefore, the action of surface tension leads to more
intense convection. At small values of MT (Figure 9.32b), there is only a short-time ef-
fect of thermodiffusion, which is mainly related to the changes in the concentration
field at the initial time, leading to enhancement of the influence of volume expansion
owing to the concentration component.
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Figure 9.31: Time evolution of the maximum velocity predicted by the OBM and MM (condition B1).

Figure 9.32: Effect of the separation ratio s on the maximum velocity.

Figure 9.33 shows the results of flow calculations under the boundary conditions B2
and parameters ε = 0.005 and T∗ = 1 K. The characteristic linear size h was 0.1µm
(M = −4.063 ⋅ 10−4). The figure shows the isolines of the temperature field (a) (the step
between the isolines is 0.4), and the isolines of the stream function of the physical
velocity predicted by the OBM (b) and MM (c). Under the boundary conditions B2, the
value h = 0.1µm is the greatest value at which the differences between the OBM and
MM results are still observed. In this case, the maximum velocity is 1.29 ⋅ 10−2 (OBM)
and 1.33 ⋅ 10−2 (MM).

Thus, based on the results presented in this section we can conclude that convec-
tive flows can form in thin layers of the fluid with a free boundary under the action
of volume expansion, which is taken into account in the microconvection model. In
fluids with inhomogeneous compositions, the thermodiffusion effect should be addi-
tionally taken into account.
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Figure 9.33: Temperature isolines (a) and stream functions (b and c) under the condition of nonuni-
form heating from above (condition B2).

9.5 Convection in miscible fluids

It is well known that the emergence of fluid flows can depend on processes that occur
in domains close to the interface between the fluids. For instance, capillary forces aris-
ing on the interface in immiscible fluids can lead to convection. Beginning in the 19th
century, such processes for immiscible fluids have been intensity studied because of
numerous applications.

Capillary phenomena are much less adequately investigated in miscible fluids,
where the thermodynamically stable interface between the phases does not exist and
the system tends to a homogeneous equilibrium state by means of diffusion. In 1901,
Korteweg assumed that such effects could also be observed for miscible fluids with a
nonuniform distribution of density (concentration or temperature). The interface of
miscible fluids is characterized by the presence of regions with high concentration
gradients, which can exist for long times at low diffusion coefficients (in this case, it
would be more correct to say the “transitional zone” instead of the “interface”). As
was demonstrated in [111], stresses σK can arise in such zones; the action of these
stresses is similar to the action of surface tension. Such stresses were estimated in
[242] as

σK = K
(ΔC)2

δ
, (9.87)

where K is a parameter characterizing the intensity of the arising stress, C is the con-
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centration of mass of one species, ΔC is a typical change in concentration inside the
transitional zone, and δ is the transitional zone thickness.

Convection induced by such stresses in binary systems was studied both experi-
mentally and theoretically [24, 4, 163, 164, 102]. Numerical simulations of convective
flows in binary systemswere considered in [167, 34], where themain taskwas to define
the initial concentration distribution in a manner such that the resultant flow struc-
ture would be most convenient for conducting a full-scale experiment.

It should be noted that the volume forces arising in the transitional zone of mis-
cible fluids are very small; therefore, the convective flow induced by such forces is
suppressed by natural convection under standard conditions. Thus, it is obvious that
this phenomenon should be studied under microgravity conditions on board space
laboratories. Optimal configurations for physical experiments on studying convection
in miscible fluids were considered in [34].

Thismodel describes various capillary phenomena, in particular, capillarywaves,
which are formed when the curvature of the interface between two fluids changes in
space, thus, generating a difference in pressure. Below we study waves called in-
terphase waves to distinguish them from capillary waves. These waves also refer to
capillary phenomena, but have different manifestations and propagation mecha-
nisms.

Let us consider a flat interphase surface between two fluids and assume that the
thickness of this surface changes in space. Then, the effective interphase stress (9.87),
which is inversely proportional to the interface thickness and therefore also changes
in space, generates forces directed along the interface. These forces can change the
interface shape and initiate convection in the neighboring fluid. This effect is experi-
mentally observed if the effective stress (9.87) is locally changed by adding a chemical
substance or heating the interface, which alters the interface thickness or the amount
of the admixture inside the transitional zone.

In this section we describe the results [26], which show that interphase waves
can be described by the Navier–Stokes equations with additional terms of Korteweg’s
stress. To study such a problem, we seek a numerical solution of a simplified model
problem and also of a problem posed in a plane geometrical formulation. The model
problem is obtained by using the thickness of the transitional zone of the interface as a
small parameter. As a result,we can reduce the initial planeproblemdimension, study
its properties and its solutions in detail, for example, for analyzing the fluid behavior
on the interface. A numerical study of the model problem reveals the existence of in-
terphasewaves. Theypropagatewith a velocity proportional to the interface stress and
can reflect from the walls, thus, changing their direction, penetrate into each other, or
intersect each other.

Qualitatively identical results were obtained for the problem in the plane geomet-
rical formulation, but in this case the waves decay faster due to the influence of the
interface boundaries.

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



322 | 9 Numerical simulation of convective flows under microgravity conditions

Formulation of the problem and governing equations
In the problems considered below, the physical system is under isothermal condi-
tions. The system is a viscousweakly compressible fluid consisting of two nonreacting
species. The fluid fills a rectangular domain 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly whose boundary Γ
consists of solid impermeable walls (x and y are the Cartesian coordinates). The influ-
ence of buoyancy forces is ignored.

Assuming the viscosity and diffusion coefficients to be constant, we write the ex-
pression for the components of the Korteweg’s stress tensor S arising in the transi-
tional zone between the two fluid species [24]:

S11 = (
𝜕C
𝜕y
)
2
, S12 = S21 = −

𝜕C
𝜕x
𝜕C
𝜕y
, S22 = (

𝜕C
𝜕x
)
2
.

Taking into account the above-described factors acting on the system,we can pre-
sent the convection equations in the form

ϱdC
dt
= kc∇

2C,

ϱdv
dt
= −∇p + μ

3
∇(div v) + μΔv + K div S, (9.88)

dϱ
dt
+ ϱdiv v = 0.

The state equation is taken as a dependence of the fluid density ϱ on concentration
ϱ = ϱ0(1 − γ(C − C0)), where ϱ0 > 0 is the characteristic value of density, γ is the con-
centration coefficient of density, and C0 is the constant mean value of concentration.

Using the Boussinesq approximation, passing to dimensionless variables, and
choosing h, h2/ν, ν/h, ϱ0ν2/h, and C∗ as the scales of length, time, velocity, pressure,
and characteristic change in concentration, we obtain the following system of equa-
tions from eqs. (9.88):

dC
dt
= Sc−1ΔC,

dv
dt
= −∇p + Δv + Kc div S, (9.89)

div v = 0.

Here, the dimensionless variables are denoted in the samemanner as the dimensional
ones. The dimensionless parameters are defined as Sc = ν/d, Kc = K(C∗)2/(ϱ0ν2),
where ν = μ/ϱ0 is the kinematic viscosity and d = kc/ϱ0 is the diffusion coefficient.

Theboundary conditions are theno-slip condition for thefluidon the solid bound-
aries and the absence of the substance flux through the boundary:

v = 0, ∇Cn|Γ = 0. (9.90)
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Model problem
Let us consider a simplified problem where the fluid motion is studied only inside the
transitional zone. In this case, as was shown in [26], it is possible to formulate the
problem and study the properties of its solution with a smaller number of variables
than in the initial full system of equations. For this purpose, wewrite eqs. (9.89) in the
form

𝜕C
𝜕t
+ u1
𝜕C
𝜕x
+ u2
𝜕C
𝜕y
= dΔC, (9.91)

𝜕u1
𝜕t
+ u1
𝜕u1
𝜕x
+ u2
𝜕u1
𝜕y
= −

1
ϱ
𝜕p
𝜕x
+ νΔu1 − K

𝜕C
𝜕x

ΔC, (9.92)

𝜕u2
𝜕t
+ u1
𝜕u2
𝜕x
+ u2
𝜕u2
𝜕y
= −

1
ϱ
𝜕p
𝜕y
+ νΔu2 − K

𝜕C
𝜕y

ΔC, (9.93)

𝜕u1
𝜕x
+
𝜕u2
𝜕y
= 0. (9.94)

We align the orthogonal coordinate axes x and y so that the x axis is directed along
the transitional zone separating the miscible fluids, and the y axis is perpendicular to
it. In order to study the solution behavior inside the transitional zone, we extend the
domain along the y axis by introducing an internal variable η = y/ε. Equating terms
of the order of ε, we find from eq. (9.91) that C is a linear function of η; we assume that
C = ηz(x, t). Equation (9.91) is presented in the form

𝜕z
𝜕t
+ u1
𝜕z
𝜕x
+ u2z

1
εη
= d 𝜕

2z
𝜕x2
. (9.95)

As follows from eq. (9.93), u2 is also a linear function of η. In addition, we assume
that the last term in the left-hand side of eq. (9.95) is also a quantity of the order of ε.
Otherwise the concentration does not satisfy the equation of motion. We thus have
u2 = εηw(x, t), and eq. (9.95) takes the form

𝜕z
𝜕t
+ u1
𝜕z
𝜕x
+ wz = d 𝜕

2z
𝜕x2
. (9.96)

Substituting the expression for u2 into eq. (9.93), we obtain

𝜕w
𝜕t
+ u1
𝜕w
𝜕x
+ w2 = −

1
ηε2ϱ
𝜕p
𝜕η
+ ν 𝜕

2w
𝜕x2
−
K
ε2

z 𝜕
2z
𝜕x2
. (9.97)

We transform the resultant equation. An analysis of the last term in the right-hand
side of this equation allows us to conclude that the value of K is proportional to ε2. We
assume that K = ε2. The pressure p is presented as a sum of two terms, one of which is
independent of η: p = ϱ(p1(x, y, t)+π(x, t)). Taking into account eq. (9.94), we find that
𝜕u1/𝜕x is also independent of η. Let us assume that u1 = u(x, t) +ϕ(η). In this case, we
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obtain ϕ = 0 from eq. (9.96) under the condition that 𝜕z/𝜕x ̸≡ 0. Then, from eq. (9.92)
we find the equation for the function u (see eq. (9.99) below) and also the equation

𝜕p1
𝜕x
+ ε2η2 𝜕z
𝜕x
𝜕2z
𝜕x2
= 0.

As z is independent of η, we can conclude that p1 has the second order with respect
to η. Let us assume that p1 = ε2η2G(x, t)/2.

We obtain the following system of equations:

𝜕z
𝜕t
+ u 𝜕z
𝜕x
+ wz = d 𝜕

2z
𝜕x2
; (9.98)

𝜕u
𝜕t
+ u 𝜕u
𝜕x
= −
𝜕π
𝜕x
+ ν 𝜕

2u
𝜕x2
; (9.99)

𝜕G
𝜕x
+ 2 𝜕z
𝜕x
𝜕2z
𝜕x2
= 0; (9.100)

𝜕w
𝜕t
+ u 𝜕w
𝜕x
+ w2 = −G + ν 𝜕

2w
𝜕x2
− z 𝜕

2z
𝜕x2
; (9.101)

𝜕u
𝜕x
+ w = 0. (9.102)

The same system can be derived if we seek for the solution of eqs. (9.91)–(9.94) in the
form

u1 = u(x, t), u2 = yw(x, t), C = y
√K

z(x, t),

p = ϱ( 1
2
y2G(x, t) + π(x, t))

and equate terms with identical powers of y.
Integrating eq. (9.100), we obtain

G(x, t) = G0(t) − (
𝜕z
𝜕x
)
2
. (9.103)

Assuming that

F = −𝜕π
𝜕x
− z 𝜕z
𝜕x
,

we present system (9.98)–(9.102) in the form

𝜕z
𝜕t
+ u𝜕z
𝜕x
− z 𝜕u
𝜕x
= d 𝜕

2z
𝜕x2
; (9.104)

𝜕u
𝜕t
+ u𝜕u
𝜕x
− z 𝜕z
𝜕x
= F + ν 𝜕

2u
𝜕x2
; (9.105)

𝜕F
𝜕x
= G0 + 2((

𝜕u
𝜕x
)
2
− (
𝜕z
𝜕x
)
2
). (9.106)
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Thus, the model problem is problem (9.91)–(9.94) in the band 0 ≤ x ≤ 1, −∞ <
y < ∞ with the boundary conditions x = 0, 1 : u1 = u2 = 0, 𝜕c/𝜕x = 0. The boundary
conditions for the new variables are

x = 0, 1 : u = 0, 𝜕u
𝜕x
= 0, 𝜕z
𝜕x
= 0. (9.107)

System (9.104)–(9.107) containsunknown functions z, u, andF. It includes two second-
order equations, one first-order equation, and six boundary conditions. The function
G0(t) is defined in a manner that the boundary conditions are satisfied.

Numerical method of solving the model problem
To obtain a numerical solution, we write system (9.103)–(9.106) in the form

𝜕z
𝜕t
+ u𝜕z
𝜕x
− z 𝜕u
𝜕x
= d 𝜕

2z
𝜕x2
; (9.108)

𝜕u
𝜕t
+ u𝜕u
𝜕x
− z 𝜕z
𝜕x
= F0 + xG0 +M + ν

𝜕2u
𝜕x2
; (9.109)

M = 2
1

∫
0

[(
𝜕u
𝜕x
)
2
− (
𝜕z
𝜕x
)
2
] dx. (9.110)

Let us consider numerical discretization of system (9.108)–(9.110). For this pur-
pose, we introduce a uniform grid xi (i = 1, . . . ,N) with a step Δx = 1/(N − 1). In solving
the system of equations, we use the finite-difference scheme

zn+1i − z
n
i

τ
+
uni + |u

n
i |

2Δx
(zn+1i − z

n+1
i−1 ) + uni − |uni |2Δx

(zn+1i+1 − zn+1i )

− zni
un+1i+1 − un+1i−1

2Δx
= d

zn+1i+1 − 2zn+1i + z
n+1
i−1

Δx2
; (9.111)

un+1i − u
n
i

τ
+
uni + |u

n
i |

2Δx
(un+1i − u

n+1
i−1 ) + uni − |uni |2Δx

(un+1i+1 − un+1i )

− zni
zn+1i+1 − zn+1i−1

2Δx
= ν

un+1i+1 − 2un+1i + u
n+1
i−1

Δx2
+ F0 + xiG0 +M

n
i . (9.112)

Here, the subscript i refers to discretization in space, and the superscript n refers to
discretization in time.

To solve system (9.111)–(9.112), we use the method of vector sweeping [205]. We
give the general scheme of implementation of this method, which was proposed in
[26]. Let

xi = (
ui
zi
) ; (9.113)

y = (F0
G0
) . (9.114)
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We present system (9.111)–(9.112) in the form

u1 = 0, uN = 0; (9.115)
−C1 ⋅ x1 + B1 ⋅ x2 + D1 ⋅ y = −e1; (9.116)

Ai ⋅ xi−1 − Ci ⋅ xi + Bi ⋅ xi+1 + Di ⋅ y = −ei, i = 2, . . . ,N − 1; (9.117)
AN ⋅ xN−1 − CN ⋅ xN + DN ⋅ y = −eN . (9.118)

In the case considered, we have

B1 = C1 = AN = CN = I, D1 = DN = 0, e1 = eN = 0,

Ai = (
ν
Δx2 +

uni +|uni |
2Δx − zni

2Δx

− zni
2Δx

d
Δx2 +

uni +|uni |
2Δx

) ,

Bi = (
ν
Δx2 −

uni −|uni |
2Δx

zni
2Δx

zni
2Δx

d
Δx2 −

uni −|uni |
2Δx

) ,

Ci = (
2ν
Δx2 +

1
Δt +
|uni |
Δx 0

0 2d
Δx2 +

1
Δt +
|uni |
Δx

) ,

Di = (
1 (i − 1) ⋅ Δx
0 0

) , ei =
xni
Δt
+ (

Mn
i
0
) .

System (9.116)–(9.118) consists of N equations and N + 1 variables. It is solved in
three stages.

First stage: transformation of system (9.116)–(9.118) from the tetradiagonal to the tridi-
agonal form. Let

xi−1 = Fi ⋅ xi +Hi ⋅ y + gi, i = 2, . . . ,N . (9.119)

It follows from eqs. (9.116) and (9.119) that

F2 = C
−1
1 ⋅ B1, g2 = C

−1
1 ⋅ e1, H2 = C

−1
1 ⋅ D1. (9.120)

Further, using eqs. (9.117) and (9.119), we obtain

Fi+1 = (Ci − Ai ⋅ Fi)
−1 ⋅ Bi; (9.121)

gi+1 = (Ci − Ai ⋅ Fi)
−1 ⋅ (Ai ⋅ gi + ei); (9.122)

Hi+1 = (Ci − Ai ⋅ Fi)
−1 ⋅ (Ai ⋅Hi + Di), i = 1, . . . ,N − 1. (9.123)

Using eqs. (9.118) and (9.119), we find

xN = (CN − AN ⋅ FN )
−1 ⋅ (AN ⋅HN + DN ) ⋅ y + (CN − AN ⋅ FN )

−1 ⋅ (AN ⋅ gN + eN ). (9.124)
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Thus, the transformation of the system from the tetradiagonal form (9.116)–(9.118) to
the tridiagonal form (9.119), (9.124) is finalized.

Second stage: transformation of system (9.119), (9.124) from the tridiagonal to the bidi-
agonal form. Let

xi = Qi ⋅ y + pi, i = N , . . . , 1. (9.125)

It follows from eq. (9.124) that

QN = (CN − AN ⋅ FN )
−1 ⋅ (AN ⋅HN + DN ); (9.126)

pN = (CN − AN ⋅ FN )
−1 ⋅ (AN ⋅ gN + eN ). (9.127)

From eqs. (9.119) and (9.125), we obtain

Qi−1 = Fi ⋅ Qi +Hi, pi−1 = Fi ⋅ pi + gi, i = N , . . . , 2. (9.128)

Third stage. Using eqs. (9.115) and (9.125), we find y on the computational domain
boundaries i = 1,N:

y = (Q(11)1 Q(12)1
Q(11)N Q(12)N)−1 ⋅ (−p(1)1−p(1)N) . (9.129)

After that, using eqs. (9.125) and (9.129), we determine xi for i = 1, . . . ,N .

Numerical results of the model problem
Here we describe the results of numerical modeling of problem (9.104)–(9.107). The
initial conditions for the functions u and z have the form u = 0, z = f +exp(−k(x−0.5)2),
which corresponds to the casewith a local change in the concentration gradient in the
transitional layer of a quiescent miscible fluid.

Figure 9.34a–c shows the time evolution of the z-component of the solution for
f = 0 and k = 100. If the values of d and ν are sufficiently large, the perturbations
rapidly decay, and the solution takes the formof a spatially homogeneous distribution
(Figure 9.34a). If d remains unchanged and ν is sufficiently small, the solution consists
of two waves which propagate in the opposite directions, reflect from the walls, move
toward eachother, and then repeat this process periodicallywith a gradual decrease in
their amplitudes (Figure 9.34c). If d is much smaller than ν, the wave structure differs
from the previous case. The solution evolves in the same manner at the beginning,
but the sign of the transported perturbations becomes different after wave reflections
from the walls: the minimum of the quantity z is observed rather than its maximum
(Figure 9.34b).

Figures 9.35 and 9.36 show the concentration isolines C = yz and the stream
functions ψ = yu in the time interval where the solution interacts with the domain
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Figure 9.34: Evolution of the solution: (a) d = 10−2, ν = 10−2; (b) d = 10−5, ν = 10−3; (c) d = 10−2,
ν = 10−3.
boundaries for the first time. The isolines of the functions show the instants before
(Figure 9.35) and after (Figure 9.36) wave reflections from the walls for different values
of d. Note that the linear dependence on y, chosen as the form in which the solution
is sought, implies that the stream function isolines are not closed. For the case with
ν < d, (Figure 9.35a) displays two vortices propagating to the opposite sides from the
domain center. When they reach the computational domain boundary, they are re-
flected from the boundary and simultaneously change the directions of their rotation
(Figure 9.36a). Then, returning to the domain center, the vortices interact with each
other, thereby vanishing; after that, the vortices are formed again and propagate to
the opposite sides. This process is periodically repeated with a gradual decrease in
amplitude.

At ν > d (Figures 9.35b and 9.36b), the vortices propagate in the samemanner, but
there are four vortices in the vicinity of the domain boundary, two vortices on each
side (Figure 9.35b).

The values of the parameters f and k used in the initial conditions for the function
z can also affect the solution behavior. Figure 9.37 shows z(x, t) as a function of f : f =
1 (a) and f = 2 (b) (the remaining calculation parameters have the values k = 500, d =
10−5, and ν = 10−3). It is seen from the figure that the initial perturbations propagate
faster at f = 2 than at f = 1. As applied to the initial problem (9.91)–(9.94), the results
obtained show that an increase in f corresponds to a decrease in the transitional zone
thickness. On the other hand, the effective stress (9.87) is inversely proportional to the
transitional zone thickness. Therefore, the wave propagation velocity is proportional
to the effective stress (9.87) in the interphase transitional zone.
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Figure 9.35: Isolines of concentration and stream function after 0.4 s: (a) d = 10−2, ν = 10−3; (b) d =
10−5, ν = 10−3.

Figure 9.36: Isolines of concentration and stream function after 0.8 s: (a) d = 10−2, ν = 10−3; (b) d =
10−5, ν = 10−3.
Figure 9.38 illustrates the effect of the quantity k on the solution. Two cases are cal-
culated: (a) k = 500 and (b) k = 50 (f = 2, d = 10−2, and ν = 10−3). It is seen that the
initial perturbations propagate faster at k = 50 than at k = 500;moreover, the solution
decays more slowly.

Numerical study of the plane problem in the full formulation
Problem (9.89), (9.90) was solved with the use of the stream function and vorticity
variables, as applied to the governing equations

dC
dt
= Sc−1ΔC,

dω
dt
= Δω + Kc{C,ΔC}, (9.130)
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Figure 9.37: Isolines of the function z(x, t) for different values of f : (a) f = 1; (b) f = 2.

Figure 9.38: Isolines of the function z(x, t) for different values of k: (a) k = 500; (b) k = 50.
Δψ = −ω,

where {g, h} = 𝜕g/𝜕x 𝜕h/𝜕y − 𝜕g/𝜕y 𝜕h/𝜕x. This system was numerically solved by the
method of alternating directions.

The problem was considered in a rectangular domain 0 ≤ x ≤ 1.5; 0 ≤ y ≤ 3 with
the boundary conditions (9.90). The initial conditions correspond to a contact of two
quiescent species separated by a transitional zone that has a prescribed shape:

u1 = u2 = 0,

c(x, y) =
{{
{{
{

0 at 0 ≤ y < y1,
m4 − 4(m3 −m2) at y1 ≤ y ≤ y2,
1 at y2 < y ≤ 6,
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Figure 9.39: Isolines of concentration and stream function at different time instants: (a) t = 0.05;
(b) t = 0.95; (c) t = 1.45; (d) t = 2.0; (e) t = 2.95; (f) t = 3.6.
where the function m(y) determines the vertical profile of concentration in the tran-
sitional zone m(y) = (y − y1)/(y2 − y1), y1 is the function of the lower boundary of the
transitional zone, which depends on the x coordinate, and y2 = 1.75 is the coordinate
of the upper boundary of the transitional zone. The results presented below demon-
strate the influence of the perturbation of the lower boundary of the transitional zone,
which is defined by changing the function y1, on the structure and properties of the
arising flow. The parameters were taken to be Kc = 1 and Sc = 102.

Figure 9.39 shows the results calculated in the case where the function y1 has the
form y1(x) = f + g exp[−k(x − 1.5)2], f = 1, g = 0.3, k = 50. Such initial conditions for
concentration model a perturbation of the thickness of the transitional zone between
two species. The perturbation shape is seen in Figure 9.39a: the thickness of the tran-
sitional zone at the center is smaller than in the remaining parts of this zone. Note that
the value of z is greater at the transitional zone center and smaller at the periphery if
the initial conditions for concentration are presented in the form c = yz. Therefore, the
choice of the initial conditions corresponds to the model problem considered above.

Changes in the transitional zone thickness defined by the initial conditions gen-
erate volume forces acting along the interface of the miscible species in the fluid. As
a result, two symmetric vortices are formed near the perturbed region (Figure 9.39a).
They begin to move from the domain center to its boundaries (Figure 9.39b). Concen-
tration perturbations propagate together with the vortices. The velocity of their prop-
agation is nonuniform over the transitional zone thickness: the greatest velocity is
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Figure 9.40: Time evolution of the maximum stream function for different parameters of the transi-
tional zone thickness perturbation function: (a) k = 5; (b) k = 50 (g = 0.3 (dotted line), g = 0.4
(dashed line), and g = 0.5 (solid line)).
observed inside the transitional zone, and the smallest velocity is observed near the
upper and lower boundaries. This phenomenon is explained by the results obtained
for the model problem, which showed that the propagation velocity increases with
increasing f . In the full problem, the quantity f corresponds to the concentration gra-
dient in the vertical direction inside the transitional zone, where its greatest value is
determined by the initial conditions. It is seen in Figure 9.39b that themaximumveloc-
ity of perturbations is observed in the middle part of the transitional zone (at y = 1.3).
The nonuniformity of propagation of perturbations over the transitional zone cross
section also explains the fact that the shape of the propagating vortices resembles a
lens.

Further dynamics of flow evolution are similar to those obtained in the model
problem. After the impact on the domain boundary, the vortices change their struc-
tures and the directions of their rotation (Figure 9.39c). Then, the vorticesmove toward
the domain center (Figure 9.39d), meet there, intersect each other, and again begin to
move toward the domain boundary (Figure 9.39e, f).

Figure 9.40 shows the dependence of the maximum stream function on time
for different values of k and g, which characterize the magnitude of the imposed
perturbation of the transitional zone thickness. It is seen that the stream function
increases with increasing g, i. e., the flow intensity depends on the degree of the local
change in the transitional zone thickness. In addition, the figure shows a sequence
of decaying oscillations, where the minimum values correspond to time instants
when the propagating vortices are reflected from the computational domain bound-
aries.

The next version of the initial conditions is similar to the previous one. The dif-
ference is the fact that the transitional zone at the center has a greater thickness than
in the remaining parts (Figure 9.41a), rather than a smaller thickness as previously
(Figure 9.39a). The formation and propagation of vortices shown in Figure 9.41 differs
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Figure 9.41: Isolines of concentration and stream function (f = 1, g = 0.3, k = 50). The time instants
are the same as those in Figure 9.39.

little from the pattern in Figure 9.39. This similarity, however, is not obvious; here it is
even unexpected, because these two cases are the opposite ones in the initial analy-
sis.

It is known that interphase surface tension is inversely proportional to the tran-
sitional zone thickness (9.87). Therefore, in the case with the initial conditions cor-
responding to the results in Figure 9.41, surface tension is smaller at the center of
the transitional zone than in the remaining parts. It can be expected that the fluid
motion is directed from the center to the periphery. In the case with the initial con-
ditions shown in Figure 9.39, interphase surface tension has the greatest value at
the center. Therefore, the fluid is expected to move from the boundaries toward the
center. The results of numerical simulations, however, predict the opposite situation:
the concentration perturbation and the vortices move from the center to the domain
boundaries. An explanation for this behavior can be found from Figure 9.39a, b.
Two intense localized vortices are formed at the initial stage of flow evolution; these
vortices change the transitional zone thickness, so that this contradiction is elimi-
nated. Therefore, the vortices in Figures 9.39 and 9.41 rotate in the opposite direc-
tions.

Figure 9.42 shows the results for the initial conditions with two perturbations
of the transitional zone thickness imposed simultaneously. The initial perturba-
tions have different magnitudes; therefore, the intensity of the pair of vortices in
the left part of the domain is smaller than that of the right-hand pair of vortices.
This choice of the initial conditions allows us to observe intersection of two vor-
tices. This intersection is most clearly seen in Figure 9.42c, where the small vortex,
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Figure 9.42: Isolines of concentration and stream function (f = 1, g1 = 0.3, g2 = 0.5, k = 50). Two
local perturbations of the transitional zone thickness are imposed at the initial time.

which was on the left at the beginning, passes through the more intense vortex on the
right.

The next version of the initial conditions for the function y1(x) has the form

y1(x) =
{{{{
{{{{
{

1, 0 ≤ x < 0.3, 1.2 < x ≤ 1.5,
[1 + (x − 0.3)2(0.5 − x)2]/0.055, 0.3 ≤ x ≤ 0.5,
1.15, 0.5 < x < 1,
[1 + (x − 1)2(1.2 − x)2]/0.055, 1 ≤ x ≤ 1.2.

In this case, the solution behavior differs from the previously considered regimes.
Two large vortices are formed at the initial time and fill the entire width of the com-
putational domain (Figure 9.43a, b). Then they begin to change their structure. Firstly,
each of these vortices decomposes into three vortices (Figure 9.43d); the largest vortex
is located in the lower part of the transitional zone. After that, the intensity of the cen-
tral vortex starts to grow (Figure 9.43e), and then the largest vortex is again observed
in the lower part of the transitional zone (Figure 9.43g).

Thus, another type of the solution behavior is observed which differs from those
considered previously. The perturbations also propagate here in the transitional zone,
but in the direction perpendicular to it. This motion is repeated periodically with a
decaying amplitude (Figure 9.44).

Another type of the initial conditions was considered for the problem where the
transitional zone has a rounded rather than flat shape. Such a configuration is typical
for the casewhere a drop of one species of themiscible fluid is surroundedby the other
species.
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Figure 9.43: Isolines of concentration and stream function at different time instants: (a) t = 0.05;
(b) t = 0.65; (c) t = 1.5; (d) t = 1.7; (e) t = 2.05; (f) t = 3.0; (g) t = 3.25; (h) t = 3.8; (i) t = 4.55.
Figure 9.45 shows that a pair of vortices is formed in the case of a local perturbation
of the transitional zone; this pair of vortices moves along the drop surface with time.
In this case, the convective flow intensity depends on the curvature of the transitional
zone.

Figures 9.46 and 9.47 show the results for three different values of the curvature
radius. The smaller the curvature, the greater the stream function (see Figure 9.47 up
to the time t = 0.27).

Note that the curvature of the transitional zone near the boundaries begins to
change in viewof the boundary conditions of the absence of concentration fluxes. This
is the reason for the formation of additional vortices in this part of the computational
domain, which become more intense than those formed due to the initial perturba-
tion of the transitional zone thickness, especially if the curvature is large (Figure 9.46:
t = 0.6; Figure 9.47: t > 0.3).
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Figure 9.44: Time evolution of the maximum stream function.

Figure 9.45: Isolines of concentration and stream function, R = 0.3 (R is the radius of curvature).
All problems considered above as well as the results of solving them were obtained
for parameters where the nature of the examined phenomenon is manifested most
clearly.
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Figure 9.46: Isolines of concentration and stream function for different values of R.

Let us now give an example of solving problem [167], where the following physical
parameters of the fluid are used: K = 10−9 N, ϱ0 = 103 kg/m3, d = 10−10m2/s, ν =
10−5m2/s, γ = 0.2, C∗ = 1, and h = 10−2m, which corresponds to the dimensionless
parameters Sc = 105 and Kc = 10−2.

The computational problem is related to studying convective flows in the case
where the transitional zone has the thickness δ = δ(x), which increases linearly from
0.5 to 4.5mm along the x axis. The problem is considered in a rectangular domain
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Figure 9.47: Time evolution of the maximum stream function for different values of R.

Lx = 3 cm, Ly = 6 cm. The initial conditions for the concentration C have the form

C(x, y) =
{{{
{{{
{

0, 0 ≤ y < 3 − δ
2 ,

0.5 − 1.5( 3−yδ ) + 2( 3−yδ )3, 3 − δ
2 ≤ y ≤ 3 +

δ
2 ,

1, 3 + δ
2 < y ≤ 6.

The distribution of the concentration C at the initial time is shown in Figure 9.48a.
Two symmetric vortices are formed in the computational domain with time; the cen-
ters of these vortices are located in the vicinity of the narrow part of the transitional
zone (Figure 9.48b). At the initial time these vortices have the greatest intensity, which
decreases because of the increase in the transitional zone thickness under the action
of convective transfer and diffusion of the admixture. At the same time, it is seen that
the positions of the vortex centers change with time: they move along the transitional
zone, similar to the situation considered above for the model regimes (Figures 9.39
and 9.41).

Thus, in this problem, which is most suitable for conducting a physical experi-
ment, manifestation of the action of Korteweg’s stresses can be detected not only as
the formation of vortices of a given configuration, but also as their motion along the
transitional zone, which is themanifestation of thewave nature of propagation of per-
turbations.

Let us also note that the considered initial conditions for concentration can be
used to study convective flows formed owing to volume expansion of the fluid with
the use of the microconvection model. Studying the joint action of volume expansion
of the fluid and forces generated by Korteweg’s stresses, however, requires a prelimi-
nary analysis of the physical properties of the fluid. Thus, for example, for water and
water-based solutions the maximum velocities predicted by the MM have the order of
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Figure 9.48: Isolines of concentration and stream function at different time instants (in seconds):
(a) t = 0; (b) t = 10; (c) t = 100; (d) t = 250; (e) t = 1000.
10−5 cm/s [63], whereas flows with the maximum velocities of 3 ⋅ 10−4 cm/s can be ob-
tained in such systems if only Korteweg’s stresses are taken into account. It is for this
reason thatwe used here the Boussinesqmodel for studying convective flows, because
this model ensures simpler numerical investigations. The action of volume forces of
fluid expansion was ignored.
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10 Convective flows in tubes and layers

Convective flows in tubes and layers are studied in this Chapter with the use of the
group-theoretical approach [181, 186, 187]. This approach allows three-dimensional
motions of a nonuniformly heated fluid to be studied in terms of solutions of two-
dimensional (or, sometimes, one-dimensional) problems. The flow domain is un-
bounded along one or two coordinates. Typical examples are the classical solutions
obtained by Ostroumov [153] and Birikh [35]. They describe steady flows in an infinite
vertical tube and an infinite horizontal band, respectively. If the tube or band length
is much greater than its cross-sectional size, however, these solutions ensure good
approximations of the main part of the flows, which is confirmed by experimental
data and results of numerical modeling. In this Chapter, we construct analogs of the
Birikh solution in a tube with an arbitrary cross section and in a rotating circular
tube. In the second case, the fluid experiences the action of both the centripetal force
and the transverse gravity force. The above-mentioned solutions are invariant solu-
tions of the Oberbeck–Boussinesq equations. The set of exact solutions is extended
in plane or axisymmetric problems, where the streamwise temperature gradient is an
arbitrary function of time (in contrast to Ostroumov’s and Birikh’s solutions where
this gradient is constant). The problem of deformation of a viscous layer by thermo-
capillary forces is considered in the last Section of Chapter 10. The solution of this
problem is described by a partially invariant solution of the Navier–Stokes equations.
Thermal convection in a horizontal channel in the presence of a longitudinal temper-
ature gradient varying with time in accordance with the exponential law is studied.
An attempt is made to describe the delay of thermocapillary convection onset owing
to the existence of a film on the fluid surface. The difference in the convection flow
structures in the cases of fixed and destroyed films is shown. An exact solution for
the plane-parallel flow under a surface with the friction proportional to the velocity
at a constant longitudinal temperature gradient is derived. The solution of the time-
dependent problem for the model with the Bingham properties of the fluid surface is
obtained using a difference method.

10.1 Group-theoretical nature of the Birikh solution and its
generalizations

Birikh [35] constructed exact solutions to the system of the Oberbeck–Boussinesq
equations, which has the following form in generally accepted notations:

vt + v ⋅ ∇v = −ρ
−1∇p + νΔv − βθg, ∇ ⋅ v = 0, θt + v ⋅ ∇θ = χΔθ. (10.1)

In what follows, we use individual notations for the x, y, and z coordinates and for
the corresponding velocity components u, v, and w and assume that g = (−g,0,0).

https://doi.org/10.1515/9783110655469-010
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The class of the Birikh solutions of system (10.1) describes plane steady flows with
u = v = 0, p = −Aρgβxz + q, θ = −Az + T, A = const (in what follows, this constant
is assumed to be positive), and the functions w, T, and q depend only on x, being
polynomials of the third, fifth, and sixth powers, respectively. The solutions found
in [35] are remarkable not only because of their simplicity, but also owing to clear
physical interpretation. One of them describes the flow in a band −h < x < h where
both boundaries are solidwalls; in the second case, the upper boundary of the band is
a free rigid surface subjected to the action of thermocapillary forces. The streamwise
velocity component w in the first Birikh solution has the form

w = ν
h
G
6
(s − s3), (10.2)

where G = Agβh4
ν2 is the Grashof number and s = x

h . The same component in the second
Birikh solution is given by the formula

w = ν
24h
[G(−4s3 + 3s2 + 6s − 1) + Gσ(3s

2 + 2s − 1)], (10.3)

where Gσ =
3Aæh2
ρν2 is the Marangoni number and æ > 0 is the temperature coeffi-

cient of surface tension (2.21). Note that the flow rate through the band cross section
in solutions defined by Eqs. (10.2) and (10.3) is equal to zero. This allows us to use the
Birikh solutions to describe convection in horizontal channels whose length is much
greater than their width, with the vertical boundaries being solid walls. The asymp-
totic character of the second solution was confirmed by experiments aimed at study-
ing capillary-gravitational convection in a long horizontal cavity and by the numerical
solution of a two-dimensional steady problem for system (10.1) with boundary condi-
tions modeling the conditions of the above-mentioned experiments [109].

Group-theoretical nature of the Birikh solutions was revealed in paper [106].
A generalization of the Birikh solutions to a three-dimensional unsteady case was
given in [182]. Our considerations are based on the following observations: the so-
lutions obtained in [35] are invariant solutions of system (10.1) with respect to a
three-parameter Lie group generated by the infinitesimal operators 𝜕t , 𝜕y, and

Z = −A−1𝜕z + ρβgx𝜕p + 𝜕θ . (10.4)

(The fact that the operator Z is admitted by system (10.1) follows from the results ob-
tained in [76].) If we now take a one-parameter group with operator (10.4), we obtain
a class of invariant solutions of system (10.1) of rank 3, whereas the Birikh solutions
have rank 1. All invariant Z-solutions of system (10.1) have the representation

u = u(x, y, t), v = v(x, y, t), w = w(x, y, t),
p = −Aρβgxz + q(x, y, t), θ = −Az + T(x, y, t),

(10.5)
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where the functions u, v, w, q, and T satisfy a system of differential equations with
three independent variables x, y, and t.

Before writing this system, we pass to dimensionless variables in system (10.1).
The most natural interpretation of solutions (10.5) is the flow of a viscous heat-
conducting fluid in a horizontal cylindrical tube, which is induced by nonuniform
heating of the tube surface. Let us denote the tube cross section by Ω and choose
the width h of the domain Ω in the x direction as the characteristic linear scale. The
basic similarity criteria in the problem considered are the Grashof number Gr and the
Prandtl number Pr defined by the formulas

Gr = Aβgh
4

ν2
, Pr = ν

χ
. (10.6)

We choose τ = h2/ν as the characteristic time scale and pass to new sought functions
u, v, w, q and T, defining them as

u = ν
h
PrGr2 u, v = ν

h
PrGr2 v, w = ν

h
Grw,

q = ρβgAh2 PrGr q, T = AhPrGrT.
(10.7)

The new sought functions depend on the dimensionless variables x = x/h, y =
y/h, and t = t/τ.

By virtue of Eqs. (10.1), (10.5), and (10.7), the new sought functions satisfy the
equations

ut + λ(uux + vuy) = −qx + Δ2u + T , vt + λ(uvx + vvy) = −qy + Δ2v,
wt + λ(uwx + vwy) = −x + Δ2w, ux + vy = 0, (10.8)

PrTt + λ Pr(uTx + vTy) − w = Δ2T ,

where the primes are omitted and the notations λ = PrGr2 and Δ2 = 𝜕2/𝜕x2 + 𝜕2/𝜕y2

are used. By virtue of Eqs. (10.5) and (10.7), any solution of system (10.8) generates a
solution of the original equations (10.1). In particular, the Birikh solution is obtained
if we assume that u = v = 0 in Eqs. (10.8) and that the functions w, q, and θ are in-
dependent of y and t. A systematic search for exact solutions of system (10.8) is based
on its group properties. This system admits the operators

X0 = 𝜕t , Xγ = γ𝜕y + λ
−1 dγ
dt
𝜕v − λ

−1yd
2γ
dt2
𝜕q, Xδ = δ𝜕q,

Xα = −Pr
d2α
dt2
𝜕x − λ

−1 Pr d
3α
dt3
𝜕u + Pr

dα
dt
𝜕w + x(λ

−1 Pr d
4α
dt4
+ α)𝜕q + α𝜕T ,

where α, γ, and δ are arbitrary functions of t of the class C∞. Note that the operators
X0,Xγ, andXδ are “inherited” by system (10.8) from the original system (10.1), whereas
Xα is a “redundant” operator.
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In its structure, system (10.8) resembles the system of the Navier–Stokes equa-
tions in a plane case, supplemented with two parabolic equations. Thus, we can nat-
urally pose the following initial-boundary problem: find a solution u, v,w, q,T of sys-
tem (10.8) in a cylinder QN = {x, y, t : (x, y) ∈ Ω, 0 < t < N}, which satisfies the initial
conditions

u = u0(x, y), v = v0(x, y), w = w0(x, y), T = T0(x, y), at (x, y) ∈ Ω, t = 0, (10.9)

the no-slip conditions for velocities

u = v = w = 0 at (x, y) ∈ Σ = 𝜕Ω, t ∈ (0,N) (10.10)

and one of the following conditions for temperature:

𝜕T
𝜕n
= a(x, y, t), (x, y) ∈ Σ, t ∈ (0,N) (10.11)

or

T = b(x, y, t), (x, y) ∈ Σ, t ∈ (0,N) (10.12)

Here, u0, v0,w0,T0, a, and b are given functions of their arguments, and 𝜕/𝜕n is the
derivative along the external normal to the curve Σ. We do not discuss here whether
problems (10.8)–(10.11) or (10.8)–(10.10), (10.12) are well-posed or not. We only note
that they satisfy theorems of unique global solvability in classes of functions that are
natural extensions of the classes of well-posedness of a two-dimensional unsteady
problem for the Navier–Stokes equations [114].

Along with problems (10.8)–(10.11) and (10.8)–(10.10), (10.12), it is of interest to
consider steady problems for system (10.8) under the assumption that ut = vt = wt =
Tt = 0. In this case, conditions (10.9) are not imposed, and the functions a and b
in conditions (10.11) and (10.12) are independent of t. The theorems of existence of
generalized solutions without constraints on the value of the corresponding norms
of the functions a and b are valid for both steady problems; for small values of the
parameter λ, the theorems of uniqueness are also valid. Moreover, the components
u, v,w, q, and T of the steady solution are analytical functions of the parameter λ at
the point λ = 0. Below we calculate the principal terms of the corresponding series in
the case where the domain Ω is a circle of a unit radius with the circle center at the
origin, and condition (10.11) is homogeneous. The following boundary-value problem
is posed:

Δ2u − qx + T = 0, Δ2v − qy = 0, ux + vy = 0,

Δ2w − x = 0, Δ2T + w = 0 at x2 + y2 < 1, (10.13)

u = v = w = 0, 𝜕T
𝜕n
= 0 at x2 + y2 = 1. (10.14)
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Figure 10.1: Level lines of stream function ψ.

The solution of problem (10.13), (10.14) is given by the explicit formulas

ψ = r2 sin 2φ
213 ⋅ 32 ⋅ 5

(2r6 − 15r4 + 24r2 − 11), w = r cosφ
8
(r2 − 1),

T = − r cosφ
192
(r4 − 3r2 + 4), (10.15)

q = r2

210 ⋅ 32 ⋅ 5
[10(2r4 − 9r2 + 24) + 3(5r4 − 20r2 + 9) cos 2φ].

Here, ψ is the stream function related to u and v as u = ψy and v = −ψx; r = (x2 + y2)1/2

and φ = arctan(y/x) are the polar coordinates. The functions ψ and q are normalized
so that ψ = q = 0 at x = y = 0. In this case, the function u is odd with respect to x and
even with respect to y, the function v is even with respect to x and odd with respect to
y, the functions w and T are odd with respect to x and even with respect to y, and the
function q is evenwith respect to x and y. The flow domain x2+y2 < 1, z ∈ R is divided
into four subdomains by the planes x = 0, y = 0; each subdomain is filled by nested
cylindrical stream surfaces ψ(x, y) = const, z ∈ R (Figure 10.1).

The trajectories of the fluid particles have a helical character. The fluid in the up-
per and lower halves of the tube moves in the negative and positive directions of the
z axis, respectively (let us recall that the temperature is a linear decreasing function
of z by virtue of Eq. (10.5)). Note that the component w of solution (10.15) satisfies the
equality

∫
Ω

wdxdy = 0 (10.16)

(here, Ω is a circle x2 + y2 < 1). This equality, which is similar to the “condition of
flow closedness” in [35], gives us hope that a three-dimensional analog of the Birikh
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Figure 10.2: (a) Level lines for w. Parameters: Pr = 7, Gr = 1, moment of time t = 3; (b) Level lines for
vortex ω. Parameters: Pr = 7, Gr = 1, moment of time t = 3.

solution ensures an adequate approximation of the steady flow far from the end faces
of a long horizontal cylinder, which is induced by a linear distribution of temperature
along the side surface. Obviously, condition (10.16) is also satisfied for steady flows if
the domain Ω is symmetric about the y axis. In the general case, this condition can
be satisfied by slightly changing the structure of the invariant solution by adding the
term C𝜕p with an appropriate constant C to operator (10.4).

For a square domain Ω, the initial-boundary problems (10.8)–(10.12) were solved
numerically in [2]. The calculations were performed for the Prandtl number equal to
7 and different values of the Grashof number. The motion started from the quiescent
state. The functions T0 and b involved into conditions (10.9) and (10.12) for tempera-
ture were chosen to be equal to zero.

If the Grashof number is small, then the solution of the initial-boundary problem
reaches a steady state retaining a typical four-vortex structure of the level lines of the
stream function ψ. Figure 10.2(a) shows the isolines of the velocity component w of
this steady regime. The isolines of the projection ω = −△2 ψ of the velocity rotor onto
the z axis for Gr = 1 are plotted in Figure 10.2(b).

As the Grashof number increases, the steady regime loses its stability. The aris-
ing unsteady motion is accompanied by changes in the topology of the level lines of
the stream function ψ with time. This fact is illustrated in Figures 10.3(a)–(d), which
show the level lines for the Grashof number Gr = 59 and dimensionless times t =
0.7, 1.7, 2.3, and 3.0.

A steady problem for system (10.8) was also studied in [122]. There, the domain
was taken to be a square or a rectangle with the width-to-height ratio equal to 4. Lyu-
bimova et al. [123] constructed an asymptotic of the steady solution at low Prandtl
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Figure 10.3: (a) Pr = 7, Gr = 59, t = 0.7; (b) Pr = 7, Gr = 59, t = 1.7; (c) Pr = 7, Gr = 59, t = 2.3;
(d) Pr = 7, Gr = 59, t = 3.0.

numbers and studied its stability within the framework of the linear approximation.
The following modes were found in the problem spectrum: stationary hydrodynamic,
sidewall stationary hydrodynamic, oscillating spiral, and stationary spiralmodes. De-
pending on the problem parameters, this or that mode becomes particularly danger-
ous. It was demonstrated [122] that a vertical magnetic field is a factor stabilizing the
steady flow of the mentioned type.

Exact numerical solutions of type (10.5) of system (10.1),whichdescribe flowswith
an interface of two fluids in an infinite channel with a rectangular cross section, were
studied in [87, 88]. The a priori unknown cylindrical interface is sought as an equilib-
rium capillary surface with a given contact wetting angle. If this is a right angle, then
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this surface is planar. Results calculated for a two-layer fluid with a flat interface in a
channel with a rectangular cross section were reported in [87, 88]. In such situations,
the parameters of the contacting fluids can be appreciably different: e. g., one of them
can be a gas. The channel walls are thermally insulated. The source of motion is the
thermocapillary effect on the interface. The calculations reveal a large variety of vortex
structures formed in the channel cross section.

It should be noted that the condition for normal stresses on the interface is sat-
isfied approximately in the solution constructed in the above-cited papers, whereas
all the remaining boundary conditions are satisfied exactly. The smaller the capillary
number Ca = ρνu∗/σ0 (where u∗ is the characteristic velocity of the flow in the chan-
nel cross section and σ0 is the characteristic value of the surface tension coefficient),
secures the smaller the induced error. A similar situation is observed for the second
Birikh solution, where the condition for the normal stress on the free boundary is also
satisfied approximately. In contrast, this and other boundary conditions on the inter-
face in the solution of the problem of a two-layer fluid flow in an inclined channel with
a streamwise temperature gradient are satisfied exactly [146]. The reason is the fact
that the conditions on the interface follow from conservation laws. At the same time,
in recording the conditions on the free boundary, the response of the gas medium to
the liquid is expressed by prescribing the pressure and temperature of the fluid on the
free surface (instead of the latter, a condition of the third kind for the liquid tempera-
ture with a specified gas temperature is often formulated).

To conclude, we should note that the steady solution of system (10.8) under con-
ditions (10.10) and one of the homogeneous conditions (10.11) or (10.12) can be called
a three-dimensional analog of the first Birikh solution. Unfortunately, it does not pos-
sess simplicity inherent in its prototype. The problem is not only the nonlinearity of
system (10.8), but also the fact that addition of the variable y gives rise to two nonzero
velocity components u and v (let us recall that we have u = 0 in the Birikh solution
independent of y). On the other hand, rich group properties of system (10.8) allow us
to construct its invariant and partly invariant solutions of lower dimensions, which
are related to the first Birikh solution in a certain sense.

Generalization of the second Birikh solution with the free boundary to a three-
dimensional case is more complicated. The nature of the invariant solution (10.5) is
such that the natural conditions on the free surface can be satisfied only if this surface
is the plane x = 0. In this case, however, the corresponding problem for system (10.8)
becomes overdetermined. The following question is interesting, though difficult: Is it
possible to satisfy the “redundant” boundary condition on the free boundary x = 0
by choosing an appropriate right-hand side of condition (10.11) or (10.12)? Experimen-
tal implementation of the three-dimensional analog of the Birikh solution is also of
great interest, including its implementation under microgravity conditions. A typical
feature of the class of flows discussed here is the possibility of transporting passive
admixtures to large distances along the tube under the combined action of the stream-
wise temperature gradient and the transverse force of gravity (the value of the gravity
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force can be very small). We can estimate the streamwise velocity w from Eqs. (10.6)
and (10.7), assuming that w is of the order of unity; then, we obtain w ∼ Aβgh3/ν. As-
suming that h = 5 cm, ν = 10−2 cm2/s, β = 0.4 ⋅ 10−3 K−1,A = 1 K/cm, and g = 0.2 cm/s2,
we obtain the estimate w ∼ 1 cm/s.

10.2 An axial convective flow in a rotating tube
with a longitudinal temperature gradient

The solution describing the established planar motion of a liquid in a horizontal band
under the effect of a longitudinal temperature gradient and transverse gravity force is
well known [35]. The asymptotic character of this exact solution is confirmed by the
results of [109], where the problem of convection in a long horizontal cuvette with a
constant temperature gradient being held on its side boundaries was investigated by
experimental andnumericalmethods. The generalization of a plane flow to the case of
motion in a cylindrical channel of an arbitrary cross section is given in [182]. Other gen-
eralizations of this solution and a detailed bibliography are contained in review [7].
We consider below the convection in a rotating round tube excitedby the interaction of
the centripetal force and thermal flow along the tube axis. In the simplest case, when
the transverse gravity force is absent and the motion is steady-state, the solution is
expressed in elementary functions. There are two generalizations of this solution. In
the first of them, the motion retains the axial symmetry but is time-dependent be-
cause the rotation rate of the tube is variable. The second generalization describes the
established motion with a cylindrical interface. Both these problems are linear and
effectively one-dimensional. One more generalization corresponds to the joint effect
of the centripetal force and the transverse force of gravity. The appearing problem be-
comes nonlinear, but it is reduced to the solution of a set with two spatial variables.
In this case, the velocity field has three nonzero components. This paragraph is based
on the results of paper [37].

Equations of motion
The problem of thermal gravitational convection of a liquid in a round rotating tube is
considered in the Oberbeck–Boussinesq approximation. Let r, φ, z be the cylindrical
coordinates,abe the tube radius andω(t)be the angular velocity of its rotation around
the z axis. In addition to the centripetal force, the liquid is affected by the weight force
with the acceleration (−g(t) sinφ,−g(t) cosφ,0). If g = const, this force can be identi-
fied with the gravity force. Further, u and w denote the radial and axial components
of the velocity vector, v is the difference between the circular velocity and the velocity
of rotation of the liquid as the solidωr, p is the deviation of the pressure from its equi-
librium value ρ(−gr sinφ +ω2r2/2), and θ is the deviation of the temperature from the
average value θ̄. The liquid is characterized by the following parameters: density ρ at
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temperature θ, kinematic coefficient of viscosity ν, thermal diffusivity χ, and thermal
expansion coefficient β. These parameters are considered below as constants.

In the accepted notation, the equations of motion are written in the form [68]

ut + uur −
v
r
uφ + ωuφ + wuz − 2ωv −

v2

r
=

= −
1
ρ
pr + ν(urr +

1
r
ur +

1
r2
uφφ + uzz −

2
r2
vφ −

u
r2
) + (g sinφ − ω2r)βθ,

ω̇r + vt + uvr +
v
r
vφ + ωvφ + wvz + 2ωu +

uv
r
=

= −
1
ρr

pφ + ν(vrr +
1
r
vr +

1
r2
vφφ + vzz +

2
r2
uφ −

v
r2
) + g cosφβθ,

wt + uwr +
v
r
wφ + ωwφ + wwz = −

1
ρ
pz + ν(wrr +

1
r
wr +

1
r2
wφφ + wzz),

ur +
u
r
+
1
r
vφ + wz = 0,

θt + uθr +
v
r
θφ + ωθφ + wθz = χ(θrr +

1
r
θr +

1
r2
θφφ + θzz)

(10.17)

(the dot denotes differentiation with respect to t). Equations (10.17) are derived under
the assumption that the centripetal force has the same order as the gravity force. In
some technical equipment the rotation velocity is so high that this force significantly
exceeds the gravity force. Moreover, the Oberbeck–Boussinesqmodel fails to describe
convection if the centripetal acceleration is very large. Asymptotic approach for anal-
ysis of convective flows in a circular fast-rotating tube of finite length was realized in
paper [211].

Group property of equations (10.17)
Immediate verification shows that the transformation at which all independent vari-
ables and velocity components remain invariable, while the pressure and temperature
are transformed by formulas

p = p + cρβ(gr sinφ − ω
2r2

2
), θ = θ + c, (10.18)

where c is the constant, does not vary system (10.17). The transformation of one-
parameter group (10.18) corresponds to the infinitesimal operator

X1 = ρβ(gr sinφ −
ω2r2

2
)
𝜕
𝜕p
+
𝜕
𝜕θ
.

In addition, system (10.17) admits operators

X2 =
𝜕
𝜕z
, X3 = G

𝜕
𝜕p
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where G is an arbitrary smooth function of t; and, consequently, their linear combi-
nation X = X2 + X3 − AX1 where A is the constant. The general view of the invariant
solution of system (10.17) with respect to operator X is as follows:

u = u(r,φ, t), v = v(r,φ, t), w = w(r,φ, t),

p = [−Aρβ(gr sinφ − ω
2r2

2
) + ρG]z + q(r,φ, t),

θ = −Az + T(r,φ, t).

(10.19)

Functions u, v, w, q, and T satisfy the following system of equations:

ut + uur +
v
r
uφ + ωuφ − 2ωv −

v2

r
=

= −
1
ρ
qr + ν(urr +

1
r
ur +

1
r2
uφφ −

2
r2
vφ −

u
r2
) + (g sinφ − ω2r)βT ,

ω̇r + vt + uvr +
v
r
vφ + ωvφ + 2ωu +

uv
r
=

= −
1
ρr

qφ + ν(vrr +
1
r
vr +

1
r2
vφφ +

2
r2
uφ −

v
r2
) + g cosφβT ,

wt + uwr +
v
r
wφ + ωwφ =

= Aβ(gr sinφ − 1
2
ω2r2) − G + ν(wrr +

1
r
wr +

1
r2
wφφ),

ur =
u
r
+
1
r
vφ = 0,

Tt + uTr +
v
r
Tφ + ωTφ − Aw = χ(Trr +

1
r
Tr +

1
r2
Tφφ).

(10.20)

Formulation of the initial boundary problems for system (10.20)
The following interpretation of solution (10.19) is most natural. The liquid fills the
round rotating tube with a constant axial temperature gradient being held on its sur-
face. The velocity vector satisfies the no-slip condition on the boundary of the flow
region. The initial velocity and temperature distribution should be specified in the
time-dependent problem. In addition, the axial pressure gradient and transverse grav-
ity force may be specified.

The form of solution (10.19) limits the selection of the initial data. In particular, all
three components of the initial velocity field should be the functions of two variables
r and φ alone. Let Ω be a circle r < a, Γ be its boundary, Ql be a cylinder, (r,φ) ∈ Ω,
0 < t < l, and Bl be the lateral surface of the cylinder. Let us state problem (A): find a
solution of system (10.20) in the domain Ql satisfying the boundary conditions

u = v = w = 0, T = 0, (r,φ, t) ∈ Bl, (10.21)

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



352 | 10 Convective flows in tubes and layers

and initial conditions

u = u0, v = v0, w = w0, T = T0, (r,φ) ∈ Ω, t = 0, (10.22)

where u0, v0, w0, and T0 are the specified functions of r and φ satisfying the fitting
condition with the continuity equation,

u0,r +
u0
r
+
1
r
v0,r = 0

The following problem (B) is the steady-state analog of problem (A):

uur +
v
r
uφ + ωuφ − 2ωv −

v2

r
=

= −
1
ρ
qr + ν(urr +

1
r
ur +

1
r2
uφφ −

2
r2
vφ −

u
r2
) + (g sinφ − ω2r)βT ,

uvr +
v
r
vφ + ωvφ + 2ωu +

uv
r
=

= −
1
ρr

qφ + ν(vrr +
1
r
vr +

1
r2
vφφ +

2
r2
uφ −

v
r2
) + g cosφβT ,

uwr +
v
r
wφ + ωwφ =

= Aβ(gr sinφ − 1
2
ω2r2) − G + ν(wrr +

1
r
wr +

1
r2
wφφ),

ur +
u
r
+
1
r
vφ = 0,

uTr +
v
r
Tφ + ωTφ − Aw = χ(Trr +

1
r
Tr +

1
r2
Tφφ),

(r,φ) ∈ Ω,
u = v = w = 0, T = 0, (r,φ) ∈ Γ.

Here, the quantities ω, g, and G are constants.
Problem (10.20)–(10.22) is the analog of the well-studied two-dimensional prob-

lem for the Navier–Stokes equations (see, for example, [114]). Let us assume that the
following conditions are fulfilled:

ω ∈ C(1+α/2)[0, l], G ∈ Cα/2[0, l], 0 < α < 1.

In this case, for each l > 0, problem (A) has, besides the unique solution, in which
functions u, v, w, T, and T belong to the Hölder class C(2+α,1+α/2)[Q̄l], ∇p ∈ C(α,α/2)[Q̄l].
The validation of this statement follows the known procedure [114] and is not given
here. Its key element is the presence of the energy identity, which allows one to obtain
the a priori evaluation of the solution. As for problem (B), it is only possible to prove
the local solvability of the problem. Let quantities |g|, |ω|, and |G| be sufficiently small.
Then problem (B) has at least one isolated solution, and its norm in the corresponding
Hölder class is also small. Such a situation is typical of standard boundary problems
of the dynamics of a viscous liquid.
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Motions with rotational symmetry
Let us assume that g = 0 and the functions u0, v0, w0, and T0 involved into condi-
tions (10.22) are independent of the polar angle φ. Then problem (A) admits a rota-
tionally symmetric solution, in which all desired functions are also independent of φ,
and it has no other solutions (not possessing symmetry; see the end of the previous
section).

By virtue of the continuity equation (fourth equation of system (10.20)) and the
symmetry condition, we have u = kr−1, where k = k(t). If we exclude the presence
of sources and sinks on the tube axis, then k = 0. Equations of problem (A) be-
come linear in this case. We will present them in a sequence convenient for their
solution:

wt = −
1
2
Aβω2r2 − G + ν(wrr +

1
r
wr), (10.23)

Tt − Aw = χ(Trr +
1
r
Tr), (10.24)

ω̇r + vt = ν(vrr +
1
r
vr −

v
r2
), (10.25)

qr =
ρv2

r
. (10.26)

We can see that the circular and axial velocity components can be determined in-
dependently, while the temperature distribution is determined only by componentw.
Each of the initial boundary problems for Eqs. (10.23)–(10.25) can be solved by the
Fourier method. The procedure of their solution has a routine character, and we do
not discuss it.

Let us attach the initial and boundary conditions to Eq. (10.23)

w(r,0) = w0(r), 0 ⩽ r ⩽ a, (10.27)
w(a, t) = 0, 0 ⩽ t ⩽ l, |w| <∞, r → 0, (10.28)

as well as the additional condition of the nonzero flow rate through the tube cross
section

a

∫
0

w(r, t)rdr = 0, 0 ⩽ t ⩽ l. (10.29)

At specified functions ω and G, problem (10.23), (10.27)–(10.29) is overdetermined.
However, we can formulate an inverse problem, i. e., find the function G and the so-
lution of Eq. (10.23) at a specified function ω so that conditions (10.27)–(10.29) are
fulfilled. There are the reasons to assume that the solution of such a problem will ap-
proximatewell the solution of the convection problem in themain part of a long closed
rotating cylinder at a linear temperature distribution of its boundary along the axial
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coordinate. The results [114], where the convection problem in a long horizontal cu-
vette with a constant temperature drop being held at its lateral boundaries, support
this assumption. They confirm the asymptotic character of the exact solution found in
[35].

An inverse problem close to the formulated one was considered in article [166]. It
was devoted to the time-dependent Poiseuille flow in a cylindrical tube with an arbi-
trary cross sectionwith a specified flow rate depending on time,while the temperature
gradient (the analog of function G) was subjected to determination.

To solve the inverse problem to (10.23), (10.27)–(10.29), let us multiply both parts
of Eq. (10.23) by r and integrate the obtained equality by r in the interval (0, a). Taking
into account conditions (10.28) and (10.29), we obtain

G(t) = − 1
4
Aβω2(t) + 2ν

a
wr(a, t). (10.30)

Relation (10.30) can be interpreted as a linear operator equation for the function G.
Indeed, let us assume that the function G ∈ Cα/2[0, l] is specified, 0 < α < 1. Let
the conditions of fitting be fulfilled for the input data of problem (10.23), (10.27),
(10.28):

ω ∈ Cα/2[0, l]; w0 ∈ C
2+α[0, a];

dw0
dr
= 0, r = 0;

ν(d
2w0
dr2
+
1
r
dw0
dr
) =

1
2
Aβω2(0)a2 + G(0), r = a.

It follows from the general results of the theory of parabolic equations [116] that
problem (10.23), (10.27), (10.28) has the unique solutionw ∈ C2+α,1+α/2([0, a]× [0, l]). At
specifiedω andω0, let us determine the linear operator assigning the value ofwr(a, t)
to function G(t). This operator acts from space Cα/2[0, l] into space C(1+α)/2[0, l]; it is
the continuous Volterra-type operator. From here, an unambiguous dependence of
Eq. (10.30) in space Cα/2[0, l] follows. Note that inverse problem (10.23), (10.27), (10.28)
is reduced to finite dimensional if ω(t) is a trigonometric polynomial or finite sum of
exponents exp(λnt), where λ = const and n is the integer.

Steady-state rotationally symmetrical flows
Let us consider the steady-state solutions of system (10.23), (10.24). It is convenient
to pass to dimensionless variables to analyze them. The following scales are used:
the tube radius a as the length scale, χ/a for velocity, rvχ/a2 for pressure, and Aa for
temperature. Let us retain the previous notation of dimensionless quantities. In the
above-mentioned scales, the general steady-state solution of system (10.23), (10.24)
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can be presented in the form

w = Ra( r
4

32
+ c1

r2

4
+ c2 ln r + c3),

T = −Ra [ r6

32 ⋅ 36
+ c1

r4

64
+ c2

r2(ln r − 1)
4
+ c3

r2

4
+ c4 ln r + c5] ,

where Ra = βAω2a5/νχ is the Rayleigh number, while the dimensional constant G =
βAω2a5c.

If the tube is completely filled with liquid, it is natural to lay the conditions of
finiteness of velocity and temperature. This gives c2 = 0 and c4 = 0. Two boundary
conditions on the tube wall r = a : w = 0 and T = 0 along with the condition for full
rate Q of the liquid through the tube section

1

∫
0

rwdr = Q
2π

determine the three remaining constants in the general solution. After simple calcu-
lations, we obtain

w = Ra
96
(1 − 4r2 + 3r4) + Q

2π
(1 − r2),

T = Ra
9 ⋅ 128
(1 − r2)3 + Q

8π
(3 − 4r2 + r4),

𝜕p
𝜕z
= −

Ra
6
(1 − 3r2) − 8Q

π
.

The casewhen the tubewith a longitudinal temperature gradient is filledwith two
different liquids is of special interest. The presence of the interface between the liq-
uids leads to the appearance of the surface thermocapillary force that forces the liquid
to move along the tube. A rather complex convective flow with several controlling pa-
rameters, which is described by elementary functions, is formed in the rotating tube
under the effect of the centripetal force (Figure 10.4).

Let the denser liquid occupy the region r∗ < r < 1, while the lighter liquid occupies
the region 0 < r < r∗. Marking the solution of Eqs. (10.23) and (10.24) for the external
liquid by index 1 and for the internal liquid by index 2, we write the general solution
in the form

r∗ < r < 1 : w1 = Ra(
r4

32
+ c1

r2

4
+ c2 ln r + c3),

0 < r < r∗ : w2 = Ra(
r4

32
+ c6

r2

4
+ c7 ln r + c8),

T2 = −Ra[
r6

32 ⋅ 36
+ c6

r4

64
+ c7

r2(ln r − 1)
4
+ c8

r2

4
+ c9 ln r + c10],

T1 = −Ra[
r6

32 ⋅ 36
+ c1

r4

64
+ c2

r2(ln r − 1)
4
+ c3

r2

4
+ c4 ln r + c5].
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Figure 10.4: Velocity profile of the convective flow for different values of flow rate Q and Ra = 100.

To determine the constants, five continuity conditions at the interface between liquids
should be added in this solution to the two conditions formulated above on the tube
axis and the two conditions on the wall:

r = r∗ : w1 = w2,
dw1
dr
− η dw2

dr
= Ma,

𝜕p1
𝜕z
=
𝜕p2
𝜕z
−Ma 1

r∗
,

T1 = T2,
dT1
dr
= æ dT2

dr
, where Ma = dσ

dT
Aa2

η1χ1
.

Here, Ma is the Marangoni number determined by the characteristics of the external
liquid and σ(T) is the surface tension coefficient on the interface, and the relative dy-
namic viscosity η = η2/η1 and thermal conductivity æ = æ2/æ1 of the liquids are
introduced.

Let us formulate the condition for the pressure specifying the overall flow rate:

r∗

∫
0

rw2dr +
1

∫
r∗

rw1dr =
Q
2π
.

Ten mentioned conditions form the linear set of equations for the determination
of coefficients of the general solution. The velocity profiles of the convective flow cal-
culated for r∗ = 0.5 and different values of the Marangoni number and flow rate are
presented in Figure 10.5. As follows from the formof the solution, the Rayleigh number
is the scale factor; when constructing the plots, it equals 1.
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Figure 10.5: Velocity profiles of the convective flow in the two- liquid system with r∗ = 0.5:
(1) Ma = 0, Q = 0; (2) Ma = 0, Q = 1; (3) Ma = 1, Q = 0; and (4) Ma = 1, Q = 1.

10.3 Unsteady analogs of the Birikh solutions

New exact solutions of the Oberbeck–Boussinesq equations are constructed, which
describe the motions in a horizontal band and in a rotating circular tube. These solu-
tions generalize solutions constructed in [35, 37]. It is important that the streamwise
temperature gradient depends on time. Results of this paragraph are based on the re-
sults of paper [185].

10.3.1 Introduction

The object of our study is the Oberbeck–Boussinesq equations

vt + v ⋅ ∇v = −ρ
−1∇p + νΔv − βθg, ∇ ⋅ v = 0, θt + v ⋅ ∇θ = χΔθ, (10.31)

which describe convective motions of a viscous incompressible heat-conducting fluid
in the gravity field with the acceleration g = (−g,0,0). Unlike (4.60), equations (10.31)
are given in dimensional variables. Nowwe assume that g = const, but this constraint
will be further eliminated. In system (10.31), v is the velocity vector, p is the deviation
of pressure from the hydrostatic value, θ is the deviation of temperature from its mean
value, ρ is the mean density of the fluid, ν is the kinematic viscosity coefficient, β is
the volumetric coefficient of thermal expansion, and χ is the thermal diffusivity. In
that follows, the quantities ρ, ν, β, and χ are assumed to be constant.

System (10.31) is nonlinear, it has a high order and does not refer to any classi-
cal type. For this reason, exact solutions of this system are extremely important for
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decreasing the dimension and the order of the reduced equations; sometimes, the
equations may become linearized. An example of such a solution is the solution ob-
tained by Birikh [35], which describes a steady convective flow in a horizontal band.
The solution constructed in this paper extends the Birikh solution to the case where
the streamwise temperature gradient depends on time. A similar generalization can
be obtained for the solution of the problem of axial convective motion in a rotating
tube [37] and also of the problem of motion of two immiscible fluids with a plane or
cylindrical interface [7, 85, 86, 194].

A systematic analysis of exact solutions is based on the use of methods of the
group analysis of differential equations [155]. As applied to system (10.31), the group
analysis was performed by Katkov [106] who considered a plane steady case and by
Goncharova [76] who studied the general case and, moreover, examined the problem
of the group classificationof convection equationswith temperature-dependent trans-
fer coefficients. The group nature of the Birikh solution was discovered in [106, 182].
Pukhnachev [182] generalized the Birikh solution to a three-dimensional case. Other
applications of theoretical-group methods in convection problems were described in
[10, 18, 20].

Solutions of system (10.31) found in [35, 7, 86, 194] admit an interpretation in the
form of flows in a plane horizontal or inclined channel. Pukhnachev [182] considered
unsteady motion of the fluid in a horizontal cylindrical tube. All these solutions are
united by the following circumstance: the temperature field can be represented in the
form θ = −Az + T, where A = const, and the function T is independent of the stream-
wise coordinate z. For the first time, solutions of the Oberbeck–Boussinesq equations
possessing this property were found by Ostroumov [153] in studying the problem of
stability of the equilibrium state of the fluid in a vertical tube with a streamwise tem-
perature gradient. In this problem, the arising secondary flows have a simple nature:
the horizontal components of velocity in these flows are equal to zero, and the verti-
cal component of velocity and temperature are found from a linear system of equa-
tions. A natural question arises: Is it possible to cancel the assumption A = const,
but still retain a comparatively simple flow structure? An affirmative answer is given
to this question below for the case of a plane flow in a horizontal band. This gener-
alization admits a solution with rotational symmetry, which was constructed in [37].
An analog of the Ostroumov solution for the case with θz ̸= const, however, cannot be
constructed.

10.3.2 Plane motion in a horizontal band

We consider a plane layered motion in a horizontal band of width h. In what follows,
the horizontal and vertical coordinates are denoted by z and x; the projections of the
vector v onto the z and x axes are denoted by w and u, respectively. The third compo-
nent of the velocity v is equal to zero, and the remaining sought functions u,w, p, and
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θ are independent of the variable y. The gravity force with the acceleration g acts in
the negative direction of the x axis. The layered character of motion is ensured by the
equality u = 0. Then, it follows from the second equation of system (10.31) that the
function w is independent of the variable z.

Under the assumptions made above, the Oberbeck–Boussinesq equations are
substantially simplified and transform to

wz = 0, wt = νwxx − ρ
−1pz , px = ρgβθ, θt + wθx = χ(θxx + θzz). (10.32)

System (10.32) is overdetermined. Its steady version was studied by Birikh [35].
He demonstrated that the function w in the steady case is a cubic polynomial and
the remaining sought functions can be represented in the form θ = −Az + T(x), p =
−Aρgβxz + q(x), where T and q are polynomials of the fifth and sixth powers, respec-
tively. It was found later [106] that the Birikh solution has a theoretical-group nature;
it is an invariant solution of system (10.31) with respect to the group with the basis
operators 𝜕z − A(𝜕θ + ρgβx𝜕p), 𝜕t, 𝜕y (A = const) admitted by this system. The issue of
compatibility of system (10.32) is resolved in the general form below. It turns out that
the set of solutions of this system, supplemented with the equalities u = v = 0, is not
confined to the invariant solutions of the original Oberbeck–Boussinesq equations.

It follows from the first two equations of system (10.32) that p depends linearly on
the variable z; from the third equation of this system, it also follows that the function
θ possesses the same property. Let us assume that

w = w(x, t), θ = −A(x, t)z + T(x, t), p = −B(x, t)z + q(x, t). (10.33)

Substituting Eqs. (10.33) into system (10.32), we obtain

At = χAxx , Bx = ρgβA, wt = νwxx + ρ
−1B, Tt = χTxx + Aw, qx = ρgβT . (10.34)

In contrast to system (10.32), the number of equations in system (10.34) coincides
with the number of the sought functions. This system is recurrent, and its consecu-
tively solved equations are linear with respect to the new sought functions. The term
Aw in the fourth equation of the system, however, induces an element of nonlinear
interaction of the temperature and velocity fields.

System (10.34) is considered in the domain D = {x, t : −h < x < 0, t > 0}. The
solution of the first equation of system (10.34) is uniquely determined by imposing the
initial and boundary conditions. Knowing the function A, we take a quadrature and
find the function B from the second equation of this system. After that, the system for
determining the functions w,T, and q becomes closed. In particular, for the function
w, we have

wt − νwxx = gβ
x

∫
−h

A(s, t)ds − ρ−1C(t), (x, t) ∈ D. (10.35)
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Here, C is a given function of t, which defines the additional term in the linear depen-
dence of pressure on the variable z, which is not related to the convection process.
Equation (10.35) requires the initial condition

w = w0(x), −h ⩽ x ⩽ 0, t = 0, (10.36)

and the boundary conditions, which can be naturally taken as the no-slip conditions

w = 0, x = −h and x = 0, t > 0. (10.37)

The solution of problem (10.35)–(10.37) is determined uniquely.We do not discuss
here the properties of smoothness of this solution: they can be obtained on the basis of
the well-known results of the theory of linear parabolic equations [116] with ensuring
the necessary smoothness of the functionsA,w0, andQ. Nowwe can find the function
T from the solution of the initial-boundary problem for the fourth equation of system
(10.34) and, after that, the function q from the last equation by taking a quadrature.

Note that the first equation of system (10.34) always has the solutionA = const. If,
in addition, the functionw is independent of t, we obtain the classical Birikh solution
[35]. IfA(x, t) is an arbitrary solution of the heat conduction equation, we obtain a new
class of solutions of the Oberbeck–Boussinesq equations that describe unsteady con-
vective motions in a band, which possesses broad functional arbitrariness. It should
also be noted that the assumption about a constant value of g was not used in deriv-
ing Eq. (10.35). Assuming that g = g(t), we obtain the next generalization of the Birikh
solution.

In addition to problem (10.35)–(10.37), it is of interest to consider a problemwhere
the flow rate of the fluid through the band cross section is specified instead of the
function C(t):

0

∫
−h

w(x, t)dx = Q(t). (10.38)

The function C in problem (10.35)–(10.38) is also a sought function, in addition
to the function w. Therefore, this problem refers to the class of inverse problems. It is
a one-dimensional analog of the problem considered in [166]. Using the methods of
this work, we can prove the unique solvability of problem (10.35)–(10.38) in appropri-
ate Hölder classes. As this problem is one-dimensional, however, another approach is
more convenient here, which is based on reducing this problem to the Volterra opera-
tor equation.

To solve the inverse problem, we integrate Eq. (10.35) with respect to x on the in-
terval (−h,0). Using equality (10.38) and introducing the notation

ρgβh−1{
0

∫
−h

[
x

∫
−h

A(s, t)ds]dx} − ρh−1Q(t) = f (t),

C(t) = f (t) + ρνh−1[wx(0, t) − wx(−h, t)],

(10.39)
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we obtain the relation (10.39) which can be treated as a linear operator equation with
respect to the function C. Let the specified functions A(x, t) and Q(t) belong to the fol-
lowing Hölder classes: A ∈ C2+α,1+α/2([−h,0] × [0, l]) and Q ∈ C1+α/2[0, l], 0 < α < 1. Let
the conditions of smoothness and compatibility for the input data of problem (10.35)–
(10.37) be satisfied:

w0 ∈ C
2+α[−h,0], w0(−h) = w0(0) = 0, νw0 (0) = C(0),

νw0 (−h) = C(0) − gβ
0

∫
−h

A(x, 0)dx = 0.

It follows from the general results of the theory of parabolic equations [116] that
problem (10.35)–(10.37) has aunique solutionw ∈ C2+α,1+α/2([−h,0], [0, l]). Let us deter-
mine a linear operator that puts the functionwx(0, t)−wx(−h, t) into correspondence to
the function C(t). This operator acts from the space Cα/2[0, l] to the space C(1+α)/2[0, l]
and is a continuousVolterra-type operator. Fromhere, there followsunique solvability
of Eq. (10.39) in the space Cα/2[0, l] for any l > 0.

10.3.3 Layered motion of immiscible fluids

Let us consider a system of two immiscible fluids separated by the interface x = 0.
The parameters of the fluid moving in the band 0 < x < h1, z ∈ R are indicated by
the subscript “1,” and the parameters of the fluid moving in the band −h2 < x < 0
are indicated by the subscript “2.” In the plane motion considered here, the velocity
components u1 and u2 are equal to zero, and the velocity components w1 and w2 are
independent of z. Following the construction performed in Section 10.3.2, we seek for
solutions of the Oberbeck–Boussinesq equations in the form

wi = wi(x, t), θi = −Ai(x, t)z + Ti(x, t), pi = −Bi(x, t)z + qi(x, t), i = 1, 2. (10.40)

Here, Ai and Ti can be arbitrary solutions of the heat conduction equations

Ai,t = χiAi,xx , Ti,t = χiTi,xx , i = 1, 2, (10.41)

related by the conditions of the thermal contact on the interface

A1 = A2, k1A1,x = k2A2,x , x = 0, t > 0. (10.42)

The functions Ai and Bi, Ti and qi (i = 1, 2) are related by

Bi(x, t) = ρigβi

x

∫
0

Ai(s, t)ds − Ci(t), qi = ρigβi

x

∫
0

Ti(s, t)ds, (10.43)
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where Ci are still arbitrary functions of t. Hereinafter, the density, viscosity, thermal
expansion coefficient, thermal diffusivity, and thermal conductivity of the ith fluid
are denoted by ρi, νi, βi, χi, and ki, respectively. As previously, these parameters are
assumed to be positive constants. No other constraints are imposed on these param-
eters a priori. If we want to ensure stability of stratification, however, we should take
ρ1 < ρ2.

Let us introduce the notations D1 = {x, t : 0 < x < h1, t > 0} and D2 = {x, t : −h2 <
x < 0, t > 0}. The functions w1 and w2 satisfy the equations

wi,t − νiwi,xx = gβi

x

∫
0

Ai(s, t)ds − ρ
−1
i Ci(t), (x, t) ∈ Di, i = 1, 2. (10.44)

For system (10.44), we impose the initial conditions

w1 = w0,1(x), 0 ⩽ x ⩽ h1, t = 0; w2 = w0,2(x), −h2 ⩽ x ⩽ 0, t = 0, (10.45)

the no-slip conditions on the solid boundaries of the flow domain

w1 = 0, x = h1, t ⩾ 0; w2 = 0, x = −h2, t ⩾ 0, (10.46)

and the conditions on the interface, which were formulated in the general form in
[10, 18, 20]. One of them is the condition of velocity continuity

w1 = w2, x = 0, t > 0. (10.47)

Another condition requires the jump of the normal stress on the interface to be
equal to capillary pressure proportional to the mean curvature of the interface. In the
case of a flat interface examined here, the normal stress is continuous. Moreover, by
virtue of the equalities u1 = u2 = 0, we obtain p1 = p2 at x = 0. The last condition
combinedwith Eqs. (10.40)–(10.43) yields the equality C1 = C2 ≡ C. Onemore dynamic
condition has the form

ρ1ν1w1,x − ρ2ν2w2,x = æA, x = 0, t ⩾ 0, (10.48)

where A(t) is the common value of the functions A1 and A2 on the line x = 0, and
æ = const > 0 is the coefficient in the equality

σ = σ0 −æ(θ − θ̄), (10.49)

which expresses the dependence of the surface tension coefficient on temperature
(here, σ0 and θ̄ are positive constants). By virtue of Eqs. (10.40) and (10.49), condition
(10.48) means that the difference in the shear stresses on the interface is equal to the
tangent of the derivative of the surface tension coefficient. Finally, the kinematic con-
dition on the interface is satisfied identically, which is a common property of layered
motions.
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Let the functions A1,A2, and C be known. Then, Eqs. (10.45)–(10.48) define a well-
posed problem for system (10.44). If this problem is solved, we can find the functions
Ti from the equations

Ti,t = χiTi,xx + Aiwi, i = 1, 2

under the corresponding initial and boundary conditions. After that, taking quadra-
tures, we reconstruct the functions q1 and q2 from Eqs. (10.43).

10.3.4 Unsteady axial convection in a rotating tube

Let the fluid fill a circular tube of radius a rotating around its axis with an angular
velocity ω(t). Let us denote the cylindrical coordinates by r,φ, z, and let the tube axis
coincide with the z axis. In what follows, u andw are the radial and axial components
of the velocity vector, v is the difference between the angular velocity and the velocity
of fluid rotation as a solidωr, p is the deviation of pressure from its equilibrium value
ρω2r2/2, and θ is the deviation of temperature from its mean value θ̄. We consider only
the case of rotationally symmetric motions. This means that all sought functions are
independent of the angle φ. In the above-accepted notations, the equations of rota-
tionally symmetric motion in the field of centripetal forces are written in the following
form [37]:

ut + uur + wuz − 2ωv −
v2

r
= −

1
ρ
pr + ν(urr +

1
r
ur −

u
r2
+ uzz) − ω

2βrθ,

vt + uvr + wvz + 2ωu + ω̇r +
uv
r
= ν(vrr +

1
r
vr −

v
r2
+ vzz),

wt + uwr + wwz = −
1
ρ
pz + ν(wrr +

1
r
wr + wzz),

ur +
u
r
+ wz = 0,

θt + uθr + wθz = χ(θrr +
1
r
θr + θzz).

(10.50)

Birikh and Pukhnachev [37] considered the solutions of system (10.50) where the
functionw is independent of the variable z, and the function θ has the form θ = −Az +
T(r, t), where A = const. Below, we study solutions of a more general form where

w = w(r, t), v = v(r, t), θ = −A(r, t)z + T(r, t), p = −B(r, t)z + q(r, t). (10.51)

Then, it follows from the penultimate equation of system (10.50) and from the
assumption of the absence of sinks and sources on the tube axis that u = 0. The study
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of compatibility of the remaining equations of system (10.50) with Eqs. (10.51) yields
the following results. The function A satisfies the radial heat conduction equation

At = χ(Arr +
1
r
Ar). (10.52)

The function v satisfies the equation

vt + ω̇r = ν(vrr +
1
r
vr −

v
r2
). (10.53)

For the function w, we obtain the equation

wt − ν(wrr +
1
r
wr) = gβ

r

∫
0

sA(s, t)ds − 1
ρ
C(t), (10.54)

where C is an arbitrary function of t. For the function T, we have the equation

Tt = χ(Trr +
1
r
Tr) + Aw. (10.55)

It should be noted that Eqs. (10.52)–(10.54) are linear; therefore, problems simi-
lar to that considered in Section 10.3.1 can be studied for these equations. Equations
(10.52) and (10.53) are not related to each other. If the function A is found, then the
functionsw and T are obtained from the consecutively solved Eqs. (10.54), (10.55). For
known A,T, and v, the functions B and q are determined by the equalities

B(r, t) = ρgβ
r

∫
0

sA(s, t)ds − C(t), q(r, t) = ρ{
r

∫
0

[2ω(t)v(s, t) + v
2(s, t)
s
+ gβsT(s, t)]ds}.

(10.56)
Thus, we obtained an essentially unsteady analog of the solution studied in [37].

It should also be noted that an inverse problem similar to that formulated in Sec-
tion 10.3.1 can be considered for Eq. (10.54) in addition to the direct problem.

10.3.5 Motion of immiscible fluids in a rotating tube

The problemconsidered in Section 10.3.4 admits extension to the case ofmotion of two
immiscible fluidswith a cylindrical interface. The solution of the convection equations
in this case is sought in the form similar to Eq. (10.51):

wi = wi(r, t), vi = vi(r, t), θi = −Ai(r, t)z + Ti(r, t), pi = −Bi(r, t)z + qi(r, t), i = 1, 2.
(10.57)
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Here, Ai (i = 1, 2) are the solutions of the radial heat conduction equations with the
coefficients χi related by the heat balance conditions

A1 = A2, k1A1,r = k2A2,r , r = b, t ⩾ 0.

We denote the coinciding values of the functions A1 and A2 on the interface by A.
Without writing all equations of our problem, we formulate the relations that deter-
mine the velocities of axial motion of the contacting fluids.

Let the interface equation have the form r = b = const < a, where a is the tube
radius. The characteristics of the fluid located in the cylinder r < b are indicated by the
subscript “1,” and the characteristics of the fluid filling the cylindrical layer b < r < a
are indicated by the subscript “2.” Let us assume that ρ1 < ρ2 to avoid the Rayleigh–
Taylor instability. Let us denote D1 = {r, t : 0 < x < b, t > 0} and D2 = {r, t : b < r <
a, t > 0}. The functions w1 and w2 satisfy the equations

wi,t − νi(wi,rr +
1
r
wi,r) = gβi

r

∫
b

sAi(s, t)ds −
1
ρi
Ci(t), (r, t) ∈ Di, i = 1, 2, (10.58)

the initial conditions

w1 = w0,1(r), 0 ⩽ r ⩽ b, t = 0; w2 = w0,2(r), b ⩽ r ⩽ a, t = 0, (10.59)

the no-slip condition on the tube surface

w2 = 0, r = a, t ⩾ 0, (10.60)

the condition of boundedness of w1 as r → 0, the condition of velocity continuity on
the interface

w1 = w2, r = b, t ⩾ 0, (10.61)

and the condition of the balance of shear stresses with allowance for the thermocap-
illary effect on the interface

ρ1ν1w1,r − ρ2ν2w2,r = æA, r = b, t ⩾ 0. (10.62)

Here, æ is the coefficient in dependence (10.49) of surface tension on temperature.
The functions Ci involved into the right-hand sides of Eq. (10.57) arise in the course
of obtaining a solution of system (10.50) in the form (10.57). They are related to the
functions Ai and Bi by the equalities

Bi(r, t) = ρigβi

r

∫
0

sAi(s, t)ds − Ci(t), i = 1, 2. (10.63)
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These functions specify additional terms in the linear dependence of pressure on
the axial coordinate, which do not have a convective nature. In contrast to the plane
problemconsidered in Section 10.3.2, the functionsC1 andC2 donot coincide here. The
reason is the presence of an additional term (capillary pressure) in the condition of
equality of the normal stresses on the interface. By virtue of the equalities u1 = u2 = 0,
this condition is written in the form

p1 = p2 + b
−1σ, r = b, t ⩾ 0.

Let us substitute Eqs. (10.57) for the functions p1 and p2 and Eq. (10.49) for the
function σ into the last equality, use equalities (10.63), and then find linear terms with
respect to z in the resultant equality. Thus, we obtain

C1 = C2 +æb
−1A, t ⩾ 0.

One of the functions (C1 or C2) can be prescribed arbitrarily.
Thus, we obtained a closed formulation (10.58)–(10.62) of the problem of deter-

mining the axial velocities in a rotating two-layer systemunder the combined action of
the centripetal force and axial gradients of temperature and pressure. As in the prob-
lem considered in [37], the temperature in each layer is a linear function of the axial
coordinate z. In contrast to [37], however, the coefficient in this dependence is not con-
stant: it is a linear function of the variable z and arbitrary function of the variable t.
This dependence possesses functional arbitrariness. In particular, we can specify the
temperature on the tube surface in the form

θ2 = −γ(t)z + δ(t), r = b, t ⩾ 0,

where γ and δ are arbitrary functions of time.

10.3.6 Three-dimensional analogs of the Birikh solution

In our further considerations, S is a bounded domain on the plane x, y, and Ω is a
cylinder: Ω = {x, y, z : (x, y) ∈ S, z ∈ R}. Pukhnachev [182] found a class of solutions of
the system of the Oberbeck–Boussinesq equations (10.31), which describes unsteady
motions in a cylinder. These solutions are a three-dimensional analog of the Birikh
solution and have the form (10.5), where A = const. Solutions (10.5) of system (10.31)
are invariant solutionsof rank 3with respect to theoperator 𝜕z−A(𝜕θ+ρgβx𝜕p)admitted
by this system.

Anatural question arises: Is it possible to obtain generalizations of solutions (10.5)
to the case where the coefficient A is not a constant? It turns out that this can be
achieved only with appreciable simplification of the kinematic system of the flow.
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We seek for the solutions of system (10.31) supplemented with the relations

vz = 0, θ = −A(x, y, t)z + T(x, y, t), p = −B(x, y, t)z + q(x, y, t). (10.64)

These solutions include solutions of the form of Eqs. (10.5), but not only these
solutions. Substituting Eqs. (10.64) into system (10.31), we obtain the relations

ut + uux + vuy = −ρ
−1qx + ν(uxx + uyy) + gβT + z(ρ

−1Bx − gβA),

vt + uvx + vvy = −ρ
−1qy + ν(vxx + vyy) − zρ

−1By ,

wt + uwx + vwy = −ρ
−1B + ν(wxx + wyy),

ux + vy = 0,
Tt + uTx + vTy − wA − z(At + uAx + vAy) = χ(Txx + Tyy) − zχ(Axx + Ayy).

(10.65)

Equating the coefficients at the first and zeroth powers of z in Eqs. (10.65) to zero,
we obtain

Bx = ρgβA, By = 0, At + uAx + vAy = χ(Axx + Ayy), (10.66)

ut + uux + vuy = −ρ
−1qx + ν(uxx + uyy) + gβT ,

vt + uvx + vvy = −ρ
−1qy + ν(vxx + vyy),

(10.67)

wt + uwx + vwy = −ρ
−1B + ν(wxx + wyy), ux + vy = 0,

Tt + uTx + vTy − wA = χ(Txx + Tyy).

It follows from the first two equations of system (10.66) that the function A is in-
dependent of y. This fact allows us to rewrite the third equation of system (10.66) in
the form

At + uAx = χAxx . (10.68)

There are two options. Either we have uy ̸= 0, and then A = const, which yields
solutions (10.5). If uy = 0, then the function v depends linearly on y by virtue of the
penultimate equation of system (10.67). In what follows, we consider the case where
this dependence is homogeneous; therefore, we have

u = u(x, t), v = −yux . (10.69)

Substituting Eqs. (10.69) into Eqs. (10.67), we obtain

ut + uux = −ρ
−1qx + νuxx + gβT , y(uxt + uuxx − u

2
x) = ρ

−1qy + νyuxxx ,

wt + uwx − yuxwy = −ρ
−1B + ν(wxx + wyy),

Tt + uTx − yuxTy − wA = χ(Txx + Tyy).

(10.70)

It follows from the second equation of system (10.70) that the function q is a
squared function of the variable y; moreover, it follows from the first equation of this
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system that the function T possesses the same property. Considering the last equa-
tion of system (10.70), we see that the function w is also a squared function of y. For
simplicity, we further assume that the dependences of the functions q, T, and w on
the variable y are even:

q = ξy2 + ϕ, T = ηy2 + ϑ, w = ςy2 + ψ. (10.71)

Here, ξ ,ϕ, η, ϑ, ς, andψ are the sought functions of the variables x and t. The equations
for determining these functions are obtained by substituting Eqs. (10.71) into system
(10.70). After simple transformations, we obtain the following system of equations;

uxxt + uuxxx − uxuxx = νuxxxx + 2gβη, ηt + uηx − 2uxη − ςA = χηxx , (10.72)
ςt + uςx − 2uxς = χςxx ,

ϑt + uϑx − ψA = χ(ϑxx + 2η), ψt + uψx = −ρ
−1B + ν(ψxx + 2ς), (10.73)

ξx = ρgβη, ϕx = ρ(gβϑ − ut − uux). (10.74)

Relations (10.68), (10.72) form a closed system of quasi-linear equations for de-
termining the functions A, u, η, and ς of the variables x and t. Three equations are
parabolic, and the remaining equation (the first equation of system (10.72)) is of a
composite type. If the functions A, u, η, and ς are found, then the functions ϑ and ψ
are determined from the systemof linear parabolic equations (10.73). After that, the re-
maining functions ξ ,ϕ, andB are reconstructed byusing quadratures fromEqs. (10.74)
and the first equation of system (10.66) with accuracy to arbitrary additive functions
of time. Two of them do not affect the velocity field, while the third one (involved into
the definition of B) participates in generating the axial velocity w.

We further assume that the tube cross section S is a rectangle: S = {x, y : |x| <
h, |y| < d}. Let us formulate the initial-boundary problem for system (10.68), (10.72).

On the upper and lower sides of the rectangle S, i. e., at x = ±h, we can naturally
impose the no-slip conditions, which are written in the following form by virtue of
Eqs. (10.69), (10.71):

u = 0, ux = 0, ς = 0, x = |h|, t ⩾ 0. (10.75)

As the temperature conditions, we specify the values of the functions A and η on
the horizontal sides of S, assuming for simplicity that these values coincide on both
sides:

A = γ(t), η = δ(t), |x| = h, t > 0. (10.76)

The problem formulation is closed by setting the initial conditions

A = A0(x), u = u0(x), η = η0(x), ς = ς0(x), |x| ⩽ h, t = 0. (10.77)
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Problem (10.68), (10.72), (10.75)–(10.77) is rather complicated. The theorem of
uniqueness of the classical solution is established for it comparatively simply. The
lack of a priori estimates prevents obtaining the theorem of existence of the solution
“as a whole.” The existence of the solution of this problem on a small time interval
can be proved by the methods developed in [116].

An advantage of the solution obtained is the possibility of specifying a streamwise
temperature gradient on thehorizontal boundaries of the channel as anarbitrary func-
tion of time. An unavoidable defect is the failure to satisfy the natural no-slip bound-
ary conditions on the vertical boundaries of the channel. Physical realization of this
solution requires special distributions of velocity and temperature on the lines y = ±d,
which should be correlated with Eqs. (10.69), (10.71).

10.3.7 On the Ostroumov solutions

Ostroumov [153] found a class of solutions of convection equations, which describe
flows in cylindrical tubes induced by a streamwise temperature gradient. Let S be a
bounded domain of the plane x, y, and let Ω be a cylinder with a cross section S and
generatrices parallel to the z axis. In this Section, it is convenient to assume that the
gravity force with the acceleration g acts in the negative direction of the z axis.

Under the assumptionsmade above, Eqs. (10.31) arewritten in the coordinate form
as

ut + uux + vuy + wuz = −ρ
−1px + ν(uxx + uyy + uzz),

vt + uvx + vvy + wvz = −ρ
−1py + ν(vxx + vyy + vzz),

ut + uux + vuy + wuz = −ρ
−1pz + ν(uxx + uyy + uzz) + ρgθ,

ux + vy + wz = 0,
θt + uθx + vθy + wθz = χ(θxx + θyy + θzz).

(10.78)

Equations (10.78) admit the operator 𝜕z − A(𝜕θ + ρgβz𝜕p), where A = const. This
allows us to construct the invariant solutions of this system in the form

v = (u(x, y, t), v(x, y, t),w(x, y, t)), p = −ρgβAz2/2 + q(x, y, t),
θ = −Az + T(x, y, t).

(10.79)

Substituting Eqs. (10.79) into Eqs. (10.78), we obtain the system

ut + uux + vuy = −ρ
−1qx + ν(uxx + uyy), (10.80)

vt + uvx + vvy = −ρ
−1qy + ν(vxx + vyy),

ux + vy = 0,
wt + uwx + vwy = ν(wxx + wyy) + ρgT , (10.81)
Tt + uTx + vTy − Aw = χ(Txx + Tyy).
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We see that the functions u, v, and q satisfy the equations of plane motion of a
viscous incompressible fluid whose theory is well developed. If the functions u and
v are known, then the remaining sought functions w and T are determined from the
system of linear equations (10.81).

System (10.80) has a trivial solutionu = v = 0, q = q(t). In this case, Eqs. (10.81) are
simplified; in the steady case, they lead to spectral problems where the temperature
gradientA plays the role of the spectral parameter. The simplest problem corresponds
to the boundary conditions of the first kind:

w = 0, T = 0, (x, y) ∈ 𝜕S.

Other problems correspond to the condition of the second kind for the function T
and to the conditions of the thermal contact of the convective fluid with the ambient
solid medium. These problems were studied in [153, 68]. Stability of the Ostroumov
steady solutions was examined in [68].

If we take any time-dependent solution of system (10.80) as the coefficients u and
v of the linear system (10.81), we obtain a family of solutions of Eqs. (10.31), which can
be called unsteady analogs of the Ostroumov solution. Such generalization of these
solutions, however, is based on the assumption that the quantity θz = A is constant.
An attempt to replace this quantity by a function of the variables x, y, and t is not
successful. We propose the reader to prove this statement.

10.3.8 Concluding remarks

a). The solutions of plane and axisymmetric problems of convection, which are given
in Sections 10.3.2–10.3.4, are essential generalizations of the known solutions [35, 37]
to the case where the axial temperature gradient is an arbitrary function of time. In
contrast to the Birikh solution, the theoretical-group nature of these solutions has not
been clarified yet, which should not be considered as a drawback of these solutions.

b). The inverse problem similar to that examined in Section 10.3.2 can be consid-
ered for a two-layer flowdescribed inSection 10.3.3. In this case, it is possible to specify
the flow rate of only one fluid as a function of time, because the streamwise pressure
gradients are identical in both layers.

c). Thermogravitational and thermocapillary convective flows in horizontal lay-
ers under the action of a streamwise temperature gradient (including unsteady flows)
were realized in experiments [107, 108].

d). Problem (10.68), (10.72), (10.75)–(10.77) admits appreciable simplification if
ς0 = 0 in Eqs. (10.77). In this case, the function ς is identically equal to zero. A sys-
tem of two equations (10.72) is obtained for the functions u and η. If the solution of
this system is known, then the function A is found from the linear equation (10.68).
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e). The problem of convection in a gap between two non-coaxial cylinders is an
example of an unsteady analog of the Ostroumov solution. The inner cylinder rotates
around its axis with a given angular velocity, which may be time-dependent.

10.4 Model of viscous layer deformation by thermocapillary forces

A three-dimensional non-stationary flow of a viscous incompressible liquid is investi-
gated in a layer driven by a nonuniform distribution of temperature on its free bound-
aries. If the temperature given on the layer boundaries is quadratically dependent on
horizontal coordinates, external mass forces are absent, and the motion starts from
rest, then the free boundary problem for the Navier–Stokes equations has an “exact”
solution in terms of two independent variables. Here the free boundaries of the layer
remain parallel planes and the distance between them must be also determined. In
present paper, we formulate conditions for both the unique solvability of the reduced
problem globally in time and the collapse of the solution in finite time. We further
study qualitative properties of the solution such as its behavior for large time (in the
case of global solvability of the problem), and the asymptotics of the solution near the
collapse moment in the opposite case. This paragraph is based on the results of paper
[175].

Formulation of the problem
We consider thermocapillary motion of a viscous incompressible liquid bounded en-
tirely by free surfaces. The domain occupied by liquid is denoted by Ωt and its bound-
ary is denoted by Γt . The liquid density ρ and kinematic viscosity ν are taken to be
constant, and the surface tension σ is taken to be a linear function of temperature θ:

σ = σ0 −æ(θ − θ0), (10.82)

where σ0, æ and θ0 are positive constants. We suppose further that the motion starts
from rest and that external mass forces do not act on the liquid. Moreover, we assume
that the temperature at the free surface θΓ(x, t) is a known function of the coordinates
x = (x, y, z) and time t. Hence, themathematical formulation of the problem is reduced
to determination of the domain Ωt, 0 < t < T and the solution v(x, t) = (u, v,w), p(x, t)
of the Navier–Stokes equations

vt + v ⋅ ∇v = −ρ
−1∇p + νΔv, ∇ ⋅ v = 0 (10.83)

in this domain, satisfying the initial conditions

Ω0 is given, v(x,0) = 0, x ∈ Ω0 (10.84)
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and the conditions on the free surfaces

−pn + 2ρνD ⋅ n = −2Kσn + ∇Γσ, (10.85)

v ⋅ n = Vn, x ∈ Γt , 0 < t < T . (10.86)

The following notation is used in Eqs. (10.85), (10.86): n is the unit external normal
to the surface Γt, D = [∇v + (∇v)∗]/2 is the strain rate tensor, K is the mean curvature
of the surface Γt, ∇Γ = ∇ − n(n ⋅ ∇) is the surface gradient, and Vn is the velocity of
displacement of the surface Γt in the direction ofn. Substituting the expression for σ in
the form of Eq. (10.82) with θ = θΓ(x, t) into Eq. (10.85), we obtain a closed formulation
of the free boundary problem for the Navier–Stokes equations.

The solvability conditions for the initial boundary-value problem (10.83)–(10.86)
are derived in Mogilevskii & Solonnikov [137]. Investigated in Andreev & Pukhnachov
[19] are the invariance properties of this problem; the group classification of this prob-
lem relative to an “arbitrary element” θΓ(x, t) is satisfied there too. Examples of ex-
act solutions of the equations of thermocapillary motion are presented in Birikh [35],
Napolitano [146], Gupalo & Ryazantsev [93], Andreev & Adamev [8] and Andreev et al.
[18] (Ch. 7, see also the references therein). It should be noted that themajority of these
exact solutions describe stationary flows determined by a system of ordinary differen-
tial equations. A solution of plane nonstationary flow for system (10.83) describing
thermocapillary flow in a strip is given in Andreev & Pukhnachov [19]. It assumes the
dependence θΓ = θ∗ + l(t)x2, where θ = const and l is an arbitrary function of t. This
solution is derived via a system of equationswith two independent variables. The pos-
sibility of the decrease of order of the problem considered in Andreev & Pukhnachov
[19] results from the fact that its solution is a partially invariant solution [156] of the
plane analogue of (10.83). The solution studied in the present paper is a natural gen-
eralization of the previous solution for the case of thermocapillary motion in a layer.
It corresponds to the temperature distribution on the boundaries of the layer

θΓ = θ
∗ + l(t)x2/2 +m(t)y2/2, (10.87)

where l andm are arbitrary functions of t. The further considerations are based on the
following statement, which can be checked directly. If

u = (f + g)x, v = (f − g)y, w = −2
z

∫
0

f (ζ , t)dζ ,

p/ρ = νwz(z, t) −
z

∫
0

wt(ζ , t)dζ −
1
2
w2(z, t) + χ(t),

(10.88)
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where f (z, t), g(z, t) are the solutions of the system of equations

ft + f
2 + g2 − 2fz

z

∫
0

f (ζ , t)dζ = νfzz ,

gt + 2fg − 2g
z

∫
0

f (ζ , t)dζ = νgzz

(10.89)

and χ is an arbitrary function of t, then the functions v = (u, v,w), p satisfy the Navier–
Stokes equations (10.83). (Note that the solution (10.88) of the system (10.83) can be
determined as usual as a partially invariant solution with rank two and defect two
relative to the four-parameter Lie group generated by translations and Galilean trans-
lations along the x- and y-axes [131].)

Let us show that the solution (10.88) can be interpreted as a solution describ-
ing thermocapillary motion in the layer |z| < s(t) where the temperature distri-
bution is prescribed on its boundaries (10.87). In fact, in this case K = 0, ∇Γσ =
(−æxl(t),−æym(t)), and the condition (10.85) will be satisfied at z = s(t) if the func-
tions f and g satisfy

fz(s(t), t) = −k[l(t) +m(t)], 0 < t < T ,
gz(s(t), t) = −k[l(t) −m(t)], 0 < t < T ,

(10.90)

where k = æ/(ρν) = const > 0 and the function χ(t) is chosen in the form

χ = νwz(s(t), t) +
s(t)

∫
0

wt(ζ , t)dζ +
1
2
w2(s(t), t).

Further, we assume that

fz(0, t) = gz(0, t) = 0, 0 < t < T (10.91)

and continue the functions f , g (determined initially for 0 < z < s(t), 0 < t < T) to the
domain −s(t) < z < 0 in an even way. Then condition (10.85) will be satisfied at the
lower boundary of the layer z = −s(t) too. If we demand the condition

ds
dt
= −2

s(t)

∫
0

f (z, t)dz, 0 < t < T (10.92)

then we can satisfy the condition (10.86) on both boundaries of the layer. Finally, we
assume that

s(0) = a > 0 (10.93)

(which corresponds to the definition of the initial position of the layer) and

f (z,0) = g(z,0) = 0, 0 ⩽ z ⩽ a. (10.94)

Then the initial conditions (10.84) will be satisfied.
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Conditions for existence and non-existence of solution
Here the solvability conditions for the problem (10.89)–(10.94) are formulated and the
qualitative properties of its solution are determined. Note that we are interested only
in classical solutions of the above-mentioned problem. The input data of the problem
(i. e. the functions l(t) andm(t)) must be subjected to some conditions of smoothness
and compatibility to ensure the existence of such solutions. Further, we assume that
these functions are defined for all t > 0, moreover

l(t),m(t) ∈ C(1+α)/2[0,∞), 0 < α < 1, (10.95)
l(0) = m(0) = 0, (10.96)

where C(1+α)/2[0,∞) denotes the space of functions continuous on the semiaxis t ⩾ 0
and satisfying the Hölder conditions with exponent (1 + α)/2 on any compact set. The
following notation is used below: ST is the domain {z, t : 0 < z < s(t),0 < t < T},
C2+α,1+α/2(ST ) is the Hölder class used in the theory of parabolic equations (its defini-
tion can be found in [137]).

Proposition 10.1. Let the conditions (10.95), (10.96) be satisfied. Then one can find
T > 0 such that the problem (10.89)–(10.94) has the unique solution f (z, t), g(z, t), s(t);
moreover f , g ∈ C2+α,1+α/2(ST ), s ∈ C2+α/2[0,T].

The proof of this proposition has a purely technical character. It is based on
the transition from the Eulerian coordinate z to the Lagrangian coordinate ζ in the
problem (10.89)–(10.94). The connection between the Lagrangian and Eulerian coor-
dinates is determined in terms of the solution of the Cauchy problem

zt = −2
z

∫
0

f (ξ , t)dξ when t > 0,

z = ζ when t = 0.

Here the domain ST maps into the rectangle Π = {ζ , t : 0 < ζ < a, 0 < t < T} and equa-
tions (10.89) turn into the following equations for the functions F(ζ , t) = f [z(ζ , t), t],
G(ζ , t) = g[z(ζ , t), t]:

Ft + F
2 + G2 = ν exp[2

t

∫
0

F(ζ , τ)dτ]{exp[2
t

∫
0

F(ζ , τ)dτ]Fζ}
ζ
,

Gt + 2FG = ν exp[2
t

∫
0

F(ζ , τ)dτ]{exp[2
t

∫
0

F(ζ , τ)dτ]Gζ}
ζ
.

(10.97)

The equality

zζ = exp[−2
t

∫
0

F(ζ , τ)dτ]
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was used in the derivation of (10.97). The above-mentioned solution of the Cauchy
problem satisfies this equality. Then the boundary conditions (10.90) are rewritten in
the form

Fζ (a, t) = −k[l(t) +m(t)] exp[2
z

∫
0

F(a, τ)dτ], 0 < t < T ,

Gζ (a, t) = −k[l(t) −m(t)] exp[2
z

∫
0

F(a, τ)dτ], 0 < t < T .

(10.98)

The conditions (10.91), (10.94) give the following conditions for the functions F andG:

Fζ (0, t) = Gζ (0, t) = 0, 0 < t < T , (10.99)
F(ζ ,0) = G(ζ ,0) = 0, 0 ⩽ ζ ⩽ a. (10.100)

As a resultwe obtain the initial boundary valueproblem (10.98)–(10.100) in a fixed
domain for the system of quasilinear integro-differential parabolic equations of the
second order (10.97). Its local unique solvability inHölder classes follows fromgeneral
results of the theory of parabolic equations [117] and can be determined, for example,
by the method of successive approximations; the convergence of this method is guar-
anteed for sufficiently small T. If the function F(ζ , t) is known then the function s(t)
determining the position of the free boundary in the plane z, t is given by the formula

s(t) =
a

∫
0

exp[−2
t

∫
0

F(ζ , τ)dτ]dζ .

Hence the kinematic condition on the free boundary (10.92) is satisfied automatically.
So solvability of problem (10.89)–(10.94) ona small time interval demands that the

functions l(t), m(t) only satisfy the smoothness condition (10.95) and compatibility
condition (10.96). As will be shown below, these conditions are insufficient for the
solvability of the global problem.

Proposition 10.2. Assume that

l(t) +m(t) ⩾ 0 for t ⩾ 0. (10.101)

Moreover the inequality (10.101) is strict on some interval (0, τ). Then the “life span” t∗
of solution of the problem (10.89)–(10.94) is finite.

Proof. Let us consider the functions

̄f (t) = 1
s(t)

s(t)

∫
0

f (z, t)dz, h = f − ̄f
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so that quantity ̄f is the mean value of the function f (z, t) for any fixed t in the interval
[0, s(t)] and the mean value of the function h(z, t) is equal to zero on this interval for
any t > 0. The relation (10.92) will take the form

ds
dt
= −2 ̄f s, (10.102)

so that knowledge of the function t determines completely the evolution of the free
boundary in the problem (10.89)–(10.94).

We obtain the identity

d ̄f
dt
= − ̄f 2 − 1

s

s

∫
0

(g2 + 3h2)dz − νk(l +m)
s

(10.103)

after integration of the first equation (10.89) with respect to z over the interval [0, s(t)]
and taking into account the conditions (10.90)–(10.92). Further wemay suppose with-
out loss of generality that the number τ used in the formulation of Proposition 10.2
is less than the life span t∗ of the solution of the studied problem. As follows from
(10.103) and the conditions of Proposition 10.2, the function ̄f decreasesmonotonically
on the interval [0, t∗) and (10.94) gives ̄f (0) = 0. So using (10.102) one can conclude
that s(t) ⩾ a when 0 ⩽ t < t∗.

Integration of the identity (10.103) over the interval (0, τ) and elimination of nec-
essarily nonpositive terms from the right-hand part of the resulting equality lead to
the chain of inequalities

0 > ̄f (τ) ⩾ −νk
τ

∫
0

l(t) +m(t)
s(t)

dt ⩾ −νk
a

τ

∫
0

[l(t) +m(t)]dt = −γ,

where γ = const > 0, in accordance with the condition of Proposition 10.2. (The
sharpness of the left inequality is guaranteed by this condition too.) The estimate
̄f (t) ⩽ (1+γτ−γt)−1 ̄f (τ) follows from this fact and inequality d ̄f /dt ⩽ − ̄f 2 which follows
from (10.103). So far as ̄f (τ) < 0, this estimate means that the solution of the problem
(10.89)–(10.94) is destroyed at finite period of time t∗ ⩽ γ−1 + τ.

Actually, Proposition 10.2 contains the necessary condition for global solvability
of the problem (10.89)–(10.94). The determination of sufficient conditions for the exis-
tence of its solution for all t > 0 demandsmore effort. Themain point here is obtaining
the estimate for the maximum modulus of the functions f and g in the domain ST for
all T > 0. In the case when such an estimate is obtained, the proof of solvability of
the problem (10.89)–(10.94) can be achieved globally by the proof scheme in Andreev
et al. [18] (Ch. 7, Theorem 1), using themethoddeveloped by Ladyzhenskaya et al. [117].

The specific character of our free boundary problem lies in the fact that its solution
can cease to exist as t grows for two reasons. The first reason is demonstrated in Propo-
sition 10.2. The existence of the function ̄f (t) obtained in the process of its proof and
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equations (10.102) imply that s→∞when t ↗ t∗. The vanishing of the function s(t) at
finite time t∗ is the other reason. This possibility explains the conditional character of
Proposition 10.3 formulated below. Henceforth, generic positive quantities (generally
speaking, depending on T) are denoted by Ck (k = 1, 2, . . .).

Proposition 10.3. Let the following inequalities be satisfied:

l(t) ⩽ m(t) ⩽ 0 for t ⩾ 0. (10.104)

Then either
(a) One can find t∗ <∞ such that s(t) > 0 for 0 ⩽ t < t∗ and s → 0 when t ↗ t∗. In

this case, the estimates

f (z, t)
 ⩽ C1,

g(z, t)
 ⩽ C2 when (z, t) ∈ S̄T (10.105)

are valid (T > 0 is an arbitrary number smaller than t∗);
(b) The inequality s(t) > 0 is satisfied for any finite t > 0. Then the estimates (10.105)

are valid in the domain S̄T for any T > 0.

Proof. Let us introduce the functions λ = f + g, μ = f − g. It follows from (10.89) that
these functions satisfy the equations

λt + λ
2 − 2λz

z

∫
0

f (ζ , t)dζ = νλzz ,

μt + μ
2 − 2μz

z

∫
0

f (ζ , t)dζ = νμzz

(10.106)

in the domain ST . Initial and boundary conditions for the system (10.106) are obtained
from (10.90), (10.91), (10.94), and have the form

λz(s(t), t) = −2kl(t), μz(s(t), t) = −2km(t), (10.107)
λz(0, t) = μz(0, t) = 0, 0 < t < T , (10.108)
λ(z,0) = μ(z,0) = 0. (10.109)

If we note that the first and the second equations in (10.106) can be considered as lin-
ear in the functions λ and μ, we may apply the maximum principle [57] to the solution
of the initial-boundary value problems (10.107)–(10.109) for these equations. In accor-
dance with this principle, the non-negativity of the right-hand sides of the conditions
(10.107) provided by the inequalities (10.104) and the homogeneity of the conditions
(10.108), (10.109) imply the non-negativity of the functions λ and μ in the domain ST ,
where T < t∗ in case (a) and T is an arbitrary positive number in case (b). This means
that

f ⩾ 0 and |g| ⩽ f for (z, t) ∈ S̄T . (10.110)
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Hence, theproof of thefirst inequality (10.105)will imply theproof of the second.More-
over, the function s(t) decreases monotonically for t > 0 by virtue of (10.102), (10.110),
so that this fact, together with (10.106), implies the estimate

s(t) ⩽ a if t ∈ [0,T]. (10.111)

Finding uniform pointwise estimates of functions fz, gz in the domain S̄T is the next
step of the proof. It is evident that it is sufficient for this purpose to obtain similar
estimates for the functions ξ = λz, η = μz . As follows from (10.106)–(10.109), these
functions are the solutions of the first initial-boundary value problems for the linear
parabolic equations

ξt − 2ξz

z

∫
0

f (ζ , t)dζ + 2gξ = νξzz ,

ηt − 2ηz

z

∫
0

f (ζ , t)dζ + 2gη = νηzz ,

(10.112)

ξ (s(t), t) = −2kl(t), η(s(t), t) = −2km(t), (10.113)
ξ (0, t) = η(0, t) = 0, 0 < t < T , (10.114)
ξ (z,0) = η(z,0) = 0, 0 ⩽ z ⩽ a. (10.115)

Now we note that the function g is non-negative in the domain S̄T . Indeed, this
function satisfies a linear uniform parabolic equation (the second equation (10.89))
and conditions (10.90), (10.91), (10.94). Due to the condition (10.104), the right-hand
side of the second equality (10.90) is non-negative for 0 < t < T that involves the non-
negativeness of g on the base of themaximum principle. The estimates below are also
valid by applying the maximum principle to the solutions of the problems (10.112)–
(10.115) and inequalities (10.104) and g ⩾ 0 in S̄T :

0 ⩽ ξ = λz ⩽ C3 = max
0⩽t⩽T
[−2kl(t)],

0 ⩽ η = μz ⩽ C4 = max
0⩽t⩽T
[−2km(t)].

So we conclude from these estimates and the definition of λ and μ that

0 ⩽ fz ⩽ C5 and |gz | ⩽ fz for (z, t) ∈ ST (10.116)

with C5 = C3 + C4.
From the inequalities (10.116), the maximal value of the function f (z, t) at some

fixed t is achieved at the point z = s(t) belonging to the free boundary of the do-
main ST . Hence, one must obtain an estimate from above of the function f (s(t), t) for
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the completion of the proof of Proposition 10.3. With this aim, let us consider the ob-
vious representation

f (s(t), t) = ̄f (t) + 1
s(t)

s(t)

∫
0

zfz(z, t)dz. (10.117)

The second term of the right-hand side is estimated from the inequalities (10.111),
(10.116):

1
s(t)

s(t)

∫
0

zfz(z, t)dz ⩽
aC5
2
. (10.118)

An upper estimate of ̄f (t) is based on the inequality

d ̄f
dt
⩽
νk(l +m)

s
,

following from (10.103). Integration of this inequality from zero to t ⩽ T with ̄f (0) =
0, and replacing the functions −l(t), −m(t) with their maximal values on the interval
[0,T], implies

̄f (t) ⩽
νC5
2

t

∫
0

dτ
s(τ)

for t ∈ [0,T]. (10.119)

Using estimates (10.118), (10.119) and representations (10.117), we conclude that

f (s(t), t) ⩽
C5
2
[

t

∫
0

dτ
s(τ)
+ a] if 0 ⩽ t ⩽ T .

Here, (a) T < t∗, and (b) T > 0 is arbitrary.

Remark. Proposition 10.3 holds if condition (10.104) is replaced by

m(t) ⩽ l(t) ⩽ 0 for t ⩾ 0. (10.120)

This follows from the invariance of the Navier-Stokes equations with respect to the
transform x = −y, y = x, u = −v, v = u.

Qualitative properties of solutions
It will be shown below that all the hypothetical possibilities considered in Proposi-
tion 10.3 can be realized. So as not to overload the paper, we consider two simple cases
of the behavior of the functions l(t) andm(t) defining the “destiny” of the solution of
our problem.
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Proposition 10.4. Let the solution of the problem (10.89)–(10.94) be determined in
some domain ST . Suppose that the conditions (10.104) are satisfied, and moreover,

l(t) = m(t) = 0 when t ⩾ τ (10.121)

and l+m ̸≡0when 0 ⩽ t ⩽ τ. Then the problem (10.89)–(10.94) is solvable in the domain
ST for any T > 0, and the following estimates are valid: either

s = C6t
−2 + O(t−3) when t →∞, (10.122)

f = t−1 + O(t−2), g = O(t−2) when 0 ⩽ z ⩽ s(t), (10.123)

or

s = C7t
−1 + O(t−2) when t →∞,

f = g = t−1/2 + O(t−2) when 0 ⩽ z ⩽ s(t).
(10.124)

The last situation is possible only in the case l = 0 or m = 0 for all t ⩾ 0.

Proof. First, note that Proposition 10.1 implies that in any case, one can find the ex-
istence time τ of the solution of problems (10.89)–(10.94). So far as the conditions of
Proposition 10.3 are satisfied, the inequalities

λ = f + g ⩾ 0, μ = f − g ⩾ 0 (10.125)

are valid in the domain S̄T . Moreover, at least one of the functions λ, μ is not identi-
cally equal to zero on the upper boundary of this domain, i. e. at t = τ, 0 ⩽ z ⩽ s(τ);
otherwise, we arrive at a contradictionwith the condition l+m ̸≡ 0, 0 ⩽ t ⩽ τ (the func-
tions λ and μ satisfy this condition as the solutions of the problem (10.106)–(10.109) by
virtue of the strict maximum principle [57]). So we can conclude from this and (10.125)
that ̄f (τ) > 0.

Now we can use the identity (10.103), where the last right-hand term is absent for
t ⩾ τ, as follows from (10.121). The inequality d ̄f /dt ⩽ − ̄f 2 follows from this identity
and integration of this inequality from t = τ, taking account of the positiveness of ̄f (τ),
implies the estimate

̄f (t) ⩽
̄f (τ)

1 + (t − τ) ̄f (τ)
when t ⩾ τ. (10.126)

In accordance with (10.102), the upper estimate of ̄f (t) implies a lower estimate of the
function s(t). Thus, (10.102), (10.126) give

s(t) ⩾ s(τ)
[1 + (t − τ) ̄f (τ)]2

when t ⩾ τ. (10.127)

The global existence theorem is valid for the problem (10.89)–(10.94) on the ground of
Proposition 10.3 and inequality (10.127).
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Now let us obtain the asymptotic representations (10.122)–(10.124). With this aim,
we use the formulation of the problem (10.89)–(10.94) in Lagrangian coordinates
(10.97)–(10.100), where the boundary condition (10.98) is homogeneous for t ⩾ τ
by virtue of the assumption (10.121). We introduce the functions Λ(ζ , t) = λ(z, t),
M(ζ , t) = μ(z, t) and obtain the initial-boundary value problem

Λt + Λ
2 = ν exp[

t

∫
0

(Λ +M)dt]{exp[
t

∫
0

(Λ +M)dt]Λζ}
ζ
,

Mt +M
2 = ν exp[

t

∫
0

(Λ +M)dt]{exp[
t

∫
0

(Λ +M)dt]Mζ}
ζ
,

(10.128)

in the semistrip Στ = {ζ , t : 0 < ζ < a, t > τ},

Λζ (a, t) = Mζ (a, t) = 0, t > τ, (10.129)

Λζ (0, t) = Mζ (0, t) = 0, t > τ, (10.130)

Λ(ζ , τ) = Λ0(ζ ), M(ζ , τ) = M0(ζ ), 0 ⩽ ζ ⩽ a. (10.131)

Here the functions Λ0,M0 are defined by the equalities

Λ0(ζ ) = λ[z(ζ , τ), τ], M0(ζ ) = μ[z(ζ , τ), τ], (10.132)

where τ is a parameter, and the connection between the Lagrangian coordinate ζ and
the Eulerian coordinate z is given by the formula

z(ζ , τ) =
ζ

∫
0

exp[−2
t

∫
0

F(ρ, σ)dσ]dρ, 0 ⩽ ζ ⩽ a, t ⩾ 0.

The boundedness of F(ζ , t) = f (z, t) for ζ ∈ [0, a] and any finite t ⩾ 0 is guaranteed
by the solvability of the problem (10.89)–(10.94) globally. This provides the mutual
uniqueness of correspondence between the variables ζ and z.

The existence of solutions of system (10.128) not depending on ζ is the remarkable
peculiarity of this system. Such solutions are compatible with the boundary condi-
tions (10.129), (10.130). This circumstance permits us to use them as barrier functions
for the solution of the problem (10.128)–(10.130). We choose these functions in the fol-
lowing form:

Λ− = λmin
1 + λmin(t − τ)

, Λ+ = λmax
1 + λmax(t − τ)

,

M− = μmin
1 + μmin(t − τ)

, M+ = μmax
1 + μmax(t − τ)

,

where λmin (λmax) and μmin (μmax) are theminimal (maximal) values of functions λ(z, τ)
and μ(z, τ) in the interval 0 ⩽ z ⩽ s(τ).

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



382 | 10 Convective flows in tubes and layers

Here we use the condition of Proposition 10.4, l(t)+m(t) ̸≡ 0 for 0 ⩽ t ⩽ τ. Wemay
assume without loss of generality that one can find an interval (t1, t2), 0 ⩽ t1 ⩽< t2 ⩽ τ
such that the strict inequality

l(t) < 0 when t1 < t < t2 (10.133)

is satisfied. At the same time, the functionm(t) can vanish identically (note that both
functions l andm are nonpositive for t ⩾ 0 in accordance with condition (10.104)). The
case when l = 0 for all t ⩾ 0 and the inequality analogous to (10.133) is satisfied for
the functionm(t) is considered in a similar way.

First, let us consider the special casem = 0 for all t ⩾ 0. Then the second condition
(10.107) is homogeneous and implies the equality μ = 0 in the domain S̄T for any T > 0
from the uniqueness theorem for the solution of the initial boundary value problem
(10.106)–(10.109) for the function μ. Thismeans that the functions f and g coincide for
all z ∈ [0, s(t)], t ⩾ 0.

On the other hand, the values of the function λ are strictly positive on the upper
boundary t = τ, 0 ⩽ z ⩽ s(τ) of the domain ST in consequence of inequality (10.133)
and the strict maximum principle applied to the solution of the problem (10.106)–
(10.109) for the function λ. So λmin = min λ(z, τ) > 0. Now let us consider the function
P− = Λ − Λ−. By virtue of (10.128)–(10.130), it is the solution of the following problem:

P−t + (Λ + Λ
−)P− = ν exp(

t

∫
0

Λdt)[exp(
t

∫
0

Λdt)P−ζ ]
ζ
, (ζ , t) ∈ ΣT ,

P−ζ (0, t) = P
−
ζ (a, t) = 0, t > τ,

P−(ζ , t) = Λ0(ζ ) − λmin, 0 ⩽ ζ ⩽ a

(here we take into account that λ[z(ζ , τ), τ] = Λ0(ζ ) in accordance with (10.132)). It
follows from the maximum principle that P−(ζ , τ) ⩾ 0 in the semistrip Σ̄T ; this fact
implies the estimate

Λ(ζ , τ) ⩾ λmin
1 + λmin(t − τ)

for (ζ , t) ∈ Σ̄T

by virtue of definition of this function.
The inequality

Λ(ζ , t) ⩽ λmax
1 + λmax(t − τ)

for (ζ , t) ∈ Σ̄T

is obtained in a similar way. Then we rewrite this inequality in terms of λ(z, t), and
take into account that λ = 2f , f = g by virtue of μ = 0, so that

λmin
1 + λmin(t − τ)

⩽ 2f (z, t) ⩽ λmax
1 + λmax(t − τ)

when 0 ⩽ z ⩽ s(t), t ⩾ τ.
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The correctness of asymptotics (10.124) for the functions f and g is obtained; conse-
quently the asymptotics for the function s follows immediately from (10.102).

Let us pass to the analysis of general case where the inequality (10.133) is satisfied
in parallel with

m(t) < 0 when t3 < t < t4, (10.134)

where t3 and t4 are some numbers from the interval [0, τ]. First of all we see that the
inequality (10.134) implies μmin = min μ(z, τ) > 0. This fact permits us to prove the
non-negativity of the functions Q− = M −M−, Q+ = M+ −M in the domain Σ̄T , and to
obtain the estimates

μmin
1 + μmin(t − τ)

⩽ M(ζ , t) ⩽ μmax
1 + μmax(t − τ)

⩽ M(ζ , t) for (ζ , t) ∈ Σ̄T .

The last inequalities take the following form in terms of the functions f and g (μ =
f − g):

μmin
1 + μmin(t − τ)

⩽ M(ζ , t) ⩽ f (z, t) − g(z, t) ⩽ μmax
1 + μmax(t − τ)

when 0 ⩽ z ⩽ s(t), t ⩾ τ.

These upper and lower estimates Λ(ζ , t) imply the following inequalities for the func-
tion λ = f + g:

λmin
1 + λmin(t − τ)

⩽ M(ζ , t) ⩽ f (z, t) + g(z, t) ⩽ λmax
1 + λmax(t − τ)

when 0 ⩽ z ⩽ s(t), t ⩾ τ.

As a result, we come to the relations f +g = t−1+O(t−2), f −g = t−1+O(t−2)when t →∞,
0 ⩽ z ⩽ s(t). This fact proves the correctness of the asymptotic representations (10.123)
for the general case, when the both functions l(t) and m(t) take negative values even
at some part over the interval (0, τ). The use of (10.102) and (10.123) gives the required
asymptotics (10.122) of function s(t).

Proposition 10.5. Let us suppose that solution of problems (10.89)–(10.94) is defined in
the domain ST . If the inequality (10.104) and the condition

l +m = −A/νk = const < 0 when t ⩾ τ (10.135)

are satisfied then one can find such finite t∗ > 0 that s(t) > 0 for 0 ⩽ t < t∗ and s → 0
when t ↗ t∗.

Proof. Let us use the identity (10.103), and rewrite it in terms of the functions f and g:

d
dt

s

∫
0

fdz +
s

∫
0

(3f 2 + g2)dz = −νk(l +m). (10.136)
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We introduce the functions

U(t) =
s(t)

∫
0

f (z, t)dz, V(t) =
s(t)

∫
0

g(z, t)dz. (10.137)

Using the Cauchy–Bunyakovsky inequality and condition (10.135), we obtain from
(10.136) a differential inequality for the function U:

dU
dt
⩽ −

3U2

s
+ A when t ⩾ τ. (10.138)

Note that the inequality U(τ) = U0 > 0 is valid by virtue of the conditions of Proposi-
tion 10.5. Moreover, the function U(t) is non-negative for t ⩾ τ and cannot vanish as
long as s(t) > 0. These statements follow from the strict maximum principle applied
to the functions f + g, f − g (see the beginning of the Proof of Proposition 10.4). Then it
follows from (10.102), (10.137) that ds/dt < 0 for these values of t. This fact permits us
to rewrite the inequality (10.138) in more convenient form by introducing the function
U2 = W(s):

dW
ds
−
3W
s
⩾ −As if s > s(τ) = s0.

Integration of the last inequality leads to the result

W(s) ⩾ sA
2
(1 − s

2

s20
+
2U2

0s
3

As30
) ≡

sA
2
R2(s),

and, moreover, R(s) ⩾ C8 > 0 for s ∈ [0, s0]. The estimate below is obtained from
this fact and the relation ds/dt = −2W 1/2(s) following from (10.102), (10.137) and the
definition of functionW :

s0

∫
0

dr
R(r)√2Ar

⩾ t − τ.

The integral entering this estimate converges when s→ 0. This fact guarantees finite-
ness of the value of t∗ corresponding to the vanishing-time of the function s, and we
obtain the following estimate of t∗:

t∗ ⩽ 1
√2A

s0

∫
0

ds
R(s)√s

+ τ.

The interest in investigating the behavior of solution of the problem (10.89)–
(10.94) near the moment t∗ follows from this proposition. The simplest solution of
this question can be found in the case when both functions l(t) andm(t) take constant
values beginning with some t.

 EBSCOhost - printed on 2/13/2023 8:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



10.4 Model of viscous layer deformation by thermocapillary forces | 385

Proposition 10.6. Let the conditions of Proposition 10.5 be satisfied. Moreover, assume
that

l −m = −B/νk = const when t ⩾ τ (10.139)

with |B| ⩽ A. Then the following relations are valid as t ↗ t∗:
s
(t∗ − t)2

→ 4A(1 +√1 − 8β2/9), (10.140)

U
t∗ − t
→ A(1 +√1 − 8β2/9), (10.141)

V
t∗ − t
→

4B
3
, (10.142)

where β = B/A (|β| ⩽ 1) and the functions U(t), V(t) are defined by (10.137).

Proof. The identity (10.135) and the analogous identity

d
dt

s

∫
0

gdz + 4
s

∫
0

fgdz = −νk(l −m), (10.143)

obtained by integration of the second equation (10.89) by z over the interval [0, s(t)]
with the use of relations (10.90)–(10.92) are the basis of the proof. Both identities are
considered for the values t ⩾ τ, when their right-hand sides are constant by virtue of
conditions (10.135), (10.139).

Let us denote the mean value of function g(z, t) on the interval 0 ⩽ z ⩽ s(t) as ḡ(t)
and put j(z, t) = g − ḡ. The identities (10.136), (10.143) can be rewritten in the form

dU
dt
+
3U2 + V2

s
+

s

∫
0

(3h2 + j2)dz = A,

dV
dt
+
4UV
s
+

s

∫
0

hjdz = B when t ∈ [τ, t∗)

(10.144)

with the help of these functions and the functions ̄f (t), h(z, t) = f − ̄f introduced be-
fore. (Here we use the evident equalities U = s ̄f , V = sḡ following from (10.137) and
definition of functions ̄f and ḡ.)

The system (10.144) is not closed for the functionsU andV ; however, this fact does
not prevent us from finding the asymptotics of its solution near the moment t∗ when
s(t∗) = 0. The point is that the integral terms of (10.144) tend to zero quickly when
t ↗ t∗. The proof depends upon the representations

f (z, t) = ̄f (t) +
z

∫
b(t)

fz(ζ , t)dζ ,

g(z, t) = ḡ(t) +
z

∫
c(t)

gz(ζ , t)dζ ,

(10.145)
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where b(t) and c(t) are points from the interval [0, s(t)] where the function f (z, t)
(g(z, t)) takes its mean value as a function of z. Using the uniform estimates (10.116)
of the functions |fz |, |gz | which are valid by virtue of (10.104), and remembering the
definitions of the functions h, j, we arrive at the inequalities

|h| ⩽ C5s, |j| ⩽ C5s when 0 ⩽ z ⩽ s(t), τ ⩽ t ⩽ t∗.

Now if the system (10.144) is rewritten in the form

dU
dt
+
3U2 + V2

s
+Φ(t) = A,

dV
dt
+
4UV
s
+Ψ(t) = B,

(10.146)

where

Φ =
s(t)

∫
0

[3h2(z, t) + j2(z, t)]dz, Ψ =
s(t)

∫
0

h(z, t)j(z, t)dz

then the estimates

|Φ| ⩽ C9s
3, |Ψ| ⩽ C9s

3 when τ ⩽ t ⩽ t∗ (10.147)

with C9 = 4C25/3 = const will be valid for the functions Φ(t), Ψ(t).
It follows from the strict monotonicity of function s on the interval [t, t∗) obtained

in Proposition 10.5 that we may convert the dependence on s to t, and consider Φ and
Ψ as functions of the variable s; Φ[t(s)] = φ(s), Ψ[t(s)] = ψ(s)(s), where 0 ⩽ s ⩽ s0 =
s(τ). The further reasoning is based on the transformation of (10.146) into a third-order
system with the help of the change of variables

U = (As)l/2q(ρ), V = (As)1/2r(ρ), ρ = ln(l/s). (10.148)

Substitution of (10.148) into (10.146) and recalling that ds/dt = −2U leads to the system
of equations

2qdq
dρ
+ 2q2 + r2 = 1 − φ(s)

A
,

2q dr
dρ
+ 3qr = β − ψ(s)

A
,

ds
dρ
= −s, ρ ⩾ ρ0,

(10.149)

where ρ0 = ln(l/s0), β = B/A = const, |β| ⩽ 1 by virtue of the conditions of Proposi-
tion 10.6. Our aim is to investigate the behavior of the solution of the Cauchy problem

q(ρ0) = q0, r(ρ0) = r0, s = exp(−ρo) = s0 (10.150)
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for the system (10.149) when ρ→∞, where

q0 = (As0)
−1/2

s0

∫
0

f (z, t)dz, r0 = (As0)
−1/2

s0

∫
0

g(z, τ)dz.

Moreover, it is assumed that the functions f and g are already determined in the do-
main Sτ so that |r0| ⩽ q0, q0 > 0 on the basis of (10.110), (10.137) and (10.148) (note that
conditions of Proposition 10.6 guarantee the satisfaction of the inequalities (10.104),
providing estimates (10.110)). The inequalities

q(ρ) > 0, r(ρ)
 ⩽ q(ρ) (10.151)

for any finite ρ ⩾ ρ0 also follow from these relations, but here they play the role of a
priori estimates for solution of the Cauchy problem (10.149), (10.150).

First, note that the trajectory of the dynamical system (10.149) emerging from the
point (q0, r0, s0) cannot leave the limits of the cylindrical sector KN = {q, r, s : 0 <
q2 + r2 < N2, |r| < q, 0 < s < s0} of phase space ℛ3 (where N is sufficiently large)
when ρ ⩾ ρ0. It is sufficient for the proof of this statement to check that no outgoing
points of the system (10.149) are situated on the boundary of the domain KN . In fact,
the rectangles q = r, 0 ⩽ s ⩽ s0 and q = −r, 0 ⩽ s ⩽ s0 cannot contain outgoing
points in view of inequalities (10.151). The upper segment ofKN , i. e. the circular sector
0 ⩽ q ⩽ N, |r| ⩽ q, s = s0, consists of ingoing points in accordance with the third
equation of system (10.149). The lower segment of KN cannot contain outgoing points,
since it corresponds to the value ρ =∞.

Now one must check the absence of exit points on the cylindrical part of the
boundary KN , i. e. on the set HN = {q, r, s : q2 + r2 = N2, |r| ⩽ q, 0 ⩽ s ⩽ s0}. The field
of directions of the dynamical system (10.149) is characterized by the vector l with
components (2q)−1[1 − 2q2 − r2 − A−1φ(s)], (2q)−1[β − 3qr − A−1ψ(s)], −s. The scalar
product l ⋅ n of l and the unit external normal n = (cosω, sinω,0) to the surface HN ,
where ω = arctg(r/q), gives

l ⋅ n = −N(1 + sin2 ω) − [A
−1φ(s) − 1] cosω + [A−1ψ(s) − β] sinω

(2N cosω)

Since |ω| ⩽ π/4 on the surfaceHN ,φ ⩽ C9s30 |ψ| ⩽ C9s
3
0 by virtue of (10.147), and |β| ⩽ 1,

one can obtain the inequality l ⋅ n < 0 on the surface HN by choosing N larger than
max[(1 + A−1C9s40)

1/2, (q20 + r
2
0)

1/2], and that the point (q0, r0, s0) belongs to the set K̄N .
Then both inequalities (10.151) and the a priori estimate

q ⩽ N when ρ ⩾ ρ0 (10.152)

are valid for the solution of the Cauchy problem (10.149), (10.150).
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Let us return to the system (10.149). It has the unique equilibrium point

q = q∗ ≡ 0.5(1 +√1 − 8β2/9)1/2,

r = r∗ ≡ 2−1/2 Sgn β(1 +√1 − 8β2/9)1/2, s = 0
(10.153)

in the domain KN . Linearization of (10.149) near the equilibrium point leads to the
system

dQ
dρ
= −2Q − r∗

q∗
R,

dR
dρ
= −

3r∗

2q∗
Q − 3

2
R, dS

dρ
= −S.

The eigenvalues of the matrix of this system are

λ1,2 =
−7q∗ ±√(q∗)2 + 24(r∗)2

2q∗
, λ3 = −1.

Since q∗ > 0 and |r∗| ⩽ q∗, and |β| ⩽ 1 all eigenvalues λi (i = 1, 2, 3) are negative.
The equilibrium point (q∗, r∗,0) of system (10.149) is stable in accordance with the
Lyapunov theorem.

The proof of the fact that trajectory of the dynamic system (10.149) starting from
the point (q0, r0, s0) at the “moment” ρ = ρ0 finishes at ρ → ∞ at the equilibrium
point (q∗, r∗,0) will complete the proof of Proposition 10.6. From this fact, (10.140)–
(10.142) are derived without any problems. By virtue of the third equation (10.149),
the projection of the desired trajectory on the plane s = 0 approaches asymptotically
(by virtue of the third equation (10.149)) as ρ → ∞ the trajectory of two-dimensional
dynamical system

dq
dρ
= (2q)−1(1 − 2q2 − r2),

2q dr
dρ
= (2q)−1(β − 3qr)

(10.154)

emerging from the point (q0, r0) at ρ = ρ0; denote this trajectory by L. As was proved
before, the curve L is contained in a circular sector D̄N = {q, r : q2 + r2 ⩽ N2, |r| ⩽ q}.

Now let us suppose that |β| < 1. Then vector

m(q, r) = ((2q)−1(1 − 2q2 − r2), (2q)−1(β − 3qr))

does not vanish on the boundary of the domain DN ,ε = {q, r : ε2 < q2 + r2 < N2, |r| <
q}, where the number ε > 0 is chosen less than q0 > 0. (Note that for |β| < 1 and
sufficiently small ε all points of the “arch” q2 + r2 = ε2, |r| ⩽ q are ingoing points for
system (10.154), so that the trajectory L does not fall outside the limits of not only the
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sector D̄N but also the domain D̄N ,ε for ρ ⩾ ρ0.) Since m ̸= 0 on the boundary of the
domainDN ,ε wemay calculate the rotation of the vector fieldm(q, r) on this boundary.
Simple calculations show that this rotation is equal to unity. Since q = q∗, r = r∗ is the
unique singular point of the fieldm in the domain D̄N ,ε and the index of this point is
equal to unity, then system (10.154) has no limit cycles in the domain D̄N ,ε. So it follows
that point (q∗, r∗) is the limit point of curve L when ρ→∞.

Now let β = 1 (case β = −1 is considered in a similar way). Here the vector m
vanishes on the boundary of the domain D̄N ,ε : m(1/√3, 1/√3) = 0. If at the same
time q0 = r0 = 1/√3, then the trajectory L consists of one point. If q0 = r0 ̸= 1/√3,
ε ⩽ q0 ⩽ N then the line L is a part of a segment of the straight line q = r. In this case,
the dependence q(ρ) is defined from solution of the Cauchy problem

dq
dρ
= (2q)−1(1 − 3q2) when ρ > ρ0, q(ρ0) = q0.

It is evident that q → q∗ = 1/√3 when ρ → ∞. If the point (q0, r0) lies strictly inside
the domain D̄N ,ε then we can narrow down a little the opening angle of this domain
and achieve the situation when vector field m has no zeros on the boundary of the
domain ε2 < q2 + r2 < N2, |r| < (1−δ)q containing the point (q0, r0) (the last fact can be
ascertained for small enough δ > 0). Now the above reasoning about the rotation of
the field in can be repeated almost literally. So now we have shown that the relations

q → q∗, r → r∗ when ρ→∞, (10.155)

hold under the conditions of Proposition 10.6. Concerning ρ = ln(l/s), this follows
from (10.155) and definition of q∗ and r∗ (10.153), with account of equations (10.148),
that

U
(As)1/2
→ 0.5 (1 +√1 − 8β2/9)

1/2
,

V
(As)1/2
→ [0.5 (1 −√1 − 8β2/9 )]

1/2
when s→∞.

(10.156)

The first of this relations means that ds/dt → −[As(1 +√1 − 8β2/9 )]1/2 when t ↗ t∗ by
virtue of the equation ds/dt = −2U . The limit equality (10.140) follows from this fact
and then the relations (10.141), (10.142) can be obtained from (10.156).

This proposition deserves some comment. The reason for introducing the func-
tions U(t), V(t) is the following: these functions remain bounded in the limit t ↗ t∗ in
contrast to the functions ̄f (t), ḡ(t); moreover, U = O(t∗ − t), V = O(t∗ − t)when t ↗ t∗.
On the other hand, the equalities below follow from the formulae U = ̄f s, V = ḡs,
relations (10.140)–(10.142) and representations (10.145) by virtue of equations (10.116):

f (z, t) = 1
4(t∗ − t)

+ O(t∗ − t)2,

g(z, t) = 3
8β(t∗ − t)

(1 −√1 − 8β2/9 ) + O(t∗ − t)2 when t ↗ t∗,0 ⩽ z ⩽ s(t).
(10.157)
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Thus, formulae (10.140), (10.157) imply that smooth joining of free boundaries of the
layer takesplace in themoment t∗, although the longitudinal components of the liquid
velocity grow infinitely when t ↗ t∗.

Discussion and conclusion
(a) The system (10.89) admits solutions with f = g, f = −g and g = 0. In accordance
with (10.88), the first two cases describe plane flows. These cases can be realized if one
putsm = 0 and l = 0 in (10.87). The case g = 0 corresponds to the equality l = m for all
t ⩾ 0. In this case, the solution of the problem (10.89)–(10.94) describes axisymmetric
motion.

(b) Proposition 10.2 gives sufficient conditions for blow-up of the solution of prob-
lems (10.89)–(10.94) in finite time t∗. Note that this phenomenon has a purely inertial
character; viscous forces cannot prevent it, although these forces guarantee the space
regularity of the solution.

The question about the structure of the solution singularity near the moment t∗ is
still open. This question is studied indetail inGalaktionov&Vazquez [60] for theplane
analogue of the discussed problem. More precisely, (10.89) with g = f is considered in
Galaktionov & Vazquez [60]; there the modified problem with free boundary (10.90)–
(10.94) is investigated — one puts l = m = 0 in the condition (10.90) and substitutes
condition (10.94) for f by the following:

f (z,0) = f0(z), 0 ⩽ z ⩽ a.

(We shall call this problem P.)
Let the function f0 satisfy the natural smoothness and compatibility conditions

and also the inequality f0 ⩽ 0 for z ∈ [0, a] and some “steepness condition” [60]. Then
the solution f , s of problem P has the asymptotics

s(t) ∼ π
2√α(t∗ − t)

, f (z, t) ∼ −
cos2(z√α(t∗ − t))

t∗ − t

when t ↗ t∗, 0 ⩽ z < s(t), where α = const > 0.

(c) Sufficient conditions for solvability of problem P for all t ⩾ 0 are determined
in Pukhnachov [170]. Also constructed in this paper is a class of its exact solutions of
the form

f = a(t) + b(t) cos[πnz/s(t)], (10.158)

where n is a natural number and functions a, b, s form the solution of a dynamical
system. The significance of the solutions (10.158) consists of the fact that these solu-
tions represent the leading terms of both the blow-up of solutions of problem P when
t ↗ T∗ and its regular solutions when t →∞.
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(d) Let us consider the problem (10.89)–(10.94) for the case l + m = 0 where the
function l(t) is non-negative and l > 0 at some interval 0 < t1 < t < t2 < oo. Then
the statement of Proposition 10.2 is valid, although its proof requires some small mod-
ification. The case l = −m is interesting from the physical point of view in so far as
tangential stress applied to the free boundary in the x-direction has the same magni-
tude but opposite sign to that applied in the y-direction. In this case, the analysis of
problems (10.89)–(10.94) shows that the layer thickness 2s(t) is a monotonically in-
creasing function of time, and there exist some t∗ <∞ such that s→∞ when t ↗ t∗.

Indeed, now the boundary condition (10.90) for the function f is uniform, while
the right side of the same condition for the function g is strictly negative within the in-
terval (t1, t2). On the basis of the maximum principle, we have g2 > 0 when t1 < t < t2,
0 ⩽ z ⩽ s(t). At once, we consider the first equation (10.89) as a linear parabolic
equation with coefficients f and −2∫z0 fdζ before f and fz, respectively, and with a
source −g2. Remembering that the function f (z, t) satisfies the uniform boundary and
initial conditions (10.90), (10.94), we conclude that f < 0 when t ∈ (t1, t2), z ∈ [0, s(t)]
in view of the maximum principle. It means that the mean value ̄f (t) of the function f
in the interval [0, s(t)] is negative if t ∈ (t1, t2). As was shown in the proof of Proposi-
tion 10.2, the inequality ̄f (τ) < 0 implies the estimate ̄f (t) ⩽ (1 + γτ − γt)−1 ̄f (τ) where
t > τ ∈ (t1, t2), γ = const > 0. On account of (10.102), this estimate guarantees the
required property s → ∞ when t ↗ t∗ ⩽ τ + γ−1. We emphasize that this effect has a
purely nonlinear character.

(e) Here we suggest some comments on Proposition 10.4. The exceptional case
described by formulae (10.125) corresponds to plane motion. If the equality l = 0 or
m = 0 is broken at some arbitrarily small interval of time then the solution of the
problem (10.89)–(10.94) is symmetrized with growth of t, as follows from relations
(10.124) (note that g = 0 for axisymmetric motion). The essential distinction between
plane and three-dimensional regimes of thinning of the layer is demonstrated by the
asymptotics of function s: in the first case s ∼ t−1 and in the second case s ∼ t−2 when
t →∞.

(f) Let us consider the problem of thermocapillary motion of viscous liquid in a
layer with linear dependence of the free boundary temperature on the space coordi-
nates,

θΓ = A(t)x + B(t)y.

It is not difficult to see that its solution can be obtained in the form

u = u(z, t), v = v(z, t), w = 0, p = 0, s = a = const.

The functions u, v are determined as solutions of the second initial boundary value
problem for the linear equation of heat conduction (the details are omitted).
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Thus, a linear distribution of temperature on the plane free boundary of a viscous
layer does not lead to a thickness change. It is natural to suppose on the basis of this
observation that the main change of the layer thickness under the action of thermo-
capillary forces takes place near the critical points of the temperature field on free sur-
face. This concept can be considered as an additional motivation for the investigation
of solutions of the Navier–Stokes equations of the form (10.88). The unboundedness
of functions u and v when x, y → ∞ is the evident defect of this solution. However,
we can consider it as a solution describing the local behavior of liquid in vicinity of
critical points of the temperature field on the free boundary.

(g) The problem (10.82)–(10.87) can be referred to as a “non-coupled” problem of
thermocapillary convection. It originates from the assumption that the temperature is
a given function at the free boundary. A more complicated “coupled” problem deals
with the boundary condition of second or third kind for the temperature. Let us sup-
pose that the free boundary is thermo-insulated. Then the condition (10.87) should be
replaced by

θz(s(t), t) = 0, 0 < t < T . (10.159)

In this case, we have the temperature representation

θ = φx2 + ψy2 + ω

where φ(z, t), ψ(z, t), ω(z, t) are determined from the parabolic system coupled with
the equations (10.89) via boundary conditions including (10.159). The plane analogue
of this problem was studied numerically in Andreev & Pukhnachov [19].

(h) To identify a physical system thatmight correspond to the solution of the prob-
lem (10.82)–(10.87), let us consider a liquid film of mean initial thickness a and the
diameter d suspended in a solid frame at the presence of gravity with the acceleration
g. It is clear that following relations should be satisfied: a ≪ d, d ∼ (2σ0/(ρg))1/2 = L
where L is the capillary constant and σ0 is a characteristic value of the surface ten-
sion coefficient. This gives an upper estimate for a. The lower estimate limiting the
applicability of our approach is a ≫ λ, where λ is the thickness of the double dif-
fusional electric layer. In this case, we can neglect the disjoining pressure in the
film.

Now let us introduce the dimensionless parameter q = ρgβa2/æ where β is the
volumetric coefficient of thermal expansion andæ is the parameter in relation (10.82).
If q ≪ 1, we can ignore the contribution of the buoyancy in a formation of the velocity
field and, therefore, eliminate from consideration the heat equation in the context of
our problem.

As an example, we consider a pure water film at low gravity (g = 1 cm/s2) near
the temperature 298K; in this case, L = 12 cm. If we choose a = 0.1 cm, d = 5 cm,
λ = 10−6 cm then inequalities λ ≪ a ≪ d will be true as well as q ≪ 1 (in fact, here
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Figure 10.6: Behavior of dimensionless layer thickness with time. (a) l = m = 5te−3t ; (b) l =
0.5 sin(12.52t),m = sin(12.52t); (c) l = 1 − 1

(1+t)2 ,m = 2 −
2
(1+t)2 .

q = 1.6⋅10−5). In addition,wenote that the characteristic time of the problem is of order
[ap/æ(l∗+m∗)]1/2 = τ, where l∗ andm∗ are themaximum values of the functions l and
m, respectively. Putting l∗ = m∗ = 10−2 K/cm2, we obtain τ = 5.6 s.

(i) Problem (10.89)–(10.94) was solved numerically in papers [188, 84]. Below
there are given the results of numerical simulation [188]. The figures show the ratio
of the layer thickness to its initial value as a function of dimensionless time. The time
scale is chosen as a2ν−1. Figures 10.6(a) and (b) correspond to the casewhere the prob-
lem solution is regular, although the functions l and m do not satisfy the conditions
of Propositions 10.3–10.6. Figure 10.6(c) demonstrates the solution blow-up within a
finite time, in accordance with Proposition 10.2. The main term of the asymptotic of
the function s at t → t∗ is C10(t∗ − t)−1/2.
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10.5 Convective flow in a horizontal channel with non-Newtonian
surface rheology under time-dependent longitudinal
temperature gradient

The experiments of K. G. Kostarev and his co-authors [36, 135] showed that in narrow
channels at a local surfactant egress onto the surface the Marangoni convection oc-
curs only at a fairly high surfactant concentration gradient. The delay of the onset of
the surface motion can also be observed, when thermocapillary convection is excited
by a point heat source in a horizontal channel with a bounded free surface, if only
its surface has not been thoroughly cleaned [136]. The threshold nature of the convec-
tion onset is attributed to the presence of an uncontrolled surfactant film kept by the
channel walls. In this connection, it seems helpful to develop the models of thermo-
capillary convection in the presence of a temperature gradient along the free surface
with the threshold excitation of the convection flow.

In this study, thermal convection is considered in a horizontal channel with a lon-
gitudinal temperature gradient. For an infinitely wide channel with a stationary tem-
perature gradient the problem in the conventional formulation has a simple exact so-
lution with threshold-free convection onset [35, 10]. The actuality of this asymptotic
solution was demonstrated in the experiments [109, 107]. In [185, 21] this solution was
generalized to include the case of a time-dependent longitudinal temperature gradi-
ent. The flow in a channel of finite width and its stability at low Prandtl numbers was
considered in [123]. An advection flow in a square channel of finite length was stud-
ied in [124], again at low Prandtl numbers. In those studies, the fluid surface was free
from a surfactant film and thermocapillary flow was attained immediately after the
generation of tangential stresses along the surface.

Under actual conditions the threshold nature of the onset of the Marangoni con-
vection is governed by the rheological properties of the surface: its motion begins,
when the tangential stresses become greater than a certain threshold value deter-
mined by the surfactant film durability. This property of the surface can be described
introducing the tangential resistance to the fluid flow with a stepwise stress depen-
dence of the resistance. For a wide layer in the case of a stationary gradient this prob-
lem has a simple exact solution with a single velocity component along the tempera-
ture gradient. In the unsteady case the solution can be particularly simply constructed
using the finite difference method.

10.5.1 Formulation of the problem

The materials in this paragraph are based on the results of article [38]. We will con-
sider a convective viscous flow in a wide horizontal channel (band) with a tempera-
ture gradient along its horizontal z axis. The origin of the upward directed x axis is
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on the lower plane. In the Oberbeck–Boussinesq approximation the convection equa-
tions admit the solution of the form [10]:

v = kw(x, t), T = −A(x, t) ⋅ z + Θ(x, t), p = −B(x, t) ⋅ z + q(x, t). (10.160)

Here, w is the fluid flow velocity which has only one direction, T is the temper-
ature deviation from a certain mean value, and p is the pressure deviation from the
hydrostatic pressure in an isothermal fluid.

We will formulate the problem in the dimensionless form. We will scale the dis-
tances on the layer width h, time on h2/ν, the velocity component w on ν/h, the pres-
sure on ν2ρ/h, and the temperature on A0h, where ν and ρ are the kinematic viscosity
and thedensity of thefluid andA0 is amaximumvalueof the longitudinal temperature
gradient. In these variables the functions introduced in (10.160) satisfy the following
equations

𝜕A
𝜕t
=

1
Pr
𝜕2A
𝜕x2

𝜕B
𝜕x
= Gr ⋅ A

𝜕w
𝜕t
=
𝜕2w
𝜕x2
+ B (10.161)

𝜕Θ
𝜕t
=

1
Pr
𝜕2Θ
𝜕x2
+ A ⋅ w

𝜕q
𝜕x
= Gr ⋅ Θ

Gr = gβA0h
4

ν2
, Pr = ν

χ

A solution of the form (10.160) has already been considered in subsection 10.3.2.
Below, the equations that describe this solution are rewritten in dimensionless vari-
ables. The dimensionless parameters of the problem Gr and Pr contain the thermal
expansion coefficient β and the fluid temperature conductivity χ, as well as the grav-
ity acceleration g.

Equations (10.161) are linear with respect to the unknown functions and can be
successively solved. However, the presence of the term A ⋅ w in the fourth equation
introduces an element of the nonlinear interaction between the velocity and temper-
ature fields into the problem.

Wewill nowdwell on the boundary conditions for system (10.161).We assume that
the lower boundary of the layer is solid, so that the velocity on it vanishes

x = 0 : w = 0. (10.162)

On the upper surface the mechanical properties of a surfactant film should be
taken into account. The experiment has shown that at low tangential stresses on the
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boundary the film remains almost immobile but it breaks down, as a certain limiting
value is reached by the tangential stresses, whereupon it behaves as a free surface and
theMarangoni convection starts in the thresholdway. To describe such filmproperties
it is convenient to introduce on the upper boundary a surface resistance αd with a
thresholdwise dependence of the resistance on the tangential stress. We can write the
condition for the tangential stress in the following dimensional form:

x = h : αdw = −η
𝜕w
𝜕x
+
𝜕σ
𝜕z
. (10.163)

Here, η is the dynamic viscosity of the fluid and σ is the surface tension coeffi-
cient. It is assumed that the surface velocity is proportional to the tangential stress
value. The resistance coefficient itself depends on this. It is large, when the tangential
stresses have not reached a certain limiting value P0, and it becomes small (vanishes)
after the moment when the film has broken up and the surface has become free. With
account of the temperaturedependenceof the surface tension, condition (10.163) takes
the following dimensionless form:

x = 1 : αw = −𝜕w
𝜕x
+MaPr−1 ⋅ A(1, t), (10.164)

Ma = − 𝜕σ
𝜕T

A0h2

ηχ
, α = αdh

η
.

We will write the conditions for the temperature in the form:

x = 0 : A = 1 − e−γt , Θ = 0, (10.165)

x = 1 : A = 1 − e−γt , 𝜕Θ
𝜕x
= 0. (10.166)

The first condition means that on the layer boundaries the longitudinal tempera-
ture gradient increases with time from zero to a limiting value, the same for the entire
boundary and included in the time unit as the characteristic time 1/γ.

The function B(x, t) in Eq. (10.161) contains the parameter C(t) determining the
fluid flow rate through the channel cross-section,which can be obtained, for example,
from the flow closeness condition

1

∫
0

w(x, t) dx = 0. (10.167)

To completely formulate the initial and boundary value problem (10.161), (10.162),
and (10.164)–(10.167) we must specify the initial state of the system. We will consider
the case in which at the initial moment of time the fluid is at rest and has everywhere
the same temperature

t = 0 : w = 0, A = 0, Θ = 0. (10.168)
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10.5.2 Limiting steady flow

Wewill consider the limiting steady flow attained after a lapse of a large time interval.
In the steady case Eqs. (10.161) are reduced to the system

d2w
dx2
= −Gr ⋅ x + c,

d2Θ
dx2
= −Pr ⋅ w

with the boundary conditions

x = 0 : w = 0, Θ = 0,

x = 1 : αw = −dw
dx
+MaPr−1, dΘ

dx
= 0.

The solution of this problem satisfying the flow closeness condition is as follows:

w0 = −
Gr
12
(2x3 − 3(α + 5)

α + 4
x2 + (α + 6)

α + 4
x) + Ma ⋅ Pr

−1

α + 4
(3x2 − 2x),

Θ0 =
Gr Pr
24
(
α + 6
α + 4
⋅
x3

3
−
α + 5
α + 4
⋅
x4

2
+
x5

5
) +

Ma
α + 4
(
x3

3
−
x4

4
).

The surface x = 1 moves at the velocity

w0 =
Gr

12(α + 4)
+
Ma ⋅ Pr−1

α + 4
.

On the surface there arise the tangential stresses P proportional to the longitudi-
nal temperature gradient

P = α
α + 4
(
Gr
12
+
Ma
Pr
).

As this gradient increases, the surface stress reaches a critical value P0 at which
the surfactant film breaks down, the surface friction coefficient sharply diminishes,
and the fluid surface is set into motion at a velocity similar in value with

w0 = Gr /48 + 0.25MaPr
−1 .

The convective addition to the surface temperature is as follows:

Θ0 =
Gr Pr
320
+
Ma
48
.

The quantities w0 and Θ0 are proportional to the temperature gradient applied.
We note that at the Prandtl number of the order of 10 the contribution of the grav-

itational convection to themotion is almost the same as that of theMarangoni convec-
tion. In the experiment the critical temperature gradient at which the surfactant film
breaks down can be determined from a sharp variation in the surface behavior.
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Figure 10.7: Distribution of the longitudinal temperature gradient A along the layer depth at the
moments of time t = 0, 1, 2, 3, 4, and 10 (1–6) for Pr = 7 and γ = 1.

10.5.3 Unsteady convection

We will consider the time variation in the convection flow structure at a variable tem-
perature gradient. We will use the problem formulation described in Section 10.1 in
which the temperature gradient increases from zero and reaches a limiting value for
a time 1/γ (we recall that it is the viscous time that is taken as the time unit). In the
calculations the condition (10.163) on the free surface was replaced by the condition


−η𝜕w
𝜕x
+
𝜕σ
𝜕z


< P0 : w = 0;


−η𝜕w
𝜕x
+
𝜕σ
𝜕z


⩾ P0 : η𝜕w

𝜕x
=
𝜕σ
𝜕z
.

This approximation is capable to describe the delay of the onset of thermocapil-
lary convection observed in the experiment [136].

The initial and boundary value problem (10.161), (10.162), (10.164)–(10.168) was
solved using a differencemethod based on an implicit scheme. The solution of the first
equation (10.161) is uniquely determined by preassigning the initial condition (10.168)
and the boundary conditions (10.165) and (10.166). Knowing the function A we deter-
mine by quadratures the function B from the second equation of system (10.161)

B(x, t) = Gr
1

∫
0

A(s, t)ds − C(t),

where C(t) is an arbitrary function of time determined by Eq. (10.167). Thereupon the
system for determining the functions w, Θ, and q becomes closed.

In the problem under consideration the function C is unknown, together with w.
Because of this, this problem pertains to the class of inverse problems. Its numerical
solution was obtained using the parameter sweeping method for loaded differential
equations [41].

In Figure 10.7 the distribution of the longitudinal temperature gradient along the
layer depth is presented for different moments of time. Asmight be expected, at Pr = 7
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Figure 10.8: Distributions of the velocity w and the convective addition to the temperature Θ along
the layer depth; t = 0, 2, 4 and 10 (1–4) for P0 = 500.

Figure 10.9: Same as in Figure 10.8 for P0 = 200.

a homogeneous-in-depth temperature gradient is attained for the time t ∼ 7, that is
the unit time based on the temperature conductivity coefficient.

In Figure 10.8 we have plotted the distributions of the velocity and the convec-
tive addition to the temperature along the layer depth for the case in which the max-
imum tangential stress attained, as the convection flow develops, is not greater than
the threshold value (P0 = 500). Here and in what follows, the problem parameter val-
ues were taken as follows: Pr = 7, Ma = 103, Gr = 103, and γ = 1.

As in the case of a solid boundary, the convection flow develops approaching the
limiting thermogravitational flowwith a cubic velocity profile. In the limiting case the
convective addition to the longitudinal temperature gradient is asymmetric about the
channel mid-section, owing to the temperature origin adopted.

In the case of a less durable surfactant film (P0 = 200) the observable convection
flow evolution is different. It is presented in Figure 10.9.

At t = 2.7 the surface film breaks down under the action of the tangential stresses
and the fluid surface is set into motion. The variations of the velocity of the fluid sur-
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Figure 10.10: Variation in the fluid surface motion velocity w and the convective addition to the tem-
perature Θ for P0 = 200, 100, and 10 (1–3).

face motion and the convective addition to the free surface temperature are presented
in Figure 10.10 for various values of the threshold stress P0.

For films with a small limiting stress the change in the convection flow regime
takes place at smaller times, when a sufficient temperature gradient is attained. With
time the surface velocity and the convective addition to the surface temperature, lim-
iting for the given Grashof and Marangoni numbers, are gradually attained; for the
calculated case they are 56.5 and 42.7, respectively.

Summary

A mathematical model describing the development of thermal convection in a hori-
zontal layer, in which a longitudinal temperature gradient gradually increases with
time, is developed. It is assumed that on the fluid surface there is a film which breaks
down at a certain value of the tangential stress −𝜕w/𝜕x +MaPr−1 ⋅ A(1, t) = P0, so that
the gravitational convection is supplementedwith theMarangoni convection. The lim-
iting steady convection regimes are considered. It is shown that with increase in the
temperature gradient the regime changeovermust happen. The numerical experiment
shows how this changeover proceeds. The limiting regime of thermocapillary convec-
tion obtained in the numerical model well agrees with the analytical stationary solu-
tion.
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